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Summary

THe field of plasmonics, with its promise of nano-scale control of almost

every aspect of our life, hides possibly the greatest potential to revolu-

tionise the technology that drives modern society. From the incredibly accurate

and minute sensing and imaging schemes to nano-scale control of electromag-

netic fields, the possibilities of the technology is beyond most of our wildest

imaginations. However, almost all of these possibilities are shrouded under the

cloak of quantum mechanics; the physics of small things. While classical the-

ories of physics are complex enough themselves, quantum mechanical theories

are(sometimes quite literally), infinitely more complex. Hence some of our un-

derstanding of plasmonic systems and gain elements coupled to them, need to

be derived from within numerical studies. This thesis is dedicated to building

numerical methods to analyse and also actually analysing such plasmonic sys-

tems. In this thesis, we strive answer questions like, what happens to the surface

plasmons living on a cylinder, when we fold it into a torus?; what happens to

the electromagnetic field when two spheres with plasmons living on them are

brought together?; what is the most efficient way to solve problems involving

plasmons accounting for all quantum phenomena?, and a host of others. It is

the author’s humble attempt at pushing the boundaries of our knowledge on the

behaviour of the elusive surface plasmons and their peculiar quantum effects.
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Chapter 1

Introduction

1.1 Background and Motivation

The main constitutive element of any plasmonic systems is the plasmonic res-

onator; the object on which the plasmonic oscillations take place. Based upon ap-

plications, the plasmonic system may interact with additional gain media placed

in proximity. In the earliest descriptions of plasmons and their applications, the

plasmon resonators and the gain media interacting with them, were treated as

classical physical objects and the treatments amounted to basic mean field the-

ories. These theories, based on the requirements of the times with respect to

accuracy and precision, were adequate for a long time. However, due to the

extremely small length scales of the plasmonic resonators and the increasing

demand for more precise characterisation on plasmonic systems, the quantum

mechanical descriptions of plasmonics systems have become not only desirable,

but absolutely mandatory for certain systems. Systems intimately dealing with

light at the nano or micro length scales such as, quantum computing setups [1,2],

photonic-plasmonic circuits [3, 4], chemical and biological sensing systems [5, 6],

and energy harvesting systems [7, 8] have seen vast improvements due to the in-

creasing understanding of the quantum rules that govern them. In this thesis, I

aim to contribute to the global effort by researchers the world over in developing

the required tools to analyse plasmonic nano-resonators and coupled gain media,

1



2 Introduction

and to use these tools and numerical techniques to study the behaviour of such

systems.

1.2 Research Aims

Studying the response of hybridized plasmonic systems coupled to gain media

In this stage, we aim to focus on the so-called hybridized plasmonic setups,

which are systems comprising multiple spatially separated plasmonic resonators

interacting through their near field electromagnetic forces. We plan to take the

nanospherical dimer spaser as the simplest example of such systems and analyse

its behaviour in the presence of gain media chromophores. We aim to perform

the analysis semi-analytically to allow for physical intuition and to allow for fu-

ture extension into much more complex hybridized plasmonic systems using the

same techniques and equations we develop.

Studying the plasmonic response of nano-tori

In this stage, we aim to study the complete plasmonic response of a nano-torus.

The torus nanoparticle has been used extensively in recent years due to their high

tunability and field confinement properties as compared to spherical nanoparti-

cles. While the spherical nano-particle and its plasmonic response is extremely

well understood, the torus, as a nanoresonator, is still not understood completely.

Almost all studies of the torus have focused on the so-called toroidal modes ig-

noring the poloidal modes structure. We will study the poloidal modes on the

torus and the associated symmetries and broken symmetries and their effect on

the modes generated. Through this, we aim to complete the total characterisation

of plasmonic modes on a torus particle.



1.3 Thesis Outline 3

Development of an exact and efficient quantum solver for the coupled res-
onator and identical emitter model

In this stage, we aim to develop the most efficient solver currently available for

solving the quantum model describing the interactions of a resonator with iden-

tical emitter chromophores. The quantum description of such systems are known

to be extremely complex due to the exponential scaling of dimensions of problem.

We plan to use symmetries within the quantum equations to simplify the com-

plexity and also use the most efficient data structures and algorithms to build an

efficient shared-memory parallelised solver that reduces the computational com-

plexity of solving such problems by orders of magnitude. We also plan to use the

solver as a tool for making predictions regarding the behaviour of certain quan-

tum systems that have been inaccessible to exact calculation up to now.

1.3 Thesis Outline

This thesis comprises 10 chapters which are organized as follows:

Chapter 1 introduces the thesis and presents the background and motivation

for the research problem tackled along with the research aims.

Chapters 2, 3 and 4 are then designed to allow the reader a glimpse into the

analytical tools used in characterising plasmonic systems. Chapter 2 gives a short

overview of surface plasmons as a physical phenomenon. Starting with a brief re-

view of history, we discuss the main types of surface plasmon phenomena. Chap-

ter 3 discusses the oldest and most well-known plasmonic structure: the sphere,

and its plasmonic response. We discuss the various methods used to study such

structures and present the analytical derivation. In Chapter 4, we discuss the

phenomenon of plasmon hybridization and derive the relevant analytical results

regarding plasmons modes on a nanopsherical dimer.

In Chapter 5, we present our results on the structure of the poloidal modes of
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a toroidal nanoparticle. We also show the complete structure of the modes on a

torus.

In Chapter 6, we take a detour to introduce the concept of spasing and its im-

portance in the field of plasmonics. We establish the spaser as the quintessential

nanoresonator-emitter model in the plasmonic regime.

Chapter 7 presents the results on the quantum nanresonator-emitter solver

we develop. We start off with background on the quantum description of such

systems and delve deep into the efficiency improvement we made by utilising a

symmetry hidden within the equations.

In Chapter 8, in anticipation of Chapter 9, we present the quantization tech-

nique for hybrid plasmon systems. We specifically quantize the lowest order

modes of the nanospherical dimer and also derive the coupling strengths between

them and emitter chromophores. Using the quantization we perform, in Chapter

9, we present the complete model of the nanospherical dimer based spaser. We

present and compare spasing output for various dimer configurations and sepa-

ration distances. Finally in chapter 10, we summarize the research contributions

of the thesis and outline the prospective future research stemming from these

contributions.



Chapter 2

Surface Plasmons

Figure 2.1: The Lycurgus cup made of dichroic glass by the ancient Romans. In
daylight, when light is reflected off the cup, it appears in green, whereas when
light is shone within the cup and transmitted through the glass, it appears in red.
Image available under the Creative Commons Attribution 2.5 Generic license.
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2.1 History of surface plasmons

Surface plasmons are excitations in the free electrons within a material, at the ma-

terial interface with an external medium. These excitations, which are essentially

oscillating charge waves, create electromagnetic fields near the interface. This

phenomenon was predicted by Rufus Ritchie in 1957 [9] and since then, the field

of study concerned with the manipulation of these oscillating charges has grown

by leaps and bounds, and is today known in general as plasmonics. The most

interesting effects of plasmons are usually detectable in the micro- and nano-

scale when the charge oscillations are confined to length scales much smaller

than the wavelength of the associated electric fields. The resonance frequency

of these charge waves actually dictate the interactions of the plasmons with ex-

ternal fields. The resonance frequencies in turn are dictated by the properties of

the material supporting the plasmon oscillations. For noble metals like silver and

gold, the frequencies lie in the visible region of the electromagnetic spectrum,

making them useful for a great range of applications.

Historically, however, there exist evidence of palsmonic effects being sued in-

advertently in many settings. One such example, the Lycurgus cup, is shown in

Fig. 2.1. This cup is made of a dichroic glass, which is glass dispersed with gold

and silver nanoparticles. When light is incident on the cup at different angles, the

visible color is altered depending on whether the nanoparticles were excited or

not. When excited, the nanoparticles will absorb a certain portion of the incident

light spectrum, altering the visible color.

There are three main manifestations of the plasmonic effects in materials: the

localised surface plasmons, surface plasmon polaritons, and surface lattice res-

onances. In the next section, we will briefly discuss these forms of existence of

plasmons.



2.2 Modes of existence of surface plasmons 7

2.2 Modes of existence of surface plasmons

2.2.1 Localised Surface Plasmons(LSP)

Figure 2.2: The form of localised plasmon resonances on a spherical nanoparti-
cle under the influence of a sinusoidal external electric field excitation. Image
available under the Creative Commons Attribution-Share Alike 4.0 International
license.

The localised surface plasmon is the purest form of the plasmons. They are

the general localised excitations of the oscillating electron waves at the surface

of a nanoparticle. The oscillations take place perpendicular to the surface of the

particle and there is no lateral movement. These can be excited by any form of

appropriate energy transfer such as electron beams or electric fields.

2.2.2 Surface plasmon polaritons(SPP)

These are the travelling wave counterparts of the surface plasmons. They form

waves travelling along the surface of plasmonic particles. These waves are evanes-

cent in nature and dissipate quite rapidly. As shown in Fig. 2.3, the waves travel

along the surface through the excitation by electrons or an electric field(photons).

However, if photons are to be used, special structures such as the Kretschmann

https://commons.wikimedia.org/wiki/File:Nanoparticle_lspr_2.png
https://commons.wikimedia.org/wiki/File:Nanoparticle_lspr_2.png
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Figure 2.3: Surface plasmon polaritons may be excited by photons as shown. The
graph on the right plots the penetration depth of the electric field into the material
and the external environment. The field dissipates rapidly along the surface.

arrangement [10] needs to be used to accommodate the momentum mismatch

between photons and plasmons. Also shown in the figure distribution of the

electric field within the material and the external medium. As can be seen, the

electromagnetic field extends further into the external medium as compared to

the material.

2.2.3 Surface lattice resonances(SLR)

Surface lattice resonance is a relatively new phenomenon that makes use of the

constructive interference effects of plasmonic particles [11]. Plasmonic particles

placed in a lattice with lattice separation at the order of the wavelength of the gen-

erated electromagnetic field has been shown to exhibit extremely narrow and in-

tense plasmonic resonances. This structure has enabled the construction of high-

resolution sensors and extremely coherent and narrow lasing sources.



Chapter 3

Surface plasmon resonances on a
sphere

Figure 3.1: Illustration of the spherical harmonics ladder. Note that the plots indi-
cate the angular distribution of charges on a sphere. The white portions indicate
positive charges while the dark portions are negative charges. Image made avail-
able under the Creative Commons Attribution-Share Alike 3.0 Unported license
by Dr. F. Zotter.

Given the importance of the applications of the surface plasmons and asso-

ciated phenomena, the question of studying the surface plasmon behaviour in

different nano-particles became a very important question. The simplest of all

9

https://commons.wikimedia.org/wiki/File:Spherical_Harmonics_deg5.png
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particles, the spherical particle was the central structure of interest. However, as

it turned out, the problem of surface plasmon behaviour and the scattering char-

acteristics were effectively solved roughly half a century before the existence of

surface plasmons were postulated. The complete solutions are know to be the

so-called Mie solutions of Maxwell’s equations.

Gustav Mie solved the question of the interaction between a dielectric sphere

and a plane wave in 1908 [12]. He was able to derive analytical expressions for

the scattering, absorption and extinctions taking place along with the associated

cross sections. As it turns out, for dielectrics with negative real parts of permittiv-

ity at the frequency of incident light, the extinction peaks correspond exactly to

the resonance frequencies of surface plasmon modes on a sphere. This provided

an excellent basis for the initiation of the study of surface plasmon spectra on

spheres and similar objects.

3.1 The Mie solution of the sphere

In the quasi-static approximation, the scalar electric potential Φ can be calculated

through the Laplace equation as,

∇2Φ = 0. (3.1)

This equation was solved by Mie for a particle of radius a, under an electric

field E = E0ẑ in the z direction. Given that ε is the dielectric constant of the

particle and εb is the dielectric constant of the background medium, the general

solution in spherical coordinates is exactly separable and can be given as(see Ap-

pendix A),

Φ(r, θ, φ) =
∞

∑
l=0

l

∑
m=−l

[
Am

l rl + Bm
l

(
1
r

)l+1
]

Ym
l (θ, φ)eimφ, (3.2)
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where the coefficients Am
l and Bl

m are determined by boundary conditions and

Ym
l (x) are the spherical harmonics. The terms in the summation are often referred

to as the solid harmonics. The rl terms correspond to the solutions inside the

sphere while the r−l terms correspond to the potential outside the sphere. This

solution is sometimes represented in terms of the so-called associated Legendre

polynomials Pm
l ,

Ym
l (θ, φ) = (−1)m

√
(2l + 1)

4π

(l −m)!
(l + m)!

Pm
l (cos(θ))eimφ. (3.3)

The form of the spherical harmonics is represented as angular plots in Fig. 3.1.

Each row of the figure corresponds to different l values while the m values vary

along the rows. Using the boundary conditions pertaining to the incident field

E = E0ẑ, the solutions can be shown to be of the form,

Φ(r, θ) =

−
3εb

2εb+ε E0r cos(θ), for r < a

ε−εb
2εb+ε a3E0

1
r2 cos(θ)− E0r cos(θ), for r ≥ a

(3.4)

Looking at the form the potential for r ≥ a, we can derive the form of the

dipole moment of the particle as,

P =
ε− εb

2εb + ε
a3E0. (3.5)

This form of the dipole moment then allows for the determination of the scat-

tering and absorption cross sections and other quantities such as the sphere po-

larizability α,

α =
ε− εb

2εb + ε
. (3.6)

This polarizability allows for the expression of the dipole response of a spher-

ical particle to incident electromagnetic radiation simply as,
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P = αa3E0. (3.7)

3.2 Surface integral formulation and the surface plas-
mon modes on a sphere

While the Laplace equation and the associated boundary value problem has been

the main tool in analysing the surface plasmon modes on structures, there is an al-

ternate integral formulation of the boundary value problem that implicitly incor-

porates the boundary conditions into the problem. This method uses the so-called

Neumann-Poincare operator. First proposed by Poincare [13] and Neumann [14]

in the context of an extremal value problem, the NP operator has recently received

much attention in plasmonics as a convenient alternative to the Laplace equation

based methods [15]. The surface charge plasmonic modes of a bounded structure

occupying the domain Ω in R3 and bounded by ∂Ω with surface elements σ are

described as eigenfunctions of the Neumann-Poincare operator,

K∗[φ](x) = p.v.
λ

2π

∫
∂Ω

(x− y)·νx

|x− y|3 φ(y)dσ(y). (3.8)

The resonant permittivities ε are related to the eigenvalues 2π/λ of the oper-

ator as,

λ =
ε− εb
ε + εb

. (3.9)

εb is the permittivity of the surrounding space(R3 \Ω). It is known that the

spectrum of the operator in a smooth domain is real, discrete and that λ = 1 is

one of the eigenvalues. All other eigenvalues have |λ| > 1 [15]. If we let ωC

be the frequency at which Re{ε} = −1 of the plasmonic medium, then positive

eigenvalues correspond to resonance frequencies ω < ωC and negative eigenval-
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ues correspond to frequencies ω > ωC. We use the subscript C here since it is at

that very frequency that the transverse plasmonic modes of an infinite cylinder

are located.

In this formulation, the surface charge eigenfunctions are known to be fur-

nished by the spherical harmonics Ym
l (θ, φ) with eigenvalues λ = (2l + 1). The

modes with same l value have the same frequency. The Ym
1 ’s form the three dipole

active modes in the three independent directions while the Ym
2 ’s form the five

quadrupoles and similarly for other higher order multipoles on the sphere.





Chapter 4

Surface plasmon resonances on
nano-spherical dimers

Nano-spherical dimers are one of the first of the so-called hybrid structures to

be analysed in plasmonics. The effects of spatial proximity of particles support-

ing plasmons have been of considerable interest and the unique properties of

such systems have been used in many applications. Plasmonic resonators placed

close to each other have been known modify each other’s plasmonic response by

mainly shifting the resonance frequencies. The proximity of the resonators also

result in a confinement effect which tends to confine the electromagnetic fields

of the resonators in the space in between the two resonators. This concentration

of electromagnetic energy in turn is useful in a wide range of applications such

as imaging systems [16], sensing [17] and many others. The theoretical study of

plasmon responses of nanospherical dimers was pioneered by Nordlander and

colleagues [18] and they managed to show how the modes can be conveniently

expressed as hybridized single sphere modes. In this chapter, we study the struc-

ture and form of these modes. While we will not delve deep into the exact an-

alytical expressions, we will derive an alternative convenient formulation based

on the dipole moments and polarizabilities of individual nanospheres.

15
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Figure 4.1: Illustration of the 8 lowest order modes on a nanospherical dimer.
The radii of the spheres is R = 10 nm and the separation between the centers
D = 40 nm. Note that of the first six modes, only 4 are independent due to
symmetry. These are also exactly modes that can be shown to result from the
hybridization of the singlet nanosphere dipole charge modes.

4.1 The plasmon modes on nanospherical dimers

We can solve the Laplace equation or the NP operator equations to derive the

plasmon modes on spherical dimers, in the exact same way we derived the form

of the plasmon modes of a singlet nanosphere in chapter 3. The lowest order

surface charge modes are shown in figure 4.1 for nanosphere dimers of radius
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R = 10 nm at separation R = 30 nm. While solutions can be presented in terms of

the usual solid harmonics, the equations and expressions derived are extremely

complex and rarely useful.

However, a much more useful approach has been made possible by the plas-

mon hybridization method [18]. The plasmon hybridization method has shown

that, to a good approximation, the modes of a dimer may be shown to be modes

formed by the interaction and hybridization of modes on single spheres. For ex-

ample, the lowest order modes may be seen as arising out of the interaction of

the lowest order dipole modes on a sphere. Due to the symmetry present, the 3

dipole modes on each sphere hybridize to form the 4 lowest order modes on a

nanospherical dimer. Figure 4.2 presents the hybridized resonance modes. The

hybridization causes the resonance frequencies to also shift in the manner as in-

dicated by the vertical axis.

LD mode

LB mode

TB mode

TD mode

Figure 4.2: The hybridization of the dipole modes of a spherical nanoparticle
forms the lowest order modes of a nanospherical dimer. (a) The longitudinal
modes; Longitudinal Dark(LD) and Longitudinal Bright(LB). (b) The transverse
modes; Transverse Dark(TD) and Transverse Bright(TB)

Two of the charge modes formed have a vector-like structure indicating that
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they are dipole active, or bright. This essentially indicates that the charge dis-

tribution on the dimer is such that a non-zero dipole moment exists. This also

implies that the modes emit dipole radiation into the far-field. This underlies

their ”bright” character. The dark modes are dipole inactive since they do not

possess a net dipole moment. But they do posses a net quadrupolar moment.

However, for small particles, the quadrupolar radiation is insignificant and they

do not radiate into the far field. Thus the term ”dark”. For small particles, all

higher order multipolar charge distributions are considered dark due to the lack

of radiation into the far field.

The modes may also be classified according to the relative orientation of the

dipoles with respect to the dimer axis: longitudinal for parallel dipole and dimer

axis, and transverse for the perpendicular case. Apart from these modes, there

are a host of other dipole inactive dark modes in a nanospherical dimer setup.

But much of the behaviour of the dimers is dictated by these lowest order modes.

These modes can be derived using the Laplace equation formalism, the NP oper-

ator formalism, or the plasmon hybridization formalism [18].

4.2 Dipole approximation and plasmon hybridization

As shown in the earlier section, the main operational modes in a nanospherical

dimer may be derived as a combination of dipole modes in a singlet nanosphere.

Using this simple approach, an approximation may be derived for the hybrid

modes in a nanospherical dimer.

Throughout this section, we will denote the center coordinate of the spheres

by r1 and r2, and their separation along the axis joining the centers to be D. As

shown in Fig. 4.3, the radii of the spheres will be taken to be equal to R and the

relative permittivity of the metal will be denoted by εm. We mainly consider the

metal to be silver and use the permittivities given by Jiang et al. [19]. These values
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(a)

E0

Z

X

(b)

D
D

R
R

Figure 4.3: The two dimer setups (a)transverse and (b)longitudinal. We orient the
external electric field and hence the dipole moments along the z-axis as shown.
The y-axis can be determined from the right hand rule.

are an improvement over the often used Johnson and Christy [20] measurements

and have been derived under extremely controlled settings. We denote the rela-

tive permittivity of the medium in which the system is placed in by εb. In both the

transverse and longitudinal setups, we will consider the external electric field to

be oriented along the z-direction. This forces the dipole moments in both setups

to be oriented along the z-direction. For the transverse setup, the two spheres

will be placed along the x-axis causing the electric field to be perpendicular to the

axis joining the spheres. In the longitudinal setup, the spheres are arranged along

the z-direction and the electric field is parallel to the axis joining the spheres.

