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Abstract 

 

Fractures in rock or rock-like materials play a vital role in many geophysical processes and 

engineering applications involving rocks, such as excavations, earthquakes, rock blasts and 

energy extraction of gas and petroleum. Numerous experimental studies have been conducted 

to characterise mechanical and fracture properties of these materials, as well as to investigate 

their failure mechanisms. In parallel with this, numerous constitutive models have also been 

developed, taking into consideration insights from the experimental studies, to describe the 

material responses under various loading conditions. However, most existing constitutive 

models developed at laboratory scale do not possess intrinsic length scale, thus often failing to 

correctly describe failure mechanisms of rock materials when being used for large-scale 

engineering applications. Consequently, the use of existing models for large-scale applications 

must be undertaken with care, as it can lead to inaccurate predictions, over-engineered designs 

or, in the worst scenario, catastrophic disasters such as mine tunnel collapses or leakage of 

poisonous gases.  

In order to enhance the capability of existing computational tools for modelling rock fractures, 

the aim of this research is to develop an advanced computational framework that includes 

intrinsic spatial and temporal scales. In this computational framework, a new continuum-based 

constitutive model with embedded discontinuity is developed and then incorporated into the 

mesh-free smoothed particle hydrodynamics (SPH) method, capable of handling problems 

involving complex fracture networks. In particular, a length scale parameter is introduced into 

the constitutive equations to take into account the relative size of the fracture process zone and 

its surrounding rock masses, thereby naturally capturing the spatial scale effects of rock 

fractures. A mixed-mode cohesive fracture law for capturing the plastic and damage evolutions 

of material under various loading conditions is formulated and coupled with the continuum 

constitutive framework with the embedded discontinuity that possesses the length scale effect. 

The combination of the two constitutive models results in a novel continuum constitutive model 

capable of predicting mixed-mode rock fractures across scales. 

Apart from the spatial scale effect, the strong dependence of fracture processes and mechanical 

properties of rocks on loading rates is also considered in this study, using two different 

approaches. In the first approach, the strain rate effect on tensile strength is incorporated into 

the mixed-mode cohesive fracture model, which is represented by a dynamic increase factor 



xi 

 

with respect to the strain rate. In this approach, the boundary condition is treated in the same 

way as quasi-static cases in which a constant velocity is applied to the boundary particles. In 

the second approach, the strain rate effect is introduced by applying an elliptical-shaped force 

history to the boundary particles. The rate effect of rocks, in this case, can be automatically 

captured thanks to the dynamic nature of SPH method.  

The proposed framework is shown to be capable of dealing with complex crack patterns and 

large deformations because the fracture patterns are represented by a set of damaged SPH 

particles, each of which possesses its own fracture process zone in arbitrary orientation 

depending upon the stress condition. This new framework can also predict the underlying 

failure mechanisms of different rock types under a wide range of loading conditions. 

Importantly, the proposed framework is also able to take into account intrinsic regularisation 

effects and size-dependent behaviour, thanks to the introduction of a length scale parameter 

into the constitutive structure. Furthermore, the proposed numerical approach is shown to 

successfully capture the strain rate effect on mechanical properties and fracturing processes of 

rocks for comparison with experimental results. To this end, this research provides an accurate 

and realistic numerical approach capable of modelling mixed-mode complex rock fractures 

across spatial and time rate scales. 
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Chapter 1  

Introduction 

 

1.1. Problem Statement 

Rock fractures plays an important role in both civil and mining engineering applications. 

Understanding rock fracture processes under a wide range of loadings will contribute to the 

reduction of both the cost of engineering projects and the risks that exist at construction sites. 

Common engineering activities which involve rock fracture problems are as follows: first, 

tunnel construction requires the control of rock behaviour, especially when excavating 

techniques are used; second, the mining industry specifies certain rock sizes for mineral 

samples, thus, setting the loading rates at which the crusher is operated to output such mineral 

is critical, requiring excellent understanding of rock behaviour under dynamic loads; third, 

pit/foundation excavation in rock materials using blasting techniques must be backed up with 

good knowledge of rock behaviour in order to create the desired geometry of the excavation 

area. These applications all indicate the importance of a comprehensive understanding of the 

behaviour of rock fractures.  

In the past few decades, both experimental and numerical analyses have been conducted to 

simulate rock fractures. In experimental studies, rock mechanical and fracture properties have 

been intensively investigated by conducting uniaxial or triaxial compression tests (Frew et al. 

2010), tensile tests (Asprone et al. 2009) and shear tests (Lipkin et al. 1979). The findings show 

that the mechanical properties of rock, such as compression strength, tensile strength, shear 

strength and dynamic fracture toughness, are strongly affected by the loading/strain rates. 

Moreover, experimental results show that the behaviour of rock fractures is also dependent on 

rock size under both quasi-static and dynamic loadings (Li et al. 1993). Many attempts have 

been made to derive empirical equations to express the relationship between the loading/strain 
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rate and the strengths based on these laboratory results. However, the mechanism of fracture 

behaviour of rock is still unclear.  

On the other hand, numerical approaches have been developed to tackle this problem. Studies 

in this area have been conducted based on both classical continuum theory and discontinuous 

theory. In classical continuum theory, however, it is well known that the computational 

solutions present ill-posed boundary problems as well as mesh dependency problems when the 

constitutive relation comes into a softening region. Several attempts have been made to address 

these issues in different ways through introducing a smeared crack band (Bažant and Oh 1983), 

a high order strain gradient (Askes et al. 2002), rate-dependent theories (Saksala 2010) and 

extended finite element method (Belytschko and Black 1999). Although these remedial 

approaches can predict the fracture behaviour to a limited extent, most ignore the size and 

loading rate effects observed in the laboratory. Moreover, the underlying constitutive 

relationships adopted in these approaches rely heavily on the stress-strain curve calibrated from 

experiments, thus failing to provide an accurate solution under loading rates beyond the 

calibration ranges. These problems in classical continuum theory make it difficult to reliably 

predict rock fracture. Discontinuum-based methods show more flexibility when dealing with 

rock fractures. Examples are discrete element methods (Cundall and Strack 1979), 

discontinuous deformation analysis (Mortazavi and Katsabanis 2001), manifold methods (Shi 

1992) and the hybrid FEM/DEM method (Coggan, Pine et al. 2003). Unlike continuum-based 

methods, they present the computation domain as an assembly of separate blocks or particles, 

and thus providing good capacity to deal with large deformation and complete detachment 

problems. However, the computational costs incurred are prohibitively high for even a 

laboratory-size simulation, due to the discrete nature of the modelling, not to mention a real-

life engineering scale.  

The outline provided highlights the current knowledge gap in modelling rock fractures. To 

address this problem, a robust computational framework that possesses both intrinsic length 

and time scales capable of describing size- and rate-dependent behaviour under complex 

loadings is needed. 

1.2. Aims and Scope of the Study 

This study aims to develop a robust computational model to simulate rock fractures under a 

wide range of loading conditions and also to predict the loading effect and the size effect on 

rock fracture behaviour. Emphasis is placed on developing an advanced continuum constitutive 
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model with embedded discontinuity. The novel constitutive model will be incorporated into a 

robust computational approach based on smoothed particle hydrodynamics (SPH) for 

simulating the behaviour of rock fractures with high computation efficiency.  

The necessary objectives to achieve the stated aim of this project are as follows: 

1. To develop a robust SPH framework for simulation of rock fractures; 

Although traditional SPH has been widely used in many geoengineering applications, it 

still suffers some inherent numerical instabilities such as tensile instability and particle 

inconsistency, especially when SPH particles experience tensile loading. As rock fracture 

problems are closely related to tensile loading or tensile-shear loading, some 

enhancements must be implemented to improve the numerical stability of the SPH 

framework in simulating rock fracture problems.   

2. To develop a continuum constitutive model with embedded time and length effects to 

simulate rock fractures under various loading conditions; 

A continuum-based constitutive framework with embedded discontinuity will be proposed 

by combining a double-scale continuum framework with an intrinsic length scale and a 

mixed-mode rate-dependent cohesive fracture law. For this purpose, a size-dependent 

constitutive model based on the double-scale model is proposed to capture the size effect 

on the material under pure mode I loading. Then the constitutive model is further developed 

for predicting both tensile and shear failure at the constitutive level by incorporating a 

mixed-mode cohesive fracture law. The final part of the development of the constitutive 

model is the introduction of a rate-sensitive component into the cohesive fracture law in 

order to capture the rate-dependent behaviour of rock fractures.  

3. To accurately predict the rock fracturing processes across spatial and temporal scales by 

using the novel constitutive model and the new SPH numerical framework. 

In the final research aim, the novel constitutive model is incorporated into the new SPH 

framework for developing a new continuum numerical framework in simulating dynamic 

rock fractures. The proposed framework is capable of predicting rock fracturing processes 

under a wide range of loading conditions. Due to the inclusion of length- and rate-sensitive 

parameters in the constitutive model and the dynamic nature of the SPH method, the 

proposed numerical framework is capable of  predicting the effects of size and loading 

rates on rock fractures. 
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The contribution of this study will be the establishment of an accurate and realistic approach 

for predicting rock fractures under a wide range of complex loadings. 

1.3. Outline of the Thesis 

This thesis is organised into eight chapters which can be grouped into four parts, shown in 

Figure 1.0–1. The first group includes the introduction of this thesis in Chapter 1 and a literature 

review of rock fractures in Chapter 2. The second group is the numerical methodology 

consisting of the SPH framework (Chapter 3) and constitutive models for rock fractures 

(Chapter 4). The third group is the key part of this thesis, which presents the numerical results 

and discussion of this research on rock fractures. This section consists of three chapters 

(Chapters 5-7). The last section is the conclusions and recommendations for future research.  

A description of each chapter in this thesis follows. 

Chapter 1 is the introduction of this thesis. The background of rock fractures has been provided, 

followed by the research aims in this study. 

Chapter 2 comprehensively presents a review of extant literature on rock fractures. Analytical, 

experimental and numerical studies of rock fractures are reviewed. The effects of loading rate 

and specimen size on the behaviour of rock fractures are emphasised. In particular, an overview 

of existing numerical methods for simulating rock fractures is provided. The limitations of each 

approach in capturing complex fracturing processes across spatial and temporal scales are 

discussed. This underlies the motivation in this study to develop a continuum-based rate-

dependent computational approach that possesses an intrinsic length scale for modelling rock 

fractures under both quasi-static and dynamic loading conditions. 

Chapter 3 presents the mesh-free smoothed particle hydrodynamics (SPH) framework which 

is adopted in this study as the numerical platform for the implementation of constitutive models. 

The basic formulations of SPH are listed, followed by the introduction of some enhancements 

for minimising the inherent instabilities in traditional SPH, thereby improving the stability of 

numerical solutions. Some SPH simulation examples on elastic solids are presented at the end 

of this section. 

Chapter 4 is about constitutive modelling of rock fractures. In this chapter, existing constitutive 

frameworks for modelling of fractures are reviewed, from simple frameworks such as the 

damage model to complex frameworks such as the strong discontinuity approach. Key 

formulations, together with the strengths and limitations of the existing models, are listed. 
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Based on the review of those models, a constitutive concept to correctly represent localised 

failure of rocks is established.  

 

Figure 1.0–1. Thesis outline 
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In Chapter 5, the behaviour of rock fracture and its size effect under pure mode I loading is 

simulated using the proposed computational framework by combining the Taylor SPH 

framework with a new continuum constitutive model containing an embedded fracture process 

zone. As Taylor SPH is an improved SPH method which does not suffer from any tensile 

instability, and meanwhile the proposed constitutive model takes into account the localisation 

of failure within the fracture process zone of rocks, the new framework can easily handle large 

deformation occurring in rock fractures. The size effect on rock fractures is also examined in 

this section and compared with experiments. Although only tensile failure is captured, due to 

the incorporation of a simple pure mode I cohesive fracture law, this section provides a 

fundamental basis bridging the constitutive and structural aspects, via a length scale directly 

obtained from the particle size, for further development in SPH towards better modelling of 

fracture and fragmentation.  

Chapter 6 focuses on the mixed-mode failure of rock materials under quasi-static loading. A 

computational framework based on the traditional SPH is developed, providing an alternative 

method for simulating rock fractures apart from the one proposed in Chapter 5. To solve the 

numerical instabilities in traditional SPH, some techniques such as artificial viscosity, tensile 

instability and corrective SPH are used. Unlike the work presented in Chapter 5 which focuses 

on pure mode I fracture, the fracture process zone in this study is described by a mixed-mode 

cohesive fracture law for capturing the plastic and damage evolutions of material under various 

loading conditions. The constitutive behaviour under mixed-mode conditions is examined, 

followed by simulation of mixed-mode rock applications. 

In Chapter 7, two numerical approaches to simulate rock fractures under dynamic loadings are 

proposed, dividing this chapter into two sections. In the first approach, the computational 

framework proposed in Chapter 6 is further developed by incorporating the strain rate effect 

for rock or similar quasi-brittle material on tensile strength into the mixed-mode cohesive 

fracture model. In the second approach, an elliptical force history with time is imposed on the 

boundary particles in SPH for simulating dynamic loading. Thanks to the dynamic nature of 

SPH, the computational approach presented in Chapter 6 together with the implementation of 

dynamic loading can handle dynamic rock fractures naturally without any special treatment. 

Both approaches are validated by comparing the numerical results with the experimental results.  

Chapter 8 presents the conclusions and recommendations for future research, summarising the 

main findings of the research and providing suggestions for future work on this topic. 
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Chapter 2  

Literature Review 

 

2.1. Introduction 

Understanding of rock fracture behaviour under complex loading conditions is important in 

civil engineering applications and energy exploration activities such as tunnel construction, oil 

and gas extraction and underground water transport. Numerous research efforts have been 

made in investigating rock fracture problems under a wide range of loadings in the last few 

decades, which can be divided into analytical, experimental and simulation studies. 

Analytical studies of rock fractures are introduced first, which can be traced back to the 

invention of linear elastic fracture mechanics in the previous century. Since then, many criteria, 

including the maximum stress criterion, the minimum strain energy density criterion and the 

maximum energy release rate criterion, have become well established and applied for 

predicting mixed-mode fracture initiation and propagation. The linear elastic fracture 

mechanics and mixed-mode theoretical criteria, together with basic modes of fracturing are 

briefly explained in Section 2.2. Experimental studies of rock fractures are also reviewed in 

this chapter. The popular experimental tests used for quasi-static and dynamic rock strengths 

and fracture properties are introduced in detail, which include uniaxial or triaxial compression 

tests, tensile tests, shear tests, and rock fracture tests under quasi-static and dynamic loadings. 

The influences of loading rates and specimen size on the fracture behaviour and mechanical 

properties of rocks are highlighted. After the review of experimental studies in Section 2.3, the 

popular constitutive models and numerical methods for simulating rock fractures are discussed 

in Section 2.4. In particular, a detailed review of numerical methods for rock fractures is 

provided, with reference to their advantages and limitations, which can be divided into four 

categories: continuum mesh-based methods, continuum mesh-free methods, discontinuum-

based methods and coupled methods. After all the reviews of analytical, experimental and 
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numerical studies on rock fractures, the existing knowledge gap for modelling rock fractures 

is detailed. 

2.2. Theory of fracture mechanics 

2.2.1. Modes of fracture 

In fracture mechanics, fracture of a solid body which consists of a crack can be divided into 

three basic types, Mode I, Mode II and Mode III fractures (Irwin 1958). The division is based 

on how the two crack faces move with respect to each other when subjected to external loads. 

Supposing that a crack of a solid body is located in a local Cartesian coordinate system, the 

crack front which is perpendicular to the x-axis as depicted in Figure 2.0–1, the relative 

movements due to different modes of fracture or failure can be described as follows: 

 

 

Figure 2.0–1. Stress loading modes: (a) Mode I (tension); (b) Mode II (in-plane shear); (c) Mode III 
(out-of-plane shear) 

 

 In Mode I, the crack tip is subjected to a displacement of 𝑢𝑦 , resulting in fracture 

propagating within its plane direction. This fracture mode normally occurs when a tensile 

loading is applied along the y-axis; 

 In Mode II, the two crack surfaces slide next to each other along the x-axis, which means 

that in-plane shear displacement is visible. This fracture mode normally occurs when a 

shear stress parallel to the fracture plane but perpendicular to the crack tip is applied; 
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 In Mode III, the two crack surfaces experience shear displacement in the z-axis direction. 

This fracture mode normally occurs when a shear stress parallel to the fracture plane and 

parallel to the crack tip is applied. 

Any fracture mode in a cracked body can be described by one of the above three basic modes 

or any combination of them. It is noted here that in real applications, rock fractures normally 

occur under very complex loading conditions. And the failure of rocks is also highly affected 

by other factors such as the size, temperature and confining pressures. Thus, a specific mode 

of failure is not necessarily induced by the same mode of loading. 

2.2.2. Stress field ahead of the crack front 

These three basic modes of failure or deformation can be expressed by the displacements and 

the associated stresses near the tip of a crack using Westergaard’s function. The details of 

derivations and formulations can be found in Westergaard (1939). Supposing that a crack exists 

in a two-dimensional linearly elastic solid, the simple form of displacements and stresses 

defining those three modes can be represented as: 

𝑢𝑖 =
𝐾𝑘

8𝜇𝜋
√2𝜋𝑥𝑓𝑖(𝜃)                                              (2.1a) 

𝜎𝑖𝑗 =
𝐾𝑘

√2𝜋𝑥
𝑓𝑖𝑗(𝜃)                                                   (2.1b) 

where 𝑢𝑖  and 𝜎𝑖𝑗  are the displacement and the stress tensor of an analysed representative 

volume element (RVE) in the local Cartesian coordinate system,  𝐾𝑘 is the stress intensity 

factor of different modes 𝑘 ; 𝜃  and 𝑥  are respectively the angle and distance between the 

analysed RVE and the crack plane; 𝑓 is a geometric stress factor depending on 𝜃. 

In Mode I failure, the explicit formulations of displacements and associated stress field near 

the crack tip are expressed as: 

{
𝑢𝑥 =

𝐾𝐼

8𝜇𝜋
√2𝜋𝑥 [(2𝜅 − 1) cos

1

2
𝜃 − cos

3

2
𝜃]

𝑢𝑦 =
𝐾𝐼

8𝜇𝜋
√2𝜋𝑥 [(2𝜅 + 1) sin

1

2
𝜃 − sin

3

2
𝜃]

                          (2.2a) 

{
 
 

 
 𝜎𝑥𝑥 =

𝐾𝐼

√2𝜋𝑥
cos

1

2
𝜃 (1 − sin

1

2
𝜃 cos

3

2
𝜃)

𝜎𝑦𝑦 =
𝐾𝐼

√2𝜋𝑥
cos

1

2
𝜃 (1 + sin

1

2
𝜃 cos

3

2
𝜃)

𝜎𝑥𝑦 =
𝐾𝐼

√2𝜋𝑥
sin

1

2
𝜃 cos

3

2
𝜃 cos

1

2
𝜃

                                 (2.2b) 
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where 𝐾𝐼 is the applied stress intensity factor under Mode I condition, which depends on the 

applied load and the crack geometry. When 𝜃 = 0, the Mode I stress intensity factor of a 

cracked solid with a crack length of 𝑎 is related to the final applied loading 𝜎0, written as: 

𝐾𝐼 = 𝜎0√𝜋𝑎                                                          (2.3) 

It can be seen from Equation (2.2b) that the stresses have an inverse square root singularity at 

the crack tip ( 𝑥 = 0 ), which makes the classical strength of materials failure criteria 

inapplicable (Sun et al. 2012). Based on this observation,  Irwin (1959) proposed a fracture 

criterion in which crack propagation occurs when the stress intensity factor reaches a critical 

value. In Mode I failure, this stress-field-based approach can be described as:  

𝐾𝐼 = 𝐾𝐼𝐶                                                          (2.4) 

where 𝐾𝐼𝐶  is the fracture toughness of the material, which characterises the resistance of a 

material to initiation and the propagation of a crack. The value of fracture toughness can be 

measured using a standard specimen in experiments.  

Irwin’s theory focuses on the stress field near the crack tip within a solid exhibiting linear 

elastic behaviour. Therefore, the validity of this theory is based on the assumption that the 

fracture process zone is sufficiently small so that it is well contained inside the singular stress 

field expressed in Equation (2.2b).  

2.2.3. Energy release rate  

Another important material parameter related to solid fractures is the energy release rate 𝐺. 

This parameter characterises the rate at which energy is lost due to the fracture occurring, which 

is defined as follows: 

𝐺 = −
𝑑Π

𝑑𝑎
                                                        (2.5) 

where 𝑑Π is the change in the potential energy, which is a function of the crack length 𝑑𝑎, 

expressed as: 

−𝑑Π = 2𝑑𝑎𝛾     or    −
𝑑Π

𝑑𝑎
= 2𝛾                                            (2.6) 

where 𝛾 is the surface energy per unit area, which can be calculated from solid-state physics. 

In 1921, Griffith proposed another fracture criterion based on the energy balance during crack 

extension, which states that the fracture will begin to propagate when the energy release rate 

reaches the critical energy release rate: 
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𝐺 = 𝐺𝑐 = 2𝛾                                                     (2.7) 

where 𝐺𝑐 is the critical energy release rate, which can be calculated experimentally.  

The failure load, 𝜎𝑓 is defined by Griffith’s theory as follows: 

𝜎𝑓 = √
2𝐸′𝛾

𝜋𝑎
                                                       (2.8) 

where 𝐸′ = 𝐸 for plane stress and 𝐸′ = 𝐸/(1 − 𝜈2) for the plane strain condition in which 𝐸 

is the Young’s modulus, 𝜈 the Poisson’s ratio. 

The failure load can be linked with the energy release rate by combining Equations (2.7) and 

(2.8) as: 

𝐺𝑐 =
𝜋𝑎𝜎𝑓

2

𝐸′
                                                          (2.9) 

Unlike the Irwin approach, which focuses on the local stress field near the crack tip, the Griffith 

surface energy criterion considers the global energy balance during the crack. However, both 

these criteria are developed based on the linear elasticity and are equivalent in elastic media, 

expressed as: 

𝐾𝐼 = 𝐾𝐼𝐶 ↔ 𝐺 = 𝐺𝑐                                            (2.10) 

The fracture toughness and critical energy release rate can be therefore linked together by 

making 𝜎𝑓 = 𝜎0 and then combining Equations (2.3) and (2.9), finally leading to: 

𝐺𝑐 =
𝐾𝐼𝐶
2

𝐸′
                                                       (2.11) 

Equation (2.11) has been widely used to link critical energy release with fracture toughness. In 

fracture mechanics, two novel concepts (stress intensity factor and energy release rate) were 

introduced, which distinguish fracture mechanics from the classical failure criteria (Sun et al. 

2012). Those two quantities also lay the foundation of linear elastic fracture mechanics in 

which the solid with a crack is considered as linear elastic and the nonlinear effects are ignored. 

Since the invention of the linear elastic fracture concept, many theories have been proposed to 

predict crack propagation in the mixed-mode condition by linking the principles of fracture 

mechanics to practical fracture problems. For example, the maximum tangential stress criterion 

was originally developed by Erdogan and Sih (1963), stating that a crack would propagate in a 

direction perpendicular to the maximum value of the tensile stress. This criterion was further 

extended and applied to the prediction of failure of different materials such as ceramics (Aliha 
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and Ayatollahi 2012), interfaces between zirconia (Mirsayar and Park 2016), and veneer and 

shaft (Li et al. 2013). After the development of the maximum tangential stress criterion, some 

energy concepts including minimum strain-energy density (Sih 1973) and maximum energy 

release rate criterion  (Hussain et al. 1974) were also proposed. In the minimum strain energy 

density criterion, also called the S criterion, a crack will propagate when the minimum strain-

energy density around the crack tip reaches a critical value. Work relevant to this criterion 

includes that of Theocaris and Andrianopoulos (1982), Sih and Madenci (1983), Ayatollahi 

and Sedighiani (2012), Ayatollahi et al. (2015), to list a few. For maximum energy release rate, 

the G-criterion is based on the Griffith energy release rate concept. In this criterion, the energy 

release rate is determined as a function of the direction of propagation and the crack propagates 

following the direction where the maximum energy release rate occurs. Originally developed 

by Hussain et al. (1974), the G-criterion has been used extensively for the prediction of fracture 

initiation and propagation under combined loading in two- and three-dimensional problems 

(Wu 1978, Claydon 1992).   

2.3. Experimental tests of rock fractures 

Apart from theoretical studies, a large number of experimental studies have been conducted to 

study rock fracture behaviour in the past few decades, which can be divided into two groups 

based on the applied loadings on rock specimens. In this section, a review of experimental tests 

of rock fractures under quasi-static loading conditions is presented first, followed by a review 

of experimental tests of rock fractures under dynamic loading conditions. 

2.2.4. Experimental tests of rock fractures under quasi-static loading conditions 

According to the classification by Sharpe (2008), the rock tests under the strain rate ranging 

from 10−5 to 10−1 𝑠−1 belong to quasi-static tests. As suggested by the International Society 

for Rock Mechanics (ISRM) and the American Society for Testing and Materials (ASTM), 

core-shaped samples are recommended for determining mechanical properties of rock 

materials under quasi-static conditions due to simple preparation (Zhang and Zhao 2013). 

Quasi-static experiments can be classified into two major groups: rock strength tests and 

fracture tests under low loading rates. Experiments for testing rock strength normally include 

uniaxial or triaxial compression tests, tensile tests and shear tests, while fracture toughness as 

the most prevalent fracture parameter has been investigated by conducting different tests with 

various specimen geometries. In this section, a review of rock strength and fracture tests under 

quasi-static conditions is presented. 
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 Compression tests 

The popular compression tests under quasi-static conditions are uniaxial compression tests and 

triaxial compression tests. Uniaxial compression tests depicted in Figure 2.0–2a are the most 

common tests for characterising the uniaxial compressive strength of rock materials, while 

triaxial compression tests shown in Figure 2.0–2b are often performed for the development and 

calibration of the constitutive model and yield criteria for numerical simulations. The rock 

specimen in quasi-static compression tests is recommended to be a circular cylinder having a 

length-to-diameter ratio of 2.5-3.0 and a diameter to the size of the largest grain of at least 10:1 

(Kovari et al. 1983). A review of empirical methods for determining uniaxial compressive 

strengths was provided by Cargill and Shakoor (1990). Apart from the standard uniaxial 

compression tests, other empirical methods such as the point load (Reichmuth 1962, Reichmuth 

1967, Bieniawski 1974, Bieniawski 1975, Norbury 1986, Rusnak and Mark 2000), the Schmidt 

hammer (Hucka 1965, Sheorey 1984, Haramy and DeMarco 1985, Katz et al. 2000, Aydin and 

Basu 2005), the Los Angeles Abrasion (Shakoor and Brown 1996, Kahraman and Fener 2007, 

Kahraman and Toraman 2008, Ugur et al. 2010, Ozcelik 2011) and slake durability (Franklin 

and Chandra 1972, Dhakal et al. 2002, Singh et al. 2005) tests were also introduced in his work. 

 

 

Figure 2.0–2. Quasi-static compression tests of rocks: (a) The rock specimen in uniaxial compression 
test and its stress-strain relationship; (b) The rock specimen in triaxial confining pressure cell system 

(Li et al. 1999) 

 

On the other hand, experimental data from triaxial compression tests have been processed to 

obtain the differential stress-axial strain curves under various ranges of confining pressure. The 
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quasi-static differential stress-strain curves of Indiana limestone under different confining 

pressures provided by Frew et al. (2010) are plotted in Figure 2.0–3, showing that dynamic 

differential peak stress increases with an increase in confining pressure under quasi-static 

loading. A brittle-to-ductile transition showing that shear behaviour transits from the typical 

brittle behaviour to the fully ductile behaviour occurs when the confining pressure is around 

50MPa. In the triaxial compression tests, the strength value of rocks and the corresponding 

confining pressures can be plotted for the different specimens. A strength envelope can be 

determined by fitting a mean curve to these plotted points.  

  

 

Figure 2.0–3. Differential stress-strain curves in triaxial compression test using Indiana limestone 
specimen (Frew et al. 2010) 

 

 Tensile tests 

As tensile strength is an important aspect of the resistance to failure of rocks, numerous tensile 

tests of rocks for determining the quasi-static tensile strength of rocks have been conducted, 

which can be divided into direct tensile tests and indirect tensile tests. Direct tensile test in 

which a specimen of the dog bone shape is used as illustrated in Figure 2.0–4a is regarded as 

the most valid method for determining the true tensile strength of rocks (Hoek 1964). However, 

this shape of rock specimen required in direct tensile tests is not easy to prepare, and thus 

indirect tensile tests such as Brazilian disc tests, sleeve-fracturing test and modified tensile tests 

illustrated in Figure 2.0–4b-d respectively are preferred by many researchers.  
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Figure 2.0–4. Tensile tests under quasi-static loading condition: (a) Direct tensile test; (b) Brazilian 
disc test; (c) Sleeve-fracturing test and (d) Modified tension test.(Perras and Diederichs 2014). 

 

After the introduced by Carneiro (1943) and Akazawa (1943), the Brazilian disc test has been 

one of the most popular indirect tests to obtain the tensile strength of brittle materials including 

rocks due to its simplicity in specimen preparation and setup (Andreev 1991, Andreev 1991, 

Chen et al. 1998, Alehossein and Boland 2004, Wang et al. 2004, Jianhong et al. 2009, Yin et 

al. 2015). And a comprehensive review of the development of the Brazilian disc specimen has 

been given by Li and Wong (2013). In this test, a thin circular disc is diametrically compressed 

to failure, and the indirect tensile strength is typically calculated based on the assumption that 

failure occurs at the point of maximum tensile strength. The expression of the indirect tensile 

strength using Brazilian disc tests is written as:  

𝜎𝑡 =
2𝐹𝑎

𝜋𝐷𝑡
                                                               (2.12) 

where 𝐹𝑎  is the applied force to the Brazilain disc speciemn, 𝐷 and 𝑡 are the diameter and 

thickness of the Brazilian disc specimen. 

Sleeve-fracturing and modified tensile tests are two alternative indirect tensile testing methods. 

The sleeve-fracturing test is a variation of a dilatometer test which can be sued in situ to 

determine the deformability of a rock mass (Perras and Diederichs 2014). The studies on rock 

material properties using sleeve-fracturing methods can be found in Brenne et al. (2013), 

Charsley (2000), Charsley et al. (2003), Ljunggren and Stephansson (1986) and Stephansson 

(1983), to mention a few. Another test for quasi-static tensile strength is the modified tension 

test (Franklin and Dusseault 1989, Luong 1990). During the test, a tensile zone develops within 

an over cored specimen. As this test requires no special device for specimen gripping and 
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compressive loads and no particular preparation for the specimen, the modified tension can be 

easily conducted. The expressions of tensile strength in both sleeve fracturing and modified 

tensile test are presented as follows. 

Sleeve-fracturing test:                                           𝜎𝑡 = 𝑃
𝑅2+𝑟2

𝑅2−𝑟2
                                                               (2.13a) 

Modified tensile test:                                           𝜎𝑡 =
𝐹𝑎

𝜋𝑟1
2−𝜋𝑟2

2                                                            (2.13b) 

where 𝑃 is water pressure, 𝑟 and 𝑅 are the inner and outer radius of sleeving fracture apparatus 

respectively, 𝐹𝑎 is applied force, 𝑟1 and 𝑟2 are the inner and outer radius of modified tensile 

apparatus.  

 Shear tests 

Torsion tests have been widely used to study large shear strains of rock materials (Paterson and 

Olgaard 2000). To investigate the high strain in pure shear is important as this phenomenon 

can be often observed in many geotechnical applications on many scales. Although the 

cylindrical specimen, illustrated in Figure 2.0–5a, was initially used in torsion test, the hollow 

cylindrical specimen shown in Figure 2.0–5b, is more popular in the literature as a great deal 

of data can be acquired by only testing a single specimen (Hight et al. 1983, Talesnick and 

Frydman 1990, Talesnick and Ringel 1999).  

 

 

Figure 2.0–5. Torsion tests of rocks: (a) cylindrical specimen (Paterson and Olgaard 2000); (b) 
hollow cylindrical specimen (Talesnick and Ringel 1999). 
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The equipment of the hollow cylinder method comprises of a loading frame and a simple 

pressure chamber. Three types of stress conditions such as uniaxial compression, radial 

compression and radial tension can be applied for determining the required material properties 

(Talesnick and Bloch-Friedman 1999). The hollow cylinders in torsion tests have been 

successfully employed to determine the deformation moduli (Obert 1964). The elastic 

parameters such as Young’s modulus and Poisson’s ratio can also be easily obtained by 

conducting a single torsion test using the hollow cylinder (Talesnick et al. 1995). In addition, 

the effect of the intermediate principal stress on rock failure was also investigated using the 

hollow cylinder specimens by Hoskins (1969) and Handin et al. (1967). Later, torsion tests on 

hollow cylinders were extended to investigate material behaviour under tensile stresses 

(Talesnick and Brafman 1998, Talesnick and Bloch-Friedman 1999).  

 Rock fracture tests 

Apart from quasi-static rock strength tests, quasi-static fracture tests have been extensively 

conducted to investigate the mechanism of rock fractures and to determine the static fracture 

toughness under low loading rates. Although the chevron bend (CB) and the short-rod (SR) 

specimens were recommended by ISRM, these specimens only allow tensile cracks to be 

developed due to the specimen geometry, therefore they are not appropriate for determining 

the fracture toughness of rocks under mixed mode or pure mode II cases (Lim et al. 1994, 

Fowell et al. 1995). Some of the well-known test configurations for determining mode I and 

mode II fracture toughness under mixed-mode fracturing tests are the cracked chevron-notched 

Brazilian disc (CCNBD) under diametral compression (Yarema and Krestin 1967, Atkinson et 

al. 1982, Shetty et al. 1987, Krishnan et al. 1998, Khan and Al-Shayea 2000, Chang et al. 2002, 

Al-Shayea 2005, Ayatollahi and Aliha 2008, Ayatollahi and Sistaninia 2011), chevron-notch 

SCB specimens subjected to three- point loading (Lim et al. 1993, Lim et al. 1994, Lim et al. 

1994, Ayatollahi et al. 2006, Ayatollahi and Aliha 2007, Aliha and Ayatollahi 2011), the angled 

internal cracked plate under biaxial far field loading (Williams and Ewing 1972, Yukio et al. 

1983), asymmetric four-point bend loading (Ingraffea 1981, Kenner et al. 1982, Jian-An and 

Sijing 1985, He et al. 1990, Suresh et al. 1990, Margevicius et al. 1999, Wang et al. 2016), the 

compact shear-tension specimen (Richard and Benitz 1983, Banks-Sills and Bortman 1986, 

Zipf Jr and Bieniawski 1986, Buchholz et al. 1987, Zipf and Bieniawski 1988, Mahajan and 

Ravi-Chandar 1989). The schematic of fracture tests using CCNBD, Notched SCB and notch 

four-point bend specimens and the corresponding fracture patterns under pure mode I and  
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Figure 2.0–6. Schematic of fracture toughness testing methods: (a) CCNBD specimen under 

compression (Chang et al. 2002); (b) Notched semi-circular bending specimen (Chang et al. 2002); 
(c) Notch four-point bending specimen (Margevicius et al. 1999).  

 

 

Figure 2.0–7. Mode I and mixed mode fracture patterns of rocks in (a) Notched semi-circular bending 

specimen (Lim et al. 1994); (b) CCNBD specimen(Al-Shayea 2005); (c). Notch four-point bending 
specimen (Wang et al. 2016). 
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mixed mode are presented in Figure 2.0–6 and Figure 2.0–7 respectively. It can be seen from 

Figure 2.0–7 that the fracture patterns are distinct when different loading conditions are applied. 

Fracture occurs within a rock mas due to tensile loading under pure mode loading, while rock 

experiences both tensile and shear deformation under mixed mode loading. The failure of rocks 

under loading is a consequence of the coalescence of many microcracks. As loading stress 

increases and rock failure is approached, the microcrack population changes spatially from 

random to locally intense zones of cracking, resulting in the existence of a high gradient of 

deformation within the macroscopic failure zone (Kranz 1983).  

 

 

Figure 2.0–8. Direct tensile tests on sandstone by Van Vliet and Van Mier (2000): (a) Specimen 
dimensions; (b) Force-deformation curve of specimen A-C; (c) Force-deformation curve of specimen 

D-F. 

 

Apart from the applied loading, the fracture behaviour of rocks or rock-like materials is also 

strongly dependent on the specimen size. The two kinds of size effects, are statistical and 

energetic (or deterministic), can affect the response of rocks or rock-like materials (Van Vliet 

and Van Mier 2000, Elkadi and Van Mier 2006). In 1921, Griffith compared the nominal 

strengths of glass fibres with two different diameters (0.0042in. and 0.00013in). Their 
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experimental results showed that the glass fibre with the larger diameter had lower nominal 

strength. The author explained that the result was due the presence of more discontinuities or 

flaws in glass fibres with larger diameters. Later, the Weibull statistical theory was developed 

to explain that statistical size effect (Weibull et al. 1949, Weibull 1951). Weibull pointed out 

that the size effect on the nominal strength arose from the fact that larger solids had higher 

probability of encountering a material element of small strength. However, when dealing with 

quasi-brittle materials which exhibit non-negligible material length, classical Weibull theory is 

no longer applicable as it ignores the absence of characteristic length of the material and the 

stress redistribution due to localised deformation.  

In this case, another type of size effect, namely the deterministic size effect was discovered, 

which was distinguished from the statistical size effect. The deterministic size effect is caused 

by stress redistribution in the structure due to large deformation in the localization zone. Both 

statistical and deterministic size effects were examined by Van Vliet and Van Mier (2000), 

who conducted a series of direct tensile tests on bone-shaped sandstone specimens of different 

sizes, as shown in Figure 2.0–8a. The force-deformation curves for specimens are plotted in 

Figure 2.0–8b-c. It can be seen that the peak force increases with the increase in specimen size. 

The authors also pointed out, on the basis of experimental observation, that the statistical size 

effect due to the randomness of strength could be overruled by the deterministic effect due to 

the high gradient of deformation when a macro-crack initiated from a RVE whose size was not 

negligible compared to the structure size. 

2.2.5. Experimental tests of rock fractures under dynamic loading conditions 

After introducing the rock experiments under quasi-static loading conditions, the experiments 

of rocks for determining mechanical and fracture properties under dynamic loading conditions 

are presented in this section with the emphasis of rate dependency. Among many different 

studies, the split Hopkinson Pressure Bar (SHPB), invented by Kolsky (1949), is the most 

popular and is a commonly accepted loading technique used to obtain high strain rates 

(101~104/𝑠). The SHPB system is comprised of a striker bar, an incident bar, a transmission 

bar, and a rock sample sandwiched between the incident bar and the transmitted bar (Figure 

2.0–9). A compressive pulse is generated by the striker bar’s impacting on the incident bar. 

Part of the pulse is transmitted into the transmitted bar through the sample, while the remaining 

is reflected by sample and received by the incident bar. A strain gauge is used to measure 

incident  (휀𝑖) , reflected (휀𝑟) and transmitted  (휀𝑡)  pulses acting on the cross-section of the 
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specimen. The dynamic forces (𝑃1, 𝑃2) at the bar-sample interface are defined based on the 

elastic one-dimensional stress wave propagation theory as: 

𝑃1 = 𝐴B𝐸B( 휀𝑖 + 휀𝑟),   𝑃2 = 𝐴B𝐸B 휀𝑡                                (2.12)    

where 𝐴B and 𝐸B are respectively the cross-sectional area and Young’s modulus of the steel 

bar. 

The strain rate of the test specimen (휀̇) can be calculated from elementary wave theory as: 

휀̇ =
𝐶𝐵

𝐿𝑠
(− 휀𝑖 + 휀𝑟 + 휀𝑡)                                             (2.13) 

where 𝐿𝑠 is the length of the test specimen, and 𝐶𝐵 is the longitudinal wave speed of the striker. 

The strain rate of the specimen can also be computed using the velocities  (�̇�1, �̇�2) at the bar-

sample interface as 

휀̇ =
(�̇�1−�̇�2)

𝐿𝑠
                                                        (2.14) 

 

 

Figure 2.0–9. The split Hopkinson pressure bar (SHPB):(a) Schematic of SHPB; (b) enlarged view of 
specimen; (c) strain wave across interfaces (Wong and Mai 2015).  

 

The stress-strain curve of a test specimen under high strain rates is another important 

experiment output as many material parameters such as Young’s modulus, Poisson’s ratio, 

strain to failure and strengths can be obtained from the stress-strain curves. Therefore, many 

approaches have been developed to determine the stress-strain relationship in the SHPB system, 
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such as the one-, two- or three-wave analysis (Gray III and Blumenthal 2000), direct estimate 

(Mohr et al. 2010), foot-shifting (Mohr et al. 2010) and hybrid analysis (Shan et al. 2000, Gilat 

et al. 2009). Similar to the rock experiments under low loading rates, core-shaped samples are 

also frequently used for determining material properties of rocks under high loading rates. In 

the following section, the emphasis is focused on the effect of the strain/loading rate on the 

mechanical and fracture properties of rocks through the review of strength tests and fracture 

tests. The dynamic strength tests can be grouped into uniaxial compression tests, triaxial 

compression tests, tension tests and shear tests, similar to quasi-static strength tests.  

 Uniaxial compression tests 

Numerous uniaxial compression tests on circular cylinders have been conducted with different 

specimen sizes and different length-to-diameter ratios of the specimens (Hauser 1966, Zhao 

and Gary 1996, Zhang and Zhao 2013). Gray III and Blumenthal (2000) suggested that 

choosing a length-to-diameter ratio between 0.5 and 1.0 and minimising the mismatch between 

the specimen and the bars could help to reduce the end friction effect between the specimen 

and loading device and inertia effect due to Poisson’s ratio. To investigate the stress-strain 

relationship under uniaxial compression tests, Perkins et al. (1970) performed a series of 

compression tests on porphyritic tonalite using traditional SHPB techniques. The plotted stress-

strain curves under different loading rates are shown in Figure 2.0–10a, which shows that an 

increase in strain rate causes an increase in the tangent stiffness. The same conclusion was 

drawn by Eibl (1988), who developed a semi-empirical relationship between dynamic elastic 

modulus and dynamic strain rate, expressed as: 

𝐸𝑑 = 𝐸(휀̇/휀�̇�)
0.026                                                  (2.15) 

in which 휀�̇� = 3 × 10
−5/𝑠 is the strain rate under static loading. 

The sensitivity of compressive strength to compressive strain rates can also be observed in 

Figure 2.0–10a. As the strain rate increases, so does the compressive strength. Many studies 

have investigated the effect of loading rate on compressive strength of different materials such 

as granite (Masuda et al. 1987, Zhao et al. 1999), limestone (Lankford 1981), tuff (Lankford 

1981), sandstone (Singh et al. 1989) and marble (Liu 1980), to name a few. Zhang and Zhao 

(2014) collected data of normalised uniaxial compression strength (ratio of dynamic uniaxial 

compression strength to quasi-static strength) from various experiments over last five decades, 

as shown in Figure 2.0–10b. When the applied strain rate is smaller than 10/s, the normalised 

dynamic compressive strength increases linearly with the increase in strain rate. However, 
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rocks exhibit a stronger rate effect when the strain rate is greater than 10/s. An exponential 

compressive strength-strain rate relationship is observed.   

 

 
Figure 2.0–10. Uniaxial compression test: (a) Stress-strain relationship (Perkins et al. 1970);(b) 
normalized uniaxial compression strength and strain rate relationship (Zhang and Zhao 2014). 

 

 Triaxial compression tests 

Triaxial loading in the triaxial compression tests can be applied to a specimen through either a 

pressure or displacement boundary conditions. In pressure-applied tests, the specimen is 

normally placed inside a pressure chamber (Gary and Bailly 1998) or a triaxial SHPB apparatus 

(Cadoni and Albertini 2011) and then isotopically loaded by hydrostatic pressure up to 10-

50MPa depending on the confining fluids (Gary and Bailly 1998). In displacement-applied 

tests, the specimen is placed in a shrink-fit metal sleeve (Chen and Ravichandran 1997, Rome 

et al. 2002, Forquin et al. 2008) or a passive thick vessel (Gong and Malvern 1990) for imposing 

lateral confinement. Numerous triaxial compression tests have been conducted for 

investigating the mechanical properties of different rock or rock-like materials such as granite 

(Logan and Handin 1970), limestone (Frew et al. 2001), sandstone (Jin et al. 2012), marble (Yu 

1992) and concrete (Gran et al. 1989).  

In the review of the rock behaviour under quasi-static triaxial compression test, it was found 

that the strength of rock material is pressure dependent under low loading rates. The pressure-

sensitivity of rock materials under high loading rates was also studied by Gran et al. (1989), 

who calculated differential stress-strain curves using a wave analysis method as shown in 

Figure 2.0–11. In this test, different loading rates (휀̇ = 10−5/s for quasi-static loading and 

300/s for dynamic loading) and confining pressures ranging from 0.1 to 85MPa were applied 

to examine the effect of loading rate and confining pressure on the mechanical behaviour of 
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rocks. It can be seen that rocks are also sensitive to loading rates, apart from confining pressures. 

The differential peak stress in the triaxial compression test increases as the loading rates 

increases. It also can be seen from Figure 2.0–11 that the transition pressure at which the 

specimen experiences a transition from brittle failure to ductile failure under static loading is 

about 50 to 80 MPa, while the brittle-ductile transition occurs under dynamic loading when the 

confining pressure is around 10 to 35 MPa. That implies a more ductile response of rocks 

occurs under dynamic loading compared with static loading. However, this conclusion differs 

from the experimental observation using Indiana limestone specimen by Frew et al. (2010) and 

Berea Sandstone specimen by Blanton (1981), in which a higher transition confining pressures 

at high rates were observed, indicating that rocks were more brittle at higher strain rates.  

 

 

Figure 2.0–11. Differential stress-strain curves in triaxial compression test using Horonai sandstone 
specimen (Gran et al. 1989). 

 

In order to further analyse the effect of loading rates on different rock materials, Zhang and 

Zhao (2013) summarised the normalised dynamic differential peak stresses under different 

loading rates in the triaxial compression tests on different types of rocks such as Indiana 

limestone (Frew et al. 2010), Horonai sandstone (Kawakita and Kinoshita 1981), basalt 

(Lindholm 1974) and sandstone (Christensen et al. 1972), as shown in Figure 2.0–12. It can be 

seen from the results that the rocks exhibit strong loading rate effects, although these rocks 
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show different degrees of loading rate sensitivity. The most likely reasons are differences in 

rock types, specimen sizes and confining pressure apparatus used in the triaxial compression 

test. 

 

 

Figure 2.0–12. Normalised dynamic differential stress under different loading rates and confining 
pressure (Zhang and Zhao 2013).  

 

 Tensile tests 

Numerous dynamic tensile tests extended from the quasi-static tests have been developed, such 

as direct tensile tests (Asprone et al. 2009, Fuenkajorn and Klanphumeesri 2010), Brazilian 

disc tests (Dutta and Kim 1993, Dai and Xia 2010, Yan et al. 2011, Zhou et al. 2012), three-

point bending tests (Zhao and Li 2000), semi-circular bending tests (Dai et al. 2008, Dai et al. 

2013) and spalling tests (Klepaczko and Brara 2001, Kubota et al. 2008, Erzar and Forquin 

2010). The last four groups of tests are indirect tensile tests.  Experimental setups of the above-

mentioned tensile tests are depicted in Figure 2.0–13. Compared with direct tensile tests, during 

which very slight misalignments can result in undesirable failure modes, indirect tensile tests 

are more popular for determining tensile strength at high loading rates due to the easier 

preparation and setup.  

To investigate stress-strain relationships under dynamic tensile loadings, Asprone et al. (2009) 

conducted a series of direct tensile tests on Mediterranean natural stone under various high 

strain rates. The stress vs. crack opening displacement curves at different strain rates are plotted 

in Figure 2.0–14a. It can be observed that the peak stress and elastic stiffness of Mediterranean 
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stone increase as the strain rates increases. In contrast, the crack opening displacement 

corresponding to the peak stress reduces with increasing strain rates, indicating that the material 

assumes a more brittle behaviour at higher strain rates. When the specimen is subjected to strain 

rates from 10−5/s to 10−1/s, the responses of the specimen are very similar, except that a higher 

peak load is observed under the strain rate of 10−1/s. However, the responses of the specimen 

are distinct when the strain rate is greater than 10−1/s.  The stiffness and peak load of the 

specimen under higher strain rates are much greater, indicating that more energy is required to 

initiate fracture at higher strain rates.  

 

 

Figure 2.0–13. Dynamic tensile test setup: (a) Direct tensile test (Fuenkajorn and Klanphumeesri 
2010);(b) Bending test (Dai et al. 2010); (c) Brazilian test (Yao et al. 2017); (d) Spalling test (Kubota 

et al. 2008). 
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Figure 2.0–14. Rock responses under dynamic tensile tests:(a) stress-crack opening displacement 

curves in direct tensile tests performed by Asprone et al. (2009); (b) Final fracture patterns under 
different loading rates in Brazilian disc test conducted by Zhang and Zhao (2013). 

 

 

Figure 2.0–15. Normalised tensile strength with loading strain rates (Liu et al. 2018) 
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Figure 2.0–14b shows final fracture patterns of a Brazilian disc specimen under three different 

loading rates, obtained from Zhang and Zhao (2013). It can be seen that the fracture patterns 

of rocks are very different under different dynamic loading rates, although the main fracture 

orientation is parallel to the loading direction, dividing the specimen into two main pieces. 

Under a lower loading rate such as 260GPa/s, a thin fracture is formed in the middle of the 

specimen, while a large shear zone is observed under high loading rates. The extent of two 

shear failure zones at contact points of the disk depends on the loading rates. As the sensitivity 

of stress-strain curves and tensile strengths of rock to loading rates is well known, many 

researchers have summarised existing tensile experimental data and derived empirical 

expressions showing the evolution of dynamic tensile strength with strain rate. Figure 2.0–15 

shows the normalised dynamic tensile strengths of different materials under a wide range of 

dynamic strain rates, as summarised by Liu et al. (2018). It can be seen from this figure that 

the tensile strength of rocks increases more rapidly when the strain rate is greater than 1/s. 

Therefore, the authors developed two exponent functions showing different degrees of 

sensitivity to tensile strength under two strain rate ranges, shown as: 

𝐷𝐼𝐹 = {
1 + 0.7휀�̇�

0.18       𝑓𝑜𝑟 휀̇ < 1/𝑠 

1 + 0.7휀�̇�
0.55       𝑓𝑜𝑟 휀̇ ≥ 1/𝑠

                                     (2.16) 

where 𝐷𝐼𝐹 is the dynamic increase fracture, which is the ratio of dynamic tensile strength to 

static tensile strength.  

 Shear tests 

A torsional split Hopkinson bar (TSHB) system modified based on the traditional SHPB was 

developed and widely used for investigating the shear behaviour of rocks under dynamic 

loadings (Paterson and Olgaard 2000). In the TSHB test, dynamic torque produced by 

explosive loading or torsional deformation energy is applied to both ends of a cylindrical 

specimen (Goldsmith et al. 1976) or thin-walled tubes (Lipkin et al. 1979). The dynamic shear 

strength and strain rate of the test specimen can be easily calculated from the dynamic torque 

and the difference in angular velocity between the two ends of the specimen respectively. 

However, the complexity of specimen preparation and uncertainty of strain rate corresponding 

to failure strength make torque tests inefficient. Therefore, some other shear testing methods 

such as compression-shear tests (Rittel et al. 2002), direct shear-box tests (Barbero et al. 1996), 

punch tests (Yagiz 2009, Mishra and Basu 2012) and a split Hopkinson pressure shear bar 

(Zhao et al. 2011) have been developed.  



29 

 

 

Figure 2.0–16. Punch shear strength tests in SHPB: (a) Schematic of the experiment; (b) Dynamic 
force equilibrium for a typical test; (c) Typical of stress-time curves in shear test(Huang et al. 2012). 

 

 
Figure 2.0–17. Shear test results (a) Normalised shear strengths with shear stress rates (Barbero et 

al. 1996);  (b) shear strength and strain rate relationship under shear test (Lipkin et al. 1979). 

