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Abstract

Understanding and controlling Lagrangian trajectories is a prerequisite in the design of

efficient mixing devices for highly viscous fluids and microfluidics. Such devices often

have spatial symmetry and/or time periodicity. Flow symmetries manifest as invariants

of the flow, and destroying these invariants is a necessary, but not sufficient, condition for

obtaining good mixing.

In this thesis, a closed, 3D incompressible, steady base flow is considered that has

two invariants in the Stokes regime. First one, and then the second, invariant is destroyed

and the Lagrangian structures in the resulting flows examined. The first invariant is de-

stroyed by periodically reorienting the base flow, giving a one-invariant flow that occurs

on a set of nested topological spheres. The one-invariant flow is further perturbed by

inertia, giving a zero-invariant flow.

To compute Lagrangian structures accurately, a new divergence-free interpolation

method is developed and presented. The method guarantees that any grid-based velocity

data that samples a continuous divergence-free velocity field can be approximated by a

representation that is analytically divergence-free and matches the velocity on the grid

almost exactly. In 3D incompressible flows with one invariant, it is shown that isolated

periodic points cannot exist; hence periodic lines and their manifolds constitute all of

the Lagrangian structure. A hierarchy of periodic lines emerges in such flows whose

connection and behaviour is controlled by resonance points (at a 1:n resonance point

on a period-1 line, the net deformation is zero after n periods). These periodic lines,

in turn, control transport in the flow. Here it is shown that global Lagrangian transport

structures of one invariant flows can be completely understood and calculated numerically

by identifying resonance points.

Upon inertial perturbation, 1:1 resonance points which always emerge as pairs on

a period-1 line of the one-invariant flow give rise to a new mechanism of 3D chaotic

transport that features non-heteroclinic connections of tubular transition regions. Tubular

transition regions are generally observed in Hamiltonian systems of higher dimensions,

and for the first time, are observed here in a 3D incompressible flow.
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Chapter 1

Introduction

1.1 Background

Mixing is an important aspect of many industrial applications such as food processing,

steel production, polymer blending, paint processing, petrochemical processing, microflu-

idics, etc. (Thakur et al., 2003; Erwin, 2011), and in naturally occurring flows such as

dispersion of pollutants in the atmosphere and ocean (Wiggins, 2005; Samelson, 2013),

and mixing of magma flows in the mantle of the earth (Coltice et al., 2017). In many

applications, one wants to achieve uniform mixing quickly. One way to achieve this is

through turbulence where chaotic velocity field necessarily produces chaotic transport of

fluid particles (Dimotakis, 2005).

However, for highly viscous fluids, generating turbulence may require excessive en-

ergy input or result in high temperatures from viscous dissipation. Likewise, at small

length scales, turbulence is difficult to achieve. Hence, mixing by turbulence is not suit-

able for highly viscous fluids (Todd, 2004) and microfluidics (Squires and Quake, 2005;

Nguyen and Wu, 2004; Suh and Kang, 2010; Priye et al., 2013; Ward and Fan, 2015), and

mixing in many applications must be undertaken in a laminar regime. Mixing happens

via advection of fluid particles and diffusion: advection is caused by stirring of the fluid

and diffusion is caused by the thermal motion of the fluid molecules. In laminar flows,

diffusion is slow compared to the advection of fluid particles. So advection determines the

quality of mixing. Good mixing is achieved by advection first, then followed by diffusion

in laminar flows once gradient have become high due to stretching and folding.

1
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1.2 Lagrangian transport

Mixing requires neighbouring fluid particle trajectories to deviate from each other rapidly.

The Lagrangian view of a flow field is most convenient for investigating mixing aspects

of the flow (Cartwright et al., 1999; Wiggins and Ottino, 2004). The advection of a

fluid particle in a fluid domain is obtained by integrating a set of non-linear differential

equations which are
dx
dt

= V(x, t), (1.1)

where V is the fluid velocity, x is the fluid particle position and t is time. In this thesis,

vectors and tensors are always shown as bold letters. In general, equation (1.1) is a special

case of a dynamical system. It is a remarkable fact that the phase space (a collection of all

possible states) of (1.1) coincides with the physical space of the fluid, and a fluid particle

trajectory is equivalent to a phase space trajectory of a dynamical system (Katok and

Hasselblatt, 1995; Ott, 2002). Dynamical systems theory describes the time evolution of

a system in the phase space and is suited to study the behaviour of fluid particles in a fluid

flow (Ottino, 1989; Wiggins, 2003). Hence, the concepts of dynamical systems theory are

employed to analyse mixing.

1.2.1 Chaotic advection

Understanding Lagrangian trajectories and controlling them is the key to efficient

mixing by laminar flows (Aref, 2002; Haller, 2015; Aref et al., 2017). The no-intersection

theorem states that two distinct trajectories never intersect in a finite time. The no-

intersection theorem, together with the number of degrees of freedom of a system con-

strains the type of trajectories possible in that system. The quality of mixing depends

on how much chaos the laminar flow admits, where chaos is defined as "aperiodic long-

term behaviour in a deterministic system that exhibits sensitive dependence on initial

conditions" (Strogatz, 2001). One key feature of chaos is that nearby trajectories diverge

exponentially. We want as much chaos as we can get to have good mixing. Chaotic be-

haviour of a laminar flow system is not due to external noise (or random forces). When

a fully deterministic velocity field produces stochastic type Lagrangian trajectories, this

situation is called chaotic advection (Aref, 1984). What are the necessary conditions on

a system to exhibit chaotic behaviour? The time evolution equations of the system must

be non-linear, and the system should have a minimum three degrees of freedom (i.e. the

number of variables needed to specify the system completely).

Poincaré-Bendixson theorem describes the long term behaviour of a trajectory in 2D

bounded flows. One important result of the Poincaré-Bendixson theorem is that chaotic
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trajectories cannot occur in bounded steady two-dimensional (2D) flows (Hilborn, 2000).

Lagrangian chaotic trajectories can occur in 2D unsteady flows and three-dimensional

(3D) steady or unsteady flows. A chaotic system does not have a closed form solution

for its governing differential equation (Hilborn, 2000) and is sometimes called a non-

integrable system. Integrable systems, whose time evolution equations have closed-form

solutions, cannot have chaos. Thus, chaos must be studied through numerical computa-

tions or experiments.

Chaotic transport can occur in 2D or 3D unsteady flows, where streamlines of the

flow vary (i.e. streamlines of the flow cross at successive times). Chaotic transport can

also occur in 3D steady flow, where streamlines of the flow remain unchanging. This kind

of chaotic transport is called streamline chaos. The possible combinations of dimension-

ality and time-dependence are shown in table 1.1 with a description of the key mixing

characteristics. In this thesis, only incompressible flow (i.e. ∇ · V = 0) is considered, and

unsteady flow is restricted to mean periodic in time. The constraints imposed by volume-

preservation, by symmetries of the system and by the geometry of a system determine

what kind of Lagrangian trajectories are possible for that system. While the primary fo-

cus of this thesis is Lagrangian structures in 3D periodic flows, in the following sections,

key aspects of 2D unsteady and 3D flows will be discussed as they inform the main body

of this thesis.

Table 1.1: Range of flows.

2D 3D

Unsteady Chaos
Chief subject of this
thesis

Steady No chaos Streamline chaos

1.3 2D unsteady flows

In 2D, an equivalence exists between advection of a fluid particle in an incompressible

flow and the time evolution of a Hamiltonian system in phase space (Ottino, 1990; Morri-

son, 1998; Salmon, 1988). In incompressible fluids, the fluid volume is conserved, and in

a Hamiltonian system, the phase space volume is conserved (Liouville’s theorem, Jordan

(2004)). Velocity in a 2D steady incompressible flow can be obtained from a scalar stream

function ψ(x, y) via

vx =
∂ψ

∂y
, vy = −

∂ψ

∂x
(1.2)
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Figure 1.1: Types of periodic points in 2D flows.

The stream function ψ plays the same role as a Hamiltonian function in a system with

one degree of freedom (Aref, 1983). Aref was the first to study chaotic advection

through a process of stretching and folding in the 2D blinking vertex flow in the lami-

nar regime (Aref, 1984). Because there is an equivalence between time-dependent 1D

Hamiltonian systems and 2D incompressible unsteady flows, time-dependent 1D Hamil-

tonian systems theory, which is well established, has been widely applied to understand

transport mechanisms in 2D incompressible unsteady flows (Aref, 1984; Ottino, 1989;

Chaiken et al., 1987; Boyland et al., 2000; Lester et al., 2009, 2010). In 2D unsteady

flows, most work on chaotic advection has been done with time-periodic flows.

In 2D time-periodic flows, periodic points play a significant role in understanding

fluid transport (Ottino, 1989). An nth order periodic point returns to its original position

after n periods of the flow. Three different kinds of periodic points exist in 2D flows:

elliptic, hyperbolic and parabolic. Fluid transport in the neighbourhood of an elliptic

and a hyperbolic periodic points are shown in figure 1.1. In figure 1.1, although, fluid

particle trajectories are shown as continuous lines, actually they move discretely on these

lines because fluid particle positions are recorded after each period in time-periodic flows.

Fluid particles in the neighbourhood of an elliptic periodic point (also called a stable fixed

point) orbit around the periodic point forming islands which are barriers to fluid transport

across the orbit. Fluid particle trajectories in the neighbourhood of a hyperbolic periodic

point (also called an unstable fixed point) expand in one direction and contract in another

direction supporting mixing. At a parabolic periodic point, the net deformation is zero.

Because the lower order periodic points exert more influence on the Lagrangian structures

than the higher order periodic points, computing period-1 points and establishing their

type is essential to determining the nature of fluid transport in their neighbourhood.
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In 2D time-periodic flows, fluid particles in the neighbourhood of an elliptic periodic

point move on closed orbits which can be thought of as tori in three-dimensional space

that is obtained by the rotation of 2D spatial space (x1, x2) about an axis such that it comes

back to its original position after one full period. On perturbation, these tori, breakdown

into chaotic trajectories via a well-established mechanism (the KAM theorem, Arnold

(1978)). In Hamiltonian theory, the KAM theorem has an important consequence in the

perturbation of an integrable Hamiltonian system. A torus is a topological product of two

circles, and it has two different time-periods (or frequencies) each for separate circle. For

small perturbations (almost integrable), the tori with rational ratios of the frequencies (or

winding number) break first, and the tori with irrational ratios survive. As the perturbation

increases, the last survivor is the one with ratios of frequencies equal to the most irrational

number (Hilborn, 2000; Ottino, 1989).

1.4 3D flows

Most of the studies on "chaotic advection" have been in 2D unsteady flows, and very few

studies exist in 3D flows. Because the phase space of a Hamiltonian system is always even

dimensional space, Hamiltonian theory cannot be directly applied to 3D incompressible

flows (Aref et al., 2017; Cheng and Sun, 1989) and little is known about the mechanisms

of transport in three dimensions (Wiggins, 2010). The reasons for this are the explosion

of topological complexity that comes with three dimensions and local breakdown of the

existing theory (Hamiltonian theory) that describes mixing.

In practice, mixing devices often have spatial symmetry and/or time periodicity.

These symmetries in the 3D incompressible flow manifest as invariants or conserved

quantities of the flow. Each invariant corresponds to a symmetry (Mezić and Wiggins,

1994; Haller and Mezić, 1998). In time periodic 3D flows, a map which returns the posi-

tion of a fluid particle after one period can be defined. Such maps in 3D incompressible

flows are called Liouvillian maps (Cartwright et al., 1994). In what follows, this concept

will become concrete for 3D flows. If an n dimensional system has k invariants of motion,

then trajectories of the system live on n − k dimensional space. For flows with invariants,

the common nomenclature for position coordinates of fluid particles is action-angle coor-

dinates. A fluid particle trajectory can be expressed in an action-angle coordinate system.

Action variables take the values of constants of the motion, and angle variables represent

the varying part of the motion. Three-dimensional flows both steady and unsteady can be

categorised based on the number of constants of motion (or invariants). Cartwright et al.

(1996) classified integrable Liouvillian maps into four types: (a) zero actions; three angles



6 Introduction

Figure 1.2: Schematic of a flow driven by a titled rotating disk (reproduced from Fountain
et al. (1998)).

(θ1, θ2, θ3), (b) one action; two angles (I, θ1, θ2), (c) two actions; one angle (I1, I2, θ), and

(d) three actions; zero angles (I1, I2, I3). In two actions maps (action-action-angle maps),

fluid particles are constrained to move on closed invariant curves, and in one-action maps

(action-angle-angle maps), fluid particles are constrained to move on closed invariant sur-

faces.

Whenever a flow consists of closed streamlines, on perturbation, the flow turns into

tori, an example of such flow is presented in the following. A flow driven by a tilted

rotating disk inside a cylindrical container (shown in figure 1.2) is studied experimentally

as well as numerically in Fountain et al. (1998, 2000). In this flow, when the tilt angle

of the rotating disk (α in the figure 1.2) is zero, streamlines are closed circles. When the

rotating disk is tilted, tori are formed. Increasing the tilt angle at a constant rotational

speed of the disk increases the chaotic region, and increasing the rotational speed of the

disk for a fixed tilt angle also increases chaos in the system. This thesis will have a

particular emphasis on action-angle-angle flows, and a review of such flows follows.

1.4.1 One invariant flow (or action-angle-angle flow)

In one invariant 3D flows, fluid particles are constrained to move on 2D invariant

surfaces. Invariant surfaces of one-action maps can be one of two types: nested tori or

nested spheroids (Aref et al., 2017; Moharana et al., 2013; Alexandroff, 1961). Because

the fluid particle motion is restricted to 2D surfaces while preserving area, Hamiltonian

motion is expected on each invariant surface except in the neighbourhood of stagnation

points, where the true 3D character of the flow manifests (Bajer, 1994). As discussed

in section 1.3, periodic points play a key organising role in 2D unsteady flows. In one

invariant 3D flows, the equivalent concept is a periodic line, which will be discussed later
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in section 2.3.4. A period-n line is a set of continuous period-n points which return to

their original locations after n-periods. There can be more than one period-n line. The

coexistence of space-filling invariant surfaces and a periodic line means the periodic line

pierces the invariant surfaces - the point of piercing on an invariant surface acts as a 2D

periodic point of that invariant surface. In one-action maps (or time-periodic flows with

one invariant), periodic points of the periodic line can be elliptic, hyperbolic or parabolic

(or degenerate) in the same way as for 2D flows.

Degenerate points occur when there is zero net deformation at a point on a periodic

line. Degenerate points have an order associated with them. At an nth order degenerate

point, the local deformation is zero after n periods. The role of elliptic and hyperbolic

points of a periodic line in one-action maps are well understood (Aref et al., 2017), but

the role of degenerate points of a periodic line in the construction of Lagrangian structures

is not. Period-doubling and period-tripling bifurcations which are associated with second

order and third-order degenerate points correspondingly have been observed (Dullin et al.,

1999; Mullowney et al., 2005; Smith et al., 2016). However, a general framework of

degenerate points (all orders of degenerate points) and their connection to Lagrangian

structures in one-invariant flows are not well established. Establishing such a general

framework of degenerate points is one important result of this thesis.

1.4.2 3D transport mechanisms

Although 3D transport is poorly understood, a number of transport mechanisms

which improves mixing have been identified. When nested toroidal surfaces of action-

action-angle flows are perturbed, 3D chaotic transport can occur via "resonance induced

dispersion" (RID) (Cartwright et al., 1995, 1996; Vainchtein et al., 2007, 2008; Vainchtein

and Abudu, 2012; Meiss, 2012). In RID, under small perturbations, there exist resonance

regions within tori that have local defects where tracers randomly jump between the 1D

streamlines of the unperturbed flow. In other regions of space away from resonance, ac-

tion variables change slowly compared to the angle variable and hence particle trajectories

slowly drift from unperturbed streamlines. Since fluid particles continuously visit these

resonance regions and are being pushed to different streamlines at these regions, 3D chaos

is generated. Smith et al. (2017) observed 3D chaotic transport occurring via "localised

shear-induced dispersion" (LSID) mechanism, which is similar to RID. In LSID, fluid

particles are pushed between streamlines near a localized shear. When nested spheroidal

surfaces are perturbed, 3D chaotic transport can occur via "resonance induced merger"

(RIM) mechanism (Speetjens et al., 2006a,b; Pouransari et al., 2010). In RIM, some of

the spheroidal shells merge forming an adiabatic structure that has an inner and outer adi-
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abatic shell connected by localised tubes. Transverse transport is much faster through the

merging tubes than on the adiabatic shells. The important feature of these mechanisms

is that they have small regions of space where fast 3D transport happens upon perturba-

tion. While these are the only three transport mechanisms that have been described in the

literature so far, there are unanswered questions about them. For example, is "resonance

induced merger" mechanism generic for systems with nested spheroids or are there other

transport mechanisms for the nested spheroids case? It is likely that there may be other

transport mechanisms.

1.5 Objectives

The main objectives of this thesis are:

1. To identify the Lagrangian features that organises global transport in 3D flows with

one invariant and to find a way to numerically calculate all the Lagrangian structures

in such flows. How the global Lagrangian transport structures are formed in such a

flow is not completely known (Wiggins, 2010).

2. To uncover how Lagrangian transport structures evolve as the flow transitions from

one invariant flow (topologically spheres) to a zero invariant flow upon inertial per-

turbation and also to find out 3D transport mechanisms.

3. To develop a new divergence-free interpolation method. Because, to study (1) and

(2), a divergence-free interpolation method is required to accurately compute 3D

Lagrangian structures. The importance of a divergence-free interpolation method is

explained in section 1.5.2.

1.5.1 Approach

To achieve the objectives mentioned above, an incompressible 3D flow with one

invariant is selected that can be perturbed from one invariant flow to zero invariant flow

by some perturbation. A lid-driven cavity flow system in the Stokes regime suits this

purpose. Most of the studies on lid-driven cavity flows are two-dimensional cavities;

there are fewer studies of three-dimensional cavities (Shankar and Deshpande, 2000).

The particular cavity used here is a hemisphere, and we are aware of no previous study

of lid-driven flow in a hemisphere. Moreover, studying this system is viable through

experiment and simulation, although this study is limited to simulation.

The invariants of the cavity driven flow with and without inertial effects are con-

sidered next. Reynolds number (Re) is the ratio of inertial forces to viscous forces. In
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the Stokes limit (Re = 0), when the lid moves uniformly in one direction, the velocity is

steady and has left-right and fore-aft symmetries. This flow is an action-action-angle flow

(i.e. a flow with two invariants), and hence the fluid particles are constrained to move on

closed 1D curves (a picture is shown in figure 2.2). There is no chaos in this flow. To

remove one of the invariants of the flow, the velocity is made unsteady by periodically

reorienting the direction of the lid motion, thus producing a one-invariant flow. This one

invariant flow can be further perturbed by inertia (Re > 0) to generate a zero invariant

flow. Different kinds of flows that are considered in this thesis generated from lid-driven

hemisphere cavity system are shown in table 1.2. This will be elaborated in chapter 2.

Table 1.2: Different kinds of flows generated from Lid-driven hemisphere system

Lid motion Velocity Re No. of invariants
Uniform Steady Re = 0 2
Periodic reorientation Unsteady Re = 0 1
Periodic reorientation Unsteady Re > 0 0

1.5.2 Necessity of a new divergence-free interpolation

Extensive numerical computations of Lagrangian structures is essential to under-

stand fluid transport. Computing Lagrangian trajectories require knowledge of the ve-

locity field everywhere in the domain. The hemisphere lid-driven cavity does not have

an analytical expression for the velocity that can be integrated to get particle trajectories,

but a discrete velocity field can be obtained using computational methods. To integrate

trajectories with a discrete velocity field, an interpolation scheme is required to obtain

a continuous velocity field from the discrete field. For velocity fields determined from

computational methods or experimental measurements, standard velocity interpolation

schemes never explicitly preserve the solenoidal nature of the underlying incompress-

ible flow, leading to localised and uncontrolled artificial perturbations in the flow. These

perturbations are not an issue for a fully chaotic region of the flow because the shad-

owing lemma (Hammel et al., 1987; Grebogi et al., 1990; Ottino et al., 1995) describes

how long and how closely the particle tracking follows some true orbit of the chaotic

flow. However, the picture changes markedly near the boundaries between chaotic and

regular regions (e.g. around cantori), and when the flow has symmetries that should be

obeyed. When the main point is to introduce small, controlled perturbations to study the

effects of symmetry-breaking on the development of Lagrangian coherent structures, spu-

rious divergences can render the computational orbits completely inaccurate because, in

the computation, material surfaces no longer function as barriers to transport. Similarly,
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identifying critical points such as elliptic and hyperbolic points (and lines) becomes diffi-

cult if not impossible. Typical velocity interpolation schemes interpolate velocity compo-

nents independently. In incompressible flows, interpolating velocity components via any

scheme separately does not preserve volume conservation, which is a consequence of a

divergence-free velocity. Early (and ongoing) work on explicitly divergence-free interpo-

lation was motivated by applications in which data is sparse and scattered and used radial

basis function to produce global interpolation schemes (Handscomb, 1993; Narcowich

and Ward, 1994; Lowitzsch, 2005). Finn and Chacón (2005) were the first to produce an

interpolation scheme to obtain a continuous divergence-free velocity field from gridded

data. At the beginning of this thesis work, Finn and Chacón’s method was used. However,

it was found that the interpolated values of velocity components on the 3D grid points did

not necessarily recover the same values of the discrete velocity components which were

used for the interpolation and that sometimes the interpolated velocity could vary signif-

icantly from the grid velocities on which they are based. This presented a difficulty in

accurately computing Lagrangian structures. This difficulty motivated the development

of a new explicitly and exactly divergence-free interpolation method, based on B-splines,

to calculate a C2 continuous analytic vector potential from discrete 3D velocity data on

a regular grid. A continuous analytically divergence-free velocity field can then be ob-

tained from the curl of the potential. The new method ensures that the analytic velocity

field matches the grid values almost everywhere, with errors that are two to four orders of

magnitude lower than those of existing interpolation methods. This method is employed

to track fluid particles in all the simulations of this thesis.

1.6 Outline of the thesis

The workhorse of this thesis, lid-driven hemisphere flow, is introduced in chapter 2. All

the different kinds of flows that are produced from the hemisphere flow, and their sym-

metries and invariants are described in this chapter. Some of the features of one invariant

flows are also presented there. A new divergence-free interpolation method and all the

other numerical techniques that are used in this thesis are discussed in chapter 3. The

organisation of Lagrangian structures in one invariant flows and a method to numeri-

cally calculate them in one invariant flows are discussed in chapter 4. In that chapter, a

general framework of a type of resonance bifurcations which occur on periodic lines is

presented and how these resonance bifurcations organise all of the Lagrangian structures

in one invariant flows are explained. A method to numerically calculate all the Lagrangian

structures in one invariant flows using these resonance bifurcations is also presented. The
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transformation of Lagrangian structures as one invariant flow changes to zero invariant

flow by inertial perturbation is discussed in chapter 5. Some of the main results of this

chapter are the transformation of nested spheroids to nested tori upon perturbation, for-

mation of a chain of heteroclinic connections in the perturbed flow, and a new transport

mechanism through which 3D chaotic advection happens. The conclusions of this thesis

and future work are presented in chapter 6.





Chapter 2

Periodically Reoriented Hemisphere
Flow

The system being considered for the study of three-dimensional chaos is a lid-driven

cavity flow in a hemisphere, as shown in figure 2.1. The spherical domain r ∈ [0, 1],

θ ∈ [0, π] and φ ∈ [0, π] is preferred over r ∈ [0, 1], θ ∈ [π/2, π] and φ ∈ [0, 2π] where θ

is the polar angle and φ is the azimuthal angle, because the later has discontinuity where

φ plane and φ + π plane joins inside hemisphere. The selected domain also removes the

coordinate singularity from the interior of the domain that arises when sin θ = 0. The

fluid inside the hemisphere is viscous and incompressible. In this work, two categories

of flow are made based on Reynolds number of the fluid; zero-Reynolds number flow

which is discussed in chapter 4; and non-zero Reynolds number flow which is discussed

in chapter 5.

2.1 Base flow

A steady flow is generated with uniform lid motion UW = 1 in the x direction (φ = 0).

This flow is called here the base flow field u(x) and it is only a function of space. The base

flow is the fundamental building block from which all other flows will be constructed. A

dynamical system is defined in equation (2.1) from the base flow field.

dx
dt

= u(x), x(0) = x0, (2.1)

where x(0) is the fluid particle position at time t = 0.

The solution of equation (2.1) is

x(t) = Φt(x0), (2.2)

13
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Figure 2.1: Schematic of the lid driven hemisphere flow.

where the map Φt is called the evolution operator.

2.1.1 Base flow in Stokes regime

The base flow is considered in the limit where Reynolds number goes to zero. To

understand this flow, streamlines are obtained by tracking a few fluid particles. In the

Stokes limit, all streamlines are closed, and they are topological circles. Streamlines on

the central plane (z = 0) are shown in figure 2.3. The base flow has a stagnation line that

is attached to the hemisphere boundary (the dashed line in figure 2.2). The stagnation

line endpoints are: (0, 0.1624, 0.9867) and (0, 0.1624,−0.9867) in Cartesian coordinates.

Symmetries of the base flow field of zero Reynolds number flow:
Symmetries in a volume-preserving flow correspond to invariants (or conserved quan-

tities) of the flow (Haller and Mezić, 1998). Invariants in a flow restrict the motion of

particles. In three-dimensional flows, a flow with two invariants has particle trajectories

which are one-dimensional, and one invariant flow has particle trajectories which are

two-dimensional. True three-dimensional particle transport happens only in flows with

no invariants.

Symmetries in the base flow field manifest as symmetries in Lagrangian trajecto-

ries (Franjione et al., 1989; Ottino et al., 1992; Speetjens et al., 2004)). The base flow

field has two symmetries - a fore-aft symmetry (in the x direction) and a left-right sym-

metry (in the z direction). In order to express the symmetries of the base flow field in
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Figure 2.2: Schematic of the lid driven hemisphere flow. Continuous lines are represen-
tative streamlines of base flow. Dotted line is the stagnation line.

