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Abstract

Brownian motion is one of the most prominent examples of stochastic pro-

cesses. Its application significantly changed the way we approach modelling

time-continuous dynamical systems in the areas such as physics, finance and

biology today.

The main idea of this thesis is to introduce stochastic processes that behave

similarly to Brownian motion on a sufficiently small neighbourhood around any

time, however might not do so on the whole time interval. This distinction will

allow us to construct a large class of processes, Brownian motion included, that

will be called local Brownian motions. In particular, we will see that according

to our definition of local Brownian motion, the marginal distributions do not

necessarily have to be Gaussian.

We will discover that some properties of Brownian motion will be transferred

to the whole class of local Brownian motions, whereas others will remain true

only for Brownian motion.

Further, we will be able to construct two rich families of local Brownian mo-

tions using different approaches. The first approach will be based on ran-

domised scaled covariances between incremental processes of local Brownian

motion. The second approach will use uncorrelated joint distributions to elim-

inate linear dependencies between the incremental processes of a local Brow-

nian motion via copulas.

One of the difficulties in developing the stochastic calculus with respect to local

Brownian motion is the fact that a proper local Brownian motion (Brownian

motion excluded) is not a semimartingale. Hence the stochastic integral can

not be defined in the usual way. However, the local properties of local Brow-

nian motion will allow us to define a stochastic integral with respect to local

Brownian motion, which can be seen as a generalisation of Itô integral. We will

develop the theory of stochastic calculus with respect to local Brownian mo-

tion and give explicit solutions to some stochastic differential equations such

as Black-Scholes and Ornstein-Uhlenbeck SDE’s driven by a local Brownian

motion.

Finally, we will discuss the strengths and weaknesses of using local Brownian

motion for modelling in finance and other areas of stochastic modelling.
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General notations

N set of natural numbers
N0 set of natural numbers with zero
R set of real numbers
R+ set of non-negative real numbers

R+ set of extended non-negative real numbers by +∞
i.i.d. independent and identically distributed
w.p. with probability
> transpose operator
∧ minimum
11A(·) indicator function of a set A
B(R) Borel σ-algebra on R
FXt σ-algebra generated by the process X up to time t
FX the natural filtration generated by X
ρX,Y correlation between X and Y
∼ distributed as
d
= equal in distribution
γX(·, ·) covariance function of the process X
N(µ, σ2) normal (Gaussian) distribution with mean µ and variance σ2

Nn(µ,Σ) multivariate normal distribution with n-dimensional mean vector µ
and n× n covariance matrix Σ

FX(·) cumulative distribution function of a random variable X
Φ(·) cumulative distribution function of a standard normal random variable
supp(X) support of a random variable X
EP[·] expectation with respect to the probability measure P
L2 the space of square integrable random variables
⊗ tensor-product
⊕ direct sum
C2(R;R) space of twice continuously differentiable, real-valued functions on R
C2,1(R2;R) space of twice continuously differentiable in the first variable and

continuously differentiable in the second variable, real-valued
functions on R2

xi





Chapter1
Introduction

1.1 Brief historical background on Brownian motion

Brownian motion was discovered by a botanist Robert Brown (1773-1858) in 1827 while

looking through a microscope at pollen of a plant immersed in water and observing a

chaotic movement.

The phenomenon was physically and mathematically described about 80 years later

in 1905 by Albert Einstein (1879-1955) in [17]. It was one of the four papers published in

that year that contributed substantially to the foundation of modern physics.

In 1900, Louis Jean-Baptiste Alphonse Bachelier (1870-1946) applied Brownian motion

to introduce a model for the movement of the stock prices in his doctoral thesis “Théorie

de la Spéculation” [5]. This was a ground breaking work and the first application of

Brownian motion to model the prices of financial products. Today, he is considered as

the forefather of financial mathematics and a pioneer in the study of stochastic processes

and their applications.

In 1923, Norbert Wiener (1894-1964) gave Brownian motion a solid mathematical

foundation in [54], after some new ideas of Félix Édouard Justin Émile Borel (1871-1956),

Henri Léon Lebesgue (1875-1941) and Percy John Daniell (1889-1946) emerged. It was

also extensively studied by Paul Lévy (1886-1971), who contributed largely to the theory

of probability in general.

In 1944, Kiyoshi Itô (1915-2008) published a paper [28] and later a book [29] where the

definitions of stochastic integral and stochastic differential equation were introduced - two

fundamental tools of stochastic calculus. Numerous mathematicians expanded stochastic

calculus later, which resulted in Brownian motion to become the mostly used stochastic

process for stochastic modelling in continuous time.
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1. Introduction

1.2 A brief survey on stochastic modelling

Although the work of Bachelier was of fundamental value and introduced the idea of

modelling the asset price process using Brownian motion, it remained relatively unknown

for many years until it was discovered by Paul Anthony Samuelson (1915-2009) [49] in

1965. Bachelier suggested to model the asset price process as a Brownian motion, which

left the possibility for the asset price to take negative values. This was not desired due to

practical reasons. Thus Samuelson extended the ideas from Bachelier work by proposing

that instead of demanding that the asset price at any time is normally distributed, the

log-returns of the asset price at any time should be normally distributed. This assumption

is equivalent to the statement that the returns should be log-normally distributed, which

eliminated the possibility of the asset price process to take negative values.

The paper by Fischer Black (1938-1995) and Scholes in [9] built upon Samuelson’s

ideas by assuming a geometric Brownian motion for the asset price process. In the paper

they derived a formula to price a European option. 1 However, it was the way the

formula was derived that was so significant to the field of financial mathematics and laid

the foundation for the asset pricing theory we know today. Almost at the same time

Robert Cox Merton [39] derived the formula using a slightly different argument. Scholes

suggested that the formula was required for market efficiency, Merton that it had to be

true due to non-arbitrage argument, and Black that it was required for market equilibrium.

The main argument that Black and Scholes used in their paper was that using hedging

it was possible to eliminate the systematic risk. Merton showed that assuming trading

can be done continuously, the continuous hedging, also called dynamic hedging, would

completely eliminate any risk. More precisely, he showed that it is possible to construct

a portfolio that would replicate the payoff function of an option at any time and hence

offset all the risk, i.e. the sensitivities of the replicating portfolio would perfectly match

the sensitivities of the replicated option. These ideas lead to European option price being

expressed as a solution to a famous Black-Scholes partial differential equation.

Black and Scholes made two significant assumptions: the interest rate and the volatil-

ity over the modeled period of time are constants. However, these assumptions were

rejected numerous times by empirical studies (e.g. Mandelbrot & Hudson [38]). Also, it

is widely accepted that for some particular time frame and frequency of the data points,

the continuously compound returns are not normally distributed, but rather follow a so-

called heavy tail distribution (e.g. Fallahgoul & Loeper [18]). This means that rare events

are much more likely to occur than the normal distribution would suggest, and taking

this into consideration is essential for proper risk management.

1The formula itself was derived a couple of years earlier by Edward Oakley Thorp [45], who decided
to keep it secret.
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1.3. Motivation

Although the initial model can be extended to the case where the risk-free interest

rate and volatility are time dependent, it still could not explain such a phenomenon as

volatility smile 2.

The classical model paved the way to models that could address some of its drawbacks

and hence being more accurate and realistic. Some of the suggested models include the

local volatility model presented by Dupire [15] and Derman & Kani [13], in which the

volatility of the asset price depends on time and asset price. These models are called local

volatility models. A different approach which is due to Heston [26] is based on introducing

another source of randomness into our system, which will drive the volatility process. The

two noises can be correlated. Such models are called stochastic volatility models.

1.3 Motivation

The importance of Brownian motion in modelling stochastic dynamical systems comes

from its properties. On one hand, Brownian motion is a martingale, and hence the com-

plete machinery of stochastic analysis can be used as a tool to describe the behaviour of

the system. On the other hand, it is a Markov process which simplifies many computa-

tional tasks in regards to a conditional distributions. Finally, its marginal distributions

are normal, a distribution that approximates a properly normalised (finite or infinite)

sum of i.i.d. random variables, due to a famous result in probability called Central Limit

Theorem.

If we want to built processes that in some sense mimic the bahaviour of Brownian

motion (but is different from it), we need to eliminate some properties and keep the others.

In general, every stochastic process with independent increments (see Lévy processes in

Sato [50]) and constant mean function is a martingale and a Markov process. Thus the

property of independent increments is quite strong. In this thesis, we will explore the

idea of processes that do not have independent increments but behave “locally” like a

Brownian motion.

1.3.1 Theoretical perspective

Analysis of objects in continuous time starts sometimes with analysis of simplified, but

in some sense similar, objects in discrete time. So was the case in this work. It is well

known that one can construct a bivariate normal distribution (X, Y ) with X ∼ N(0, 1),

Y ∼ N(0, 1) and correlation ρ as (X, Y ) = (X, ρX +
√

1− ρ2ξ) with ξ being standard

normal distribution independent of X. Now we could randomise the correlation between

2This is referred to the implied volatility being dependent on the strike price, i.e. the volatility that
one would obtain if the market would price the options via the Black-Scholes model.
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1. Introduction

random variables X ∼ N(0, 1) and Y ∼ N(0, 1), and represent it by a random variable R

as follows (
X
Y

)∣∣∣∣
R=r

∼ N2

((
0
0

)
,

(
1 r
r 1

))
with supp(R) = [−1, 1]. This idea was used by Hamza and Klebaner in [23] to construct

a family of non-Gaussian Markov martingales with Gaussian marginals. Although the

construction yielded a rich family of processes, all processes (except the Brownian motion)

were not continuous in time. Albin [1] was able to give a construction of a continuous-

time process of such type. The existence of such processes introduced the notion of

fake Brownian motion, i.e. a process that is a martingale with respect to its natural

filtration, continuous in time with Gaussian marginals and is not a Brownian motion.

Later, Oleszkiewicz [43] provided another simple construction of a fake Brownian motion.

It is easy to see that a fake Brownian motion cannot have independent increments.

Suppose a fake Brownian motion has independent increments. Due to Cramér’s Theorem

(see Appendix), it would mean that any increment of the fake Brownian motion is Gaus-

sian and stationary. Hence we obtain a Brownian motion, which is a contradiction to the

assumption that the process is a fake Brownian motion.

If we want to construct a family of processes rich enough for different modelling pur-

poses and keep some of the properties Brownian motion has, we need to loosen the prop-

erty of independent increments as it is done in the case of fake Brownian motion. However,

from here on, we will go down a different path. It is easy to show that any martingale has

uncorrelated increments. In general, the converse is not true. That is, we can construct

a process with uncorrelated increments that is not a martingale. However, we can also

retain the property of uncorrelated increments for a process X by ensuring that X has

zero mean function and covariance function γX(s, t) = min{s, t}. So opposed to a fake

Brownian motion, we don’t demand our process to be a martingale but rather concentrate

our attention on its mean and covariance function to ensure that the process has uncor-

related increments. Note that if a process is Gaussian with zero mean and covariance

function min{s, t}, then it has to be a Brownian motion and we didn’t get any further.

Additionally, a fake Brownian motion preserves the Gaussian marginals. We don’t

want to limit our processes to this restriction. We would rather like to construct a family

of processes that have possibly other marginal distribution than Gaussian but includes

Gaussian marginals as well. With that motivation in mind, we chose to restrict our pro-

cesses to have “sufficiently close” Gaussian increments (rather than Gaussian marginals).

For a process that starts at zero, demanding that all increments are Gaussian will auto-

matically result in Gaussian marginals. Hence, we only demand specific type of increments

to be Gaussian. It will be more clear later what is meant by sufficiently close increments.

Let us construct a discrete-time process that has uncorrelated increments and does

not have Gaussian marginals, but for each i ∈ {1, 2, 3}, the distribution of Xi − Xi−1 is

4



1.3. Motivation

Gaussian. We define a process {Xn, n ∈ {0, 1, 2, 3}} by X1

X2 −X1

X3 −X2

∣∣∣∣∣∣
R=r

∼ N3

0
0
0

 ,

1 0 r
0 1 0
r 0 1

 ,

where R is independent of the family {X1, X2 −X1, X3 −X2} and can take values in the

interval [−1, 1]. Then, given R = r, the decomposition (X1, X2−X1, X3−X2) = AV exists

such that a 3-dimensional random vector V has independent standard normal components,

and

AA> =

1 0 r
0 1 0
r 0 1

 . (1.1)

To find the matrix A, we set V := (X1, X2 − X1, ξ) with a standard normal random

variable ξ that is independent of X1 and X2 −X1. We are allowed to make this choice of

V , since X1 and X2 −X1 are independent. If we choose the representation of A to be

A =

1 0 0
0 1 0
α β γ

 ,

then from (1.1) we obtain α = r, β = 0 and γ =
√

1− r2. Hence the process X can be

written as

Xn =


Z1, n = 1

Z1 + Z2, n = 2

Z1 + Z2 +RZ1 +
√

1−R2Z3, n = 3

where Z1, Z2 and Z3 are standard normal random variables and mutually independent,

and R is distributed on [−1, 1] and independent of the family {Z1, Z2, Z3}. Then, the

process X has zero mean function, and it is easy to see that the covariance function is

γX(s, t) = min{s, t} if and only if E[R] = 0. Additionally, we see that the increments

Xi −Xi−1 are normally distributed for any i ∈ {1, 2, 3}. However, the distribution of X3

given R = r is N(0, 3 + 2r). Hence, the distribution of X3 is Gaussian if and only if R

is a constant, which combined with condition E[R] = 0 implies that R ≡ 0. Hence, we

constructed a discrete-time process that has uncorrelated increments, does not necessarily

have Gaussian marginals with Gaussian “neighbouring” increments.

This easy construction paved the idea for the following question:

Question. Can we build a non-Gaussian continuous-time process {Xt, t ≥ 0} with zero

mean function, covariance function min{s, t} and the property that for each t > 0, there

exist an ε > 0 such that the process

{Xs −Xu : s ∈ (t− ε, t+ ε), u ∈ (t− ε, t+ ε)}

is Gaussian?

This question is the starting point of this work and while trying to find the answer to

it, we will discover the processes that we will call local Brownian motions.

5



1. Introduction

1.3.2 Practical perspective

The existence of such process can be useful for applications, since it can be used for

stochastic modelling where the local behaviour of the system is observed (or assumed due

to some theoretical reasons) to be driven by a Brownian motion.

One of the major reasons that Black-Scholes-Merton (B-S-M) model is popular among

practitioners in finance is its tractability. It provides explicit analytical solutions for

the large number of applications. However, it is also well known that by modelling,

for example, the spot price of an asset using B-S-M model, one has to deal with some

drawbacks.

Another significant feature observable in financial markets is the presence of quasi

long range dependencies in financial time series (e.g. Boyarchenko in [10], page 4). The

classical model, which assumes the autocorrelation function of log price differences to be

zero, is generally consistent with the empirical analysis. However, the empirical analysis

also shows that some non-linear dependencies between log price differences are not zero.

For instance, the autocorrelation function of absolute values or the squares of the daily

returns may stay positive for many lags. Hence the independent increment assumption,

that is imposed by Brownian motion as a driving noise in classical model, appears to be

too strong.

In this thesis we aim to develop a class of processes that can be used as a stochastic

noise for modelling nondeterministic systems, the same way Brownian motion is used.

Since we develop a stochastic calculus with respect to a class of processes, the restrictions

mentioned above that arise in some applications in financial mathematics can be accounted

for by choosing appropriate process from the class. In that sense, the stochastic calculus

with respect to a local Brownian motion is a generalisation of the stochastic calculus with

respect to the Brownian motion.

1.4 Roter Faden

In Chapter 2 we introduce the definition of locally Gaussian process and local Brownian

motion. We show that a local Brownian motion is continuous, has quadratic variation

T on interval [0, T ] and is not a semimartingale. Moreover, we give the first example

showing that such processes exist.

In Chapter 3 we construct two families of local Brownian motions based on different

approaches. Both families are rich enough for modelling purposes. We believe that

especially the second family constructed via copulas has high potential to find applications

in finance.

6



1.4. Roter Faden

In Chapter 4 the general representation of a local Brownian motion is given. We

will use some symmetric properties of joint distributions. Moreover, we show that under

certain conditions, a local Brownian motion is not a Markov process.

In Chapter 5 the stochastic calculus with respect to a local Brownian motion is in-

troduced and developed. We show that the stochastic integral with respect to a local

Brownian motion can be seen in some sense as an extension of the Itô integral. The

definition of a stochastic differential equation (SDE) with respect to a local Brownian

motion will be given. In the same manner as for stochastic differential equations with

Brownian motion, we define what it means for a process to be a solution of SDE with a

local Brownian motion. The theory is consistent with the theory of stochastic calculus

with respect to a Brownian motion. Moreover, we will see that the Itô Formula holds and

that some prominent stochastic differential equations can be solved and the solutions can

be derived from the usual stochastic calculus.

In Chapter 6 we summarize the results and mention some open questions and potential

future research directions.

Finally, this thesis has an Appendix that reviews the basic material on Brownian

motion, Hilbert spaces, copulas, basic extension techniques and stochastic calculus with

respect to Brownian motion.

7





Chapter2
Local Brownian

motion

In this chapter we will introduce the notion of local Brownian motion by using locally

Gaussian process. The first example of such process will be given and explored. It will

be clear from the definition that there is a strong connection between a local Brownian

motion and a Brownian motion. This will be rigorously formalised in the characterisation

theorem. Moreover, we will obtain some properties of a local Brownian motion and show

that, in general, it is not a semimartingale.

2.1 Definition of local Brownian motion

By default, all stochastic processes in this thesis should be assumed to be defined on a

complete probability space.

Definition 2.1. Let T be an Euclidean space. A family of real-valued random variables,

denoted by {X(t), t ∈ T}, is called a real-valued random field on T. The mean and the

covariance function of the random field {X(t), t ∈ T} are defined as

µX(t) = E[X(t)] and γX(s, t) = E[X(s)X(t)]− E[X(s)]E[X(t)],

respectively. If for any n ∈ N and for all t1, t2, . . . , tn ∈ T, the finite dimensional distri-

bution (X(t1),X(t2), . . . ,X(tn)) is Gaussian, we call {X(t), t ∈ T} a Gaussian field.

Definition 2.2. Let {Xt, t ≥ 0} be a process. A difference field associated with X is a

field {X(t), t ∈ [0,∞)2} defined by X((t1, t2)) := Xt2 −Xt1 for all (t1, t2) ∈ [0,∞)2.

In this thesis we are interested in Gaussian difference fields, i.e. difference fields with

Gaussian finite-dimensional distributions. From the property of Gaussian process, it can

9



2. Local Brownian motion

be easily seen that if a process is Gaussian, then the difference field associated with this

process is Gaussian as well. In general, the converse of this statement does not hold, i.e.

one can construct a Gaussian difference field associated to a process that is not Gaussian.

Thus the class of processes that can be used to construct a Gaussian difference field is

strictly bigger than the class of Gaussian processes. A trivial example of a Gaussian

difference field associated with a non-Gaussian process is given below.

Example 2.3. Let {Yt, t ≥ 0} be a Gaussian process. For any non-trivial random variable

Z that is not Gaussian, the process {Xt := Yt − Z, t ≥ 0} is not Gaussian. However, the

difference field associated with X is Gaussian.

The next proposition shows that for a difference field {X(t), t ∈ [0,∞)2} to be Gaus-

sian, it is enough to show that there exists an s ∈ [0,∞) such that the difference field

{X(t), t ∈ [0,∞)× {s}} is Gaussian.

Proposition 2.4. Let {Xt, t ≥ 0} be a process and {X(t), t ∈ [0,∞)2} be the difference

field associated with X. Then, the following statements are equivalent:

(i) The difference field {X(t), t ∈ [0,∞)2} is Gaussian.

(ii) For all s ≥ 0, the process {Xt −Xs, t ≥ 0} is Gaussian.

(iii) There exists an s ≥ 0 such that the process {Xt −Xs, t ≥ 0} is Gaussian.

Proof. By definition, (i) implies (ii) and (ii) implies (iii). It remains to show that (iii)

implies (i). Suppose that for some s ≥ 0, the process {Xt − Xs, t ≥ 0} is Gaussian.

Then, for any n ∈ N, t1, t2, . . . , tn, u1, u2, . . . , un ∈ [0,∞) and a sequence of real numbers

{λi, i ∈ {1, 2, . . . , n}}, any finite linear combination

n∑
i=1

λi(Xti −Xui) =
n∑
i=1

λi [(Xti −Xs)− (Xui −Xs)]

is Gaussian. It follows that the random vector (Xt1 −Xu1 , Xt2 −Xu2 , . . . , Xtn −Xun) is

Gaussian and since it was chosen arbitrarily, any finite dimensional distribution of the

field {X(t), t ∈ [0,∞)2} is Gaussian. Hence we have (i).

Corollary 2.5. Let {Xt, t ≥ 0} be a process and {X(t), t ∈ [0,∞)2} be the difference field

associated with X. Suppose that there exists a k ≥ 0 such that Xk is either a constant

or a normally distributed random variable independent of {Xt, t ∈ [0,∞) \ {k}}. Then,

{X(t), t ∈ [0,∞)2} is a Gaussian difference field if and only if {Xt, t ≥ 0} is a Gaussian

process. In particular, the difference field {X(t), t ∈ [0,∞)2} with X0 = 0 is Gaussian if

and only if the process {Xt, t ≥ 0} is Gaussian.

10



2.1. Definition of local Brownian motion

Proof. The “if” statement follows immediately from the definition. The “only if” state-

ment follows from Proposition 2.4, which yields that the process {Xt − Xk, t ≥ 0} is

Gaussian. Due to assumption on Xk, we obtain that the process X is Gaussian.

The next proposition states the direct link between the standard Brownian motion

and the difference field associated with it.