The dipole moment arising in a spherical metal nanoparticle in the presence

of an external electric field E0(t) = Re{E0e−iωt} can be given as [21],

P = αR3E0, (4.1)
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where R is the radius of the sphere and the polarizability of the metallic sphere

is given by,

α =
εm − εb

εm + 2εb
. (4.2)

Note that we use the quasi-static approximation and hence, the field is inde-

pendent of the position vector r and the amplitude can be given by the constant

vector E0. The resonance condition for such a nanosphere is determined by the

real part of the denominator equalling to zero, Re{εm} = −2εb. For a sphere

placed inside a vacuum, this condition is the well known resonance condition,

Re{εm} = −2. This dipole moment in turn induces an electric field outside the

sphere given by,

Einduced =
[3(P · r)r− |r|2P]

|r|5 . (4.3)

Next we turn to the problem of analysing the resonances in metal sphere

dimers. Using Eqs. (4.1) and (4.3), we can assign dipole moments to each of

the two spheres and calculate the retarded electric fields at each sphere due to

the other. Requiring the field values to be self-consistent gives us a solution for

the dipole moments of each of the spheres. Subsequently we use these dipole

moment values to quantize the electric field in the dimer system. This approach

only considers the dipole modes of the dimer system and neglects all other higher

order modes.

Plasmonic Resonances in transverse dimers

Now we derive the resonance form of a transverse dimer setup. We assume the

size of the system to be much smaller compared to the wavelength of light and

hence the complete system sees an external electric field value independent of

position r given by, E0(t) = Re{E0e−iωt}ẑ, where E0 is the constant amplitude of

the electric filed in the z-direction. We specifically choose this directionality of the
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external electric field to focus on the dipole moments and the plasmon oscillations

along the z-direction. The total electric field within the system can be written

in the time harmonic approximation as, E(t) = Re{Ee−iωt}. The two spheres

have identical polarizability values α, radii R, permittivities εm, separation D and

dipole moments in the z-direction denoted by P1 and P2. Given E1 and E2 to be

the electric field amplitudes in the z-direction on the two spheres, for the electric

field outside the two spheres we can write,

E(r) = E0 + α[E1G(r; r1) + E2G(r; r2)], (4.4)

using the dyadic Green’s function forms G(r; rd),

G(r; rd) =
R3{3[ẑ · (r− rd)](r− rd)− |r− rd|2ẑ}

|r− rd|5
, (4.5)

for d = 1, 2. The center coordinates of the spheres are given by, r1 = [−D/2, 0, 0]

and r2 = [D/2, 0, 0]. At the exact locations of the spheres, Eq. (4.4) gives,

E1 = E0 −
P2

D3 , (4.6a)

E2 = E0 −
P1

D3 . (4.6b)

Using P1 = αR3E1 and P2 = αR3E2, we can write two simultaneous linear

equations for E1 and E2. Solving these would give us the exact values of the

dipole moments to be,

P1 = P2 =
αR3E0

1 + αR3

D3

. (4.7)

Comparing this equation to (4.1), this equation can be interpreted as a mod-

ification of the effective polarizability of the nanospheres to αeff = α

1+ αR3
D3

. The

electric fields inside the two spheres(d = 1, 2) can be given by [21],



22 Surface plasmon resonances on nano-spherical dimers

Ed,internal = Ed
3εb

εm + 2εb
= Edα

3
εm − εb

≈ −αEd. (4.8)

The last approximation is valid near resonance due to the fact that Re{εm} ≈

−2εb.

Next we turn to the problem of quantizing the dimer electromagnetic field.

Currently we have derived the electric field as generated by an external field.

To derive the localised plasmon field, we need to find the localised solution of

Maxwell’s equations. To do this, following [22], we stimulate the system with

an impulse of the form Eimpulse = E0δ(t)ẑ instead of a constant external field.

After t = 0, the response that remains in the system will be exactly the localised

solution,

Edimer(r, ω) =
αE0

1 + αR3

D3

[G(r; r1) + G(r; r2)]. (4.9)

The Drude model for permittivities of silver, given the plasma frequency ωp

and decay rate γ0 and the core permittivity εcore, can be written as [23],

εm = εcore −
ω2

p

ω(ω + iγ0)
. (4.10)

Assuming this model holds with εcore = 1, and assuming that the external

environment to be the vacuum(εb = 1), we can write the effective polarizability

αeff as,

αeff =
εm − εb

(εm − εb)(1 + R3

D3 ) + 3εb

=
ω2

F

ω2
F(1 +

R3

D3 )− (ω2 + iωγ0)
. (4.11)

Here, ωF = ωp/
√

2εb + 1 = ωp/
√

3 is the Fröhlich frequency in the vacuum.
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Defining ω0 =
√
(1 + R3

D3 )ωF and making the standard approximation ω ∼ ωF ∼

ω0 � γ0, this allows us to rewrite Eq. (4.11) as,

αeff ≈ ωF/2
(ω0 −ω)− iγ0/2

.

Using this, we can rewrite Eq. (4.9) as,

Edimer(r, ω) =
ωFE0/2

ω0 − iγ0/2−ω
[G(r; r1) + G(r; r2)]. (4.12)

This equation exactly predicts a resonant system with frequency ω0 and damp-

ing γ0/2. In the time domain this translates to,

Edimer(r, t) =
ωFE0

2
[G(r; r1) + G(r; r2)] sin(ω0t)e−γ0t/2. (4.13)

For a singlet nanosphere, the dipole resonance frequency is located at the

Fröhlich frequency(ωF). But for the bright mode of a transverse dimer, we see

that the earlier analysis predicts a shifting of the resonance frequency. Further-

more, we see that this shift is exactly a blue shift. We also note that while this

result was derived with the assumption of εcore = 1, for silver, this is not valid

in general. The general expression only clutter the presentation with no added

rigor, so we have opted for the simpler result. In particular, the general expres-

sion does not alter the form of the quantized field equation nor the calculated

field intensities and coupling rate values. Please see Appendix F for the general

form.

As mentioned earlier, since we excite the the system with a field in the z-

direction, we only consider the dipole mode oriented along the z-direction. Since

the dipole modes are orthogonally directed, such a procedure is justified and

easily generalised to the case of a field in an arbitrary direction. Defining β =
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ωFE0
2 , the total energy W in this mode can be calculated as,

W =
β2

8π
sin2(ω0t)W(D), (4.14)

where,

W(D) =
∫
|G(r; r1) + G(r; r1)|2 Re

{
d

dω
(ωε)

∣∣∣∣
ω=ω0

}
d3r, (4.15)

The extra derivative factor in the expression precisely accounts for the energy

in dispersive media [24]. Note that this integration extends over infinite space.

Defining normalisation factor,

N =

√
8πh̄ω0

W(D)
, (4.16)

and normalised amplitude,

B =
β

N
, (4.17)

enables us to write the total potential energy stored in the electric field as,

W = h̄ω0B2 sin2(ω0t). (4.18)

Plasmonic Resonances in longitudinal dimers

Now we turn to the question of longitudinal dimers. The equations and for-

mulas applying to the longitudinal dimers remain approximately equal to the

transverse. The main difference arises from the geometry of the setup, where,

as dictated by Eq. (4.3), the electric fields at the position of the spheres can be

expressed as, E1 = E0 +
2P2
D3 and E2 = E0 +

2P1
D3 . These equations give,
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TB mode

TD mode

Figure 4.4: The two dimer setups (a)transverse and (b)longitudinal. We orient the
external electric field and hence the dipole moments along the z-axis as shown.
The y-axis can be determined from the right hand rule.

P1 = P2 =
αR3E0

1− 2αR3

D3

. (4.19)

The effective polarizability of the dimers get modified to,

αeff =
α

1− 2 αR3

D3

. (4.20)

Using this form and following a similar procedure as we did in Eqs. (4.11) and

(4.12), the electric field of the dimer system in the frequency domain can thus be

obtained as,

Edimer(r, ω) =
ωFE0/2

ω0 − iγ0/2−ω
[G(r; r1) + G(r; r1)], (4.21)

where ω0 =
√

1− 2 R3

D3 ωF. Note that in the above equations, the G(r; r1) and

G(r; r2) differ from that of the transverse setup by virtue of the difference in r1 and
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LD mode

LB mode

Figure 4.5: The two dimer setups (a)transverse and (b)longitudinal. We orient the
external electric field and hence the dipole moments along the z-axis as shown.
The y-axis can be determined from the right hand rule.

r2. For the longitudinal setup, r1 = [0, 0, D/2] and r2 = [0, 0,−D/2]. The total

energy in the electric field can be shown to have the same form as the transverse

configuration given in Equation (8.1).

An exactly similar procedure may be followed to derive the dark mode reso-

nance frequencies and electric fields in the dimer setup. These results are sum-

marised in figures 4.4 and 4.5.

Next we turn to the extinction profiles of the dimer setups to extract the exact

resonance frequencies. The extinction efficiency for dimer setups can be given

by [25],

Cext =
4πk
SdE2

0
∑

i
Im {E0.Pi} . (4.22)

Here, the cross sectional area Sd = πR2 + 2RD for transverse dimers and

Sd = πR2 for longitudinal dimers. The sum runs over the two dipoles. We note

here that since our formulation only considers the near-field, the extinction cross



4.2 Dipole approximation and plasmon hybridization 27

300 340 380 420 460 300 340 380 420 460

300 340 380 420 460300 340 380 420 460

Wavelength (nm)

Ex
tin

ct
io

n 
Ef

fic
ie

nc
y

0

10

20

30

40

0

4

8
12

16
20

0

5

10
15

20

25

0

10

20
30

40

50

R=10nm, D=25nm R=10nm, D=30nm

R=20nm, D=45nm R=20nm, D=50nm

Figure 4.6: The extinction efficiencies for the singlet(black), transverse dimer(red)
and longitudinal dimer(blue)setups for various nanosphere sizes and separa-
tions. (a) R=10 nm and D=25 nm; (b) R=10 nm and D=30 nm; (c) R=20 nm and
D=45 nm; (d) R=20 nm and D=50 nm.

sections presented are equivalent to absorption cross sections. Figure 4.6 plots

the extinction cross sections for singlet, transverse dimer and longitudinal dimer

configurations for 10 nm and 20 nm silver spheres. As expected, when the dimers

are further apart, the extinction efficiencies decrease. We also find that the 20 nm

sphere setups have larger extinction compared to the 10 nm spheres at resonance.

As far as the linewidths are concerned, all spheres have similar or comparable

linewidth as calculated as a FWHM value of ≈ 11 nm. This is as predicted by

Eqs. (4.12) and (4.21), where we see that the linewidth for both dimer setups are

equal to the singlet linewidth γ0/2.

In addition to that, increase in extinction efficiency and the shifting of the

resonance frequency are observed in the dimer setups as expected. The transverse

dimer bright mode, being an anti-bonding mode, experiences a blue shift while

the longitudinal dimer experiences a red shift on account of its bright mode being

a bonding mode. The equations we derived for the resonance frequency during

the quantization of the dimer systems also predict a similar pattern. To study the

accuracy of these formulas derived in the dipole approximation, in Fig. 4.7 we
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Figure 4.7: The predicted resonance frequencies for the transverse dimer(red)
and longitudinal dimer(blue) configurations by the formula we derive(solid
lines) and the predictions of the full multipole theory(dashed lines).

plot the resonance frequencies as predicted by the formulas(ω0 =
√

1− 2αR3

D3 ωF

for the longitudinal dimer and ω0 =
√

1 + αR3

D3 ωF for the transverse), with those

as predicted by the full multipole calculations of plasmon hybridization theory

[26]. The multipole predictions are derived assuming a Drude model with plasma

frequency ωp = 9 eV for 10nm silver spheres. We observe that the formulas do in

fact predict the resonance frequencies reasonably well for separations D > 5 nm.

At shorter distances, the effects of multipoles and other electron cloud distortion

based effects play a significant role. Transverse and longitudinal dimers actually

experience asymmetric shifting of the resonance frequency due to the presence of

the factor of 2 in the formula for the longitudinal resonance frequency.



Chapter 5

Surface plasmon resonances on
nano-tori

As was discussed earlier, the plasmonic structure of the simplest of nano-structures,

the sphere, was analysed over a century ago [12] and it was shown that the elec-

tromagnetic field modes generated take the form of the so called solid harmonics.

The charges on the surface of a sphere take the form of spherical harmonics [15].

The spherical harmonics thus result in the 3-fold degenerate dipole modes, 5-

fold degenerate quadrupolar modes and all the other higher order modes. The

structure and behaviour of these modes are understood perfectly and a summary

of these is presented in Figure 5.1(a). ωF in the Figure is the so-called Fröhlich

frequency, at which value the permittivity of the material epsilon is such that

Re{ε} = −2. ωC is the frequency at which Re{ε} = −1. One important factor to

note about the modes on a sphere is that they are orthogonal: the surface charge

modes over the surface of the sphere are orthogonal to each other. This means

that given a specific excitation scheme, there is more than one specific combina-

tion of modes that will be excited.

Beyond the sphere, in terms of genus, the representative structure in the next

level of topological hierarchy is the torus. In plasmonic applications, the torus

structure has shown to be incredibly useful as a primary nano-structure allow-

ing for enhanced tuning capabilities compared to spheres [27]. Torus structures

have high field confinement in the center and also modes with non-zero magnetic

29
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Frequency

(a) (b)

Figure 5.1: (a)The plasmonic modes of a sphere and (b) transverse plasmonic
modes of a cylinder. The dipole modes are shown in color while the dark modes
are black. The dipole x-mode is shown in red, the y-mode in blue and the z-mode
in green. The cylinder axis is assumed to be oriented along the y-axis.
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dipole moment [28]. It has been known for a while that the Laplace equation is

approximately separable in toroidal coordinates [29]. The first attempts at solving

the Laplace equation on a torus surface was carried out in [30, 31] in the context

of toroidal plasma analysis. In the plasmonic domain, the first attempt at an anal-

ysis was done in [28] under certain assumptions. The first complete analysis of

the problem was carried out in [32] and [33]. It was also in [32], that the existence

of poloidal modes(azimuthally symmetric modes) were first demonstrated. The

existence of an infinite class of such modes were shown. In addition this, plas-

monic analyses of modes on a torus were carried out in [27] and [34] within the

framework of plasmon hybridization. This formalism described the plasmonic

modes on a torus surface as arising from hybridisation of primitive plasmons

on the inner and outer surface of a torus. However, almost all of these studies

focused mainly on toroidal modes, or modes with charge variations in the x-y

plane, for a torus with axis along the z-direction. In this chapter, we shall focus

on the poloidal modes, or modes whose variations are strictly along direction of

the torus axis, and show that the poloidal structure results in numerous amazing

hidden properties.

Seemingly unrelated to these developments in fields of physics, it was recently

demonstrated that the spectrum of the so-called Neumann-Poincare(NP) opera-

tor on the surface of a torus possesses an infinite number of a negative eigenval-

ues [35]. The eigenfunctions of the NP operator for a given surface are known to

furnish the surface charge plasmonic eigenmodes of a particle bounded by that

surface, in the quasi-static approximation [15]. The eigenvalues correspond to

the resonant permittivities. As we shall show, these eigenmodes with negative

eigenvalues actually include an infinite set of poloidal modes which are different

to the ones shown to exist in [32]. We shall show that the complete set of poloidal

plasmonic modes on a torus may be described as two infinite sets of modes: one

set as discovered in [32] with positive NP eigenvalues, and another set with nega-
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tive eigenvalues which we demonstrate here for the first time. We will show that

these two sets arise from the breaking of the poloidal symmetry when a cylinder

is folded to form a torus. By our analysis of these poloidal modes, we complete

our understanding of plasmonic modes on a torus.

In the first section of this chapter we establish the coordinate systems and

derive an approximate equation for the negative NP-eigenvalue poloidal modes.

In the next section we solve the NP equation numerically and show the existence

of the dual set of poloidal modes and establish the symmetry broken structure

and show that the modes converge to the modes of a cylinder in the low aspect

ratio limit. In the final section we solve Maxwell’s equations and study how the

modes overlap and behave under scattering and extinction studies.

5.1 Analytical characterisation

Let’s first set up the coordinate system on a torus. The toroidal coordinates

(ξ, η, φ) as shown in Figure 5.2 are usually the coordinates used to study the struc-

tures on toroidal surfaces. We also note a very interesting property of the toroidal

coordinate system here. Performing a geometric inversion of the toroidal coor-

dinates with center at O and radius r0 furnishes a conformal map from the torus

onto itself. This transformation can also be thought of approximately as a trans-

formation taking the outside surface portion of the torus to in the inside and vice

versa. The toroidal coordinates themselves are orthogonal. However, the Laplace

equation is only approximately separable in toroidal coordinates. This property

was known for a long time and the electric potential field can be expressed as an

expansion in terms of the toroidal harmonics [36],
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Figure 5.2: The toroidal coordinate system and the natural coordinate system on
a torus.

Φ(ξ, η, φ) =
√

1− ξ cos(η) ∑
m,n

 Tmn

Smn

×
 cos(mη)

sin(mη)

 ×
 cos(nφ)

sin(nφ)

 ,

(5.1)

where Tmn = ξ−1/2Qn
m−1/2(1/ξ) and Smn = ξ−1/2Pn

m−1/2(1/ξ) with Qα
β and

Pα
β as the associate Legendre functions. The curly braces indicate that any one

of the functions within may be chosen to form a valid mode. This equation can

be viewed as a modal expansion. The azimuthal direction in a torus is usually

referred to as the toroidal direction and the modes that vary in that direction are

referred to as toroidal modes. These modes have m = 0. On the other hand, the

direction as labelled by η or θ is the poloidal direction and the modes are referred

to as poloidal modes(n = 0). All other modes are non-trivial superpositions of

toroidal and poloidal modes.
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As can be seen, the solution is separable in the azimuthal coordinate φ due to

the corresponding exact symmetry of the torus. This means that the terms in Eq.

(5.1) with different n values are orthogonal. However, the ξ and η coordinates

are intrinsically coupled and hence the modes with different m values are not

orthogonal. Hence, in general, the toroidal plasmonic response will be a mixture

of modes with different m values.

To study the structure of the poloidal modes, we turn to a different formu-

lation of the Laplace equation and the associated boundary value problem: the

Neumann-Poincare(NP) operator. First proposed by Poincare [13] and Neumann

[14] in the context of an extremal value problem, the NP operator has recently

received much attention in plasmonics as a convenient alternative to the Laplace

equation based methods [15]. The surface charge plasmonic modes of a bounded

structure occupying the domain Ω in R3 and bounded by ∂Ω with surface ele-

ments σ are described as eigenfunctions of the adjoint Neumann-Poincare opera-

tor,

K∗[φ](x) = p.v.
λ

2π

∫
∂Ω

(x− y) · νx

|x− y|3 φ(y)dσ(y). (5.2)

The resonant permittivities ε are related to the eigenvalues 2π/λ of the oper-

ator as,

λ =
ε− εb
ε + εb

. (5.3)

εb is the permittivity of the surrounding space(R3 \Ω). It is known that the

spectrum of the operator in a smooth domain is real, discrete and that λ = 1 is

one of the eigenvalues. All other eigenvalues have |λ| > 1 [15]. If we let ωC be the

frequency at which Re{ε} = −1 of the plasmonic medium, then positive eigen-

values correspond to resonance frequencies ω < ωC and negative eigenvalues

correspond to frequencies ω > ωC. We use the subscript C here since it is at that
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very frequency that the transverse plasmonic modes of a cylinder are located(See

Figure 1).

We can re-write the NP operator in toroidal coordinates as,

K∗[σ](η, φ) =
∫

κα(η, η′)σ(η′, φ′)

(µ(φ− φ′)− cos(η − η′))1/2 dη′dφ′

−
∫

κα(η, η′)ψ(η)

ξ2
σ(η′, φ′)(1− cos(φ− φ′))

(µ(φ− φ′)− cos(η − η′))3/2 dη′dφ′,
(5.4)

where ψ(η) = 1 − ξ cos(η), µ(φ) = 1/ξ2 + (1 − 1/ξ2) cos(φ), κ = (1 −

ξ2)ψ(η)1/2/(8π
√

2ξψ(η′)3/2) and α(η, η′) = ψ(η)1/2/ψ(η′)3/2.

Observing Eqn. (5.4), we see that the kernel is a function of φ − φ′. This is

a signature of the exact circular symmetry of the system and indicates that eikφ,

where k is an integer, are possible eigenfunctions. However, the η dependence

of the system is much more complicated. While the denominator of the kernel

contains terms dependent on η − η′, there are other terms that seemingly do not.

This structure indicates that the symmetry in the η direction is not exact for the

torus. The pre-factor terms in Eqn. (5.4) also indicates that the terms of the form

ψ(η)3/2 also seem to be part of the eigenfunctions of the operator. Using these ob-

servations we can hypothesise, without loss of generality, that the eigenfunctions

should be of the form,

σ(η, φ) = ψ(η)3/2eikφg(η). (5.5)

With this form, the operator equation reduces to,

K∗[σ](η, φ) = κψ(η)3/2
∫ 1

ψ(η)

g(η′)e−ikφ′

(µ(φ′)− cos(η − η′))1/2 dη′dφ′

− κψ(η)3/2

ξ2

∫ g(η′)e−ikφ′(1− cos(φ′))
(µ(φ′)− cos(η − η′))1/2 dη′dφ′,

(5.6)
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With the inevitable symmetry breaking of the ψ(η) functions removed, the

kernel still carries a term 1/ψ(η), that breaks the η symmetry of the resulting

eigenfunction. To observe the behaviour of the kernel for small ξ, we can expand

the 1/ψ(η) term in powers of ξ (This is valid since |ξ cos(η)| < 1).