 

Figure 2.0–16 shows a SHPB punch shear test on Longyou sandstone conducted by Huang et 

al. (2012). The schematic of the experiment setup is depicted in Figure 2.0–16a, while the red 

and blue lines in Figure 2.0–16b represent the forces applied on both ends of the specimen. A 

pulse-shaping technique was used in that study to minimise the inertia effect due to the 

mismatch between forces on both ends of the sample. Figure 2.0–16c shows a typical shear 

stress evolution under dynamic shear tests, in which the shear loading rate is determined as the 

slope of stress evolution curve. An increasing trend of punch shear stress was found in this 

study with the increasing shear loading rate. A similar experimental result was also obtained 

by Barbero et al. (1996), who conducted a series of direct shear tests on three different materials 

(granite, Finale sandstone, Mont sandstone) under different shear strain rates. Normalised 
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dynamic shear strengths with shear stress rates are plotted in Figure 2.0–17a. It can be seen that 

the normalised dynamic shear strengths of three rock materials under the same strain rate are 

similar and the shear strengths increase linearly with strain rates. The linear increasing trend of 

shear strength with increasing shear strain rate was also observed in the torque tests by Lipkin 

et al. (1979). In this work, thin-walled tubular specimens of Westerly granite and Solohofen 

sandstone were tested under different shear strain rates ranging from 100/s to 2000/s, with the 

result shown in Figure 2.0–17b. The sensitivity of specimen size to the shear strength of 

Westerly granite was also observed by comparing the results from Westerly granite with two 

different sizes in Figure 2.0–17b.   

 Rock fracture tests 

Besides rock strength tests, a number of rock fracture tests have also been conducted to analyse 

rock fracture processes under dynamic loadings. Through the tests, material dynamic 

parameters, such as fracture energy, fracture toughness and the average fracture velocity can 

be calculated. Existing studies focus mainly on the measurement of fracture toughness, 

including initiation fracture toughness and propagation fracture toughness. Most dynamic 

testing methods are extended from the static ones, and the normalised dynamic fracture 

toughness can be determined using the theory of quasi-static fracture mechanics, which is a 

direct measure of the stress state obtained from load transducers or pulses in the SHPB tests. 

Together with high-speed digital image correlation (DIC), the initiation and propagation of a 

crack can be recorded for calculating the time to fracture and the crack propagation velocity at 

different times. The most widely used core-based specimens for determining facture toughness 

under dynamic loadings are the chevron bend (CB) and short rod (SR) specimens method 

(Franklin et al. 1988, Zhang et al. 2000), cracked chevron notched Brazilian disc (CCNBD) 

specimen method (Dwivedi et al. 2000) and semicircular bending (SCB) method (Lim et al. 

1993, Chen et al. 2009, Dai et al. 2010). 

The dynamic initiation fracture toughness under pure mode I loading, denoted as 𝐾𝐼𝑑, is 

determined by the time to fracture. In other words, the dynamic initiation fracture toughness 

for a loading rate is the fracture toughness when the fracture initiates, expressed as: 

𝐾𝐼𝑑(�̇�𝐼
𝑑𝑦𝑛) = 𝐾𝐼

𝑑𝑦𝑛
(𝑡𝑓)                                                (2.17) 

where �̇�𝐼
𝑑𝑦𝑛

= 𝐾𝐼𝑑/𝑡𝑓 is the loading rate and 𝐾𝐼
𝑑𝑦𝑛

 is the stress intensity factor related to the 

specimen geometry and applied load. 
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Zhou et al. (2010) investigated the effects of loading rates on initiation fracture toughness by 

conducting a three-point bending experiment on Huanglong limestone. The results showed that 

when the loading rate was greater than a certain value, the fracture toughness of this type of 

rock increased markedly with an increase in loading rate. The same conclusion was also 

reached by Zhang et al. (1993) and Fengnian and Haijie (1998). Zhang and Zhao (2013) 

summarised the normalised dynamic initiation fracture toughness of different materials under 

a wide range of loading rates, depicted as Figure 2.0–18a. It can be seen from the figure that 

the normalised dynamic initiation fracture toughness increases slightly as the normalised 

loading rate increases from 103 /s to 104 /s. However, when the normalised loading rate 

continues to increase, all rock materials show a very strong rate effect on the dynamic initiation 

fracture toughness.  

 

 

Figure 2.0–18. Dynamic fracture toughness with influencing factors: (a) Normalised dynamic 

initiation fracture toughness with loading rate; (b) Normalised dynamic initiation fracture toughness 
with crack propagation velocity for different materials. 

 

The rate dependence of dynamic crack propagation toughness was also examined by Zhang 

and Zhao (2013), who plotted the normalised dynamic crack propagation toughness of different 

materials with the crack propagation velocity, presented in Figure 2.0–18b. The dynamic crack 

propagation could be obtained from experiment either by estimating the unit dissipated energy 

pertaining to the test specimen (Dai et al. 2011) or by measuring the crack propagation velocity 

through a chain of strain gauges positioned along the crack propagation path (Zhang and Zhao 

2013). Although different materials show different degrees of rate-sensitivity, normalised 

dynamic crack propagation toughness depends highly on the crack propagation velocity. Apart 
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from the propagation velocity, the dynamic crack propagation toughness is also affected by 

some other factors such as acceleration and temperature. This is a possible reason why the 

result in Figure 2.0–18b shows such a big difference in the degree of rate sensitivity. 

2.4. Numerical simulation of rock fracture 

The computational modelling of rock fracture has also gained significant progress in the past 

few decades, with many studies focusing on the development of material constitutive models 

and numerical methods. On the constitutive modelling side, most existing constitutive models 

for rocks were developed based on classical plasticity and damage theories (Shao et al. 2003, 

Hu et al. 2010, Kolo et al. 2016). Constitutive models of this type are normally obtained by 

fitting the constitutive response with experiments. When considering loading rate effects, a 

similar calibration process is undertaken to consider the effect of loading rate on yielding 

strength or the yield function in plasticity or damage models (Bažant and Li 1997, Li and 

Bažant 1997, Zhao 2000, Zhou et al. 2005). Accordingly, these constitutive models are 

normally unable to provide accurate predictions of rock behaviour under loading rates which 

are outside the range of the calibration. Moreover, those models fail to account for the 

underlying mechanisms of strong localisation of deformation and fracture. In other words, 

these models describe the material behaviour from initial yield to complete fracture with a 

single stress-strain relationship, ignoring the strong gradient of strain due to localisation. As a 

consequence, despite the fact that they can reproduce results that please the eye for lab-scale 

experiments, they do not possess a scaling law to capture correctly the size-dependent 

behaviour due to localised failure.  

Therefore, enhancements of such classical continuum constitutive models using smeared crack 

approach (Petersson 1981, De Borst 1987, Weihe et al. 1998, Hariri Ard et al. 2012) and 

nonlocal/gradient theories (Pijaudier-Cabot and Bažant 1987, Voyiadjis and Al-Rub 2005, 

Nguyen et al. 2015), the eXtended finite element method (Wells and Sluys 2001, Borst et al. 

2006, Salimzadeh and Khalili 2015, Ferté et al. 2016, Dimitri et al. 2017), strong discontinuity 

approach (Oliver 1996, Dias-da-Costa et al. 2009, Dias-da-Costa et al. 2010, Dias‐da‐Costa 

et al. 2013, Bosco et al. 2015, Zhang and Zhuang 2018), enhanced assumed strain (Borja 2000, 

Motamedi et al. 2016, Reinoso et al. 2017) and double scale model  (Nguyen et al. 2012, 

Nguyen et al. 2014, Nguyen et al. 2016, Nguyen et al. 2016) have been used as regularisation 

to resolve the issues. These constitutive models have their own advantages and limitations 



33 

 

when modelling rock fractures, which are comprehensively reviewed in Chapter 4 together 

with the key formulations.  

The material constitutive model, once developed, is implemented in a numerical method to 

solve the equilibrium equation that governs the macro-behaviour of rock materials. Great 

efforts have been made to developing numerical methods for rock fractures. Research in this 

area can be divided into continuum-based, discontinuum-based and hybrid numerical 

approaches. Continuum-based methods can be further divided into mesh-based methods (e.g. 

the finite difference method, finite element method) and mesh-free methods (e.g. smoothed 

particle hydrodynamics). The dominant stream in discontinuum-based methods is that of the 

discrete element method (DEM), thanks to the strong feasibility of detaching new contacts 

during calculations. Depending to the solution algorithm used, the DEM can be divided into 

explicit formulation and implicit formulation. Hybrid methods that combine continuum-based 

and discontinuum-based methods have been developed for rock fracture mechanics in the last 

few decades. The main hybrid model types are the numerical manifold method (NMM) (Shi 

1992) and the hybrid FEM/DEM method (Gui et al. 2015). In what follows, a detailed review 

of the popular numerical methods for simulating rock fracture is presented, with reference to 

their advantages and limitations. The existing knowledge gap in modelling rock fracture will 

be established from this review.  

2.4.3. Continuum mesh-based method 

 Finite difference method 

The finite difference method (FDM) is the oldest numerical method for the numerical solution 

of the partial differential equations (PDEs). The basic concept of the FDM is to discretise the 

governing equations in the forms of PDEs by replacing the partial derivatives with the 

difference-defined spatial intervals in the coordinate directions (Wheel 1996). In conventional 

FDM, a rectangular grid of nodes is embedded and the FDM equation at the grid node can be 

expressed as combinations of function values at four adjacent nodes together with applied 

external forces, without any requirement for a trial or interpolation function. Therefore, 

implementation of the conventional FDM is very straightforward. However, the regular gird 

utilised in the conventional FDM limits its applicability to fractures, complex boundary 

conditions and material heterogeneity. To deal with this inherent deficiency, some improved 

techniques based on conventional FDM have been developed, such as the irregular mesh 

technique (Perrone and Kao 1975, Brighi et al. 1998) and the finite volume approach. 
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As a branch of FDM, the finite volume method (FVM) is also a direct approximation of the 

PDEs, but in the integral form (Jing 2003). FVM can overcome the numerical inflexibility of 

the grid generation and boundary conditions encountered in the FDM, showing great efficiency 

in memory and storage thanks to its localised formulation. In terms of computational solid 

mechanics, the finite volume method can be classified into two approaches: cell-centred 

(Demirdžić and Martinović 1993, Hattel and Hansen 1995) and vertex-based (Oñate et al. 1994, 

Taylor 1996). The cell-centred approach, based upon traditional FVM, has been successfully 

applied to small strain deformation (Wheel 1999) and stress-analysis of linear elastic and non-

linear stress (Fryer et al. 1991). However, the cell-centred approximation has difficulty in 

prescribing boundary conditions when simulating problems with complex geometries or 

problems with indirect displacement-subjected boundaries, which constrains its application in 

rock fractures. Vertex-based FVM is the bridge between conventional FVM and traditional FE 

method. Like the FE method, the vertex-based approach employs shape functions to describe 

the variation of an independent variable, such as displacement, over an element and is therefore 

well suited to complex geometries (Bailey and Cross 1995).   

In the last couple of decades, FDM/FVM has been successfully applied to fracture applications 

for investigating the mechanism of macroscopic fracturing processes. The examples are brittle 

fractures in heterogeneous rocks (Fang 2001), slope stability (Kourdey et al. 2001), coupled 

hydro-mechanical or THM processes (Garipov et al. 2016), dynamic fluid-structure interaction 

(Lv et al. 2007), and multiphase flow in fractured porous media (Hajibeygi et al. 2011). 

Although FVM was demonstrated to be a simple, straightforward, conservative and efficient 

approach due to its inherent iterative character, this method is still limited to small deformation 

and simple fracture applications. 

 Boundary element model 

Unlike FD methods, the boundary element method (BEM) seeks a weak solution at the global 

level through an integral statement, based on Betti’s reciprocal theorem (Betti 1874) and 

Somigliana’s identity (Somigliana 1885). Displacements and stresses of the computational 

domain can be evaluated by discretising the problem boundary with a finite number of 

boundary elements and then approximating the solution of functions locally of boundary 

elements by shape functions. The main advantage of the BEM over the FDM is its simpler 

mesh generation and greater accuracy if the same level of discretisation is used, thanks to its 

direct integral formulations. However, in BEM, fractures must be assumed to have two 
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opposite surfaces and singular tip elements must be used at the apex of the fracture tip, leading 

to mathematical degeneration in the numerical formulation (singular global stiffness matrices) 

if the same boundary conditions are specified at the two opposite fracture surfaces (Jing 2003).  

To resolve this issue, some special techniques have been devised. Among these, the most 

popular are the subregion method proposed by Blandford et al. (1981) and the dual boundary 

element method proposed by Portela et al. (1992). In the subregion method, the computational 

domain is divided into multiple subdomains by fractures along their interfaces. In this case, the 

global stiffness matrices of opposing surfaces belong to different subdomains, thus solving the 

singularity issues of the global matrix. However, treatment will generates a much larger system 

of algebraic equation than necessary (Mi and Aliabadi 1992). Furthermore, this method 

requires a predefined fracturing path and growth rate for determination of the location and size 

of a subregion. These drawbacks constrain its application in rock fracture mechanics. As an 

alternative to the subregion method, the dual boundary element method could solve the 

singularity of the global matrix by implementing both displacement and traction boundary 

integral equations. The dual boundary element method combined with a maximum tensile 

stress failure criterion was developed by Chen et al. (1998) to predict crack initiation and 

propagation in a Brazilian disc shale specimen under a mixed-mode loading condition, as 

shown in Figure 2.0–19. The dual boundary element method has also been applied to predict 

dynamic stress intensity factors under mixed-mode conditions (Albuquerque et al. 2004, 

Garcia-Sanchez et al. 2007). Good agreement with experimental results was achieved, but this 

method is still limited to single or a couple of cracks. 

 

 

Figure 2.0–19. BEM simulation of fracture propagation in Brazilian disc test; (a) under mode I 
loading; (b) under mixed-mode loading (Chen et al. 1998). 



36 

 

Overall, despite successful applications of the BEM, prediction of the complex fracturing 

processes of rocks using the BEM is still very challenging. On the one hand, BEM is not very 

flexible in simulating material heterogeneity, because of the simple subdomain division and 

material non-linearity due to the presence of domain integrals (Jing 2003). On the other hand, 

complex numerical manipulations or remeshing are required to ensure that tip elements 

representing new fracture tips are added. Due to those limitations, fracture initiation and 

propagation of rock have not been widely simulated using BEM.  

 Extended finite element method 

The extended finite element method (XFEM) was first proposed by Belytschko and Black 

(1999). The basic idea of the XFEM is that an enriched shape function is added into the standard 

finite element discretisation via the partition of unity. The key advantage of this model is that 

it can simulate crack initiation and propagation without remeshing, thus providing an attractive 

way to investigate the fracture behaviour of solid materials. The XFEM has gained significant 

attention since its invention and many studies have been conducted applying this technique 

(Sukumar and Belytschko 2000, Bellec and Dolbow 2003, Mariano and Stazi 2004).  

 

 

Figure 2.0–20. Crack branching simulation using XFEM: (a-c) fracture pattern at different time 
steps; (d) a sketch of the experiment paths 

 

The XFEM has been mainly applied to problems involving crack growth of a single crack or a 

few cracks (Sukumar and Belytschko 2000) and crack nucleation (Bellec and Dolbow 2003, 

Mariano and Stazi 2004). Simulation of dynamic fracture was conducted by Belytschko et al. 

(2003) using the XFEM approach. A cohesive zone model was used to model the crack tip 
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behaviour and loss of the hyperbolicity criterion was applied to advance the crack. Song et al. 

(2006) introduced a new method for modelling arbitrary dynamic crack and shear band 

propagation by describing the discontinuity as superposed elements and phantom nodes. Figure 

2.0–20 shows one numerical example of cracking propagation at different times. The results 

agree well with analytical solutions and numerical results reported by Belytschko et al. (2003). 

Despite its robustness in capturing crack nucleation and propagation, the applications of XFEM 

are at present limited to models with few cracks. For problems involving a large number of 

cracks or multiple cracking networks, the application of the XFEM is challenging. Accordingly, 

application of the XFEM for large-scale geoengineering problems involving a large number of 

fractures is very difficult.  

2.4.4. Continuum-based meshless method 

Over the last few decades, a large family of meshless methods has been invented to eliminate 

the mesh-distortion issues in mesh-based continuum approaches which can be encountered 

during failure involving large deformation or fracture. In meshless methods, spatial differential 

equations for the whole problem domain are established without a predefined mesh for the 

domain discretization. Instead, the computational domain, as well as the boundaries, are 

represented by a set of arbitrarily distributed points. Thus, compared with mesh-based methods, 

meshless methods are more flexible in dealing with large-deformation problems.  

Examples of meshless methods are smoothed particle hydrodynamics (SPH) (Monaghan 

1997), material point methods (Sulsky et al. 1995), element-free Galerkin (EFG) method 

(Belytschko et al. 1994), meshless local Petrov-Galerkin (MLPG) method (Lin and Atluri 

2001), cracking particles method (Rabczuk and Belytschko 2004) and particle finite element 

method – PFEM (Butler et al. 2007, Rodriguez et al. 2016, Rodríguez et al. 2017). Depending 

on the way they discretise governing equations, they can be divided into two categories: the 

strong-form formulation (e.g. SPH) and the weak form formulation (e.g. EFG). The weak-form 

methods are meshless only in terms of the particle approximation of field variables. However, 

to perform numerical integration over the problem domain, a background mesh must be 

adopted. Unlike the weak-form methods, the strong-form methods are truly meshless. In other 

words, they need no background mesh, during both numerical integration and approximation 

processes. They often use the Point Collocation Method to solve the governing PDEs and 

boundary conditions. Therefore, strong-form methods are more straightforward to implement 

and computationally cheaper than weak-form methods.  
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Figure 2.0–21. SPH simulation of non-cohesive soil failure in comparison with experimental results 
(Bui et al. 2008). 

 

Among all the mesh-free methods, SPH is the oddest and a truly mesh-free technique that 

requires no background mesh for numerical integration of governing equations, thus avoiding 

some drawbacks associated with computational mesh, such as cell crossing in MPM (Zhang et 

al. 2011) or re-meshing in PFEM (Zhang et al. 2013). Originally developed by Gingold and 

Monaghan (1977) for astrophysical applications, SPH has since been successfully extended to 

other engineering applications such as fluid flow (Monaghan 1994, Chambon et al. 2011, Chen 

and Qiu 2011, Qu et al. 2013), friction stir welding (Pan et al. 2013), heat transfer (Cleary and 

Monaghan 1999), seepage through fixed porous media (Kermani and Qiu 2017) and failure of 

soils (Bui et al. 2007, Bui et al. 2008, Chen and Qiu 2011, Bui and Fukagawa 2013, Bui et al. 

2014, Kermani and Qiu 2018, Sheikh and Qiu 2019).  It can be seen from these examples, such 

as the soil failure simulation depicted in Figure 2.0–21, that SPH is a very attractive method 

for simulating large deformation in real-scale applications.  

SPH has also been extended in the last decade to the simulation of fracturing problems which 

normally involve large displacement and even full detachment. For example, Das and Cleary 

(2010) investigated the fracture patterns of rock with different rock shapes under impact 

loading by using SPH with a continuum damage model. The result shows that SPH could 

handle very complex transient dynamic stress fields associated with collision and fracture. 

Compressive failure of heterogeneous rocks was also simulated under confining pressure by 

using SPH coupled with an elastoplastic damage model (Ma et al. 2011). Later, Douillet-
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Grellier et al. (2016) applied SPH with the Druker-Prager and the Grady-Kipp damage model 

to simulate mixed-mode rock fractures. As it naturally keeps track of the free surface generated 

by fracturing, SPH allows the propagation of fracture and high-deformations of final fracture 

patterns without any issue like mesh-distortion in traditional mesh-based methods, thus is a 

good candidate in simulating rock fractures.  

2.4.5. Discontinuum based numerical approaches 

 Discrete element method (DEM) 

Besides the classical continuum mechanics approach, the discrete element method is a powerful 

alternative for studying the fracture behaviour of quasi-brittle materials at high strain rates. In 

this method, the domain of interest is represented as an assemblage of separate blocks or 

particles. The contacts between these particles then need to be identified and kept updating 

during the simulation process. The discrete element method was first proposed by Cundall and 

Strack (1979) for studying granular materials, and it has subsequently been developed and 

applied to study the fracturing behaviour of rocks.  

 

 
Figure 2.0–22. Uniaxial compression test using DEM: (a) Grain-based method (Kazerani and Zhao 

2010); (b) Cohesive boundary approach (Kazerani et al. 2012). 

 

The Universal Element Code (UDEC) and Particle Flow Code (PFC) are the two most widely 

used software packages that have been developed based on the discrete element concept. Rock 

fracture behaviour under quasi-static and dynamic loadings, either compression or tension, 

have been extensively studied using these software packages (Hentz et al. 2004). For example, 

a grain-based UDEC model was used by Christianson et al. (2006) to conduct numerical triaxial 
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testing of rock samples. Physical properties of rock material were obtained from these 

numerical experiments, providing better understanding of the behaviour of repository drifts. 

Yin and Zhao (2013) studied the bedding plane effect on the behaviour of an anisotropic rock 

under dynamic loads; Aliabadian et al. (2012) and Zhu (2013) studied rock fragmentation and 

wave propagation problems using UDEC; Kazerani et al. (2012) implemented a UDEC model 

where the rock material was represented as a collection of irregular-sized deformable triangles 

with cohesive boundaries controlling material fracture and fragmentation properties, as shown 

in Figure 2.0–22. 

 Discontinuous deformation analysis (DDA) 

The discontinuous deformation analysis (DDA), proposed by Shi (1992), is an implicit discrete 

element method. In DDA, a mechanical system under loading must move or deform in the 

direction which produces the minimum total energy of the whole energy. The minimisation of 

the system energy will produce an equation of motion, the same as that used in the FEM. DDA 

has been widely applied to capture failure along predefined structural planes in rock masses 

(Hatzor and Benary 1998, Bakun-Mazor et al. 2009, Hatzor et al. 2010). Subsequently, some 

techniques were developed to introduce fracturing capabilities into DDA, such as debonding 

of artificial block interfaces (Ke 1997), or subdividing the block into multiple sub-blocks (Koo 

and Chern 1997) once fracture is detected. DDA has also been successfully applied to simulate 

fracturing processes under blast loading (Mortazavi and Katsabanis 2001, Ning et al. 2011). 

However, DEM and DDA are not suitable for stress-strain analysis at the pre-failure stage. 

Moreover, these models consume much computational time, limited them to small-scale 

applications. 

2.4.6. Coupled approaches 

 Hybrid FEM/DEM method 

Hybrid models have been widely used in rock engineering. One representative is the hybrid 

FEM/DEM method. The fundamental idea is that the finite element representation of the solid 

region is combined with progressive fracturing, which leads to the formation of discrete 

elements, thereby forming one or more deformable finite elements (Munjiza et al. 1995). This 

model has been widely and successfully applied to the simulation of fracturing processes such 

as complex rock mass behaviour in the close vicinity of excavations (Coggan et al. 2003), crack 

propagation under mixed-mode loading (Ariffin et al. 2006, Karami and Stead 2008), fracture 
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process associated with the block caving-induced step-path failure process (Vyazmensky et al. 

2010) and dynamic failure of brittle rocks with a mixed model cohesive fracture model (Gui et 

al. 2016). A comparison of a notched semi-circular bending (NSCB) test between the hybrid 

FEM/DEM simulation and experiments is shown in Figure 2.0–23. The result demonstrates 

that the hybrid FEM/DEM is an appealing alternative numerical tool for small-scale rock 

mechanics applications. However, this method still requires the detection of new contacts and 

dealing with the interaction between discrete bodies, leading to extremely high computational 

cost when dealing with large-scale geotechnical applications. Furthermore, the method is 

highly sensitive to the initial mesh construction. 

 

 

Figure 2.0–23. Crack-tip propagation process. (a) Hybrid FEM/DEM method; (b) experimental 
results (Gui et al. 2016) 

 Numerical manifold method (NMM)  

The numerical manifold method (NMM) was proposed by Shi (1992), combining the FEM and 

DDA into one framework. In the NMM, truncated discontinuous shape functions are applied 

to simulate fracture phenomena, and the continuum bodies, fracture bodies, as well as discrete 

blocks, are generally treated in the same way by these shape functions. NMMs have been 

applied to simulate multiple branched and intersecting cracks (Zhang et al. 2000, Zhang et al. 

2007, Zhang et al. 2010), the dynamic friction mechanism of blocky rock systems (Ma et al. 

2007a), dynamic nonlinear analysis of saturated porous media (Zhang and Zhou 2006), the 

shear response of heterogeneous rock joints (Ma et al. 2007b) and fracture progress simulations 

(Chiou et al. 2002, Chen et al. 2006). Figure 2.0–24 shows rock fracture under dynamic loading 

in the NMM framework by Chen et al. (2006). Based on the results, NMM is proved as 

promising in modelling large deformations and fracturing processes of transition from continua 
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to discontinua. However, implementation of the NMM for 3D simulation is still very difficult 

at present. Furthermore, the current NMM lacks large-scale computational capabilities due to 

its contact detection and modelling algorithm. When dealing with field-scale problems 

involving millions of particles with irregular shapes, NMM still faces the outstanding 

challenges of how to detect and represent the contact interaction between the particles and how 

to display results in a reasonable CPU time (Ma et al. 2010).  

 

 

Figure 2.0–24. NMM simulation results of two-hole blasting (Chen et al. 2006). 

 

 Lattice spring model 

The idea of Lattice spring model (LSM) can be traced back to the work of Hrennikoff (1941), 

for simulating the problems of continuum elasticity with a fixed Poisson’s ratio as 1/3. 

However, the original model suffers from the restriction of Poisson’s ratio and the problem of 

parameter calibration. To resolve these shortcomings occurred in the original model, the 

distinct lattice spring model (DLSM) was developed by Zhao et al. (2011). In the DLSM, the 

computational domain is represented by a set of lattice points (or particles), between two of 

which are connected by a normal spring and a multibody shear spring. Different from DEM 

which requires the microscopic material parameters, macroscopic parameters obtained from  
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Figure 2.0–25.  Failure of Gosford sandstone in uniaxial tensile tests using DLSM (Zhao et al. 2014).  

 

the laboratory experiments can be directly used in the DLSM. In addition, as the stiffness 

matrix in DLSM is based on the local interaction between lattice points, and thus it does not 

require any global stiffness matrix in DEM. These two advantages give the DLSM great 

feasibility in simulating geotechnical problems such as failure of brittle materials (Kazerani et 

al. 2010, Zhao and Zhao 2010, Zhao et al. 2011, Zhao et al. 2013, Zhao et al. 2014), coupled 

fluid flow and deformation (Zhao and Khalili 2012), wave propagation (Zhu et al. 2011) and  

desiccation-induced soil cracking (Gui and Zhao 2015). Figure 2.0–25 shows failures of 

Gosford sandstone under different strain rates using DLSM with X-ray micro CT. The result 

clearly showed that DLSM could capture the strain rate dependency of the uniaxial tensile 

strength of the sandstone. Although its success in modelling large-deformation and complex 

fractures, DLSM is only suitable for modelling small scale problems due to the high 

computational cost. Therefore, the parallel DLSM (Zhao and Khalili 2012, Zhao et al. 2013) 

and the coupled approaches such as coupling between DLSM and NMM (Zhao et al. 2012) and 

coupling between DLSM and DDA (Zhao et al. 2016) were developed in past few years for 

reducing the computational time. However, a more complex constitutive model for bond 

springs and a more advanced representation technique in DLSM are still required for simulating 

size-dependent behaviour of rocks and solving real engineering problems (Zhao et al. 2012). 

2.5. Summary of literature review 

This literature review has highlighted a significant knowledge gap in the computational 

modelling of rock fractures. While most of the experimental data clearly demonstrates the time 

and length scales dependent behaviour of rock materials, computer modelling fails to capture 
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this behaviour. In particular, most existing material models for rocks are derived by fitting the 

mathematical formulation to certain experimental data conducted at a certain laboratory scale. 

These models may reproduce results that please the eye with the lab-scale experiment, but 

beyond this scale, their prediction is questionable due the lack of an embedded grain-scale 

mechanism and correct spatial scaling laws. Although many attempts have been undertaken to 

enhance the predictive capability of computer models, these approaches are still conducted on 

the same continuum basis, and thus they will lead to improved phenomenological responses 

but do not provide a model with any predictive capabilities. 

Furthermore, there is a lack of a robust numerical tool capable of simulating rock fractures and 

analysing the complex fracture mechanics under various loading conditions. A discontinuum-

based approach like the discrete element method has some advantages, thanks to its capability 

to handle large deformation and the meaningful descriptions of fracture and fragmentation 

processes from its use of force-displacement relationships in constitutive models for the 

discrete contacts (Gui et al. 2016, Nguyen et al. 2017, Nguyen et al. 2017). However, it requires 

very high computing power for detecting new contacts and dealing with the interactions 

between discrete bodies, thus limiting such methods to small-scale applications. Unlike 

discontinuum-based methods, continuum-based approaches have great feasibility for 

simulating large-scale problems, thanks to lumping all discrete fracture and fragmentation 

processes at a lower scale in a constitutive relationship describing the behaviour of a larger 

volume element. SPH shows great flexibility in dealing with complex fracture patterns and 

large deformations of rocks and has been successfully applied to solve rock fractures (Ma et 

al. 2011, Douillet-Grellier et al. 2016). However, those works fail to consider the size and rate 

dependence of rock fractures. This can be solved by developing appropriate constitutive models 

which can capture the experimentally observed rate effects and the energetic size effects due 

to strong strain gradients. As pointed out earlier by Van Mier (1986), post-peak behaviour must 

be described by a stress-displacement relationship, as the continuum assumption breaks down 

as soon as strong localisation of deformation occurs (Nguyen et al. 2014). Accordingly, further 

developments in terms of numerical method and constitutive models for this topic are needed 

to establish a robust way to predict rock fracture under both quasi-static and dynamic loading 

conditions. 
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Chapter 3 

Smoothed Particle Hydrodynamics 

 

3.1. Introduction 

The previous chapter provided a detailed literature review of existing numerical methods for 

rock fracture problems under static and dynamic loadings. The mesh-free SPH method is 

preferred among all the existing numerical methods for fracture prediction problems for several 

reasons: 

 SPH can naturally handle rock fractures involving extreme deformations and 

discontinuities without any mesh distortion, unlike traditional mesh-based methods 

such as FEM and DEM. 

 SPH can model the disintegration of solids during developing fracture by virtue of its 

advantages in automatically handling free surface boundaries generated by fracture.  

 SPH can predict complex fracture patterns without the restraint of an underlying grid 

in traditional mesh-based methods, as the fracture pattern in SPH is represented by a 

set of damaged SPH particles, each of which can possess fracture orientation.  

 The time histories of all field variables in SPH are updated in a Lagrangian framework. 

The history-tracking ability of SPH helps establish a natural framework for predicting 

the initiation and propagation of fracture, compared with traditional Eulerian methods.  

 SPH can handle the complex dynamic stress fields involving collisions and fractures, 

as SPH particles automatically exchange the variable history (e.g. stress, strain, velocity) 

with their surrounding particles as they move. Therefore, it can easily incorporate 

complex constitutive frameworks such as rate-dependent or size-dependent models for 

investigating the effect of loading and size on the fracture behaviour of rocks.  
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 In SPH, fracturing is driven by the stress-strain relationship. Therefore, damage 

evolution is easy to implement explicitly for representing the degree of fracture for each 

SPH particle. 

 SPH is flexible in simulating large-scale real-life applications with reasonable 

computational cost.  

On the basis of these advantages of SPH regarding rock fractures, the SPH method is adopted 

as the basic numerical framework in this study. In this chapter, the details of SPH methods are 

presented. First, the background of SPH is introduced briefly in Section 3.2, followed by the 

essential formulations of SPH in Section 3.3. Then SPH approximations regarding governing 

equations for rocks are derived in detail in Section 3.4. In Section 3.5, traditional time 

integration schemes for updating field variables are introduced. Some improvements to 

instabilities occurring in traditional SPH methods are explained in Section 3.6. Finally, some 

numerical results of elastic tests using two improved SPH methods are compared with the 

analytical solution or the traditional SPH to examine the stability of these two SPH frameworks 

in simulating elastic solids under different loading conditions. 

3.2. Background of SPH 

The SPH method was invented by Lucy (1977) and Gingold and Monaghan (1977) to solve 

astrophysical problems in three-dimensional open space. Since its invention, SPH has been 

widely extended to a range of applications such as elastic flow (Swegle 1992), response of 

material strength (Libersky and Petschek 1991, Libersky et al. 1993, Benz and Asphaug 1995), 

free surface fluid flows (Monaghan 1994), gravity currents (Monaghan 1995), low-Reynolds 

number viscous fluid flows (Takeda et al. 1994, Morris et al. 1997), underwater exploration 

(Swegle and Attaway 1995), incompressible fluid flows (Cummins and Rudman 1999, Shao 

and Lo 2003), heat transfer problems (Cleary and Monaghan 1999), friction stir welding (Pan 

et al. 2013), multi-phase flows (Monaghan and Kocharyan 1995, Monaghan 1997, Morris 

2000), geophysical flows (Gutfraind and Savage 1998, Cleary and Prakash 2004) and 

turbulence flows (Monaghan 2002). 

SPH has also been successfully applied to solid mechanics or solid-fluid interactions in 

engineering problems, due to its relatively strong ability in incorporating complex physical 

effects into the SPH formulations and handling large deformations. Those applications include 

large deformation and failure of geomaterials (Bui et al. 2007, Bui et al. 2008, Zhao et al. 2017), 

slope failures (Bui et al. 2011, Bui and Fukagawa 2013, Peng et al. 2016), granular flows and 



47 

 

landslides (Pastor et al. 2009, Nguyen et al. 2017), soil-structure interaction (Bui et al. 2008, 

Bui et al. 2014, Neto and Borja 2018), coupled soil-water problems (Bui 2007, Pastor et al. 

2014, Zhang et al. 2016, Bui and Nguyen 2017), soil triaxial tests (Zhao et al. 2019) and rock 

fracture (Das and Cleary 2010, Ma et al. 2011, Douillet-Grellier et al. 2016).  

3.3. Essential formulations of SPH 

There are two main steps in deriving SPH formations. The first step is the integral 

approximation or so-called kernel approximation of field function, which is introduced in 3.3.1, 

and the second step is particle approximation, presented in 3.3.2. The last part of this section 

is the construction of kernel function.  

3.3.1. Integral approximation 

The concept of integral approximation of a function 𝑓(𝒙) starts from the following equation: 

                                          𝑓(𝒙) =  ∫ 𝑓(𝒙′)
Ω

𝛿(𝒙 − 𝒙′)𝑑𝒙′                                       (3.1)                                                          

where Ω is the volume of the integral that contains 𝒙; 𝛿(𝒙 − 𝒙′) is the Dirac delta function (see 

Figure 3.0–1), the formulation of which is as follows: 

                                            𝛿(𝒙 − 𝒙′) = {
1        𝒙 = 𝒙′

0         𝒙 ≠ 𝒙′
                                            (3.2) 

 

 

Figure 3.0–1. Dirac Delta Function 

 

The Delta function kernel is then replaced by a smoothing function 𝑊(𝒙 − 𝒙′, ℎ), and thus the 

function becomes: 

𝑓(𝒙) =  ∫ 𝑓(𝒙′)
Ω

𝑊(𝒙 − 𝒙′, ℎ)𝑑𝒙′                                          (3.3) 

where 𝑊 is the so-called smoothing kernel function, or kernel function for simplicity; ℎ is the 

smoothing length defining the influence area of the smoothing function.  
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In SPH convention, the angle bracket <> is used to represent the kernel approximation operator 

and therefore equation (3.3) can be written as  

< 𝑓(𝒙) >= ∫ 𝑓(𝒙′)
Ω

𝑊(𝒙 − 𝒙′, ℎ)𝑑𝒙′                                      (3.4) 

The approximation for the spatial derivative ∇ ∙ 𝑓(𝒙) is obtained by replacing 𝑓(𝑥) with ∇ ∙

𝑓(𝒙) in equation (3.4): 

                    < ∇ ∙ 𝑓(𝒙) >= ∫ ∇ ∙ 𝑓(𝒙)
Ω

𝑊(𝒙 − 𝒙′, ℎ)𝑑𝒙′                                    (3.5)   

< ∇ ∙ 𝑓(𝒙) >= ∫ ∇ ∙ [𝑓(𝒙′)
Ω

𝑊(𝒙 − 𝒙′, ℎ)]𝑑𝑥′ − ∫ 𝑓(𝒙′) ∙
Ω

∇𝑊(𝒙 − 𝒙′, ℎ)]𝑑𝒙′    (3.6) 

  < ∇ ∙ 𝑓(𝒙) >=  ∫ 𝑓(𝒙′)
S

𝑊(𝒙 − 𝒙′, ℎ)] ∙ �⃗⃗� 𝑑𝑆 − ∫ 𝑓(𝒙′) ∙
Ω

∇𝑊(𝒙 − 𝒙′, ℎ)]𝑑𝒙′     (3.7) 

where ∇𝑊(𝒙 − 𝒙′, ℎ) =
𝜕𝑊(𝒙−𝒙′ ,ℎ)

𝜕𝒙′
 is the derivative of the kernel function. For those particles 

whose support domain is inside the problem domain, the surface integral represented as the 

first term at the right of equation (3.7) is zero. Therefore, the above equation can be simplified 

as:                             

    < ∇ ∙ 𝑓(𝒙) >=  −∫ 𝑓(𝒙′) ∙ ∇
Ω

𝑊(𝒙− 𝒙′, ℎ)𝑑𝒙′                                  (3.8) 

However, for particles whose support domain is truncated with the boundary, the surface 

integral is no longer zero, and improvements such as a corrective technique must be used to 

remedy the boundary deficiency, which is introduced later.  From equation (3.8), it can be 

seen that the spatial gradient of a function through SPH integral approximation is determined 

from the values of the function together with the derivative of the smoothing function, rather 

than from the derivatives of the function itself.  

3.3.2. Particle approximation 

As the computational domain in SPH is discretised into a set of particles which carry all 

information concerning field variables (e.g. stress, density, velocity) and their derivatives, the 

continuous integral presentation cannot be directly applied to the particles. Therefore, a second 

step, particle approximation, is required, which converts the integral approximation of a 

function and its derivatives into discretised summations over the particles in the supporting 

domain (see Figure 3.0–2).  

Therefore, the continuous integral approximation of a function shown as Equation (3.4) can be 

written in discretised forms as:  
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〈𝑓(𝒙)〉  =  ∫ 𝑓(𝒙′)
Ω

𝑊(𝒙 − 𝒙′, ℎ)𝑑𝒙′   

                   = ∑ 𝑓(𝒙𝑗)𝑊(𝒙 − 𝒙𝒋, ℎ)
𝑁
𝑗=1 𝑉𝑗   

                              = ∑ 𝑓(𝒙𝑗)𝑊(𝒙 − 𝒙𝒋, ℎ)
𝑁
𝑗=1

1

𝜌𝑗
(𝜌𝑗𝑉𝑗)     

          〈𝑓(𝒙𝑖)〉 = ∑
𝑚𝑗

𝜌𝑗
𝑓(𝒙𝑗)𝑊(𝒙 − 𝒙𝑗, ℎ)

𝑁
𝑗=1                                 (3.10)  

where 𝑗 = 1, 2,… . , 𝑁 indicate particles within the support domain of particle 𝑖; 𝑚𝑗 and 𝜌𝑗 are 

respectively the mass and density of particle 𝑗.  From equation (3.10), it can be seen that the 

value of a variable function at particle 𝑖 is now expressed as the summation of the function 

values at its surrounding particles in the support domain of particle 𝑖 with the kernel function. 

Similarly, the particle approximation for the spatial derivative of a function becomes: 

〈∇ ∙ 𝑓(𝒙𝑖)〉 = −∑
𝑚𝑗

𝜌𝑗

𝑁
𝑗=1 𝑓(𝒙𝑗) ∙ ∇𝑗𝑊(𝑥𝑖 − 𝑥𝑗, ℎ)       

= ∑
𝑚𝑗

𝜌𝑗

𝑁
𝑗=1 𝑓(𝒙𝑗) ∙ ∇𝑖𝑊(𝑥𝑖 − 𝑥𝑗, ℎ)                           (3.11)            

where  ∇𝑖𝑊(𝑥𝑖 − 𝑥𝑗, ℎ) = −∇𝑗𝑊(𝑥𝑖 − 𝑥𝑗, ℎ) =  
𝑥𝑖−𝑥𝑗

𝑟𝑖𝑗

𝜕𝑊𝑖𝑗

𝜕𝑟𝑖𝑗
=
𝑥𝑖𝑗

𝑟𝑖𝑗

𝜕𝑊𝑖𝑗

𝜕𝑟𝑖𝑗
. Equation (3.11) states 

that the value of the gradient of a variable function at particle 𝑖 is represented as the summation 

of the function values at its surrounding particles in the support domain of particle 𝑖 weighted 

by the gradient of kernel function with respect to particle 𝑖.  

 

 

Figure 3.0–2. The basic idea of particle approximation of particle i with a compact supporting radius 

of 𝜅ℎ .  
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3.3.3. Smoothing functions 

Smoothing function plays a very important role in the SPH approximation as it can determine 

the accuracy of the function representation. Many different kernel functions have been 

presented in the literature for different applications. All kernel functions are constructed to 

satisfy certain requirements and only major ones are listed in this section. The first is the unity 

condition (normalisation condition), in which the integration of smoothing functions is equal 

to unity: 

∫ 𝑊(𝑥 − 𝑥′, ℎ)𝑑𝑥′
Ω

= 1                                                (3.12) 

The second condition is the Delta function property, which states that as the smoothing length 

approaches zero, the approximation value should be very close to the function value, which is 

represented as: 

lim
ℎ→0

𝑊(𝑥 − 𝑥′, ℎ)𝑑𝑥′ = 𝛿(𝑥 − 𝑥′)                                     (3.13) 

The third condition is the compact condition, defined as: 

𝑊(𝑥 − 𝑥′, ℎ)𝑑𝑥′ = 0  when |𝑥 − 𝑥′| > 𝜅ℎ                          (3.14) 

where 𝜅 defines the size of the influence area of the smoothing function.  

Some other conditions exist such as positivity, symmetricity, decay and smoothness of 

smoothing kernel function. Detailed information for constructing a kernel function can be 

found in the work of Liu and Liu (2003). Any kernel functions satisfying those requirements 

can be applied in SPH. Some popular ones in the literature are listed next. 

 Gaussian kernel 

The Gaussian kernel is a good choice since it is very stable and accurate, originally used to 

simulate non-spherical stars (Gingold and Monaghan 1977). However, it can result in high 

computational cost since it requires a long distance for the kernel to approach zero, especially 

for high order derivatives of the function. The formulation of the Gaussian kernel is: 

𝑊(𝑞, ℎ) = 𝛼𝑑𝑒
−𝑞2                                             (3.15)   

where  𝛼𝑑  is 1/𝜋1/2ℎ, 1/𝜋ℎ2  and 1/ 𝜋3/2ℎ3  in one-, two- and three-dimensional space 

respectively; and 𝑞 is the normalized distance between particles 𝑖 and particle 𝑗 defined as 

𝑞 = 𝑟/ℎ. 
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 Quintic kernel 

Morris (1996) introduced a high-order spline kernel which is more stable than the Gaussian 

kernel. The formulation of Quintic kernel is: 

𝑤(𝑞, ℎ) = 𝛼𝑑 ×

{
 
 

 
 (3 − 𝑞)

5 − 6(2 − 𝑞)5 + 15(1 − 𝑞)5    (0 ≤ 𝑞 < 1)

(3 − 𝑞)5 − 6(2 − 𝑞)5                              (1 ≤ 𝑞 < 2)

(3 − 𝑞)5                                                       (2 ≤ 𝑞 < 3)

0                                                              (𝑞 ≥ 3)

             (3.16)      

where 𝛼𝑑 is 120/ℎ, 7/478𝜋ℎ2 and 3/359 𝜋ℎ3 in one-, two- and three-dimensional space 

respectively; 

 Cubic spline kernel 

The Cubic spline kernel, the most widely-used kernel function in the literature, was introduced 

by Monaghan and Lattanzio (1985) for astrophysical problems. The formulation of the cubic 

spline function is: 

𝑊(𝑞, ℎ) = 𝛼𝑑 × {

2

3
− 𝑞2 +

1

2
𝑞3       (0 ≤ 𝑞 < 1)

1

6
(2 − 𝑞)3              (1 ≤ 𝑞 < 2)

0                                 (𝑞 ≥ 2)

                                (3.17)                                          

where  𝛼𝑑  is 1/ℎ, 15/7𝜋ℎ2  and 3/2 𝜋ℎ3  in one-, two- and three-dimensional space 

respectively. In this study, the Cubic spline kernel function is chosen for interpolations and 

the shape of this function and its derivative are illustrated in Figure 3.0–3. 

 

 

Figure 3.0–3. The cubic spline kernel and its first derivative. 
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3.4. SPH approximation of governing equations of rocks 

3.4.1. Governing equations of rocks 

The completed set of governing equations for rock consists of a mass conservation equation to 

describe the rate of change in density, a momentum conservation equation to describe the 

Lagrangian movement of rock material, and a constitutive relation to calculate stress from 

given strain increments. These equations can be written respectively as: 

𝐷𝜌

𝐷𝑡
= −𝜌∇ ∙ 𝐯      (3.18) 

𝐷𝐯

𝐷𝑡
=

1

𝜌
∇ ∙ 𝝈 + 𝒃                (3.19) 

𝐷𝝈

𝐷𝑡
= 𝐃𝑒𝑓: �̇�       (3.20) 

where 𝜌 is the material density; 𝐯 is the velocity vector; 𝝈 is the stress tensor; 𝒃 is the vector 

component of acceleration due to external forces; 𝐃𝑒𝑓 is the material stiffness matrix;  

 �̇� is the strain rate tensor, which can be calculated by velocity through a kinematic relation: 

�̇� = [∇ ∙ 𝐯 + (∇ ∙ 𝐯)T]/2                                                  (3.21) 

3.4.2. SPH approximation 

To solve the continuity equation in SPH, the gradient of velocity for particle i (∇ ∙ 𝐯) must be 

approximated using equation (3.11), as follows: 

∇ ∙ 𝐯𝑖 = ∑
𝑚𝑗

𝜌𝑗
𝐯𝑗 ∙ ∇𝑖𝑊(𝒙𝒊 − 𝒙𝒋, ℎ)

𝑁
𝑗=1                                  (3.22) 

However, the approximation will be more accurate when it involves the velocity difference 

between two interacting particles rather than using a single velocity of neighboring particles 

(Bui et al. 2008). To do this, the gradient of unity must be applied: 

𝜕1

𝜕𝒙
= ∑

𝑚𝑗

𝜌𝑗
∇𝑖𝑊(𝒙𝒊 − 𝒙𝒋, ℎ) = 0

𝑁
𝑗=1                                     (3.23) 

By multiplying by (−𝐯𝑖), equation (3.23) becomes: 

∑
𝑚𝑗

𝜌𝑗
(−𝐯𝑖)∇𝑖𝑊(𝒙𝒊 − 𝒙𝒋, ℎ) = 0

𝑁
𝑗=1                                      (3.24) 

Therefore, the gradient of velocity for particle 𝑖 can be obtained by adding equation (3.22) to 

equation (3.24), leading to: 
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∇ ∙ 𝐯𝑖 = ∑
𝑚𝑗

𝜌𝑗
(𝐯𝑗 − 𝐯𝑖) ∙ ∇𝑖𝑊(𝒙𝒊 − 𝒙𝒋, ℎ)

𝑁
𝑗=1                                 (3.25) 

Finally, the SPH approximation of governing equations can be now derived by combining 

equation (3.25) with equation (3.18) as: 

D𝜌𝑖

D𝑡
= ∑ 𝑚𝑗(𝐯𝑖 − 𝐯𝑗) ∙ ∇𝑖𝑊(𝒙𝒊 − 𝒙𝒋, ℎ)

𝑁
𝑗=1                                   (3.26) 

The above equation states that the time rate of density for a particle can be approximated as the 

summation of the relative velocities between this particle and all the surrounding particles in 

the supporting domain weighted with the derivatives of the kernel function.  

For the SPH approximation of the momentum equations, different transformations have been 

reported in the literature, which would lead to different discretised equation forms. One popular 

form of SPH particle discretisation for the momentum equation is similar to the SPH 

approximation for continuity equation. Directly applying the formulation of particle 

approximation (equation 3.11) to the right-hand side of equation (3.19) obtains: 

D𝐯𝑖

D𝑡
=

1

𝜌𝑗
∑ 𝑚𝑗

𝛔𝑗

𝜌𝑗
∙𝑁

𝑗=1 ∇𝑖𝑊(𝒙𝒊 − 𝒙𝒋, ℎ) + 𝐛𝑖                                          (3.27) 

By adding the following gradient of unity with the stress: 

𝜕1

𝜕𝒙
= ∑

𝑚𝑗

𝜌𝑗
∇𝑖𝑊(𝒙𝒊 − 𝒙𝒋, ℎ) = 0

𝑁
𝑗=1   

𝛔𝑖

𝜌𝑖
∑

𝑚𝑗

𝜌𝑗
∇𝑖𝑊(𝒙𝒊 − 𝒙𝒋, ℎ) = 0

𝑁
𝑗=1                                         (3.28) 

the final SPH approximation of the momentum equation is  

D𝐯𝑖

D𝑡
= ∑ 𝑚𝑗

𝛔𝑖+𝛔𝑗

𝜌𝑖𝜌𝑗
∙𝑁

𝑗=1 ∇𝑖𝑊(𝒙𝒊 − 𝒙𝒋, ℎ) + 𝐛𝑖                                  (3.29) 

This is one of the frequently used formulations of momentum evolution. The other popular one 

can be derived by first expanding the right-hand side of the momentum equation as follows: 

1

𝜌
∇ ∙ 𝝈 = ∇ ∙ (

𝝈

𝜌
) +

𝝈

𝜌2
∇ ∙ 𝜌                                          (3.30) 

By applying the SPH particle approximation to the gradient in above equation (3.30), the 

momentum equation (3.19) becomes: 

D𝐯𝑖

D𝑡
= ∑

𝑚𝑗

𝜌𝑗

𝝈𝒋

𝜌𝑗
∙ ∇𝑖𝑊(𝒙𝒊 − 𝒙𝒋, ℎ) +

𝝈𝒊

𝜌𝑖
2
∑

𝑚𝑗

𝜌𝑗
𝜌𝑗 ∙ ∇𝑖𝑊(𝒙𝒊 − 𝒙𝒋, ℎ)

𝑁
𝑗=1

𝑁
𝑗=1    

D𝐯𝑖

D𝑡
= ∑ 𝑚𝑗 (

𝝈𝒊

𝜌𝑖
2 +

𝝈𝒋

𝜌𝑗
2) ∙ ∇𝑖𝑊(𝒙𝒊 − 𝒙𝒋, ℎ)

𝑁
𝑗=1                                (3.31) 
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Both the approximations about the momentum equation shown in equation (3.29) and (3.31) 

conserve exactly linear and angular momentum and consequently reduce the error arising from 

the particle inconsistency problem.  

Constitutive relation can be approximated through SPH particle approximation by substituting 

equations (3.25) and (3.21) into equation (3.20):  

D𝛔𝑖

D𝑡
= 𝐃𝑒𝑓: [

1

2
∑

𝑚𝑗

𝜌𝑗
(𝐯𝑗 − 𝐯𝑖) ∙ ∇𝑊𝑖𝑗

𝑁
𝑗=1 +

1

2
(∑

𝑚𝑗

𝜌𝐽
(𝐯𝑗 − 𝐯𝑖) ∙ ∇𝑊𝑖𝑗

𝑁
𝑗=1 )

𝑇

]               (3.32) 

The above equation (3.32) states that the stress rate for a particle is related to the relative 

velocities between that particle and the surrounding particles, similar to the calculation of 

density rate. Therefore, once the material stiffness matrix 𝐃𝑒𝑓 is determined, the time rates of 

density, velocity and stress can be respectively calculated by equation (3.26), equation (3.29 or 

3.31) and equation (3.32). How to determine the material stiffness matrix is introduced in the 

following sections of this thesis.  

