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ABSTRACT

This thesis describes the utilisation of sliding mode observers (SMOs) for the estima-

tion of states and unknown inputs for a class of descriptor systems. In existing SMOs

schemes, suitable processing of the equivalent output error injection term yields an accu-

rate estimate of the unknown input. These SMO schemes however require the observed

system to be infinitely observable which can limit the applicability of the scheme, or do

not consider the effects of external disturbances on the estimate of the unknown input.

This thesis therefore aims to further develop SMO theory for non-infinitely observable

descriptor systems (NIODS), and consider the effects of disturbances affecting the sys-

tem. The approaches presented first reformulate the system into a form facilitating further

analysis, capitalising on the ability of the SMO to estimate unknown inputs. Central to

this reformulation is the treatment of certain states as unknown inputs, which results in

the NIODS being re-expressed as an infinitely observable reduced-order system. Exist-

ing techniques which are applicable to infinitely observable systems are designed based

on this reduced-order system to estimate its states and unknown inputs. Linear matrix

inequality (LMI) techniques are used to design the observer gains such that the effects of

disturbances on the estimates of the unknown input are bounded, thus achieving robust

reconstruction of the unknown input. The use of cascaded SMOs for estimating states and

unknown inputs is explored and compared to existing cascaded observer schemes in the

literature. In the final chapter, a more complex reformulation technique (where certain

states are re-expressed as a linear combination of other states) is presented, along with

considerations for disturbances. The necessary and sufficient conditions for the feasibil-

ity of all schemes are shown in terms of the original system matrices, allowing designers

to quickly verify if the schemes are applicable. Each scheme is also accompanied by a set

of design procedures, and are verified using numerical examples.
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Chapter 1

Motivation and thesis overview

1.1 Introduction

Modern engineering systems are increasingly designed to be operated autonomously. The

larger amount of periphery required for the operation and performance of the systems

however results in a greater likelihood of unpermitted deviations occurring in properties

or parameters of the system from acceptable or standard conditions (hereafter referred to

as faults) [22, 66]. These faults could lead to undesirable consequences, such as financial

losses which are incurred due to lower quality output from the system, or when the system

is taken offline for maintenance. Thus, a cost-effective form of preventive maintenance

would be to detect and reconstruct these faults immediately when and as they occur, i.e.

fault detection and identification (FDI). FDI schemes are vital for the operation of any

autonomous system, since they provide information such as the shape and magnitude of

faults, which are essential for remedial action [103, 148].

While most engineering systems can be represented using the state-space system rep-

resentation, there exist systems which also contain algebraic equations, which are better

represented using the descriptor system representation, which has the form

Eẋ = Ax +Bu +Mf, (1.1)

y = Cx, (1.2)

where E, A ∈ Rn×n, B ∈ Rn×m, M ∈ Rn×q, C ∈ Rp×n, and E is generally rank-deficient,

i.e. rank (E) = r < n. The vectors x, u, f , and y represent the states, inputs, faults,

and outputs, respectively. These algebraic equations in descriptor system represent in-

teractions between subsystems evolving on different time scales [38]. Unlike regular
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state-space systems which only have one measure of observability, descriptor systems

have multiple measures of observability [30]. Amongst these measures of observability

is the concept of infinite observability, which implies

rank

⎡⎢⎢⎢⎢⎢⎣

E

C

⎤⎥⎥⎥⎥⎥⎦
= n. (1.3)

Existing FDI schemes require (1.3) to hold for system (1.1)–(1.2) in order to recon-

struct f (i.e. system (1.1)–(1.2) is infinitely observable). This requirement may be restric-

tive, and thus forms a current limitation on the applicability of FDI schemes in descriptor

systems.

Additionally, most FDI schemes rely on a model of the system, which is a mathemat-

ical representation derived from physical operation or through simulation of the system

under practical situations. These models however may oversimplify the actual system, or

fail to take into account unknown signals acting on the system. Parasitic dynamics, un-

certain parameters, or unknown external influences (all of which are hereafter referred to

collectively as disturbances) may be present in the physical system. These disturbances

may corrupt the signals reconstructed by the FDI scheme. These erroneous reconstruc-

tions may raise false alarms, or even worse, mask the effect of a fault.

Thus this thesis aims to present work on sliding mode observer (SMO) schemes for

non-infinitely observable descriptor systems (i.e. systems where (1.3) is not satisfied), and

to design SMO schemes such that the effects of disturbances on the fault reconstruction

are bounded. The rest of this chapter presents an outline of the structure of the thesis, and

the contribution of each chapter to this area of research.

1.2 Thesis structure

Chapter 2 presents a survey of the literature as well as prior work on topics that underlie

the thesis. The concept of state and fault estimation using observers is first presented.

The sliding mode observer (SMO) is then introduced, and the concepts of robust fault re-

construction and observers in cascade are explored. The descriptor system representation

and observers for descriptor systems are then elaborated upon. Finally, observer schemes
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for non-infinitely observable descriptor systems (NIODS) are detailed.

Chapter 3 presents the SMO scheme for state and fault estimation in infinite observable

[49, 160] descriptor systems by Yeu et al. [156, 157]. The error system for the SMO

is analysed, and basic sliding mode concepts are reviewed. A simulation example is

then used to illustrate the concepts presented. Next, two SMO schemes state and fault

estimation in a class of NIODS by Ooi et al. [100, 101] are studied. The schemes re-

express NIODS as infinitely observable reduced-order systems by treating certain states

as unknown inputs, and in the second scheme, by re-expressing certain states in terms of

other states as well. These re-expression techniques would provide the basis of the work

presented in the rest of the thesis. A simulation example is used to demonstrate the second

scheme by Ooi et al. [101].

Chapter 4 presents a robust fault reconstruction scheme for a class of NIODS which

builds on the work in [100]. Firstly, the system is re-expressed by treating certain states

as unknown inputs, resulting in an infinitely observable reduced-order system. The SMO

by Yeu et al. [157] is then designed based on this reduced-order system. The necessary

and sufficient conditions for the feasibility of the observer are investigated and presented

in terms of the original system matrices. The observer gains are then designed using

the Bounded Real Lemma [128] such that the L2 gain from the disturbances on the fault

reconstruction is minimised. The work in this chapter has been published [17]; its details

are as follows: J. C. L. Chan, C. P. Tan, and H. Trinh, Robust fault reconstruction for

a class of infinitely unobservable descriptor systems, International Journal of Systems

Science, 48(8):1646–1655, 2017.

Chapter 5 presents a state and fault estimation scheme for a class of NIODS using two

SMOs in cascade. The system is first re-expressed into an infinitely observable reduced-

order system by treating certain states as unknown inputs. The SMO by Yeu et al. [157]

is designed based on this reduced-order system, and it is found that the switching term of

the observer is the output of an analytical regular (non-descriptor) state-space system that

treats the remaining fault components as unknown inputs. The Edwards-Spurgeon SMO

[6] is then designed based on this analytical system to estimate the remaining faults. The
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proposed scheme is able to estimate all states and faults in finite time. The necessary and

sufficient conditions for the existence of the scheme are studied and shown in terms of

the original system matrices, and it is found that the proposed scheme has less stringent

conditions compared to existing schemes utilising single SMOs, or observers in cascade.

The work in this chapter has been published [18]; its details are as follows: J. C. L.

Chan, C. P. Tan, H. Trinh, and M. A. S. Kamal, State and fault estimation for a class of

non-infinitely observable descriptor systems using two sliding mode observers in cascade,

Journal of the Franklin Institute, 356(5):3010–3029, 2019.

Chapter 6 extends the findings in Chapter 5 to perform robust fault reconstruction for

a class of NIODS using two SMOs in cascade. The approach in Chapter 5 is used to

reconstruct the faults. Linear matrix inequality (LMI) techniques and the Bounded Real

Lemma [128] are used to design the observers such that the L2 gain from the disturbances

onto the fault reconstruction is minimised. An interesting observation is that the gains of

both cascaded observers can be designed using a single LMI pair, as opposed to designing

each SMO separately (which would increase the conservativeness of the solution) as in

previous works. The existence conditions are investigated and presented in terms of the

original system matrices. The work in this chapter has been published [19]; its details are

as follows: J. C. L. Chan, C. P. Tan, H. Trinh, M. A. S. Kamal, and Y. S. Chiew, Robust

fault reconstruction for a class of non-infinitely observable descriptor systems using two

sliding mode observers in cascade, Applied Mathematics and Computation, 350:78–92,

2019.

Chapter 7 presents a robust fault reconstruction scheme for a class of NIODS which

builds on the scheme in [101]. The re-expression in this chapter differs from those of

the previous chapter: some states are first re-expressed in terms of other signals, and

then certain other states are treated as unknown inputs to form an infinitely observable

reduced-order system. The observer by Yeu et al. [157] is then applied onto this reduced-

order system. The observer gains are then designed using the Bounded Real Lemma [128]

such that the L2 gain from the disturbances on the fault reconstruction is minimised. The

necessary and sufficient conditions for the feasibility of the scheme are then presented
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in terms of the original system matrices. It is found that this method of re-expression

increases the applicability of the scheme, as compared to those in the previous chapters.

The work in this chapter has accepted for publication; its details are as follows: J. C. L.

Chan, C. P. Tan, J. H. T. Ooi, and H. Trinh, New results in robust fault reconstruction for

a class of non-infinitely observable descriptor systems, to be presented at the American

Control Conference (ACC) 2019.

Chapter 8 then summarises the thesis by drawing conclusions from each chapter, and

also suggesting potential future lines of inquiry related to the presented work.



Chapter 2

Literature review

2.1 Introduction

Engineering systems are increasingly designed to operate autonomously, which places

greater importance on the controllers maintaining the required performance [84]. These

controllers in turn rely on information regarding the current state of the system, which

are in turn derived from sensor measurements. For example, sensors are utilised in the

petroleum industry to monitor fluids being transported in pipelines and detect leaks [1].

Sensors and their periphery however incur steep costs. Additionally, some states may have

no physical meaning or are impossible to measure. Hence states that cannot be measured

have to be estimated using a state observer, which would calculate these unmeasured

states based on information derived from measured inputs and outputs.

The chapter first discusses the concept and development of the state observer into

more advanced methods to estimate information regarding the system in §2.2. The slid-

ing mode observer (SMO) is a type of observer that has several advantages over other ob-

servers, resulting in the field receiving intense research interest and development, which

will also be detailed in §2.3. More advanced techniques utilising the SMO, such as for ro-

bust fault reconstruction and SMOs in cascade will also be introduced. Finally, in §2.4, the

descriptor system representation, the concept of infinite observability as well as observer

schemes for non-infinitely observable descriptor systems (NIODS) will be discussed in

detail as part of a comprehensive literature survey for the work underlying this thesis.
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2.2 State estimation

A popular alternative to utilising hardware-based methods (i.e. sensors) for state measure-

ment is the use of software-based methods. One of the most established software-based

methods for state measurement is the use of an observer scheme. The state observer is

essentially a simulation of a dynamical model representing the system, from which esti-

mates of the states are derived. The observer was proposed by Luenberger [80], where

the unmeasured states are estimated from the measured input and output signals. The

system and observer are fed the same input signals, and their outputs are compared and

the differences constitute the output estimation error, which is fed back into the observer

(which is in turn designed such that the state estimation error goes to zero). To illustrate

the concept of a Luenberger observer, consider the following linear-time invariant (LTI)

system modelled using the state-space representation:

ẋ = Ax +Bu, (2.1)

y = Cx, (2.2)

where A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n are known and constant. The vectors x, u, and

y represent the states, inputs, and outputs, respectively. Only u and y are measurable, and

it is desired to estimate x. The Luenberger observer for system (2.1)–(2.2) has the form

˙̂x = Ax̂ +Bu −Ley, (2.3)

where x̂ is the measurable estimate of x, L is a design matrix, and ey = Cx̂− y. The state

estimation error is defined to be e = x̂ − x. By combining (2.1)–(2.3), the following error

system (which characterises the performance of the observer) is obtained:

ė = (A −LC) e. (2.4)

Hence, by choosing L such that the eigenvalues of A − LC (denoted as λ (A −LC))

have negative real parts, then e converges to zero, which implies x̂ asymptotically esti-

mates x (i.e. x̂ → x as t →∞). A schematic of the Luenberger observer (2.3) for system

(2.1)–(2.2) is shown in Figure 2.1.
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u
B

+ ẋ
∫

x
C

A

+

y

System

−

B
+ ˙̂x

∫
x̂

C

A
x̂

+

ŷ

+

ey
L

−

Observer

Figure 2.1: Schematic diagram of the Luenberger observer.

The states estimated by the observer can then be used in the controller to regulate the

performance of the system. This observer-controller methodology has been widely stud-

ied: Muehlebach and Trimpe [88] designed a distributed control system for a multi-agent

network, where each agent has its own observer-controller pair to monitor a part of the

system and provide feedback to each part. Sadelli et al. [111] presented a 2D observer-

based control scheme for a magnetic microbot navigating in a cylindrical blood vessel.

Chen et al. [21] studied an observer-based control scheme for multi-input multi-output

cascade nonlinear systems. Jafari et al. [68] investigated the use of a Lyapunov observer-

controller in haptic interfaces and teleoperation systems. Di Giorgio et al. [37] designed

a defence strategy against destabilising cyberphysical systems and power systems con-

sisting of observers monitoring the system and reconstructing attack vectors, and then

feeding that information into controllers that provide feedback that mitigates the effects

of the attack. Chen et al. [25] proposed an observer-based control system for a class of

discrete switched stochastic systems with mixed delays. Gholami and Binazadeh [56]

presented an observer-based control scheme for nonlinear one-side Lipschitz systems af-

fected by time delays. The observer-based controller methodology has also been applied

onto many other practical systems, such as boost converters [27], multi-link flexible ma-
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nipulators [146], and DC motors [74].

2.2.1 Robust state estimation

The representation in (2.1)–(2.2) is ideal; practical systems cannot be represented us-

ing that representation due to mismatches between the actual system and the mathemat-

ical model (upon which the observer is designed). These mismatches could arise due to

parasitic dynamics, time-varying parameters, and external influence. A practical system

would thus be better represented as:

ẋ = Ax +Bu +Mf, (2.5)

y = Cx, (2.6)

where f ∈ Rq represents the unknown input. A well-established method to estimate the

states of (2.5)–(2.6) is the unknown input observer (UIO), which is a linear observer that

has been investigated thoroughly [12, 15, 31, 33, 65]. An UIO by Darouach et al. [36]

has the structure:

ż = Nz +Hy +Gu, (2.7)

x̂ = z − Fy, (2.8)

where z, x̂ ∈ Rn, and (N,G,H,F ) are matrices that can be chosen to satisfy design

criteria, and hence constitute design freedom. The design process for these matrices is as

follows. Substituting (2.8) into (2.7) yields

P ˙̂x = (NP +HC) x̂ +Gu, (2.9)

where P = In + FC. Then define the error e = P (x̂ − x). Therefore, pre-multiplying

(2.5) with P and then subtracting it from (2.9) yields the error system for UIO (2.7)–(2.8)

(which describes the performance of the UIO):

ė = Ne + (NP +HC − PA)x + (G − PB)u − PMf, (2.10)

For error e to converge independently of f (and therefore x̂ → x), P needs to be

chosen such that f does not influence error (2.10), and N must be designed to be stable.