Proposition 2.6. A process {Xt, t ≥ 0} is a standard Brownian motion if and only

if the difference field associated with it, {X(t), t ∈ [0,∞)2}, is Gaussian with X0 = 0,

E[X(t)] = 0 for any t ∈ [0,∞)2 and for any s = (s1, s2), t = (t1, t2), the covariance

function is

γX(s, t) =
1

2
(|t2 − s1|+ |t1 − s2| − |t1 − s1| − |t2 − s2|). (2.1)

Proof. Let the process {Xt, t ≥ 0} be a standard Brownian motion. Then, the difference

field {X(t), t ∈ [0,∞)2} is Gaussian with zero mean. Further, for s = (s1, s2) and t =

(t1, t2),

γX(s, t) = E [(Xs2 −Xs1)(Xt2 −Xt1)]− E[Xs2 −Xs1 ]E[Xt2 −Xt1 ]

= min{s2, t2}+ min{s1, t1} −min{s2, t1} −min{s1, t2}

=
1

2
(|t2 − s1|+ |t1 − s2| − |t1 − s1| − |t2 − s2|),

where s = (s1, s2) and t = (t1, t2). Conversely, if the difference field {X(t), t ∈ [0,∞)2} is

Gaussian with X0 = 0, E[X(t)] = 0 for any t ∈ [0,∞)2 and covariance function (2.1), due

to Corollary 2.5, the process {Xt, t ≥ 0} is Gaussian with zero mean. Moreover,

E [XsXt]− E[Xs]E[Xt] = γX((0, s), (0, t)) =
1

2
(t+ s− |t− s|) = min{s, t}

for s, t ≥ 0. Therefore, the process {Xt, t ≥ 0} is a standard Brownian motion.

Definition 2.7. We say that a process {Xt, t ≥ 0} locally Gaussian if for every t > 0

there exists ε > 0 such that the difference field associated with X on (t − ε, t + ε)2,

{X(s), s ∈ (t− ε, t+ ε)2}, is Gaussian. We will refer to a locally Gaussian process that is

not Gaussian as a proper locally Gaussian process.

Note that the definition of locally Gaussian process does not imply that for each s > 0

there exists an ε > 0 such that the process {Xt, t ∈ (s− ε, s+ ε)} is Gaussian. However,

as we indicated in Proposition 2.4, the converse is true. An example of a locally Gaussian

process is given below.

Example 2.8. For i ∈ {1, 2, 3}, let {X(i)
t , t ≥ 0} with X

(i)
0 = 0 be three independent

Gaussian processes with zero mean functions and the same covariance functions. Further,

11



2. Local Brownian motion

let R be a zero-mean random variable taking values in [−1, 1] and independent of the

family {X(1), X(2), X(3)}. Then, the process

Yt =


X

(1)
t , 0 ≤ t ≤ 1

Y1 +X
(2)
t−1, 1 < t ≤ 2

Y2 +RX
(1)
t−2 +

√
1−R2X

(3)
t−2, t > 2

is locally Gaussian. It is clear that Yt is Gaussian on [0, 2]. Further, for any t ≥ 2 and

0 < ε < 1, the process {Ys, s ∈ (t − ε, t + ε)} is Gaussian as well. Hence Y is locally

Gaussian. Furthermore, Y is not Gaussian unless R = 0: for instance,

Y3|R=r = (1 + r)X
(1)
1 +X

(2)
1 +

√
1− r2X

(3)
1 ∼ N(0, (3 + 2r)E[(X

(1)
1 )2]),

thus Y3 is Gaussian if and only if R = 0.

Finally, we can define local Brownian motion as a process that has the same covariance

function as Brownian motion, but is “only” locally Gaussian. Since a Gaussian process

is also locally Gaussian, consequentially, any Brownian motion is also a local Brownian

motion.

Definition 2.9. We call a process {Xt, t ≥ 0} with X0 = 0 a local Brownian motion if it

is a locally Gaussian process with mean zero and covariance function γX(s, t) = min{s, t}.
A local Brownian motion that is not a Brownian motion is called a proper local Brownian

motion.

Note that the covariance function and the zero mean property of a local Brownian

motion ensure that the non-overlapping increments are uncorrelated. Consequentially, a

local Brownian motion is a process with uncorrelated increments. However, in contrast to

a Brownian motion, a proper local Brownian motion does not have independent increments

and thus can have dependencies of higher order.

The following example shows that a proper local Brownian motion exists, and can be

built by patching different standard Brownian motions with certain dependency structure

among them. The example given below will be generalised and analysed in more detail

in Chapter 3.

Example 2.10. For i ∈ {1, 2, 3}, let {W (i)
t , t ∈ [0, T ]} be three independent standard

Brownian motions andR be a zero-mean random variable taking values in [−1, 1]. Suppose

that R and {W (1),W (2),W (3)} are independent. Then, for T > 2, the process

Xt =


W

(1)
t , 0 ≤ t ≤ 1

X1 +W
(2)
t−1, 1 < t ≤ 2

X2 +RW
(1)
t−2 +

√
1−R2W

(3)
t−2, 2 < t ≤ T

is a local Brownian motion.

12



2.1. Definition of local Brownian motion

First, let us show that the process {Xt, t ∈ [0, T ]} is locally Gaussian. Due to inde-

pendence of W (1) and W (2), it can be seen that {Xt, t ∈ [0, 2]} is Gaussian and hence,

by Proposition 2.4, the difference field associated with X, {X(t), t ∈ [0, 2]2}, is Gaussian.

Further, let ε < 1, n ∈ N and for each i ∈ {1, 2, · · · , n}, {ti = (si, ti)} ∈ (2 − ε, T ]2.

For any n1, n2 and n3 with n1 + n2 + n3 = n, and any family of real numbers {αi, i ∈
{1, 2, . . . , n1}}, {βi, i ∈ {1, 2, . . . , n2}} and {γi, i ∈ {1, 2, . . . , n3}}, any linear combination

of (Xt1 ,Xt2 , . . . ,Xtn) can be written as

n1∑
i=1

αi

(
RW

(1)
ti−2 +

√
1−R2W

(3)
ti−2 −W

(2)
si−1 +W

(2)
1

)
+

n2∑
i=1

βi

(
RW

(1)
ti−2 +

√
1−R2W

(3)
ti−2 −RW

(1)
si−2 −

√
1−R2W

(3)
si−2

)
+

n3∑
i=1

γi

(
W

(2)
ti−1 −W

(2)
si−1

)
= R

(
n1∑
i=1

αiW
(1)
ti−2 +

n2∑
i=1

βi

(
W

(1)
ti−2 −W

(1)
si−2

))

+
√

1−R2

(
n1∑
i=1

αiW
(3)
ti−2 +

n2∑
i=1

βi

(
W

(3)
ti−2 −W

(3)
si−2

))

−
n1∑
i=1

αi

(
W

(2)
si−1 −W

(2)
1

)
+

n3∑
i=1

γi

(
W

(2)
ti−1 −W

(2)
si−1

)
.

The sum of the last two terms is normally distributed and independent of the first two

terms. Furthermore, using the fact that W (1) and W (3) are independent, we obtain that

the distribution of the sum of the first two terms is Gaussian and does not depend on

the distribution of R. Since all three Brownian motions are independent, every linear

combination of n-dimensional vector (Xt1 ,Xt2 , . . . ,Xtn) is Gaussian. This shows that the

difference field {X(t), t ∈ (2 − ε, T ]2} is Gaussian. It follows that {Xt, t ∈ (2 − ε, T ]} is

a locally Gaussian process. Finally, if a process is locally Gaussian on two time intervals

and the intersection of these time intervals is neither an empty set nor a point, the process

is locally Gaussian on the union of both intervals. Hence the process {Xt, t ∈ [0, T ]} is

locally Gaussian.

Note that the process X is not Gaussian for a non-constant R as was shown in Exam-

ple 2.8. Further,

E [XsXt] =



E
[
W

(1)
s W

(1)
t

]
= min{s, t}, 0 ≤ s, t ≤ 1

E
[
W

(1)
s (W

(1)
1 +W

(2)
t−1)
]

= s, s ≤ 1 < t ≤ 2

E
[
W

(1)
s (W

(1)
1 +W

(2)
1 +RW

(1)
t−2 +

√
1−R2W

(3)
t−2)
]

= s, s ≤ 1, t > 2

E
[
(W

(1)
1 +W

(2)
s−1)(W

(1)
1 +W

(2)
t−1)
]

= min{s, t}, 1 < s, t ≤ 2,

13



2. Local Brownian motion

for 1 < s ≤ 2 < t,

E
[
(W

(1)
1 +W

(2)
s−1)(W

(1)
1 +W

(2)
1 +RW

(1)
t−2 +

√
1−R2W

(3)
t−2)

]
= s,

and for s, t ∈ [2,+∞),

E
[
(W

(1)
1 +W

(2)
1 +RW

(1)
s−2 +

√
1−R2W

(3)
s−2)(W

(1)
1 +W

(2)
1 +RW

(1)
t−2 +

√
1−R2W

(3)
t−2)
]

= 1 + 1 + E
[
R2
]

min{s− 2, t− 2}+ (1− E
[
R2
]
) min{s− 2, t− 2} = min{s, t}.

Since E[Xt] = 0 for all t ∈ [0, T ], the covariance function is min{s, t}.

2.2 Characterisation of local Brownian motions

Due to Proposition 2.4 a process {Xt, t ≥ 0} is a local Brownian motion if for any t > 0,

there exists ε > 0 such that for any u ∈ (t− ε, t+ ε), the process {Xs−Xu, s ∈ [u, t+ ε)}
is a Gaussian process. Direct computations yield the covariance function γX(s1, s2) =

min{s1, s2}−u for s1, s2 ≥ u. Thus {Xs−Xu, s ∈ [u, t+ε)} is a Brownian motion shifted

in time. Moreover, if we deal with a local Brownian motion on the time interval [0, T ],

we can obtain the converse statement.

Theorem 2.11. A process {Xt, t ∈ [0, T ]} with X0 = 0 is a local Brownian motion if

and only if there exists a finite partition 0 = t0 < t1 < . . . < tn = T such that for each

i ∈ {1, 2, . . . , n − 1}, the process {Xt −Xti−1
, t ∈ [ti−1, ti+1]} is a Brownian motion and,

with `(t) := max{j : t > tj},

Cov(Xu −Xt`(u) , Xv −Xt`(v)) =

{
min{u, v} − t`(u), if `(u) = `(v)

0, otherwise

for any u, v ∈ [0, T ].

Proof. First, consider the “only if” statement. Let process {Xt, t ∈ [0, T ]} with X0 = 0

be a local Brownian motion. Then, there exists an open covering {Aj, j ∈ J} of the

interval [0, T ] such that the difference field associated with X, {X(s), s ∈ A2
j}, is Gaussian

for any j ∈ J . Since [0, T ] is compact, we can extend a finite open covering
⋃n
j=1Akj

for k1, k2, · · · , kn ∈ J such that the difference field {X(s), s ∈ A2
kj
} is Gaussian for each

j ∈ {1, 2, . . . , n}. By taking the intersection points of the finite covering, we obtain a

finite partition 0 = t0 < t1 < . . . < tn = T such that for each i ∈ {1, 2, . . . , n − 1}, the

process {Xt −Xti−1
, t ∈ [ti−1, ti+1]} is Gaussian with zero mean. Then, for u, v ∈ [0, T ],

Cov(Xu −Xt`(u) ,Xv −Xt`(v))

= min{u, v} −min{t`(u), v} −min{u, t`(v)}+ min{t`(u), t`(v)}

=

{
min{u, v} − t`(u), if `(u) = `(v)

0, otherwise.

14



2.2. Characterisation of local Brownian motions

Hence for each i ∈ {1, 2, . . . , n}, the process {Xt − Xti−1
, t ∈ [ti−1, ti+1]} is a standard

Brownian motion shifted in time.

Now the “if” statement. Suppose that {Xt, t ∈ [0, T ]} with X0 = 0 satisfies the given

assumptions. Then, the process {Xt, t ∈ [0, T ]} is locally Gaussian with mean zero. Note

that for any u ∈ [0, T ], we can write Xu = Xu −Xt`(u) +
∑`(u)

i=1 (Xti −Xti−1
) and therefore

Cov(Xu, Xv) = Cov
(
Xu −Xt`(u) +

`(u)∑
i=1

(Xti −Xti−1
), Xv −Xt`(v) +

`(v)∑
i=1

(Xti −Xti−1
)
)
.

If u and v belong to the same interval of the partition, that is `(u) = `(v), then

γX(u, v) = Cov(Xu, Xv) = min{u, v} − t`(u) +

`(u)∑
i=1

(ti − ti−1) = min{u, v}.

For the case `(u) < `(v), we get

γX(u, v) = Cov
(
Xu −Xt`(u) +

`(u)∑
i=1

(Xti −Xti−1
), Xv −Xt`(v) +

`(v)∑
i=1

(Xti −Xti−1
)
)

= Cov
(
Xu −Xt`(u) +

`(u)∑
i=1

(Xti −Xti−1
), Xv −Xt`(u) +

`(u)∑
i=1

(Xti −Xti−1
)
)

= min{u, v} − t`(u) +

`(u)∑
i=1

(ti − ti−1) = min{u, v}.

Similarly for `(u) > `(v),

γX(u, v) = Cov
(
Xu −Xt`(u) +

`(u)∑
i=1

(Xti −Xti−1
), Xv −Xt`(v) +

`(v)∑
i=1

(Xti −Xti−1
)
)

= Cov
(
Xu −Xt`(v) +

`(v)∑
i=1

(Xti −Xti−1
), Xv −Xt`(v) +

`(v)∑
i=1

(Xti −Xti−1
)
)

= min{u, v} − t`(v) +

`(v)∑
i=1

(ti − ti−1) = min{u, v}.

It follows that γX(u, v) = min{u, v} for any u, v ∈ [0, T ].

Definition 2.12. The finite partition 0 = t0 < t1 < . . . < tn = T from Theorem 2.11 will

be called a time partition of a local Brownian motion.

Note that a local Brownian motion has infinitely many time partitions; by adding

extra points to a time partition, we can always obtain a different, finer time partition. It

is crucial to understand that if we consider an incremental process of a local Brownian

motion {Xt − Xs, t > s} for any s > 0, then it is not garanteed that this process is

15



2. Local Brownian motion

a Brownian motions (unless the local Brownian motion is a Brownian motion itself).

Only the incremental processes that are lying within two neighbouring intervals in the

time partition. We can also choose a length such that on any interval of that length an

incremental process is a Brownian motion, i.e. for a local Brownian motion {Xt, t ∈ [0, T ]}
with a time partition 0 = t0 < t1 < . . . < tn = T , there exists δ ≤ min{ti − ti−1, i ∈
{1, 2, . . . , n}} such that for any s > 0, the process {Xt−Xs, t ∈ [s, s+ 2δ]} is a Brownian

motion.

2.3 Properties of local Brownian motion

As we showed in the last section, there is a direct connection between a local Brownian

motion and a Brownian motion. Thus we would expect some basic local path properties

of a Brownian motion to be inherited by a proper local Brownian motion and it comes as

no surprise that this is, in fact, the case.

Proposition 2.13. Let {Xt, t ∈ [0, T ]} be a proper local Brownian motion. Then, it has

a continuous path.

Proof. Let 0 = t0 < t1 < . . . < tn = T be a time partition of X. Then, by Theorem 2.11,

the process {Xt−Xti−1
, t ∈ [ti−1, ti+1]} is a Brownian motion for each i ∈ {1, 2, . . . , n−1}

and the assertion follows.

Definition 2.14. For a local Brownian motion {Xt, t ∈ [0, T ]} with time partition 0 =

t0 < t1 < . . . < tn = T , the quadratic variation is defined as

[X,X]T := [X,X]([0, T ]) =
n∑
i=1

[X,X]([ti−1, ti]).

Since the quadratic variation of a Brownian motion exists on any finite interval, the

quadratic variation of a local Brownian motion exists on any finite interval as well. More-

over, the quadratic variation defined above applied on a semimartingale is consistent with

the definition of quadratic variation for semimartingales. Hence it can be seen as an

extension of the latter.

Proposition 2.15. Let the process {Xt, t ∈ [0, T ]} be a proper local Brownian motion.

Then, its quadratic variation over time interval [0, T ] is T .

Proof. Let 0 = t0 < t1 < . . . < tn = T be a time partition of X. Then, by Theorem 2.11,

the process {Xt−Xti−1
, t ∈ [ti−1, ti+1]} is a Brownian motion for each i ∈ {1, 2, . . . , n−1}

and using the definition of the quadratic variation for a local Brownian motion,

[X,X]T =
n∑
i=1

[X,X]([ti−1, ti]) =
n∑
i=1

[X −Xti−1
, X −Xti−1

]([ti−1, ti]) =
n∑
i=1

(ti − ti−1) = T.
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2.3. Properties of local Brownian motion

Corollary 2.16. Since a proper local Brownian motion is continuous and has non-zero

quadratic variation on [0, T ], it has an infinite variation on [0, T ]. Moreover, it is not

monotone on [0, T ].

So far we could show that a proper local Brownian motion inherits some properties

from Brownian motion. The next propositions will give us a significant difference between

a proper local Brownian motion and a Brownian motion.

Proposition 2.17. A proper local Brownian motion is not a local martingale.

Proof. Assume that a proper local Brownian motion is a local martingale. Then, by apply-

ing Proposition 2.13, Proposition 2.15 and Levy’s characterisation theorem of Brownian

motion, it follows that the proper local Brownian motion is a Brownian motion. This

leads to a contradiction.

Proposition 2.18. A proper local Brownian motion is not a semimartingale.

Proof. Let the process {Xt, t ∈ [0, T ]} be a proper local Brownian motion and assume

that it is a semimartingale. Due to Proposition 2.13, it is continuous. A continuous

semimartingale can be written as a sum of a continuous local martingale {Mt, t ∈ [0, T ]}
and a continuous process of finite variation {At, t ∈ [0, T ]}. Fix s ∈ [0, T ) and consider

the difference process Xu − Xs = Mu − Ms + Au − As for u > s. For a sufficiently

small ε > 0, the process {Xu − Xs, u ∈ [s, s + ε)} is a Brownian motion. Since the

process {Au − As, u ∈ [s, s + ε)} is continuous and has finite variation, its quadratic

variation on any time interval is zero. Therefore, by polarisation identity, the process

{Mu −Ms, u ∈ [s, s+ ε)} has the same quadratic variation as the local Brownian motion

and, by Levy’s characterisation theorem, it is a Brownian motion. As a difference of

two martingales, the process {Au−As, u ∈ [s, s+ ε)} is a martingale with zero quadratic

variation. Hence it does not change on the interval [s, s+ε). Since s was chosen arbitrary,

the process {At, t ∈ [0, T ]} does not change on the whole time space and hence At ≡ 0.

This means that the proper local Brownian motion {Xt, t ∈ [0, T ]} is a local martingale,

which contradicts Proposition 2.17.
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Chapter3
Explicit constructions

In this chapter we will present two ways of constructing families of local Brownian mo-

tions. In the first section we will generalise the construction given in Example 2.10 via

randomisation of the incremental processes. In the second section we will use the infinite

series representation of Brownian motion and impose non-linear dependencies on joint

distributions of incremental processes. We will give the conditions for associated copulas

with these joint distributions and see that the convex sum of such copulas yields new

copulas that can be used for constructions of local Brownian motions.

3.1 Local Brownian motion through randomised scaled

covariances

3.1.1 Extension to a 4-step process

Let 0 = t0 < t1 < t2 < t3 < t4 = T , {W (i)
t , t ∈ [0,∞)}, i ∈ {1, 2, 3, 4} be a family

of independent Brownian motions and R1, R2, R3 be zero-mean random variables, taking

values in the interval [−1, 1]. Suppose that the family {R1, R2, R3} is independent of the

family {W (1),W (2),W (3),W (4)}. We define a process {Xt, t ∈ [0, T ]} that is an extension

of the process given in Example 2.10 to four intervals as follows:

Xt =



W
(1)
t , 0 ≤ t ≤ t1

Xt1 +W
(2)
t−t1 , t1 < t ≤ t2

Xt2 +R1W
(1)
t−t2 +

√
1−R2

1W
(3)
t−t2 , t2 < t ≤ t3

Xt3 +R2W
(1)
t−t3 +R3W

(2)
t−t3 + a(R1, R2, R3)W

(3)
t−t3

+
√

1−R2
2 −R2

3 − a(R1, R2, R3)2W
(4)
t−t3 , t3 < t ≤ t4
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3. Explicit constructions

where a : [−1, 1]3 → R is a continuous function. The random variables R1, R2 and R3 can

be seen as randomised cavariance of non-neighbouring incremental processes. It follows,

R1 =
E[Xs(Xt −Xt2)|R1]

s ∧ (t− t2)
, for s ∈ (0, t1], t ∈ (t2, t3]

R2 =
E[Xs(Xt −Xt3)|R2]

s ∧ (t− t3)
, for s ∈ (0, t1], t ∈ (t3, t4]

R3 =
E[(Xs −Xt1)(Xt −Xt3)|R3]

(s− t1) ∧ (t− t3)
, for s ∈ (t1, t2], t ∈ (t3, t4].

Note that the term
√

1−R2
2 −R2

3 − a(R1, R2, R3)2 ensures that the distribution of the

process {Xt −Xt3 , t ∈ [t3, t4]} does not depend on R1, R2 and R3.