1
ψ(η)

= 1 + ξ cos(η) + ξ2 cos2(η) + O(ξ3). (5.7)

Taking only the lowest order perturbation, we can rewrite the kernel as,

K∗[σ](η, φ) = κψ(η)3/2
∫ g(η′)e−ikφ′

(µ(φ′)− cos(η − η′))1/2 dη′dφ′

− κψ(η)3/2

ξ2

∫ g(η′)e−ikφ′(1− cos(φ′))
(µ(φ′)− cos(η − η′))1/2 dη′dφ′.

(5.8)

This kernel has exact η-symmetry and hence we can describe the eigenfunc-

tion g(η) = eilη. This gives us the form of the approximate eigenfunctions as,

σ(η, φ) = ψ(η)3/2eikφeilη. (5.9)

This implies that, apart from the ψ(η) term, the eigenfunctions have sinu-

soidal dependence on both angular variables η and φ. Since we are exclusively

interested in poloidal modes, we set k = 0 and derive the following modes,

σS
l (η) = ψ(η)3/2 sin(lη), (5.10a)

σC
l (η) = ψ(η)3/2 cos(lη). (5.10b)

σS
l is antisymmetic and hence will have a net dipole moment while σC

l will be

dark. We plot both charge distributions in Figure 5.3. As can be seen, the charges

are mainly localised to the internal ”gap” of the torus. We term these modes

Internal modes, or I-modes due to this behaviour. We also label the individual
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Figure 5.3: The charge distributions of the IC1 and IS1 modes as described by
Eqns. (5.10) at various aspect ratios.
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modes as either ISl or ICl modes, depending on the sine or cosine structure. We

further observe from Eqns. (5.10), that for smaller ξ, the two modes reduce to the

usual sine and cosine cylinder modes. As shown in Figure 5.3, for larger ξ values,

the charge distributions of the modes seem to accumulate near the η = π point.

5.2 Numerical characterisation

Now we turn to the numerical solution of the NP operator equation. For this pur-

pose, we can re-interpret Eq. (5.2) as an equation involving solid angles between

discretized surface elements {xi} [15],

Xi =
λ

2π ∑
i

ωijXj. (5.11)

Here, Xi is the total charge on the ith surface element and ωij is the solid an-

gle subtended on the ith surface element, by the jth element. The problem can

thus be cast in the form of an eigenvalue equation and solved efficiently. We

solve this equation and discover the existence of the I-modes we analytically de-

rived earlier. We show the lowest order modes for ξ = 0.5 in Figure 5.4(a). The

eigenvalues of these modes turn out to be all negative and hence the resonance

frequencies ω > ωC. The negativity of the eigenvalues may be linked to the

negative Gaussian curvature of the inside surface of the torus, where the charge

distribution of these I-modes are concentrated. Given a surface element δi on the

inside surface of a torus, the ωij angles subtended by most other surface elements

δj on the inside surface are negative. Hence the sum of Eq. (5.11) is negative,

resulting in a negative eigenvalue. We also note here that in [37], it was proven

that given a smooth surface with a region with negative Gaussian curvature, the

NP spectrum of that surface, or of the surface formed by an inversion, has neg-

ative eigenvalues. Given the natural inversion from the torus onto itself that we
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Figure 5.4: The charge distributions for the lowest order I- and E-modes at ξ =
0.5.
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Figure 5.5: The resonance permittivity values of the lowest order I- and E-modes
at various aspect ratios.

described earlier, this suggests that the NP spectrum of the torus will contain neg-

ative eigenvalues. This observation also reinforces the importance of the negative

curvature portion of the surface to the existence of the negative eigenvalue mode

and the corresponding I-mode.

In addition to these modes, we discover another set of modes with charge dis-

tributions concentrated on the outside surface of the torus. These modes have

positive eigenvalues. The positive eigenvalues can be linked to the positive cur-

vature of the outside surface of the torus where the charges are concentrated. We

label these modes Exterior modes, or E-modes. Similar to the I-modes we also

label them based on the symmetry or asymmetry structure with labels ESl and

ECl. Figure 5.4(b) displays the lowest order of these modes for ξ = 0.5. Un-

like the I-modes, the E-modes do not display a strong variation of the extent of

the charge distribution with changing ξ. There is however a very minor effect of

accumulating towards the η = 0 point with increasing ξ.
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Next we study the resonance permittivities of the two sets of poloidal modes.

As can be seen, the I-modes have permittivities ε > −1 while the E-modes have

ε < −1. In [32], the solution of the Laplace equation only established the exis-

tence of the lower branches corresponding to the E-modes. We also note that the

permittivities tend to −1 as the aspect ratio ξ is reduced. This is due to the fact

that in the infinitely thin torus limit, the torus structure tends, at least locally, to

that of an infinite cylinder. In that limit, the poloidal modes tend to the trans-

verse plasmonic modes of a cylinder(shown in Figure 5.1(b)). We note that all

of the transverse modes of a cylinder are located at frequency ωC. Hence, this

graph hints that the two sets of modes may be considered as originating from the

splitting of the transverse modes of a cylinder.

We confirm this hypothesis in Figure 5.6, where we plot the charge distribu-

tion of the ES1 and IS1 modes at different ξ. We see that both of the charge distri-

butions tend towards the charge distribution of a transverse z-dipole mode of a

cylinder for smaller ξ. This re-establishes that the two sets of modes are actually

manifestations of the symmetry breaking that occurs when a cylinder is folded

to form a torus. We also study the distribution of the charges over the torus sur-

face at different aspect ratios in Fig. 5.7. This shows that at lower aspect ratios,

the charge distributions tend towards the θ = π/2 position where the transverse

z-dipole mode of a cylinder lies.

Next we show the actual distribution of the mode frequencies and the splitting

that occurs when the cylinder is folded into the torus in Figure 5.8.

Next we study the dipole moments of the asymmetric modes we have dis-

covered. The dipole moments of dipole-active modes dictate the majority of the

interactions the particle will have with incident light. We plot the first two I- and

E-modes in Figure 5.9. The E-modes show a linear variation in the dipole mo-

ment. This can be understood by considering that the charge distribution shape

of the E-modes remain virtually the same while the minor radius of the torus in-
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Figure 5.6: The charge distributions of the ES1 and IS1 modes as at various aspect
ratios.
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Figure 5.8: The splitting of the cylinder transverse modes into the torus poloidal
modes.
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Figure 5.9: The dipole moments of the lowest order dipole active I- and E-modes
at various aspect ratios.

creases. This results in a linear increase of the dipole moment with ξ. On the other

hand, the I-modes display a linear progression at low ξ values. But for higher ξ,

the charge distribution accumulation at η = π causes a reduction in the spread

of the charges in the z-direction leading to smaller dipole moment values.

With the complete characterization of the poloidal modes we have established

up to now, we are ready to present the full spectrum of the torus eigenmodes. In

Figure 5.10, we present the full spectrum of the torus which is the counterpart of

the spectrum of the sphere given in Figure 5.1. The z-dipole modes are denoted

in green, with the x-modes in red and y-modes in blue. The I-modes are the

highest frequency modes in this figure. For smaller ξ values, the I-modes will re-

cede into the dark mode continuum and for larger ξ values, more I-modes emerge

from within the dark modes. The E-modes remain hidden deeply within the dark

modes. Their detuning from ωC is also smaller as compared to the correspond-

ing I-modes. The toroidal modes with dipole moment in x- and y-directions are
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Frequency
Figure 5.10: The complete spectrum of a torus. The dipole modes are shown in
color while the dark modes are black. The dipole x-mode is shown in red, the
y-mode in blue and the z-mode in green.
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the lowest frequency modes on the torus. Unlike the I-modes, they remain the

lowest frequency modes irrespective of the value of ξ. Higher order dipole-active

toroidal modes arise from the superposition of the toroidal modes with symmet-

ric poloidal modes. The first of these dipole active modes are also shown in the

figure. All of these modes tend towards ωC for smaller ξ.

5.3 Maxwell’s equations based analysis

While we have performed an analysis of the complete modal structure of the

poloidal modes, one important factor that affects the relevance of these modes to

understanding the behaviour of toroidal particles under electric fields, is the fact

that the modes are not orthogonal. For a spherical particle, the derived modes are

completely orthogonal and hence they can be analysed individually. However,

on a torus, the poloidal modes are all coupled to each other such that all ESl and

ISl modes are coupled to each other. Similarly the ICl and ECl are coupled as

well. Hence, in general, it is a linear combination of these modes that will be

excited depending on the excitation source. However, if the modes are detuned

far enough in frequency space, and the excitation source is at a specific frequency,

only the modes local to the excitation frequency will be excited. As we saw earlier,

the lower order IS modes are quite detuned from the rest of the torus spectrum

for high enough values of ξ. Hence they may be excited individually under such

conditions.

To study this behaviour, we solve Maxwell’s equations under quasi-static con-

ditions. For this, we utilise the versatile MNPBEM toolbox [38]. The torus is

placed with its axis along the z-direction. The particle is illuminated by a plane

wave polarised in the z-direction. We plot the scattering and extinction cross sec-

tions in Figure 5.11 for a torus of aspect ratio 0.8. To model particle properties

we use the experimental permittivity values for silver as obtained from [19]. We
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Figure 5.11: (a) The extinction cross sections for a torus with aspect ratio ξ = 0.8.
The locations of some of the lowest order dipole active E- and I-modes are indi-
cated by vertical bars.(b) The actual charge distributions as derived from solving
Maxwell’s equations under quasi-static conditions at various wavelengths.

fit that data into a Drude model and use the parameters uncovered to model the

silver material. The ωC for silver in this model lies near 343 nm. The frequencies

predicted for the lowest order I- and E-modes by the numerical solution of the

NP equations are also indicated in the figure. The extinction peaks correspond

exactly to the dipole active lowest order modes. As expected from the higher

dipole moment in Figure 5.9, the ES1 mode dominates the spectrum. The IS1

and IS2 modes are also sufficiently detuned to be visibly separate. The rest of the

E- and I-modes are overshadowed by the ES1 mode response. For higher aspect

ratios, more I-modes emerge from the shadow of the ES1 mode. However, the

dipole moments of the I-modes decrease rapidly at higher aspect ratios causing

the overall response to diminish. Hence, as far as the utility of the dipole-active

I-modes go, a balance needs to be stricken between obtaining a higher dipole mo-

ment and ensuring that the mode is sufficiently detuned to be visible individually.
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This balance occurs around ξ = 0.7 to ξ = 0.8.

We also studied the actual induced charge distributions at each of the extinc-

tion frequency levels and verified that the induced charges resemble the charges

as predicted by the NP equations(not shown). We note that while the ES1 mode

lies in the middle of multiple other dark and bright modes(as shown in Figure

5.10), due to its extremely high dipole moment, the E-mode dominates the inter-

action pattern of the torus with light polarised in the z-direction.

5.4 Summary and conclusion

In this chapter, we have presented our results on the poloidal plasmonic modes

of a toroidal nanoparticle. We have shown the existence of two main branches of

poloidal modes and that these arise from the breaking of the symmetry that oc-

curs when an infinite cylinder is folded to create a torus. The transverse cylinder

modes get split into the dual-infinity of poloidal modes on the torus resulting in

the structure we observe. We also show that the poloidal modes approach the

cylindrical modes in the low aspect ratio limit.

We also note that the modes we discover, the E- and the I-modes, display

not only frequency localisation, but also localisation in physical space. E-modes

are localised on the outside surface while the I-modes are on the inner surface

with the electric fields localised accordingly. This implies that the torus carries a

set of modes localised in both frequency and physical space, allowing for either

frequency tuning of spatial aspects or spatial tuning of frequency aspects. This

interesting modal structure is not present in other simple plasmonic structures

like spheres and rods.

We have also laid the groundwork for a discussion on how the plasmonic

modes of a structure may be modified by breaking of symmetries. Specifically,

structures constructed by the revolution of a 2-dimensional regular shape around
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a fixed axis may be studied. Elliptic cylinders, and torus-like objects with ellip-

tical cross sections would be an excellent starting point for such investigations.

While the symmetry structure of a cylinder in the polar direction in a continuous

symmetry, the elliptic cylinder displays a discrete symmetry around its axis. This

implies that the formation of the elliptical cross sectioned torus-like structure re-

sults in a breaking of a discrete symmetry. Thus, such an investigation will also

make clear the differences between discrete and continuous symmetry breaking

in plasmonic objects.

The results of this chapter have been accepted for publication at Physical Re-

view B.



Chapter 6

Spasers

SPASER(Surface Plasmon Amplification by Stimulated Emission of Radiation)

[23], is a device capable of generating extremely localised coherent plasmons

at the nanoscale. Conceptually conceived as a nanoscale manifestation of the

laser, such devices have been shown to have applications in ultramicroscopy [39],

detection and spectroscopy of biological and chemical agents [40], and various

other biomedical applications including cancer therapy [41]. Operating at the

nanoscale, a spaser can localise light, bypassing the diffraction limit when a con-

ventional laser dimension becomes subwavelength. It achieves this by replacing

the photons in a conventional laser by plasmons, a bosonic manifestation of the

coherent electronic oscillations in materials(most often a noble metal like silver or

gold) under electromagnetic fields. It replaces the feedback cavity of a laser with

a nanoscale particle or structure capable of supporting the plasmon modes.

A spaser, similar to a laser, operates on the concept of stimulated emission.

The theory of stimulated emission suggest that the probability amplitude for an

electron to de-excite emitting a photon is proportional to the number of similar

bosons(photons) already present in the background field [42]. This suggests that

if a gain medium could be pumped, and only a small number of similar pho-

tons could be built up, the higher quantum probability of de-excitation works

as a positive feedback loop creating an avalanche of self-similar photons. Due

to the similarity of these photons, the created electromagnetic field is extremely

51
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Gain
Chromophores

Metal Nanoparticle

Figure 6.1: A depiction of the general plasmon-chromophore setup. The Metal
Nanoparticle is at the center with the chromophores surrounding it forming an
isotropic setup. This is important when we impose the assumption that the chro-
mophores are identical. The arrows depict the assumed orientations of the dipole
moments.

coherent. Replacing the background electric field with a background plasmonic

medium gets us to the spaser. The oscillating electrons create an extremely co-

herent electric field near the spaser while the nano-scale size of the device makes

the field extremely localised. Due to the length scale involved, much of the ex-

act analysis needs to be done using exact quantum field theoretic formulations.

I would also like to stress here that while the results I focus on the spaser as the

central device of interest in the coming chapters, the theory and the methods I de-

velop are applicable to any bosonic resonator coupled to fermionic gain media.

In cavity quantum electrodynamics, the model usually used to describe such

coupled systems is the open Dicke model. In the next sections, we shall explore

the Dicke model in detail. Without loss of generality and to establish notation and

terminology used in this chapter, we present the version of the model that cor-

responds to two-level emitter chromophores pumped incoherently, while being
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coupled to a single plasmon mode. Fig. (6.1) shows the basic arrangement of the

physical system. A single Metal-Nanoparticle acts as the plasmon cavity while a

constellation of chromophores are isotropically distributed around it. The dipole

moments are all assumed to be collinear. The dissipative and dephasing effects of

the chromophores and the plasmon mode are taken into account. The interactions

between chromophores are neglected. The coupling between every chromophore

and the plasmon mode is assumed to be identical and constant. The Dicke Hamil-

nth Chromophore Plasmon

Figure 6.2: The transitions among various energy levels of a two-level chro-
mophore system and the plasmon mode. The various operators that perform
the transitions are depicted as well; σn

01 and σ̂n
10 for two-level systems and â, â† for

the plasmon system. Note that these transitions only hold for ket-vector forms.
For bra-vector forms, these transitions are exactly reversed. The ⊗ symbol signi-
fies the coupling of the Chromophore state vector and the Plasmon state vector
through a direct product.
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tonian [43] describes the evolution of the coupled chromophore-plasmon system

with no interactions with the external environment taken into account. This is

referred to as a closed quantum system and the equations follow the familiar uni-

tary evolution of quantum mechanics. The Lindblad dissipators [44] modify this

system to include terms that are non-unitary to include disruptive external events

such as decays, pumpings and dephasings. This modified system is referred to as

an open quantum system since unlike the the closed system (which is assumed

to be ’closed’ out from the external environment), this system is assumed to be

openly coupled to an external environment which is modelled as a large bath [45].

This leads to a more realistic model containing more complex dynamics.

6.1 The Dicke model

In the (closed)Dicke model, the chromophore constellation, indexed by integers

from 1 to N, is described in terms of a basis with states: |0〉n= the ground state

of the nth emitter and |1〉n = the excited state of the nth emitter. The opera-

tors describing transitions of the nth emitter can be written as, σ̂n
00 = |0〉n 〈0|n,

σ̂n
01 = |0〉n 〈1|n, σ̂n

10 = |1〉n 〈0|n and σ̂n
11 = |1〉n 〈1|n. The creation (annihilation) op-

erator of the plasmon number state is â† (a). The coupling constant between the

cavity mode and each chromophore is g and h̄ is the modified Planck’s constant,

ωpl is the plasmon resonance frequency and ωch is the frequency corresponding

to the energy gap between the ground and excited states of the two level sys-

tems. The energy level diagram for a two-level system coupled to a single plas-

mon mode is shown in Fig. (6.2). The composite vector of the system is formed

by a straightforward direct product. The actions of the operators σ̂n
pq, â and â† on

the chromophore and plasmon systems are also depicted in Fig. (6.2). A qual-

itative understanding of these processes will be useful in later derivations. The
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Hamiltonian of this system reads,

Ĥ = h̄ωpl â† â Free Hamiltonian of plasmon mode

+ h̄ωch

N

∑
n=1

σ̂n
11 Free Hamiltonian of chromophores

+ gh̄(â + â†)
N

∑
n=1

(σ̂n
01 + σ̂n

10) Interaction Hamiltonian.

The first term calculates the total energy of the plasmon mode. Here, h̄ωpl is the

quantized single plasmon energy and â† â is the plasmon number operator which

counts the number state of the plasmon mode. The second term represents the

total energy of the chromophores. The energy contribution of each chromophore

is equal to h̄ωch or 0 depending on whether the chromophore is excited (|1〉n) or

not (|0〉n), respectively. σ̂n
11 returns is the identity operator on chromophores in

state |1〉n and it destroys state |0〉n. The final term in the Hamiltonian represents

the interaction energy between the chromophore system and the plasmon mode.

Often, the interaction portion of the Dicke Hamiltonian is simplified using

the so-called rotating wave approximation (RWA) [46] to yield the rotating wave

approximated interaction Hamiltonian, HRWA:

ĤRWA = h̄g
N

∑
n=1

(â†σ̂n
01 + âσ̂n

10). (6.1)

The RWA approximation has proven to be extremely useful [47] and does not sig-

nificantly alter the results due to the extremely small matrix elements associated

with the terms that are discarded. However, the RWA has been shown to fail

to make accurate predictions when the coupling between the emitters and the

cavity is strong [48]. Not using the RWA has also shown to predict interesting

phenomena in such diverse areas as quantum chaos [49], spontaneous emission

theory [50] and qubit-oscillator coupling [51]. But the dimensionality reduction
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proposed in [52] is not affected by whether RWA is used or not. The formalism

still holds while adding extra terms to the equations. Using this RWA form of the

Hamiltonian, the equation of motion for the density matrix can be derived for the

full density matrix of the closed system through [23],

˙̂ρ =
1
ih̄
[Ĥ, ρ̂]. (6.2)

6.2 Dissipations and the open Dicke model

Whilst the closed Dicke Model accounts for a lot a of the naturally occurring phe-

nomena, it does not take into account the possibility of dissipation due to the

unavoidable couplings of the system to the environment. These effects can be

systematically modelled using the Lindblad equation and it’s associated Lind-

blad dissipators [45]. The model modified using these dissipators are referred to

as the open Dicke model. The Lindblad dissipator formalism allows for the cod-

ification of spontaneous events that result from various incoherent couplings of

the system to the environment. These events are modelled as non-unitary evo-

lution terms added to the original density matrix evolution equation 6.2. Every

such spontaneous event can be described under the Lindblad formalism using the

operator that describes the effect of the event on the system (Âj), and the mean

rate at which this event occurs (γ). For example, the incoherent pumping of the

nth chromophore from level 0 to level 1 at a rate of 2 Hz in our model can be cod-

ified by Âj = σ̂n
10 - which is the level 0 to level 1 transition operator in our model,

and γ = 2. Hence, in the interaction picture, the open system Hamiltonian can

be expressed as,

HRWA = h̄g
N

∑
n=1

(â†σ̂n
01 + âσ̂n

10) + ∑
j

D[Âj]ρ̂. (6.3)
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Here the D[Âj] represent the Lindblad super-operators acting on the density ma-

trix. It has been shown that a Lindblad super-operator can be generally repre-

sented as,

D[Âj]ρ =
γ

2
(2ÂjρÂ†

j − ρÂj Â†
j − Â†

j Âjρ). (6.4)

And using the various forms for the Âj, incoherent/dissipative processes such

as Incoherent Pumping (Âj = σ̂n
10), Spontaneous Plasmon Decay (Âj = â) and

Radiative Spontaneous Decay of Chromophores (Âj = σ̂n
01) can be modelled.

