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Abstract

This thesis aims to study time-energy uncertainty relations, operationally inter-
preted as a bound on the minimal time for the evolution of quantum systems,
thus known as quantum speed limits.

The first chapter provides a brief review of the uncertainty principle and its
interpretations in quantum mechanics, focusing on time and energy as pair of
conjugate variables, and introducing how they can be considered as bounds on
the minimal time of quantum evolution.

The second chapter addresses the shortcomings of the traditional quantum
speed limit for the case of unitary evolution, which is known to be loose for
increasingly mixed states. The poor performance of the traditional bound is
shown to arise from the notion of distance between states, that is used to de-
rive it. A geometric approach is then adopted to obtain a new bound that that is
provably tighter and easier to compute than the traditional one, thus improving
the performance and efficacy of quantum speed limits applied as benchmark-
ing tool for quantum optimal control, state preparation and gate design.

In the third chapter, these results are generalised to the case arbitrary quantum
evolution, to extend their validity beyond the restrictive and idealised case of
closed and isolated systems. A quantum speed limit is derived using the Eu-
clidean notion of distance between the generalised Bloch vectors representing
initial and final states. This bound is shown to be robust under composition
and mixing, tighter than other notable bounds, and generally easier to com-
pute and measure experimentally.

The converse problem of finding the time-optimal evolution between two
states, is then addressed in the fourth chapter, which provides an algorithmic
method to look for Hamiltonians that drive a system saturating the quantum
speed limit. The algorithm is based on the idea of progressively improving the
efficiency of a Hamiltonian that connects the two states, by reducing its com-
ponents that do not actively contribute to driving the system. This method
can be interpreted as an optimisation over the geometric phases acquired by
the initial state during the evolution, and can be applied to time-optimal state
preparation and gate design problems.

Finally, in the fifth chapter time-energy uncertainty relations are applied to de-
rive a bound on the achievable power of work extraction and energy deposi-
tion for isolated many-body quantum system. There, the notion of quantum
battery is used to demonstrate the power advantage of using global operations
over local ones. This advantage is proven to grow at most extensively with the
number of subsystems while being strongly limited by the order of the interac-
tions available for controlling them.
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Tuning Strings
Preamble

Alice and Bob are flamenco guitarists, and before every set they meticulously
tune their instruments. Alice is gifted with absolute pitch1 and she tunes her
classical guitar by ear. Bob does not have such innate talent, but his ears are
well trained, and can confidently determine intervals between pitches. To tune
his guitar, he prefers not to resort to an electronic device, and instead he uses
Alice’s guitar as a reference.

For an initial, coarse tuning, Alice plucks the first string and lets it oscillate,
allowing for Bob to play the corresponding string of his guitar along with it.
Bob then quickly adjusts the first tuning key in order to reach unison. He is
experienced and able to get an excellent tuning already at this step, however,
he is committed to get the best tuning he possibly can. Instead of relying on his
almost intuitive ability to distinguish between pitch intervals, he exploits the
interference between acoustic waves.

Bob asks Alice to play a natural harmonic on her first string. She proceeds
plucking the first string of her guitar, roughly one-quarter of the string’s length
away from the bridge, while gently hovering a finger over the twelfth fret of
the neck, located at the midpoint of the string. The sound produced by Alice’s
guitar this time is rounder, and higher than the one obtained by simply pluck-
ing the free string. Bob plays the natural harmonic on his first string too, which

1Absolute pitch, or perfect pitch, is the ability to identify or reproduce a given pitch without
the benefit of a reference tone.



interferes with Alice’s one to generate a distinctly audible pulsating sound,
known as acoustic beats.

The beats are the result of the interference pattern produced by two tones
with almost identical pitches. The pulses that Bob and Alice hear occur with a
frequency that is proportional to the detuning between the tones they played.
Due to the initial coarse tuning the period of the pulses is long enough for Alice
and Bob to resolve them. This makes it possible for them to quantitatively
compare almost identical tones, instead of relying on their natural ability to
discern intervals between pitches.

Bob knows that if the two strings were perfectly tuned, the period of the
pulses would be so long to make them virtually inaudible. All he has to do
to tune his string, is adjust the tuning key to gradually slow down the pulses’
tempo, until they seemingly disappear. After finely tuning the first string, Al-
ice and Bob proceed repeating the process for each string, and the duo is ready
to play2.

Acoustic beats — Approximating the natural harmonics played by Alice and Bob
with sinusoidal waves of frequency νA and νB , the period T of the acoustic beats is
inversely proportional to the detuning νA − νB , therefore, finer tuning requires longer
time.

For Alice and Bob, the advantage of using a natural harmonic instead of
plucking the free string is that the former is a much better approximation of
an acoustic wave with a unique frequency. Hovering the finger over the mid-
point of the string forces it to oscillate mostly in its second harmonic mode3,
softening the higher overtones and the transient frequencies produced by a
sudden strum of the string. The acoustic beats that Bob uses to tune his in-
struments benefit from this filtering, since the closer the tones are to having a

2For all that matters, Alice could be lying about her absolute pitch, as long as her guitar is
tuned within the precision offered by the acoustic beats method. She and Bob will eventually
still agree on their tuning, and could play a set together.

3The second harmonic mode is the first overtone of the fundamental.



unique frequency, the more audible the pulses are.
So, how well and how fast can the two guitarists tune their strings? Under

the assumption of acoustic waves characterised by a unique frequency, the fact
that the period of the acoustic beats increases with the inverse of the string’s
detuning establishes a trade-off relation between the error ε(ν) on the frequency
of the string to be tuned and the length ∆t of the time interval during which
the pulses are listened to. In other words, finer tuning requires longer time.

At the same time, neither Alice’s nor Bob’s natural harmonics exactly cor-
respond to waves characterised by a unique frequency. When looking at the
frequency and time domains of these signal with Fourier analysis one can ap-
preciate another well-known fundamental trade-off relation, i.e., that between
the spread σ(ν) in the frequency domain of a wave, and the spread σ(t) in its
time domain. In signal analysis, the latter is often interpreted as the duration
of the signal. Accordingly, a perfect harmonic characterised by a unique fre-
quency, appears to be characterised by indefinite duration.

The trade-off relations between frequency and time discussed in this informal
example are intended to be a preparatory illustration of the time-energy uncer-
tainty relations discussed in this Thesis. In particular, the bound on the time
required to achieve a certain precision when tuning strings is a anticipation
of the minimal time of quantum evolution, also known as quantum speed limit.
Similarly, the trade off between the spread of a wave in its time and frequency
domain is analog to Robertson inequalities between canonically conjugate ob-
servables, which will be discussed in the Introduction. From a purely math-
ematical perspective, uncertainty relations are often just seen as consequence
of Fourier transform between conjugate domains. At the same time, exploring
and understanding the physical meaning and implications of these trade-off
relations is a fundamentally rich, complex and interesting task.
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1 Introduction

1.1 Uncertainty relations and their interpretations

In his seminal paper published in 1927, Werner Heisenberg presented the first
formulation of the uncertainty principle, proposing a relation between the distur-
bance in the momentum of a mass caused by a measurement of its position [6].
His statement can be essentially expressed as a trade-off relation between the
error ε(q) on a measurement of position Q, and the disturbance δ(p) of the mo-
mentum P caused by the interaction with the measurement apparatus,

ε(q)δ(p) ≥ ~. (1.1)

He interpreted Eq. (1.1) as a consequence of the observer-effect, for which any in-
sightful measurement of a system is bound to affect its state, there represented
by the famous γ-ray microscope Gedankenexperiment. In his example, a γ-ray is
used to resolve the position of an electron, as schematically depicted in Fig. 1.1.
The disturbance of the electron’s momentum caused by the scattering and the
precision on the position measurement are bounded by the limits of diffraction.

Figure 1.1. In Heisenberg thought-experiment a γ-ray with wavelength λ is used to
resolved the position q of an electron. The error ε(q) ≈ λ/ sinα committed on this mea-
surement is bounded by the limitations of diffractive optics. The interaction between
the photon and the electron gives the latter a Compton kick that disturbs its momentum
p of the order of the photon’s momentum, δ(p) ≈ ~ sinα/λ.
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Heisenberg suggested that this relation was a direct consequence of the canon-
ical commutation relations between position and momentum operators,

[Q,P ] = i~, (1.2)

showing that Eq. (1.1) is saturated for Gaussian states, and drawing a simi-
lar conclusion for other canonically conjugate variables of classical mechanics,
such as time and energy.

However, it is now well known that Heisenberg’s interpretation of the uncer-
tainty principle does not correspond to a universally valid relation, and that it
is in fact possible to achieve arbitrary precision on the measurement of posi-
tion without disturbing the total momentum of a system [7, 8]. Nevertheless,
Heisenberg’s intuition on non-commuting operators is indeed at the core of a
more formal expression of the uncertainty principle, represented by the Robert-
son inequality between the bounded standard deviation of non-commuting
Hermitian operators [9]

∆A∆B ≥ 1

2
|〈ψ|[A,B]|ψ〉|, (1.3)

and obtained from the notion of standard deviation of an observable A with
respect to some state |ψ〉,

∆A :=
√
〈ψ|A2|ψ〉 − |〈ψ|A|ψ〉|2. (1.4)

The universally valid relation expressed by Eq. (1.3) does not directly cor-
respond to Heisenberg’s interpretation of Eq. (1.1), when evaluated for posi-
tion and momentum operators, since the standard deviation of an operator is
a state-dependent quantity, and cannot account for the precision limits of the
measurement apparatus, such as the resolution power of the γ-ray microscope
described in Heisenberg’s thought-experiment [10]. Instead, Eq. (1.3) is cor-
rectly interpreted as a limitation on the statistical distribution of independent
position and momentum measurements of an ensemble of identically prepared
systems (see Fig. 1.2), or equivalently, on the preparation of such ensemble of
identical states.

The discrepancy between Heisenberg and Robertson’s interpretations of the
uncertainty principle has led to extensive work in the attempt to reconcile the
physical content of Eq. (1.1) with the formal mathematical statement expressed
by Eq. (1.3) [8, 10–13]. In the work by M. Ozawa, for example, the measure-
ment apparatus and the system are described as a composite system that un-
dergoes unitary evolution [10]. Ozawa uses the measurement operator for-
malism, widely accepted as the most general description of measurement in
quantum mechanics, in order to obtain a universally valid uncertainty relation
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Figure 1.2. A system in state ρ = |ψ〉〈ψ| undergoes either a measurement of position
MQ, or of momentum MP , after which the state of the system is disregarded. Sev-
eral measurements Mµ are performed on identical copies of the state ρ, to obtain the
probability distributions of the states’ position and momentum, here represented by two
Gaussian for the sake of simplicity. The standard deviations of these two distributions
are bounded as in Eq. (1.3).

for the joint measurement of non-commuting observables, which reduces to
Heisenberg’s relation for observables affected by uncorrelated noise [10, 12].

The measurement aspect of position and momentum uncertainty relations as
been studied with the measurement operator formalism also by R. F. Werner,
who, in contrast with Ozawa, derives a trade-off between the deviations of
the marginals of a joint measurement from the ideal position and momentum
observables (see Fig. 1.3). Werner’s approach to the measurement problem is
in essence operational, in the sense that it provides an interpretation of the
uncertainty principle that is based solely on the information accessible to the
experimenter, i.e., the statistics of the joint measurement apparatus [11].

Figure 1.3. A system in state ρ = |ψ〉〈ψ| undergoes a joint measurement of position
and momentum, here obtained by means sequential measurements MQ and MP , as
described in Ref. [11], after which the state of the system is disregarded. Several joint
measurements are performed on identical copies of the state ρ, to obtain the statistics
of the joint measurement apparatus. As shown in Ref. [11], the difference between the
marginals of this joint measurement (solid black lines) and the ideal distributions of posi-
tion and momentum (dashed magenta lines) satisfy a trade-off inequality, which can be
used to reconcile Heisenberg interpretation of Eq. (1.1) with the statistical interpreta-
tion of Robertson inequality.

Remarkably, most rigorous formulations of the uncertainty principle, from
Robertson inequalities to Werner’s and Ozawa’s formulations, are drawn from
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the commutation relations between conjugate operators. As pointed out al-
ready by Heisenberg in his original work, the connection between the commu-
tation relations of conjugate operators and the Poisson brackets of canonically
conjugate variables strongly suggests a similar derivation for uncertainty rela-
tions between energy and time. Although the conserved energy of the system is
directly associated with the Hamiltonian operator H , there is not a universally
accepted time-operator in quantum mechanics, and thus, time-energy uncer-
tainty relations have required even more care for their formal definition and
physical interpretation.

While time is typically treated as a dynamical parameter in non-relativistic
quantum mechanics, time measurements are carried out on a regular basis in ex-
periments, and thus the absence of a time operator is often considered a short-
coming of the theory. For this reason, there has been a great deal of effort put
into formulating a convincing notion of time operator [14–16]. In Ref. [17], the
authors show how simplistic formulations of time operators end up being ei-
ther non-Hermitian, not canonically conjugate with the Hamiltonian operator,
or not well behaved under time-translations. To circumvent this problem, they
then introduce an effective, yet laboriously constructed time-of-arrival operator,
from which they derive time-energy uncertainty relations.

Another notable approach that allows for the derivation of time-energy uncer-
tainty relations consists in defining time as the state of an ancillary system that
serves as clock, and that evolves unitarily with the state of the system, as pre-
sented in the recent work by Maccone and Sacha, in Ref. [18]. Using a system
as reference clock also allows to derive entropic (dimensionless) time-energy
uncertainty relations [18–23], as done by the authors of Ref. [24], who discuss
their application to information-processing task and quantum technology, such
as quantum key distribution.

Interestingly, it is not necessary to introduce a time operator in order to obtain
an operationally meaningful time-energy uncertainty relation. In a ground-
breaking work published in 1945, Mandelstam and Tamm combine the dynam-
ics of an observable,

∂tA =
i

~
[H,A], (1.5)

with the Robertson inequality of Eq. (1.3), to obtain the relation

∆At ∆Et ≥
1

2
|〈ψt|[H,A]|ψt〉|, (1.6)

where, with a minor breach of the notation used so far,

∆Et =
√
〈ψt|H2

t |ψt〉 − |〈ψt|Ht|ψt〉|2, (1.7)

stands for the time-dependent standard deviation of the Hamiltonian H . In
order to obtain an explicit relation between time and energy, Eq. (1.6) is then
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integrated over a time interval ∆t, and rearranged as

∆t ∆E ≥ ~
2

1

∆A

∫ τ

0

dt|∂t〈ψt|A|ψt〉|, (1.8)

where the horizontal bar corresponds to the time average in the interval τ = ∆t,
such as for the time-averaged standard deviation

∆E =
1

τ

∫ τ

0

dt
√
〈ψt|H2

t |ψt〉 − |〈ψt|Ht|ψt〉|2. (1.9)

Mandelstam and Tamm suggest an interpretation of ∆t as the minimal time
required to witness a variation of the expectation value of some observable A
comparable with its standard deviation ∆A,

∆t ≥ ~
2

1

∆E
. (1.10)

Their result is recognised as the first step towards the operational interpretation
of time-energy uncertainty relations, now widely accepted as a bound on the
minimal time for the evolution of quantum systems.

1.2 Minimal time of quantum evolution

As seen in the previous section, Mandelstam and Tamm’ result of Eq. (1.10) was
originally interpreted as the minimal time to witness a standard variation in the
expectation value of some operator A, associated with a physical observable.
Naturally, one can choose this operator to be the projector A = |ψ0〉〈ψ0| on the
initial state |ψ0〉, in order to obtain

∆Et
√
〈At〉 − |〈At〉|2 ≥

~
2
|∂t〈At〉|, (1.11)

where 〈At〉 := 〈ψt|A|ψt〉, which is then integrated in the time interval τ =

∆t [25, 26], to obtain

∆E∆t ≥ ~
(
π

2
− arcsin

√
〈Aτ 〉

)
. (1.12)

If we consider a unitary evolution from the initial state |ψ0〉 to some orthog-
onal state |ψτ 〉, with τ = ∆t and 〈ψ0|ψτ 〉 = 0, and for which 〈Aτ 〉 = 0 we can
rearrange Eq. (1.12) into



10 1. Introduction

Mandelstam-Tamm bound

τ ≥ π

2

~
∆E

, (1.13)

which is thus interpreted as a bound on the minimal time required to unitarily
evolve between two orthogonal states, and is often referred to as a Quantum
Speed Limit (QSL) [26–33].

A alternative derivation for the QSL was proposed later by Margolus and Lev-
itin, in Ref. [34], mainly to circumvent the problem of dealing with potentially
diverging standard deviation of the Hamiltonian. Their approach proceeds by
representing |ψ0〉 and |ψt〉 in the eigenbasis of the driving Hamiltonian,

|ψ0〉 =
∑
k

ck|Ek〉, (1.14)

|ψt〉 =
∑
k

ck exp(−iEkt/~)|Ek〉, (1.15)

in order to look at the real part of the time-dependent inner product 〈ψ0|ψt〉
between initial and evolved state, and obtain

Re[〈ψ0|ψt〉] =
∑
k

|ck|2 cos
(
Ekt/~

)
, (1.16)

≥
∑
k

|ck|2
[
1− 2

π

(
Ekt

~
+ sin

(Ekt
~

))]
, (1.17)

= 1− 2

π

〈H〉
~
t+

2

π
Im[〈ψ0|ψt〉], (1.18)

where the inequality in Eq. (1.17) holds since cosx ≥ 1 − (2/π)(x + sin x) for
x ≥ 0. When considering positive average energy 〈H〉 and orthogonal initial
and final states 〈ψτ |ψ0〉 = 0, Eq. (1.18) can be rearranged to obtain

τ ≥ π

2

~
〈H〉

. (1.19)

The average energy 〈H〉 was later replaced with the time-averaged energy of
the Hamiltonian relative to its ground state energy [35–37],

E =
1

τ

∫ τ

0

dtEt, (1.20)

where Et = 〈ψt|Ht|ψt〉 − h(0)
t , and where h(0)

t is the instantaneous ground state
energy of Ht. The resulting bound
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Margolus-Levitin bound

τ ≥ π

2

~
E
, (1.21)

is valid for arbitrary unitary evolution between orthogonal pure states, gener-
ated by any time-dependent Hamiltonian [26].

As we will seen in detail in Chs. 2 and 3, these bounds, originally derived for
the transition between pure orthogonal states, have been extended to the uni-
tary evolution of arbitrary pairs of pure states [34, 38, 39], and generalized to
the case of mixed states [40–43], non-unitary evolution [41, 44, 45], and multi-
partite systems [46–50]. Extending their original scope, the significance of QSLs
has evolved from fundamental physics to practical relevance. Now, QSLs are
regularly used in theoretical and applied quantum mechanics, to study the
limits of the rate of information transfer [51, 52] and processing [35, 53], the
precision in quantum metrology [54–58], the performance in quantum optimal
control [26, 52, 59–67], the rate of entropy production [68, 69], and the power
in quantum thermodynamics [4, 5, 70–72]. For these reasons, they have re-
ceived particular attention from the quantum information community in recent
years [37, 43, 73–92].

1.3 Overcoming the limitations of traditional bounds

A fundamental step forwards in the development and understanding of QSLs
consists in using the notion of distinguishability between states in order to
draw these bounds from the geometry of the state space. The idea is to ex-
ploit a suitable notion of distance D between quantum states in order to cast
the problem of minimal-time evolution as a geodesic problem, i.e., that of finding
a path of minimal length. In this formulation, often referred to as the geometric
approach to QSLs [26], the time τ required to evolve between two states ρ and
σ is naturally bounded from below by the ratio between the distance D(ρ, σ),
which corresponds to the length of the geodesic, and average speed v of the
evolution,

τ ≥ D(ρ, σ)

v
. (1.22)

At the beginning of Ch. 2 we discuss precisely how Mandelstam and Tamm’s
bound is generalised for arbitrary pairs of pure states, using the overlap |〈ψ|φ〉|
between state vectors as a measure of distinguishability, from which one ob-
tains the Fubini-Study distance [93]. This allows us to rigorously identify the
standard deviation of the Hamiltonian along the orbit as the speed of the evo-
lution.
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In this thesis we address the main obstacles found in the derivation of QSLs,
identify the critical limitations of traditional bounds, and propose methods to
overcome them. First, we address the tightness of QSLs, i.e., their ability to
estimate the actual minimal time of evolution, which is in some way also a
measure of their performance. In Ch. 2 we show that the traditional QSL for
the unitary evolution of density operators is extremely loose when increasingly
mixed states are considered, and explain why this looseness arises from the no-
tion of distance used to derived it. We then show how a tight bound can be de-
rived from a more suitable notion of distance for the considered dynamics, and
present an improved QSL for unitary evolution, as well as for open quantum
systems, in Ch. 3.

Another key element to consider when studying QSLs is to make sure that the
distance from which they are derived corresponds to a physically meaningful
and accessible measure of distinguishability. When pure states are considered,
the overlap |〈ψ|φ〉| between state vectors induces a tight distance while being
relatively easy to measure experimentally [43]. When mixed states are consid-
ered, the overlap is often replaced by the quantum fidelity [93],

F(ρ, σ) = tr

[√√
ρσ
√
ρ

]
, (1.23)

which also appears in many QSLs as the preferred choice for defining a dis-
tance on the state space. While it is certainly possible to measure F with an
experimental method similar to that used to measure |〈ψ|φ〉| [43], in Ch. 3 we
show that this generally requires a large number of measurements and prepa-
rations. In Ch. 2 and 3 we show how to overcome this obstacle by considering
a distance defined on the overlap tr[ρσ] between density operators, which is
easier to measure experimentally and to handle analytically.

While the overlap tr[ρσ] is easy to handle for either theoretical and experimen-
tal applications, it is important to carefully tailor the distance and the bounds
derived upon it to guarantee their physical meaningfulness. In Ch. 3 we pro-
vide an extensive discussion of the properties that have to be satisfied by a
QSL, with particular emphasis on its robustness under composition, the dis-
tance’s behavior under physical maps, and other invariance properties. There,
we show that it is possible to relax some requirements typically imposed on the
distance between states and still obtain QSLs that behave well under physical
maps. Surprisingly, such bounds are proven to be robust under such maps,
outperforming many other QSLs, when it comes to their tightness and feasibil-
ity.

A clear conclusion from Chs. 2 and 3 is that, despite major progress in the
field [1, 3, 26, 41, 44, 81], a generally attainable QSL is yet to be found and its
search is a hard problem. In order to probe the absolute tightness of the QSLs
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derived in in this thesis, we address the converse problem of finding the fastest
evolution between pairs of states. In Ch. 4 we formulate this problem with a
constructive approach and obtain an iterative method to look for time-optimal
unitary orbits between arbitrary pairs of density operators. We then discuss the
practical relevance of this result and show its synergy with the QSLs derived in
Ch. 2. By comparing the achievable time of evolution provided by the solutions
of the iterative method with the inviolable bound offered by the QSL we can
precisely study the performance of both results.

Finally, in Ch. 5 we apply QSLs to study the limits on the achievable power
of work extraction and deposition for quantum systems. There, we exploit the
notion of quantum batteries to obtain a bound on the achievable advantage of
using global operation over local ones, and discuss our results with emphasis
on entanglement and other quantum correlations. When considering the evo-
lution of a composite many-body quantum system, such as a spin chain or an
array of charged qubits, we show how the traditional QSL does not account
for the dynamical constraints given by physical limitations, which are instead
known to drastically influence the speed of the evolution and the time required
to drive a system. To overcome the limitations of the traditional QSL we derive
a bound that takes into account the physical restrictions on range and order of
the interactions, and discuss their role for obtaining fast unitary driving.

Beyond the results examined in this thesis, there are many open problems of
fundational relevance and practical impact related to time-energy uncertainty
relation. In the conclusions we review some of these questions, and discuss
their connection to other field of quantum information and quantum technol-
ogy.
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2 The minimal time of unitary evolution

Chapter abstract

Traditional quantum speed limits for the unitary evolution of quantum systems
perform poorly for mixed states, often underestimating the time required to per-
form the evolution. We show that the looseness of the traditional bound origi-
nates from an incongruous notion of distance between the initial and final states
when their evolution has to preserve their spectrum. We then discuss more
suitable metrics and derive their corresponding speed limits. These bounds are
shown to outperform the traditional one while being significantly simpler to com-
pute and to experimentally measure.

This chapter is based on publication [1].

2.1 The traditional unified quantum speed limit

As seen in the introduction, time-energy uncertainty relations are correctly in-
terpreted as a bound on the minimal time required to evolve between two
quantum states. In particular, we have seen how the Mandelstam-Tamm and
Margolus-Levitin inequalities, given in Eqs. (1.13) and (1.21), apply to orthog-
onal pure states. This result is generalised to the case of arbitrary pairs of pure
states |ψ〉, |φ〉 by the unified bound,

τ ≥ ~
arccos

(
|〈ψ|φ〉|

)
min

{
E,∆E

} , (2.1)

where the time τ required to unitarily evolve between the considered states is
bounded by a quantity proportional to the angle associated with their overlap
|〈ψ|φ〉|, and inversely proportional to the energy scale expressed by E and ∆E,
given in Eqs. (1.20) and (1.9) [26, 94]. Just like Eqs. (1.13) and (1.21), this result
is also obtained by combining the Robertson inequality with the Liouville-von-
Neumann equation, given in Eqs. (1.3) and (1.5), respectively.

However, it is also possible to derive QSLs using a geometric approach, start-
ing from a notion of distance between states, which is then used to measure the
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length of a path γ associated with some unitary orbit |ψt〉 = Ut,t0|ψ〉, as depicted
in Fig. 2.1. Exploiting the inner product of the Hilbert space, we can calculate
the distance between pairs of states using the angle between their state vectors
dFS(|ψ〉, |φ〉) := arccos(|〈ψ|φ〉|), known as the Fubini-Study distance [93, 95, 96].
Since, by definition, a distance corresponds to the length of the shortest path
between the pair of states, i.e., the geodesic induced by the corresponding met-
ric, the length L[γ] of any path γ connecting the considered pair of states is
either equal to or larger than the distance between them,

dFS(|ψ〉, |φ〉) ≤ L[γ]. (2.2)

We can now derive a Mandelstam-Tamm type of QSL, combining Eq. (2.2) with
the Schrödinger equation, and some notions of differential geometry.

Figure 2.1. In order to derive the Mandelstam-Tamm bound with a geometric ap-
proach, we use the overlap between two state vectors to obtain the distance dFS be-
tween states, which correspond to the length of the shortest path that connects them.
Other unitary orbits Ut,t0 |ψ〉 draw longer paths γ between the considered states. Their
length is calculated using the infinitesimal distance dL induced by dFS .