Noxt, we obtain the condition on a, so thatX is a local Brownian motion. Suppose that

the process X is a local Brownian motion. Let t2 < l < t3 < m < t4. By Theorem 2.11,

the process {Xt − Xt2 , t ∈ [t2, t4]} must be a Brownian motion and independent of the

family {R1, R2, R3}. Thus

E[(Xt3 −Xl)(Xm −Xt3)|R1, R2, R3] = E[(Xt3 −Xl)(Xm −Xt3)] = 0. (3.1)

On the other hand, by setting C = (m − t3) ∧ (t3 − t2) − (m − t3) ∧ (l − t2) from the

construction of {Xt, t ∈ [0, t4]}, we obtain

E[(Xt3 −Xl)(Xm −Xt3)|R1, R2, R3] = CR1R2 + Ca(R1, R2, R3)
√

1−R2
1. (3.2)

From (3.1) and (3.2), we get unique representation of the function a(R1, R2, R3) as

a(R1, R2, R3) = − R1R2√
1−R2

1

.

Another way we can obtain the function a is by looking at the distribution of Y :=

(Xt −Xt3) + (Xs −Xt2) for any s ∈ [t2, t3] and t = t3 + (s− t2). Due to Theorem 2.11, it

must be normal with mean zero and variance 2(s− t2). Since t− t3 = s− t2 and

Y = R1W
(1)
s−t2 +

√
1−R2

1W
(3)
s−t2 +R2W

(1)
s−t2 +R3W

(2)
s−t2 + a(R1, R2, R3)W

(3)
s−t2

+
√

1−R2
2 −R2

3 − a(R1, R2, R3)2W
(4)
s−t2 ,

we have Y |R1=r1,R2=r2,R3=r3 ∼ N (0, (s− t2)σ2) with

σ2 = (r1 + r2)2 + r2
3 +

(
a(r1, r2, r3) +

√
1− r2

1

)2

+
(
1− r2

2 − r2
3 − a(r1, r2, r3)2

)
.

Therefore, Y is normally distributed with mean zero and variance 2(s− t2) if and only if

σ2 = 2, which is the case if and only if

a(r1, r2, r3) = − r1r2√
1− r2

1

.

Moreover, it is clear from the construction, that the condition

R2
2 +R2

3 + a(R1, R2, R3)2 ≤ 1

must hold for our process to be a local Brownian motion.
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3.1. Local Brownian motion through randomised scaled covariances

3.1.2 Extension to an n-step process

Our next goal is to generalise the procedure mentioned in the subsection above and extend

the process to n time intervals. We will find a sufficient and necessary condition for the

existence of such local Brownian motions.

Let 0 = t0 < t1 < . . . < tn = T be a partition on [0, T ]. Let R = {Rij : 1 ≤
i, j ≤ n, j + 2 ≤ i} be a family of zero-mean random variables on [−1, 1] with cardinality

|R| =
(
n
2

)
− (n − 1) = (n−1)(n−2)

2
. Further, let W = {W (i), i ∈ {1, 2, . . . , n}} be a family

of independent Brownian motions. Suppose that two families R and W are independent.

Additionally, let A = {aij : 4 ≤ i ≤ n, 3 ≤ j ≤ i − 1} be a family of functions of the

random variables from the family R. The cardinality of this family is |A| = (n−3)(n−2)
2

.

We define a process {Xt, t ∈ [0, T ]} such that for any k ∈ {3, 4, . . . , n}, we have

Xt =



W
(1)
t , 0 ≤ t ≤ t1

Xt1 +W
(2)
t−t1 , t1 < t ≤ t2

Xtk−1
+
(
Rk1, Rk2, ak3, · · · , akk−1,

√
1− αk

)

W

(1)
t−tk−1

W
(2)
t−tk−1

...

W
(k)
t−tk−1

 , tk−1 < t ≤ tk

(3.3)

where αk = R2
k1 +R2

k2 +a2
k3 + . . .+a2

kk−1. Suppose that the process X is a local Brownian

motion. Then, there exists a unique family A such that the process X is a local Brownian

motion. In order to determine A, we introduce a symmetric n×n matrix Σ = (σij)1≤i,j≤n

such that

Σ =



1 0 R31 R41 R51 · · · Rn1

0 1 0 R42 R52 · · · Rn2

R31 0 1 0 R53 · · · Rn3

R41 R42 0 1 0
. . .

...

R51 R52 R53 0 1
. . . Rnn−2

...
...

...
. . . . . . . . . 0

Rn1 Rn2 Rn3 · · · Rnn−2 0 1


.

The matrix Σ represents randomised scaled covariances of the incremental processes, i.e.

for each i, j ∈ {1, 2, . . . , n} and all s ∈ [ti−1, ti], t ∈ [tj−1, tj],

σij =
E
[
(Xs −Xti−1

)(Xt −Xtj−1
)|σij

]
(s− ti−1) ∧ (t− tj−1)

.
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3. Explicit constructions

Let us introduce a matrix B = (bij)1≤i,j≤n such that

B =



1 0 0 0 0 · · · 0
0 1 0 0 0 · · · 0

R31 0
√

1−R2
31 0 0 · · · 0

R41 R42 a43

√
1− α4 0 · · · 0

R51 R52 a53 a54

√
1− α5

. . .
...

...
...

...
...

. . . . . . 0
Rn1 Rn2 an3 an4 · · · ann−1

√
1− αn


.

It follows that one can decompose Σ into a product of B and its transpose B>, Σ = BB>,

if and only if for each i ∈ {4, 5, . . . , n},

αi ≤ 1. (3.4)

In that case, the family A can be found recursively from a system of linear equations

given by
n∑
k=1

aikajk = σij.

This family of local Brownian motions can be constructed using a different approach

based on discrete-time version of a local Brownian motion.

Let 0 = t0 < t1 < . . . < tn = T be a partition on [0, T ] as above. Further, let

the families R and Σ be defined as above. Then, we can define a time-discrete process

{X̃tk , k ∈ {0, 1, . . . , n}} with X̃0 = 0 such that
X̃t1

X̃t2 − X̃t1
...

X̃tn − X̃tn−1


∣∣∣∣∣∣∣∣∣
R

∼ Nn

(
0, DΣD>

)
with D =


√
t1 0 · · · 0

0
√
t2 − t1 0 0

...
. . . . . .

...
0 · · · 0

√
tn − tn−1


and Σ defined as in the previous construction. If the matrixDΣDT is positive-semidefinite,

which is the case if and only if Σ is positive semi-definite, then the Cholesky decomposition

of Σ exists, i.e. there exists a lower triangular matrix B = (bij)1≤i,j≤n with real non-

negative diagonal entries such that Σ = BBT . Then, we can write
X̃t1

X̃t2 − X̃t1
...

X̃tn − X̃tn−1


∣∣∣∣∣∣∣∣∣
R

= DBZ with Z =


Z1

Z2
...
Zn


where Z = {Zi, i ∈ {1, 2, . . . , n}} is the family of mutually independent standard normal

random variables. The families Z and R are independent. Hence, if Σ is positive semi-

definite, then we obtain a discrete-time process {X̃tk , k ∈ {0, 1, . . . , n}} with X̃0 = 0

and

X̃tk = X̃tk−1
+
√
tj − tj−1

n∑
j=1

bkjZj
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3.1. Local Brownian motion through randomised scaled covariances

for each k ∈ {1, 2, . . . , n}.
In order to extend the process {X̃tk , k ∈ {0, 1, . . . , n}} to a continuous-time process,

we use a family of mutually independent standard Brownian motions from the previous

construction W instead of the family Z, i.e. for each i ∈ {1, 2, . . . , n} and any t ∈ [tk−1, tk],

we replace the random variable
√
ti − ti−1Zj with the process W

(j)
t−tk−1

on interval [tk−1, tk]

for each k ∈ {1, 2, . . . , n}. Finally, we obtain a process {Xt, t ∈ [0, T ]} with X0 = 0 such

that for any k ∈ {1, 2, . . . , n} and any tk−1 ≤ t ≤ tk,

Xt = Xtk−1
+

n∑
j=1

bkjW
(j)
t−tk−1

. (3.5)

The matrix B can be determined from Cholesky decomposition, once it is established that

the matrix Σ is positive semi-definite. Hence the sufficient and necessary condition for

the constructed process to exist is that

Σ is positive semi-definite. (3.6)

Proposition 3.1. The condition (3.4) holds for the first construction if and only if the

condition (3.6) holds for the second construction.

Proof. First the “if” statement. If a symmetric matrix Σ is positive semi-definite then it

has a Cholesky decomposition, i.e. there exists a lower triangular matrix L with real and

non-negative diagonal entries such that Σ = LLT . Since B is a lower triangular matrix

with Σ = BBT , we can set L = B and hence αi ≤ 1 for i ∈ {4, 5, . . . , n}.
Now the “only if” statement. Let B be a lower triangular matrix with real and non-

negative diagonal entries such that the symmetric matrix Σ can be written as Σ = BBT .

Then, Σ = BBT is Cholesky decomposition and Σ is positive semi-definite.

To summarise these two approaches: in the first construction we started off with a

continuous-time process, determined by a randomised scaled covariance matrix of incre-

mental processes Σ, and found the family A from decomposition Σ = BBT with B being

a lower triangular matrix with real and non-negative diagonal entries. In the second

construction we started with the randomised scaled covariance matrix Σ that represents

the dependencies between the increments of the discrete-time process and applied the

Cholesky decomposition to find the lower triangular matrix B from Σ = BBT . By “filling

in” independent Brownian motions between the time steps of discrete-time process, we

obtain continuous-time process that is a local Brownian motion.
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3. Explicit constructions

3.2 Local Brownian motion as an infinite series

A different approach to construct a local Brownian motion is to use the Paley-Wiener series

representation of Brownian motion. It is well known that Brownian motion {Bt, t ∈ [0, π]}
has the series representation

Bt =
t√
π
ξ0 +

√
2

π

∑
k≥1

sin(kt)

k
ξk

with a family of independent standard normal random variables {ξk, k ∈ N0}. By rescaling

the time interval, we obtain that for a < b, the process {Bt, t ∈ [a, b]} given by

Bt−a =
t− a√
b− a

ξ0 +

√
2(b− a)

π

∑
k≥1

sin(πk t−a
b−a)

k
ξk

for t ∈ [a, b] is a Brownian motion.

Let 0 = t0 < t1 < . . . < tn = T be a partition of [0, T ]. For each i ∈ {1, 2, . . . , n}, let

{ξ(i)
k , k ∈ N0} be a family of mutually independent standard normal random variables and

suppose that for each i 6= j, the families {ξ(i)
k , k ∈ N0} and {ξ(j)

k , k ∈ N0} are independent

as well. By “gluing” together independent Brownian motions on each interval [ti−1, ti],

we obtain a Brownian motion {Xt, t ∈ [0, T ]} such that for any t ∈ [ti−1, ti],

Xt = Xti−1
+

t− ti−1√
ti − ti−1

ξ
(i)
0 +

√
2(ti − ti−1)

π

∑
k≥1

sin(πk t−ti−1

ti−ti−1
)

k
ξ

(i)
k . (3.7)

Suppose that the above conditions on families {ξ(i)
k , k ∈ N0} and {ξ(j)

k , k ∈ N0} hold

with the exception that ξ
(1)
0 and ξ

(3)
0 being not independent. Direct calculation yields

that the covariance function of {Xt, t ∈ [0, T ]} is γX(s, t) = min{s, t} if ξ
(1)
0 and ξ

(3)
0 are

uncorrelated, i.e. E
[
ξ

(1)
0 ξ

(3)
0

]
= 0.

Remark 3.2. Note that this condition can be extended in the following way: The process

{Xt, t ∈ [0, T ]} defined by (3.7) is a local Brownian motion if

E
[
ξ

(i)
0 ξ

(j)
0

]
= 0

for any i 6= j. Additionally, due to Theorem 2.11, for any i ∈ {1, 2, . . . , n−1}, the random

variables ξ
(i)
0 and ξ

(i+1)
0 are independent. Since the conditions on the joint distributions

(ξ
(i)
0 , ξ

(j)
0 ) for any i 6= j, |i − j| 6= 1 are the same as on the joint distribution (ξ

(1)
0 , ξ

(3)
0 )

(for the process X to be a local Brownian motion), we will just concentrate on the latter

joint distribution being a pair of non-independent random variables.

Since the sufficient condition for the process (3.7) to be a local Brownian motion

depends purely on the joint distribution (ξ
(1)
0 , ξ

(3)
0 ), we need to immerse deeper into the

area of uncorrelated bivariate distributions. Using copulas and Sklar’s theorem, we can

impose a non-linear dependence structure on the bivariate distribution (ξ
(1)
0 , ξ

(3)
0 ) and thus

obtain a proper local Brownian motion.
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3.2. Local Brownian motion as an infinite series

3.2.1 Uncorrelated copulas

There is a fairly simple way to construct a pair of uncorrelated random variables. We

recall that an random variable X is symmetric about zero if X
d
= −X.

Lemma 3.3. Let (X, Y ) be a bivariate distribution with identical marginal distributions.

If (X, Y )
d
= (−X, Y ) or (X, Y )

d
= (X,−Y ), then X and Y are uncorrelated.

Proof. Let FX,Y be the cumulative distribution function of the vector (X, Y ). If (X, Y )
d
=

(−X, Y ), then direct calculation yields

E[XY ] = E[(−X)Y ] = −E[XY ]

and it follows that E[XY ] = 0. Clearly, E[X] = 0, hence the the marginal distributions

are uncorrelated. For (X, Y )
d
= (X,−Y ) the calculation is identical. Hence the assertion

follows.

Let (U, V ) be a pair of random variables that are symmetric about zero. We define

(X, Y ) as

(X, Y ) =

{
(U, V ), w.p. 1

2

(−U, V ), w.p. 1
2
,

(3.8)

or

(X, Y ) =

{
(U, V ), w.p. 1

2

(U,−V ), w.p. 1
2
.

(3.9)

Due to Lemma 3.3, the pair (X, Y ) is uncorrelated for both cases. This method of

constructing a bivariate distribution allows us to obtain uncorrelated pairs of random

variables given any joint distribution. It is easy to see that if we construct a new joint

distribution

(X̃, Ỹ ) =

{
(X, Y ), w.p. 1

2

(−X, Y ), w.p. 1
2
,

(3.10)

where (X, Y ) is obtained by (3.8), we will simply end up with (X̃, Ỹ )
d
= (X, Y ). Analo-

gously, the same statement can be made for pairs of random variables being constructed

iteratively by (3.9). Therefore a family of joint distributions constructed by either (3.8)

or (3.9) is invariant with respect to the same construction, respectively.

For the purpose of applications, it is useful to consider a joint distribution in terms

of its copula. We would like to give conditions on the copulas corresponding to the

uncorrelated pairs of random variables given in (3.8) and (3.9).

Definition 3.4. A (2-dimensional) copula is said to be uncorrelated if its corresponding

joint distribution with symmetric about zero marginals is uncorrelated.
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3. Explicit constructions

Proposition 3.5. Let (U, V ) be a pair of absolutely continuous random variables with

U, V being symmetric about zero. Let (X ′, Y ′) be defined as in (3.8) and (X ′′, Y ′′) be

defined as in (3.9). Then, X ′
d
= U

d
= X ′′, Y ′

d
= V

d
= Y ′′. Further, the copula of (X ′, Y ′)

satisfies

C ′(u, v) + C ′(1− u, v) = v, (3.11)

and the copula of (X ′′, Y ′′) satisfies

C ′′(u, v) + C ′′(u, 1− v) = u. (3.12)

Moreover, (X ′, Y ′)
d
= (U, V ) if and only if the copula of (U, V ) satisfies (3.11) and

(X ′′, Y ′′)
d
= (U, V ) if and only if the copula of (U, V ) satisfies (3.12).

Proof. Since the proof is identical for both joint distributions, we will prove the statement

only for (X ′, Y ′).

The equalities in distribution of the marginals follow immediately. Further, note that

P(X ′ ≤ x, Y ′ ≤ y) =
1

2
P(U ≤ x, V ≤ y) +

1

2
P(V ≤ y)− 1

2
P(U < −x, V ≤ y)

for any x ∈ supp(U) and y ∈ supp(V ). Let C be the copula of the joint distribution

(U, V ). Then, by symmetry of U and Sklar’s theorem,

C ′(FU(x), FV (y)) = C ′(FX′(x), FY ′(y))

= FX′,Y ′(x, y) =
1

2
C(FU(x), FV (y)) +

1

2
FV (y)− 1

2
C(1− FU(x), FV (y)).

For u = FU(x) and v = FV (y), we obtain

C ′(u, v) =
1

2
C(u, v) +

1

2
v − 1

2
C(1− u, v), (3.13)

and for u = FU(−x) and v = FV (y), we obtain

C ′(1− u, v) =
1

2
C(1− u, v) +

1

2
v − 1

2
C(u, v).

Adding the above two equations yields C ′(u, v) + C ′(1− u, v) = v.

For the second assertion, suppose that (X ′, Y ′)
d
= (U, V ). Then, C = C ′ and hence

C satisfies (3.11). Conversely, if C satisfies (3.11), then from (3.13) we have C ′ = C and

(X ′, Y ′)
d
= (U, V ) follows.

Corollary 3.6. If a copula C satisfies either

C(u, v) + C(1− u, v) = v or C(u, v) + C(u, 1− v) = u,

then it is uncorrelated.
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3.2. Local Brownian motion as an infinite series

Definition 3.7. The class of copulas satisfying (3.11) or (3.12) will be denoted by Cb or

Cf , respectively. The class of copulas satisfying both conditions will be denoted by Cj.

Remark 3.8. The notations for Cb (backward conditional symmetric), Cf (forward condi-

tional symmetric) and Cj (jointly symmetric) are chosen in a way that shows their direct

relation to some symmetry properties of the associated joint distributions that will be

introduced in Chapter 4.

Remark 3.9. Note that some prominent and widely used families of copulas, for example

the Farlie-Gumbel-Morgenstein or Archimedean copulas, have only a single representation

of an uncorrelated copula, which is simply the product copula.

The next natural step is to question if we can construct an uncorrelated copula from

any copula such that the constructed copula satisfies (3.11) or (3.12). To answer this

question, we will need the following lemma.

Lemma 3.10. Let C be a copula. Then, for any u, v ∈ [0, 1], the functions Ĉ(u, v) :=

v − C(1− u, v) and C̃(u, v) := u− C(u, 1− v) are also copulas.

Proof. Clearly, for any u, v ∈ [0, 1],

Ĉ(u, 0) = 0 = Ĉ(0, v), C̃(u, 0) = 0 = C̃(0, v)

and

Ĉ(u, 1) = u = C̃(u, 1), Ĉ(1, v) = v = C̃(1, v).

Further, for u1, u2, v1, v2 ∈ [0, 1] and u1 ≤ u2, v1 ≤ v2,

Ĉ(u1, v1)− Ĉ(u1, v2)− Ĉ(u2, v1) + Ĉ(u2, v2)

= v1 − C(1− u1, v1)− (v2 − C(1− u1, v2))− (v1 − C(1− u2, v1)) + v2 − C(1− u2, v2)

= C(1− u1, v2) + C(1− u2, v1)− C(1− u2, v2)− C(1− u1, v1) ≥ 0.

Similarly,

C̃(u1, v1)− C̃(u1, v2)− C̃(u2, v1) + C̃(u2, v2)

= u1 − C(u1, 1− v1)− (u1 − C(u1, 1− v2))− (u2 − C(u2, 1− v1)) + u2 − C(u2, 1− v2)

= C(u2, 1− v1)− C(u1, 1− v1)− C(u2, 1− v2) + C(u1, 1− v2) ≥ 0.

It follows that the functions are 2-increasing and the assertion follows.

Proposition 3.11. Let C be a copula. Further, for u, v ∈ [0, 1], let Ĉ(u, v) = v −C(1−
u, v) and C̃(u, v) = u− C(u, 1− v). Then,

Cb(u, v) :=
1

2
C(u, v) +

1

2
Ĉ(u, v) (3.14)

Cf (u, v) :=
1

2
C(u, v) +

1

2
C̃(u, v). (3.15)

are uncorrelated copulas.
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3. Explicit constructions

Proof. Due to Lemma 3.10, Ĉ and C̃ are copulas. As a convex sum of copulas, Cb and

Cf are copulas. Direct calculation yields

Cb(u, v) + Cb(1− u, v)

=
1

2
C(u, v) +

1

2
(v − C(1− u, v)) +

1

2
C(1− u, v) +

1

2
(v − C(u, v)) = v,

and

Cf (u, v) + Cf (u, 1− v)

=
1

2
C(u, v) +

1

2
(u− C(u, 1− v)) +

1

2
C(u, 1− v) +

1

2
(u− C(u, v)) = u.

Due to Corollary 3.6 the result follows.

Let a pair of random variables (X, Y ) be defined as

(X, Y ) =


(U, V ), w.p. 1

4

(−U, V ), w.p. 1
4

(U,−V ), w.p. 1
4

(−U,−V ), w.p. 1
4
.

(3.16)

Clearly, this construction satisfies both constructions (3.8) and (3.9). We can construct

a copula associated with bivariate distribution given in (3.16) from the copula of (U, V ).

Proposition 3.12. Let C be a copula. Further, let Ĉ(u, v) = v − C(1− u, v), C̃(u, v) =

u− C(u, 1− v) and Cs(u, v) = u+ v − 1 + C(1− u, 1− v). Then,

Cj(u, v) =
1

4
C(u, v) +

1

4
Ĉ(u, v) +

1

4
C̃(u, v) +

1

4
Cs(u, v) (3.17)

is an uncorrelated copula.