We can vectorize the density matrix elements and express the final equation

to be solved in this open Dicke model in the form,

˙̂Q = AQ̂. (6.5)

Here, matrix A is a large, sparse, constant, asymmetric matrix consisting of

constant values. This equation can be easily solved using a multitude of methods

if not for the extreme size of the problem.

6.3 Computational Complexity

Due to nature of the density matrix, the open system Dicke Model has exponen-

tially scaling dimensions. To see this, consider the density matrix of a general N

chromophore system with the plasmon number state truncated to length M. The

number of elements in the chromophore subspace state vector would be 2N due

to each chromophore having 2 degrees of freedom. This is a direct consequence

of each chromophore having 2 energy levels and hence two possible states. The

plasmon state theoretically has infinite degrees of freedom and due to the finite

computational resources, truncating the size of the plasmon number states is es-

sential. Usually, choosing the highest value such that the system properties are

accurate to within a required precision is done. But this is non-trivial since the



58 Spasers

calculation of system properties usually require an estimate of M (we present our

solution to the problem of determining an optimal value for M in the next chap-

ter). The plasmon subspace vector would thus have size M due to having M

possible states. Thus the total state vector dimensions would be 2N ×M. The full

density matrix would thus have dimensions (2N ×M)× (2N ×M) = 4N ×M2.

This renders the full system intractable to any numerical method and hence has

no value in utilizing it for any practical predictions or insights.



Chapter 7

Solving spasing systems

As mentioned in the previous section, the open Dicke model can be formulated

as a set of first order constant coefficient differential equations of dimensions

4N×M2. Hence the problem becomes one of solving a very large system of differ-

ential equations. But solving such a system becomes ridiculously tedious beyond

a couple of chromophores: for example, a system with N = 10 chromophores

and a plasmon state cut-off at M = 100 requires so much computational space

that the storage of the matrix A alone would require over 7 TB of data. This ren-

ders the full system intractable to any numerical method and hence has no value

in utilizing it for any practical predictions or insights. Despite this, there exist

methods to solve the system of equations for extremely small system sizes. These

methods are summarised in Appedix C.

However, it has been known for some time now that polynomial scaling is

achievable in the context of identical chromophores [53, 54] (O(N3)). Most re-

cently, work done on Generalized Dicke basis states from a group theoretic point

of view, has demonstrated an exploitable symmetry within the dissipative two-

level system [55] which effectively results in polynomial scaling of the dimen-

sions of the problem. Hartmann [55] uses the fundamental representation of the

SU(4) group originally devised to explain the flavour quark model of particle

physics, to derive a representation of fully-symmetrical states, which essentially

means states that are symmetric under interchange of chromophores. In general,

59
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such states would be formed by linear combinations of pure-states that are related

by the symmetry operation of chromophore interchange. The representation used

in [55] succeeds in describing such states using just 3 quantum numbers, which

leads to the effective O(N3) scaling of the density matrix size.

This knowledge has led to related work that directly uses this symmetry to

reduce the dimensions of the problem significantly. Richter et al. [52] have been

successful in using this reduction to obtain solutions for emitter-cavity problems

with up to 30 emitters within reasonable time periods using high performance

computing platforms [52].

7.1 Density Matrix Representation and the identical
emitter approximation

In this section we shall discuss the form the density matrix takes when the indis-

tinguishability of chromophores are taken into account. The restructuring of the

density matrix in this new form will shed light on the reduction of the density ma-

trix size of the problem from exponential to cubic in the number of emitters and

quadratic in the number of plasmon number states. The general tensor product

chromophore-plasmon quantum state can be expressed as follows,

|x〉 = {∏
n
|xn〉n} ⊗ |k〉 , (7.1)

where |k〉 is the plasmon number state and |xn〉n is the state of emitter n with

xn = {0, 1} depending on whether emitter n is grounded or excited respectively.

The tensor product of these states indicate the independent presence of all the dif-

ferent chromophores and the plasmon mode together. Mathematically this tensor

product signifies the amalgamation of the independent Hilbert Spaces associated

with the different chromophores and the plasmon mode. This allows us to treat
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the composite system as one single entity. Using this, the form of the density

matrix can be represented as,

ρ̂ = |x〉 〈y| .

= {∏
n
|xn〉n} ⊗ |k〉 {∏

n
〈yn|n} ⊗ 〈p|

= |x1〉1 |x2〉2 ... |xN〉N |k〉 〈y1|1 〈y2|2 ... 〈yN|N 〈p| .

(7.2)

But this is exactly the basis with exponential dimensions we presented earlier and

cannot be used for numerical simulations. By using the fully-symmetrised states,

we can describe a general density matrix element using the notation proposed

in [52].

To see how this is possible, consider the following. We can obviously describe

the complete chromophore system in Eq. (7.2) by describing the complete set of

values of {xn,yn}. But {xn,yn} can only take 4 different values, (0, 0), (0, 1), (1, 0)

and (1, 1). Since all chromophores are identical, we can discard all information

about the identity of the emitters and keep count of the cardinalities of each of

the sets with different values of {xn,yn}. Under this formalism we define the

quantities {nuv} as nuv = number of emitters |α〉n 〈β|n with α = u in |x〉 and β = v

in |y〉. Note that these quantities add up to N and so, n00 = N − n11 − n10 −

n01. Using this notation, the modified density matrix can be described as follows

(discarding the redundant information in n00):

ρ̂ = ρ̂[n11, n01, n10; k, p] = |n11, n10, n01, k〉 〈n11, n10, n01, p| . (7.3)

These numbers are related to the three quantum numbers derived by Hart-

mann {q, q3, σ3} [55] through,

q =
n11 + n00

2
=

N − n10 − n01

2
, (7.4a)

q3 =
n11 − n00

2
=

n11 + n10 + n01 − N
2

, (7.4b)
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σ3 =
n10 − n01

2
. (7.4c)

The density matrix described using the above quantum numbers are remi-

niscent of the traditional Dicke basis quantum numbers. They have been aptly

named ”Generalised Dicke States” [55].

In Eq. 7.3, ρ̂[n11, n01, n10; k, p] = |n11, n10, n01, k〉 〈n11, n10, n01, p| denotes any

one of the density matrix components that satisfy the conditions dictated by the

n11, n01, n10, k and p values. This method of denoting any of a number of density

matrix components by a single modified component is justified, since all of the

density matrix elements of the full system with the same nuv and photon number

states have identical values.The number of such similar density elements can be

calculated to be the number of different ways in which 4 distinguishable sets of

objects, corresponding to the 4 different nuv, whose numbers add up to N, can be

arranged in a row. The objects are indistinguishable within the sets. The type of

object assigned to the nth position in the row determines the {xn,yn} value pair of

the density matrix element. This quantity can be expressed using the multinomial

coefficient,

C(n11, n01, n10) =
N!

n11!n01!n10!(N − n11 − n10 − n01)!
, (7.5)

where N is the total number of chromophores.

Since we aggregate all of the density matrix elements related to each other by

the symmetry relation, the modified basis elements of the density matrix needs

to be scaled by C(n11, n01, n10) to reflect their true value. Hence the true modified

basis for the density matrix system can be expressed as,

P̂ [n11, n01, n10; k, p] = C(n11, n01, n10)× ρ̂[n11, n01, n10; k, p]. (7.6)

Consider a two-chromophore system as a concrete example. Due to the indistin-
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guishability of the chromophores, we can use the modified density matrix form

P̂ [n11, n01, n10; k, p]. Consider the component P̂ [1, 1, 0; k, p]. While this is a sin-

gle component in the modified picture, it stands for the sum of two different but

identically valued (again, due to the chromophores themselves being identical)

density matrix elements,

P̂ [1, 1, 0; k, p] = C(1, 1, 0)× ρ̂[1, 1, 0; k, p]

= |1〉1 |0〉2 〈1|1 〈1|2 + |0〉1 |1〉2 〈1|1 〈1|2 .
(7.7)

This basis has shown to be complete for the Lindblad dissipator based equations

modelling identical chromophores [55]. Using this basis, it can also be shown

that the portion contributed by the incoherent pumping at rate P, to the evolution

equations can be expressed in the following form (in the interaction picture), The

interaction Hamiltonian contribution:

Ṗ [n11, n01, n10; k, p] = ig{(n01 + 1)
√

k + 1P [n11 − 1, n01 + 1, n10; k + 1, p]

+ (n00 + 1)
√

k + 1P [n11, n01, n10 − 1; k + 1, p]

+ (n10 + 1)
√

kP [n11, n01, n10 + 1; k− 1, p]

+ (n11 + 1)
√

kP [n11 + 1, n01 − 1, n10; k− 1, p]

− (n10 + 1)
√

p + 1P [n11 − 1, n01, n10 + 1; k, p + 1]

− (n00 + 1)
√

p + 1P [n11, n01 − 1, n10; k, p + 1]

− (n01 + 1)
√

pP [n11, n01 + 1, n10; k, p− 1]

− (n11 + 1)
√

pP [n11 + 1, n01, n10 − 1; k, p− 1]}

(7.8a)

˙̂P [n11, n01, n10; k, p] =
P
2
{2(n00 + 1)P̂ [n11 − 1, n01, n10; k, p]

− (2n00 + n01 + n10)P̂ [n11, n01, n10; k, p]}.
(7.8b)
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Spontaneous Plasmon Decay:

Ṗ [n11, n01, n10; k, p] =
γpl

2
{2
√
(k + 1)(p + 1)P [n11, n01, n10; k + 1, p + 1]

− (k + p)P [n11, n01, n10; k, p]}
(7.8c)

Radiative Spontaneous Decay of Chromophores:

Ṗ [n11, n01, n10; k, p] =
γch
2
{2(n11 + 1)P [n11 + 1, n01, n10; k, p]

− (2n11 + n01 + n10)P [n11, n01, n10; k, p]}
(7.8d)

We have assumed g = coupling constant between the plasmon and a chromophore,

P = incoherent pumping rate of chromophores, γch = chromophore spontaneous

decay rate and γpl = cavity plasmon decay rate. All of these values are system de-

pendent parameters that depend on the materials and the geometry of the setup.

In this modified density matrix model, the dimensionality of the chromophore

subspace is heavily reduced from the exponential dimensions of the full sys-

tem to polynomially scaling dimensions. The number of elements in the density

matrix is equal to the cardinality of the set {(n11, n01, n10) : n11 + n01 + n10 ≤

N ∧ n11, n01, n10 ≥ 0}. Combinatorial analysis gives the answer to be equal to

(N+3
3 ), or,

N3 + 6N2 + 11N + 6
6

. (7.9)

This demonstrates the O(N3) scaling of the modified density matrix. The dimen-

sionality of the plasmon subspace can be deduced from the different possible

values of the variables k and p. For each k value, p takes on M different values. k

itself can take on M independent values. Hence the plasmon subspace has num-

ber of elements equal to M × M = M2. Since the plasmon and chromophore

subspaces are independent, the total dimensions of the modified density matrix
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as described by Eq. (7.6) is equal to,

C f ull =
N3 + 6N2 + 11N + 6

6
×M2. (7.10)

The Open Quantum System we have presented up to now uses various assump-

tions and approximations. The three main ones are, the Born Markov Approxima-

tion (BMA), the Rotating Wave Approximation (RWA) and the Identical emitter

approximation.

The Born Approximation allows us to consider the environment as approxi-

mately constant throughout the interaction period. This implies that while the

system is affected by the environment, a significant reciprocal effect does not oc-

cur on the environment. This is a fair assumption especially when the external

environment is not too tightly confined. In such a cases when the environment

does indeed depend on the system, a more complex quantum description would

be needed treating both the system and the environment as systems of interest.

The Markov Assumption implies that the timescale of decays in the system is

far greater than the interaction timescale. This allows for the environment to lose

memory of the system fast enough so that interactions and dissipations remain

purely system state-dependent. Similar to the Born approximation, the viola-

tion of the Markov approximation would significantly convolute the description

of the system requiring a formalism that treats both the environment and system

together as a whole instead of as a smaller subsystem existing within an unchang-

ing bath.

These two approximations are collectively referred to as the Born-Markov Ap-

proximation (BMA), it is inherited due to the use of the Lindblad formalism.

The Lindblad formalism uses results from Quantum Measurement Theory to de-

couple the system-environment coupling by leveraging the consequences of the

BMA [45].
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The Identical Emitter Assumption arises from the problem statement itself.

All parameters describing emitters are assumed to be identical. This also entails

the assumption that all the states the system goes through in its time evolution is

symmetric with respect to emitter interchange. Specifically, only initial states that

are completely symmetric and that do not distinguish between emitters are al-

lowed. Given that, as demonstrated in [55], any intermediate state of the system

will be fully symmetric as well. However, this approximation will be violated in

cases where molecules are not symmetrically placed with respect to the nanopar-

ticle. Hence, the methods of this chapter would not be useful and other approx-

imation schemes such as the Reduced Density Matrix(RDM) [56] approach will

have to be sought.

In addition to this, we make the assumption that all chromophores are identi-

cal with identical energy levels. This is not valid for practical dye chromophores.

There is slight variations in the energy levels and the energy separations in a chro-

mophore population. It has been shown that the random variations in the energy

levels actually do not change the basic form of the dynamics [57]. Such effects can

be easily incorporated by using a modified energy level scale based on the actual

energy level distribution.

7.1.1 Solution Algorithm for the Equations

Equations (7.8) form a set of first order coupled ordinary differential equations in

the dependent variable P̂ [n11, n01, n10; k, p]. There are C f ull number of elements

in this dependent variable as given by Eq. (7.10). The main solution algorithm

we use is expressed in Algorithm (2).

The first step in the solution scheme involves calculating the maximum esti-

mated size of the plasmon number state. For estimating the maximum value of

the plasmon number state, we use the Reduced Density Matrix (RDM) equation
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technique for identical chromophores as developed in [56]. Using the plasmon

distribution peak value Mpeak value as calculated through that method, we use

the following equations to estimate the value of M;

Mpeak =
N(P− γch)

2γpl
− P + γch

2

8g2 , (7.11a)

M = dMpeak × 2e. (7.11b)

This aids in bypassing a trial and error method which requires us to test out

various values for M until a suitable value is found. We note here that this implies

an O(N) scaling of the size of the plasmon subspace. It is also worth noting that

this value of Mpeak gives a gross estimate of the mean plasmon value for peaked

distributions.

Next, we re-cast the problem in linear algebraic form to be able to handle

the multiple dimensions of the problem efficiently. Hence, we linearize the ele-

ments of P , which amounts to determining where each element goes when the

elements of P are arranged as a vector (we shall refer to the position indices of

the vector by θ). In other words, we need to determine an indexing scheme for

the ordering of the elements of P . Ideally, an indexing scheme should be able

to deterministically calculate the {n11, n01, n10, k, p} tuple given θ and vice versa.

But in our problem, indexing is non-trivial because the internal variables n11, n01

and n10 are dependent through the inequality n11 + n01 + n10 ≤ N (k and p do not

impose this difficulty because they take on values independently of each other).

Had n11, n01 and n10 been independent, indexing and mapping the elements of

P to a sequential scheme would have been straightforward. But, as things stand,

storing these elements in a sequential storage scheme on a computer and simul-

taneously accessing them in constant time are not both trivial. Thus, we make a

choice by opting to store elements of the variable sequentially in our simulations.

This forces us to maintain a mapping {n11, n01, n10, k, p} 7→ θ in a separate vari-
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able. The mapping we used is expressed in Algorithm 1. This sequential storage

strategy of the vectorized P allows us to perform linear algebraic routines on it

much more efficiently. Utilizing this vectorization scheme, the general form of

the equations of motion for the density matrix can be expressed compactly as:

˙̂Q = AQ̂, (7.12)

where Q̂ is the vectorized version of the modified density matrix P̂ , and A is the

Jacobian matrix of the system indicating the dependencies between the various

P̂ elements and the exact complex valued weight of these dependencies. Val-

ues of A are completely determined by the Eqs. (7.8) and it turns out to be a

constant, complex valued, extremely sparse (with at most 13 non-zeros per row),

non-Hermitian, square matrix. The general form and order of the elements of

P are illustrated in Fig. (7.1). The form of matrix A is illustrated in Fig. (7.2).

Algorithm 1 Mapper

1: procedure CREATEMAP(N, M) . Calculate the index mapping for an N
chromophore system with a plasmon state cutoff of size M

2: Map← Initial empty map
3: θ = 0
4: for n11=0 to N do
5: for n01=0 to N − n11 do
6: for n10=0 to N − n01 − n11 do
7: for k=0 to M− 1 do
8: for p=0 to M− 1 do
9: Map← {{n11, n01, n10, k, p}, i}

10: θ = θ + 1
11: end for
12: end for
13: end for
14: end for
15: end for
16: return Map . The final Map
17: end procedure
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Figure 7.1: The ordering of the linearized version of the modified density matrix
elements is shown. The ordering is determined according to Algorithm 1. While
this scheme enables storing the density matrix elements in a linear storage scheme
with constant time access, retrieving the positioning of individual density matrix
elements is not trivial. We propose maintaining a Map variable for storing the
individual position information.

Only the top-left corner of the matrix is shown here and the rest of the elements

can be inferred by the ordering scheme given in Algorithm 1. Due to the form

of the Eqs. 7.8, A turns out to be an extremely sparse(with at most 13 non-zeros

per-row), non-Hermitian, complex valued, square matrix.

Right after the indices are set up, we calculate the Jacobian matrix A and per-

form a bandwidth reducing reordering of the matrix elements. This improves the

efficiency of the matrix-vector product in Eqs. (7.12) by improving cache perfor-

mance [58]. Reordering requires modifying the mapping we already maintain
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Figure 7.2: The general form of the Jacobian matrix A. The partial derivative
values are obtained from the system of Eqs. 7.8. Here, only the top-left corner
of the matrix is shown for clarity. The ordering of the elements is determined by
Algorithm 1 as with the vectorized density matrix. The values of this matrix are
complex valued constants for a given Spasing setup. Note that most of the values
are zero making the matrix significantly sparse.

and the order of elements in both Q̂ and A. Afterwards, we calculate the initial

density matrix which is taken to be the thermodynamic ground state in all our

simulations.

Next, we solve the equations as a system of first order differential equations
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using time-stepping. Eqs. (7.12) are used to evaluate Q̂(t + δt) using the Q̂(t)

value from the previous iteration. Various Runge-Kutta schemes, with constant

or adaptive step sizing can be used. To solve for the steady state density matrix,

the integration can be run until the density matrix values converge. The basic

setup of this method when using an adaptive Runge-Kutta scheme is shown in

Algorithm 2. As indicated by Eqs. (7.12), the equations of motion for a general

Algorithm 2 Adaptive Runge-Kutta based Steady State Solver

1: procedure RK-STEADY-STATE(N, P, SystemParameters) . Calculate steady
state solution of an N chromophore system pumped incoherently at rate P

2: M← RDM estimated plasmon number state size
3: Map← CreateMap(N, M)
4: A← Jacobian matrix
5: Map← Reordering(A) . Calculate a reordering of the indices of matrix

A to reduce bandwidth.
6: Reorder(A) . Reorder A according to the new ordering.
7: ρ(t = 0)← Initial ground state distribution
8: tnext = tprevious = 0
9: ρ(tnext) = ρ(tprevious)

10: do
11: tprevious = tnext
12: ρ(tprevious) = ρ(tnext)
13: tnext, ρ(tnext)← RK− TimeStepper(A, ρ(tprevious))
14: while ρ(tprevious) 6= ρ(tnext) . While not converged
15: return ρ(t f inal) = ρ(tnext) . Final steady state density matrix
16: end procedure

density variable component Q̂[n11, n01, n10; k, p] are built off of linear operations

on the internal variables of Q̂ resulting in ”dependency connections” between

different Q̂(·) components. We will be using the terminology ”connection” to

illustrate this dependency between the components. Since each density variable

increases or decreases in value dependent on the value of other density matrix

elements ”connected” to it, and because total density is conserved (equal to 1),

Eqs. (7.12) can be interpreted as an equation expressing the flow/exchange of

density between different density matrix elements.
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Further information on the solver and the techniques used is avaialble in Ap-

pendix E.

7.2 Modified identical emitter approximation

In the exact numerical model that we presented so far, the dimensions of the plas-

mon subspace of the density matrix is M2 where M is the size of the truncated

plasmon number state. But the inherent symmetries of the equations allow for

the reduction of this size down to O(M) under special conditions. To see this,

consider the following argument: Take a general component of the density ma-

trix model Q̂[n11, n01, n10; k, p]. If we define κ2(Q̂) = (n01 − n10) − (k − p), it

is clear that in all equations, ˙̂Q is only connected to other density components

with the same κ2(·) value. It is easy to see that this relationship satisfies the

three requirements of an equivalence relation: reflexivity, symmetry and transi-

tivity due to κ2(·) being a many-to-one real valued function κ2 : {(n11, n01, n10) :

n11 + n01 + n10 ≤ N ∧ n11, n01, n10 ≤ 0} 7→ R.