Ch. 2. Literature review 10

To achieve this, let N and P be given by the following:

N = PA −KC, PM = 0, (2.11)

where F ∈ Rn×p is a design matrix that is chosen such that the eigenvalues of N have

negative real parts, i.e. λ (N) ∈ C−. Then, to remove the influence of x,u on e, the

remaining terms in (2.10) are calculated as:

H =K(Ip +CF ) − PAF, (2.12)

F = −M(CM)† + Y (Ip − (CM)(CM)†), (2.13)

G = PB, (2.14)

where (CM)† is the Moore-Penrose inverse for CM , i.e.

(CM)†(CM) = Iq, (2.15)

and Y is an arbitrary matrix of appropriate dimension. Since PM = 0 from (2.11), the

error equation (2.10) is no longer affected by the unknown input f , thus guaranteeing ro-

bust state estimation. Thus the design process can be summarised as: choose (P,H,F,G)

such that (2.11)–(2.14) are satisfied. It is also found that (P,H,F,G) can be designed to

satisfy (2.11)–(2.14), and K can be chosen such that N in (2.11) is stable, if and only if

the following necessary and sufficient conditions hold:

• rank(CM) = rank(M),

• all invariant zeros of (A,M,C) (if any) must be stable.

Besides UIOs, robust state estimation has been carried out using other methods as

well, such through secure state estimation [64, 115] and Kalman filters [57, 69, 76].

2.3 The sliding mode observer

The application of sliding mode techniques onto observer design is an ongoing research

effort with widespread attention. Sliding mode techniques first arose out of the variable

structure control system (VSCS) methodology [134]. Unlike other observers where the
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output estimation error is fed back only linearly, the sliding mode observer (SMO) also

feeds the output estimation error back via a non-linear switching function. This differ-

ence results in the SMO being able to force its output estimation error to zero in finite

time (unlike in linear observers where the output estimation error converges asymptoti-

cally). While the dynamics of the system are constrained onto this sliding manifold, the

induced reduced-order motion has been shown to be insensitive to uncertainties implicit

in the input channel [46]. This robustness has been attributed to the non-linear switching

function [121]. The SMO was first introduced by Utkin in 1977 [133], and since then has

garnered intense research interest. Slotine et al. [118, 119] later fed the output estimation

error in both a linear and a discontinuous manner, with the aim of maximising the sliding

patch [14], which is the region in which the SMO can attain sliding motion. Walcott and

Zak [139, 140] later identified the conditions for the existence of the SMO, as well as pro-

posed a set of design procedures. Edwards and Spurgeon [44] improved on these works

by proposing a simpler design method (where the location of the poles of the observer can

be chosen) as well as investigating the necessary and sufficient conditions for robust state

estimation in terms of the original system matrices. Tan and Edwards [127] then devel-

oped a systematic pole placement methodology using Linear Matrix Inequalities (LMIs),

where the poles of the SMO can be assigned based on required specifications. Yan and

Edwards [149, 150] extended these findings into Lipschitz non-linear systems. Fridman

[51, 116] investigated the use of higher-order sliding modes to expand the applicabil-

ity of SMOs into systems with relative degree higher than one with respect to the faults

(that is, ẏ does not explicitly contain f [67]). In addition to being a very active area of

research, SMOs have also been applied onto various practical systems, such as monitor-

ing the battery state of charge for electric vehicles [23], flight control of a quadrotor [9],

state estimation for synchronous generators [108] and piezoeletric actuator systems [2],

fault-tolerant control schemes for over-actuated aircraft [105], hypersonic missiles in the

terminal phase [162], and for a network of thermal and hydroelectric power plants [107].

There has been extensive work into comparing the performance of SMOs with other

types of observer. Walcott et al. [138] reviewed four types of non-linear state observation
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techniques: a Lie-algebraic approach to observer canonical form, an extended linearisa-

tion approach, a Thau observer, and a SMO. It was found that the SMO gave the best

performance from the comparative example considered. Chen and Dunnigan [20] com-

pared the performance of the SMO with the standard and extended Kalman filters. The

SMO was found to perform better than the Kalman filters on several performance metrics:

it was more robust towards uncertainties, simpler to implement, the dynamic performance

can be altered, and no knowledge of the noise statistics was required. Edwards and Tan

[42, 47] compared the SMO and UIO; it was found that the UIO had more restrictive

existence conditions when compared to the SMO. Furthermore, the SMO was found to

have performed better, and has a well-defined design methodology allowing the optimal

choice of observer design parameters. Zhang [166] investigated the performance of the

Luenberger observer, SMO, and extended Kalman filter on both simulated and actual sets

of sensorless induction machine drives. It was found that the SMO was more practically

applicable, and performed the best in most aspects out of the three schemes.

2.3.1 Sliding mode observers for unknown input estimation

Aside from being robust towards uncertainties, the SMO is capable of reconstructing (i.e.

providing an estimate of) the unknown input. This is especially useful when detecting in-

cipient signals or slow drifts that may not be immediately obvious. By using the principle

of the equivalent output injection signal, Edwards et al. [42] developed a scheme that uses

the SMO for unknown input estimation. This ability is useful in reconstructing unpermit-

ted deviations (which constitute unknown inputs) occurring in properties or parameters

of the system from acceptable or standard conditions (hereafter referred to as faults) [66].

Thus SMOs are widely used for fault detection, identification, and reconstruction, where

faulty behaviour can be diagnosed which is vital for corrective action to be taken in a

timely manner [103]. Comparing this to conventional fault detection methods using fil-

ters, where a residual is generated from the difference between measured values of the

variables and their estimates [11] to raise alarms above a certain threshold is reached (and

a fault is said to have occurred) [72], it is obvious that SMOs provide more information
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regarding the fault, allowing for more precise corrective action to be taken. It was also

found that the SMO performs better than the UIO for fault reconstruction, and requires

less restrictive conditions [47].

Research into utilising SMOs for fault reconstruction is very active across many fields:

for example, fault reconstruction in non-linear systems [147, 149, 150], in terminal sliding

mode schemes [86, 87, 130], and in SMOs with higher order sliding modes [51, 116].

2.3.2 Robust fault reconstruction

Recall that the fault reconstruction scheme is designed based on the mathematical model

of the system in (2.5)–(2.6). In addition to the fault signal f (which we want to recon-

struct), there may also be other modelling uncertainties [75], parasitic dynamics, param-

eter variations [154], or external influences (hereafter collectively referred to as distur-

bances). The system would be therefore better represented as

ẋ = Ax +Bu +Mf +Qξ, (2.16)

y = Cx, (2.17)

where ξ ∈ Rh represents the disturbances, which are unknown. These disturbances may

corrupt the fault reconstruction, resulting in false alarms being raised, or even worse, the

effects of the fault being masked so the fault remains undetected [3]. Tan and Edwards

[128] proposed a method using linear matrix inequalities (LMIs) and the Bounded Real

Lemma [26, 52] to design the gains of the observer such that the effect of ξ on the recon-

struction of f is bounded by a positive scalar, thus achieving robust fault reconstruction.

This method has proven popular and has been applied for fault reconstruction in aircraft

and aerospace systems [7, 82, 105].

2.3.3 Sliding mode observers in cascade

A major limitation of the scheme by Tan and Edwards [128] was that the SMO scheme

required the system to have relative degree of one with respect to the faults (that is, ẏ

explicitly contains f [67]). This is due to the design of the SMO: the dynamics of f must

be fully captured by the switching term. Components of f which are not captured by the
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sliding term (i.e. faults which affect only non-output states) cannot be reconstructed with

a single SMO.

To circumvent this problem, Tan and Edwards [126] presented two methods based on

the SMO scheme by [44], where two SMOs in cascade are used to reconstruct faults. It

was found that signals from the first observer formed the output of an analytical system

that treats the faults in the original system as unknown inputs. Thus the second SMO was

used to reconstruct the faults. Ng et al. [91, 92] (shown in Figure 2.2) used two SMOs

in cascade for robust fault reconstruction in systems with relative degree higher than one

with respect to f (that is, ẏ does not explicitly contain f [67]).

u

ξ

f System
y Primary SMO ν Scaling,

Filter

ȳ Secondary

SMO

f̂

Observer Scheme

Figure 2.2: Schematic diagram of the scheme proposed by Ng et al. [91].

Thus the scheme using SMOs in cascade is applicable to more systems than schemes

using only one SMO (which require the system to be relative degree one with respect to

f ) [125]. Tan et al. [6, 93, 94, 129] later extended the findings to include an arbitrary

number of SMOs. It was found that the existence conditions of the scheme could be

relaxed by increasing the number of SMOs in cascade (up until a certain number which

is less than or equal to the number of states in the original system). Edwards et al. [43]

perform fault reconstruction for a civil aircarft model in the presence of uncertainties

(arising due to aerodynamic derivatives) utilising three SMOs in cascade. Aside from

fault reconstruction, SMOs in cascade have also been investigated for functional state

estimation [71]. Zhang et al. [164] used two SMOs in cascade to estimate the load torque

and its derivative for feedback into a proportional-integral sliding mode controller for the

servo of a permanent magnet synchronous motor system.



Ch. 2. Literature review 15

2.4 Descriptor systems

While the state-space representation is a simple way to represent systems containing only

differential equations, there are systems that also contain algebraic equations representing

links between subsystems of differential equations [38, 41]. Both types of equations of-

ten appear in systems where variables are interrelated but evolve based on different time

domains [81, 90]. These systems are better represented by the descriptor system repre-

sentation (also known as singular systems, generalised systems, or differential algebraic

systems [38]), with the structure

Eẋ = Ax +Bu, (2.18)

y = Cx, (2.19)

where E ∈ Rn×n is generally rank-deficient, i.e. rank(E) < n. In the case where E = In,

it can be seen that (2.18)–(2.19) reduces to the regular state-space system representation

in (2.1)–(2.2), thus showing that descriptor systems are more general than the standard

state-space [81]. Descriptor systems exist across many different domains. Duan [41]

showed several examples where constrained mechanical systems, electric circuits, and

a robot arm system are represented as descriptor systems. Chan et al. [17] modelled a

chemical mixing tank as a descriptor system, where the volumetric flow rates and con-

centrations are related via mass balances. Yang et al. [153] used the descriptor system

representation to model the charge-flux description of a RLC circuit containing a capaci-

tor with non-linear characteristics. In the field of population ecology, descriptor systems

have been used to represent the Leslie population growth model [40]. Ding et al. [38] in-

vestigated the uniform exponential admissibility problem for switched descriptor systems

with time-delays, which is prevalent in electrical networks. Cantó et al. [13] studied the

relationship between the positive N−periodic descriptor system in discrete time and its

associated invariant systems, which could be used to model impulsive behaviour in bio-

logical phenomena. In economics, Gandolfo [53] describes the Leontief dynamic model

of multi-sector economy using the descriptor system representation. Descriptor systems

have also been used extensively in the field of fuzzy logic to represent Takagi-Sugeno
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fuzzy descriptor systems [165]. Kawai and Hori [70] presented a method to convert reg-

ular continuous-time descriptor systems with initial conditions consistent with its input

into the discrete-time domain using a general mapping method.

2.4.1 Observers and observability for descriptor systems

The concepts of observability and detectability are central for observer designs because

these concepts dictate the existence of the observer scheme. Unlike state-space systems,

descriptor systems have multiple measures of observability [30]. Apart from the finite

dynamic modes that also exist in a regular state-space system, descriptor systems also

contain infinite dynamic modes as well as infinite non-dynamic modes [49]. These infi-

nite dynamic modes may generate undesired impulse behaviour, which have direct impli-

cations on the observability of the descriptor system. These impulsive behaviours were

first studied by Verghese et al. [137] and Yip and Sincovec [159], and these findings

were extended into the time domain by Cobb [29] using distribution theory. The effect of

impulsive behaviours on the observability of descriptor systems received much research

attention [63, 89, 114, 123, 141].

The observability of a descriptor system is generally governed by the observability of

its finite and infinite dynamic modes [62], while the infinite non-dynamic modes do not

have known implications [49]. An established criterion for finite observability is

rank

⎡⎢⎢⎢⎢⎢⎣

sE −A
C

⎤⎥⎥⎥⎥⎥⎦
= n, (2.20)

while the criterion for infinite observability is

rank

⎡⎢⎢⎢⎢⎢⎣

E

C

⎤⎥⎥⎥⎥⎥⎦
= n. (2.21)

Finite observability is necessary (but not sufficient) for the existence of a Luenberger

observer [61], while satisfying both criteria implies that the system is completely (or glob-

ally) observable [24]. This assumption is quite common: for example, global observabil-

ity is assumed in work on adaptive observers for a class of multi-input multi-output linear

descriptor systems [5], for sensor fault reconstruction in non-linear singularly perturbed
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systems [32], in designing a non-linear Luenberger-like observer for non-linear descriptor

systems [168], for fault diagnosis [58] and estimation [144] in linear parameter varying

descriptor systems affected by time delays, in an active fault tolerant control scheme based

on a proportional-derivative extended state observer for linear parameter varying descrip-

tor systems [113], and in a Takagi-Sugeno observer scheme for discrete-time non-linear

descriptor systems [48]. This assumption is also made in fault reconstruction schemes for

state-space systems that re-express the system as a descriptor system by augmenting the

original state and fault vectors. These schemes make assumptions that result in the re-

expressed descriptor system being completely observable. This method has been applied

in many schemes, such as for state and fault reconstruction in a class of Itô stochastic

systems [78], in Lipschitz non-linear systems affected by actuator and sensor faults and

uncertainties [16, 120], and in discrete-time systems [39, 59, 79].

A SMO to estimate states and faults for descriptor systems was first developed by

Yeu et al. [156, 157]. Yu and Liu [160] then investigated the conditions required for the

feasibility of the observer by Yeu et al. [157]. It was found that the observer by Yeu et al.

requires (2.21) to be satisfied, i.e. the system needs to be infinitely observable.

2.4.2 Non-infinitely observable descriptor systems

While only finite observability is generally necessary for the existence of an observer

[61], infinite observability is also usually assumed to satisfied (i.e. (2.21) holds). This ad-

ditional requirement may be restrictive, as it stipulates that the output distribution matrix

C needs to have a certain rank and structure (to satisfy (2.21)). This physically trans-

lates to the system requiring a certain number of sensors or measured outputs; which

increases the cost and complexity of the system. Even though infinite observability

is a restrictive assumption, it is still assumed in many different work in the literature

[5, 34, 39, 54, 55, 58, 77, 78, 104, 143, 153, 156, 157, 160, 167, 168]. Thus, infinite

observability and non-infinitely observable descriptor systems (NIODS) form an impor-

tant frontier in current observer research [122], and has garnered considerable attention

recently. Yang et al. [151] described the design for non-linear generalised proportional-
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integral (PI) and non-linear generalised proportional-integral-derivative (PID) observers

for a class of non-linear NIODS. Zerrougui et al. [163] designed H∞ observers for a

class of Lipschitz continuous non-linear descriptor systems. Yang et al. [152] proposed

a robust observation scheme for different classes of descriptor systems such that the non-

linearities are slope-restricted using H∞ observers designed using LMIs. Darouach et al.