Proof. Use Lemma 3.10 and the fact that a convex sum of copulas yields a copula. Direct

calculations show

Cj(u, v) + Cj(1− u, v)

=
1

4

(
C(u, v) + v − C(1− u, v) + u− C(u, 1− v) + u+ v − 1 + C(1− u, 1− v)

)
+

1

4

(
C(1− u, v) + v − C(u, v) + 1− u− C(1− u, 1− v) + 1− u+ v − 1

)
+

1

4
C(u, 1− v) = v,

and

Cj(u, v) + Cj(u, 1− v)

=
1

4

(
C(u, v) + v − C(1− u, v) + u− C(u, 1− v) + u+ v − 1 + C(1− u, 1− v)

)
+

1

4

(
C(u, 1− v) + 1− v − C(1− u, 1− v) + u− C(u, v) + u+ 1− v − 1

)
+

1

4
C(1− u, v) = u.

Due to Corollary 3.6 the result follows.
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3.2. Local Brownian motion as an infinite series

Corollary 3.13. Let Cb ∈ Cb. Let C be a copula constructed from Cb by using (3.15).

Then, C ∈ Cj. Similarly, let Cf ∈ Cf and C be a copula constructed from Cf by (3.14).

Then, C ∈ Cj.

Note that the copula Cs in Proposition 3.12 is called survival copula, since it represents

the probability of each marginal distribution to “survive” beyond some threshold, i.e. if

C is the copula of (X, Y ), then

P(X > F−1
X (u), Y > F−1

Y (v)) = Cs(1− u, 1− v) = 1− u− v + C(u, v).

The family of joint distributions associated with copulas satisfying (3.17) is invariant

with respect to the construction (3.8), (3.9) and (3.16).

Example 3.14 (Uncorrelated copulas built from Archimedean Copulas). An Archimedean

(2-dimensional) copula with parameter θ and generator ψ admits the representation

C(u, v; θ) = ψ[−1](ψ(u; θ) + ψ(v; θ); θ),

where ψ : [0, 1]×Θ→ [0,∞) is a continuous, strictly decreasing and convex function such

that ψ(1; θ) = 0, and ψ[−1] is its pseudo-inverse defined by

ψ[−1](t; θ) =

{
ψ−1(t; θ), 0 ≤ t ≤ ψ(0; θ)

0, otherwise.

Then, the functions

Cb(u, v) =
1

2
C(u, v) +

1

2
(v − C(1− u, v))

=
1

2

(
v + ψ[−1] (ψ(u) + ψ(v))− ψ[−1] (ψ(1− u) + ψ(v))

)
,

Cf (u, v) =
1

2
C(u, v) +

1

2
(u− C(u, 1− v))

=
1

2

(
u+ ψ[−1] (ψ(u) + ψ(v))− ψ[−1] (ψ(u) + ψ(1− v))

)
and

Cj(u, v) =
1

2
(Cb(u, v) + Cf (u, v))− 1

4
C(u, v) +

1

4
(u+ v − 1 + C(1− u, 1− v))

=
1

4

(
v + u+ 2ψ[−1] (ψ(u) + ψ(v))− ψ[−1] (ψ(1− u) + ψ(v))− ψ[−1] (ψ(u) + ψ(1− v))

)
− 1

4

(
ψ[−1](ψ(u) + ψ(v))− u− v + 1− ψ[−1](ψ(1− u) + ψ(1− v))

)
=

1

4

(
2u+ 2v − 1 + ψ[−1](ψ(u) + ψ(v))− ψ[−1](ψ(1− u) + ψ(v))

)
− 1

4

(
ψ[−1](ψ(u) + ψ(1− v))− ψ[−1](ψ(1− u) + ψ(1− v))

)

are uncorrelated copulas for any pair of random variables symmetric about zero.
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3. Explicit constructions

Note that due to Remark 3.9, the copulas constructed in the example above are not

Archimedean.

Example 3.15 (Clayton and Gumbel uncorrelated copulas). Clayton and Gumbel cop-

ulas are particular examples of Archimedean copulas with generators ψ(t; θ) = 1
θ
(t−θ − 1)

for θ ∈ [−1,∞) \ {0} and ψ(t; θ) = (− ln(t))θ for θ ∈ [1,∞), respectively. Thus we obtain

the following uncorrelated copulas:

Cb
Cl(u, v) =

1

2

(
v +

[
max

{
u−θ + v−θ − 1; 0

}]−1/θ −
[
max

{
(1− u)−θ + v−θ − 1; 0

}]−1/θ
)

Cf
Cl(u, v) =

1

2

(
u+

[
max

{
u−θ + v−θ − 1; 0

}]−1/θ −
[
max

{
u−θ + (1− v)−θ − 1; 0

}]−1/θ
)

Cj
Cl(u, v) =

1

4

(
2u+ 2v − 1 +

[
max

{
u−θ + v−θ − 1; 0

}]−1/θ
)

− 1

4

([
max

{
(1− u)−θ + v−θ − 1; 0

}]−1/θ
)

− 1

4

([
max

{
u−θ + (1− v)−θ − 1; 0

}]−1/θ
)

+
1

4

([
max

{
(1− u)−θ + (1− v)−θ − 1; 0

}]−1/θ
)

Cb
Gum(u, v) =

1

2

(
v + exp

[
−
(
(− log(u))θ + (− log(v))θ

)1/θ
])

− 1

2

(
exp
[
−
(
(− log(1− u))θ + (− log(v))θ

)1/θ
])

Cf
Gum(u, v) =

1

2

(
u+ exp

[
−
(
(− log(u))θ + (− log(v))θ

)1/θ
])

− 1

2

(
exp
[
−
(
(− log(u))θ + (− log(1− v))θ

)1/θ
])

Cj
Gum(u, v) =

1

4

(
2u+ 2v − 1 + exp

[
−
(
(− log(u))θ + (− log(v))θ

)1/θ
])

− 1

4

(
exp
[
−
(
(− log(1− u))θ + (− log(v))θ

)1/θ
])

− 1

4

(
exp
[
−
(
(− log(u))θ + (− log(1− v))θ

)1/θ
])

+
1

4

(
exp
[
−
(
(− log(1− u))θ + (− log(v))θ

)1/θ
])
.

Let us recall that a convex linear combination of copulas is a finite linear combination of

copulas with non-negative coefficients that add up to one. We can build new uncorrelated

copulas from the ones introduced above by building convex linear combinations. The

concept of convex linear combination of copulas can be extended to the infinite convex

set of copulas indexed by a continuous parameter. This extension is called convex sums.

The parameter set can be seen as the support of a continuous random variable and the

coefficients are the values of the density. Since the probability density is non-negative

and the integral of the density over all parameter space equals one, the convex property

is automatically satisfied.
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3.2. Local Brownian motion as an infinite series

Proposition 3.16. Let {θi, i ∈ {1, 2, . . . , n}} be a family of non-negative real numbers

such that
∑n

i=1 θi = 1 and Θ be a continuous random variable. Further, let {Cθi , i ∈
{1, 2, . . . , n}} and {Cθ, θ ∈ supp(Θ)} be two families of uncorrelated copulas. Then, both

functions

C(u, v) =
n∑
i=1

θiCθi(u, v) and CΘ(u, v) =

∫
R
Cθ(u, v)dFΘ(θ)

are uncorrelated copulas. Moreover, the classes Cb and Cf are invariant with respect to

convex linear combination and convex sums.

Proof. It is clear that any convex sum of copulas is a copula. Let c(u, v) be the density

of C(u, v) and, for each i ∈ {1, 2, . . . , n}, cθi(u, v) be the density of Cθi(u, v). Then,∫
R

∫
R
xyfX(x)fY (y)c(x, y)dxdy =

n∑
i=1

θi

∫
R

∫
R
xyfX(x)fY (y)cθi(x, y)dxdy,

which equals to zero if each copula from the family {Cθi , i ∈ {1, 2, . . . , n}} is uncorrelated.

Further, let cΘ be the density of CΘ and cθ be the density of Cθ. We see immediately that∫
R

∫
R
xyfX(x)fY (y)cΘ(x, y)dxdy =

∫
R

(∫
R

∫
R
xyfX(x)fY (y)cθ(x, y)dxdy

)
fΘ(θ)dθ,

which equals to zero if each copula from the family {Cθ, θ ∈ supp(Θ)} is uncorrelated.

Finally, for {Cθi , i ∈ {1, 2, . . . , n}} ∈ Cb, we have

C(u, v) + C(1− u, v) =
n∑
i=1

θiCθi(u, v) +
n∑
i=1

θiCθi(1− u, v) = v
n∑
i=1

θi = v,

and, for {Cθ, θ ∈ supp(Θ)} ∈ Cb,

CΘ(u, v) + CΘ(1− u, v) =

∫
R
Cθ(u, v)dFΘ(θ) +

∫
R
Cθ(1− u, v)dFΘ(θ) = v

∫
R
dFΘ(θ) = v.

The proof for Cf is analogous.

The distribution of a random variable Θ is also called the mixing distribution of the

parametrised family of copulas (see Nelsen [42], p. 72).
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Chapter4
General representation

In this chapter we will take a general approach towards the constructions of local Brownian

motions. We will use symmetric classification of joint distributions that will impose

pairwise dependencies between incremental processes of local Brownian motions. Further,

we will explore the question whether a local Brownian motion is a Markov process and

present several partial results.

4.1 Representation of local Brownian motion

Let {Xt, t ∈ [0, T ]} be a local Brownian motion with time partition 0 = t0 < t1 < . . . <

tn = T . Then, it has the following general representation

Xt =


W̃

(1)
t , t ∈ [0, t1]

Xt1 + W̃
(2)
t−t1 , t ∈ [t1, t2]

· · ·
Xtn−1 + W̃

(n)
t−tn−1

, t ∈ [tn−1, T ],

(4.1)

where the process {W̃ (i)
t−ti−1

, t ∈ [ti−1, ti]} is a standard Brownian motion for each i ∈
{1, 2, . . . , n}. This representation follows directly from the properties of local Brownian

motion (continuity and appropriate quadratic variation) and Theorem 2.11, i.e. if the

process {Xt, t ∈ [0, T ]} is a local Brownian motion, then there exists a finite time partition

0 = t0 < t1 < . . . < tn = T such that the process {Xt −Xti−1
, t ∈ [ti−1, ti]} is a Brownian

motion for each i ∈ {1, 2, . . . , n} with Cov(Xs−Xti−1
, Xt−Xti−1

) = min{s, t}− ti−1. Due

to Proposition 2.15,

[X· −Xti−1
, X· −Xti−1

]([ti−1, t]) = t− ti−1.
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4. General representation

It follows that {Xt − Xti−1
, t ∈ [ti−1, ti]} is a Brownian motion with quadratic variation

t− ti−1, which is represented by W̃
(i)
t−ti−1

in (4.1).

Remark 4.1. We chose the notation W̃ (i) for the Brownian motions in (4.1) to avoid the

possibility of the confusion with Brownian motion W (i) from Example 2.10.

For i 6= j, s ∈ [ti−1, ti] and t ∈ [tj−1, tj], we write

F
(i,j)
s−ti−1,t−tj−1

(x, y) for F
W̃

(i)
s−ti−1

,W̃
(j)
t−tj−1

(x, y),

for all x, y ∈ R. It is clear that if for any i 6= j, s ∈ [ti−1, ti] and t ∈ [tj−1, tj], the joint

distribution F
(i,j)
s−ti−1,t−tj−1

is a product measure, then the local Brownian motion {Xt, t ∈
[0, T ]} is a Brownian motion. According to Theorem 2.11, for any i ∈ {1, 2, . . . , n}, the

neighbouring Brownian motions W̃ (i−1) and W̃ (i) are independent. The joint distributions

of non-neighbouring Brownian motions are bound to ensure that the covariance function

of the local Brownian motion is satisfied. Hence the necessary condition for the process

X in (4.1) to be a local Brownian motion is

E[(Xs −Xti−1
)(Xt −Xtj−1

)] = E[W̃
(i)
s−ti−1

W̃
(j)
t−tj−1

] = 0

for any i 6= j, s ∈ [ti−1, ti] and t ∈ [tj−1, tj].

Let us recollect a few definitions on the symmetries of joint distribution that were

taken from Nelsen [42].

Definition 4.2. An absolutely continuous joint distribution (X, Y ) is said to be condi-

tionally symmetric (around zero) in one variable if for all x ∈ supp(X) and y ∈ supp(Y ),

either fX|Y (x|y) = fX|Y (−x|y) or fY |X(y|x) = fY |X(−y|x) holds. An absolutely continu-

ous joint distribution (X, Y ) is said to be jointly symmetric if for all x, y ∈ R,

fX,Y (x, y) = fX,Y (−x, y) = fX,Y (x,−y) = fX,Y (−x,−y).

Proposition 4.3. An absolutely continuous joint distribution is jointly symmetric if and

only if it is conditionally symmetric in both variables.

Proof. See Nelsen [41].

The next lemma provides us with a few sufficient conditions on the joint distributions

of the Brownian motions W̃ (i) such that the covariance function for a local Brownian

motion is satisfied.

Lemma 4.4. Let {W̃ (i)
t−ti−1

, t ∈ [ti−1, ti]} and {W̃ (j)
t−tj−1

, t ∈ [tj−1, tj]} be two Brownian

motions from representation (4.1). For each i 6= j, s ∈ [ti−1, ti] and t ∈ [tj−1, tj], considere

the following statements:
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4.1. Representation of local Brownian motion

(i) F
(i,j)
s−ti−1,t−tj−1

be jointly symmetric,

(ii) F
(i,j)
s−ti−1,t−tj−1

be conditional symmetric in one variable,

(iii) E[W̃
(i)
s−ti−1

W̃
(j)
t−tj−1

] = 0.

Then, (i) implies (ii), which in turn implies (iii).

Proof. It follows immediately from Proposition 4.3 and Lemma 3.3.

Since we are dealing with the joint distributions of random variables of a process (which

has time-ordering), we would like to distinguish between the conditional symmetries in

the first and in the second variables depending on the time of the variable the joint

distribution is conditioned on.

Definition 4.5. Consider the joint distribution F
(i,j)
s−ti−1,t−tj−1

for i < j, s ∈ [ti−1, ti],

t ∈ [tj−1, tj]. The distribution is said to be backward conditionally symmetric if it is

symmetric in the first variable (of the earlier time) conditioning on the second variable.

It is said to be forward conditionally symmetric if it is symmetric in the second variable

(of the later time) conditioning on the first variaable.

Following the definitions above for the joint distributions, we introduce corresponding

definitions for the associated copulas.

Definition 4.6. A copula is said to be jointly symmetric or backward/forward con-

ditionally symmetric if the associated joint distribution is jointly symmetric or back-

ward/forward conditionally symmetric, respectively.

Definition 4.7. A local Brownian motion is said to be jointly symmetric or backward/forward

conditionally symmetric if for all i 6= j, s ∈ [ti−1, ti] and t ∈ [tj−1, tj], the joint distribution

F
(i,j)
s−ti−1,t−tj−1

is jointly symmetric or backward/forward conditionally symmetric, respec-

tively.

We recall that due to Proposition 3.5, for a backward (or forward) conditionally sym-

metric copula, the equation C(u, v) +C(1−u, v) = v (or C(u, v) +C(u, 1− v) = u) holds

for all u, v ∈ [0, 1]. Due to Proposition 4.3, for a jointly symmetric copula both equation

must hold. In Chapter 3, we showed that it is possible to construct a backward/forward

conditionally symmetric copula (and a jointly symmetric copula) from any copula. Hence

the class of uncorrelated copulas is quite rich.

Remark 4.8. Note that in this thesis we narrow our approach of constructing a local

Brownian motion on pairwise dependencies of incremental processes. Of course, one could

go beyond that and look at the n-dimensional distribution of (W̃ (1), W̃ (2), . . . , W̃ (n)), where

the joint distributions of (W̃ (i), W̃ (i+1)) are product measures for all i ∈ {1, 2, . . . , n− 1}
and the joint distributions of (W̃ (i), W̃ (j)) are uncorrelated for i 6= j.
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4. General representation

4.2 More on randomised scaled covariances

Now we would like to know how the first construction via randomised schaled covariances

between two non-neighbouring incremental processes fits into our general framework.

Lemma 4.9. Let R be a random variable distributed on [−1, 1]. Then, for all x, y ∈ R,

any positive even function g and any non-constant function h, the following holds:

E
[
h

(
x−Ry√
1−R2

)
g(R)

]
= E

[
h

(
x+Ry√
1−R2

)
g(R)

]
if and only if R is symmetric about zero.

Proof. Direct calculation yields∫ 1

−1

(
h

(
x− ry√
1− r2

)
− h

(
x+ ry√
1− r2

))
g(r)dFR(r)

=

∫ 1

0

(
h

(
x− ry√
1− r2

)
− h

(
x+ ry√
1− r2

))
g(r)dFR(r)

−
∫ 0

1

(
h

(
x− ry√
1− r2

)
− h

(
x+ ry√
1− r2

))
g(−r)dFR(−r)

=

∫ 1

0

(
h

(
x− ry√
1− r2

)
− h

(
x+ ry√
1− r2

))
g(r)dFR(r)

+

∫ 1

0

(
h

(
x− ry√
1− r2

)
− h

(
x+ ry√
1− r2

))
g(r)dFR(−r)

=

∫ 1

0

(
h

(
x− ry√
1− r2

)
− h

(
x+ ry√
1− r2

))
g(r)d (FR(r) + FR(−r)) ,

which equals to zero for all x, y ∈ R if and only if R is symmetric about zero.

Proposition 4.10. Let {Xt, t ∈ [0, T ]} be the local Brownian motion from Example 2.10.

Then, for s ∈ (0, 1] and t > 2, the joint distribution of (Xs, Xt−X2) is jointly symmetric

if and only if the random variable R is symmetric about zero. In that case, the process

{Xt, t ∈ [0, T ]} is a jointly symmetric local Brownian motion.

Proof. Let us compute the joint probability density function of (Xs, Xt −X2):

fXs,Xt−X2(x, y) = f
W

(1)
s ,RW

(1)
t−2+

√
1−R2W

(3)
t−2

(x, y)

=

∫ 1

−1

f
r(W

(1)
t−2−W

(1)
s )+

√
1−r2W (3)

t−2+rx|R,W (1)
s

(y|r, x)f
W

(1)
s

(x)dFR(r)

=

∫ 1

−1

f
r(W

(1)
t−2−W

(1)
s )+

√
1−r2W (3)

t−2+rx
(y)f

W
(1)
s

(x)dFR(r).

Let ξ = W
(1)
t−2 −W

(1)
s which has distribution N(0, |t− 2− s|). Then, for t 6= s+ 2,

fXs,Xt−X2(x, y) =

∫
R
E
[
f
W

(3)
t−2

(
y −R(x+ z)√

1−R2

)
1√

1−R2

]
fξ(z)dzf

W
(1)
s

(x), (4.2)

36



4.2. More on randomised scaled covariances

and for t = s+ 2,

fXs,Xt−X2(x, y) =

∫ 1

−1

f
W

(3)
t−2

(
y − rx√
1− r2

)
1√

1− r2
dFR(r)f

W
(1)
s

(x)

= E
[
f
W

(3)
t−2

(
y −Rx√
1−R2

)
1√

1−R2

]
f
W

(1)
s

(x).

Suppose that R is symmetric about zero, that is, for all y, u ∈ R, the equation

E
[
f
W

(3)
t−2

(
y −Ru√
1−R2

)
1√

1−R2

]
= E

[
f
W

(3)
t−2

(
y +Ru√
1−R2

)
1√

1−R2

]
(4.3)

holds. Then, for all t 6= s+ 2 and x, y ∈ R, the conditional density function from (4.2) is

fXt−X2|Xs(y|x) =

∫
R
E
[
f
W

(3)
t−2

(
y −R(x+ z)√

1−R2

)
1√

1−R2

]
fξ(z)dz

=

∫
R
E
[
f
W

(3)
t−2

(
y +R(x+ z)√

1−R2

)
1√

1−R2

]
fξ(z)dz, (due to (4.3))

=

∫
R
E
[
f
W

(3)
t−2

(
−y −R(x+ z)√

1−R2

)
1√

1−R2

]
fξ(z)dz

= fXt−X2|Xs(−y|x),

where the third equality is due to the fact that the density f
W

(3)
t−2

is an even function.

Thus, (Xs, Xt −X2) is forward conditionally symmetric.

Moreover, from (4.2) and (4.3), we also have, for all x, y ∈ R,

fXs|Xt−X2(x|y) =

∫
R
E
[
f
W

(3)
t−2

(
y −R(x+ z)√

1−R2

)
1√

1−R2

]
fξ(z)dz

f
W

(1)
s

(x)

fXt−X2(y)

=

∫
R
E
[
f
W

(3)
t−2

(
y +R(−x− z)√

1−R2

)
1√

1−R2

]
fξ(z)dz

f
W

(1)
s

(x)

fXt−X2(y)

= −
∫
R
E
[
f
W

(3)
t−2

(
y +R(−x+ z)√

1−R2

)
1√

1−R2

]
fξ(−z)d(−z)

f
W

(1)
s

(x)

fXt−X2(y)

=

∫
R
E
[
f
W

(3)
t−2

(
y +R(−x+ z)√

1−R2

)
1√

1−R2

]
fξ(z)dz

f
W

(1)
s

(x)

fXt−X2(y)

=

∫
R
E
[
f
W

(3)
t−2

(
y −R(−x+ z)√

1−R2

)
1√

1−R2

]
fξ(z)dz

f
W

(1)
s

(x)

fXt−X2(y)
(due to (4.3))

= fXs|Xt−X2(−x|y),

where the forth equation is true, due to the fact that the density fξ is an even function. It

follows that (Xs, Xt −X2) is backward conditional symmetric. Therefore, (Xs, Xt −X2)

is jointly symmetric.

Furthermore, suppose that for all x, y ∈ R, we have fXt−X2|Xs(y|x) = fXt−X2|Xs(−y|x),

i.e. ∫
R
E
[(
f
W

(3)
t−2

(
y −R(x+ z)√

1−R2

)
− f

W
(3)
t−2

(
y +R(x+ z)√

1−R2

))
1√

1−R2

]
fξ(z)dz = 0.
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4. General representation

Since the equality holds for all x, y ∈ R, it follows immediately that (4.3) must be true.