First, we express L[γ] as the path integral of its line element dL,

L[γ] =

∫
γ

dL, (2.3)

then, we express γ in terms of a general unitary orbit that connects |ψ〉 and |φ〉,
as |ψt〉 = Ut,t0 |ψ〉, with the condition that, at the final time t = τ , the target state
is reached, i.e. |ψτ 〉 = |φ〉. We can now write the line element as the infinitesimal
distance between |ψt〉 and |ψt+dt〉,

L[γ] =

∫ τ

0

arccos(|〈ψt|ψt+dt〉|), (2.4)

where |ψt+dt〉 = Ut+dt,t|ψ〉, and where we also fixed t0 = 0. Note that in Eq. (2.4)
the differential is dt, implicitly embedded in |ψt+dt〉. Considering the most gen-
eral unitary evolution generated by a time-dependent Hamiltonian Ht,

Ut,t0 = T
{

exp

(
− i

~

∫ t

t0

dsH(s)

)}
, (2.5)
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where the Dyson series defining the unitary is conveniently expressed with the
time-ordering operator T [97], we expand the infinitesimal unitary evolution
Ut+dt,t in powers of dt around the Hamiltonian Ht at time t,

Ut+dt,t ≈ 1−
i

~
Htdt−

1

2~2
H2
t dt

2 +O(dt3), (2.6)

and calculate the line element, neglecting the terms of order O(dt3),

dL = arccos(
√

1− x2), and x =
∆Et
~

dt, (2.7)

where ∆Et is the standard deviation of the Hamiltonian at time t, given in
Eq. (1.7). Expanding arccos(

√
1− x2) around x ∼ 0, we obtain dL = x, from

which we derive the expression for the length of a unitary orbit for pure states,

L[γ] =

∫ τ

0

dt
∆Et
~

. (2.8)

We then combine Eqs. (2.2) and (2.8),

dFS(|ψ〉, |φ〉) ≤
∫ τ

0

dt
∆Et
~

, (2.9)

and obtain the Mandelstam-Tamm bound, by explicitly expressing the previ-
ous inequality in τ ,

τ ≥ ~
dFS(|ψ〉, |φ〉)

∆E
. (2.10)

Like the unified bound of Eq. (2.1), this bound is provably tight [98], in the
sense that, in the absence of constraints1, such that the Hamiltonian can be pro-
portional to any element of the Lie Algebra su(d) of the special unitary group
SU(d), it is always possible to find a time-independent Hamiltonian that gen-
erates the optimal unitary that saturates the bound, for any Hilbert space di-
mension d [93].

2.2 The unified bound is tight for pure states

The attainability of the QSL for the unitary evolution of pure states is di-
rectly linked to the Fubini-Study distance, whose metric is the unique, unitary-
invariant Riemannian metric on the space of pure states [93]. The latter consists
in the complex projective space CP d−1 obtained from the Hilbert space via the
equivalence |ψ〉 ∼ c|ψ〉 for any c ∈ C, c 6= 0. Any initial and final states, |ψ〉

1As we will see in Ch. 5, many-body problems are characterised by stringent constraints on the
form of the driving Hamiltonian, which strongly affect the attainability of traditional QSLs.
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Figure 2.2. Any two pure states |ψ〉, |φ〉 ∈ H of dimension d can be connected by a
complex projective lineCP 1 ⊂ CP d−1, spanned by two orthogonal states |ψ〉, |ψ〉, and
isomorphic to a 2-sphere S2. The Fubini-Study distance dFS between the two states is
directly proportional to the length of the arc of great circle that connects them on S2.
The unitary orbit that connects them along that arc is generated by Hamiltonians of
the form H = |ψ〉〈ψ|+ h.c., where |ψ〉 = (|φ〉 − 〈ψ|φ〉|ψ〉)/

√
1− |〈ψ|φ〉|2 is obtained by

Gram-Schmidt orthonormalisation of |ψ〉 and |φ〉.

and |φ〉, elements of this complex projective space, can always be connected
on a complex projective line CP 1, which is isomorphic to the 2-sphere S2, and
defined by the linear combinations of |ψ〉 and |φ〉 [93]. As depicted in Fig. 2.2,
an optimal Hamiltonian, constructed via Gram-Schmidt orthonormalisation of
|ψ〉 and |φ〉,

H = ω
(
|ψ〉〈ψ|+ |ψ〉〈ψ|

)
, (2.11)

|ψ〉 =
|φ〉 − 〈ψ|φ〉|ψ〉√

1− |〈ψ|φ〉|2
, (2.12)

drives the initial state to the final one along an arc of a great circle.
However, a complete description of quantum states and processes requires

the use of density operators, necessary to account for the effect of environmen-
tal noise and witness the signature of quantum correlations [93, 97, 99]. For
this reason, the unified bound of Eq. (2.1) has been generalised to the case of
density operators in Refs. [41, 100], by replacing the Fubini-Study distance dFS
with the Bures angle,

L(ρ, σ) = arccos(F(ρ, σ)), (2.13)

a distance between density operators which consists of the angle associ-
ated with the fidelity F , given in Eq. (1.23), and introduced by Uhlmann in
Ref. [100]. Since the fidelity is a generalisation of the overlap between state
vectors [101, 102], the Bures angle L reduces to the Fubini-Study distance dFS
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when pure states are considered [93]. The Mandelstam-Tamm type of bound
that is obtained in this way is given by,

τ ≥ TL(ρ, σ) := ~
L(ρ, σ)

∆E
, (2.14)

where now
∆E =

1

τ

∫ τ

0

dt
√

tr[ρtH2]− tr[ρtHt]2, (2.15)

is the time-averaged standard deviation of Ht calculated along the trajectory
defined by ρt = Utρ U

†
t . While this bound reduces to that of Eq. (2.10) when

ρ = |ψ〉〈ψ| and σ = |φ〉〈φ|, it is not always attainable, in the sense that the
existence of a Hamiltonian that saturates the bound via unitary evolution is
not guaranteed for all states. On the contrary, TL is known to be particularly
loose, performing poorly for increasingly mixed states, as we will show in the
next section.

2.3 Attainability of QSL for mixed states

Let us consider two mixed states, ρ and σ, with the same spectrum,

ρ =
∑
k

λk|rk〉〈rk|, σ =
∑
k

λk|sk〉〈sk|. (2.16)

Let ρ′ =
∑

k λ
′
k|rk〉〈rk| and σ′ =

∑
k λ
′
k|sk〉〈sk| be another pair of mixed states

with the same degeneracy structure as ρ and σ, but different eigenvalues λ′k.
Any driving Hamiltonian that maps ρ to σ will map ρ′ to σ′ in the same amount
of time, independent of their spectrum. On the other hand, the Bures angle is
a continuous function of the spectrum of a mixed state, i.e., for some choices of
{λk} and {λ′k} one could have L(ρ, σ) ≈ 1, while L(ρ′, σ′) ≈ 0. This observation
alone is not enough to demonstrate the looseness of TL, since the denominator
of Eq. (2.14) may in principle also differ between these two scenarios, due to its
dependence on the state2. However, as shown in the example of Fig. 2.3, the
variation of the latter does not compensate for that of the former, implying that
TL cannot be tight for the case of mixed states. To understand the reason for the
looseness of this bound we must understand the meaning of the Bures angle.

The poor performance of the bound in Eq. (2.14) stems from the construction
of the Bures angle L(ρ, σ), which corresponds to the minimal Fubini-Study dis-
tance between purifications of ρ and σ [93]. Indeed, any mixed state ρ ∈ S(HA)

can be purified to a state vector |Πρ〉 embedded in a larger Hilbert spaceHA⊗HB,
such that

trB
[
|Πρ〉〈Πρ|

]
= ρ, (2.17)

2Some authors have suggested quantifying the driving resource independently of the state, for
instance in terms of norms of the driving Hamiltonian [4, 70, 71, 74, 86, 103].
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Figure 2.3. Let ρ = λ|r1〉〈r1|+ (1− λ)|r2〉〈r2| and σ = λ|s1〉〈s1|+ (1− λ)|s2〉〈s2| be two
mixed qubit states (d = 2) with the same spectrum, with λ ∈ (0, 1), excluding the max-
imally mixed state (λ = 1/2), where {|r1〉, |r2〉} and {|s1〉, |s2〉} are two orthonormal
bases. The problem of unitarily evolving ρ to σ can be mapped to evolving |r1〉 to |s1〉
(or, equivalently, |r2〉 to |s2〉). Eq. (2.14) is tight for pure states, thus any Hamiltonian
that takes |r1〉 to |s1〉, will also take ρ to σ in the same time. For any Hamiltonian, with
bounded standard deviation ∆E ≤ E , this time is bounded from below by θ/E , where
θ = d(|r1〉, |s1〉) is the distance between |r1〉 and |s1〉, i.e., half of the angle between the
Bloch vectors associated with |r1〉 and |s1〉. However, Eq. (2.14) for the same constraint
on the Hamiltonian suggests that TQSL = L(ρ, σ)/E , with L(ρ, σ) < θ for every choice
of λ 6= 0, 1 (see Eq. (2.37)), making the QSL unattainable for all mixed states.

where trB[·] denotes the partial trace over HB. Since neither the purification
|Πρ〉 nor the dimension dB of the additional Hilbert space HB are unique3, the
Fubini-Study distance between |Πρ〉 and |Πσ〉 strongly depends on the choice
of purifications. A consistent notion of distance is found minimising dFS over
all the possible purifications4 [93], to obtain

L(ρ, σ) := min
|Πρ〉,|Πσ〉

{
dFS(|Πρ〉, |Πσ〉)

}
. (2.18)

Since the speed limit for the unitary evolution of pure states is attainable, it is
always possible to find a global HamiltonianHAB over the elements ofHA⊗HB

that saturates the bound of Eq. (2.14). However, the corresponding unitary
dynamics between |Πρ〉 and |Πσ〉 turns, in general, into non-unitary evolution
between ρ and σ, when tracing overHB, as depicted in Fig. 2.4. In other words,
the Bures metric does not necessarily select geodesics generated by unitary op-
erations in the system’s state space, even if ρ and σ have the same spectrum.

3However, dB = dA is sufficient for a purification to always exist.
4The fidelity is obtained as the maximum overlap between all the possible purifications of the
considered density operators. Via monotonicity of arccos, the Bures angle is obtained as the
minimum of the Fubini-Study distance.
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Figure 2.4. Any density operator ρ, σ can be purified to a state vector |Πρ〉, |Πσ〉 in a
lager Hilber spaceHA ⊗HB . The Bures angle L is then defined as the minimal Fubini-
Study distance over all the possible purifications of ρ and σ. The geodesic between
the purified states is given by a global unitary orbit of constant von Neumann entropy
(∆S = 0). The orbit ρt in the reduced space is in general non unitary (∆S ≥ 0) even
when ρ and σ are isospectral states.

We now propose two distance measures for mixed states with the same fixed
spectrum, that do not suffer from the problems outlined above.

2.4 The generalised Bloch angle

Bloch vectors provide a representation of the states of quantum two-level sys-
tems, by associating any density operator ρ with a real vector r ∈ V (R3) in a
three-dimensional Euclidean vector space,

ρ =
1+ r ·Λ

2
, (2.19)

where the components of Λ = (Λx,Λy,Λz) are the Pauli operators. In this rep-
resentation, the difference between pure and mixed states is evident, with the
former consisting of the unit sphere S2, and the latter forming the bulk of the
ball delimited by the surface S2.

Similarly, any state ρ ∈ S(H) of Hilbert space dimension d can be associated
with a generalised Bloch vector (GBV) r ∈ V (Rd2−1), and represented as

ρ =
1+ c r ·Λ

d
, (2.20)

with c =
√
d(d− 1)/2, where now Λ = (Λ1, . . . ,Λd2−1) is a set of traceless Her-

mitian operators that form a Lie algebra for SU(d), and that satisfies

tr[ΛiΛj] = 2δij. (2.21)

Such set always exists and it is easy to obtain; an example is given by the Gell-
Mann matrices for SU(3), and by their generalisation for SU(d) [104]. In order
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to represent a state, a generalised Bloch vector r has to satisfy a set of relations
to reflect the invariance of tr[ρk], for k = 2, . . . , d, therefore the geometry of the
generalised Bloch sphere is vastly richer than that of the standard Bloch sphere.
However, for now we will limit ourselves to calculating angles between GBVs
in order to derive a tight speed limit for the unitary evolution of mixed states.

The generalised Bloch angle (GBA),

Θ = arccos
(
r̂ · ŝ

)
, (2.22)

is a distance between any pair of isospectral states5 ρ, σ ∈ S(H), where r̂ and
ŝ are the generalised Bloch vectors associated with states ρ and σ, respectively,
normalised by their length ‖r‖2 = ‖s‖2. The angle Θ can be expressed as a
function of ρ and σ, independently of the chosen basis Λ for the Lie algebra
su(d),

Θ(ρ, σ) = arccos

(
d tr[ρσ]− 1

d tr[ρ2]− 1

)
, (2.23)

using the expression for the overlap tr[ρσ] in terms of GBVs. Note that the
distance Θ(ρ, σ) does not depend on the basis chosen to represent the states,
since the trace is basis-independent. Our first result is a bound on the speed of
unitary evolution of isospectral mixed states derived from the distance Θ.

Theorem 2.1. The minimal time τ required to evolve from state ρ to state σ by means
of a unitary operation generated by the Hamiltonian Ht is bounded from below by

TΘ(ρ, σ) := ~
Θ(ρ, σ)

QΘ

, where (2.24)

QΘ :=
1

τ

∫ τ

0

dt

√
2 tr[ρ2

tH
2
t − (ρtHt)2]

tr[ρ2
t − 1/d2]

. (2.25)

To prove Thm. 2.1 we first show that Θ is a distance, and then we use the
geometric approach outlined in Sec. 2.1 to bound the time required to uni-
tarily evolve between any two states by evaluating the infinitesimal distance
Θ(ρt, ρt+dt) between two unitarily connected states.

Proof of Theorem 2.1

First, we prove that Θ is a distance. Let r̂ = r/‖r‖2, where ‖r‖2 =
√
r · r.

Since r̂ · ŝ ∈ [−1, 1] ⇒ Θ(ρ, σ) ∈ [0, π], positivity holds. ρ = σ ⇒ r̂ = ŝ,
thus Θ(ρ, σ) = 0. Θ(ρ, σ) = 0⇒ r · s = r · r = s · s, thus r = s and so the

5In fact, it is more generally a distance between states with the same purity.
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identity of indiscernibility holds. Symmetry holds because r̂ · ŝ = ŝ · r̂,
thus Θ(ρ, σ) = Θ(σ, ρ). Lastly, the triangle inequality holds, since r̂, ŝ

belong to a subset of a d2 − 1-dimensional unit sphere [105]. It holds for
all elements of Sd2−1 that the angle between r̂ and ŝ is smaller than the
sum of the angles between r̂, q̂ and ŝ, q̂.

To prove Eq. (2.24), we consider the infinitesimal propagation between
t and t+ dt

ρt+dt = Ut+dt,t ρt U
†
t+dt,t, (2.26)

where Ut2,t1 is the unitary that maps ρt1 to ρt2 . We expand Ut+dt,t up to the
second order in dt to obtain

ρt+dt =ρt − i[Ht, ρt]dt−
i

2
[∂tHt, ρt]dt

2 − {H2
t , ρt}

dt2

2
+

+HtρtHtdt
2 +O(dt3),

(2.27)

where we set ~ ≡ 1 for simplicity. We then consider the inequality
Θ(ρ, σ) ≤

∫ τ
0

Θ(ρt, ρt+dt), that holds for any Hamiltonian Ht, where the
equality may hold only when Ht is the optimal Hamiltonian. We calcu-
late the infinitesimal distance

Θ(ρt, ρt+dt) = arccos

(
1− tr[ρ2

tH
2
t ]− tr[(ρtHt)

2]

tr[ρ2
t ]− 1/d

dt2
)
, (2.28)

and expand arccos(1 − c) =
√

2c + O(c) for small c > 0, obtaining∫ τ
0

Θ(ρt, ρt+dt) = τQΘ, which leads to Θ(ρ, σ) ≤ τQΘ, and thus to
Eq. (2.24), after reintroducing ~.

Before studying the performance and tightness of bound TΘ in Sec. 2.6, let us
make a few fundamental remarks.

Remark 2.2. Bound (2.24) is invariant under rescaling of the distance (2.22) by a
positive unitary invariant factor, thus, the arc length ‖r‖2 Θ(ρ, σ) induces the same
bound on the minimal time.

The proof of this remark is trivial, and follows directly from the fact that the pu-
rity is invariant under unitary transformations. Since the purity P(ρ) = tr[ρ2]

is directly related with the length of the GBVs via,

‖r‖2 =

√
d tr[ρ2]− 1

d− 1
, (2.29)

constant purity implies constant radius.
For pure states we would like Eq. (2.24) to reduce to the unified bound (2.1),

obtained from the Fubini-Study metric. However, bound (2.24) satisfies this
requirement only for qubits:
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Remark 2.3. Bound (2.24) does not reduce to the QSL induced by the Fubini-Study
metric for pure states, except for the case of a single two-level system (d = 2).

Proof of Remark 2.3

Since bound TΘ expressed in Eq. (2.24) is clearly different from the QSL
for pure states, we show that they coincide when d = 2. First, we
show that Θ coincides with the Fubini-Study distance for the case of
2-dimensional systems. Let ρ = |a〉〈a| and σ = |b〉〈b| for two pure
qubit states |a〉〈b|, with associated Bloch vectors a, b. Let us fix the ba-
sis such that |a〉 = |(ϕ, θ)〉 where |(ϕ, θ)〉 relative to Bloch vector a =

(cosϕ sin θ, sinϕ sin θ, cos θ) with ϕ ∈ [0, 2π], θ ∈ [0, π], and where |b〉 =

|(0, 0)〉 is aligned with the ẑ-axis. State |a〉 = cos(θ/2)|b〉 + eiϕ sin(θ/2)|b̄〉,
where |b̄〉 = |0, π〉 is orthogonal to |b〉. The Fubini-Study distance
d(|a〉, |b〉) = arccos |〈a|b〉| = θ/2, while Θ(ρ, σ) = θ, thus the two dis-
tances are identical up to a factor of 1/2. For pure qubit (d = 2) states
QΘ = 2∆E, since tr[ρ2] = 1, therefore TΘ = θ/∆E. Hence, TΘ and the
Mandelstam-Tamm bound coincide for qubits. For dimension d > 2,
QΘ reduces neither to the standard deviation, nor to the average energy,
while Θ does not become the Fubini-Study distance.

The reason why Θ does not conform with the Fubini-Study distance for pure
states of arbitrary dimension is due to the fact that, in general, the group of rota-
tions on GBVs does not correspond to the unitary group on the subset of points
corresponding to states6. To be specific, the group of relevant unitary operations
SU(d)/Zd is a subgroup of SO(d2 − 1) that does not correspond to generic ro-
tations, but to those rotations that preserve d − 1 independent functions tr[ρk]

for k = 1 to d [93]. When going from initial to final state, unitary evolution
avoids the forbidden regions of this d2 − 1-dimensional hypersphere that do not
represent states, while some rotations might go straight through these regions,
thus, underestimating the distance between the considered states, as shown in
Fig. 2.5.

2.5 An angle that reduces to the Fubini-Study distance

In order to derive a speed limit that conforms with the QSL for pure states
regardless of the dimension of the system, we introduce another distance on

6In the exceptional case of d = 2, however, Θ does reduce to the Fubini-Study distance, since
the set of all Bloch vectors forms a 2-sphere, i.e., SO(3) ∼ SU(2)/Z2
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Figure 2.5. (Left) The generalised Bloch angle Θ is a measure of distinguishability
between two states ρ ↔ r and σ ↔ s, that we can use as a distance to derive the
QSL TΘ for unitary evolution of density operators, given in Eq. (2.24). The arc length
corresponding to Θ is also a suitable distance, and induces the same bound. (Right)
For Hilbert space dimension d > 2, the group of unitary operations SU(d)/Zd is only
a subgroup of the rotations SO(d2 − 1). In this cartoon, the hypersphere embedding
the generalised Bloch sphere is projected onto a 3-dimensional vector space. The ma-
genta shaded areas, on the surface of a shell of fixed purity, represent regions of the
hypersphere that are not associated with states. Unitary evolution avoids these forbid-
den regions, while some rotations might go straight through them, underestimating the
distance between the considered states.

isospectral states,

Φ(ρ, σ) := arccos

(√
tr[ρσ]

tr[ρ2]

)
, (2.30)

which reduces to the Fubini-Study distance for the case of pure states. As done
with Θ, we derive a bound on the speed of unitary evolution from this distance.

Theorem 2.4. The minimal time τ required to evolve from state ρ to state σ by means
of a unitary operation generated by the Hamiltonian Ht is bounded from below by

TΦ(ρ, σ) = ~
Φ(ρ, σ)

QΦ

, where

QΦ =
1

τ

∫ τ

0

dt

√
tr[ρ2

tH
2
t − (ρtHt)2]

tr[ρ2
t ]

.

(2.31)

The proof of Thm. 2.4 can be carried out using arguments similar to those for
the proof of Thm. 2.1, and can be found in Sec. A.1 of the Appendix. Re-
markably, the bound expressed in Eq. (2.31) reduces to the Mandelstam-Tamm
bound for pure states, since Φ reduces to the Fubini-Study distance and QΦ re-
duces to ∆E. To see this, note that the quantity tr[(ρtHt)

2] = 〈a|Ht|a〉〈a|Ht|a〉 =

|tr(ρtHt)|2 for ρ = |a〉〈a|.
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In contrast to bound (2.14), the two QSLs derived here account for both
the energetics of the dynamics and the purity of the driven state. The lat-
ter is accounted for by the denominators of QΘ and QΦ, while the term√

tr[ρ2
tH

2
t − (ρtHt)2] in their numerators is a lower bound on the instantaneous

standard deviation of the Hamiltonian Ht [106]. If states of different purity
were considered, neither Θ nor Φ would be distances, since the symmetry and
triangle inequality properties would be lost.

It is worth highlighting that the bounds derived from Θ and Φ are signifi-
cantly easier to compute than the one expressed in Eq. (2.14) for the case of
mixed states, since no square root of density operators needs to be calculated,
and thus no eigenvalue problem needs to be solved. More specifically, in or-
der to compute the Bures angle one needs to perform two matrix multiplica-
tions and two matrix square roots7, whereas only two matrix multiplications
are needed to compute Θ or Φ. Accordingly, distances Θ and Φ can be exper-
imentally estimated more efficiently than the Bures angle. The latter involves
the evaluation of the root fidelity between the two considered states, harder to
obtain than their overlap, which can be determined by means of a controlled-
swap circuit8 [109, 110]. Finally, not only are our bounds simpler to compute
and measure, they also outperform Eq. (2.14), as we will show next.

2.6 Performance of the new bounds

We now study the bounds presented in Eqs. (2.24) and (2.31), and compare
them to that in Eq. (2.14) for a given orbit defined by initial and final states ρ
and σ, and a Hamiltonian H that connects them. For the case of mixed qubits
we calculate all three bounds analytically. We consider

ρ = λ|r1〉〈r1|+ (1− λ)|r2〉〈r2|, (2.32)
H = eiϕ|r1〉〈r2|+ h.c., (2.33)

as the initial state and driving Hamiltonian, respectively, where ϕ ∈ [0, 2π] is
a phase. This Hamiltonian generates the optimal unitary evolution for any
choice of final state

σ = λ|s1〉〈s1|+ (1− λ)|s2〉〈s2|, (2.34)

for |s1〉 = cos θ|r1〉+ eiϕ sin θ|r2〉. Since H is time-independent, the denominator
of each of the considered bounds can be directly calculated without performing

7Optimal methods for matrix multiplication between two d × d matrices require O(d2.373) op-
erations, whereas the evaluation of the square root of such a matrix requires O(d3) opera-
tions [107, 108].

8A similar experimental set up could be used to evaluate the bound derived by authors in
Ref. [79].
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the time-average. For example, for bound TL, ∆E = ∆E, since the unitary
Ut = exp[−iHt] commutes with the Hamiltonian H . Accordingly, in natural
units (~ ≡ 1), the bounds read

TΘ(ρ, σ) = θ, (2.35)

TΦ(ρ, σ) = arccos

(√
1 + k2 cos 2θ

1− k2

)√
1− k2

2k2
, (2.36)

TL(ρ, σ) = arccos

(
F+(θ, λ) + F−(θ, λ)

)
, (2.37)

where F±(θ, λ) = 1
2

√
1 + k2c2θ ± 2kcθ

√
1− k2s2

θ, with cx = cosx, sx = sinx, and
k = 1− 2λ. Note that these bounds are independent of the relative phase ϕ, as
we expect, and only depend on the distance θ = d(|r1〉, |s1〉) between the basis
elements, and on the value of λ. Bound TΘ is tight and attainable and does not
depend on the spectrum. A simple plot of the bounds shows that TΘ ≥ TΦ ≥ TL
(see Fig. 2.6). The three bounds coincide for pure states λ = 0, 1 and for the
trivial case of θ = 0. This results validates exactly the argument that we made
in Sec. 2.3 with the aim of tightening the QSL for unitary evolution of mixed
states. It also resolves the conceptual issue with the traditional bounds, which
seem to suggest that noise increases the speed of evolution. On the contrary,
Eq. (2.35) provides analytical evidence that mixing does not increase the speed
of evolution when unitary driving is considered, in accordance with the results
presented in Ref. [82].

In the general case of higher dimensions, we study the tightness of bounds TΘ

and TΦ numerically (See details in Box 2.1). To do so, we calculate and compare
the three bounds along the same orbit, for a large number of choices of initial
and final states ρ and σ, and driving HamiltoniansH . As shown in Fig. 2.7, TL is
larger than max[TΘ, TΦ] for a negligible fraction of the sampled states, and only
with a difference of less than 1% from the largest of the new bounds, while the
new bounds are found to strongly outperform the traditional one for the vast
majority of the cases. However, there could be some exceptional regions where
the latter is larger than the new bounds, such as along degenerate subspaces
which form a subset of measure zero for the considered ensembles. In the ab-
sence of an analytic proof of strict hierarchy between these bounds, we cast our
main result in the form of a unified bound

TQSL(ρ, σ) = max
{
TL, TΘ, TΦ

}
, (2.38)

where TL, TΘ and TΦ are given by Eqs. (2.14), (2.24) and (2.31), respectively.
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Figure 2.6. (Left) Bounds TL, TΦ, and TΘ, as a function of the eigenvalue λ ∈ [0, 1/2),
for two mixed and antipodal (θ = π/2) qubit states ρ and σ, given in Eqs. (2.32)
and (2.34). The unitary evolution is generated by the Hamiltonian of Eq. (2.33). The
same hierarchy holds for non-antipodal mixed qubit states. (Right) Evaluation of
1 − TL/max[TΘ, TΦ] as a measure of the tightness of the new bounds, for 3 ≤ d ≤ 10,
with a sample size of 106 uniformly sampled random states and Hamiltonians. The
traditional QSL TL is found to be larger than max[TΘ, TΦ] for less than 0.1 % of cases,
and only with a difference of less than 1% from the largest of the other bounds.