3.5. Time integration scheme 

In order to solve the SPH equations in the form of ordinary differential equations, the field 

variables for each SPH particle must be integrated using a time integration scheme. In this 

section, four standard techniques, namely two-step Taylor, 2nd order Runge Kutta, 4th order 

Runge Kutta and second order accurate leapfrog, are introduced.  

3.5.1. Taylor time integration scheme 

In the Taylor time integration scheme, time discretisation of an unknown field variable  𝑼 is 

achieved by means of a Taylor series expansion in the time of 𝑼 up to the second order of 

accuracy: 

𝑼𝑛+1 = 𝑼𝑛 + ∆𝑡
𝜕𝑼

𝜕𝑡
|
𝑛

+
∆𝑡2

2

𝜕2𝑼

𝜕𝑡2
|
𝑛

+ 𝑂(𝑡3)                             (3.33) 

where                                                            

     
𝜕𝑼

𝜕𝑡
= 𝛁𝑭 + 𝑺                                                        (3.34) 

is the general formulation representing the governing equations of rocks (equations 3.18-3.21) 

in which 𝑭 and 𝑺 are the flex and source terms respectively.  

The first order time derivative of 𝑼 can be directly calculated using equation (3.34): 
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𝜕𝑼

𝜕𝑡
|
𝑛

= (𝛁𝑭 + 𝑺)𝑛                                                   (3.35) 

The second order time derivative of 𝑼 can be obtained as: 

𝜕2𝑼

𝜕𝑡2
|
𝑛

=
𝜕(𝛁𝑭+𝑺)𝑛

𝜕𝑡
= (

𝜕𝑺

𝜕𝑡
)
𝑛

+ 𝛁(
𝜕𝑭

𝜕𝑡
)
𝑛

                                 (3.36) 

In the first step, the variables of 𝑼, 𝑭 and 𝑺 can be updated at an intermediate time 𝑡𝑛+1/2 by 

adopting the Taylor series expansion up to the first order  

𝑼𝑛+1/2 = 𝑼𝑛 +
∆𝑡

2

𝜕𝑼

𝜕𝑡
|
𝑛

= 𝑼𝑛 +
∆𝑡

2
(𝛁𝑭 + 𝑺)𝑛                                (3.37a) 

𝑭𝑛+1/2 = 𝑭𝑛 +
∆𝑡

2

𝜕𝑭

𝜕𝑡
|
𝑛

                                              (3.37b) 

𝑺𝑛+1/2 = 𝑺𝑛 +
∆𝑡

2

𝜕𝑺

𝜕𝑡
|
𝑛

                                               (3.37c) 

By substituting equation (3.37a-b) into equation (3.36), the second order time derivative of U 

can be written as the equation: 

𝜕2𝑼

𝜕𝑡2
|
𝑛

=
2

∆𝑡
((𝑺𝑛+1/2 − 𝑺𝑛) + 𝛁(𝑭𝑛+1/2 − 𝑭𝑛))                            (3.38) 

Thus, in the second step, the unknown variable 𝑼𝑛+1 can be updated by substituting equations 

(3.36) and (3.38) into the Taylor series expansion shown as equation (3.33): 

𝑼𝑛+1 = 𝑼𝑛 + ∆𝑡 (𝑭𝑛+
1

2 + 𝑺𝑛+
1

2) = 𝑼𝑛 + ∆𝑡
𝜕𝑼

𝜕𝑡
|
𝑛+1/2

                      (3.39) 

 

 

Figure 3.0–4. The procedure of the Taylor time integration scheme. 

 

In summary, the Taylor time integration scheme consists of two steps (illustrated in Figure 3.0–

4). In the first step, the field variables are updated at the intermediate time 𝑡𝑛+1/2 using the 
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time rates of field variables calculated at 𝑡𝑛; in the second step, the field variables at the full 

timestep are updated using the time rates obtained at  𝑡𝑛+1/2. This scheme is applied in the 

Taylor SPH method for exchanging and updating the information of two sets of particles, which 

is introduced later. The variable update using Taylor time integration scheme shown in  

Table 3.0-1. 

 

Table 3.0-1. Variable update algorithm using Taylor time integration scheme 

First step:  

 Calculate stress rate(𝝈�̇�), density rate(𝝆�̇�) and acceleration(𝒂𝒏) at 𝒕𝒏; 

 Calculate stress, density and velocity with half-timestep increments: 

𝒗𝒏+𝟏/𝟐 = 𝒗𝒏 + ∆𝒕/𝟐 × 𝒂𝒏          

𝝈𝒏+𝟏/𝟐 = 𝝈𝒏 + ∆𝒕/𝟐 × 𝝈�̇� 

                                               𝝆𝒏+𝟏/𝟐 = 𝝆𝒏 + ∆𝒕/𝟐 × 𝝆�̇�               

Second step:                                 

 Calculate stress rate(�̇�𝒏+𝟏/𝟐), density rate(�̇�𝒏+𝟏/𝟐) and acceleration(𝒂𝒏+𝟏/𝟐) with half 

timestep increments; 

 Calculate stress, density and velocity with full timestep increments; 

𝒗𝒏+𝟏 = 𝒗𝒏 + ∆𝒕 × 𝒂𝒏+𝟏/𝟐 

𝝈𝒏+𝟏 = 𝝈𝒏 + ∆𝒕 × �̇�𝒏+𝟏/𝟐                                                                                   

𝝆𝒏+𝟏 = 𝝆𝒏 + ∆𝒕 × �̇�𝒏+𝟏/𝟐                                                

 Calculate location with full timestep increments; 

𝒙𝒏+𝟏 = 𝒙𝒏 + ∆𝒕 × 𝒗𝒏+𝟏/𝟐 

 

3.5.2. 2nd-order Runge-Kutta method 

The idea of Runge-Kutta methods is to evaluate the SPH governing equation in the forms of 

differential equations at several values in the intervals between 𝑡𝑛 and 𝑡𝑛+1, and to combine 

them to obtain a high order approximation of the field variables. The second-order Runge-

Kutta time integration scheme consists of two steps similar to the two-step Taylor scheme. In 

the Taylor SPH, the variable at 𝑡𝑛+1 is calculated based on the time rate updated at half time-

steps, while the field variable at 𝑡𝑛+1 in the 2nd order Runge-Kutta scheme is updated due to 

the combined contribution of the time rates at  𝑡𝑛 and 𝑡𝑛+1, as illustrated in Figure 3.0–5. The 

variable update using a second-order Runge-Kutta scheme in SPH is shown in Table 3.0-2. 
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Figure 3.0–5. Procedure of second-order Runge-Kutta Method. 

 

Table 3.0-2. Variable update algorithm using 2rd-order Runge-Kutta time integration scheme 

First step: 

 Calculate stress rate(𝝈�̇�), density rate(𝝆�̇�) and acceleration(𝒂𝒏) at 𝒕𝒏; 

 Calculate stress, density and velocity at full timestep increments; 

𝒗𝒏+𝟏 = 𝒗𝒏 + ∆𝒕 × 𝒂𝒏 

𝝈𝒏+𝟏 = 𝝈𝒏 + ∆𝒕 × 𝝈�̇� 

 𝝆𝒏+𝟏 = 𝝆𝒏 + ∆𝒕 × 𝝆�̇� 

Second step: 

 Calculate stress rate(�̇�𝒏+𝟏), density rate(�̇�𝒏+𝟏) and acceleration(𝒂𝒏+𝟏) at 𝒕𝒏+𝟏; 

 Calculate stress, density and velocity at full timestep increments; 

𝒗𝒏+𝟏 = 𝒗𝒏 + ∆𝒕/𝟐 × (𝒂𝒏 + 𝒂𝒏+𝟏) 

𝝈𝒏+𝟏 = 𝝈𝒏 + ∆𝒕/𝟐 × (𝝈𝒏̇ +  �̇�𝒏+𝟏) 

 𝝆𝒏+𝟏 = 𝝆𝒏 + ∆𝒕/𝟐 × (𝝆𝒏̇ + �̇�𝒏+𝟏) 

 Calculate location at full timestep increment; 

𝒙𝒏+𝟏 = 𝒙𝒏 + ∆𝒕/𝟐 × (𝒗𝒏 + 𝒗𝒏+𝟏) 

 

3.5.3. 4th-order Runge-Kutta 

In the 4th-order Runge-Kutta scheme, the field variable at 𝑡𝑛+1 is updated using the value at 𝑡𝑛 

and the weighted average of four slope coefficients: 

𝑼𝑛+1 = 𝑼𝑛 +
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)∆𝑡                             (3.40) 

where 𝑘1 =
𝜕𝑼

𝜕𝑡
|
𝑛

is the gradient of  𝑼𝑛 at 𝑡𝑛; 𝑘2 =
𝜕𝑼

𝜕𝑡
|
𝑘1

 is the gradient of  𝑼𝑛+1/2 using the 

value 𝑼𝑘1
𝑛+1  calculated based on 𝑘1 ; 𝑘3 =

𝜕𝑼

𝜕𝑡
|
𝑘2

is the gradient of  𝑼𝑛+1/2  using the value 
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𝑼𝑘2
𝑛+1/2

 calculated based on 𝑘2 ; 𝑘4 =
𝜕𝑼

𝜕𝑡
|
𝑘3

is the gradient of  𝑼𝑛+1  using the value 𝑼𝑘3
𝑛+1 

calculated based on 𝑘3. Graphic descriptions of the slope estimates and variable updates in the 

4th-order Runge-Kutta method are illustrated in Figure 3.0–6 and 3.Figure 3.0–7 respectively. 

In SPH applications, all field variables associated with governing equations can be updated by 

using the 4th-order Runge-Kutta following the algorithm shown in Table 3.0-3.          

 

 

Figure 3.0–6. Graphical description of the slope estimates comprising the fourth-order Runge-Kutta 
method. 

 

 

Figure 3.0–7. Procedure of the fourth-order Runge-Kutta Method 
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Table 3.0-3. Variable update algorithm using 4th-order Runge-Kutta time integration scheme 

First step: 

 Calculate stress rate ( �̇�(𝟏)), density rate (�̇�(𝟏)) and acceleration (𝒂(𝟏)); 

𝒌𝟏 = �̇�
(𝟏), �̇�(𝟏), 𝒂(𝟏) 

Second step: 

 Calculate stress, density and velocity at half timestep increments; 

𝒗𝒏+𝟏/𝟐
(𝟏)

= 𝒗𝒏 + ∆𝒕/𝟐 ×, 𝒂
(𝟏) 

𝝈𝒏+𝟏/𝟐
(𝟏)

= 𝝈𝒏 + ∆𝒕/𝟐 × �̇�
(𝟏) 

𝝆𝒏+𝟏/𝟐
(𝟏)

= 𝝆𝒏 + ∆𝒕/𝟐 × �̇�
(𝟏) 

 Calculate stress rate ( �̇�(𝟐)), density rate ( �̇�(𝟐) ) and acceleration (𝒂(𝟐) ) using the updated 

variables; 

𝒌𝟐 = �̇�
(𝟐), �̇�(𝟐), 𝒂(𝟐) 

Third step: 

 Calculate stress, density and velocity at half timestep increments using 𝒌𝟐;  

𝒗𝒏+𝟏/𝟐
(𝟐)

= 𝒗𝒏 + ∆𝒕/𝟐 × 𝒂
(𝟐) 

𝝈𝒏+𝟏/𝟐
(𝟐)

= 𝝈𝒏 + ∆𝒕/𝟐 × �̇�
(𝟐) 

𝝆𝒏+𝟏/𝟐
(𝟐)

= 𝝆𝒏 + ∆𝒕/𝟐 × �̇�
(𝟐) 

 Calculate stress rate ( �̇�(𝟑)), density rate (�̇�(𝟑)) and acceleration (𝒂(𝟑)) using the updated 

variables; 

𝒌𝟑 = �̇�
(𝟑), �̇�(𝟑), 𝒂(𝟑) 

Fourth step: 

 Calculate stress, density and velocity at half timestep increments using 𝒌𝟑;  

𝒗𝒏+𝟏/𝟐
(𝟑)

= 𝒗𝒏 + ∆𝒕/𝟐 × 𝒂
(𝟑) 

𝝈𝒏+𝟏/𝟐
(𝟑)

= 𝝈𝒏 + ∆𝒕/𝟐 × �̇�
(𝟑) 

𝝆𝒏+𝟏/𝟐
(𝟑)

= 𝝆𝒏 + ∆𝒕/𝟐 × �̇�
(𝟑) 

 Calculate stress rate ( �̇�(𝟒)), density rate ( �̇�(𝟒) ) and acceleration (𝒂(𝟒) ) using the updated 

variables; 

𝒌𝟒 = �̇�
(𝟒), �̇�(𝟒), 𝒂(𝟒) 

 Calculate stress, density and velocity at full timestep increments; 

𝒗𝒏+𝟏 = 𝒗𝒏 + ∆𝒕/𝟔 × (𝒂
(𝟏) + 𝟐𝒂(𝟐) + 𝟐𝒂(𝟑) + 𝒂(𝟒)) 

𝝈𝒏+𝟏 = 𝝈𝒏 + ∆𝒕/𝟔 × (�̇�
(𝟏) + 𝟐�̇�(𝟐) + 𝟐�̇�(𝟑)  + �̇�(𝟒)) 

 𝝆𝒏+𝟏 = 𝝆𝒏 + ∆𝒕/𝟔 × (�̇�
(𝟏) + 𝟐�̇�(𝟐)  + �̇�(𝟑) + �̇�(𝟒)) 

 Calculate location at full timestep increments; 

𝒙𝒏+𝟏 = 𝒙𝒏 + ∆𝒕 × 𝒗𝒏+𝟏 
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3.5.4. LeapFrog time integration scheme 

The LeapFrog integration scheme (LF) can help maintain a stable simulation solution with 

second-order accuracy while occupying a relatively amount of small computer memory (Bui 

et al. 2008). In the LF method, state variables of each SPH particle such as density, velocity 

and stress are updated at mid-steps in time, while their positions are updated at full timesteps. 

Hence, at the beginning of the computation, the state variables must be advanced to the mid-

timestep using the equation: 

𝑼1/2 = 𝑼0 +
∆𝑡

2

𝜕𝑼

𝜕𝑡
|
0

                                              (3.41) 

Subsequently, the above state variables are updated with a full-time increment using the 

equation: 

𝑼𝑛+1/2 = 𝑼𝑛−1/2 + ∆𝑡
𝜕𝑼

𝜕𝑡
|
𝑛

                                              (3.42) 

where 
𝜕𝑼

𝜕𝑡
|
𝑛

is the time rate of the variable by means of  𝑼𝑛 calculated at timestep n, which is 

updated as follows: 

𝑼𝑛 = 𝑼𝑛−1/2 +
Δ𝑡

2

𝜕𝑼

𝜕𝑡
|
𝑛

                                              (3.43) 

Finally, the locations of particles are updated at a full timestep using the velocity at the mid 

timestep as follows: 

𝐱𝑛+1 = 𝐱𝑛 + Δ𝑡 × 𝐯𝑛+1/2                                               (3.44) 

To maintain the stability of the LF integration, the timestep ∆𝑡 must satisfy a certain condition, 

which is proportional to the smoothing length (ℎ) adopted in the computation. In this study, the 

timestep is determined by the condition: 

∆𝑡 ≤ 𝐶𝑐𝑜𝑢𝑟(
ℎ

𝑐
)                                                                (3.45) 

where 𝐶𝑐𝑜𝑢𝑟 is the Courant number, which is chosen as 0.1; 𝑐 = √𝐸/𝜌 is the speed of sound 

with 𝐸 being the Young’s modulus of the material. The updating process using the LF method 

is illustrated in Figure 3.0–8 and the variable updating algorithm using this method is detailed 

in Table 3.0-4.   
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 Figure 3.0–8. Procedure of LeapFrog Method 

 

Table 3.0-4. Variable update algorithm using LeapFrog time integration scheme 

Timestep from 0 to 1: 

 Calculate stress rate(𝝈�̇�), density rate(𝝆�̇�) and acceleration(𝒂𝟎) at 𝒕 = 𝟎; 

 Calculate stress, density and velocity at half timestep increments; 

𝒗𝟏/𝟐 = 𝒗𝟎 + ∆𝒕/𝟐 × 𝒂𝟎 

𝝈𝟏/𝟐 = 𝝈𝟎 + ∆𝒕/𝟐 × 𝝈�̇� 

𝝆𝟏
𝟐

= 𝝆𝟎 +
∆𝒕

𝟐
× 𝝆�̇� 

 Calculate location at full timestep increment; 

𝒙𝟏 = 𝒙𝟏 + ∆𝒕 × 𝒗𝟏/𝟐 

Timesteps from 1 to n: 

 Calculate stress, density and velocity at half timestep increments; 

𝒗𝒏 = 𝒗𝒏−𝟏/𝟐 + ∆𝒕/𝟐 × 𝒂𝒏−𝟏 

𝝈𝒏 = 𝝈𝒏−𝟏/𝟐 + ∆𝒕/𝟐 × �̇�𝒏−𝟏 

𝝆𝒏 = 𝝆𝒏−𝟏/𝟐 + ∆𝒕/𝟐 × �̇�𝒏−𝟏 

 Calculate stress rate(𝝈�̇�), density rate(𝝆�̇�) and acceleration(𝒂𝒏) at itimestep = n; 

 Calculate stress, density and velocity at full timestep increments; 

𝒗𝒏+𝟏/𝟐 = 𝒗𝒏−𝟏/𝟐 + ∆𝒕 × 𝒂𝒏 

𝝈𝒏+𝟏/𝟐 = 𝝈𝒏−𝟏/𝟐 + ∆𝒕 × 𝝈�̇� 

𝝆𝒏+𝟏/𝟐 = 𝝆𝒏−𝟏/𝟐 + ∆𝒕 × 𝝆�̇� 

 Calculate location at full timestep increment; 

𝒙𝒏+𝟏 = 𝒙𝒏 + ∆𝒕 × 𝒗𝒏+𝟏/𝟐 
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3.6. Recent improvements on traditional SPH method 

3.6.1. Artificial viscosity 

SPH experiences numerical oscillation at shock front, which can result in unstable numerical 

solutions, especially when dealing with dynamic problems. That is because shocks propagating 

within the computational domain of SPH cannot smear out over a length scale sufficiently 

greater than the discretisation step (Bui et al. 2008). Therefore, a proper dissipative term 

‘artificial viscosity’ is required for damping out the undesirable oscillation and thus stabilising 

the numerical domain. The term of artificial viscosity was introduced by VonNeumann and 

Richtmyer (1950), with the aim of smoothing shocks over a few resolution lengths. For SPH 

applications, the artificial viscosity term traditionally used is introduced into the momentum 

conservation equation shown in equation (3.29) as an artificial viscous pressure acting directly 

on the relative motions of the particles: 

D𝐯𝑖

D𝑡
= ∑ 𝑚𝑗 (

𝛔𝑖+𝛔𝑗

𝜌𝑖𝜌𝑗
+ 𝛱𝑖𝑗) ∙

𝑁
𝑗=1 ∇𝑖𝑊(𝒙𝒊 − 𝒙𝒋, ℎ) + 𝐛𝑖                              (3.46) 

where 𝛱𝑖𝑗is the artificial viscosity term. Several formulations for artificial viscosity have been 

derived and numerical examples showing the stability of numerical solutions have been greatly 

improved by incorporating this term into momentum conservation equations. Among those, 

that proposed by Monaghan and Gingold (1983) is the most widely used, written as: 

𝛱𝑖𝑗 = {

−𝛼𝛱𝑐𝑖𝑗𝜙𝑖𝑗+𝛽𝛱𝜙
2

𝜌𝑖𝑗
         𝑣𝑖𝑗 ∙ 𝑟𝑖𝑗 < 0

0                                   𝑣𝑖𝑗 ∙ 𝑟𝑖𝑗 ≥ 0
                                          (3.47) 

where 𝜙𝑖𝑗 =
ℎ𝑖𝑗𝑣𝑖𝑗∙𝑥𝑖𝑗

|𝑥𝑖𝑗|
2
+0.01ℎ𝑖𝑗

2
,      𝑐𝑖𝑗 =

𝑐𝑖+𝑐𝑗

2
,         𝜌𝑖𝑗 =

𝜌𝑖+𝜌𝑗

2
                                                (3.48) 

  ℎ𝑖𝑗 =
ℎ𝑖+ℎ𝑗

2
,          𝑥𝑖𝑗 = 𝑥𝑖 − 𝑥𝑗,          𝑣𝑖𝑗 = 𝑣𝑖 − 𝑣𝑗                                               (3.49) 

In the above equation, αΠ and βΠ are the parameters controlling the viscosity effect which can 

be either updated based on time and space during the calculation or predefined with a fixed 

value. The values of αΠ and βΠ are chosen according to specific applications. The density 𝜌𝑖𝑗  

is an average value between particle 𝑖 and 𝑗, 𝑐𝑖𝑗 is the sound speed in material, and the term 

0.01ℎ𝑖𝑗
2  is used to prevent numerical divergence when particles approach each other.  
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3.6.2. Tensile instability 

It has been found that when a solid is in tension, the attraction between two SPH particles 

results in particle clumping, which is normally called tensile instability. This instability was 

first investigated by Swegle et al. (1995), who developed a simple criterion depending only on 

the sign of the product of the stress times the second derivative of the kernel function. Later, 

various countermeasures were introduced in the literature to eliminate tensile instability. 

Among these, the artificial stress method first proposed by Monaghan (2000) and Gray et al. 

(2001) is the most straightforward and effective in removing tensile instability in both non-

cohesive and cohesive soils. The basic idea of this method is to introduce a repulsive force in 

a state of two neighbouring particles under tension. The closer the neighbouring particles, the 

greater is the repulsive force between them. Based on this idea, the SPH momentum balance in 

equation (3.46) should be further expanded as: 

D𝐯𝑖

D𝑡
= ∑ 𝑚𝑗 (

𝛔𝑖+𝛔𝑗

𝜌𝑖𝜌𝑗
+ 𝛱𝑖𝑗 + 𝑓𝑖𝑗

𝑛(𝑹𝒊 + 𝑹𝒋)) ∙
𝑁
𝑗=1 ∇𝑖𝑊(𝒙𝒊 − 𝒙𝒋, ℎ) + 𝐛𝑖             (3.50) 

where 𝑛 is a state parameter dependent on the problem context. In geomechanical applications 

it was chosen as 2.55 in the work of Bui et al. (2008) and fij
n is the repulsive force term which 

can be specified as: 

𝑓𝑖𝑗
𝑛 =

𝑊𝑖𝑗

𝑊(∆𝑥,ℎ)
                                                        (3.51) 

The term of 𝑊(∆𝑥, ℎ) is a constant with a non-evolving kernel function; 𝑑𝑥  is the initial 

particle spacing; 𝑹𝒊 and 𝑹𝒋 are the rotations of the local artificial stress tensor to their principal 

values, which are calculated from the stress state 𝐑𝑖
′   on the principal coordinate system 

subjected to tensile loading. The artificial stress 𝐑𝑖
′  on the principal coordinate system can be 

determined as follows (Gray et al. 2001): 

 𝐑𝑖
′ = {

−휀
𝜎𝑖
′𝑥𝑥

𝜌𝑖
2              𝑖𝑓 𝜎𝑖

′𝑥𝑥 > 0 

0                        otherwise  
                                 (3.53) 

where 휀 is a small constant parameter ranging from 0 to 1 and 𝜎𝑖
′𝑥𝑥  is the diagonal stress tensor 

of particle 𝑖 in the principal stress coordinate system (Gray et al. 2001). The constant parameter 

휀 can be chosen based on the particular application.  
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3.6.3. Corrective SPH 

The SPH approximation formulations described here can in principle achieve second order 

accuracy. But that is not always the case, especially when the material undergoes large 

deformation, which can lead to highly disordered particle configurations. The problem can be 

severe when the SPH particle comes close to the boundary where the kernel approximation is 

truncated by the boundary, although this is also an advantage of SPH that allows the method to 

automatically handle free surface boundary conditions in many applications (Zhao et al. 2019). 

To address this issue, certain remedies such as the corrective SPH technique were developed. 

The corrective SPH, originally developed by Chen et al. (1999), allows both the kernel and its 

gradient approximations to be corrected by means of the Taylor series expansion.  

First, correction of the kernel is introduced by expanding the Taylor series for 𝑓(𝐱′), and 

multiplying both sides by a kernel function:  

∫ 𝑓 (𝐱′)𝑊𝑑𝐱′
Ω

= 𝑓(𝐱) ∫ 𝑊𝑑𝒙′
𝜴

+ [∫ (𝐱′ − 𝐱)𝑊𝑑𝐱′
Ω

]
𝜕𝑓(𝐱)

𝜕𝐱
+ 𝑂(ℎ2)            (3.52) 

where 𝑊 = 𝑊(𝑥 − 𝑥𝑖, ℎ). 

Neglecting the first derivative term in equation (3.52), the corrective kernel estimate is 

generated: 

𝑓(𝐱) =
∫ 𝑓(𝐱′)𝑊𝑑𝐱′
Ω

∫ 𝑊𝑑𝒙′
𝜴

                                                     (3.53) 

The discretised form of equation (3.53) at a particle 𝑖 can be written as: 

𝑓(𝐱𝑖) =
∑

𝑚𝑗

𝜌𝑗

𝑁
𝑗=1 𝑓(𝐱𝑗)𝑊

∑
𝑚𝑗

𝜌𝑗
𝑊𝑁

𝑗=1

                                                    (3.54) 

For SPH particles distant from the problem boundary, the summation of 𝑊 over the supporting 

domain is equal to unity. In that case, equation (3.54) becomes the conventional kernel estimate. 

On the other hand, for SPH particles whose smoothing function 𝑊 is truncated by the problem 

boundary, the summation of 𝑊 over the supporting domain is less than one. This term will 

effectively reduce the boundary deficiency by enlarging the effect of the kernel estimate on 

those “near boundary “particles. As the discrete forms of derivatives of the governing equations 

all make use of the kernel gradient, correction of the kernel gradient is a key to improving the 

solution. The correction of the kernel gradient begins by rewriting the gradient of a field 

function ∇𝑓(𝐱) in the form:  
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𝑓(𝐱) = ∇𝑓(𝐱) − 𝑓(𝐱)∇1                                                  (3.55) 

Transforming Equation (3.55) into its continuous integral form results in: 

< ∇𝑓(𝐱) >=  −∫ 𝑓(𝐱′)
Ω

∇𝑊𝑑𝐱′ + 𝑓(𝐱) ∫ ∇𝑊𝑑𝐱′
𝜴

                           (3.56) 

By applying the Taylor series expansion to 𝑓(𝐱′) up to second order accuracy, the first term 

on the right-hand side of Equation (3.56) becomes: 

∫ 𝑓 (𝐱′) ∇𝑊𝑑𝐱′
Ω

= 𝑓(𝐱) ∫ ∇𝑊𝑑𝒙′
𝜴

+ [∫ (𝐱′ − 𝐱)∇𝑊𝑑𝐱′
Ω

]
𝜕𝑓(𝐱)

𝜕𝐱
+ 𝑂(ℎ2)      (3.57) 

Substituting Equation (3.57) into Equation (3.56) gives:  

  < ∇𝑓(𝐱) >= − [∫ (𝐱′ − 𝐱)∇𝑊𝑑𝐱′
Ω

]
𝜕𝑓(𝐱)

𝜕𝐱
+ 𝑂(ℎ2)                          (3.58)        

The discrete form of Equation (3.58) at a particle 𝑖 can be straightforwardly written as:                 

∇𝑓(𝐱𝑖) = [∑
𝑚𝑗

𝜌𝑗

𝑁
𝑗=1 (𝐱𝑗 − 𝐱𝑖)∇𝑊𝑖𝑗]

𝜕𝑓(𝐱)

𝜕𝐱𝑖
+ 𝑂(ℎ2)                                       (3.59) 

It can be seen from Equation (3.47) that the particle approximation for the gradient of a function 

can achieve second-order accuracy if and only if ∑
𝑚𝑗

𝜌𝑗

𝑁
𝑗=1 (𝐱𝑗 − 𝐱𝑖)∇𝑊𝑖𝑗 = (

1 0
0 1

). However, 

this requirement cannot be always satisfied, especially when particles are located near the 

boundaries. This issue can be resolved by replacing the original kernel gradient ∇𝑊𝑖𝑗  in 

Equation (3.59) by a corrective kernel gradient  ∇𝑊𝑖𝑗
𝐶  as follows: 

∇𝑊𝑖𝑗
𝐶 = 𝐋(𝐱𝑖)∇𝑊𝑖𝑗                                                        (3.60) 

where the normalisation matrix 𝐋(𝐱𝑖) in 2D can be defined as: 

𝐋(𝐱𝑖) = (

∑
𝑚𝑗

𝜌𝑗

𝑁
𝑗=1 (𝑥𝑗 − 𝑥𝑖)∇𝑥𝑖𝑊𝑖𝑗 ∑

𝑚𝑗

𝜌𝑗

𝑁
𝑗=1 (𝑥𝑗 − 𝑥𝑖)∇𝑦𝑖𝑊𝑖𝑗

∑
𝑚𝑗

𝜌𝑗

𝑁
𝑗=1 (𝑦𝑗 − 𝑦𝑖)∇𝑥𝑖𝑊𝑖𝑗 ∑

𝑚𝑗

𝜌𝑗

𝑁
𝑗=1 (𝑦𝑗 − 𝑦𝑖)∇𝑦𝑖𝑊𝑖𝑗

)

−1

                    (3.61) 

Figure 3.0–9 shows the performance of corrective SPH and standard SPH (or traditional SPH) 

for the approximation of 𝑓(𝑥) = 𝑥 and 𝑓(𝑥) = 𝑥2, in comparison with the analytical solution. 

Figure 3.0–10 illustrates the SPH approximation of function 𝑓(𝑥) = 𝑥 + 𝑦 using traditional 

SPH and corrective SPH. It has been shown that boundary deficiency is clearly indicated in the 

result by using the traditional approximation. On the other hand, the accuracy of the SPH 

approximation with the corrective technique is quite remarkable in comparison with the 

analytical solution. 
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Figure 3.0–9. Performance of corrective SPH (CSPH) and standard SPH (SSPH) for 𝑓(𝑥) = 𝑥 and 

𝑓(𝑥) = 𝑥2 in comparison with analytical solution in 1D.  

  

Figure 3.0–10. Performance of corrective SPH and traditional SPH (or SSPH) for 𝑓(𝑥) = 𝑥 + 𝑦 in 
2D. 

 

3.6.4. Stress points approach 

It is known that the traditional SPH suffers from a zero-energy mode owing to the fact that both 

SPH approximations of a function and its derivative are evaluated at the same location. To 

avoid this problem, the concept of stress particles (or stress points) was introduced (Libersky 

et al. 1993, Dyka and Ingel 1995). In the approach of the SPH method with stress points, the 

computational domain is represented by two sets of particles (i.e. material and stress particles) 

as shown in Figure 3.0–11. These particles have their own field properties (such as density, 

velocity and stress) and move with their own motion equations. However, their field properties 

are exchanged when performing particle approximations to avoid issues associated with the 

zero-energy mode. In particular, the field approximations of material particles are applied on 

stress particles which are located within their influence domain. The same rule is applied when 

conducting particle approximations for stress particles. Nevertheless, the material is only 
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represented by material particles, and as a result, the total mass of the material is represented 

as: 

𝑀𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑚𝑖
𝑁
𝑖=1                                                              (3.62) 

where 𝑁 is the total number of material particles. 

 

Figure 3.0–11. SPH particle arrangement of computational domain in the two-dimensional case. 

 

3.7. Two-step Taylor SPH 

In this section, an improved SPH model, the Taylor-SPH, proposed by Herreros and Mabssout 

(2011) is introduced for solving the inherent numerical drawbacks in traditional SPH such as 

tensile instability and particle inconsistency problems. In Taylor-SPH, the stress point method 

introduced in Section 3.6.4 is used to eliminate tensile instability and spurious zero-energy 

mode problems commonly observed in the original SPH method. The corrective smoothed 

particle method explained in Section 3.6.3 is also adopted to allow the method to fulfil the zero 

and first order completeness, thus enabling the derivatives of constant or linear fields to be 

reproduced exactly. Furthermore, to improve the numerical stability of the method, a two-step 

Taylor time discretisation scheme based on the Taylor series expansion is applied (Herreros 

and Mabssout 2011). The concept and algorithm of the Taylor time integration scheme were 

presented in Section 3.5.1. The combination of corrected SPH technique, stress point approach 

and Taylor time integration scheme provides an accurate and stable solution to solve the 

governing equations of rock.  

In the Taylor SPH method, the calculation at each timestep is divided into two steps. In the first 

step, the normalisation formulation shown as equation (3.51) is used to approximate the field 

variables at stress particles at 𝑡𝑛 through the surrounding material particles over the supporting 

domain. Then, the time rates of the field variables at stress particles at 𝑡𝑛 are calculated using 
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corrective techniques (represented by equation 3.59-3.61). Finally, the variable values at stress 

particles at 𝑡𝑛+1/2 can easily be updated using equation 3.37. In the second step, the information 

of field variables is exchanged first from stress particles to material particles at  𝑡𝑛+1/2  using 

equation (3.51). Then the time rate of variables carried by material particles based on the value at 

𝑡𝑛+1/2 are calculated, followed by the variable updating of material particles at 𝑡𝑛+1 using equation 

(3.39). The detailed time integration algorithm and time rate calculation using the corrective 

techniques are presented in Table 3.0-5 and Table 3.0-6 respectively. 

 

Table 3.0-5. Taylor SPH algorithm 

First Step: 

1. Approximation of the vector of unknowns of stress points at time 𝑡𝑛: 

 

Stress of stress points at 𝑡𝑛:                     𝜎𝑠
𝑛 =

∑
𝑚𝐽

𝜌𝐽
𝜎𝑚
𝑛
𝐽𝑊𝐼𝐽

𝑁𝑃
𝐽=1

∑
𝑚𝐽

𝜌𝐽
𝑊𝐼𝐽

𝑁𝑃
𝐽=1

 

 
Velocity of stress points at 𝑡𝑛:                 𝑣𝑠

𝑛 =
∑

𝑚𝐽

𝜌𝐽
𝑣𝑚
𝑛
𝐽𝑊𝐼𝐽

𝑁𝑃
𝐽=1

∑
𝑚𝐽

𝜌𝐽
𝑊𝐼𝐽

𝑁𝑃
𝐽=1

 

 
Strain of stress points at 𝑡𝑛  (if needed):      휀𝑠

𝑛 =
∑

𝑚𝐽

𝜌𝐽
𝜀𝑚
𝑛
𝐽𝑊𝐼𝐽

𝑁𝑃
𝐽=1

∑
𝑚𝐽

𝜌𝐽
𝑊𝐼𝐽

𝑁𝑃
𝐽=1

 

 Note1: 𝜎𝑠
𝑛 stands for the stress of stress points at time 𝑡𝑛  and 𝜎𝑚

𝑛
𝐽  stands for the stress of the 

jth material points. 

2. Calculation of strain rate (휀�̇�
𝑛), stress rate (�̇�𝑠

𝑛)  and acceleration (𝑎𝑠
𝑛) of stress points 

(details are shown in Table 3.0-6) 

3. Calculation of the vector of unknowns of stress points at time 𝑡𝑛+1/2: 

 Stress of stress points at 𝑡𝑛+1/2: 𝜎𝑠
𝑛+1/2

= 𝜎𝑠
𝑛 +

∆𝑡

2
�̇�𝑠
𝑛  

 Velocity of stress points at 𝑡𝑛+1/2: 𝑣𝑠
𝑛+1/2

= 𝑣𝑠
𝑛 +

∆𝑡

2
𝑎𝑠
𝑛  

Second Step: 

1. Approximation of the vector of unknowns of material points at the time 𝑡𝑛+1/2: 

 
Stress of material points at 𝑡𝑛+1/2: 𝜎𝑚

𝑛+1/2
=
∑

𝑚𝐽

𝜌𝐽
𝜎𝑠
𝑛+1/2

𝐽
𝑊𝐼𝐽

𝑁𝑃
𝐽=1

∑
𝑚𝐽

𝜌𝐽
𝑊𝐼𝐽

𝑁𝑃
𝐽=1

  

 
Velocity of material points at 𝑡𝑛+1/2: 𝑣𝑚

𝑛+1/2
=
∑

𝑚𝐽

𝜌𝐽
𝑣𝑠
𝑛+1/2

𝐽
𝑊𝐼𝐽

𝑁𝑃
𝐽=1

∑
𝑚𝐽

𝜌𝐽
𝑊𝐼𝐽

𝑁𝑃
𝐽=1

  

2. Calculation of strain rate (휀�̇�
𝑛+1/2

), stress rate (�̇�𝑚
𝑛+1/2

)  and acceleration (𝑎𝑚
𝑛+1/2

) of 

material points (details are shown in  Table 3.0-6) 

3. Calculation of the vector of unknowns of material points at time 𝑡𝑛+1: 
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 Stress of material points at 𝑡𝑛+1: 𝜎𝑚
𝑛+1 = 𝜎𝑚

𝑛 + ∆𝑡 × �̇�𝑚
𝑛+1/2

  

 Velocity of material points at 𝑡𝑛+1: 

(Method 1) 
𝑣𝑚
𝑛+1 = 𝑣𝑚

𝑛 + ∆𝑡 × 𝑎𝑚
𝑛+1/2

  

 Velocity of material points at 𝑡𝑛+1: 

(Method 2) 
𝑣𝑚
𝑛+1 = 2𝑣𝑚

𝑛+1/2
− 𝑣𝑚

𝑛   

 Strain of material points at 𝑡𝑛+1 (if 

needed): 
휀𝑚
𝑛+1 = 휀𝑚

𝑛 + ∆𝑡 × 휀�̇�
𝑛+1/2

  

4. Calculation of position of material points: 𝑋𝑚
𝑛+1 = 𝑋𝑚

𝑛 + ∆𝑡 × 𝑣𝑚
𝑛+1/2

  

5. Calculation of position of stress points: 

 Method 1: 𝑋𝑠
𝑛+1 = 𝑋𝑠

𝑛 + ∆𝑡 × 𝑣𝑠
𝑛+1/2

  

 Method 2: 𝑋𝑠
𝑛+1 =

1

4
∑ 𝑋𝑚

𝑛+14
𝐽=1   

 

Table 3.0-6. Procedure to calculate stress rate, strain rate and acceleration. 

General equation: 

(relating time rate of 

a function with the 

derivatives of another 

function) 

휀𝛼𝛽  ̇  =  
1

2
× (

𝜕𝑣𝛼

𝜕𝑥𝛽
+
𝜕𝑣𝛽

𝜕𝑥𝛼
) 

𝑤𝛼𝛽  ̇  =  
1

2
× (

𝜕𝑣𝛼

𝜕𝑥𝛽
−
𝜕𝑣𝛽

𝜕𝑥𝛼
)  

𝑎𝛼  =  
1

𝜌
×
𝜕𝜎𝛼𝛽

𝜕𝑥𝛽
 

𝜎𝛼𝛽̇ = 𝐷𝑒휀
𝛼𝛽  ̇  

General formula for 

calculation of 

derivative of a 

function (𝜙) 

(
𝜙1,𝐼
𝜙2,𝐼

) = (
𝐴11,𝐼
𝐴21,𝐼

     𝐴12,𝐼
    𝐴22,𝐼

) −1 (
𝐹1,𝐼
𝐹2,𝐼
) 

where 𝜙𝛼,𝐼 is the particle approximation of the first derivative of 𝜙 with respect to dimension 𝛼; 

𝐴𝛼𝛽,𝐼 = ∑
𝑚𝐽

𝜌𝐽
(𝑥𝛼,𝐽 − 𝑥𝛼,𝐼)𝑊𝐼𝐽,𝛽

𝑁𝑃
𝐽=1 ;  and 𝐹𝛽,𝐼 = ∑

𝑚𝐽

𝜌𝐽
(𝜙(𝑥𝐽) − 𝜙(𝑥𝐼))𝑊𝐼𝐽,𝛽

𝑁𝑃
𝐽=1  

Therefore, the particle approximation of the first derivative can be calculated by: 

𝜕𝜙

𝜕𝑥1
|
𝐼
= 𝐴11,𝐼

−1 ∙ ∑
𝑚𝐽

𝜌𝐽
(𝜙(𝑥𝐽) − 𝜙(𝑥𝐼))𝑊𝐼𝐽,1

𝑁𝑃
𝐽=1 +𝐴12,𝐼

−1 ∙ ∑
𝑚𝐽

𝜌𝐽
(𝜙(𝑥𝐽) − 𝜙(𝑥𝐼))𝑊𝐼𝐽,2

𝑁𝑃
𝐽=1   

𝜕𝜙

𝜕𝑥2
|
𝐼
= 𝐴21,𝐼

−1 ∙ ∑
𝑚𝐽

𝜌𝐽
(𝜙(𝑥𝐽) − 𝜙(𝑥𝐼))𝑊𝐼𝐽,1

𝑁𝑃
𝐽=1 +𝐴22,𝐼

−1 ∙ ∑
𝑚𝐽

𝜌𝐽
(𝜙(𝑥𝐽) − 𝜙(𝑥𝐼))𝑊𝐼𝐽,2

𝑁𝑃
𝐽=1   

where: 𝐴11,𝐼 = ∑
𝑚𝐽

𝜌𝐽
(𝑥1,𝐽 − 𝑥1,𝐼)

𝜕𝑊𝐼𝐽

𝜕𝑥1

𝑁𝑃
𝐽=1 , 𝐴12,𝐼 = ∑

𝑚𝐽

𝜌𝐽
(𝑥2,𝐽 − 𝑥2,𝐼)

𝜕𝑊𝐼𝐽

𝜕𝑥1

𝑁𝑃
𝐽=1 ; 

              𝐴21,𝐼 = ∑
𝑚𝐽

𝜌𝐽
(𝑥1,𝐽 − 𝑥1,𝐼)

𝜕𝑊𝐼𝐽

𝜕𝑥2

𝑁𝑃
𝐽=1 , 𝐴22,𝐼 = ∑

𝑚𝐽

𝜌𝐽
(𝑥2,𝐽 − 𝑥2,𝐼)

𝜕𝑊𝐼𝐽

𝜕𝑥2

𝑁𝑃
𝐽=1  

Calculation of strain 

rate (휀̇) 휀11̇ =
1

2
× (

𝜕𝑣1

𝜕𝑥1
+
𝜕𝑣1

𝜕𝑥1
) =

𝜕𝑣1

𝜕𝑥1
 ;  휀22̇ =

1

2
× (

𝜕𝑣2

𝜕𝑥2
+
𝜕𝑣2

𝜕𝑥2
) =

𝜕𝑣2

𝜕𝑥2
 

휀12̇ =
1

2
× (

𝜕𝑣1

𝜕𝑥2
+
𝜕𝑣2

𝜕𝑥1
) ;  𝑤12̇ =

1

2
× (

𝜕𝑣1

𝜕𝑥2
−
𝜕𝑣2

𝜕𝑥1
) 

where: 
𝜕𝑣1,𝐼

𝜕𝑥1
= 𝐴11,𝐼

−1 ∙ ∑
𝑚𝐽

𝜌𝐽
(𝑣1,𝐽 − 𝑣1,𝐼)

𝜕𝑊𝐼𝐽

𝜕𝑥1

𝑁𝑃
𝐽=1 +𝐴12,𝐼

−1 ∙ ∑
𝑚𝐽

𝜌𝐽
(𝑣1,𝐽 − 𝑣1,𝐼)

𝜕𝑊𝐼𝐽

𝜕𝑥2

𝑁𝑃
𝐽=1   

              
𝜕𝑣1,𝐼

𝜕𝑥2
= 𝐴21,𝐼

−1 ∙ ∑
𝑚𝐽

𝜌𝐽
(𝑣1,𝐽 − 𝑣1,𝐼)

𝜕𝑊𝐼𝐽

𝜕𝑥1

𝑁𝑃
𝐽=1 +𝐴22,𝐼

−1 ∙ ∑
𝑚𝐽

𝜌𝐽
(𝑣1,𝐽 − 𝑣1,𝐼)

𝜕𝑊𝐼𝐽

𝜕𝑥2

𝑁𝑃
𝐽=1   

              
𝜕𝑣2,𝐼

𝜕𝑥1
= 𝐴11,𝐼

−1 ∙ ∑
𝑚𝐽

𝜌𝐽
(𝑣2,𝐽 − 𝑣2,𝐼)

𝜕𝑊𝐼𝐽

𝜕𝑥1

𝑁𝑃
𝐽=1 +𝐴12,𝐼

−1 ∙ ∑
𝑚𝐽

𝜌𝐽
(𝑣2,𝐽 − 𝑣2,𝐼)

𝜕𝑊𝐼𝐽

𝜕𝑥2

𝑁𝑃
𝐽=1  
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Calculation of strain 

rate (휀̇) 
𝜕𝑣2,𝐼

𝜕𝑥2
= 𝐴21,𝐼

−1 ∙ ∑
𝑚𝐽

𝜌𝐽
(𝑣2,𝐽 − 𝑣2,𝐼)

𝜕𝑊𝐼𝐽

𝜕𝑥1

𝑁𝑃
𝐽=1 +𝐴22,𝐼

−1 ∙ ∑
𝑚𝐽

𝜌𝐽
(𝑣2,𝐽 − 𝑣2,𝐼)

𝜕𝑊𝐼𝐽

𝜕𝑥2

𝑁𝑃
𝐽=1   

Calculation of 

acceleration (𝑎) 
𝐷𝑣1,𝐼

𝐷𝑡
 =  

1

𝜌𝐼
× (

𝜕𝜎11,𝐼

𝜕𝑥1
+
𝜕𝜎12,𝐼

𝜕𝑥2
) ;  

𝐷𝑣2

𝐷𝑡
 =  

1

𝜌𝐼
× (

𝜕𝜎12,𝐼

𝜕𝑥1
+
𝜕𝜎22,𝐼

𝜕𝑥2
)  

 where: 
𝜕𝜎11,𝐼

𝜕𝑥1
= 𝐴11,𝐼

−1 ∙ ∑
𝑚𝐽

𝜌𝐽
(𝜎11,𝐽 − 𝜎11,𝐼)

𝜕𝑊𝐼𝐽

𝜕𝑥1

𝑁𝑃
𝐽=1 +𝐴12,𝐼

−1 ∙ ∑
𝑚𝐽

𝜌𝐽
(𝜎11,𝐽 − 𝜎11,𝐼)

𝜕𝑊𝐼𝐽

𝜕𝑥2

𝑁𝑃
𝐽=1  

               
𝜕𝜎11,𝐼

𝜕𝑥2
= 𝐴21,𝐼

−1 ∙ ∑
𝑚𝐽

𝜌𝐽
(𝜎11,𝐽 − 𝜎11,𝐼)

𝜕𝑊𝐼𝐽

𝜕𝑥1

𝑁𝑃
𝐽=1 + 𝐴22,𝐼

−1 ∙ ∑
𝑚𝐽

𝜌𝐽
(𝜎11,𝐽 − 𝜎11,𝐼)

𝜕𝑊𝐼𝐽

𝜕𝑥2

𝑁𝑃
𝐽=1   

               
𝜕𝜎12,𝐼

𝜕𝑥1
= 𝐴11,𝐼

−1 ∙ ∑
𝑚𝐽

𝜌𝐽
(𝜎12,𝐽 − 𝜎12,𝐼)

𝜕𝑊𝐼𝐽

𝜕𝑥1

𝑁𝑃
𝐽=1 +𝐴12,𝐼

−1 ∙ ∑
𝑚𝐽

𝜌𝐽
(𝜎12,𝐽 − 𝜎12,𝐼)

𝜕𝑊𝐼𝐽

𝜕𝑥2

𝑁𝑃
𝐽=1  

               
𝜕𝜎12,𝐼

𝜕𝑥2
= 𝐴21,𝐼

−1 ∙ ∑
𝑚𝐽

𝜌𝐽
(𝜎12,𝐽 − 𝜎12,𝐼)

𝜕𝑊𝐼𝐽

𝜕𝑥1

𝑁𝑃
𝐽=1 + 𝐴22,𝐼

−1 ∙ ∑
𝑚𝐽

𝜌𝐽
(𝜎12,𝐽 − 𝜎12,𝐼)

𝜕𝑊𝐼𝐽

𝜕𝑥2

𝑁𝑃
𝐽=1    

               
𝜕𝜎22,𝐼

𝜕𝑥1
= 𝐴11,𝐼

−1 ∙ ∑
𝑚𝐽

𝜌𝐽
(𝜎22,𝐽 − 𝜎22,𝐼)

𝜕𝑊𝐼𝐽

𝜕𝑥1

𝑁𝑃
𝐽=1 +𝐴12,𝐼

−1 ∙ ∑
𝑚𝐽

𝜌𝐽
(𝜎22,𝐽 − 𝜎22,𝐼)

𝜕𝑊𝐼𝐽

𝜕𝑥2

𝑁𝑃
𝐽=1   

               
𝜕𝜎22,𝐼

𝜕𝑥2
= 𝐴21,𝐼

−1 ∙ ∑
𝑚𝐽

𝜌𝐽
(𝜎22,𝐽 − 𝜎22,𝐼)

𝜕𝑊𝐼𝐽

𝜕𝑥1

𝑁𝑃
𝐽=1 + 𝐴22,𝐼

−1 ∙ ∑
𝑚𝐽

𝜌𝐽
(𝜎22,𝐽 − 𝜎22,𝐼)

𝜕𝑊𝐼𝐽

𝜕𝑥2

𝑁𝑃
𝐽=1   

Calculation of strain 

rate (�̇�) 
Method 1: Using 𝐸 and 𝜇 

𝜎𝛼𝛽̇ = 𝐷𝑒휀
𝛼𝛽  ̇  

where: 𝐷𝑒 =
𝐸

(1+𝜇)(1−2𝜇)
(
1−𝜇
𝜇
0
𝜇

𝜇
1−𝜇
0
𝜇

0
0

1−2𝜇
0

𝜇
𝜇
0
1−𝜇

) = (

𝐷11
𝐷21
𝐷31
𝐷41

𝐷12
𝐷22
𝐷32
𝐷42

𝐷13
𝐷23
𝐷33
𝐷43

𝐷14
𝐷24
𝐷34
𝐷44

)   

Therefore,    �̇�11 = 𝐷11휀11̇ + 𝐷12휀22̇ ;           �̇�22 = 𝐷21휀11̇ + 𝐷22휀22̇ ; 

                       �̇�12 = 𝐷33휀12̇ ;                             �̇�33 = 𝐷41휀11̇ + 𝐷42휀22̇  

Method 2: Using 𝐺 and 𝐾 

�̇�𝛼𝛽 = 𝐾 휀𝑘𝑘̇ 𝛿𝛼𝛽 + 2𝐺 𝑒𝛼𝛽̇  

When dealing with large deformation, the Jaumann stress rate �̂�𝛼𝛽̇  is adopted to consider rotation: 

�̂�𝛼𝛽̇ = 𝜎𝛼𝛽̇ − 𝜎𝛼𝛾�̇�𝛽𝛾 − 𝜎𝛾𝛽�̇�𝛼𝛾 

 

3.8. SPH modelling of elastic solids 

Based on the improvements in the numerical stability of the traditional SPH introduced in 

Section 3.6, two improved SPH methods were developed. The first method is the Taylor SPH 

presented in Section 3.7, which incorporates the stress particle approach corrective technique 

into the traditional SPH framework and discretises the governing equations using the two-step 

Taylor time integration. The second method is the traditional SPH with tensile instability 

treatment incorporating the corrective technique to achieve second order accuracy and 

introduces stabilised terms such as artificial viscosity and artificial stress to remove tensile 

instability. The built-in codes of these two improved SPH approaches were developed to 

provide a stable numerical platform in rock fracture simulation. In this section, two numerical 

tests are conducted, using the two improved SPH methods combined with the elastic 

constitutive model to examine the capability of these SPH methods to simulate elastic solids.
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3.8.1. 1D shockwave test 

A one-dimensional shockwave problem carried out by Dyka and Ingel (1995) is simulated. The 

purpose of this test is to verify the performance and accuracy of the Taylor-SPH framework. 