Similarly, suppose that for any x, y ∈ R, fXs|Xt−X2(x|y) = fXs|Xt−X2(−x|y), i.e.∫
R
E
[(
f
W

(3)
t−2

(
y −R(x+ z)√

1−R2

)
− f

W
(3)
t−2

(
y −R(−x+ z)√

1−R2

))
1√

1−R2

]
fξ(z)dz = 0.

Since the equation above holds for any x, y ∈ R, it follows that equation (4.3) holds.

Finally, applying Lemma 4.9 with g(R) = 1√
1−R2 and h = f

W
(3)
t−2

the equation (4.3) holds

if and only if R is symmetric about zero. The identical proof for t = s+ 2 is omitted.

Remark 4.11. Note that any symmetric about zero random variable that is distributed

on the interval [−a, a] has zero mean.

The proposition above leads to the following statement:

Corollary 4.12. Let {Xt, t ∈ [0, T ]} be a local Brownian motion from Example 2.10.

Then, the following statements hold:

(i) If R nonsymmetric, the process {Xt, t ∈ [0, T ]} is neither a backward nor a forward

conditional symmetric local Brownian motion.

(ii) If R is symmetric, the process {Xt, t ∈ [0, T ]} is jointly symmetric local Brownian

motion.

Remark 4.13. The corollary above can be extended to the general case of the local

Brownian motions generated by randomised scaled covariances between non-neighbouring

incremental processes, which were discussed in Chapter 3. That is, the family R consists

only of symmetric random variables about zero in (3.3) if and only if the local Brownian

motion in (3.3) is jointly symmetric.

4.3 On Markovianity of local Brownian motion

The relatively loose restriction on the joint distributions of non-neighbouring Brownian

motions in (4.1) gives us enough freedom to construct rich enough family of local Brownian

motions. The inconvenience may lie, however, in the inability to derive some theoretical

statements for all local Brownian motions. One of the questions we could only answer

partially is whether a proper local Brownian motion can be a Markov process. Although

we were not able to find a general answer to this question, some partial results were

obtained and will be presented below.

Proposition 4.14. Let {Xt, t ∈ [0, T ]} be a local Brownian motion with time partition

0 = t0 < t1 < . . . < tn = T . Assume that for each i ∈ {1, 2, . . . , n}, the process

{Xt − Xti−1
, t ∈ [ti−1, ti]} is independent of Xti−1

. Then, the process {Xt, t ∈ [0, T ]} is

Markov if and only if it is a Brownian motion.
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4.3. On Markovianity of local Brownian motion

Proof. The “if ” statement is clear.

Now the “only if” statement. Suppose that {Xt, t ∈ [0, T ]} is a Markov process. Then,

for 0 < s < t2 < t ≤ t3, the Chapman-Kolmogorov equation yields

fXt|Xs(y|x) =

∫
R
fXt2 |Xs(z|x)fXt|Xt2 (y|z)dz

=

∫
R

1√
2π(t2 − s)

e
− (z−x)2

2(t2−s)
1√

2π(t− t2)
e
− (y−z)2

2(t−t2)dz

=
1√

2π(t− s)
e−

(y−x)2
2(t−s) .

This transition function of a Markov process shows that {Xt, t ∈ [0, t3]} is a Brownian

motion. Applying the same arguments iteratively from interval [0, tj] to [0, tj+1] gives the

assertion.

Remark 4.15. Except for the Brownian motion we were not able to find another local

Brownian motion {Xt, t ∈ [0, T ]} such that for each index i ∈ {1, 2, . . . , n} of the time

partition 0 = t0 < t1 < . . . < tn = T , the process {Xt−Xti−1
, t ∈ [ti−1, ti]} is independent

of Xti−1
. The existence of such process remains an open question.

Notice that a local Brownian motion is a Brownian motion if and only if for any

t1 ∈ (0, T ), 0 = t0 < t1 < t2 = T is the time partition of the local Brownian motion.

Proposition 4.16. Let {Xt, t ∈ [0, T ]} be a local Brownian motion. If for any time

partition 0 = t0 < t1 < . . . < tn = T of X, the process {Xt − Xti−1
, t ∈ [ti−1, ti+2]} is

a Brownian motion for each i ∈ {1, 2, . . . , n − 2}, then the process {Xt, t ∈ [0, T ]} is a

Brownian motion.

Proof. If the process {Xt − Xti−1
, t ∈ [ti−1, ti+2]} is a Brownian motion for each i ∈

{1, 2, . . . , n− 2}, then the partition 0 = t0 < t1 < t3 < t4 < t6 < t7 < . . . < tn = T is also

a time partition of {Xt, t ∈ [0, T ]}. Applying the assumption for the second time, we can

see that the partition 0 = t0 < t1 < t4 < t5 < t8 < t9 < . . . < tn = T is a time partition of

{Xt, t ∈ [0, T ]} as well. Using the same argument iteratively, we obtain a time partition

0 = t0 < t1 < tn = T , which indicates that the process {Xt, t ∈ [0, T ]} is a Brownian

motion.

To obtain our second partial result, we will impose a condition on local Brownian

motion that is satisfied by many local Brownian motions constructed in this thesis. We

then derive a statement that a proper local Brownian motion is not a Markov process if

it satisfies this extra condition.

Lemma 4.17. Let X, Y, Z be three absolutely continuous random variables with full

support on the real line. Further, let Y be independent of (X,Z) and Z be independent

of Y given X + Y . Then, Z is independent of X and X + Y .
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4. General representation

Proof. Using the Bayes’ formula for probability density functions, we obtain that for any

z, y, w ∈ R,

fZ,Y |X+Y (z, y|w) =
fZ,Y,X+Y (z, y, w)

fX+Y (w)
(4.4)

=
fZ,X+Y |Y (z, w|y)fY (y)

fX+Y (ξ)
=
fZ,X(z, w − y)fY (y)

fX+Y (w)

and furthermore,

fY |X+Y (y|w) =
fX+Y,Y (w, y)

fX+Y (w)
=
fX(w − y)fY (y)

fX+Y (w)
. (4.5)

However, due to independence of Z and Y given X + Y , for any x, z ∈ R, we also have

fZ,Y |X+Y (z, y|w) = fZ|X+Y (z|w)fY |X+Y (y|w). (4.6)

Finally, from (4.4), (4.5) and (4.6), we obtain fZ,X(z, w−y) = fZ|X+Y (z|w)fX(w−y) and

thus

fZ|X(z|w − y) = fZ|X+Y (z|w)

for any z, y, w ∈ R. Since the last equation holds for any y ∈ R, we deduce that the

random variable Z is independent of X and hence independent of X + Y .

Proposition 4.18. Let {Xt, t ∈ [0, T ]} be a local Brownian motion from (4.1). Let

W̃ (i) be independent of (W̃ (i−1), W̃ (i+1)) for each i ∈ {1, 2, . . . , n− 1}. Then, the process

{Xt, t ∈ [0, T ]} is Markov if and only if it is a Brownian motion.

Proof. Suppose the process {Xt, t ∈ [0, T ]} is Markov. In particular, for each i ∈
{1, 2, . . . , n} and any t ∈ [ti, ti+1],

fXt−Xti ,Xti−Xti−1 |Xti (z, y|w) = fXt−Xti |Xti (z|w)fXti−Xti−1 |Xti (y|w)

for any w, y, z ∈ R. Let us consider first the process {Xt, t ∈ [0, t3]}. Set Z = Xt −
Xt2 = W̃

(3)
t−t2 , X + Y = Xt2 and Y = Xt2 − Xt1 = W̃

(2)
t2−t1 . Then, by assumption Y

is independent of (X,Z) and by the equality above for i = 2 and t = t3, we obtain Z

is independent of Y given X + Y . By Lemma 4.17, the process {Xt − Xt2 , t ∈ [t2, t3]}
is independent of Xt2 . Further, we use induction method. For any i ∈ {3, . . . , n − 1},
we set Z = Xt − Xti = W̃

(i+1)
t−ti , X + Y = Xti and Y = Xti − Xti−1

= W̃
(i)
ti−ti−1

. Using

induction hypothesis, we know that Y is independent of (X,Z). Then, by assumption

and Lemma 4.17, the process {Xt − Xti , t ∈ [ti, ti+1]} is independent of Xti . Hence by

Proposition 4.14, the assertion follows.

Example 4.19. In Example 2.10, W (2) is independent of (W (1),W (3)) and due to Propo-

sition 4.18, the process is not Markov for non-constant R.
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4.3. On Markovianity of local Brownian motion

For a random variable Y , let PY be a regular conditional probability distribution

given Y . Suppose that if we enlarge the natural filtration of the incremental process by

its starting point. Then the incremental process is a Brownian motion if and only if it is

a Brownian motion given the starting point.

Proposition 4.20. Let {Xt, t ∈ [0, T ]} be a process with non-trivial X0. Further, let

{Yt = Xt−X0, t ∈ [0, T ]} be a (FY ,P)-Brownian motion and G be the augmented filtration

by X0 with GYt = σ(X0) ∨ FYt for any t ∈ [0, T ]. Then, the process {Yt, t ∈ [0, T ]} is a

(FY ,PX0)-Brownian motion if and only if it is (GY ,P)-Brownian motion.

Proof. First we will prove the “only if” statement. Let 0 < s < t < T , A ∈ FYs and

B ∈ B(R). Further, let

F ∈ {A ∩ {X0 ∈ B} : A ∈ FYs , B ∈ B(R)}.

Then,

E[(Yt − Ys)11F ] =

∫
B

EX0 [(Yt − Ys)11A]dPX0 = 0.

It is easy to see that σ(F ) = GYs . By using the monotone class theorem for functions, we

obtain that for any bounded GYs -measurable function H,

E[(Yt − Ys)H] = 0.

Therefore the process {Yt, t ∈ [0, T ]} is a (G,P)-martingale. Further, assume that for

A ∈ FYT , EX0 [11A] = 0. Using law of total probability we obtain

P(A) =

∫
R

P(A|X0)dPX0 = 0.

Hence P� PX0 on FYT and therefore [Y, Y ]T = T under P. The continuity is clear. Finally,

due to Lévy’s characterisation theorem, the process {Yt, t ∈ [0, T ]} is a (GY ,P)-Brownian

motion.

Now the “if” statement. Assume that {Yt, t ∈ [0, T ]} is a (GY ,P)-Brownian motion.

Since GYt = FXt for any t ∈ [0, T ], it follows that for all 0 < s < t < T ,

E[Yt|FXs ] = Ys

and therefore E[Xt|FXs ] = Xs. Hence the process {Xt, t ∈ [0, T ]} is a (FX ,P)-martingale.

The quadratic variation and continuity of {Yt, t ∈ [0, T ]} are passed on to the process

{Xt, t ∈ [0, T ]}. Lévy’s characterisation theorem yields that the process {Xt, t ∈ [0, T ]}
is a (FX ,P)-Brownian motion. Therefore Yt is independent of X0 for all t ∈ [0, T ]. That

means that {Yt, t ∈ [0, T ]} is a (FY ,PX0)-Brownian motion and the assertion follows.
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Chapter5
Stochastic calculus

The immediate implication of Proposition 2.18 is that we cannot refer to the usual set-

tings from stochastic calculus, where a stochastic integral is defined with respect to a

semimartingale and the integrand is adapted (and a bit more) to the augmented natu-

ral filtration generated by the semimartingale. However, by restricting the integrands to

processes that are adapted to some sub-σ-algebras of the augmented natural filtration

generated by a local Brownian motion, we are able to define a stochastic integral with

respect to any local Brownian motion. In this chapter we will develop this idea. Moreover,

we will see that “Itô Formula” among other tools from stochastic calculus can be used for

local Brownian motions. It will provide us with solutions to some prominent stochastic

differential equations driven by a local Brownian motion.

5.1 General Wiener integral

Let us consider the space of deterministic square integrable functions on [0, T ] with respect

to Lebesgue measure λ denoted by L2([0, T ]) := L2([0, T ], λ) with norm ‖f‖L2([0,T ]) =(∫ T
0
|f(t)|2dt

) 1
2
<∞. We recall that L2 is the Hilbert space of square integrable random

variables X : Ω → R with the scalar product 〈X, Y 〉L2 = E[XY ] and accordingly the

norm ‖X‖L2 = (E[|X|2])
1
2 <∞.

Theorem 5.1. Let {Xt, t ∈ [0, T ]} be a local Brownian motion with time partition 0 =

t0 < t1 < . . . < tn = T and f ∈ L2([0, T ]) . Then, there exists a unique linear map

IX : L2([0, T ])→ L2

such that IX(f) is a finite sum of normally distributed random variables with

E[IX(f)] = 0 and E[IX(f)2] =

∫ T

0

|f(t)|2dt.
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5. Stochastic calculus

Proof. We will first define a linear mapping ĪX on the space of simple functions and

show that both properties hold for ĪX . Then, we will extend ĪX uniquely to IX using

Hahn-Banach Theorem and prove that the assertion follows.

Step 1: We denote by L2([0, T ]) the space of simple functions on [0, T ], i.e. functions

of the form fm(t) =
∑m

i=1 ai11(ui−1,ui](t) for a partition 0 = u0 < u1 < . . . < um = T with

a constant ai ∈ R for each i ∈ {1, 2, . . . ,m}. For each interval [ti−1, ti], there exists a

partition ti−1 = s
(i)
0 < s

(i)
1 < . . . < s

(i)
mi = ti such that any simple function on [ti−1, ti] can

be written for t ∈ [ti−1, ti] as

fm(t) =
m∑
i=1

ai11(ui−1,ui](t) =
n∑
i=1

mi∑
j=1

a
(i)
j 11

(s
(i)
j−1,s

(i)
j ]

(t) (5.1)

with a sequence of real-valued constants {a(i)
j , j ∈ {1, 2, . . . ,mi}} and m =

∑n
i=1mi. We

define a mapping

ĪX : L2([0, T ])→ L2 with ĪX(fm) :=
n∑
i=1

mi∑
j=1

a
(i)
j (X

s
(i)
j
−X

s
(i)
j−1

).

It is easy to see that it is linear. Further,

E[ĪX(fm)] =
n∑
i=1

mi∑
j=1

a
(i)
j E[X

s
(i)
j
−X

s
(i)
j−1

] = 0

and

E[ĪX(fm)2] =
n∑
i=1

n∑
k=1

(
E

[
mi∑
j=1

a
(i)
j (X

s
(i)
j
−X

s
(i)
j−1

)

mk∑
l=1

a
(k)
l (X

s
(k)
l
−X

s
(k)
l−1

)

])

=
n∑
i=1

E

( mi∑
j=1

a
(i)
j (X

s
(i)
j
−X

s
(i)
j−1

)

)2


+ 2
n∑
i=1

n∑
k=i+1

(
mi∑
j=1

mk∑
l=1

a
(i)
j a

(k)
l E

[
(X

s
(i)
j
−X

s
(i)
j−1

)(X
s
(k)
l
−X

s
(k)
l−1

)
])

=
n∑
i=1

mi∑
j=1

(
a

(i)
j

)2

E
[(
X
s
(i)
j
−X

s
(i)
j−1

)2
]

+ 2
n∑
i=1

(
mi∑
j=1

mi∑
l=j+1

a
(i)
j a

(i)
l E

[
(X

s
(i)
j
−X

s
(i)
j−1

)(X
s
(i)
l
−X

s
(i)
l−1

)
])

+ 2
n∑
i=1

n∑
k=i+1

(
mi∑
j=1

mk∑
l=1

a
(i)
j a

(k)
l E

[
(X

s
(i)
j
−X

s
(i)
j−1

)(X
s
(k)
l
−X

s
(k)
l−1

)
])

=
n∑
i=1

mi∑
j=1

(
a

(i)
j

)2 (
s

(i)
j − s

(i)
j−1

)
=

∫ T

0

|fm(t)|2dt.
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5.1. General Wiener integral

The third equality holds since a local Brownian motion has uncorrelated increments.

Furthermore, X
s
(i)
j
−X

s
(i)
j−1
∼ N(0, s

(i)
j − s

(i)
j−1) for each i, j and therefore the term ĪX(fm)

is a finite sum of normally distributed random variables.

Step 2: For any f ∈ L2([0, T ]), there exists a sequence of simple functions (fm)m≥1 ∈
L2([0, T ]) such that ‖fm − f‖L2([0,T ]) → 0 as m→∞. For m, l ≥ 1,

‖ĪX(fm)− ĪX(fl)‖2
L2 = E

[
|ĪX(fm)− ĪX(fl))|2

]
= E

[
|ĪX(fm − fl)|2

]
=

∫ T

0

(fm(t)− fl(t))2dt

=

∫ T

0

(fm(t)− f(t)− (fl(t)− f(t))2dt

≤ 2

(∫ T

0

(fm(t)− f(t))2dt+

∫ T

0

(fl(t)− f(t))2dt

)
and therefore ‖ĪX(fm) − ĪX(fl)‖2

L2 → 0 as m, l → ∞. Hence (ĪX(fm))m≥1 is a Cauchy

sequence in L2 and it converges to an element denoted by IX(f) ∈ L2. Assume there

exists another sequence (gm)m≥1 ∈ L2([0, T ]) such that ‖gm − f‖L2([0,T ]) → 0 as m→∞.

Applying the triangular inequality for the norm ‖ · ‖L2 , we obtain that for m ≥ 1, the

following holds:

‖ĪX(gm)−IX(f)‖L2 ≤ ‖ĪX(gm)− ĪX(fm)‖L2 + ‖ĪX(fm)− IX(f)‖L2

=

(∫ T

0

(gm(t)− fm(t))2dt

) 1
2

+ ‖ĪX(fm)− IX(f)‖L2

≤
(
2
(
‖gm − f‖L2([0,T ]) + ‖fm − f‖L2([0,T ])

)) 1
2 + ‖ĪX(fm)− IX(f)‖L2 .

which converges to zero. Therefore ĪX(gm)→ IX(f) as m→∞ in L2, and IX(f) is well

defined.

Step 3: Since ĪX(fm) converges to IX(f) in L2 and
∫ T

0
|f(t)|2dt <∞, we obtain

E[IX(f)] = lim
m→∞

E[IX(fm)] = 0 and E[IX(f)2] = lim
m→∞

E[IX(fm)2] =

∫ T

0

|f(t)|2dt.

As a consequence of convergence in L2, the sequence ĪX(fm) converges to IX(f) also in

distribution. We observe that with a fixed partition 0 = t0 < t1 < . . . < tn = T , any

simple function (fm)m≥1 ∈ L2([0, T ]) converges to f(t) ∈ L2([0, T ]) as m→∞ if and only

if (fm)m≥1 converges to f(t) as mi →∞ for all i ∈ {1, 2, . . . , n} in (5.1). Using the Lévy’s
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5. Stochastic calculus

continuity theorem, the characteristic function of IX(f) is

ϕIX(f)(t) = lim
m→∞

ϕĪX(fm)(t) = lim
m1→∞

. . . lim
mn→∞

ϕ∑n
i=1

∑mi
j=1 a

(i)
j (X

s
(i)
j

−X
s
(i)
j−1

)
(t)

= lim
m1→∞

. . . lim
mn→∞

E

 n∏
i=1

e
it

(∑mi
j=1 a

(i)
j (X

s
(i)
j

−X
s
(i)
j−1

)

)
= E

 lim
m1→∞

. . . lim
mn→∞

n∏
i=1

e
it

(∑mi
j=1 a

(i)
j (X

s
(i)
j

−X
s
(i)
j−1

)

)
= E

 n∏
i=1

e
it

(∑∞
j=1 a

(i)
j (X

s
(i)
j

−X
s
(i)
j−1

)

) = ϕ∑n
i=1 ξi

(t)

with ξi =
∑∞

j=1 a
(i)
j (X

s
(i)
j
−X

s
(i)
j−1

) being a normally distributed random variable for each

i ∈ {1, 2, . . . , n}. This is due to the fact that for each i ∈ {1, 2 . . . , n}, the process {Xt −
Xti−1

, t ∈ [ti−1, ti]} is a Brownian motion and thus the infinite sum
∑∞

j=1 a
(i)
j (X

s
(i)
j
−X

s
(i)
j−1

)

is normally distributed.

Finally, using Hahn-Banach Theorem the linear map IX(f) is unique; therefore IX(f)

can be written as IX(f) =
∑n

i=1

∫ ti
ti−1

f(t)dXt and the assertion follows.

Definition 5.2. For any f ∈ L2([0, T ]) and any local Brownian motion {Xt, t ∈ [0, T ]}
with time partition 0 = t0 < t1 < . . . < tn = T , we will denote the limit by∫ T

0

f(t)dXt :=
n∑
i=1

∫ ti

ti−1

f(t)dXt

and call it the general Wiener integral with respect to a local Brownian motion X.

Note that the first and the second moments of the general Wiener integral are inde-

pendent of the time partition of the local Brownian motion. Moreover, in the next section

we will see (for a more general stochastic integral with respect to local Brownian motion)

that the general Wiener integral is defined in such a way that it also does not dependent

on the choice of the time partition of the local Brownian motion. Hence the definition

can be extended to any time partition of a local Brownian motion.

Remark 5.3. For any i, the integral
∫ ti
ti−1

f(t)dXt is a Wiener integral. Hence the general

Wiener integral is a finite sum of Wiener integrals. In the case where X is a Brownian

motion, the general Wiener integral coincides with a Wiener integral. Note that the

general Wiener integral is not necessarily normally distributed. In fact, the integral

IX(f) is normally distributed for any f ∈ L2([0, T ]) if and only if the process X is

a Brownian motion; if IX(f) is normally distributed for any f ∈ L2([0, T ]), then the

process {Xt, t ∈ [0, T ]} has to be Gaussian.
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5.2. General Itô integral

We define an integral process for f ∈ L2([0, T ]) and t ∈ [0, T ], as∫ t

0

f(s)dXs :=

∫ T

0

f(s)11[0,t](s)dXs,

where
∫ T

0
f(s)dXs is a general Wiener integral.