[35] proposed a functional observer for NIODS designed using LMIs in both continuous

time and discrete time. These schemes however are not capable of actuator fault recon-

struction. Nikoukhah et al. [97] investigated the design of observers for general descriptor

systems where an augmented descriptor system treating faults as states was formulated,

so the problem becomes a standard observer problem. The feasibility of the scheme was

analysed in terms of the augmented system matrices, but no analysis was carried out in

terms of the original system matrices. Darouach et al. [4, 102] have studied various forms

of observer design for NIODS, but these schemes all require the fault to be constant. Gao

and Ding [55] presented a scheme to estimate states and faults in Lipschitz non-linear

NIODS. Ying et al. [158] investigated fault reconstruction for proportional-derivative

(PD) observer design for descriptor systems affected by faults and disturbances. Using

a disturbance observer Yao et al. [155] proposed an anti-disturbance control scheme for

non-infinitely observable descriptor Markovian jump systems. These schemes however

assume that the fault is piecewise continuous. It can therefore be established that exist-

ing observer schemes for NIODS utilising linear observers either do not consider fault

reconstruction, or place restrictive assumptions on the dynamics of the faults that can be

reconstructed.

The SMO for NIODS has also attracted much research interest: Ooi et al. [100] first

proposed a technique to re-express certain states of a NIODS as unknown inputs, thereby

reformulating the NIODS as an infinitely observable reduced-order system compatible

with the observer by Yeu et al. [157]. Ooi et al. [101] later built on this technique that also

re-expresses some states in terms of other signals to reduce the number of states treated as

unknown inputs, which reduces the number of required measured outputs and increasing

the applicability of the scheme. Ooi et al. [99] and Yu et al. [161] later developed
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schemes utilising SMOs in cascade to relax the conditions required for the schemes to

be feasible. Mellucci et al. [85] developed a second-order multi-variable super-twisting

SMO to reconstruct a class of load-altering faults in a (non-infinitely observable) power

network. These five schemes however did not consider the effects of disturbances on the

fault reconstruction, which could result in false alarms being raised, or even mask the

effects of the fault. Thus one direction underlying the work in the thesis is the design of

the gains (which constitute design freedom) in the SMO such that the fault reconstruction

is robust towards disturbances.

2.5 Conclusion

The concept of an observer, which underlies the entirety of the work presented in this

thesis, has been detailed. State estimation is an economical method to derive information

regarding unmeasured states. Robust state estimation was then established. A type of

observer, namely the sliding mode observer, was introduced. It has been shown (from

the literature) that the sliding mode observer outperforms linear observers, and are ro-

bust towards uncertainties. This leads the sliding mode observer being utilised to not

only estimate states, but to also reconstruct unknown inputs. The sliding mode observer

has then been developed for use in robust fault reconstruction and cascaded observer

schemes. Next, the descriptor system (which is a more general representation compared

to the state-space representation) and its multiple measures of observability were intro-

duced. Many observer schemes assume that the system is infinitely observable, which

may be a restrictive assumption as they potentially require more sensors to be feasible.

Existing sliding mode observer schemes for non-infinitely observable descriptor systems

are however scarce, are not robust towards disturbances, and/or assume that the fault has

certain dynamics. This thesis thus aims to contribute in this area by developing sliding

mode observer schemes capable of robust fault reconstruction for a class of non-infinitely

observable descriptor systems with more relaxed feasibility conditions than those found

in the literature.



Chapter 3

The sliding mode observer for descriptor systems

3.1 Introduction

The sliding mode observer (SMO) [8] is a type of observer that utilises two forms of

feedback (both of which are dependent on the output estimation error): the first form of

feedback is linear, while the second is a nonlinear discontinuous switching term [136].

The SMO is able to estimate states, even if the model of the system (which is used to

design the observer) is inaccurate, or if the system is influenced by unknown inputs or

disturbances [42, 116]. The aim of this chapter is to describe existing SMO schemes for

descriptor systems, which will form the basis for the remainder of the thesis.

This chapter first presents the Yeu-Kim-Kawaji SMO (otherwise known as the ob-

server by Yeu et al.) [157], which is a SMO scheme for estimating states and faults in

a descriptor system, subject to the system being infinitely observable in §3.2. Two SMO

schemes which circumvent this requirement (and therefore estimate the states and faults

for non-infinitely observable descriptor systems (NIODS)) are then analysed in detail in

§3.3. Finally, a simulation example to demonstrate the scheme to estimate states and

faults in a NIODS is included in §3.4.

3.2 SMO for descriptor systems

The proofs in this subsection are original work which underlie the work by Yeu et al.

[157] presented in §3.2.1. Consider the following descriptor system:

Eẋ = Ax +Bu +Mf, (3.1)

y = Cx, (3.2)
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where E,A ∈ Rn×n, B ∈ Rn×m, M ∈ Rn×q, and C ∈ Rp×n. The vectors x, u, y,

and f represent the states, measurable inputs, outputs, and faults, respectively. Only u

and y are measurable. Assume without loss of generality that E is rank-deficient, i.e.

rank(E) = r < n, and that M and C are full-column rank and full-row rank, respectively,

i.e. rank(M) = q, rank(C) = p. The fault signal f represents abnormal behaviour in

the system that needs to be estimated to facilitate remedial action. The following lemma

introduces the descriptor system equivalent of similarity transformations, which would be

used to transform system (3.1)–(3.2) into a form facilitating further analysis in Proposi-

tion 3.1.

Lemma 3.1 Let state equation (3.1) be pre-multiplied by T1, state x be transformed such

that x ↦ T2x, and fault f be transformed such that f ↦ T3f , where T1, T2, and T3

are non-singular matrices (referred to hereafter as a state equation transformation, a

state transformation, and a fault transformation, respectively). System (3.1)–(3.2) will be

transformed into the form

(T1ET
−1
2 )(T2ẋ) = (T1AT

−1
2 )(T2x) + (T1B)u + (T1MT −1

3 )(T3f), (3.3)

y = (CT −1
2 )(T2x). (3.4)

Note that the matrices (E,A,B,M,C) have been transformed. These transforma-

tions are used to change these matrices into forms that are more convenient for analysis

and design, but preserve the dynamic properties of the overall system (3.1)–(3.2). It can

be seen that the inputs and outputs of the system remain unchanged. The transfer func-

tion G(s) of a descriptor system is given by G(s) = C(sE −A)−1B. Therefore, if T1, T2,

and T3 are non-singular, the transfer functions of systems (3.1)–(3.2) and (3.3)–(3.4) are

identical. Thus, the dynamic properties such as the inputs, outputs, finite poles (the fi-

nite values of s ∈ C satisfying ∣sE − A∣ = 0), and dynamical order (the ranks of E and

T1ET −1
2 ) of both systems are the same, and systems (3.1)–(3.2) and (3.3)–(3.4) are said

to be equivalent. ♯

Introduce a non-singular matrix Ta =
⎡⎢⎢⎢⎢⎢⎣

NT
C

C

⎤⎥⎥⎥⎥⎥⎦
, where NC spans the null-space of C, i.e.
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CNC = 0. Hence

E ↦ ET −1
a = [Ea1 Ea2] , C ↦ CT −1

a = [0 Ip] . (3.5)

Proposition 3.1 Assume that

rank

⎡⎢⎢⎢⎢⎢⎣

E

C

⎤⎥⎥⎥⎥⎥⎦
= n, (3.6)

that is, system (3.1)–(3.2) is infinitely observable (the satisfaction of (3.6) will be ad-

dressed later in Proposition 3.3). Assumption (3.6) implies rank (Ea1) = n− p (i.e. Ea1 is

full-column rank) and hence there exists a non-singular matrix Tb such that

TbEa1 =
⎡⎢⎢⎢⎢⎢⎣

In−p

0

⎤⎥⎥⎥⎥⎥⎦
, TbM =

⎡⎢⎢⎢⎢⎢⎣

M1

M2

⎤⎥⎥⎥⎥⎥⎦
, (3.7)

where M2 ∈ Rp×q. Assume also that

rank(M2) = q, (3.8)

that is, M2 is full-column rank (the satisfaction of (3.8) will also be addressed later in

Proposition 3.3). Then there exist transformations introduced in Lemma 3.1 for system

(3.1)–(3.2) such that system (3.1)–(3.2) would have the following structure:
⎡⎢⎢⎢⎢⎢⎣

In−p Ē1

0 Ē2

⎤⎥⎥⎥⎥⎥⎦
ẋ =

⎡⎢⎢⎢⎢⎢⎣

Ā1 Ā2

Ā3 Ā4

⎤⎥⎥⎥⎥⎥⎦
x +

⎡⎢⎢⎢⎢⎢⎣

B̄1

B̄2

⎤⎥⎥⎥⎥⎥⎦
u +

⎡⎢⎢⎢⎢⎢⎣

0

M̄2

⎤⎥⎥⎥⎥⎥⎦
f, (3.9)

y = [0 Ip]x, (3.10)

Ē2 =
⎡⎢⎢⎢⎢⎢⎣

E21

E22

⎤⎥⎥⎥⎥⎥⎦
, Ā3 =

⎡⎢⎢⎢⎢⎢⎣

A31

A32

⎤⎥⎥⎥⎥⎥⎦
, M̄2 =

⎡⎢⎢⎢⎢⎢⎣

Iq

0

⎤⎥⎥⎥⎥⎥⎦

↕ q

↕ p − q
, x =

⎡⎢⎢⎢⎢⎢⎣

x1

y

⎤⎥⎥⎥⎥⎥⎦

↕ n − p
↕ p

, (3.11)

where Ā1 = A1 −M1A31, the partitions of Ē2, Ā3, M̄2 have the same row dimensions and

the dimensions of (E,A) are conformable to the partitions of x. ♯

Proof Using (3.5) and (3.7), the matrices E and A are transformed into

TbET
−1
a =

⎡⎢⎢⎢⎢⎢⎣

In−p E1

0 E2

⎤⎥⎥⎥⎥⎥⎦
, TbAT

−1
a =

⎡⎢⎢⎢⎢⎢⎣

A1 A2

A3 A4

⎤⎥⎥⎥⎥⎥⎦
, (3.12)

where A1 ∈ R(n−p)×(n−p) and A4 ∈ Rp×p. Recall from (3.8) that M2 is full-column rank -

hence apply QR decomposition on M2 such that

Tc1M2 =
⎡⎢⎢⎢⎢⎢⎣

Iq

0

⎤⎥⎥⎥⎥⎥⎦
, (3.13)
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where Tc1 is non-singular. Finally, define the non-singular matrix

Tc =
⎡⎢⎢⎢⎢⎢⎣

In−p −M1 0

0 Ip

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

In−p 0

0 Tc1

⎤⎥⎥⎥⎥⎥⎦
. (3.14)

Therefore, apply the state equation transformation TcTb and the state transformation

Ta onto system (3.1)–(3.2) such that

E ↦ (TcTb)ET −1
a , A↦ (TcTb)AT −1

a , B ↦ (TcTb)B,

M ↦ (TcTb)M, C ↦ CT −1
a .

(3.15)

It can be seen from the structures of E in (3.12) and M2 from (3.13) that the sys-

tem in the coordinates of (3.15) is identical to the structures given in (3.9)–(3.11), thus

completing the proof. ∎

The SMO by Yeu et al. [157] is now designed based on (E,A,M,C) and driven by

u and y to estimate x and f .

3.2.1 The SMO by Yeu et al.

The work in this subsection has been presented in [157]. The SMO by Yeu et al. [157] to

estimate the states and faults for descriptor systems has the following structure:

ż = (RA −GlC) z −RBu − (Gl (Ip −CV ) +RAV ) y −Gnν, (3.16)

x̂ = V y − z, (3.17)

ν = −ρ ey
∥ey∥

, ey = Cx̂ − y (3.18)

where R ∈ Rn×n is invertible, V ∈ Rn×p, and ρ ∈ R+. The gain matrices Gl,Gn ∈ Rn×p are

chosen to have the structures

Gl =
⎡⎢⎢⎢⎢⎢⎣

A2 +R2A4

H +R4A4

⎤⎥⎥⎥⎥⎥⎦
, Gn =

⎡⎢⎢⎢⎢⎢⎣

0

Gn2

⎤⎥⎥⎥⎥⎥⎦

↕ n − p
↕ p

, (3.19)

where H ∈ Rp×p > 0 and Gn2 = GT
n2 > 0 is non-singular. Pre-multiply (3.9) with R and

add V ẏ to both sides to obtain

REẋ + V ẏ = (RE + V C) ẋ = RAx +RBu +RMf + V ẏ. (3.20)
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Suppose RE + V C = In. Equation (3.20) becomes

ẋ = RAx +RBu +RMf + V Cẋ. (3.21)

Corollary 3.1 If R,V from (3.16)–(3.17) are chosen such that RE + V C = In, then R,V

will have the following structures:

R =
⎡⎢⎢⎢⎢⎢⎣

In−p R2

0 R4

⎤⎥⎥⎥⎥⎥⎦
, V =

⎡⎢⎢⎢⎢⎢⎣

− (Ē1 +R2Ē2)

Ip −R4Ē2

⎤⎥⎥⎥⎥⎥⎦
, (3.22)

where ∣R4∣ ≠ 0. ♯

Proof Since rank

⎡⎢⎢⎢⎢⎢⎣

E

C

⎤⎥⎥⎥⎥⎥⎦
= n (from (3.6)), R and V can be chosen such that

[R V ]
⎡⎢⎢⎢⎢⎢⎣

E

C

⎤⎥⎥⎥⎥⎥⎦
= In, (3.23)

that is, [R V ] is chosen to be the Moore-Penrose inverse of

⎡⎢⎢⎢⎢⎢⎣

E

C

⎤⎥⎥⎥⎥⎥⎦
. Partition the matrices

R and V generally as follows:

[R V ] =
⎡⎢⎢⎢⎢⎢⎣

R1 R2 V1

R3 R4 V2

⎤⎥⎥⎥⎥⎥⎦
, (3.24)

where R1 ∈ R(n−p)×(n−p) and R4 ∈ Rp×p. By substituting the structures of E and C from

(3.9)–(3.11), and R and V from (3.24) into (3.23), it can be seen R and V would take the

forms given in (3.22). ∎

Then substituting z from (3.17) into (3.16) yields

(V ẏ − ˙̂x) = (RA −GlC) (V y − x̂) −RBu − (Gl (Ip −CV ) +RAV ) y −Gnν. (3.25)

Since RE + V C = In, (3.25) becomes

˙̂x = (RA −GlC) x̂ +RBu +GlCx +Gnν + V Cẋ. (3.26)

Define the state estimation error as follows:

e = x̂ − x =
⎡⎢⎢⎢⎢⎢⎣

e1

ey

⎤⎥⎥⎥⎥⎥⎦

↕ n − p
↕ p

, (3.27)
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Therefore, subtracting (3.21) from (3.26) yields the following error system (which

characterises the performance of the observer):

ė = (RA −GlC) e −RMf +Gnν. (3.28)

Furthermore, let R2 in (3.22) have the structure

R2 = [0 L] , (3.29)

where L ∈ R(n−p)×(p−q). Substitute for Gl and Gn from (3.19) and R2 from (3.29) into

(3.28) and partition according to (3.9)–(3.10) to obtain

⎡⎢⎢⎢⎢⎢⎣

ė1

ėy

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

Ā1 +LA32 0

R4Ā3 −H

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

e1

ey

⎤⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎣

0

R4M̄2

⎤⎥⎥⎥⎥⎥⎦
f +

⎡⎢⎢⎢⎢⎢⎣

0

Gn2

⎤⎥⎥⎥⎥⎥⎦
ν. (3.30)

Proposition 3.2 Suppose there exists a matrix P = P T > 0 that satisfies

P (RA −GlC) + (RA −GlC)TP < 0, (3.31)

where P =
⎡⎢⎢⎢⎢⎢⎣

P1 0

0 G−1
n2

⎤⎥⎥⎥⎥⎥⎦
, P1 ∈ R(n−p)×(n−p). If ρ in (3.18) is chosen as follows:

ρ ≥ ∥G−1
n2RM∥α + ζ, α ≥ ∥f∥max, ζ > 0, (3.32)

then an ideal sliding motion (ey, ėy = 0) takes place in finite time. ♯

Proof The proof of convergence will consist of two parts: the first part aims to show that

the state estimation error e is quadratically stable. Define a Lyapunov candidate function

W = eTPe > 0. Differentiating W with respect to time yields

Ẇ = eT (P (RA −GlC) + (RA −GlC)T P ) e − 2eTPRMf + 2eTPGnν. (3.33)

Using the structure of P and (3.30), it can be seen that

PRM = CTG−1
n2RM, PGn = CT . (3.34)

By using (3.31) and (3.34), and by setting ρ to satisfy (3.32), equation (3.33) becomes

Ẇ ≤ −2∥ey∥ (ρ − ∥G−1
n2RM∥α) ≤ −2ζ∥ey∥ < 0 for e ≠ 0, (3.35)
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which therefore shows e is quadratically stable. The next (and remaining) portion of the

proof aims to show how sliding motion (ey, ėy = 0) is induced. Define another Lyapunov

candidate function Wy = eTyG−1
n2ey > 0, where

G−1
n2H +HTG−1

n2 > 0. (3.36)

Differentiating Wy with respect to time yields

Ẇy = −eTy (G−1
n2H +HTG−1

n2) ey + 2eTyGn2R4(Ā3e1 − M̄2f) + 2eTy ν

≤ 2∥ey∥∥G−1
n2R4Ā3e1∥ − 2∥ey∥ (ρ − ∥G−1

n2R4M̄2∥α)

≤ −2∥ (ζ − ∥G−1
n2R4Ā3e1∥) . (3.37)

Since e is quadratically stable, ζ > ∥G−1
n2R4Ā3e1∥ in finite time, and (3.37) becomes

Ẇy ≤ −2ζ0∥ey∥, (3.38)

where ζ0 = ζ − ∥G−1
n2R4Ā3e1∥ > 0. Equation (3.38) is the so-called reachability condition

which implies that ey will converge to zero in finite time (as will be shown after this).