In this test, an elastic bar under constant tensile loading is considered as shown in Figure 3.0–

12. The bar is 0.133m long with a unit cross-section. It is fixed at the left end and an 

instantaneous velocity (𝑣 = 5m/s)  is given to the right quarter of the bar. The linear elastic 

constitutive model is adopted and the model parameters are: Young’s modulus 𝐸 = 200 GPa; 

density 𝜌 = 7833kg/m3. 

 

Figure 3.0–12.  Geometry and boundary conditions of the 1D elastic bar. 

 

In the Taylor SPH, the elastic bar is discretised by 41 material particles and 40 stress particles, 

which are arranged in a regular square lattice with the initial separation of dx = 0.00333m 

between two consecutive particles. The boundary conditions are: the velocity of the far left 

material particle is 𝑣1 = 0𝑚/𝑠 and the stress of the far right material particle is 𝜎41 = 0 Pa. 

Following the recommendation of Blanc and Pastor (2013) to improve the numerical stability 

of the Taylor-SPH model, the Courant number set to 𝐶 = 1. The Courant number is defined 

as:  

𝐶 =
𝑐𝑠×𝑑𝑡

𝑑𝑥
                                                                   (3.63) 

where 𝑐𝑠 = 𝐸/𝜌 is the elastic wave speed,  𝑑𝑡 is the timestep and 𝑑𝑥  is the initial particle 

discretisation size.  

For comparison, the traditional SPH is also applied to model the elastic response of a bar using 

the same constitutive model and material parameters. In total, 48 SPH particles are used for 

this simulation, 40 of which are used to form the elastic bar and the rest are used to provide the 

left fixed boundary by keeping their velocity at zero. The Courant number in the traditional 

SPH simulation is 𝐶 = 0.125. 
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Figure 3.0–13. One-dimensional elastic bar test: (a). Velocity history of the right end of the bar; (b). 

Stress history for particles in the middle of the bar. 

 

Figure 3.0–13(a) shows the velocity history of the SPH particle at the right end of the bar (𝑥 =

0.133m) using the Taylor and traditional SPH models, together with the analytical solution. 

As indicated in Figure 3.0–13(a), the results of the Taylor-SPH are in excellent agreement with 

the analytical solution. When the node at the right end of the bar is given an instant tensile 

loading, its velocity remains at 5m/s initially and decreases to 0. Then the node is under 

compression, and the velocity at this location immediately reduces to −5m/s . The 

observations can be extended to the stress history of a SPH particle located in the middle of the 

bar (𝑥 = 0.0665m), shown in Figure 3.0–13(b). As with the velocity history, good agreement 

between the Taylor-SPH results and the analytical solutions is achieved. The stress amplitude 

predicted by the Taylor-SPH is around 100MPa and remains unchanged with time, suggesting 

that the Taylor-SPH model is stable. On the other hand, the solutions of velocity and stress 
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predicted by the traditional SPH model, as illustrated in the same figure, show slightly larger 

amplitudes than those of the Taylor-SPH and analytical solutions. The solutions also show that 

the stress and velocity amplitudes in the traditional SPH model become smaller with time, 

suggesting that the energy in the traditional SPH model is not conservative. Furthermore, the 

numerical results predicted by the Taylor-SPH show less fluctuation than the traditional SPH 

solutions. This finding suggests that the Taylor-SPH model with stress particles is more stable 

than the traditional SPH model, despite its relatively complex formulations. Nevertheless, the 

above 1D elastic tension test demonstrates that the Taylor-SPH with chosen parameters can 

provide accurate numerical solutions.  

3.8.2. 2D elastic cantilever test 

A 2D elastic test of a cantilever beam is simulated to examine the capabilities of the Taylor 

SPH method and traditional SPH with the tensile instability treatment method in simulating 2D 

elastic problems. The bar’s length is 0.2m and width is 0.02m as shown in Figure 3.0–14, and 

the vertical movement of the bar follows: 

𝑓𝑥(𝑥) = (sinh𝑘𝑙 + sin 𝑘𝑙) × (cosh 𝑘𝑥 − cos 𝑘𝑥) − ((cosh𝑘𝑙 + cos 𝑘𝑙)) × (sinh𝑘𝑥 − sin𝑘𝑥)      (3.64a) 

𝑓𝑙 = (sinh𝑘𝑙 + sin𝑘𝑙) × (cosh𝑘𝑙 − cos 𝑘𝑙) − ((cosh 𝑘𝑙 + cos 𝑘𝑙)) × (sinh𝑘𝑙 − sin 𝑘𝑙)      (3.64b) 

𝑣𝑦 = 𝑉𝑓 × 𝑐 × 𝑓𝑥(𝑥)/𝑓𝑙                                             (3.64c) 

where 𝑥 is the horizontal distance from the right side of the fixed boundary; 𝑙 is the total length 

of the beam, c is elastic wave speed, 𝑉𝑓 = 0.05 and 𝑘 = 1.8751/𝑙 are the parameters defining 

the magnitude of vertical velocity.  

The model parameters are: Young’s modulus 𝐸 = 200𝐺𝑝𝑎; Poisson ratio 𝑣 = 0.3; density 

𝜌 = 7.8𝑘𝑔/𝑚3. The size of spatial discretisation in the Taylor SPH method is chosen as 1mm, 

resulting in 3061 materials particles and 2800 stress particles to form the beam and the left 

fixed boundary. The applied boundary conditions in Taylor SPH are as follows: 

 Fixed left boundary, 𝑣𝑥 = 𝑣𝑦 = 0; 

 At the right of the bar, 𝜎𝑥𝑥 = 0 , 𝜎𝑥𝑦 = 0; 

 At the top and bottom of the bar, 𝜎𝑦𝑦 = 0 , 𝜎𝑥𝑦 = 0. 

The elastic cantilever test is also simulated using the traditional SPH method with and without 

tensile instability treatment. The distance between two particles is adopted as 1mm, the same 

as the setting in Taylor SPH, thereby resulting in a total of 3061 particles representing the 
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computational domain. The velocities of the fixed boundary are set at zero, while the beam 

moves based on the equation (3.64c). The traditional SPH method can naturally deal with the 

free boundary surfaces, and thus it does not require any special treatment such as the settings 

in the Taylor SPH. For the simulation using the traditional SPH with tensile instability 

treatment, the constant parameters for the artificial viscosity are chosen to be 0.5 and 0 for the 

terms associated with the linear and quadratic of the velocity divergence respectively, while 

the constant parameter for the artificial stress is selected as 0.2.   

 

 

Figure 3.0–14. Configuration of 2D elastic test of a cantilever beam. 

 

Figure 3.0–15 shows the simulation results using traditional SPH without any tensile instability 

treatment. The bar begins to curve upwards in Figure 3.0–15(a) and reaches the highest point 

in Figure 3.0–15(c), followed by downwards movement to Figure 3.0–15(d). It can be seen that 

the horizontal stress distribution in Figure 3.0–15(a) is quite smooth, whereas the results from 

Figure 3.0–15(b) show strong tensile instability. The detailed results of the horizontal stresses 

of SPH particles near the fixed boundary in stage c and d are also plotted in Figure 3.0–15, 

showing that the SPH particles clamp together, resulting in unrealistic stress distributions in 

the elastic material. Figure 3.0–16 and Figure 3.0–17 show the simulation results using the 

traditional SPH with tensile instability treatment and the Taylor SPH method respectively. It 

can be seen that the tensile instability is completely removed by using these two SPH methods. 

The clearer result of the horizontal stresses of the SPH particles using these two SPH methods 

can be also seen in Figure 3.0–16 and Figure 3.0–17  respectively. A very smoothed stress 

distribution is shown, without any particle clamping. In addition, the amplitudes of the elastic 

bar simulated by the two improved SPH methods are much higher compared with the result 

obtained using the traditional SPH without tensile instability treatment, indicating the energy 

conservation in the improved SPH methods. Overall, both the Taylor SPH and the traditional 

SPH with tensile instability treatment can solve the tensile instability and provide a stable 

solution for simulating rock fracture problems, in which tensile behaviour is of great 

importance.  
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Figure 3.0–15. Result of traditional SPH without tensile instability treatment in elastic test of a 
cantilever beam. 

 

 

Figure 3.0–16. Result of traditional SPH with tensile instability treatment in elastic test of a 
cantilever beam. 
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Figure 3.0–17. Result of Taylor SPH in elastic test of a cantilever beam. 

 

3.9. Summary of different SPH versions 

In this chapter, the basis of the SPH method was summarised with particular focus on the 

modelling of solid materials. Two stable SPH frameworks, the traditional SPH with tensile 

instability treatment and the Taylor SPH, were introduced and built-in codes for these two 

frameworks were developed for further simulation of rock fractures. The advantages and 

drawbacks of the two SPH frameworks are as follows: 

 Complexity: The traditional SPH with tensile instability combines the traditional SPH 

approximation with stabilisation techniques (e.g. artificial stress and artificial viscosity). 

The simple LeapFrog time integration scheme is used, which keeps the implementation 

simple. On the other hand, the Taylor SPH, which combines the traditional SPH 

approximation, corrective technique and stress particle approach, employs two sets of 

particles with a two-step Taylor time integration scheme. Therefore, the Taylor SPH code 

is more complex to develop and implement. 

 Stability in simulating tensile problems: In the traditional SPH with tensile instability 

treatment approach, the tensile instability can be removed by using the stabilised terms, 
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artificial viscosity and artificial stress, presented in Sections 3.6.1 and 3.6.2 respectively. 

Although the parameters in those stabilised terms must be chosen with care, the approach 

to resolving tensile instability is still very straightforward. With the Taylor SPH, tensile 

instability and spurious zero-energy mode problems can be automatically eliminated by 

using the stress particle approach. Therefore, both approaches can avoid tensile instability 

issues and provide a stable numerical solution for problems involving tensile loadings. 

 Boundary condition treatment: In traditional SPH, boundary particles are adopted to 

simulate the boundary condition. The most common approach uses virtuals and ghost 

particles to respectively simulate non-slip and slip boundary conditions. And the stresses 

and velocities of all the boundary particles must be updated. An easier way to implement 

the boundary condition is to create three layers of real particles, whose field variables are 

updated in the same way as the particles which represent the problem domain. The Taylor 

SPH does not require extra SPH particles for generating boundary conditions. Instead, the 

boundary condition can be directly carried by the material particles which form the problem 

domain of a solid by using stress or velocity, thus it is much simpler than the traditional 

approach. However, the free surface boundaries in the Taylor SPH framework must be 

detected and updated at each calculation cycle, whereas the traditional SPH does not require 

special treatment of the free-surface boundary. Therefore, the traditional approach is 

computationally cheaper when dealing with complex fracture networks which involve a 

large number of fractures. 

 Accuracy of the numerical result: It was proved by the example of a one-dimensional 

shockwave test in Section 3.8.1. that the result using Taylor SPH showed fewer frustrations 

and more energy conservation than the numerical solution using the traditional approach. 

Therefore, the Taylor SPH method can provide a more accurate solution than the traditional 

SPH due to its complex formulations. The Taylor SPH method would be a better choice 

when investigating the mechanical behaviour and fracturing processes of rocks with a 

couple of fractures; however, the traditional SPH with tensile treatment is preferred for 

handling complex problems involving multiple fracture networks with acceptable level of 

accuracy. 
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Chapter 4 

Constitutive models for rock fractures 

 

4.1. Introduction 

Rock materials usually experience four stages during the loading process: a compaction stage, 

a quasilinear elastic stage, a yield stage and a failure stage. When there are some initial flaws, 

such as joints and cracks, within a rock mass, the rock mass will be densified during the very 

early loading stage. Although the macroscopic stress-strain responses of rocks under loading 

can be summarised into these four stages, the behaviour of rock materials under various loading 

conditions is very complex. For example, the mechanical properties and fracture behaviour of 

rocks are strongly affected by factors such as the loading/strain rate, specimen size, temperature 

and pressure, as addressed in Chapter 2. To model the abovementioned key features of rocks, 

a constitutive model that describes how materials respond to various loadings is required, with 

a robust and stable numerical approach as described in Chapter 3. Many constitutive models 

have been developed for modelling the behaviour of rock materials for various aspects of rock 

applications over the past few decades.  

In this chapter, the popular constitutive models dedicated to rock modelling are reviewed, 

which are divided into two groups. The first group contains pure continuum models including 

elastoplastic models (Navarro et al. 2010, Pourhosseini and Shabanimashcool 2014, Chemenda 

and Mas 2016), elastic damage models (Cauvin and Testa 1999, Addessi et al. 2002, Maleki 

and Pouya 2010) and coupled elastoplastic damage models (Chiarelli et al. 2003, Shao et al. 

2006, Chen et al. 2010, Pourhosseini and Shabanimashcool 2014, Zhang et al. 2016). Pure 

continuum models have been extensively proposed and applied in different rock problems, 

thanks to their simplicity in formulation, implementation and parameter identification. 

However, these models describe the material behaviour from initial yield to complete fracture 

with a single stress-strain relationship, ignoring the strong gradient of strain due to localisation. 
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As a consequence, despite the fact that they can reproduce results that please the eye for lab-

scale experiments, they suffer from mesh dependence. Therefore enhancements to such 

classical continuum constitutive models using a smeared crack approach (Petersson 1981, De 

Borst 1987, Weihe et al. 1998, Hariri Ard et al. 2012) and nonlocal/gradient theories (Pijaudier-

Cabot and Bažant 1987, Voyiadjis and Al-Rub 2005, Nguyen et al. 2015), the eXtended finite 

element method (Wells and Sluys 2001, Borst et al. 2006, Salimzadeh and Khalili 2015, Ferté 

et al. 2016, Dimitri et al. 2017), the strong discontinuity approach (Oliver 1996, Dias-da-Costa 

et al. 2009, Dias-da-Costa et al. 2010, Dias‐da‐Costa et al. 2013, Bosco et al. 2015, Zhang 

and Zhuang 2018), enhanced assumed strain (Borja 2000, Motamedi et al. 2016, Reinoso et al. 

2017) and double-scale model  (Nguyen et al. 2012, Nguyen et al. 2014, Nguyen et al. 2016, 

Nguyen et al. 2016) have been used for regularisation to resolve these issues. Among these 

advanced models, the smeared crack model, strong discontinuity model and double-scale 

model are reviewed as the group of enhancements to pure continuum models. After 

comprehensive revision of these existing constitutive models, a new size-dependent 

constitutive framework for rocks is described. The proposed constitutive model considers the 

RVE crossed by a fracture process zone, the behaviour of which is described by a cohesive 

fracture law. A length parameter is embedded in the constitutive relation for capturing the size-

dependent behaviour of rocks. Detailed formulations and the algorithm of implementation are 

provided, following a validation test at the constitutive level.  

4.2. Pure continuum models 

4.2.1. Elastoplastic models 

In elastoplastic models, the rock materials are considered to experience irreversible 

deformation, governed by the theory of plasticity during loading. Although many elastoplastic 

models have been developed for simulating different applications of rocks, the construction of 

all these models requires four steps. The first step is to decompose the rate of total strain into 

an elastic and a plastic part, expressed as: 

�̇� = �̇�e + �̇�p                                                     (4.1) 

where �̇�, �̇�e and �̇�p represent the total strain rate tensor, elastic strain rate tensor and plastic 

strain tensor respectively. 
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The second step is to define a yield function denoted by 𝑓 to determine whether the rock 

material has elastic or plastic regimes. Many yield functions have been proposed based on 

different considerations, which are introduced later in this section. 

The third step is to define a plastic flow rule which can be associated or non-associated. The 

flow rule is used to determine the plastic strain rate tensor. The general expression of the plastic 

flow rule can be written as: 

�̇�p = �̇�
𝜕𝑔(𝝈,𝜅)

𝜕𝝈
                                                        (4.2)  

where �̇� is the rate of change of a plastic multiplier, the value of which is dependent on the 

state of stress and load history, 𝝈 is the stress tensor, 𝑔 is the plastic potential function, which 

governs the evolution of the plastic strain. If an associated plastic flow rule is applied, the 

formulation of 𝑔 is coincident with the yield function 𝑓. However, the associate plastic flow 

overestimates plastic volume expansion when modelling rock problems, so in this case non-

associated plastic flow rule is more popular, in which the plastic potential function is 

formulated by modifying the yield function with one or more parameters in order to avoid 

excessive volume expansion. 𝜅 is the variable related to the stress tensor and plastic strain. This 

parameter controls the post-peak behaviour of the material, which can be perfect plastic, 

softening or hardening.  

After determining the plastic strain based on the plastic flow, the last step is to calculate the 

stress rate using Hooke’s law: 

�̇� =  𝑪�̇�e = 𝑪(�̇� − �̇�p)                                              (4.3) 

where 𝑪  is the elastic stiffness matrix, which is controlled by the Young’s modulus and 

Poisson’s ratio. It can be seen that once the yield function is determined, the model can easily 

be developed by following these steps. Therefore, the emphasis of elastoplastic models is on 

the construction of yield criterion. Numerical yield criteria were developed last century for 

modelling rock failure (Broms 1966, Barron 1971, Franklin 1971, Miller and Cheatham Jr 1972, 

Brook 1979, Price and Farmer 1979, Yudhbir et al. 1983, Michelis and Brown 1986, Yumlu 

and Ozbay 1995, Sheorey 1997, Yu 2002, Yu et al. 2002, Huang and Gao 2004). Rahimi and 

Nygaard (2015) summarised the popular ones with their formulations as presented in Table 

4.0-1. These yield criteria can be grouped either based on the number of model parameters 

(Chen and Han 2007) or based on the shape of the surface in the principal stress space (Yu et 

al. 2002).  
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Table 4.0-1. Summary of the yield criteria used for rock materials with their key formulations (Rahimi 
and Nygaard 2015). 

 

 

Among the criteria, the Tresca (Tresca 1864) and Von Mises (Mises 1913) criteria are the most 

classic pressure-independent models, initially developed for metallic materials, as shown in 

Figure 4.0–1. The shapes of both criteria are controlled only by the cohesion of the material, 

and thus are independent of pressure. When applied to model rock or rock-like materials, these 

models are normally used together with an extra tensile cut-off surface to capture tensile 
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failures (Feenstra and de Borst 1995). In addition, these models cannot reflect the different 

responses under different compressive hydrostatic pressures due to their insensitivity to 

pressure, and thus limiting their application to biaxial loading.  

 

 

Figure 4.0–1. Shapes of the Tresca and Von Mises criteria: (a) in the three-dimensional stress space; 
(b) in an octahedral plane (Matsuoka and Nakai 1985). 

 

To solve the problems of one parameter criteria such as Tresca and Von Mises, many pressure-

dependent criteria have been developed, among which the Mohr-Coulomb and Dracker-Prager 

are the most widely used for modelling rock materials. The shapes of these two criteria are 

presented in Figure 4.0–2. Unlike the abovementioned one-parameter models, the shapes of the 

Mohr-Coulomb and Drucker-Prager models are controlled by two parameters, the cohesion 

and the friction angle of rocks, and furthermore these models can reflect pressure-dependent 

behaviour under compressive loading. Those two yield criteria have been successfully applied 

to analyse the strength of rock materials and capture shear bands in rocks (Singh et al. 1989, 

Borja et al. 2000, Zhao 2000, You 2009, Pan et al. 2012). However, Mohr Coulomb neglects 

the effect of intermediate principal stress and suffers from stress singularity in the vertex region. 

On the other hand, although the Drucker Prager avoids stress singularity by using the smooth 

curve, this criterion cannot reflect the experimentally-observed dependence of the Lode angle. 

In addition, those criteria in which shapes are linear and open fail to account for plastic 

deformation under pure compressive loading conditions, as there is no limit to the elastic zone 

on the negative part of the pressure axis. In this case, models that employ an open yield surface 
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cannot model compaction bands, which are the narrow zones of localised purely compressive 

deformation perpendicular to the most compressive principal stress in rocks.  

In order to capture the compaction band, a cap on the existing yield surface such as Mohr 

Coulomb is required. The introduction of the cap allows the generation of inelastic volume 

deformation under purely hydrostatic conditions and reduction of the shear stress at yield with 

increasing mean compressive stress. After the first cap model invention by DiMaggio and 

Sandler (1971), this type of cap model has been widely used for porous rocks (Wong et al. 

1992, Olsson 1999, Fossum and Fredrich 2000). The results through these studies showed that 

an elliptical cap is sufficient to describe the rock behaviour under pure compression and the 

onset of shear enhanced compaction in rocks. However, the interaction between two yield 

surfaces must be treated with care, otherwise it can result in an inaccurate solution. Apart from 

the introduction of a cap to the existing yield function, another alternative for modelling rock 

behaviour under compression is to develop a single closed yield surface. Closed yield criteria 

have been widely employed in many studies for modelling the compressive behaviour of 

porous materials (Antonellini et al. 1994, Cuss et al. 2003, Borja 2004, Borja and Aydin 2004). 

In those criteria, the yield surface is initially closed and gradually open towards the negative 

hydrostatic axis under loading, as illustrated in Figure 4.0–3. The nonlinear closed yield surface 

has been proved able to capture the process of how deformation bands (shear or compaction) 

grow and eventually fail to form through-going faults.  

 

 

Figure 4.0–2. Shapes of Mohr-Coulomb and Drucker-Prager criteria: (a) in three-dimensional stress 
space; (b) in an octahedral plane (Kim and Moridis 2013) 
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Recently, more advanced yield functions have been proposed by calibrating with extensive 

experimental data under various loading conditions. For example, in the work by Chemenda 

and Mas (2016), Grassl et al. (2013), Paliwal et al. (2017) and Veiskarami and Tamizdoust 

(2017), the third stress invariant 𝐽3 or alternatively the Lode angle parameter 𝜃 was introduced 

to the yield function for capturing the Lode angle dependency. Similarly, the first stress 

invariant 𝐼1 or the hydrostatic pressure 𝑝 was incorporated to reflect the pressure dependent 

behaviour under the compressive loading (Grassl and Jirásek 2006, Červenka and 

Papanikolaou 2008, Grassl et al. 2013, Paliwal et al. 2017). Detailed formulations of these yield 

functions are available in those references.   

 

 

 

Figure 4.0–3.  Shape of a closed cap model: (a) in the three-dimensional stress space; (b) in an 
octahedral plane (Paliwal et al. 2017). 

 

Thanks to the simple concept, elastoplastic models are the most popular constitutive models 

which have been widely applied to modelling different rock applications. Although these 

models can capture well some material responses such as irreversible deformation and strain 

hardening/softening by choosing a suitable yield function and hardening/softening laws, 

elastoplastic models fail to take into account the stiffness reduction and high strain deformation 

in the fracture process zone during fracture-induced failures of rock. Thus these models are not 

favourable options for predicting fracture initiation and propagation and investigating the 
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underlying mechanism of rock fractures. Many advanced constitutive models have been 

developed by adding damage mechanics (Červenka and Papanikolaou 2008) or fracturing 

theory mechanics (Krätzig and Pölling 1998) into the existing elastoplastic framework for 

better modelling of rock fracture behaviour, as introduced later. 

4.2.2. Elastic damage models 

Unlike the elastoplastic models, elastic damage models based on continuum damage mechanics 

(CDM) can capture the stiffness degradation during the failure of rock materials due to the 

incorporation of the damage variable. In addition, simple damage models have been 

extensively used in structure analysis under monotonic loading thanks to their capability for 

reproducing the softening response of the material without requiring irreversible deformation. 

These are two key features of continuum damage mechanics over the theory of plasticity when 

modelling failure of rock materials. While the term “continuum damage mechanics” was 

apparently introduced by Janson and Hult (1977), the theory itself can be traced back to 

Kachanov (1958). After its invention, numerous elastic damage models which couple the 

elastic law with the continuum damage mechanics (CDM) emerged.  

 

 

Figure 4.0–4. Concept of damage mechanics with scalar damage variable (Cieślik 2013) 

 

The basic idea of continuum damage mechanics is to introduce damage variables to constitutive 

relations to characterise the material deterioration in a representative volume element (RVE) 

associated with the effective stress concept and the principle of equivalence. It is well known 

that damage in materials is a consequence of the growth and coalescence of microcracks or 

microvoids. Within the RVE, the discrete entities of damage at the microscopic level do not 
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appear explicitly but their effects are represented by means of macroscopic damage variables. 

The damage variable can be in the form of a scalar variable that describes the evolution of the 

isotropic material from an intact state to a fractured state (Cauvin and Testa 1999, Li and Ansari 

1999, Addessi et al. 2002, Liu et al. 2016); on the other hand, it can be in the form of second 

or fourth rank tensor describing the different extents of stiffness degradation in multiple 

directions (Hayakawa and Murakami 1997, Swoboda and Yang 1999, Swoboda and Yang 1999, 

Shao and Rudnicki 2000, Shao et al. 2006, Maleki and Pouya 2010). Although the tensor 

representation of the damage variable is more accurate for capturing anisotropic damage, the 

scalar damage variable is more popular in the literature due to its simplicity in the formulation 

and numerical implementation.  

Figure 4.0–4 shows the concept of an elastic damage model with a scalar damage variable. A 

representative volume element is under compressive loading. The RVE behaves elastically 

before the damage is identified, as shown in Figure 4.0–4a, by following Hooke’s law: 

𝜎 = 𝐸휀                                                               (4.4) 

In Figure 4.0–4b, the cross section of the RVE (𝐴) is divided into an undamaged area and a 

damaged area denoted as𝐴𝐷, indicating the damage development in the RVE. Therefore, the 

damage variable can be defined as the ratio of the damaged area to the total area: 

 𝐷 = 𝐴𝐷/𝐴                                                             (4.5) 

Consequently, the effective stress becomes:  

�̃� =
𝐹

�̃�
=

𝐹

𝐴−𝐴𝐷
=

𝜎

1−𝐷
                                                   (4.6) 

The effective stress strain relationship representing the RVE in Figure 4.0–4c can be obtained 

using the strain equivalence hypothesis 휀̃ = 휀 (Lemaitre, 1972): 

�̃� =
𝐸�̃�

1−𝐷
                                                               (4.7) 

Similarly, the damaged RVE in Figure 4.0– 4c also can be described by the averaged stress-

strain relationship as: 

𝜎 = (1 − 𝐷)𝐸휀                                                          (4.8) 

It can be seen that elastic damage models are formulated based on an elastic stress-strain law 

together with a damage variable 𝐷 to characterise the material deterioration. Equation (4.8) can 
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be extended to express the stress-strain relationship of the RVE in two- or three-dimensional 

coordinate as: 

𝛔 = (1 − 𝐷)𝐂𝛆                                                          (4.9) 

Equation (4.9) is the basic formulation for all damage models, although they have different 

ways of defining the evolution of the damage variable. The choice of the damage variable and 

the evolution law for damage are the key steps in the development of damage models, many of 

which have appeared in the literature. The most popular approach is to describe the evolution 

of damage in rocks as a function of the effective stress or strain (Krajcinovic 1985, Simo and 

Ju 1987, Simo and Ju 1987, Mazars and Pijaudier-Cabot 1989, Reyes and Einstein 1991, 

Peerlings et al. 1996, Bonora 1997, Cauvin and Testa 1999, Peerlings 1999, Jirasek et al. 2004). 

As studies show that energy dissipation and damage are correlated in rock, another popular 

approach is to derive the damage evolution based on the basis of energy dissipation (Duyi and 

Zhenlin 2001, Fengnian et al. 2004, Xie et al. 2005, Peng et al. 2007, Wang et al. 2012). Some 

other studies relate the damage evolution to some material parameters of rock, such as joint 

spacing, Young's modulus, yield stress, wave velocity, and acoustic emission event count (Liu 

et al. 2016).  

Overall, the density and orientation of microcracks can be represented in elastic damage models 

by using internal variables such as a scalar variable for isotropic damage, second and fourth 

rank tensors to describe anisotropic damage. The results from numerous studies show that these 

models successfully account for the reduction of stiffness and the macroscopic stress-strain 

responses of brittle rock deformation under both tensile and compressive loading conditions. 

However, some of the concepts and parameters involved in these models are not clearly related 

to physical mechanisms (Shao et al. 2006). Moreover, these models fail to take into account 

some key macroscopic features of the material behaviour, such as Lode-angle dependency, 

mixed mode and size effect. Importantly, these models assume that all energy dissipates due 

only to the damage mechanics, and thus cannot capture the irreversible strains of the materials 

under loading. These drawbacks of elastic damage models limit their applications in modelling 

mixed-mode rock fracture problems or problems related to the unloading-reloading cycle.  

4.2.3. Coupled elastoplastic damage models  

It has been found through numerical experiments that in most rock materials, plastic 

deformation is generally coupled with damage due to the growth of microcracks (Niandou 

1994). This induced damage is the main mechanism which results in the material softening. 
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Therefore, for the coupling between damage and plasticity, as illustrated in Figure 4.0–5, it is 

necessary to take into account both stiffness degradation and irreversible strain during the 

course of loading. Owing to this advantage, numerous coupled elastoplastic damage models 

have been developed (Chiarelli et al. 2003, Shao et al. 2006, Chen et al. 2010, Pourhosseini 

and Shabanimashcool 2014, Zhang et al. 2016). In those coupling models, the total strain rate 

(�̇�) is decomposed into an elastic part (�̇�e) and a plastic part (�̇�p), as in elastoplastic models: 

�̇� = �̇�e + �̇�p                                                              (4.10) 

 

 

Figure 4.0–5. Basic idea of elastoplastic damage models (Tao and Phillips 2005) 

 

Apart from the strain decomposition, two separate loading functions are required to 

respectively control the evolution of plastic strain (�̇�p) and damage variable (D). The plastic 

strain rate is characterised through determination of the plastic yield function or plastic 

potential function, while the damage evolution can be derived by a damaged surface (Yazdani 

and Schreyer 1990, Shao et al. 2006) or a function of internal variables such as plastic strain 

and material strengths (Salari et al. 2004, Grassl et al. 2013). The plastic strain and damage 

variable are coupled through the final stress-strain relationship, the general formulation of 

which can be written as: 

�̇� = (1 − 𝐷) 𝑪�̇�e = (1 − 𝐷)𝑪(�̇� − �̇�p)                                              (4.11) 

The basic framework for coupled elastoplastic damage models has been comprehensively 

introduced by Shao et al. (2006), Chiarelli et al. (2003) and Mohamad-Hussein and Shao 

(2007). In these studies, the mechanics of plastic flow and damage evolution are also discussed 

based on the experimental observations. Coupled elastoplastic damage models were first 

proposed and used in modelling semi-brittle rocks such as argillite (Jia et al. 2007, Chen et al. 
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2010) and claystone (Chiarelli et al. 2003). Then, more coupled elastoplastic damage models 

were developed to describe the mechanical behaviour of brittle rocks (Zhou et al. 2011, Chen 

et al. 2015). The results showed that these models could capture the plastic hardening effect in 

the pre-peak regime, thanks to the employment of plasticity, and rapid damage degradations in 

elastic stiffness and yield strength in the post-peak regime, thanks to the employment of 

damage mechanics.  

Although the coupled elastoplastic damage models have achieved considerable success in 

modelling brittle rocks, they fail to take into account another important feature in brittle rocks, 

which is time-dependent deformation. In the previous models, the elastic and plastic 

deformation are both instantaneous (practically in a very short time), and therefore these 

models are not suitable for modelling long-term (or creep) plastic responses due to the effect 

of material viscosity. Although it was found that creep deformation is essentially related to sub-

critical propagation of microcracks, viscoplastic models which introduced a viscosity 

coefficient into the constitutive relation at the RVE level are the most popular methods for the 

modelling of creep deformation (Lemaitre and Chaboche 1994). Many viscoplastic models 

have been developed for rocks for long-term safety analysis (Cristescu 1986, Cristescu 1994, 

Dahou et al. 1995, Jin and Cristescu 1998, Maranini and Yamaguchi 2001). In the following 

part of this section, a coupled elastoplastic and viscoplastic damage model proposed by Zhou 

et al. (2008) is briefly introduced. In their work, the rock material is assumed to experience 

simultaneous instantaneous plastic deformation (�̇�p) and time-dependent plastic deformation 

denoted as �̇�vp. In this case, the total strain rate is decomposed into three parts as: 

�̇� = �̇�e + �̇�p+ �̇�vp                                                               (4.12) 

The general form of the stress-strain relationship can be written as: 

�̇� = 𝐊�̇�e𝛿 + 2𝐆�̇�e                                                             (4.13) 

where 𝐊 and 𝐆 are the bulk modulus and shear modulus respectively, both of which can be 

calculated based on the Young’s modulus and Poisson’s ratio of material.   

A nonlinear plastic yield function and plastic potential, together with the non-associated flow 

rule for determining the instantaneous plastic deformation, are respectively expressed as: 

𝑓𝑝(𝛔, 𝛼𝑝) = 𝑞 −  𝑔(𝜃)𝛼𝑝(𝛾𝑝)𝑅𝑐√𝐴(𝐶𝑠 +
𝑝

𝑅𝑐
)                                  (4.14a) 

𝑄𝑝(𝛔, 𝛼𝑝) = 𝑞 −  𝑔(𝜃)(𝛼𝑝 − 𝛽𝑝)(𝑝 + 𝐶𝑠𝑅𝑐)                                   (4.14b) 
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�̇�p = 𝜆𝑝
𝜕𝑄𝑝(𝛔,𝛼𝑝)

𝜕𝛔
                                                         (4.14c) 

where 𝑝, 𝑞 and 𝜃 are the mean stress, stress deviator and Lode’s angle respectively; 𝐶𝑠 is the 

parameter representing the coefficient of material cohesion; 𝐴 defines the internal friction 

coefficient of the failure surface;  𝑅𝑐  is a normalised coefficient related to the uniaxial 

compression strength;  𝑔(𝜃)  is a function related to the Lode’s angle for describing the 

dependency of the yield function on the Lode’s angle; 𝛽𝑝 defines the transition point from the 

compressibility zone (𝛼𝑝 < 𝛽𝑝)  to the dilatancy zone (𝛼𝑝 > 𝛽𝑝)  in which the plastic 

hardening 𝛼𝑝 is a function of the equivalent plastic shear strain 𝛾𝑝, expressed as: 

𝛼𝑝(𝛾𝑝) = 𝛼𝑝
0 + (1 − 𝛼𝑝

0)
𝛾𝑝

𝐵+𝛾𝑝
                                                (4.15a) 

�̇�𝑝 = √
2

3
�̇�𝑝�̇�𝑝 + √

2

3
�̇�𝑣𝑝�̇�𝑣𝑝                                                   (4.15b) 

The plastic hardening function in Equation (4.15a) is used to model the hardening behaviour 

of quasi-brittle materials, where the parameter 𝐵 controls the rate of plastic hardening and �̇�𝑝 

and �̇�𝑣𝑝 are respectively the plastic and viscoplastic deviatoric strains. 

In order to model the time-dependent behaviour of rocks, a viscoplastic yield function, a 

viscoplastic potential and a viscoplastic flow rule are also required to control the evolution of 

viscoplastic deformation, shown as: 

𝑓𝑣𝑝(𝛔, 𝛼𝑝) = 𝑞 −  𝑔(𝜃)𝛼𝑣𝑝(𝛾𝑝)𝑅𝑐√𝐴(𝐶𝑠 +
𝑝

𝑅𝑐
)                                (4.16a) 

𝑄𝑣𝑝(𝛔, 𝛼𝑝) = 𝑞 −  𝑔(𝜃)(𝛼𝑣𝑝 − 𝛽𝑝)(𝑝 + 𝐶𝑠𝑅𝑐)                                   (4.16b) 

�̇�vp = 𝛾(𝑇) 〈
𝑓𝑣𝑝(𝛔,𝛼𝑝)

𝑅𝑐
〉𝑁

𝜕𝑄𝑝(𝛔,𝛼𝑝)

𝜕𝛔
                                           (4.16c) 

where 𝛼𝑣𝑝(𝛾𝑝)  defines the current internal friction coefficient of the viscoplastic loading 

surface, expressed as: 

𝛼𝑣𝑝(𝛾𝑝) = 𝛼𝑝
0 + (1 − 𝛼𝑣𝑝

0 )
𝛾𝑝

𝐵𝑣𝑝+𝛾𝑝
                                                (4.17) 

The value of 𝛼𝑣𝑝(𝛾𝑝) must be less than the value of 𝛼𝑝(𝛾𝑝), as viscoplastic deformation always 

lags behind instantaneous plastic deformation. 

Finally, a damage variable (𝜔) is introduced to model the degradation of elastic properties and 

plastic deformation. As it was found through mechanical analysis that induced damage mainly 
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affects the shear modulus of the material, a linear relationship between shear modulus and 

damage variable was proposed in this work, expressed as: 

𝐆(𝜔) = 𝐆0(1 − 𝛼2𝜔)                                                   (4.18) 

The shear modulus in  Equation (4.13) is replaced by the new damage-dependent shear 

modulus 𝐺(𝜔) to reflect the stiffness degradation due to damage. Furthermore, the damage 

variable is also introduced into the expressions of hardening laws in Equations (4.15a) and 

(4.17). They are now expressed as:  

�̂�𝑝(𝛾𝑝 , 𝜔) = (1 − 𝜔)𝛼𝑝(𝛾𝑝)                                             (4.19a) 

�̂�𝑣𝑝(𝛾𝑝 , 𝜔) = (1 − 𝜔)𝛼𝑣𝑝(𝛾𝑝)                                            (4.19b) 

where the damage variable 𝜔 can be calculated using the following damage function: 

𝑓𝜔(𝜔, 𝜉𝜔) = 𝜔 − [1 −
(1−𝐴1)𝜉𝜔

0

𝜉𝜔
+

𝐴1

exp(𝐵1(𝜉𝜔−𝜉𝜔
0 ))
] ≤ 0                            (4.20)    

This model shows a good example of coupling both time-independent and time-dependent 

plastic deformation with induced damage by the growth of microcracks. Similar coupled 

elastoplastic and viscoplastic damage models have been proposed by Chen et al. (2015), Souley 

et al. (2011) and Dufour et al. (2012), to list just a few. Overall, the use of coupled elastoplastic 

damage models with or without consideration of long-term deformation could lead to a more 

realistic result for capturing the macroscopic behaviour of rock, such as the stiffness reduction 

and irreversible deformation, compared with the damage models and elastoplastic models.  

However, the deformation in the abovementioned models is assumed to be homogeneous over 

a unit volume, thereby neglecting the existence of a high gradient of deformation across the 

localisation band during the nonlinear phases of rock fractures. In addition, those models fail 

to account for the characteristics of the localisation zone such as size, fracture orientation and 

evolution of inelastic behaviour, together with the material behaviour outside the zone. As a 

consequence, the localisation of deformation in classical models depends highly on the 

resolution of discretisation, which is also called mesh-dependence.  

4.3. Enhancements to pure continuum models 

As discussed in the previous sections, models based on the continuum mechanics fail to take 

into account the material behaviour and the size of the FPZ in rocks, thereby suffering from 

mesh-dependency of the numerical solutions. To solve this problem, some enhancements have 

been employed at the constitutive level, such as the smeared crack model, strong discontinuity 
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model and double-scale model. In these models, the quantities charactering the behaviour of 

the localisation zone are taken into account, thus helping to remove mesh-dependency and 

hence enabling proper capturing of the failure behaviour of the materials. In the following part 

of this section, the concepts of these enhanced models are introduced, together with their 

strengths and limitations. 

4.3.1. Smeared crack model 

The origins of the smeared cracked approach can trace back to the sixties of the last century in 

the study of prestressed concrete pressure vessels (Rashid 1968). Despite its successful 

implementation in FE codes, it was found that the total dissipated energy of this model is 

proportional to the mesh size during the cracking process. This lack of objectivity also implies 

that the dissipated energy vanishes if an infinitesimally small mesh size is used, which is not 

physically correct. Furthermore, the original approach still suffers from mesh size dependence 

in localisation problems. Those problems were solved by Bažant and Oh (1983), who proposed 

a crack band model in the context of continuum mechanics. The basic idea of this model is to 

simulate fracture opening in rock and concrete as a blunt smeared crack band in which the 

material undergoes progressive micro-cracking. A loss of rigidity is introduced in the direction 

perpendicular to the direction of maximum tensile stress. In the crack band, a triaxial stress-

strain relationship involves strain-softening which is controlled by fracture energy, strength 

limitation and width of the crack band (normally five times the grain size of material). However, 

the crack band model proposed by Bažant and Oh (1983) is limited to simulating pure mode I 

tensile failure.  

Later, a number of smeared crack approaches were developed for simulating mixed-mode 

failure, ranging from fixed single to fixed multi-directional and rotating crack approaches. The 

distinctions among them are how often the orientation of the crack is updated and how many 

cracks are assumed in the RVE. Detailed formulations for the fixed single smeared crack model 

can be found in the work of De Borst and Nauta (1985) and Rots et al. (1985), while detailed 

formulations for the fixed multi-directional and rotating crack approaches can be found in the 

studies of Gouveia et al. (2008), Pimanmas and Maekawa (2001), Jirásek and Zimmermann 

(1998), Jirásek and Zimmermann (1998), Ardebili et al. (2012),and Broujerdian and Kazemi 

(2010), to list a few. Next, the concept of the fixed single smeared crack model together with 

key formulations is introduced, as fixed multi-directional and rotating smeared crack 

approaches are also developed based on the same framework. 
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Figure 4.0–6. The concept of the smeared crack model: (a) A smeared crack band within the RVE; (b) 
Schematic representation of strain decomposition in smeared crack models (Jirásek 2011) 

 

In the fixed single smeared crack model, the RVE is considered as an equivalent anisotropic 

continuum with degraded material properties in the direction normal to the crack orientation 

(Figure 4.0–6a). The crack orientation is kept fixed once the crack plane initiates. As the crack 

is represented continuously and no strong discontinuity is formed, remeshing is not needed. 

Similar to plasticity, the smeared crack model decomposes the total strain into an elastic part 

(�̇�e) and an inelastic part, which is specifically called the crack strain in smeared crack model 

(�̇�c): 

�̇� = �̇�e + �̇�c                                                               (4.13) 

where the elastic strain follows the elastic Hook’s law shown as: 

�̇� =  𝑪�̇�e = 𝑪(�̇� − �̇�c)                                                        (4.14) 

It can be seen from Equations (4.13-4.14) that the final stress-strain relationship can be 

obtained once the crack strain is determined. The material is assumed to be homogeneous 

initially; therefore the crack strain vanishes and the overall material response is linear elastic. 

Once the crack is initiated when the stress state reaches the strength envelope, the crack strain 

develops within the smeared crack band. It is noted that the crack strain �̇�c is defined in the 

global coordinate, which can be related to the local crack strain (�̇�c) as: 

�̇�c = 𝑵�̇�c                                                               (4.15) 

where 𝑵 is a transformation matrix that reflects the orientation of the crack;  �̇�c = [�̇�𝑐
𝑛 �̇�𝑐

𝑠]𝑇 

have two components for two-dimensional problems: normal crack strain �̇�𝑐
𝑛 and shear crack 

strain �̇�𝑐
𝑠. Similarly, the traction tensor across the crack in the local coordinate can be calculated 

from the stress tensor in the global coordinate using the same transformation matrix, as: 
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�̇�𝑐 = 𝑵
𝑻�̇�                                                             (4.16) 

Instead of postulating a yield function and a flow rule, the inelastic strain due to crack opening 

is related directly to the traction transmitted across the fracture plane using a traction-strain 

relation. The general form of a traction-strain relation is expressed as: 

�̇�𝑐 = 𝑫𝑐�̇�c                                                           (4.17) 

Using Equations (4.13-4.17), the final constitutive relation for a single crack model is: 

𝑪�̇� = [𝑪 − 𝑵[𝑫𝑐 +𝑵
𝑻𝑪𝑵]−𝟏𝑵𝑻𝑪]�̇�                                (4.18) 

The spurious mesh dependency on the structural load-deformation responses can be eliminated 

in smeared crack models by introducing the width of the localisation zone that is related to the 

adopted finite element size into the constitutive relation. The relation between the width of 

localisation zone and the mesh size is normally determined by trial-and-error fitting of 

experimental results. The width of the localisation zone can also be related to the orientation 

of the crack, the characteristics of the finite element interpolation functions or damage variables, 

depending on the choice of smeared crack approach.  

Introduction of the width of the localisation zone can be achieved by incorporating a 

localisation limiter that imposes a certain size of the localisation zone into the overall stress-

strain law as a material parameter (Bažant and Lin 1988, Strömberg and Ristinmaa 1996, 

Jirásek and Zimmermann 1998). Another approach introduces a length parameter called the 

equivalent element size into the traction-crack strain law in the local coordinate (Bažant and 

Oh 1983, Rots 1988, Oliver 1989). In that case, the slope of the curve representing inelastic 

softening behaviour can be adjusted based on the choice of the equivalent element size. In both 

cases, the mesh dependency occurring in traditional continuum models is overcome by 

artificially scaling the model parameters with the resolution of the discretisation so that the 

correct amount of energy dissipation can be reproduced (Burnett and Schreyer 2019). However, 

this artificial scaling can lead to questions about the physical meaning of the approach, as well 

as stability issues (snap-back) encountered when the resolution of the discretisation cannot be 

sufficiently small, especially in modelling large-scale problems (Jirásek and Bažant 1995). 

Furthermore, although smeared crack models can alleviate mesh size dependence, these models 

in the finite element framework suffer from mesh alignment sensitivity, which means that the 

orientation of the discretisation determines the orientation of the smeared crack (Rabczuk 

2013). Some remedies, such as a transition from the rotating crack model to a scalar damage 
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model proposed by Jirásek and Zimmermann (1998), must be applied to avoid the mesh 

alignment sensitivity.  

4.3.2. Strong discontinuity model 

Unlike the smeared crack models in which an average stress-strain relation is specified based 

on the requirement for correct fracture energy dissipation within a smeared crack band of a 

certain thickness, the strong discontinuity models enrich the finite elements with additional 

degrees of freedom representing the displacement jump across a strong discontinuity, as 

depicted in Figure 4.0–7. The formulations of enrichment are development locally at the 

element level, thus keeping the number of degrees of freedom constant (Dias-da-Costa et al. 

2010). Thanks to its efficiency in modelling of strain localisation problems, many approaches 

have been developed based on the strong discontinuity concept (Oliver 1996, Oliver et al. 1999, 

Dias-da-Costa et al. 2009, Dias-da-Costa et al. 2010, Dias‐da‐Costa et al. 2013, Bosco et al. 

2015, Zhang and Zhuang 2018).  

 

 

Figure 4.0–7. Basic idea of strong discontinuity models: (a)  A strong discontinuity zone embedded in 
RVE; (b) The displacement jump across the strong discontinuity zone (Oliver et al. 1999). 

 

The most general expression of a displacement field exhibiting strong discontinuities along a 

discontinuity path 𝑆 can be written as: 

�̇�(𝒙, 𝑡) = �̇�(𝒙, 𝑡) + 𝐻𝑠(𝒙)⟦�̇�⟧(𝒙, 𝑡)                                            (4.19) 

where 𝒙 and 𝑡 denote the material coordinates and time respectively; 𝐻𝑠(𝒙) is the Heaviside 

function (𝐻𝑠(𝒙) = 1∀𝑥 ∈ Ω
+ and 𝐻𝑠(𝒙) = 0∀𝑥 ∈ Ω

−);  �̇�(𝒙, 𝑡) is the rate of the regular part 
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of the displacement field; ⟦�̇�⟧(𝒙, 𝑡) is the rate of a displacement jump function. The rate of the 

corresponding strain can be obtained through the rate of the displacement jump function as: 

�̇�(𝒙, 𝑡) = ∇𝑠�̇� =
∇𝑠�̇� + 𝐻𝑠(𝒙∇

𝑠⟦�̇�⟧⏟          

�̇�
+ 𝛿𝑠(⟦�̇�⟧ ⊗ 𝒏)𝑠 = �̇� + 𝛿𝑠(⟦�̇�⟧ ⊗ 𝒏)𝑠        (4.20) 

where �̇� is the rate of the regular part of the strain field; 𝛿𝑠 is the Dirac line delta function along 

𝑆 satisfying: 

∫ 𝛿𝑠𝜑0Ω
𝑑Ω = ∫ 𝜑0𝑑Γ𝑠

 ∀ 𝜑0 ∈ 𝐶0
∞(Ω)                                 (4.21)   

The concept of strong discontinuity can be applied to any standard constitutive model. To be 

more specific, the regular part of the strain field (�̇�)  can be described by the standard 

constitutive models such as elastic damage models (Oliyer 1995, Oliver 1996, Oliver et al. 

1999, Dias-da-Costa et al. 2009, Dias-da-Costa et al. 2010) and elastoplastic models (Oliver 

1996, Feist and Hofstetter 2006), while the local displacement jump ( ⟦�̇�⟧ ) across a 

discontinuity that is disconnected from the bulk continuum behaviour is calculated through a 

local formulation at the element level. To ensure that the constitutive equations of these models 

successfully embed the unbound strain field in Equation (4.20), three conditions must be 

imposed. The first is stress boundedness, which means that the stress field is bounded 

everywhere in Ω. The second condition is traction vector continuity, which means that the 

traction vector is continuous across the discontinuity surface 𝑆 all the time. The traction vector 

continuity can be obtained from the balance laws or from equilibrium conditions across the 

discontinuity surface expressed as:  

�̇�Ω\𝑠|𝑥∈𝑠 ∙ 𝒏 = �̇�𝑠 ∙ 𝒏                                                   (4.22) 

The third condition is identification of the normal, which means that the normal vector 𝒏 of the 

discontinuity surface 𝑆 is provided by the stress field when the discontinuity initiates under a 

certain condition.  

The strong discontinuity approach introduces a kinetic state of strong discontinuity 

characterised by a discontinuous displacement field across a discontinuity surface with the 

constitutive relation, without requiring additional degrees of freedom. Thus it can capture the 

propagation process of cracks and mechanical responses of rock materials efficiently. This 

enrichment, together with a standard continuum constitutive model, also enable the strong 

discontinuity approach to capture both the deformation due to opening/shearing across a 
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discontinuity and the shrinking of the elastic bulk. Importantly, the concept of a regularised 

softening parameter is incorporated in the constitutive relations to solve the problem of infinite 

strains and Dirac-delta functions. This softening parameter, which is made dependent on a 

length scale parameter, helps to avoid mesh-size and mesh-alignment dependencies and stress 

locking issues (Oliver 1996, Dias-da-Costa et al. 2010, Zhang and Zhuang 2018). However, 

this model requires the finite element mesh to be finer than the physical width of the localisation 

zone (Sluys and Berends 1998). Therefore, very fine meshes are required to obtained an 

accurate strain profile within the discontinuity.  

4.3.3. Double-scale constitutive framework 

The double-scale model was originally developed by Nguyen et al. (2012), Nguyen et al. (2014) 

for modelling strain localisation problems. This model was then extended to predict the onset 

and orientation of localisation bands (Le et al. 2018, Le et al. 2019, Le et al. 2020), Lode-angle 

dependence of geomaterial (Le et al. 2020) and the size-dependent behaviour of soils (Nguyen 

et al. 2016, Phan et al. 2017). Unlike traditional constitutive models, which are defined over a 

unit volume where deformation is assumed homogeneous, the double-scale model is 

formulated over a volume element comprising two different regions (a localised zone and 

surrounding bulk) for describing the high strain deformation within a localised zone as shown 

in Figure 4.0–8a. Figure 4.0–10b shows the general stress-strain responses of the material 

inside and outside the localised zone in the double-scale model. The material is initially treated 

in a classical way using a classical continuum constitutive model when localised failure is 

detected, e.g. via the loss of positive definiteness of the determinant of the acoustic tensor. 

After that, the material behaviour inside and outside the localised zone is distinct, following 

different constitutive laws. The interaction between the inside and outside materials is then 

linked by a traction continuity condition across the localised zone, resulting in the averaged 

macroscopic stress-strain relation of the RVE that represents the combined behaviour of the 

localised and outside bulk materials. The details of derivation of this model are as follows. 