Proposition 5.4. Let {Xt, t ∈ [0, T ]} be a local Brownian motion and f ∈ L2([0, T ]).

Then, the integral process
∫ t

0
f(s)dXs is a local Gaussian process on [0, T ] with zero mean.

Proof. Let 0 = t0 < t1 < . . . < tn = T be a time partition of {Xt, t ∈ [0, T ]}. Define a

process Yt =
∫ t

0
f(s)dXs. Then, for each i ∈ {1, 2, . . . , n− 1}, the process {Yt − Yti−1

, t ∈
[ti−1, ti+1]} is a Gaussian process with zero mean. Thus the assertion follows.

Proposition 5.5. Let {Xt, t ∈ [0, T ]} be a local Brownian motion and f, g ∈ L2([0, T ]).

Then,

E[IX(f)IX(g)] =

∫ T

0

f(t)g(t)dt.

Proof. By applying the linearity of general Wiener integral, direct calculation yields

E[IX(f)IX(g)] =
1

2
(E[(IX(f) + IX(g))2]− E[IX(f)2]− E[IX(g)2])

=
1

2
(E[IX(f + g)2]− E[IX(f)2]− E[IX(g)2])

=
1

2

∫ T

0

(
(f(t) + g(t))2 − f(t)2 − g(t)2

)
dt =

∫ T

0

f(t)g(t)dt

and the assertion follows.

5.2 General Itô integral

Our next goal is to define an integral with respect to the local Brownian motion for a

bigger class of integrands. The definition of the stochastic integral with respect to a local

Brownian motion was chosen in such a way that we were able to use the established

and extensively developed tools from stochastic calculus with respect to a semimartingale

despite the fact that a proper local Brownian motion is not a semimartingale. The price

we needed to pay is that this integral is only defined for a restrictive class of the integrands

that we will call regular piecewise adapted processes. These processes are only measurable

with respect to the local sub-σ-algebras of the regular natural filtration generated by the

integrator. However, as we will see later, the restriction is quite loose and will enable us

to solve many knows SDE’s that are used in applications.

In order to deal with this idea accordingly we will first introduce some notations that

are essential for the later definition.
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5. Stochastic calculus

5.2.1 Preliminary definitions

Definition 5.6. Let (Ω,F,P) be a probability space and P = {ti, 0 = t0 < t1 < . . . <

tn = T} be a partition on [0, T ]. A piecewise filtration generated by P, denoted by

{F(P)
t , t ∈ [0, T ]}, is a family of sub-σ-algebras of F such that for each i ∈ {0, 1, . . . , n−1},

s, t ∈ (ti, ti+1) and s < t, the property F
(P)
s ⊂ F

(P)
t holds. A right-closed piecewise

filtration is a piecewise filtration that is left-continuous at the partition points, i.e. for

each i ∈ {0, 1, . . . , n− 1}, s, t ∈ (ti, ti+1] and s < t, the property F
(P)
s ⊆ F

(P)
t holds.

In other words, a right-closed piecewise filtration generated by a partition 0 = t0 <

t1 < . . . < tn = T is a filtration within each interval (ti−1, ti], but not necessarily a

filtration on the whole interval [0, T ].

Remark 5.7. One can define a left-closed piecewise filtration in the same manner by

changing the half-open interval (ti, ti+1] to [ti, ti+1). We are not interested in left-closed

piecewise filtration in this work, hence the proper definition is omitted. However, note

that a piecewise filtration is right-closed and left-closed if and only if it is a filtration.

Definition 5.8. Let (Ω,F,P) be a probability space and P = {ti, 0 = t0 < t1 < . . . < tn =

T} be a partition on [0, T ]. A memoryless piecewise filtration is a right-closed piecewise

filtration such that the right limit of the piecewise filtration at partition points is a trivial

sigma-algebra, i.e. for each i ∈ {1, 2, . . . , n},

FP
ti+

:=
⋂

ti<t<ti+1

FP
t = {Ω, ∅}.

The memoryless piecewise filtration is a piecewise filtration with the property that at

each starting point of an interval in the partition, the piecewise filtration “forgets” the

past and “resets” to become a new filtration as it makes an infinitesimally small change

forward in time. In particular, a memoryless piecewise filtration is not increasing.

Definition 5.9. Let (Ω,F,F(P),P) be a probability space, P = {ti, 0 = t0 < t1 < . . . <

tn = T} be a partition on [0, T ] and F(P) = {F(P)
t , t ∈ [0, T ]} be a memoryless piecewise

filtration generated by P. A process {Ht, t ∈ [0, T ]} is said to be piecewise progressively

measurable with respect to F(P) if for each i ∈ {1, 2, . . . , n} and any t ∈ (ti−1, ti], the map

(ti−1, t]× Ω→ R (s, ω) 7→ Hs(ω)

is B((ti−1, t])⊗ F
(P)
t -measurable.

In particular, if a process is piecewise progressively measurable with respect to a

memoryless piecewise filtration, it is adapted to the same memoryless piecewise filtration.
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5.2. General Itô integral

Definition 5.10. A time partition of a local Brownian motion is called a minimal time

partition if it has the smallest number of intervals. It will be denoted by

0 = t0 < t1 < . . . < tn = T.

The existence of a minimal time partition can be seen by the fact that any partition

with fewer endpoints will impose Gaussian behaviour over bigger time intervals than

[ti−1, ti+1] and hence not acceptable for a proper local Brownian motion. Unless the local

Brownian motion is a Brownian motion itself. In that case, the minimal time partition is

simply 0 = t0 < t1 < t2 = T for any t1 ∈ (0, T ). Thus, any proper local Brownian motion

will have at least three time intervals in the time partition otherwise it is a Brownian

motion. Note that a minimal time partition is not unique. For instance, for a non-

constant R in Example 2.10 a minimal time partition is 0 < 1 < 2 < T , with three

intervals. On the other hand, the partition 0 < 1.5 < 2 < T is also a time partition of the

same local Brownian motion. Since the number of intervals in the latter time partition is

three, it is also a minimal time partition.

Definition 5.11. A canonical memoryless piecewise filtration of the local Brownian mo-

tion {Xt, t ∈ [0, T ]} with a canonical time partition 0 = t0 < t1 < . . . < tn = T , denoted

by ~FX , is defined as

~FXt :=


FX[0,t], 0 ≤ t ≤ t1

FX[t1,t], t1 < t ≤ t2

· · ·
FX[tn−1,t]

, tn−1 < t ≤ T

with FX[ti−1,t]
:= σ({Xs −Xti−1

, s ∈ [ti−1, t]}) for any i ∈ {1, 2, . . . , n}.

It is clear that the piecewise filtration defined above is memoryless piecewise, since

FX[ti−1,t]
is the augmented filtration of a Brownian motion for each i ∈ {1, 2, . . . , n}.

Definition 5.12. A regular piecewise adapted process is piecewise progressively mea-

surable with respect to canonical memoryless piecewise filtration generated by a local

Brownian motion, and for each i ∈ {1, 2, . . . , n}, a càdlàg process on (ti−1, ti).

5.2.2 Definition of general Itô integral

Let C([0, T ]) be a sample space representing the set of continuous functions on the interval

[0, T ] and {Xt, t ∈ [0, T ]} be a local Brownian motion with a canonical time partition

0 = t0 < t1 < . . . < tn = T . Then, let (C([0, T ]),FX ,P) be a filtered probability space

with regular natural filtration FX = (FXt )t∈[0,T ]. We will denote by L2(C([0, T ]), ~FX ,P)
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with ~FX = (~FXt )t∈[0,T ] the set of processes {Ht, t ∈ [0, T ]} that are regular piecewise

adapted with respect to X such that

E
[∫ T

0

H2
t dt

]
<∞.

Further, let us define by L a set of processes from L2(C([0, T ]), ~FX ,P) that can be

written as

Ht =
n∑
i=1

mi∑
j=1

H
(i)
j−111

(s
(i)
j−1,s

(i)
j ]

(t)11[ti−1,ti](t),

where for each i ∈ {1, 2 . . . , n}, there exists a sub-partition of [ti−1, ti] as ti−1 = s
(i)
0 <

s
(i)
1 < s

(i)
2 < . . . < s

(i)
mi = ti, and H

(i)
j−1 is FX

[ti−1,s
(i)
j−1]

-measurable square integrable random

variable. Now we are ready to define the stochastic integral with respect to a local

Brownian motion for regular piecewise adapted processes.

Theorem 5.13. Let {Xt, t ∈ [0, T ]} be a proper local Brownian motion with a canonical

time partition 0 = t0 < t1 < . . . < tn = T . There exists a unique linear map

IX : L2(C([0, T ]), ~FX ,P)→ L2

such that

IX(H) =
n∑
i=1

∫ ti

ti−1

HtdXt.

Moreover, the zero mean property holds, but the isometry property does not hold, i.e. for

H ∈ L2(C([0, T ]), ~FX ,P) we have

E[IX(H)] = 0 and E[IX(H)2] 6= E
[∫ T

0

H2
t dt

]
.

Proof. Step 1: We will show that the space L2(C([0, T ]), ~FX ,P) is a Hilbert space.

Let (Hn)n≥1 be a Cauchy sequence in L2(C([0, T ]), ~FX ,P). For each i ∈ {1, 2, . . . , n},
we define a space L2(C([ti−1, ti]),F

X
[ti−1,ti]

,P) of functions of [0, T ] that are continuous and

square integrable on [ti−1, ti], i.e. for any function f(t) ∈ L2(C([ti−1, ti]),F
X
[ti−1,ti]

,P), we

have E
[∫ ti

ti−1
f(t)2dt

]
<∞. Then, for each i ∈ {1, 2, . . . , n}, the sequence (Hn(t)11[ti−1,ti](t))n≥1

is a Cauchy sequence in L2(C([ti−1, ti]),F
X
[ti−1,ti]

,P). Hence for l,m ≥ 0,

E
[∫ T

0

(Hl(t)−Hm(t))2 dt

]
=

n∑
i=1

E
[∫ ti

ti−1

(Hl(t)−Hm(t))2 dt

]
→ 0

as l,m → ∞, since the process {Xt − Xti−1
, t ∈ [ti−1, ti]} is a Brownian motion for each

i ∈ {1, 2, . . . , n} and thus the space L2(C([ti−1, ti]),F
X
[ti−1,ti]

,P) is complete. In fact, it is

the space of regular adapted processes with respect to Brownian motion {Xt −Xti−1
, t ∈
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5.2. General Itô integral

[ti−1, ti]}. It follows that since every Cauchy sequence converges in L2(C([0, T ]), ~FX ,P),

it is a complete space. Moreover,

L2(C([0, T ]), ~FX ,P) =
n⊕
i=1

L2(C([ti−1, ti]),F
X
[ti−1,ti]

,P)

is called the Hilbert space direct sum of spaces {L2(C([ti−1, ti]),F
X
[ti−1,ti]

,P), i ∈ {1, 2, . . . , n}}.
Step 2: Assume that Ht =

∑n
i=1

∑mi
j=1H

(i)
j−111

(s
(i)
j−1,s

(i)
j ]

(t)11[ti−1,ti](t) ∈ L and ĨX(H) =∑n
i=1

∑mi
j=1H

(i)
j−1(X

s
(i)
j
−X

s
(i)
j−1

). Then, ĨX is linear and

E[ĨX(H)] = E

[
n∑
i=1

mi∑
j=1

H
(i)
j−1(X

s
(i)
j
−X

s
(i)
j−1

)

]

=
n∑
i=1

mi∑
j=1

E
[
H

(i)
j−1E

[
X
s
(i)
j
−X

s
(i)
j−1
|~FX

s
(i)
j−1

]]
= 0.

Furthermore,

E
[
ĨX(H)2

]
= E

( n∑
i=1

mi∑
j=1

H
(i)
j−1(X

s
(i)
j
−X

s
(i)
j−1

)

)2


= E

[
n∑
i=1

mi∑
j=1

(H
(i)
j−1)2(X

s
(i)
j
−X

s
(i)
j−1

)2

]

+ 2E

[
n∑
i=1

mi∑
j=1

mi∑
k=j+1

H
(i)
j−1(X

s
(i)
j
−X

s
(i)
j−1

)H
(i)
k−1(X

s
(i)
k
−X

s
(i)
k−1

)

]

+ 2E

[
n∑
i=1

n∑
k=i+1

mi∑
j=1

mk∑
l=1

H
(i)
j−1(X

s
(i)
j
−X

s
(i)
j−1
H

(k)
l−1(X

s
(k)
l
−X

s
(k)
l−1

))

]

= E
[∫ T

0

H2
t dt

]
+ 2

n∑
i=1

mi∑
j=1

mi∑
k=j+1

E
[
H

(i)
j−1(X

s
(i)
j
−X

s
(i)
j−1

)H
(i)
k−1E

[
X
s
(i)
k
−X

s
(i)
k−1
|~FX

s
(i)
k−1

]]

+ 2
n∑
i=1

n∑
k=i+1

mi∑
j=1

mk∑
l=1

E
[
H

(i)
j−1(X

s
(i)
j
−X

s
(i)
j−1

)H
(k)
l−1(X

s
(k)
l
−X

s
(k)
l−1

)
]

= E
[∫ T

0

H2
t dt

]
+ 2

n∑
i=1

n∑
k=i+1

mi∑
j=1

mk∑
l=1

E
[
H

(i)
j−1(X

s
(i)
j
−X

s
(i)
j−1

)H
(k)
l−1(X

s
(k)
l
−X

s
(k)
l−1

)
]

with the last term to be zero if and only if the process {Xt, t ∈ [0, T ]} is a martingale,

which, due to Proposition 2.17, contradicts the assumption.
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Step 3: For each i ∈ {1, 2 . . . , n}, let Li be a space of functions of the form

Ht =

mi∑
j=1

H
(i)
j−111

(s
(i)
j−1,s

(i)
j ]

(t)

for t ∈ [ti−1, ti], a partition ti−1 = s
(i)
0 < s

(i)
1 < s

(i)
2 < . . . < s

(i)
mi = ti, and a square

integrable, FX
[ti−1,s

(i)
j−1]

-measurable random variable H
(i)
j−1. Then, it is known that Li is

dense in L2(C([ti−1, ti]),F
X
[ti−1,ti]

,P). Moreover, any function in L can be written as a sum

of functions in Li. Since L2(C([0, T ]), ~FX ,P) =
⊕n

i=1 L
2(C([ti−1, ti]),F

X
[ti−1,ti]

,P), it follows

that L is dense in L2(C([0, T ]), ~FX ,P).

Step 4: Due to the Cauchy-Schwarz inequality,

E
[
ĨX(H)2

]
= E

( n∑
i=1

mi∑
j=1

H
(i)
j−1(X

s
(i)
j
−X

s
(i)
j−1

)

)2


≤ nE

( m1∑
j=1

H
(1)
j−1

(
X
s
(1)
j
−X

s
(1)
j−1

))2

+ · · ·+

(
mn∑
j=1

H
(n)
j−1

(
X
s
(n)
j
−X

s
(n)
j−1

))2


= n

n∑
i=1

mi∑
j=1

E
[(
H

(i)
j−1

)2

E
[(
X
s
(i)
j
−X

s
(i)
j−1

)2

|~FX
s
(i)
j−1

]]

= n

n∑
i=1

mi∑
j=1

E
[(
H

(i)
j−1

)2
](

s
(i)
j − s

(i)
j−1

)
= nE

[∫ T

0

H2
t dt

]
,

and thus the linear transformation ĨX is bounded. Further, as we showed above, L is

dense in the Hilbert space L2(C([0, T ]), ~FX ,P). Finally, using the Hahn-Banach theorem

gives the assertion, i.e. there exists a unique linear extension of Ĩ on L2(C([0, T ]), ~FX ,P)

denoted by IX such that E[IX(H)] = 0 and E[IX(H)2] 6= E
[∫ T

0
H2
t dt
]

for any H ∈
L2(C([0, T ]), ~FX ,P). From the construction of the space L2(C([0, T ]), ~FX ,P), we can

deduce that IX(H) =
∑n

i=1

∫ ti
ti−1

HtdXt.

Definition 5.14. Let {Xt, t ∈ [0, T ]} be a local Brownian motion with a canonical time

partition 0 = t0 < t1 < . . . < tn = T . Further, let {Ht, t ∈ [0, T ]} be a regular piecewise

adapted process with respect to X. The stochastic integral of H with respect to the local

Brownian motion X is defined as∫ T

0

HtdXt :=
n∑
i=1

∫ ti

ti−1

HtdXt,

and is called general Itô integral.
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Example 5.15. Let {Xt, t ∈ [0, T ]} be a proper local Brownian motion with a canonical

time partition 0 = t0 < t1 < . . . < tn = T . A function of the type

Ht =
n∑
i=1

H
(i)
t 11[ti−1,ti](t),

for a regular σ({Xs−Xti−1
, s ∈ [ti−1, t]})-adapted process {H(i)

t , t ∈ [ti−1, ti]} with H
(i)
ti−1

=

0 for each i ∈ {1, 2, . . . , n}, is a regular piecewise adapted process with respect to X.

It is easy to see that a process can be regular piecewise adapted with respect to two

different canonical time partitions of a local Brownian motion. Let us consider Exam-

ple 2.10. Define the process {Ht, t ∈ [0, T ]} such that

Ht =


Xt, 0 ≤ t ≤ 1
Xt −X1, 1 < t ≤ 1.5
Xt −X1.5, 1.5 < t ≤ 2
Xt −X2, 2 < t ≤ T

Then, the process {Ht, t ∈ [0, T ]} is regular piecewise adapted with respect to X for a

canonical time partition 0 < 1 < 2 < T and a canonical time partition 0 < 1.5 < 2 < T .

Hence the problem we encounter at this stage is that a general Itô integral is defined for a

particular canonical time partition, and might yield different results for different canonical

time partitions, hence being inconsistent. However, the proposition below shows that not

only the definition is independent of the choice of canonical time partition, but also of

the choice of any partition. The general Itô integral is partition independent.

Proposition 5.16. Let {Xt, t ∈ [0, T ]} be a local Brownian motion with two different

time partitions and {Ht, t ∈ [0, T ]} be a regular piecewise adapted process with respect to

X for both partitions. The integral
∫ T

0
HtdXt is independent of the choice of the partition

and hence well defined.

Proof. Let P1 = {ti, 0 = t0 < t1 < . . . < tn = T} and P2 = {si, 0 = s0 < s1 < · · · <
sm = T} be two time partitions with at least one i ≤ min{m,n} such that si 6= ti. We

define third partition P3 = P2 \P1 as the set of points of the second partition that are not

included in the set of points of the first partition. Further, we define a set R = P1 ∪ P2

such that 0 = r0 < r1 < . . . < rn+|P3| = T and thus it is a finer time partition of X.

If for any i, both partition points ri−1 and ri are either in P1 or in P2, the integral∫ ri
ri−1

HtdXt is well defined as an Itô integral. If ri−1 ∈ P1 and ri ∈ P2, then either

(ri−1, ri) ⊂ (tj−1, tj) for some j ∈ {1, . . . , n} or (ri−1, ri) ⊂ (sk−1, sk) for some k ∈
{1, . . . ,m}. Therefore also in that case the integral

∫ ri
ri−1

HtdXt is well defined. Finally,

by gluing some of the intervals of the finer partition R, we can obtain the initial two

partitions and consequentially

n∑
i=1

∫ ti

ti−1

HtdXt =

|R|∑
i=1

∫ ri

ri−1

HtdXt =
m∑
i=1

∫ si

si−1

HtdXt.
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5.3 Stochastic differential equations with local Brow-

nian motion

Once the general Itô integral is defined, we are able to define the integral process as

follows: Let {Xt, t ∈ [0, T ]} be a local Brownian motion and {Ht, t ∈ [0, T ]} be a regular

piecewise adapted process with respect to X. Then,∫ t

0

HsdXs :=

∫ T

0

Hs11[0,t](s)ds.

Using this definition we can make sense of the following stochastic differential equation.

Definition 5.17. Let {Xt, t ∈ [0, T ]} be a local Brownian motion. Further, let {µ(x, t) :

x ∈ R, t ∈ [0, T ]} and {σ(x, t) : x ∈ R, t ∈ [0, T ]} be measurable functions. Consider the

stochastic differential equation (SDE)

dYt = µ(Yt, t)dt+ σ(Yt, t)dXt (5.2)

that must be interpreted as a stochastic integral equation (SIE)

Yt = Y0 +

∫ t

0

µ(Ys, s)ds+

∫ t

0

σ(Ys, s)dXs. (5.3)

A stochastic process {Yt, t ∈ [0, T ]} is said to be a solution of SDE (5.2) if it satisfies SIE

(5.3) almost surely with the following conditions:

(i)
∫ T

0
|µ(Yt, t)|dt <∞ almost surely,

(ii) σ(Yt, t) is a regular piecewise adapted process with respect to X and∫ T

0

σ(Yt, t)
2dt <∞

almost surely.

The process {Yt, t ∈ [0, T ]} is called general Itô process or general diffusion process with

drift µ(x, t) and diffusion σ(x, t).

Example 5.18. A general Itô process {Yt, t ∈ [0, T ]} that starts at x and satisfies the

stochastic differential equation dYt = µtdt+ dXt can be seen as a local Brownian motion

with drift.