Notice also that

∥ey∥2 = (
√
G−1
n2ey)

T
Gn2 (

√
G−1
n2ey) ≥ λmin (Gn2) ∥

√
G−1
n2ey∥2 = λmin (Gn2)Wy. (3.39)

which implies

Ẇy =
dWy

dt
≤ −2ζ0

√
λmin (Gn2)

√
Wy

⇒ 1√
Wy

dWy ≤ −2ζ0

√
λmin (G−1

n2) dt

∫
0

Wy(t0)

1√
Wy

dWy ≤ ∫
tf

t0
−2ζ0

√
λmin (G−1

n2) dt

tf ≤
1

ζ0

¿
ÁÁÀ Wy(t0)

λmin (Gn2)
+ t0, (3.40)

where t0 is the time when ζ > ∥G−1
n2R4Ā3e1∥ is first achieved, and tf is the time when

sliding motion is attained. Therefore, if the reachability condition (3.38) is satisfied then

ey converges and remains at zero (i.e. ey, ėy = 0), and a sliding motion is deemed to have

occurred. Since tf < ∞, sliding motion will be achieved in finite time, thus proving the

proposition. ∎
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Remark 3.1 Proposition 3.2 implies that Ā1 + LA32 can be made stable. The condition

required to satisfy this assumption would be addressed later in Proposition 3.4. ♯

3.2.1.1 Reconstructing the fault

After sliding motion (ey, ėy = 0) occurs, error system (3.30) reduces into

ė1 = (Ā1 +LA32) e1, (3.41)

0 = R4 (Ā3e1 − M̄2f) +Gn2νeq, (3.42)

where νeq is the equivalent output error injection required to maintain the sliding motion.

Remark 3.2 When sliding motion (i.e. (ey, ėy = 0)) occurs, the switching term ν switches

at high frequency between the values −1 and +1 [116] to maintain the sliding motion. Its

low-frequency component νeq (which is the so-called equivalent output error injection) is

an analytical continuous signal satisfying (3.42) while also maintaining (ey, ėy = 0). It

has been shown that a good approximation of νeq can be obtained by passing ν through a

low-pass filter [133, 142]. ♯

Assume that Ā1 + LA32 is stable, which results in e1 → 0 (the satisfaction of this

assumption will be addressed in Proposition 3.4). Therefore (3.42) becomes

R−1
4 Gn2νeq →M2f. (3.43)

Hence define a measurable signal

f̂ = [Iq 0]Tc1R−1
4 Gn2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Gf

νeq. (3.44)

Recall from (3.13) that Tc1M2 =
⎡⎢⎢⎢⎢⎢⎣

Iq

0

⎤⎥⎥⎥⎥⎥⎦
. Therefore, by combining (3.43)–(3.44), it can

be seen that

f̂ → f, (3.45)

that is, the scheme is able to asymptotically estimate the faults. Furthermore, since e1 → 0

(and ey, ėy = 0) in finite time, the scheme is also able to asymptotically estimate the states

(and estimate the outputs in finite time).
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3.2.2 Existence conditions

The theorem in this portion has been stated by Yu and Liu in [160], but the proofs under-

lying it are original work. The subsection is presented in this manner to ease comparison

with schemes in the later portions of the thesis.

Theorem 3.1 The SMO by Yeu et al. can estimate x and f for system (3.1)–(3.2) if and

only if the following conditions hold:

A1. rank

⎡⎢⎢⎢⎢⎢⎣

E M

C 0

⎤⎥⎥⎥⎥⎥⎦
= n + q,

A2. rank

⎡⎢⎢⎢⎢⎢⎣

sE −A M

C 0

⎤⎥⎥⎥⎥⎥⎦
= n + q ∀ s ∈ C+. ♯

Proof The remainder of this subsection forms the constructive proof for Theorem 3.1. ∎

In the prior subsection, the following assumptions were made during the formulation

of the SMO scheme:

B1. rank

⎡⎢⎢⎢⎢⎢⎣

E

C

⎤⎥⎥⎥⎥⎥⎦
= n in (3.6), so Tb in (3.7) exists such that TbEa1 =

⎡⎢⎢⎢⎢⎢⎣

In−p

0

⎤⎥⎥⎥⎥⎥⎦
,

B2. rank (M2) = q in (3.8) such that Tc1 in (3.13) exists where Tc1M2 =
⎡⎢⎢⎢⎢⎢⎣

Iq

0

⎤⎥⎥⎥⎥⎥⎦
,

B3. Ā1 +LA32 is stable, so error system (3.41)–(3.42) can be reduced into (3.43).

It is therefore of interest to re-express these conditions in terms of the original system

matrices so that designers can know from the outset whether the scheme is applicable.

Proposition 3.3 Condition A1 is necessary and sufficient to satisfy B1–B2. ♯

Proof Using the structures in (3.5), the left-hand side (LHS) of A1 can be simplified as:

rank

⎡⎢⎢⎢⎢⎢⎣

E M

C 0

⎤⎥⎥⎥⎥⎥⎦
= [Ea1 M]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ēm

+p, (3.46)

which (together with the right-hand side (RHS) of A1) implies

rank (Ēm) = n − p + q. (3.47)
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To show the necessity of A1, assume that it does not hold, i.e.

rank (Ēm) < n − p + q. (3.48)

SinceEa1 ∈ Rn×(n−p), (3.48) would imply that it is impossible to attain both rank (Ea1) =

n− p and rank(M) = q (it is possible either condition is met, but never both). This would

in turn imply that it is impossible for both B1–B2 to be satisfied (it is possible either B1

or B2 is still satisfied, but never both), thus proving the necessity of A1.

On the other hand, if A1 is satisfied, since Ēm ∈ Rn×(n−p+q), Ea1 ∈ Rn×(n−p) and p ≥ q,

(3.47) implies rank (Ea1) = n − p (and therefore B1 is satisfied). Hence Tb (which is

non-singular) in (3.7) exists, and the LHS of (3.47) can be simplified into

rank [Ea1 M] = rank (Tb [Ea1 M]) = rank

⎡⎢⎢⎢⎢⎢⎣

In−p M1

0 M2

⎤⎥⎥⎥⎥⎥⎦
= rank (M2) + n − p, (3.49)

which (together with the RHS of (3.47)) implies rank (M2) = q, which shows B2 is also

satisfied. Thus the sufficiency of A1 is shown. ∎

Proposition 3.4 For B3 to be satisfied, A2 is necessary and sufficient. ♯

Proof Expand the LHS of A2 using the structures in (3.9)–(3.11) to obtain

rank

⎡⎢⎢⎢⎢⎢⎣

sE −A M

C 0

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

R(s)

= rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sIn−p − Ā1 sĒ1 − Ā2 0

−A31 sE21 −A41 Iq

−A32 sE22 −A42 0

0 Ip 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.50)

where R(s) is the Rosenbrock matrix of (E,A,M,C), and the values of s that make

R(s) lose rank are the zeros of the system (E,A,M,C) [109]. Further expanding R(s)

yields

rank (R(s)) = rank

⎡⎢⎢⎢⎢⎢⎣

sIn−p − Ā1

A32

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

R2(s)

+p + q. (3.51)

From the Popov-Hautus-Rosenbrock (PHR) rank test [60], if the values of s that make

R2(s) (i.e. the unobservable modes of Ā1) are stable, the pair (Ā1,A32) is said to be de-

tectable - hence A2 is recast as: (Ā1,A32) is detectable.
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Proof of Necessity:

Condition B3 states that Ā1 +LA32 needs to be stable, which implies λ (Ā1 +LA32) < 0,

i.e. (Ā1, LA32) is detectable. Notice that the detectability of (Ā1, LA32) depends on L,

which constitutes design freedom. Hence, the requirement is recast as: matrix L exists

such that (Ā1, LA32) is detectable. From the PHR rank test, if the values of s that make

the following matrix R3(s) lose rank are stable, then (Ā1, LA32) is said to be detectable,

whereby

R3(s) =
⎡⎢⎢⎢⎢⎢⎣

sIn−p − Ā1

LA32

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

In−p 0

0 L

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

sIn−p − Ā1

A32

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

R2(s)

. (3.52)

From (3.52), it follows that rank (R3(s)) ≤ rank (R2(s)). Therefore if a value of

s makes R2(s) lose rank, it will also make R3(s) lose rank, and hence the zeros of

(E,A,M,C) are also the unobservable modes of (Ā1, LA32). This therefore shows A2

is necessary for (Ā1, LA32) to be detectable.

Proof of Sufficiency:

Let U be a matrix containing the generalised right-eigenvectors of Ā1; therefore U−1Ā1U

is a matrix in the Jordan canonical form, where the diagonal elements are the real parts of

the eigenvalues of Ā1 [98]. Pre-multiply R3(s) with

⎡⎢⎢⎢⎢⎢⎣

U−1 0

0 Ip−q

⎤⎥⎥⎥⎥⎥⎦
and post-multiply with

U , i.e.
⎡⎢⎢⎢⎢⎢⎣

U−1 0

0 Ip−q

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

sIn−p − Ā1

LA32

⎤⎥⎥⎥⎥⎥⎦
U =

⎡⎢⎢⎢⎢⎢⎣

In−p 0

0 L

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

U−1 (sIn−p − Ā1)U
A32U

⎤⎥⎥⎥⎥⎥⎦
. (3.53)

A zero of (E,A,M,C), which is an unobservable mode of (U−1Ā1U,LA32U), will

therefore appear as an element of U−1Ā1U where its corresponding column in LA32U

is zero. If A2 is satisfied however, the columns within A32U corresponding to positive

diagonal elements (which indicate unstable eigenvalues) withinU−1Ā1U will be non-zero.

Recall thatL is design freedom; thus a single row withinL can be chosen such thatLA32U

has non-zero elements at the columns corresponding to the diagonals of U−1Ā1U that are

unstable in order to guarantee that the unstable modes are observable (and therefore are

not a zero of (E,A,M,C)).
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When p = q, L and A32 do not exist, and error system (3.41)–(3.42) becomes

ė1 = Ā1e1, (3.54)

0 = R4 (Ā3e1 − M̄2f) +Gn2νeq. (3.55)

Notice from (3.51) that

rank (R(s)) = rank (sIn−p − Ā1) + p + q, (3.56)

which implies that if D2 is satisfied, Ā1 would have stable eigenvalues, and error system

(3.54)–(3.55) will reduce into (3.43). Thus, the sufficiency of A2 is shown for both cases

where p > q and p = q. ∎

Therefore, Propositions 3.3–3.4 have been proven: if A1–A2 are satisfied, the ob-

server by Yeu et al. [157] can estimate x and f for system (3.1)–(3.2), thus proving

Theorem 3.1. ◻

3.2.3 Design procedure

The design procedure for the scheme in this section is summarised as follows:

1. Check that A1–A2 hold for system (3.1)–(3.2). If not, the scheme in this subsection

is not applicable.

2. Obtain the state equation transformation TcTb and state transformation Ta from

(3.5), (3.7), and (3.14).

3. Choose the matrices R and V to satisfy (3.23), where R and V have the structures

given in (3.22), and R2 has the structure in (3.29).

4. Calculate the gains Gl and Gn from (3.19).

5. Set a value for ρ in (3.32).

6. Calculate Gf and estimate f using (3.44).
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3.2.4 Simulation example

The following subsection is original work. The concepts covered in the previous subsec-

tions are illustrated using the following example. Consider the two-loop electric circuit

given in [41], which is described by the following dynamical model:

2V̇C1 = I1, (3.57)

3V̇C2 = I2, (3.58)

−7İ2 = −VC1 + VC2, (3.59)

0 = VC1 + 4I1 + 4I2 − Ve, (3.60)

where VC1 and VC2 are the voltages across the capacitors C1, and C2, respectively, I1 and

I2 are the currents across the first and second loops, respectively, and Ve is the potential

difference supplied by the power source. The actuator signal for Ve is generated by a

faulty first-order device:

V̇S = −0.2Ve + 0.2VSc + f, (3.61)

where VSc is the reference signal, and f is the fault.

3.2.4.1 System formulation

The system matrices (E,A,B,M) in the framework of (3.1)–(3.2) are

E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0

0 3 0 0 0

0 0 −7 0 0

0 0 0 0 0

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0

0 0 1 0 0

−1 1 0 0 0

1 0 4 4 −1

0 0 0 0 −0.2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0.2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.62)

for the system variables

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

voltage across capacitor 1, VC1 (V)

voltage across capacitor 2, VC2 (V)

current across loop 2, I2 (A)

current across loop 1, I1 (A)

supplied voltage, Ve (V)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, f (V),

u = [supplied voltage reference, VSc (V)] .

(3.63)
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Assume that measurements are only available for I1 and Ve, so C has the form

C =
⎡⎢⎢⎢⎢⎢⎣

0 0 0 1 0

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦
. (3.64)

The observer by Yeu et al. [157] will now be designed.

3.2.4.2 Observer design

To ease readability, the steps in §3.2.3 will be referred to in the following design of the

observer scheme.

Step 1: It can quickly be verified that A1–A2 hold, so the existence of the observer by

Yeu et al. [157] is guaranteed.