Box 2.1 Numerical estimation QSL performance

To test the performance of the considered QSLs numerically we gener-
ated uniformly sampled random states and Hamiltonians, from which
we estimate the parameter 1− TL/max[TΘ, TΦ], as a measure of the tight-
ness of the new bounds. This quantity is positive if the new bounds are
tighter than the traditional one. The states are sampled uniformly accord-
ing to the Bures ensemble [111],

ρ =
(1+ U)AA†(1+ U †)

tr[(1+ U)AA†(1+ U †)]
, (2.39)

where A is a random complex matrix from the Ginebre ensemble, and
U is a Haar-random unitary. Hamiltonians are obtained from random
unitaries

H = i logU, (2.40)

where U is sampled uniformly according to the Haar measure. In partic-
ular, operators A are complex square matrices, whose elements are given
by random complex numbers z = x + iy, with x and y being random
real number uniformly sample over the normal distribution with µ = 0
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and σ = 1, while operators U are obtained from the orthogonalisation of
random matrices A.

We considered dimension 3 ≤ d ≤ 10, with a sample size of 106 random
states and Hamiltonians. The bounds TΦ and TL coincide for pure states
(as analytically shown above), and the difference between max[TΘ, TΦ]

and TL grows with decreasing purity, as shown in the left inset of Fig. 2.7.

min. density max. density

0.0 0.4 0.8

0.6

0.3

Figure 2.7. (Left) Density plot of the numerical estimation of 1−TL/max[TΘ, TΦ] along
the impurity 1−tr[ρ2], for d = 3 (qutrits), with sample size 105. The sampled states have
been forced to be distributed approximately uniformly along the purity: in this way
it is possible to notice how bounds TΦ and TL coincide for pure states (bottom left),
and differ for increasingly mixed states (top right). (Right) For d = 3, the hierarchy
between the three bounds can be expressed with three regions of the polytope defined
by the spectrum {λ1, λ2, λ3} of states ρ and σ, as indicated in the legend. The corners
of the triangle represent pure states, while its centre represent the maximally mixed
state. The exact shape of the regions represented here reflects a specific choice of H ,
ρ and σ, but similar features are common to those of any pair of states. For the case
of qutrits, TL is never larger than max[TΘ, TΦ] (see Sec. A.2 of the Appendix for more
information).

2.7 Chapter summary

In this chapter, we have addressed the problem of attainability of quantum
speed limits for the unitary evolution of mixed states. We first showed that the
conventional bound given in Eq. (2.14) is not generally tight for mixed states,
because the Bures distance, defined as the minimal Fubini-Study distance on
a dilated space, corresponds to the length of a path that is, in general, not a
unitary orbit in the reduced space. It is thus not a suitable choice of distance
under the assumption of unitary evolution.
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We have introduced and discussed two new distances between those elements
of state space with the same spectrum, i.e., those that can be unitarily con-
nected, and derived the corresponding QSLs. The first distance coincides with
the angle between the generalised Bloch vectors of the states, and induces a
tight and attainable speed limit for the case of mixed qubit states, but does not
reduce to the unified bound in Eq. (2.1) for pure states of arbitrary dimension.
The second distance is designed to conform with the Fubini-Study distance
for the case of pure states, while being as similar as possible to the generalised
Bloch angle. These bounds arise from the properties of state space, when mixed
states are represented as generalised Bloch vectors, thus providing a simple ge-
ometric interpretation. We have shown that the bounds obtained by these two
distances are tighter than the conventional QSL given in Eq. (2.14) for the vast
majority of states. Moreover, they are always easier to compute, as well as
easier to measure experimentally.

Beyond its fundamental relevance, our result provides a tighter, and hence
more accurate bound on the rate of work extraction, information transfer and
processing in the presence of classical uncertainty. For instance, in Ch. 5 this
improved bound will be used to tighten the results of Ref. [4] on the lim-
its of charging power of cyclic unitary operations. As already mentioned in
Sec. 2.6, this result solves the issue with traditional QSL in the presence of noise,
which wrongly suggest that, in order to speed up the unitary evolution be-
tween states, one could simply add noise, reducing the purity of the considered
states, with the effect of reducing the time required to evolve between them.
This paradoxical situation is now systematically ruled out by our new bound,
which demonstrates that even in the proximity of maximally mixed states the
time required to perform any unitary evolution is finite, and comparable to
the time required to perform the evolution between pure states. Finally, these
QSLs constitute a novel and strong benchmark to assess the quality of unitary
driving protocols, as discussed in Ch. 4 and Ref. [3], where they are directly
used to estimate the optimality of the numerical solutions to state-preparation
problems.

There is a natural trade-off between the tightness of a QSL and its compu-
tational complexity. The ideas presented in this chapter represent a step to-
wards finding a distance based on the explicit geometric structure of the space
of states. Such a distance would allow for the derivation of a QSL that is guar-
anteed to be tight. Another fundamental perspective is to apply the ideas de-
veloped here for the case of non-unitary dynamics. This generalisation requires
modifying the proposed distances such that they accommodate changes in pu-
rity, and allow for considering arbitrary pairs of states. In the next chapter we
present the results that we have obtained extending this geometric QSL to the
case of arbitrary quantum processes.
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3 Quantum speed limits for general processes

Chapter abstract

By allowing for open dynamics, the minimal time required to evolve between two
states can be drastically shorter than for unitary evolution. With the geometric
approach used in the previous chapter we derive a quantum speed limit for
arbitrary open quantum evolution, that serves as a fundamental bound on the
time taken for the most general quantum process. This bound is provably robust
under composition and mixing, features that largely improve the effectiveness
of QSLs for open evolution. It is also easier to compute and measure than other
bounds, while being tighter than them for almost all open processes.

This chapter is based on publication [2].

3.1 A brief review of QSLs for open quantum evolution

In the previous chapter, we studied the bounds on the minimal time of evo-
lution of isolated quantum systems, whose dynamics is prescribed by the
Schrödinger (or equivalently, von Neumann) equation, and described in terms
of unitary operators. In practice, however, systems are typically coupled to
some uncontrollable environment, which might influence their dynamics in a
non-negligible way. Even the very act of measuring a system’s observables,
necessary to test the predictions of a dynamical theory, requires coupling be-
tween system and measurement apparatus. For these reasons, quantum sys-
tems must, in general, be regarded as open [97, 112].

While system and environment can be described as closed composite sys-
tem that evolves unitarily, the inaccessibility of the environment’s degrees of
freedom often requires the use of dynamical maps, whose evolution can be
expressed by master equations [112]. These are used to model and charac-
terise physical processes, such as the effect of a thermal bath on two-level sys-
tems [113], the evolution of an atom coupled to a cavity [114, 115], the har-
vesting and transport of energy [116], as well as the energetic properties of
molecules [117], and are particularly important for studying controlled quan-
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tum systems [118]. For example, the Gorini-Kossakowski-Sudarshan-Lindblad
master equation, often known simply as Lindblad equation, provides a gen-
eral dynamical model for the evolution of a quantum system in the presence of
Markovian1 environment, and is widely used in all the area of quantum physics
and quantum chemistry [112].

Accordingly, a satisfactory description of the bounds on the minimal time of
evolution of a system must take into account the effect that the environment
has on its dynamics, based solely on the information that can be practically
accessed. Indeed, it is well known that, even for comparable energetic scales,
coupling with an environment can accelerate the system’s dynamics, driving
the two parties through the space of entangled states [1, 46, 70], as well as freeze
its evolution, via the famous quantum Zeno effect [121–124].

However, there are several hurdles in the derivation of an effective bound for
the minimal time of evolution of open quantum systems. First of all, when
a system evolves unitarily it is clear how to quantify the contribution of the
Hamiltonian which drives the system, and that which does not. In Ch. 2, we
saw how the commutator [Ht, ρt] is intimately related to a notion of velocity
in the space of states. Even if the norm of the Hamiltonian or the generator
changes during the evolution, it is always possible to fairly compare the speed
of two different evolutions by leveraging the notion of average speed. The lat-
ter, for instance, is used in Ch. 5 to define uniform energetic constraints, and
compare the power of classical and quantum work extraction protocols. In
the case of open dynamics, instead, it is impossible to directly access informa-
tion about the velocity of the underlying unitary evolution, and thus we must
restrict ourselves to the marginal state of the system, tracing over the environ-
mental degrees of freedom. In this case, care must be taken in comparing the
speed of different evolutions, due to the coupling between system and envi-
ronment, and the unknown environment’s energetic structure.

Another difficulty lies in the choice of a suitable measure of distinguisha-
bility, necessary to derive a QSL. In Secs. 2.2 and 2.3, we have seen how the
Fubini-Study distance provides the perfect choice for a well-behaved distance
for the unitary evolution of pure states, and how even for the unitary evo-
lution of mixed states there are many possible choices of distance, some of
which induce extremely loose bounds. When considering the evolution of open
quantum states, we would like our measure of distinguishability to reflect the
fact that, under the effect of divisible noisy channels, states must become in-

1In classical probability theory, a Markov process is one where the state of the system at any
time depends conditionally on only the state of the system at the previous time step and not
on the remaining history. Technically the Lindblad equation describes CP-divisible evolu-
tion [119]. A rigorous definition of the Markov condition for quantum process has recently
been introduced in Ref. [120] and can be fully reconciled with its classic notion.
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creasingly less distinguishable. Indeed, it has been suggested that a bona fide
measure of distinguishability between states must be contractive under phys-
ical evolutions [26, 81], given by completely positive and trace preserving maps
(CPTP) [97, 112].

Interestingly, it was thought for a long time that the only CPTP-contractive
Riemannian metric on the space of states2 was given by the Fisher information
metric [81, 125]. While this is not strictly true, as we will see soon, the first rig-
orous extensions of the Mandelstam-Tamm QSL to the case of open evolution
has been indeed derived in Ref. [45] by Taddei et al. using the quantum Fisher
information (QFI),

FQ(t) = tr[ρ(t)L2(t)], (3.1)

ρ̇(t) =
1

2
{ρ(t), L(t)}, (3.2)

where L(t) is the symmetric logarithmic derivative operator, implicitly defined
by Eq. (3.2). There, the authors obtain an implicit lower bound on the evolu-
tion time τ valid for arbitrary physical processes, for which a notion of speed is
directly associated with the root of the QFI, averaged over the orbit. While the
QFI and its metric assume a central role in quantum information, being deeply
linked to many other fundamental figures such as the Bures distance and the
quantum relative entropy [93], they don’t necessarily have any dynamical rel-
evance, and they are also often hard to evaluate, an obstacle that can severely
undermine the efficacy of the QSL that it induces.

Another influential result on QSL for open evolution, which has been pre-
sented independently but almost synchronously with the work by Taddei, is
given in the work by del Campo et al., in Ref. [44]. There, the authors derive a
QSL for arbitrary quantum evolution from a much simpler measure of distin-
guishability, the so-called relative purity,

P(ρ0|ρt) =
tr[ρ0ρt]

tr[ρ2
0]
. (3.3)

The bound derived from this quantity is considerably simpler to evaluate than
that of Ref. [45], it predicts the inaccessibility of the Heisenberg limit under
Markovian noise, and discerns different types of noise for general open evolu-
tion. However, the bound is also provably loose, another feature that severely
diminishes the performance of QSLs. Since the work of Taddei and del Campo,
several fundamental discoveries have advanced the knowledge and perfor-
mance of speed limits for open evolution [43, 81, 126, 127], with both foun-
dational and practical relevance, and the field is still thriving due to the many
open questions.

2The space of states, i.e., the space of positive, unit trace, Hermitian operators, is indeed a
Riemannian manifold [81, 93].
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From the present state of the art, it appears evident that, for a QSL to be op-
erationally useful, it needs to be feasible and tight. The feasibility of a bound
is quantified in terms of the computational or experimental resources required
to evaluate or measure the bound [1, 26]. Bounds that require the evaluation of
complicated functions of the states or the generators of the evolution are less
feasible, and thus less useful, than otherwise equally performing bounds that
are easier to compute or experimentally measure. The distance term in many
QSLs requires the square root of the initial and final states, thus the knowl-
edge of the spectrum of the considered states [41, 43, 81, 126]. In contrast, the
bounds that only involve the evaluation of the overlap tr[ρσ] [1, 44, 127], in-
cluding the one that we introduce in this chapter, are much easier to compute
and measure [79, 109, 110]. Aside from the distance, the other important fea-
ture of QSL bounds is the speed, directly linked to the infinitesimal distance
and the generator of the evolution, that depends on the orbit of the evolu-
tion [1, 43, 79, 81, 86, 93, 128]. A common criticism of QSLs is that calculating
these bounds becomes as hard as solving the dynamical problem. In Sec. 3.5,
we overcome this limitation by providing an operational procedure to experi-
mentally evaluate the speed term for any type of process, and go on to discuss
the purpose of QSLs in this context.

Finally, the tightness of QSLs represents how precisely they bound the actual
minimal time of evolution. As we have seen in the previous chapter, the tight-
ness becomes a problem as soon as we move away from the case of unitary evo-
lution of pure states [98], which is, in practice, always an idealized description.
All the available bounds for the general case of open evolution of mixed states
are loose for certain types of dynamics, and in some cases, their performance
gets worse as increasingly mixed states are considered. This looseness is often
a consequence of the choice of the distance used to derive the bounds. Different
distances result in different speed limits, and a suitable choice that reflects the
features of the considered evolution is the key to performance [1, 81, 93].

In this chapter, we directly address these issues, starting from the definition of
a suitable distance, and deriving a bound that is provably robust under compo-
sition and mixing, vastly improving the effectiveness of QSLs. In this sense, our
results strongly complement the findings of Ref. [81], where the authors used
geometric arguments to obtain an infinite family of distances and their corre-
sponding QSL bounds. While their result firmly and rigorously establishes the
mathematical framework for a certain class of QSLs, it leaves open the task of
choosing a distance that leads to a QSL that is tight and feasible. We do exactly
this by uncovering a distance measure on quantum states, which is based on
the geometry of the space of density operators, leading to a QSL that is both
tight and feasible for almost all states and processes.
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unitary non-unitary

Figure 3.1. Mixed states ρ and σ are represented by their generalized Bloch vectors r

and s. In order to simplify the evaluation of the distance between states we approxi-
mate the state space with such (d2 − 1)-dimensional ball. (Left) For the case of unitary
evolution we choose to measure the distance between ρ and σ as the length of the arc
of great circle that connects r and s, given by the product between the GBA Θ between
the two vectors, and their length ‖r‖2. As seen in Remark 2.2, this is equivalent to mea-
suring the angle Θ, since the length of the GBV is invariant under unitary operations.
(Right) For the case of arbitrary evolution, we use, instead, the norm of the displace-
ment vector r − s, since the length of the GBV is allowed to change. The shortest path
that connects the two states is given by the straight line between the two GBVs.

3.2 Euclidean metric as distance between states

Let us consider a d-dimensional system S, where d = dimHS , coupled to its
environment E, with total Hilbert spaceH = HS ⊗HE , and denote its physical
state space of positive, unit trace density operators by S(HS). Following the ge-
ometric approach used in the previous chapter, we represent states ρ ∈ S(HS)

of the system using their GBVs r, as prescribed by Eq. (2.20). We would like to
measure the distance between two states ρ ↔ r and σ ↔ s using the length of
the shortest path through S(HS) that connects ρ and σ. However, solving this
geodesic problem is, in general, a hard task, since the state space for d > 2 is a
complicated subset of the (d2−1)-ball [93, 105]. Our approach will be to simplify
this problem by lower bounding this distance by the length of the well-known
geodesics of this ball.

With respect to this ball, the natural choice for the geodesic is given by arcs
of great circles, if we are confined to surfaces of equal radius, like for the case
of unitary evolution. Instead, for open dynamics, the natural choice for the
geodesic is with respect to the Euclidean distance, which is just the straight
line between r and s, as depicted in Fig. 3.1, whose length is given by

D(ρ, σ) = ‖r − s‖2. (3.4)
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From this distance we derive our speed limit, following the geometric approach
outlined in Sec. 2.1, and used in Refs. [1, 81], and other QSL derivations.

By definition, the distance is always smaller than or equal to the length of any
path γ associated with some dynamics ρt, that connects ρ = ρ0 and σ = ρτ . We
evaluate the infinitesimal distance D(ρt+dt, ρt) and rearrange to obtain

τ ≥ ‖r − s‖2

‖ṙt‖2

, (3.5)

where f(t) =
∫ τ

0
dtf(t)/τ , as usual, stands for the average of f(t) along the orbit

parameterized by t ∈ [0, τ ]. Expressing ‖r − s‖2 and ‖ṙt‖2 in terms of ρ and σ,
we obtain the bound τ ≥ TD. Note that from here on we will consider natural
units and set ~ ≡ 1, unless specified otherwise.

Theorem 3.1. The minimal time τ required to evolve from state ρ to state σ by means
of general quantum evolution is bounded from below by

TD(ρ, σ) :=
‖ρ− σ‖
‖ρ̇t‖

. (3.6)

Note how the Hilbert-Schmidt norm, ‖X‖ =
√

tr[X†X] for an operator X ,
arises in the form of bound TD as a consequence of equipping the space of
GBVs with the standard Euclidean norm [93].

Proof of Theorem 3.1

Given two states ρ, σ ∈ S(HS) of the system, with associated generalized
Bloch vectors r, s, respectively, the function D(ρ, σ) = ‖r−s‖2 expressed
in Eq. (3.4) is clearly a distance, as it is the Euclidean norm of the dis-
placement vector r − s [93]. This distance can be expressed as a function
of the dimension d of the system and of the density matrices ρ and σ,
remembering that

tr[(ρ− σ)2] = tr
[( c
d

∑
a

(ra − sa)Λa

)2]
(3.7)

=
d(d− 1)

2d2

∑
a,b

(ra − sa)(rb − sb)tr[ΛaΛb], (3.8)

=
d− 1

2d

∑
a,b

(ra − sa)(rb − sb)2δab, (3.9)

=
d− 1

d

∑
a

(ra − sa)2, (3.10)
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=
d− 1

d
‖r − s‖2

2. (3.11)

Recalling that ‖ρ‖ =
√

tr[ρ†ρ] =
√

tr[ρ2], we obtain

D(ρ, σ) =

√
d

d− 1
‖ρ− σ‖. (3.12)

The proof for the QSL bound of Eq. (3.6) is carried out as follows: Con-
sider a parametric curve γ(s) : [0, S] ∈ R → R

N for some N ≥ 1,
that connects two different points A = γ(0) and B = γ(S). Let ‖·‖η be
some norm, specified by η, onRN , which induces the distance D(A,B) =

‖A − B‖η. The length of the path γ is given by L[γBA ] =
∫ S

0
ds‖γ̇(s)‖η,

where γ̇(s) = dγ(s)/ds. Since D(A,B) is the geodesic distance between
A and B, any other path between the two points can be either longer
or equal, with respect to the chosen distance (associated by the chosen
norm), thus D(A,B) ≤ L[γ]. In particular, we choose D(ρ, σ) = ‖r − s‖2

and r(t) as the parametric curve generated by some arbitrary process,
with r(0) = r, and r(τ) = s. Accordingly, the length of the curve is given
by L[γ] =

∫ τ
0
dt‖ṙ(t)‖2. Finally, we express the length of the tangent vec-

tor in terms of the generator of the evolution, following the steps used in
Eq. (3.7), to obtain

‖ṙ(t)‖2 =

√
d

d− 1
‖ρ̇t‖, (3.13)

and obtain the bound.

Despite its surprisingly simple form, reminiscent of kinematic equations, the
bound in Eq. (3.6) originates from a precise geometric approach and encom-
passes all the fundamental features of previous QSL bounds, including the or-
bit dependent term ‖ρ̇t‖, which will be referred to as speed, or strength of the
generator, that appears, under various guises, in the bounds of Refs. [41, 43–
45, 79, 81, 126, 127]. We now elaborate on several key properties of our geomet-
ric bound, directly addressing the issues with traditional QSLs that have haven
been discussed in Sec. 3.1.

3.3 Robustness

It has been suggested in the literature that a sensible measure of distinguisha-
bility should be contractive under physical noisy and divisible maps [81], un-
der which pairs of states are expected to become increasingly harder to discern.
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As discussed in Sec. 3.1, the QFI metric3 was believed to be the only Rieman-
nian metric to be contractive under CPTP maps. In fact, there exists an infinite
family of such metrics [101, 129] (bounded from above by the QFI metric it-
self), from which Pires et al. derived a familty of QSLs that can be adapted to
the details of the considered dynamics [81]. On the contrary, it is well-known
that the Hilbert-Schmidt norm, at the core of our bound TD, is generally not
contractive for CPTP dynamics [130]. How does this impact our bound and its
performance? We now show that the bound TD is, in fact, robust under compo-
sition with an ancillary system, and mixing with the fixed point of a dynamical
map, which often undermine the performance of other bounds.

3.3.1 Robustness under composition

In order to represent physical processes, quantum maps have to be completely
positive [99]. In a nutshell, a map M is complete positive if the composite map
with the same effect on the system and no-action on any ancillary system,M⊗I ,
is also always a positive map, where I here represents the identity map. For the
same reason that physical maps must be completely positive, we would like a
QSL bound to be invariant under any composition with an ancillary system
that does not partake in the evolution. We now prove exactly this invariance.

A non-contractive distance such as D, based on the Hilbert-Schmidt norm,
will in general change drastically when an ancillary system is introduced triv-
ially. Let us consider the trivial composition of the system with an ancilla in
state α,

ρ→ ρ⊗ α
σ → σ ⊗ α.

(3.14)

The distance between the composite initial and final states becomes

‖ρ⊗ α− σ ⊗ α‖ = ‖(ρ− σ)⊗ α‖
= ‖ρ− σ‖ · ‖α‖.

(3.15)

The term ‖α‖ in Eq. (3.15) is the root of the purity of the ancillary system; there-
fore, the distance decreases by simply introducing an inert ancilla that is not
pure [131]. However, a desirable property for a QSL is that if the ancilla does
not participate in the dynamics, the minimal time of evolution between ρ ⊗ α
and σ⊗α should be bounded as that for the evolution between ρ and σ. Indeed,
for dynamics of the form ρ⊗ α→ ρt ⊗ α we have

‖∂t(ρt ⊗ α)‖ = ‖∂tρt‖ · ‖α‖, (3.16)

3Which is indeed the metric of the Bures metric on the space of mixed quantum states.
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which means that numerator and denominator of Eq. (3.6) are affected by the
same factor, and TD(ρ ⊗ α, σ ⊗ α) = TD(ρ, σ). This can be summarised by the
following remark:

Remark 3.2. Bound (3.6) is invariant under composition with a system that does not
participate in the evolution.

In general the initial state of the ancilla can be correlated with the system, and
be part of the dynamics. It is well known that in such case the evolution be-
tween ρ and σ can be considerably faster than for trivial composition, thus
affecting the QSL, as shown in Ref. [46].

Another type of composition under which distances and QSLs are desired
to be robust is that of many copies that undergo the same evolution. When
unitary evolution is considered, this scenario is described by a composite state
ρ(1) ⊗ ρ(2) ⊗ · · · ⊗ ρ(N) that evolves under a composite unitary U(1) ⊗ U(2) ⊗
· · · ⊗ U(N). While the standard deviation of the Hamiltonian grows as

√
N , the

geometric distances introduced in Ch. 2 and in this Chapter do not suggest
a similar behavior. The robustness of these geometric QSLs for many copies
is still subject of investigation, and the bounds above could become looser as
the number of copies increases. Nevertheless, there are bounds that can be
used to circumvent this problem, such as the QSL induced by the Bures angle
(see Eq. (2.14)), indeed used in Ch. 5 for the powerful charging of an array of
identical systems, and the log-based purity speed limit of Ref. [78].

3.3.2 Robustness under mixing

In Sec. 2.2 we saw how the traditional QSL, which is tight for unitary dynamics
of pure states, becomes rather loose for mixed states. The reason for this, as we
show in detail in Sec. 2.3, is that the Bures distance L(ρ, σ), given in Eq. (2.13),
decreases rapidly under mixing.

Let us consider the pure depolarisation map

ρ→ ρ′ = Dε[ρ] := ερ+
1− ε
d
1, (3.17)

with ε ∈ [0, 1], which represents the special case of mixing with the maximally
mixed state 1/d, i.e., the state with highest von Neumann entropy. When ε

tends to 0, the Bures distance L(ρ′, σ′) vanishes faster than the denominator
of the right-hand side of Eq. (2.14), and so does the corresponding QSL. Now,
note that the GBVs of ρ (σ) and ρ′ (σ′) are r (s) and εr (εs) respectively. A uni-
tary transformation that maps r to s will also map εr to εs in exactly the same
time. That is, the value of ε is inconsequential. Based on this observation, we
proposed the angle between the GBVs as distance because it is independent
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of ε and therefore robust under mixing, (see Fig. 3.2). This robustness is pre-
cisely the reason for the supremacy of the QSLs introduced in Ch. 2 over that
of Eq. (2.14).

Even when open evolution is considered, it is of primary importance for a
QSL to remain effective and tight for increasingly mixed initial and final states.
We now show that the bound TD, introduced in Eq. (3.6), is robust under mix-
ing not only for unitary dynamics, but also for any open evolution with a well-
defined fixed point. Let the dynamics from ρ to σ be due to a completely pos-
itive and trace preserving linear map Ct with fixed state φ, that generates the
orbit Ct[ρ] = ρt such that C0(ρ) = ρ and Cτ (ρ) = σ. A generalisation of the pure
depolarisation map, of Eq. (3.17), to general mixing is given by

Mε(φ)[ρ] := ερ+ (1− ε)φ. (3.18)

We applyMε(φ) to initial and final states ρ and σ,

ρ′ = ερ+ (1− ε)φ
σ′ = εσ + (1− ε)φ.

(3.19)

This map shrinks the numerator of the Eq. (3.6) by ε ∈ [0, 1],

‖ρ′ − σ′‖ = ε‖ρ− σ‖. (3.20)

Since the dynamics Ct preserves φ, we have

Ct(ρ′) = ερt + (1− ε)φ, (3.21)

therefore, the denominator of Eq. (3.6) also shrinks by the same amount

d

dt
Ct(ρ′) = ερ̇t, (3.22)

hence TD(ρ′, σ′) = TD(ρ, σ), as summarised by the following remark.

Remark 3.3. Bound (3.6) is invariant under mixing with the fixed state of the dynam-
ics.

Note how the above result contains the previous case of unitary dynamics, and
all unital dynamics, as they preserve the maximally mixed state. In such cases
the condition for robustness under mixing simply becomes a condition on the
contraction factor for the length of the GBV r′t = εrt, as expressed in Fig. 3.2. Re-
marks 3.2 and 3.3 finally answer the question posed in the preamble of this sec-
tion, and prove that, not only the Hilbert-Schmidt norm can be used to define
a bona fide QSL for the evolution of open quantum system, but that the bound
it naturally induces is also provably robust under composition and mixing. In
the next section we study the form of the bound, with particular attention to
the speed, for the fundamental types of quantum evolution.
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unitary unital general fixed point

Figure 3.2. Bound TD, expressed in Eq. (3.6), is invariant under general mixing with
the fixed state of the considered dynamics. (Left) Invariance under unitary evolution
is satisfied for pure depolarisation. (Center) More generally, all unital maps, i.e., maps
that preserve the identity, also satisfy the condition for invariance under pure depo-
larisation. In terms of the GBV, the condition for unital invariance simply reduces to
r′t = εrt. (Right) The bound is also robust for general mixingMε(φ) for dynamics that
preserves the fixed point φ.