This implies that the connections are only formed between density matrix

components with the same κ2 value. Hence, the flow/exchange of density be-

tween different density components through Eq. (6.2) will occur only if they re-

side in the same equivalence class with respect to κ2. So we see that the space

of all components of Q̂ gets subdivided into equivalence classes based on their

κ2 values. In our present treatment, we only consider systems evolving from the

thermodynamic ground state. Since only variables with κ2(·) = 0 are non-zero in

the ground state, variables with all other values of κ2 will remain zero throughout

the entire evolution of the system. This leads to the following simple linear rela-

tion which effectively removes one of the variables and hence one cavity photon
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number state dimension from the analysis,

κ2 = (n01 − n10)− (k− p) = 0. (7.13)

In a general plasmon subspace density matrix, the different elements are indexed

by p and k. The values of k and p range from 0 to M − 1 such that each value

of k is coupled to M different values of p. This results in M × M = M2 total

size of the plasmon subspace of the density matrix. This is the origin of the M2

portion of the size in Eq. (7.10). But Eq. (7.13) demonstrates that, given n01 and

n10, only one density matrix element indexed by a distinct value of p couples to

each k value non-trivially. All other elements of the density matrix denoted by

the other p values are identically zero throughout the evolution of the system.

This unique value of p is determined by the values of k, n01 and n10 through Eq.

(7.13). So, instead of M different values of p that coupled to the system in the

method afore mentioned, we can recover the full dynamics of the system by only

considering the density matrix element associated with the unique non-trivial

value of p. Thus, using the convenience of Eq. (7.13), the form of the modified

density matrix reduces from Eq. (7.6) to,

Q̂[n11, n01, n10; k]. (7.14)

Due to this relation, the Algorithm 1 for the Mapper function gets modified to

Algorithm 3.

Also due to Eq. (7.13), Algorithm (1) for the Mapper function gets modified.

Since we only need to consider one value of p (determined by Eq. (7.13)), given

the values of n11, n10, n01 and k, we can unravel the loop in line 8 of the algorithm.

This also implies that the total dimensions and complexity of the problem reduces
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Algorithm 3 Modified Mapper

1: procedure CREATE-MAP(N, M) . Calculate the index mapping for an N
chromophore system with a plasmon state cutoff of size M

2: Map← Initial empty map
3: i = 0
4: for n11=0 to N do
5: for n01=0 to N − n11 do
6: for n10=0 to N − n01 − n11 do
7: for k=0 to M− 1 do
8: p = n10 − n01 + k
9: Map← {{n11, n01, n10, k, p}, i}

10: i = i + 1
11: end for
12: end for
13: end for
14: end for
15: return Map . The final Map
16: end procedure

to O(N3 ×M) through Eq. (7.10) to,

Creduced =
N3 + 6N2 + 11N + 6

6
×M. (7.15)

7.2.1 Analysis of the complexity reduction

In this section we will analyze the reason for the aforementioned splitting of

the modified density matrix space into equivalence classes. We shall see that

this property is a direct consequence of the form of the Lindblad contribution

to the equations of motion and also, of the use of the RWA. We will investigate

the action of the the Lindblad dissipators and the unitary evolution of the in-

teraction Hamiltonian on a general density matrix element, Q̂[n11, n01, n10; k, p].

This will shed light on the elements of the density matrix that is connected to

Q̂[n11, n01, n10; k, p] i.e. the elements that dictate its time evolution through Eqs.

(7.8). To begin the analysis, we first introduce the concept of ”Excitations”. An
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excitation refers to either a two-level system in the excited state or a plasmon in

a number state greater than 0. The two-level systems contribute excitations equal

to the number of them in state 1. The plasmon state contributes excitations equal

to the number of the state. For a general density matrix element expressed as

ρ̂ = |x〉 〈y|, there are two sets of excitations in the ket-vector and the bra-vector.

We will denote them by Exx and Exy respectively. Figure (7.3) expresses how to

calculate the number of excitations for a generic density matrix element.

  

Figure 7.3: The left (Exx) and right (Exy) excitation counts of a general density
matrix element. Here we only consider a density matrix element where the 1’s
and 0’s are arranged in a specific way. But due to the aforementioned symmetry,
any density matrix element can be made equivalent to a density matrix element
of this form. The total left and right hand excitation values can be counted off
easily using the values n11, n01, n10, k and p. All excited chromophores contribute
exactly a single excitation while excited plasmons contribute a number equal to
the number state the plasmon is in.

Lindblad Dissipator Contribution

The Lindblad dissipator contribution to the equations of motion is given by Eq.

(6.4). The Âj in these equations are linear combinations of σ̂uv operators or â,

â† operators. Each of these operators contribute three types of terms. For linear

combinations of σ̂uv operators, the three terms contributed will always be of the

form of Table (A1) rows 3-5. This implies that the Lindblad action of the σ̂uv op-
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erators always result in changing the Exx and Exy values by the same amount,

through their action on the chromophore vectors. Hence they always make con-

nections between Q̂ components whose Exx − Exy values are the same. For â

variables (and similarly for â†), as seen from rows 10-13 of Table (A1), connections

are again formed between between Q̂ components that have the same Exx − Exy

values. This is because they transform the plasmon contributions to the excita-

tions on both sides of the density matrix by the same amount.

Interaction Hamiltonian Contribution

In the part of the equations arising from the interaction hamiltonian, it can be seen

that the reason for the validity of the relation is due to the energy-conserving na-

ture of the RWA interaction hamiltonian. For any general component of the den-

sity matrix, this property translates into a ”conservation of excitations” (excita-

tions being either plasmonic or excitonic) among connected density components.

i.e. Exx and Exy are preserved. Rows 14 and 15 of Table (A1) demonstrate this.

Both of the two terms of the RWA Hamiltonian contain one exciting operator (σ̂k
10

or â†) and one de-exciting operator (σ̂k
01 or â). Since the Interaction Hamiltonian

portion originates as a commutation bracket, the Hamiltonian acts on both sides

of the density matrix ρ̂ = |x〉 〈y| separately. So, the total excitation values in

both the bra-vector and ket-vector portions remain intact. So, Exx and Exy are

conserved by the interaction hamiltonian within a connected group of density

variables.

Combining the three properties

From the above analysis it is clear that we have a set of three properties that

determine connected density matrix components. The union of density compo-

nents that satisfy these three properties form the set of all density components
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Table A1: Analysis of the transformations on a general density matrix element
ρ̂ by operators acting to the left and/or right of the matrix. Notice how earlier
rows of the table enable calculating the later rows of the table. For example, it
is the composite action of lines 1 and 2 that generates line 3.

Left Operator Right Operator Excitations
Exx Exy

1 σ̂n
10 - ↑ -

2 - σ̂n
01 - ↑

3 σ̂n
10 σ̂n

01 ↑ ↑
4 σ̂n

11 - - -
5 - σ̂n

11 - -
6 â - ↓ -
7 â† - ↑ -
8 - â - ↑
9 - â† - ↓

10 ââ† - - -
11 - ââ† - -
12 â† â ↑ ↑
13 â â† ↓ ↓
14 σ̂n

10 â - - -
15 - σ̂n

01 â† - -
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connected to a component Q̂[n11, n01, n10; k, p].

• The emitter chromophore based Lindblad terms only forming connections

between Q̂ components whose Exx − Exy values are the same (through

changing excitations in the chromophore system). This amounts to con-

necting components which only differ in n11 values.

• The plasmon based Lindblad dissipator terms forming connections between

Q̂ components whose Exx− Exy values are the same (through changing ex-

citations in the plasmon system). These first two properties can be seen as

increasing or decreasing the number of ”excitations” in the left and right

hand side portion of the density matrix by the same value.

• The interaction hamiltonian connecting components that have the same

Exx and Exy values. Note that it is only the interaction Hamiltonian that

forms connection between components with different off diagonal values,

i.e., components with different n10 and n01 values.

Combining these three properties, we see that all elements of the density matrix

connected to P̂ [n11, n01, n10; k, p] have the same value for the following expres-

sion,

κ2(Q̂) = Exy − Exx

= n11 + n01 + p− (n11 + n10 + k)

= (n01 − n10)− (p− k).

(7.16)

This implies that κ2 is a conserved quantity among connected density matrix vari-

ables.

7.2.2 Extension to 3- and 4-Level Systems

Whilst the 2-Level model is extremely useful, motivated by the historical devel-

opment of the LASER, higher order systems (3- or 4-Level systems) have the
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potential to be practically more useful and theoretically more robust in spasing

setups. In [59], 3-Level systems coupled to two external electromagnetic fields

were shown to exhibit improved spasing characteristics. We also use a 3-Level

gain chromophores for the spaser we model in Chapter 9. Anticipating the use-

fulness of such systems, we present the theoretical consequences of our method

for 3- and 4-Level systems. Following the exact arguments as given above, it can

be shown that 3- or 4-level systems with incoherent pumping can be reduced to

have linear size complexity in the plasmon-number-state size. Consider a 3-level

system with levels indexed by 0, 1 and 2. Level 0 acts as the ground state and the

spasing transition occurs between levels 0 and 1. The chromophores are incoher-

ently pumped up to level 2 after which they undergo a fast transition to level 1.

Excitation conservation implies,

κ3 = Exy − Exx

= (2× (n22 + n12 + n02) + n21 + n11 + n01 + p)

− (2× (n22 + n21 + n20) + n11 + n10 + n12 + k)

= 2× n02 + n12 + n01 + p− (2× n20 + n21 + n10 + k).

(7.17)

Next, we apply the same reasoning we did to derive the excitation conservation

based equations, to level 2 of the chromophores. Since level 2 is not one of the

spasing levels, all excitations to level 2 on both the left and right hand side of

the density matrix should be conserved within the chromophore system itself.

Hence, we can write the following conserved quantity,

κL2
3 = 2× n02 + n12 − (2× n20 + n12). (7.18)
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Using Eq. (7.18) in Eq. (7.17), we get the following conserved quantity,

κ3 = n01 + p− (n10 + k)

= (n01 − n10)− (k− p).
(7.19)

This equation implies a total dimensional size of O(N4×M) of the problem. For a

4-level system with ground state at level 0 and spasing occurring between levels 1

and 2, the conservation of excitations results in the following conserved quantity,

κ4 = Exy − Exx

= 3× n03 + 2× (n13 + n02) + n12 + n23 + n01 + p

− (3× n30 + 2× (n31 + n20) + n21 + n32 + n10 + k).

(7.20)

Since levels 3 and 0 do not partake directly in the spasing actions, we can derive

the following conserved quantities as well,

κL3
3 = 3× n03 + 2× n13 + n23 − (3× n30 + 2× n31 + n32), (7.21)

κL0
3 = 3× n03 + 2× n02 + n01 − (3× n30 + 2× n20 + n10), (7.22)

Since both levels 1 and 2 are separate from the spasing levels, the quantities n30

and n03 are not modified through the interaction Hamiltonian portion of the equa-

tions. Since they are not of the form nuu, neither do they get affected through the

Lindblad dissipator terms. Hence they are both conserved quantities. Using this

information together with Eqs. (7.20), (7.21) and (7.22), we arrive at the following

conserved quantity which results in a dimensional size of O(N5 × M) for the 4

level emitter chromophore problem,

κ4 = n12 + p− (n21 + k)

= (n12 − n21)− (k− p).
(7.23)
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7.2.3 Improvement of solver efficiency

The dimensions of various incoherently pumped, coupled chromophore-plasmon

system solution schemes are given in Table (A2). As can be seen, the formalism

we have presented in this chapter results in a significant reduction in the dimen-

sions of the problem. This results in both the reduction of the space complexity

as well as the time complexity. The table also demonstrates the magnitude of

complexity reduction our formalism offers without compromising the exactness

of the numerical program. We have also carried out numerical simulations to

Table A2: Dimensions of the Density Matrix ρ in various formalisms. The Ac-
tual Dimension values are calculated for N = 100 and M = 80, under the
system parameters as used in [56].

Formalism Dimensions Actual Dimensions
Full Density Matrix O(4N ×M2) u 1064

Richter et al. [52] O(N3 ×M2) u 1010

Our method O(N3 ×M) u 108

test the time efficiency of our method as compared to using the complete mod-

ified density matrix along with the Eqs. (7.8). The simulations used the Order

4/5 Cash-Karp Adaptive Runge-Kutta scheme as the solution method. We calcu-

lated the evolution of incoherently pumped chromophore-plasmon systems with

chromophore numbers ranging from 10-100. We have used the same parameters

and decay/dephasing rates reported in [56]. We performed the same calculations

using two methods.

The first method, which we will refer to as the ”full” method, uses the full

O(N3 × M2) dimensions as described in [52]. The second method, which we

will refer to as the ”reduced” method utilises the dimensionality reduction aris-

ing from the relations derived in this chapter. We performed the simulations on a

setup consisting of two Intel Xeon E5-2690v4 (Broadwell) 2.6GHz processors with

28 cores in total. We utilised shared memory parallelism on this system to extract

the best performance out of our numerical algorithms. The numerical algorithms
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for both methods were coded in C++ using efficient data structures for perform-

ing the calculations needed. More details on the elements of our quantum solver

and the techniques used, are summarised in Appendix E.

We compared the performance by measuring the execution speed of the algo-

rithms. We observed that the total convergence time of both methods depended

heavily on the pumping rate and other system parameters. But the average time

of a single adaptive Runge-Kutta step remained constant with respect to varying

system parameters, given that N and M remained constant. Hence we use the

average time of a single Runge-Kutta time step as a measure of the time perfor-

mance of the algorithm. The results are shown in Fig. (7.4). We also indicate the

system sizes comparison of both methods in the same graph. We also measured

the space performance of the algorithm by tracking the amount of memory usage

of each of the simulations. While memory usage is heavily implementation de-

pendent, we have endeavoured to keep the memory usage patterns within both

of the algorithm implementations similar and hence the memory usage of both

methods at the same system configuration will be a indicator of relative perfor-

mance of the algorithms. Figure (7.5) display these results.

Both sets of time and space efficiency measurements indicate that the dimen-

sionality reduction attained with our direct formalism has significant impact on

the performance of the algorithm. We have been able to show that, with the re-

duced method, we can handle systems more than twice the size as with the full

method, with the same amount of time and memory resources.

The Eqs. (7.13), (7.19) and (7.23) as derived in the previous section effectively

couples just one k dimension to each p dimension and hence results in the re-

duction in size from M2 to M. Due to the existence of this exact relation, pro-

gramming such a reduction of dimensions into a numerical code becomes quite

straightforward. The density matrix can be built from the ground up using this

relation without the need to follow a connectivity analysis scheme (effectively a
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Figure 7.4: The figure shows the total system size and time performance of a sin-
gle Runge-Kutta step for the two methods described in the text. The full method
data are displayed in dashed line format while the reduced method is displayed
in solid lines. The red curves display the timings while the blue curves display
system sizes for both methods. The full method takes a greater length of time per
step as expected and the increase in time seem to increase exponentially. The Both
algorithms were coded in C++ with efficient use of shared memory parallelism.
The simulations were run on a single computing node consisting of 28 computing
cores.

breadth-first search) between connected variables in order to squeeze the dimen-

sions down only after building the full quantum density matrix. This approach

considerably reduces the space requirements of the numerical calculation. Addi-

tionally, Eq. (7.15) together with Eq. (7.11a) implies a total O(N4) size for identical

two-level chromophore based, incoherently pumped, spaser setups.

The reduction in dimensions of the plasmon space size can be graphically

seen in Fig. (7.6). In the full method, the plasmon subspace consists of all the

variables represented by the dots in the matrix. But in the reduced method, only

one diagonal of the whole matrix, generally represented by the green bounding

box, is non-zero which enables us to discard the rest of the matrix entirely.
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Figure 7.5: The figure shows the memory performance of the two methods de-
scribed in the text. The reduced method vastly outperforms the full method
which consumes orders of magnitudes less memory. Both algorithms were coded
in C++ with efficient use of shared memory parallelism. The simulations were
run on a single computing node consisting of 28 computing cores.

In the reduction in the dimensions of the problem as implemented in [52, 60],

a general element of the plasmon subspace of the density matrix can be expressed

in the form |k〉 〈p| where k, p = {0, 1, ....M− 1} . Here M is the number of plas-

mon number states considered in the numerical model.The total number of such

density matrix elements is M2. This gives rise to the M2 dimensions of the cavity

subspace. But [52, 60] proposes a method of only using the diagonal elements,

i.e. elements with k = p, and a specific number of off-diagonal elements clos-

est to the diagonal, in the numerical solution and checking for convergence of

the calculation to assess whether enough off diagonals have been included. The

only density matrix elements considered non-zero in this scheme are framed with

the blue bounding box in Fig. (7.6), where the plasmon subspace of the density

matrix is depicted by a matrix. The diagonal elements are always included in
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the analysis and the bounding box is expanded along the red arrows until con-

vergence is reached. The reasoning behind this approach of bracketing density

matrix elements near the diagonal whilst discarding the rest outside is that as we

go away from the diagonals in the directions depicted by the two red arrows, the

values of the densities decrease and hence most of them can be excluded from

the analysis with only a very minute sacrifice in precision. This could typically

result in an O(M) sized plasmon subspace density matrix. But the relations we

Figure 7.6: The matrix form of the plasmon-subspace of the density matrix |k〉 〈p|.
According to the results of this chapter, there is no guarantee that the main-
diagonal will be non-zero. It is exactly one of the main, super or sub-diagonals
that will be non-zero (shown within the green bounding box).

have derived imply that the only non-zero non-diagonal elements of the cavity

subspace density matrix form either a main, sub or super-diagonal similar to the
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green-box-bounded super-diagonal depicted in Fig. (7.6). So a scheme that only

considers the diagonal and a few super/sub-diagonals of the cavity space density

matrix instead of the full dimensions may not be appropriate since such a scheme

may very well leave out the only non-zero contribution to the equations in favour

of a few contributions that are guaranteed to remain identically zero during the

evolution of the system. The fact that the number of diagonals included in the cal-

culation need to be adjusted until the density values converge also implies that

multiple simulations may need to be run serially to attain the steady state. Our

method also bypasses this inconvenience.

We also note that the dimensionality reduction as we have derived here ap-

plies to any coupled emitter-cavity setup modelled using an RWA-approximated

interaction hamiltonian, Lindblad term based dissipators and incoherent pump-

ing. A similar analysis can be applied to the case of coherent pumping but that

only results in the reduction of the size of the problem by a factor of 2 for 2-level

gain elements.

7.3 Summary and conclusion

In this chapter, we have presented the theoretical details of the quantum solver

we built to solve the coupled nanoresonator-emitter model. We applied it in the

context of spasing showed that it achieves orders of magnitude higher efficiency

in terms of time and space utilisation. We have also described the efficient algo-

rithmic techniques and data structures used in constructing the solver. Further

details are available in Appendices C, D and E. This solver has already been used

to analyse the behaviour of spasing systems previously intractable in order to

compare with the classical analyses [61]. These analyses have shown vital dif-

ferences in the quantum treatment. It can also be used to validate approximate

numerical schemes.
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We note here that the solver as we have described here have certain limita-

tions. Primarily, the solver is only useful when the emitters are identical. In

addition to that, the interactions between emitters and the bleaching of emitters

are not included. The inclusion of these effects would vastly improve the impact

of the current solver. While these extensions are by no means not trivial, we en-

visage future versions of our solver being useful not only in analysing spasing

setups, but also countless other photonic setups where the exact same paradigm

of a cavity coupled to emitters is used.

The results of this chapter were published in the Journal of the Optical Society

of America B [61].





Chapter 8

Quantization of plasmonic
nanoparticles

In our everyday life, quantum mechanical effects remain hidden and almost none

of our basic interactions with the world are affected by quantum mechanics; or

so we think. Almost every advance of modern technology is made on the back

of quantum mechanics and the peculiarities it bring. From electronics, to com-

puters, chemistry and pharmacology, materials science and some of the modern

transportation systems are heavily rooted in quantum mechanics. However, we

do not observe these effects first hand. This is due to the fact that quantum effects

only come to light at very small length scales or very high energy scales.

Contrary to us, nanoparticles feel the effects of quantum mechanics as a rule

of usual existence. This is due to the size of the space they live in. The world

according to nanoparticles is a probability driven world full of Schrödinger cat

paradoxes. Hence, the proper analysis of these particles require a fully quantum

mechanical picture of it. In this chapter, we will go through the basic mechanism

for ”quantizing” the plasmonic response of nanoparticles.

It has been known for a while that plasmons behave similar to bosons and

hence follow Bose-Einstein statistics. The quantization procedure for such parti-

cles is already well established and only require technical difficulties to be over-

come in performing the calculations. In general, these procedures would require

computer-based numerical calculations. But, in an effort to grasp the actual effect
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of various parameters, we will strive for an analytical approach here. To keep the

analysis analytical we will make use of the so-called dipole approximation which

describes the plasmon as a pure dipole. In the context of working with purely

linear external excitations this approach remains valid. This is due to the fact that

linear excitations only excite dipole active bright modes and these modes may

be effectively described as dipoles. We will use the results we already derived in

Chapter 4 for this.