Step 2: The state equation transformation TcTb and state transformation Ta are calculated

to be

TcTb =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −0.1429 0 0

−0.5 0 0 0 0

0 −0.3333 0 0 0

0 0 0 0 1

0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ta =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0

−1 0 0 0 0

0 −1 0 0 0

0 0 0 1 0

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.65)

Step 3: The matrices R and V are chosen to be

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 1 0

0 0 1

0 1255

0 5040

0 4833

0 0 0

0 0 0

1 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0

1 −1

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.66)

Step 4: The poles of the observer were chosen as {−5,−5,−5,−6,−8}, while the poles of

the sliding motion are {−5,−6,−8}. The gains Gl and Gn are therefore calculated as

Gl =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5021 −125.5

20160 −504

19334 −4834

5 −0.2

4 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Gn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0

1 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.67)
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Figure 3.1: The first state (dash-dotted) and its estimate (solid).

Steps 5–6: The parameter ρ and the matrix in (3.44) are set as

ρ = 5, Gf = [1 0] . (3.68)

3.2.4.3 Simulation results

The initial conditions of the system was set at x(0) = {5,−5,2,−4,−3}, while the initial

condition of the observer was set at zero. The input VSc was set as a step input with a

magnitude of 2. The fault signal was simulated as

f = 2 sin(t + π
3
) + 1. (3.69)

Figures 3.1–3.6 show the evolution of the system states and fault, and their estimates

- it can be seen that about t = 3 s that asymptotic tracking of the states takes place. It can

be seen that the observer estimates track the states and faults well. Notice however from

Figures 3.4–3.5 that the estimates for the fourth and fifth states converge onto the real

states in finite time (since they are the outputs). This is consistent with Figure 3.7, which

shows the output estimation error ey against time. At approximately t = 0.22 s, ey goes to

and remains at zero, indicating that a sliding motion on the surface S = {e ∶ Ce = 0} has

taken place. Notice also from Figures 3.1–3.3 that the state estimates experience an abrupt

change in dynamics at the same time: this is because the dynamics of the state estimation

errors e are now governed by the reduced order motion in (3.41). These features are
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Figure 3.2: The second state (dash-dotted) and its estimate (solid).
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Figure 3.3: The third state (dash-dotted) and its estimate (solid).
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Figure 3.4: The fourth state (dash-dotted) and its estimate (solid).
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Figure 3.5: The fifth state (dash-dotted) and its estimate (solid).
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Figure 3.6: The fault (dash-dotted) and its estimate (solid).
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Figure 3.7: Output estimation error ey = ŷ − y.
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typical of sliding mode systems.

3.3 Non-infinitely observable descriptor systems (NIODS)

In the previous section, it has been shown that the observer by Yeu et al. [157] can

estimate states and faults for a descriptor system if and only if A1–A2 are satisfied. Con-

ditions A1–A2 however imply that the system is infinitely observable [49]. This require-

ment limits the applicability of the SMO schemes as it forms a stringent requirement on

the number of states that need to be measured. Ooi et al. [100, 101] circumvented this

requirement by treating certain states as unknown inputs, thus increasing the applicability

of the SMO schemes as compared to the work in [157]. This section outlines the two

methods devised by Ooi et al. for state and fault estimation for non-infinitely observable

descriptor systems (NIODS).

3.3.1 State and fault estimation for NIODS

The work in this subsection has been presented in [100]. Consider the following descrip-

tor system:

Eẋ = Ax +Mf, (3.70)

y = Cx. (3.71)

where E,A ∈ Rn×n, M ∈ Rn×q, and C ∈ Rp×n. The vectors x, y, and f represent the

states, outputs, and faults, respectively. Only y is measurable. Assume generally that E is

rank-deficient, i.e. rank(E) = r < n, and that M and C are full-column rank and full-row

rank, respectively, i.e. rank(M) = q, rank(C) = p. Furthermore, it is assumed without

loss of generality that system (3.70)–(3.71) is not infinitely observable, i.e.

rank

⎡⎢⎢⎢⎢⎢⎣

E

C

⎤⎥⎥⎥⎥⎥⎦
= n̄ < n. (3.72)

The fault signal f represents anomalous behaviour in the system that needs to be

reconstructed for corrective action to be taken. The SMO by Yeu et al. [157] presented in

the previous section is however not applicable, as it requires system (3.70)–(3.71) to be
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infinitely observable [49, 160]
⎛
⎜
⎝

i.e. rank

⎡⎢⎢⎢⎢⎢⎣

E

C

⎤⎥⎥⎥⎥⎥⎦
= n

⎞
⎟
⎠

, which is clearly not the case. Thus,

Ooi et al. [100] proposed reformulating system (3.70)–(3.71) such that certain states are

treated as unknown inputs.

Remark 3.3 It can be seen that the term Bu, which is present in system (3.1)–(3.2) in the

prior subsection, is missing from system (3.70)–(3.71). Notice however that the known

input u does not appear in the error system of the observer by Yeu et al. [157] in (3.28),

and therefore does not affect its design. As will be shown, the method by Ooi et al. [100]

merely re-expresses system (3.70)–(3.71) (without manipulating any known inputs) and

then applies the observer by Yeu et al. onto the re-expressed system, the term Bu does not

affect the error analysis for the succeeding methods and is therefore omitted for brevity. ♯

The reformulation by Ooi et al. [100] is described in the following proposition.

Proposition 3.5 There exist transformations such that (E,A,M,C) and x can be written

as follows:

E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 E21

0 In̄−p 0

0 0 E4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1

M2

M3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

↕ n − n̄
↕ n̄ − p
↕ p

,

C = [0 0 Ip] , x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11

x12

y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

↕ n − n̄
↕ n̄ − p
↕ p

,

(3.73)

where the partitions of E,A,M have the same row dimensions, and the column partitions

of E,A,C are conformable to the partitions of x. ♯

Proof Introduce the state transformation Ta =
⎡⎢⎢⎢⎢⎢⎣

NT
C

C

⎤⎥⎥⎥⎥⎥⎦
, where NC spans the null-space of

C, i.e. NCC = 0, and x↦ Tax = xa. The following structures are obtained:

E ↦ ET −1
a = [Ea1 Ea2] , C ↦ CT −1

a = [0 Ip] . (3.74)

Since rank

⎡⎢⎢⎢⎢⎢⎣

E

C

⎤⎥⎥⎥⎥⎥⎦
= n̄, it follows from (3.74) that rank (Ea1) = n̄−p. Therefore perform
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singular-value decomposition (SVD) on Ea1 such that

X−1
1 Ea1X

−1
2 =

⎡⎢⎢⎢⎢⎢⎣

0 0

0 S1

⎤⎥⎥⎥⎥⎥⎦
, (3.75)

where X1,X2 are orthogonal and S1 ∈ R(n̄−p)×(n̄−p) is invertible. Then there would also

exist two non-singular matrices X3,X4 with the structures

X3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

In−n̄ 0 0

0 S−1 0

0 0 Ip

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, X4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

In−n̄ 0 0 0

0 0 0 In̄−p

0 0 I2p−n̄ 0

0 In̄−p 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.76)

such that

X3X4X
−1
1 Ea1X

−1
2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 In̄−p

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

↕ n − n̄
↕ n̄ − p
↕ p

. (3.77)

Define two non-singular matrices Tb = X3X4X−1
1 and Tc =

⎡⎢⎢⎢⎢⎢⎣

X2 0

0 Ip

⎤⎥⎥⎥⎥⎥⎦
. Apply the state

equation transformation Tb and state transformation Tc onto the system in the coordinates

of (3.74) to obtain

E ↦ TbET
−1
c =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 Ec21

0 In̄−p Ec22

0 0 Ec4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, C ↦ CT −1
c = [0 0 Ip] , xa ↦ Tcxa = xc. (3.78)

Define a non-singular matrix Td =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

In−n̄ 0 0

0 In̄−p Ec22

0 0 Ip

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. Finally, apply the state equa-

tion transformation Tb and state transformation TaTcTd on system (3.70)–(3.71):

E ↦ TbE (TaTcTd)−1
, A↦TbA (TaTcTd)−1

, M ↦ TbM,

C ↦ C (TaTcTd)−1, x↦ TaTcTdxc.

(3.79)

From the structures of E and C in (3.78), it can be seen that the system in the co-

ordinates of (3.79) is identical to the structures stipulated in (3.73). Thus, the proof is

complete. ∎
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The system in the coordinates of (3.73) is then reformulated as follows: treat x11 as

an unknown input, and define

x̄ =
⎡⎢⎢⎢⎢⎢⎣

x12

y

⎤⎥⎥⎥⎥⎥⎦
, f̄ =

⎡⎢⎢⎢⎢⎢⎣

f

x11

⎤⎥⎥⎥⎥⎥⎦
, (3.80)

which respectively are the state and fault of the following reduced-order system (which

has been re-expressed from (3.73)):

⎡⎢⎢⎢⎢⎢⎣

In̄−p 0

0 E4

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ē

˙̄x =
⎡⎢⎢⎢⎢⎢⎣

A22 A23

A32 A33

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ā

x̄ +
⎡⎢⎢⎢⎢⎢⎣

M2 A21

M3 A31

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

M̄

f̄ , (3.81)

y = [0 Ip]
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

C̄

x̄. (3.82)

Notice that

⎡⎢⎢⎢⎢⎢⎣

Ē

C̄

⎤⎥⎥⎥⎥⎥⎦
= n̄ (full-column rank), i.e. the reduced-order system (3.81)–(3.82)

is infinitely observable, and thus the observer by Yeu et al. [157] can be designed based

on (Ē, Ā, M̄ , C̄) and driven by u and y.

3.3.2 Improved state and fault estimation for NIODS

The technique used by Ooi et al. [100] in the prior subsection to re-express NIODS as

infinitely observable reduced-order systems relies on certain states being treated as un-

known inputs. This increases the number of unknown inputs in the reduced-order system,

which must not exceed the number of states in the reduced-order system. Ooi et al. [101]

built on this technique by also re-expressing some states in terms of other states before

treating certain other states as unknown inputs. This reduces the number of states treated

as unknown inputs, which increases the applicability of the SMO scheme. This subsec-

tion details the scheme as it was presented in [101] (with the exception of Remarks 3.5

and 3.6, which are original work added in for clarification).
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3.3.2.1 Preliminary transformations

Consider the following descriptor system:

Eẋ = Ax +Mf, (3.83)

y = Cx. (3.84)

where E,A ∈ Rn×n, M ∈ Rn×q, and C ∈ Rp×n. The vectors x, y, and f represent the

states, outputs, and faults, respectively. Only y is measurable. Assume generally that E is

rank-deficient, i.e. rank(E) = k < n, and that M and C are full-column rank and full-row

rank, respectively, i.e. rank(M) = q, rank(C) = p. Furthermore, it is assumed without

loss of generality that system (3.83)–(3.84) is not infinitely observable, i.e.

rank

⎡⎢⎢⎢⎢⎢⎣

E

C

⎤⎥⎥⎥⎥⎥⎦
= n̄ < n. (3.85)

The fault signal f represents irregular behaviour in the system that needs to be recon-

structed for remedial purposes. The SMO by Yeu et al. [157] is again not applicable, as

it requires system (3.83)–(3.84) to be infinitely observable [49, 160], which is clearly not

the case. Thus, Ooi et al. proposed reformulating system (3.83)–(3.84) such that certain

states are treated as unknown inputs. As per Remark 3.3, the known inputs into the sys-

tem do not affect the error analysis for the observer and are therefore omitted for brevity.

The reformulation by Ooi et al. [101] is described in the following proposition.

Proposition 3.6 There exist transformations such that (E,A,M,C) and x would have

the structures

E =
⎡⎢⎢⎢⎢⎢⎣

0 0 E2

0 In̄−p 0

⎤⎥⎥⎥⎥⎥⎦
, E2 =

⎡⎢⎢⎢⎢⎢⎣

0

E22

⎤⎥⎥⎥⎥⎥⎦

↕ n − k
↕ k + p − n̄

, C = [0 C3] , (3.86)
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A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 A2 A3

A4 A5 A6

A7 A8 A9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 A3 A4

0 Ij A7 A8

A9 A10 A11 A12

A13 A14 A15 A16

A17 A18 A19 A20

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

↕ n − n̄ − j
↕ j

↕ n̄ − k
↕ k + p − n̄
↕ n̄ − p

, (3.87)

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1

M2

M3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1

M2

M3

M4

M5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11

x12

x2

y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

↕ n − n̄ − j
↕ j

↕ n̄ − p
↕ p

, (3.88)

where ∣C3∣ ≠ 0, rank (E22) = k + p − n̄, the the partitions of A,M have the same row

dimensions, and the column partitions of E,A are conformable to the partitions of x. ♯

Proof Introduce the state transformation Ta =
⎡⎢⎢⎢⎢⎢⎣

NT
C

C

⎤⎥⎥⎥⎥⎥⎦
, where NC spans the null-space of

C, i.e. NCC = 0, and x↦ Tax = xa. The following structures are obtained:

E ↦ ET −1
a = Ea = [Ea1 Ea2] , C ↦ CT −1

a = Ca = [0 Ip] . (3.89)

Since rank

⎡⎢⎢⎢⎢⎢⎣

E

C

⎤⎥⎥⎥⎥⎥⎦
= n̄, it follows from (3.89) that rank (Ea1) = n̄−p. Therefore perform

SVD on Ea1 such that

X1Ea1X2 =
⎡⎢⎢⎢⎢⎢⎣

0 0

0 In̄−p

⎤⎥⎥⎥⎥⎥⎦
, (3.90)

where X1 ∈ Rn×n and X2 ∈ R(n−p)×(n−p) are non-singular. Partition X1 as follows:

X1 =
⎡⎢⎢⎢⎢⎢⎣

X11

X12

⎤⎥⎥⎥⎥⎥⎦

↕ n − n̄ + p
↕ n̄ − p

, (3.91)

and therefore let

Ēa2 =X11Ea2, Ēa4 =X12Ea2. (3.92)

By using (3.90)–(3.92), the following can be obtained:

X1 [Ea1 Ea2]
⎡⎢⎢⎢⎢⎢⎣

X2 0

0 Ip

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

0 0 Ēa2

0 In̄−p Ēa4

⎤⎥⎥⎥⎥⎥⎦
. (3.93)
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Since rank(E) = k, it can be seen that rank (Ēa2) = k − n̄ + p. Therefore, apply QR

decomposition onto Ēa2 such that X3Ēa2 = E2, where X3 ∈ R(n−n̄+p)×(n−n̄+p). Then define

two non-singular matrices with the following structures

Tb =
⎡⎢⎢⎢⎢⎢⎣

X3 0

0 In̄−p

⎤⎥⎥⎥⎥⎥⎦
X1, Tc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

In−n̄ 0 0

0 In̄−p Ēa4

0 0 Ip

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

X−1
2 0

0 Ip

⎤⎥⎥⎥⎥⎥⎦
, (3.94)

such that

Ea ↦ TbEaT
−1
c = Ec =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 E22

0 In̄−p 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ca ↦ CaT
−1
c = Cc = [0 0 C3] ,

A↦ TbA(TaTc)−1 = Ac =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ab1 Ab2 Ab3

Ab4 Ab5 Ab6

Ab7 Ab8 Ab9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, M ↦ TbM =Mc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mb1