Figure 2.3: Flow cross-section of streamlines in the x–y plane. The dashed line is the
hemisphere and lid boundary. The lid moves left to right in the +x direction.
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a mathematical form, two maps S x and S z are introduced that reflect a particle position

about x = 0 and z = 0 correspondingly:

S x : (x, y, z)→ (−x, y, z), (2.3)

S z : (x, y, z)→ (x, y,−z). (2.4)

Fore-aft symmetry of the base flow (i.e. in the x–direction) results in a time-reversal sym-

metry,

Φt = S xΦt
−1S x. (2.5)

Left-right symmetry of the base flow (i.e. in the z–direction) results in a reflection sym-

metry,

Φt = S zΦtS z. (2.6)

The base flow field has two invariants which come from the two symmetries of the flow.

Fluid particle trajectories are topological circles and the flow does not admit chaos any-

where.

2.1.2 Base flow in inertial regime

The base flow field of non-zero Reynolds number flow has only one symmetry (left-

right) as given by equation (2.6). The fore-aft symmetry in equation (2.5) is lost by

introducing inertia to the system as will be shown in chapter 5.

To show the fore-aft symmetry breaking with inertia, a streamline for Re = 1 flow

on the centre plane and its reflection about y axis is shown in figure 2.4. In this figure,

the black line is the streamline, and the magenta line is the reflection of the streamline.

The difference between them is clearly visible in the zoomed-in parts of the figures. In

the Stokes base flow, a streamline and its reflection about the y axis overlap completely.

To understand this flow, three fluid particles which are spatially apart from each other

are tracked on both sides of the z = 0 plane. Plotting full trajectories of these particles

looks cumbersome, hence only the intersections of these trajectories on the x = 0 plane

are shown in figure 2.5 which is the Poincaré section. Different colours in the Poincaré

section represent different particles, and the Poincaré section is symmetric from the z = 0

plane due to the left-right symmetry. In this figure, a schematic of a sample particle

trajectory is shown in sky-blue colour line, and the intersections of this trajectory on the

x = 0 plane are shown as orange spheres. From the Poincaré section of this figure, it

is evident that streamlines move on nested tori. A sample torus is shown in yellow in

this figure. There exist two sets of nested tori, one on each side of the z = 0 plane. The
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Figure 2.4: A stream line of base flow (continuous black line) on the centre plane and its
reflection (magenta) about y axis is shown for Re = 1

Figure 2.5: Poincaré section at x = 0 plane of Re=1 base flow.
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pink sphere in this figure is the stagnation point whose position in Cartesian coordinates

is (0.0035, 0.2589, 0), and the salmon coloured lines represent stable manifolds of the

stagnation point. These stable manifolds become the centres of the nested tori.

2.2 Periodically Reoriented Hemisphere Flow (PRHF)

The base flow has two symmetries in the Stokes regime and one symmetry in the inertial

regime. One way to break one of the symmetries in the Stokes regime and the only

symmetry in the inertial regime is to make the base flow unsteady. The way in which it is

done here is to rotate the direction of the lid motion by an angle Θ as shown in figure 2.6.

In this flow model, the direction in which the lid moves keeps changing after sliding

in that direction for a fixed amount of time. Note that the lid does not rotate, only the

direction in which the lid moves. This flow is called Periodically Reoriented Hemisphere

Flow (PRHF). Two parameters will characterize the system in this flow;

• Reorientation angle Θ: the angle by which the lid changes its direction.

• Lid displacement β: the distance the lid slides in one direction before changing its

direction.

β is non-dimensional and is normalized with the radius of the hemisphere. Because the

lid velocity UW = 1, β also represents time. For this re-oriented flow, the velocity field is

written as

u(x, t) = R(mΘ)u(x), m = b
t
β
c, (2.7)

where b.c is the floor function and RmΘ rotates the base velocity field by an angle mΘ in

an anti-clockwise direction.

Continuous particle trajectories can be obtained by integrating the velocity u(x, t). In

this thesis, to reduce the complexity of higher dimensions, we always work with discrete

trajectories instead of continuous trajectories. A discrete trajectory contains fluid particle

positions that are equally spaced in time for period β. They are also called temporal

Poincaré sections or stroboscopic maps.

Tracking fluid particles in PRHF requires the velocity u(x, t) to be evaluated from

the base flow field using equation (2.7). However, it is numerically convenient to use an

equivalent flow without changing the direction of lid motion, but by rotating the entire

hemisphere by an angle Θ in a clockwise direction after the lid moves in the x-direction

for β time. This approach is preferred to compute Lagrangian structures because the same
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Figure 2.6: Schematic showing reorientation of the base flow.

base velocity field can be used. In this way a time-periodic map can be written as

Ψ(β,Θ) = R−ΘΦβ. (2.8)

Here Φβ is the base flow map for lid displacement β and R−Θ is the rotation of the hemi-

sphere in the clockwise direction by an angle Θ. All computations are done using the

map Ψ(β,Θ) as the basic building block of the time-periodic flow in this work. We often

drop the subscript (β,Θ) from equation (2.8) and simply write the time-periodic map as

Ψ, however (β,Θ) will always be implied. A temporal Poincaré section can be obtained

via

xk+1 = Ψ(xk), xk = x(kβ), (2.9)

where xk is a particle position after k periods (i.e. time=kβ).

2.3 PRHF - Stokes regime

In the Stokes regime, the base flow has two symmetries, and one of the symmetries of the

base flow is broken in PRHF. PRHF in the Stokes regime has a time-reversal-reflection

symmetry, which will be proved in section 2.3.1. The symmetry manifests as an invariant

of the system, and the system is called as an action-angle-angle flow system. Fluid particle
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trajectories are constrained to move on closed invariant surfaces. To imagine an invariant

surface, consider a closed invariant curve of the base flow on the central plane (z = 0

plane), if this is rotated about the y axis, it sweeps a surface, which is an invariant surface

of the PRHF. In PRHF, fluid particle advection takes place on nested spheroids. The map

Ψ is a one-action map in the Stokes regime.

2.3.1 Symmetry of the PRHF

In this section, the existence of time-reversal-reflection symmetry for PRHF in the

Stokes regime is proved.

Substituting equation (2.5) (with t = β) into equation (2.8):

Ψ = R−ΘΦβ

= R−ΘS xΦβ
−1S x

= R−ΘS xΦβ
−1R−1

−ΘR−ΘS x

= R−ΘS x(R−ΘΦβ)−1R−ΘS x

= R−ΘS xΨ
−1R−ΘS x

Defining

R−ΘS x = S Θ, (2.10)

then allows Ψ to be written as

Ψ = S ΘΨ
−1S Θ. (2.11)

This is the time-reversal-reflection symmetry of the mapΨ, where it can be shown that S Θ

is the map that reflects a particle about the plane θ = π/2 −Θ/2 (see figure 2.7). Defining

the set of all the points on the plane θ = π/2 − Θ/2 as IΘ, it immediately follows that

IΘ = S ΘIΘ. (2.12)

A similar symmetry occurs inside the driven-lid cylinder, which has been extensively

studied (Malyuga et al., 2002; Speetjens et al., 2004, 2006a,b; Pouransari et al., 2010)

The importance of the symmetry in equation (2.11) is twofold. First, it is enough to

look for Lagrangian coherent structures on one side of symmetry plane IΘ, as they will

be mirrored across this plane. Second, period-1 points (and by extension period-1 lines)

must lie on the symmetry plane IΘ. The latter can be proved by considering a period-1

point xP1. It is shown in section 2.3.2 that this point must lie on the symmetry plane S Θ.
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Figure 2.7: Symmetry plane for Θ = π/4.

2.3.2 Location of period-1 points

From the definition of a period-1 point (or fixed point) of map Ψ, we write

xP1 = ΨxP1

= R−ΘΦβxP1.
(2.13)

Applying RΘ to both sides of equation (2.13), we find

RΘxP1 = ΦβxP1. (2.14)

We now consider separately how each coordinate of xP1 is modified by application of the

map Φβ. We first note that because the point ΦβxP1 must be rotated to complete one full

period of the reoriented flow map (see equation 2.13) thenΦβxP1 , xP1. Because rotation

about the y-axis does not change the y–coordinate of a point, application of RΘ to xP1

results in

(RΘxP1)y = (xP1)y, (2.15)

or from equation (2.14)

(ΦβxP1)y = (xP1)y, (2.16)

i.e. the y–coordinate of a period-1 point is not changed by application of the base flow

(see figure 2.8a). Because streamlines of the base flow are symmetric about x = 0 and

the y components of xP1 and ΦβxP1 are the same, it can be seen from figure 2.8a and
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(a)

(b)

Figure 2.8: Projection of a stream line of the base flow: (a) x–y projection and (b) x–z
projection.
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figure 2.8b that the following must also be true:

(ΦβxP1)z = (xP1)z

(ΦβxP1)x = −(xP1)x

(2.17)

Equation (2.16) and equation (2.17) can then be written without reference to coordinate

directions as,

ΦβxP1 = S xxP1 (2.18)

By substituting equation (2.18) in equation (2.14), we get

RΘxP1 = S xxP1

xP1 = R−ΘS xxP1

(2.19)

Using equation (2.10) to replace R−ΘS x by S Θ, we find

xP1 = S ΘxP1 (2.20)

Hence, xP1 ∈ IΘ, i.e. P1 points must lie on the symmetry plane IΘ.

2.3.3 Three non-trivial period-1 points

In this section, it is shown that three period-1 points must exist on the symmetry

plane for all parameter values of Θ and β. In PRHF, because the rotation is about the y

axis, the points on the y axis do not change during rotation. During the lid motion, two

points on y axis do not move, the first point (0, 1, 0) is at the bottom of the hemisphere,

and the second point is the central stagnation point (0, yS P, 0), where yS P = 0.2588 (see

figure 2.9). The points (0, 1, 0) and (0, yS P, 0) are two non-trivial period-1 points, because

they do not change during the lid motion and during the rotation about y axis. The third

period-1 point is on the hemisphere lid, and the details about this point are given below.

It will be shown in chapter 3 that these three period-1 points belong to the same period-1

line.

Assume a fluid particle is at x0 on hemisphere lid (see figure 2.10). The requirement

for the particle to be a period-1 point is that it will move to a point x′0 on hemisphere

lid after β lid displacement such that x′0 is the reflection of the point x0 about z axis (see

figure 2.10). i.e.

x′0 = Φβx0 (2.21)
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Figure 2.9: Enumeration of the action in the Stokes flow. yS P = 0.2588 is the y coordinate
of stagnation point.

Figure 2.10: Hemisphere lid: IΘ is the symmetry plane and the lid velocity UW = 1
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and

x0 = R−Θx′0. (2.22)

Hence, x0 = Ψx0. Since the lid velocity is unity, the distance between the points x0 and

x′0 is β. From the figure 2.10, we can see that the position coordinates of the period-1

point x0 on hemisphere lid is (−β/2, 0,− β/2
tan(Θ/2) ). The distance from the centre (0, 0, 0) to

the period-1 point x0 is β/2
sin(Θ/2) . For Θ = π/3 and β = 1, the period-1 point will be on the

rim.

2.3.4 Non-existence of isolated periodic points in one-action maps

In principle, in a one-invariant flow a coordinate transformation can be used to map

fluid particle positions (x, y, z) to ξ(θ1, θ2, I), where I represents the action variable and

(θ1, θ2) represent angle variables.

ξ =


θ1

θ2

I

 (2.23)

When the system parameters Θ and β are fixed, a map can be defined as

ξ 7→ f (ξ), (2.24)

where f is continuous in (θ1, θ2, I). ξ0, ξ1, ξ2, . . ., ξk is a fluid particle orbit for k periods,

where

ξn = f (ξn−1), n = 1, 2, 3, . . . , k. (2.25)

Period-n fixed point equation, by definition, is

f n(ξ) − ξ = 0. (2.26)

Since f and ξ are three-dimensional vectors, equation (2.26) can be split component wise

into three equations as

f n
1 (θ1, θ2, I) − θ1 = 0, (2.27a)

f n
2 (θ1, θ2, I) − θ2 = 0, (2.27b)

f n
3 (θ1, θ2, I) − I = 0⇒ I − I = 0. (2.27c)
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Because the action variable of a fluid particle does not change in the Stokes flow, equa-

tion (2.27)c is not an independent equation (i.e this equation is satisfied at every point in

the domain). Equation (2.27)a and equation (2.27)b represent two-dimensional surfaces

that are either closed or attached to the boundary, and the intersection of these two sur-

faces will be the solution of equation (2.27) which is the same as equation (2.26). If the

two surfaces intersect (i.e if the solution exists for some order of period n), the intersection

must be a line and it cannot be a point. So equation (2.26) cannot have point solutions.

Hence, isolated period-1 points cannot exist in the PRHF in the Stokes limit. Periodic

lines with the ends attached to the boundary or closed periodic lines are possible.

2.3.5 Enumeration of the invariant (or action)

In this action-angle-angle system (or simply one action system), all the fluid parti-

cles are constrained to move on invariant surfaces that are topological spheres. The term

"shell" is introduced here to describe them. In principle, we could transform conformally

the hemisphere into a sphere. This would make spheroids into actual spherical shells cen-

tred on the stagnation point yS P. Instead of making this laborious transform, an effective

action coordinate (I) is defined in the following. Each shell here is labelled with a num-

ber, zero for stagnation point and one for the outer most shell. This way, each shell has a

unique number.

To compute shell number of a fluid particle, the particle is rotated about the y axis

such that it lies on the central plane (z = 0 plane). Then the streamline of that particle

is computed on the central plane using the base flow field in the Stokes regime. The

streamline intersects the y axis twice: at yc and once at y f as shown in figure 2.9 (with

yc < y f ). Action value is computed via

I =
y f − yS P

ymax − yS P
, (2.28)

where yS P = 0.2588 is the y coordinate of the stagnation point. Enumeration of invariants

of fluid particles allows us to group fluid particles according to their shell. The usefulness

of computing invariant values to understand Lagrangian structures on shells will be seen

later in chapter 4.

2.4 Linearization of PRHF map

Period-1 points are fixed points of the PRHF mapΨ. To understand the advection of fluid

particles in the neighbourhood of period-1 points, we find linear approximation of the
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mapΨ at period-1 points using Taylor series expansion ofΨ. At a period-1 point xP1, this

expansion is

Ψ(x) = xP1 +

[
∂Ψ(xP1)
∂x

]
(x − xP1) + O((x − xP1)2), (2.29)

where ∂Ψ(xP1)
∂x = F is the Jacobian (or deformation tensor).

A new variable ζ which is displacement from the period-1 point is introduced as

ζ = x − xP1, (2.30)

which allows equation (2.29) to be written as

Ψ(x) − xP1 = Fζ + O(ζ2). (2.31)

The map for ζ becomes

ζ 7→ Ψ(x) − xP1, (2.32)

or

ζ 7→ Fζ + O(ζ2). (2.33)

For small ζ (after linearization), we find that the application of Ψ to a point x0 whose

displacement from xP1 is ζ0, will be displaced to ζ1.

ζ1 ' Fζ0, ζk = ζ(t = kβ), (2.34)

where ζk is the displacement of the particle after k periods.

The deformation tensor F = ∂Ψ
∂x has eigenvalues λ1, λ2, λ3 and corresponding eigen-

vectors e1, e2 and e3. The eigenvalues λ1, λ2 and λ3 are also called multipliers of the

period-1 point xP1. |λ1λ2λ3| = 1 for volume preserving maps. The eigenvalues of the

deformation tensor evaluated at the period-1 point xP1 determine the nature of advection

of fluid particles in the neighbourhood of the period-1 point. The eigenvalues can be three

real or one real and two complex. Assume λ is a real eigenvalue and e is the corresponding

eigenvector. The eigenvector direction is unstable if λ > 1, null direction (or no change)

if λ = 1, stable if 0 < λ < 1, stable if −1 < λ < 0 (points move discretely towards

the period-1 point while jumping between two sides of the eigendirection), unstable if

λ < −1 (points move discretely away from the period-1 point while jumping between two

sides of the eigendirection). A period-1 point is called hyperbolic if the magnitude of any

one of the three multipliers of the period-1 point is not equal to one. Stable and unstable



28 Periodically Reoriented Hemisphere Flow

manifolds are associated with a hyperbolic point. A stable manifold,

W s(xP1) =
{
x : Ψk(x)→ xP1, k → +∞

}
, (2.35)

and an unstable manifold,

Wu(xP1) =
{
x : Ψk(x)→ xP1, k → −∞

}
. (2.36)

Manifolds can be one-dimensional or two-dimensional based on the magnitude of the

multipliers of a period-1 point. 1D manifolds (stable or unstable) are invariant curves and

2D manifolds (stable or unstable) are invariant surfaces.

2.4.1 Multipliers in the Stokes regime

The PRHF in the Stokes regime does not have isolated periodic points, it only has

periodic lines (see section 2.3.4). It can be seen from the following description that a

period-1 point of a period-1 line has one of the eigenvalues equal to one. First, assume

that one of the eigenvalues of a period-1 point xP1 is equal to one (say λ3 = 1). Consider

a point xP1 + εe3, which is in the eigenvector e3 direction of eigenvalue λ3, ε is a small

value. Substituting xP1 + εe3 in equation (2.29), we obtain

Ψ(xP1 + εe3) = xP1 + F|x=xP1εe3

= xP1 + εe3.
(2.37)

It follows from equation (2.37) that the point xP1 + εe3 is also a period-1 point and thus

that the eigenvector direction e3 is the null direction, which is tangent to the period-1 line.

Every period-1 point on the period-1 line always has an eigenvector in the null direction

for which the eigenvalue is one. To simplify later analysis, we will always define this to

be λ3 = 1. Because λ3 is fixed and is one, the stability of a period-1 point depends on the

eigenvalues λ1 and λ2. Three types of stabilities are possible for a period-1 point of PRHF

in the Stokes regime, elliptic, hyperbolic and degenerate points.

• Elliptic point: Eigenvalues λ1 and λ2 are complex.

• Hyperbolic point: Eigenvalues λ1 and λ2 are real, and |λ1| , 1 and |λ2| , 1, and

λ1 = 1/λ2.

• Degenerate point: A period-1 point is called an nth order degenerate point if the

net deformation at that point after n periods is zero. If xP1 is an nth order degenerate

point and F is the deformation tensor computed there. Fn becomes,
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[
∂Ψ(xP1)
∂x

]n

=


1 0 0

0 1 0

0 0 1

 , (2.38)

or

ζ ' Fnζ, (2.39)

where ζ is the displacement from the period-1 point. At an nth order degenerate

point, eigenvalues of the deformation tensor satisfy,

λn
1 = 1, λn

2 = 1, λn
3 = 1. (2.40)

The eigenvalues at an nth order degenerate point will be λ1,2 = e±i(2π/n) and λ3 = 1.

Degenerate points of order three or above are elliptic period-1 points as they have

complex eigenvalues, which can be seen in table 2.1.

Table 2.1: Eigenvalues of the degenerate points on a period-1 line

Order of degeneracy λ1 λ2 λ3

First 1 1 1
Second -1 -1 1

Third -0.5+

√
3
4 i -0.5-

√
3
4 i 1

Fourth −i i 1
...

...
...

...

nth ei(2π/n) e−i(2π/n) 1

2.4.2 Multipliers in the inertial regime

By adding inertia to the PRHF, the time reversal-reflection symmetry is lost, and

fluid particles motion is not restricted to 2D invariant surfaces. In the PRHF with finite Re

case, isolated period-1 points are found instead of periodic lines (This will be discussed in

great detail later in chapter 5). The classification of isolated period-1 points of the PRHF

in the inertial regime is presented in table 2.2.

The eigenvalue analysis described in sections 2.4.1 and 2.4.2 to determine the nature

of period-1 point stability applies to the higher order periodic points also. The eigenvalues

of the deformation tensor are obtained using the map Ψn for an nth order periodic point.
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Table 2.2: Nature of a period-1 point from eigenvalues of the deformation tensor com-
puted there.

λ1 λ2 λ3 Nature of stability
real and
|λ1| , 1

real and |λ2| ,
1

real and |λ3| ,
1

Hyperbolic node

real and
|λ1| < 1

complex and
|λ2| > 1

complex and
|λ3| > 1

Hyperbolic focus (spi-
ralling out)

real and
|λ1| > 1

complex and
|λ2| < 1

complex and
|λ3| < 1

Hyperbolic focus (spi-
ralling in)

2.5 Invariants of deformation tensor

As well as of using eigenvalues of deformation tensor F to determine stability, invariants

of F can also be used. The invariants of the deformation are introduced first and discussed

their significance later. The characteristic equation for eigenvalues λ of a deformation

tensor F is given by

p(λ) = λ3 − (Tr F)λ2 +
1
2
(
(Tr F)2 − Tr F2)λ − det(F), (2.41)

where 1) Tr F is the trace of the deformation tensor denoted by τ (also termed first trace),

τ = Tr F = λ1 + λ2 + λ3 (2.42)

2) det(F) is determinant of F,

det(F) = λ1λ2λ3 (2.43)

3) the term 1
2

(
(Tr F)2 −Tr F2) in equation (2.41) is called the second trace and denoted by

σ .

σ =
1
2
(
(Tr F)2 − Tr F2) = λ1λ2 + λ2λ3 + λ3λ1 (2.44)

Tr F, det(F) and σ are invariants of the deformation tensor F. Because det(F) = 1 for

volume preserving maps, the characteristic equation of the Deformation Tensor F can be

written as,

p(λ) = λ3 − τλ2 + σλ − 1. (2.45)

It is shown in section 2.5.1 that the stability of a period-1 point in the Stokes regime can

be determined by the trace value of the deformation tensor at the point.
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2.5.1 Stokes regime

Because λ3 = 1 (by definition) and det(F) = 1, we can write,

λ2 = 1/λ1. (2.46)

Substituting equation (2.46) in equation (2.44), we get

σ = λ1λ2 + λ2λ3 + λ3λ1

= λ1 + 1/λ1 + 1

= τ.

(2.47)

Since τ = σ and det(F) = 1, the stability of a period-1 point depends only on one

invariant, which is τ of the deformation tensor.

The characteristic equation (2.45) can be written as,

p(λ) = λ3 − τ(λ2 − λ) − 1

= (λ − 1)(λ2 + (1 − τ)λ + 1).
. (2.48)

The solutions of this equation are 1 and 1
2

(
(τ−1)±

√
τ2 − 2τ − 3)

)
. We can characterize the

nature of a period-1 point of a period-1 line line by calculating the trace of the deformation

tensor evaluated at that point. If τ ∈ (−1, 3), the term τ2 − 2τ − 3 is negative, the period-1

point is elliptic. If τ > 3, then the period-1 point is hyperbolic, if τ < −1, then the period-1

point is hyperbolic. The trace value of an nth order degenerate point is obtained by,

τ = 1 + 2 cos(2π/n). (2.49)

It will be shown later in chapter 4 that degenerate points on periodic lines are easily

identified using their trace values.





Chapter 3

Computational Methods

To investigate transport in the PRHF, a number of numerical methods have been utilised:

1) base flow calculation, 2) a new divergence-free interpolation method, 3) calculation

of analytically divergence-free base flow velocity flow, 4) calculation of period-1 line

of the PRHF in the Stokes limit, 5) calculation of deformation tensor, 6) calculation of

higher-order periodic lines of the PRHF in the Stokes limit, and 7) calculation of isolated

period-1 points of the PRHF in the inertial regime. This chapter details these numerical

techniques.

3.1 Obtaining the base flow velocity field of lid-driven

hemisphere flow

The governing equation for flow of an incompressible Newtonian fluid as considered in

this thesis, is the incompressible Navier-Stokes equation, given by

∂u

∂t
+ u · ∇u = −

∇p
ρ

+ ν∇2u, (3.1)

where ρ is density, ν is kinematic viscosity, p is pressure and u is velocity of the fluid. The

boundary conditions for the base flow are: vx = 1, vy = 0, vz = 0, at y = 0, and u = 0 at

|x| = 1 (see figure 2.1).

An analytical solution for equation (3.1) is not available for the hemisphere geome-

try so equation (3.1) is solved numerically using the Semtex code developed by Blackburn

and Sherwin (2004). Semtex is a 2D spectral element method, here in (r, z) and uses

Fourier expansion functions for the spatially periodic direction θ to solve for the steady

or unsteady velocity field. The hemisphere is treated in terms of cylindrical coordinates

to obtain velocity using Semtex. Because the hemisphere velocity is periodic in azimuthal

33
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Figure 3.1: The mesh corresponding to hemisphere in the axial-radial plane.

direction θ, the Fourier expansion is done in that direction. A two-dimensional mesh as

shown in figure 3.1 in axial-radial plane is used for hemisphere geometry in the Semtex

velocity calculations.

Semtex provides u on the mesh in figure 3.1, but for later methods u is required

on a uniform grid. u on the mesh is then interpolated spectrally onto a uniform grid in

spherical polar coordinates (r, θ, φ). The interpolated velocity field on the unifrom grid is

in cylindrical polar coordinates and is converted to spherical polar velocity components

(vr, vθ, vφ) for use in particle tracking.

To obtain base flow in the Stokes limit, the kinematic viscosity is set to ν = 1015 in

the Semtex velocity calculations so equivalent to Stokes flow. To obtain base flow in the

finite Re flow, ν = 1/Re is set in the Semtex velocity calculations because the kinematic

viscosity is set as the inverse of the Reynold number in Semtex. There is a discontinuity

in the velocity along the line where the sliding lid meets the equator of the hemisphere,

which presents a significant numerical difficulty due to the spectral nature of semtex. The

discontinuity is removed by using a continuous ramp in lid velocity from zero to 1, and

constant lid velocity here is replaced using a continuous function 1 − e−2000(1−r2)3
(see

Figure 3.2).
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Figure 3.2: Lid Velocity along x axis.

To compute a particle trajectory, velocity data between grid points is needed, and

hence, an interpolation scheme is needed. It is possible to get velocity at any arbitrary

point by spectral interpolation of the Semtex solution, but it would be computationally

very expensive and not practical for the extremely long integration times typical of the

computations presented in subsequent chapters.

In an incompressible flow, if the volume is not conserved during particle advection,

fluid particles do not remain on their corresponding invariant surfaces or lines, leading to

inaccurate Lagrangian transport structures. Typical velocity interpolation schemes inter-

polate velocity components independently. In incompressible flows, interpolating velocity

components via any scheme separately does not preserve volume conservation, which is a

critical point of this project. Finn and Chacón (2005), hereafter referred to as FC, were the

first to produce an interpolation scheme to obtain a continuous divergence-free velocity

field from gridded data. At first in my thesis work, FC method was implemented to obtain

a continuous divergence-free velocity field, but it is found that the interpolated velocity

varied significantly from the grid velocities on which they were based. A new divergence-

free interpolation is developed that ensures the interpolated velocity field matches the grid

values almost everywhere, with errors that are two to four orders of magnitude lower than

the FC method. This was published as Ravu et al. (2016) and is presented in the next

section.