The first section of the chapter will present the quantization procedure for the

transverse dimer bright mode. Next, we will derive the same quantization for the

longitudinal dimer configuration. Finally we will derive the coupling strengths

of the quantized dimers to gain media chromophores.

8.1 Quantization of the plasmonic bright mode of a
transverse dimer

We start with the result we derived in Chapter 4 for the total electrical energy of

a transverse dimer bright mode,

W =
β2

8π
sin2(ω0t)W(D), (8.1)

where,

W(D) =
∫
|G(r; r1) + G(r; r1)|2 Re

{
d

dω
(ωε)

∣∣∣∣
ω=ω0

}
d3r, (8.2)

The integral is over infinite space. The extra derivative factor in the expression

precisely accounts for the energy in dispersive media [24]. Next we make the

following definitions for normalisation factor N and normalised amplitude A,

N =

√
8πh̄ω0

W(D)
. (8.3)
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B =
β

N
. (8.4)

This enables us to write the total potential energy stored in the electric field

as,

W = h̄ω0B2 sin2(ω0t). (8.5)

This expresses the potential energy of the electric field in a form reminiscent of

electric field energy of an electromagnetic field. If we were quantizing a general

electromagnetic field, the next step would be to compute the energy stored in the

magnetic field and form the complete Hamiltonian. The magnetic and electric

components of the electromagnetic field would then act as conjugate operator

variables of a harmonic oscillator system. But in the near-field of the dimer setup,

the magnetic field is close to zero. A significant portion of the energy is actually

stored in the kinetic motion of the electron cloud composing the plasmon [62].

However, estimating this proportion of energy stored outside of the electric field

is not a trivial task.

We handle this difficulty by considering the fact that, disregarding the dissi-

pations, the total energy stored in the system should be constant and hence the

energy stored in the electric field and the energy in the kinetic portions of the

system including the current flows within each sphere must add up to a constant

value [63]. For total energy to be conserved at all times t, the kinetic energy term

must be of the form [22],

K = h̄ω0B2 cos2(ω0t). (8.6)

This implies that our system is identical to a harmonic oscillator system with

potential energy and kinetic energy being continually converted to each other in

a periodic manner. Introducing the variable A(t) = B sin ω0t , the total Hamilto-
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nian thus takes the form,

H =
h̄

ω0
(ω0

2A2 + Ȧ2). (8.7)

This Hamiltonian takes the exact form of the quantum harmonic oscillator

with conjugate variables A and 2h̄A/ω. Making the identification x̂ = A and

p̂ = 2h̄A/ω, we can transform to the position and momentum picture of the

simple harmonic oscillator. x̂ and p̂ obey the usual commutation relations,

[x̂, p̂] = ih̄. (8.8)

Then we can define the bosonic annihilation operator as,

â = x̂ +
i

2h̄
p̂. (8.9)

Using this, the Hamiltonian can finally be put in the form,

H = h̄ω0(â† â +
1
2
). (8.10)

Using the newly defined creation and annihilation operators, we can cast the

electric field in the from,

Edimer(r) =
1
2

N[G(r; r1) + G(r; r2)](â† + â). (8.11)

Next we turn towards the question of the coupling between the dimer plas-

mon system and a dipole degree of freedom of a nearby chromophore. The in-

teraction energy of a dipole interacting with an electric field Ê, can be given by

Hint = −P̂ · Ê, where P̂ is the dipole moment operator of the chromophore. As-

suming the dipole to originate from a two-level electronic transition, we could

express the dipole moment operator as P̂ = µ(σ10 + σ01)ẑ, where µ is the transi-

tion dipole moment and σ10, σ01 are the raising and lowering operations for the
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electronic transition. Using (8.11) and applying the rotating wave approximation

to consider only the energy conserving terms bring us to the final expression for

the interaction Hamiltonian,

Hint(r) = h̄g(r)(σ10 â + â†σ01), (8.12)

where the coupling constant g(r) can be expressed as,

g(r) = −1
2

µN[G(r; r1) + G(r; r1)], (8.13)

8.2 Quantization of the plasmonic bright mode of a
longitudinal dimer

Now we turn to the question of longitudinal dimers. The equations and for-

mulas applying to the longitudinal dimers remain approximately equal to the

transverse. Using Eq. (4.21), we can express the total electrical energy in the

longitudinal dimer mode as,

W =
β2

8π
sin2(ω0t)W(D). (8.14)

Here, all quantities have the same meaning as in the transverse case except

for the redefinition of the center coordinates of the nanospheres. Using the same

arguments as for the transverse setup, this expression can be used to quantize the

longitudinal dimer and finally we find the coupling constant g(r) as,

g(r) = −1
2

µN[G(r; r1) + G(r; r2)]. (8.15)

Using these forms derived for the quantized field operators for the transverse

and longitudinal bright modes, it is straightforward to derive the corresponding

quantization procedure and coupling strength values for a singlet nanosphere as
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well.



Chapter 9

Nanosphere dimer based spaser

In the previous chapters, we have completed the analysis of the plasmons on

nanospherical dimers and performed the quantization as a precursor to the quan-

tum analysis. In this chapter we will perform full calculations needed to analyse

the dimer spasing system as a coupled gain-resonator system. We use the open

Dicke model as described in Chapter 6.

9.1 The gain medium

We model the gain medium as a collection of three-level chromophores. This

allows one of the electronic transitions to couple to the pumping field and the

other transition to couple to the dimer plasmons, giving us control over the two

transitions independently. The structure of the electronic levels is depicted in Fig.

9.1. The pumping electric field is coupled to the 0− 2 transition while the 0− 1

transition is coupled to the plasmons.

We assume that a rapid non-radiative decay takes place from level 2 to level 1.

We also assume all the dipole moments of the chromophores to be aligned in the

ẑ direction and the dipole transitions to be in resonance with the corresponding

plasmons. For a chromophore indexed by n, we define the quantum state by a

ket vector |u : n〉, with u = 0, 1, 2 depending on the level. The transition operator

from level v to u can then be defines as, σn
uv = |u : n〉 〈v : n|. The 0− 2 electronic
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Figure 9.1: The energy level diagram for a single three-level gain medium chro-
mophore is shown. The operators shown perform the transitions between the
levels as indicated by the arrows.

transition has a dipole moment of 16 Debye and the 0− 1 transition has moment

14.4 Debye in all results presented in this chapter. We assign a non-radiative

decay rate of 0.1 eV between levels 3 and 2, following similar theoretical analyses

done on three-level spasing models [57]. We assume all other decay channels

within the gain chromophores to be negligibly weak.

9.2 Dimer-gain coupling strength

The coupling strength between the plasmon setup and the gain medium dictates

much of the characteristics of spasing including the threshold. Next we inves-

tigate the strength of the coupling between the dimer setups and a gain chro-
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mophore placed at different locations. The separate configurations we study are

elucidated in the inset of Fig. 9.3.

For a singlet setup with a chromophore placed along the sphere axis in the

direction of the dipole moment (commonly referred to as the longitudinal place-

ment of the chromophore), the coupling strength variation can be given by [22],

glong
sing = Nsinggs(r), (9.1)

where gs(r) =

∣∣∣∣ R
r−D

2

∣∣∣∣3. The same chromophore placed along a sphere axis

perpendicular to the dipole moment would have a coupling strength,

gtr
sing =

1
2

Nsinggs(r), (9.2)

For dimer setups, we place the origin at the midpoint of the axis joining the

spheres. Using Eq. (8.13), coupling strength for a chromophore placed along the

dimer axis for a transverse dimer setup can thus be calculated to be,

gtr =
1
2

Ntrgd(r), (9.3)

with gd(r) =

(∣∣∣∣ R
r+D

2

∣∣∣∣3 + ∣∣∣∣ R
r−D

2

∣∣∣∣3
)

, while Eq. (8.15) gives,

glong = Nlonggd(r), (9.4)

for a longitudinal dimer.

All these quantities are plotted in Fig. 9.2 for silver spheres of radii 10 nm

and 20 nm and separation values D = 25 nm, 40 nm and D = 45 nm, 60 nm re-

spectively. As can be seen, when the spheres in a dimer are close enough(low

D values), the field confinement in between the two spheres is great enough to

support coupling strengths exceeding the singlet setup. We also observe that the

larger spherical nanoparticles support the greater enhancement of the coupling
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Figure 9.2: Coupling strengths for a chromophore with 1 Debye moment along
the z-axis, placed at different distances from singlet and dimer plasmon setups.
Solid lines plot the two dimer setups, transverse(red) and longitudinal(blue) with
the chromophore placed on the dimer axis. The dashed lines represent the singlet
with the chromophore placed along the metal nanoparticle dipole moment(blue)
and placed perpendicular to the dipole moment(red).
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Figure 9.3: The coupling strength(g) of the dimer longitudinal and transverse
setup to a chromophore placed at the midpoint of the dimer axis(solid lines) for
various dimer separation values(D). The radius of the nanospheres are set at R =
10 nm. The singleton coupling strengths for chromophores placed at the same
distance are shown by the dashed lines. The inset depicts the placement of the
gain chromophore(black circle) in each case.

relative to the singlet setup while the smaller nanomparticles have higher abso-

lute values of the coupling strength. Figure 9.2 also indicates that the longitudinal

dimer setup has the better coupling characteristics and has the potential to form

the basis for better spasing setups.

Next we study the impact of the separation D on the coupling. Figure 9.3

plots the variation of the coupling strength of a chromophore of moment 1 De-

bye placed at the midpoint of a dimer setup consisting of metal nanospheres of

radius R = 10 nm. As can be seen, the longitudinal setup again has greater cou-

pling strength at the mid-point as compared to the transverse setup. For refer-

ence, we have also included the coupling constants for a chromophore placed

at the same distance away from a singlet setup. As we discovered earlier, the

longitudinal chromophore placement in the singlet configuration performs much



100 Nanosphere dimer based spaser

better as compared to the transverse placement, but not as well as the longitudi-

nal dimer configuration. This again demonstrates the benefits of the dimer setup

as compared to the singlet as far as spasing is concerned.

9.3 Dissipation in the spasing setup

Next we turn to the question of calculating the plasmon decay rate γpl. The decay

is due to two main causes: the ohmic dissipations within the metal γ0, and the

radiative dissipation caused by radiation into the far field γr. The ohmic dissipa-

tion is a property of the metal and can be extracted from the permittivity of the

metal. In this work, we use the dissipative rate as predicted by the Drude dielec-

tric model [64] for silver. The radiative dissipations on the other hand depends

on the electric fields in the system and hence needs to calculated.

We first focus on the singlet setup. The radiative decay rate can be calculated

using the radial component of the Poynting vector in the far field. The time aver-

aged power radiated per unit solid angle per unit time can be given by [21],

d〈W〉
dΩ

=
c

8π
Re[r2n · (E×H)]

=
c

8π
k4|(n× P)× n|2, (9.5)

=
c

8π
k4|P|2 sin2(θ), (9.6)

where n is the normal vector in the direction of the solid angle dΩ. This can

be integrated to give the total power radiated per unit time to be,

d〈W〉
dt

=
ck4

3
|P|2. (9.7)

Finally, the dissipation rate for a singlet can be calculated as,
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Figure 9.4: The phase lag between the electromagnetic radiation emitted by the
two sphere dipoles in a general polar angle direction θ and azimuthal angle φ.

γr =
1
〈W〉

d〈W〉
dt

. (9.8)

Here, 〈W〉 is the time averaged power of the electrical field.

For a transverse dimer the above derivation should be modified due to the

existence of contributions from both spheres. Sufficiently far from the dimer sys-

tem, for D � |r|, the field lines from both spheres appear parallel and hence we

could consider the vector sum of the two dipole moments. i.e. we can substitute

P in Eq. (9.8) with 2 αR3E0

1+ αR3
D3

. But this approach would not be correct since it does not

take into account the interferences generated by the two dipoles. To account for

this, we follow a slightly different approach and consider the phase differences

between the radiation waves emitted by the two spheres at a specific polar angle

θ, and azimuthal angle φ.

As seen in Fig. 9.4, the radiation emitted in the direction (θ, φ) by sphere

number 2 is exactly δ distance ahead of the radiation emitted by sphere 1, where
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δ is given by,

δ = D sin(θ) cos(φ). (9.9)

This corresponds to a phase difference φtr of,

φtr = kδ =
2πD sin(θ) cos(φ)

λ
. (9.10)

Hence the radiated electric field of sphere 2 in a certain radial direction with

respect to sphere 1 can be written as,

Erad
2 (θ, φ) = Erad

1 (θ, φ)eiφtr . (9.11)

The total radiated electric field can thus be written,

Erad(θ, φ) = Erad
1 (θ, φ)(1 + eiφtr). (9.12)

This radiation, in the far field, can be interpreted as emanating from a dipole

placed at the position of dipole 1, but with a dipole moment scaled by the factor

(1 + eiφtr). Using this interpretation, we can write the effective dipole moment in

the direction (θ, φ) as,

Peff(θ, φ) = P(1 + eiφtr). (9.13)

Going back to Eq. (9.5), the rate of radiative power dissipation per solid angle

can be modified to,

d〈W〉
dΩ

=
c

8π
k4|P|2 sin2(θ)

∣∣∣(1 + eiφtr)
∣∣∣2 , (9.14)
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Noting that,

|1 + eiφtr |2 = (1 + eiφtr)(1 + e−iφtr) (9.15)

= 2[1 + cos(φtr)] (9.16)

= 4 cos2
(

φtr

2

)
, (9.17)

we can write Eq. (9.14) as,

d〈W〉
dΩ

=
c

2π
k4|P|2 sin2(θ) cos2

(
πD sin(θ) cos(φ)

λ

)
. (9.18)

Integrating this over all solid angles gives us the final value for the energy

radiated per unit time. Then we can use Eq. (9.8) to calculate the radiative dissi-

pation rate.

We can follow the exact same argument to calculate the radiative dissipation

rate for the longitudinal setup. The phase difference turns out to be, kD cos(θ)

and the expression for the energy radiated per unit solid angle per unit time is,

d〈W〉
dΩ

=
c

2π
k4|P|2 sin2(θ) cos2

(
πD cos(θ)

λ

)
. (9.19)

Using Eqs. (8.1), (9.18), (8.14), (9.19) we can present the radiative dissipation

rate for dimer setups with resonance wavelength λ as,

γr =
32π4cR6

W(D)

I(D/λ)

λ4 , (9.20)

where, I(D/λ) =
∫ ∫

4 sin3(θ) cos2(πD sin(θ) cos(φ)
λ )dθdφ for transverse con-

figurations and I(D/λ) =
∫ ∫

4 sin3(θ) cos2(πD cos(θ)
λ )dθdφ for longitudinal con-

figurations with W(D) given by Eq. (8.2). The I terms can be associated with

the effects of interference between the two dipoles and W term is proportional

to the total average power of the dimer system. We plot W against dimer sep-
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aration for 10 nm and 20 nm dimer setups in Fig. 9.5(c-d). As can be seen, the

proportional changes in power is extremely small and hence can be considered

negligible. To understand why this is justified, consider the electrical energy of

an isolated sphere Ws. For spheres placed close by in transverse configuration,

the interaction energy WI ∝ WsR3/D3 [21]. Hence the proportional change in

W(D) between two spheres placed at infinity and spheres placed at distance D

can be given by, ∆W = R3/2D3. As we saw earlier the proportional change in

λ−4, ∆λ−4 = (1+ R3/D3)2− 1. Since 2R3/D3 + R6/D6 � R3/2D3, we conclude

that the change in W(D) is negligible. A similar argument can be followed for

the longitudinal case.

The key factors governing the dissipation rate hence is the interference I and

the resonance wavelength λ.

We plot the change in radiative dissipation rate for transverse and longitudi-

nal dimers with dimer separation in Fig. 9.5(a-b). We first notice that the radiative

dissipation rates for the sizes of nanospheres we consider, dominate the ohmic

losses. At the smallest dimer gap we study(5 nm), the transverse dimer shows

higher radiative dissipation as compared to the longitudinal.

However, more interestingly, the interference and resonance frequency shifts

manifest interesting properties as spacing between the nanospheres is increased.

In general, the transverse setups display a steady decline for the range of spacings

we study. The longitudinal setup on the other hand goes through a maximum and

starts declining. As can be seen for both 10 nm and 20 nm dimer setups, in the ex-

tremely close configurations(small D), the transverse dimer radiates energy at a

higher rate as compared to the longitudinal dimer. But at a certain separation, the

transverse setup dips steeply below the longitudinal curve and continues down-

wards. This implies the reduction of the transverse dimer radiative dissipation at

larger separations. This can be understood in terms of the two key terms in Eq.

(9.20). The I(D/λ) term diminishes for larger values of D while the λ−4 term
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Figure 9.5: The radiative dissipation rates(a-b) and mean power (c-d) for trans-
verse(red) and longitudinal(blue) dimer setups composed on nanospheres of
radii 10 nm and 20 nm at various dimer separations. (a) and (c) display the data
for the 20 nm nanosphere setups while (b) and (d) represent data for the 20 nm
setups. In all graphs, the solid green line indicates the level for a singlet with the
same radius.

also diminishes due to the red shift of the resonance frequency for larger separa-

tions. These two effects combine to account for the reduction in transverse dimer

dissipation rate.

For the longitudinal dimer, while I(D/λ) diminishes for larger separations,

the resonance frequency experiences a blue shift, causing the λ−4 term to actually

dominate for smaller separations causing the peaked behaviour we observe. For

larger separations however, the interference term dominates causing reduction of

dissipation. Hence, heuristically, we can say that the radiation interference and

resonance frequency shifts cooperatively cause reduction in radiative dissipation

in transverse dimers, while for longitudinal dimers, those two effects act in oppo-

sition resulting in a peaked behaviour for intermediate dimer separations before

interference dominates to bring down total dissipations.

We note that a similar analysis was performed in [65] but the interference ef-

fects were neglected resulting in a radiative dissipation that only depended on
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hybridized resonance wavelength λ. [66] also performs a similar analysis by cal-

culating the linewidth of scattered spectra of dimers. The results there agree with

our predictions qualitatively but the analysis therein is performed approximately

which results in a prediction of λ−2 dependence of the radiative dissipation. We

attribute this discrepancy to the fact that only the kinetic energy of oscillating

charges were considered in [66], whereas detailed energy balance in plasmonic

systems require the consideration Electrical Energy = Kinetic Energy + Magnetic Energy

[62].

9.4 Solving the open Dicke model

Now we turn to question of actually solving the open Dicke model equations

we derived earlier for spasing systems. To consider how to solve this system of

equations, let us first consider the size of a wave-vector that describes the system.

Assuming the plasmon modes may be truncated at a highest possible occupation

number value of M, there are M+ 1 different possible values of the plasmon occu-

pation number. For N chromophores each with 3 energy levels, there are 3N pos-

sible configurations. This implies that a wave-vector describing the system will

have a size equal to 3N(M + 1). The density matrix in turn will have dimensions

6N(M + 1)2. This is a computationally impossible bound to handle and solve ex-

actly. As shown in Chapter 7, if the assumptions of identical chromophores and

incoherent pumping of chromophores are valid, the problem could be cast into

a problem of size O(N4M) and numerically exactly solved. But in many realis-

tic setups, these assumptions may be too restrictive. Another practically useful

and faster method of approximately solving the system involves using the Re-

duced Density Matrix(RDM) approach [56]. It obtains a closed set of equations

for the steady state density matrix of the system using some reasonable approx-

imations. The main equation solved is the reduced density matrix for plasmon
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number states ρµ,ν, in terms of coupled individual chromophore density matrices

ρn
uµ,vν, where n identifies the particular chromophore and u, v = 0, 1, 2 denote the

energy level of the electron of that chromophore.

∂

∂t
ρµν = −i(µ− ν)ωplρµν − γpl

µ + ν

2
ρµν (9.21)

+γpl

√
(µ + 1)(ν + 1)ρµ+1ν+1

−
N

∑
n=1

ign(
√

µρn
1µ−1,0ν −

√
νρn

0µ,1ν−1)

+
N

∑
n=1

ign(
√

ν + 1ρn
1µ,0ν+1 −

√
µ + 1ρn

0µ+1,1ν).

This method has shown to provide approximately useful values for the den-

sity matrix equations for a three level gain medium in a wide range of parameters

with just O(NM) time complexity [57]. In this chapter, we use the RDM approach

due to the convenience and also its ability to handle heterogeneous gain media.

We refer the reader to [57] for a complete treatment on the method and the asso-

ciated derivation of equations.

9.5 Bright mode spasing curves

Next we approach the question of modelling the action of a spaser, the plasmonic

component of which is formed by a dimer setup composed of 10 nm radius sil-

ver nanospheres. As previous results demonstrated, the main characteristics of

a dimer setup is the the higher coupling rate to gain chromophores in the dimer

gap and the higher radiative dissipations. We present results that demonstrate

the effects of these two key differences between the two dimer configurations as

well as between the dimer setups and the singlet setup.