First, definition of total strain rate tensor �̇� across the volume element is required. As the 

volume element is viewed as an elastic bulk crossed by a localised zone, the total strain rate is 

contributed by both parts. Using mixed theory, the volume averaged total strain rate tensor can 

be expressed as: 

�̇� = 𝜂�̇�in + (1 − 𝜂)�̇�out                                                    (4.23) 
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where �̇�out and �̇�in  represent the strain rate tensors outside and inside the localised zone 

respectively; and 𝜂 = Ω𝑖/Ω = ℎ/𝐻 is the volume fraction of the localised zone. Given the 

localised zone is very thin but finite, the strain rate tensor in it can be described as (Vardoulakis 

et al. 1978, Kolymbas 2009): 

 

 

Figure 4.0–8. Double-scale model: (a) Numerical discretisation and localisation zone; (b) Material 
responses inside and outside the localisation zone 

 

�̇�in ≈
1

ℎ
(𝒏 ⨂⟦�̇�⟧)𝑠𝑦𝑚                                                     (4.24) 

where n is the normal vector of the localised zone and ⟦�̇�⟧ denotes the relative velocity jump 

between opposite sides of the localization band. 

The inelastic behaviour inside the localisation zone and elastic behaviour outside the 

localisation zone can be respectively written as: 

�̇�in = 𝒂i
𝑇: �̇�i                                                               (4.25) 

�̇�out = 𝒂𝑜: �̇�out                                                            (4.26) 

where 𝒂i
𝑇 is the tangent stiffness, and 𝒂𝑜 is the elastic tangent stiffness.  

The inside and outside material are connected through the continuity of traction across the 

boundary of the localisation band: 

(�̇�out − �̇�in) ∙ 𝐧 = 0                                                   (4.27)  
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Combining equations (4.23-4.26), the traction continuity expressed in Equation (4.29) can be 

rewritten as: 

1

1−𝜂
𝒂𝑜: (�̇� −

𝜂

ℎ
(𝒏 ⨂⟦�̇�⟧)𝑠𝑦𝑚) ∙ 𝐧 = (𝒂i

𝑇:
1

ℎ
(𝒏 ⨂⟦�̇�⟧)𝑠𝑦𝑚) ∙ 𝐧                  (4.28) 

Rearranging the above equation leads to: 

(𝒂𝑜: �̇�) ∙ 𝐧 = (
1

𝐻
𝑨0 +

(1−𝜂)

ℎ
𝑨i
𝑇) ∙ ⟦�̇�⟧                                      (4.29) 

where 𝑨i
𝑇 = 𝐧 ∙ 𝒂i

𝑇 ∙ 𝐧 and 𝑨0 = 𝐧 ∙ 𝒂𝑜 ∙ 𝐧 are the acoustic tensors controlling the behaviour of 

material inside and outside the localisation band respectively. Therefore, the rate of 

displacement jump ⟦�̇�⟧ can be calculated from the input strain rate as: 

⟦�̇�⟧ = (
1

𝐻
𝑨0 +

(1−𝜂)

ℎ
𝑨i
𝑇)−1 ∙ (𝒂𝑜: �̇�) ∙ 𝐧 = 𝐂

−1 ∙ (𝒂𝑜: �̇�) ∙ 𝐧                 (4.30) 

The final constitutive relation can be derived by combining Equations (4.30) and (4.24): 

�̇� =
1

1−𝜂
𝒂𝑜: [�̇� −

1

𝐻
(𝒏 ⨂(𝐂−1 ∙ (𝒂𝑜: �̇�) ∙ 𝐧))]                                 (4.31) 

 

 

Figure 4.0–9. The development of shear bands in two-dimensional tension tests: (a) using the 
classical approach;(b) using double-scale model (Nguyen et al. 2016). 

 

Figure 4.0–9 shows the numerical result of the shear bands in two-dimensional tension tests 

using a double-scale approach in comparsion with the result using a classical approach. Three 

spatial discretisation sizes were adopted to examine the mesh sensitivity of both approaches. It 

can be seen from Figure 4.0–9 that the double-scale model correctly captures the shear failure 
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thanks to the anisotropy introduced by the oriented localisation zone and the use of coupled 

stresses inside and outside the localisation zone. Furthermore, the double-scale approach 

considers the relative size of the localisation zone and the surrounding bulk, leading to a length 

parameter embedded in the final constitutive model. Therefore, the numerical solution using 

this approach does not suffer from any of the mesh dependency issues occurring in the classical 

approach.  

4.4. Summary of existing constitutive models 

Simple models, such as the elastoplastic models, elastic damage models and coupled 

elastoplastic damage models, can provide satisfactory numerical solutions in specific cases, but 

they fail to capture both irreversible deformation and stiffness degradation, which are key 

features of the macroscopic behaviour of rocks. To solve this problem, new pure continuum 

models formed by coupling elastoplastic with damage models were proposed. While they 

worked well for some applications, the deformation in these models is assumed homogeneous 

over a unit volume, thereby neglecting the existence of the high gradient of deformation across 

the localisation band during the nonlinear phases of rock fractures. Therefore, the accuracy of 

those models in capturing the post-localisation behaviour and size effects due to localisation 

beyond the onset of localised failure is still questionable. In addition, the models fail to account 

for the relative size between the fracture process zone and surrounding bulk together with some 

characteristics of the fracture process zone such as fracture orientation and evolution of 

inelastic behaviour. Therefore, those models suffer from the mesh dependency issues of the 

numerical solutions.  

To resolve those issues, some enhancements have been employed at the constitutive level by 

introducing an internal length that acts as a localisation limiter into constitutive equations such 

as the smeared crack model, strong discontinuity approach and double-scale framework. The 

smeared crack model is a continuum approach in which crack bands are smeared over a certain 

thickness within the finite element. To characterise the behaviour of smeared crack bands, the 

crack strain is linked to the displacement jump in the local coordinate and some length 

parameter over which this displacement jump is distributed. The introduction of such 

characteristic length allows modelling of cracks without suffering from any mesh dependency. 

While the smeared crack model works well for some applications, this model experiences mesh 

alignment sensitivity and snap-back instability when a coarse mesh is used. With a different 

line of approach to capture localised failures, the strong discontinuity approach based on 

discretisation-based enhancements does not require the extra global degree of freedom for 
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capturing localisation behaviour, due to its local enhancement of the extra strain field. However, 

the strong discontinuity approach requires the finite element mesh to be finer than the physical 

width of localisation. Since the thickness of the localisation zone for rock fracture problems is 

very small, a very high resolution of discretisation is required in such models, making the 

analysis computationally expensive. The last constitutive approach reviewed in this chapter is 

the double-scale approach, in which the constitutive relation is developed based on a 

thermodynamics framework with the employment of an additional kinematic and a 

corresponding length scale to describe the localised failure of materials. The material behaviour 

of both the localisation zone and the surrounding bulk, as well as the relative sizes, are 

considered. Therefore, the double-scale approach can capture size-dependent behaviour 

naturally without suffering from mesh dependency. More importantly, the approach is 

formulated in a very generic form, which allows any suitable law to be incorporated for the 

behaviour of the localisation band. Furthermore, this approach also can be applied easily to any 

continuum-based numerical framework. Based on these advantages, the double-scale approach 

is adopted in this study as the basis of the proposed model for rock fracture analysis. Three key 

further improvements are needed for the development of a reliable and robust constitutive 

model that includes both intrinsic spatial and temporal scales. First, a new size-dependent 

constitutive model with an embedded mode I cohesive facture law is developed for modelling 

fracture behaviour and its size dependency of rocks under pure mode I loading conditions. The 

concept and detailed formulations of the size dependent constitutive model for rocks are 

introduced in Section 4.5 and the implementation in rock fracture applications is presented in 

Chapter 5. The size dependent constitutive model presented in Chapter 6 is further developed 

by incorporating a mixed-mode cohesive fracture law in order to describe mixed-mode failure 

of the fracture process zone. Finally, the rate effect is incorporated in the mixed-mode 

continuum constitutive model for dynamic rock fracture analysis, which is introduced in 

Chapter 7. 

4.5. A new continuum constitutive model with embedded mode I cohesive 

fracture law for rocks 

4.5.1. Model formulation 

The idea of the continuum constitutive model is presented in Figure 4.0–10. The unit volume 

is crossed by a very thin fracture process zone with the width of ℎ. In this figure, 𝐻 is the 

representative size of the volume element (Ω), defined as 𝐻 = Ω 𝐴⁄ , with 𝐴 being the fracture 
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surface and 𝒏 the vector normal to the fracture plane. Once fracture is triggered, that is, when 

the fracture criterion is met, the behaviour of the RVE is bifurcated into two different parts: the 

material inside the fracture process zone undergoes inelastic deformation governed by a 

cohesive fracture law while that outside the fracture process zone (i.e. bulk materials) unloads 

and, for rock fracture modelling, can be reasonably assumed to be elastic.  

 

      

Figure 4.0–10. A size-dependent constitutive model: (a) Fracture process zone surrounded by an 
elastic bulk; (b) Corresponding stress-strain responses inside and outside the fracture process zone. 

 

Similar to the double-scale model, the total strain rate comprises strains inside and outside the 

fracture process zone, expressed as: 

�̇� = 𝜂�̇�in + (1 − 𝜂)�̇�out                                                    (4.32) 

where the strain rate tensor inside the fracture zone is described as: 

�̇�in ≈
1

ℎ
(𝒏 ⨂⟦�̇�⟧)𝑠𝑦𝑚                                                         (4.33) 

where n is the normal vector of the fracture zone and ⟦�̇�⟧ denotes the relative velocity jump 

across the fracture zone, which can be written in the three-dimensional case as follows: 

  𝒏 =   [𝑛𝑥 𝑛𝑦 𝑛𝑧]𝑇 ,    ⟦�̇�⟧ = [�̇�𝑥 �̇�𝑦 �̇�𝑧]𝑇                        (4.34) 

with 𝑛𝑥 , 𝑛𝑦  and 𝑛𝑧  being the cosines of the unit vector of the normal vector in the global 

coordinate system. The normal vector is calculated based on the maximum principal stress and 

remains unchanged once fracture is triggered. Inclusion of the normal vector in the constitutive 

model enables the model to capture anisotropy due to the appearance of fracture. 
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By applying the Hill-Mandel condition (Hill, 1963), which states that the virtual work produced 

by the averaged stress and its corresponding averaged strain is equal to the volume-averaged 

work produced by stresses and strains inside and outside of the fracture process zone, we have: 

𝝈: �̇� = (1 − 𝜂)𝝈out: �̇�out + 𝜂𝝈in: �̇�in                                                 (4.35) 

where 𝝈 is the averaged macrosopic stress; 𝝈out and 𝝈in denote the stresses inside and outside 

of the fracture zone. By substituting Equations (4.32-4.33) into Equation (4.35), the following 

equation can be obtained after some rearrangement: 

𝜂

ℎ
(𝝈 ∙ 𝒏 − 𝒕in)  ∙   ⟦�̇�⟧ + (1 − 𝜂)(𝝈 − 𝝈out) ∶ �̇�out = 0                                (4.36) 

where 𝒕𝑖𝑛 = 𝝈𝑖𝑛 ∙ 𝒏  is the traction generated by the stress inside the fracture process zone. The 

above condition needs to be satisfied for any values of the velocity jump and strain rate, leading 

to: 

𝒕in = 𝝈 ∙ 𝒏         and          𝝈 = 𝝈out                                               (4.37) 

It can be seen from the above equation that the averaged macroscopic stress coincides with the 

stress outside the fracture process zone. Assuming an elastic response of the bulk material 

outside the fracture process zone, �̇�out = 𝒂𝑜: �̇�out , where 𝒂𝑜  denotes the elastic tangent 

stiffness, and combining Equations (4.32-4.33) and (4.37), the following macroscopic stress 

can be derived: 

�̇� =  �̇�out =
1

(1−𝜂)
𝒂𝑜 : (�̇� −

𝜂

ℎ
(𝒏⊗ ⟦�̇�⟧)𝑠𝑦𝑚)                                    (4.38) 

For rock fracturing problems, the fracture process zone can be viewed as a fracture plane in 3D 

and a fracture line in 2D whose thickness is very small (ℎ → 0). In such cases, 𝜂 ≈ 0 and the 

above macroscopic stress-strain relation can be further simplified to: 

   �̇� =  �̇�out = 𝒂𝑜 : (�̇� −
1

𝐻
(𝒏⊗ ⟦�̇�⟧)𝑠𝑦𝑚)                                 (4.39) 

To complete the above macroscopic stress-strain relation, one needs to define the constitutive 

relationship across the fracture plane that involves velocity jump ⟦�̇�⟧ and traction rate �̇�𝑖𝑛. This 

can be achieved by adopting any existing cohesive fracture law that relates tractions and 

displacement jumps across the fracture plane. In this work, two types of cohesive fracture law 

(i.e. linear or exponential cohesive fracture laws) are investigated and the general form of these 

models can be written as follows:  

�̇�in = 𝑲 ∙ ⟦�̇�⟧                                                                   (4.40) 
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where 𝑲 is the tangent stiffness of the cohesive fracture zone written in the global coordinate 

system.  

Using Equation (4.37), 𝒕in = 𝝈 ∙ 𝒏, for continuity of traction across the boundary of the fracture 

process zone, and the constitutive relationships (4.39) and (4.40), we have: 

   𝑲 ∙ ⟦�̇�⟧ = �̇� ∙ 𝒏 =  𝒂𝑜 : (�̇� −
1

𝐻
(𝒏⊗ ⟦�̇�⟧)𝑠𝑦𝑚) ∙ 𝒏                           (4.41) 

From this equation, the velocity jump across the fracture plane can be obtained as: 

                 ⟦�̇�⟧ =  [
1

𝐻
(𝒏 ∙  𝒂𝑜 ∙ 𝒏) + 𝑲]

−1

∙ (𝒂𝑜: �̇�) ∙ 𝒏 = 𝑪−1 ∙ (𝒂𝑜: �̇�) ∙ 𝒏                    (4.42) 

Finally, by substituting Equation (4.42) into Eq. (4.39), the following macroscopic stress-

strain relation can be obtained: 

�̇� = 𝒂𝑜 : (�̇� −
1

𝐻
[𝒏⊗ (𝑪−1 ∙ (𝒂𝑜: �̇�) ∙ 𝒏)]

𝑠𝑦𝑚)                                     (4.43) 

We noted that the above macro stress-strain formulation, which is the simplified version of the 

more generic stress-strain relation described in Equation (4.43), shares some similarities in the 

general form of the expression with that proposed by Pietruszczak and Mroz (1981), 

Pietruszczak and Niu (1993), Pietruszczak and Xu (1995), Haghighat and Pietruszczak (2015), 

Pietruszczak and Haghighat (2015). However, in this work, which is derived from a double-

scale constitutive framework (Nguyen et al. 2012, Nguyen et al. 2014, Nguyen et al. 2016), the 

static constraint (4.37) appears naturally as a consequence of the work balance Equation (4.36) 

and the kinematic enrichments (4.32-4.33). In other words, supplying the enrichment based on 

the observed mechanisms of localised failure followed by the application of the work balance, 

Equation (4.35) naturally leads to other static conditions to complete the model descriptions. 

This systematic approach is advocated, as it can naturally result in homogenised constitutive 

equations involving the responses and sizes of all phases, not only in the context of localised 

failure (Nguyen et al. 2016) but also in the context of homogenisation and nonlinear 

constitutive modelling of multi-phase materials (Vu et al. 2017). In addition, the similarities in 

enriching the kinematics of constitutive descriptions (this work, and that by Pietruszczak and 

co-authors referred to above) or discretization schemes (such as the enhanced strain by Larsson 

et al. (1996), Oliver (1996), Borja (2000)) and eXtended Finite Elements by Wells and Sluys 

(2001), Samaniego and Belytschko (2005), Sanborn and Prévost (2011)), are very common in 

most (if not all) enhancements to deal with localised failure. However, the constitutive 
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enrichments are independent of the discretisation and hence can be readily applied to mesh-

free numerical approaches like the SPH used in this study.   

Thus far, the constitutive model has been described in the global coordinate system, which 

defines the full macroscopic averaged stress and strain tensors of the volume element, including 

the cohesive law described the relationship between �̇�in and ⟦�̇�⟧ in Equation (4.40). To obtain 

the explicit form of the cohesive law in the global coordinate system, it is necessary to specify 

the corresponding cohesive law in the local coordinate system (i.e. across the fracture plane). 

In this work, the cohesive law in the local coordinate system is defined as: 

�̇�𝑐𝑟 = 𝑲𝑐𝑟⟦�̇�⟧𝑐𝑟                                                            (4.44) 

where the subscript cr denotes quantities that are defined in the local coordinate system. The 

local tangent stiffness (𝑲𝑐𝑟) can be obtained by rotating the global stiffness (𝑲) to the local 

coordinate system and vice-versa, using the equation: 

𝑲 = 𝑹𝑇𝑲𝑐𝑟𝑹                                                               (4.45) 

where 𝑹 is the rotational matrix from the global to local coordinate systems, defined as: 

𝑹 = [

𝑛𝑥 𝑛𝑦 𝑛𝑧
𝑚𝑥 𝑚𝑦 𝑚𝑧

𝑙𝑥 𝑙𝑦 𝑙𝑧

]                                                          (4.46) 

with ni, mi and li (“i” stands for x, y, z) being cosines of the unit normal vectors in the global 

coordinate system, respectively. 

As discussed, any existing cohesive fracture law can be incorporated in the current constitutive 

model, i.e. via Equation (4.44). For the purpose of simplifying the numerical development as 

the first step to demonstrating the proposed SPH framework with embedded cohesive fracture, 

only mode-I cohesive fracture is considered in this study. Nevertheless, mixed-mode cohesive 

fracture laws such as those recently developed by (Gui et al. 2015, Nguyen et al. 2017, Nguyen 

et al. 2017) can be incorporated into the current proposed framework. The incorporation of 

these generic fracture laws makes the framework possible for modelling more complex fracture 

problems accounting for both tensile and shear cracks, volumetric dilatancy in compression 

regime and multiple fractures. 

For pure mode-I loading, fracture is mainly governed by two rock properties: fracture 

toughness (𝐺𝑓) and initial tensile strength (𝜎𝑡0). A yield criterion is required to determine 
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whether the material is elastic or inelastic and to calculate the evolution of traction during 

loading or unloading, as follows:  

𝑦 = 𝑡𝑐𝑟1 − 𝜎𝑡                                                          (4.47) 

where 𝑡𝑐𝑟1 is the normal traction in the local coordinate and 𝜎𝑡 is the tensile strength of the 

cohesive fracture law. The normal traction-separation can be modelled using either the linear 

or exponential cohesive fracture law, as shown in Figure 4.0–11. 

 

 

Figure 4.0–11. Concept of cohesive fracture law: (a) linear; (b) exponential. 

 

In the linear cohesive fracture law (Figure 4.0–11a), the loading tangent stiffness 𝑘𝑐𝑟
𝐿𝐷 and 

ultimate cracking opening (𝑢𝑐𝑟
𝑓

) are linked through the equation: 

        𝑘𝑐𝑟
𝐿𝐷 = −

𝜎𝑡0

𝑢𝑐𝑟
𝑓     and    𝑢𝑐𝑟

𝑓
=

2𝐺𝑓

𝜎𝑡0
                                             (4.48) 

For the exponential cohesive fracture law (Figure 4.0–11b), the ultimate crack opening (𝑢𝑐𝑟
𝑓

) 

is infinite and the loading tangent stiffness 𝑘𝑐𝑟
𝐿𝐷 is an exponential function of the displacement 

jump, as: 

𝑘𝑐𝑟
𝐿𝐷 = −

𝜎𝑡0
2

𝐺𝑓
exp (−

𝜎𝑡0

𝐺𝑓
𝑢𝑐𝑟)                                                (4.49) 

Accordingly, during the inelastic loading stage, the local tangent stiffness matrix is defined as:  

𝑲𝑐𝑟
𝐿𝐷 = [

𝑘𝑐𝑟
𝐿𝐷 0 0
0 0 0
0 0 0

]                                                          (4.50) 

On the other hand, for the unloading stage, the local tangent stiffness matrix takes the form: 
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𝑲𝑐𝑟
𝑈𝐷 = [

𝑡𝑐𝑟
𝑚𝑎𝑥

𝑢𝑐𝑟
𝑚𝑎𝑥 0 0

0 0 0
0 0 0

]                                                         (4.51) 

where 𝑢𝑐𝑟
𝑚𝑎𝑥  is the maximum displacement jump at the point of unloading and 𝑡𝑐𝑟

𝑚𝑎𝑥  is the 

corresponding traction (see Figure 4.0–11 for illustration).  

As the fracture develops, the tensile strength gradually degrades to zero. This can be achieved 

by adopting the following traction laws for the linear and exponential cases, respectively: 

Linear:                                   𝜎𝑡 = 𝜎𝑡0(1 −
𝑢𝑐𝑟

𝑢𝑐𝑟
𝑓 )                                                       (4.52a)       

Exponential:                        𝜎𝑡 = 𝜎𝑡0𝑒𝑥𝑝(−
𝜎𝑡0

𝐺𝑓
𝑢𝑐𝑟)                                                (4.52b) 

Finally, to visualize the evolution of damage, the following damage variable is defined: 

𝐷 = 1 −
𝜎𝑡

𝜎𝑡0
                                                              (4.53) 

The numerical implementation of the proposed continuum constitutive model with an 

embedded cohesive fracture zone is presented in Algorithm 4.1. 

 

Algorithm 4.1: Explicit stress update input ∆𝜺, output ∆𝝈 (matrix-vector form) 

1. Calculate trial stress: 𝝈𝑡𝑟𝑖𝑎𝑙
𝑛+1 = 𝝈𝑛 + ∆𝝈𝑡𝑖𝑟𝑎𝑙 = 𝝈𝑛 + 𝒂0∆𝜺  

2. If D = 0 : un-cracked state  

3.     Calculate normal vector 𝒏 and rotation matrix 𝑹 

4.     Calculate trial tractions in the local coordinate: 𝒕𝒄𝒓(𝒕𝒓𝒊𝒂𝒍)
𝒏+𝟏 = 𝑹𝒏𝑇𝝈𝑡𝑟𝑖𝑎𝑙

𝑛+1  

5.     If 𝑦 > 0: inelastic loading 

6.          Calculate 𝑪:        𝑪 =
1

𝐻
𝒏𝑇𝒂0𝒏 + 𝑹

𝑇𝑲𝑐𝑟
𝐿𝐷𝑹 

7.          Go to line 19 

8.          End 

9.     Else: elastic loading 

10.          Update final stress increment: ∆𝝈 = ∆𝝈𝑡𝑖𝑟𝑎𝑙 

11.     Endif 

12. Elseif 𝐷 ≠ 0: crack occurs 

13.     Calculate trial tractions in the local coordinate: 𝒕𝒄𝒓(𝒕𝒓𝒊𝒂𝒍)
𝒏+𝟏 = 𝑹𝒏𝑇𝝈𝑡𝑟𝑖𝑎𝑙

𝑛+1  

14.     If  𝑦 < 0 : elastic unloading  
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15.          Calculate 𝑪:        𝑪 =
1

𝐻
𝒏𝑇𝒂0𝒏 + 𝑹

𝑇𝑲𝑐𝑟
𝑈𝐷𝑹 

16.     Else: inelastic loading 

17.          Calculate 𝑪:        𝑪 =
1

𝐻
𝒏𝑇𝒂0𝒏 + 𝑹

𝑇𝑲𝑐𝑟
𝐿𝐷𝑹 

18.     Endif 

19.     Calculate the increment of displacement jump in the global coordinate: 

                                         ∆𝒖 = 𝑪−1𝒏𝑇𝒂0∆𝜺 

20.     Calculate the increment of displacement jump in the local coordinate: 

                                           ∆𝒖𝑐𝑟 = 𝑹∆𝒖 

21.     Update the local displacement: 𝒖𝑐𝑟
𝑛+1 = 𝒖𝑐𝑟

𝑛 + ∆𝒖𝑐𝑟 

22.     Update the tensile strength and damage variable: 

             𝜎𝑡 = 𝜎𝑡0(1 − 𝑢𝑐𝑟
𝑛+1/𝑢𝑐𝑟

𝑓
)    or      𝜎𝑡 = 𝜎𝑡0𝑒𝑥𝑝(−

𝜎𝑡0

𝐺𝑓
𝑢𝑐𝑟
𝑛+1) 

                                    𝐷𝑛+1 = 1− 𝜎𝑡/𝜎𝑡0                                             

23.      Calculate final stress increment: ∆𝝈 = 𝒂0(∆𝜺 −
1

𝐻
𝒏∆𝒖) 

24. Endif 

 

4.5.2. Constitutive model behaviour  

In this section, the behaviour of the proposed continuum constitutive model with embedded 

cohesive fracture laws (i.e. linear and exponential) at the element level is examined by 

comparing model responses against analytical solutions. In the tests, a constant strain increment 

of 10−5 is imposed on a RVE to provide tensile loading and the characteristic length (𝐻) is 

varied to investigate its effect on the model response. The material properties are: Young’s 

modulus 𝐸 = 45 GPa, tensile strength  𝑓𝑡 = 2.9 MPa, and fracture energy 𝐺𝑓 = 47.17 Nm/

m2. In this pure mode-I case, it is straightforward to see that the local traction and global 

traction coincide. 

The responses of the proposed constitutive model with embedded linear and exponential 

cohesive fracture laws are illustrated in Figure 4.0–12 and Figure 4.0–13, respectively. For 

each case, the macroscopic averaged stress-strain relationship, local traction-displacement 

curve, and responses of tensile strength and damage variable with displacement jump are 

plotted in (a)–(d), respectively, together with analytical solutions. The macro-constitutive 

behaviour under loading cases (Figure 4.0–12a & Figure 4.0–13a) can be divided into two 

phases: linearity and then bifurcation. During the first stage, the macro-averaged stress 
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increases linearly with the corresponding strain and its response is controlled only by Young’s 

modulus (𝐸) for the one-dimensional case. The local tractions (Figure 4.0–12b & Figure 4.0–

13b) also increase with the macro-averaged stresses while the displacement jumps remain zero, 

suggesting that the fracture has not yet been detected. Meanwhile, the tensile strength and 

damage variable remain unchanged.  

 

 

Figure 4.0–12. Constitutive model with embedded linear cohesive fracture law: (a) average stress-

strain relationship; (b) traction-displacement curve; (c) tensile strength-displacement jump curve; (d) 

damage variable-displacement curve. 

 

In the second stage, where the fracture (or bifurcation) is initiated, the macro-averaged stresses 

in both cases (i.e. the linear and exponential cohesive laws) decrease with the loading, 

indicating that the material undergoes softening behaviour which is controlled by the fracture 

energy (𝐺𝑓) , tensile strength (𝜎𝑡 ) and characteristic length (𝐻) . With variation of the 

characteristic length (𝐻), the macro-averaged stress-strain curves of the proposed model also 

change, as illustrated in Figure 4.0–12(a) and Figure 4.0–13(a). This suggests that the proposed 

model scales with the size of the volume element and thus can capture well the size-dependent 
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behaviour due to localised failure. Once fracture is detected, the traction decreases with the 

increase in the displacement jump. The traction-displacement curves are the same for different 

characteristic lengths (H) as shown in Figure 4.0–12(b) and Figure 4.0–13(b), indicating that 

the behaviour of the cohesive fracture zone is independent of the characteristic length. Similar 

to the response to traction, the tensile strength reduces to zero with the increase in the 

displacement jump (Figure 4.0–12c & Figure 4.0–13c). Figure 4.0–12(d) and Figure 4.0–13(d) 

show the evolution of damage variables with the displacement jumps. The damage variable 

increases from 0 to 1 for both linear and exponential cases.  

 

 

Figure 4.0–13. Constitutive model with embedded exponential cohesive fracture law: (a) average 

stress-strain relationship; (b) traction-displacement curve; (c) tensile strength-displacement jump 

curve; (d) damage variable-displacement curve 

 

The constitutive responses under unloading cases are also plotted to illustrate the model’s 

performance, as illustrated in Figure 4.0–12 and Figure 4.0–13, in which the unloading elastic 

stiffness replaces the inelastic tangent stiffness to control the unloading behaviour. It can be 

seen that the macro-averaged stress and local traction reduce with strain and displacement jump 

upon unloading. The unloading curves pass the original point in both the stress-strain and 

traction-displacement jump curves (Figure 4.0–12a-b & Figure 4.0–13a-b). Accordingly, the 
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values of tensile strength and damage variable remain unchanged with the decreasing 

separation (Figure 4.0–12c-d & Figure 4.0–13c-d). All the results predicted by the model agree 

well with the analytical solutions, demonstrating the validity of the proposed constitutive model 

and numerical implementation algorithm. 

4.6. Conclusions 

In this chapter, a detailed review of existing continuum constitutive models was presented. 

Based on the descriptions of the existing models, together with their advantages and limitations, 

a new continuum constitutive model for rock was developed in this work based on the double-

scale model. Unlike the double-scale model for modelling strain localisation problems, the 

proposed continuum constitutive model was proposed for rock fracture problems by combining 

the double-scale model with a cohesive fracture law used to describe the material behaviour 

within the fracture process zone. The new continuum constitutive framework has the following 

features: (i) the behaviour and size of the inside and outside of the fracture process zone can be 

reflected under a rigorous model framework; (ii) a local cohesive fracture law, either rate 

sensitive or insensitive and either pure mode I or mixed mode, can be easily introduced to 

describe the behaviour of the fracture process zone; and (iii) a length parameter is embedded 

in the stress-strain relationship for natural capture of size dependency. The model behaviour of 

the continuum constitutive model with embedded mode I cohesive fracture law was examined 

at the constitutive level by comparing the results with the analytical solution. The results 

showed that the constitutive model is size-dependent at the constitutive level, thanks to the 

characteristic length scale parameter introduced into the model. The proposed constitutive 

model will be incorporated into the SPH framework for simulating mode I failure of rocks and 

size-dependent behaviour.  
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Chapter 5  

Taylor-SPH modelling of rock fracture and its size 

dependence under pure mode I loading 

5.1. Introduction 

In this section,  rock fracture and its size dependence under pure mode I loading are simulated 

by a new computational approach combining the SPH and a constitutive model that possesses 

an intrinsic length scale. In particular, a continuum-based size-dependent constitutive model 

with an embedded fracture process zone described by a cohesive model is developed for 

modelling strain localisation in geomaterials. A length scale is introduced into the constitutive 

equations to describe the scale effect commonly observed in localised failure of geomaterials. 

The constitutive model is then employed in a mesh-free Taylor Smooth Particle 

Hydrodynamics (Taylor-SPH) framework to produce a new computational tool for rock 

fracture modelling. The key feature of the proposed numerical framework is its ability to 

describe fracture geometry by a set of Lagrangian particles, which carry fracture information 

such as damage evolution and fracture orientation, thus bypassing the need to represent the 

fracture’s topology and fracture orientation.  

This section is organised as follows. The key formulations of the Taylor-SPH framework are 

listed in Section 5.2 to provide a background for the introduction of particle behaviour with an 

embedded crack in Section 5.3. This includes both formulation and corresponding 

implementation algorithms, followed by verification of the implementation in Section 5.4. 

demonstrating the key features and potentials of the proposed framework. To test the capability 

of this computational framework for simulating rock fracture behaviour, two mode-I numerical 

fracture tests including a Brazilian-disc test and a semicircular bending test are performed in 

Section 5.5. The mesh dependency on the simulation solution is also examined. Section 5.6. 

shows two numerical examples of size-dependent behaviour of rocks compared with 

experimental results. 
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5.2. SPH framework formulation for simulating rock fracture 

In this section, the key general formulations of the Taylor-SPH framework are presented to 

provide a platform for incorporation of the size-dependent constitutive model with an 

embedded fracture process zone simulating rock fractures. For detailed formulation, readers 

can refer to Section 3.7. 

5.2.1. Governing equations of rock materials 

 The dynamic behaviour of rock materials can be described by three governing equations: mass 

conservation, momentum conservation and a stress-strain relationship, as follows: 

𝑑𝜌

𝑑𝑡
= −𝜌∇ ∙ 𝐯      (5.1) 

𝑑𝐯

𝑑𝑡
=

1

𝜌
∇ ∙ 𝝈 + 𝒃                 (5.2) 

𝑑𝝈

𝑑𝑡
= 𝐃𝑒𝑓 : �̇�       (5.3) 

where 𝜌 is the material density; 𝐯 is the velocity vector; 𝝈 is the stress tensor; 𝒃 is the vector 

component of acceleration due to external forces; �̇� is the strain rate tensor, which can be 

calculated by velocity through a kinematic relation �̇� = [∇ ∙ 𝐯 + (∇ ∙ 𝐯)T]/2 ; 𝐃𝑒𝑓  is the 

material stiffness matrix; and 𝑑/𝑑𝑡 is the material derivative defined as: 

𝑑

𝑑𝑡
=

𝜕

𝜕𝑡
+ (𝐯 ∙ ∇)                                                                (5.4) 

with 𝜕/𝜕𝑡 and  𝐯 ∙ ∇ being the local and convective derivative terms, respectively.   

For simplicity, the density is assumed to be constant throughout the computation. Thus, only 

Equations (5.2) and (5.3) need to be solved in this work. Furthermore, because the governing 

equations are solved in the Lagrangian SPH framework, the convective terms in Equations (5.2) 

and (5.3) vanish and the equations can be rewritten as follows: 

𝜕𝐯

𝜕𝑡
=

1

𝜌
∇ ∙ 𝝈 + 𝒃                                   (5.5) 

𝜕𝝈

𝜕𝑡
= 𝐃𝑒𝑓 : �̇�      (5.6) 

To complete these governing equations, a constitutive model is needed to calculate the material 

stiffness matrix and this is detailed in Section 5.3. 
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5.2.2. Time discretisation of governing equations 

The time discretisation of Equations (5.5) and (5.6) is carried out using a two-step Taylor time 

discretisation scheme by means of a Taylor series expansion proposed by Mabssout and 

Herreros (2013). Accordingly, the unknown velocity (𝐯) and stress (𝛔) can be calculated by 

applying the Taylor series expansion up to the second order as follows: 

𝐯𝑛+1 = 𝐯𝑛 + ∆𝑡
𝜕𝐯

𝜕𝑡
|
𝑛

+
∆𝑡2

2

𝜕2𝐯

𝜕𝑡2
|
𝑛

+ 𝑂(∆𝑡)3                                        (5.7a) 

𝛔𝑛+1 = 𝛔𝑛 + ∆𝑡
𝜕𝛔

𝜕𝑡
|
𝑛

+
∆𝑡2

2

𝜕2𝛔

𝜕𝑡2
|
𝑛

+𝑂(∆𝑡)3                                        (5.7b) 

where ∆𝑡 is the time increment and 𝐯𝑛 and 𝛔𝑛 are the velocity and stress vectors at time 𝑡𝑛, 

respectively.  

The first-order time derivative of velocity and stress in Equations (5.7a) and (7.7b) can be 

calculated using Equations (5.5) and (5.6), respectively: 

𝜕𝐯

𝜕𝑡
|
𝑛

= (
1

𝜌
∇ ∙ 𝛔 + 𝒃)

𝑛

                             (5.8a) 

𝜕𝛔

𝜕𝑡
|
𝑛

= (𝐃𝑒𝑓: �̇�)
𝑛                             (5.8b) 

The second-order time derivative of velocity and stress in Equations (5.7a) and (5.7b) can be 

obtained by taking the time derivative of Equations (5.8a) and (5.8b) respectively, leading to: 

𝜕2𝐯

𝜕𝑡2
|
𝑛

=
𝜕

𝜕𝑡
(
1

𝜌
∇ ∙ 𝛔 + 𝒃)

𝑛

=
1

𝜌
∇ ∙ (

𝜕𝝈

𝜕𝑡
)
𝑛

                         (5.9a) 

𝜕2𝛔

𝜕𝑡2
|
𝑛

=
𝜕

𝜕𝑡
(𝐃𝑒𝑓: �̇�)

𝑛
= 𝐃𝑒𝑓

𝑛 : (
𝜕�̇�

𝜕𝑡
)
𝑛

                           (5.9b) 

To calculate the first-order time derivatives of stress and strain rate tensors in Equations (5.8a) 

and (5.8b), the Taylor series expansions of 𝝈 and �̇� up to the first order are applied:  

𝝈𝑛+1/2 = 𝝈𝑛 +
∆𝑡

2
(
𝜕𝝈

𝜕𝑡
)
𝑛

+ 𝑂(∆𝑡)2                                               (5.10a) 

�̇�𝑛+1/2 = �̇�𝑛 +
∆𝑡

2
(
𝜕�̇�

𝜕𝑡
)
𝑛

+𝑂(∆𝑡)2                                                (5.10b) 

By ignoring the last term in Equations (5.10a) and (5.10b), the first-order time derivatives of 

stress, external force and strain rate at time step 𝑛 can be computed by: 

                                      (
𝜕𝝈

𝜕𝑡
)
𝑛

=
2

∆𝑡
(𝝈𝑛+1/2 − 𝝈𝑛)                                    (5.11a) 
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(
𝜕�̇�

𝜕𝑡
)
𝑛

=
2

∆𝑡
(�̇�𝑛+1/2 − �̇�𝑛)                                                   (5.11b)  

where all the unknown variables at time step 𝑡𝑛+1/2, including the strain rate tensor �̇�𝑛+1/2 

which is calculated from the velocity 𝐯𝑛+1/2 , can be estimated by applying Taylor series 

expansions, leading to: 

𝛔𝑛+1/2 = 𝛔𝑛 +
∆𝑡

2

𝜕𝛔

𝜕𝑡
|
𝑛

= 𝛔𝑛 +
∆𝑡

2
(𝐃𝑒𝑓: �̇�)

𝑛                                          (5.12a) 

𝐯𝑛+1/2 = 𝐯𝑛 +
∆𝑡

2

𝜕𝐯

𝜕𝑡
|
𝑛

= 𝐯𝑛 +
∆𝑡

2
(
1

𝜌
∇ ∙ 𝛔 + 𝒃)

𝑛

                                  (5.12b) 

�̇�𝑛+1/2 =
1

2
[∇ ∙ 𝐯𝑛+1/2 + (∇ ∙ 𝐯𝑛+1/2)T]                                               (5.12c) 

By substituting Equations (5.11a) and (5.11b) into Equations (5.9a) and (5.9b), then Equations 

(5.8a) and (5.8b) into Equations (5.7a) and (5.7b), respectively, and ignoring the last terms in 

Equation (5.7), the velocity and stress at time 𝑡𝑛+1 are calculated as follows: 

𝐯𝑛+1 = 𝐯𝑛 + ∆𝑡 (
1

𝜌
∇ ∙ 𝝈 + 𝒃)

𝑛+1/2

                                           (5.13a)  

𝝈𝑛+1 = 𝛔𝑛 + ∆𝑡(𝐃𝑒𝑓 : �̇�)
𝑛+1/2

                                             (5.13b)  

Finally, the displacement of particles is updated using the following equation: 

𝐱𝑛+1 = 𝐱𝑛 + 𝐯𝑛+1/2 ∆𝑡                                                 (5.14) 

where the velocity at time step 𝑡𝑛+1/2 is calculated from Equation (5.12b). 

5.2.3. Spatial discretisation by corrective SPH 

The corrective SPH method is used to perform the spatial discretisation of the divergent terms. 

Detailed descriptions of the corrected SPH method were well explained in section 3.6, thus are 

not repeated here. The final SPH approximations of a function and its derivatives using the 

corrective technique can be represented as:  

< 𝑓(𝑥𝑖) >=  ∑
𝑚𝑗

𝜌𝑗
𝑓(𝑥𝑗)�̃�(𝑥 − 𝑥𝑗, ℎ)

𝑁
𝑗=1                                              (5.15) 

< ∇ ∙ 𝑓(𝑥𝑖) >=  ∑
𝑚𝑗

𝜌𝑗

𝑁
𝑗=1 (𝑓(𝑥𝑗) − 𝑓(𝑥𝑖)) ∙ ∇̃𝑖𝑊(𝑥𝑖 − 𝑥𝑗, ℎ)                            (5.16)         

where �̃� and ∇̃𝑖𝑊 are the corrected kernel function and its gradient, which are defined as 

follows, respectively:  
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                                            �̃�(𝑥 − 𝑥𝑗, ℎ) =
𝑊(𝑥−𝑥𝑗,ℎ)

∑
𝑚𝑗

𝜌𝑗
𝑊(𝑥−𝑥𝑗,ℎ)

𝑁
𝑗=1

                                                (5.17) 

 ∇̃𝑖𝑊(𝑥𝑖 − 𝑥𝑗, ℎ) =
∇𝑖𝑊(𝑥𝑖−𝑥𝑗,ℎ)

∑
𝑚𝑗

𝜌𝑗
(𝒙𝑖−𝒙𝑗)⊗∇𝑖𝑊(𝑥𝑖−𝑥𝑗,ℎ)

𝑁
𝑗=1

   (5.18)  

5.2.4. Taylor-SPH discretisation of governing equations 

In the Taylor SPH, the stress point approach is used to minimize the zero-energy mode 

occurring in the traditional SPH. Therefore, the computational domain in the Taylor SPH is 

represented by two sets of particles (i.e. material and stress particles). All the particles can carry 

their own properties and move based on the governing equation. All the field variables and 

their derivatives of material particles are approximated based on the stress particles, and vice 

versa. Finally, combining the above stress particle approach, the corrective SPH approximation 

with the two-step Taylor scheme, the time discretisation of Equations (5.5) and (5.6) is 

performed in two steps: 

First step: The velocities and stresses of stress particles at the half time step 𝑡𝑛+1/2 are first 

calculated by Equations (5.12a) and (5.12b): 

𝐯𝑠
𝑛+1/2

= 𝐯𝑠
𝑛 +

∆𝑡

2
(∑

𝑚𝑚

𝜌𝑚𝜌𝑠

𝑁
𝑚=1 (𝝈𝑚 − 𝝈𝑠)

𝑛 ∙ ∇̃𝑠𝑊𝑠𝑚) + 𝒃𝑠
𝑛)               (5.19a) 

𝝈𝑠
𝑛+1/2

= 𝝈𝑠
𝑛 +

∆𝑡

2
(𝐃𝑒𝑓: �̇�𝑠)

𝑛
              (5.19b) 

where subscripts s and m refer to stress and material particles, respectively; and the velocity, 

stresses and strain rate of stress particles at time step 𝑛 can be calculated by the following SPH 

approximations, respectively: 

𝐯𝑠
𝑛 = ∑ (

𝑚𝑠

𝜌𝑠
𝐯𝑚
𝑛 �̃�𝑠𝑚)

𝑁
𝑚=1                                                     (5.20a) 

𝝈𝑠
𝑛 = ∑ (

𝑚𝑠

𝜌𝑠
𝝈𝑚
𝑛 �̃�𝑠𝑚)

𝑁
𝑚=1                                                     (5.20b) 

휀�̇�
𝑛 =

1

2
∑ [

𝑚𝑚

𝜌𝑚
(𝒗𝑚 − 𝒗𝑠)

𝑛 ∙ �̃�𝑠𝑊𝑠𝑚]
𝑁
𝑚=1                                        (5.20c)                       

Second step: The velocities and stresses of material particles at time 𝑡𝑛+1/2 are then calculated 

from those of stress particles using Equation (15): 

 𝐯𝑚
𝑛+1/2

= ∑ (
𝑚𝑠

𝜌𝑠
𝐯𝑠
𝑛+1/2

�̃�𝑚𝑠)
𝑁
𝑠=1                                              (5.21a)                                                   

𝝈𝑚
𝑛+1/2

= ∑ (
𝑚𝑠

𝜌𝑠
𝝈𝑠
𝑛+1/2

�̃�𝑚𝑠)
𝑁
𝑠=1                                              (5.21b)                                                   
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Next, the velocities and stresses of material particles at time step 𝑡𝑛+1 are calculated using 

Equations (5.13a) and (5.13b): 

𝐯𝑚
𝑛+1 = 𝐯𝑚

𝑛 + ∆𝑡 (∑
𝑚𝑠

𝜌𝑠𝜌𝑚

𝑁
𝑠=1 (𝝈𝑠 − 𝝈𝑚)

𝑛+1/2 ∙ ∇̃𝑚𝑊𝑚𝑠) + 𝒃𝑚
𝑛+1/2

)         (5.22b) 

𝝈𝑚
𝑛+1 = 𝝈𝑚

𝑛 + ∆𝑡(𝐃𝑒𝑓: �̇�𝑚)
𝑛+1/2

             (5.22b) 

where the strain rate of material particles at time step 𝑛 + 1/2 can be computed by: 

휀�̇�
𝑛+1/2

=
1

2
∑ [

𝑚𝑠

𝜌𝑠
(𝒗𝑠 − 𝒗𝑚)

𝑛+1/2 ∙ �̃�𝑚𝑊𝑚𝑠]
𝑁
𝑠=1                                   (5.23)                                    

Finally, the displacements of both stress and material particles are updated using Equation 

(5.14) as follows:  

  𝐱𝒎
𝑛+1 = 𝐱𝑚

𝑛 + 𝐯𝑚
𝑛+1/2

 ∆𝑡                                (5.24a)  

  𝐱𝑠
𝑛+1 = 𝐱𝑠

𝑛 + 𝐯𝑠
𝑛+1/2

 ∆𝑡                                (5.24b)  

The combination of the corrective SPH technique, stress point approach and Taylor time 

integration scheme provides an accurate and stable solution to solve the governing equations 

of rock. Moreover, unlike the standard SPH approach in which extra boundary particles are 

used to reinforce boundary conditions, boundary conditions in the current SPH approach are 

applied directly to all particles located on the boundaries, with predefined values of stress and 

velocity. 

5.3. Size-dependent constitutive framework 

The continuum constitutive model with embedded mode I cohesive fracture law proposed in 

Chapter 4 is adopted in this work. The proposed constitutive model enables to distinguish the 

responses of the material inside and outside the fracture process zone under tensile loading 

conditions, therefore it can realistically reflect the high strain deformation within the process 

fracture zone. This model also possesses a length parameter embedded in the final constitutive 

relation for capturing the size dependency of rock fractures without any ad hoc treatment. The 

detailed formulations have been comprehensively explained in Chapter 3, and thus only key 

formulations are presented in this section. The macro stress strain relationship of a 

representative volume element (RVE) for rocks is expressed as: 

�̇� = 𝒂𝑜 : (�̇� −
1

𝐻
[𝒏⊗ (𝑪−1 ∙ (𝒂𝑜: �̇�) ∙ 𝒏)]

𝑠𝑦𝑚)                                 (5.25) 

where  
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𝑪 = [
1

𝐻
(𝒏 ∙  𝒂𝑜 ∙ 𝒏) + 𝑲]                                                        (5.26) 

It can be seen that once the global stiffness 𝑲 is determined, the constitutive relation of rocks 

can be easily calculated. The global stiffness can be determined by a simple cohesive fracture 

law with a matrix rotation process shown as: 

 �̇�𝑐𝑟 = 𝑲𝑐𝑟⟦�̇�⟧𝑐𝑟                                                          (5.27a) 

𝑲 = 𝑹𝑇𝑲𝑐𝑟𝑹                                                            (5.27b) 

In this work, linear and exponential cohesive fracture law have been proposed for determining 

the evolution of tensile strength, and the parameters controlling the shapes of those models are 

respectively represented as:  

Linear:                                      𝑘𝑐𝑟
𝐿𝐷 = −

𝜎𝑡0

𝑢𝑐𝑟
𝑓     and    𝑢𝑐𝑟

𝑓
=
2𝐺𝑓

𝜎𝑡0
                                        (5.28a) 

Exponential:                               𝑘𝑐𝑟
𝐿𝐷 = −

𝜎𝑡0
2

𝐺𝑓
exp (−

𝜎𝑡0

𝐺𝑓
𝑢𝑐𝑟)                                         (5.28b) 

In addition, an evolution of the damage variable is required, which is defined as: 

𝐷 = 1 −
𝜎𝑡

𝜎𝑡0
                                                              (5.29) 

where 𝜎𝑡 is the tensile strength, which is gradually degraded depending on the extent of fracture 

development. The strength degradation can be described by linear and exponential traction 

laws, respectively expressed as: 

Linear:                                           𝜎𝑡 = 𝜎𝑡0(1 −
𝑢𝑐𝑟

𝑢𝑐𝑟
𝑓 )                                                       (5.30a)       

Exponential:                                𝜎𝑡 = 𝜎𝑡0𝑒𝑥𝑝(−
𝜎𝑡0

𝐺𝑓
𝑢𝑐𝑟)                                                (5.30b) 

 

It is noted that the above constitutive model is derived based on the small strain theory and thus 

could not achieve the incremental objectivity of stress and strain measures when solving large 

deformations. To mitigate this problem, this study adopts the Jaumann stress rate of the Cauchy 

stress tensor 𝝈  when updating the proposed constitutive model (Bui et al. 2008). The 

combination of this constitutive model with the SPH method, whose governing equations are 

solved within the updated-Lagrangian framework, also helps to improve the incremental 

objectivity of stress and strain measures. Nevertheless, we acknowledge that full incremental 

objectivity can still not be achieved with the above numerical framework. However, the 
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inaccuracy caused by the lack of incremental objectivity is not significant as very small time 

steps are also applied in the explicitly updated Lagrangian procedure. These issues have been 

well addressed in the previous works of Bui et al. (2008) and Nguyen et al. (2017) and proved 

that error is negligible when comparing our SPH solutions with FEM and experiments for large 

deformation problems.  

5.4. Verification of proposed coupling numerical framework 

A tension test conducted by Wu (2017) is carried out in this section. The purpose of this test is 

to verify the performance of the proposed numerical framework in one and two dimensions. 

The geometry and boundary conditions of this test are shown in Figure 5.0–1. For the one-

dimensional case, the bar is 200mm long with a unit cross-section, while the two-dimensional 

bar is 200mm long and 20mm wide. The bar is fixed at the left end and tensile loading is applied 

at the right end of the bar. The stress and displacement of nodes at the right end of the bar are 

recorded during the simulation.  

In this test, three different particle discretisation sizes (i.e. the initial space between two 

consecutive particles) are used: dx = 2mm, 4mm and 5mm. The numbers of material particles 

and stress particles used for different particle discretisation sizes are listed in Table 5.0-1. The 

proposed constitutive model with both linear and exponential cohesive fracture law is adopted. 

The material properties are: Young’s modulus 𝐸 = 30Gpa, Poisson’s ratio 𝑣 = 0.2, Courant 

number 𝐶 = 1, and fracture energy 𝐺𝑓 = 120Nm/m
2, tensile strength 𝑓𝑡 = 3Mpa. The stress 

and displacement of the particles located at the right end are recorded during the test and 

compared with analytical solutions which can be directly obtained based on the formulations 

provided by Wu (2011). In these simulations, the value of 𝐻 is taken to be the same as the 

particle discretisation size (dx). Boundary conditions for the 1D case are: 

 Velocity of the left end node is  𝑣𝑥 = 0 mm/s 

 Velocity of the right end node is 𝑣𝑥 = 0.5mm/s.  

For the 2D case, the applied boundary conditions are:  

 Velocity of the right end nodes are 𝑣𝑥 = 0, 𝑣𝑦 = 0.5mm/𝑠; 

 Velocity of the left end nodes are 𝑣𝑥 = 0, 𝑣𝑦 = 0; 

 Free-stress boundary conditions at the top and bottom: 𝜎𝑦𝑦 = 0 , 𝜎𝑥𝑦 = 0. 
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Figure 5.0–1. 2D tension test of proposed numerical framework. 

 

Table 5.0-1. Numbers of material and stress particles for different particle discretisation sizes. 

Tests 

dx = 0.25mm dx = 0.125mm dx = 0.0625mm 

Material Stress Material Stress Material Stress 

1D 41 40 81 80 161 160 

2D 533 480 2025 1920 7889 7680 

 

Figure 5.0–2 presents a comparison of the stress-displacement curves between simulation 

results using three different particle discretisation sizes (i.e. initial spacing between particles) 

and analytical solutions for the one-dimensional case. The simulation results match the 

analytical solutions well for both linear and exponential cohesive fracture laws. In both cases, 

the stress increases linearly with the displacement before reaching 3 MPa. After this point, the 

softening behaviour in stress is seen with the increasing displacement and the stresses reduce 

to zero at full damage. It can also be observed that the stress-displacement curves are the same 

regardless of the particle discretisation size. This suggests that the proposed numerical 

approach is independent of the spatial discretisation (or mesh-independent). Figure 5.0–3 

shows the relationship between horizontal stress and displacement in the two-dimensional case. 