3.4 Form of the bound

The numerator of Eq. (3.6) is independent of the type of dynamics considered
for the evolution between a pair of states ρ and σ. The denominator, instead,
depends on the orbit, and its form varies for different types of evolution. We
thus study its form and interpret the different notions of speed that arise for
different dynamics.

3.4.1 Unitary evolution

When unitary evolution is considered, the denominator of Eq. (3.6) is a simple
function of the time-dependent Hamiltonian Ht

‖ρ̇t‖ =
√

2 tr[H2
t ρ

2
t − (Htρt)2]. (3.23)

This term is proportional (up to a constant of motion) to the term in the de-
nominator of the QSLs Eqs. (2.24) and (2.31), derived in Ch. 2. Moreover, for
pure states, this quantity reduces to the time-averaged standard deviation of
the Hamiltonian Ht, up to a factor of

√
2. However, the numerator of the QSL

in Eq. (3.6) and the QSL in Eq. (2.24) are different and the latter is always tighter.
This is because, for this special case, the length of the GBV r must be preserved
along the evolution [1], and the geodesics are arcs of great circles that connect
r and s (see Fig. 3.1). This observation should not be surprising, since the arc
length ‖r‖2Θ(ρ, σ) is always greater than the length of the displacement vec-
tor D(ρ, σ), given in Eq. (3.4). If we are promised that the evolution is unitary,
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then we are free to work with the tighter QSLs of Eqs. (2.24) and (2.31). How-
ever, if that information is not available, we must be conservative and work
with the QSL in Eq. (3.6). We now consider the open evolution case, starting
with Lindblad dynamics, before proceeding with more general non-Markovian
evolutions.

3.4.2 Lindblad dynamics

In the case of semigroup dynamics, ‖ρ̇t‖ becomes a function of the Lindblad
operators [44]. While this function is generally complicated, we can derive its
form for some particular types of Lindblad dynamics, for which it substantially
simplifies. Let us consider a general form of the Lindblad master equation

ρ̇t = −i[H, ρt] +
∑
k

γk
(
LkρL

†
k −

1

2
{L†kLk, ρt}

)
, (3.24)

where typically the Lindblad operators are chosen to be orthonormal and trace-
less, i.e., tr[LkLl] = δkl, and tr[Lk] = 0. If the unitary part of the dynamics is
irrelevant with respect to the dissipator, i.e., when [H, ρt] is negligible when
compared to the other terms, we obtain

‖ρ̇t‖ ≤ 2
∑
k

γ2
k‖Lk‖2, (3.25)

where the inequality holds since

‖ρt‖‖ρ̇t‖ ≤ 2
∑
k

γ2
k‖Lk‖2‖ρt‖2, (3.26)

as shown in Ref. [78], and ‖ρt‖ ≤ 1. We can readily apply this result to three
important cases: Pure dephasing dynamics, pure depolarization dynamics, and
speed of purity change.

Pure dephasing dynamics — This type of dynamics models the idealized
evolution of an open quantum system whose coherence decays over time due
to the interaction with the environment. Under this kind of dynamics, a quan-
tum system that evolves for a sufficiently long time is expected to lose its quan-
tum mechanical features and exhibit a classical behavior. Here, for the sake of
clarity, we consider the case of pure dephasing of a single qubit, described by the
Lindblad equation

ρ̇t = γ(σzρtσz − ρt). (3.27)

The instantaneous speed can be written in terms of the components of the Bloch
vector rt = (r1(t), r2(t), r3(t)) associated to ρt,

‖ρ̇t‖ =
√

2 γ
√
r2

1(t) + r2
2(t), (3.28)
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and accordingly the time-averaged speed can be bounded as

‖ρ̇t‖ ≤
√

2γ. (3.29)

Although considering the case of a single qubit might sound simplistic, this
result can be applied to high-dimensional systems that effectively behave like
qubits [132], such as highly degenerate systems that can be approximately de-
scribed as a two-level system.

Pure depolarizing dynamics — Another interesting observation is that the
bound TD is geometrically tight when purely depolarizing dynamics is consid-
ered:

ρt = Dε(t)[ρ0] = ε(t)ρ0 +
1− ε(t)

d
, (3.30)

which serves as an idealized model of noise for the evolution of an open quan-
tum system that monotonically deteriorates towards the state of maximal en-
tropy, i.e., the maximally mixed state. Geometrically, it corresponds to the re-
scaling of the generalized Bloch vector rt = ε(t) r0, where ε(0) = 1. Tightness
is guaranteed by the fact that each vector rt obtained in this way represents a
state, along with the fact that the orbit of such evolution is given by the straight
line that connects r0 to rτ , whose length is exactly given by D(ρ0, ρτ ). In this
case our bound reads

TD(ρ0, ρτ ) =
1− ε(τ)

|ε̇(t)|
. (3.31)

If we restrict ourselves to the case of strictly monotonic contraction (or expan-
sion) of the GBV, the denominator becomes (1−ε(τ))/τ , which further supports
our argument for the tightness of our bound. In this case, it simply returns the
condition for optimal evolution TD(ρ0, ρτ ) = τ , i.e., the evolution time τ coin-
cides with the bound, and thus with the minimal time.

Speed of purity change — Since a contraction of the GBV corresponds to a
decrease of the purity,

P [ρ] = tr[ρ2], (3.32)

of the initial state, Eq. (3.6) provides a QSL for the variation in the purity ∆P ,
which is saturated when obtained by means of purely depolarizing dynamics
with strictly monotonic contraction. In particular, the rescaling of the GBV
r → εr implies a variation of the purity

tr[ρ2
0]→ ε2tr[ρ2

0] +
(1− ε2)

d
1, (3.33)
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which thus depends also on the dimension d of the system. Similar QSLs have
been derived by the authors of Ref. [133], who express a bound on the instanta-
neous variation of the purity in terms of the strength of the interaction Hamil-
tonian and the properties of the total system-environment density operator, as
well as by the authors of Ref. [78], who provide a bound on the variation of the
purity P [ρ0]/P [ρτ ] as a function of the non-unitary part of the evolution, both
in Hilbert and Liouville space.

3.4.3 Non-Markovian dynamics

For the most general non-Markovian dynamics, the denominator of bound (3.6)
can be written in terms of a convolution with a memory kernel [97], e.g., in the
form of the Nakajima-Zwanzig equation

ρ̇t = Ltρt +

∫ t

t0

dsKt,sρs + Jt,t0 , (3.34)

where Lt is a time-local generator, like that of the Lindblad master equation.
The memory kernelKt,s accounts for the effect of memory, andJt,t0 accounts for
initial correlations between system and environment [134]. The denominator
of bound (3.6) can be simplified using the triangle inequality ‖A + B + C‖ ≤
‖A‖ + ‖B‖ + ‖C‖, at the cost of its tightness. Similarly, the memory kernel
can be divided up into a finite sum of terms whenever it is possible to resort
to a temporal discretization, in order to obtain the transfer tensor, i.e., the exact
discrete time memory kernel [120]. In this case, one can express ‖

∫ t
t0
dsKt,sρs‖ ∼

δt
∑

k‖Ktk,tk−1
ρtk−1
‖, again, at the cost of reducing the tightness of the bound.

Alternatively, the orbit dependent term can always be related to an under-
lying unitary evolution with a wider environment: ρ̇t = −i trE[H,Πt], where
H and Πt are the Hamiltonian and the state of the joint system-environment,
respectively. We can further break down the total Hamiltonian into H =

HS +Hint +HE , where HS (HE) is the Hamiltonian of the system (environment)
and Hint describes the interactions between the two. In this case the denomina-
tor of bound (3.6) reads

‖ρ̇t‖ = ‖−i[HS, ρt]− itrE{[Hint,Πt]}‖, (3.35)

since trE{[HE,Πt]} = 0. A less tight speed limit can be obtained by splitting the
right hand side of Eq. (3.35), using the triangle inequality and the linearity of
the time average, to obtain ‖ρ̇t‖ ≤ ‖−i[HS, ρt]‖+ ‖−itrE{[Hint,Πt]}‖, in order to
isolate the contribution of Hint from that of HS , when convenient.

Additionally, by considering the larger Hilbert space of system and environ-
ment combined, it is possible to appreciate the difference between the tradi-
tional QSL, TL(ρ, σ), expressed in terms of the Bures angle (see Eq. (2.13)), and
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the bound TD of Eq. (3.6). The Bures distance L(ρ, σ) corresponds to the mini-
mal Fubini-Study distance between purifications of ρ and σ in a larger Hilbert
space [93], here denoted by |ψ〉〈ψ| and |ϕ〉〈ϕ|, respectively. Such purified states
must be entangled states of system and environment when ρ and σ are mixed.
Moreover, unlike in Eq. (3.35), these states may have nothing to do with the
actual system-environment evolution. In general, in order to saturate the tradi-
tional QSL, one must have access to those (possibly fictional) entangled states,
and be able to perform highly non-trivial operations over both system and en-
vironment, such as |ψ〉〈ϕ| + |ϕ〉〈ψ|, which can contain terms with high order
of interaction [1, 4]. Since in practice one has little, if any control over the en-
vironment degrees of freedom, and nearly no access to the entangled state of
the system and environment combined, the traditional QSL rapidly loses its
efficacy.

In contrast, bound TD, introduced in Eq. (3.6), provides a conservative es-
timate of the minimal evolution time between two states ρ and σ, under the
assumption of no access to their purification. The speed of the evolution is
assessed observing only the local part (the system) of a global evolution (the
underlying unitary evolution of system and environment), as expressed by
Eq. (3.35), while still allowing for optimal driving of the purifications of ρ and
σ. In addition to the ability of QSLs to represent an achievable bound for the
minimal evolution time, their usefulness also depends on how easily they can
be calculated and measured. We discuss this aspect in the next section, com-
paring the features of our bound TD to those of other QSLs.

3.5 Feasibility

As discussed in Sec. 3.1, the usefulness of a QSL bound is directly linked to the
feasibility of its evaluation, whether it be computational or experimental. There
are two types of difficulties that one might encounter in the evaluation of a QSL.
First, computing the distance, that in our case is given by the orbit-independent
term in the numerator of Eq. (3.6), and second, evaluating the speed, that in our
case is given by the orbit-dependent term in the denominator of Eq. (3.6). While
the latter is usually related to some norm of ρ̇t, the former changes remarkably
from bound to bound. We address the distance first, before proceeding to a
discussion of the speed.

The distance — Among the majority of the QSL bounds known so far one
can make a clear-cut distinction between the type of distances that have been
used: Either they require evaluating the overlap tr[ρσ] between the initial and
the final states [1, 44, 127], or they require to calculate

√
ρ and

√
σ (or similar

functions) [43, 81, 126]. The latter is much more complicated than the former, as
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it requires finding the eigenvalues and eigenvectors of ρ and σ. Moreover, the
overlap tr[ρσ] between two density operators ρ and σ is easily measured exper-
imentally using a CSWAP (controlled-swap) and measurement on an ancillary
system [109].

The same approach can be used to estimate the fidelity F , given in Eq. (1.23),
and the affinity A between ρ and σ,

A(ρ, σ) = tr[
√
ρ
√
σ], (3.36)

as well as any other measure of distinguishability based on the square roots
of the density operators, as described in Box 3.1. However, in this case, the
number of measurements required to obtain a good estimate of this measure of
distinguishability is much larger than for the case of the overlap, with respect
to which our distance is conveniently defined.

Box 3.1 Measuring the quantum affinity

The quantum affinity (see Eq. (3.36)) is a measure of distinguishability
between two density operators ρ and σ that requires the knowledge of
the purifications

√
ρ and

√
σ. In Ref. [43] the authors provide a clever, yet

experimentally expensive, way of measuring the quantum affinity based
on a sequence of CSWAP operations. To do so, one has to be able to prepare
the states ρ and σ, and to measure the overlap between any combination
tr[ρkσl], with k, l ∈ {0, 1, · · · , d}, for d-dimensional systems. Each over-
lap measurement requires the use of a CSWAP operation, as described in
Ref. [109].

Measuring tr[ρk], for k = 2 to d, allows to obtain the eigenvalues of
ρ. This step requires exactly d − 2 more CSWAP measurement protocols
than measuring just tr[ρσ]. Assuming to be able to prepare a state in
the eigenbasis {|rk〉}dk=1 of ρ, we can use its spectrum {λk}sk=1 in order to
prepare

√
ρ =

∑d
k=1

√
λk|rk〉〈rk|∑d

k=1

√
λk

. (3.37)

In case of unitary evolution, the final state
√
σ, which has the same spec-

trum as
√
ρ, is obtained from

√
ρ →

√
σ = U

√
ρU †, and the affinity is

obtained directly measuring the overlap tr[
√
ρ
√
σ]. For non-unitary evo-

lution, instead, one has to directly measure tr[σk] for k = 2 to d in order
to reconstruct its spectrum, to then prepare

√
σ and measure its overlap

with
√
ρ, for a total of d− 1 additional measurements.

In conclusion, measuring the quantum affinity between ρ and σ requires
between d and 2d extra preparations and measurements with respect to
the overlap tr[ρσ]. A detailed description of how to estimate linear and
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non-linear functionals of a quantum state can be found in Ref. [109].

The speed — We now focus on to the orbit-dependent term ‖ρ̇t‖, i.e., the de-
nominator of Eq. (3.6), which appears in different forms in virtually every QSL
bound. This term is interpreted as the speed of the evolution4, and it can be
hard to compute, as it might require the knowledge of the solution ρt to the dy-
namical problem ρ̇t = L[ρt]. For this reason, one might criticize QSLs as being
impractical, or ineffective, if too hard to compute. Surely, when QSLs are easy
to compute, they can be used to quickly estimate the evolution time τ , required
by some specific dynamics ρ̇t = L[ρt] to evolve between ρ and σ; however, their
main purpose is rather to answer the question, can we evolve faster? The eval-
uation of a QSL bound for the initial and final states ρ and σ, along the orbit
described by ρt, immediately tells us that it might be possible to evolve faster
along another orbit that has the same speed, or confirms that we are already on
a time-optimal orbit.

Besides, it is not always necessary to solve the dynamics of the system in or-
der to evaluate the speed, which can be constant along the orbit. For example,
the standard deviation of any time-independent Hamiltonian is a constant of
motion, and can be directly obtained from the initial state of the system and
the Hamiltonian, making the speed extremely easy to compute. In the more
general case of an actually orbit-dependent speed, it is often possible to numer-
ically and experimentally estimate ‖ρ̇t‖ using the following approach. First, we
can approximate ρ̇t with the finite-time increment ρ̇t ∼ ρt2 − ρt1/|t2− t1|, where
t1,2 = t± ε/2, for small ε. We then proceed with the approximation

tr[ρ̇2
t ] ∼

tr[ρ2
t2

] + tr[ρ2
t1

]− 2tr[ρt2ρt1 ]

|t2 − t1|2
. (3.38)

Each term on the numerator of the right-hand side of Eq. (3.38) can be eval-
uated with a CSWAP circuit, when disposing of an ensemble of identically pre-
pared states, as one would do for tr[ρσ], as described above and in Ref. [109]. In
this sense, the Euclidean metric considered here has an advantage over those
featuring

√
ρt, such as those based on quantum fidelity and affinity, since in

general it requires fewer measurements for each instantaneous sample of the
speed of the evolution. Nevertheless, obtaining a precise estimation of the av-
erage speed of the evolution is generally hard, requiring a number of samples
that strongly depends on the distribution of the velocities of the considered
process, independently of the notion of the considered metric. When such an

4Note that ρ̇t is proportional to the tangent vector ṙt, which can be regarded as the velocity.
Accordingly, the norm of the latter is the speed, and it is proportional up to a constant of
motion to the HS norm of ρ̇t.
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estimation has to be approached, it is thus fundamental to reduce the number
of measurements required to obtain each instantaneous sample of the speed of
the evolution. In the next section, we will show that, in addition to being more
feasible, our bound also outperforms existing speed limits for the majority of
processes.

3.6 Tightness

We are now going to study the performance of the bound TD, relative to other
proposed QSLs. To this end, we must ensure that different bounds are fairly
compared. Since some QSLs originate from different metrics and depend on
the orbit, the only meaningful way to compare them with each other is to
evaluate them along a chosen evolution, for a given pair of initial and final
states. We compare our bound to the most significant bounds for open quan-
tum evolution appearing in the literature [43, 44, 81, 126, 127] which either
depend on the overlap tr[ρσ] or require the evaluation of quantum fidelity
F(ρ, σ) = tr[

√√
ρσ
√
ρ] [40], affinity A(ρ, σ) = tr[

√
ρ
√
σ] [135], or Fisher in-

formation [136].
When comparing different bounds along different orbits, one might be led

to assume that the hierarchy between the bounds depends on the process in
question. However, the orbit-dependent term that appears at the denominator
of bounds from Refs. [44, 126, 127] is always given by ‖ρ̇t‖5 (i.e., the strength
of the generator), or can be directly related to it, up to some orbit-independent
factors. This fact allows us to reduce the hierarchy of some of these bounds
to that of the distance terms that depend only on the initial and final states,
regardless of the chosen process and orbit. When this direct comparison is not
possible, such as for the case of the bound in Ref. [43], we need to resort to
numerical comparison.

The orbit-independent term of our bound can be directly compared with those
of Sun et al. [127] and del Campo et al. [44], which depend on the overlap tr[ρσ].
In order to analytically compare our bound to that of Deffner et al. [126], we
over-estimate the orbit-independent term of the latter by replacing the fidelity
with its lower-bound sub-fidelity, introduced in [137], which depends on the
overlap tr[ρσ], and on the additional quantity tr[(ρσ)2]. For brevity, we will
henceforth refer to previously introduced bounds by the corresponding first
author’s name. As a result we find that, independently of the chosen process
(i.e., for every choice of the generator ρ̇t), the bound TD expressed in Eq. (3.6) is
tighter (i.e., greater) than Sun’s, del Campo’s, and Deffner’s for every (allowed)

5In particular, we selected the Hilbert-Schmidt norm for analytical comparison, while we have
evaluated operator norm and trace numerically, if required by the considered QSL.
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Figure 3.3. Analytic comparison of bounds from Refs. [44, 126, 127] with TD, intro-
duced in Eq. (3.6), for the arbitrary evolution between ρ = ρ2, and σ, expressed as
the ratio between the considered QSL TAuthor and TD as a function of tr[ρσ] (which
for ρ2 = ρ also determines tr[(ρσ)2]), as specified in the legend, and where T ?Deffner ≥
TDeffner (see Eq. (A.6) for details). The three insets represent three different choices of
purity tr[σ2] for the final state, from left to right tr[σ2] ∼ 0, tr[σ2] = 0.25, tr[σ2] = 1.
Note that, since the dimension d of the system sets a bound for the minimal value 1/d

of tr[σ2], the central inset is meaningful from d ≥ 4, while the left one is to be used in
the limit of large d.

choice of ρ and σ

TD ≥ max
{
TSun, Tdel Campo

}
, ∀ρ, σ ∈ S(HS), (3.39)

TD ≥ TDeffner ∀ρ, σ, for ρ2 = ρ or σ2 = σ, (3.40)

as shown in Fig. 3.3. While Sun’s and del Campo’s QSLs are as easy to compute
as our QSL given in Eq. (3.6), they are also the loosest bounds. In contrast,
Deffner bound’s can be as tight as ours, but, since it requires the evaluation of√
ρ and

√
σ, it is less feasible.

In particular, Deffner’s bound has been proven to be valid only when one of
the two states is pure, i.e., for ρ = ρ2 (or σ = σ2) [127]. Under this condition
our bound is always tighter than Deffner’s. Additionally, we can analytically
extend the validity of Deffner’s bound to a larger class of cases by comparing it
with our bound, and studying the region of the space of states for which TD is
larger (see Fig. 3.4). All the details about the relative tightness of the considered
bounds can be found in Appendix A.3.

Finally, we compare our bound to that of Ref. [43] by Mondal et al., derived
for the case of any general evolution, starting from the assumption that the
initial state of the system ρ0 is uncorrelated with that of the environment γE ,
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Figure 3.4. (Left) The fraction of processes (quantified by their end points) for which
TD outperforms TDeffner, calculated as the ratio of the parameter space spanned by
tr[ρσ] and tr[ρσρσ] for which TD ≥ TDeffner. A general rule of thumb to evaluate the
relative tightness between bound TD in Eq. (3.6) and Deffner’s bound is given by
tr[σ2] ≥ 1 − tr[ρ2] ⇒ TD & TDeffner. Since tr[ρ2], tr[σ2] ≥ 1/d, the region where
TD outperforms Deffner’s bound is always larger than that where the converse holds,
as shown by the red dashed lines delimiting the physical region for d = 2, 3, 4 (see
Appending A.4 for details). (Right) Numerical estimation of relative tightness between
TD and TDeffner, obtained uniformly sampling 3 · 106 initial and final states from the
Bures and the Ginibre ensembles. Bound TD is almost always tighter than TDeffner.

i.e., Π0 = ρ0⊗γE . The orbit-independent term of their bound is a function of the
affinity A(ρ0, ρτ ) = tr[

√
ρ0
√
ρτ ] between initial and final states of the system, ρ0

and ρτ , respectively [43], which, as mentioned earlier, is hard to calculate and to
measure as it requires the diagonalization of both density operators. The orbit-
dependent term of their bound is a function of the root of ρ0 and of an effective
Hamiltonian H̃S = trE[H 1 ⊗ γE], where H is the total system-environment
Hamiltonian. This function is not equivalent to ‖ρ̇t‖ (not even up to an orbit-
independent factor), so we must calculate the two bounds for any given choice
of dynamics, i.e., for any choice of total system-environment Hamiltonian H

and of initial state of the environment γE .

As such, we proceed with a numerical comparison of the two bounds. We
randomly generate total Hamiltonians H , initial states of the environment γE ,
and initial states of the system ρ0, in order to choose the final state of the system
ρτ = trE[Uτρ0 ⊗ γEU †τ ], where Uτ = exp[−iHτ ], fixing τ = 1 for reference. We
then compute both bounds for each instance ofH , γE , and ρ0 and compare their
performance by measuring the difference TD − TMondal. Remembering that τ =

1, and that both bounds must be smaller than τ , the difference TD−TMondal must
be bounded by −1 and 1. Our numerical results provide convincing evidence
of the performance of TD over TMondal, with the former being larger then the
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Figure 3.5. Numerical estimation of relative tightness between TD and TMondal, ob-
tained sampling 5000 orbits from random H , γE , and ρ0, uniformly sampled as de-
scribed in Box 2.1. The dimension of the system’s and environment’s Hilbert spaces is
uniformly sampled between 2 and 10. The tightness is measured using the parameter
X = TD−TMondal, which is bounded between−1 and 1, given that the evolution is car-
ried for a unit time τ = 1, and that both bounds have to be smaller than the evolution
time τ . The probability P (X ≥ 0) for our bound to be better than Mondal’s is equal to
0.94, with an average difference µ = 0.56± 0.28.

latter in 94% of the cases for the considered sample, with an average difference
of 0.57 ± 0.28 (see Fig. 3.5 for the details about the numerical study). While
Mondal’s bound performs better than Deffner’s, Sun’s and del Campo’s, it is
arguably less feasible than all of them, as it involves the evaluation of

√
ρ and√

σ for both distance and speed terms.
We have now shown that bound TD of Eq. (3.6) is tighter than the QSLs by

del Campo et al. [44], by Sun et al. [127], and by Deffner et al. [126], for all
processes, while being just as easy to compute (if not easier). We have also
provided numerical evidence of the superiority of our bound TD over the QSL
by Mondal et al. [43] for almost all processes, while being more feasible.

3.7 Chapter summary

In this chapter we have presented a geometric quantum speed limit for arbi-
trary open quantum evolutions, which is based on the natural embedding of
the space of quantum states in a high-dimensional ball, where states are rep-
resented by generalized Bloch vectors. The speed limit TD is induced by the
Euclidean norm of the displacement vector r − s between the two generalized
Bloch vectors r and s, associated with the initial and final states of the evolu-
tion. The measure of distinguishability that arises from this choice of distance
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corresponds to the Hilbert-Schmidt norm of the difference between initial and
final states, ρ and σ. The use of this norm has several benefits: It allows for
the effective use of optimization techniques, such as convex optimization and
semidefinite programming [138], it is easy to manipulate analytically and nu-
merically, it has a straightforward geometric interpretation, and it is indepen-
dent from the choice of the Lie algebra Λ of SU(d) used to represent states as
GBVs. The Hilbert-Schmidt norm is also widely used in experimental context,
not only for quantum optimal control tasks, in order to impose finite energy
bandwidth constraints on the control Hamiltonian [139, 140].

We have considered the case of general open dynamics, in terms of a system-
environment Hamiltonian and convolution with a memory kernel, as well as
the special cases of unitary evolution and Lindblad dynamics. While the per-
formance of many QSLs diminishes when increasingly mixed states are consid-
ered, our bound remains robust under composition, as well as under mixing
with the fixed point of arbitrary CPTP maps. This result definitively confirms
that the Hilbert-Schmidt norm can be used to derived a bona fide QSL, despite
being non-contractive under CPTP maps.

We have discussed the form of our bound, with particular attention given
to the speed of the evolution. We have highlighted the differences between
our bound and the traditional QSL, induced by the Bures distance, and shed
light on the reasons for the poor performance of the latter. Comparatively
speaking, our bound outperforms several bounds derived so far in the liter-
ature [43, 44, 126, 127] for the majority of (if not all) processes. We have also
addressed the physical interpretation of our bound, as well as that of similar
QSLs, by providing a feasible experimental procedure that aims at the estima-
tion of both the distance D and the speed of the evolution ‖ρ̇t‖, while showing
that our bound is easier to compute, as well as experimentally measure, than
the other comparably tight bounds [43, 81, 126]. These features indicate TD
as the preferred choice of QSL. In particular, the versatility of this bound, as
compared to that of Ref. [1], allows it to be used for an much larger class of
dynamics, which we have only just begun to approach with our examples in
Section 3.4; a reflection that will hopefully be inspiring for further studies.

The efficacy of the QSL derived from this distance suggests that the use of
a real vector space equipped with Euclidean metric to represent the space of
operators, recently recognised also in Ref. [141], could find application in the
search for constructive approaches to time-optimal state preparation and gate
design. This geometric picture might also offer solutions to some urgent out-
standing problems, such as quantum optimal control in the presence of un-
controllable drift terms and constraints on tangent space, local quantum speed
limits for multipartite evolution with restricted order of the interaction, and
time-optimal unitary design for high-dimensional systems. The restrictions
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imposed by the constraints on the generators of evolution are known to dra-
matically change the geodesic that connects two states, and thus the bound on
the minimal time of evolutions, as discussed in Refs. [142, 143]. There, the au-
thors introduced methods to bound the speed of evolution depending on the
form of uncontrollable drift terms, control complexity and size of the system,
obtaining accurate results for the case of single qubits in Ref. [144]. Combin-
ing such considerations with the geometric approach used here could simplify
the task of improving quantum speed limits and optimal driving of controlled
quantum systems, by exploiting constants of motions that might be easier to
represent in the generalised Bloch sphere picture.