Non-linear quantum effects come into play when the dimer gap is extremely
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small due to to the quantum nature of the electrons, non-local screening effects

and tunnelling of electrons [67]. In addition to that, as we observed earlier in the

hybridized resonance frequency calculations, the dipole approximation fails to

account for the resonance frequency shifts in a dimer for extremely small separa-

tions. Hence in all our simulations, we maintain a gap of at least 5 nm between

the metal spheres.

The main setup we use for the simulation and characterisation of the spas-

ing properties are shown in the inset of Fig. 9.6 as an example for the transverse

spasing setup. We study the singlet setup, transverse dimer setup, and the lon-

gitudinal dimer setup, each of which is surrounded by a cuboid shaped discrete

gain medium distribution and we maintain a gain chromophore number den-

sity of 0.125 cm−3. For gain chromophores with molecular sizes spanning the

Angstrom range, this value is realistic and it also allows us to make the sparsity

assumption for the gain medium. We take the lengths of the gain medium extent

in the three directions to be Lx, Ly and Lz with the chromophores stationed at the

grid points. Note that the gain medium cuboid is always centered at the mid-

point of the dimer axis. We assume that the chromophore 0-1 transition is exactly

in resonance with the plasmons in each of our simulations with the 2nd electronic

level lying a further 0.1 eV higher from level 1 of the chromophores. This value

allows the 1− 2 electronic transition to be decoupled from the higher order mul-

tipoles for the plasmons we consider and also is commensurate with values used

in similar theoretical investigations done on 3 level spasing models [57].

The two main metrics we use to analyse spasing behaviour is the mean plas-

mon number which quantifies the strength of the spasing and the second order

coherence of the plasmon distribution, which quantifies the quality of the spas-

ing as a measure of coherence of the plasmons created. Solving for the plasmon

density matrix grants us access to the full probability distribution of plasmon ex-

citation and hence the calculation of both quantities are quite straightforward.
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The mean plasmon number, Npl = 〈â† â〉, can be calculated using the reduced

density matrix elements solutions from Eq. (9.21) as,

Npl = ∑
µ

µρµµ. (9.22)

A higher mean plasmon number is indicative of higher intensity spasing. Sim-

ilarly, the second order coherence, g2
pl =

〈â† â† ââ〉
〈â† â〉2 , can be calculated as,

g2
pl =

∑µ µ(µ− 1)ρµµ

N2
pl

. (9.23)

A second order coherence value of 1 signifies a perfectly coherent stimulated

emission output while it reaches values of 2 for random noise. Hence ideally,

values closer to 1 are preferred in spasing.

We start off by comparing three spasing curves for spasers made of chro-

mophore setups with Lx = Ly = Lz = 50 nm for 10 nm silver spheres in Fig.

9.6. The three curves are: longitudinal setup with D = 25 nm, transverse setup

with D = 25 nm and a singlet setup. We also plot the second order coherence

values in the same graphs.

As we can clearly see, the singlet setup outperforms the dimer setups both in

terms of quantity(mean plasmon number) and quality(second order coherence) at

almost all simulated pumping power values. We also observe that in general, the

longitudinal spasing setup has higher intensity spasing output as compared to

the transverse setup. However, in terms of second order coherence, the transverse

configuration seems to consistently have the more ideally coherent output.

Looking closer, we see that for small pumping values, the singlet performs

best, followed by the transverse dimer and the longitudinal dimer respectively.

At this early stage, the spasing output seems to increase linearly with the pump-
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Figure 9.6: The mean plasmon numbers(blue) and the second order coherence
values(red) for dimer and singlet configurations consisting of 10 nm nanospheres.
The transverse dimer curves are denoted by the solid lines, the longitudinal
dimers by the dotted lines and the singlet configurations by the dashed lines.
The dimer separation is maintained at 5 nm. Inset shows the distribution of chro-
mophores for a transverse dimer setup. The chromophore distribution extents
along the x- and z-directions are shown as Lx and Lz.
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ing power while, more interestingly, the second order coherence increases as well.

This increase in second order coherence is indicative of the fact that actual stimu-

lated emission has not set in as of yet in the system and that the emission in that

range corresponds only to amplified spontaneous emission. This also demon-

strates that the linear increase in spasing output by itself is not a reliable indicator

of spasing.

However, at a certain pumping value we observe a sudden decrease of sec-

ond order coherence for all three setups. This occurs at an electric field strength

of E0 = 4 × 104 Vm−1 for the dimer setups and at E0 = 2 × 104 Vm−1 for the

singlet. This decline of second order coherence is soon followed by a visible in-

crease in the slope of the spasing curves. This visible ”kink” in the spasing curve

is much less pronounced as compared to conventional lasing systems. However,

this may be considered a clear sign of the threshold of spasing systems due to

the simultaneous decrease in the value of the second order coherence. A previ-

ous quantum study on the nature of spasing concluded that the spaser showed

thresholdless behaviour due to the lack of a clear spasing transition from spon-

taneous and stimulated emission [52]. This difference is due to our assumption

that the 1− 0 transition of the gain elements having negligible decay rates. For

larger decay rates, the amplified spontaneous emission is suppressed by the chro-

mophore decays causing less amplification along with less buildup of incoherent

plasmonic population. Hence, for sufficiently low gain decay rates, spasing sys-

tems do display threshold behaviour. A similar behaviour of the second order

coherence was predicted for lasing in the bad cavity limit using a Fokker-Planck

approach [68]. Functionally, spasing systems and bad cavity lasers are similar

due to the very high plasmonic dissipations in spasing setups.

Beyond threshold, singlet curve shows the steeper gradient while the longitu-

dinal dimer curve, lagging behind the transverse dimer curve up until this point,

increases with a higher gradient than the transverse setup. Concurrently, we see
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the second order coherence values of all three setups decrease rapidly to reach

values close to 1 for high pump powers.

9.6 Dark mode spasing

In addition to the bright modes, as we mentioned earlier, the dark modes may

also be quantized by considering an appropriately polarised light source. Us-

ing that fact, and performing the same quantization procedures as for the bright

modes, we can arrive at an exactly similar quantum model for bright modes. In

Fig. 9.7, we present the spasing curves for all four of the fundamental modes of

a nanospherical dimer consisting of sphere with radius R10 nm and separation

D = 25 nm. The chromophores are distributed symmetrically around the dimer

in a cubic shape with side length 100 nm.

As we can see, the bright modes perform much worse than the singlet while

dark modes perform much better than the singlet. This is mainly due to the high

radiative dissipation present in bright modes as compared to the singlet and the

dimer dark modes.

We also present the second order coherence curves for the same setup in Fig.

9.8. As we expect from the spasing curves, the dark modes of the dimer setup

perform the best as compared to both the singlet and bright mode setups.

9.7 Dimer separation dependent effects in spasing

Next we study the spasing output variation with dimer separation. Figure 9.9(a)

displays the mean plasmon number of the spasing setups for transverse(red) and

longitudinal(blue) configurations composed of 10 nm nanospheres pumped with

an electric field E0 = 1× 105 Vm−1 with a cubic gain medium distribution of size

100 nm on each side. In general, we observe that the transverse setup exhibits



9.7 Dimer separation dependent effects in spasing 113

0

10

20

30

40
M

ea
n 

pl
as

m
on

 n
um

be
r

Pumping Power (arb. units)
1 3 5 7 9

Singlet
LB
LD
TB
TD

Figure 9.7: The mean plasmon numbers of dimer and singlet configurations con-
sisting of 10 nm nanospheres. The various dimer modes are indicated in the inset
The dimer separation is maintained at 25 nm. The chromophore distribution is
cubic with side lengths of 100 nm each.
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higher intensity spasing. As the separation is increased, the transverse dimer

shows a generally increasing behaviour. The longitudinal dimer on the other

hand experiences a reduction in emissions before recovering for larger separation

values. This can be understood by 3 key factors affecting the spasing output as

separation is increased:

1. The change in radiative dissipation rate;

2. The reduction in field confinement in the dimer hotspot(electric field leak-

age);

3. The increase in the proportion of chromophores in the dimer hotspot;

For a transverse dimer, as discussed previously, interference effects and res-

onance frequency red shift causes the radiative dissipations to decrease with in-

creasing dimer separation. This acts to increase spaser output. However, the

increased dimer gap also allows a higher proportion of the gain medium to ac-

cess the dimer hotspot and strongly couple to the plasmons generated. But this

comes with the downside of the decrease in intensity of the hotspot due to leak-

age. Hence factors 2 and 3 act in opposition to each other. Figure 9.9 suggests

that in general, the radiative dissipation rate and the increasing chromophores

within the dimer gap dominates causing a general increase in spasing output for

transverse dimers. However, for larger separations, the spaser output plateaus,

showing the influence of the electric field leakage.

For longitudinal dimers, the radiative dissipation shows a peaked behaviour

before reducing for large separations. Similar to the transverse case, the reduc-

tion in field confinement and increase in the proportion of gain chromophores

strongly coupled to the plasmons act in opposition to one another when spaser

output intensity is concerned. However, as shown in Fig. 9.9, the longitudinal

dimer output first decreases and then recovers to increase with increasing sep-

aration. The lowest spaser output almost perfectly coincides with the radiative

dissipation minimum(see Fig. 9.5), which indicates that radiative dissipation is
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Figure 9.9: Variation of the mean plasmon number with the separation be-
tween dimers for transverse(red) and longitudinal(blue) configurations. The
nanosphere radius is R = 10 nm and the gain medium distribution has Lx =
Ly = Lz = 100 nm.

the dominant force determining the spasing output for smaller separations. How-

ever, for larger separations, the longitudinal setup shows a plateauing behaviour

similar to the transverse setup due to the reduction in electric field confinement.

We perform the same analysis for a dimer spaser setup pumped with a field

E0 = 5× 106 Vm−1 in Fig. 9.9(b). We again clearly see a similar pattern of be-

haviour for transverse and longitudinal configurations.

9.8 Spasing variation with gain medium extent

Finally, we present the variation of the spaser output with the size of the gain

medium. Figure 9.10 displays the variation of the spaser emission intensity and

second order coherence value for the two dimer configurations as well as the sin-

glet configuration with the length of a cubic gain medium. The displayed size is

the length of one side of the cube. We observe the dramatic increase in the spasing

output intensity as well as the decrease of the second order coherence value to 1.

It has been observed in other studies done on spasing in three-level gain media
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Figure 9.10: The variation of the mean plasmon number(blue) and second or-
der coherence(red) for transverse dimer(solid line), longitudinal dimer(dotted
line) and singlet(dashed line) setups with the size of the surrounding cubic gain
medium. The shown size indicates the length of one side of the gain medium
cube. The nanospheres are of 10 nm radius and the separation D = 5 nm for the
dimer setups. The pump field is held constant at E0 = 5× 106 Vm−1.
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that the spasing output tends to follow a linear variation with the number of gain

chromophores given that the gain chromophores are identical [57]. In our case,

we observe that the spasing output displays a sub-cubic dependence on the gain

medium length. This is due to the fact that while the number of chromophores

grows as the cube of the length, the chromophores are not identical and the cou-

plings of chromophores from further away is much weaker compared to the ones

closer to the plasmon.

We also note that for smaller gain medium distributions the transverse dimer

spaser output is higher than that of the longitudinal. But as the size of the gain

medium and the number of chromophores increase, the longitudinal dimer over-

takes the transverse.

9.9 Summary and conclusion

This chapter has presented our key findings on the spasing characteristics of a

nanopshere dimer based spaser. We have shown that for low pumping, large

separation scenarios, the transverse dimer outperforms a longitudinal dimer and

vice versa for all other cases. We have shown that this behaviour is due exactly to

the interference pattern of the radiation emitted by the two nanospheres. We have

also shown that the spasing characteristics indicate the importance of the second

order coherence of the generated plasmons as an indicator of the spasing thresh-

old. These results suggest that, in hybrid structures, the spasing characteristics

intimately depend upon the exact configuration of singlet elements. Longitudi-

nal and transverse placements show vastly different behaviours. Our results also

suggest that in lattice like setups, the optimum spasing is achieved by placing

singlets as close as possible in the longitudinal direction while placing them at a

certain optimal distance in the transverse direction. This has serious implications

for designers of such spasing setups. We belive that our results will be the start-
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ing point for investigations of lattice spasing structures with dimensions tuned to

achieve maximal spasing.

The results of this chapter were published in Physical Review B [69].



Chapter 10

Contributions and Future work

10.1 Summary of Contributions

Research objective 1 - Studying the response of hybridized plasmonic systems
coupled to gain media

In this stage, we semi-analytically modelled the quantized dimer-multiple emit-

ter system and numerically solved the resulting master equation to high accuracy.

We modelled the dissipations within the system using the Lindblad formalism

and found that the interference of the radiative dissipations in the dimers cause

the output to portray interesting behaviour based on the exact positioning of the

nanospheres with respect to the pumping field. We also showed that the second

order coherence of the dimer based spaser displays a very peculiar signature near

spasing threshold that had been predicted earlier for lasing systems.

This stage was successfully completed and the results were published in the jour-

nal Physical Review B.

Research objective 2 - Studying the plasmonic response of nano-tori

At the completion of this stage, we managed to complete the analysis of the plas-

monic modes on a nano-torus. We studied the poloidal spectrum of the torus

119
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in the Neumann-Poincare(NP) operator formalism and showed that the poloidal

modes may be described as resulting from the splitting of the transverse cylindri-

cal modes on an infinite cylinder by the symmetry breaking that happens when

the cylinder is folded. We showed that the spectrum actually consists of two

branches, one with positive NP eigenvalues and another with negative eigenval-

ues, that converge to the cylindrical modes at low aspect ratio. We also show that

it is the positive eigenvalue branch that actually dominates in terms of dipole

response and that the negative eigenvalue branches become important at high

aspect ratios when the symmetry breaking is significant enough for them to be

distinguuished from each other.

This stage was successfully completed and the results have been accepted for

publication at Physical Review B.

Research objective 3 - Development of an exact and efficient quantum solver
for the coupled resonator and identical emitter model

In this stage, we built a quantum solver capable of exactly solving the coupled

nanoresonator-emitter problem exactly. We leveraged a symmetry that we dis-

covered within the master equation to significantly reduce the dimensionality of

the problem. Employing the C++ programming language, we managed to cre-

ate the solver using optimal data structures and efficient parallelised schemes

for fastest possible convergence. The solver easily solved problems involving

over 100 emitter chromophores within 24 hours, whereas the fastest available

implementations previously were scarcely able to solve problems involving 10

chromophores within 24 hours. We also managed verify the validity of certain

alternative approximations schemes such as the Reduced Density Matrix(RDM)

approach and the Fokker-Planck equation approach by comparing the results to

ones as predicted by our exact solver.
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Upon successful completion of this stage, the findings were communicated in

the journal Journal of the Optical Society of America B.

10.2 Suggestions for Future Work

The work presented in this thesis can be usefully extended in a number of theo-

retical and experimental pathways. We have outlined a few suggested directions

below.

Investigating spasing in multiple lattice-like plasmon structures

We have completed the analysis of spasing in nanoparticle dimers. In our work,

we found that based upon the longitudinal or transverse arrangement of the

dimer setup, the spasing output has two completely different behaviours. Based

upon this, we have postulated that lattice-like plasmon hybridized structures will

display behaviour which would be a hybrid of the two. The investigation of this

question would be of great value and interest. The modelling method we have

used may be easily extended to precisely analyse this case.

Investigating multi-mode spasing in hybrid structures

While we have presented the full quantum treatment of the dimer spaser, there

exist structures that require a description comprising of multiple interacting plas-

monic modes. This description is beyond the simple dipole approximation and

needs to be treated with other numerical methods such as the Quasi-normal

mode(QNM) [70] approach or the Generalised Normal Mode approach(GENOME)

[71]. These descriptions would implicitly contain the interaction effects of the

plasmonic modes resulting in a coherent model for treating muti-modal spasers.



122 Contributions and Future work

Coupled nanoresonator-emitter model solver for interacting emitters

One of the key interactions we have not considered in our quantum solver is

the interaction effects between emitter chromophores. These effects may cause

significant changes in the expected spasing output and may also result in slight

frequency shifts. Including these effects in the quantum solver amounts to adding

in extra terms to account for the energy exchange between chromophores. An

analysis on the symmetry structures of the terms added would need to be also

performed before adding the modifications into the model. This would result is

far more accurate and useful results.

Approximate solver for coupled nanoresonator-emitter model

One of the possible extensions that would be highly impactful is modifying the

current solver to be able to handle non-identical emitters within a certain approx-

imation. This would allow the solver to be used for accurate modelling of the

quantum systems without sacrificing efficiency. Ideally, we expect the model to

be polynomial in it’s complexity in contrast to the exponential complexity of the

exact problem. This would require an analysis of the perturbations caused by

non-identical emitters and correcting them using interaction terms.

Poloidal modes in azimuthally symmetric structures

As we have shown, the torus. as resulting from the rotation of the circular disk

around an external fixed point results in a splitting of the modes of the disk into

a dual infinity of modes. We suggest the extension of that work to cover other

structures as generated by rotating different smooth 2D shapes. A first such ex-

ample would be an ellipse and the structure generated by rotating the ellipse to

generate a ”squashed torus” shape. We would expect there to a splitting of the

modes, and the resulting spectrum would be of great interest. The analysis would
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also lay the groundwork for a discussion on the behaviour of plasmonic modes in

3-dimensional objects made by revolving a 2-dimensional shape around a fixed

axis.

Plasmonic modes on a Möbius strip and multiple twist structures.

Another fascinating problem we are currently left with is the structure of the plas-

monic modes on a Möbius strip structure. This structure is the same as a torsu,

except for the breaking of the symmetry in the toroidal direction. We expect the

structure to have an interesting modal structure that would be useful in applica-

tions. While the Möbius strip is composed of just one twist, higher number of

twists produce structures that have discrete symmetry in the toroidal direction.

The investigation of such structures would also be extremely valuable to our un-

derstanding of plasmonic modes on various structures.





Appendix A

The solution of the Laplace equation

A.1 Laplace equation in Spherical coordinates

The Laplace equation can be given as,

∇2V = 0. (A.1)

Let’s assume the function V is separable as,

V = R(r)Θ(θ)Φ(φ). (A.2)

The Laplace operator can be expressed in spherical coordinates as,

∇2 =
1
r2

∂

∂r

(
r2 ∂

∂r

)
+

1
r2 sin2(θ)

∂2

∂φ2 +
1

r2 sin(θ)
∂

∂θ

(
sin(θ)

∂

∂θ

)
. (A.3)

Plugging Eq. A.2 into this gives us,

∇2V =

(
r2 sin2(θ)

R
d2R
dr2 +

2r sin2(θ)

R
dR
dr

)
+

(
1
Φ

d2Φ
dφ2

)
+

(
sin(2θ)

2Θ
dΘ
dθ

+
sin2(θ)

Θ
d2Θ
dθ2

)
= 0.

(A.4)

Since the φ dependent term is isolated in the sum, we can assume that term to
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be constant with some m,

(
1
Φ

d2Φ
dφ2

)
= −m2. (A.5)

The solutions to this can be given as,

Φ(φ) = Ameimφ. (A.6)

Plugging this in Eq. (A.4),

(
r2

R
d2R
dr2 +

2r
R

dR
dr

)
+

1
sin2(θ)

(
sin(2θ)

2Θ
dΘ
dθ

+
sin2(θ)

Θ
d2Θ
dθ2

)
= 0. (A.7)

Since the radial portion must also be constant for some l,

(
r2

R
d2R
dr2 +

2r
R

dR
dr

)
= l(l + 1). (A.8)

This Euler differential equation can be solved in a power series expansion and

the solutions are known to be of the form,

R(r) = Alrl + Blr−l−1. (A.9)

Plugging this into Eq. (A.7),

d2Θ
dθ2 + cot(θ)

dΘ
dθ

+

[
l(l + 1)− m2

sin2(θ)

]
Θ = 0. (A.10)

This is the associated Legendre differential equation and the solutions are

known to be,

Θ(θ) = Pm
l (cos(θ)), (A.11)

where the Pm
l functions are the associated Legendre polynomials with l =
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0...∞ and m = −l...l.