As in the 1D case, the horizontal stress shows a linear increase with the corresponding 

displacement until reaching around 3MPa. The tangent stiffness, i.e. the slope between stress 

and displacement in 2D, is found to be slightly greater than that in 1D, which can be attributed 

to the influence of Poisson’s ratio. The softening behaviour also occurs after the peak stress 

and the horizontal stress reduces to zero at full damage. Numerical solutions are also 
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independent of the size of domain discretisation. For both cases, the localisation band formed 

at the boundary edge. 

 

Figure 5.0–2. Stress-displacement relationship for one-dimensional tensile test: linear cohesive 

fracture law (left); exponential cohesive fracture law (right). 

 

 

Figure 5.0–3. Horizontal stress-displacement relationship for two-dimensional tensile test: linear 

cohesive fracture law (left); exponential cohesive fracture law (right). 

 

5.5. Mode I rock fracture applications 

In this section, two laboratory tests, the Brazilian disc test and the semi-circular bending test, 

are simulated using the proposed numerical approach. The simulation results are then compared 

with those of experiments to demonstrate the predictive capability of the proposed coupling of 

Taylor-SPH and the continuum constitutive model with an embedded cohesive fracture process 

zone in predicting the mode-I fracture behaviour of rock and rock-like materials. In all 

examples, the linear cohesive law is adopted and the smoothing length (ℎ) is chosen to be ℎ =

1.2𝑑𝑥  with dx being the initial spacing between two consecutive SPH particles. The 
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characterised length (𝐻) of the constitutive model is chosen to be the same as the spatial 

discretisation dx. All numerical tests are performed in the plane stress condition. 

5.5.1. Brazilian disc test 

In the first numerical application, the Brazilian disc (BD) test for Gosford sandstone conducted 

by Gui et al. (2015) is simulated. The experimental specimen has dimensions of 50mm in 

diameter and 25mm in height and is subjected to a constant vertical loading velocity as shown 

in Figure 5.0–4. The material properties of Gosford sandstone reported in Gui et al. (2015) are 

Young’s modulus E = 4 GPa, Poisson’s ratio 𝜇 = 0.25, tensile strength 𝑓𝑡 = 4 MPa, fracture 

energy 𝐺𝑓 = 20 Nm/m
2. The same material properties for Gosford sandstone reported by Gui 

et al. (2015) are adopted in the SPH simulations except for the elastic Young’s modulus, which 

is taken to be E = 3.43 GPa to fit the experimental and numerical results for the load-

displacement curve at the initial elastic loading stage. The numerical tests using both the SPH 

method and the FEM could not achieve the same elastic behaviour of the load-displacement 

curve in the experiment if E = 4 GPa is adopted. Moreover, the selection of E = 3.43 GPa is 

reasonable as the elastic Young’s modulus of Gosford sandstone varies significantly in the 

literature. For instance, Zhao et al. (2014) reported the value of 2.5 GPa while Hagan (1992) 

provided a range of 3.6 GPa to 9 GPa for Gosford sandstone.  

 

       

Figure 5.0–4. Setup of Brazilian test: (a) Geometry and boundary conditions, (b) Loading condition 

in Taylor SPH 
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Table 5.0-2. Loading rates in the Brazilian test (dx = 0.5mm) 

Velocity (mm/s) Equivalent strain rate (s-1) Notes 

0.5 0.01 

within quasi-static 

loading range 
1 0.02 

2 0.04 

5 0.1 upper bound of the range 

10 0.2 

outside the range 12.5 0.25 

15 0.3 

 

 

Figure 5.0–5. Compressive force-displacement curves obtained from the Brazilian test subject to a 
wide range of loading velocities (dx = 0.5m) 

 

In the SPH simulation, the numerical specimen is analysed using three different particle 

discretisation sizes of 0.25mm, 0.5mm and 1mm, resulting in 63277 particles (31649 material 

particles), 15965 particles (7989 material particles) and 3996 particles (1998 material particles), 

respectively. The influence of the loading rate is also investigated by conducting tests with 

different loading velocities, listed in  
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Table 5.0-2. The compressive force and displacement curves corresponding to those velocities 

are plotted in Figure 5.0–5. Unlike the three-point bending test, the model response in Brazilian 

test shows that it is insensitive to loading rate, even with velocities that are outside the quasi-

static range. Therefore, the velocity value of 1mm/s, corresponding to a strain rate of 0.02s-1, 

is applied to material particles at the top and bottom ends of the sample for simulating the point 

load. The detailed boundary conditions for the SPH simulations are summarised as follows: 

 At the bottom end, the vertical velocity component of the loading particles is 

imposed, 𝑣𝑥 = 0, 𝑣𝑦 = 1 mm/s;  

 At the top end, the vertical velocity component of the loading particles is 

imposed, 𝑣𝑥 = 0, 𝑣𝑦 = −1 mm/s; 

 On the surface boundary surrounding the disc, 𝜎𝑥𝑥 = 0, 𝜎𝑦𝑦 = 0,  𝜎𝑥𝑦 = 0. 

 

 

Figure 5.0–6. Compressive force and displacement of the Brazilian disc test. 

 

Figure 5.0–6 shows a comparison between the SPH simulation and experiment for the load-

displacement curve. It can be seen that the proposed SPH model captures well the overall 

response of the load-displacement curve in the experiment. The force increases linearly before 

reaching the peak load and this process is controlled mainly by the elastic properties of the rock 

(i.e. Young’s modulus and Poisson’s ratio). After reaching the peak load, the force-
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displacement curves drop dramatically, indicating that the Gosford sandstone is highly brittle. 

Nevertheless, the SPH model slightly underestimates the peak load of the experiment and 

further investigation is required to confirm this difference. The results of the load-displacement 

curve using different particle discretisation sizes are also plotted in Figure 5.0–6. Although 

there are some minor differences among three cases, the general responses of the load-

displacement curves are similar, suggesting that the proposed numerical modelling framework 

is insensitive to spatial discretisation (or the initial space between two consecutive particles). 

 

 

Figure 5.0–7. Comparison between SPH simulation and experiment: (a) Horizontal stress profile 

before fracture; (b-e) Fracture initiation and propagation; (f) Final fracture pattern from the 

experiment (Gui et al. 2015) 

 

The failure process of the Brazilian disk is shown in Figure 5.0–7 compared to the final failure 

pattern obtained from the experiment. The horizontal stress distribution within the numerical 

specimen before the crack initiates is illustrated in Figure 5.17a, indicating that the tensile stress 

concentrates in the middle of the disc. The initiation and development of the crack in the 
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simulation are shown in the subsequent figures (Figure 5.0–7b-e). A crack initiates at the centre 

of the disc when the induced tensile stress at that point exceeds the tensile strength of the rock 

(Figure 5.0–7b). It then propagates along the centre line toward the top and bottom ends of the 

specimen, and eventually splits the specimen into two equal halves (Figure 5.0–7c-d). The final 

fracture pattern obtained from the simulation (Figure 5.0–7e) is similar to that observed in the 

experiment (Figure 5.0–7f), demonstrating the potential of the proposed SPH computational 

framework in modelling brittle fracture. 

5.5.2. Semicircular Bending Test 

To further examine the predictive capability of the proposed model in simulating mode-I rock 

fracture behaviour, a semicircular bending experiment as performed by Lim et al. (1993) on 

Johnstone is conducted. The aim of this numerical test is to demonstrate the predictive 

capability of the proposed approach to capture the influences of notch length and span on the 

mode-I normalised stress intensity factor (𝑌𝐼), which is calculated as follows: 

𝑌𝐼 =
𝐾𝐼

𝜎0√𝜋𝑎
                                                                   (53) 

where 𝐾𝐼 mode I stress instensity factor, 𝜎0 =
𝑃

2𝑟𝑡
 is normalised stress, 𝑃 is applied load and 𝑡 

is specimen thickness.  

Figure 5.0–8 shows the experimental and numerical setup of the notched semicircular disk. The 

specimen is supported by two rollers located at the bottom end and loads by another roller 

placed at the top end. The distance between two rollers at the bottom end (2𝑠) is 0.5𝑟, 0.61𝑟 

and 0.8𝑟, with 𝑟 being the radius of the specimen. A vertical notch is created in the middle of 

the bottom end of the sample with the length (𝑎) of 0.1𝑟, 0.2𝑟, 0.3𝑟, 0.4𝑟, 0.5𝑟, 0.61𝑟, 0.7𝑟 

and 0.8𝑟. In some cases, 𝑎 = 0.67𝑟 is also adopted in the experiment. The material properties 

are Young’s modulus E = 400 MPa, Poisson’s ratio 𝜇 = 0.25, tensile strength 𝑓𝑡 = 0.6 MPa, 

and mode I fracture toughness 𝐾𝐼𝑐 = 2.15 MPa√mm.  

In SPH simulations, the semicircular numerical specimen is generated using 4009 material and 

3952 stress particles with an initial particle spacing of 0.95mm. It is noted that these particle 

numbers might be slightly changed with different notch lengths. The vertical loading is 

simulated by applying a downward vertical velocity of 2mm/s on loading particles located at 

the top end of the sample, which gives a corresponding quasi-static strain rate of 0.042s-1. The 

boundary conditions used in the semicircular bending test are summarised as follows: 
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 At the location of rollers at the bottom end, the vertical motions of particles are 

fixed, thus 𝑣𝑦 = 0 and 𝜎𝑥𝑦 = 0;  

 At the top end, the vertical velocity component is imposed to loading 

particles, 𝑣𝑥 = 0   and 𝑣𝑦 = −2 𝑚𝑚/𝑠; 

 On other free-stress boundary surfaces of the specimen, 𝜎𝑥𝑥 = 0, 𝜎𝑦𝑦 =

0 and  𝜎𝑥𝑦 = 0. 

 

 

Figure 5.0–8. Geometry and boundary conditions in the semicircular bending test 

 

 

Figure 5.0–9. Variation of normalised stress intensity factor in semicircular bending test 

 

Figure 5.0–9 shows a comparison between experiments and simulation for the normalised 

stress intensity factor with respect to different notch lengths and spans. It can be seen that the 
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numerical approach captures very well the variation trend of the normalised stress intensity 

factor with respect to different notch lengths and the numerical results are in excellent 

agreement with those obtained experimentally. There is an increasing trend in the normalised 

stress intensity factor with the notch length for the same sample span size, although this 

variation seems to be negligible for ratios of notch length-to-radius of less than 0.3. The shorter 

span size results in lower values of normalised stress intensity factor for the same notch length-

to-radius ratio.  

 

 

Figure 5.0–10. Compressive stress and displacement relationship for s/r=0.8 

 

The typical stress-displacement curves obtained in the numerical specimen of 𝑠/𝑟 = 0.8, 0.6 

and 0.5 for different length-to-radius ratios of the notch are respectively presented in Figure 

5.0–10, Figure 5.0–11 and Figure 5.0–12. The stress-displacement curves are shown to undergo 

the same elastic behaviour prior to the initiation of fracture, while significant deviation of the 

curves is observed after the crack is initiated (i.e. after the yielding point). The peak stresses 

are shown to increase with the reduction in notch length, while the softening portion of the 

stress-displacement curves is extended with increasing notch length. These observations are 

reasonable, in the sense that both the peak stress and the softening portion of the stress-

displacement curve are associated with the ligament length (𝑟 − 𝑎), which defines the amount  
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Figure 5.0–11. Compressive stress and displacement relationship for s/r=0.6 

 

 

Figure 5.0–12. Compressive stress and displacement relationship for s/r=0.5 

 

of work required to grow crack in a specimen (Bažant and Kazemi 1991). The RILEM method 

reported by Bažant and Kazemi (1991) gave a positive correlation between peak stress and 

length of ligament under the condition that the fracture energy is unchanged. As the notch  

length in the specimen decreases, the effective area of the fractured ligament increases. 
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Consequently, more work is required to grow crack, and samples with a shorter notch can carry 

higher loads. On the other hand, as the notch length increases, the fractured ligament area 

decreases. To ensure that the fracture energy of the material is the same, the work required to 

grow crack must reduce, thus the peak stress decreases and the softening portion of the stress-

displacement curve increases. 

 

 

Figure 5.0–13. SPH simulations of Johnstone fracture in semicircular bending test: (a) Horizontal 

stress profile before fracture; (b-e) Progressive development of fracture; (f) Final failure pattern 

through vertical velocity profile. 

 

Figure 5.0–13 shows a typical SPH simulation of Johnstone fracture in the semicircular 

bending test. The span and notch lengths of the numerical sample in this test are 0.8𝑟 and 0.35𝑟, 

respectively. As indicated in Figure 5.0–13a, particles near the notch tip experience tensile 

stresses prior to the initiation of fracture. Subsequently, the fracture initiates at the notch tip 

and propagates toward the loading points (Figure 5.0–13b-d), as illustrated through the 

progressive development of the damage variable in the numerical specimen. A set of damaged 

particles forms a vertical fracture geometry in the middle of the sample, as shown in Figure 

5.0–13e. The vertical velocity profile at the final stage is also plotted in Figure 5.0–13f, 

showing that the numerical sample is split into two halves, which is consistent with 

experimental results commonly observed in the literature.  
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5.6. Size-dependent applications of rocks 

In this section, a series of three-point bending tests and direct tensile tests are conducted under 

pure mode I loading conditions to examine the capability of the SPH framework in capturing 

size effects on rock fractures. The manner of setting the model parameter (such as smoothing 

length, cohesive fracture law) is as the same as that in Brazilian test and semicircular bending 

test, thus not repeated here. 

5.6.1. Three-point bending test 

In this first application, a series of experimental tests carried out by Bellego et al. (2000) on 

three-point bending beams are numerically analysed. Figure 5.0–14a shows the experimental 

setup of the notched mortar beams of different heights of W = 80mm, 160mm and 320mm, 

length L = 4W and thickness B = 40mm. A vertical notch is created at the bottom middle span 

with the ratio of the notch to height (𝑎/𝑊) equal to 0.1. During the experiment, the beam is 

supported by two steel rollers placed at the distance of 𝑆 = 3𝑊, and loaded by another steel 

roller located on its top mid-span. The material properties obtained from the experiment are: 

Young’s modulus E=45 GPa, Poisson’s ratio 𝜇 = 0.24, tensile strength 𝑓𝑡 = 2.9MPa, fracture 

energy 𝐺𝑓 = 47.17 Nm/m
2.  

 

 

Figure 5.0–14. Setup of three-point bending test: (a) Geometry and boundary conditions, (b) Particle 

arrangement in Taylor-SPH 
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In the Taylor-SPH simulations, the notched mortar beams of different sizes are created using 

material and stress particles as shown in Figure 5.0–14b. Three beams of different sizes (W = 

80mm, 160mm and 320mm) are analysed using the same spatial discretisation size of dx = 

5mm. Furthermore, to investigate the influence of spatial discretisation on numerical solutions, 

the smallest beam size (W = 80mm) is further analysed using two smaller particle discretisation 

sizes of dx = 1mm and 2.5mm. The number of SPH particles corresponding to different beam 

sizes and domain discretisation is summarised in Table 5.0-3.  

 

Table 5.0-3. Particle numbers for beams of different sizes and discretisation 

   Testing cases 

 

Particle type 

Small size Medium size Large size 

dx = 1mm dx = 2.5mm dx = 5mm dx = 5mm dx = 5mm 

Material particles 25993 4253 1103 4253 16698 

Stress particles 25584 4096 1024 4096 16384 

 

The compressive force and displacement of the loading particle located at the top mid-span of 

the numerical sample are recorded during the simulation and compared with experimental 

results obtained from the literature. Unlike the experimental tests, which are notch-opening 

controlled, a direct velocity control is applied on the top mid-span of the beam to simulate a 

point loading. This approach is considered appropriate since the response of the sample does 

not exhibit snap-back. However, the loading velocity must be chosen with care to ensure that 

the numerical results are insensitive to loading, given the fact that SPH is a fully dynamic 

model, the results of which are highly sensitive to loading velocity. This can be achieved by 

selecting appropriate loading speeds to ensure that they are within a quasi-static range, i.e. the 

strain rate of 0.00001s-1 to 0.1s-1 (Zhang and Zhao 2014). To demonstrate this, a series of tests 

using the smallest specimen under a wide range of loading velocities are conducted.  

 

Table 5.0-4 lists the applied loading velocities and the corresponding strain rates and Figure 

5.0–15 shows the corresponding force-deflection curves subjected to those loading velocities. 

The results confirm that the model response is not very sensitive to the loading rate if the 

loading velocity is chosen to be small enough within the quasi-static range, and higher loading 
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velocities lead to rate dependent behaviour. Therefore, the loading velocity of 1mm/s is adopted 

in this test to speed the computational time. In the meantime, a ramp loading type is also used 

to reduce dynamic effects due to load suddenly applied to the specimen. In summary, the 

boundary conditions for this test are as follows: 

 At the location of bottom rollers, the vertical motion of particles is fixed, thus 𝑣𝑦 =

0,  𝜎𝑥𝑦 = 0;  

 In the top middle of the beam, the vertical velocity component of the loading nodes 

is imposed, 𝑣𝑥 = 0, 𝑣𝑦 = −1 mm/s; 

 On free-surface boundaries surrounding the beam, 𝜎𝑥𝑥 = 0, 𝜎𝑦𝑦 = 0,  𝜎𝑥𝑦 = 0. 

 

Table 5.0-4. Loading rates in three-point bending test (dx = 5mm) 

Velocity(mm/s) Equivalent strain rate (s-1) Notes 

0.01 0.000125 

within quasi-static loading 

range 

0.05 0.000625 

0.1 0.00125 

0.25 0.003125 

0.5 0.00625 

1 0.0125 

4 0.05 

8 0.1 upper bound of the range 

16 0.2 outside the range 

 

Figure 5.0–16 shows a comparison of the load-deflection curves between the experiments and 

SPH simulations for three different beam sizes. It can be seen that the numerical results agree 

well with their experimental counterparts and the scale-dependent behaviour is also well 

captured by the simulation. In all cases, the applied forces undergo three distinct stages: linear 

elastic until reaching the yielding stresses, then hardening responses up to the peak failure stress 

and finally softening behaviour until the sample completely fails. The peak loads predicted by 

the simulations are very close to those obtained from the experiments. For the largest specimen 
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size (W = 320mm), the simulation slightly under-predicts the experiment result. However, the 

predicted peak load is still within the range of peak values (850-1010N) reported by Le Bellégo 

et al. (2003).  

 

 

Figure 5.0–15. Load-deflection curves obtained from the three-point bending test for the small 
specimen subjected to a wide range of loading velocities (dx = 5mm) 

 

 

Figure 5.0–16. Force-deflection responses of three different beam sizes 
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Figure 5.0–17. Force-deflection responses for different spatial discretisation (small beam). 

 

Figure 5.0–17 shows the compressive force and deflection responses of the smallest beam size 

using three different spatial discretisations. It can be seen that the proposed numerical approach 

shows convergence with respect to the refinement of the discretisation, and the numerical 

results are quite consistent with respect to different particle discretisation sizes, thanks to the 

inclusion of the characteristic length (H) in the constitutive model. Figure 5.0–18 illustrates the 

progressive development of cracking patterns (i.e. via damage evolution and vertical velocity 

profile) of the smallest beam size using the spatial discretisation of 2.5mm. The corresponding 

force-deflections of Figure 5.0–18(a) to Figure 5.0–18(e) are marked in Figure 5.0–17. At the 

initial elastic stage (point a in Figure 5.0–17), the horizontal stress distribution is shown in 

Figure 5.0–18(a1), indicating that the tensile stress is concentrated near the notch tip prior to 

the failure of the specimen. The tensile stress continues to develop until the crack is initiated 

at the notch tip of the specimen as indicated in Figure 5.0–18b1, which corresponds to the 

yielding point (b) in the load-deflection curve in Figure 5.0–17. The applied force reaches its 

peak at point c in Figure 5.0–17 when the damage propagates to around half the specimen 

height, as illustrated in Figure 5.0–18c2. After this point, the specimen reaches the post-peak 

failure stage where the crack accelerates toward the top mid-span of the specimen, forming a 

vertical fracture pattern (Figure 5.0–18d1-e1). The vertical velocity profile during the test is 
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also plotted in Figure 5.0–18(a2-e2). The numerical results indicate that particles at the middle 

of the beam move downward while those at the two sides of the beam move upward, which is 

consistent with observations from the experiments. The results also demonstrate the capability 

of SPH in simulating large displacement and separation of the numerical samples at their final 

stages of failure as shown in Figure 5.0–18(e2), which is difficult for mesh-based methods due 

to mesh constraints although the initial fracture process can be predicted. 

 

 

Figure 5.0–18. Progressive failure of the beam specimen in SPH simulation. 

 

5.6.2. Tensile test 

In the final example, simulation of the uniaxial tension experiments carried out by Van Vliet 

and Van Mier (2000) on concrete is conducted to validate the performance of the proposed 

numerical framework. Figure 5.0–19 shows the experimental and numerical setup of the dog-

bone specimen. The dimensions of the specimen are length 1.5D, width D and 0.6D for 
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maximum and minimum cross sections; and thickness 100mm. Three specimens of different 

sizes (Size A-C) are created to examine the size-dependent behaviour of rock fracture, and their 

corresponding dimensions are summarised in Table 5.0-5. In the experiment, a uniaxial tensile 

force is applied to both ends of the specimen with eccentricity from the vertical axis of 

symmetry 𝑒 =  𝐷/50. The material properties of the concrete are (Vořechovský and Sadílek 

2008): Young’s modulus 𝐸 =  36.95𝐺𝑃𝑎 , Poisson’s ratio 𝑣 = 0.2 , tensile strength 𝑓𝑡 =

3.2 𝑀𝑃𝑎, fracture energy 𝐺𝐹 = 200𝑁𝑚.  

 

 
Figure 5.0–19. Geometry and boundary conditions of the tension test. 

 

Table 5.0-5. Specimen dimensions and numbers of SPH particles for specimens of different sizes 

Size D (mm) r (mm) Material 

particle 
Stress 

particle 

A 50 36.25 522 492 

B 100 72.5 2028 1960 

C 200 145 7935 7808 

 

 

In the SPH simulation, the concrete specimens are created by a set of material and stress 

particles, the numbers of which corresponding to different specimen sizes are summarised in 

Table 5.0-5. Three specimens of different sizes (Size A-C) are modelled using the same particle 
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discretisation size of dx=2.5mm. A simplified boundary condition is applied in the SPH 

simulation, in which a constant vertical velocity is applied to all particles located at both ends 

of the specimen to provide uniform tensile loading. The detailed boundary conditions in the 

Taylor SPH simulation are summarised as follows: 

1) At the bottom end, a vertical velocity component is imposed, 𝑣𝑦 = −2m𝑚/𝑠, 𝜎𝑥𝑥 = 0;  

2) At the top end, a vertical velocity component is imposed, 𝑣𝑦 = 2m𝑚/𝑠, 𝜎𝑥𝑥 = 0;  

3) At other boundary surfaces of the specimen, 𝜎𝑥𝑥 = 0, 𝜎𝑦𝑦 = 0,  𝜎𝑥𝑦 = 0.  

 

 
Figure 5.0–20. Tensile force-deformation curve of tension test. 

 

Figure 5.0–20 shows a comparison of the tensile load-displacement curves between SPH 

simulations and the experiments for three specimens of different sizes. It can be seen the 

proposed numerical framework successfully predicts the overall response of the load-

displacement curves in the experiment and captures well the size-dependent behaviour in the 

uniaxial tensile test. It is noted here that the same spatial discretisation size is applied for all 

specimens of different sizes to avoid the influence of spatial discretisation on the rock fracture 

behaviour. However, it was also proved that this numerical framework is insensitive to spatial 

discretisation in the previous simulations. The behaviours of the specimen in the uniaxial 

tensile test can be distinguished by two different stages: elastic linearity and softening failure. 

In the first stage, the tensile force increases linearly with the increment of displacement until 

reaching the peak force. The tangent stiffness in all force-displacement curves of different  
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Figure 5.0–21. Profile of damage variable in tension test for three specimens of different sizes 

 

 

Figure 5.0–22. Profile of vertical displacement in the tension test for three specimens of different 
sizes. 
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specimens is the same because of the same parameter input, such as Young’s modulus and 

Poisson’s ratio. Then, the specimens experience softening behaviour in which the force 

decreases with the increment in displacement. The experimental results show a steeper 

softening response than those observed in the simulations, indicating a more brittle behaviour 

of rock fracture. A possible reason is the different boundary settings between the SPH 

simulation and the experiment. Nevertheless, SPH is well able to predict the peak loads of all 

the specimens obtained in the experiment, suggesting the potential of this framework for 

capturing the size-dependent behaviour of rock fracture. 

Figure 5.0–21 illustrates the progressive development of the damage variable and the fracture 

patterns of different specimens (A-C) in the SPH simulations. A set of damaged particles forms 

the fracture geometry of the specimen. It can be seen from the figure that fracture initiates in 

the middle of the specimens, which is the location of the minimum cross-section, and finally a 

horizontal fracture pattern is formed in the same location. The vertical velocities for these three 

specimens of different sizes at the final stage are also plotted Figure 5.0–22. The numerical 

results indicate that SPH particles at the lower part of specimens move downward while those 

at the upper part move upward with the same velocity value. The specimens finally split into 

two equal pieces.            

5.7. Conclusions 

In this section, a new numerical framework that combines the Taylor SPH method with a new 

continuum constitutive model with an embedded fracture process zone is developed to enhance 

the predictive capability of existing computational tools for modelling mode-I rock fracture 

behaviour. The proposed numerical framework is considered unique for the following reasons: 

i) The proposed numerical framework that combines the advantages of SPH and a generic 

continuum constitutive model with an embedded cohesive fracture is the first rigorous SPH 

framework to model rock fracture featuring an intrinsic length scale. The approach is 

therefore scale-dependent, insensitive to spatial discretisation (or mesh independent) and 

can handle fracture detachment. Furthermore, because the fracture geometry is represented 

by a set of damaged particles over which the fracture plane is defined and can have any 

orientation depending on the stress condition, the proposed approach is in principle capable 

of dealing with complex crack patterns.  

ii) Originating from the generic double-scale continuum constitutive framework, the 

constitutive model in this study was derived by supplying kinematic enrichments based on 
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observed mechanisms of localised failure followed by the application of the work balance. 

The approach naturally leads to a scale-dependent constitutive model with an embedded 

fracture process zone. No ad hoc treatments or regularisations are needed, facilitating its 

implementation in the SPH. The model tests demonstrate that this approach works well at 

both material and structural levels. 

iii) The proposed scale-dependent numerical framework is capable of accommodating 

existing cohesive fracture laws and thus can be used for a wide range of fracturing 

applications involving different types of material. Since the model’s formulations are 

derived for general 3D conditions, it can also be straightforwardly extended to full three-

dimensional conditions for large-scale practical applications across disciplines. 

The proposed numerical framework was first verified against analytical solutions for one- and 

two-dimensional tests. It was then used to analyse four laboratory tests, the Brazilian disc test, 

semicircular bending test, three-point bending test and direct tensile test, and numerical results 

were compared with their experimental counterparts. Very good agreement with analytical 

solutions and experimental results was achieved, suggesting that the proposed approach is 

capable of accurately predicting the mode-I fracturing behaviour. This work provides a 

fundamental basis bridging the constitutive and structural aspects, via a length scale directly 

obtained from the particle size, for further developments in SPH towards better modelling of 

fracture and fragmentation.  
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Chapter 6  

Cracking SPH Particle Framework for Modelling of 

Mixed-Mode Rock Fracture 

 

6.1. Introduction 

In the previous chapter, a novel numerical framework based on the Taylor SPH method was 

developed for simulating pure mode I rock fractures by incorporating a new continuum size-

dependent constitutive model with an embedded cohesive fracture process zone (FPZ). The 

results demonstrated the capability of the numerical framework to capture the experimentally 

observed size-dependent behaviour of rock fracture under pure mode I loading conditions. 

Thanks to the characteristic length scale embedded in the constitutive model, the proposed 

numerical framework was independent of the spatial discretisation of the computational 

domain (or mesh independent). This success, as a proof of concept, demonstrated the 

capabilities and potentials of the SPH with a FPZ idealised as a cohesive model embedded in 

the particles to capture rock fracture and fragmentation. However, the previous work utilised a 

mode I constitutive model and thus could only capture mode I rock fracture SPH. Furthermore, 

the Taylor SPH method employs two sets of particles with a two-step Taylor time integration 

scheme and requires special treatments for free-surface boundary conditions, resulting in a 

relatively complex model for simulating rock fracture problems. Further work is required to 

improve the constitutive model as well as to simplify the Taylor-SPH method to capture rock 

fracture and fragmentation under mixed-mode loading conditions.  

In this study, the SPH-based numerical framework introduced in Chapter 5 to model pure mode 

I rock fracture is further developed to fully capture rock fracture under mixed-mode loading 

conditions. However, unlike the previous work, the conventional SPH framework with tensile 

instability treatment (Bui et al. 2008) instead of the Taylor-SPH method is adopted in this study. 
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The key advantages of this approach include: i) it does not require an extra set of stress particles; 

this, in principle, can reduce the overall computational cost, and ii) it does not require any 

prescribed stress boundary condition on the free surface, thus is more computationally efficient 

to handle complex applications. In conjunction with the conventional SPH framework, a size-

dependent constitutive model with an embedded mixed-mode cohesive fracture is employed 

for describing the stress states of rock under a wide range of loading conditions. Unlike the 

previous work which focused on the pure mode I fracture, the FPZ in this study is described 

by a mixed-mode cohesive fracture law to capture the plastic and damage evolutions of material 

under various loading conditions. The combination of these two approaches enables the 

proposed numerical framework to represent fracture geometries by a set of damaged SPH 

particles, each of which possesses its own FPZ with arbitrary orientations, therefore can 

naturally capture complex fracture patterns without any predefined topology. The rest of 

chapter is organised as follows. The general SPH framework for simulating rock materials is 

briefly presented in Section 6.2. The concept of a size-dependent constitutive model and details 

of model formulations are then explained in Section 6.3. This is followed by an implicit 

implementation algorithm of the constitutive model and demonstrations of model behaviour at 

the constitutive level under complex loading conditions in Section 6.4. Section 6.5 presents 

three applications to examine the model’s capability in predicting mixed-mode rock fractures. 

Finally, the conclusion drawn from this study is summarised in Section 6.6.  

6.2. Traditional SPH approximation of governing equations of rocks 

As stated in the introduction, the traditional SPH with tensile instability treatment has been 

adopted for simulating mixed-mode rock fractures. A corrective technique has also been 

applied to resolve the general problems of particle deficiency at the boundaries in the traditional 

SPH. As the details of SPH approximation and the corrective technique were explained in 

Chapter 3, only key formulations are given next, starting with the governing equations of rocks: 

D𝜌

D𝑡
= −𝜌∇ ∙ 𝐯      (6.1a) 

D𝐯

D𝑡
=

1

𝜌
∇ ∙ 𝛔 + 𝐛                           (6.1b) 

D𝛔

D𝑡
= 𝐃𝑒𝑓 : �̇�       (6.1c) 

where 𝜌 is the material density; 𝐯 is the velocity vector; 𝛔 is the stress tensor; 𝐛 is the vector 

component of acceleration due to external forces; 𝐃𝑒𝑓  is the material stiffness matrix; 
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D(∙  )/D𝑡 is the material derivative and �̇� is the strain rate tensor, which can be calculated by 

velocity through the kinematic relation: 

�̇� = [∇ ∙ 𝐯 + (∇ ∙ 𝐯)T]/2                                                   (6.2) 

The kernel approximation of a field function 𝑓(𝑥)  and its spatial derivatives ∇𝑓(𝑥)  are 

presented as 

< 𝑓(𝐱) >=  ∫ 𝑓(𝐱′)
Ω

𝑊(𝐱 − 𝐱′, ℎ)𝑑𝐱′                                               (6.3a)                              

                        < ∇𝑓(𝐱) >= −∫ 𝑓(𝐱′)
Ω

∙ ∇𝑊(𝐱 − 𝐱′, ℎ)𝑑𝐱′                                        (6.3b) 

where 𝑊(𝐱 − 𝐱′, ℎ)  is the smoothing function, ℎ  is the smoothing length defined as an 

effective domain  Ω  of the smoothing function; ∇𝑊(𝐱 − 𝐱′, ℎ)  is the derivative of W with 

respect to 𝐱′. 

In SPH particle approximation, the integral equations, i.e. equations (6.3a) and (6.3b), are 

discretised into forms of summation over all particles 𝒙𝑗 located within the support domain of 

a given particle at 𝒙𝑖, shown as: 

𝑓(𝐱𝑖) =  ∑
𝑚𝑗

𝜌𝑗
𝑓(𝐱𝑗)𝑊𝑖𝑗

𝑁
𝑗=1                                                      (6.4a)                                        

∇𝑓(𝐱𝑖) =  ∑
𝑚𝑗

𝜌𝑗

𝑁
𝑗=1 𝑓(𝐱𝑗) ∙ ∇𝑊𝑖𝑗                                                  (6.4b) 

where                𝑊𝑖𝑗 = 𝑊(|𝐱𝑖 − 𝐱𝑗|, ℎ))    and  ∇𝑊𝑖𝑗 = (
𝐱𝑖−𝐱𝑗

|𝐫|
)
𝜕𝑊𝑖𝑗

𝜕𝑟
 

with ∇𝑊𝑖𝑗  denoting the gradient of the kernel function 𝑊𝑖𝑗  evaluated at the location 𝐱𝑖; |𝐫| =

|𝐱𝑖 − 𝐱𝑗|  is the relative distance between particles 𝑖  and 𝑗 ; 𝑁  is the total number of 

neighbouring particles of i within its supporting domain; and 𝑚𝑗/𝜌𝑗 is the volume of particle 

𝑗. 

As the discrete forms of derivatives of the governing equations all make use of the kernel 

gradient, the next step is to apply a corrective technique to the gradient approximation of SPH. 

The final corrected gradient approximation is written as: 

∇𝑓(𝐱𝑖) =  ∑
𝑚𝑗

𝜌𝑗

𝑁
𝑗=1 𝑓(𝐱𝑗) ∙ ∇𝑊𝑖𝑗

𝐶(𝐱𝑖 − 𝐱𝑗
′, ℎ)                                     (6.5) 

where                                                ∇𝑊𝑖𝑗
𝐶 = 𝐋(𝐱𝑖)∇𝑊𝑖𝑗                                                       (6.6) 

with the normalisation matrix 𝐋(𝐱𝑖) defined as: 
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𝐋(𝐱𝑖) = (

∑
𝑚𝑗

𝜌𝑗

𝑁
𝑗=1 (𝑥𝑗 − 𝑥𝑖)∇𝑥𝑖𝑊𝑖𝑗 ∑

𝑚𝑗

𝜌𝑗

𝑁
𝑗=1 (𝑥𝑗 − 𝑥𝑖)∇𝑦𝑖𝑊𝑖𝑗

∑
𝑚𝑗

𝜌𝑗

𝑁
𝑗=1 (𝑦𝑗 − 𝑦𝑖)∇𝑥𝑖𝑊𝑖𝑗 ∑

𝑚𝑗

𝜌𝑗

𝑁
𝑗=1 (𝑦𝑗 − 𝑦𝑖)∇𝑦𝑖𝑊𝑖𝑗

)

−1

                  (6.7) 

Finally, the governing equations of rocks in equation (6.1-6.2) can be rewritten as the corrective 

SPH approximation forms: 

D𝜌𝑖

D𝑡
= ∑ 𝑚𝑗(𝐯𝑖 − 𝐯𝑗) ∙ ∇𝑊𝑖𝑗

𝐶𝑁
𝑗=1                                                 (6.8) 

D𝐯𝑖

D𝑡
= ∑ 𝑚𝑗 (

𝛔𝑖+𝛔𝑗

𝜌𝑖𝜌𝑗
+ 𝐶𝑖𝑗) ∙

𝑁
𝑗=1 ∇𝑊𝑖𝑗

𝐶 + 𝐛𝑖                                        (6.9) 

D𝛔𝑖

D𝑡
= 𝐃𝑒𝑓: [

1

2
∑

𝑚𝑗

𝜌𝑗
(𝐯𝑗 − 𝐯𝑖) ∙ ∇𝑊𝑖𝑗

𝐶𝑁
𝑗=1 +

1

2
(∑

𝑚𝑗

𝜌𝑗
(𝐯𝑗 − 𝐯𝑖) ∙ ∇𝑊𝑖𝑗

𝐶𝑁
𝑗=1 )

𝑇

]             (6.10) 

where 𝐂𝑖𝑗  is a stabilisation term consisting of artificial viscosity and artificial stress  (Bui et al. 

2008). The artificial viscosity is proportional to the sound speed of a material and acts as a 

damping term to regularise stress fluctuation, while the artificial stress is usually utilised to 

prevent particles clumping under tensile stress. Examples of large-scale slope failure in (Bui et 

al. 2008, Bui et al. 2011) demonstrated that the tensile instability problem could be completely 

removed by adding a stabilisation term. In this study, the artificial viscosity is the only used 

stabilisation term used to regularise the strong shockwave propagation in hard rocks. This is 

because the sound speed propagating in hard rocks is often much faster than that in soft rocks, 

or in other words, the elastic Young’s modulus of hard rocks is often very large. This results in 

a greater influence of artificial viscosity in the momentum equation and thus mitigation of the 

tensile instability problem. However, when it comes to examples related to soft rocks, both the 

artificial viscosity and artificial stress must be adopted, because the artificial viscosity is not 

sufficient to mitigate the tensile instability problem. The inclusion of artificial stress helps to 

prevent particles from coming closer by applying a repulsive force between neighbouring 

particles when they are subjected to tensile loading. The constant parameters for the artificial 

viscosity in this study are chosen as 0.5 and 0 for the terms associated with the linear and 

quadratic in the velocity divergence, respectively; the constant parameter for the artificial stress 

is selected as 0.2.   

6.3. A mixed-mode continuum constitutive model for rock fracture 

In this study, the double scale model developed by Nguyen et al. (2012), Nguyen et al. (2014) 

is adopted for mixed-mode rock fracture applications, due to its advantage of insensitivity to 
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discretisation compared to other models. This model was employed with success in the SPH 

for simulating rock fracture under pure mode I loading, introduced in Chapter 5. Now, the 

model is extended to mixed-mode fracture problems of rocks by introducing a new mixed-

mode cohesive fracture law into a double-scale model to capture post-localisation behaviour of 

material within the FPZ in mixed-mode tests. The final constitutive relationship between macro 

stress rate and macro strain rate in the double scale model is expressed as: 

�̇� =  �̇�𝑜𝑢𝑡 = 𝐚0 (�̇� −
1

𝐻
𝐧⟦�̇�⟧)                                            (6.11) 

where the rate of displacement jump ⟦�̇�⟧ can be calculated by an elastic stiffness matrix 𝐚0 and 

the tangent cohesive stiffness 𝐊𝑡 in cohesive fracture law: 

⟦�̇�⟧ =  (
1

𝐻
𝐧𝑇𝐚0𝐧 + 𝐊

𝑡)
−1

𝐧𝑇𝐚o�̇� = 𝐂
−1𝐧𝑇𝐚o�̇�                               (6.12) 

It can be seen from equations (6.11-6.12) that the overall stress-strain relationship takes into 

account the corresponding responses of material both inside and outside the FPZ. A length 

scale parameter 𝐻 is also embedded in the final formulation, giving the model capability of 

capturing the size-dependent behaviour of rocks at the constitutive level. Moreover, the double 

scale model has high feasibility for incorporating any cohesive fracture law for material inside 

FPZ. An example for one of those models is introduced next. 

6.3.1. Mixed-mode cohesive fracture law 

A mixed-mode cohesive fracture law coupling damage mechanics and plasticity theory is 

employed in this study to describe the behaviour of rock material inside a FPZ. The cohesive 

law relates the tractions (𝐭𝑐) and the corresponding displacement jumps (𝐮𝑐) across two faces 

of the FPZ. For notational simplicity, subscript c is reserved in this study for all variables in 

the local coordinate system, representing the local behaviour of material inside the FPZ, while 

subscripts 𝑛  and 𝑠  denote normal and shear directions, respectively. The incremental 

displacement jump (d𝐮𝑐 ) can be partitioned into elastic (𝑑𝐮𝑐
𝑒)  and inelastic (𝑑𝐮𝑐

𝑝)  parts, 

standing for reversible and irreversible displacements, respectively: 

𝑑𝐮𝑐 = 𝑑𝐮𝑐
𝑒 + 𝑑𝐮𝑐

𝑝
                                                               (6.13) 

The traction state of material in FPZ can be calculated by the elastic displacement jump as: 

𝑑𝐭𝑐 = 𝐏𝐊𝑐0
𝑠 𝑑𝐮𝑐

𝑒                                                                    (6.14) 

with 
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𝐊𝑐0
𝑠 = [

𝐾𝑛 0
0 𝐾𝑠

]                                      (6.15) 

  𝐏 = {
[
1 − 𝐷 0
0 1 − 𝐷

]        𝑤ℎ𝑒𝑛 𝑡𝑐(𝑛) ≥ 0    

 [
1 0
0 1 − 𝐷

]                𝑤ℎ𝑒𝑛 𝑡𝑐(𝑛) < 0   
                         (6.16) 

where 𝐊𝑐
𝑠 = 𝐏𝐊𝑐0

𝑠  is the secant stiffness matrix of the cohesive fracture zone; 𝐊𝑐0
𝑠  denotes the 

elastic secant stiffness matrix of the cohesive fracture zone; 𝐏 is a parameter matrix with 

respect to normal traction 𝑡𝑐(𝑛). The inclusion of P allows the cohesive model to account for 

different effects of damage on the tractions under compression and tensional conditions. 𝐷 is 

the damage variable characterising the degradation of material strength due to fracture. When 

𝐷 is zero, the material is elastic, and the material is fully damaged when D approaches unity. 

Thus, the evolution of damage variable D is expressed as an exponential function of the 

accumulated inelastic displacement jump, written as: 

𝐷 = max (𝐷𝑝𝑟𝑒 , 1 − 𝑒
−(
𝑢𝑛
𝑝

𝛿0
+
𝑢𝑠
𝑝

𝛿0
)
)                                  (6.17) 

where 𝐷𝑝𝑟𝑒 is the damage variable in the previous step, 𝛿0 is the displacement jump 

corresponding to the peak normal traction, 𝑢𝑛
𝑝
 and 𝑢𝑠

𝑝
 are respectively normal and shear 

inelastic displacement jumps, which are introduced later. Unlike the linear or exponential 

softening law described in previous work in which the damage variable is calculated based 

only on the degraded tensile strength, the incorporation of both normal and shear inelastic 

displacement jumps into the evolution of damage variable gives the model the capability of 

capturing material failure under both tensile and shear loading. 

Provided that the traction-displacement jump relationship and the evolution of damage variable 

are determined, a failure function is required to cater for the combined influence of normal and 

shear tractions. To be specific, the failure function is employed to determine whether material 

is within elastic or plastic-damage regimes and then to compute the current traction states 

depending on different cases. In this study, a modified form of the Mohr-Coulomb failure 

criterion is adopted to represent failure states, expressed as: 

𝑓(𝑡𝑛, 𝑡𝑠 , 𝐷) = 𝑡𝑠
2 − 2𝑐0(1 − 𝐷) tan𝜙 (𝜎𝑡0(1 − 𝐷) − 𝑡𝑛) − tan

2𝜙 (𝑡𝑛
2 − (𝜎𝑡0(1 − 𝐷))

2)   (6.18) 

where 𝜙 is the friction angle of material; 𝑐0 and 𝜎𝑡0 represent the initial cohesion and tensile 

strength, which are the controlling variables for the tensile loading and shear loading 

respectively. Those three values are unchanged during the calculation process, but the 
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geometry of the yield function changes with the evolution of damage variable 𝐷, as illustrated 

in Figure 6.0–1.  

 

 

Figure 6.0–1. Illustration of the shrinking of yield function against the evolution of the damage 
variable. 

 

A non-associated plastic potential is also used in this study, which takes into account the effect 

of dilatancy angle, the formulation of which is written as: 

𝑔(𝑡𝑛, 𝑡𝑠 , 𝐷) = 𝑡𝑠
2 − 2𝑐0(1 − 𝐷) tan𝜓 (𝜎𝑡0(1 − 𝐷) − 𝑡𝑛) − tan

2𝜓 (𝑡𝑛
2 − (𝜎𝑡0(1 − 𝐷))

2)    (6.19) 

where 𝜓 is the dilatancy angle of material. The incremental plastic displacement jump can be 

computed by the non-associated flow rule as: 

𝑑𝒖c
p
= 𝑑𝜆

𝜕𝑔

𝜕𝒕c
                                                                   (6.20) 

where 𝑑𝜆 is the plastic multiplier, which is a non-negative and can be determined based on the 

current traction state and the loading history. 

In the above cohesive fracture model there is a set of constitutive parameters, including an 

elastic secant stiffness 𝐊𝑐0
𝑠  consisting of normal stiffness 𝐾𝑛 and shear stiffness 𝐾𝑠, a parameter 

𝛿0 controlling the evolution of damage, and shear strength parameters such as initial tensile 

strength 𝜎𝑡0, initial cohesion 𝑐0, friction angle 𝜙 and dilatancy angle 𝜓. The normal stiffness 

𝐾𝑛 stands for the initial elastic stiffness of material in the FPZ, which can thus be calculated 

by 𝐾𝑛 = 𝐸/ℎ, where ℎ is the thickness of the FPZ. As already mentioned, the FPZ of rock is 
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regarded as having zero-thickness, thus the value of the normal elastic stiffness 𝐾𝑛 approaches 

infinity. As a result, 𝐾𝑛 is selected to be a few orders of magnitude larger than 𝐸 for numerical 

simulation. The shear stiffness 𝐾𝑠  is the elastic stiffness in the pure shear test and can be 

computed from the experiment. Since the present model focuses mainly on rock failure under 

pure mode I and mixed tensile-shear loading, the shear stiffness 𝐾𝑠 is simply selected to be a 

similar order of magnitude to Young’s modulus E. Another key parameter to be determined is 

𝛿0, which controls softening behaviour in the cohesive fracture model. The value of 𝛿0 must 

be satisfied with the requirement that the area under the traction curve is equal to the input 

fracture energy, that is ∫ 𝑡𝑛𝑑𝑢𝑛
𝑢𝑓
0

= 𝐺𝑓𝐼, depicted in Figure 6.0–2. Other material parameters 

(𝜎𝑡0, 𝑐0, 𝜙, 𝜓) can be estimated from certain laboratory experiments (e.g. uniaxial compression, 

shear and triaxial tests) and those values are directly used in our simulation tests. 

 

 

Figure 6.0–2. Determination of model parameters in traction-displacement jump curves 

 

6.3.2. Stress return algorithm of cohesive fracture law 

An appropriate numerical algorithm is required to correctly update tractions from a given 

displacement jump. In this work, a semi-implicit stress return algorithm is adopted. Given an 

incremental displacement jump  d𝐮c , the predictor traction 𝐭c
trial  can be calculated using 

Equation (6.14). The trial yield function 𝑓𝑡𝑟𝑖𝑎𝑙  based on the elastic traction predictor is then 

computed using Equation (6.18). If the trial yield function  𝑓𝑡𝑟𝑖𝑎𝑙 < 0, no further action is 
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required and the trial traction is accepted as correct. In contrast, if the trial traction 𝑓𝑡𝑟𝑖𝑎𝑙 ≥ 0, 

the correct stress can be calculated using the Taylor expansion of the yield function, written as: 

𝑓 = 𝑓𝑡𝑟𝑖𝑎𝑙 +
𝜕𝑓

𝜕𝐭c

𝑇 𝜕𝐭c

𝜕𝐮c
p 𝑑𝐮c

p
+

𝜕𝑓

𝜕𝐭c

𝑇 𝜕𝐭c

𝜕𝐷
𝑑𝐷 +

𝜕𝑓

𝜕𝐷
𝑑𝐷 = 0                                   (6.21) 

where 𝑑𝐷 can be expressed as a function of 𝑑𝜆 based on the Equations (6.17) and (6.20): 

𝑑𝐷 =
𝜕𝐷

𝜕𝑢𝑛
𝑝 𝑑𝑢𝑛

𝑝
+

𝜕𝐷

𝜕𝑢𝑠
𝑝 𝑑𝑢𝑠

𝑝
= 𝑑𝜆 (

𝜕𝐷

𝜕𝑢𝑛
𝑝
𝜕𝑔

𝜕𝑡𝑛
+

𝜕𝐷

𝜕𝑢𝑠
𝑝
𝜕𝑔

𝜕𝑡𝑠
) = 𝑑𝜆𝑅                       (6.22) 

Substituting Equations (6.22) and (6.20) into equation (6.21), the plastic multiplier 𝑑𝜆  is 

calculated as: 

𝑑𝜆 =
−𝑓𝑡𝑟𝑖𝑎𝑙

𝜕𝑓

𝜕𝐭c

𝑇𝜕𝐭c

𝜕𝐮c
p
𝜕𝑔

𝜕𝐭c
+
𝜕𝑓

𝜕𝐭c

𝑇𝜕𝐭c
𝜕𝐷
𝑅+

𝜕𝑓

𝜕𝐷
𝑅
                                                    (6.23) 

Once 𝑑𝜆  is determined, the change of damage variable 𝑑𝐷  and the increment of plastic 

displacement jump 𝑑𝐮c
p
 can be calculated accordingly by solving equations (6.22) and (6.20). 

Finally, the corrected traction is returned using the following equation as: 

𝐭𝑐 = 𝐭𝑐
𝑡𝑟𝑖𝑎𝑙 +

𝜕𝐭𝑐

𝜕𝐮𝑐
𝑝 𝑑𝐮𝑐

𝑝
+
𝜕𝐭𝑐

𝜕𝐷
𝑑𝐷                                            (6.24) 

The stress return algorithm of the cohesive fracture law is summarised in Algorithm 6.1. 

 

Algorithm 6.1: Stress return algorithm of cohesive fracture law 

Input value: ∆𝐮𝑐
𝑡𝑟𝑖𝑎𝑙; Output value: Δ𝐭𝑐 

1. Calculate trial local traction increment:     ∆𝐭𝑐
𝑡𝑟𝑖𝑎𝑙 = 𝐏𝐊𝑐0

𝑠 ∆𝐮𝑐
𝑡𝑟𝑖𝑎𝑙 

2. Calculate trial yielding surface: 

𝑓𝑡𝑟𝑖𝑎𝑙 = (𝑡𝑠1
𝑡𝑟𝑖𝑎𝑙2 + 𝑡𝑠2

𝑡𝑟𝑖𝑎𝑙2) − 2𝑐0(1 − 𝐷) tan 𝜙 (𝜎𝑡0(1 − 𝐷) − 𝑡𝑛
𝑡𝑟𝑖𝑎𝑙) − tan2 𝜙 (𝑡𝑛

𝑡𝑟𝑖𝑎𝑙2 − (𝜎𝑡0(1 − 𝐷))
2
) 

3. If 𝑓𝑡𝑟𝑖𝑎𝑙 < 0 then 

4.                                                    Δ𝐭𝑐 = 𝐭𝑐
𝑡𝑟𝑖𝑎𝑙 , Δ𝐷 = 0, Δ𝐮𝑐

𝑝
= 0 

5. else 

6.     Calculate Δ𝜆: Δ𝜆 =
−𝑓𝑡𝑟𝑖𝑎𝑙

𝜕𝑓

𝜕𝐭𝑐

𝑇 𝜕𝐭𝑐

𝜕𝐮𝑐
𝑝
𝜕𝑔

𝜕𝐭𝑐
+
𝜕𝑓

𝜕𝐭𝑐

𝑇𝜕𝐭𝑐
𝜕𝐷
𝑅+

𝜕𝑓

𝜕𝐷
𝑅
  

7.     Calculate increment of local plastic displacement jump Δ𝐮𝑐
𝑝
= Δ𝜆

𝜕𝑔

𝜕𝐭𝑐


8.     Calculate increment of damage variable: Δ𝐷 = Δ𝜆𝑅 

9.     Calculate increment of traction:  Δ𝐭𝑐 = Δ𝐭𝑐
𝑡𝑟𝑖𝑎𝑙 +

𝜕𝐭𝑐

𝜕𝐮𝑐
𝑝 Δ𝐮𝑐

𝑝
+
∂𝐭𝑐

𝜕𝐷
Δ𝐷 

10. Endif 

11. Update local plastic displacement jump, damage variable 

𝐷 = 𝐷 + Δ𝐷; 𝐮𝑐
𝑝
= 𝐮𝑐

𝑝
+ Δ𝐮𝑐

𝑝
  



151 

 

6.4. Implicit algorithm of continuum constitutive model 

After the introduction of key formulations of the double scale framework and the cohesive 

fracture law, the criteria for determining fracture initiation and orientation are first explained 

in this section. Then an implicit algorithm for stress updating based on traction continuity 

condition is presented, followed by its performance at the constitutive level at the end of this 

section. 