Mb2

Mb3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(3.95)

where Ab1 ∈ R(n−k)×(n−n̄), Ab5 ∈ R(k+p−n̄)×(n̄−p), Ab9 ∈ R(n̄−p)×p, ∣C3∣ ≠ 0, the par-

titions of Ec,Ac,Mc have the same row dimensions, and the partitions of Ec,Ac,Cc

have conformable column dimensions. Next, pre-multiply Ac with a non-singular ma-

trix Td =
⎡⎢⎢⎢⎢⎢⎣

To 0

0 Ik

⎤⎥⎥⎥⎥⎥⎦
such that Ad = TdAc, where To ∈ R(n−k)×(n−k) is non-singular and will

be defined later in (3.115). Let Ad1 be the top-left (n − n̄) × (n − n̄) block of Ad, and

rank (Ad1) = j. Hence apply SVD on Ad1 to obtain

X5Ad1X6 =
⎡⎢⎢⎢⎢⎢⎣

0 0

0 Ij

⎤⎥⎥⎥⎥⎥⎦
, (3.96)

where X5,X6 ∈ R(n−n̄)×(n−n̄) are non-singular. Hence define two non-singular matrices

with the structures

Te =
⎡⎢⎢⎢⎢⎢⎣

X5 0

0 In̄

⎤⎥⎥⎥⎥⎥⎦
, Tf =

⎡⎢⎢⎢⎢⎢⎣

X−1
6 0

0 In̄

⎤⎥⎥⎥⎥⎥⎦
. (3.97)

Therefore apply the state equation transformation TeTdTb and the state transformation

TaTcTf such that

E ↦ TeTdTbE (TaTcTf)−1
, A↦ TeTdTbA (TaTcTf)−1

, M ↦ TeTdTbM,

C ↦ CE ↦ C (TaTcTf)−1, x↦ (TaTcTf)x.
(3.98)
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From the structures of Ec,Cb in (3.95) and Ad1 in (3.96), it can be seen that the

structures of the systems in (3.86)–(3.88) and in (3.98) are identical, thus completing

the proof. ∎

Define two vectors

x̄ =
⎡⎢⎢⎢⎢⎢⎣

x2

y

⎤⎥⎥⎥⎥⎥⎦
, f̄ =

⎡⎢⎢⎢⎢⎢⎣

x11

f

⎤⎥⎥⎥⎥⎥⎦
. (3.99)

From the structures of E, A, and x in (3.86)–(3.88), it can be seen that x12 can be

re-expressed as

x12 = − [A7 A8] x̄ − [0 M2] f̄ . (3.100)

Thus, by treating x11 as an unknown input, and using re-expressing x12 in terms of x̄

and f̄ , the following reduced-order system of order n̄ (which treats x̄ and f̄ as its state

and fault respectively):

Ē ˙̄x = Āx̄ + M̄f̄ , y = C̄x̄, (3.101)

Ē =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 E22

In̄−p 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ā =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12

A15 A16

A19 A20

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A10

A14

A18

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

[A7 A8] x̄, (3.102)

M̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A9 M3

A13 M4

A17 M5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A10

A14

A18

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

[0 M2] , C̄ = [0 C3] . (3.103)

Notice that rank

⎡⎢⎢⎢⎢⎢⎣

Ē

C̄

⎤⎥⎥⎥⎥⎥⎦
= n̄; this implies that the reduced-order system (3.101) is in-

finitely observable [49], and the observer by Yeu et al. [157] can be applied onto system

(3.101) to estimate x̄ and f̄ , thereby estimating x and f .

Remark 3.4 In the previous scheme by Ooi et al. [100] in §3.3.1,

⎡⎢⎢⎢⎢⎢⎣

x11

x12

⎤⎥⎥⎥⎥⎥⎦
is treated as an

unknown input, while in this scheme only x11 is treated as an unknown input. Recall the

condition q ≤ p ≤ n; since fewer states are treated as unknown inputs, the condition is less

likely to be violated, and so the scheme can work even with fewer output measurements.

Therefore the scheme presented in this subsection is applicable to a wider class of systems

compared to the scheme in §3.3.1. ♯
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3.3.2.2 The state and fault estimation scheme

Since rank

⎡⎢⎢⎢⎢⎢⎣

Ē

C̄

⎤⎥⎥⎥⎥⎥⎦
= n̄, there exist two matrices R ∈ Rn̄×n̄ (which is non-singular) and

V ∈ Rn̄×p which can be chosen such that

RĒ + V C̄ = In̄. (3.104)

Pre-multiply the state equation in (3.101) with R and add V ẏ to both sides. Using the

output equation in (3.101), the following can be obtained:

RĒ ˙̄x + V ẏ = (RĒ + V C̄) ˙̄x = RĀx̄ +RM̄f̄ + V ẏ. (3.105)

The SMO by Yeu et al. [157] for system (3.101) has the following structure:

ż = (RĀ −GlC̄) z − (Gl (Ip − C̄V ) +RĀV ) y −Gnν, (3.106)

ˆ̄x = V y − z, (3.107)

ν = −ρ ey
∥ey∥

, (3.108)

where Gl,Gn ∈ Rn̄×p, ey = C̄ ˆ̄x − y, and ρ ∈ R+. Substituting for z from (3.107) into

(3.106) yields

˙̂x = RĀx̂ −Gley +Gnν + V ẏ. (3.109)

Define the state estimation error e = x̂ − x. Deducting (3.105) from (3.109) yields the

following error system (which characterises the performance of the observer):

ė = (RĀ −GlC̄) e −RM̄f̄ +Gnν. (3.110)

Proposition 3.7 If Gl and Gn are designed appropriately, and if ρ is chosen to satisfy

ρ > ∥ (C̄Gn)
−1
C̄RM̄∥ (αx + αf) , (3.111)

where αx, αf ∈ R+ are chosen to be greater than the upper bounds of x and f respectively,

then sliding motion (ey, ėy = 0) is attained in finite time, and x and f can be estimated by

the observer. ♯
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Proof Error equation (3.110) has the same form as the error equation for the Edwards-

Spurgeon SMO for a system represented by the triple (RĀ,RM̄, C̄) [8]. Additionally,

(3.111) implies

ρ > ∥ (C̄Gn)
−1
C̄RM̄∥∥f̄∥. (3.112)

Therefore, the observer by Yeu et al. in (3.106)–(3.108) can be designed in the

same way as the Edwards-Spurgeon SMO (for example, using the methods presented

in [44, 47]. Sliding motion (ey, ėy = 0) can then be induced in finite time, and x̂2 → x2.

Furthermore, f and x11 can be estimated
⎛
⎜
⎝

i.e.

⎡⎢⎢⎢⎢⎢⎣

f̂

x̂11

⎤⎥⎥⎥⎥⎥⎦
→

⎡⎢⎢⎢⎢⎢⎣

f

x11

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠

from the following mea-

surable signal:
⎡⎢⎢⎢⎢⎢⎣

f̂

x̂11

⎤⎥⎥⎥⎥⎥⎦
= (C̄RM̄)† (C̄Gn)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Gf

ν. (3.113)

Next, define

x̂12 = −A7x̂2 − Â8ŷ −M2f̂ . (3.114)

After the estimates for x2, ŷ, and f̂ are obtained, it follows from (3.86)–(3.88) and

(3.100) that x̂12 → x12. Thus x and f are estimated, completing the proof. ∎

Remark 3.5 The method to design Gl and Gn in Proposition 3.7 require x to be bounded,

and the bound to be known. These bounds can be obtained through various ways: such

as (but not limited to) from experience with or knowledge about the physical operation

of the system, or by simulating the system operating under practical conditions. It is

also reasonable to assume that x is bounded as a controller would be used to stabilise

the system - the design of the controller is however not considered as does not have any

effect on the fault estimation since u does not appear in the error equation from (3.110)

onwards. Note that the exact value of the bounds do not need to be known; a conservative

estimate could be used instead, since sliding motion is guaranteed to occur as long as ρ

satisfies (3.111). ♯

Remark 3.6 Note that the requirement for x to be bounded reduces the applicability of

the scheme since it does not cater to cases where x is unbounded. This is however not a

stringent restriction: practical systems operate around a certain operating point, and by
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finding reasonable bounds on the states of the system as per Remark 3.5, the scheme can

still be applied across a wide range of systems. ♯

3.3.2.3 Existence conditions

Yu and Liu [160] investigated the necessary and sufficient conditions for Proposition 3.7

to be satisfied, which are given as follows:

C1. rank

⎡⎢⎢⎢⎢⎢⎣

Ē M̄

C̄ 0

⎤⎥⎥⎥⎥⎥⎦
= rank (M̄) + n̄,

C2. rank (M̄) = n − n̄ − j + q,

C3. rank

⎡⎢⎢⎢⎢⎢⎣

sĒ − Ā M̄

C̄ 0

⎤⎥⎥⎥⎥⎥⎦
= rank (M̄) + n̄ ∀ s ∈ C+.

Conditions C1–C3 however depend on the transformation To, which is used to trans-

form the system in the coordinates of (3.95). Notice that after the structures in (3.95) have

been obtained, the top n − k states undergo the transformation

Φ =
⎡⎢⎢⎢⎢⎢⎣

X5 0

0 In̄−k

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

To1

To2

⎤⎥⎥⎥⎥⎥⎦
²
To

≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ1

Φ2

To2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

↕ n − n̄ − j
↕ j

↕ n̄ − k

. (3.115)

Hence the following partitions of A and M in (3.87)–(3.88) are obtained:

ΦAb1 = 0, ΦAb1X6 = [0 Ij], To2Ab1X6 = [A9 A10] ,

M2 = Φ2Mb1, M3 = To2Mb1, M4 =Mb2.

(3.116)

Theorem 3.2 The transformation Φ exists to satisfy C1–C2 if and only if the following

conditions hold:

D1. rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E A M

C 0 0

0 E 0

0 C 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= n + n̄ + q,

D2. rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

E A M

0 E 0

0 C 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

− rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

E A

0 E

0 C

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ n̄ − k. ♯
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Proof Substituting the structures in reduced-order system (3.101)–(3.103) into C1 yields

rank

⎡⎢⎢⎢⎢⎢⎣

A9 M3 −A10M2

A13 M4 −A14M2

⎤⎥⎥⎥⎥⎥⎦
= rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A9 M3 −A10M2

A13 M4 −A14M2

A17 M5 −A18M2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.117)

The left-hand side (LHS) of (3.117) can be re-expressed as follows:

⎡⎢⎢⎢⎢⎢⎣

A9 M3 −A10M2

A13 M4 −A14M2

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

A9 M3

A13 M4

⎤⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎣

A10

A14

⎤⎥⎥⎥⎥⎥⎦
[0 M2] . (3.118)

Therefore, by using (3.118) and the Schur Complement on the LHS of (3.117) the

following is obtained:

rank

⎡⎢⎢⎢⎢⎢⎣

A9 M3 −A10M2

A13 M4 −A14M2

⎤⎥⎥⎥⎥⎥⎦
= rank

⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

A9 M3

A13 M4

⎤⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎣

A10

A14

⎤⎥⎥⎥⎥⎥⎦
[0 M2]

⎞
⎟
⎠

= rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A9 M3 A10

A13 M4 A14

0 M2 Ij

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

− j. (3.119)

Repeating this procedure for the right-hand side (RHS) of (3.117) (which also repre-

sents rank(M̄)) yields

rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A9 M3 −A10M2

A13 M4 −A14M2

A17 M5 −A18M2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

= rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A9 M3 A10

A13 M4 A14

A17 M5 A18

0 M2 Ij

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− j. (3.120)

Substituting the RHS of (3.119)–(3.120) into (3.117) and then rearranging the rows

and columns yields

rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A9 M3 A10

A13 M4 A14

0 M2 Ij

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

= rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A9 M3 A10

A13 M4 A14

A17 M5 A18

0 M2 Ij

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒ rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 Ij M2

A9 A10 M3

A13 A14 M4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

= rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 Ij M2

A9 A10 M3

A13 A14 M4

A17 A18 M5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.121)
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Further partition A1 from (3.87) as follows:

A1 =
⎡⎢⎢⎢⎢⎢⎣

0

A12

⎤⎥⎥⎥⎥⎥⎦

↕ n − n̄ − j
↕ j

. (3.122)

Hence by comparing (3.120) with the structures from (3.87)–(3.88) and (3.122), it can

be seen that (3.120) (and hence C1) is equivalent to

rank

⎡⎢⎢⎢⎢⎢⎣

A12 M2

A4 M2

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ξ1

= rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A12 M2

A4 M2

A7 M3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ξ2

. (3.123)

Substituting the structures from reduced-order system (3.101)–(3.103) and the expres-

sion for rank (M̄) from (3.120) into C3 results in

rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A12 M2

A4 M2

A7 M3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

= n − n̄ + q⇒ rank (Ξ2) = n − n̄ + q. (3.124)

Therefore, combining (3.123)–(3.124) yields the following, which is equivalent to C1

and C3:

rank (Ξ1) = n − n̄ + q. (3.125)

Then by substituting the structures from (3.87)–(3.88) and (3.115)–(3.116), Ξ1 can be

expressed as follows:

Ξ1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ2 0

To2 0

0 Ik+p−n̄

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

Ab1 Mb1

Ab4 Mb2

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ω

⎡⎢⎢⎢⎢⎢⎣

X6 0

0 Iq

⎤⎥⎥⎥⎥⎥⎦
. (3.126)

Furthermore, substituting the structures from (3.86)–(3.88) into D1 results in

rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 M1

0 Ij M2

A9 A10 M3

A13 A14 M4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ξ3

= n − n̄ + q. (3.127)
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From the non-singular transformations Td, Te, and Tf defined in (3.97), Ξ3 can be

further expanded as

rank (Ξ3) = rank

⎡⎢⎢⎢⎢⎢⎣

X5 0

0 In̄−p

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

To 0

0 Ik−p

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

Ab1 Mb1

Ab4 Mb2

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

X6 0

0 Iq

⎤⎥⎥⎥⎥⎥⎦

= rank

⎡⎢⎢⎢⎢⎢⎣

Ab1 Mb1

Ab4 Mb2

⎤⎥⎥⎥⎥⎥⎦
. (3.128)

Equations (3.126)–(3.128) imply rank (Ω) = rank (Ξ3) = n − n̄ + q, i.e. D1 is equiva-

lent to rank (Ω) = n − n̄ + q. To show the necessity of D1, suppose it is not satisfied, i.e.

rank (Ω) < n − n̄ + q. From (3.126) this would imply rank (Ξ1) < n − n̄ + q. This in turn

implies (from (3.125)) C1 and C3 are not satisfied, thus showing the necessity of D1.