3.2 A new divergence-free interpolation method

The starting point is velocity data (vx, vy, vz) specified on a grid of points (x, y, z) dis-

tributed throughout the domain of interest. It is assumed below that the grid is uniformly
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spaced (although it does not have to be) and that the grid data accurately samples an un-

derlying continuous, incompressible velocity field. The data may come from numerical

computation or experimental measurement.

We consider the three-dimensional grid [x0, ...xnx], [y0, ...yny] and [z0, ...znz] with

spacing (hx, hy, hz) between nodes, where the grid point (p, q, r) is given by

xp = x0 + phx, yq = y0 + qhy, zr = z0 + rhz,

and p = 0, ...., nx, q = 0, ...., ny and r = 0, ...., nz.

Before presenting the method and because this scheme will be benchmarked with

that of FC, it is instructive to outline the interpolation method of FC.

3.2.1 Outline of the Finn and Chacon method

FC calculate a spline function for a vector potential A = (Ax, Ay, Az) from discrete

velocity data and then differentiate A analytically to obtain a divergence-free velocity.

They choose a vector potential gauge in which Ax = 0 (although other gauges are possi-

ble), and the divergence-free velocity components are given by

vx =
∂Az

∂y
−
∂Ay

∂z
(3.2a)

vy = −
∂Az

∂x
(3.2b)

vz =
∂Ay

∂x
. (3.2c)

FC calculate the vector potential components on the grid by discrete numerical quadrature

of the integrals

Ay(x, y, z) =

∫ x

x0

vz(x′, y, z)dx′ (3.3a)

Az(x, y, z) =

∫ y

y0

vx(x0, y
′, z)dy′ −

∫ x

x0

vy(x′, y, z)dx′, (3.3b)

calculating the line integrals with the trapezoidal rule. After calculating the discrete vector

potential, FC fit a tricubic spline to get a C2 continuous vector potential.

Equation (3.3) uses the information of vy and vz on the 3D grid points and vx only at

the x = x0 plane grid points to calculate the vector potential. When using the FC approach,

it is found that values of vx, vy and vz on the 3D grid points do not necessarily recover the

same values of the discrete velocity components which were used to calculate the vector

potential. The error in the velocity components has two parts which are independent. One
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part comes from the approximations used in the line integrals of equation (3.3). The other

part comes from fitting splines to discrete vector potential components Ay and Az rather

than to the velocities directly (i.e. to ∂Ay
∂x and ∂Az

∂x ). This can introduce errors when ∂Ay
∂x and

∂Az
∂x are evaluated from the splines fitted to A. Because of these two potential error sources,

it is found that the derived velocities at the grid points can sometimes vary significantly

from the grid velocities on which they are based.

The method presented here, while similar in spirit to that of FC, constructs the spline

functions for the vector potential directly from the grid-based velocity data. In the FC

method, spline functions for the vector potential are fitted to the approximate discrete

vector potential which is computed from the grid-based velocity data, whereas in the new

method, derivatives of the spline function for A are fitted directly to the velocity data.

3.2.2 Overview of the new method

A vector potential in terms of spline functions is defined and decomposed the prob-

lem of specifying the coefficients of the 3D splines into three one-dimensional coefficient

problems that can each be independently and rapidly inverted to specify the coefficients.

A divergence-free velocity field V = (vx, vy, vz) can always be written as the curl of a

vector potential A = (Ax, Ay, Az):

vx =
∂Az

∂y
−
∂Ay

∂z
(3.4a)

vy =
∂Ax

∂z
−
∂Az

∂x
(3.4b)

vz =
∂Ay

∂x
−
∂Ax

∂y
. (3.4c)

As in FC, the gauge freedom is utilised to simplify the mathematics and the algorithm

by setting one of the components of A to zero. In what follows Az = 0 is set; although,

setting Ax or Ay to zero provides an equivalent scheme and may be preferable depending

on the nature of the problem. Gauge choices will be discussed further in the example

problems. Having set Az = 0, V = ∇ × A becomes

vx = −
∂Ay

∂z
(3.5a)

vy =
∂Ax

∂z
(3.5b)

vz =
∂Ay

∂x
−
∂Ax

∂y
(3.5c)
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In equation (3.5) the gridded velocity data implicitly contains information about deriva-

tives of A at the grid points. Ay can be calculated from discrete velocity component vx

using equation (3.5a), and Ax can be calculated from discrete velocity component vy using

equation (3.5b). However, in general if vz is calculated by substituting Ax and Ay into

equation (3.5c), the calculated vz does not match the data value of vz. This is because

many different functions for vz can be chosen that satisfy ∇ · V = 0.

3.2.2.1 Calculating vz

Due to the incompressibility constraint, fluid velocity components are not independent: vz

can be calculated from vx and vy as

vz(x, y, z) =

∫ z

z0

(
−
∂vx

∂x
(x, y, z′) −

∂vy

∂y
(x, y, z′)

)
dz′ + C(x, y), (3.6)

where C(x, y) is an integration function. Its specification uniquely fixes vz. In particular

we choose,

C(x, y) = vz(x, y, z0), (3.7)

where z0 is any plane on which vz is given, most often a boundary condition, but it could

also be a symmetry plane. When vx and vy from equation (3.5) are substituted into equa-

tion (3.6), it becomes

vz(x, y, z) =
∂Ay

∂x
−
∂Ax

∂y
+ C(x, y) (3.8)

We absorb C(x, y) into Ay by redefining the vector potential to A = (Ax, A∗y, 0), where

A∗y = Ay + f (x, y) and C(x, y) = ∂ f /∂x. Because both vx and vy depend only on partial

derivatives with respect to z, this has no effect on vx and vy. However, vz becomes

vz =
∂Ay

∂x
+
∂ f
∂x
−
∂Ax

∂y
. (3.9)

Without loss of generality, we can set Ax and Ay to zero at the z0 plane: Ax(x, y, z0) = 0,

Ay(x, y, z0) = 0, the choice of which clearly does not affect the curl of the vector potential,

i.e. the velocity is uneffected. Then at z0, from equation (3.9),

vz(x, y, z0) =
∂ f
∂x

(x, y), (3.10)

from which f (x, y) can be determined from the data given for vz at z0.

So far, the method above ensures that the curl of the vector potential reproduces

exactly the same vx, vy as the data on the 3D grid points and the same vz on the 2D grid
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at z = z0. However, this still permits deviations in the derived vz component on other grid

points. This is because

vz =

∫
∂vz

∂z
dz =

∫ (
−
∂vx

∂x
−
∂vy

∂y

)
dz

and the derivatives of the spline fit to vx and vy do not necessarily match the actual

derivatives of the velocity field. If the given discrete velocity field is not sampled from a

divergence-free velocity field, then large deviations are expected in the derived vz velocity

component. There are four different ways to match the vz component exactly as the data

on the grid points of boundary planes.

Case 1: Match vz only on the grid points at z = z0.

In this case, f (x, y) is calculated using equation (3.10) such that ∂ f /∂x = vz on the z = z0

plane grid points, Ay is obtained using equation (3.5a) such that ∂Ay/∂z = −vx on the grid

points and Ax is obtained using equation (3.5b) such that ∂Ax/∂z = vy on the grid points.

We can calculate f , Ax and Ay in any order.

Case 2: Match vz on the grid points at z = z0, y = y0 and y = yny .

In this case ,we first calculate A∗y (= Ay + f ) in the same way as in case 1. This allows us

to rewrite equation (3.9) as
∂Ax

∂y
=
∂Ay

∂x
+
∂ f
∂x
− vz. (3.11)

Finally, we obtain Ax using equations (3.5b) and (3.11) such that ∂Ax/∂z = vy on all grid

points and ∂Ay
∂x +

∂ f
∂x −

∂Ax
∂y

equals vz on grid points at z = z0, y = y0 and y = yny . In section

3.2.3, a method to calculate the vector potential coefficients for this case is derived and

found that it works well for all the test cases in section 3.2.5.

Case 3: Match vz on grid points at z = z0, z = znz , y = y0 and y = yny .

In this case, we first calculate A∗y (= Ay + f ) in the same way as in case 1 and next obtain

Ax such that ∂Ax/∂z = vy on all the grid points and ∂Ay
∂x +

∂ f
∂x −

∂Ax
∂y

equals vz on the grid

points at z = z0,z = znz , y = y0 and y = yny . This approach increases the complexity in

calculating the spline coefficients for Ax.

Case 4: Matching vz on all boundary plane grid points.

It is possible to match the vz component exactly on all six boundary grid planes; however,

the computation is cumbersome, and I have not (yet) investigated a test case where it was

necessary to do this. In this case, we first calculate f in the same way as in case 1 and
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next calculate Ay and Ax together simultaneously such that ∂Ay/∂z = −vx and ∂Ax/∂z = vy

on the grid points and ∂Ay
∂x +

∂ f
∂x −

∂Ax
∂y

equals vz on the grid points of all boundary planes.

3.2.2.2 Spline definition

We need to calculate spline functions for Ax, Ay and f . We use standard B-splines, as dis-

cussed by Habermann and Kindermann (2007), that are C2 continuous and have compact

support. Once the spline coefficients of the vector potential A are determined, which is

the main focus of this algorithm, the velocity field is determined simply through taking

analytical derivatives of A.

Each spline approximation is written as a tensor product of 1D B-splines:

Ax(x, y, z) =

nx+3∑
i=1

ny+3∑
j=1

nz+3∑
k=1

ci jkbi(x)b j(y)bk(z), (3.12a)

Ay(x, y, z) =

nx+3∑
i=1

ny+3∑
j=1

nz+3∑
k=1

di jkbi(x)b j(y)bk(z), (3.12b)

and

f (x, y) =

nx+3∑
i=1

ny+3∑
j=1

ei jbi(x)b j(y). (3.12c)

In equations (3.12) the coefficients ci jk, di jk and ei j are what need to be determined from

the data. Note that the grid spacing (hx, hy, hz) is implicit in the definition of the functions

bi,

bi(x) = φ

(
x − x0

hx
− (i − 2)

)
, i = 1, ......., nx + 3. (3.13)

where φ(t) is the normalised spline function given by

φ(t) =


(2 − |t|)3, 1 ≤ |t| ≤ 2

4 − 6|t|2 + 3|t|3, |t| ≤ 1

0, elsewhere.

(3.14)

The functions bi are shown in figure 3.3. The region of support for each spline is four

times the grid spacing in that direction: four splines contribute to the value of the function

at any grid point.
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Figure 3.3: Spline basis functions b1, b2, ...bnx+3. The region of support for each spline is
four times the grid spacing, and four splines contribute to the value of the function at any
grid point.

3.2.3 Derivation of the vector potential components in Cartesian

coordinates

Before constructing all two- and three-dimensional splines based on a one-

dimensional spline fit, I first explain how the spline fit works by considering B-splines

in one-dimension.

3.2.3.1 Properties of the one-dimensional cubic spline

We consider the uniform grid [x0, ...xnx] with grid spacing hx and write the spline function

s(x) as a linear combination of the basis functions,

s(x) =

nx+3∑
i=1

cibi(x). (3.15)

As each basis function spans only four grid spacings, equation (3.15) generalizes to

s(x) =

m∑
i=l

cibi(x), l =

⌊
x − x0

hx
+ 1

⌋
, m = min(l + 3, nx + 3), (3.16)

where b.c is the floor function.

In the algorithm to follow, in some cases we will need to fit a spline to data, in others

we will need to fit the derivatives of the spline to data. On the grid point xp, only three
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splines are non-zero and we write, from equation (3.15),

s(xp) = cp+1bp+1(xp) + cp+2bp+2(xp) + cp+3bp+3(xp),

= cp+1 + 4cp+2 + cp+3, p = 0, ...., nx.
(3.17)

The first derivative of the spline function is then

s′(xp) = cp+1b′p+1(xp) + cp+2b′p+2(xp) + cp+3b′p+3(xp)

=
1
hx

(−3cp+1 + 3cp+3), p = 0, ...., nx,
(3.18)

and the second derivative is

s′′(xp) = cp+1b′′p+1(xp) + cp+2b′′p+2(xp) + cp+3b′′p+3(xp)

=
6
h2

x
(cp+1 − 2cp+2 + cp+3), p = 0, ...., nx.

(3.19)

To find the coefficients in equation (3.15), we require nx + 3 independent conditions.

There are two different cases to consider. In one case, we know the value of the function

on the grid points. In the other case, we know the value of the first derivatives. We first

explain how to calculate the spline coefficients ci from function values on the grid points.

Then we explain how to calculate the spline coefficients ci from first derivative values on

the grid points.

3.2.3.2 Computing spline coefficients from function values on the grid

Denote the function values on the grid y0, y1, · · · , yn. From equation (3.17) at x=xp

s(xp) = cp+1 + 4cp+2 + cp+3 = yp, p = 0, 1, ...nx. (3.20)

The function values on the grid provide nx + 1 conditions, and we require two more

conditions to compute the nx + 3 coefficients. There are three choices for these last two

conditions.

Case 1: We know the second derivatives of the function at both ends, so that from equa-

tion (3.19)
∂2s
∂x2 (x0) =

6
h2

x
(c1 − 2c2 + c3) = α0, (3.21a)

∂2s
∂x2 (xnx) =

6
h2

x
(cnx+1 − 2cnx+2 + cnx+3) = αnx . (3.21b)



3.2 A new divergence-free interpolation method 43

Case 2: We know the first derivatives of the function at both ends, so that from equa-

tion (3.18),
∂s
∂x

(x0) =
1
hx

(−3c1 + 3c3) = β0, (3.22a)

∂s
∂x

(xnx) =
1
hx

(−3cnx+1 + 3cnx+3) = βnx . (3.22b)

Case 3: The function is periodic, so that

∂s
∂x

(x0) =
∂s
∂x

(xnx) ⇒ −c1 + c3 = −cnx+1 + cnx+3, (3.23a)

∂2s
∂x2 (x0) =

∂2s
∂x2 (xnx) ⇒ c1 − 2c2 + c3 = cnx+1 − 2cnx+2 + cnx+3. (3.23b)

To solve for the coefficients in equation (3.15) we have nx + 1 of the required nx + 3

interpolation conditions from equation (3.20). The final two conditions come from choice

of the appropriate pair of equations (3.21) to 3.23.

3.2.3.3 Computing spline coefficients from function derivatives on the grid

Denote the function derivative values on the grid y′0, y
′
1, · · · , y

′
n. From equation (3.18) at

x=xp

s′(xp) =
1
hx

(−3cp+1 + 3cp+3) = y′p, p = 0, 1, ...nx. (3.24)

The function derivatives on the grid provide nx + 1 conditions, and without loss of gener-

ality we can set

s(x0) = 0, (3.25)

leaving the requirement of one additional condition to solve for the nx + 3 coefficients.

There are again three choices for this last condition.

Case 1: We know the second derivatives of the function at x0, so that from equation (3.19)

∂2s
∂x2 (x0) =

6
h2

x
(c1 − 2c2 + c3) = α0. (3.26)
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Case 2: We know the second derivative of the function at xnx , so that from equation (3.19)

∂2s
∂x2 (xnx) =

6
h2

x
(cnx+1 − 2cnx+2 + cnx+3) = αnx . (3.27)

Case 3: The function is periodic, so that

∂2s
∂x2 (x0) =

∂2s
∂x2 (xnx) ⇒ c1 − 2c2 + c3 = cnx+1 − 2cnx+2 + cnx+3. (3.28)

To solve for the coefficients in equation (3.15) we have nx + 1 of the required nx + 3

interpolation conditions from equation (3.24). One interpolation condition always comes

from equation (3.25). The final condition comes from choice of the appropriate equa-

tion (3.26) to 3.28.

3.2.3.4 Computing the f (x, y) spline coefficients

We calculate a spline function for f (x, y), defined via equation (3.10), such that ∂ f /∂x =

vz on the grid points in the z0 plane. The calculation of f has two steps. In step one, for

each y on the grid, we fit a 1-D spline in the x-direction. In step two, we construct a 2-D

spline fit in x and y for the 1-D splines calculated in step one.

We write equation (3.12c) as

f (x, y) =

nx+3∑
i=1

bi(x)

ny+3∑
j=1

b j(y)ei j


=

nx+3∑
i=1

bi(x) f̃i(y)

(3.29)

and define two 1D spline functions f ∗q (x) and f̃i(y) from equation (3.29) as

f ∗q (x) = f (x, yq) =

nx+3∑
i=1

bi(x)e∗iq, q ∈ [0, ny] (3.30)

and

f̃i(y) =

ny+3∑
j=1

b j(y)ei j, i ∈ [1, nx + 3]. (3.31)
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For each value of y(yq), we compute coefficients e∗iq in equation (3.30) as described in

3.2.3.3 with interpolation conditions

∂ f ∗q
∂x

(xp) = vz(xp, yq, z0), p ∈ [0, nx], (3.32)

which comes from equations (3.10) and (3.30). For each value of i, we compute coeffi-

cients ei j in equation (3.31) as described in section 3.2.3.2 with interpolation conditions

f̃i(yq) = e∗iq, q ∈ [0, ny], (3.33)

which comes from equations (3.30) and (3.31). To compute the coefficients ei j in equa-

tion (3.31) requires information about ∂ f̃i/∂y as a function of y that is calculated from

∂vz/∂y as
∂ f
∂y

(x, y) =

nx+3∑
i=1

bi(x)
∂ f̃i

∂y
(y). (3.34)

For each value of y(yq)
∂ f
∂y

(x, yq) =

nx+3∑
i=1

bi(x)e′∗iq, (3.35)

and we compute the coefficients e′∗iq in equation (3.35) as described in section 3.2.3.3 for

each q with the interpolation conditions

∂2 f
∂y∂x

(xp, yq) =
∂vz

∂y
(xp, yq, z0), p ∈ [0, nx], (3.36)

which comes from equations (3.10) and (3.30). Finally

∂ f̃i

∂y
(yq) = e′∗iq, i ∈ [1, nx + 3]. (3.37)

3.2.3.5 Computing spline coefficients for Ay

We calculate a spline function for Ay such that ∂Ay/∂z = −vx on the grid points. The

calculation of Ay has three steps. In step one, for each pair of (x, y) grid coordinates we

fit a 1-D spline in the z-direction. In step two, for each x on the grid, we construct a 2-D

spline fit in z and y for the 1-D splines calculated in step one. In step three, we construct

a 3-D spline fit in x,y and z for the 2-D splines calculated in step two.

We rewrite equation (3.12b) as

Ay(x, y, z) =

nz+3∑
k=1

bk(z)

ny+3∑
j=1

b j(y)

nx+3∑
i=1

bi(x)di jk


 (3.38)
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and define three 1D spline functions A∗y,p,q(z), Ãy,p,k(y) and ˜̃Ay, j,k(x) from equation (3.38)

as

A∗y,p,q(z) = Ay(xp, yq, z) =

nz+3∑
k=1

bk(z)d∗pqk, p ∈ [0, nx], q ∈ [0, ny] (3.39)

Ãy,p,k(y) =

ny+3∑
j=1

b j(y)d∗∗p jk, p ∈ [0, nx], k ∈ [1, nz + 3] (3.40)

˜̃Ay, j,k(x) =

nx+3∑
i=1

bi(x)di jk, j ∈ [1, ny + 3], k ∈ [1, nz + 3] (3.41)

We compute coefficients d∗pqk in equation (3.39) as described in section 3.2.3.3 for each p

and q with interpolation conditions

∂A∗y,p,q
∂z

(zr) = −vx(xp, yq, zr), r ∈ [0, nz] (3.42)

which comes from equations (3.39) and (3.5a). Next we compute coefficients d∗∗p jk in

equation (3.40) as described in section 3.2.3.2 for each p and k with the interpolation

conditions

Ãy,p,k(yq) = d∗pqk, q ∈ [0, ny], (3.43)

which comes from equations (3.39) and (3.40). Finally we compute coefficients di jk in

equation (3.41) as described in section 3.2.3.2 for each j and k with the interpolation

conditions
˜̃Ay, j,k(xp) = d∗∗p jk, p ∈ [0, nx], (3.44)

which comes from equations (3.40) and (3.41).

The computation of the Ax spline coefficients is done in the same way as for the Ay

coefficients. The following way of calculating Ax ensures that vz matches on the y0 and

yny plane grid points.

3.2.3.6 Computing spline coefficients for Ax

We calculate a spline function for Ax such that ∂Ax/∂z = vy on the grid points and ∂Ay
∂x +

∂ f
∂x −

∂Ax
∂y

= vz on the grid points of the two boundary planes y0 and yny .

We rewrite equation (3.12a) as

Ax(x, y, z) =

nz+3∑
k=1

bk(z)

ny+3∑
j=1

b j(y)

nx+3∑
i=1

bi(x)ci jk


 (3.45)
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and define three 1D spline functions A∗x,p,q(z), Ãx,p,k(y) and ˜̃Ax, j,k(x) from equation (3.45)

as

A∗x,p,q(z) = Ax(xp, yq, z) =

nz+3∑
k=1

bk(z)c∗pqk, p ∈ [0, nx], q ∈ [0, ny] (3.46)

Ãx,p,k(y) =

ny+3∑
j=1

b j(y)c∗∗p jk, p ∈ [0, nx], k ∈ [1, nz + 3] (3.47)

˜̃Ax, j,k(x) =

nx+3∑
i=1

bi(x)ci jk, j ∈ [1, ny + 3], k ∈ [1, nz + 3]. (3.48)

We compute the coefficients c∗pqk in equation (3.46) as described in section 3.2.3.3 for

each p and q with interpolation conditions

∂A∗x,p,q
∂z

(zr) = vy(x, xp, yq, zr) r ∈ [0, nz], (3.49)

which come from equations (3.46) and (3.5b). Next we compute coefficients c∗∗p jk in equa-

tion (3.47) as described in section 3.2.3.2 for each p and k with interpolation conditions

Ãx,p,k(yq) = c∗pqk, q ∈ [0, ny] (3.50)

together with ∂Ãx,p,k(y)
∂y

at y0 and yny , calculated by solving the following spline problem at

y0 and yny:

∂Ax

∂y
(xp, yq, z) =

nz+3∑
k=1

bk(z)
∂Ãx,p,k(yq)

∂y
, (3.51)

where ∂Ax
∂y

(xp, yq, zr) is calculated via equation (3.11). Matching ∂Ax
∂y

(xp, yq, zr), which is

computed via equation (3.11), ensures that the velocity component vz matches the grid

data on the y0 and yny planes.

Finally we compute the coefficients ci jk in equation (3.48) as described in sec-

tion 3.2.3.2 for each j and k with interpolation conditions

˜̃Ax, j,k(xp) = c∗∗p jk, p ∈ [0, nx], (3.52)

which come from equations (3.47) and (3.48)

The method described above computes spline functions for Ax, Ay and f , such that

the curl of the vector potential (Ax, A∗y, 0) is not just divergence-free but also exactly

matches vx and vy on the 3d grid points and exactly matches vz on the z0, y0 and yny

boundary plane grid points.
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3.2.4 Method for general curvilinear coordinates

The interpolation method described above in Cartesian coordinates readily gener-

alises to curvilinear coordinates and in this section the results of the generalisation in

terms of contravariant vector components are outlined.

In arbitrary curvilinear coordinates ξi, the velocity can be written using contravariant

velocity components v1,v2 and v3 as

V = v1~∇ξ2 × ~∇ξ3 + v2~∇ξ3 × ~∇ξ1 + v3~∇ξ1 × ~∇ξ2. (3.53)

In equation (3.53) the partial time derivatives of the coordinates ξi are given by

∂ξi

∂t
= V · ~∇ξi =

vi

J
, (3.54)

where J is the Jacobian given by J−1 = (~∇ξ1 · ~∇ξ2 × ~∇ξ3), and the divergence is

~∇ · V =
1
J

∑
i

∂vi

∂ξi . (3.55)

For an incompressible fluid,
∑

i
∂vi

∂ξi = 0, and the general coordinate divergence in terms of

contravariant components resembles the divergence in Cartesian coordinates, except there

is an extra factor of J to carry along. When we apply this interpolation method to a flow in

cylindrical or spherical coordinates, we first compute contravariant velocity components

using equation (3.54), in order to treat the contravariant velocity components similarly

to Cartesian velocity components. This allows us to calculate the vector potential in

generalized coordinates in the same way as we do for Cartesian coordinates.

3.2.5 Test case

To demonstrate the efficacy of the interpolation method developed above, we con-

sider a model test flow for which the velocity field is defined analytically. While we

compare velocity fields to estimate the accuracy of the interpolation, more importantly,

we also compute Lagrangian quantities, in order to compare the accuracy of Lagrangian

coherent structures obtained using the new divergence-free interpolation method versus

using other interpolation methods. In particular, we benchmark against the FC method

because it is currently most commonly utilized in practice.
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Table 3.1: Errors in the interpolated velocity field on the boundary of a 42× 42× 42 grid.

FC Method New method

vx

L1 norm 1.2e-03 5.63e-15
L2 norm 1.5e-03 7.76e-15
L∞ norm 4.7e-03 33.6e-15

vy

L1 norm 5.38e-04 0.85e-15
L2 norm 7.9e-04 1.30e-15
L∞ norm 20.0e-04 12.9e-15

vz

L1 norm 5.38e-04 0.84e-15
L2 norm 7.9e-04 1.24e-15
L∞ norm 20.0e-04 9.99e-15

We consider a divergence-free analytic velocity field that is a modification of the

ABC flow defined by

vx = cos x
[
sin z + cos y

]
(3.56a)

vy = sin y
[
sin x + cos z

]
(3.56b)

vz = − sin x cos z − cos y sin z (3.56c)

We have chosen this form of velocity field to ensure that all velocity components are

dependent on all three coordinate directions. We calculate discrete velocity data from

equation (3.56) on a uniform 42 × 42 × 42 grid over the coordinate range (−π4 ≤ x ≤ 7π
4 ),

(−π4 ≤ y ≤ 7π
4 ), and (−π4 ≤ z ≤ 7π

4 ). The coordinate ranges are chosen such that the

boundary velocity is non-zero and periodic in all three coordinate directions. The vector

potential A (in a gauge with Ax = 0) is calculated from this grid data with the method from

section 3.2.3 and with the method of FC. Constructing splines for both the new method

and the FC method require additional interpolation closure conditions, which are listed in

tables A1, A2 and A3 in Appendix A. Velocity fields are then calculated via V = ∇ × A
on the same grid and compared with the analytic velocity field for both methods both on

grid points and between the grid points. In tables 3.1 and 3.2 are global metrics that show

the deviations from the analytic solution respectively on the boundary grid points and the

entire grid. While FC is fairly accurate, the new method is accurate on the grid nearly to

machine precision.