6.4.1. Fracture initiation and its orientation 

As stated in Section 3, the material is initially treated as homogeneous and elastic until the local 

fracture is triggered, after which the response of the material bifurcates into two different 

branches for material inside and outside FPZ, respectively. Therefore, an important question 

now is how to detect the correct onset of fracture and also determine the associated orientation 

of the fracture plane. In this study, a scanning technique is used in which the local tractions of 

all possible fracture orientations 𝐧 varying from 0° to 180° are calculated as follows:  

𝐭𝑐 = 𝐑𝐧
𝑇𝛔                                                                (6.25) 

Then, the yield function value 𝑓(𝑡𝑛 , 𝑡𝑠, 𝐷)  corresponding to each traction is calculated. 

Fracture initiates when a traction state (𝑡𝑛
∗ , 𝑡𝑠

∗) at any rotational plane gives the maximum 

positive yield function 𝑓(𝑡𝑛
∗ , 𝑡𝑠

∗, 𝐷) in equation (6.18). Once fracture is triggered, scanning is 

stopped and the fracture orientation is saved for the rest of the calculation.  

6.4.2. Implicit stress-return algorithm for the traction-continuity condition 

Beyond the onset of fracture, the homogeneity of material is lost and the responses of material 

inside and outside FPZ at the given strain increment will be different. Those two responses are 

coupled via the traction continuity across the boundaries of the FPZ. Thus, a stress return 

mapping algorithm is required for the constitutive model to track the evolution of two distinct 

material responses, with the traction continuity condition guaranteed at the same time. In this 

study, the implicit algorithm proposed by Nguyen et al. (2016) is adopted, beginning with 

calculation of the elastic displacement jump increment 𝑑𝐮c
trial  from the input of the strain 

increment d𝛆 based on the assumption that the material is under elastic behaviour: 

𝑑𝐮𝑡𝑟𝑖𝑎𝑙 = (
1

𝐻
𝐧𝑇𝐚0𝐧 + 𝐑

𝑇𝐊𝑐
𝑠𝐑)−1𝐧𝑇𝐚0d𝛆                                       (6.26) 

The trial macro stress 𝛔𝑡𝑟𝑖𝑎𝑙  and trial local traction 𝐭𝑐
𝑡𝑟𝑖𝑎𝑙  can be then calculated from d𝐮𝑡𝑟𝑖𝑎𝑙 

using Equations (6.11) and (6.25), respectively. The local trial traction 𝐭𝑐
𝑡𝑟𝑖𝑎𝑙  is then substituted 
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back to the yield function 𝑓𝑡𝑟𝑖𝑎𝑙  as formulated in Equation (6.18). If 𝑓𝑡𝑟𝑖𝑎𝑙 < 0, the assumption 

of elasticity is correct and all variables at the new state are updated elastically. Otherwise, the 

material is under inelastic loading and the stress return algorithm in Section 6.3.2 needs to be 

applied to calculate the corrected traction vectors  𝐭𝑐 . In that case, the traction continuity, 

𝐧𝑇  𝛔 − 𝐭𝑖𝑛 = 𝟎 where 𝐭𝑖𝑛 = 𝐑
𝑇  𝐭𝑐 is not met, thus an iteration process is required to satisfy 

the condition, starting with calculation of the traction residual across FPZ as: 

𝐫 = 𝐧𝑇𝛔 − 𝐭𝑖𝑛                                                              (6.27) 

Thus, the first order Taylor expansion at the new state in terms of traction residual can be 

expressed as: 

𝐫𝑛𝑒𝑤 = 𝐫𝑜𝑙𝑑 + 𝐧𝑇δ𝛔 − δ𝐭𝑖𝑛 = 𝐫
𝑜𝑙𝑑 −

1

𝐻
𝐧𝑇𝐚0𝐧δ𝐮 − 𝐊

𝑡δ𝐮                        (6.28) 

where δ𝛔 and δ𝐭𝑖𝑛 are the iterative macro-stress and the iterative inside traction in the global 

coordinate in the new state, calculated by the equations: 

δ𝛔 = −
1

𝐻
𝐧𝑇𝐚0𝐧δ𝐮                                                         (6.29) 

δ𝐭𝑖𝑛 = 𝐊
𝑡δ𝐮                                                                (6.30) 

where 𝐊𝑡 is the tangent stiffness of the cohesive fracture law which is introduced in the next 

section. It should be noted here that the iterative strain δ𝛆 is neglected in Equation (6.29) as it 

was considered during the calculation of trial stress before performing the iteration process. By 

enforcing the requirement  𝐫𝑛𝑒𝑤 = 0  and combining Equations (6.28-6.30), the iterative 

displacement jump δ𝐮 can be solved as: 

δ𝐮 = (
1

𝐻
𝐑𝐧𝑇𝐚0𝐧 + 𝐑

𝑇𝐊𝑐
𝑡𝐑)

−1

𝐫𝑜𝑙𝑑                                        (6.31) 

Once δ𝐮 has been computed, the iterative stress can be calculated based on Equation (6.29). In 

the meantime, the iterative traction in the local coordinate δ𝐭𝑐  can be obtained from δ𝐮𝑐 

following a stress-return algorithm (Algorithm 1). The iteration process as described will keep 

repeating until the traction residual 𝐫 meets the convergence criterion: 

‖𝐫𝑜𝑙𝑑‖

‖𝐧𝑇𝛔0‖
≤ TOLERANCE                                                 (6.32) 

where TOLERANCE is a very small value and is set as 10−4 in this study. 
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6.4.3. Calculation of tangent stiffness of cohesive fracture law 

To complete the implicit algorithm, the tangent stiffness 𝐊𝑐
𝑡  of the cohesive fracture law 

appearing in Equation (6.31) must be calculated explicitly for each iteration step. It can be 

achieved by using the consistency condition with respect to yield function 𝑓: 

𝑑𝑓 =
𝜕𝑓

𝜕𝐭𝑐
d𝐭𝑐 +

𝜕𝑓

𝜕𝐷
𝑑𝐷 = 0                                                          (6.33) 

As the local traction 𝐭𝑐 is a function of the displacement jump, plastic displacement jump and 

damage variable, the incremental form of local traction can be expressed as: 

𝑑𝐭𝑐 =
𝜕𝐭𝑐

𝜕𝐮𝑐
𝑑𝐮𝑐 +

𝜕𝐭𝑐

𝜕𝐮𝑐
𝑝 𝑑𝐮𝑐

𝑝
+
𝜕𝐭𝑐

𝜕𝐷
𝑑𝐷                                                     (6.34) 

Substituting Equations (6.20), (6.22) and (6.34) into Equation (6.33) and solving the equation 

obtained for 𝑑𝜆 leads to:  

𝑑𝜆 =
−
𝜕𝑓

𝜕𝐭𝑐

∂𝐭𝑐
∂𝐮𝑐

𝜕𝑓

𝜕𝐭𝑐

∂𝐭𝑐

∂𝐮𝑐
𝑝
𝜕𝑔

𝜕𝐭𝑐
+
𝜕𝑓

𝜕𝐭𝑐

𝜕𝐭𝑐
𝜕𝐷
𝑅+

𝜕𝑦

𝜕𝐷
𝑅
𝑑𝐮𝑐 = 𝐌𝑑𝐮𝑐                                            (6.35) 

where 𝐌 is a one by three matrix.  

By combining Equations (6.34-6.35), the increment of local traction can be written as: 

𝑑𝐭𝑐 = (
𝜕𝐭𝑐

𝜕𝐮𝑐
+

𝜕𝐭𝑐

𝜕𝐮𝑐
𝑝
𝜕𝑔

𝜕𝐭𝑐
𝐌+ 𝑅𝐌)𝑑𝐮𝑐                                            (6.36) 

where the tangent stiffness 𝐊𝑐
𝑡  of the cohesive fracture law in the loading case is formulated as: 

𝐊𝑐
𝑡 =

∂𝐭𝑐

∂𝐮𝑐
+

∂𝐭𝑐

∂𝐮𝑐
𝑝
∂𝑔

∂𝐭𝑐
𝐌+𝑅

∂𝐭𝑐

∂𝐷
𝐌                                             (6.37) 

 

6.4.4. Summary of the implicit algorithm of the constitutive model 

This section presents the summary of the implicit algorithm for stress update and all other 

internal variables from the input of strain increment, shown as Algorithm 6.2. This implicit 

algorithm includes all the loading scenarios from the elastic stage to final failure stage.  
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Algorithm 6.2: Implicit algorithm of double-scale model 

Input value: ∆𝛆; Output value: ∆𝛔 

1. Initial value: 𝑝𝑎𝑟𝑎 = 0, 𝐷 = 0;  
2. Update strain for 𝑡 = 𝑁 + 1,  𝛆𝑁+1 = 𝛆𝑁 + ∆𝛆; 

3. If (𝒑𝒂𝒓𝒂 = 𝟎) then % Haven’t cracked 

4.     Calculate elastic trial stress 𝛔𝑡𝑟𝑖𝑎𝑙  for 𝑡 = 𝑁 + 1; 

5.     Scan and find possible fracture plane; 

6.     Calculate trial traction in global coordinate: 𝐭𝑡𝑟𝑖𝑎𝑙 = 𝐧𝑇  𝛔𝑡𝑟𝑖𝑎𝑙; 
7.     Calculate trial traction in local coordinate: 𝐭𝑐

𝑡𝑟𝑖𝑎𝑙 = 𝐑𝐭𝑡𝑟𝑖𝑎𝑙; 
8.     Calculate maximum failure function: 

𝑓
𝑚𝑎𝑥

= (𝑡𝑠1
𝑡𝑟𝑖𝑎𝑙2 + 𝑡𝑠2

𝑡𝑟𝑖𝑎𝑙2) − 2𝑐0(1 − 𝐷) tan𝜙 (𝜎𝑡0(1 − 𝐷) − 𝑡𝑛
𝑡𝑟𝑖𝑎𝑙) − tan2 𝜙 (𝑡𝑛

𝑡𝑟𝑖𝑎𝑙2 − (𝜎𝑡0(1 − 𝐷))
2
)            

9.     If (𝑓
𝑚𝑎𝑥
< 0) then 

10.         Update stress and all the internal variables: 

𝐷𝑁+1 = 𝐷𝑁, 𝛔𝑁+1 =  𝛔𝑡𝑟𝑖𝑎𝑙  

11.     Elseif (𝑓
𝑚𝑎𝑥
≥ 0) then % first crack 

12.         𝑃𝑎𝑟𝑎 =  1 

13.         Record normal vector 𝐧 and rotation matrix 𝐑 

14.         Go to line 17 

15.     Endif 

16. Elseif (𝒑𝒂𝒓𝒂 =  𝟏) then % Already cracked 

17.     Calculate increment of trial displacement jump in global coordinate: 

∆𝐮𝑡𝑟𝑖𝑎𝑙 = (
1

𝐻
𝐧𝑇𝐚0𝐧 + 𝐑

T𝐊𝑐
𝑠𝐑)−1𝐧𝑇𝐚0∆𝛆 = 𝐂

−1𝐧𝑇𝐚0∆𝛆     

18.     Calculate increment of displacement jump in local coordinate: ∆𝐮𝑐
𝑡𝑟𝑖𝑎𝑙 = 𝐑∆𝐮 

19.     Calculate trial stress increment:∆𝛔 =  𝐚0 : (∆𝛆 −
1

𝐻
𝐧𝑇∆𝐮) 

20.     Update trial stress for 𝑡 = 𝑁 + 1:  𝛔𝑡𝑟𝑖𝑎𝑙 = 𝛔𝑁 + ∆𝛔 

21.     Calculate trial traction in local coordinate 𝐭𝑐
𝑡𝑟𝑖𝑎𝑙 = 𝐭𝑐

𝑁 +𝐑𝐧𝑇∆𝛔 

22.     Calculate failure function: 

𝑓 = (𝑡𝑠1
𝑡𝑟𝑖𝑎𝑙2 + 𝑡𝑠2

𝑡𝑟𝑖𝑎𝑙2)− 2𝑐0(1− 𝐷) tan𝜙 (𝜎𝑡0(1− 𝐷) − 𝑡𝑛
𝑡𝑟𝑖𝑎𝑙) − tan2𝜙 (𝑡𝑛

𝑡𝑟𝑖𝑎𝑙2− (𝜎𝑡0(1− 𝐷))
2) 

23.      If (𝑓 ≤ 0) then % elastic unloading/reloading 

24.          Update stress and all the internal variables: 

𝐷𝑁+1 = 𝐷𝑁 , 𝛔𝑁+1 =  𝛔𝑡𝑟𝑖𝑎𝑙 , 𝐭𝑁+1 = 𝐭𝑡𝑟𝑖𝑎𝑙 , 𝐭𝑐
𝑁+1 = 𝐭𝑐

𝑡𝑟𝑖𝑎𝑙  

25.      Elseif (𝑓 > 0) then % inelastic loading 

26.          Calculate Δ𝐭𝑐 from ∆𝐮𝑐
𝑡𝑟𝑖𝑎𝑙 following the procedure starting at step 6 in 

Algorithm 1; 

27.          Update traction 𝐭𝑐 = 𝐭𝑐
𝑁 + Δ𝐭𝑐 and calculate residual 𝐫 = 𝐧𝑇𝛔𝑡𝑟𝑖𝑎𝑙 − 𝐑𝑇𝐭𝑐; 

28.          While ‖𝐫‖ ≥ TOLERANCE 

29.               Calculate 𝐊𝑐
𝑡  with the new updated internal variable; 

30.               Calculate residual displacement in global coordinate:δ𝐮 = (
1

𝐻
𝐧𝑇𝐚0𝐧 +

𝐑𝑇𝐊𝑐
𝑡𝐑)−1𝐫; 

31.               Calculate residual displacement in local coordinate: δ𝐮𝑐 = 𝐑δ𝐮; 
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Algorithm 6.2: Implicit algorithm of double-scale model (continued) 

32.               Calculate δ𝐭𝑐 from δ𝐮𝑐 following the procedure starting at step 6 in 

Algorithm 1;           

33.  Calculate δ𝛔 = −
1

𝐻
𝐚0𝐧δ𝐮; 

34.               Update 𝛔 = 𝛔 + δ𝛔; 𝐭𝑐 = 𝐭𝑐+ δ𝐭𝑐; 𝐮𝑐 = 𝐮𝑐 + δ𝐮𝑐; 

35.               Calculate residual 𝐫 = 𝐧𝑇𝛔 − 𝐑𝑇𝐭𝑐 
36.          Endwhile 

37.     Endif 

Endif 

 

6.4.5. Constitutive behaviour of mixed-mode model 

After introduction of the algorithm of the double-scale constitutive model with an embedded 

mixed-mode cohesive FPZ, an element test under complex loading conditions is performed to 

illustrate the constitutive response of the model. In this test, a representative volume element 

(RVE) with the length of 4mm made from a soft rock so-called Johnstone is employed. The 

mechanical properties of this rock are taken from the experiment of Lim (1993) and listed in 

Table 6.0-1. Four different loading conditions are applied to the RVE for examining model 

behaviour at different loading stages, namely (1) loading under pure mode Ι; (2) loading under 

mixed-mode; (3) unloading; and (4) reloading under mixed-mode condition, as illustrated in 

Figure 6.0–3. In the first loading stage, a constant strain increment Δ휀𝑥𝑥 = 3 × 10
−7 in the 

horizontal direction is applied to the element. During this stage, the fracture is initiated and the 

element experiences softening behaviour. In the second loading stage, the element undergoes 

mixed-mode loading, achieved by adding a constant shear strain increment Δ휀𝑥𝑦 = 15 ×

10−7 to the element. The behaviour of the element under unloading and reloading conditions 

is examined in Stage 3 and Stage 4, respectively.  

The responses of the constitutive model with the mixed-mode cohesive fracture law are 

demonstrated in Figure 6.0–4. In this figure, the model’s behaviour at the macroscopic level is 

illustrated by the stress-strain relationships in the xx and xy directions (Figure 6.0–4a-b), while 

the local traction-displacement jump relationships in the normal and shear directions represent 

the corresponding responses of material in the FPZ under different loading conditions (Figure 

6.0–4c-d). At the beginning of the test (i.e. Stage 1), the pure mode-I behaviour of Johnstone 

is observed, in which 𝜎𝑥𝑥  increases linearly with its corresponding strain 휀𝑥𝑥. Meanwhile, the 
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local traction in the normal direction 𝑡𝑛  increases without any development in the normal 

displacement jump. This is due to the fact that the element is under homogeneous deformation 

without any fracture detected inside the element. The element deforms elastically until the 

initiation of fracture where the state of local traction reaches its yield surface. Beyond the onset 

of fracture, the normal traction 𝑡𝑛 decreases with the increase of the normal displacement jump 

𝑢𝑛, which is controlled by its cohesive fracture parameters such as fracture energy and its 

damage evolution law. Meanwhile, 𝜎𝑥𝑥 at the macroscopic scale reduces as the tensile loading 

continues, indicating a softening response from the material. Both macro-stress in the xy 

direction 𝜎𝑥𝑦 and shear traction in the local coordinate 𝑡𝑠 remain zero, owing to the pure Mode 

I loading condition.  

 

Table 6.0-1. Material properties of Johnstone 

Material properties of soft rock 

Young’s Modulus (𝐸) 0.4GPa 

Poisson’s ratio (𝑣) 0.25 

Density (𝜌) 1.54g/cm3 

Tensile strength (𝑓𝑡) 0.6MPa 

Cohesion (𝑐) 1.0MPa 

Friction angle (𝜑) 33° 

Dilation angle (ψ) 4° 

Mode I fracture toughness (𝐾𝐼𝑐) 2.15MPa/√mm 

Mode II fracture toughness (𝐾𝐼𝐼𝑐) 1.05MPa/√mm 

Peak displacement (δ0) 18μm 

Secant normal stiffness (𝐾𝑛0) 1. 𝑑13Pa/m 

Secant shear stiffness (𝐾𝑠0) 1. 𝑑11Pa/m 

 

In the second stage, where an additional strain increment 휀𝑥𝑦 is applied to provide a shear force 

on the element, the material undergoes softening behaviour under the mixed-mode loading 

condition. In that case, the shear traction starts to develop with an increase in its corresponding 

displacement jump, while the normal traction continues to reduce with a steeper slope. For each 

step, the tractions are corrected in order to locate exactly on the yield surface which is changed 
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Figure 6.0–3. Loading paths for illustration of constitutive behaviour 

 

 

 

Figure 6.0–4. Constitutive behaviour of constitutive model for different loading scenarios. (a) Stress-

strain relationship in xx direction; (b) Stress-strain relationship in xy direction; (c) Traction-
displacement jump relationship in normal direction; (d) Traction-displacement jump relationship in 

shear direction  
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with the damage variable. The macro behaviour of the material is similar to the local behaviour 

of material in the FPZ, suggesting that the softening behaviour of the element is mainly 

controlled by the material behaviour in the FPZ where the fracture dissipation takes place. The 

constitutive responses under unloading and reloading are also tested in the third and last stages, 

respectively. During the unloading stage, the material both inside and outside FPZ behaves 

elastically. In that case, all macro-stress and local tractions are reducing with corresponding 

strains and displacement jumps until the end of Stage 3. Then those stresses and tractions 

increase linearly at the beginning of Stage 4, following the same stress path as that of the 

unloading stage until reaching to the point where the unloading starts. Beyond that point, the 

material undergoes softening behaviour again under the mixed-mode tensile-shear loading.  

6.5. Experimental validation and application 

After examining model behaviour under mixed-mode loading conditions at constitutive level, 

the mixed-mode constitutive model is implemented into traditional SPH framework for rock 

fracture applications. In this approach, one SPH particle is regarded as one representative 

volume element and the stress evolution of each SPH particle under various loading conditions 

is described by the above mixed-mode constitutive law. Once the fracture is initiated, a fracture 

plane at arbitrary orientation is formed within the SPH particle and the SPH starts to damage. 

With the increasing strain, the overall stresses for the damaged SPH particle reduce, the 

connection of the damage SPH with its surrounding SPH particles will be weakened, thereby 

resulting in the separation of two damaged SPH particles. Finally, as many damaged SPH 

particles are formed, the fracture geometries in the proposed numerical framework are 

represented by a set of damaged SPH particles, each of which possesses its own FPZ with 

arbitrary orientations, and the full detachment (or separation) of the specimen is formed due to 

the separation of adjacent SPH particles. In this section, three validation tests are conducted 

and their simulation results are compared with experimental results for examining the 

capability of the proposed SPH framework in simulating mixed-mode rock fractures. 

6.5.1. Three-point bending test 

In the first validation, the three-point bending test conducted by Bellego et al. (2000) is 

simulated to demonstrate the mesh-insensitivity of the constitutive model. This test was also 

used in Chapter 5 to examine the capability of the Taylor SPH framework associated with the 

pure mode I constitutive model. Unlike the previous work in Chapter 5 which required an 

additional set of stress-points and a Taylor time integration scheme to stabilise the numerical 
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solution, this work employs the conventional SPH with the standard Leap-Frog time integration 

scheme to re-simulate this test. Figure 6.0–5 shows the geometry and boundary conditions of 

the specimen and the corresponding setup in the SPH model. The dimensions of the notched 

beam are width W = 80mm, length L = 320mm, thickness B = 40mm and notch length b = 

8mm. The beam is supported by two steel rollers 240mm apart and loaded by another steel 

roller located on top of the mid-span. The material properties obtained from the experiment are 

listed in Table 6.0-2. It is noted here that the cohesion and mode II fracture energy are not 

specified in the experiment; thus, in this study, the cohesion (c) is assumed to be the same as 

the tensile strength (𝑓𝑡) and the mode II fracture energy (𝐺𝐼𝐼) is equal to the mode I fracture 

energy (𝐺𝐼). The typical friction angle 𝜑 = 37° is selected from Fujita (1998) and the dilation 

angle 𝜓 = 5° is assumed in this test. The selection of dilation angle has little effect on the 

simulation result.  

With the aim of examining the influence of spatial discretisation on the numerical solutions, 

three different particle discretisation sizes (𝑑𝑥 = 𝑑𝑦 = 4mm, 3mm and 2mm) are used to 

generate the computational domain in SPH simulation. The numbers of SPH particles 

corresponding to these discretisations are 1378, 3021 and 6598, repectively. The length 

parameter (H) in the constitutive model is equal to the corresponding particle discretisation size 

 

 

Figure 6.0–5. Geometry and boundary condition of three-point bending test: (a) Experimental setup; 
(b) SPH simulation setup 
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Table 6.0-2. Material properties of the three-point bending test 

Material properties 

Young’s Modulus (𝐸) 45GPa 

Poisson’s ratio (𝑣) 0.24 

Density (𝜌) 2.4g/cm3 

Tensile strength(𝑓𝑡) 2.9MPa 

Cohesion (𝑐) 2.9MPa 

Friction angle (𝜑) 37° 

Dilation angle (ψ) 5° 

Mode I fracture energy (𝐺𝐼) 47.17Nm 

Mode II fracture energy (𝐺𝐼𝐼) 47.17Nm 

Peak displacement (δ0) 16.4μm 

Secant normal stiffness (𝐾𝑛0) 1014Pa/m 

Secant shear stiffness (𝐾𝑠0) 1011Pa/m 

 

for all the tests. In the numerical simulations, three-layer boundary particles are generated to 

impose boundary conditions as shown in Figure 6.0–5(b). The boundary particles have the 

same discretisation size and density as the real particles. To simulate the point loading at the 

top mid-span in the experiment, a vertical velocity is applied on the top boundary particles. A 

downward velocity of 1mm/s with ramp loading is adopted in this example, as in the three-

point bending test in Chapter 5, in which the dynamic effect due to loading was investigated, 

which showed that the quasi-static condition could be achieved using that velocity. Therefore, 

the velocity of the top boundary particles is set as 𝑣𝑥 = 0, 𝑣𝑦 = −1 mm/s. On the other hand, 

the vertical motion of the bottom boundary particles is fixed, but it allows free movement in 

the horizontal direction, so 𝑣𝑦 = 0. The stresses of all boundary particles are updated in the 

same way as the real particles which form the computational domain of the beam, but the 

boundary particles always remain elastic. The compression stress and vertical displacement of 

real particles near the loading particles are recorded during the simulation process and are 

subsequently used for comparison with the experimental data and the simulation result in 

Chapter 5 using the pure mode I constitutive model.  

Figure 6.0–6 provides a comparison between the experiment and the SPH simulation including 

the pure mode I and mixed-mode constitutive models for the compressive force-deflection 

curve. It can be seen that the SPH model with the embedded mixed-mode cohesive fracture 

law can capture the overall response of the force-deflection curve in the experiment. The force 
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Figure 6.0–6. Compressive force and deflection relationship of the three-point bending test 

 

initially displays linear behaviour until fracture is initiated (i.e. from 𝑖 to h in Figure 6.0–6). 

This is then followed by the hardening response up to the peaking load (i.e. from h to a in 

Figure 6.0–6). Subsequently, the model experiences softening behaviour where the stress is 

reduced with the increasing deflection, as shown in Figure 6.0–6(a-d). The corresponding 

fracture patterns of (a) to (d) are illustrated in Figure 6.0–7. Figure 6.0–7(a) shows the fracture 

propagation when the compression force reaches its peak as marked in Figure 6.0–6(a). At this 

point, the damage has been propagating to around half of the beam height, which is consistent 

with the description in the mode I three-point bending test in Chapter 5. Then, the fracture 

keeps propagating towards to the loading point shown in Figure 6.0–7(b-d), resulting in a 

continuous penetrating fracture pattern in the middle of the beam. During the stages of both 

hardening and softening, the specimen experiences fracture initiation, propagation and finally 

damage, which is the consequence of the progressive damage of the material in the cohesive 

fracture zone of each damaged SPH particle. The model response using the mixed-mode 

cohesive fracture law is also compared with the behaviour using the double-scale model with 

the embedded mode I cohesive fracture law in Taylor SPH (Wang, 2019), as shown in Figure 

6.0–6. More ductile behaviour can be observed in the result of the current model as the shear 

component of the cohesive fracture included in the mixed-mode model produces a more 

realistic response in capturing the correct fracture energy resistance. The results of the force-

deflection curve using three different particle discretisation sizes are also plotted in Figure 6.0–

6. It can be seen that the numerical results are quite similar among the three cases, although 
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some minor differences exist. This suggests that the numerical approach is less sensitive to 

spatial discretisation (or the initial space between two consecutive particles).   

 

 

Figure 6.0–7. Fracture propagation and its final pattern in the three-point bending test  

 

6.5.2. Semi-circular bending test 

The second application considered is a series of semi-circular bending tests on Johnstone, 

which were carried out by Lim et al. (1994). The aim of this example is to examine the 

predictive capability of the SPH model under a wide range of mixed-mode loading conditions. 

The geometry and boundary conditions of the test in the experiment are shown in Figure 6.0–

8(a). As in the three-point bending test, the semi-circular specimens with the radius of 47.5mm 

and thickness of 20mm are supported by two rollers 47.5mm apart and loaded by another roller 

on top of the mid-span. Notches with the length of 16.6mm are created with different notch 

angles varying from 0° to 60° with respect to the vertical axis, to investigate the influences of 

the notch angle on the peak load (P) and the fracture toughness (𝐾𝐼 , 𝐾𝐼𝐼  ), which are calculated 

as follows: 

𝐾𝐼 =
𝑃

2𝑟𝑡
√𝜋𝑎𝑌𝐼                                                        (6.38) 

𝐾𝐼𝐼 =
𝑃

2𝑟𝑡
√𝜋𝑎𝑌𝐼𝐼                                                      (6.39)  

where 𝐾𝐼 and 𝐾𝐼𝐼 are respectively mode I and mode II fracture toughness; 𝑟 is the specimen 

radius; 𝑡 is the specimen thickness; 𝑎 is the notch length; 𝑌𝐼 and 𝑌𝐼𝐼 are mode I and mode II 

normalised stress intensity factors. As the values of 𝑌𝐼 and 𝑌𝐼𝐼 can be obtained from the data of 
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Lin et al. (1993), 𝐾𝐼 and 𝐾𝐼𝐼 can be calculated based on the above equation once the peak load 

(P) is known. The material properties of Johnstone are listed in Table 6.0-1. The friction angle 

and dilation angle are respectively taken as 33° and 4° for average quality rock masses in Hoek 

and Brown (1997) for the following examples. 

 

 

Figure 6.0–8. Geometry and boundary conditions for the semicircular bending test: (a) Experimental 

setup; (b) SPH simulation setup when rotational angle = 30°. 

 

Figure 6.0–8 shows the corresponding SPH configuration of the semicircular bending test with 

a notch angle of 30 degrees. In the tests, a particle discretisation of 0.95mm is used, resulting 

in a total number of 3,995 SPH particles for specimen generation. To create accurate notch 

angles using reasonable particle numbers, the initial SPH arrangement in this test is unlike the 

traditional one such as the three-point bending test in Section 6.5.1. The initial location of each 

SPH particle in the semicircular bending tests is related to the notch angle as shown in Figure 

6.0–8b. As in the three-point bending tests, three layers of boundary particles are generated for 

simulating the point loading in the experiments. The velocities of the top boundary particles 

are 𝑣𝑥 = 0, 𝑣𝑦 = −2 mm/s, and the velocities of the bottom boundary particles are as 𝑣𝑦 = 0. 

Since Johnstone rocks are classified as soft rocks with a relatively small elastic Young’s 

modulus, both artificial viscosity and artificial stress are used in this test to stabilise the 



164 

 

numerical solutions. Ramp loading is also applied to alleviate the dynamic effect of the sudden 

loading. The stresses of boundary particles are updated in the same way as in the three-point 

bending test. The stresses of real particles near the loading particles are recorded during the 

simulation process, from which the peak load and fracture toughness are obtained for 

comparison with the experimental data.  

 

 

Figure 6.0–9.  Fracture pattern for rotational angle = 30° in the semicircular bending test with 

tensile instability treatment. (a-e) fracture development; (f) horizontal velocity for final fracture 
pattern. 

 

 

Figure 6.0–10. Numerical results for rotational angle = 30° in the semicircular bending test without 
tensile instability treatment. (a-b) fracture development; (c) horizontal velocity profile 

 

Figure 6.0–9 illustrates the progressive development of fracture and the horizontal velocity 

profile at the failure stage for the semicircular specimen with the rotational angle of 30°. As 

seen in Figure 6.0–9(a), some particles near the tip of the notch are the first damaged, showing  
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Figure 6.0–11. Comparison of final fracture patterns between experimental and numerical results in 
the semicircular bending test. 

 

that the fracture initiates at the location of the notch tip. Then the fracture propagates toward 

the loading point (Figure 6.0–9b-d), and eventually a vertical curvilinear fracture pattern is 

formed in the middle of the sample (Figure 6.0–9e). The horizontal velocity profile 

corresponding to Figure 6.0–9(e) is also plotted in Figure 6.0–9(f). It can be seen that the 

particles on the left side of the fracture move to the left while the particles on the other side 

move to the right; thus the sample is finally split into two halves. In this approach, SPH particle 

itself could not be cracked visually, however each damaged SPH particle possesses a fracture 

process zone and the material behaviour within the fracture process zone will contribute to the 

decrease in the overall stress state of the SPH particle, thereby resulting in the separation 

between two damaged SPH particles. The same test without using the artificial stress is also 

plotted in Figure 6.0–10. The result remains stable when the fracture is initiated (Figure 6.0–

10a), but becomes unstable during the post-failure process (Figure 6.0–10b-c). Unrealistic 

fracture and particle clustering are observed in Figure 6.0–10b-c, which indicates that a tensile 

instability problem occurs in SPH. By comparing those two results, it can be concluded that 

the tensile instability problem can be completely removed and good numerical stability can be 

achieved by adopting just this artificial stress term. 
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Figure 6.0–12. Comparison between experimental and numerical results in peak force against the notch 
inclination angle of the semicircular bending test 

     

 

Figure 6.0–13. Comparison between experimental and numerical results in mode II fracture 
toughness against mode I fracture toughness in terms of different notch inclination angles. 
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Figure 6.0–11 depicts comparisons of the mixed-mode fracture envelope between experiments 

and SPH simulations for the different notch inclination angles 𝛼 = 0°, 15°, 30°, 45°, 50° and 

60°. It shows that the simulation fracture patterns marked as red lines match the experimental 

results well (shown as black lines). The final fracture pattern is a vertical straight line when 𝛼 =

0° (pure mode I). When 𝛼 > 0°, the sample is subjected to mixed-mode or pure mode II 

loading, resulting in curvilinear fracture paths. For all simulation cases, the fractures initiate 

from the notch tip and then propagate toward upper loading point, while the experiments show 

that a few fractures tend to initiate behind the notch tip when the notch angle is beyond α =50°. 

Nevertheless, the simulation results still can successfully predict the overall fracture envelope 

in experiments, demonstrating the capability of the traditional SPH model for capturing fracture 

development under various complex loading conditions.  

Meanwhile, the comparison of peak load between experiments and simulations for the notch 

inclination angles varying from 0° to 60° with the internal increment of 5° is plotted in Figure 

6.0–12. It is noted here that a notch angle of 54° (instead of 55°) is used in the current test as 

the sample is subjected to pure mode II loading condition when α = 54° (Lim et al. 1994). The 

SPH simulation can capture well the increasing trend of the peak load with the increasing notch 

angles in the experiment. Additionally, Figure 6.0–13 compares the predictions of fracture 

toughness in SPH simulation against the experimental results and Lim’s theory (Lim et al. 

1994). The simulation results fall perfectly within the experimental data ranges even though 

the fracture toughness data in the experiments are quite scattered. Nevertheless, the numerical 

results agree closely with the empirical fracture toughness envelope which was proposed by 

Lim et al. (1994) and is represented as a black line in Figure 6.0–13. This result further confirms 

that the model can accurately predict the mixed-mode fracture behaviour of rocks in the 

semicircular bending test. 

6.5.3. Brazilian test 

To further demonstrate the predictive capability of the traditional SPH model in capturing 

mixed-mode rock fracture behaviour, a series of mixed-mode Brazilian tests with different 

internal diameters performed by Li et al. (2016) is simulated as the last application. The 

geometry and loading conditions of the specimen in the experiments are shown in Figure 6.0–

14(a).  Specimens drilled from a marble block are first prepared, with the diameter (D) of 

50mm and thickness (t) of 25mm. Then a circular disc with the diameter (d) varying from 5mm 

to 25mm is cut off at the centre of the specimens, resulting in the ring-shaped specimens with 
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different diameter ratios (d/D) from 0.1 to 0.5. Specimens are sandwiched directly between two 

platens, over which a static force is applied. The material properties of the marble are listed in 

Table 6.0-3. The tensile strength is obtained from the experiment by (Li et al. 2016), while 

other material properties of marble come from the work of Li et al. (2018).  

 

 

Figure 6.0–14. Geometry and boundary condition of the Brazilian test: (a) Experimental setup; (b) 

SPH simulation setup for 𝛼 = 0.3. 

 

Table 6.0-3. Material properties of marble in the Brazilian test 

Material properties of marble 

Young’s modulus (𝐸) 49GPa 

Poisson’s ratio (𝑣) 0.19 

Density (𝜌) 2.7g/cm3 

Tensile strength(𝑓𝑡) 3.6MPa 

Cohesion (𝑐) 10MPa 

Friction angle (𝜑) 33° 

Dilation angle (ψ) 4° 

Mode I fracture energy (𝐺𝐼) 30Nm 

Mode II fracture energy (𝐺𝐼𝐼) 30Nm 

Peak displacement (δ0) 8.5μm 

Secant normal stiffness (𝐾𝑛0) 1014Pa/m 

Secant shear stiffness (𝐾𝑠0) 1011Pa/m 

 

The corresponding numerical setup in SPH is shown in Figure 6.0–14 (b). To perfectly create 

the shape of a circular cut-off using a reasonable number of particles, particles that form the 
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ring sample are radially distributed in this test. The particle discretisation size of 0.5mm is used 

for all the simulations, resulting in a total number of 7651 particles for a specimen without the 

central hole. The particle number decreases with a larger diameter ratio (d/D). To simulate 

those two platens in the experiment, three layers of boundary particles with the spatial 

discretisation size of 0.5mm are generated in the traditional way as in the three-point bending 

test. The velocities of top boundary particles are set as 𝑣𝑥 = 0, 𝑣𝑦 = −1mm/s,  while the 

velocities of the bottom boundary particles are 𝑣𝑥 = 0, 𝑣𝑦 = 1 mm/s.  

The fracture development of ring specimens with different diameter ratios (d/D) in the 

Brazilian test is shown in Figure 6.0–15 (a-c). It can be seen from Figure 6.0–15 that the 

fracture initiates from the surface of the internal hole along the diametral loading line in all 

ring specimens. However, specimens with different diameter ratios have different fracture 

envelopes. To be more specific, the fracture initiates and propagates towards the upper and 

lower platens, eventually forming a vertical diametrial crack along the loading line when the 

diameter ratio d/D < 0.3. Although some particles near the outer ring are slightly damaged 

when d/D = 0.2, the secondary crack has not been formed before the first crack is fully formed. 

With an increasing d/D (d/D ≥ 0.3), secondary cracks form in the direction perpendicular to 

the loading line, always lagging behind the vertical cracks. The secondary cracks are initiated 

from the surface of the outer bound of the ring and propagate to the centre, eventually resulting 

in four-pan-shaped failure. The final fracture patterns in SPH simulation and experiment are 

shown in Figure 6.0–15(d) and Figure 6.0–15(e) respectively. It can be seen that fracture 

pattern in the simulations match well the fracture patterns observed in the experiments, 

although there exists a lightly difference in the secondary cracks when d/D ≥ 0.3. In the 

experiment, the secondary cracks perpendicular to the loading line cut through the specimen, 

splitting the rock specimen into four pieces, however the secondary cracks fail to propagate 

through the specimen. This indicates that the rock specimen used for the laboratory experiment 

is more brittle compared with the simulated specimen. The difference may be due to the 

inaccurate measurement of input parameters (such as fracture energy and tensile strength) in 

the experiment, which was directly applied in the SPH simulation. Overall, the proposed model 

could capture well the fracture patterns observed in the experiments, indicating that our SPH 

is capable of simulating multiple cracks under mixed-mode loading and predicting the 

progressive failure of specimens in Brazilian tests. 
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Figure 6.0–15. Fracture development in SPH simulation and final fracture patterns of numerical and 
experimental results with respect to different diameter ratios (d/D) in the Brazilian test. 

 

Figure 6.0–16 shows the comparison of peak load between SPH simulations and experiments 

with respect to different diameter ratios. It can be seen that the numerical model can capture 

well the trend of change in peak load exhibited in the experiment. When d/D = 0, which means 

there is no hole in the specimen, the peak load is the highest among all cases. Although it is 
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slightly greater than the average value of the experimental results, the peak load predicted by 

SPH simulation falls perfectly within the range of experimental data when d/D = 0. With an 

increasing diameter ratio d/D, a linearly decreasing trend in peak load becomes evident. This 

is because the specimen with greater d/D has shorter fracture routes, thus requiring less fracture 

energy and a smaller peak load compared with specimens with smaller d/D. 

 

 

Figure 6.0–16. Comparison of peak load between simulation and experimental results with respect to 
different ratio (d/D) in the Brazilian test.  

 

6.6. Conclusions 

A numerical approach that combines the conventional SPH method and a size-dependent 

constitutive model with an embedded mixed-mode cohesive fracture was presented for 

modelling rock fractures under both pure mode I and mixed-mode loading conditions. Through 

three numerical comparisons with experimental results, the proposed numerical framework 

was demonstrated to be able to predict the underlying failure mechanism of different rock types 

under a wide range of loading conditions. Successful applications of the conventional SPH 

method to model progressive rock fractures confirmed its simplicity, versatility and efficiency 

in solving complex problems, thanks to the simple tensile instability treatment technique. 
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Compared to the Taylor-SPH method in the previous work reported in Chapter 5, the 

conventional SPH is much simpler and more robust as it does not require special treatment of 

free-surface boundary conditions. Thus, with its mesh-free nature, the conventional SPH 

method has great flexibility in simulating fracture and complete detachment of rocks under 

various loading conditions. Another key feature of the model is its ability to take into account 

intrinsic regularisation effects and size-dependent behaviour, thanks to the introduction of a 

length parameter into the constitutive structure. Furthermore, since the fracture topology is 

represented by a set of damaged SPH particles, each of which possesses its own fracture plane 

and has arbitrary direction depending on the loading condition, the proposed numerical model 

is capable of capturing multiple and complex fractures. 
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Chapter 7  

Cracking SPH Particle Framework for Modelling of 

Dynamic Mode Rock Fracture 

 

7.1. Introduction 

In the previous two chapters, the behaviour of rock fractures under quasi-static loading was 

successfully simulated using the proposed SPH framework. While Chapter 5 focused on pure 

mode I rock factures and the size dependency on the mechanical properties and fracturing 

processes, Chapter 6 took into account mixed-mode fractures of rocks by employing a mixed-

mode cohesive fracture law to describe the behaviour fracture process zone of SPH damaged 

particles. Now, the proposed SPH framework is extended to simulate pure mode I and mixed-

mode rock fractures under dynamic loadings.  

In this study, the effect of loading rate on the fracture behaviour and mechanical properties of 

rocks is investigated using the SPH fracturing approach that combines mesh-free smoothed 

particle hydrodynamics with a continuum constitutive model. The loading rate effect is 

incorporated either by developing a rate-dependent constitutive model or by making use of the 

dynamic nature of SPH. In the first approach, the strain rate effect is incorporated into the 

mixed-mode cohesive fracture law which describes the behaviour of the fracture process zone 

under different dynamic loadings. In the second approach, the inherent rate effects predicted 

by the model are a consequence of the dynamic nature of SPH and the flexibility in the facture 

orientation of each SPH fracturing particle based on the current loading conditions.  

This chapter is organised as follows. In Section 7.2, the formulations of the SPH fracturing 

approach are briefly described. Section 7.3 presents the first approach for simulating dynamic 

rock fractures, and 7.4 presents the second approach for simulating dynamic rock fractures. 

Importantly, to examine the capability of these two numerical approaches for capturing mode 
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I and mixed-mode failure of rock and rock-like materials under dynamic loadings, mixed-mode 

ring tests are conducted using the first approach and three numerical examples, notched 

semicircular bending tests, Brazilian disc tests and mixed-mode three-point bending tests, are 

simulated using the second approach, and the results of these tests are presented and discussed 

in Sections 7.3 and 7.4 respectively. The conclusions of this study are presented in Section 7.5. 

7.2. SPH framework with an embedded fracture zone  

7.2.1. Traditional SPH approximation of governing equations 

As the traditional SPH method can deal naturally with free boundaries without any special 

treatment, it is very flexible in dealing with complex fracture patterns under dynamic loadings. 

Therefore, the traditional SPH method with tensile instability treatment is used in this work as 

the numerical platform for simulating dynamic rock fractures. The traditional SPH framework 

begins with the governing equations of rocks which consist of mass and momentum 

conservation equations and a constitutive relationship that links stresses to strains through a set 

of equations as follows: 

D𝜌

D𝑡
= −𝜌∇ ∙ 𝐯      (7.1a) 

D𝐯

D𝑡
=

1

𝜌
∇ ∙ 𝛔 + 𝐛                           (7.1b) 

D𝛔

D𝑡
= 𝐃𝑒𝑓 : �̇�       (7.1c) 

where 𝜌 is the material density; 𝐯 is the velocity vector; 𝛔 is the stress tensor; 𝐛 is the vector 

component of acceleration due to external forces; 𝐃𝑒𝑓  is the material stiffness matrix; 

D(∙  )/D𝑡 is the material derivative and �̇� is the strain rate tensor, which can be calculated by 

velocity through the kinematic relation: 

�̇� = [∇ ∙ 𝐯 + (∇ ∙ 𝐯)T]/2                                                   (7.2) 

The above governing equations are approximated by using the traditional SPH method with a 

corrective technique on the gradient approximation of SPH, leading to: 

D𝜌𝑖

D𝑡
= ∑ 𝑚𝑗(𝐯𝑖 − 𝐯𝑗) ∙ ∇𝑊𝑖𝑗

𝐶𝑁
𝑗=1                                                 (7.3a) 

D𝐯𝑖

D𝑡
= ∑ 𝑚𝑗 (

𝛔𝑖+𝛔𝑗

𝜌𝑖𝜌𝑗
+ 𝑪𝑖𝑗) ∙

𝑁
𝑗=1 ∇𝑊𝑖𝑗

𝐶 + 𝐛𝑖                                          (7.3b) 

D𝛔𝑖

D𝑡
= 𝐃𝑒𝑓: [

1

2
∑

𝑚𝑗

𝜌𝑗
(𝐯𝑗 − 𝐯𝑖) ∙ ∇𝑊𝑖𝑗

𝐶𝑁
𝑗=1 +

1

2
(∑

𝑚𝑗

𝜌𝑗
(𝐯𝑗 − 𝐯𝑖) ∙ ∇𝑊𝑖𝑗

𝐶𝑁
𝑗=1 )

𝑇

]             (7.3c) 
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where ∇𝑊𝑖𝑗
𝐶  is the corrected kernel gradient as 

∇𝑊𝑖𝑗
𝐶 = 𝐋(𝐱𝑖)∇𝑊𝑖𝑗                                                        (7.4) 

where the normalisation matrix 𝐋(𝐱𝑖) can be defined as: 

𝐋(𝐱𝑖) = (

∑
𝑚𝑗

𝜌𝑗

𝑁
𝑗=1 (𝑥𝑗 − 𝑥𝑖)∇𝑥𝑖𝑊𝑖𝑗 ∑

𝑚𝑗

𝜌𝑗

𝑁
𝑗=1 (𝑥𝑗 − 𝑥𝑖)∇𝑦𝑖𝑊𝑖𝑗

∑
𝑚𝑗

𝜌𝑗

𝑁
𝑗=1 (𝑦𝑗 − 𝑦𝑖)∇𝑥𝑖𝑊𝑖𝑗 ∑

𝑚𝑗

𝜌𝑗

𝑁
𝑗=1 (𝑦𝑗 − 𝑦𝑖)∇𝑦𝑖𝑊𝑖𝑗

)

−1

                    (7.5) 

As well as the corrective technique, a stabilisation term 𝐂𝑖𝑗  is added to equation (7.3b), 

consisting of artificial viscosity and artificial stress (Bui et al. 2008). Detailed explanation and 

formulations were presented Chapter 3. In this study, artificial viscosity is the only stabilisation 

term used to regularise strong shockwave propagation, as all numerical examples in this work 

concern hard rocks. Young’s modulus of hard rocks is large enough to generate a strong 

influence of artificial viscosity in the momentum equation, thus mitigating the tensile instability 

problem without use of an artificial stress term. The constant parameters for the artificial 

viscosity in this study are chosen as 0.5 and 0 for terms associated with the linear and quadratic 

in the velocity divergence, respectively. However, it is suggested to use both artificial viscosity 

and artificial stress to eliminate tensile instability issues in soft rocks.  

7.2.2. Continuum constitutive model for dynamic fracturing 

In this work, the continuum-based size-dependent constitutive model developed in Chapter 6 

for simulating mixed-mode rock fractures under quasi-static loading is employed. This 

continuum constitutive model is based on the double scale model which was originally 

developed by Nguyen et al. (2012), Nguyen et al. (2014) for strain localisation applications. 

Then it was extended to simulate the size dependency and rock fracture behaviour under pure 

mode I in Chapter 5 by incorporating a tensile-failure cohesive fracture law. In Chapter 6, a 

mixed-mode cohesive fracture law for capturing the plastic and damage evolution of rocks was 

developed and incorporated into the continuum constitutive model to capture mixed-mode 

failure of rocks under quasi-static loading. Details of the continuum-based constitutive model 

with the embedded mixed-mode cohesive fracture law were comprehensively introduced in 

Chapter 6, and thus only the general formulations are briefly presented in this section. 

7.2.2.1. Double scale model 

In the double scale model, the representative volume element (RVE) is considered as 

homogenous and elastic before the fracture is initiated. Once the fracture is detected, RVE is 
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regarded as a composite material comprising a fracture process zone and its surrounding bulk, 

which responses under loading are distinct. The material inside the fracture process zone is 

under inelastic loading, while outside bulk is assumed as elastic. The interaction between two 

distinct zones is connected by a set of kinematic enhancements and continuity conditions across 

the fracture plane. The overall (or macro) stress-strain increment of the whole considered 

element in double scale model can be expressed as: 

𝑑𝛔 = 𝐚0 (𝑑𝛆 −
1

𝐻
𝐧𝑑⟦𝐮⟧)                                            (7.6) 

in which the increment of the displacement jump 𝑑⟦𝐮⟧ can be calculated as: 

𝑑⟦𝐮⟧ =  (
1

𝐻
𝐧𝑇𝐚0𝐧 + 𝐊

𝑡)
−1

𝐧𝑇𝐚o𝑑𝛆 = 𝐂
−1𝐧𝑇𝐚o𝑑𝛆                               (7.7) 

It can be seen from equations (7.6 and 7.7) that the stress increment can be calculated once the 

tangent stiffness of the cohesive fracture law 𝐊𝑡 is known. Next, the mixed-mode cohesive 

fracture law is introduced for calculating the tangent stiffness. 

7.2.2.2. Mixed-mode cohesive fracture law for fracture process zone 

The mixed-mode cohesive fracture law coupling damage mechanics and plasticity theory 

developed in Chapter 6 is employed in this study to describe the behaviour of rock material 

within the FPZ. The cohesive law relates the tractions (𝐭𝑐) and the corresponding displacement 

jumps (𝐮𝑐) across two faces of the FPZ. The incremental displacement jump (d𝐮𝑐) can be 

partitioned into elastic (𝑑𝐮𝑐
𝑒)  and inelastic (𝑑𝐮𝑐

𝑝
)  parts, representing reversible and 

irreversible displacements, respectively: 

𝑑𝐮𝑐 = 𝑑𝐮𝑐
𝑒 + 𝑑𝐮𝑐

𝑝
                                                               (7.8) 

The traction state of the material in the FPZ can be calculated by the elastic displacement jump 

as: 

𝑑𝐭𝑐 = 𝐏𝐊𝑐0
𝑠 𝑑𝐮𝑐

𝑒                                                                (7.9) 

with       𝐊𝑐0
𝑠 = [

𝐾𝑛 0
0 𝐾𝑠

]    and    𝑷 = {
[
1 − 𝐷 0
0 1 − 𝐷

]        𝑤ℎ𝑒𝑛 𝑡𝑐(𝑛) ≥ 0    

 [
1 0
0 1 − 𝐷

]                𝑤ℎ𝑒𝑛 𝑡𝑐(𝑛) < 0   
             (7.10) 

where 𝐊𝑐
𝑠 = 𝐏𝐊𝑐0

𝑠  is the secant stiffness matrix of the cohesive fracture zone; 𝐊𝑐0
𝑠  denotes the 

elastic secant stiffness matrix of the cohesive fracture zone; 𝐏 is a parameter matrix with 
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respect to the normal traction 𝑡𝑐(𝑛); 𝐷 is the damage variable characterising the degradation of 

material strength due to fracture, which evolves with inelastic displacement jumps shown as: 

𝐷 = max (𝐷𝑝𝑟𝑒 , 1 − 𝑒
−(

𝑢𝑛
𝑝

𝛿0
+
𝑢𝑠
𝑝

𝛿0
)
)                                  (7.11) 

where 𝐷𝑝𝑟𝑒  is the damage variable in the previous step, 𝛿0  is the displacement jump 

corresponding to the peak normal traction, 𝑢𝑛
𝑝

 and 𝑢𝑠
𝑝

 are respectively normal and shear 

inelastic displacement jumps, which are introduced later. 