Adapting this approach could find applications in other areas of quantum in-
formation, such as quantum metrology and quantum thermodynamics, where
geodesic equations and geometric methods are routinely employed for the so-
lution of optimization problems. While an attainable speed limit for arbitrary
processes is yet to be found, its comprehension goes hand in hand with the
understanding of the geometry of quantum states, as well as with the devel-
opment of constructive techniques for time-optimal control. The latter is the
central theme of the next chapter, where we shift the emphasis from bounding
the minimal time of evolution, to finding the generator of the dynamics that
saturates such bounds.
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4 Fast and efficient state preparation

Chapter abstract

Fast driving of quantum systems is an important ingredient in many near fu-
ture quantum technologies. However, finding the Hamiltonian that generates
the fastest evolution is generally a hard task. In this chapter we introduce an
iterative method to search for time-optimal Hamiltonians that drive a quantum
system between two arbitrary states. The method is based on the idea of pro-
gressively improving the efficiency of an initial, randomly chosen, Hamiltonian
that connects the two states, by reducing its components that do not actively
contribute to driving the system. This iterative method converges rapidly even
for large dimensional systems, and its solutions saturate any attainable bound
for the minimal time of evolution. We provide a rigorous geometric interpreta-
tion of the iterative method by exploiting an isomorphism between the geometric
phases acquired by the system along a path and the Hamiltonian that generates
it.

This chapter is based on publication [3].

4.1 The quantum brachistochrone problem

In 1696 Johann Bernoulli challenged the brightest mathematicians of his times
to find the curve of fastest descent between a point A and a lower point B on
a vertical plane, for which he coined the name brachistochrone, from the Greek
words brákhistos khrónos, meaning shortest time. Bernoulli’s deceptively simple
problem succeeded in receiving the attention of some of the most illustrious
mathematical minds, such as Leibniz and Newton, and became a milestone of
infinitesimal calculus [145].

Inspired by this problem, the quantum brachistochrone problem (QBP) gener-
ally aims to find the fastest evolution between point A and point B in the space
of quantum states, given some dynamical constraints. More specifically, in its
first formulations, the QBP consisted in finding the time-independent Hamil-
tonian that generates the time-optimal evolution between two given quantum
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states [146–148]. In this sense, it can be seen as the converse problem to that of
deriving an attainable QSL for unitary evolution, formally addressed in Ch. 2.

Since the original formulations, QBPs have been adapted and used to obtain
accurate minimum-time protocols for the control of quantum systems [140, 149,
150], clarify the role of entanglement and quantum correlations in time-optimal
evolution [48, 67], study the speed of Hermitian and non-Hermitian Hamilto-
nians [146–148], and improve bounds on QSLs [1, 86, 151].

QBPs have a special role in quantum information theory and technology,
where they are of fundamental importance to accurately performing tasks such
as preparing a desired state of a system, or implementing a specific gate, while
satisfying the strict physical and fault tolerance requirements imposed by the
locality of interactions and short decoherence times [61, 139]. For this reason,
their solutions have found applications in information processing [60, 152–156],
quantum state preparation [157–162], cooling [149, 163], metrology [164–166],
and quantum thermodynamics [4, 70, 167, 168]. Moreover, QBPs give a phys-
ical interpretation to the complexity of quantum algorithms, which emerges
from the minimisation of the time required to obtain the unitary transforma-
tion that performs a desired gate [169].

Solving QBPs is generally hard, and accurate analytic and numerical solu-
tions are only known for some special cases, such as the unconstrained uni-
tary evolution of pure states and control problems of well structured quantum
systems [139, 151, 169–173]. There are methods that can be used to address a
relatively large class of QBPs, but obtaining precise solutions becomes increas-
ingly challenging as the dimension of the system grows, and the constraints
on the control Hamiltonian become more complex. For instance, the quan-
tum brachistochrone equations proposed in Ref. [169] involve the solution of
ordinary differential equations (ODEs) with boundary conditions, for which
there are no efficient numerical methods when high-dimensional systems are
considered [139, 167, 174–176]. One crucial open problem is the case of uncon-
strained unitary evolution between two mixed states. As opposed to the case
of pure states, the solution to this QBP is not known, except for special cases
with highly degenerate spectra. This is akin to the problem of finding tight
bounds on the minimal time of evolution: As we have seen in Ch. 2, QSLs are
attainable for pure states, but become often loose for mixed states due to the
complicated structure of the space of density operators [41, 44, 127]. Accord-
ingly, the geometric methods used in the previous chapters to derive simple,
efficient, and tight bounds for the time of evolution of mixed states [1, 2] have
a crucial role in estimating the performance of the solutions to QBPs.

In this chapter we take a similar approach to solving the complementary
problem, that of finding the optimal unconstrained unitary evolution between
two mixed states. That is, we look for the generator H of a unitary evolution
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Ut = exp(−iHt) that takes a mixed state ρ to σ = Uτ ρ U
†
τ , such that the tran-

sition time τ is minimised. However, instead of solving a system of ODEs, we
design an iterative method that progressively improves the efficiency of the
Hamiltonian [74] that generates the evolution, to search for the optimal time-
independent Hamiltonian, while respecting an energetic constraint.

We investigate the efficacy of our method using the bounds on the minimal
time of evolution. By comparing the achievable upper bound, provided by our
iterative method, with the inviolable lower bound offered by the QSLs intro-
duced in Ch. 2, we demonstrate the strong synergy of the two results: When
the two are found to be similar, we can be sure that both results are close to op-
timal. We study the performance of our method with respect to the size of the
system, and its dependence on parameters such as the convergence threshold.
We then discuss direct applications of the algorithm, its potential combination
with time-optimal gate design and Monte-Carlo methods, and its geometric
interpretation, juxtaposing it to that of Grover’s quantum search algorithm.

4.2 Time-optimal evolution and Hamiltonian efficiency

Let us begin by considering a simple QBP for a two-level system, defined by
the initial state ρ and the target state σ,

ρ =
1+ pΛx

2
→ σ =

1+ pΛy

2
, (4.1)

where p ∈ (0, 1], and where Λ = (Λx,Λy,Λz) is the vector of Pauli matrices,
which form an orthonormal basis for the Lie Algebra su(2). For this choice of
Λ, the Bloch vectors for the two states are given by r = (p, 0, 0) and s = (0, p, 0),
respectively. Any unitary O(ϕ) of the form

O(ϕ) = eiϕ1|s1〉〈r1|+ eiϕ2|s2〉〈r2| (4.2)

can be used to map ρ → σ = OρO†, where |rk〉 and |sk〉 are the eigenvectors of
ρ and σ, respectively, and where ϕ = (ϕ1, ϕ2) represents the geometric phase
that the state gathers from O(ϕ). Accordingly, the Hamiltonians

H(ϕ) = i logO(ϕ) (4.3)

define different evolutions, i.e., different orbits in the space of states, depending
on the choice of ϕ. Let us focus on two possible choices for these phases,

ϕz =
(π

4
,
π

4

)
, (4.4)

ϕxy =
(3

4
π,−π

4

)
. (4.5)
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Figure 4.1. The pair of state ρ ↔ r and σ ↔ s defined in Eq. (4.1) is driven by the
Hamiltonians H(ϕz) and H(ϕxy) of Eqs. (4.6) and (4.7). The orbits generated by these
Hamiltonians have different lengths in the space of states. Here lengths are calculated
using the infinitesimal distance associated with the uniform energetic constraint of
Eq. (4.8). Their Hamiltonian efficiency, given in Eq. (4.10), is indeed different, with
H(ϕz) being twice as efficient as H(ϕxy) for any purity of ρ and σ.

The associated Hamiltonians are given by

H(ϕz) =
π

4
Λz, (4.6)

H(ϕxy) =

√
2

4
π(Λx + Λy). (4.7)

These two Hamiltonians generate different paths on the Bloch sphere. Un-
der uniform energetic constraints, such as fixing the standard deviation of the
Hamiltonians with respect to the initial state

∆E =
√

tr[ρH2]− tr[ρH]2 ≡ ω, (4.8)

for some ω > 0, the lengths of these paths meaningfully correspond to evolu-
tion times1. Such homogeneous energetic constraints induce a corresponding
metric in the state space, which we use to measure the length of orbits and the
evolution time, as seen in Sec. 2.1. The evolution time is thus given by the to-
tal time required to obtain the gate O(ϕ) = Uτ generated by H , which can be
expressed as Ut = exp[−iHt] for time independent Hamiltonians.

As represented in Fig. 4.1, the path generated by H(ϕz) connects ρ to σ with
an arc of great circle, i.e., the geodesic with respect to the Fubini-Study metric,
and thus it constitutes a solution to the considered QBP for the homogeneous
energy constraint of Eq. (4.8). In contrast, H(ϕxy) draws a longer path with
respect to the same metric, which is thus not time-optimal2. A heuristic expla-

1More generally, when the Hamiltonian is time-dependent, one can use either instantaneous
energetic constraints, such as ∆Et ≡ ω, or time-averaged energetic constraints ∆E = ω, de-
pending on the details of the problem (see Eqs. (1.7) and (1.9)).

2In fact, it does so for any uniform energetic constraint [86].
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nation for the variable performance of different Hamiltonians is that the vectors
h, associated with them via

H = h ·Λ, (4.9)

have a different orientation with respect to r and s. In particular, when h is
orthogonal to r, it generates a rotation on a plane that passes through the origin
of the Bloch sphere, while when h is not perpendicular to r, it generates a
rotation on a plane that does not. The slower evolution can be seen as due to
a less efficient use of the resources encoded in constraints on the energy, which
are wasted on parts of the Hamiltonian that do not actively drive the system [74].
This notion of efficiency can be formalised for pure states as done in Box 4.1.

Box 4.1 Hamiltonian efficiency

The notion of Hamiltonian efficiency introduced in Ref. [74] for the uni-
tary evolution of pure states is given by

η(H, ρ) :=
∆E

‖H‖op
, (4.10)

where ∆E =
√

tr[ρH2]− tr[ρH]2, with ‖·‖op being the operator norm.
The efficiency measures how much of the energy available, quantified
by ‖H‖op, is transferred to the system to drive the evolution, and thus
converted into speed ∆H . Different notions of efficiency can be obtained
for any choice of speed and total energy measure. For instance, the latter
can be replaced with the Hilbert-Schmidt norm of the Hamiltonian.

We can assess the performance of the two Hamiltonians H(ϕz) and
H(ϕxy), of Eqs. (4.6) and (4.7), using η (see Fig. 4.1). We obtain

η(H(ϕz), ρ) = p, (4.11)

η(H(ϕxy), ρ) =
p

2
. (4.12)

The dependence on p, and thus on the purity, implies that this notion of
efficiency is not saturated, in general, for mixed states.

This intuitive geometric argument can be generalised for dimension d > 2

by replacing the notion of orthogonality between vectors with commutation
relations between states and Hamiltonians. Given an operator ρ, the space
of Hamiltonians, i.e., the Lie algebra su(d), splits into a maximal dimensional
parallel subspace, closed under multiplication, that commutes with ρ, and an
orthogonal perpendicular subspace, every element of which does not. This al-
lows us to decompose the Hamiltonian H into components H‖ and H⊥ which
are elements, respectively, of these two subspaces, such that [H‖, ρ] = 0 and
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[H, ρ] = [H⊥, ρ]. These correspond to elements of the vertical and horizontal
tangent bundles in a fibre bundle representation where the space of states with
a given spectrum is the base manifold and the phases ϕ are the fibres. This ob-
servation leads to the idea at the core of the iterative method that we will intro-
duce in the next section, where efficient Hamiltonians for a QBP are achieved
by requiring their parallel component to be vanishing at all times during the
evolution.

4.3 Iterative method for efficient Hamiltonians

We can now consider the more general QBP defined by an arbitrary isospectral
pair of initial and final states ρ =

∑
k λk|rk〉〈rk| and σ =

∑
k λk|sk〉〈sk| of finite

dimension d. When non-degenerate states are considered, the operator

O(ϕ) =
∑
k

eiϕk |sk〉〈rk|, (4.13)

represents the most general unitary that connects initial and final states ρ and σ,
while ϕk represent the geometric phases gained evolving along the path gener-
ated by i logO(ϕ). In other words, Eqs. (4.13) and (4.3) provide an isomorphism
between the unitary orbits connecting ρ and σ and the points of the (d − 1)-
dimensional torus representing the space of relevant phases, as illustrated in
Fig. 4.2. When degenerate states are considered, the phases ϕk are replaced by
unitary operators Uk ∈ SU(m) on the subspace associated with eigenvalues λk
with multiplicity m.

Since any unitary O(ϕ) maps ρ → σ, we can choose an arbitrary initial phase
ϕ(0) to obtain the initial unitary

O(0) = O(ϕ(0)). (4.14)

The Hamiltonian H(0) = i logO(0), canonically associated with O(ϕ(0)), is then
split into its parallel and perpendicular components

Mρ[H
(0)] = H

(0)
‖ , (4.15)

H
(0)
⊥ = H(0) −H(0)

‖ , (4.16)

such that [H
(0)
‖ , ρ] = 0, via a map Mρ that depends on ρ, and which will be

referred to as mask. We choose the mask to be

Mρ[H] = D
(
M ◦D†HD)

)
D†, (4.17)

Mij = δλiλj , (4.18)
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Figure 4.2. Let ρ, σ be two isospectral d-dimensional states, here represented with
their GBVs r and s, respectively. In this cartoon, every unitary orbit connecting initial
and final state ρ and σ generated by a time-independent Hamiltonian H(ϕ) (left) is as-
sociated with a d-dimensional phase vector ϕ via Eqs. (4.13) and (4.3). By exploiting the
periodicity of the phases and absorbing one component of those phases into a global
phase, we obtain a one-to-one mapping between the points of a (d − 1)-dimensional
torus (right), representing the space of measurable geometric phases, and the orbits of
constant curvature connecting ρ and σ.

where D diagonalises ρ, i.e., its columns are given by the eigenstates {|rk〉} of
ρ, and where ◦ is the Hadamard, i.e., element-wise, product [177]. This mask
projects the Hamiltonian onto the maximal subalgebra c ⊂ su(d) that commutes
with ρ. When degenerate states are considered, the eigenvalues’ multiplicity
defines the structure of the mask via δλiλj .

We now notice that the unitary U (0) = exp[iH
(0)
‖ ] can be composed with O(0)

to obtain another unitary O(1) = O(0)U (0), formally equivalent to evolving with
the time-dependent Hamiltonian e−iH

(0)tH
(0)
⊥ eiH

(0)t, which also drives ρ → σ

since [ρ,H‖] = 0. In general, the unitary O(1) is associated with a new geomet-
ric phase, and the Hamiltonian H(1) = i logO(1) draws a different path, which
might be shorter (or longer) than that generated by H(0). In a second iteration,
we apply the mask to the new Hamiltonian to obtain H

(1)
‖ = Mρ[H

(1)], and
define another gate O(2) analogously. By iterating this method we obtain a se-
quence of Hamiltonians {H(j)}nj=0 that drive ρ→ σ via exp[−iH(j)]. The unitary
at each step is related to the previous one by

O(j+1) = O(j)e−iMρ[H(j)], (4.19)

H(j) = i logO(j). (4.20)

A necessary and sufficient condition for the routine to reach a fixed point H(n),
such thatH(n+1) = H(n), is given byMρ[H

(n)] = 0, i.e., when the parallel part of
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Algorithm 4.1 Iterative method for efficient Hamiltonians

Input: Initial state ρ =
∑d

k=1 λk|rk〉〈rk| and final state σ =
∑d

k=1 λk|sk〉〈sk|. Ini-
tial phase ϕ(0). Threshold for convergence ε.

Output: Optimal Hamiltonian.
1: Initialise O(0) =

∑
k e

iϕ
(0)
k |sk〉〈rk|, H(0) = i logO(0), H(0)

‖ =Mρ[H
(0)];

2: while ‖H(j)
‖ ‖HS > ε‖H(j)‖HS do

3: Set O(j) = O(j−1)eiH
(j−1)
‖ , H(j) = i logO(j), H(j)

‖ =Mρ[H
(j)];

4: end while
5: return the final Hamiltonian H(n) of the sequence {H(j)}nj=0.

the n-th Hamiltonian vanishes under the action of the maskMρ, which follows
trivially from the fact that in this case e−iMρ[H(n)] = 1.

Note how the method introduced in this section involves removing the part
of the Hamiltonian operator that commutes with the initial state ρ. A similar
approach could be taken replacing Eq. (4.19) with

O(j+1) = eiMσ [H(j)]O(j), (4.21)

where the part of the Hamiltonian that commutes with the final state σ is re-
moved, and the unitary joining the two states is acted on from the left in each
iteration, instead of from the right. It is also possible to remove both compo-
nents simultaneously, replacing Eq. (4.19) with

O(j+1) = eiMσ [H(j)]O(j)e−iMρ[H(j)]. (4.22)

While these slightly different approaches can affect the number of iterations
required for convergence for a given choice of initialisation phase ϕ(0), they
neither perform significantly better than the algorithm defined by Eq. (4.19),
nor require less iterations to converge on average.

Derivation of Algorithm 4.1

LetO =
∑

k |sk〉〈rk|, and i logO = H = H‖+H⊥, whereH‖ commutes with
ρ. Consider the unitary Ut generated by the time dependent Hamiltonian
OtH⊥O

†
t , where Ot = exp[−iHt], which satisfies the equation

∂tUt = −iOtH⊥O
†
tUt. (4.23)

To leading order in time, this will rotate the perpendicular part of the
Hamiltonian to follow the system’s evolution. Now consider the unitary
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Ũt = O†tUt, whose equation of motion is given by

∂tŨt = −iH⊥Ũt + (∂tO
†
t )Ut

= −i(H⊥ −H)Ũt

= iH‖Ũt.

(4.24)

Eq. (4.24) implies that Ũt = exp[iH‖t], thus that Ũt commutes with ρ. Ac-
cordingly, U = U1 = O1Ũ1 transforms ρ → σ, just as well as O does. The
procedure can be iterated until it reaches a fixed point, i.e., until H = H⊥
and H‖ = 0.

The parallel partH‖ of the Hamiltonian is not uniquely defined in terms
of the commutator with the initial density matrix. In order to fix a pre-
cise definition one can consider the Hamiltonian’s projection onto the
maximal subalgebra c ⊂ su(d) that commutes with ρ. This subalgebra
is unique and given by c = W †⊗

j su(dj)W , where dj is the degeneracy
of the j-th unique eigenvalue of ρ and W is the unitary that diagonalises
it. The mask defined in Eq. (4.17) achieves precisely this projection, in
the sense that there is no component of H⊥ that commutes with ρ. Let
us consider a fully non-degenerate initial state ρ =

∑
k λk|k〉〈k|, where for

simplicity we relabelled the eigenvectors with |k〉 inspite of |rk〉. Let us
imagine that G ∈ su(d) is also an component of H⊥, i.e., G =

∑
i 6=j gij|i〉〈j|

in the eigenbasis of ρ, as prescribed by the mask in Eq. (4.17). For G to
commute with ρ, we must have

[G, ρ] =
∑
i 6=j,k

gijλk(|i〉〈j|k〉〈k| − |k〉〈k|i〉〈j|) (4.25)

=
∑
i 6=j

gij(λj − λi)|i〉〈j| = 0, (4.26)

which vanishes for all the linearly independent components |i〉〈j| if and
only if gij ≡ 0, since λj 6= λi by hypothesis (non-degenerate spectrum).
This means that G can only commute with ρ if it is trivial. Similar argu-
ments can be made for the case of degenerate states, considering the form
of the map Mij = δλi,λj .

This iterative method is summarised in its simplest form by Algorithm 4.1,
available at Ref. [178], and can be interpreted as an optimisation of energy cost
associated with the different geometric phases ϕ, accomplished via the recur-
sive suppression of ineffective components of the Hamiltonians.

There is also a geometric interpretation of our method analogous to that of
Grover’s famous quantum search algorithm [179]. Grover’s quantum search



64 4. Fast and efficient state preparation

algorithm aims to find the unique input, encoded in a quantum target state, of
a function that produces a particular output value. Its action on an initialisation
state |ψ(0)〉 can be interpreted as rotation. Repeated iterations rotate the initial-
isation state closer to the target state, increasing the probability of finding the
solution to the search problem.

The iterative method introduced here is also solving a searching problem,
where the aim is to find the time-optimal Hamiltonian for a given QBP. Its
actions is precisely interpreted as a sequence of rotations of some initialisa-
tion unit vector ĥ(0), associated with the Hamiltonian via Eq. (4.9). However,
unlike Grover’s algorithm, the vectors of the sequence {h(n)} do not span a
two-dimensional real plane, but a high-dimensional subspace of Rd2−1.

4.3.1 Numerical implementation and finite precision

When implementing the method numerically, one has to fix a convergence
threshold to stop the routine as soon as the parallel component H(n)

‖ becomes
small enough with respect to the full Hamiltonian H(n). We have chosen to
quantify this threshold with a positive number ε � 1, such that the method
stops when

‖H(n)
‖ ‖ ≤ ε‖H(n)‖, (4.27)

where ‖·‖ is the Hilbert-Schmidt norm. Accordingly, the number of iterations
n required for the method to converge implicitly depends on ε. Numerical
evidence suggests that the sequence always converges towards a Hamiltonian
H(n) that is fully perpendicular with respect to ρ along the whole evolution, in
the sense that the parallel components eventually vanish within the precision
defined by ε.

When implementing this method experimentally, deviations from unit fidelity
between target state σ and prepared state ρ(τ (n)) can arise from a multitude of
factors, such as finite precision on the duration of the driving τ ±∆τ , as well as
errors on the control parameters hk ±∆hk that generate the Hamiltonians h · Λ,
but cannot be related to the convergence threshold. This is because each Hamil-
tonian in the sequence {H(j)}nj=0 generates a unitary of the form of Eq. (4.13),
driving ρ exactly to σ,

F(ρ(τ (j)), σ) = 0 ∀ H(j) ∈ {H(j)}nj=0. (4.28)

Thus, the finite numerical precision imposed by the convergence threshold ε

does not affect the distance between the target state σ and the final state of the
optimised evolution ρ(τ (n)). This observation is particularly important for prac-
tical purposes, such as for the case of quantum circuits, where small deviations
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from unity fidelity heavily affect the achievable circuit depth [180]. Addition-
ally, most optimisation method often require the maximisation of such fidelity
as an additional task to the minimisation of the preparation time [181].

The effect of finite numerical precision does, however, affect the efficiency
η(H(n), ρ) of the optimised solutions. To estimate this effect for the case of pure
states, for which H = H⊥ ⇒ η(H, ρ) = 1, we replace the Hilbert-Schmidt norm
in Eq. (4.27) with the operator norm, and use the triangle inequality to split the
contributions of parallel and perpendicular components of the Hamiltonian,

1

η(H, ρ)
=
‖H‖op

∆E(H, ρ)
(4.29)

=
‖H‖op

∆E(H⊥, ρ)
(4.30)

≤
‖H⊥‖op + ‖H‖‖op

∆E(H, ρ)
(4.31)

≤ 1 + ε
‖H‖op

∆E(H⊥, ρ)
(4.32)

= 1 +
ε

η(H, ρ)
, (4.33)

where Eq. (4.30) holds since ∆E is invariant underH → H+P for any operator
P that commutes with ρ, while Eq. (4.32) holds for Eq. (4.27). Rearranging, and
recalling that η ≤ 1, we obtain

1− ε ≤ η ≤ 1, (4.34)

which means that, for finite numerical precision imposed by a convergence
threshold ε, the solutions H(n) will at most suffer an ε-reduction of their effi-
ciency from unity. For the case of mixed states, the notion of efficiency given
by Eq. (4.10) cannot be saturated in general. A possible generalisation η? to the
case of mixed states is given in Eq. (4.41), for which we will discuss the effect
of finite numerical precision in Box 4.2.

4.4 Performance of the iterative method

Our iterative method can be directly applied to solve QBPs defined by the un-
constrained time-optimal unitary evolution of any isospectral pair of density
operators. A sub-class of these problems with known solutions are those of
unconstrained unitary evolution between pure states or between mixed states
whose eigenvalues are all degenerate except one. To demonstrate the perfor-
mance of our method, we have tested it on random pairs of pure states of di-
mension d = 2, . . . , 100, uniformly distributed with respect to the Bures en-
semble, successfully obtaining Hamiltonians that are time-optimal and fully
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Figure 4.3. The performance of the method is here studied for Bures-random pure
(top) and mixed (bottom) states, using the ratio τ (n)/TQSL ≥ 1 between the optimised
time τ (n) required to drive ρ → σ with the solution H(n), and the QSL TQSL of
Eq. (2.38), evaluated for each pair of states ρ, σ, and optimised Hamiltonian H(n). The
plotted points show the average performance for different Hilbert space dimensions d,
with the error bars representing 99% (top) and 90% (bottom) confidence intervals. The
shaded area represents a fit of the 90% confidence interval for the average τ (n). The
convergence threshold is ε = 10−4 for pure states (top), and ε = 10−2 for mixed states
(bottom). The sample size is 104 for each dimension. For pure states, the method returns
solutions that converge on the QSL as the precision ε−1 is increased, at the expense of
requiring more iterations on average.

efficient with respect to the notion of efficiency introduced in Eq. (4.10). We
can be confident that the solutions we obtain are globally optimal by exploit-
ing the fact that the QSL for unitary evolution of pure states is attainable [170].
Comparing the evolution time τ (n) of the optimized Hamiltonian H(n) with the
minimal evolution time TQSL [26] we find τ (n) ≈ TQSL within the precision im-
posed by ε, for all cases, as shown in Fig. 4.3.

A more challenging test was run on random3 pairs of mixed states of dimen-
sion d = 3, . . . , 100, considering initial states with both degenerate and non-
degenerate spectra, for which a general solution to the unconstrained unitary
QBP is not known. Since the QSL for the unitary evolution of mixed states is

3Also uniformly distributed with respect to the Bures ensemble.
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in general not tight [1], it is harder to benchmark the quality of the solutions
provided by our method in this case. On the other hand, the natural synergy
between this iterative method and the QSLs introduced in Ref. [1] can be used
to gauge the performance of the former and the tightness of the latter. The ac-
tual minimal time of evolution τmin for a given choice of ρ and σ is bounded
as

TQSL ≤ τmin ≤ τ (n), (4.35)

where TQSL corresponds to the inviolable lower bound offered by QSLs of
Ref. [1], and τ (n) to an achievable upper bound, provided by the solutions ob-
tained with our iterative method. Note how the inequality on the left-hand side
of Eq. (4.35) can be saturated for pure states and for states with d − 1 degener-
ate eigenvalues. In this case, the second inequality can be saturated up to the
precision imposed by ε, which can be seen as an implicit trade-off between n

and ε.
By looking at the difference between τ (n) and TQSL for the given solutionH(n),

we can assess the quality of both results, which we find to coincide within the
precision set by ε for some choices of ρ and σ, even when their degeneracy
structure differs from that of pure states. We now discuss the rate at which the
algorithm converges.
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Figure 4.4. Relative frequency of the number of iterations required for convergence
for Bures-random mixed states, with the considered system dimensions d = 2, . . . , 100,
as shown in the legend. The sample size is 104 for each dimension d ≤ 50, and 200 for
d > 50, while the convergence threshold is chosen to be ε = 10−2.
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4.5 Convergence of the iterative method

The number n of iterations required for convergence generally grows with the
dimension d of the system, and the strictness of the precision set by ε. Recalling
that the number of elements of the matrices associated with non-commuting
density operators ρ and σ grows quadratically with d, one might expect con-
servatively that the average number of iterations n̄ would grow in the same
way. However, n̄ grows logarithmically with d, as shown in Figs. 4.5 and 4.4,
with a slower growth for the case of pure states and highly degenerate mixed
states. Equivalently, for composite systems n̄ grows linearly with the number
of constituent subsystems.
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Figure 4.5. Average number of iterations required for convergence for Bures-random
mixed states of the considered system dimensions d = 2, . . . , 100, with their 50% and
90% confidence regions. The black dashed line represents a logarithmic fit. The sample
size is 104 for each dimension d ≤ 50, and 200 for d > 50, while the convergence
threshold is chosen to be ε = 10−2.