The final solution can be expressed in terms of the complex spherical harmon-

ics Ym
l (θ, φ) = Pm

l (cos(θ))e−imφ as,

V(r, θ, φ) =
∞

∑
l=0

m=l

∑
m=−l

(
Alrl + Blr−l−1

)
Ym

l (θ, φ). (A.12)

A.2 Laplace equation in Cylindrical coordinates

The Laplace equation can be solved in cylindrical coordinates similar to the spher-

ical coordinate solution. The Laplace equation is exactly separable in cylindrical

coordinates (r, θ, z). The Laplace operator in cylindrical coordinates can be given

as,

∇2 =
1
r

∂

∂r

(
r

∂

∂r

)
+

1
r2

∂2

∂φ2 +
∂2

∂z2 . (A.13)

Similar to the spherical coordinates, assuming a solution of the form,

V = R(r)Φ(φ)Z(z), (A.14)

we can expand the equation and derive three independent differential equa-

tions for each of the three variables,

(
1
Φ

d2Φ
dφ2

)
= −m2. (A.15)

(
1
Z

d2Z
dz2

)
= k2. (A.16)

d2R
dr2 +

1
r

dR
dr

+

[
k2 − m2

r2

]
R = 0. (A.17)
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All three of these differential equations are well-known in differential equa-

tion literature. The first equation has the solution,

Φ(φ) = Ameimφ, (A.18)

for integer m, while the second equation has,

Z = sinh(kz). (A.19)

The third equation is the well-known Bessel’s equation with the Bessel func-

tions Jm(kr) as the solutions. Hence the general solution of the Laplace potential

can be expressed as,

V(r, φ, z) =
∞

∑
m=−∞

Am Jm(kr)eimφ. (A.20)

A.3 Laplace equation in Toroidal coordinates

The Laplace equation is only approximately separable in toroidal coordinates. We

do not give the derivation here. The potential function can be expressed as,

Φ(ξ, η, φ) =
√

1− ξ cos(η) ∑
m,n

 Tmn

Smn

×
 cos(mη)

sin(mη)

 ×
 cos(nφ)

sin(nφ)

 ,

(A.21)

where Tmn = ξ−1/2Qn
m−1/2(1/ξ) and Smn = ξ−1/2Pn

m−1/2(1/ξ) with Qα
β and

Pα
β as the associate Legendre functions. The curly braces indicate that any one of

the functions within may be chosen to form a valid mode.
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The toroidal coordinate system

B.1 Transformation equations for toroidal coordinates

The toroidal coordinates and the natural coordinates can be depicted as shown in

Fig. 5.2. The transformation equations from the toroidal coordinates (x, y, z) to

toroidal coordinates (ξ, η, φ) can be given as,

x =
r0
√

1− ξ2 cos(φ)
1− ξ cos(η)

, (B.1a)

y =
r0
√

1− ξ2 cos(φ)
1− ξ sin(η)

, (B.1b)

z =
−r0ξ sin(η)
1− ξ cos(η)

. (B.1c)

The inverse transformation can be given as,

φ = arctan
y
x

, (B.2a)

ξ =
2d1d2

d2
1 + d2

2
, (B.2b)

η = arccos
d2

1 + d2
2 − 4r2

2d1d2
, (B.2c)

where d2
1 = (ρ + r)2 + z2, d2

2 = (ρ− r)2 + z2 and ρ2 = x2 + y2.
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B.2 The scale factors

The scale factors for the orthogonal toroidal coordinates can be given as,

hξ =
r0√

1− ξ2(1− ξ cos(η))
, (B.3a)

hη =
r0ξ

1− ξ cos(η)
, (B.3b)

hφ =
r0
√

1− ξ2

(1− ξ cos(η))
. (B.3c)

B.3 The normal vector

The normal vectors to the surfaces of constant ξ can be given by,

n =

{
(cos(η)− ξ) cos(φ)

1− ξ cos(η)
,
(cos(η)− ξ) sin(φ)

1− ξ cos(η)
,−
√

1− ξ2 sin(η)
1− ξ cos(η)

}
. (B.4)

B.4 The inverse distance

The inverse distance between two points on a surface of constant ξ is,

1
|x1 − x2|

=
1√
2r0

√
(1− ξ cos(η1))(1− ξ cos(η2))

1− ξ2 cos(η1 − η2)− (1− ξ2) cos(φ1 − φ2)
. (B.5)



Appendix C

Computational techniques for solving
large systems of coupled differential

equations

As we saw in the main text, the main problem to be solved in the quantum de-

scription of coupled nano-resonator-gain systems can be formulated in the form

of a set of coupled first order differential equations,

˙̂Q = AQ̂. (C.1)

Here, Q̂ is the linearised density matrix of the system. As mentioned in the

text, the density matrix has size 4N ×M2, where N is the number of gain media

chromophores and M is the resonator mode cut-off. A is a large, sparse, Hermi-

tian matrix with constant, complex coefficients. The main objective is to solve for

the steady state of the density matrix, given the evolution as dictated by A. In

this appendix, we shall present some of the computational techniques available

in literature for handling such large systems.

C.1 Differential equations solution method

The most obvious technique we can use is the classical theory of numerical dif-

ferential equations. This method is not specialised for the quantum domain and
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equations

Figure C.1: An illustration of the order 4 Runge-Kutta method. Image available
under the Creative Commons Attribution-Share Alike 4.0 International license.

https://commons.wikimedia.org/wiki/File:Runge-Kutta_slopes.svg
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can be freely used to solve such equations. We use such a scheme in the solver

we devised. Runge-Kutta schemes are perhaps the most widely used among the

methods used to solve differential equations and among these schemes, the or-

der 4 Runge-Kutta algorithm is perhaps the most widely used. This method is

illustrated in Fig. C.1. Using the initial value of the function at t0, the value of

the function at t0 + h is built up using the derivatives(slopes) at 4 intermediate

points as labelled by ki where i = 1− 4. Each step of the algorithm requires the

evaluation of the derivative 4 times, which signifies the order of the Runge Kutta

scheme. In such schemes, the step size is an arbitrary factor as determined by the

user. The accuracy of the estimate of the function crucially depends on the size of

the step and behaviour of the function near the estimation points. Hence, choos-

ing a proper step-size is a somewhat important yet hard problem in Runge-Kutta

schemes. There exists a special class of Runge-Kutta schemes that uses an internal

error prediction to choose an appropriate step size internally. Such methods are

termed adpative Runge-Kutta schemes and we use one of the adaptive schemes

in our quantum solver. More information on adaptive Runge-Kutta schemes can

be found in Appendix E.

C.2 Linear algebra based solutions

Yet another method for solving Eq. (C.1) is to use the classical theory of linear

algebra. The steady state solution implies,

˙̂Q = 0. (C.2)

This means that we need to find the density matrices Q̂ such that,

AQ̂ = 0. (C.3)
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But the solution to this is furnished exactly by the null space of the matrix

A. There exist many convenient algorithms and software for finding the null

space of large sparse matrices [72]. Most of these involve one of the well-known

decompositions like the QR-decomposition and the LU-decomposition.

A similar and related formulation of the problem is in terms of the eigenvalues

of matrix A. The null space of the matrix is formed exactly by those eigenfunc-

tions that have eigenvalue 0.

AQ̂ = 0Q̂. (C.4)

This problem can be solved by so-called Krylov-Schur algorithms [73] that can

compute the eigenfunctions of asymmetric matrices near a specific eigenvalue.

The main drawback in this scheme is that the null space of A could in general

be multidimensional and hence we would need to choose the solution eigenvec-

tor corresponding to our initial conditions. This would impose an extra process-

ing burden on solvers.

C.3 Monte Carlo Simulation

Another, yet more specialised method of handling Eq. (C.1) is a Monte-Carlo

method based on a probabilistic understanding of quantum states. We present a

very simplified form here.

Start with the initial state vector of the system. Note that we do not start with

an initial density matrix similar to the earlier methods. Hence the overall size

of the problem is only O(2N × M). This is a significant reduction is complex-

ity to begin with. Next, we evolve the matrix according to the laws of contin-

uous Hamiltonian evolution and the laws of random wave-function collapse as

dictated by the Lindblad operators. While the Hamiltonian evolution is deter-

ministic, the Lindblad evolution is stochastic, resulting in a different end state
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vector in different runs of the algorithm. The algorithm can hence be run on the

same initial vector multiple times resulting in a collection of possible end states.

These end states can then be interpreted as samples from the possible statistical

mixtures arising within the system at steady state. Hence, the mean values of

the state vectors actually form the final state vector as expected from quantum

evolution. The solution of Eq. (C.1) using this method has been implemented in

solvers such as QuTiP [74].





Appendix D

Computational paradigms for solving
quantum systems

An important concern in solving quantum master equations is the computational

paradigm used. Smaller problems may utilise a single computer with one or

few computational cores. Larger scale problems may require a more specialised

computer with many nodes or many interconnected computers with multiple

cores inside each. Another possible alternative is the use of Graphics Processing

Units(GPUs) and the many specialised cores they offer.

D.1 Single core computing

This form of computation is the direct, linear type of computation that utilises a

single processing core. It is the simplest to understand and write code for. Most

computations run on personal workstations would belong to this type of compu-

tation unless the software is explicitly specialised to use available multiple cores.

The key feature in these types of computations is the existence of a single proces-

sor and a single memory system. Writing code for such systems is the simplest of

all paradigms, and the code is executed serially.
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Processing Core

Memory Unit

Figure D.1: The single core processing architecture. A single processing unit
interacts with a single memory unit.

D.2 Multi-core computing

In this method, the workload of computation is distributed among many work-

ers(or cores) that jointly handle the computational load in parallel. They work on

sub-problems of the initial problem and combine the answers to come up with

the final answer. Based on the complexity of the problem, this type of paradigm

requires attention to be paid to the inter-dependency between the operations per-

formed by each of the workers and questions regarding the synchronisation of

workers. Depending on the architecture of the memory system, multi-core sys-

tems are broadly divided into two categories.

• Shared-memory parallelism

• Distributed-memory parallelsim

In shared memory architecture, all of the workers share a common memory

system and hence has simultaneous access to the memory space. Such a collection

is usually referred to as a node. This allows the workers to perform operations

on the same data without need of communication between them. This type of
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Processing
 Core

Memory Unit

Processing
 Core

Processing
 Core

Figure D.2: A shared-memory parallelism architecture. Multiple cores operate
independently of each other but share the same memory space.

parallelism is useful when the problem being solved has a computationally tax-

ing operation that can be easily divided into non-overlapping sub-computations.

The main downside of such systems s the fact that the sizes of problems solved is

limited by both the number of workers that share a common memory space, and

by the maximum memory available to all the worker. We use this paradigm in

our quantum solver. An application programming interface allows users of such

systems to transform serial code to shared-memory parallelised code. OpenMP is

the most commonly used application programming interface to distribute com-

putational work in such systems.

In distributed memory architecture, groups of workers have access to differ-

ent memory spaces. The computational system is composed of mutiple nodes.

This allows the computation to use as many workers as needed while adding

as much memory as needed. Hence, there is no memory or worker limitations in

this model. However, since the memory is not shared, it requires the explicit pass-

ing of information between workers in different groups to keep track of changes
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Processing
 Core

Memory
Unit

Processing
 Core

Processing
 Core

Memory
Unit

Memory
Unit

Figure D.3: A distributed-memory parallelism architecture. Multiple cores with
their own memory units operate independently on sub-computations, with mes-
sage passing between them to synchronise their operation.

taking place in other groups. This takes up a certain amount of computational

time and may also lead to workers remaining idle waiting for responses from

other workers. OpenMPI is an example of an application programming interface

used to perform the communication between workers in a distributed memory

system.

A majority of the software designed to handle various quantum systems are

usually bolstered with the option to use either shared or distributed memory

parallelised computing architectures [60, 74].

D.3 Many-core computing and GPUs

Many-core computing uses infrastructure designed specially and exclusively for

parallel processing and has specialised circuitry and interconnections to allow for

fast communication between workers. They also possess an extremely large num-
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Figure D.4: A popular Graphical Processing Unit circuit.

ber of workers sharing a single circuit board. Graphics Processing Units(GPUs)

are possibly the most popular variant of this type of system. Used to perform

extremely complex calculations especially in the video image rendering space,

GPUs have become a staple in many High Performance Computing(HPC) sys-

tems. The main downside of using such many-core systems is the need for ex-

tremely specialised design of software for solving problems, depending not only

on the problem but also on the hardware platform being used.





Appendix E

Elements of the quantum solver

E.1 Compressed Sparse Row(CSR) encoding

We used the CSR encoding scheme to efficiently store the sparse Jacobian matrix

A. This storage scheme allowed a straightforward way to implement Matrix-

Vector multiplication to calculate the derivative values as well as to parallelise

the multiplication.

The CSR scheme takes an n×m sparse matrix A and defines 3 separate vectors

to represent the data within the matrix.

• DataA - a vector containing all the non-zero elements of A in row-major

order

• IA - a vector of length (n+ 1), with IA[i] indicating the index within DataA,

of the first non-zero element in the ith row of A.

• JA - a vector indicating the column index of each element in DataA

For example, consider the following matrix,

A =



0 0 0 0 0

0 5 0 9 0

0 0 3 0 0

0 8 0 7 0

0 0 6 0 0


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.

This transforms into the following form in the CSR scheme,

DataA =
[
5 9 3 8 7 6

]
IA =

[
0 0 2 3 5 6

]
JA =

[
1 3 2 1 3 2

]

E.2 Runge-Kutta Cash-Karp scheme

We used an adaptive Runge-Kutta scheme to solve the differential equation of

our quantum solver. Adaptive Runge-Kutta schemes are superior to the regular

Runge-Kutta schemes in that they contain an in-built mechanism to correct errors

and adjust the step size depending on the error. The basic idea in each adaptive

Runge-Kutta scheme can be illustrated by considering the following. Given the

derivative of a function ẏ = f (x, y), and the value of the function at some point

y(x0) = y0, to estimate the value of the function at x0 + h, we take two distinct

routes.

In the first route, we calculate the function value at x0 + h using Euler’s for-

mula as,

y1 = y(x0 + h) = y0 + f (x0 + y0)× h. (E.1)

In the second route,

y2 = y(x0 + h) = y0 + f
(

x0 +
h
2
+ y0 +

h f (x0, y0)

2

)
× h. (E.2)

y1 is a first order approximation while y2 is a second order approximation.

Since y2 is more accurate an estimate as compared to y1, we can use (y1 − y2)
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as an estimate for the error of the integration. Using this, we can either decide

to increase the step size h or decrease it, depending on whether the error is less

than our tolerance or greater. While this simple order 1− 2 method is not used

in practice, it is the basis for all adaptive Runge-Kutta methods. We use the order

4− 5 Cash-Karp Runge-Kutta scheme. While in general this method would re-

quire 4 + 5 = 9 derivative function evaluations, the Cash-Karp method has been

designed to have overlapping intermediate derivative so that a single Cash-Karp

estimate may be performed with only 6 evaluations of the derivative function.

This is important to us, since the derivative evaluation portion of our algorithm

involves a large matrix-vector multiplication which actually forms the bottleneck

of our quantum solver. Further information regarding alternatives to the Runge-

Kutta scheme are discussed in Appendix C

E.3 Reverse Cuthill-McKee algorithm

The reverse Cuthill-McKee algorithm is useful in reducing the so-called band-

width of square matrices. This is especially useful when a large a matrix multi-

plication needs to be distributed among different processors in order to make the

multiplication more efficient. The reordering results in bringing the non-zeros

elements of a matrix closer to the diagonal and operates by changing the order

in which variables appear in the rows and columns of the matrix. This results in

only a minimal amount of communication being needed between processors in

order to perform the multiplications independently. The algorithm for a matrix

A is presented below.
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Algorithm 4 Reverse Cuthill-McKee algorithm

1: procedure RCM(A) . Calculate a reordering of A to reduce bandwidth
2: Q← empty queue
3: L← array of zeros with length equal to number of rows
4: index ← 1
5: D ← degree(number of non-zero elements) for each row
6: do
7: I ← row index with min degree D, such that L[I] = 0
8: L[I] = index
9: index = index + 1

10: Q← column indices of non-zero elements in row I, in order of increas-
ing degree

11: do
12: J ← Q pop from Q
13: if R[J]=0 then
14: L[J] = index
15: index = index + 1
16: Q ← column indices of non-zero elements in row J, in order of

increasing degree
17: end if
18: while Q is non-empty
19: while L[K] = 0 for some K
20: S← indices of L in reverse order of L[.]
21: return S . Final ordering of the rows
22: end procedure
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E.4 Parallelised Matrix-Vector multiplication

The main bottleneck of the quantum solver for many-emitter nanoresonator sys-

tems was the matrix multiplication between the linearized density matrix vector

Q̂ and the Jacobian matrix A. Due to this, an efficient multiplication strategy

was needed that utilised multiple cores to improve the efficiency of the compu-

tation. Fortunately, due to CSR representation we used to store the matrix A,

the parallelisation scheme was straightforward. Below, we give the algorithm for

parallelising the multiplication. Matrix A has dimensions (n×m).

Algorithm 5 Multiplier(A,Q̂)

1: procedure MULTIPLY(DataA, IA, JA, V) . Calculate multiplication between
matrix A in CSR form and vector V

2: Result← vector of zeros
3: for i=0 to n− 1 do . The outer loop will be executed in parallel
4: Result[i]← 0
5: for j=IA[i] to IA[i + 1]− 1 do
6: Result[i]← Result[i] + V[j]× DataA[JA[j]]
7: end for
8: end for
9: return Result . The final result

10: end procedure

E.5 Computational infrastructure

The algorithms of the solver were implemented in C++. The solver was run

on Raijin, the premier supercomputing cluster of the Australian National Com-

puting Infrastructure(NCI), through a National computational Merit Allocation

Scheme(NCMAS) grant awarded for the year 2018. The solver was designed to

run on a system of two Xeon E5-2690v4(Broadwell) processors comprising of 28

total cores. The processor speed was at 2.6 GHz and consisted of 256 GB of shared

memory. We used shared-memory parallelism and the OpenMP framework for
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implementing parallelised elements. Further discussion on the various possible

parallelisation schemes is available in Appendix D.



Appendix F

Resonance frequency of a transverse
dimer

F.1 Resonance frequency for a general Drude mate-
rial

We derived the localised time domain electric field for a dimer under the assump-

tions of εb = εcore = 1 in the main text Eq. (4.13). We now show that a similar

form holds for general εb and εcore values.

To begin, we first consider the polarizability of an isolated nanosphere. Using

the Drude model as given in Eq. (4.10),

α =
εm − εb
(εm − εb)

=
εcore − εb −

ω2
p

ω(ω+iγ0)

εcore + 2εb −
ω2

p
ω(ω+iγ0)

. (F.1)

Setting y = εcore − εb, we can rewrite this as,

α =
y

y + 3εb

ω2y + iωγ0y−ω2
p

ω2(y + 3εb) + iωγ0(y + 3εb)−ω2
p

=
y

y + 3εb
− 3εb

y + 3εb

ω2
F

ω2 −ω2
F + iωγ0

. (F.2)
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Here we have defined ωF =
ωp√
y+3εb

to be the generalized Fröhlich frequency

for the case of general core permittivity values of the metal. This can be further

simplified using the approximation ω ∼ ωF � γ0,

α ≈ y
y + 3εb

− 3εb
y + 3εb

ω2
F

2ω(ω−ωF) + iωγ0

≈ y
y + 3εb

− 3εb
y + 3εb

ωF/2
ω− (ωF − iγ0/2)

. (F.3)

Thus the total electric field for the singlet sphere can be written using the

single source Green’s dyadic G(r; r1) as,

Esing(r, ω) =
1

y + 3εb

(
y− 3εbωF/2

ω− (ωF − iγ0/2)

)
G(r; r1). (F.4)

In the time domain, for t > 0, we take the Fourier Transform to give,

Esing(r, t) =
3εb

εcore + 2εb

ωFE0

2
G(r; r1) sin(ωFt)e−γ0t/2. (F.5)

This predicts a system with resonance frequency ωF and dissipation parame-

ter γ0.

Next we derive the electric field of the transverse dimer. We start by consid-

ering the effective polarizability αeff. Using the frequency domain electric field

from Eq. (4.9) and the Drude model as given by Eq. (4.10),

αeff =
εm − εb

(εm − εb)(1 + R3

D3 ) + 3εb
. (F.6)

Next we use the substitutions κ = 1 + R3

D3 and y = εcore − εb. We note that by

the physical restrictions, D > 2R and hence, κ < 1.125. Now we can simplify the

earlier expression as,
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αeff =
y

yκ + 3εb
− 3εb

κy + 3εb

ω2
F

ω2 −ω2
0 + iωγ0

. (F.7)

Here we have used the approximation κ ≈ 1, to write ωp√
κy+3εb

≈ ωp√
y+3εb

= ωF

and also defined ω0 = ωp
√

κ
κy+3εb

. Using the usual approximations, ω ∼ ωF ∼

ω0 � γ0 which are valid for small resonance frequency shifts from the Fröhlich

frequency ωF, we can write,

αeff ≈ y
κy + 3εb

− 3εb
κy + 3εb

ω2
F

2ω(ω−ω0) + iωγ0

≈ y
κy + 3εb

− 3εb
κy + 3εb

ωF/2
ω− (ω0 − iγ0/2)

. (F.8)

This gives the electric near field of the transverse dimer as,

Etr
dim(r, ω) = αeff[G(r; r1) + G(r; r2)]. (F.9)

In the time domain, for t > 0, we find,

Etr
dim(r, t) =

3εbωFE0/2
κy + 3εb

[G(r; r1) + G(r; r2)] sin(ω0t)e−γ0t/2. (F.10)

This is exactly a resonant system with resonance frequency,

ω0 = ωp

√
κ

κy + 3εb

=

√
1 +

R3

D3

ωp√
κy + 3εb

≈
√

1 +
R3

D3 ωF. (F.11)
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