Now, a modified form of the Mohr-Coulomb failure criterion is adopted as the failure function 

to represent failure states under the combined influence of normal and shear tractions. The 

failure criterion is expressed as: 

𝑓(𝑡𝑛, 𝑡𝑠 , 𝐷) = 𝑡𝑠
2 − 2𝑐0(1 − 𝐷) tan𝜙 (𝜎𝑡0(1 − 𝐷) − 𝑡𝑛) − tan

2𝜙 (𝑡𝑛
2 − (𝜎𝑡0(1 − 𝐷))

2)   (7.12) 

where 𝜙 is the friction angle of the material; 𝑐0 and 𝜎𝑡0 represent the initial cohesion and tensile 

strength. 

In addition, a non-associated plastic potential is also used in this study, taking into account the 

effect of the dilatancy angle, the formulation of which is written as: 

𝑔(𝑡𝑛, 𝑡𝑠 , 𝐷) = 𝑡𝑠
2 − 2𝑐0(1 − 𝐷) tan𝜓 (𝜎𝑡0(1 − 𝐷) − 𝑡𝑛) − tan

2𝜓 (𝑡𝑛
2 − (𝜎𝑡0(1 − 𝐷))

2)    (7.13) 

where 𝜓 is the dilatancy angle of the material. The incremental plastic displacement jump can 

be computed by the non-associate flow rule as: 

𝑑𝒖c
p
= 𝑑𝜆

𝜕𝑔

𝜕𝒕c
                                                                   (7.14) 

where 𝑑𝜆 is the plastic multiplier, which is non-negative and can be determined based on the 

current traction state and loading history. 

The above description shows the key formulations of the mixed-mode cohesive fracture law 

which describes the behaviour of the fracture zone during the fracturing process, while the 

surrounding bulk behaves elastically. Those two distinct responses are coupled by the traction 

continuity across the boundaries of the fracture process zone. Therefore, an implicit stress 

return mapping algorithm must be applied to achieve the traction continuity condition and at 

the same time to update the stresses of two distinct zones. The detailed implementation 

algorithm was presented in Chapter 6, and thus is not repeated here.  
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7.3. Rate effect incorporation by the constitutive model 

7.3.1. Dynamic increase factors of rocks 

As the experimental results show, tensile strength is much more rate sensitive than other 

mechanical properties such as Young’s modulus, Poisson’s ratio and energy absorption 

capacity, and thus only the strength enhancement behaviour is considered in this approach. The 

strain/loading rate effect on tensile strength for rock or similar quasi-brittle materials is 

incorporated into the mixed-mode cohesive fracture model through a dynamic increase factor 

(DIF) with respect to the strain/loading rate. The relationship between DIF representing the 

ratio of dynamic to static tensile strength with strain/loading rate has been intensively 

investigated. For example, Liu et al. (2018) summarised experimental data of tensile tests on 

different types of rock and plotted the dynamic increase factors with different strain rates as 

shown in Figure 7.0–1. The DIF increases gradually when the strain rate is less than 100/s, but 

grows rapidly when the strain rate is greater than 100/s. Therefore, two empirical equations are 

developed to show such a large distinction, and they are expressed as: 

 𝐷𝐼𝐹 = {
1 + 0.70휀�̇�

0.18      𝑓𝑜𝑟 휀�̇� < 10
0𝑠−1

1 + 0.70휀�̇�
0.18     𝑓𝑜𝑟 휀�̇� ≥ 10

0𝑠−1
                                  (7.15) 

where 휀�̇� is the strain rate in tensile tests, the value of which can be measured from the strain 

gauges attached to the specimen.  

Apart from the strain rate, the loading rate is another parameter to represent the input loading 

in the experiment, which is the elastic stiffness of the tensile strength-time curve. In many 

dynamic tests involving cored-shape specimens such as Brazilian tests and semicircular 

bending tests, the strain rate is difficult to measure due to the shape of the specimen, and thus 

the loading rate rather than strain rate is often used in those tests. Therefore, an empirical 

relationship between the DIF and the loading rate is also proposed based on tensile tests on 

different rocks such as sandstones (Huang et al. 2010, Huang et al. 2010), granites (Zhao and 

Li 2000, Dai et al. 2010, Dai et al. 2010, Dai and Xia 2010, Xia et al. 2013), tuffs (Yan et al. 

2012), basalts (Yan et al. 2012) and marbles (Yao et al. 2017), shown in Figure 7.0–2. 

It can be seen from Figure 7.0–2 that the DIF increases gradually when the loading rate is less 

than 100/s, but grows rapidly when the strain rate is greater than 100/s, thus dividing Figure 

7.0–2 into two zones with distinct responses. Therefore, like the empirical relationship between 

the DIF and the strain rate, two equations are generated for two zones as:    
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Figure 7.0–1. DIF for tensile strength of rocks as a function of strain rate (Liu et al. 2018) 

 

 

Figure 7.0–2. DIF for tensile strength of rocks with a function of loading rate (Zhao and Li 2000, Dai 

et al. 2010, Dai and Xia 2010, Dai et al. 2010, Huang et al. 2010, Huang et al. 2010, Yan et al. 2011, 
Huang et al. 2012, Yan et al. 2012, Dai et al. 2013, Xia et al. 2013, Yao et al. 2017) 
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𝐷𝐼𝐹 = {
1 + 0.20�̇�𝑡

0.10      𝑓𝑜𝑟 �̇�𝑡 < 10
2𝐺𝑝𝑎/𝑠

1 + 0.01�̇�𝑡
0.75     𝑓𝑜𝑟 �̇�𝑡 ≥ 10

2𝐺𝑃𝑎/𝑠
                              (7.16) 

The rate-dependent cohesive fracture law now can be developed by incorporating the DIF with 

respect to loading rate or strain rate respectively presented in equation (7.15) and (7.16) into 

the mixed-mode cohesive fracture law introduced in Section 7.2.2. The failure criterion and 

non-associated plastic potential in the rate-dependent cohesive fracture law are: 

𝑓 = 𝑡𝑠
2 − 2𝑐0(1 − 𝐷) tan𝜙 (𝐷𝐼𝐹 × 𝜎𝑡0(1− 𝐷) − 𝑡𝑛) − tan

2𝜙 (𝑡𝑛
2 − (𝐷𝐼𝐹 × 𝜎𝑡0(1 − 𝐷))

2)     (7.17a) 

𝑔 = 𝑡𝑠
2 − 2𝑐0(1 − 𝐷) tan𝜓 (𝐷𝐼𝐹 × 𝜎𝑡0(1 − 𝐷) − 𝑡𝑛) − tan

2𝜓 (𝑡𝑛
2 − (𝐷𝐼𝐹 × 𝜎𝑡0(1− 𝐷))

2)     (7.17b) 

The geometries of the initial yield function with different DIFs are illustrated in Figure 7.0–3. 

It can be seen that the introduction of DIF leads to a change in the geometry of the yield function, 

thereby influencing the normal and shear plastic deformations of materials in the fracture 

process zone. The rate-dependent mixed-mode cohesive fracture law is incorporated into the 

continuum constitutive model for simulating rock fractures under dynamic loading in the next 

section. 

 

 

Figure 7.0–3. Geometries of the initial yield function with different DIFs. 

 

7.3.2. Mixed-mode ring tests 

In this section, a series of ring tests with different internal diameters performed by Li et al. 

(2016) are simulated to examine the capability of the SPH framework with the rate-dependent 

continuum constitutive model to predict the strain rate effects on the behaviour of rock fractures. 
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Tests under quasi-static loadings were conducted under quasi-static loading and compared with 

the experimental data reported in Chapter 6 for demonstrating the predictive capability of the 

traditional SPH model to capture the mixed-mode rock fracture behaviour. The geometry and 

loading conditions of the specimen in the experiments are shown in Figure 7.0–4a. Specimens 

drilled from a marble block are first prepared, with the diameter (D) of 50mm and thickness (t) 

of 25mm. A circular disc with the diameter (d) varying from 5mm to 25mm was then cut off 

at the centre of the specimens, resulting in ring specimens with different diameter ratios (d/D) 

from 0.1 to 0.5. The specimens are sandwiched directly between two platens with the length of 

20mm, over which a static force is applied. The static material properties of marble are listed 

in Table 7.0-1.  

 

 

Figure 7.0–4. Geometry and boundary condition for the Brazilian test: (a) Experimental setup; (b) 

SPH simulation setup for 𝛼 = 0.3. 

 

The corresponding numerical configuration in SPH is shown in Figure 7.0–4b. To perfectly 

create the shape of a circular cut-off using a reasonable number of particles, particles that form 

the ring sample are radially distributed in this test. The particle discretisation size of 0.5mm is 

used for all the simulations, resulting in a total number of 7651 particles for a specimen without 

a central hole. The particle number decreases with a larger value of the diameter ratio (d/D). 

To simulate those two platens in the experiment, three layers of boundary particles with the 

spatial discretisation size of 0.5mm, resulting in 303 SPH particles in total, are generated for 
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each boundary. A high vertical velocity as 0.17𝑚/𝑠  is imposed on the top boundary and 

boundary particles to achieve the dynamic loading condition. A ramp loading is also applied to 

stabilise the numerical solution. In summary, the boundary conditions for this test are as 

follows: velocities of the top boundary particles are set as 𝑣𝑥 = 0, 𝑣𝑦 = −0.17𝑚/s, while the 

velocities of bottom boundary particles are 𝑣𝑥 = 0, 𝑣𝑦 = 0.17𝑚/s. During tests, peak loads are 

recorded to calculate the dynamic tensile strength of specimens with different internal 

diameters under the dynamic indirect tensile loading using the equation: 

𝜎𝑡𝑑 =
𝑃

𝜋𝑅𝑡
(6 + 38

𝑟2

𝑅2
)                                                     (7.15) 

where 𝜎𝑡𝑑  is the dynamic tensile strength, 𝑃 is the peak load applied to the specimen, 𝑟 and 𝑅 

 are respectively the internal and external radius.  

 

Table 7.0-1. Material properties of marble in the ring tests 

Material properties of marble 

Young’s modulus (𝑬) 𝟒𝟗𝐆𝐏𝐚 

Poisson’s ratio (𝒗) 𝟎. 𝟏𝟗 

Density (𝝆) 𝟐. 𝟕𝐠/𝐜𝐦𝟑 

Tensile strength(𝒇𝒕) 𝟑. 𝟔𝐌𝐏𝐚 

Cohesion (𝒄) 𝟏𝟎𝐌𝐏𝐚 

Friction angle (𝝋) 𝟑𝟑° 

Dilation angle (𝛙) 4° 

Mode I fracture energy (𝑮𝑰) 𝟑𝟎𝐍𝐦 

Mode II fracture energy (𝑮𝑰𝑰) 𝟑𝟎𝐍𝐦 

Peak displacement (𝛅𝟎) 𝟖. 𝟓𝛍𝐦 

Secant normal stiffness (𝑲𝒏𝟎) 𝟏𝟎𝟏𝟒𝐏𝐚/𝐦 

Secant shear stiffness (𝑲𝒔𝟎) 𝟏𝟎𝟏𝟏𝐏𝐚/𝐦 

 

The fracture developments of ring specimens with different diameter ratios (d/D) in indirect 

tensile tests are shown in Figure 7.0–5. It can be seen from Figure 7.0–5 that specimens with 

different diameter ratios have different fracture development, although all fractures initiate 
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from the surface of the internal hole along the diametral loading line in all ring specimens. To 

be specific, only one final fracture is developed at the end within the ring specimen when d/D 

< 0.3, while a secondary fracture forms together with the fracture along the loading diameter 

when d/D ≥ 0.3, which is similar to the quasi-static cases presented in Chapter 6. However, 

there are more damaged zones observed under dynamic loading. When d/D = 0.1, two lines of 

slightly damaged SPH particles are formed, indicating fracture branching after the initiation of 

the fracture. Then one fracture continues to propagate towards the loading plates while the 

other one stops developing. The fracture development of the specimen with d/D = 0.2 is similar 

to that with d/D = 0.1, except that some SPH particles near the outer rings are slightly damaged. 

With an increase in d/D (d/D ≥ 0.3), fracture branching disappears in the loading direction and 

secondary cracks are formed in the direction perpendicular to the loading line, always lagging 

behinds the vertical cracks. Two secondary cracks are initiated from the surface of the outer 

bound of the ring and propagated to the centre, eventually resulting in a four-pan-shaped failure. 

The final fracture patterns in the SPH simulation and experiment are shown in Figure 7.0–6. It 

can be seen that although the numerical simulation does not capture perfectly the secondary 

cracks in the specimen with 𝑑/𝐷 ≤ 0.2, the overall fracture patterns obtained by the traditional 

SPH method with a rate-dependent constitutive model match the experimental observations, 

indicating that the proposed approach is capable of capturing the progressive failure of ring 

specimens under dynamic loadings. 

The comparison between the experimental and simulation results for the dynamic tensile 

strength of specimens with different internal diameters is plotted in Figure 7.0–7. It can be seen 

that the numerical model captures well the trend of change in dynamic tensile strength 

exhibited in the experiment, although the numerical results are slightly lower than the 

experimental results for some cases. With an increase in internal diameter, there is a linearly 

decreasing trend in the calculated dynamic tensile strength, indicating that failure of the ring 

specimen with the large internal diameter requires much less energy than the failure of the ring 

specimen with small internal holes. A linear relationship between the dynamic tensile strength 

and the diameter ratio is obtained based on the simulation results, which is expressed as: 

𝜎𝑡𝑑 = −122.43(
𝑑

𝐷
) + 104.78                                        (7.16) 
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Figure 7.0–5. Fracture propagation in specimens with different d/D ratios 
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Figure 7.0–6. Comparison between simulation and experiment in the final fracture patterns of 
specimens with different d/D ratios under dynamic loading. 

 

 

Figure 7.0–7. Comparison of experimental and simulation results for dynamic tensile strength of 
specimens with different internal diameter. 
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7.4. Rate effect enhancement by dynamic SPH method 

7.4.1. Elliptical force-displacement loading  

In the second approach, the traditional SPH framework combined with the mixed-mode 

continuum constitutive model presented in Section 7.2 is applied. The loading rate effect is 

enhanced by imposing a nonlinear force or acceleration to the SPH loading particles, similar to 

the input loading in the split Hopkinson bar system that is the most widely used equipment for 

dynamic tests. Figure 7.0–8 shows the typical stress input history of a dynamic test on rocks in 

the split Hopkinson bar by Fakhimi et al. (2018). In the split Hopkinson bar system, the stress 

wave, normally with the duration of 100 to 200 μs, is generated by the gas gun’s launching the 

striker. Then it is propagated through the bar towards the specimen and split into a reflected 

wave and a transmitted wave. While the reflected wave is reflected away from the specimen 

and travels back to the incident bar, the transmitted wave travels through the specimen and into 

the transmitted bar, causing plastic deformation in the specimen (Gilat et al. 2009).  

To simulate the transmitted pulse in the split Hopkinson bar, the elliptical force or acceleration 

history depicted in Figure 7.0–9 is applied to the SPH loading particles, resulting in a nonlinear 

increase in velocity of SPH loading particles, which is very different from the constantly 

applied velocity in the first approach. In Figure 7.0–9, 𝑎𝑚𝑎𝑥  is the maximum value of 

acceleration applied to the loading particles, the value of which depends on the input 

strain/loading rates or the input stress history in the experiments. 𝑡𝑓 is the duration of applied 

loading, which is normally chosen between 100 and 200 μs for consistency with the 

experimental setup. The acceleration 𝑎 of the loading particles at time 𝑡 can be calculated by 

the following equation: 

(
𝑎

𝑎𝑚𝑎𝑥
)
2

+ (
𝑡−𝑡𝑓/2

𝑡𝑓/2
)
2

= 1                                             (7.17) 

The imposed loading condition accelerates the wave propagation within the computational 

domain in SPH simulation, thanks to the dynamic nature of the SPH method. Furthermore, 

owing to the fact that the fracture geometry is represented by a set of damaged particles, over 

which the fracture plane is defined and can be in any orientation depending on the stress 

condition, the proposed approach could naturally simulate complex fracture patterns due to the 

dynamic loadings.  
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Figure 7.0–8. A typical stress input history of dynamic loading on rocks in split Hopkinson bar system 
(Fakhimi et al. 2018). 

 

 

Figure 7.0–9. Force or acceleration input history in SPH framework  
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7.4.2. Dynamic rock fracture applications 

In this section, three laboratory tests of rock and rock-like materials under a wide range of 

loading rates are simulated using the second approach. Numerical results are then compared 

with the experimental results to examine the capability of the proposed model for predicting 

the process of rock fracture propagation and its final fracture pattern, as well as for capturing 

the mechanical behaviour of rock fractures under static and dynamic loadings. 

7.4.2.1. Notched semi-circular bending test  

In the first application, the notched semicircular bending (NSCB) test of Fangshan marble is 

performed. Fangshan marble is a fine-grained rock material consisting of dolomite (98%) and 

quartz (2%), thus is considered as homogeneous and isotropic. The material properties obtained 

from experiment (Zhang and Zhao 2013) and DEM simulations (Gui et al. 2016) are presented 

in Table 7.0-2. In the experiment, the NSCB specimen with the radius of 25mm and thickness 

of 20mm was sandwiched between the incident bar and the transmission bar in the Split 

Hopkinson Bar system, shown in Figure 7.0–10a. Before testing, a notch of 5mm was machined 

in the middle of the specimen perpendicular to the diameter direction. During the test, a striking 

speed of 2.25m/s was generated by gas gun impacting the incident bar, resulting in a portion 

of the dynamic stress pulses travelling through the specimen and inducing its fracture. 

 

Table 7.0-2. Material properties of Fangshan marble in NSCB test. 

Material properties of Fangshan marble 

Young’s Modulus (𝐸) 85GPa 

Poisson’s ratio (𝑣) 0.3 

Density (𝜌) 2.8g/cm3 

Tensile strength(𝑓𝑡) 9.5MPa 

Cohesion (𝑐) 10MPa 

Friction angle (𝜑) 40° 

Dilation angle (𝜓) 10° 

Mode I fracture toughness (𝐾𝐼𝑐) 1.6Mpa√𝑚 

Mode II fracture toughness (𝐾𝐼𝐼𝑐) 1.6Mpa√𝑚 

Peak displacement (𝛿0) 3μm 

Secant normal stiffness (𝐾𝑛0) 1014Pa/m 

Secant shear stiffness (𝐾𝑠0) 1011Pa/m 
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Figure 7.0–10. Setup of notched semicircular bending test: (a) Schematic of NSCB specimen in split 

Hopkinson pressure bar system; (b) Initial SPH configuration in simulation; (c) Input loading with 
time in the simulation. 

 

In the SPH simulation, the particle discretisation size of 0.5mm is used. Thus, the NSCB 

specimen is generated by 4,123 SPH particles, while the boundary is simulated by 167 SPH 

particles, as shown in Figure 7.0–10b. Input loading as a function of time, shown as Figure 

7.0–10c, is imposed vertically on the top of the boundary to simulate the loading applied by 

the split Hopkinson bar, while the horizontal velocity of those particles is zero. The ellipse 

shape of the acceleration-time curve with the duration of 200𝜇𝑠 is selected as it can better 

capture the trend of loading in the experiment, which increases rapidly at the beginning and 

gradually tapers off until reaching the peak loading. In the test, the peak acceleration of 6.5 

𝑘𝑁/𝑠2  is applied. The particles at the bottom boundary are allowed to move freely in the 

horizontal direction while remaining fixed vertically. During the test, the fracture initiation and 

propagation are monitored, while the force applied to the top layer of the specimen is also 

recorded with time for calculating Mode I dynamic fracture initiation toughness for comparison 

with the experiment. The dynamic initial fracture toughness can be calculated as: 

𝐾𝐼𝑑 = 𝑌𝐼 (
𝑆

𝑅
)
𝑃(𝑡𝑓)√𝜋𝑎

2𝑅𝐵
                                                          (7.18) 

where 2S is the span of the specimen; R is the radius of the specimen; 𝑡𝑓 is time-to-fracture, 

𝑃(𝑡𝑓) is load force when 𝑡 = 𝑡𝑓; 𝑎 and B are the notch length and the thickness of specimen; 

𝑌𝐼 (
𝑆

𝑅
) is the mode I normalised intensity factor, which can be expressed as: 
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𝑌𝐼 (
𝑆

𝑅
) = 3.638 − 0.139 (

𝑎

𝑅
) + 0.039exp [7.387(

𝑎

𝑅
)]     for 

S

R
= 0.667         (7.19) 

In this test, the notch length to radius ratio (𝑎/𝑅) is 0.2, resulting in the value of 𝑌𝐼 (
𝑆

𝑅
) of 3.78. 

Figure 7.0–11 shows a comparison of fracture propagation in the NSCB specimen between 

experiment and simulation. The white arrow indicates the tip of the crack at different times. It 

can be seen from the experimental results in Figure 7.0–11 that at 40𝜇𝑠, the fracture has been 

initiated at the notch tip and propagates along the loading direction, leading to the tip of the 

crack located around 2mm from the notch tip. In the SPH simulation, on the other hand, the 

time when the tip of crack moves to 2mm in the same location as that described for the 

experiment is 65 𝜇𝑠  (shown in Figure 7.0–11a). After its initiation, the fracture keeps 

propagating up to stage b, where the crack tip in the experiment moves to 6.68mm at 𝑡 = 45𝜇𝑠, 

while the simulation result shows a similar location of the crack tip (7mm) at 𝑡 = 73𝜇𝑠. At 

stages c and d, the crack tip locations in the experiment are respectively 12mm and 16.5mm 

from the notch tip, whereas the tip of crack in the SPH simulation (12.5mm at stage c and 

17mm at stage d) has moved a little further compared with experiment. Finally, a horizontal 

fracture pattern is formed in the middle of the specimen. Figure 7.0–12 compares the position 

of the crack tip at different times between experiment and simulation. Overall, the fracture 

propagation with time in the NSCB test represented by SPH fracturing particles matches the 

experimental observation well, although the crack initiation in simulation is postponed 

compared to that in the experiment.  

 

Figure 7.0–11. Comparison of crack propagation process in notched semicircular bending test 
between experiment (top) and simulation (bottom). 
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Figure 7.0–12. Comparison of crack tip positions with time between experiment and simulation of 
notched semicircular bending test 

 

 

Figure 7.0–13. Comparison of the force-time curves between experiment and simulation of notched 
semicircular bending test                

 

Figure 7.0–13 compares the evolution of applied force between the experimental and 

simulation results. The corresponding forces at stages (a) to (d) in Figure 7.0–11 are also 

marked in Figure 7.0–13. It can be seen that the simulation result using the SPH method 
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matches the experimental data well, especially for the prediction of peak load. Fracture has 

been initiated before the force reaches 3.45kN (stage a). Then the force increases linearly to 

the peak up to 3.26kN when the fracture keeps propagating (from stage a to stage c). After that, 

the sample goes into the post-peak failure stage in which the stress decreases with time. 

Compared with the experiment, the NSCB specimen in SPH shows more brittle behaviour, and 

further investigation is required to confirm this difference. 

 

 

Figure 7.0–14. Comparison of normalised dynamic crack initiation toughness with loading rate 
between experiment and simulation of notched semicircular bending test 

 

Figure 7.0–14 compares the normalised dynamic crack initiation toughness (𝐾𝐼𝑑/𝐾𝐼𝑐) with the 

loading rate between the experiment and the simulation of the NSCB test. Normalised dynamic 

crack initiation toughness is the ratio of the dynamic crack initiation toughness (𝐾𝐼𝑑) to the 

static fracture toughness (𝐾𝐼𝑐) of material. The dynamic crack initiation toughness, which is  

defined as the dynamic crack toughness at time to fracture, can be calculated based on equation 

(7.18), while the loading rate (�̇�𝐼
𝑑𝑦𝑛

) is the slope of the dynamic fracture toughness at that 

point. It can be seen from Figure 7.0–14 that the normalised dynamic crack initiation toughness 

increases almost linearly with the increase in loading rate. This indicates that with a high input 
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loading, the specimen requires more energy to resist fracturing. Overall, the simulation and 

experimental results match very well in terms of the trend of the normalised dynamic crack 

initiation toughness with different loading rates, further showing the capability of the SPH 

fracturing method to capture rock fractures under dynamic loading. 

7.4.2.2. Brazilian Disc Test  

A series of Brazilian disc (BD) tests for Fangshan marble conducted by Zhang and Zhao (2013) 

are replicated under a wide range of dynamic loadings in this example. Figure 7.0–15a shows 

specimen dimensions of the BD tests and their boundary conditions in the experiment. A disc 

with the diameter of 50mm and thickness of 20mm was sandwiched between the incident bar 

and the transmission bar, similar to the laboratory test of NSCB. A striking velocity was applied 

to the incident bar and transmitted to the BD specimen. Based on the experimental 

configuration, a BD specimen with the same dimensions is generated by 3,505 SPH particles, 

while the top and bottom boundaries are each simulated by 201 SPH particles, as shown in 

Figure 7.0–15b. The discretisation particle size in this test is 0.75mm. To simulate the dynamic 

force impacting on the specimen, a vertical force as a function of time as illustrated in Figure 

7.0–16 is applied to the top boundary. The material properties in the BD test are the same as 

those in the NSCB test, as provided in Table 7.0-2. During the simulation, the applied force on 

the top of the specimen is recorded with time, for calculating the dynamic strength (𝜎𝑡𝑑) under 

different loading conditions using the equation: 

𝜎𝑡𝑑(�̇�𝑡𝑑) =
2𝑃

𝜋𝐷𝐵
                                                              (7.20) 

where �̇�𝑡𝑑 is the loading rate in the tensile strength-time curve, as determined by the slope of 

the stress history from the time of stress equilibrium and ending to the time-to-fracture; 𝑃 is 

the peak load applied on the specimen; 𝐷 and 𝐵 are respectively the diameter and thickness of 

the specimen.  

Figure 7.0–17 shows the comparison of strength history under the loading case of �̇�𝑡𝑑 =

830𝐺𝑝𝑎/𝑠 between experiment and simulation. It can be seen that the overall prediction in 

SPH agrees well with the experimental result, although a more brittle fracturing response under 

dynamic loading is observed in the simulation, similar to that in the described NSCB test. This 

is attributed to the inaccurate material properties in the experiment, which were adopted as the 

 



194 

 

 

Figure 7.0–15. Setup of Brazilian disc (BD) test: (a). Schematic of BD specimen in the split 
Hopkinson pressure bar system; (b). Initial SPH configuration in simulation. 

 

 

Figure 7.0–16. Input loading with time in the simulation of the Brazilian disc test 

 

input parameters for the simulation. Nevertheless, the predicted tensile strength using the 

fracturing SPH framework is 32.7MPa, which is very close to the experimental result 

(32.5MPa). The corresponding fracture patterns of the specimen at stages (a-e) marked in the 
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strength history are shown in Figure 7.0–18. Fracture initiation occurs at the stage (a), where 

damage to some SPH particles in the middle of the specimen has begun, as shown in Figure 

7.0–18a. The calculated stress in Figure 7.0–17 reaches around 15MPa at stage (a) and 

continues to increase until the peak. Meanwhile, fracture propagates vertically towards the 

loading plates, leading to a vertical fracture pattern in the middle of the specimen (see Figure 

7.0–18 b-c). Once the fracture propagates near to the loading plates, a transition from tensile 

failure to shear failure occurs, resulting in a curving fracture formed near the boundaries. This 

tensile-shear failure transition under dynamic loadings was also observed in the experiment, 

suggesting that the SPH fracturing approach automatically captures the fracture patterns under 

dynamic loadings. Figure 7.0–18e shows the final fracture pattern of the BD specimen under 

dynamic loading. A vertical fracture band is formed in the middle of the specimen, splitting 

the disc into two halves. The corresponding stress at stage (e) is marked in Figure 7.0–17, 

which shows that the specimen experiences softening behaviour at that stage.   

 

 

Figure 7.0–17. Comparison of dynamic tensile strength with time between experiment and simulation 
of Brazilian disc test 

 

Figure 7.0–19 shows a comparison of the normalised dynamic tensile strength of Fangshan 

marble between experiment and simulation. The normalised dynamic tensile strength (𝜎𝑡𝑑/𝜎𝑡) 

is the ratio of dynamic tensile strength to static tensile strength. Given that the dynamic tensile  
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Figure 7.0–18. Fracture propagation in SPH simulation of Brazilian disc test 

 

 

Figure 7.0–19. Comparison of normalised dynamic tensile strength with loading rate between 
experiment and simulation of Brazilian disc test 
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strength can be calculated by equation (7.20) and the value of the static tensile strength of 

Fangshan marble is 9.5MPa as provided by experiment, the normalised dynamic tensile 

strength in the simulation can be easily calculated. It can be seen from Figure 7.0–19 that the 

simulation using the fracturing SPH method can capture well the increasing trend of normalised 

dynamic tensile strength with the increasing loading rates in the experiment. A linear 

relationship between the normalised dynamic tensile strength and loading rate can be derived 

based on the simulation results, as: 

𝜎𝑡𝑑/𝜎𝑡 = 0.003 × �̇�𝑡𝑑  + 1.0                                            (7.21) 

7.4.2.3. Mixed-mode three-point bending test  

In the last example, mixed-mode fractures of the three-point bending specimen subjected to 

both static and dynamic loading are simulated. Figure 7.0–20a shows the specimen dimensions 

and boundary conditions of the three-point bending test (John and Shah 1990). The specimen 

is 203.2mm in length, 76.2mm in depth and 25.4mm in thickness. A vertical notch with the 

length of 19mm was machined at the bottom of the specimen. The distance between the notch 

and the centreline of the specimen was 𝛾𝐿/2 where 𝛾 is a coefficient determining the location 

of the notch. Specimens with five different notch locations (γ = 0.5, 0.7, 0.718, 0.766, 0.875) 

were prepared for the test, in order to investigate different fracture modes of concrete under 

different loadings. The notched specimen was supported by two rollers and loaded by another 

rolled placed at the top mid-span of the beam. Static loading with a strain rate of 10−6/s and 

dynamic loading with a strain rate of 0.5/s were applied on the specimen through the top roller. 

The material properties of concrete provided in the experiment are listed in Table 7.0-3. 

In the 2D SPH simulation, the specimen is generated by 7,790 SPH particles as shown in Figure 

7.0–20b. The particle discretisation size (dx) in this example is 1.5mm. For the boundary 

conditions, nine SPH particles forming three layers are generated to simulate the point loading 

in the experiment. In the simulation, it is very difficult to apply a slow strain rate of 10−6/s to 

the specimen as it will result in very high computational cost. Under this circumstance, a very 

small constant velocity with the value of 1mm/s is chosen here to achieve a quasi-static loading 

condition, similar to the static rock fracture applications reported in previous chapters. The 

small velocity is vertically applied on the top boundary particles for the static loading condition, 

while the horizontal movement of those particles is fixed. As in the dynamic cases, a dynamic 

loading following an ellipsoidal acceleration-time relationship (illustrated in Figure 7.0–21) is 
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applied to the top SPH boundary particles. The bottom boundary particles are allowed to move 

freely horizontally while the vertical movement is fixed.  

 

 

Figure 7.0–20. Schematic of the three-point bending test: (a). Experiment; (b). Simulation  

 

 

Figure 7.0–21. Input loading with time in the simulation of the Brazilian disc test 
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Table 7.0-3. Material properties of the material for three-point bending test 

Material properties for three-point bending test 

Young’s Modulus (𝑬) 𝟐𝟗𝑮𝑷𝒂 

Poisson ratio (𝒗) 𝟎. 𝟐 

Density (𝝆) 𝟐. 𝟒𝒈/𝒄𝒎𝟑 

Tensile strength(𝒇𝒕) 𝟑𝑴𝑷𝒂 

Cohesion (𝒄) 𝟑𝑴𝑷𝒂 

Friction angle (𝝋) 𝟑𝟐° 

Dilation angle (𝝍) 𝟓° 

Mode I fracture energy (𝑮𝑰𝑪) 𝟑𝟎. 𝟏𝑵𝒎 

Mode II fracture energy (𝑮𝑰𝑰𝒄) 𝟑𝟎. 𝟏𝑵𝒎 

Peak displacement (𝜹𝟎) under static loading 𝟏𝟎𝝁𝒎 

Peak displacement (𝜹𝟎) under dynamic loading 𝟑𝝁𝒎 

Secant normal stiffness (𝑲𝒏𝟎) 𝟏𝟎𝟏𝟒𝑷𝒂/𝒎 

Secant shear stiffness (𝑲𝒔𝟎) 𝟏𝟎𝟏𝟏𝑷𝒂/𝒎 

 

 

Figure 7.0–22. Comparison of force-crack opening displacement curve between experiment and 
simulation of three-point bending test with a centrally located notch. 

 

Figure 7.0–22 shows the comparison of the force-crack opening displacement curve between 

the experiment and the SPH simulation for the three-point bending specimen with a centrally  
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Figure 7.0–23. Fracture initiation, propagation and final fracture pattern in specimen with γ=0.5 
under static loading. 
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Figure 7.0–24. Fracture initiation, propagation and final fracture pattern in specimen with γ=0.7 
under static loading. 
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Figure 7.0–25. Comparison of final fracture pattern between experiment and simulation of three-
point bending test with different notch locations under static loading. 
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Figure 7.0–26. Fracture initiation, propagation and final fracture pattern in specimen with γ=0.5 
under dynamic loading. 
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Figure 7.0–27. Fracture initiation, propagation and final fracture pattern in specimen with γ=0.718 
under dynamic loading. 
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Figure 7.0–28.Comparison of final fracture pattern between experiment and simulation of three-point 
bending test with different notch locations under dynamic loading. 

 

point bending test under static loading using the provided input parameters. The final fracture 

pattern for the specimen with the centrally located notch is also shown in Figure 7.0–22. SPH 

located notch under static loading conditions. During the loading process, the specimen 
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undergoes three stages: elastic loading, hardening up to a peak, and softening until failure of 

the beam. Overall, the force-crack opening displacement curve obtained by SPH simulation 

matches the experimental curve well, although the experimental data shows that the specimen 

experiences a slightly longer hardening stage and more brittle fracture behaviour. The result 

confirms that the SPH model captured the mechanical behaviour of the concrete in the three-

particles in the middle of the beam are fully damaged, resulting in a vertical fracture pattern at 

the end. 

After validation of the model in capturing the mode I fracture and corresponding force 

development with crack opening displacement under static loading, the SPH fracturing model 

is next used to investigate the effect of loading on the mixed-mode (mode I and II) fractures of 

concrete. Figure 7.0–23 shows the fracture initiation, propagation and final fracture pattern of 

the specimen with  𝛾 = 0.5 under static loading. It can be seen that fracture initiates from the 

notch tip and gradually propagates towards the top-mid-span of the specimen. Figure 7.0–24 

shows the fracture development of the specimen with  𝛾 = 0.7 under static loading. Unlike the 

cases of 𝛾 = 0.5, two fractures initiating from the notch tip and the bottom-mid-span of the 

specimen are observed in Figure 7.0–24(a). Then the fracture initiating from the bottom-mid-

span begins to propagate towards the loading point, while the fracture initiated from the tip of 

the notch stops developing, as shown in Figure 7.0–24(b-e). Finally, a vertical fracture is 

formed in the middle of the specimen.  

Figure 7.0–25 shows the comparison between simulation and experimental results in terms of 

the final fracture patterns of the three-point bending test with different locations of  the notch 

under static loading. It can be seen that when 𝛾 = 0.5, a fracture pattern with the inclination 

angle of 25 degrees is obtained using the proposed SPH framework, which is consistent with 

the experimental results of John and Shah (1990). As the notch is moved further from the 

midspan (𝛾 ≥ 0.7), flexural failure occurs in which fracture initiates from the bottom mid-span 

of the specimen and propagates vertically towards loading points. Therefore, a mode transition 

from mixed-mode failure to flexural failure occurs at 𝛾 = 0.7 under static loading in the 

simulation, which perfectly matches the experimental results. Figure 7.0–26 and Figure 7.0–

27 present the fracture initiation, propagation and final fracture pattern of the specimen with 

𝛾 = 0.5 and 𝛾 = 0.718 respectively under dynamic loading. It can be seen that the overall 

fracture developments of these two cases are very similar. The fracture initiates from the tip of 

the notch and propagates upwards at a certain inclination angle.  
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However, it can be seen from Figure 7.0–27 that some particles near the bottom-mid-specimen 

are damaged when 𝛾 = 0.718, indicating that another small fracture initiates from the bottom-

mid-specimen. Figure 7.0–28 shows the simulation results of the final fracture patterns for the 

three-point bending specimen under dynamic loading in comparison with the experimental 

results. It can be seen that when 𝛾 = 0.5, the final fracture pattern under dynamic loading is 

very similar to fracture development under static loading. However, the fracture still occurs at 

the notch tip, as the notch is further offset from the midspan (𝛾 ≤ 0.718) when impact loading 

is applied on the specimen, in contrast to the flexural failure under static loading. Larger 

inclination angles of 30 degrees and 31degrees are observed in the figures of final fracture 

pattern with 𝛾 = 0.7 and 𝛾 = 0.718 respectively compared with the angle of the final fracture 

pattern with 𝛾 = 0.5. This observation in simulation matches perfectly the experimental results 

and the analytical solution using a maximum energy release rate criterion developed by Hussain 

et al. (1974), in which a 30-degree inclination angle was calculated for the case of 𝛾 = 0.718. 

When the value of 𝛾 is greater than or equal to 0.766, a vertical fracture pattern in the middle 

of the specimen is observed. Therefore, the transition point from mixed-mode failure to flexural 

failure in the three-point bending test under dynamic loading is at 𝛾 = 0.766, indicating that the 

specimen is designed to fail in a brittle tension-shear manner under dynamic loading, as 

opposed to the ductile flexural manner under static loading. Overall, the simulation result 

captured the final fracture patterns in the experiment well, showing the capability of the SPH 

fracturing model to predict the rate-sensitive mixed-mode failures under a wide range of 

loading rates without any ad-hoc treatments for rate dependency. 

7.5. Conclusions 

In this work, the fracture behaviour of rocks and rock-like materials under dynamic loadings 

was simulated using SPH fracturing particles. Two approaches were proposed to incorporate 

the loading rate effect into the SPH framework with a mixed-mode constitutive model. The 

first approach introduced the loading rate effect into the mixed-mode cohesive fracture law; 

the second approach considered the loading rate effect by applying an elliptical force history 

to the SPH particles. From the findings, the following conclusions can be drawn: 

 Indirect tensile testing of marble ring specimens with different d/D ratios were simulated 

using the first approach. The results showed that ring specimens under dynamic loading 

had more fractures than those under static loading presented in Chapter 6, which agreed 

well with experimental observation. This result suggests that a numerical approach which 
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combines the traditional SPH with a rate-dependent continuum constitutive model could 

capture the loading rate effect on the behaviour of rock fractures. 

 A series of notched semicircular bending tests under different dynamic loading conditions 

were performed using the second approach. Since it is well known that the dynamic 

initiation fracture toughness of rocks is strongly affected by the loading rate, that 

phenomenon was also investigated in this example. The good agreement between 

simulation and experimental results indicated that the SPH fracturing approach was capable 

of predicting normalised dynamic initiation fracture toughness and capturing pure mode I 

fracture initiation and propagation under dynamic loading.  

 The loading effect on the tensile strength of rock was also investigated with the Brazilian 

disc specimen, using the second approach. Tensile failure at the centre of the specimen and 

shear failure near the loading plates were observed in SPH simulation, consistent with 

experimental results. A linear relationship between normalised tensile strength and loading 

rate was obtained. 

 In the last application, mixed-mode (including mode I) fracture of concrete was simulated 

using a three-point bending specimen with notches offset from the midspan. As the notch 

moved farther from the midspan, a transition from mixed-mode failure to mode I flexural 

failure was observed. The transition points under static loading and dynamic loading were 

respectively  𝛾 = 0.7 and 𝛾 = 0.766 , indicating that dynamic loading could result in a 

more brittle diagonal tension-shear failure compared with static loading. The simulation 

prediction matched the experimental results perfectly, demonstrating the suitability of the 

SPH method for predicting the rate-sensitive fracture of rock and rock-like materials.  
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Chapter 8  

Conclusions and Recommendations for Future Research 

 

8.1.  Conclusions 

In this research, an advanced computational framework that possesses intrinsic length and time 

scales was developed for simulating rock fractures under quasi-static and dynamic loadings. 

Emphasis was placed on the development of a continuum constitutive model which could 

realistically capture the underlying failure mechanism and correctly describe the behaviour of 

the fracture process zone and surrounding material of rocks. From the analysis of numerous 

published experimental results, it was found that the fracturing process and mechanical 

properties such as strength and fracture toughness of rocks were strongly affected by specimen 

size and loading rate. Therefore, size and loading rate effects were also considered in this work 

by respectively incorporating the length parameter and rate effect into the constitutive 

equations. To accommodate these new constitutive models, two numerical platforms, the 

Taylor SPH and traditional SPH, were developed based on the mesh-free smoothed particle 

hydrodynamics (SPH) method. The combination of the proposed constitutive models with the 

SPH method resulted in a robust computational tool for rock fracture modelling.  

The development of the proposed computational framework can be divided into three main 

parts:  

1) development of a robust SPH framework for simulations of rock fractures; 

2) development of a continuum constitutive model with embedded time and length effects for 

simulation of rock fractures; 

3) implementation of the new computational framework which combines the SPH method and 

the continuum constitutive model in rock fracture applications. 
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In the following sections, the major conclusions from the three parts of the research are 

discussed for the three stages of rock fracture simulations.  

8.1.1. Simulation of size-dependent behaviour and pure mode I failures of rock 

fractures under quasi-static loading 

1) To accurately capture the fracturing processes of rocks, the two-step Taylor SPH 

framework was adopted and in-house codes of Taylor SPH were developed to provide a 

stable numerical platform for incorporating any suitable constitutive model. As 

demonstrated in the numerical tests in Chapter 3, the Taylor SPH method which combines 

the corrected SPH technique, the stress point approach, with the Taylor time integration 

scheme can provide a very accurate and stable solution for solving the governing equations 

of rocks under tensile loading.  

2) To capture the high gradient of strain deformation in the fracture process zone of rock 

masses, a new continuum constitutive model was proposed, which was derived from the 

generic double-scale continuum constitutive framework for strain localisation with a finite 

shear band thickness. In this work, the shear band thickness is assumed to approach zero, 

thus leading to a scale-dependent constitutive model with an embedded fracture process 

zone. The fracture process zone is modelled by a mode I linear or exponential cohesive 

fracture law for describing the irreversible deformation and stiffness reduction within the 

fracture process zone under tensile-only loading, while the behaviour of the material 

outside zone is assumed to be elastic, following Hooke’s law. A length parameter for 

describing the relative size of the fracture process zone with the surrounding bulk is 

embedded in the constitutive equation, which helps to minimise mesh sensitivity issues and 

capture the size-dependent behaviour in rocks. Verification testing of the proposed model 

at the constitutive level was conducted and thus it was shown that this constitutive model 

can correctly represent the distinct responses of material in the fracture process zone and 

the surrounding material under tensile loading. 

3) A rigorous SPH framework that combined the Taylor SPH method and the size-dependent 

constitutive model was developed to model pure mode I rock fractures. This is the first 

rigorous SPH framework featuring an intrinsic length scale. The new SPH framework 

provides a fundamental basis that bridges the constitutive and structural aspects via a length 

parameter obtained directly from the particle size, which enables the framework to correctly 

capture size-dependent behaviour of rocks. Furthermore, through a series of numerical tests 

of rock fractures, it was proved that the proposed SPH framework could capture the 
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experimentally-observed fracture development of rocks and handle extremely large 

deformation and fracture detachment. Furthermore, the model’s responses to spatial 

discretisation were examined to highlight the advantages of the proposed approach. As 

demonstrated, the proposed approach is insensitive to spatial discretisation (i.e. it is mesh 

independent) thanks to the inclusion of the characteristic length in the constitutive model. 

Although a simple cohesive fracture law was adopted in developing the framework, the 

proposed scale-dependent numerical framework is able to model pure mode I rock fractures 

and size-dependency behaviour without suffering from any numerical instability (such as 

are due to short-length-scale noise or use of the traditional approach) or spatial-

discretisation-dependent issues which are inherent in the SPH method.  

8.1.2. Simulation of mixed-mode failures under quasi-static loading 

1) Traditional SPH with the tensile instability treatment approach instead of the Taylor SPH 

framework was adopted for simulating mixed-mode rock fractures, and thus in-house codes 

for traditional SPH were also developed in this study. Although the Taylor SPH can provide 

a very accurate solution of rock fractures, the traditional SPH with the tensile instability 

treatment approach is more flexible and easier to implement, as it does not require an extra 

set of particles for removing tensile instability as well as special treatment for free surface 

boundary conditions. Instead, the stabilisation term and corrective technique were adopted 

in the traditional SPH method to eliminate tensile instability and boundary deficiency. The 

traditional SPH with the tensile instability treatment approach was shown to be a stable and 

powerful numerical platform for simulating rock behaviour under complex loadings. 

2) To capture the behaviour of rock fractures under mixed-mode loading, a mixed-mode 

cohesive fracture law instead of the simple cohesive fracture law for pure mode I rock 

fracture simulations was proposed and incorporated into the double-scale framework. The 

incorporation of this mixed-mode cohesive fracture law gives the framework the ability to 

model more complex fracture problems accounting for both tensile and shear cracks and 

multiple fractures. The proposed cohesive fracture model uses a single yield failure surface 

together with damage-plasticity coupling in a traction-displacement jump relationship. This 

enables modelling of the material in the fracture process zone at different stages of 

deformation under combined tensile and shear loading conditions. In particular, key 

inelastic responses of the material in the fracture process zone, including residual 

deformations, strength and stiffness reduction, and evolution of damage, are accounted for.  
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3) A new SPH framework that combines the traditional SPH with the tensile instability 

treatment method with the mixed-mode continuum constitutive model was developed for 

simulating complex rock fracturing processes under mixed-mode loading. The proposed 

SPH framework captures well the post-peak behaviour of rock. Thanks to the strong 

coupling of damage and plasticity, the interaction between irreversible deformation and 

progressive fracture occurring within the fracture process zone during the course of loading 

can be captured properly. Consequently, the proposed SPH approach can predict well the 

fracture toughness envelope obtained from experimental and analytical analyses under a 

range of mixed-mode loadings. Furthermore, as demonstrated through a series of numerical 

tests, the proposed SPH framework is able to handle all the numerical difficulties associated 

with existing numerical methods such as crack propagation, fracture separation and mesh-

dependency.  

8.1.3. Simulate behaviour of rock fractures under dynamic loading 

1) Traditional SPH with a tensile instability treatment method used for mixed-mode rock 

fracture analyses under static loading was adopted to simulate dynamic rock fractures. To 

incorporate the rate effect into the SPH method, an elliptical stress history was applied on 

the SPH boundary particles to simulate the stress wave generated in the split Hopkinson 

bar. This loading method resulted in a nonlinear input velocity instead of a constant one 

that was adopted in the quasi-static cases. Thanks to the dynamic nature of SPH, the new 

loading method combined with any suitable constitutive model provided a robust numerical 

framework for simulating dynamic rock fractures without any ad hoc treatments. 

2) To capture the responses of rocks under a wide range of high loading/strain rates, another 

approach is to develop a rate-dependent constitutive model. In this study, a rate-dependent 

mixed-mode cohesive fracture law was proposed in which only the rate effect on tensile 

strength was considered. The rate effect was introduced by incorporating a dynamic 

increase factor (DIF) with respect to the loading/strain rate into the model. To do so, the 

shapes of the yield surface and the non-associated plastic potential change with different 

DIF, enabling the model to capture the plastic and damage behaviour of the material in the 

fracture process zone under combined tensile and shear dynamic loadings. 

3) In this study, two approaches to modelling dynamic rock fractures were proposed. The first 

incorporated the rate effect by introducing DIF into the cohesive fracture model, resulting 

in rate-dependent continuum model combined with the traditional SPH framework. The 

second approach incorporated the rate effect by employing an elliptical force-time 
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relationship as the input loading into the traditional SPH framework with the mixed-mode 

continuum constitutive model. Good agreement between the simulation results using those 

two approaches and experimental results demonstrated the capacity of both proposed 

models to capture the responses and failures of rocks under high loading rates. Although 

the rate dependency only on the tensile strength of rocks was considered in the first 

approach, the introduction of DIF enabled the model automatically build up the different 

criteria for fracture initiation under different high loading rates. As a consequence, macro-

responses and complex multiple failure patterns of the rocks were successfully predicted. 

On the other hand, the unique input loading in the second approach gave the model notable 

capability to capture the mechanical and fracture properties of rock under dynamic loading 

without any ad hoc treatment, thanks to the dynamic nature of the SPH method. Moreover, 

owing to the flexibility of each SPH particle in determining the fracture orientation based 

on the stress state, together with the mesh-free nature of the SPH, both proposed approaches 

were able to capture the fracturing processes of rocks under complex dynamic loadings. 

At the end of this research, a continuum-based constitutive model with embedded discontinuity 

was developed, taking into account the spatial and temporal scale effects. In particular, a rate-

dependent mixed mode cohesive fracture law was formulated and coupled with the continuum 

constitutive framework with embedded discontinuity which possesses the length scale effect. 

The new constitutive model was incorporated with the mesh-free SPH method to produce a 

robust computational tool for rock fracture modelling under both quasi-static and dynamic 

loadings. It was shown through those three stages that the proposed SPH approach is robust as 

it does not represent the crack as a continuous surface, and thus is particularly flexible in 

simulating complex crack patterns and large deformations. In addition, because the behaviour 

within the fracture process zone under mixed-mode loading can be reflected, the mechanical 

properties, the dissipated energy and consequently the fracture patterns can be reflected 

naturally in the model. Furthermore, the proposed framework can successfully capture the 

effects of the loading rate and specimen size on the mechanical and fracture properties as well 

as the fracturing processes of rocks observed in experiments.  

8.2. Recommendations for future research 

In this work, an accurate numerical framework for the prediction of mixed-mode rock fractures 

under quasi-static and dynamic loadings has been established. However, the proposed approach 

has not been extended to large-scale applications of rocks and discrete fracture network 

problems. To do that, the continuum constitutive model needs to be further developed to 
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enhance the model’s behaviour in simulating complex rock fractures. Further research 

directions leading towards a more effective and powerful modelling approach are suggested. 

They can be summaries as follows: 

 Although the simulation results showed that the proposed framework could simulate the 

complex fracture patterns under both quasi-static and dynamic loading, the framework has 

not been used for simulating problems involving discrete fracture networks. The current 

SPH framework has only one fracture process zone in each SPH particle, which is a 

simplified consideration, as rock masses in reality can possess more than one fracture. 

Therefore, a micromechanics-based model can be developed and incorporated into the 

double-scale model to yield a more realistic model for simulating the behaviour of rock 

fractures. To be specific, the constitutive law based on micromechanics-based models with 

weak planes can replace the elastic stiffness matrix in the current model for describing the 

surrounding material of fracture process zone. The combination of micromechanical effects 

in the surrounding material with the localised behaviour in the process fracture zone would 

help the model to remove stress-locking issues and account for multiple fractures within 

rock masses naturally.  

 Another recommendation for future research is to extend the SPH framework to large-scale 

applications and 3D applications. This task is very straightforward to undertake as the 

proposed framework does not require the remeshing technique of FE methods and the 

contact updating of DE methods, thus resulting in quite low computational cost. Another 

feature of the proposed SPH framework is the insensitivity of the numerical solutions to 

the spatial discretisation. Therefore, the use of a coarse size of spatial discretisation in large-

scale applications which require less computational cost can still achieve desirable and 

reliable numerical results. 
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