When dealing with degenerate states, n becomes smaller, as one might expect.
In general, we could classify the types degeneracy for a d dimensional state ρ
with the list of the multiplicities mρ = (m1, . . . ,ms) of the s different eigenval-
ues of ρ, where

∑
lml = d. Numerical evidence suggests that n grows with

(
√∑

lm
2
l )
−1, i.e., the inverse of the length of the multiplicity vector. For this rea-

son, we expect the logarithmic growth of n with d to persist in general, with
fully non-degenerate states being the worst case scenario in terms of effective
run-time of the algorithm.

Naturally, the choice of initial phase vector ϕ(0) affects the number of itera-
tions required to converge, since the corresponding Hamiltonian H(ϕ(0)) can
be arbitrarily close to a fixed point of the iterative method. Remarkably, nu-
merical evidence shows that the choice of initial geometric phase (and thus of
initial Hamiltonian) does not noticeably affect the performance of the end point
H(n). Interestingly, running the algorithm backwards from σ to ρ (see Eq. (4.21))
is equivalent to fixing a particular choice of initial phase vectors, simply given
by ϕ(0) → −ϕ(0), returning not only the same optimised Hamiltonian, but also
the same sequence of geometric phases {ϕ(0)} up to rotations, as one might



4.5. Convergence of the iterative method 69

expect from the symmetry of the problem (See Fig. 4.6).
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Figure 4.6. Due to the symmetry of the problem, running the iterative method for-
wards (left) from ρ to σ (Eq. (4.19)) with initialisation phase ϕ

(0)
i is equivalent to run-

ning it backwards (right) from σ → ρ (Eq. (4.21)) with initialisation phase −ϕ(0)
i , up to

a trivial rotation, and generate the same sequence of Hamiltonians, here represented
by the sequence of geometric phases on the torus (center), for a 3-level system.

While the average number of iterations required for convergence n̄ grows
with d and ε−1, a good choice of initial geometric phase ϕ(0) can still lead to
rapid convergence, with runs that can take less then 10 iterations even for
d = 100 and ε = 10−4. This observation allows us to take advantage of the
strong sensitivity of the convergence rate to the choice of the initialisation phase
in order reduce the effective run-time of the algorithm. The strategy is to de-
ploy L simultaneous runs of the iterative method, for the same pair of initial
and final states ρ and σ, with each run i initialised with a different, randomly
chosen geometric phase ϕ

(0)
i . These tasks can be trivially parallelised, so that

the whole computation is stopped as soon as one of these runs converges to a
solution. In this way, the number n of iterations required for convergence is
guaranteed to be smaller than n.

An interesting task is to identify convenient low-dimension subspaces of the
full space of relevant initialisation phases, i.e., T d−1, from which to sample ϕ(0).
In Fig. 4.7, the number of iterations required for convergence is plotted over
different choices of initialization phases for three different pairs of ρ and σ,
with Hilbert space dimension d = 3. One can see how the best choices of ϕ(0),
for which n < 4, can occur in different patterns, such as scattered, isolated, and
aligned.

Even when sampling the phases over their full space T d−1, it is possible to
take advantage of rapidly converging initialisation phases to improve the run-
time. We study the dependence of n on the choice of initial geometric phases by
running several instances of the method for the same pair of states ρ and σ, and
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Number of iterations for different initialisation phases 

1 361 141 21

Figure 4.7. Number of iterations required for convergence along initialisation phases
(0,ϕ

(0)
1 ,ϕ

(0)
2 ) for a 3-level system, and three different choices of ρ, σ. The best choices

of ϕ(0), for which n < 4, can occur in different patterns, such as scattered (left), isolated
(centre), and aligned (right). Note that, in general, Different initial phases can lead
different optimised Hamiltonians with the same performance, and that the number of
iterations strongly depends on the convergence threshold ε.

sampling each phase ϕ(0)
j uniformly in the interval [0, 2π]. The slow growth of

the 20th percentile of the number of iterations required for convergence, shown
in Fig. 4.8, supports the potential of combining Algorithm 4.1 with Monte-Carlo
sampling methods [182–184].
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Figure 4.8. The average 20th percentile of the number of iterations required for con-
vergence plotted along the Hilbert space dimension d. The error bars represent the
standard deviation for each dimension, with a sample of 102 pairs of initial and final
states ρ and σ, and 102 random initial phases for each pair.

4.6 Robustness under perturbations

The iterative method defined by Algorithm 4.1, as well as its variants in
Eqs. (4.21) and (4.22), is stable under perturbations of the initial and final states
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ρ and σ. First, let us consider the case of convex mixtures

ρ→ ρ′ = (1− δ)ρ+ δ χ, (4.36)

where χ ∈ S(H) is a random state of the same dimension as ρ and σ, while
δ ∈ (0, 1) is the perturbation strength. To make sure that the perturbed final
state σ′ is isospectral with ρ′, we choose it as

σ′ = Oρ′O†, (4.37)

where O can be any unitary that maps {|rk〉}dk=1 → {|sk〉}dk=1. This type of
perturbation is expected to change the spectral properties of the considered
states, with ρ having in general different spectrum than ρ′. In this case, both
the optimised Hamiltonian and its performance may vary discontinuously in
the perturbation strength with respect to the unperturbed case. Numerically,
the states χ have been sampled uniformly according to the Bures ensemble (see
Box 2.1).

We also considered unitary perturbations, here defined by

ρ→ ρ′ = eiH̃δρ e−iH̃δ, (4.38)

σ → σ′ = eiH̃δσ e−iH̃δ, (4.39)

where H̃ is a random Hamiltonian of unit Hilbert-Schmidt norm. Numeri-
cally, the Hamiltonians H̃ have been obtained from uniformly sampled Haar-
random unitaries, as explained in Box 2.1.

To study the effect of perturbations we use the relative deviation ∆(δ) from the
unperturbed solutions, defined as

∆(δ) :=
‖H(n) −H ′(n

′)‖
‖H(n)‖

, (4.40)

where H ′(n
′) is the solutions to the perturbed problem, which in general re-

quires a number n′ of iterations different from n for the same chosen conver-
gence threshold ε, and where ‖·‖ is the Hilbert-Schmidt norm. Numerical ev-
idence suggests that the relative deviations grow slowly as a function of the
perturbation strength δ, and are negligible for δ � ε, as shown in Fig. 4.9.

4.7 Signatures of non-monotonicity

In Sec. 4.2 we considered a notion of Hamiltonian efficiency, introduced in
Ref. [185] for the case of pure states, and we showed it cannot be saturated
(η = 1) when mixed states are considered (see Eqs. (4.12) and (4.11)). Neverthe-
less, when it comes to estimate how much energy of the driving Hamiltonian is
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Figure 4.9. The relative deviation ∆(δ) from the unperturbed solutions, given in
Eq. (4.40), is plotted against the perturbation magnitude δ expressed in units of the
numerical precision ε, with ε = 10−3, and plotted in logarithmic scale.

wasted along components of the Lie algebra that do not actively contribute to
driving the system, it is possible to adapt such notion of efficiency to the case
of density operators. A possible generalisation is given by η?(H, ρ), introduced
in Eq. (4.41) (See Box. 4.2).

When applying this notion of efficiency to the sequence of Hamiltonians
{H(j)}nj=0 obtained with this iterative method, it is possible to witness a tran-
sient non-monotonic behavior for η?, followed by a rapid monotonic ascent
towards unit efficiency, as shown in Fig. 4.10. While we cannot rule out the ex-
istence of functionals that are strictly-monotonic over the sequence {H(j)}nj=0,
this signature of non-monotonicity can be seen in other, much simpler, figures
of merit, such as the energy tr[ρH(j)] of the initial state ρ with respect to the
Hamiltonians H(j) of the sequence.

Box 4.2 Hamiltonian efficiency for mixed states

A possible notion of Hamiltonian efficiency that can be saturated for the
case of density operators is given by

η?(H, ρ) =

√
tr[ρ2H2]− tr[(ρH)2]√

tr[ρ2H2]− (tr[(ρH)2]− tr[ρH]2)
, (4.41)

which is a positive function smaller than 1, that is saturated for H‖ = 0.
The numerator of η? is proportional to the speed ‖ρ̇‖HS of the generator
ρ̇ = −i[H, ρ] [1, 41, 44], and reduces to ∆H when pure states are consid-
ered, for which η? = 1↔ η = 1.

Like the numerator of η, that of η? is also invariant under the addition of
a parallel componentH‖ with respect to ρ. Accordingly, the Hamiltonians
generated by the iterative method are of unit efficiency for all the consid-
ered QBPs, which reflect the ability to converge to a fully-perpendicular
Hamiltonian. However, the convergence of this iterative method is, in
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general, non-monotonic with respect to this notion of efficiency, which
can decrease before reaching η? = 1 after several iterations, as shown in
Fig. 4.10.
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Figure 4.10. Algorithm 4.1 is here applied on the same choice of ρ and σ for three
different choices of initial geometric phases ϕ(0)

A , ϕ(0)
B , and ϕ

(0)
C . The Hamiltonian effi-

ciency η?(H(j), ρ) of the Hamiltonians in the three different sequences is plotted along
the iterations i for each run (left). Since each Hamiltonian (and unitary) has an associ-
ated geometric phase as prescribed by Eq. (4.13), we can plot the trajectory of the geo-
metric phase for each run, such as as ϕ(j)

A = (ϕ
(j)
A,1, ϕ

(j)
A,2, ϕ

(j)
A,3) for run A. By neglecting

the first phase, which can be absorbed into a global phase, we plot the remaining com-
ponents on a plane (right). All runs converge to the same solutions, however, while the
efficiency of run A converges monotonically, the others converge non-monotonically.
The trajectories of their geometric phases (right) do not carry any obvious signature
of non-monotonicity, and straight paths can correspond to the slowest non-monotonic
descent towards the fixed point. Moreover, such trajectories can show richness and
variety for different choices of ρ and σ, and of initial geometric phases.

4.8 Chapter summary

In this Chapter, we have introduced an iterative algorithm to obtain efficient
time-independent Hamiltonians that generate fast evolution between two d-
dimensional isospectral states ρ and σ. Such a method could be used to ad-
dress fast driving, state preparation, and gate design problems. Recently, such
problems have been experimentally tackled in Refs. [64, 186, 187] by means of
shortcuts to adiabadicity and transitionless quantum driving [188–191] Incidentally,
these methods are closely linked to ours, with a key common element being
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the optimisation of geometric phases. Other possible applications of the itera-
tive method introduced here could be found in its combination with quantum
optimal control methods. Algorithm 4.1 can be used to identify a unitary Õ,
associated with an efficient Hamiltonian H̃ , to be implemented by means of
gate design methods, such as those experimentally realised in Ref. [140], or
that introduced in Ref. [192] for the case of restricted generators. More gen-
erally, our method has broad application in further elucidating the geometric
structure of quantum control, since it has been shown that quantum brachis-
tochrone problems can be recast as those of finding geodesics in the space of
unitary operators [139].

A challenging outlook is to extend and adapt this method to more general
control problems. However, it’s not clear that, for open quantum evolutions,
simply replacing the Hamiltonian with a Liouvillian as the generator would
preserve the complete positivity of the dynamics. Nevertheless, it is possible to
adopt the current method for open dynamics by applying it to purification of
ρ and σ or dilation of the dynamics. Another challenge that remains is to build
in constraints on the form of the generators, naturally imposed by physical re-
strictions on the order and range of interactions. These can dramatically change
the time required to perform a given evolution, as we will show in detail in the
next chapter, where we apply QSLs to bound the power of work extraction and
deposition for many-body quantum systems.
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5 Bounds on work extraction and power
of quantum systems

Chapter abstract

In this chapter, time-energy uncertainty relations are applied to derive a bound
on the achievable power of work extraction and energy deposition for isolated
many-body quantum system. First, we review some fundamental concepts and
results of quantum thermodynamics, such as ergotropy and passive states.
Then, we introduce the notion of quantum battery in order to study the bounds
on power, by applying some of the results and methods described in the previ-
ous chapters of this thesis. This allows us to demonstrate the power advantage
of using global entangling operations over local ones, and show that it can grow
at most extensively with the number of subsystems, while being strongly limited
by the order of the interactions available for controlling them.

This chapter is based on publications [4] and [5].

5.1 Quantum thermodynamics and quantum batteries

The current rate of technology miniaturisation requires us to carefully consider
the fundamental laws of physics of the microscopic domain, where are increas-
ingly expected to function. This regime is replete with thermal and quantum
fluctuations, which must be accounted for in any complete physical descrip-
tion. When dealing with technologies working in the quantum regime, famil-
iar thermodynamic concepts like work, heat, and entropy need to be applied
with great care and consideration. For this reason, there has been an intense
effort to understand how the laws of thermodynamics generalize to arbitrary
quantum systems away from equilibrium. This effort is known as quantum
thermodynamics and, given current interest in the development of quantum
technologies, it is receiving attention across a wide range of scientific commu-
nities [193–195].

Despite current momentum in the field of quantum thermodynamics, the pre-
cise role of genuinely quantum features in the operation of thermal machines
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is not fully understood. A common issue raised is that the universal applicabil-
ity of thermodynamics is rooted in the theory’s lack of respect for microscopic
details and is bound to overlook some fundamental features of quantum me-
chanics [196]. Nevertheless, if one relaxes the assumptions of large system size
and quasi-static conditions, it is absolutely reasonable to get corrections based
on the fine details of the working medium [185, 197–199]. Can such quantum
features be harnessed to improve other meaningful figures of merit, such as
power?

Collective quantum phenomena are known to offer advantages in areas such
as computation, secure communication, and metrology. These advantages have
received a great deal of attention in the context of work extraction and depo-
sition [200–208]. In particular, Alicki and Fannes suggested that entangling
operations lead to increased work extraction from an energy storage device
which they coined a quantum battery [200]. Nonetheless, while entangling op-
erations are necessary for optimal work extraction, it has been shown that pro-
tocols exist for which no entanglement is actually created during optimal work
extraction [201, 202]. Furthermore, considering a regime where entangling op-
erations do not increase the extractable energy, entangling operations can still
improve the charging power of arrays of quantum batteries [209], as shown in
Ref. [206] for the case of two-level systems.

Since their introduction in the literature, quantum batteries have been stud-
ied using the methods of quantum information and quantum thermodynamics
[210], with interesting conclusions and insights. While the first works focused
on work extraction, and on the limits on the amount of work that can be ex-
tracted from such devices by means of cyclic unitary operations [210, 211],
a more recent line of research has aimed to understand the role of entangle-
ment, and entangling operations, in tasks like work extraction and charging
[4, 70, 72, 210, 212]. It has been shown that global, entangling operations can
outperform local ones when charging an array of batteries, and that this advan-
tage can grow extensively with the number of units involved [70]. It is no sur-
prise that the advantage that entangling operations have over local ones is di-
rectly connected with time-energy uncertainty relations, interpreted as bounds
on the minimal time required to evolve a system between different energetic
levels in order to deposit or extract work, as we show in Sec. 5.4.

5.2 Work extraction

The study of work extraction from small quantum systems via reversible cyclic
operations starts with the aim of defining the thermodynamical bounds and
principles that are valid at those scales where a quantum mechanical descrip-
tion becomes necessary [211]. The intention is to look at the limits of extractable
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work allowed by quantum mechanics and compare them to their classical
counterpart, while looking for possible advantages.

Let us start from a single closed1 quantum battery, the fundamental unit of
this discussion. It consists of a d-dimensional system with associated internal
Hamiltonian H0

H0 =
d∑
j=1

ωj|j〉〈j|, (5.1)

with non-degenerate energy levels ωj < ωj+1. From this definition, a simple
quantum battery could consist of a non-degenerate two-level system, such as
the spin of an electron immersed in a uniform magnetic field, as shown in Fig.
5.1.

A time-dependent field V (t) is used to reversibly extract energy from a bat-
tery via unitary evolution generated by H(t) = H0 + V (t), where with a slight
change of notation with respect to the previous chapter, we expressed the de-
pendence on time with round brackets. Given that the battery is found in some
initial state described by the density operator ρ, the time evolution of the sys-
tem is obtained from the von Neumann equation

ρ̇(t) = −i[H(t), ρ(t)], (5.2)

with ρ(0) = ρ, and where the left-hand side represents the time derivative of
ρ(t). A solution of Eq. (5.2) is given by ρ(t) = U(t) ρ U †(t), where the unitary
operator U(t) is obtained as the time-ordered exponential of the generatorH(t),

Figure 5.1. A simple quantum battery could consist of a non-degenerate two-level
system, such as the spin of an electron immersed in a uniform magnetic field B, whose
internal Hamiltonian H0 = ωσz has energy levels ±ω, associated with the eigenstates
|±1〉, respectively. The pure state |+1〉 (|−1〉) is considered a charged battery (dis-
charged battery), since no work can be deposited onto (extracted from) it, with respect
to the internal Hamiltonian H0.

1In thermodynamics a closed system is only allowed to exchange either work or heat, in contrast
with an isolated system which is not allowed to exchange either of them. However, here closed
stands for an isolated quantum system undergoing Schrödinger evolution, whose initial state
can nevertheless be mixed.
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given in Eq. (2.5), which can correspond to any unitary transformation on the
battery’s Hilbert spaceH.

In practice, the control field V (t) may be strongly limited by the operations
that one is able to perform on the considered system. For example, one might
be able to implement a NOT gate on a single qubit, generated by some Pauli
operator σi, while being unable to perform a CNOT (controlled-not) gate acting
on two qubits, because of lack of control over some two-body generators, such
as σi ⊗ σj [99]. For now we will assume the ability to perform any operation,
unless specified otherwise, for the sake of simplicity. We will discuss the case
of limited control later in Sec. 5.4.

5.2.1 Ergotropy & passive states

Let us go back to the battery that we have introduced above in Eq (5.1), which
evolves according to the dynamics described by Eq. (5.2). The work extracted
after some time τ by this unitary cycle is given by

W (τ) = tr[ρH0]− tr[ρ(τ)H0] (5.3)
= tr[ρH0]− tr[U(τ)ρU †(τ)H0], (5.4)

which corresponds to a measurement of the decrease of energy of the system
in the time interval τ , with respect to the interal Hamiltonian H0. Since we are
interested in reversible work extraction, we look for the maximal amount of
extractable work, known as ergotropy [213, 214], optimizing W over all unitary
operations,

Wmax := tr[ρH0]− min
U∈SU(d)

{
tr[UρU †H0]

}
. (5.5)

When no work can be extracted from a state ς , it is said to be passive, i.e., when
tr[ςH0] ≤ tr[UςU †H0] for all unitaries U [211, 215, 216]. Accordingly, a state is
passive if and only if it commutes with the internal Hamiltonian H0 and has
non-increasing eigenvalues, i.e., if

ς =
d∑
j=1

ωj|j〉〈j|, ωj+1 ≤ ωj, (5.6)

as shown in Ref. [211]. From this definition it is possible to see that for any
state ρ there is a unique passive state ς = p(ρ),

p(ρ) := V ρV †, (5.7)

that maximizes the extractable work

Wmax = tr[ρH0]− tr[ςH0], (5.8)

obtained via some unitary operation V that rearranges the eigenvalues of ρ in
non-increasing order, as illustrated in Fig. 5.2.
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5.2.2 Bounds on extractable work

A practical way to bound the work extractable from ρ, given in Eq. (5.5), is to
consider a thermal state with the same von Neumann entropy as the considered
state ρ, which also minimizes the energy with respect to H0. It has been shown
that a lower bound to the ergotropy for some state ρ is given by

Wmax ≤ tr[ρH0]− tr[Gβ̄H0], (5.9)

where Gβ̄ is the Gibbs state whose von Neumann entropy is equal to that of
ρ [211], i.e., S(Gβ̄) = S(ρ), as prescribed by,

S(ρ) = −tr[ρ log ρ], (5.10)

and

Gβ =
exp[−βH]

Z
, Z = tr[exp[−βH]]. (5.11)

A key observation is that all thermal states are passive, while not all passive
states are thermal. A notable exception, as usual2, is given by the case of two-
level systems, for which all passive states are thermal, as discussed in Box 5.1.

Figure 5.2. A 5-level system with internal Hamiltonian H0 = Lz
∑5

l=1(l − 3)|l〉〈l|
in state ρ = 0.1|1〉〈1| + 0.2|2〉〈2| + 0.3|4〉〈4| + 0.4|5〉〈5| has an associated passive state
ς = 0.4|1〉〈1| + 0.3|2〉〈2| + 0.2|3〉〈3| + 0.1|4〉〈4|. From ρ one can extract the ergotropy
Wmax = 1.8Lz by means of a unitary operation, such as U = |1〉〈5| + |2〉〈4| + |5〉〈3| +
|3〉〈2|+ |4〉〈1|. This unitary operation is not unique, since an arbitrary relative phase can
be introduced for each term |i〉〈j|. Here, the eigenvalues of ρ and ς are represented by
the length of the coloured rows associated with the energy levels l that they occupy. To
obtain the passive state from ρ one is only allowed to permute the rows. This constraint
represents the conservation of the spectrum imposed by unitary evolution.

2Quantum two-level systems have unique features that cannot always be straightforwardly
generalized to higher dimensional cases.
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Even more interestingly, the product of two or more copies of a passive state ς
is not necessarily the passive state of the copies of ρ. Using the notation⊗NA =

A ⊗ A ⊗ · · · ⊗ A to represent the tensor product of N copies of some operator
A, we can express the previous statement as

⊗N p(ρ) 6= p(⊗Nρ). (5.12)

This observation, illustrated and discussed with an example in Fig. 5.3, leads
to the definition of completely passive states, as those whose N -copy ensembles
are still passive for any N [211]. It has been shown that a state is completely
passive if and only if it is a thermal state [215, 216], an observation that can be
used to beat the bound given in Eq. (5.8) for many copies of the same battery
by means of entangling operations [211]. Let us see how this works in the next
subsection.

Box 5.1 Temperature of two-level systems

Let us see how it is always possible to define a (positive or negative)
temperature for a qubit. In its energy eigenbasis, a qubit can be written
as

ρ = p0|0〉〈0|+ (1− p0)|1〉〈1|, (5.13)

where p0 and 1 − p0 are the probabilities of finding the system in the
states |0〉〈0| and |1〉〈1|, with energy ω0 or ω1, respectively. If we assume
the qubit to be in thermal equilibrium, we can represent it as the Gibbs
state ρ = exp[−β(ω0|0〉〈0|+ ω1|1〉〈1|)]/Z , thus

p0 =
exp[−βω0]

Z
, 1− p0 =

exp[−βω1]

Z
, (5.14)

from which we can calculate the inverse temperature

β =
log p0

1−p0
(ω1 − ω0)

. (5.15)

However, for systems with dimension greater than two, the Gibbs state
Gβ̄ is in general different from the passive state ς associated with ρ.

5.2.3 Optimal work extraction

Consider a battery given by an ensemble ofN copies of the same d-dimensional
unit cell defined by Eq. (5.1). This new battery has an associated inter-
nal Hamiltonian H0 given by the sum of the local internal Hamiltonians
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H
(l)
0 ⊗l′ 6=l 1(l′) of the subsystems that form the global system

H0 =
N∑
l=1

H
(l)
0 , (5.16)

where we omit the identities to simplify the notation. Since this Hamiltonian
would likely have eigenvalues with high multiplicity, we will no longer assume
they are non-degenerate, as long as there are at least two different energy levels,
associated with distinguishable eigenstates.

Recalling that the composite state of N copies of a passive state ς might not
be passive, our goal is to extract some additional work from ⊗N ς until a com-
pletely passive state is reached. How much work can be extracted in this way?
In the limit of large N , the maximal amount of available work per copy of a
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Figure 5.3. Here, a three-level battery is defined by an internal Hamiltonian H
(l)
0 =

diag(0, 0.579, 1). State ς = diag(0.538, 0.237, 0.224) is passives, as it is diagonal in the
basis of H(l)

0 , and has non-increasing eigenvalues. The 27 eigenvalues of state ⊗3ς are
represented as a bar chart (top right), in a basis for which the local internal Hamiltonian
H

(1)
0 + H

(2)
0 + H

(3)
0 has non-decreasing eigenvalues (top left). It is easy to see that the

eigenvalues of ⊗3ς are not non-increasing as indicated by the arrows (top right), thus
⊗3ς is not a completely passive state. The passive state of the copies of ς is p(⊗3ς)

(bottom right), and it is obtained by swapping the eigenvalues indicated by the arrows.
On the contrary, the pure state |g〉〈g| = diag(1, 0, 0) is completely passive, since the state
of any of its copies, such as⊗3|g〉〈g| (bottom left), is still passive with respect to the local
internal Hamiltonian.
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battery wmax(N) in state ρ is tightly bounded as in Eq. (5.9),

lim
N→∞

wmax(N) = tr[ρH
(l)
0 ]− tr[Gβ̄H

(l)
0 ], (5.17)

where β̄ represent the inverse temperature of a Gibbs state with von Neumann
entropy equal to that of ρ, and where the maximal work per copy is written in
terms of the passive state of N copies of ρ,

wmax(N) :=
1

N

(
tr
[(
⊗N ρ− p(⊗Nρ)

)
H0

])
. (5.18)

The proof of Eq. (5.17) relies on the idea that for a large ensemble, the energy of
the passive state p(⊗Nρ) differs from that of ⊗NGβ̄ only by a small amount that
tends to vanish as N increases [211]. A numerical evaluation of the maximal
work per copy is shown in Fig. 5.4.
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Figure 5.4. We consider an ensemble of N copies of the same passive state ς . As dis-
cussed in this section, there is a non-trivial amount of work per copy wmax(N) that we
can extract from such an ensemble by means of entangling operations (at least 2-body
operations), given by 1

N {tr[(⊗
N ς − p(⊗N ς)})H(N)]}, where p(⊗N ς) is the passive state

for ⊗N ς . This figure represents this additional available energy per copy of passive
state, for the three-level system considered in Fig. 5.3, with energy levels {0, 0.579, 1}
and passive state ς with eigenvalues {0.538, 0.237, 0.224} [211]. In particular, the max-
imal amount of extractable energy w∞max, as in Eq. (5.17), is obtained in the limit of
N →∞.