With the same vector potentials computed from the 42× 42× 42 grid, velocity fields

are calculated via V = ∇ × A on a finer grid of points (165 × 165 × 165) and compared

with the analytic velocity field for both methods. The aim is not to ensure that the original

sampled vector field is recovered (which it must by construction), but to ensure that the
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Table 3.2: Errors in the interpolated velocity field on a 42 × 42 × 42 grid.

FC Method New method

vx

L1 norm 1.3e-03 6.44e-15
L2 norm 1.7e-03 8.45e-15
L∞ norm 5.3e-03 41.9e-15

vy

L1 norm 7.65e-04 0.74e-15
L2 norm 9.68e-04 1.22e-15
L∞ norm 20.0e-04 23.7e-15

vz

L1 norm 7.65e-04 0.81e-15
L2 norm 9.68e-04 1.24e-15
L∞ norm 20.0e-04 16.8e-15

Table 3.3: Errors in the interpolated velocity field on the boundary of a 165 × 165 × 165
grid.

FC Method New method

vx

L1 norm 1.2e-03 2.81e-05
L2 norm 1.5e-03 4.92e-05
L∞ norm 4.8e-03 19.8e-05

vy

L1 norm 5.55e-04 4.58e-06
L2 norm 8.00e-04 8.21e-06
L∞ norm 21.0e-04 29.2e-06

vz

L1 norm 5.55e-04 4.62e-06
L2 norm 8.00e-04 8.21e-06
L∞ norm 21.0e-04 28.3e-06

errors that arise in between velocity data points are also small. In tables 3.3 and 3.4 are

global metrics that show the deviations from the analytic solution on the boundary grid

points and the entire grid correspondingly. Again, although FC is fairly accurate, the new

method is two orders of magnitude more accurate.

More importantly, a Lagrangian trajectory is tracked from a single initial position

(−π/8,−π/8,−π/8) with a velocity field derived from the analytic solution, the new

method and the FC method. In all three cases, Matlab’s ode45 routine with relative toler-

ance 5×10−14 and absolute tolerance 10−15 is used to obtain particle trajectories, which are

plotted in figure 3.4. We emphasize that the only difference in the way these results were

obtained is the interpolation scheme—in every other respect (resolution, time-stepping,

etc.) the computational methods are identical. Also, note that figure 3.4 shows only a frac-

tion of the total trajectory computed. While it is clear from figure 3.4 that the new method
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Table 3.4: Errors in the interpolated velocity field on a 165 × 165 × 165 grid.

FC Method New method

vx

L1 norm 1.3e-03 3.59e-05
L2 norm 1.7e-03 5.43e-05
L∞ norm 5.4e-03 19.8e-05

vy

L1 norm 7.89e-04 6.25e-06
L2 norm 9.80e-04 10.0e-06
L∞ norm 21.0e-04 31.1e-06

vz

L1 norm 7.89e-04 6.32e-06
L2 norm 9.80e-04 10.0e-06
L∞ norm 21.0e-04 28.4e-06

allows accurate tracking of Lagrangian trajectories for much longer, can we quantify how

much more accurate is it?

One way to approach answering that question is via a conjecture about shadowing

that Hammel et al. (1987) demonstrated numerically to be true for certain chaotic flows.

Because a chaotic flow amplifies every small error, a numerical trajectory will shadow a

true trajectory of the dynamical system to some accuracy only for some length of time that

depends on a “noise” amplitude, i.e. a number that characterizes the size of all errors, no

matter their source. The Hammel-Yorke-Grebogi conjecture is that for a noise amplitude

δ the numerical trajectory deviates from the true trajectory by an amount ∆ ≤
√
δ up to

an orbit length L ∼ δ−1/2, i.e. that the length at which a true orbit and a numerical orbit in

a chaotic flow separate goes as the inverse of the square root of the noise amplitude.

While it would be difficult to estimate the noise amplitude directly, the ratio of the

noise amplitude of the new method to the noise amplitude of FC can be estimated as the

square of the ratio of the arc length at which the FC orbit separates from the analytic orbit

LFC
∆

to the arc length Lnew
∆

at which the new method trajectory separates from the analytic

trajectory:
δnew

δFC ∼

(
LFC

∆

Lnew
∆

)2

≈ 1.5 × 10−4. (3.57)

Here the lengths L∆ are determined by the value we choose for ∆ that then specifies that

deviation has occurred. The ratio of noise amplitudes are computed for approximately

10,000 particle initial positions distributed uniformly throughout the domain and chose

∆ = 10−4. While, of course, an imperfect measure, the average noise amplitude for the

new method is O(10−4) times smaller than that for FC.
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Figure 3.4: Lagrangian trajectories computed from the analytic velocity field (solid line),
using the new interpolation method (diamond), and using FC method (circle). (top)
Oblique view. (bottom) Top view. The solid square indicates the initial condition of
all three orbits, while hollow square, big diamond and big circle trajectory’s end for re-
spectively the analytic, the new method and the FC orbits.
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Another two test cases of this method, a steady 3D Taylor-Couette flow at a moderate

Reynolds number (cylindrical coordinates) and the PRHF in the Stokes regime (spherical

coordinates) can be found in Ravu et al. (2016).
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3.3 Creating analytically divergence-free base flow

velocity field of lid-driven hemisphere flow

In order to remove the singular coordinate from the interior of the domain that arises

when sin θ = 0, we preferred the spherical domain r ∈ [0, 1], θ ∈ [0, π] and φ ∈ [0, π]

over choosing θ ∈ [0, π/2] and φ ∈ [−π, π] where θ is the polar angle and φ is the az-

imuthal angle. The velocity field is calculated in cylindrical polar coordinates (vr, vθ and

vz) using the spectral-element/Fourier code Semtex (Blackburn and Sherwin, 2004). It is

then interpolated spectrally onto a uniform grid with the grid points defining a uniform

mesh in spherical polar coordinates(r, θ, φ) with nr = 100, nθ = 100 and nφ = 320. The

uniform grid is considered here because the method described in section 3.2 to calculate

analytically divergence-free velocity field from discrete data requires the grid to be uni-

form. The interpolated cylindrical polar velocity field on this grid is then transformed to

spherical polar velocity components (vr, vθ, vφ). Contravariant velocity components (vr,vθ,

vφ) are computed via equation (3.54) as

vr = r2 sin(θ)vr (3.58a)

vθ = r sin(θ)vθ (3.58b)

vφ = rvφ (3.58c)

with the Jacobian J = r2 sin(θ).

3.3.1 Base flow in the Stokes regime

An advantageous gauge choice for this problem is Aφ = 0. This choice ensures

vφ = 0 everywhere on the φ = 0 and φ = π planes on which hemisphere lid lies (see

figure 2.1), which can be proved as follows. With Aφ = 0, the velocity is

vr = −
∂Aθ

∂φ
, (3.59a)

vθ =
∂Ar

∂φ
, (3.59b)

vφ =
∂Aθ

∂r
−
∂Ar

∂θ
+
∂ f
∂r

(r, θ). (3.59c)

We set Ar(r, θ, 0) = 0 and Aθ(r, θ, 0) = 0 which makes f (r, θ) = 0 in equation (3.59c) since

vφ(r, θ, 0) = 0. From the fore-aft symmetry of the flow vθ(r, θ, φ) = −vθ(r, θ, π − φ) which
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with equation (3.59b) implies that

Ar(r, θ, φnφ) =

∫ (r,θ,π)

(r,θ,0)
vθdφ = 0. (3.60)

Similarly, from the fore-aft symmetry vr(r, θ, φ) = −vr(r, θ, π − φ) which with equa-

tion (3.59a) implies that

Aθ(r, θ, φnφ) = −

∫ (r,θ,π)

(r,θ,0)
vrdφ = 0. (3.61)

At the end of this argument the gauge choice of Aφ = 0 means that we can set

Ar(r, θ, φnφ) = 0 and Aθ(r, θ, φnφ) = 0 and simplify the computation. Aθ and Ar are com-

puted as described in subsection 3.2.3.5 with the additional closure interpolation condi-

tions listed in table 3.5.

Table 3.5: Interpolation conditions for the base flow in the Stokes regime.

Spline
Direction

Ar Aθ

φ
Ar(r, θ, φ0) = 0 Aθ(r, θ, φ0) = 0
Ar(r, θ, φnφ) = 0 Aθ(r, θ, φnφ) = 0

θ
∂2Ar
∂θ∂φ

(r, θ0, φ) = ∂2Ar
∂θ∂φ

(r, θnθ , φ) ∂Aθ
∂θ

(r, θ0, φ) = ∂Aθ
∂θ

(r, θnθ , φ)
∂2Ar
∂θ∂φ

(r, θ, φnφ) = ∂vθ
∂θ

(r, θ, φnφ)
∂Aθ
∂θ

(r, θ0, φ) = 0

r
∂2Ar
∂r∂φ (r0, θ, φ) = ∂vθ

∂r (r0, θ, φ) ∂Aθ
∂r (r0, θ, φ) = 0

∂2Ar
∂r∂φ (rnr , θ, φ) = ∂vθ

∂r (rnr , θ, φ) ∂Aθ
∂r (rnr , θ, φ) = 0

3.3.2 Base flow in the inertial regime

Because the fore-aft symmetry is absent in the inertial regime, equations (3.60) and

(3.61) are not true and hence Ar(r, θ, φnφ) , 0 and Aθ(r, θ, φnφ) , 0. We use the additional

closure interpolation conditions listed in table 3.6 in the inertial regime.

Velocities are obtained, as usual, from the curl of a vector potential and particles

advected using equation (3.54). MATLAB’s ode45 is used to integrate fluid particle tra-

jectories.
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Table 3.6: Interpolation conditions for the base flow in the inertial regime.

Spline
Direction

Ar Aθ

φ
Ar(r, θ, φ0) = 0 Aθ(r, θ, φ0) = 0
∂2Ar
∂φ2 (r, θ, φ0) = ∂2Ar

∂φ2 (r, θ, φnφ)
∂2Aθ
∂φ2 (r, θ, φ0) = ∂2Aθ

∂φ2 (r, θ, φnφ)

θ
∂2Ar
∂θ∂φ

(r, θ0, φ) = ∂2Ar
∂θ∂φ

(r, θnθ , φ) ∂Aθ
∂θ

(r, θ0, φ) = ∂Aθ
∂θ

(r, θnθ , φ)
∂2Ar
∂θ∂φ

(r, θ, φnφ) = ∂vθ
∂θ

(r, θ, φnφ)
∂Aθ
∂θ

(r, θ0, φ) = 0

r
∂2Ar
∂r∂φ (r0, θ, φ) = ∂vθ

∂r (r0, θ, φ) ∂Aθ
∂r (r0, θ, φ) = 0

∂2Ar
∂r∂φ (rnr , θ, φ) = ∂vθ

∂r (rnr , θ, φ) ∂Aθ
∂r (rnr , θ, φ) = 0

3.4 Calculating the period-1 line of PRHF in the Stokes

regime

We know from section 2.3.2 that period-1 points exist in the PRHF only on the symmetry

plane and also from section 2.3.4 that isolated periodic points (not part of periodic lines)

can not exist in the Stokes regime of PRHF. This makes the search for period-1 lines

easier.

As a starting point for determining the period-1 line, we first find the central fixed

point, (r, θ, φ) = (rs, π/2, π/2) (see section 2.3.3). We know from the symmetry of the

flow that this point will be on a line that goes from the origin (0, π/2, π/2) to the base

of the hemisphere (1, π/2, π/2). On this line, vφ changes sign and has a value of zero at

the central fixed point. This fact and the bisection method is used to find rs. Define a

period-1 line (say P1) which goes through the central fixed point, and the period-1 line

can be divided into two parts (P1U and P1L), P1U goes from the central fixed point to one

Figure 3.5: Circle centred at a period-1 point on symmetry plane S Θ.
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end, and P1L goes from the central fixed point to the other boundary. We then compute

the two parts of P1, (P1U , P1L) separately using the following methodology.

Choose a small increment, δ, and create a circle of radius δ centred around a known

period-1 point on the symmetry plane (initially the central fixed point). The increment

δ will be the distance between two consecutive period-1 points along P1. P1 intersects

this circle at two points, and we choose an inital guess, Pθ (shown in figure 3.5). Be-

cause
{
Φβ/2(xP1)

}
x = 0 for a period-1 point xP1 (see figure 2.8a and figure 2.8b), the

x–component (i.e.
{
Φβ/2(Pθ)

}
x) will change sign around the circle and will be zero where

P1 intersects the circle. Again, we use the bisection method to find the value of θ at which

P1 intersects the circle. We use this value of Pθ as the starting point for the next point on

P1, and so on.

For all parameter values of Θ and β, we found that the P1U part of period-1 line

connects the central fixed point to the fixed point on the lid, and the P1L part of period-1

line connects the central fixed point to the fixed point at the bottom of the hemisphere.

To compute period-1 lines other than the period-1 line which connect the three fixed

points, we created a grid on the symmetry plane and used the grid points as an initial

guess for Broyden’s method (discussed in section 3.4.1) to search for any other period-1

points. We did not find any. We conclude that only one period-1 line exists.

3.4.1 Calculation of period-1 points using Broyden’s method

To find period-1 points, a displacement function G(x) which returns the displace-

ment vector of a particle after one time-period is defined as

G(x) = Ψ(x) − x, (3.62)

where Ψ is the time-periodic map of the PRHF (see section 2.2). Period-1 points of

the PRHF are fixed points of the map Ψ. At a period-1 point, ||G(x)|| = 0, because

Ψ(x) = x at that point. The roots of the equation (3.62) are period-1 points of the PRHF

and if they exist, can be found using Broyden’s method. Broyden’s method is a variant of

Newton’s method. To compute a period-1 point, an initial guess x0 is chosen and the next

approximation to the period-1 point is obtained via equation (3.63).

xn = xn−1 + ∆xn, (3.63)

where

∆xn = −J−1
n (xn−1)G(xn−1), (3.64)
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where

Jn = Jn−1 +
∆Gn − Jn−1∆xn

||∆xn| |
2 ∆xT

n . (3.65)

This process is recursively done until ||G(xn)|| or ||∆xn|| converges to the value 10−9.

If the convergence does not happen by 80 iterations, the process is terminated for that

initial condition, and the code restarts with the next initial guess. During iterations, if an

approximation point goes out of the fluid domain, the length of vector ∆xn is decreased

until the point (i.e. xn in equation (3.63)) stays inside the domain.

In Broyden’s method, Jacobian (J = ∂G
∂x ) is updated via equation (3.65) unlike in

Newton’s method where Jacobian is computed at every iteration. This improves the speed

of the computation.

For Stokes flow, no extra period-1 points are found. For higher order periodic points

of the Stokes flow and period-1 points of the inertial PRHF, the same method is used. At

a period-n point, Ψnx = x. To compute an nth order periodic point, G(x) is replaced with

Gn(x) in equations (3.64) and (3.65), although the calculations are carried out in the same

way (Gn(x) is defined in equation (3.66)).

Gn(x) = Ψn(x) − x. (3.66)

3.5 Calculation of deformation tensor (or Jacobian) of

the PRHF map

The nature of the stability of periodic points (or periodic lines) can be understood from

the eigenvalues of the deformation tensor computed at them (see section 2.4). The defor-

mation tensor of the map Ψ = (Ψ1,Ψ2,Ψ3) at a point x∗ = (x∗1, x
∗
2, x

∗
3) is

F =
∂Ψ

∂x

∣∣∣∣∣
x=x∗

=


∂Ψ1
∂x1

∂Ψ1
∂x2

∂Ψ1
∂x3

∂Ψ2
∂x1

∂Ψ2
∂x2

∂Ψ2
∂x3

∂Ψ3
∂x1

∂Ψ3
∂x2

∂Ψ3
∂x3


x=x∗

.

(3.67)

Because an analytical function of the mapΨ does not exist, the differentials in equa-

tion (3.67) are evaluated numerically by considering six points (two in the x direction,

two in the y direction and two in the z direction) which are at a distance ε from the centre

point. Finite differences are used to estimate the derivatives. The formula to compute

approximations of the differentials in equation (3.67) is
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Ψ1(x∗1+ε,x∗2,x

∗
3)−Ψ1(x∗1−ε,x

∗
2,x
∗
3)

2ε
Ψ1(x∗1,x

∗
2+ε,x∗3)−Ψ1(x∗1,x

∗
2−ε,x

∗
3)

2ε
Ψ1(x∗1,x

∗
2,x
∗
3+ε)−Ψ1(x∗1,x

∗
2,x
∗
3−ε)

2ε
Ψ2(x∗1+ε,x∗2,x

∗
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∗
2,x
∗
3)

2ε
Ψ2(x∗1,x

∗
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∗
3)

2ε
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2,x
∗
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3−ε)

2ε
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∗
3)−Ψ3(x∗1−ε,x

∗
2,x
∗
3)

2ε
Ψ3(x∗1,x

∗
2+ε,x∗3)−Ψ3(x∗1,x

∗
2−ε,x

∗
3)

2ε
Ψ3(x∗1,x

∗
2,x
∗
3+ε)−Ψ3(x∗1,x

∗
2,x
∗
3−ε)

2ε

 . (3.68)

A value of ε = 10−6 was used in subsequent calculations. The stability of a period-

1 point is obtained from the eigenvalues of the deformation tensor which is calculated

using equation (3.68) by replacing x∗ with the period-1 point. The eigenvalues of the

deformation tensor are calculated using the Matlab function "eig".

Similarly, the stability of an nth order periodic point can be obtained from the eigen-

values of the deformation tensor of the map Ψn at that point. The deformation tensor
∂Ψn

∂x

∣∣∣
x=x∗ of the map Ψn is calculated numerically using


Ψn

1(x∗1+ε,x∗2,x
∗
3)−Ψn

1(x∗1−ε,x
∗
2,x
∗
3)

2ε
Ψn
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 . (3.69)

3.6 Calculation of higher order periodic lines of PRHF

in the Stokes regime

To compute a period-n line with the method presented in this section requires an initial

period-n point, which can be any point on that line. So, a period-n line is computed here

in two steps: 1) calculate any one period-n point on the period-n line, 2) calculate the full

period-n line using the initial period-n point. In chapter 4, the central role that degenerate

points play in higher order periodicities will be discussed. Without going into detail here,

these will provide a starting guess for higher order points. For example, n period-n lines

intersect at an nth order degenerate point on a period-1 line. This nth order degenerate

point cannot be used as an initial period-n point for all the n period-n lines to calculate

them because this point belongs to all the lines. To calculate these n period-n lines, a

separate initial period-n point for every period-n line is needed (i.e. total n initial period-

n points). The nth order degenerate point is used to calculate n initial period-n points

which are needed for the calculation of n period-n lines. The initial n period-n points are

calculated first as described in section 3.6.1, then the corresponding n period-n lines are

calculated as described in section 3.6.2.



60 Computational Methods

3.6.1 Finding n initial period-n points

• Compute an nth order degenerate point on the period-1 line as described in sec-

tion 4.3.1.

• Create a spherical grid of points which are almost equidistant from each other in a

small sphere of radius 0.1 centred around the degenerate point. Because n period-n

lines intersect at this degenerate point, this sphere contains segments of all the n

period-n lines.

• Calculate the magnitude of the displacement function Gn(x) at each grid point from

equation (3.66).

• Arrange the grid points as an array in ascending order of ||Gn(x)||, since smaller

values of ||Gn(x)|| are closer to period-n lines, such points are good initial guesses

for Broyden’s method which is used to find n initial period-n points.

• The grid points which were sorted according to the magnitude of Gn(x) are then

used one by one as initial guess for Broyden’s method and initial period-n points

are calculated.

• Continue finding period-n points from the grid points until at least one separate

initial period-n point for every period-n line is found.

• From the computed period-n points, select one period-n point for each period-n line

and use them as initial points to calculate n period-n lines as decribed in the next

section 3.6.2.

3.6.2 Calculation of a period-n line using a known initial periodic

point on that line

Assume Pn is a period-n line to be computed, and xk is a known initial period-n

point on that line. Pn is divided at the point xk into two parts: PnL and PnR. These two

parts are calculated separately in the same way as described below.

1. Compute the deformation tensor ∂Ψn

∂x

∣∣∣
x=xk

at xk. Because the point xk belongs to the

period-n line, one of its eigenvalues of the deformation tensor (i.e. ∂Ψn

∂x

∣∣∣
x=xk

) will be

one (say λ3 = 1), and the eigenvector e3 corresponding to this eigenvalue is tangent

to the period-n line (see section 2.4.1).

2. Compute eigenvector e3.
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3. Choose x′k+1 = xk ± εe3 where sign is chosen to ensure x′k+1 is continuation of

segment xk−1 → xk. ε = 5 × 10−3 is used.

Note: In the first iteration, to calculate x′k+1, minus sign is used in the calculation of

PnL and plus sign is used in the calculation of PnR. The signs can be interchanged

in the first iteration, but the important thing is different signs must be used in the

calculation of PnL and PnR. This makes the search for periodic points of PnL and

PnR line segments happen in opposite directions from the initial periodic point.

4. Create a sphere centred at x′k+1 with radius ε/5 and search for the root of equa-

tion (3.66) inside the sphere using Broyden’s method to find xk+1 which is the next

period-n point on the line after xk. If the root is not found within the desired conver-

gence value (10−9), increase the radius of the sphere and do the same process again

to find xk+1, and this process is continued until the root is found within the desired

convergence value. This process will always find the root.

5. Continue steps (1) to (4) recursively to calculate period-n points along the line until

the line touches the boundary or the line reaches the initial point if the periodic line

is closed, because a periodic line can be closed or periodic line ends are attached to

the hemisphere boundary (see section 2.3.4).

3.7 Calculation of isolated period-1 points of PRHF in

the inertial regime

Time-reversal-reflection symmetry is broken in the PRHF in the inertial regime. Period-1

points can exist anywhere in the hemisphere domain unlike for Stokes flow where they

exist only on the symmetry plane. To find period-1 points, a hemispherical grid of points

in the entire hemisphere domain is created such that the distance between neighbouring

grid points is roughly equal for all grid points. |G(x)| values (see equation 3.62) at all

the grid points are evaluated, and the grid points are arranged in ascending order of their

|G(x)| values. These grid points are then used as initial guess points for the Broyden’s

method (see section 3.4.1) to find period-1 points. Any repeated values of period-1 points

from the Broyden’s method are discarded. It is found that all the period-1 points are

spatially located very close to the Stokes period-1 line when Re ∈ (0, 1) and also the

period-1 points are isolated, i.e. are not part of period-1 lines.

Since all the period-1 points are found spatially close to the Stokes period-1 line, the

points of the Stokes period-1 line are considered as initial guess for the Broyden’s method

in later calculations of period-1 points in the inertial regime.





Chapter 4

Numerical Analysis of PRHF in Stokes
Regime

Mixing devices often have spatial symmetry which manifests into an invariant of the flow.

A flow with an invariant in three-dimensions is called an action-angle-angle flow (or one

action flow). Without a proper understanding of global Lagrangian transport structures of

the one action flows, efficient mixing is difficult to achieve. Numerical computation of

Lagrangian structures is essential to understand fluid transport. How global Lagrangian

structures organise in one action flows is not entirely known (Wiggins, 2010). In this

chapter, it is shown how global Lagrangian structures are organized in one action flows

and how to calculate them numerically using PRHF. The PRHF in the Stokes regime is

a one action flow. In one action flows, fluid particles are constrained to move on two-

dimensional surfaces which are sometimes called invariant surfaces (or level surfaces).

In PRHF, the 2D invariant surfaces are closed, and they are topological spheres. The

invariant surfaces are called just shells in this thesis. In one invariant flows, because iso-

lated periodic points cannot occur (see section 2.3.4), periodic lines (all orders of periodic

lines) and their manifolds constitute all of the Lagrangian structures.

4.1 Parameterization of periodic lines

To know the fluid transport on a shell, it is necessary to know all the periodic points (or

periodic lines piercings) and their stability on the shell. Even after having calculated a

periodic line numerically, it is difficult to infer from the plot how many times the periodic

line pierces a particular shell. To know the number of periodic line piercings and their

stability on any shell, the arc length along the periodic line from one of the ends of the

periodic line is first defined. For example, on a period-1 line, arc length is calculated as

63
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the distance of a period-1 point along the period-1 line from the bottom point (r = 1, θ =

π/2, φ = π/2). The shell number is a proxy for the action variable and is enumerated

arbitrarily in such way that it has a value of one on the hemisphere and lid boundaries,

and zero at the central fixed point (see section 2.3.5). One way to describe the periodic

line is to enumerate the action variable along it as a function of arc length. If the line

is also colour coded with the stability of each point (i.e. elliptic or hyperbolic) at the

piercing site, this will help to understand the global transport of particles in this flow. The

action-arc length plots are used in later sections to discuss the number of periodic line

piercings on shells.

4.2 The Lagrangian skeleton

Generally, lower order periodic lines are more important than higher-order periodic lines.

Period-1 line is the most important of all because it becomes the Lagrangian skeleton of

the PRHF system. The PRHF system has two parameters, lid displacement β, and lid

reorientation angle Θ. The advection of a fluid particle is obtained by the periodic map

Ψ(Θ,β) (see equation 2.8). A period-1 line is a line of fixed points of the map Ψ. It is

shown in section 2.3.2 that PRHF can have period-1 lines only on the symmetry plane in

Stokes regime. Three non-trivial period-1 points exists for all parameter values (see sec-

tion 2.3.3): a period-1 point on the lid; a central stagnation point (r = 0.258868, θ = π/2,

φ = π/2) and another stagnation point at the base of the hemisphere (r = 1, θ = π/2 and

φ = π/2). When a numerical search for period-1 lines is employed, only one period-1

line is found on the symmetry plane for all the parameter values. It is concluded that for

the Stokes PRHF there is only a single period-1 line that runs from the bottom stagna-

tion point through the central stagnation point and attached at the lid on the symmetry

plane. Period-1 lines are computed numerically using the method described in section 3.4

for various parameter values. Eigenvalues of deformation tensor of period-1 points are

calculated numerically as described in section 3.5. The stability of a period-1 point is

determined based on the eigenvalues of the deformation tensor evaluated at that point.