Next, partition Ω as follows: let Ω1 = [Ab1 Mb1] and Ω2 = [Ab4 Mb2]. The follow-

ing transformations are performed on the system in the coordinates of (3.95) to facilitate

the calculation of Φ1, Φ2, and To2. Let rank (Ab1) = φ, and apply SVD on it as follows:

W1Ab1W2 =
⎡⎢⎢⎢⎢⎢⎣

0 0

0 A

⎤⎥⎥⎥⎥⎥⎦
, (3.129)

where A ∈ Rφ×φ is non-singular. It can then be shown that

W1 [Ab1 Mb1]
⎡⎢⎢⎢⎢⎢⎣

W2 0

0 Iq

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

0 0 M̃1

0 A M̃2

⎤⎥⎥⎥⎥⎥⎦
. (3.130)

Let rank (M̃1) = r, rank (M̃2) = v, and further decompose M̃1, M̃2 using the non-

singular matrices W3 ∈ R(n−k−φ)×(n−k−φ), W4 ∈ Rφ×φ, and W5 ∈ Rq×q as follows:

⎡⎢⎢⎢⎢⎢⎣

W3 0

0 W4

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

M̃1

M̃2

⎤⎥⎥⎥⎥⎥⎦
W5 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 Ir 0

0 0 0

0 0 Iv

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.131)

Then define the invertible matrices

T̃a =
⎡⎢⎢⎢⎢⎢⎣

W3 0

0 W4

⎤⎥⎥⎥⎥⎥⎦
W1, T̃b =

⎡⎢⎢⎢⎢⎢⎣

W2 0

0 Iq

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

In−n̄−φ 0 0

0 W6 0

0 0 W5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.132)
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where W6 = (W3A)−1, and it can be shown that

Ω1 ↦ T̃aΩ1T̃b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 0 0 Ir 0

0 Iφ−v 0 0 0 0

0 0 Iv 0 0 Iv

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.133)

Suppose D1 holds (since it is necessary); this implies that Ω is full rank. Then due to

the structure of Ω1 in (3.133), there exists an invertible matrix T̃c =
⎡⎢⎢⎢⎢⎢⎣

In−k 0

T̃c3 T̃c4

⎤⎥⎥⎥⎥⎥⎦
that when

pre-multiplied with Ω results in

(T̃c3Ω1 + T̃c4Ω2) T̃b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

In−n̄−φ 0 0 0 0 0

0 0 Ã42 0 0 0

0 0 0 Iq−r−v 0 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ↕ υ,

(3.134)

where υ = k+p−n+φ− q+ r, and Ã42 ∈ Rn×n is invertible. Next, substitute the structures

in (3.86)–(3.88) into D2 to obtain

rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 M1

0 Ij M2

A9 A10 M3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

− rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 Ij

A9 A10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ n̄ − k. (3.135)

Then recall Ω1 = [Ab1 Mb1]. From (3.128) it can be seen that

rank (Ω1) − rank (Ab1) ≤ n̄ − k. (3.136)

Using (3.133), (3.136) can be further simplified into

r ≤ n̄ − k. (3.137)

Choose j = φ. Then an appropriate choice for Φ and To2 to satisfy (3.116) would be

⎡⎢⎢⎢⎢⎢⎣

Φ2

To2

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

T̄11 T̄12 Ij

T̄21 T̄22 T̄23

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

T̄111 T̄121 Ij−v 0

T̄112 T̄122 0 Iv

T̄21 T̄22 T̄231 T̄232

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.138)
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where T̄11 ∈ Rj×(n−k−r−v), T22 ∈ R(n̄−k)×r. Thus by using (3.133)–(3.134) and (3.138), Ξ1

in (3.126) can be expanded into

Ξ1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 Ij−v 0 0 T̄121 0

0 0 Iv 0 T122 Iv

0 T231 T232 0 T22 T232

In−n̄−j 0 0 0 0 0

0 0 Ã42 0 0 0

0 0 0 Iq−r−v 0 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.139)

It can be seen from (3.139) that Ξ1 loses rank if and only if Ξ11 loses rank, where

Ξ11 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ij−v T̄121 0

0 T̄122 Iv

T̄231 T̄22 T̄232

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.140)

Recall that T22 ∈ R(n̄−k)×r. Hence, for Ξ1 to be full rank (which implies from (3.126)

that C1 and C3 hold), Ξ11 (and therefore T̄22) would also need to be full rank. This implies

that r ≤ n̄ − k. Recall also from (3.137) that D2 implies r ≤ n̄ − k. Thus, it is shown that

D2 is necessary for C1 and C3 to hold. Next, let T̄231, T̄232 = 0. It can be seen that Ξ11

(and therefore Ξ1) is full-rank, therefore proving the sufficiency of D2. Thus the proof for

Theorem 3.2 is complete. ∎

Theorem 3.3 To satisfy C2, the following condition is necessary:

D3. (E,A,M,C) is minimum-phase.

If n̄ ≥ k + r, then D3 is also sufficient; otherwise (for n̄ = k + r) a sufficient condition

is

D4. (Ax,Ab52) is detectable, where

Ax = Ab8 −W3W−1
2 W1, (3.141)

and the components of Ax will be defined in (3.144). ♯
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Proof Using (3.133), partition

[Ab1 Ab2 Mb1] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 Ab21 0

0 Ab22 Mb12

Ab13 Ab23 Mb13

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

↕ r

↕ j

. (3.142)

Next, using (3.134), partition

[Ab5 Ab4 Mb2] =
⎡⎢⎢⎢⎢⎢⎣

Ab51 Ab41 Mb21

Ab52 0 0

⎤⎥⎥⎥⎥⎥⎦ ↕ υ
. (3.143)

Next, introduce

W1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ab22

Ab23

Ab51

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, W2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 Mb12

Ab13 Mb13

Ab41 Mb21

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, W3 = [Ab7 Mb3] . (3.144)

Denote R(E,A,M,C) =
⎡⎢⎢⎢⎢⎢⎣

sE −A M

C 0

⎤⎥⎥⎥⎥⎥⎦
as the Rosenbrock matrix of (E,A,M,C),

and any zero of (E,A,M,C) will cause it to lose rank. It is clear that the invariant zeros

of (E,A,M,C) are equivalent to the invariant zeros of (Eb,Ab,Mb,Cb). Hence, the

invariant zeros of (E,A,M,C) are the values of s that make the following matrix lose

rank:

Rb(s) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Ab1 −Ab2 −Ab3 Mb1

−Ab4 −Ab5 −Ab6 Mb2

−Ab7 sIn̄−p −Ab8 −Ab9 Mb3

0 0 C3 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.145)

Using the partitions in (3.142)–(3.143), it is clear thatRb(s) loses rank if the following

matrix loses rank:

Rb1(s) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −Ab21 0

0 −Ab22 Mb21

−Ab13 −Ab23 Mb13

−Ab41 −Ab51 Mb21

0 −Ab52 0

−Ab7 sIn̄−p −Ab8 Mb3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.146)
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Equation (3.146) can be further simplified as follows:

Rb1(s) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Ab21 0 0

−Ab22 0 Mb12

−Ab23 Ab13 Mb13

−Ab51 Ab41 Mb21

−Ab52 0 0

sIn̄−p −Ab8 Ab7 Mb3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −In−n̄ 0

In̄−p 0 0

0 0 Ip

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Ab21 0

−W1 W2

−Ab52 0

sIn̄−p −Ab8 W3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Rb2(s)

. (3.147)

Then by using the structure of the reduced-order system (3.101)–(3.103), the Rosen-

brock matrix R(Ē, Ā, M̄ , C̄) is given by

R̄(s) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−A11 +A10A7 −A12 +A10A8 A9 M3 −A10M2

−A15 +A14A7 sE22 −A16 +A14A8 A13 M4 −A14M2

sIn̄−p −A19 +A18A7 −A20 +A18A8 A17 M5 −A18M2

0 C3 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.148)

It can be seen that R̄(s) loses rank if the following matrix loses rank:

R̄1(s) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−A11 +A10A7 A9 M3 −A10M2

−A15 +A14A7 A13 M4 −A14M2

sIn̄−p −A19 +A18A7 A17 M5 −A18M2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−A11 A9 M3

−A15 A13 M4

sIn̄−p −A19 A17 M5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A10

A14

A18

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

[−A7 0 M2] . (3.149)

By using the Schur complement on (3.149), R̄1(s) loses rank if and only if the fol-
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lowing matrix loses rank:

R̄2(s) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−A11 A9 M3 A10

−A15 A13 M4 A14

sIn̄−p −A19 A17 M5 A18

−A7 0 M2 Ij

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

0 In̄

Ij 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−A7 Ij 0 M2

−A11 A10 A9 M3

−A15 A14 A13 M4

sIn̄−p −A19 A18 A17 M5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

R̄3(s)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

In̄−p 0 0

0 0 Ij

0 In−n̄−j+q 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.150)

Notice that

R̄3(s) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ2 0

To2 0

0 Ik

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

Rb2(s), (3.151)

which shows that rank (R(Ē, Ā, M̄ , C̄)) ≤ rank (R(E,A,M,C)), thus proving the ne-

cessity of D3. Next, set

⎡⎢⎢⎢⎢⎢⎣

Φ2

To2

⎤⎥⎥⎥⎥⎥⎦
to have the following structure:

⎡⎢⎢⎢⎢⎢⎣

Φ2

To2

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 Ij

T̄21 0 0

0 T̄25 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.152)

where T̄21 and

⎡⎢⎢⎢⎢⎢⎣

Φ2

To2

⎤⎥⎥⎥⎥⎥⎦
are chosen such that they are both full-row rank. Substituting Rb2

from (3.147) and

⎡⎢⎢⎢⎢⎢⎣

Φ2

To2

⎤⎥⎥⎥⎥⎥⎦
from (3.152) into (3.151) yields

R̄3(s) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 Ij 0

In̄−r−k 0 0 0

0 T̄25 0 0

0 0 0 Ik

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−T̄21Ab12 0

−W1 W2

−Ab52 0

sIn̄−p −Ab8 W3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.153)

Recall that rank (Ω) = n − n̄ + q, and that Ω =
⎡⎢⎢⎢⎢⎢⎣

Ω1

Ω2

⎤⎥⎥⎥⎥⎥⎦
. From the structures in (3.133)–

(3.134) and the partitions in (3.142)–(3.143), it can be seen thatW2 ∈ R(n−n̄+q)×(n−n̄+q) is
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non-singular. Therefore, define

I =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

In−n̄+q 0 0

0 In̄−r−k 0

W3W−1
2 0 In̄−p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.154)

It can then be shown that

R̄3(s) =
⎡⎢⎢⎢⎢⎢⎣

In̄−r−k 0

0 I

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−T̄21Ab12 0

−W1 W2

−Ab52 0

sIn̄−p −Ax 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

R̄4(s)

. (3.155)

Since W2 is non-singular, R̄4(s) loses rank if and only if the following matrix loses

rank:

R̄5(s) =
⎡⎢⎢⎢⎢⎢⎣

−Σ

sIn̄−p −Ax

⎤⎥⎥⎥⎥⎥⎦
, Σ =

⎡⎢⎢⎢⎢⎢⎣

T̄21Ab21

Ab52

⎤⎥⎥⎥⎥⎥⎦
, (3.156)

where the unobservable modes of (Σ,Ax) are the zeros of (Ē, Ā, M̄ , C̄). Let H be a

matrix containing the generalised right-eigenvectors of Ax. Hence H−1AxH is a matrix

in the Jordan canonical form, where the diagonal elements are the real parts of the eigen-

values of Ax [98]. Pre-multiply R̄5(s) with

⎡⎢⎢⎢⎢⎢⎣

In̄−r−k+υ 0

0 H−1

⎤⎥⎥⎥⎥⎥⎦
and post-multiply with H

to obtain

⎡⎢⎢⎢⎢⎢⎣

In̄−r−k+υ 0

0 H−1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

−Σ

sIn̄−p −Ax

⎤⎥⎥⎥⎥⎥⎦
H =

⎡⎢⎢⎢⎢⎢⎣

T̄21 0

0 Iυ+n̄−p

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ab21H

Ab52H

H−1 (sIn̄−p −Ax)H

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

R̄6(s)

. (3.157)

A zero of (Ē, Ā, M̄ , C̄) which corresponds to an unobservable mode of (ΣH,H−1AxH)

will appear as an element of H−1AxH where its corresponding column in ΣH is zero.

Next, recall from (3.149) that the zeros of (E,A,M,C) are the values of s that make
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Rb2(s) lose rank. Using the structure of I in (3.154), it can be shown that

Rb2(s) =
⎡⎢⎢⎢⎢⎢⎣

In−k−r−j 0

0 I

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Ab21 0

−W1 W2

−Ab52 0

sIn̄−p −Ax 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Rb3(s)

. (3.158)

SinceW2 is non-singular, Rb3(s) loses rank if and only if the following matrix loses

rank:

Rb4(s) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ab21H

Ab52H

H−1 (sIn̄−p −Ax)H

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.159)

which is identical to R̄6(s) from (3.157). Therefore, if D3 holds, the corresponding

columns in

⎡⎢⎢⎢⎢⎢⎣

Ab21

Ab52

⎤⎥⎥⎥⎥⎥⎦
H corresponding to positive diagonal elements (which indicate unsta-

ble eigenvalues) within H−1AxH will be non-zero. Hence if n̄ > r + k, then T̄21 (which

constitutes design freedom) exists, and can be chosen such that ΣH has non-zero elements

at columns corresponding to the diagonals ofH−1AxH that are unstable, guaranteeing that

the unstable modes are observable (and are therefore not zeros of (E,A,M,C)). Thus

the sufficiency of D3 for the case when n̄ > r + k is proven.

For the case n̄ = r + k, Ab21 and T̄21 do not exist, and therefore Rb2(s) from (3.147)

becomes

Rb2(s) = I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−W1 W2

−Ab52 0

sIn̄−p −Ax 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Rb21(s)

. (3.160)

SinceW2 is non-singular, Rb21(s) loses rank if and only if the following matrix loses

rank:

Rb22(s) =
⎡⎢⎢⎢⎢⎢⎣

Ab52

sIn̄−p −Ax

⎤⎥⎥⎥⎥⎥⎦
. (3.161)

By comparing (3.156) and (3.161), it can be seen that Rb22(s) is identical to R̄5(s)

(since T̄21 and Ab21 do not exist). Thus, the values of s that make Rb22(s) lose rank are

the unobservable modes of (Ax,Ab52), and the sufficiency of D4 is proven. ∎
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3.3.2.4 Design procedure

The design procedure for the scheme in this subsection is summarised as follows:

1. Check that D1–D3 (and D4 if necessary) hold for system (3.83)–(3.84). If not, the

scheme in this subsection is not applicable.

2. Determine the matrices Ta, Tb, and Tc from (3.89) and (3.94).

3. Design Φ to have the following structure:

Φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Tx1 Tx2 0

0 0 Ij

T̄21 0 0

0 T̄25 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.162)

where Tx1 ∈ R(n−n̄−j)×(n−k−r−j) and T̄25 ∈ Rr×r are chosen such that

⎡⎢⎢⎢⎢⎢⎣

Tx1

T̄21

⎤⎥⎥⎥⎥⎥⎦
and Φ are

non-singular.

4. Calculate the matrices Td, Te, and Tf using (3.96)–(3.97).

5. Apply the state equation transformation TeTdTb and the state transformation TaTcTf .

6. Derive the reduced-order system (3.101)–(3.103).

7. Calculate the matrices R and V from (3.104).

8. Design the SMO by Yeu et al. [157] (3.106)–(3.108) for the reduced-order system

using Proposition 3.7.

9. Calculate Gf from (3.113), and estimate x2 according to (3.114).

3.4 Simulation example

The concepts covered in the previous section on SMOs for NIODS are illustrated using

the following example. Consider a chemical mixing tank [157] described by the following
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dynamical model:

ċ3 = −0.375c3 − 0.0667q3 + 0.1q1, (3.163)

0 = −q3 + q1, (3.164)

ċ5 = 0.3c3 + 0.0533q3 − 0.5c3 − 0.04q5 + 0.02q4, (3.165)

0 = q3 − q5 + q4, (3.166)

where q1 is the flow rate of the influent into the first tank, c3 and q3 are the concentration

and flow rate of the influent from the first tank into the second tank, respectively, q4 is

the flow rate of influent from another pipe into the second tank, and c5 and q5 are the

concentration and flow rate of the effluent from the second tank, respectively. In this

example, the influents from external sources are treated as faults, i.e.

fa = q1, fb = q4, (3.167)

3.4.1 System formulation

The system matrices (E,A,M) in the framework of (3.83)–(3.84) are

E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.375 −0.0667 0 0

0 −1 0 0

0.3 0.0533 −0.5 −0.04

0 1 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1 0

1 0

0 0.02

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.168)

for the system variables

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

concentration, c3 (mol/l)

flow rate, q3 (l/s)

concentration, c5 (mol/l)

flow rate, q5 (l/s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, f =
⎡⎢⎢⎢⎢⎢⎣

fa (l/s)

fb (l/s)

⎤⎥⎥⎥⎥⎥⎦
. (3.169)

Assume that only c3 and q3 are measurable, and therefore the matrix C is

C =
⎡⎢⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎦
. (3.170)

It can be seen that n = 4 and n̄ = 3, which (from (3.72)) indicates that system (3.168)–

(3.170) is not infinitely observable. Therefore, the observer by Yeu et al. [157] outlined
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in §3.2 cannot be used for this system. We now design the observer scheme for NIODS

presented in §3.3.2.