The passive state p(⊗Nρ) associated with any ⊗Nρ is diagonal in the eigen-
basis of the local Hamiltonian of Eq. (5.16), thus it is separable. However,
as we will see later in this section, in order to unitarily connect ⊗Nρ to its
passive state, at least 2-body operations are required. This remark led Alicki
and Fannes to hypothesize that, in order to reach optimal work extraction,
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the unit cells of such an N -fold battery have to be dynamically entangled.
However, as proven in Ref. [210], optimal work extraction can be achieved
while keeping the composite system in a separable state at all times. Even if
non-local operations (i.e., at least two-body operations) are required to beat
the classical limit of Eq. (5.8), it is always possible to reach optimal work
extraction without creating any entanglement, at the expense of requiring
more operations, and thus additional time, as described in Box 5.2.

Box 5.2 Separable optimal work extraction for arbitrary dimension

Let us consider a simple example that illustrates how to perform optimal
work extraction from multiple copies of the same state without generat-
ing entanglement: A three-level system with (increasing) energy levels,
associated with eigenvalues {ω1, ω2, ω3}, and two copies of some initial
state ρ = p|2〉〈2|+ (1− p)|3〉〈3|, with p ∈ (0, 1/2). The objective is to trans-
form the initial compisite state

⊗2ρ = p2|22〉〈22|+ p(1− p)
(
|23〉〈23|+ |32〉〈32|

)
+

+ (1− p)2|33〉〈33|,
(5.19)

into a passive state

p(⊗2ρ) = (1− p)2|11〉〈11|+ p(1− p)
(
|12〉〈12|+ 0.21|21〉〈21|

)
+

+ p2|13〉〈13|,
(5.20)

by means of the permutation that maps |33〉 → |11〉, . . . , and |22〉 → |13〉.
In order to avoid entanglement one can perform each swap in several
steps, such as |33〉 → |13〉 followed |13〉 → |11〉, each of which keeps the
state in a separable form at all times, if performed by means of controlled
permutations and unitaries.

This idea can be generalized to the case of arbitrary dimension d and
for any number N of copies of the initial state: An N -body battery in
an initial non-passive state ⊗Nρ = diag(p1, · · · , pdN ), where pa ≥ 0 and∑

a pa = 1. To perform optimal work extraction we need to evolve
⊗Nρ to the passive state p(⊗Nρ) = diag(s1, · · · , sdN ), where sa+1 ≤ sa
and 〈a|p(⊗Nρ)|a〉 = sa = Πabpb, for some permutation Πab. To do
so, each transposition a ↔ b that swaps pa with pb is addressed sep-
arately by transforming |a〉 to |b〉 (and vice versa) with a sequence of
steps: First, |a〉 = |ia1ia2 · · · iaN〉 is mapped to |a′〉 = |ib1ia2 · · · iaN〉, then to
|a′′〉 = |ib1ib2 · · · iaN〉, and so on until it reaches |b〉 = |ib1ib2 · · · ibN〉, after N
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steps. Each of these steps is obtained by a unitary operator

Uaa′(t) =
∑
µ6=aa′

|µ〉〈µ|+ uaa′(t), (5.21)

generated by some 2-body control interaction Haa′(t), that has, in princi-
ple, the power to generate bipartite entanglement. The state ρ(t) of the
system at time t obtained via such unitary is

ρ(t) = Uaa′(t)(⊗nρ)U †aa′

= (pa + pa′)ρ1(t)⊗ |ia2 · · · iaN〉〈ia2 · · · iaN |

+
∑
µ6=aa′

pµ|µ〉〈µ|,
(5.22)

with ρ1 being itself a state. The overall state ρ(t) is thus separable at
every step of the procedure, and after 2N − 1 total steps the target final
state p(⊗Nρ) is reached.

Of all the possible unitary cycles that connect the state ⊗Nρ to its passive
state p(⊗Nρ), those that preserve the system in a separable state are inevitably
slower than those that generate entanglement. Accordingly, the authors of Ref.
[210] indicate a relation between the rate of entanglement generation and the
power of work extraction – defined as the ratio between extracted work and
time required for the extraction – leaving the open problem of quantifying such
a relation to successive work. This question paves the way for the study of
charging and extracting power, as described in the next section.

5.3 Powerful charging

We now consider the task of charging quantum batteries via unitary operations.
The deposited energy is the opposite of the work extracted, and as long as
we consider closed systems, the two tasks are essentially equivalent. In this
section we discuss the relation between charging (and extraction) power and
entangling operations.

5.3.1 Average and instantaneous power

For our discussion, we can evaluate the average power of a unitary cycle that
charges ρ→ ρ(τ) = U(τ)ρU †(τ) as the ratio between the energyW (τ) deposited
on the battery during the procedure, with respect to its internal Hamiltonian
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H0, and the time required to perform the unitary operation,

〈P 〉 =
W (τ)

τ
, (5.23)

remembering that from now on W (τ) has opposite sign with respect to that of
Eq. (5.3). Similarly, the instantaneous power P (t) at some time t is given by the
time derivative of the energy deposited at time t along the unitary charging,

P (t) =
d

dt
W (t) =

d

dt

{
tr[ρ(t)H0]− tr[ρH0]

}
, (5.24)

which becomes P (t) = −i tr{[H(t), ρ(t)]H0}, using the von Neumann equation.
In the next section we show that entangling operations are more powerful than
local ones, when fairly compared, and that they can yield a power advantage
that grows with the number N of units that compose the battery [4, 70].

5.3.2 Charging with global operations

Let us consider a battery given byN copies of a d-dimensional unit cell, defined
by a local internal Hamiltonian H0, given by Eq. (5.16). Assuming that the
energetic structure of the individual Hamiltonians H(l)

0 is the same for each
copy,

H
(l)
0 =

d∑
j=1

ωj|j〉〈j| (5.25)

the highest and lowest energy states are |G〉 := ⊗N |1〉 and |E〉 := ⊗N |d〉, respec-
tively. The energy deposited onto the battery after an evolution from |G〉 to |E〉
is equal to W = N(ωd − ω1). We are going to compare the charging power of
an optimal local Hamiltonian with that of an optimal global one, to illustrate
the power of entangling operations. From Ch. 2, we know that the Hamilto-
nian that generates the shortest unitary orbit between two orthogonal states
|ψ〉, |φ〉 is given by H ∝ |ψ〉〈φ| + h.c., as discussed in Fig 2.2. Thus, when we
restrict ourselves to local Hamiltonians, we drive each subsystem with a local
Hamiltonian H(l) ∝ |1〉〈d| + h.c., in order to obtain the total parallel charging
Hamiltonian

H‖ = α‖

N∑
l=1

(|1〉〈d|+ h.c.)⊗l′ 6=l 1(l′). (5.26)

Instead, when we allow ourselves to use global operations, we can drive the
whole N -body system be means of a collective charging Hamiltonian,

H] = α](|E〉〈G|+ h.c.). (5.27)
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Indeed, these two Hamiltonians generate the shortest path between the consid-
ered states, with respect to the Fubini-Study metric, for the given constraints on
the space of generators, given that parallel driving can only contain local terms,
while global driving is not constrained.

To fairly compare the power of the two Hamiltonians we require them to sat-
isfy the energy constraint

‖H‖op = Emax, (5.28)

for some energy scale Emax > 0 [70]. Accordingly, we obtain

α‖ =
Emax

N
,

α] = Emax.
(5.29)

The time required to drive the initial to the final state by the two different
Hamiltonians can be calculated analytically,

τ‖ = N
π

2

1

Emax

, τ] =
π

2

1

Emax

. (5.30)

We now evaluate the average power using Eq. (5.23) to obtain P] = NP‖. The
power of the entangling operation is N times larger than that of local ones.
These two charging procedures are schematically represented in Fig. 5.5.

Figure 5.5. Parallel (top) and collective (bottom) charging procedures are here schemat-
ically represented. The optimal local driving H‖ of Eq. (5.26) couples each individual
ground state |1〉 to its respective excited state |d〉, while the optimal global driving H]

of Eq. (5.27) couples the collective ground state |G〉 = ⊗N |1〉 to the collective excited
state |E〉 = ⊗N |d〉. When fairly compered, collective charging can be up to N times
more powerful than parallel driving.
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5.4 Enhancing the charging power of quantum batteries

The advantage of using global operations has a profound geometric interpreta-
tion: While the collective Hamiltonian of Eq. (5.27) drives the initial state along
the shortest path, through the space of entangled states, the local Hamiltonian
generates a longer orbit that, in return, keeps the state separable for all times
[70]. In this section we discuss the relation between entangling operations and
charging power, showing how it is possible to obtain an extensive advantage
even without generating entanglement during the evolution, and addressing
the order of the interaction as fundamental resource to obtain a speed-up with
respect to local charging procedures.

5.4.1 Quantum advantage

We are now in a position to define the quantum advantage for collective charging

Γ :=
P]
P‖

=
τ‖
τ]
, (5.31)

where P‖ is the power of some optimal local driving, while P] is the power of
some driving with at least two-body interactions. Accordingly, τ‖ and τ] are
the charging times required for the driving methods, respectively. The right-
hand side of the equality in Eq. (5.31) is a consequence of our requirement that
the work done evolving between states ⊗Nρ and ⊗Nσ is independent of the
charging method. Here, quantum refers specifically to an enhancement over
charging with the best local (i.e., non-entangling) operations. That is, to com-
pute the quantum advantage we must take the optimal values for P‖ for given
ρ and σ. For reference, the form of the local Hamiltonian is

H‖ =
N∑
l=1

hl(t)⊗l′ 6=l 1(l′), (5.32)

where hl(t) acts on the l-th subsystem. This Hamiltonian generates the unitary
evolution U‖(t) = ⊗Nl=1Ul(t), where Ul(t) is the unitary generated by hl(t). The
collective unitary generated by the Hamiltonian H](t) will be referred to as
U](t), while its action on the initial state⊗Nρwill be denoted by ρ](t) = U](t)⊗N
ρ U †] (t).

In the case of local charging, every battery evolves independently, and the
time taken to charge N batteries is equal to the single-battery charging time,
τ‖ = τ . The deposited work scales extensively, W‖ = NW , whereW is the work
per battery, leading to a charging power P‖ = NW/τ that grows linearly with
the number of batteries. As we have seen in the previous section, the power of
using global interactions can be N times larger than P‖, yielding an advantage
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Γ = N , as long as both charging Hamiltonians have the same operator norm,
however different uniform energetic constraints can alter the achievable advan-
tage. We now show how to obtain an upper bound to the quantum advantage
Γ depending on the chosen energetic constraint on the Hamiltonians.

In choosing an energetic constraint, the aim is to isolate the advantage due
to collective quantum effects, without worrying about other consequences of
introducing interactions between batteries. To do so, we require any charging
Hamiltonian H](t) to have a similar energy scale to some optimal local charging
Hamiltonian H‖ for the considered problem ⊗Nρ→ ⊗Nσ. Without constraints,
we could freely increase the total energy of the collective charging Hamilto-
nian to achieve faster driving, making the advantage arbitrarily large. Noting
that the variance and mean energy are extensive quantities for non-interacting
systems, we consider the following constraints on H]:

C1 — The time-averaged standard deviation in energy during the collective
evolution for time τ] should not exceed

√
N times the time-averaged standard

deviation in energy of a single battery,

∆E] ≤
√
N ∆E, (5.33)

with ∆E] and ∆E being the time-averaged standard deviation of the charging
Hamiltonians H](t) and hl(t), respectively (see Eq. (1.9)). Note that H] drives
the initial state of N copies, ⊗Nρ, while hl drives the initial state of a single
battery ρ.
C2 — The time-averaged energy during the collective evolution for time τ]
should not exceed N times the time-averaged energy of a single battery,

E] ≤ N E, (5.34)

with E] and E being the time-averaged energy of the charging Hamiltonians
H](t) and hl(t), respectively (see Eq. (1.20)). Again, note that H] drives the
initial state of N copies, ⊗Nρ, while hl drives the initial state of a single battery
ρ.

For example, applying constraint C1 to the time-independent Hamiltonians
of Eqs. (5.26) and (5.27) yields ∆E] = ∆E‖, and Γ =

√
N . However, constraints

C1 and C2 are weaker than imposing a uniform energetic constraint, such as
∆H = ω for every charging HamiltonianH . These choices of constraints are ad-
ditionally motivated by the form of QSL bounds, as discussed in Ch. 2. While,
as will show, C1 leads to a stricter upper bound on the quantum advantage,
there is no reason a priori to choose one over the other.

5.4.2 Bound on the quantum advantage

Since the quantum advantage defined in Eq. (5.31) amounts to a ratio of tran-
sition times, we can use the quantum speed limit to obtain an upper bound
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for it, given a constraint. The traditional QSL states that the time required to
transform ⊗Nρ into ⊗Nσ is lower bounded as

τ] ≥ T
(N)
QSL =

L(⊗Nρ,⊗Nσ)

min
{
E],∆E]

} , (5.35)

where L(ρ, σ) is the Bures angle, given in Eq. (2.13). The two constraints, C1
and C2, are clearly related to the QSL, as ∆E] and E] can be computed using
Eqs. (5.33) and (5.34) respectively. If we could change the Hamiltonian at will to
include arbitrary interaction terms, and only concern ourselves with the state
transformation, we could chooseH] to be the optimal time-independent Hamil-
tonian connecting ⊗Nρ and ⊗Nσ in the N -partite state space [217–219]. In this
case, the QSL reduces to the usual inequalities due to Mandelstam-Tamm [25]
and Margolus-Levitin [34], where E] is replaced by the average initial energy
E] and ∆E] is replaced by the average initial standard deviation ∆E].

To derive the upper bound, we first confine ourselves to constraint C1. We
proceed by using the QSL to bound the minimal time required by the collec-
tively charging N quantum batteries,

τ] ≥
L(⊗Nρ,⊗Nσ)

∆E]
. (5.36)

In the case of parallel charging each battery evolves independently under the
effect of a local term with standard deviation equal to ∆E, therefore the optimal
time τ‖ required for the parallel charging is given by

τ‖ = s T (1)
QSL = s

L(ρ, σ)

∆E
, (5.37)

where s = τ‖T
(1)
QSL quantifies the potential inability to saturate the QSL in the

parallel case. We can now combine Eqs. (5.31), (5.36), (5.37) and use the con-
straint ∆E] ≤

√
N∆E to obtain

ΓC1 ≤ s
√
N

L(ρ, σ)

L(⊗Nρ,⊗Nσ)
and ΓC2 ≤ sN

L(ρ, σ)

L(⊗Nρ,⊗Nσ)
, (5.38)

for constraints C1 and C2 respectively, since a similar argument can be made
with constraint C2.

Two remarks are in order: Firstly, for orthogonal pure initial and final states,
the QSL can be saturated (see Sec. 2.1) and s = 1. Though the quantum advan-
tage for power could be larger in other cases, including where the battery states
are mixed [81], the improvement cannot grow with the number of batteries; i.e.,
s is a constant function of N . Secondly, we have excluded cases where ρ and σ
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do not lie on the same unitary orbit, as there is no way of transforming the for-
mer into the latter using the scheme outlined above; the two states will there-
fore necessarily have the same spectrum [220]. The two bounds in Eq. (5.38)
are independent from each other, and constraint C1 is stronger than C2, as it
leads to a stricter bound on the quantum advantage. Many other bounds can
be derived by considering other extensive constraints. The quantum advan-
tage is tight for orthogonal initial and final states, due to the example given in
Ref. [206], though the Hamiltonian used to saturate the bound involvesN -body
interactions.

Figure 5.6. The product state ⊗Nρ of N copies of a two-level system in the thermal
state ρ = Gβ with inverse temperature β, here represented by its GBV rβ , is unitarily
evolved into ⊗Nσ, where σ = G−β . For large N , if the inverse temperature β is chosen
to be small enough, the state of the copies lies the separable ball, a region centered on
the maximally mixed state 1/2N that contains only separable states. Unitary evolution
preserves the distance from the maximally mixed state, keeping the system in a separa-
ble state at all times. The global Hamiltonian H] = α](|ω0〉〈ω1|+ h.c.)⊗N has quantum
advantage ΓC1 =

√
N , and ΓC2 = N [4].

The significance of entanglement for quantum enhancement has previously
been studied in the context of quantum speed limits for pure states: it was
shown that, for non-interacting systems, initial entanglement is required for an
enhancement in the speed of evolution [35, 47], while for interacting systems a
speedup may be achieved for initially separable states, since intermediate en-
tangled states are accessible [36, 221]. In the more general case of mixed states,
the necessity of entanglement for an enhancement may not be directly inferred,
though it has been argued that, in general, larger quantum Fisher information
of the state with respect to the generator of evolution leads to enhanced speed
[222, 223]. In fact, as we now show, entanglement does not appear to be neces-
sary for a nontrivial quantum advantage.
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Proposition 5.1. An extensive quantum advantage can be attained even for highly
mixed states, including those confined to the separable ball throughout the charging
procedure.

Proof of Proposition 5.1

Consider N two-level batteries with the same internal Hamiltonian char-
acterised by non-degenerate energy levels ω0 = 0 and ω1 = 1. Let the
initial state be the thermal state with inverse temperature β with respect
to the internal Hamiltonian, ρ = Gβ (see Eq. (5.11)), and the final state be
σ = G−β . The optimal local charging scheme is achieved in time τ‖ = π/2

by applying the Hamiltonian |ω0〉〈ω1|+h.c. to each battery independently.
In contrast, the joint charging of N batteries is achieved in τ] = τ‖/α] us-
ing the global Hamiltonian H] = α](|ω0〉〈ω1|+ h.c.)⊗N , where the positive
constant α] is introduced to satisfy the chosen constraint. In both cases
(local and global) the deposited work is identical, thus, the quantum ad-
vantage is simply the ratio of τ‖ to τ]: Γ = α], which can be evaluated for
the choice of constraint. We find ΓC1 =

√
N , while ΓC2 = N .

For N quantum systems of dimension d, there exists a ball centered on
the maximally mixed state and containing only separable states, known
as separable ball. Though an exact form for the radius of the separable
ball is not known, it has been bounded from below and above [224–226].
Since the distance from the maximally mixed state cannot change under
unitary evolution, for a small enough choice of β, the joint state of N bat-
teries will lie within this ball throughout the evolution. Yet, the quantum
advantage remains extensive (See Fig. 5.6).

Remarkably, neither τ‖ nor τ] depend on β, while the total work done
does. In other words, no matter how mixed the battery is, a quantum
advantage that scales with the number of batteries involved is always
achievable, granted that one can implement the considered global Hamil-
tonian H]. The trade-off of using highly mixed states is that the charg-
ing power suffers, in absolute terms, as β becomes smaller and smaller.
Proposition 5.1 implies that, while a quantum advantage requires entan-
gling operations, the joint state of N batteries does not have to be en-
tangled during the charging process. However, other types of quantum
correlations can survive under the depolarisation described in the exam-
ple above, such as the quantum discord [202].

The Hamiltonian used in the example above, and in Ref. [70], to saturate the
bound for quantum advantage involvesN -body interactions. Such interactions
are notoriously difficult to engineer. In the next section, we consider physically
realizable interactions, and study the dependence of the enhancement on the
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order of interaction, i.e., the number of batteries that take part in a single inter-
action term.

5.4.3 K-Local charging

We now discuss the achievability of a significant quantum advantage in a
regime where arbitrary multipartite entanglement generation is possible dur-
ing the charging process. In particular, we demonstrate that, although a non-
trivial quantum advantage is achievable in physical systems characterised by
at most k-body interactions, this advantage – upper bounded by a quantity
that depends at most quadratically on k – cannot scale with the number N of
batteries that compose the system.

First, we consider the situation where work is deposited onto the battery by
means of a unitary circuit generated by a piecewise time-independent Hamil-
tonian. An example of such a circuit for k = 2 is depicted in Fig. 5.7. In the
figure, a system with an even number N of parties is charged with a piecewise
time-independent Hamiltonian with at most 2-body interactions. At each time
step t, the driving Hamiltonian consists of a set of s = N/2 terms, each of which
involving a different pair of batteries i, j. The result is s independent unitary
operations uii+1(t) acting on pairs i, i + 1. Note that at each step, there is no
overlap between different pairs of batteries, while at every successive step the
pairs are changed in order to allow the formation of highly entangled states.

A circuit of this type can be used to approximate any time-dependent unitary
evolution U(t) [227], with precision that increases with the number of steps
L. The implementation of U requires an extra amount of time that depends
on the number of non-commuting terms in the Hamiltonian. This model is
reminiscent of the circuit model of universal quantum computation, which is
known to outperform its classical counterpart. In this case, the collective state
of N -batteries will, in general, be highly entangled. This scheme allows us to
study how the quantum advantage is related to the number of batteries that are
simultaneously interacting.

We consider an N -body system composed of d-level subsystems, with local
internal Hamiltonian H0, as in Eqs. (5.16) and (5.25). More explicitly, and with-
out loss of generality, we assume that

ωd − ω1 = 2ωd > 0, (5.39)

with all the eigenvalues arranged in increasing order. The time interval [0, τ]]

is divided up into L steps. At each step the charging Hamiltonian H](t) is the
sum of s = dN/ke terms, each acting on a different set of k batteries. In order
to allow the formation of highly entangled states, these s partitions could be
different at each step, as illustrated in Fig. 5.7. More specifically, at any time t,
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Figure 5.7. A system with an even number N of parties is charged with a unitary
circuit, obtained from a piecewise time-independent Hamiltonian with at most 2-body
interactions.

the k-local Hamiltonian can be written as

H](t) =
s∑

µ=1

hµ(t)⊗ 1µ̄, (5.40)

where each term hµ(t) acts on a different k-partition of the Hilbert space, iden-
tified by the set µ = (µ1, . . . , µk) of k indices3, while 1µ̄ indicates the identity
over all the other indices non included in µ. At different time steps, different
partitions are allowed. In order to make a meaningful statement in this sce-
nario, we need to introduce a constraint on the operator norm of the driving
Hamitlonians, similar to that of Eq. (5.28), but less restrictive, in the spirit of
constraints C1 and C2:

C0 – The time-averaged operator norm of the driving HamiltonianH](t) during
the collective evolution for time τ] should not exceed N times that of the of a
single battery driving Hamiltonian,

E ] ≤ NE , (5.41)

where E ] and E represent the time-averaged operator norm of the driving
Hamiltonians H](t) and hl(t), respectively,

E ] := ‖H](t)‖op and E := ‖hl(t)‖op. (5.42)

3If N/k is not an integer these partitions can have at most k indices.
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Note that hl(t) is still the optimal local Hamiltonian acting only on susbystem
l. Constraint C0 guarantees that both the time-averaged standard deviation
and the time-averaged energy are bounded from above, as shown in Sec. A.5
of the Appendix. There, we show that E ] upper bounds both E]/2 and ∆E].
In this sense, it is a stricter constraint than C1 or C2. We now show that, with
this constraint, the upper bound on the quantum advantage depends on the
interaction order k:

Theorem 5.2. For a circuit based charging procedure with interaction order of at most
k, under constraint C0, the achievable quantum advantage is upper bounded as ΓC0 <

γk, where γ does not scale with the number N of batteries.

The proof of Theorem 5.2 can be found in Sec. A.6 of the Appendix. In the
important case where ρ and σ are the ground and maximally excited states
respectively, γ = π/2. By construction, this bound on the quantum advantage
is not tight. For comparison, ΓC1 =

√
k and ΓC2 = k are achievable if the total

number of batteries N can be divided by k, i.e., if N/k = s ∈ N, as discussed in
Refs. [46, 206]. In this particular case, such a speed-up can be obtained for pure
states using the time-independent Hamiltonian

H =
√
s

s∑
µ=1

hµ, (5.43)

hµ = |1〉⊗k〈d|⊗k + h.c., (5.44)

assuming that each hµ acts on a completely different set of k batteries, i.e.,
[hµ, hµ′ ] = 0 for all µ, µ′. In the same situation, using constraint C0 we obtain
ΓC0 = k, suggesting that the strict inequality in Theorem 5.2 is only different by
a constant factor from an achievable bound.

The result of Theorem 5.2 can be extended to a more general class of Hamilto-
nians, where k-body time-dependent interactions can occur between overlap-
ping sets of batteries, with the restriction that each battery is simultaneously
interacting with at most m others. This restriction is motivated by the idea that
the reach of the interaction should be limited.

Theorem 5.3. For a generic time-dependent charging procedure the achievable quan-
tum advantage under constraint C0 is upper bounded as

ΓC0 < γ
(
k2(m− 1) + k

)
, (5.45)

where k is the interaction order and m is the maximum participation number, i.e., any
one battery interacts with at most m other batteries at any given time.

The proof of Theorem 5.3 is given in Sec. A.7 of the Appendix. For many
physical systems, both k and m are limited: 2 or 3-body interactions are the
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norm for fundamental processes, and higher interaction orders are generally
hard to engineer here [228–230]. The effective participation number, or reach,
m tends to be constrained by the spatial arrangement of systems and the fact
that interaction strength often drops off with distance. Exceptions to this rule
include the Dicke model [231] where collective coherence leads to superradi-
ance, the Lipkin-Meshkov-Glick model [232], where all particles interact with
each other, and the Mølmer-Sørensen interaction [233], in which an ensemble
of ions are effectively coupled by a spatially uniform electromagnetic field.

Note that these bounds are not tight; while a scaling of the power P] with the
number of batteries N is surely not feasible in the context of k-body interac-
tions, it is more likely that the quantum advantage is tightly limited by k. In
fact, we conjecture that, for any choice of time-dependent k-body interaction
Hamiltonian H , a conservative bound for the quantum advantage is given by
ΓC0 < γk:

Conjecture 5.4. Theorem 5.2 holds for any time-dependent k-body interaction Hamil-
tonian subject to constraint C0.

We examine this particular statement in Sec. A.8 of the Appendix, anticipat-
ing that the result holds if a particular mathematical conjecture does too. We
collected extensive numerical evidence to support our conjecture, calculating
ΓC0 for a large set Hamiltonians, obtained from unitaries sampled uniformly
according to the Haar measure, for (N, k) = (3, 2), (4, 2), (4, 3) and (6, 2). Not a
single instance of ΓC0 ≥ γk has been recorded in this way, and we believe that
similar conjectures should also hold for constraints C1 and C2. However, this
numerical evidence does not represent a proof of our conjecture since our sam-
pling procedure is not uniform with respect to the constraint the we imposed,
and due to the fact that there could be a measure-zero set of Hamiltonians that
disproves our conjecture.