From section 2.3.5, one of the eigenvalues of a period-1 point must be one. The other

two eigenvalues determine the nature of that particular period-1 point (see section 2.4.1).

In all the figures of the thesis, elliptic periodic points and elliptic periodic line segments

are coloured blue, hyperbolic periodic points and hyperbolic periodic line segments are

coloured red, and degenerate points are coloured green for easy identification. Wherever

a period-1 line pierces a shell, it imparts its character (hyperbolic, elliptic, or degenerate)

to the Hamiltonian motion on the shell in the neighbourhood of the piercing (Gómez and
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β ∈ [0.1, 1]

β ∈ [1, 8]

β ∈ [9, 12, 15]

Figure 4.1: For Θ = π/4 and indicated values of β, (left) period-1 lines viewed per-
pendicular to symmetry plane in normal space coordinates, and (right) the same lines
parameterized by action and arc length along the line. Arc length is in units of radius.
Blue (red) are elliptic (hyperbolic) segments.

Meiss, 2002). In the neighbourhood of an elliptic piercing point, particles move around

the piercing on closed curves. In the neighbourhood of a hyperbolic piercing point, parti-

cles contract in one direction and expand in another direction. In the neighbourhood of a

degenerate point, the net deformation is zero.

4.2.1 Example: Reorientation angle Θ = π/4

To look at how the period-1 line changes with the parameters, Θ = π/4 is considered

in the analysis below, although the investigation has shown that different Θ values give

qualitatively similar results. In the limit, β → 0, all fluid particles rotate about the y axis

like a rigid body rotation, and their orbits stay on invariant circles. The centres of these

invariant circles form a stagnation line which runs through the y axis. The stagnation line

can also be considered as a period-1 line. Period-1 lines on the symmetry plane for values
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of β from 0.1 to 1 (top), 1 to 8 (middle), and 9,12 and 15 (bottom) are shown in figure 4.1

(Left side) . The equivalent period-1 lines parameterised by action (shell number) and

arc length are seen in the right-hand column of Figure 4.1. Period-1 lines are coloured

according to their local characters in figure 4.1.

From figure 4.1, it is seen that the tangent to a period-1 line at the central stagnation

point rotates anti-clockwise with increasing β. As β increases from 0, the end of the

period-1 line which is attached to the lid moves toward the hemisphere boundary and

stops at the rim when β reaches a particular value βc (see section 2.3.3). The period-1 line

ending at the rim then stays there for all β values greater than βc. The other end of the

period-1 line is fixed at the bottom of the hemisphere. Because both the ends of period-1

lines are fixed for a given β and the tangent to the period-1 line at the central stagnation

point rotates anti-clockwise with increasing β, the length of period-1 line must increase

with increasing β, as seen in the extent of the x axis in figure 4.1(right). As the rotation

occurs at the central stagnation point, the period-1 line is pushed towards the boundary.

Because the ends of the period-1 line are attached to the boundaries and the line passes

through the central stagnation point, every shell will be pierced at least twice. For β = 0

to 8, the shell number changes monotonically with arc length from the outermost shell

at the base (value 1) to the central fixed point (value 0) and then from the central fixed

point to the outermost shell at the top (value 1 again). Thus each shell is pierced twice for

β / 8. For β ' 8, the shell number no longer changes monotonically with arc length along

the period-1 line. Between β = 8 and 9 a "wiggle" appears on the period-1 line segment

in which some shells are now pierced four times, i.e. action vs arc length is no longer

monotonic from the centre to the boundary. For each wiggle two local extrema arise, one

minimum, one maximum and all shells between these two extrema have two additional

piercings. As β increases still further, the period-1 line becomes increasingly convoluted,

rolling up around the central fixed point. As a consequence, additional wiggles are created

that may cause shells to have more than two additional piercings on some shells.

An example with β = 16 is now provided that shows, how period-1 points on shells

connect via manifolds and how the manifolds govern the fluid transport by considering

a few shells, and how some of the topologies of invariant surfaces can be simply and

quickly understood from the plot of shell number versus arc length. A period-1 line on

the symmetry plane is shown in figure 4.2 for β = 16, and the corresponding action-arc

length plot of the period-1 line is shown in figure 4.3. The shells a2, a3T , a4, a5T and a6

shown in figure 4.3 provide representative examples of the different transport structures

that come from the period-1 piercings on these shells. The shells have been chosen to

have a different number of piercings and different piercing characters. In the subscript of
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Figure 4.2: Period-1 line on symmetry plane for β = 16 and Θ = π/4.

the shell labelling, the number represents the number of period-1 points and "T" means a

tangency of the curve to a shell in this plot. The Poincaré section on each of these shells

is shown in detail in Figures 4.4 to 4.8. In all these figures, yellow spheres represent the

central stagnation point; green spheres represent degenerate points of either first order or

second order (see section 2.4.1).

All shells with shell number values less than a3T have a similar topology with two

elliptic piercings as shown in Figure 4.4. On the Poincaré map of shell a2 shown in

figure 4.4, two sets of topological concentric circles is noticed, and fluid particles orbits

are restricted to stay on these circles. The Poincaré map of shell a3T is shown in figure 4.5,

and it has two elliptic piercings and one first-order degenerate point (or parabolic point).

In this figure, no deformation is noticed in the neighbourhood of the degenerate point

(green sphere), particles orbits staying on topological concentric circles are noticed in the

neighbourhood of elliptic points. In fluid particles orbits away from the period-1 point

piercings shown in this figure, some stay on closed loops, and some form higher-order

islands. The Poincaré map of shell a6 is shown in figure 4.6, and it has two homoclinic

connections with four elliptic piercings and two hyperbolic piercings. Each homoclinic

connection has two elliptic and one hyperbolic piercing points, and fluid particles orbits

inside the homoclinic connection stay on topological concentric circles. In fluid particles

orbits outside the homoclinic connections shown in this figure, some stay on closed loops,

and some form higher-order islands. The Poincaré map of shell a5T is shown in figure 4.7,

and it has three elliptic, one hyperbolic and one degenerate piercing points. In this figure,

a homoclinic connection of the hyperbolic point is seen. The Poincaré map of shell a4 is

shown in figure 4.8, and it has three elliptic and one hyperbolic piercing points. In this

figure, a homoclinic connection of the hyperbolic point is seen.
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Figure 4.3: Action and arc length along the period-1 line for β = 16 and Θ = π/4. The
lower figure is a close-up of the region inside the rectangle in the upper figure in which
five different shells are defined corresponding to different numbers and types of piercings
by the period-1 line.
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Figure 4.4: Poincaré map of shell a2 with two elliptic points (shell number 0.2); Left is
top-front view, right is bottom view.

Figure 4.5: Poincaré map of shell a3T with two elliptic points, and one parabolic point
(shell number 0.42); Left is top-front view, right is bottom view.
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Figure 4.6: Poincaré map of shell a6 with four elliptic points and two hyperbolic points
(shell number 0.44); Left is top-front view, right is bottom view.

Figure 4.7: Poincaré map of shell a5T with three elliptic points, one hyperbolic point and
one parabolic point (shell number 0.4555); Left is top-front view, right is bottom view.
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Figure 4.8: Poincaré map of shell a4 with three elliptic points and one hyperbolic point
(shell number 0.47); Left is top-front view, right is bottom view.

4.2.2 Effect of reorientation angle on period-1 lines

The reorientation angle can be written as Θ = 2π/n, where n can be even, odd

or irrational. Numerical computation of period-1 lines found no qualitative differ-

ence in Lagrangian structures whether n is even or odd or irrational. For β = 8 and

Θ = {2π/16, 2π/11, 2π/8}, action vs arc length of period-1 lines are shown in figure 4.9.

It is noted from the figure 4.9 that, for a fixed β value, as Θ decreases, the length of the

period-1 line increases. As the length of period-1 line increases, the number of period-1

piercings on some shells increases, which in turn increases the complexity of the La-

grangian structures on those shells. Hence, the complexity of the Lagrangian structures

increases as Θ decreases while keeping β fixed or as β increases while keeping Θ fixed

(see section 4.2.1. Because the length of the period-1 line increases either with decreasing

Θ or with increasing β, β needs to be increased monotonically with reorientation angle to

observe the appearance of first wiggle as shown in figure 4.10.

A period-1 line and three different shells with Poincaré section for a particular ex-

ample is shown in figure 4.11. The organisation of fluid transport in the neighbourhood of

period-1 piercings is determined by the stability of the period-1 piercing points. The en-

tire transport structures on these shells look complicated in this figure. In the next section,

how the degenerate points on periodic lines organise the complete Lagrangian structures

in one-invariant volume-preserving flows is presented which will show how the seeming

complexity of figure 4.11 arises from a hierarchical application of simple principals.
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Figure 4.9: Action and arc length along period-1 lines for β = 8, and Θ = 2π/8,2π/11
and 2π/16

Figure 4.10: Appearance of a first wiggle as function of Θ and the corresponding β value
at appearance. The corresponding β value lies within the error bar.
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Figure 4.11: Period-1 line and Poincaré maps of flow on several shells. Oblique view.

4.3 Resonances in one invariant flows

In bifurcation theory, the topology of a dynamical system changes as the parameter of the

system goes through a bifurcation point (or critical point) (Kuznetsov, 1998). A type of

bifurcation points is found in the PRHF, that, in the shell normal direction at degenerate

points, the local topology changes. This behaviour can be viewed in terms of classical

planar bifurcation theory by establishing an analogy between the PRHF and a 2D sys-

tem in classical planar bifurcation theory. Because the fluid particles move on nested

spheroids, nested spheroids can be considered as the direct product of a two-dimensional

phase space (angle variables θ1, θ2) and a parameter space (action variable I). Using this

concept, a three-dimensional PRHF can be reduced to a two-dimensional system with a

parameter. The phase space variables of the two-dimensional system are θ(θ1, θ2), and

the parameter of the system is I. Whenever I goes through a degenerate point, the local

topology changes.

Degenerate points are called resonance points in classical planar bifurcation the-

ory (Kuznetsov, 1998). The resonance bifurcations are local bifurcations because these

bifurcations occur in the neighbourhood of periodic points (or fixed points). It is found

that, at degenerate points, lower order periodic lines and higher order periodic lines in-

tersect. For example, on a period-1 line, n period-n lines pass through a 1:n resonance

point (or nth order degenerate point) except for 1:1 and 1:2 resonance points. Period-1

line is tangent to an invariant surface at 1:1 resonance. A period-2 line passes through a

1:2 resonance point on a period-1 line. The reason only one period-2 line exists at a 1:2

resonance point instead of two period-2 lines is discussed in section 4.3.3. Similar to res-

onance points on period-1 lines, resonance points can also exist on higher-order periodic

lines. An analogy can be made between resonance points on a period-1 line to resonance



74 Numerical Analysis of PRHF in Stokes Regime

points on a higher order periodic line in the following way. A period-m line of mapΨ can

be considered as a period-1 line of map Ψm. This way, resonance points on the period-m

line are treated as resonance points on a period -1 line but with the map Ψm. In general,

on a period-m line, m:p resonance points exist, where p > m and p = m × n, where n

is a positive integer. n (= p/m) period-p lines intersect at the m:p resonance point on

the period-m line. Resonances such as 2:3 can not occur, because a point simultaneously

cannot be a period-2 and period-3 point. Although 2D behaviour associated with periodic

lines was noted in Malyuga et al. (2002) and Pouransari et al. (2010), the consequences

of the degenerate points was not fully explored. Smith et al. (2016) discussed a detailed

analysis of a 1:3 resonance in their flow but did not discuss general m:p resonances.

By identifying the resonance points on a lower order periodic line, all the higher-

order periodic lines which intersect at the corresponding resonance points on the lower

order periodic line can be calculated. Because higher-order periodic lines intersect at

a resonance point on a lower order periodic line, the resonance point is identified first,

and then the higher order periodic lines are calculated using the method discussed in

section 3.6. The significance of the resonance points is that the three-dimensional one in-

variant flows can be completely understood hierarchically by finding the resonance points

on the period-1 line first, and then computing the corresponding higher-order periodic

lines, this process can be recursively pursued by finding higher order resonance points

on the period-2 line and so on. In other words, we can keep finding extended structures

starting with period-1 lines until enough Lagrangian transport structures are uncovered

for any given purpose. Although the resonance points can be identified on a periodic line

of any order and calculate corresponding higher periodic lines, the analysis of resonance

bifurcation points is restricted mainly to period-1 lines in this thesis. To demonstrate res-

onance points on higher-order periodic lines, an example of a 2:6 resonance is presented

in section 4.3.6.

4.3.1 Identification of resonance points on a period-1 line

To calculate higher-order periodic lines extending from a resonance point on a lower-

order periodic line, it is necessary to identify the resonance point on the lower-order pe-

riodic line. The identification of resonance points on a period-1 line is described in this

section. The method described here is applicable to resonance points on higher-order pe-

riod lines also. Define the eigenvalues of the deformation tensor computed at a period-1

point as λ1, λ2 and λ3. Because the action variable is a conserved quantity, λ3 can be

chosen to be one as shown in section 2.4.1. Because the flow on an invariant surface is

area-preserving, the product λ1λ2 = 1. The eigenvalues λ1 and λ2 can be real positive as
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Figure 4.12: Possible eigenvalues (λ1 and λ2) shown with the unit circle on complex plane
for period-1 points; λ3 = 1, which is not shown here.

shown in figure 4.12(a), or real negative as shown in figure 4.12(c), or complex values

(e±iα) as shown in figure 4.12(b). The local rotaion angle is α.

At an nth order degenerate point on the perid-1 line (1:n resonance point), Fn = I,

where F is the deformation tensor (or Jacobian). Fn = I implies λn
1 = 1, λn

2 = 1 and

λn
3 = 1. The eigenvalues of deformation tensor at an nth order degenerate point are λ3 = 1

and λ1,2 = e±i(2π/n). The local rotation α at the nth order degenerate point,

α =
2π
n
. (4.1)

The trace of the deformation tensor F at an nth order degenerate point is obtained via

Tr F = 1 + 2 cos(2π/n), (4.2)

where n is the order of the degeneracy. Eigenvalues, the local rotation angle and the

trace values of the deformation tensor of resonance bifurcation points on periodic lines

are given in table 4.1. Eigenvalues λ1 and λ2 (so does trace values) change continuously

along a period-1 line. The trace of the deformation tensor of a period-1 point on a period-1

line is obtained via equation (4.2), and is

Tr F = 1 + λ1 + λ2. (4.3)

Because the trace values of resonance points are known, we can identify them on a

period-1 line by computing the trace values. After identifying resonance points, the cor-

responding higher-order periodic lines can then be obtained using the method discussed

in section 3.6. Similarly, resonance points on higher-order periodic lines (period-2 and

above) are also identified in the same way. For example, to identify resonance points

on a period-2 line, trace values on the period-2 line points are calculated with the map
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Table 4.1: Resonances, and their corresponding eigenvalues and trace values on periodic
lines; λ3 = 1 for each periodic point

λ1 λ2 α Trace
Period-1
line (Ψ)

Period-2
line (Ψ2)

. . .
Period-m
line (Ψm)

1 1 0 3 1:1 2:2 . . . m:m
-1 -1 π -1 1:2 2:4 . . . m:2m
-1

2 +
√

3
2 i −1

2 −
√

3
2 i 2π/3 0 1:3 2:6 . . . m:3m

i −i π/2 1 1:4 2:8 . . . m:4m
...

...
...

...
...

...
...

...

ei(2π/n) e−i(2π/n) 2π/n 1 + 2 cos(2π
n ) 1:n 2:2n . . . m:n × m

Ψ2 and identified them as given in table 4.1. Although an infinite number of resonances

are possible corresponding to every root of unity because resonances higher than order

4 (i.e. n ≥ 5) are expected to have subharmonic bifurcation solutions only when excep-

tional conditions hold (Gelfreich, 2002), the analysis here is restricted to the first four

resonances (1:1, 1:2, 1:3 and 1:4) that will generally be encountered. In classical planar

bifurcation theory the first four resonances are collectively named the strong resonances.

4.3.2 1:1 Resonance (Fold bifurcation)

At a 1:1 resonance point, the eigenvalues λ1, λ2, λ3 are all one, and the local rotation

angle is zero. The net deformation here after one period (or one time application of the

map Ψ) is zero. The resonance point is a first order degenerate point. The period-1 line

changes its characteristics from elliptic to hyperbolic (or hyperbolic to elliptic) across

this degenerate point. The eigenvalues λ1 and λ2 change from complex to real (or real to

complex).

A period-1 line on the symmetry plane for Θ = π/4 and β = 16 is shown in figure 4.2.

To demonstrate the effect of 1:1 resonance points on fluid transport, a segment of the

period-1 line shown inside the box on figure 4.2 is considered. The trace vs arc length in

this box are shown in figure 4.13. The two points which have a trace=3 can be seen in

this figure to occur at points that coincide with extrema in action. "Local extrema" on the

action vs arc length occurs when the period-1 line is tangent to an invariant shell at the 1:1

resonance point (can also be considered to be where a period-1 line "folds" over). For a

planar bifurcation the 1:1 corresponds to a fold singularity in the parameter space. Here,

it’s a literal fold of a curve in real space. In this period-1 line segment, the period-1 line

goes from elliptic to hyperbolic through a 1:1 resonance point and hyperbolic to elliptic

through another 1:1 resonance point. In the PRHF, it is observed that 1:1 resonance
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Figure 4.13: Action and Trace values of period-1 points along the segment of the period-1
line inside rectangular box in figure 4.2

points always occur in pairs, and the pair of 1:1 resonance points are always connected

through a hyperbolic segment, forming a wiggle like structure as shown in the action

vs arc length plot as seen in figure 4.13. The local Poincaré sections on the invariant

surfaces corresponding to the 1:1 resonance points are shown in figure 4.14, in which the

shell-normal coordinate is stretched for clarity. The upper and lower sections contain a

degenerate point and an elliptic point, and the middle section contains a hyperbolic point

and two elliptic points. The stable and unstable manifolds of hyperbolic point of the

middle section have homoclinic orbits.

4.3.3 1:2 Resonance

At 1:2 resonance point a period-2 line intersects the period-1 line. At a 1:2 resonance

point, the eigenvalues are λ1 = λ2 = −1 and λ3 = 1, and the local rotation angle is π. The

net deformation at a 1:2 resonance point is zero after two periods. The stability of period-

1 points on the period-1 line changes at the 1:2 resonance point from elliptic to hyperbolic

(or hyperbolic to elliptic), and the resonance occurs when the eigenvalues (λ1, λ2) change

from complex to real negative (or real negative to complex).

The 1:2 resonance is described with an example of Θ = π/4 and β = 2. The period-1

line on the symmetry plane for Θ = π/4 and β = 2 is shown in figure 4.15(a). The action

and trace values of the period-1 line are shown in figure 4.15(b). In this figure, the 1:2

degenerate point coloured green has a trace value of -1 (see table 4.1). The change of

stability of the period-1 line at a 1:2 degenerate point is also seen in figure4.15(b). The
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Figure 4.14: A close up of the segment of the period-1 line inside the rectangular box
in Figure 4.13 (a). Also plotted are local Poincaré sections on three neighbouring shells.
The upper and lower sections correspond to shells containing degenerate points and the
middle section is on a shell half way between. Note that the shell-normal coordinate has
been expanded for clarity.

period-2 line which goes through the 1:2 resonance point is computed numerically using

the method discussed in section 3.6. The period-1 (P1) and period-2 (P2) lines are shown

in figure 4.16. Action values on the period-1 line and period-2 line are plotted against

their arc lengths in figure 4.17. The arc length of P1 and P2 lines are shifted so that at a

1:2 resonance point, the arc length is zero. From figure 4.17, we observe that the period-2

line is symmetric about the symmetry plane and the period-2 line ends are attached to the

boundary of the hemisphere. The local Poincaré sections corresponding to a 1:2 resonance

point of the period-1 line is shown in figure 4.18. The shell-normal coordinate is stretched

in the figure 4.18. The lower section with an action value 0.7583 contains a 1:2 degenerate

point and the upper section with an action value 0.7692 contains one period-1 hyperbolic

point and two period-2 elliptic points. All the piercing sites on sections are shown with

solid spheres, blue spheres for elliptic points, red spheres for hyperbolic points, and a

green sphere for degenerate point. The stable and unstable manifolds of the hyperbolic

point on a period-1 line have homoclinic orbits (see figure 4.18).

The reason a single period-2 line passes through a second order degenerate point

instead of two period-2 lines is discussed in the following. In general, a chain of n period-

n elliptic islands appear on an invariant surface in the neighbourhood of an nth order
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(a)

(b)

Figure 4.15: (a) Period-1 line for β = 2 and Θ = π/4 on symmetry plane. (b) Action and
trace along the period-1 line
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Figure 4.16: Period-1 and Period-2 lines for β = 2 and Θ = π/4

Figure 4.17: Action vs Arclength of period-1 and period-2 lines for β = 2 and Θ = π/4
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Figure 4.18: Local Poincaré sections of shells near 1:2 resonance point for Θ = π/4 and
β = 2. Note that the shell-horizontal and shell-normal coordinate has been expanded for
clarity.

degenerate point and the centres of these islands are period-n elliptic points, as shown in

the upper sections of figures 4.18, 4.22 and 4.25. For order of degeneracy ≥ 3 (i.e. n ≥ 3):

the degenerate points are elliptic period-1 points (due to complex eigenvalues as shown

in table 4.1) and the period-1 line character does not change at these degenerate points.

The chain of n elliptic islands are connected by the manifolds of n period-n hyperbolic

points, forming heteroclinic connections. In contrast, at a second order degenerate point,

the period-1 line changes its character from elliptic to hyperbolic, and the two elliptic

islands are connected by manifolds of a hyperbolic period-1 point instead of two period-

2 hyperbolic points as shown in the figure 4.18, forming a homoclinic connection. It

is because of the existence of this hyperbolic period-1 point, two additional hyperbolic

period-2 points are not possible to connect the islands. Hence there is only one period-2

line which passes through the 1:2 degenerate point.

4.3.4 1:3 Resonance

A 1:3 resonance point has eigenvalues λ1,2 = e(±i2π/3), λ3 = 1, and the net defor-

mation at the resonance point after 3 periods is zero. The local rotation angle is 2π/3.

Three period-3 lines extend from such a point. The properties of a 1:3 resonance point

are described using an example with Θ = π/8 and β = 1. The same parameters is used

to discuss i:4 resonance later in section 4.3.5. A period-1 line on the symmetry plane is

shown in figure 4.19(a). Action and trace values of the deformation tensor on the period-1
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(a)

(b)

Figure 4.19: (a) Period-1 line for β = 1 and Θ = π/8 on symmetry plane. (b) Action and
trace along the period-1 line
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Figure 4.20: Period-1 and period-3 lines for β = 1 and Θ = π/8

line is shown in figure 4.19(b). In figure 4.19(b), the trace line has a point with trace value

0, which corresponds to 1:3 resonance point (see table 4.1). The 1:3 degenerate point

is also shown on the period-1 line in figure 4.19(a). Three period-3 lines (P31,P32 and

P33) extend from the 1:3 resonance point and are computed numerically using the method

discussed in section3.6. The period-1 line (P1) and three period-3 lines are shown in fig-

ure 4.20. P1 and P31 lines are on the symmetry plane. Action values on the period-1 line

and period-3 lines are plotted against arc lengths in figure 4.21(a). Arc lengths of period-

1 and period-3 lines are defined so that arc length is zero at the 1:3 resonance point. A

close-up fof the rectangular box in in figure 4.21(a) is shown in figure 4.21(b). From fig-

ure 4.21(b) and figure 4.20, It is observed that, all period-3 line ends are attached to the

hemisphere boundary. P32 and P33 are reflections of each other at the symmetry plane,

and can be defined by equation (4.4).

P33 = S ΘP32, (4.4)

where S Θ is the map that reflects a particle about the symmetry plane.

. The local Poincaré sections corresponding to the 1:3 resonance point is shown in

figure 4.22. The shell-normal coordinate is stretched for clarity in this figure. The lower

section with an action value of 0.8607 contains three extrema (first order period-3 degen-

erate points) where the three period-3 lines are tangent to the shell and a period-1 elliptic

point. The middle section with an action value of 0.8628 contains three period-3 ellip-

tic points and the 1:3 resonance point through which the period-1 line and all period-3

lines pass (by definition). The upper section with an action value of 0.8649 contains three

period-3 elliptic points, three period-3 hyperbolic points, and a period-1 elliptic point.
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(a)

(b)

Figure 4.21: (a) Action is plotted along period-1 line and three period-3 lines for Θ = pi/8
and β = 1 (b) Top right segment of figure (a)
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Figure 4.22: Local Poincaré sections of shells near the 1:3 resonance point for Θ = π/8
and β = 1. Note that the shell-horizontal and shell-normal coordinate has been expanded
for clarity.
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Figure 4.23: P1 and P4 lines for β = 1 and Θ = π/8

All the piercings sites on Poincaré sections are shown with solid spheres, blue for elliptic

point, red for hyperbolic point and green for degenerate point. The stable and unstable

manifolds of the period-3 hyperbolic points on the upper section have heteroclinic connec-

tions. The heteroclinic connections create four islands, and these islands act as transport

barriers.

4.3.5 1:4 Resonance

A 1:4 resonance point has eigenvalues λ1,2 = e(±i2π/4), λ3 = 1 (or Tr = 1). The

net deformation at the resonance point is zero after four periods, and the local rotation

angle is π/2. Four period-4 lines extend from this resonance point. In figure 4.19(b), the

trace line has a point with trace value 1, which corresponds to the 1:4 resonance point.

The 1:4 degenerate point is also shown on the period-1 line in figure 4.19(a). The four

period-4 lines lines passing through the 1:4 resonance point are computed numerically

using the method described in section 3.6. The period-1 line (P1) and four period-4 lines

(P41-P44) are shown in 3D view in figure 4.23. The action values on the period-1 line

and four period-4 lines are plotted against arc length in figure 4.24(a). Again, arc length

is defined as distance from the 1:4 resonance point. A close-up of the rectangular box

in figure 4.24(a) is shown in figure 4.24(b). From figure 4.23 and figure 4.24(b), it is

observed that P41 lies on the symmetry plane, P44 is symmetric about the symmetry

plane, and P43 and P42 are reflections of each other about the symmetry plane given in

equation (4.5).