Theorem 5.19 (Existence and uniqueness). Let {Xt, t ∈ [0, T ]} be a local Brownian

motion with a canonical time partition 0 = t0 < t1 < . . . < tn = T . If the following

conditions are satisfied
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5.3. Stochastic differential equations with local Brownian motion

(i) for any i ∈ {1, 2, . . . , n}, the functions {µ(x, t) : x ∈ R, t ∈ [ti−1, ti]} and {σ(x, t) :

x ∈ R, t ∈ [ti−1, ti]} are locally Lipschitz in x uniformly in t, i.e. for every T and

N , there exists a constant K(T,N) > 0 such that for all |x|, |y| ≤ N and any

t ∈ [ti−1, ti],

|µ(x, t)− µ(y, t)|+ |σ(x, t)− σ(y, t)| < K|x− y|,

(ii) for any i ∈ {1, 2, . . . , n}, the functions {µ(x, t) : x ∈ R, t ∈ [ti−1, ti]} and {σ(x, t) :

x ∈ R, t ∈ [ti−1, ti]} satisfy linear growth condition, i.e. there exists a constant

K > 0 such that for all x ∈ R and any t ∈ [ti−1, ti],

|µ(x, t)|+ |σ(x, t)| ≤ K(1 + |x|),

(iii) Z is FX0 -measurable and E[Z2] <∞,

then for a regular piecewise adapted process σ(Yt, t) with respect to X, the stochastic

differential equation

dYt = µ(Yt, t)dt+ σ(Yt, t)dXt with Y0 = Z (5.4)

has a unique (strong) solution.

Proof. For a canonical time partition 0 = t0 < t1 < . . . < tn = T , we can obtain the

existence on each subinterval from the conventional SDE, i.e.

YT = Z +

∫ T

0

µ(Yt, t)dt+

∫ T

0

σ(Yt, t)dXt

= Z +
n∑
i=1

(∫ ti

ti−1

µ(Yt, t)dt+

∫ ti

ti−1

σ(Yt, t)dXt

)

= Z +
n∑
i=1

Y
(i)
ti

with Y
(i)
t = Yt − Yti−1

on [ti−1, ti], such that for any i and any t ∈ [ti−1, ti], we have

dY
(i)
t = dYt = µ(Yt, t)dt+ σ(Yt, t)dXt

on [ti−1, ti]. The process {Y (i)
t , t ∈ [ti−1, ti]} exists and is unique for each i, hence the

solution {Yt, t ∈ [0, T ]} exists as well.

For uniqueness of the solution, let us assume there is another solution Ỹ that satisfies

(5.4). Then, using Cauchy-Schwarz inequality

E[(YT − ỸT )2] = E

[(∫ T

0

(
µ(Yt, t)− µ(Ỹt, t)

)
dt+

∫ T

0

(
σ(Yt, t)− σ(Ỹt, t)

)
dXt

)2
]

≤ n

n∑
i=1

E

[(∫ ti

ti−1

(
µ(Yt, t)− µ(Ỹt, t)

)
dt+

∫ ti

ti−1

(
σ(Yt, t)− σ(Ỹt, t)

)
dXt

)2
]

= n

n∑
i=1

E
[(
Yti − Ỹti

)2
]
,

55



5. Stochastic calculus

with dỸt = µ(Ỹt, t)dt + σ(Ỹt, t)dXt on [ti−1, ti]. Due to the fact that the solution Y
(i)
t is

unique on [ti−1, ti], it follows that Yt = Ỹt for all 0 ≤ t ≤ T almost surely and the assertion

follows.

Let {Xt, t ∈ [0, T ]} be a local Brownian motion with a canonical time partition 0 =

t0 < t1 < . . . < tn = T . Further, let {Yt, t ∈ [0, T ]} be a general Itô process with

dYt = µtdt + σtdXt with Y0 = x. Further, let {Ht, t ∈ [0, T ]} be a regular piecewise

adapted process with respect to X satisfying
∫ T

0
|Hsµs|ds < ∞ and

∫ T
0
H2
sσ

2
sds < ∞.

Then, for t ∈ [0, T ], ∫ t

0

HsdYs =

∫ t

0

Hsµsds+

∫ t

0

HsσsdXs.

Due to the local “path resemblance” of local Brownian motion and Brownian motion,

we also have the following theorem, analogous to the Itô Formula.

Theorem 5.20. Let {Xt, t ∈ [0, T ]} be a local Brownian motion and

Yt = Y0 +

∫ t

0

µsds+

∫ t

0

σsdXs, 0 ≤ t ≤ T.

For f ∈ C2(R;R) and t ∈ [0, T ],

f(Yt) = f(Y0) +

∫ t

0

(
f ′(Ys)µs +

1

2
f ′′(Ys)σ

2
s

)
ds+

∫ t

0

f ′(Ys)σsdXs . (5.5)

Proof. For a canonical time partition 0 = t0 < t1 < . . . < tn = T , we can apply Itô

Formula on each subinterval and obtain

f(Yt) = f(Yti−1
) +

∫ t

ti−1

(
f ′(Ys)µs +

1

2
f ′′(Ys)σ

2
s

)
ds+

∫ t

ti−1

f ′(Ys)σsdXs

for t ∈ [ti−1, ti]. The assertion then follows.

We can also derive the analogous to Itô Formula for functions of two variables. But

before that we need to define the quadratic variation and covariation of a stochastic

integral with respect to a local Brownian motion. Recall the definition of quadratic

variation of a process in Appendix A.1. Let {Xt, t ∈ [0, T ]} be a local Brownian motion

with a canonical time partition 0 = t0 < t1 < . . . < tn = T . For Yt =
∫ t

0
σsdXs, we have

[Y, Y ]T = [Y, Y ]([0, T ]) =
n∑
i=1

[Y, Y ]([ti−1, ti]) =
n∑
i=1

∫ ti

ti−1

σ2
sds =

∫ T

0

σ2
sds.

More generally, for a general Itô process {Yt, t ∈ [0, T ]} such that Yt = Y0 +
∫ t

0
µsds +∫ t

0
σsdXs, the quadratic variation on [0, T ] is [Y, Y ]T =

∫ T
0
σ2
sds.
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The quadratic covariation of two general Itô processes {Yt, t ∈ [0, T ]} and {Zt, t ∈
[0, T ]} with a canonical time partition 0 = t0 < t1 < . . . < tn = T is defined as

[Y, Z]T =
n∑
i=1

[Y, Z]([ti−1, ti]) = lim
δmi→0

n∑
i=1

(Y
s
(i)
j
− Y

s
(i)
j−1

)(Z
s
(i)
j
− Z

s
(i)
j−1

),

where the limit is taken over partitions ti−1 = s
(i)
0 < s

(i)
1 < . . . < s

(i)
mi = ti with δmi =

max1≤j≤mi(s
(i)
j − s

(i)
j−1). For example, suppose dYt = µYt dt + σYt dXt and dZt = µZt dt +

σZt dXt, where X is a local Brownian motion, then [Y, Z]T =
∫ T

0
σYt σ

Z
t dt.

From the definition of the quadratic covariation, we can also deduce the product rule.

d(YtZt) = YtdZt + ZtdYt + d[Y, Z]t .

Now we can state the Itô Formula for two general Itô processes.

Theorem 5.21. Let {Xt, t ∈ [0, T ]} be a local Brownian motion and define Y and Z as

general Itô processes satisfying the following SDE’s

dYt = µYt dt+ σYt dXt and dZt = µZt dt+ σZt dXt.

Then, for F ∈ C2,2(R;R),

F (Yt, Zt) = F (Y0, Z0) +

∫ t

0

(
∂F

∂y
(Ys, Zs)σ

Y
s +

∂F

∂z
(Ys, Zs)σ

Z
s

)
dXs

+

∫ t

0

(
∂F

∂z
(Ys, Zs)µ

Z
s +

∂F

∂y
(Ys, Zs)µ

Y
s +

∂2F

∂y∂z
(Ys, Zs)σ

Y
s σ

Z
s

)
ds

+
1

2

∫ t

0

(
∂2F

∂y2
(Ys, Zs)(σ

Y
s )2 +

∂2F

∂z2
(Ys, Zs)(σ

Z
s )2

)
ds

Proof. For a canonical time partition 0 = t0 < t1 < . . . < tn = T , we can apply Itô

Formula on each subinterval and the assertion follows.

Corollary 5.22. Let {Xt, t ∈ [0, T ]} be a local Brownian motion. Then, for a general

Itô processes dYt = µYt dt+ σYt dXt and a function F ∈ C2,1(R;R), we have

F (Yt, t) = F (Y0, 0) +

∫ t

0

∂F

∂y
(Ys, s)dYs +

∫ t

0

∂F

∂s
(Ys, s)ds+

1

2

∫ t

0

∂2F

∂y2
(Ys, s)d[Y, Y ]s

= F (Y0, 0) +

∫ t

0

(
∂F

∂y
(Ys, s)µ

Y
s +

∂F

∂s
(Ys, s) +

1

2

∂2F

∂y2
(Ys, s)(σ

Y
s )2

)
ds

+

∫ t

0

∂F

∂y
(Ys, s)σ

Y
s dXs.

Next we will show that the notion of stochastic exponential remains valid with proper

local Brownian motions. Let {Yt, t ∈ [0, T ]} satisfy dYt = µtdt + σtdXt where {Xt, t ∈
[0, T ]} is a local Brownian motion with a canonical time partition 0 = t0 < t1 < . . . <
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5. Stochastic calculus

tn = T and (µt)t∈[0,T ] and (σt)t∈[0,T ] are piecewise regularly adapted with respect to X

with
∫ T

0
|µt|dt < ∞ and

∫ T
0
σ2
t dt < ∞. The stochastic exponential of {Yt, t ∈ [0, T ]} is

the process {Ut, t ∈ [0, T ]} with U0 = 1 that satisfies

dUt = UtdYt,

which has the solution UT = eYT−Y0−
1
2

[Y,Y ]T . We need to be careful since the process

{Ut, t ∈ [0, T ]} is not piecewise regularly adapted with respect to Y . However, the

stochastic exponential on [0, T ] can be found by computing stochastic exponential on

each subinterval [ti−1, ti]. For instance, we could start off from the last interval of the

time partition [tn−1, T ] and proceed backwards recursively, i.e on [tn−1, T ] the stochastic

differential equation dUt = UtdYt is well defined and has the solution

UT = Utn−1e
YT−Ytn−1−

1
2

[Y,Y ]([T−tn−1]).

Note that Utn−1 does not depend on t on [T − tn−1] and the term eYt−Ytn−1−
1
2

[Y,Y ]([t−tn−1])

is regularly adapted with respect to Y on [tn−1, T ]. The solution on each interval can be

verified by using the Itô Formula given above. Moreover, the uniqueness can be shown

by considering the process Ũt/Ut, where {Ũt, t ∈ [0, T ]} is another process satisfying the

SDE of U , and show that d(Ũt/Ut) = 0.

Example 5.23 (Black-Scholes model with local Brownian motion). Let {Xt, t ∈ [0, T ]}
be a local Brownian motion and {Yt, t ∈ [0, T ]} satisfy

dYt = µYtdt+ σYtdXt,

where µ ∈ R and σ > 0 are constants. Then, Yt has the solution

Yt = Y0e
(µ− 1

2
σ2)t+σXt , 0 ≤ t ≤ T.

This can be shown by applying the Itô Formula with f(x) = ln x.

Example 5.24 (Ornstein-Uhlenbeck model with local Brownian motion). Let {Xt, t ∈
[0, T ]} be a local Brownian motion and let {Yt, t ∈ [0, T ]} satisfy

dYt = α(β − Yt)dt+ σdXt,

where α, β ∈ R and σ > 0 are constants. Then, Yt has the solution

Yt = Y0e
−αt + β(1− e−αt) + σ

∫ t

0

e−α(t−s)dXs, 0 ≤ t ≤ T.

This can be shown by applying the Itô Formula on f(x, t) = xeαt.
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5.3. Stochastic differential equations with local Brownian motion

Since a proper local Brownian motion is not a semimartingale, there exists no risk-

neutral measure, such that the discounted price will become a martingale, see Harrison

und Pliska [24]. However, we are able to price a financial product with respect to the

real-world probability measure.

Example 5.25 (Option price with respect to the real-world probability measure). Let

{Xt, t ∈ [0, T ]} be a local Brownian motion from Example 2.10. Let us consider the

Black-Scholes SDE

dSt = rStdt+ σStdXt, S0 = s

with r ∈ R+ and σ > 0. Then, for t ∈ [0, T ],

St = se(r− 1
2
σ2)t+σXt .

For 0 < t < 2, the process X is a Brownian motion and hence the density is normal with

mean 0 and variance t. For 0 ≤ s ≤ 1 and t > 2, we obtainXt −X2

X2 −X1

X1 −Xs

∣∣∣∣∣∣
R=r

∼ N3 (0,Σ)

with

Σ =

 t− 2 0 rmin{t− 2, 1− s}
0 1 0

rmin{t− 2, 1− s} 0 1− s

 .

Therefore

Xt −Xs|R = r ∼ N(0, t− s+ 2rmin{t− 2, 1− s}),

which yields the density

fXt−Xs(x) = E [φ(0, t− s+ 2Rmin{t− 2, 1− s}, x)]

such that φ(µ, σ2, x) is a density of a normal random variable with mean µ and variance

σ2 at point x. The expectation is taken with respect to R.

Let f(x) = (x − K)+ be the payoff function of an European call option with strike

K. By using Tonelli’s theorem, we obtain the price of an European call option at time

1 < t < T for strike K, maturity T and the risk-free interest rate r

C(St, t;σ;K,T ; r) = E
[
Ste

σ2

2
(ψ(R)2−(T−t))Φ(d1)−Ke−r(T−t)Φ(d2)

]
with

ψ(R) =
√
T − t+ 2Rmin{T − 2, 1− t}

d1 = σψ(R) + d2

d2 =
ln(St

K
) + (r − 1

2
σ2)(T − t)

σψ(R)
.
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5. Stochastic calculus

Recall that the process {Xt, t ∈ [0, T ]} is a Brownian motion if and only if R = 0 almost

surely. Therefore by inserting R = 0 in the above formula, it is not surprising that we

will get the famous European call option formula obtained by Black and Scholes in [9].

Depending on the distribution of R, the price can be obtained either explicitly or by using

Monte Carlo simulations.

60



Chapter6
Conclusion, discussion

and future outlook

In this thesis we introduced and developed the notion of a local Brownian motion, a process

that behaves similarly to Brownian motion on sufficiently small neighbourhood around

any point in time. If the behaviour of the system is chaotic on some small observation

time interval, but has possibly some dependencies on the whole time interval, the class

of local Brownian motion can be applied. The class of marginal distributions of any local

Brownian motion is the class of distributions that can be represented by the finite sum of

normal distributions and therefore can be fully described by the dependencies of those.

In fact, these normal distributions represent the distributions of the increments of a local

Brownian motion on small neighbourhood. In case that a local Brownian motion is a

Brownian motion, the sum of independent normal increments is simply a normal random

variable. Therefore, using a local Brownian motion instead of simply a Brownian motion

as a driving noise enlarges the class of possible marginal distributions and includes the

normal distribution. The framework of local Brownian motion being a driving noise in

non-deterministic dynamical systems can be used for instance for applications where from

empirical data analysis or other quantitative evidence, the marginal distributions of the

driving noise is not fitted well by normal distribution. We have mentioned in introduction

that it is the case for some time series taken from asset prices.

Furthermore, since our initial idea was to develop the local Brownian motion as a

stochastic driving noise, we chose to define the stochastic integral with respect to a local

Brownian motion is such a way that the tools from stochastic calculus remained valid and

applicable. The main tool from stochastic calculus, the “Itô Formula”, can be applied

for functions of local Brownian motions and was extended to two dimensional case in the
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6. Conclusion, discussion and future outlook

same fashion it was done in stochastic calculus for Brownian motion. We saw that many

techniques can be appropriately established for dealing with stochastic calculus for the

class of local Brownian motion. The disadvantage we had to face was the restriction on

the integrand that had to be imposed. However, the restrictions turned out to be fairly

loose. In particular, it was shown that many SDE’s that can be explicitly solved with

Brownian motion, can also be explicitly solved with a local Brownian motion as a driving

noise.

Since a proper local Brownian motion is not a semimartingale, there exists no equiv-

alent measure to the real-world measure such that the discounted stock price becomes a

martingale. According to the first fundamental theorem in asset pricing theory, a proper

local Brownian motion can not be used for pricing or hedging of tradable financial assets.

However, for any non-tradable financial assets, such as weather derivatives, the finding of

a price via modelling can be done. One would need to adjust the parameters taking either

from empirical statistical analysis or from theoretical assumptions. We did not explore

statistical techniques that could be useful for dealing with this task.

In this work two different families of local Brownian motions were presented with

different families of parameters. In the first construction the family of parameters are

the randomised scaled covariances between the incremental processes. In the second

construction the parameters are uncorrelated copulas that represent the joint distribution

of the incremental processes. In fact, we showed that it is possible to eliminate a linear

dependency from any pair on incremental processes. That means that any copula can be

used to construct a local Brownian motion. The proper choice of the copula should be

made based on the information about the higher order dependencies of the incremental

processes of local Brownian motion. With the financial applications in mind, we believe

that especially the second family of local Brownian motion can lead to a wide variety of

applications, where the linear dependencies do not exist but the increments are assumed

to be not independent.

The future outlook for this work might lay in developing statistical methods for fitting

the parameters of local Brownian motions to the empirical data. One will be required to

estimate the higher order dependencies in order to do so. Moreover, there are two open

questions that remained unanswered:

Open question 1: Based on the idea that the non-linear dependencies between the in-

cremental processes of a proper local Brownian motion exist, we made a conjecture that

a proper local Brownian motion is not a Markov process. In fact, we showed that with

some restrictions on a proper local Brownian motion the statement is true. However, we

were not able to show that the statement is true for all local Brownian motions. Hence

the following question remains open: Can a proper local Brownian motion be a Markov

process?
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Open question 2: Another open question is whether a proper local Brownian motion with

Gaussian marginals exists? We strongly suspect that it does, but did not have enough

time to construct an example. In fact, this question can be answered positively if one can

find a non-Markov process that satisfies the conditions mentioned in Proposition 4.14 but

is not a Brownian motion. The existence of such process remains unknown as well.
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AppendixA
Appendix

The definitions and statements given in this section can be found in many books on the

general theory of stochastic analysis, Brownian motion or stochastic differential equations.

My main reference source were the following books: Athreya und Lahiri [4], Klebaner [32],

Williams und Rogers [56], Revuz und Yor [46], Klenke [33] and Karatzas und Shreve [31].

A.1 Brownian motion

Recall that any probability space can be completed by adding all null sets to its σ-algebra

and extending the probability measure accordingly. Therefore by default, we will assume

that any family of real-valued random variables in this thesis is defined on a complete

probability space.

Definition. Let (Ω,F,P) be a probability space. A filtration, denoted by F = {Ft, t ≥ 0},
is a family of sub-σ-algebras of F such that for each s < t, the property Fs ⊆ Ft holds.

We say a filtration satisfies the usual conditions or is regular, when we mean that the

filtration is complete and right-continuous. Complete means that the trivial σ-algebra F0

is complete, i.e. if B ∈ F0 is a null set and A ⊂ B, then A ∈ F0. Right-continuous means

that for an infinitesimally small move forward in time, the available information does not

change, i.e.

Fs = Fs+ :=
⋂
t>s

Ft

for any s ≥ 0. We can build a regular filtration F∗ from any filtration F by setting

F∗s = Fs+ and completing it. Throughout this thesis, we will assume that any filtered

probability space is equipped with regular filtration, if nothing else stated.
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A. Appendix

Definition. A stochastic process {Wt, t ≥ 0} is called a Brownian motion if

(i) it has stationary increments, i.e. Wt −Ws ∼ N(0, t− s) for any s < t,

(ii) it has independent increments, i.e. Wt −Ws and Wv −Wu are independent for any

s < t < u < v,

(iii) it is continuous in t almost surely.

If a Brownian motion starts at zero, we will call it a standard Brownian motion.

Definition. A random vector (X1, X2, . . . , Xn)T is said to have Gaussian or multivariate

normal distribution if any linear combination of its components is normally distributed,

i.e. for any family {λi, i ∈ {1, 2, . . . , n}} ∈ R, the sum
∑n

i=1 λiXi ∼ N(µ, σ2) for some

parameters µ ∈ R and σ ≥ 0.

Definition. A stochastic process {Xt, t ≥ 0} is said to be Gaussian if all its finite di-

mensional distributions are Gaussian, i.e. for any n ∈ N and any t1, t2, . . . , tn ∈ R+, the

random vector (Xt1 , Xt2 , . . . , Xtn) is Gaussian. A Gaussian process is defined by its mean

and autocorrelation function.

Proposition. A stochastic process {Wt, t ≥ 0} is a standard Brownian motion if and

only if it is a Gaussian process with covariance function

γW (s, t) = E [(Ws − E[Ws])(Wt − E[Wt])] = min{s, t}.

Definition. A stochastic process {Mt, t ≥ 0} defined on a filtered probability space

(Ω,F,F,P) is called an (F,P)-martingale if

(i) M is integrable, i.e. EP[|Mt|] <∞ for any t ≥ 0,

(ii) EP[Mt|Fs] = Ms almost surely for any s < t.

An (F,P)-martingale is called uniformly integrable if the condition

lim
n→∞

sup
t≥0

EP[|Mt|11{|Mt|>n}] = 0

is satisfied.

The uniformly integrability is often used to show that a martingale converges in L1

due to Doob’s second martingale convergence theorem (see Doob [14]).

Definition. Let {Xt, t ∈ [0, T ]} be a process. A filtration FX = {FXt , t ∈ [0, T ]} with

FXt = σ({Xs, s ∈ [0, t]}) is called the natural filtration generated by X.

It is well known that the natural filtration generated by a Brownian motion is not

right-continuous. However, if we complete it, it will satisfy usual conditions.
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A.1. Brownian motion

Definition. A stochastic process {Xt, t ≥ 0} defined on a filtered probability space

(Ω,F,FX ,P) is said to be Markov if for any A ∈ B(R) and any t ≥ 0, s ≥ 0,

P(Xt+s ∈ A|FXt ) = P(Xt+s ∈ A|Xt)

almost surely.