5.5 Chapter summary

In this Chapter we have applied the operational interpretation of time-energy
uncertainty relations to study the limits on achievable power for many-body
quantum systems. The results discussed in Sec. 5.4, and published in Ref. [4],
complement the strain of research into quantum thermodynamics and quan-
tum speed limits, by deriving a concrete upper bound on the ratio between the
maximum power of interacting and non-interacting driving between product
states. In particular, we discussed the notion of collective quantum advantage
for the charging power of quantum batteries, for which we calculated a bound
that depends on the order of the interaction k, on the participation number m,
and on the energetic constraint used to compare different charging methods.
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First, we applied the QSL to prove two fundamental upper bounds for the
quantum advantage, given in Eq. (5.38), each corresponding to a different
energetic constraint on the charging Hamiltonian. The advantage of using
global operations over local ones is interpreted as the result of rapid evolution
through the space of quantum states. While, in the case of pure states, entan-
glement is a necessary consequence of these global operations, a fully separable
evolution is still accessible for those states that live in the separable ball.

A striking consequence of our results, which holds in general for mixed states,
is that an enhanced charging power is available even for arbitrarily mixed
states, in remarkable analogy to the case of quantum metrology. There, an en-
hancement in sensing is still available for highly mixed states lying inside the
separable ball [234].

We also showed analytically that a quantum advantage that grows with the
number of batteries is not achievable with any physically reasonable Hamilto-
nian. By restricting the order of the interaction, we severely restrict the space
of available charging procedures, which effectively defines a non-trivial many-
body quantum optimal control problem, the solution of which is generally not
known.

An important remark is that the bound that we derived in Eq. (5.45) is not
tight. Obtaining a tight bound for such dynamics requires showing that, for
any choice of initial and final states, there is always a driving Hamiltonian that
saturates it. This is equivalent to solving a constrained quantum brachistochrone
problem [139, 147, 148, 176] to find the fastest evolution that connects the given
initial and final states. When we consider pure state and we are allowed to per-
form any global operation (k = N ), or only local ones (k = 1), solutions to the
quantum brachistochrone problem are generally easier to obtain. However, as
soon as we consider mixed states (see Ch. 4) and we impose strong constraints
on the generators of the evolution this problem becomes hard to solve. In this
sense, the bound of Eq. (5.45) provides a fundamental result on the minimal
time required to evolve between two multipartite states when the dynamics is
restricted by the order of the interaction, for which a tight quantum speed limit
is not known yet.
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Conclusions & Outlooks

In this thesis we studied the operational interpretation of time-energy uncer-
tainty relations, which set a bound on the minimal time of quantum evolution.
In particular, we aimed to solve some outstanding issues with the traditional
formulation of QSLs, with emphasis on their tightness, feasibility, and signif-
icance. We addressed these tasks with a geometric approach, formulating the
problem of time-optimal evolution as that of finding the shortest orbit between
initial and final states. This allowed us to improve the framework used for the
derivation of such bounds, constructively search for time-optimal solutions,
and effectively apply these results to thermodynamic tasks, such as work ex-
traction and deposition with quantum systems.

In Ch. 2 we obtained a QSL for unitary evolution, and demonstrated is per-
formance. This result was achieved using the generalised Bloch representation,
and equipping the state space with a distance that corresponds with the angle
between the vectors representing initial and final states. To the best of our
knowledge, this QSL corresponds to the tightest bound for the unitary evolu-
tion of quantum systems, and we therefore used it in Ch. 4 in order to assess
the performance of optimised Hamiltonians obtained by means of our itera-
tive method, featured in Ref. [3]. A promising direction to further improve
the QSL for unitary evolution is to look for a suitable metric for the space of
mixed states with a given degeneracy structure, generally given by a flag man-
ifold [93], which might yield an attainable bound.

The advantages of using the geometric framework offered by the generalised
Bloch representation have been further emphasised in Ch. 3, where we gener-
alised our QSL to the case of open evolution; a result that has been recently
recognised in Refs. [141, 235, 236]. Both for the case of unitary and open evolu-
tion, the main outlook is to incrementally improve the tightness of these QSLs,
and provide efficient methods for their estimation.

Another interesting research avenue is to address the converse problem, i.e.,
that of solving the time-optimal evolution of quantum systems. This is a no-
toriously hard task, that has received particular attention in the field of quan-
tum optimal control [139]. The iterative method proposed in Ch. 4 addresses
this problem for the case of unconstrained unitary evolution between arbitrary
states. The method is based on the iterative suppression of the parallel inef-
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fective components of the generator of the evolution, and is interpreted as an
optimisation over the geometric phases gained by the initial state during the
evolution. While the efficacy of this method is supported by extensive numer-
ical evidence, an interesting task is to apply group theoretic method to analyt-
ically bound its convergence properties. This iterative method can in principle
be generalised to the case of open evolution, however, it is not clear how to
effectively achieve such generalisation, or if a similar approach could be at all
extended to the case of controlled systems.

In Ch. 5 we showed how QSLs can be applied in the context of quantum ther-
modynamics. There, we demonstrated the power advantage of using global
operations over local ones for charging many-body quantum batteries. We then
showed that this advantage often relies on highly non-local, genuinely many-
body interactions, which are often hard (or impossible) to engineer in practice.
We thus derived a new bound on charging power for physical systems, which
accounts for limited interaction order and range. In this context, the main out-
look is to further improve the QSLs for the case of many-body systems, with
particular emphasis on their optimal control.

Another research perspective consists in progressing the study of quantum
batteries, which has considerably advanced since the publication of the seminal
paper by Alicki and Fannes [211]. Several authors have proposed and studied
practical implementations of quantum batteries, consisting of one-dimensional
spin chains [237], cavity-assisted arrays of two-level systems [238, 239], mod-
elled by means of superconducting pairs, and harmonic oscillators [240, 241].
New insights have been obtained on the extractable work, on the role of quan-
tum correlations, as well as on the difference between classical and many-body
batteries [72, 212], while the authors of Ref. [242] have studied cycle precision
when charging is obtained by means of the feasible class of Gaussian uni-
taries. The most recent efforts have been devoted to the study of dissipative
systems [243, 244]. In this context, the author of this thesis has participated
in the study of an energy-stabilization protocol based on the use of sequen-
tial measurements [245]. Further investigations should focus on the interplay
between quantum batteries and their environment, aiming to improve energy
stabilisation and efficient charging.

In conclusions, the research conducted for this thesis consolidates the impor-
tance of QSLs, providing new results and methods with significance for the-
oretical and applied quantum mechanics. The geometric approach to QSLs
adopted allowed us to fine-tune the balance expressed by time-energy uncer-
tainty relations. As a result, the rather abstract notion of state space assumed
a much more tangible role, providing the variable to be optimised in order to
achieve time-optimal evolution, and reaffirming the geometry of quantum me-
chanics as a powerful tool for future studies and applications.
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A Appendix

A.1 Proof of Theorem 2.4

First, we prove that Φ is a distance that reduces to the Fubini-Study distance for
the case of pure states. The function Φ(ρ, σ) ≥ 0 since tr[ρσ] =

∑
a,b λaλb|〈ra|sb〉|2

is positive and always smaller than or equal to tr[ρ2] = tr[σ2]. This can be
proved using the Hilbert-Schmitdt distance tr[(A − B)(A† − B†)]/2 ≥ 0 for
A = ρ and B = σ, obtaining tr[ρ2] − tr[ρσ] ≥ 0. For σ = ρ, Φ(ρ, ρ) = 0,
and if Φ is zero tr[ρσ] = tr[ρ2] = tr[σ2] therefore σ = ρ. Symmetry holds
due to the cyclic property of the trace and because ρ and σ have the same pu-
rity tr[ρ2]. Lastly, Φ(ρ, σ) = arccos(

√
(1− (d− 1)‖r‖2

2 r̂ · ŝ)/(1− (d− 1)‖r‖2
2))

is monotonic in r̂ · ŝ, thus respects the triangle inequality. Ergo, Φ is a distance
on the space of those states that can be unitarily connected. For the case of
pure states, Φ reduces to the Fubini-Study distance, since, for ρ = |ψ〉〈ψ| and
σ = |φ〉〈φ|,

√
tr[ρσ] = |〈ψ|φ〉| and tr[ρ2] = 1.

The proof of Eq. (2.31) is identical to that for Eq. (2.24), expect for the fact that

Φ(ρt, ρt+dt) = arccos

(√
1− dt2(tr[ρ2

tH
2
t ]− tr[(ρtHt)2])

tr[ρ2
t ]

)
. (A.1)

We expand arccos(
√

1− c) ∼ arccos(1−c/2)
√
c+O(c) for small c > 0, obtaining∫ τ

0
Φ(ρt, ρt+dt) = τQΦ which leads to Φ(ρ, σ) ≤ QΦ τ .

A.2 Example: QSL for three-level systems

In this section we study the new bounds in Eqs. (2.24) and (2.31) for the case of
qutrits, and we compare them to the one in Eq. (2.14). The spectrum {λ1, λ2, λ3}
can be represented with the standard 2-simplex ∆2 (equilateral triangle), or by
its projection onto the plane defined by λ1 and λ2, since the third component
λ3 has to be equal to 1 − λ1 − λ2, and λ1 + λ2 ≤ 1. Within this space, we
only need to consider the portion 1 given by 0 ≤ λ1 ≤ 1/2, λ2 ≤ λ1 and
λ2 ≤ 1− 2λ2 (see Fig. A.1) [93]. This region is determined by the three vertices
(0, 0, 1) (solid blue dot), (1/2, 0, 1/2) (yellow dot), and (1/3, 1/3, 1/3) (magenta
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dot), that correspond to a pure state, a mixed state with two identical eigenval-
ues equal to 1/2, and the maximally mixed state, respectively, and delimited
by the segments that connect these vertices. These segments are characterized
by two kinds of degeneracy: the one that connects the pure state to the mixed
state associated with (1/2, 0, 1/2) (given by (λ1, 0, 1 − λ1), solid blue line), is
composed of fully non-degenerate mixed states, while the other two segments
(dashed blue lines) contain mixed states with two identical eigenvalues (the
same degeneracy structure as for pure states).

We generated random states and Hamiltonians, as details in Box 2.1, and then
studied the three different bounds in the region 1 (see Fig. A.1). As described
in the main text, TΦ = TL > TΘ at the pure vertex. The bound TΘ is constant
along the dashed lines, while it can vary continuously along the solid solid blue
line. For all of the generated Hamiltonians, max[TΘ, TΦ]− TL > 0.

Figure A.1. Bounds TL (Eq. (2.14), magenta line), TΦ (Eq. (2.31), light blue line), and
TΘ (Eq. (2.24), blue line), as a function of the eigenvalues λ1, λ2, λ3, for a specific choice
of mixed qutrit state ρ and Hamiltonian H , for driving ρ → σ = OρO†, with O =

exp[−iH]. Solid blue vertices correspond to pure states, yellow and magenta vertices
to maximally mixed states of rank 2 and 1, respectively.
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A.3 Comparison of QSL bounds

As mentioned in the letter, we have considered some significant bounds [43,
44, 126, 127] to test the performance of our bound TD. We analytically compare
our bound to Sun’s, Del Campo’s, and Deffner’s bounds. The last three bounds
are given by

TSun =

∣∣∣∣1− tr[ρσ]√
tr[ρ2]tr[σ2]

∣∣∣∣
2(‖ρ̇t‖/‖ρt‖)

, (A.2)

TDel Campo =

∣∣∣∣1− tr[ρσ]
tr[ρ2]

∣∣∣∣‖ρ‖2

‖ρ̇t‖
, (A.3)

TDeffner =

sin2

[
arccos

(
F(ρ, σ)

)]
‖ρ̇t‖

, (A.4)

where F(ρ, σ) = tr[
√√

ρσ
√
ρ] is the quantum fidelity between ρ and σ. The

orbit-dependent term of all of these bounds only depends on the strength of
the generator ‖ρ̇t‖, or can be bounded by some quantity that only depends
on this term. This observation allows us to evaluate the relative tightness of
these bounds and of TD just by comparing their orbit-independent terms. Let
us assume that tr[ρ2] ≥ tr[σ2], without loss of generality, and introduce the
enhanced bounds

T ?
Sun =

∣∣∣∣1− tr[ρσ]√
tr[ρ2]tr[σ2]

∣∣∣∣‖ρ‖
2‖ρ̇t‖

, (A.5)

T ?
Deffner =

sin2

[
arccos

(
E(ρ, σ)

)]
‖ρ̇t‖

, (A.6)

where E is the sub-fidelity

E(ρ, σ) =

√
tr[ρσ] +

√
2(tr[ρσ]2 − tr[ρσρσ]), (A.7)

which is a lower bound to F [137]. Both enhanced bounds T ?
Sun and T ?

Deffner are
larger than the respective bounds of Eqs. (A.2) and (A.4). Therefore, whenever
TD is larger than the enhanced bounds it is also surely larger than the actual
ones. Moreover, the enhanced bounds have orbit-independent terms that only
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depend on the following four parameters

x := tr[ρ2], (A.8)
y := tr[σ2], (A.9)
z := tr[ρσ], (A.10)
β := tr[ρσρσ], (A.11)

where x, y are bounded by 1/d from below and by 1 from above, z is bounded
by
√
xy from above, and β is bounded by z2 from above. We proceed with the

evaluation of the relative tightness of these bounds and of TD just by comparing
their orbit-independent terms, obtaining∣∣∣∣1− z

√
xy

∣∣∣∣√x2 ≤√x+ y − 2z ⇒ T ?
Sun ≤ TD, (A.12)

and ∣∣∣∣1− z

x

∣∣∣∣x ≤√x+ y − 2z ⇒ TDel Campo ≤ TD, (A.13)

for all ρ, σ ∈ S(HS) and all processes.
As mentioned in the main text, Deffner’s bound is proven to be valid only

when one of the two states is pure, i.e., for ρ = ρ2 (or σ = σ2) [127], i.e., when
x = 1. Under this condition sub-fidelity, fidelity and super-fidelity all coin-
cide [137] to be equal to

√
tr[ρσ], and we obtain

sin2
[

arccos
(√

z
)]
≤
√

1 + y − 2z

⇒ T ?Deffner ≤ TD,
(A.14)

which proves our statement.

A.4 Extending the validity of bound by Deffner et al.

We will now show that our bound can be used to extend the validity of
Deffner’s bound [126] to the case of mixed initial states ρ, with tr[ρ2] < 1.
As mentioned earlier, we can directly compare our bound TD to the enhanced
bound T ?Deffner, by replacing the fidelity with the sub-fidelity E(ρ, σ), given in
Eq. (A.7). The bound T ?Deffner is always larger then the actual bound TDeffner.
Thus, anytime TD is larger then T ?Deffner, then TD is also larger than TDeffner, which
is then guaranteed to be valid for such choice of initial and final states ρ and σ.

Even though there is not a universal hierarchy between these two bounds,
we can express a ranking between TD and T ?

Deffner using the following strategy:
We calculate the probability P (TD ≥ T ∗Deffner) of TD being larger than the upper
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bound on TDeffner in the space spanned by z ∈ [0,
√
xy] and β ∈ [0, z2], as the ratio

between the area where TD ≥ T ∗Deffner and the area of the full space spanned by
z and β,

P (TD ≥ T ?Deffner) =

∫ √xy
0

∫ z2
0

sign(Γ(x,y,z,θ))+1
2

dz dβ∫ √xy
0

∫ z2
0
dz dβ

, (A.15)

where sign is the sign function, and

Γ(x, y, z, θ) =
√
x+ y − 2z +

− sin2

[
arccos

(√
z +

√
2(z2 − β)

)]
.

(A.16)

The probability P (TD ≥ T ∗Deffner) is a function of x and y measures how often
TD is larger then Deffner in the space spanned by z ∈ [0,

√
xy] and β ∈ [0, z2],

given x and y. As a result, we obtain a general rule of thumb to decide which
bound to use given the purity of initial and final states: For y ≥ 1 − x bound
TD is outperforms Deffner’s (and vice versa for y ≤ 1 − x), as shown in the
left panel of Fig. 3.4. Additionally, we have directly compared our bound TD to
TDeffner numerically, sampling 3 · 106 initial and final states from the Bures and
the Ginebre ensembles. Our bound outperforms Deffner’s for the vast majority
of the cases, as shown in the right panel of Fig. 3.4.

A.5 Relation between constraints

Here we show that ∆E] ≤ E ] and E] ≤ 2E ] by direct calculation. In the first
case we have

∆E] =
1

τ]

∫ τ]

0

dt
√

tr[H2
] (t)ρ](t)]− tr[H2

] (t)rho](t)]2,

≤ 1

τ]

∫ τ]

0

dt
√

tr[H2
] (t)ρ](t)]

≤ 1

τ]

∫ τ]

0

dt ‖H](t)‖op = E ], (A.17)

where we have used tr[H2
] (t)ρ](t)] ≤ ‖H2

] (t)‖op = ‖H](t)‖2
op to get to the final

line.
Similarly, the time-averaged energy

E] =
1

τ]

∫ τ]

0

dt {tr[H](t)ρ](t)]− ωG(t)},

≤ 1

τ]

∫ τ]

0

dt {‖H](t)‖op + |ωG(t)|},

≤ 2

τ]

∫ τ]

0

dt ‖H](t)‖op = 2E ]. (A.18)
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Thus, if the time-averaged operator norm of the Hamiltonian is bounded, ∆E]

and E] are also bounded.

A.6 Proof of Theorem 5.2

Consider W (t) = tr[H0ρ
(N)(t)] − tr[H0ρ

⊗N ], the average work done on the
system up to time t during the charging process, where ρ(N) represents the
collective state of the battery at time t under the effect of the unitary gen-
erated by H](t). The instantaneous power is given by P (t) = dtW (t) =

itr{[H](t), H0]ρ(N)(t)}. The strict inequality

P] =
1

τ]

∫ τ]

0

dtP (t) < max
H](t)
{‖[H](t), H0]‖op} =: P ↑ (A.19)

follows from the fact that any unitary charging has to have vanishing instan-
taneous power for times t = 0 and t = τ]. We now evaluate the commutator
[H](t), H0] in order to find an upper bound P ↑ for the average power P], re-
membering that we have H0 =

∑
lH

(l)
0 and H](t) =

∑s
µ=1 hµ. We will use the

subscript µ̄ to indicate the set of battery indices that are not included in par-
tition defined by µ. Using the commutation relation between hµ and H

(l)
0 we

obtain

[H](t), H0] =
s∑

µ=1

[
hµ ⊗ 1µ̄ ,

∑k
j=1H

(µj)
0 ⊗ 1µ̄j

]
=
∑
µ

[
hµ ,

∑k
j=1H

(µj)
0 ⊗ 1i 6=µj∈µ

]
⊗ 1µ̄. (A.20)

Using the definition for H0, it follows from direct calculation that
‖
∑k

i=1H
(µi)
0 ‖op = λdk. Let us define αµ := ‖hµ‖op and introduce two normal-

ized operators Xµ and ιµ, as follows:

Xµ =
hµ
αµ
, ιµ =

1

λdk

k∑
i=1

H
(µi)
0 . (A.21)

Using these, we can rewrite the commutator as

[H](t), H0] = 2 · λdk
∑
µ

αµ
1

2
[Xµ, ιµ]⊗ 1µ̄

= 2λdk
∑
µ

αµYµ ⊗ 1µ̄, (A.22)

where Yµ = 1
2
[Xµ, ιµ], such that ‖Yµ‖op ≤ 1.
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At any time t, the operator norm of the Hamiltonian H](t) is given by

‖H](t)‖op =

∥∥∥∥ s∑
µ=1

hµ

∥∥∥∥
op

=
s∑

µ=1

‖hµ‖op =
s∑

µ=1

|αµ|, (A.23)

where the equality holds due to the fact that, at each step in time, every term
hµ acts on a different k-partition of the Hilbert space. Accordingly, we obtain
that

1

τ]

∫ τ]

0

dt‖H](t)‖op =
1

τ]

∫ τ]

0

dt

s∑
µ=1

|αµ| ≤ NE . (A.24)

Now we consider the expression given in Eq. (A.22), to calculate the upper
bound P ↑. Once again, we use the fact that at each step in time there are s terms
acting on different k-partitions of the Hilbert space, such that the operator norm
of [H](t), H0] can be calculated exactly,

‖[H](t), H0]‖op = 2λdk

∥∥∥∥ s∑
µ=1

αµYµ ⊗ 1µ̄
∥∥∥∥
op

= 2λdk
s∑

µ=1

‖αµYµ ⊗ 1µ̄‖op

≤ 2λdk
s∑

µ=1

|αµ|, (A.25)

where the inequality in line Eq. (A.25) holds due to the fact that ‖Yµ‖op ≤ 1 by
definition, and where the sum can be carried out of the operator norm thanks
to the fact that, at any given time, the s subgroups of k batteries are not over-
lapping. Using Eq. (A.24), we obtain

1

τ]

∫ τ]

0

dt‖[H](t), H0]‖op = 2λdk
1

τ]

∫ τ]

0

dt
s∑

µ=1

|αµ|

≤ 2λdkNE . (A.26)

Plugging this result back into Eq. (A.19), we get

1

τ]

∫ τ]

0

dtP (t) < P ↑ = 2λdkNE . (A.27)

We calculate the quantum advantage as in Eq. (5.31), where P‖ is given by the
ratio between W‖ and τ‖ = sL1/min{E,∆E}. Work W‖ = NW is extensive,
and in general W = q2λd, where 0 < q ≤ 1. Thus, we obtain

ΓC0 <
2λdkNE

2λdNq
min{E,∆E}

sL1

=
sL1E

q min{E,∆E}
k, (A.28)

as we intended to prove. �
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A.7 Proof of Theorem 5.3

Here our goal is to relate a generic unitary evolution to a circuit based charging
procedure. We first note that the charging Hamiltonian can always be decom-
posed into a number M of non-commuting terms:

H](t) =
M∑
j=1

H(j)(t) with H(j)(t) =
s∑

µ=1

h(j)
µ (t), (A.29)

where [h
(j)
µ (t), h

(j)
µ′ (t)] = 0; this decomposition is in general different for dif-

ferent values of t. The unitary evolution U generated by this time-dependent
Hamiltonian can always be approximated, using the Trotter-Suzuki decompo-
sition [227], by the following product of unitary tranformations:

UTrot =
L∏
l=1

M∏
j=1

exp

[
−iH(j)(t)

(
lτ]
L

)
τ]
L

]
. (A.30)

In the limit L → ∞, UTrot = U ; however, they do not correspond to the
same implementation: The Hamiltonian generating UTrot is piecewise time-
independent and in the circuit form discussed in Sec. A.6. Since each of the
M terms at each time step must be implemented sequentially, UTrot takes M
times longer to run than U , with a corresponding drop in power P] = MPTrot.

Since we have an upper bound, from Theorem 5.2, on the quantum advantage
for circuit model Hamiltonians, and the power for a more general Hamiltonian
is at most M times greater, it must be that ΓC0 < Mγk in this case. In order
to complete the proof, we now need to consider how the minimum necessary
value of M scales with k and m.

The quantity m denotes the maximum number of other batteries any one can
interact with. In order for the number of terms M in Eq. (A.29) to be suffi-
cient for the required decomposition, it must at least equal the largest possible
number of different k-partitions µ that have a non-trivial amount of indices in
common, while containing the same index µi at most m times. Let us provide
a few simple examples to clarify the meaning of M , where we will assume that
N can be arbitrarily large.

(k = 2,m = 1) In this case M is trivially equal to 1. A possible choice is given
by the first 2-partition (1, 2), after which any other partition (i, j) can contain
neither 1 nor 2. This has to be true for any choice of other partitions, therefore
M = 1. In other words, in this case, the trotterization is not necessary and the
unitary can be perfectly simulated with a piecewise unitary circuit.
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(k = 2,m = 2) Let us start with the first 2-partition (1, 2), followed by (2, 3)

and (1, 3). Any other choice of two indices would form a partition that does
not contain any element of at least one of the previous three, thus M = 3. In
this case the simulating circuit is at most 3 times slower than the actual unitary.

(k = 3,m = 2) Now the first 3-partition (1, 2, 3) is followed by (1, 4, 5), (2, 4, 6)

and (3, 5, 6). Any other choice of three indices would form a partition that does
not contain any element of at least one of the previous four, thus M = 4.

In general, for a given k and a given m, we could start – without loss of gen-
erality – from the first ordered partition (1, . . . , k). Remembering that each of
those indices can appear at most m times, we can construct m sets containing 1,
followed by m−1 sets containing 2, 3, 4 and so on until m−1 sets containing k,
for a total of k(m−1)+1 terms. In the worst case scenario, all of these partitions
have at least one element in common. However, any subsequent partition can-
not contain any of the indices included in the first ordered partition (1, . . . , k),
thus M ≤ k(m− 1) + 1.

Taking this most general, worst case scenario, we have a bound on the quan-
tum advantage given by

ΓC0 < (k(m− 1) + 1)γk = γ
(
k2(m− 1) + k

)
, (A.31)

where γ := sL1E
qmin{E,∆E} is defined as in Theorem 5.2. �

A.8 A conjecture on achievable power limits

Let us consider a general time-dependent Hamiltonian that contains all the
possible k-body interaction terms between the N batteries that constitute the
system, i.e., H =

∑
µ hµ contains N !/k!(N − k)! terms in the sum. With the aim

of obtaining an upper bound for the quantum advantage under the constraint
C0, we follow the proof provided for Theorem 2, until Eq. (A.22). We then find
an explicit relation between the elements of Xµ and those of Yµ. Let us consider
the product basis Bµ := {|a〉µ} for the subset of batteries defined by µ. Each
element |a〉µ = ⊗ki=1|ai〉µi is a product state of the partition of the Hilbert space
associated with µ. In this basis we can write

ιµ =
∑
a

ηa|a〉〈a|µ, (A.32)

Xµ =
∑
a<b

(
xµab|a〉〈b|µ + h.c.

)
+
∑
a

xµaa|a〉〈a|µ. (A.33)
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By explicit calculation using this basis we obtain

Yµ =
∑
a<b

(
ηb − ηa

2

)(
xµa,b|a〉〈b|µ − h.c.

)
, (A.34)

where |ηa| < 1 and 0 < (ηb − ηa)/2 ≤ 1 for a < b, due to the structure of ιµ. Our
conjecture reduces to the following:

‖
∑

µαµYµ ⊗ 1µ̄‖op ≤ ‖
∑

µαµXµ ⊗ 1µ̄‖op, (A.35)

which is itself upper bounded by NE . If Eq. (A.35) holds, then for any choice
of time-dependent k-body interaction Hamiltonian H , subject to constraint C0,
the average power P] is upper bounded by 2λdkNE , thus, ΓC0 < sL(ρ, σ)k. An
extensive numerical search failed to find any counterexamples to our conjec-
ture.

The data collected for the quantity

P =
‖
∑

µ αµYµ ⊗ 1µ̄‖op
‖
∑

µ αµXµ ⊗ 1µ̄‖op
(A.36)

is always smaller than the unit, as conjectured. Data has been collected sam-
pling unitaries uµ according to the Haar measure, and obtaining hµ = i log[uµ],
where log[A] is the natural matrix logarithm of A; P is evaluated explicitly for
every sampled Hamiltonian. With a sample size ν = 105 we ran the simulation
for (N, k) equal to (3, 2), (4, 2), (4, 3) and (6, 2). Not a single instance of P > 1

has been recorded. This numerical evidence does not represent a proof of our
conjecture since there could be a measure zero set of Hamiltonians for which
P > 1.
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