P34 = S ΘP42 (4.5)
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(a)

(b)

Figure 4.24: (a) Action is plotted along period-1 and period-4 lines for Θ = pi/8 and
β = 1 (b) Top right segment of figure (a)
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Figure 4.25: Local Poincaré sections of shells near 1:4 resonance point for Θ = π/8 and
β = 1. Note that the shell-horizontal and shell-normal coordinate has been expanded for
clarity.
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where S Θ is the map that reflects a particle about the symmetry plane. All four period-4

lines are attached to the hemisphere boundary.

The local Poincaré section corresponding to this 1:4 resonance point is shown in

figure 4.25. Shell horizontal and normal coordinates are stretched for clarity in this figure.

The lower section with an action value of 0.7935 contains a 1:4 degenerate point and

the upper section with an action value of 0.7976 contains four period-4 elliptic points,

four period-4 hyperbolic points and one period-1 elliptic point. All the piercings sites

on a Poincaré section are shown with solid spheres. The stable and unstable manifolds

of the period-4 hyperbolic points on upper section have heteroclinic connections. The

heteroclinic connections create five islands, and these islands act as transport barriers.

Similarly, other resonances (n > 5) on the period-1 line can be identified with trace

values, and the corresponding higher-order periodic line structures can be calculated.

4.3.6 2:6 resonance

One of the main findings of this thesis is that resonance points, coordinating lower-

order periodic lines and higher-order periodic lines, act as nodes in the Lagrangian net-

work of periodic lines in one invariant flows. These resonance points organise periodic

lines, which then controls fluid transport. Resonances on period-1 lines are discussed so

far. To demonstrate the organisation of periodic lines by resonances on higher-order peri-

odic lines, a 2:6 resonance is described with the example of Θ = π/4 and β = 2, which is

the same example used in section 4.3.3 to describe 1:2 resonance. A 1:2 resonance point

is identified on the period-1 line of Θ = π/4 and β = 2, and the period-2 line which passes

through the 1:2 resonance point is calculated. On this period-2 line, 2:6 resonance points

are identified, and the corresponding period-6 lines which pass through them are calcu-

lated numerically using the method discussed in section 3.6. The 2:6 resonance points

and its associated higher-order periodic lines are shown in figure 4.26. In this figure, a

period-2 line (P2) intersects the period-1 line (P1) at the 1:2 resonance point and three

period-6 lines (P61, P62 and P63) intersect the period-2 line at the 2:6 resonance point.

In this figure, there is a symmetric structure on the other side of the period-2 line (due

to the symmetry in the PRHF), only the 2:6 resonance point is shown, the period-6 lines

are not shown here for clarity. Otherwise, the periodic lines look crowded in this figure.

Complete Lagrangian structures in a one-invariant flow can be calculated systematically,

by first identifying resonance points on period-1 lines and calculating their correspond-

ing higher-order periodic lines, next identifying resonance points on period-2 lines and

calculating their corresponding higher-order periodic lines. This process is continued
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Figure 4.26: A period-1 line (P1), a period-2 line (P2) and three period-6 lines (P61, P62

and P63) coordinating via 1:2 resonance point and 2:6 resonance points for Θ = π/4 and
β = 2.

recursively until all the Lagrangian structures are obtained or until enough Lagrangian

structures are obtained for any given purpose.
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4.4 Global Lagrangian structures from local resonance

bifurcations

In all the examples of the resonances from 1:2 to 1:4 discussed till now, the higher or-

der periodic lines extended from the corresponding resonance points to the hemisphere

boundary. A higher-order periodic line from a resonance point can sometimes connect

with another resonance point of the same order and forms a global Lagrangian structure.

Such type of coordination between the resonance points is discussed here with 1:2 reso-

nances.

4.4.1 Example: Θ = π/8 and β = 4

A period-1 line on the symmetry plane for Θ = π/8 and β = 4 is shown in figure 4.27

(a). The action and trace values of the deformation tensor along the period-1 line are

shown in figure 4.27(b). In figure 4.27(b), the trace line has five points with trace -1,

which correspond to 1:2 resonance points. These five 1:2 resonance points belong to

five different shells. The four 1:2 resonance points are labelled 1-4, and are shown on

the action line in figure 4.27(b). Period-2 lines corresponding to the four 1:2 resonance

points are computed numerically using the method described in section 3.6 and are shown

in figure 4.28. It is seen in this figure, that, period-2 lines extending from the resonace

points 1 and 3 join together to form a single closed period-2 line (P21), and period-2 lines

extending from the resonace points 2 and 4 join together to form another single closed

period-2 line (P22).

The period-1 line and the two period-2 lines impart their character on to shells as

a consequence of the stability of the lines at the piecings points. Action values on the

period-1 line and the period-2 lines are plotted against arc length in figure 4.29. To exam-

ine the influence of the period-2 lines on shells, three shells (shell values 0.5285, 0.5588

and 0.5919) shown in figure 4.29 are chosen.

Shell 0.5285:
The Poincaré section of shell 0.5285 including the period-1 and period-2 lines, and pierc-

ings are shown in figure 4.30. Figure 4.30: (a) presents the view from the bottom of the

hemisphere, (b) presents the view from the side-top of the hemisphere and (c) presents the

flattened out view of the shell on a 2D sheet. All piercings sites on the Poincaré section

are shown with solid spheres. Shell 0.5285 contains four period-2 elliptic points, four

period-2 hyperbolic points and two period-1 elliptic points. The stable and unstable man-

ifolds of the four period-2 hyperbolic points have heteroclinic connections.

Shell 0.5588:
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(a)

(b)

Figure 4.27: (a) The Period-1 line for β = 4 and Θ = π/8 on the symmetry plane. (b)
Action and trace along the period-1 line
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Figure 4.28: Θ = π/8 and β = 4, Period-1 line P1 and period-2 line P21 are on symmetry
plane, and period-2 line P22 is symmetric about symmetry plane; Elliptic line segments
are coloured blue, hyperbolic line segments are coloured red and degenerate points are
coloured green. Five 1 : 2 resonance points on P1 are also shown with numbers 1 − 4.

A similar Poincaré section for shell 0.5288 is shown in figure 4.31. The views are the

same as the previous shell. This shell contains four period-2 elliptic points, two period-2

hyperbolic points, a period-1 elliptic point and a hyperbolic period-1 point. The stable and

unstable manifolds of two period-2 hyperbolic points have heteroclinic connections. The

stable and unstable manifolds of period-1 hyperbolic point have homoclinic connections.

Shell 0.5919:
A similar Poincaré section for shell 0.5919 is shown in figure 4.32. The views are the

same as the previous shell. The shell contains two period-2 elliptic points, two period-2

hyperbolic points and two period-1 elliptic points. The stable and unstable manifolds of

two period-2 hyperbolic points have heteroclinic connections.

4.4.2 Example: Θ = π/4 and β = 4

Another example that has a different number of 1:2 resonance points on the period-1

line to the previous example is considered to examine the connections of period-2 lines

emanating from the 1:2 resonance points. The period-1 line (P1) and two period-2 lines

(P21, P22) for Θ = π/4 and β = 4 are shown in figure 4.33. The 1:2 resonance points

on the period-1 line are labelled 1-3 in this figure. It is seen in this figure, that, period-2

lines extending from the resonance points 1 and 3 join together to form a single closed

period-2 line (P21), and a period-2 line extending from the resonance point 2 attaches to

the hemisphere boundary.
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Figure 4.29: Action against arc length of periodic lines (P1, P21 and P22) shown in
figure 4.28 are plotted. Three horizontal lines correspond to action values (0.5285, 0.5588,
0.5919).
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(a)

(b)

(c)

Figure 4.30: Periodic lines shown in figure 4.28 imparting its character on to shell 0.5285;
Stroboscopic map on Shell seen from (a) Bottom (b) Top-side (c) Stroboscopic map on
shell is projected on to a plane; Period-1 line piercing point on the shell is represented by
solid circle and period-2 lines piercing point on the shell is represented by solid square;
blue colour for elliptic and red colour for hyperbolic stability
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(a)

(b)

(c)

Figure 4.31: Periodic lines shown in figure 4.28 imparting its character on to shell 0.5588;
Stroboscopic map on Shell seen from (a) Bottom (b) Top-side (c) Stroboscopic map on
shell is projected on to a plane; Period-1 line piercing point on the shell is represented by
solid circle and period-2 lines piercing point on the shell is represented by solid square;
blue colour for elliptic and red colour for hyperbolic stability
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(a)

(b)

(c)

Figure 4.32: Periodic lines shown in figure 4.28 imparting its character on to shell 0.5919;
Stroboscopic map on Shell seen from (a) Bottom (b) Top-side (c) Stroboscopic map on
shell is projected on to a plane; Period-1 line piercing point on the shell is represented by
solid circle and period-2 lines piercing point on the shell is represented by solid square;
blue colour for elliptic and red colour for hyperbolic stability
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Figure 4.33: Θ = π/4 and β = 4, Period-1 line P1 and period-2 line P21 are on symmetry
plane, and period-2 line P22 is symmetric about symmetry plane; Elliptic line segments
are coloured blue, hyperbolic line segments are coloured red and degenerate points are
coloured green. Four 1:2 resonance points on P1 are also shown with numbers 1 − 3.

4.5 Summary

The PRHF in the Stokes regime has a time reversal-reflection symmetry, and it is enough

to look for Lagrangian structures on one side of the symmetry plane because they mirror

across this plane. The PRHF in the Stokes regime is a one action flow because of the time

reversal-reflection symmetry it possesses. The flow topology consists of closed invariant

surfaces which are topologically equivalent to nested spheres, with fluid particles being

constrained to move on the invariant surfaces. The advection of fluid particles on an in-

variant surface is Hamiltonian everywhere except at stagnation points. The organisation

of Lagrangian structures in one action flows is not well understood, and it is essential to

efficient mixing. One action flows can not have isolated periodic points, they can only

have periodic lines which are either closed or the ends of the periodic lines are attached to

the boundary. Hence, periodic lines and their manifolds constitute all of the Lagrangian

structures in one action flows. Numerical computation of Lagrangian structures is vital

to understand fluid transport. The overarching key result of this chapter is that no mat-

ter how complex the Lagrangian structure of this class of flow appears, it can now be

fully understood through the hierarchical calculation of canonical Lagrangian structures

at resonant degenerate points on periodic lines. Ultimately this occurs because of the

global constraint on deformation from volume preservation and the local constraint of no

deformation tangent to periodic lines.
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The action variable (or "Shell number") has proven to be a valuable concept in under-

standing Lagrangian structures in one action flows. Although an individual fluid particle

has a fixed shell number (or action value), the way in which shell number changes along

the periodic line allows significant understanding of topology to be gained. Plotting ac-

tion as a function of distance (or arclength) along a periodic line allows us to determine

the number of periodic line piercings and their stability on any shell by drawing a hori-

zontal line at the shell values. The local Lagrangian topology on any shell can be quickly

inferred from the action-arclength plots of the periodic lines. The method of enumer-

ating action and plotting it against arclength along periodic lines can be applied to any

topologically similar one action flow in which the action variable can be quantified some

way.

Period-1 line being the most important of all the other order periodic lines forms

the Lagrangian skeleton of the flow. In the Stokes PRHF, a single period-1 line which

connects three non-trivial fixed points (a point at the bottom of the hemisphere, a central

stagnation point which is at the centre of the topological spheres and a point on the lid)

exists on the symmetry plane for all parameter values. By finding action values along

the period-1 line, it is found that the period-1 line intersects each shell at least twice.

In the limit β → 0, the period-1 line is a stagnation line that coincides with the y axis.

As β increases, the tangent to the period-1 line at the central stagnation point rotates

anti-clockwise which increases the total length of the period-1 line (since both the ends

of a period-1 line are fixed). For very low β values, the entire period-1 is elliptic and

pierces each invariant surface only twice. As β increases from very low to low values,

hyperbolic segments start appearing on the period-1 line, although it still pierces each

invariant surface twice. Wherever a period-1 line pierces on a shell, the stability of the

piercing period-1 point is imparted on to the shell in the neighbourhood of the piercing

site. As β increases further, the period-1 line starts folding inside hemisphere that leads to

the creation of two local extrema (one minimum, one maximum) in action vs arc length

plot. The two local extreme together constitute a wiggle. Each local extrema in the action

vs arc length plot correspond to a point at which the period-1 line becomes tangent to

one of the shells. Each of these points also a first-order degenerate point and corresponds

with a cusp on the 2D shell Poincaré section. A single wiggle accommodates two first

order degenerate points, and the period-1 line segment between these degenerate points

is of hyperbolic type. Both the sides of the period-1 line segments are of elliptic type. A

wiggle of a period-1 line makes two additional period-1 piercings of invariant shells over

a range of shell numbers.
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The degenerate points on periodic lines are analogous to fixed point resonances in

classical planar bifurcation theory. At an nth order degenerate point (or 1:n resonance

point), n period-n lines intersect the period-1 line except for n = 1 and 2. At a first

order degenerate point, the period-1 line is tangent to one of the shells. At a second or-

der degenerate point, a period-2 line intersects the periodic-1 line. In general, at a m:p

resonance point on a period-m line, n (= p/m) period-p lines intersect. The resonance

points on a periodic line are easily identified by the trace values on the periodic line.

A higher-order periodic line intersecting with a lower order periodic line at a resonance

point can be calculated numerically by identifying the resonance point. The significance

of these resonances points is that one action flows can be completely understood by find-

ing the resonance points on the period-1 lines first, and then computing the correspond-

ing higher-order periodic lines, and then computing period-2 lines and the corresponding

higher-order periodic lines, and so on. This process is pursued recursively until enough

Lagrangian transport structures are uncovered for any given purpose. 1:1, 1:2, 1:3 and 1:4

resonances are called strong resonances.

A higher-order periodic line extending from a resonance point may attach to the

boundary, or higher-order periodic lines extending from different resonance points can

sometimes join together to form a closed periodic line. These resonance bifurcations

are local bifurcations because they can be found in the neighbourhood of periodic points

(or fixed points). The Lagrangian structures emanating from different resonance bifurca-

tion points connect together and form truly global transport structures. With this way of

building extended structures from lower order to higher order periodic lines, truly global

Lagrangian transport structures can be uncovered for any one action flow. With the Re=0

in the PRHF, Lagrangian structures are now fully understood. In the next chapter, I will

show how these structures break down to quasi-chaotic structures upon perturbation.



Chapter 5

Numerical Analysis of PRHF in Inertial
Regime

A 3D incompressible flow with one invariant can have invariant surfaces that are either

topologically spheres as seen in the previous chapter or topologically tori. To generate

3D chaotic transport, the flow invariants must be destroyed by perturbing the flow. What

are the transport mechanisms that produce 3D chaos upon perturbation of one invariant

flows? The answer is not completely known. So far, three transport mechanisms that

generate 3D chaos have been observed: resonance induced dispersion (Cartwright et al.,

1996; Vainchtein et al., 2007, 2008; Vainchtein and Abudu, 2012; Meiss, 2012), localised

shear-induced dispersion (Smith et al., 2017), resonance induced merger (Speetjens et al.,

2006a,b; Pouransari et al., 2010). In particular, "resonance induced merger" is observed

when nested spheroidal surfaces are perturbed. Is the "resonance induced merger" mech-

anism generic for systems with nested spheroids or are there other transport mechanisms

for the case of nested spheroids? In this chapter, the question is answered, and a new

mechanism featuring non-heteroclinic tubular transition regions is described. The pro-

gression of Lagrangian structures from one invariant flow to zero invariant flow after the

inertial perturbation is also described in this chapter.

The PRHF in the Stokes regime is an incompressible invariant flow due to its

time-reversal reflection symmetry, and fluid particle transport is constrained to two-

dimensional invariant surfaces. To generate three-dimensional fluid transport, in this

chapter, finite inertia of fluid flow is considered that breaks the fore-aft symmetry in the

base flow that further breaks the time-reversal-reflection symmetry of the PRHF. The ef-

fect of for-aft symmetry breaking via inertia on particle trajectories in the base flow are

discussed in section 2.1.2. The left-right symmetry of the base flow still exists in the

inertial flow.

101
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Breaking the time-reversal-reflection symmetry of the PRHF results in the loss of

the invariant which exists in the Stokes limit. Hence the conserved coordinate in the

Stokes flow is no longer conserved in the inertial flow, and fluid particles move in three-

dimensions. Although the symmetry is lost with the inertia, the flow appears to have some

remnants of the symmetry at least in the range Re ∈ (0, 1) that will be seen in this chapter.

5.1 Period-1 (or Fixed point) structures

Since period-1 structures are the most important Lagrangian structures, the approach in

understanding fluid transport in the inertial regime begins through the computation of

period-1 points and their manifolds. In the Stokes flow, a single period-1 line exists on

the symmetry plane for all system parameter values (β and Θ). In the inertial flow, a

numerical search discussed in section 3.7 did not find any period-1 lines; instead, isolated

period-1 points were found which are not part of any period-1 line. In this thesis, the use

of the words "symmetry plane", "shell number (or action)" and "period-1 line" always

refers to the Stokes regime. The use of the word "isolated period-1 point" always refers

to the inertial regime. In the following subsections: the nature of the isolated period-1

points is discussed in section 5.1.1; some features of the isolated period-1 points in the

inertial flow are discussed in section 5.1.3; the details of the numerical computation of

the manifolds of the isolated period-1 points are discussed in section 5.1.2; some general

conventions used in the figures of this chapter are discussed in section 5.1.4.

5.1.1 Nature of isolated period-1 points

Isolated period-1 points are numerically calculated using the method discussed in

section 3.7. The nature of fluid transport in the neighbourhood of an isolated period-1

point is determined by the eigenvalues of the deformation tensor (or multipliers) evaluated

at the isolated period-1 point. Multipliers are computed by computing the deformation

tensor numerically as described in section 3.5. Period-1 points are categorized mainly

into two types based on the values of the multipliers: a hyperbolic-node for three real

values, and a hyperbolic focus for two complex and one real value (see section 2.4.2).

A hyperbolic focus point has a 1d manifold and a spiralling 2d manifold. The

spiralling can be into or out of the periodic point based on the magnitude of the eigenval-

ues. A hyperbolic-node period-1 point has three 1D manifolds. As discussed in section

2.5, the stability of an isolated period-1 point can also be determined from the trace τ

(termed trace1) and the second trace σ (termed trace2) values (defined in section 2.5)

of the deformation tensor evaluated at that point. A period-1 point has either 1D stable
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and 2D unstable manifolds if σ > τ at the period-1 point or 1D unstable and 2D stable

manifolds if σ < τ at the period-1 point (Dullin and Meiss, 2008). The trace1 vs trace2

plots of isolated period-1 points will be shown in later sections to identify the stability of

isolated period-1 points quickly. The number of unstable directions is called the Morse

index (Bott, 1982).

5.1.2 Numerical computation of manifolds

To compute a 1d manifold of a period-1 point numerically, 15 points which are

between the distance of 10−6 to 10−5 from the period-1 point along the corresponding

eigenvector direction on both sides of the period-1 point are considered. The 15 points

separately on each side are then tracked forward in time if the corresponding eigenvalue

is greater than one and tracked backwards in time if the corresponding eigenvalue is less

than one until enough the 1D manifold structure is obtained. Because the manifolds of

the period-1 points (or fixed points) belong to the map Ψ, fluid particles which are on a

1D manifold do not move continuously as time progresses along the 1D manifold line;

instead, they move discretely. To view a 1D manifold of a period-1 point, orbits of the

15 points can be plotted as dots in 3D space that looks like a dotted line. In the later

sections of this chapter, the dotted 1D manifold lines are shown as continuous lines for a

better view in manifold figures. To compute a 2d manifold of a hyperbolic-focus period-1

point numerically, a set of 100 points are uniformly placed on a sphere of radius 10−5

centred around the hyperbolic-focus period-1 point. The 100 points are tracked forward

in time if the absolute value of the corresponding complex eigenvalue is greater than one,

or tracked backwards in time if the absolute value of the corresponding complex eigen-

value is less than one until enough 2D manifold structure is obtained. In the later sections

of this chapter, the 100 points and their positions after every period are plotted as dots

which constitute a surface in 3D space to show the computed 2D manifolds. 1D and 2D

manifolds of all the isolated period-1 points form the advection template that organises

all trajectories.

Hyperbolic-node periodic point manifolds:
When manifolds of a hyperbolic-focus period-1 point are calculated numerically and plot-

ted, surprisingly, only two 1D manifolds directions are seen instead of three 1D manifolds.

The same thing is noticed with all other hyperbolic-focus period-1 points also that fluid

particles in the neighbourhood of a hyperbolic-focus period-1 point are driven along only

two eigenvector directions. The reason for this behaviour is explained below.
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Figure 5.1: A typical 2D unstable manifold of a hyperbolic period-1 point

Assume λ1, λ2 and λ3 are eigenvalues, and e1, e2 and e3 are corresponding eigen-

vectors of the deformation tensor evaluated at a period-1 point. Assume a case where

λ1 < 1 and λ2 > λ3 > 1. The period-1 point has a 1D stable manifold corresponding

to the eigenvalue λ1 in the e1 direction and a 2D unstable manifold corresponding to the

eigenvalues λ2 and λ3 on a plane containing e2 and e3 vectors. Consider a point ζ0 on the

plane of the 2D unstable manifold in the neighbourhood of the period-1 point. The point

ζ0 can be expressed as a linear combination of eigenvectors e2 and e3 since it resides on

the plane containing e2 and e3 vectors,

ζ0 = c2e2 + c3e3. (5.1)

The displacement of the point ζ0 after a period is obtained by Fζ0 where F is a deforma-

tion tensor at ζ0 (see section 2.4). Similarly the displacement of the point after n periods

is obtained via

Fnζ0 = c2λ
n
2e2 + c3λ

n
3e3. (5.2)

Equation (5.2) holds true only in a linearised neighbourhood of periodic point. Because

λ2 > λ3 > 1, as n increases the displacement vector rapidly converges in the e2 direction

leaving the vector e3 irrelevant. The particle trajectories in the neighbourhood of a such

hyperbolic-node period-1 point are shown in figure 5.1. Similarly, in another case where

λ1 > 1 and λ2 < λ3 < 1, the effective eigenvector directions are e1 and e2. Of all the three

real eigenvalues of an hyperbolic node period-1 point, an eigenvector of an eigenvalue

whose absolute value is closest to one loses its relevance as n increases.
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(a) a hyperbolic-focus period-1 point approaches a point on an elliptic period-1
line segment of the Stokes flow

(b) A hyperbolic-node period-1 point approaches a point on a hyperbolic
period-1 line segment of the Stokes flow

Figure 5.2: In the limit Re → 0, isolated period-1 points approach points on the Stokes
period-1 line.
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5.1.3 Some features of the isolated period-1 points

Isolated period-1 points are calculated using the method discussed in section 3.7 for

various system parameter values (Θ and β) in the inertial regime with Re ∈ (10−2, 1).

From these calculations, some of the observed features of the isolated period-1 points are

listed below, and the actual results are discussed later in this chapter.

1. In the limit Re → 0; an isolated period-1 point approaches a point on the Stokes

period-1 line as shown in figure 5.2. In this figure, a hyperbolic-focus period-1

point moves toward an elliptic point of the Stokes period-1 line and hyperbolic-

node period-1 point moves toward a hyperbolic point of the Stokes period-1 line.

2. The isolated period-1 points of the inertial flow are located very close to the Stokes

period-1 line (separation / 10−3 for Re = 1).

3. As β increases, the length of the period-1 line increases in the Stokes flow, whereas

in the inertial flow the number of isolated period-1 points increases.

4. The period-1 line of the Stokes flow manifests into 1D manifolds of the inertial flow

as shown in figure 5.5(a).

5. A heteroclinic connection always appears between two hyperbolic-focus period-1

points as shown in the figure 5.5(b).

5.1.4 General conventions regarding figures

Some general conventions regarding figures followed in this chapter are listed be-

low.

Viewing isolated period-1 points: Since period-1 points are found very close to the

Stokes period-1 line which is on the symmetry plane, a thin slice (width ≈ 10−2 of hemi-

sphere radius) of the hemisphere centred at the symmetry plane is considered such that the

slice contains the isolated period-1 points. Then the slice of the hemisphere containing the

Stokes period-1 line and isolated period-1 points of the inertial flow is viewed perpendic-

ular to the symmetry plane (see example figure 5.5(a)). Hyperbolic-focus type period-1

points are shown as solid blue circles, and hyperbolic-node type period-1 points are shown

as solid red circles. An elliptic period-1 line segment is shown as a blue coloured line,

and the hyperbolic period-1 line segment is shown as a red line.

Viewing action and arc length values of the isolated period-1 points: To see the origin

of an isolated period-1 point from the period-1 line, action vs arc length plot of the isolated

period-1 points is helpful because in the limit Re→ 0 an isolated period-1 point→ some
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point on the period-1 line. Although arc length values cannot be ascribed to the isolated

period-1 points in the inertial regime, because the isolated period-1 points are located

very close to the Stokes period-1 line, arc length and action values of isolated period-1

points are taken from their nearest Stokes period-1 points correspondingly. The purpose

of finding the nearest point on the Stokes period-1 line is to see quickly where an isolated

period-1 point is coming from the period-1 line. Then, action and arc length values of

the isolated period-1 points and the Stokes period-1 line are plotted together (see example

figure 5.5(b)). Hyperbolic-focus type period-1 points are shown as solid blue circles, and

hyperbolic-node type period-1 points are shown as solid red circles. An elliptic period-1

line segment is shown as a blue coloured line, and the hyperbolic period-1 line segment

is shown as a red line.

Viewing Poincaré sections: To understand fluid advection, particle orbits can be plotted

in 3D space, and Poincaré section of the orbits can be made. But, plotting the particle

orbits in 3D hemisphere space is cumbersome, and it is not possible to get a Poincaré sec-

tion where particle piercing positions are recorded on the plane. To understand particle

orbits, their periodic locations are plotted as dots with separate colours for each particle

and only viewed on a thin slice containing Stokes period-1 line (see figure 5.7(c)).