A Markov process has the property that conditional we know the value of the process

at time t, the distribution of the process going forward in time does not depend on the

distribution of the process before t. In other words, given the value of the process now,

the future and the past of the process are independent.

Proposition. Let {Wt, t ≥ 0} be a Brownian motion defined on a filtered probability

space (Ω,F,FW ,P). Then, W is a (FW ,P)-martingale and a Markov process.

It is not hard to see that any process with independent increments is a Markov process.

The converse is not true.

Definition. An F-stopping time τ : Ω → R+ is a non-negative random variable defined

on a filtered probability space (Ω,F,F,P) such that for each t ≥ 0,

{τ ≤ t} ∈ Ft.

If we consider a filtration as a flow of information generated by a stochastic process,

then a stopping time is a random variable such that its occurrence (or nonoccurrence)

before time t depends only on the information generated by a process until time t.

Definition. A stochastic process {Xt, t ≥ 0} is called a (F,P)-local martingale if it

is adapted to F, and there exists a sequence of monotone increasing F-stopping times

(τn)n∈N0 with τn → ∞ as n → ∞ such that for each n ∈ N0, the stopped processes

{Xt∧τn , t ≥ 0} is a uniformly integrable (F,P)-martingale.

Definition. The variation of a function f : R→ R over an interval [a, b] is defined as

Vf ([a, b]) = sup
n∑
i=1

|f(tni )− f(tni−1)|, (A.1)

where the supremum is taken over partitions a = tn0 < tn1 < . . . < tnn = b. The function f

is said to be of finite variation on [a, b], if Vf ([a, b]) <∞.

By triangular inequality, the sums in (A.1) increase if new points are added to the

partition. Hence we can write the definition of variation of a function f : R→ R over an

interval [a, b] as

Vf ([a, b]) = lim
δn→0

n∑
i=1

|f(tni )− f(tni−1)|,

where δn = max1≤i≤n(tni − tni−1).
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A. Appendix

Definition. The quadratic variation of a process {Xt, t ≥ 0} over an interval [0, T ] is

defined as a limit in probability (if it exists)

[X,X]T = [X,X]([0, T ]) = lim
δn→0

n∑
i=1

(Xtni
−Xtni−1

)2,

where the limit is taken over all shrinking1 partitions 0 = tn0 < tn1 < . . . < tnn = T with

δn = max1≤i≤n(tni − tni−1).

Definition. The quadratic covariation of two processes {Yt, t ≥ 0} and {Zt, t ≥ 0} over

an interval [0, T ] is defined as

[Y, Z]T =
1

2
([Y + Z, Y + Z]T − [Y, Y ]T − [Z,Z]T ) .

It is easy to see that quadratic covariation is symmetric and linear. Furthermore, by

using the definition of quadratic variation for processes Y and Z, the quadratic covariation

can be written as a limit in probability (if it exists)

[Y, Z]T = lim
δn→0

n∑
i=1

(Ytni − Ytni−1
)(Ztni − Ztni−1

),

where the limit is taken over all shrinking partitions 0 = tn0 < tn1 < . . . < tnn = T with

δn = max1≤i≤n(tni − tni−1).

Definition. A process is called a semimartingale if it can be written as a sum of local

martingale and a process of finite variation.

In general, the decomposition of a semimartingale is not unique. However, a con-

tinuous semimartingale admits a unique decomposition as a sum of a continuous local

martingale and an adapted continuous process of finite variation. The quadratic variation

of a semimartingale exists on any finite interval. The sum of two semimartingales is a

semimartingale. Therefore by using the polarisation identity, the quadratic covariation of

two semimartingales on any finite interval exists.

Theorem (Lévy’s characterisation theorem). A process {Wt, t ≥ 0} is a standard Brow-

nian motion if and only of it is a continuous (FW ,P)-local martingale with quadratic

variation process [W,W ]t = t for any t ≥ 0.

Proof. See Klebaner [32], Klenke [33] or Revuz und Yor [46].

1Note that if we take the limit over all finite partitions on [0, T ], the limit is called 2-variation. For
Brownian motion the quadratic variation on any finite interval is finite, whereas the 2-variation on any
finite interval is infinite.
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A.2. Hilbert spaces

A.2 Hilbert spaces

Let us recollect some basic properties on Hilbert spaces.

Definition. A function ‖ · ‖ : V → R+ is called a norm if it satisfies

(i) triangle inequality, i.e. ‖v1 + v2‖ ≤ ‖v1‖+ ‖v2‖ for v1, v2 ∈ V ,

(ii) scalar homogeneity, i.e. ‖αv‖ = |α|‖v‖ for α ∈ R and v ∈ V ,

(iii) ‖v‖ = 0 if and only if v = 0, where 0 is a zero vector in V .

A pair (V, ‖ ·‖) of a vector space V and a norm ‖ ·‖ defined on it is called a normed vector

space.

Definition. For 0 < p ≤ ∞, let Lp(Ω,F,P) be the set of all random variables X on

(Ω,F,P) such that ‖X‖Lp <∞, where for 0 < p <∞,

‖X‖Lp = (E [|X|p])min{ 1
p
,1}

and for p =∞,

‖X‖L∞ = inf{k : P({|X| > k}) = 0}

(called the essential supremum of X). Throughout this thesis we will use the notation Lp

for Lp(Ω,F,P).

For 0 < p < 1, the power min{1
p
, 1} makes sure that the space Lp(Ω,F,P) is a vector

space over R (see Athreya und Lahiri [4], p. 89-90).

Definition. A pair (S, d) of a set S and a function d : S × S → R+ is called a metric

space if d satisfies

(i) symmetry condition, i.e. d(x, y) = d(y, x) for x, y ∈ S,

(ii) triangle inequality d(x, y) ≤ d(x, z) + d(z, y) for x, y, z ∈ S,

(iii) d(x, y) = 0 if and only if x = y.

The function d is called a metric on S.

Definition. Let (S, d) be a metric space. We say that (xn)n≥1 is a Cauchy sequence

in (S, d) if for every ε > 0, there exists an N such that for all n,m ≥ N , we have

d(xn, xm) ≤ ε.

Definition. A metric space (S, d) is said to be complete if every Cauchy sequence in

(S, d) converges to an element in S. That is, for every Cauchy sequence (xn)n≥1 in (S, d),

there exists an element x ∈ S such that limn→∞ d(xn, x) = 0.
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In Lp spaces we will define the distance by d(X, Y ) = ‖X − Y ‖Lp for any X, Y ∈ Lp.

Definition. A pair (V, 〈·, ·〉 of a vector space V over R and a function 〈·, ·〉 : V × V → R
that satisfies

(i) symmetry condition, i.e. 〈v, w〉 = 〈w, v〉 for any v, w ∈ V ,

(ii) linearity condition, i.e. 〈a1v1 +a2v2, w〉 = a1〈v1, w〉+a2〈v2, w〉 for all a1, a2 ∈ R and

all v1, v2, w ∈ V ,

(iii) nonnegativity condition, i.e. 〈v, v〉 ≥ 0 for any v ∈ V and 〈v, v〉 = 0 if and only if

v = 0

is called a real inner product space. The function 〈·, ·〉 is called the inner product.

Definition. Let (V, 〈·, ·〉) be a real inner product space. Define the norm on V as ‖ · ‖ :=

〈·, ·〉 12 and for any v, w ∈ V , the metric d(v, w) := ‖v − w‖. Then, if the metric space

(V, d) is complete, the normed vector space (V, ‖ · ‖) is called a Hilbert space.

Theorem. The normed vector space (L2, ‖ · ‖L2) is a Hilbert space.

Proof. See Athreya und Lahiri [4].

A.3 Copulas

Copulas are widely used in applications to present the dependencies between marginal

distributions of a random vector.

Definition. A function f : [0, 1]2 → [0, 1] is called 2-increasing if for any u1, u2, v1, v2 ∈
[0, 1] with u1 < u2 and v1 < v2,

f(u2, v2)− f(u2, v1)− f(u1, v2) + f(u1, v1) ≥ 0.

Definition. A copula (or a two-dimensional copula) is a 2-increasing function C : [0, 1]2 →
[0, 1] such that for every u, v ∈ [0, 1],

C(u, 0) = 0 = C(0, v), C(u, 1) = u and C(1, v) = v.

Theorem. (Sklar’s theorem) Let X and Y be random variables with cumulative distri-

bution functions FX and FY , respectively. Let (X, Y ) be a joint distribution of X and Y ,

with cumulative distribution function FX,Y . Then, there exists a copula C such that

FX,Y (x, y) = C(FX(x), FY (y)) (A.2)

for any x, y ∈ R. If FX and FY are continuous, then C is unique; otherwise, C is uniquely

determined on supp(X)× supp(Y ). Conversely, suppose that C is a copula and FX and

FY are cumulative distribution functions of X and Y , respectively. Then, the function

FX,Y defined in (A.2) is a joint distribution function with marginals FX and FY .

70



A.4. Some extension techniques and results from probability

Proof. See Nelsen [42].

A.4 Some extension techniques and results from prob-

ability

A useful theorem in probability is the monotone class theorem. It provides the recipe on

how to extend a statement that is true on a smaller class of sets called a π-system, to a

σ-algebra generated by it. We will need to use the analogous statement for functions.

Definition. A π-system P on a set Ω is a collection of subsets of Ω such that

(i) P is non-empty,

(ii) for any A,B ∈ P , we have A ∩B ∈ P .

Theorem (Monotone class theorem for functions). Let Ω be a set and S be a π-system

on Ω such that Ω ∈ S. Let H be a vector space of real-valued functions on Ω satisfying:

i) For all A ∈ S, 11A ∈ H,

ii) For an increasing non-negative sequence of functions (fn)n≥1 in H such that f =

limn→∞ fn is bounded, we have f ∈ H.

Under these assumptions, H contains all real-valued, bounded and σ(S) measurable func-

tions on Ω.

Proof. See Chung [11].

In functional analysis, the continuous linear extension theorem2 is used to extend a

bounded linear transformation defined on a normed vector space to its completion. This

theorem will be used to define the stochastic integral with respect to a local Brownian

motion.

Theorem (Hahn-Banach Theorem). Let U be a normed vector space with completion Ū

and V be a complete normed vector space. Further, let T : U → V be a bounded linear

transformation. Then, there exists a unique extension T̄ : Ū → V with the same operator

norm as T .

Proof. See Rynne und Youngson [48].

Definition. Let X be a random variable. The characteristic function of X is a function

ϕX : R→ C such that

ϕX(t) = E
[
eitX

]
=

∫
R
eitx dFX(x).

2Also called bounded linear transformation theorem.
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A characteristic function completely determines the distribution of a random variable.

It is also a useful tool to show that a sequence of random variables converges to another

random variable in distribution, as given by the next theorem due to Lévy.

Theorem (Lévy’s continuity theorem). Suppose a sequence of random variables (Xn)n≥1

has a corresponding sequence of characteristic functions (ϕXn)n≥1, that converges point-

wise to a function ϕ, i.e.

ϕXn(t)→ ϕ(t) for any t ∈ R

as n→∞. Then, the following statements are equivalent:

(i) Xn converges in distribution to some random variable X, i.e. the sequence of FXn

converge at every continuity point to FX ,

(ii) ϕ is a characteristic function of X,

(iii) ϕ is continuous in t.

Proof. See Williams [55].

Note that the sequence of random variables (Xn)n≥1 in Lévy’s continuity theorem does

not need to be defined on the same probability space.

Let two random variables be independent. It is easy to show that if each of them is

normally distributed, then their sum is also normally distributed. The following theorem,

which is due to Cramér, gives the converse statement.

Theorem (Cramér’s Theorem). Let X and Y be two independent random variables such

that the sum X + Y is normally distributed. Then, X and Y are normally distributed.

Proof. See Cramér [12].

A.5 Stochastic calculus

In this subsection we will only consider stochastic calculus with respect to Brownian

motion. However, the general theory for stochastic calculus is defined for semimartingales

as an integrator process. Moreover, some extensive work has been done in the area that

defines the stochastic integral with respect to a Gaussian process (also in case the process

is not a semimartingale) using Malliavin calculus. One of the prominent classes of such

processes is called a class of fractional Brownian motions (see Biagini u. a. [7] and Alòs

und Nualart [2]).
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Definition. A function that has right and left limits at any point of the domain and have

one-sided limits at the boundary is called regular. A right-continuous functions with left

limits is called càdlàg.3

Regular functions are considered to be well behaved since the only discontinuities

they might have are jumps. Stochastic calculus can easily deal with functions having

jump discontinuities (e.g. see Klebaner [32], chapter 9 or Pascucci [44], chapter 14).

Definition. Let ([0, T ]×Ω,B([0, T ])⊗FT ,P) be a probability space where B([0, T ])⊗FT

is the product σ-algebra on the product space ([0, T ] × Ω). A process {Ht, t ∈ [0, T ]}
defined on this space is said to be progressively measurable if for any time t, the map

[0, t]× Ω→ R (s, ω) 7→ Hs(ω)

is B([0, t])⊗ Ft-measurable. This implies that {Ht, t ∈ [0, T ]} is Ft-adapted.

Progressively measurable processes are important for definition of Itô integral. Every

adapted right-continuous with left limits or left-continuous with right limits process is

progressively measurable (see Klebaner [32], p.93).

Definition. Let {Xt, t ∈ [0, T ]} be a process. We will say that a process defined on

([0, T ] × Ω,B([0, T ]) ⊗ FXT ,P) is regular adapted with respect to X, if it is càdlàg and

progressively measurable.

The next theorem gives the definition of the Itô integral and its main properties.

Theorem (Itô Integral). Let {Wt, t ∈ [0, T ]} be a Brownian motion. Further, let the

process {Ht, t ∈ [0, T ]} be regular adapted with respect to W such that
∫ T

0
H2
t dt < ∞

almost surely. Then, ∫ T

0

HtdWt

is called an Itô integral and has the following properties:

(i) zero-mean property, i.e. E
[∫ T

0
HtdWt

]
= 0,

(ii) Itô isometry property, i.e. if
∫ T

0
E[H2

t ]dt <∞, then

E

[(∫ T

0

HtdWt

)2
]

=

∫ T

0

E
[
H2
t

]
dt.

Moreover, let us define an integral process as
∫ t

0
HsdWs :=

∫ T
0
Hs11[0,t](s)dWs. Then, the

process {
∫ t

0
HsdWs, t ∈ [0, T ]} is an (FW ,P)-martingale if

∫ T
0
E[H2

t ]dt <∞.

3In French “continue à droite, limite à gauche”, which means “right continuous with left limits”.
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Definition. For a deterministic square integrable processes on [0, T ], the Itô integral is

also called the Wiener integral.

Theorem (Itô Formula). Let {Wt, t ∈ [0, T ]} be a Brownian motion and F ∈ C2(R;R).

Then, for any t ∈ [0, T ],

F (Wt) = F (W0) +

∫ t

0

F ′(Ws)dWs +
1

2

∫ t

0

F ′′(Ws)ds

Definition. Let {Wt, t ∈ [0, T ]} be a Brownian motion. Further, let {µ(x, t) : x ∈ R, t ∈
[0, T ]} and {σ(x, t) : x ∈ R, t ∈ [0, T ]} be measurable functions. Consider the stochastic

differential equation (SDE)

dYt = µ(Yt, t)dt+ σ(Yt, t)dWt (A.3)

that must be interpreted as a stochastic integral equation (SIE)

Yt = Y0 +

∫ T

0

µ(Yt, t)dt+

∫ T

0

σ(Yt, t)dWt. (A.4)

A stochastic process {Yt, t ∈ [0, T ]} is said to be a solution of SDE (A.3) if it satisfies SIE

(A.4) almost surely with the following conditions:

(i)
∫ T

0
|µ(Yt, t)|dt <∞ almost surely

(ii) σ(Yt, t) is a regular adapted process with respect to W and
∫ T

0
σ(Yt, t)

2dt < ∞
almost surely

The process {Yt, t ∈ [0, T ]} is called Itô process or diffusion process with drift µ(x, t) and

diffusion σ(x, t).

The following theorem gives conditions on the parameters of the SDE for the existence

and uniqueness of a strong solution. The adjective “strong” signifies that the solution of

the stochastic differential equation exists on the same probability space as the underlying

Brownian motion.

Definition. A measurable function f : [0, T ] × R → R is said to satisfy the Lipschitz

condition in x if there exists a constant K > 0 such that

|f(t, x)− f(t, y)| ≤ K|x− y|

for any t ∈ [0, T ] and any x, y ∈ R.

Definition. A measurable function f : [0, T ]×R→ R is said to satisfy the linear growth

condition in x if there exists a constant K > 0 such that

|f(t, x)| ≤ K(1 + |x|)

for any t ∈ [0, T ] and any x ∈ R.
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Theorem (Existence and uniqueness). Let {Wt, t ∈ [0, T ]} be a Brownian motion. If the

following conditions are satisfied

(i) the functions {µ(x, t) : x ∈ R, t ∈ [0, T ]} and {σ(x, t) : x ∈ R, t ∈ [0, T ]} are

locally Lipschitz in x uniformly in t, i.e. for every T and N , there exists a constant

K(T,N) > 0 such that for all |x|, |y| ≤ N and any t ∈ [0, T ],

|µ(x, t)− µ(y, t)|+ |σ(x, t)− σ(y, t)| < K|x− y|,

(ii) the functions {µ(x, t) : x ∈ R, t ∈ [0, T ]} and {σ(x, t) : x ∈ R, t ∈ [0, T ]} satisfy

linear growth condition, i.e. there exists a constant K > 0 such that for all x ∈ R
and any t ∈ [0, T ],

|µ(x, t)|+ |σ(x, t)| ≤ K(1 + |x|),

(iii) Z is FW0 -measurable and E[Z2] <∞,

then the SDE

dYt = µ(Yt, t)dt+ σ(Yt, t)dWt, Y0 = Z

has a unique strong solution.

Proof. See Rogers und Williams [47].

Theorem (Itô Formula for 2-dimensional functions). Let {Yt, t ∈ [0, T ]} and {Zt, t ∈
[0, T ]} be two processes. Suppose that the differentials for Y and Z are defined, the

quadratic variations for each process exists, and furthermore the quadratic covariation

between two processes exists. Then, for F ∈ C2,2(R;R),

F (Yt, Zt) = F (Y0, Z0) +

∫ t

0

∂F

∂y
(Ys, Zs)dYs +

∫ t

0

∂F

∂z
(Ys, Zs)dZs

+
1

2

∫ t

0

∂2F

∂y2
(Ys, Zs)d[Y, Y ]s +

1

2

∫ t

0

∂2F

∂z2
(Ys, Zs)d[Z,Z]s

+

∫ t

0

∂2F

∂y∂z
(Ys, Zs)d[Y, Z]s (A.5)

Proof. See Revuz und Yor [46] or Klebaner [32].

For the Itô process satisfying SDE (A.3), we have

[Y, Y ]t =

∫ t

0

σ2
sds.

Furthermore, for Itô processes dYt = µYt dt+σ
Y
t dXt and dZt = µZt dt+σ

Z
t dXt, the quadratic

covariation exists and is

[Y, Z]t =

∫ t

0

σYs σ
Z
s ds
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for any t ∈ [0, T ]. Therefore the product rule for two Itô processes

d(YtZt) = YtdZt + ZtdYt + d[Y, Z]t

for t ∈ [0, T ] holds.

Theorem (Itô Formula for two Itô processes). Let {Wt, t ∈ [0, T ]} be a Brownian motion

and define Y and Z as Itô processes satisfying the following SDE’s

dYt = µYt dt+ σYt dWt and dZt = µZt dt+ σZt dWt.

Then, for F ∈ C2,2(R;R),

F (Yt, Zt) = F (Y0, Z0) +

∫ t

0

(
∂F

∂y
(Ys, Zs)σ

Y
s +

∂F

∂z
(Ys, Zs)σ

Z
s

)
dWs

+

∫ t

0

(
∂F

∂z
(Ys, Zs)µ

Z
s +

∂F

∂y
(Ys, Zs)µ

Y
s +

∂2F

∂y∂z
(Ys, Zs)σ

Y
s σ

Z
s

)
ds

+
1

2

∫ t

0

(
∂2F

∂y2
(Ys, Zs)(σ

Y
s )2 +

∂2F

∂z2
(Ys, Zs)(σ

Z
s )2

)
ds

Proof. Application of (A.5) for two Itô processes yields the assertion.

Corollary. Let {Wt, t ∈ [0, T ]} be a Brownian motion. Then, for an Itô processes dYt =

µYt dt+ σYt dWt and a function F ∈ C2,1(R;R), we have

F (Yt, t) = F (Y0, 0) +

∫ t

0

∂F

∂y
(Ys, s)dYs +

∫ t

0

∂F

∂s
(Ys, s)ds+

1

2

∫ t

0

∂2F

∂y2
(Ys, s)d[Y, Y ]s

= F (Y0, 0) +

∫ t

0

(
∂F

∂y
(Ys, s)µ

Y
s +

∂F

∂s
(Ys, s) +

1

2

∂2F

∂y2
(Ys, s)(σ

Y
s )2

)
ds

+

∫ t

0

∂F

∂y
(Ys, s)σ

Y
s dWs.

Proof. Application of the theorem above with µZt = 1 and σZt = 0 yields the assertion.
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[34] Kolmogorov, Andrĕı: Foundations of the theory of probability: Second English

Edition

[35] Lindvall, T.: Lectures on the Coupling Method. Dover Publications, Incorporated,

2002 (Dover Books on Mathematics Series). – URL https://books.google.com.

au/books?id=GUwyU1ypd1wC. – ISBN 9780486421452
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