5.2 A preview of main results for finite Re

To examine the effect of inertia on various possible Lagrangian structures of the Stokes

flow that are due to the different parameter values (Lid displacement and Reorientation

angle) of the PRHF, the structures are chosen for perturbation one by one in the order

of increasing complexity identified in chapter 4. Due to the complexity of the system,

only the structures up to the perturbed 1:1 resonance (see chapter 4) will be included in

this thesis. Before the actual computational results are shown, the main findings of the

perturbed flow are presented. A schematic of the Stokes Lagrangian structures and the

corresponding perturbed Lagrangian structures are shown in figure 5.3. The left column

of this figure presents a case structure on the Stokes symmetry plane of the hemisphere

(that has been stretched onto a sphere). It shows the Stokes period-1 line (continuous line)

and the invariant shells (dotted circles) of the Stokes PRHF. The right column of this figure

presents the isolated period-1 points (blue and red circles represent hyperbolic-focus and

hyperbolic-node period-1 points respectively) and the manifolds associated with them.

Although, Re = 1 is considered in this schematic, other values Re ∈ (0, 1) also produce

qualitatively similar perturbed structures that will be shown later in section 5.3.1. The

parameter β plays a significant role, with qualitative Lagrangian features changes as β
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increases. The main features are described below.

Very low β value (see figure 5.3(a)): Generally, for very low β values, all period-1 points

of the period-1 line are elliptic in the Stokes regime and each shell is pierced twice. After

inertial perturbation, nested spheroids turn into nested tori. Two hyperbolic-focus points

are associated with the nested tori, and a heteroclinic connection that connects the two

hyperbolic-focus period-1 points occurs at the centre of the nested tori. Some examples

of this type of Lagrangian structure are discussed in sections 5.3.1 and 5.3.2

Moderate β value (see figure 5.3(b)): As β increases, the length of the period-1 line

increases in the Stokes regime, and the number of isolated period-1 points increase in

the inertial regime. Because the period-1 line manifests subtly into 1D manifolds of the

inertial flow, a chain of heteroclinic connections is formed connecting the isolated-focus

period-1 points. An example of this kind of Lagrangian structure is discussed in sec-

tion 5.3.3.

1:1 resonance (see figure 5.3(c)): As β increases further, the period-1 line becomes tan-

gent to the invariant shells at two places on the period-1 line (see left of figure 5.3(c)), and

the points at which the period-1 line is tangent to the invariant shell are called 1:1 reso-

nance points. 1:1 resonance points always develop as pairs with increasing β. A period-1

line segment consisting of a pair of 1:1 resonance points are called a wiggle, and the part

of the period-1 line segment between the two 1:1 resonance points is hyperbolic. It is ob-

served, always, a hyperbolic-node period-1 point emerges from a point on the hyperbolic

period-1 line segment which connects two 1:1 resonance points (from a wiggle). When

the Stokes flow 1:1 resonance structure is perturbed by inertia, a 3D chaotic transport

structure featuring non-heteroclinic connections of tubular transition regions is formed.

This type of structure has not been observed before. The dotted circle in the figure repre-

sents a fuzzy shell (mixing zone) where chaotic mixing occurs. The heart of the matter is

the advection of fluid particles proceeds in the following way: tubes→mixing zone→ re-

turn to several isolated period-1 points→ tubes. Numerical calculations of 1:1 resonance

examples are discussed in section 5.4.

In the Stokes PRHF, for any fixed reorientation angle Θ, as β increases the complex-

ity of the Lagrangian structures increases (see figure 5.4). The effect of the perturbation

on these Stokes structures is discussed one by one in the following sections.
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Figure 5.3: Schematic of the main results for the inertial PRHF
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Figure 5.4: Stokes flow period-1 structures in the increasing order of complexity

5.3 Two period-1 piercings on shells

5.3.1 Very low β value

To examine the effect of inertia, the PRHF with the parameters Θ = π/8 and β = 0.1

is considered since it has a pure elliptic period-1 line. The effect of the perturbation on this

flow is first presented with Re = 1, and then the effect of varying Re on the Lagrangian

transport structures is discussed later in this section. A numerical search for period-1

points in the Re = 1 flow found three hyperbolic-focus period-1 points. The isolated

period-1 points and 1D manifolds of isolated period-1 points, and the Stokes period-1 line

are shown in figure 5.5(a), and the corresponding action - arc length values are shown

in figure 5.5(b). The period-1 line is also shown in this figure as a wide transparent blue

line. This figure shows 1D manifolds of the inertial flow are close to the Stokes period-1

line.

To understand fluid particle orbits, a single particle is initialized at an arbitrary lo-

cation and tracked for 4.85 × 104 periods. In figure 5.6, the position of the particle after

every period is shown as dots in mint colour, and blue circles on the period-1 line are

hyperbolic-focus period-1 points, and the solid black line is a 1D manifold with arrows

showing the direction of the manifold. It is observed from figure 5.6 that the fluid particle

moves on a toroidal surface. For low β, particle trajectories change from spheroids to

toroids after the perturbation. In the Stokes flow, fluid particles move on a closed curve

due to the elliptic nature of the period-1 line, and it can be considered as a two action flow

locally. Adding inertia to the fluid, in this case, generated a secondary motion along the

Stokes period-1 line that makes the particles move on a tube (particles spiral and move

along the Stokes period-1 line) and it can be considered as a one action flow locally. After

adding inertia, fluid particles in most of the flow (except some part of the domain at the
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bottom) spiral upwards around a 1D manifold (which is very close to the Stokes period-1

line) towards the lid, and spiral downwards, and join as shown in figure 5.6.

To find the effect of the magnitude of Re on fluid transport, three fluid particles

positioned distantly from each other are considered and tracked until their orbits cover

a full torus for Reynolds number values {0.01, 0.05, 0.1, 0.5, 1}. The particle orbits on

a thin slice centered at the symmetry plane are shown in figure 5.7 for Re = 0 in (a),

Re = 0.01 in (b), and Re = 1 in (c); black colour for particle 1, magenta for particle

2, and mint for particle 3. In figure 5.7 (a), the blue line represents the Stokes period-1

line, and because the particles move on a closed curve around an elliptic period-1 line

in the Stokes flow, only dots are seen on the thin slice. In figure 5.7(b) and (c), blue

solid circles represent isolated period-1 points. Isolated period-1 points are not exactly

on the symmetry plane, but because they are very close to the symmetry plane, we can

see them on the plot because they stay inside the slice. Black, magenta and mint lines

on the plot are particle trajectories that move on toroidal surfaces. The particle orbits for

Re = 0.05 and 0.5 are not shown in the figure 5.7 as they are qualitatively similar to the

Re = 0.01 and 0.1 cases. From figure 5.7, it is observed, for low β values, fluid particle

orbits remain on a torus. A torus is a product of two circles, and it has two periods (or two

frequencies). The number of periods N required for a particle to complete advecting a full

torus is equal to the largest period of the two periods of the torus. N is calculated for the

same three particles with different Re values is shown in figure 5.7. As Reynolds number

increases, a fluid particle requires fewer periods to complete a full torus. The magnitude

of inertia effects the speed of transport: higher the inertia faster will be fluid transport.

Although increasing inertia increases the speed with which Lagrangian structures form, it

does not qualitatively change the Lagrangian structures of the flow when Re ∈ (0, 1). This

is true for higher values of β as well. Figure 5.8 shows the relationship between the speed

of evolution of Lagrangian structures with Reynolds number. Because increasing inertia

speeds up the process of computing Lagrangian structures without qualitatively changing

them, the effect of inertia on Lagrangian transport structure is studied exclusively with

Re = 1.

5.3.2 Low β values

In the Stokes flow, as β increases, the length of the period-1 line increases (see

chapter 4). In the inertial flow, as β increases, the number of isolated period-1 points

increases. For θ = π/8 and β = 1, 2, 3 and 4, isolated period-1 points are calculated

numerically and are shown in figure 5.9 (left) , and the corresponding action-arc length

values are shown in figure 5.9 (right).
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(a)

(b)

Figure 5.5: For Θ = π/8 and β = 0.1: (a) For Θ = π/8 and β = 0.1: a thin slice of
the hemisphere centred at the symmetry plane containing isolated period-1 points which
are shown as solid circles for Re = 1, 1D manifolds of isolated period-1 points (black
continuous line), and the Stokes period-1 line (wide transparent blue line); (b) the same
period-1 line and the isolated period-1 points paramaterized by action and arc length along
the line. Arc length is in units of radius.
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Figure 5.6: A fluid particle orbit (mint colour) for 4.85 × 104 periods with parameters
Θ = π/8, β = 0.1; Isolated period-1 points (in solid circles) and their 1D manifolds(black
continuous lines with arrows showing the direction of the manifolds) are also seen.

In order to understand fluid transport, a few particles are chosen arbitrarily for each

β and tracked to obtain their orbits for Θ = π/8 and β = 1, 3, 4. β = 0.5 and 2 are omitted

as they has similar period-1 structures to β = 0.1 and 1 correspondingly. The particle

orbits are shown on a thin slice centred at the symmetry plane with separate colours for

each orbit (see figure 5.10 (left)). The isolated period-1 points and the Stokes period-1

line are also shown in figure 5.10 (left). The trace1 (τ) and the trace2 (σ) values of the

corresponding isolated period-1 points (bigger dots) and the Stokes period-1 line (small

dots) are shown in figure 5.10 (right). It is difficult to detect where the isolated period-1

points that are close to the y = x line on the trace1 vs trace2 plot fall, above or below

the line without zooming in. Small arrows are added in the trace1 vs trace2 plots to

such type of isolated period-1 points to show their location and hence their stability. For

instance β = 0.5 in the figure 5.10 (right), point 1 has 1D stable/2D unstable manifolds

and point 2 has 1D unstable/2D stable manifolds. A group of hyperbolic-focus period-1

points near the hemisphere bottom can be seen for all different β cases in figure 5.9. As

β increases, the group of hyperbolic-focus period-1 points moves close to the hemisphere

boundary, and hence their effect on the fluid transport becomes smaller except the period-

1 point which is furthest from the hemisphere boundary in the group. The rest of the

group of points have a minor effect. The hyperbolic-focus period-1 points in the group are

connected with their neighbouring points by heteroclinic connections, and the hyperbolic-

focus period-1 points have consecutively with alternative 1D stable/2D unstable and 1D

unstable/2d stable manifolds. The low β behaviour of toroids persists until 2 < β < 3
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(a)

(b)

(c)

Figure 5.7: A thin slice of the hemisphere with the width about 10−2 centered at the
symmetry plane viewed perpendicular to the symmetry plane; Three particle orbits for
β = 0.1 and Θ = pi/8 are shown in black, magenta, and mint colours for Re = 0 in
(a), Re = 0.01 in (b) and Re = 1 in (c). In (a), solid blue colour line represents Stokes
period-1 line. In (b) and (c), solid circles represent isolated period-1 points of hyperbolic
focus nature and black continuous line represents 1d manifolds.
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Figure 5.8: Logarithm of no of periods required for a particle orbit to form one torus for
β = 0.1 and Θ = π/8 versus logarithm of Reynolds numbers; 5 solid circles on lines
correspond to 5 different Reynolds number values. i.e. Re ={ 0.01, 0.05, 0.1, 0.5, 1}

after which other isolated period-1 points emerge, and the particle orbits start becoming

complex as seen in figure 5.10 for β = 3 and 4.

5.3.3 A chain of heteroclinic connections

The PRHF with the parameters Θ = π/4 and β = 8 is considered because β = 9

has a 1:1 resonance structure in the Stokes regime, and in the order of the complexity of

the Stokes Lagrangian structures β = 8 structures precede 1:1 resonance structures. The

Stokes period-1 line and the isolated period-1 points are shown in figure 5.11(a). The iso-

lated period-1 points numbered 1 and ≥ 6 are very close to the hemisphere boundary, and

hence their influence on fluid transport is small. The isolated period-1 points numbered

from 2 to 5 in figure 5.11(a) are important in forming the Lagrangian structures as they

are away from the hemisphere boundary. The period-1 points 2-5 are shown in the trace1

vs trace2 plot in figure 5.11(b) from which their stability can be deduced. Points 2 and 4

have 1D unstable and 2D stable manifolds since they fall below the y = x line, and points

3 and 5 have 1D stable and 2D unstable manifolds since they fall above y = x line. The

Stokes period-1 line and the inertial flow isolated period-1 points are parameterized by

action, and arc length along the Stokes period-1 line are shown in figure 5.11(c).

The manifolds of the period-1 points 2-5 are calculated numerically as described in

section 5.1.2 and are shown in figure 5.12 which is a thin slice of the hemisphere centred

at the symmetry plane viewed perpendicular to the symmetry plane. In figure 5.12, the
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β = 1

β = 2

β = 3

β = 4

Figure 5.9: For Θ = π/8 and indicated values of β: (left) a thin slice of the hemisphere
centred at the symmetry plane containing the Stokes period-1 line which is shown as a
continuous line and isolated period-1 points which are shown as solid circles for Re = 1
is viewed perpendicular to the symmetry plane; (right) the same period-1 line and the
isolated period-1 points paramaterized by action and arc length along the line.



5.3 Two period-1 piercings on shells 117

β = 0.5

β = 1

β = 3

β = 4

Figure 5.10: For Θ = π/8 and indicated values of β: (left) a thin slice of the hemisphere
with width about 10−2 centred at the symmetry plane containing particles orbits which
are shown as dots with separate colours for different orbits for Re = 1 and the isolated
period-1 points which are shown as solid circles; (right) Trace 1 vs Trace2 of the period-1
points of both stokes flow and Re=1 flow; small dots represent stokes period-1 points;
bigger dots represent Re = 1 flow period-1 points.
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(a)

(b)

(c)

Figure 5.11: For Θ = π/4 and β = 8: (a) Stokes Period-1 line and the isolated period-1
points of R = 1 flow; (b) Trace 1 vs Trace2 of the period-1 points of both the Stokes
flow and Re=1 flow (small dots represent stokes period-1 points and bigger dots represent
Re = 1 flow); (c) The Stokes period-1 line and the isolated period-1 points of Re = 1 flow
are parameterized by action and arc length.
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Figure 5.12: For Θ = π/4 and β = 8 (a thin slice of the hemisphere centered at the symme-
try plane viewed perpendicular the symmetry plane): Isolated period-1 points are shown
as solid circles; Thick transparent line represents the Stokes period-1 line; Continuous
black line represents 1D manifolds of the isolated period-1 points; Small dots represent
2D manifolds of the isolated period-1 points (2D unstable manifold of point 5 in magenta,
2D stable manifold of point 4 in green, 2D unstable manifold of point 3 in chocolate and
2D stable manifold of point 2 in violet)

large solid circles represent the isolated period-1 points, the transparent continuous line

represents the Stokes period-1 line, continuous black lines represent the 1D manifolds,

and small dots represent 2D manifolds. The 1D manifolds of the isolated period-1 points

follow the Stokes period-1 line seen in figure 5.12. Heteroclinic connections between

point 2 and 3, and between 3 and 4, and between 4 and 5 can be seen in the figure, and

there is a chain of heteroclinic connections from point 2 to point 5. The 2D unstable

manifold of point 5 merges with the 2D stable manifold of point 4 and forms a fuzzy

shell. Fluid particles inside this fuzzy shell spiral around the 1D manifold and move

along the direction of the 1D expanding manifold. Similarly, the 2D stable manifold of

point 2 merges with the 2D unstable manifold of point 3 and forms another fuzzy shell.

In the Stokes regime, in the neighbourhood of an elliptic period-1 line segment, fluid

particles move on a closed curve, making it a two action flow locally. After the inertial

perturbation, the elliptic period-1 line segments turn into 1D manifolds of isolated period-

1 points, and the fluid particles move along the 1D manifold while spiralling around it.

Mixing occurs in the space of fuzzy shell regions where 2D manifolds of different isolated

period-1 points merge. The fuzzy shells appear to act as barriers to mixing.
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5.4 One wiggle

As β increases further, a wiggle appears in the Stokes period-1 line that has two 1:1

resonance points at the local extrema of the wiggle. Across the wiggle, the period-1

line stability goes from elliptic to hyperbolic to elliptic, and the period-1 line segment

between the two extrema is hyperbolic. Although most shells have two piercings in the

Stokes flow, a subset has four piercings. When perturbed this, the wiggle results in a

3D chaotic transport structure featuring non-heteroclinic connections of tubular transition

regions.

5.4.1 Θ = π/5 and β = 10

The PRHF with the parameter values Θ = π/5 and β = 10 is considered as an

example of a period-1 line with a wiggle. The Stokes flow period-1 line and the isolated

period-1 points are shown in figure 5.13(a). The Stokes period-1 line and the inertial

period-1 points are parameterized by action and arc length along the Stokes period-1 line

are shown in figure 5.13(c). The period-1 points from 2 to 7 are away from the hemisphere

boundary, and their influence on fluid transport is large compared to the remaining period-

1 points. The trace1 vs trace2 values of the period-1 points are shown in figure 5.13(b)

which allows us to determine the nature of the stability of the period-1 points.

The stable and unstable manifolds of the period-1 points from 2-7 are calculated

numerically as described in section 5.1.2 and are shown on a thin slice of the hemisphere

centred at the symmetry plane in figure 5.14. Figure 5.14 shows: the isolated period-

1 points as solid large circles, the Stokes period-1 line as a transparent thick line, 1D

manifolds as continuous black lines and 2D manifolds as small dots (2D unstable of point

7 in green, 2D unstable of point 5 in magenta, 2D stable of point 4 in sky blue, 2D unstable

of point 3 in chocolate and 2D stable of point 2 in violet). The manifolds of point 6 are

not shown in figure 5.14 as they do not appear because they are nearly perpendicular to

the thin slice plane.

The 2D stable manifold of point 4 and the 2D unstable manifold point 7 merges and

form a fuzzy shell (called S 1). The 2D unstable of point 5 also joins the fuzzy shell S 1.

The 2D unstable manifold of point 3 and 2D stable manifold of point 2 also merge. The

manifolds of the period-1 points from 2 to 7 and their manifold connections are described

one by one below.

• The manifolds of point 7 are shown in figure 5.15a: The right side of the yellow

1D stable manifold of point 7 comes from the bottom of the hemisphere and spirals

around the Stokes period-1 line. The reason for the straight edges of the yellow 1D
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(a)

(b)

(c)

Figure 5.13: For Θ = π/5 and β = 10: (a) Stokes Period-1 line and the isolated period-1
points of R = 1 flow; (b) Trace 1 vs Trace2 of the period-1 points of both the Stokes
flow and Re=1 flow (small dots represent stokes period-1 points and bigger dots represent
Re = 1 flow); (c) The Stokes period-1 line and the isolated period-1 points of Re = 1 flow
are parameterized by action and arc length.
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manifold at the bottom of this figure is explained in the following. Because fluid

particles move discretely on the 1D manifold, I made the discrete 1D manifold line

continuous by joining the points on the manifold. There are few points on the 1D

manifold, and hence straight edges appear. The left side of the yellow 1D stable

manifold of point 7 comes from the fuzzy shell S 1, and the green 2D unstable

manifold of point 7 forms the fuzzy shell S 1.

• The orange unstable manifold of point 6 spirals about the yellow 1D stable mani-

fold of point 7 and merges with the green 2D unstable manifold of point 7 (see fig-

ure 5.15b). The stable and unstable manifolds of point 6 are shown in figure 5.15c.

The cyan stable manifolds of point 6 come from the fuzzy shell S 1.

• The orange unstable manifold of point 6 spirals about the white 1D stable manifold

of point 5 and joins the magenta 2D unstable of point 5 (see figure 5.15d). The

stable and unstable manifolds of point 5 are shown in figure 5.15e.

• The salmon colour unstable manifold of point 4 spirals about the white 1D stable

manifold of point 5 and joins the magenta 2D unstable of point 5 (see figure 5.15f).

The stable and unstable manifolds of point 4 are shown in figure 5.15g.

• The salmon colour unstable manifold of point 4 spirals about the green-yellow clour

1D stable manifold of point 3 and joins the chocolate colour 2D unstable manifold

of point 3 (see figure 5.15h). The stable and unstable manifolds of point 3 are shown

in figure 5.15i.

• Point 2 and point 3 are connected via a heteroclinic connection (see figure 5.15i).

All the manifolds from point 5 to point 7 are shown together in the top image of

figure 5.16, and all the manifolds from the point 2-5 are shown together in the bottom

image of the figure 5.16. Importance of these observations is summarised after providing

another example.

5.4.2 Θ = π/4 and β = 9

Another example for one wiggle case with the parameter values Θ = π/4 and β = 9

is briefly considered to compare it with the case Θ = π/5 and β = 10. The Stokes flow

period-1 line and the Re = 1 flow period-1 points are shown in figure 5.17(a). The Stokes

period-1 line and the inertial period-1 points are shown in figure 5.17(c). The period-1

points from 2 to 7 are away from the hemisphere boundary, and their influence on fluid

transport is large compared to the remaining period-1 points. The trace1 and trace2 values
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Figure 5.14: For Θ = π/5 and β = 10 (a thin slice of the hemisphere centered at the
symmetry plane viewed perpendicular the symmetry plane): Isolated period-1 points are
shown as solid circles; Thick transparent line represents the Stokes period-1 line; Con-
tinuous black line represents 1D manifolds of the isolated period-1 points; Small dots
represent 2D manifolds of the isolated period-1 points (2D unstable manifold of point 7
in green, 2D unstable manifold of point 5 in magenta, 2D stable manifold of point 4 in
sky blue, 2D unstable manifold of point 3 in chocolate and 2D stable manifold of point 2
in violet)

of the period-1 points are shown in figure 5.17(b) which allows us to determine the nature

of the stability of the period-1 points.

The stable and unstable manifolds of the period-1 points are calculated numerically

for points 2-7 as described in the section 5.1.2 and they are shown on a thin slice of the

hemisphere centred at the symmetry plane in figure 5.18. Figure 5.18 shows: the isolated

period-1 points as solid large circles, the Stokes period-1 line as a transparent thick line,

1D manifolds as continuous black lines and 2D manifolds as small dots (2D unstable

manifold of point 7 in green, 2D unstable manifold of point 5 in magenta, 2D stable

manifold of point 4 in sky blue, 2D unstable manifold of point 3 in chocolate and 2D stable

manifold of point 2 in violet). The manifolds of point 6 are not shown in the figure 5.18

as they do not appear because they are perpendicular (not exactly perpendicular but slant)

to the thin slice. The 2D stable manifold of point 4 and the 2D unstable manifold point

7 merge and form a fuzzy shell, the 2D unstable manifold of point 5 also joins with the

fuzzy shell. The 2D unstable manifold of point 3 and 2D stable manifold of point 2 also

merges.

All the manifolds from points 5 to 7 are shown together in the top image of fig-

ure 5.16, and all the manifolds from points 2-5 are shown together in the bottom image of

the figure 5.16.
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(a) Point 7 manifolds: 2D unstable manifold in green and 1D stable manifold in yellow

(b) Orange 1D unstable manifold of point 6 spirals around yellow 1D stable of point 7.

(c) Point 6 manifolds: 1D unstable manifold in orange and 1D stable manifold in cyan

Figure 5.15: A 3D view of the manifolds and their interactions of the period-1 points 6
and 7 for Θ = π/5 and β = 10
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(d) Orange 1D unstable manifold of point 6 spirals around white 1D stable of point 5.

(e) Point 5 manifolds: 2D unstable manifold in magenta and 1D stable manifold in white.

(f) Salmon colour 1D unstable manifold of point 4 spirals around yellow 1D stable manifold of
point 5.

Figure 5.15: A 3D view of the interaction of the manifolds of the period-1 points 4,5 and
6 for Θ = π/5 and β = 10
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(g) Point 4 manifolds: 2D stable manifold in sky blue and 1D unstable manifold in salmon colour

(h) salmon colour 1D unstable manifold of point 4 spirals around yellow 1D stable manifold of
point 3.

(i) Period-1 point 3 manifolds: 2D unstable manifold in chocolate colour and 1D stable manifold
in green-yellow colour

Figure 5.15: A 3D view of the interaction of the manifolds of the period-1 points 3 and 4
for Θ = π/5 and β = 10
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Figure 5.16: A 3D view of the isolated period-1 points and their manifolds for Θ = π/5
and β = 10: (top) 1D stable manifold in yellow and 2D unstable manifold in green for
point 7, 1D unstable manifold in orange and 1d stable manifold in cyan for point 6, and 1d
stable manifold in white and 2D unstable manifold in magenta for point 5; (bottom) 1D
stable manifold in white and 2D unstable manifold in magenta for point 5, 1D unstable
manifold in salmon colour and 2D stable manifold in sky blue for point 4, and 1D stable
manifold in green-yellow and 2D unstable manifold in chocolate colour for point 3.
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(a)

(b)

(c)

Figure 5.17: For Θ = π/4 and β = 9: (a) Stokes period-1 line and the isolated period-1
points of R = 1 flow; (b) Trace 1 vs Trace2 of the period-1 points of both the Stokes
flow and Re=1 flow (small dots represent stokes period-1 points and bigger dots represent
Re = 1 flow); (c) The Stokes period-1 line and the isolated period-1 points of Re = 1 flow
are parameterized by action and arc length.
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Figure 5.18: For Θ = π/4 and β = 9 (a thin slice of the hemisphere centered at the symme-
try plane viewed perpendicular the symmetry plane): Isolated period-1 points are shown
as solid circles; Thick transparent line represents the Stokes period-1 line; Continuous
black line represents 1D manifolds of the isolated period-1 points; Small dots represent
2D manifolds of the isolated period-1 points (2D unstable manifold of point 7 in green,
2D unstable manifold of point 5 in magenta, 2D stable manifold of point 4 in sky blue,
2D unstable manifold of point 3 in chocolate colour and 2D stable manifold of point 2 in
violet)

The figures (5.14, 5.18) and (5.16, 5.19) show that both the cases (Θ = π/5, β = 10)

and (Θ = π/4, β = 9) have similar Lagrangian transport structures (similar manifolds

connections between the isolated period-1 points) in the inertial regime. The effect of

perturbation via inertia on the similar Stokes Lagrangian structures is also similar irre-

spective of the parameter values.

In the two examples of one wiggle case (a pair of 1:1 resonance points), a fluid

transport pattern is seen that fluid particles from the fuzzy shell region (chaotic mixing

zone)→ several isolated period-1 points→ tubular regions→ the fuzzy shell. This pattern

is shown in the the schematic figure 5.3(c). This is one of the mechanisms by which

chaotic transport occurs, and it has never been observed before. Interestingly, this kind

of tubular transition regions are generally observed in Hamiltonian systems of higher

dimensions (Ross et al., 2018), and for the first time, they are observed in incompressible

fluids. This kind of transport structure emerges whenever a pair of 1:1 resonance points

are perturbed by inertia. Hence, it is conjectured to be a generic behaviour.
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Figure 5.19: A 3D view of the isolated period-1 points and their manifolds for Θ = π/4
and β = 9: (top) 1D stable manifold in yellow and 2D unstable manifold in green for
point 7, 1D unstable manifold in orange and 1d stable manifold in cyan for point 6, and
1d stable manifold in white and 2D unstable manifold in magenta for point 5; (bottom) 1D
stable manifold in white and 2D unstable manifold in magenta for point 5, 1D unstable
manifold in salmon colour and 2D stable manifold in sky blue for point 4, and 1D stable
manifold in green-yellow colour and 2D unstable manifold in chocolate colour for point
3.
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5.5 Two wiggles

5.5.1 Θ = π/8 and β = 8

The PRHF with the parameters Θ = π/8 and β = 8 is considered to analyse inertial

effects on the Stokes two wiggle period-1 line structures. Figures 5.20 and 5.21 are plotted

in the same way to figures 5.17 and 5.18 respectively.

The figure 5.21 shows: the isolated period-1 points as solid large circles, the Stokes

period-1 line as a transparent thick line, 1D manifolds as continuous black lines and 2D

manifolds as small dots (2D unstable manifold of point 7 in green, 2D unstable manifold

of point 5 in magenta, 2D stable manifold of point 4 in sky blue, 2D unstable manifold of

point 3 in chocolate colour and 2D stable manifold of point 2 in violet). The manifolds

of points 4 and 6 are not shown in figure 5.21 as they do not appear because they are

perpendicular to the thin slice.

The Lagrangian structures for the two wiggle case is similar to the Lagrangian struc-

tures for one wiggle case (compare figure 5.21 to figure 5.14 and figure 5.23 to figure 5.16)

except for the stability of the period-1 point 4. The period-1 point 4 is a hyperbolic-

focus point in a one wiggle case, whereas in the two wiggle case, it is a hyperbolic-node

point. The stable and unstable manifolds of point 4 (two wiggle case) are shown in fig-

ure 5.22 and the stable and unstable manifolds of point 4 (one wiggle case) are shown

in figure 5.15g. In both cases, unstable manifolds are similar, and stable manifolds are

different. Unstable manifolds in both the cases join the fuzzy shell S 1.

5.5.2 Θ = π/4 and β = 16

Another example of two wiggles case is considered with the parameters Θ = π/4

and β = 16. The figures 5.24, 5.25 and 5.26 are obtained in the same way similar to

figures 5.20, 5.21 and 5.23 respectively. The Lagrangian structures of both cases (Θ =

π/4, β = 16) and (Θ = π/8, β = 8) shouble be compared in these figures. In both case the

effect of inertia is similar.
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(a)
(b)

(c)

Figure 5.20: For Θ = π/8 and β = 8: (a) Stokes Period-1 line and the isolated period-1
points of R = 1 flow; (b) Trace 1 vs Trace2 of the period-1 points of both the Stokes
flow and Re=1 flow (small dots represent stokes period-1 points and bigger dots represent
Re = 1 flow); (c) The Stokes period-1 line and the isolated period-1 points of Re = 1 flow
are parameterized by action and arc length.
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Figure 5.21: For Θ = π/8 and β = 8 (a thin slice of the hemisphere centered at the symme-
try plane viewed perpendicular the symmetry plane): Isolated period-1 points are shown
as solid circles; Thick transparent line represents the Stokes period-1 line; Continuous
black line represents 1D manifolds of the isolated period-1 points; Small dots represent
2D manifolds of the isolated period-1 points (2D unstable manifold of point 7 in green,
2D unstable manifold of point 5 in magenta, 2D unstable manifold of point 3 in chocolate
colour and 2D stable manifold of point 2 in violet)

Figure 5.22: A 3D view of the manifolds of the hyperbolic-node period-1 point 4 for
Θ = π/8 and β = 8: 1D unstable manifold in salmon colour and 2D stable manifold in
sky blue colour.
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Figure 5.23: A 3D view of the isolated period-1 points and their manifolds for Θ = π/8
and β = 8: (top) 1D stable manifold in yellow and 2D unstable manifold in green for
point 7, 1D unstable manifold in orange and 1d stable manifold in cyan for point 6, and
1d stable manifold in white and 2D unstable manifold in magenta for point 5; (bottom) 1D
stable manifold in white and 2D unstable manifold in magenta for point 5, 1D unstable
manifold in salmon colour and 2D stable manifold in sky blue for point 4, and 1D stable
manifold in green yellow and 2D unstable manifold in chocolate colour for point 3.
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(a)
(b)

(c)

Figure 5.24: For Θ = π/4 and β = 16: (a) Stokes Period-1 line and the isolated period-1
points of R = 1 flow; (b) Trace 1 vs Trace2 of the period-1 points of both the Stokes
flow and Re=1 flow (small dots represent stokes period-1 points and bigger dots represent
Re = 1 flow); (c) The Stokes period-1 line and the isolated period-1 points of Re = 1 flow
are parameterized by action and arc length.
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Figure 5.25: For Θ = π/4 and β = 16 (a thin slice of the hemisphere centered at the
symmetry plane viewed perpendicular the symmetry plane): Isolated period-1 points are
shown as solid circles; Thick transparent line represents the Stokes period-1 line; Con-
tinuous black line represents 1D manifolds of the isolated period-1 points; Small dots
represent 2D manifolds of the isolated period-1 points (2D unstable manifold of point 4
in green, 2D unstable manifold of point 6 in magenta and 2D unstable manifold of point
8 in chocolate colour).
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Figure 5.26: A 3D view of the isolated period-1 points and their manifolds for Θ = π/4
and β = 16: (top) 1D stable manifold in yellow and 2D unstable manifold in green for
point 4, 1D unstable manifold in orange and 1d stable manifold in cyan for point 5, and 1d
stable manifold in white and 2D unstable manifold in magenta for point 6; (bottom) 1D
stable manifold in white and 2D unstable manifold in magenta for point 6, 1D unstable
manifold in salmon colour and 2D stable manifold in sky blue colour for point 7, and 1D
stable manifold in green-yellow and 2D unstable manifold in chocolate colour for point
8.
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5.6 Summary

To generate 3D transport in the PRHF, the symmetry of the PRHF is broken by adding

inertia to the flow, and the inertial PRHF has zero-invariants. The inertia destroys peri-

odic lines which existed in the Stokes flow. Isolated period-1 points which are not part of

any period-1 line are found in the inertial regime, and their positions in the hemisphere

domain are found very close to the Stokes period-1 line. In the limit Re → 0, an isolated

period-1 point moves to a point on the Stokes period-1 line. As β increases while keeping

Θ constant, the length of a period-1 line increase in the Stokes regime, and the number

of isolated period-1 points increases in the inertial regime. Isolated period-1 points are of

two types: hyperbolic-focus and hyperbolic-node. The hyperbolic-focus period-1 point

has a 2D manifold that spirals in or out and a 1D manifold. The hyperbolic-node period-1

point observed here has effectively two 1D manifolds, and the third 1D manifold direc-

tion rapidly converges with the dominant 1D manifold direction. Isolated periodic points

and their manifolds determine the 3D Lagrangian transport structures. Isolated period-1

points which are close to the central stagnation point have a larger influence on transport

structures than the period-1 points which are close to the hemisphere boundary. It is found

that the Lagrangian structures do not change qualitatively with varying inertia at least in

the range Re = 10−5 to 1, but the speed with which a point traverses on the Lagrangian

structures in a numerical computation depends on the magnitude of the Reynolds number.

In the range Re ∈ (0, 1), Re = 1 flow takes lesser time (less number of periods) to calculate

a Lagrangian structure than a Re < 1 flow and hence the perturbation effect of inertia on

the stokes Lagrangian structures is carried out with Re = 1 to speed up the computation

time.

In one invariant flows, in the neighbourhood of an elliptic period-1 line segment,

fluid particles move on a closed curve that is like a two action flow locally. After the iner-

tial perturbation, the two action flow turns into a one action flow locally. The consequence

of it is that fluid particles move on a tube locally in the inertial regime. We observe that

the elliptic period-1 line segments turn into 1D manifolds of the isolated period-1 points

and the fluid particles are moving in along the 1D manifold while spiralling around it.

The effect of the inertial perturbation on a pure elliptic period-1 line of the Stokes flow is

that the fluid particles move on nested tori. As β increases, a chain of heteroclinic connec-

tions is observed. Fluid particles spiral around heteroclinic connection and move along it.

Some heteroclinic connections become the centre of nested toroids as shown in figure 5.7.

As β increases further, a wiggle which has a hyperbolic segment between two local

extrema (1:1 resonance points) is formed on a period-1 line in the Stokes regime. After

the perturbation, a hyperbolic-node period-1 point emerges from the hyperbolic period-1



5.6 Summary 139

line segment. Stable and unstable manifolds of several isolated period-1 points form the

fuzzy shell (or mixing zone) as shown in figure 5.3. Fluid particles enter the fuzzy shell

travelling along the tubular regions, then depart towards several isolated period-1 points,

and again enter the fuzzy shell travelling along the tubular regions.

When qualitatively similar Lagrangian structures of the PRHF in Stoke regime are

perturbed by inertia, the resulting perturbed Lagrangian structures are found to be qual-

itatively similar. The parameter β plays an important role that varying β produces fun-

damentally different Lagrangian transport structures. As β increases in the inertial flow,

Lagrangian structures change from nested tori to a chain of heteroclinic connections to a

3D chaotic transport structure featuring non-heteroclinic connections of tubular transition

regions. Whenever a 1:1 resonance exists in the Stokes flow, this kind of transport mecha-

nism (non-heteroclinic and tubular transition) is observed upon inertial perturbation. The

other 3D transport mechanisms that are reported so far have small regions of space where

fast 3D transport happens upon perturbation away from one-invariant or two-invariant

flows. The 3D transport mechanism presented here has large regions of space where 3D

transport occurs that can result in the improvement of mixing quality. One of the major

findings is that these tubular transition regions are generally observed in Hamiltonian sys-

tems of higher dimensions, for the first time they are observed in a 3D incompressible

fluid.





Chapter 6

Conclusions

Understanding Lagrangian trajectories and controlling them is essential in designing ef-

ficient mixing devices for highly viscous fluids and microfluidic devices. Such devices

often have spatial symmetry and/or time periodicity. Symmetries in a flow manifest as

invariants of the flow, and destroying these invariants is a necessary, but not sufficient,

condition for obtaining good mixing. In this thesis, the steady incompressible flow in

a lid-driven hemisphere was considered. When the hemisphere lid moves uniformly in

one direction, in the Stokes limit, a steady base flow is obtained which has left-right and

fore-aft symmetries as shown in section 2.1.1. These two symmetries manifest as two

invariants of the base flow, and fluid particles are constrained to move on closed invari-

ant curves. These two invariants can be destroyed one after the other to generate one

invariant and zero invariant flows. The first invariant is destroyed here by periodically

reorienting the base flow (called PRHF - periodically reoriented hemisphere flow), which

resulted in a time-reversal-reflection symmetry (see section 2.3.1), giving a one-invariant

flow. In this one-invariant flow, fluid particles are constrained to move on closed invariant

surfaces, which are topologically spheres. The advection of fluid particles on these invari-

ant surfaces is Hamiltonian everywhere except at stagnation points. The last invariant is

destroyed by adding small inertia to the PRHF, giving a zero invariant flow.

Numerical computation of Lagrangian structures is essential in understanding fluid

transport. An analytic solution for the velocity field of the base flow does not exist, so

velocity is obtained numerically. While the numerics provides velocity on a mesh grid to

calculate a fluid particle trajectory, velocity between the grid points is needed. Hence an

interpolation method is needed, but typical interpolation schemes do not preserve volume

conservation, which is an essential requirement for studies of Lagrangian transport. A

divergence-free interpolation method is critical to computing Lagrangian structures accu-

rately, especially when the flow has invariants which must be obeyed by particle trajecto-
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ries. A new divergence-free interpolation method was developed (see section 3.2). This

numerical method is used in all of the computations of this thesis.

This method constructs spline functions for a vector potential A from the grid-based

velocity data. The spline functions are calculated using standard B-splines, which are C2

continuous and have compact support. Once the spline coefficients of the vector poten-

tial A are determined, the velocity field is determined simply through taking analytical

derivatives of A. This method guarantees that any grid-based velocity data that samples

a continuous divergence-free velocity field can be approximated with an analytic spline-

based representation that is analytically divergence-free and matches all components of

the velocity on the grid almost exactly. Apart from the solenoidal description, the benefits

of this approach are that the subsequent interpolation is local (i.e. the relevant spline coef-

ficients are defined only in a small sub-domain) and is therefore computationally cheap to

use once the spline is determined. In particular, it is two to four orders of magnitude more

accurate, dependent on the measure of accuracy, than the current best practice algorithm.

Although the new divergence-free interpolation scheme was developed with a pri-

mary motivation of accurately computing Lagrangian coherent structures, it is worth

briefly mentioning two other areas in which obtaining an accurate vector potential is of

interest. First, in Bajer’s nearly everywhere Hamiltonian formulation of 3D flow (Bajer,

1994), components of the vector potential in a particular gauge occupy the roles of the

Hamiltonian and the canonical momentum. Direct extraction, then, of the vector poten-

tial from data would aid in uncovering underlying 3D mathematical structures of fluid

transport. Secondly, 3D velocimetry data is still almost always measured as two veloc-

ity components in a plane with a set of planes measured. The third velocity component

(Say vz) is estimated by integrating the divergence (i.e.
∫

dvz
dz dz =

∫
−( dvx

dx +
dvy
dy )dz) along

the third direction (Wereley and Meinhart, 2010). However, as this requires numerical

derivatives in-plane and integrations transverse to the planes, there is scope for error to

be introduced. On the other hand, a vector potential fit to only the in-plane data has the

advantage that, once the spline coefficients are calculated, estimating the third velocity

component requires only analytic derivatives and no integrations, meaning that estimat-

ing the velocity component via determination of the vector potential is much less prone

to error.

In 3D flows with time-reversal reflection symmetry, period-1 points (and by exten-

sion the period-1 line) must lie on the symmetry plane as shown in section 2.3.2. In one

invariant flows, isolated periodic points cannot exist (see section 2.3.4); closed periodic

lines or periodic lines with ends attached to the boundary are possible. Hence, periodic

lines and their manifolds constitute all of the Lagrangian structures in one invariant flows.
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These periodic lines, in turn, control transport in the flow. In this one invariant flow, fluid

motion is confined to shells (or invariant surfaces) and the nature of the periodic points

determines the mixing on the shell. Wherever a periodic line pierces a shell, it imparts

its character onto that shell in the neighbourhood of the piercing site. The Lagrangian

topology on a shell depends on the number of piercings of periodic lines and the local

stability at the piercings. It is difficult to identify how many periodic piercings a par-

ticular invariant surface has just by looking at periodic lines plots drawn in 3D space.

Enumeration of the action variable along a periodic line is shown to be a useful way of

understanding the Lagrangian topology on an invariant surface of a one invariant flow.

Plotting action vs arc length along periodic lines allows us to determine the number of

periodic line piercings and their stability on any shell by drawing a horizontal line at the

shell (action) value. From action vs arc length plots of periodic lines, the local topology

on any invariant surface can be quickly inferred. Because lower-order periodic lines exert

more impact on fluid transport than higher-order periodic lines, period-1 lines become a

skeleton for the Lagrangian structures. When searching for period-1 lines on the symme-

try plane of PRHF, a single period-1 line is always found irrespective of the parameter

values. The period-1 line starts at the bottom of the hemisphere and goes through the

central stagnation point, and attaches at the rim of the hemisphere lid. The period-1 line

comprises of elliptic and hyperbolic line segments, with segments of opposite type join-

ing at degenerate points. For low lid displacement values (β), the period-1 line pierces

each invariant surface twice. As the lid displacement increases, the length of the period-1

line increases, which results in an increase in the number of period-1 piercings on some

shells.

A type of bifurcation point is found in the one invariant flow, that, in the shell nor-

mal direction at degenerate points, the local topology changes (see section 4.3). This

behaviour can be viewed in terms of classical planar bifurcation theory by considering

a 3D one invariant flow to be analogous to a 2D dynamical system with one parameter.

In 3D one-invariant flows (action-angle-angle flows), since the flow occurs on 2D sur-

faces, angle variables are treated as phase space variables of a 2D system, and the action

variable is treated as a parameter of the 2D system. The degenerate points on a periodic

line are analogous to the resonance points in classical planar bifurcation theory. At an nth

order degenerate point on a period-1 line (termed a 1:n resonance point), n period-n lines

intersect the period-1 line except for n = 1 and 2. At a 1:1 resonance point, the period-1

line is tangent to an invariant surface. At a 1:2 resonance point, a period-2 line intersects

with the period-1 line. A period-m line of map Ψ can be considered as a period-1 line

of map the Ψm. This way, resonance points on the period-m line are treated as resonance
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points on a period -1 line but with the map Ψm. In general, an m:p resonance point can

exist on a period-m line, where p > m and p = m × n, where n is a positive integer. n

(= p/m) period-p lines intersect at the m:p resonance point on the period-m line. Reso-

nances like 2:3 cannot exist because a period-2 line can never intersect with a period-3

line. The eigenvalues of the deformation tensor at a 1:n resonance point are 1, e±i 2π
n which

then makes the trace value to be 1 + 2 cos(2π
n ) at that point. The resonance points on peri-

odic lines are identified by their trace values, and the corresponding higher-order periodic

lines are obtained using the method discussed in section 3.6. The 1:1, 1:2, 1:3 and 1:4 res-

onances are called strong resonances (Gelfreich, 2002). These resonance bifurcations are

local bifurcations because they can be found in the neighbourhood of degenerate points

on periodic lines. A higher-order periodic line extending from a resonance point may

attach to the boundary or join with another periodic line of the same order extending from

another resonance point to form a closed higher-order periodic line. An example was

shown in section 4.4 where the Lagrangian structures emanating from different resonance

bifurcation points may connect and form truly global Lagrangian transport structures.

These degenerate points coordinate lower order and higher periodic lines and act as

nodes in a Lagrangian network of periodic lines. The significance of these resonances

points is that one invariant flows can be fully understood by finding the resonance points

on the period-1 lines first, and then calculating the corresponding higher-order periodic

lines, and then calculating period-2 lines and the corresponding higher-order periodic

lines, and so on. This process is continued recursively until enough Lagrangian transport

structures are revealed for any given purpose. This way of building extended structures

from lower to higher order periodic lines allows the global Lagrangian transport structures

to be uncovered for any 3D incompressible flow with one invariant.

In the one invariant PRHF, fluid transport is restricted to 2D spherical surfaces. To

generate 3D chaotic transport, the symmetry of the one invariant flow must be broken.

This could be done in different ways; here, inertia is used.

With the elimination of the last invariant, period-1 lines which existed in the one-

invariant flow are lost; instead, isolated period-1 points are found in the zero-invariant

flow. In the zero-invariant flow, when Re ∈ (0, 1), the isolated period-1 points of the zero-

invariant flow are spatially very close (≈ 10−3 of hemisphere radius) to the period-1 line of

the one-invariant flow. In the limit Re → 0, an isolated period-1 point in the inertial flow

approaches a point on the period-1 line of the one-invariant Stokes flow. The period-1 line

(particularly elliptic segments of the period-1 line) of the one-invariant flow manifest as

1D manifolds of the zero-invariant flow. As β increases, the number of isolated period-1

points increases. Isolated period-1 points in this flow are of two types: hyperbolic-focus
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and hyperbolic-node. Isolated periodic points and their manifolds determine transport in

the zero-invariant flow. It was found that the Lagrangian structures in the zero-invariant

flow do not change qualitatively with varying inertia at least in the range Re = 10−5 to 1,

but the magnitude of the Reynolds number affects the speed with which a point traverses

the Lagrangian structures in numerical computation. High Re flow takes fewer periods to

calculate a Lagrangian structure than low Re flow.

For very low β values, when the Stokes period-1 line is pure elliptic, on perturbation,

the flow changes from nested spheroids to a nested tori (see section 5.3.1). A heteroclinic

connection between two isolated hyperbolic-focus period-1 points becomes the centre of

a perturbed nested tori structure. Fluid particles spiral around heteroclinic connection and

move along it. As β increases, a chain of heteroclinic connections between hyperbolic-

focus period-1 points is observed (see section 5.3.3). A new result of this thesis is that

topologically similar Lagrangian structures of the one-invariant flow, when perturbed, al-

ways produce topologically similar Lagrangian structures in the zero-invariant flow. This

happens regardless of the specific flow parameters.

In this thesis, a detailed resolution of this transition from the 1:1 resonance trans-

port structure is given. Upon inertial perturbation of 1:1 resonance points which always

emerge as pairs on a period-1 line of the one-invariant flow, a hyperbolic-node period-1

point is always observed to emerge from the hyperbolic period-1 line segment which is

between the 1:1 resonance points. This leads to a new mechanism of 3D chaotic trans-

port featuring non-heteroclinic connections of tubular transition regions observed in sec-

tion 5.4. The important thing is that fluid particle advection proceeds in the following

way: chaotic zone → several isolated period-1 points → tubes → chaotic zone (see fig-

ure 5.3(c)). This transport mechanism is always observed here, upon inertial perturbation

of any pair of 1:1 resonance points in the one-invariant flow. Hence it is conjectured to be

a generic behaviour. Qualitatively similar tubular transition zones have been observed in

Hamiltonian systems of higher dimensions, and for the first time, they are observed in a

3D incompressible flow.

6.1 Future work

Although the symmetry of the one-invariant flow is destroyed by the inertial perturbation,

it’s remnant seems to manifest in a more subtle way in the inertial flow. The reasons

to speculate about the role of the symmetry plane in the inertial flow are: the isolated

period-1 points are spatially located very close to the Stokes period-1 line which is on

the symmetry plane, and the elliptic period-1 line segments of the Stokes flow are trans-
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forming into 1D manifolds of isolated period-1 points in the inertial flow. This aspect

of the symmetry breaking can be investigated. Similarly, nth order periodic lines of the

one-invariant flow may transform into 1D manifolds of nth order isolated periodic points

of the zero-invariant flow upon perturbation, that can be examined. Also, the interac-

tion between manifolds of lower-order and higher-order isolated periodic points can be

explored.

Inertial perturbation of a pair of 1:1 resonance points in the one-invariant flow leads

to a generic behaviour in the zero invariant flow, producing a new 3D chaotic transport

mechanism. The new 3D chaotic transport mechanism with non-heteroclinic connections

and tubular transition regions observed here in fluids for the first time and generally in

Hamiltonian systems (Ross et al., 2018) is not understood. Further study is needed to

understand how such a transport structure is created, works, and evolves. The effect of

the inertial perturbation on other resonance points (1:2, 1:3, etc.) of the one-invariant flow

may lead to other generic behaviours that are yet to be investigated.

The Lagrangian structures of the PRHF in the inertial regime remain qualitatively

same in the range Re ∈ (0, 1) (see section 5.3.1). But this is unlikely to be the case

when Re ' 10. How the Lagrangian structures of the PRHF evolve in the inertial regime

as Re >> 1 may open up entirely different avenues for transition to 3D chaos. The

PRHF may yet prove to contain the seeds of additional, undiscovered global transport

mechanisms in 3D flows.



Appendix A

Interpolation Conditions

A.1 Modified ABC flow

Table A1: Interpolation conditions for f - modified ABC flow.

Spline
Direction

New Method

y
f (y0, z) = 0
∂2 f
∂y2 (y0, z) =

∂2 f
∂y2 (yny , z)

z
∂ f
∂z (y, z0) =

∂Ay
∂z (y, znz)

∂2 f
∂z2 (y, z0) =

∂2 f
∂z2 (y, znz)

Table A2: Interpolation conditions for Ay - modified ABC flow.

Spline
Direction

FC Method New Method

x
∂Ay
∂x (x0, y, z) = vz(x0, y, z) Ay(x0, y, z) = 0
∂Ay
∂x (xnx , yq, zr) = vz(xnx , y, z) ∂2Ay

∂x2 (x0, y, z) =
∂2Ay
∂x2 (xnx , y, z)

y
∂Ay
∂y

(x, y0, z) =
∂Ay
∂y

(x, yny , z) ∂Ay
∂y

(x, y0, z) =
∂Ay
∂y

(x, yny , z)
∂2Ay
∂y2 (x, y0, z) =

∂2Ay
∂y2 (x, yny , z) ∂2Ay

∂y2 (x, y0, z) =
∂2Ay
∂y2 (x, yny , z)

z
∂Ay
∂z (x, y, z0) =

∂Ay
∂z (x, y, znz)

∂Ay
∂z (x, y, z0) =

∂Ay
∂z (x, y, znz)

∂2Ay
∂z2 (x, y, z0) =

∂2Ay
∂z2 (x, y, znz)

∂2Ay
∂z2 (x, y, z0) =

∂2Ay
∂z2 (x, y, znz)
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Table A3: Interpolation conditions for Az - modified ABC flow.

Spline Di-
rection

FC Method New Method

x
∂Az
∂x (x0, y, z) = −vy(x0, y, z) Az(x0, y, z) = 0
∂Az
∂x (xnx , y, z) = −vy(xnx , y, z) ∂2Az

∂x2 (x0, y, z) =
∂2Az
∂x2 (xnx , y, z)

y
∂Az
∂y

(x, y0, z) =
∂Az
∂y

(x, yny , z) ∂Az
∂y

(x, y0, z) =
∂Az
∂y

(x, yny , z)
∂2Az
∂y2 (x, y0, z) =

∂2Az
∂y2 (x, yny , z) ∂2Az

∂y2 (x, y0, z) =
∂2Ay
∂y2 (x, yny , z)

z
∂Az
∂z (x, y, z0) =

∂Az
∂z (x, y, znz)

∂Az
∂z (x, y, z0) =

∂Az
∂z (x, y, znz)

∂2Az
∂z2 (x, y, z0) =

∂2Az
∂z2 (x, y, znz)

∂2Az
∂z2 (x, y, z0) =

∂2Az
∂z2 (x, y, znz)
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