3.4.2 Observer design

For readability, the steps outlined in §3.3.2.4 will be referred to in the following design

of the observer scheme.

Steps 1–2: Conditions D1–D3 can be quickly verified to hold for system (3.168)–(3.170),

and so the transformations introduced in Proposition 3.6 exist for system (3.168)–(3.170).

Since n̄ = k+ r however, D4 needs to be verified. Apply the state equation transformation

transformation TcTb and Ta as follows:

TcTb =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

0 0 0 −1

0 0 −1 0

1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ta =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.171)

The value of Ax was found to be

Ax = −0.675 < 0, (3.172)

thus showing D4 is also satisfied, thereby guaranteeing the existence of the observer

scheme proposed in §3.3.2. The proposed observer scheme is now designed.

Steps 3–4: The following partitions were obtained:

Ab1 =
⎡⎢⎢⎢⎢⎢⎣

1

1

⎤⎥⎥⎥⎥⎥⎦
, M̃1 = [0 −1] , (3.173)

which (from their definitions in (3.96) and (3.131)) imply j = r = 1. Thus since n− n̄−j =

n−k − r− j = 0, Tx1, Tx2 and T̄21 do not exist. Hence a suitable choice for Φ, Td, Te, Tf

would be

Φ =
⎡⎢⎢⎢⎢⎢⎣

0 1

1 0

⎤⎥⎥⎥⎥⎥⎦
, Td = Te = Tf = I4. (3.174)

Step 6: Since n− n̄− j = 0, x11 does not exist. Then using (3.100), x12 is re-expressed as

x12 = [0 0 −1]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2

x3

x4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
±̄
x

+ [0 1] f. (3.175)
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The reduced-order system (3.101)–(3.103) therefore has the structure

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 −1 0

1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ē

˙̄x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −1

−0.3 0.5 −0.0133

−0.375 0 −0.0667

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ā

x̄ +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1

0 0.0333

0.1 0.0667

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

M̄

f, (3.176)

y =
⎡⎢⎢⎢⎢⎢⎣

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C̄

x̄. (3.177)

It can be seen that rank

⎡⎢⎢⎢⎢⎢⎣

E

C

⎤⎥⎥⎥⎥⎥⎦
= n̄ = 3, i.e. the reduced-order system (3.176)–(3.177) is

infinitely observable [49], and hence the SMO by Yeu et al. [157] is applicable onto the

system to estimate x̄ and f .

Step 7: From the structures of Ē and C̄ in (3.176)–(3.177), the matrices R and V are

calculated to be

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1

0 −0.5 0

1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0.5 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.178)

Steps 8–9: The poles of the observer and sliding motion were chosen as {−0.5,−13,−15}

and {−0.5}, respectively. Using the design method outlined in [44] yields

Gl =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

25.25 1.395

13.05 0.0216

0 14

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. Gn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0.1

1 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.179)

Furthermore, ρ is set as ρ = 20, and Gf and x̂12 are calculated as

Gf =
⎡⎢⎢⎢⎢⎢⎣

60.06 1

−60.06 0

⎤⎥⎥⎥⎥⎥⎦
, x̂12 = −x̂4 + f̂2. (3.180)

3.4.3 Simulation results

The initial condition of the system is set as x(0) = {4,2.866,3,4.116}, while the initial

condition of the observer was set at zero. The fault signals were simulated as

f1 = sin(t + π
3
) + 2, f2 = 0.5 sin(1.8t + 5π

6
) + 1. (3.181)
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Figure 3.8: The first state (dash-dotted) and its estimate (solid).
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Figure 3.9: The second state (dash-dotted) and its estimate (solid).
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Figure 3.10: The third state (dash-dotted) and its estimate (solid).
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Figure 3.11: The fourth state (dash-dotted) and its estimate (solid).
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Figure 3.12: The first fault (dash-dotted) and its estimate (solid).
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Figure 3.13: The second fault (dash-dotted) and its estimate (solid).
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Figure 3.14: Output estimation error ey = ŷ − y.

Figures 3.8–3.13 show the evolution of the system states and faults, and their esti-

mates. At about t = 8 s, asymptotic tracking of the states takes place - the slow conver-

gence is due to the small pole of the reduced-order error dynamics at s = −0.675. The

observer estimates track the states and faults faithfully after convergence. Figure 3.14

shows the output estimation error ey against time. At approximately t = 0.05 s, ey goes

to and remains at zero, indicating that sliding motion on the surface S = {e ∶ Ce = 0} has

taken place (which is reflected in Figures 3.10–3.11, where the estimates of the third and

fourth states (which are outputs) converge on the true values in finite time). Notice also

from Figures 3.8–3.11 that the state estimates experience an abrupt change in dynamics

at the same time.

3.5 Conclusion

This chapter presents existing sliding mode observer (SMO) schemes for descriptor sys-

tems in the literature (with some original proofs and remarks for clarity). The sliding

mode observer to estimate states and faults for descriptor systems by Yeu et al. [157] was

presented in this chapter. The existence conditions for the observer by Yeu et al. were

then investigated, and it was found that the system needs to be infinitely observable for the

observer to be feasible. Infinite observability thus presents a limitation for SMO schemes

in descriptor systems. To overcome this, Ooi et al. presented two techniques to re-express
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non-infinitely observable descriptor systems as infinitely observable reduced-order de-

scriptor systems which are compatible with the observer by Yeu et al. The first method

[100] re-expresses the original system by treating certain states as unknown inputs. The

second method [101] also re-expresses certain states in terms of other states to reduce the

number of states treated as unknown inputs, thereby increasing the applicability of the

system. Finally, a numerical example demonstrates the efficacy of the second method.



Chapter 4

Robust fault reconstruction for NIODS

4.1 Introduction

In the previous chapter (in particular §3.2.2), a necessary condition for the sliding mode

observer (SMO) by Yeu et al. [157] to estimate the states and reconstruct the faults of a

descriptor system is that the system is infinitely observable [49]. As described in §3.3.1,

Ooi et al. [100] later extended these findings such that the observer scheme is also ap-

plicable to a class of non-infinitely observable descriptor systems (NIODS); their scheme

however did not fully exploit the design freedom available, and the robustness of the fault

reconstruction against disturbances was not considered as well. This chapter thus aims

to extend these results by presenting a SMO scheme for a class of NIODS where the ob-

server parameters are designed using linear matrix inequalities (LMIs) such that the L2

gain from the disturbances to the fault reconstruction is minimised, thus achieving robust

fault reconstruction.

This chapter begins with preliminary transformations to re-express the descriptor sys-

tem into a form that facilitates analysis and design. Then, by removing certain states and

treating them as unknown inputs, an infinitely observable reduced-order system is formu-

lated. In §4.3, the SMO by Yeu et al. [157] is then applied onto the reduced-order system.

The necessary and sufficient conditions for the existence of the observer are also inves-

tigated and presented in terms of the original system matrices. The design parameters

are then designed using the Bounded Real Lemma [128] such that the L2 gain from the

disturbances to the fault reconstruction is minimised. A set of design procedures for the

scheme is then outlined. Finally, a numerical example is presented in §4.4 to demonstrate

the effectiveness of the proposed scheme.
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The work in this chapter has been published; its reference is J. C. L. Chan, C. P. Tan,

and H. Trinh, Robust fault reconstruction for a class of infinitely unobservable descriptor

systems, International Journal of Systems Science, 48(8):1646–1655, 2017.

4.2 Preliminary transformations

Consider the following non-infinitely observable descriptor system (NIODS):

Eẋ = Ax +Bu +Mf +Qξ, (4.1)

y = Cx, (4.2)

where E,A ∈ Rn×n, B ∈ Rn×m, M ∈ Rn×q, Q ∈ Rn×h, C ∈ Rp×n. The vectors x, u, y, f ,

and ξ represent the states, inputs, outputs, faults, and disturbance signals, respectively.

Only u and y are measurable. The fault signal f represents an abnormal condition act-

ing upon the system; it is desired to reconstruct f so that information on its shape and

magnitude could be obtained such that timely and accurate corrective action can be taken.

The unknown disturbance signal ξ (which is not a fault, and could arise from mismatches

in modelling or parasitic dynamics [116]) however may cause the fault reconstruction to

become erroneous, and raise false positives or even mask the effect of a fault. Thus, it

is of interest to reconstruct f while minimising the effect of ξ on its reconstruction. It

is assumed generally that E is rank deficient, i.e. rank(E) = r < n, and that M and C

are full-column rank and full-row rank, respectively, i.e. rank(M) = q, rank(C) = p.

Similar to Lemma 3.1 in §3.2.1, system (4.1)–(4.2) is first re-expressed such that it has a

form facilitating further analysis using Lemma 4.1 and Proposition 4.1 as follows:

Lemma 4.1 Let state equation (4.1) be pre-multiplied by T1, state x0 be transformed such

that x0 ↦ T2x0, and fault f0 be transformed such that f0 ↦ T3f0, where T1, T2, and

T3 are non-singular matrices (referred to hereafter as a state equation transformation, a

state transformation, and a fault transformation, respectively). System (4.1)–(4.2) will be

transformed to have the form

(T1ET
−1
2 )(T2ẋ0) = (T1AT

−1
2 )(T2x0) + (T1B)u + (T1MT −1

3 )(T3f0) + (T1Q)ξ, (4.3)

y = (CT −1
2 )(T2x0). (4.4)
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Note that the matrices (E,A,B,M,Q,C) have been transformed. These transforma-

tions are used to change these matrices into forms that are more convenient for analysis

and design, but preserve the dynamic properties of the overall system (4.1)–(4.2). It can

be seen that the inputs and outputs of the system remain unchanged. The transfer func-

tion G(s) of a descriptor system is given by G(s) = C(sE −A)−1B. Therefore, if T1, T2,

and T3 are non-singular, the transfer functions of systems (4.1)–(4.2) and (4.3)–(4.4) are

identical. Thus, the dynamic properties such as the inputs, outputs, finite poles, and dy-

namical order of both systems are the same, and systems (4.1)–(4.2) and (4.3)–(4.4) are

said to be equivalent. ♯

Proposition 4.1 There exists a set of transformations for system (4.1)–(4.2) such that the

system matrices and state vector x would have the following structure:

E =
⎡⎢⎢⎢⎢⎢⎣

0 In̄−p E21

0 0 E22

⎤⎥⎥⎥⎥⎥⎦
, A =

⎡⎢⎢⎢⎢⎢⎣

A1 A2 A3

A4 A5 A6

⎤⎥⎥⎥⎥⎥⎦

↕ n̄ − p
↕ n − n̄ + p

,

B =
⎡⎢⎢⎢⎢⎢⎣

B1

B2

⎤⎥⎥⎥⎥⎥⎦
, M =

⎡⎢⎢⎢⎢⎢⎣

M1

M2

⎤⎥⎥⎥⎥⎥⎦
, Q =

⎡⎢⎢⎢⎢⎢⎣

Q1

Q2

⎤⎥⎥⎥⎥⎥⎦
, C = [0 0 Ip] , x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

↕ n − n̄
↕ n̄ − p
↕ p

,

(4.5)

where

n̄ = rank

⎡⎢⎢⎢⎢⎢⎣

E

C

⎤⎥⎥⎥⎥⎥⎦
< n. (4.6)

The partitions of E,A,B,M,Q have the same row dimensions, whilst the column

partitions of E,A,C are conformable to the partitions of x. ♯

Proof Introduce a state transformation Tz =
⎡⎢⎢⎢⎢⎢⎣

NT
C

C

⎤⎥⎥⎥⎥⎥⎦
where NCC = 0, i.e. x↦ Tzx so that

C ↦ Cz = CT −1
z = [0 Ip] , E ↦ Ez = ET −1

z = [E1 E2] , (4.7)

where Ez has no particular structure. It can be seen from (4.7) that

rank

⎡⎢⎢⎢⎢⎢⎣

Ez

Cz

⎤⎥⎥⎥⎥⎥⎦
= p + rank(E1). (4.8)
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From (4.6) and (4.8), it follows that rank(E1) = n̄ − p. Using singular-value decom-

position (SVD), E1 can be decomposed as

E1 = T Ta
⎡⎢⎢⎢⎢⎢⎣

0 In̄−p

0 0

⎤⎥⎥⎥⎥⎥⎦
T Tb1, (4.9)

where Ta and Tb1 are orthogonal. Define a state equation transformation Ta and a state

transformation T −1
b where Tb =

⎡⎢⎢⎢⎢⎢⎣

T Tb1 0

0 Ip

⎤⎥⎥⎥⎥⎥⎦
, and x ↦ T −1

b x = xb. Apply these transforma-

tions onto system (4.1)–(4.2), i.e.

E ↦ TaET
−1
z Tb, A↦ TaAT

−1
z Tb, B ↦ TaB, M ↦ TaM,

Q↦ TaQ, C ↦ CT −1
z Tb.

(4.10)

From (4.7)–(4.10), it can be seen that

E ↦ TaET
−1
z Tb = Eb =

⎡⎢⎢⎢⎢⎢⎣

0 In̄−p E21

0 0 E22

⎤⎥⎥⎥⎥⎥⎦
, C ↦ CT −1

z T −1
b = Cb = [0 0 Ip] , (4.11)

It can then be seen that the structures of (Eb,Cb) in (4.11) are identical to the struc-

tures of (E,C) in (4.5), thus completing the proof. ∎

Define an invertible matrix

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

In̄−p 0

0 Tp

0 T̄p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.12)

where Tp ∈ Rp×(n−n̄+p), T̄p ∈ R(n−n̄)×(n−n̄+p). The matrix Tp represents design freedom to

be exploited, while T̄p is solely to make T full rank. One suitable choice of T̄p would be

the transpose of the right null-space of Tp, i.e. TpT̄ Tp = 0. Apply the state equation trans-

formation T onto the system (that is in the coordinates of (4.5)) to obtain the following:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 In̄−p E21

0 0 TpE22

0 0 T̄pE22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ1

ẋ2

ẏ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 A2 A3

TpA4 TpA5 TpA6

T̄pA4 T̄pA5 T̄pA6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1

TpB2

T̄pB2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

u

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1

TpM2

T̄pM2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

f +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q1

TpQ2

T̄pQ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

ξ, (4.13)

y = [0 0 Ip]x. (4.14)
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Next, treat x1 as an unknown input, i.e. define

x̄ =
⎡⎢⎢⎢⎢⎢⎣

x2

y

⎤⎥⎥⎥⎥⎥⎦
, f̄ =

⎡⎢⎢⎢⎢⎢⎣

f

x1

⎤⎥⎥⎥⎥⎥⎦
, (4.15)

and system (4.13)–(4.14) can then be re-expressed as the following reduced-order system:

⎡⎢⎢⎢⎢⎢⎣

In̄−p E21

0 TpE22

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ē

˙̄x =
⎡⎢⎢⎢⎢⎢⎣

A2 A3

TpA5 TpA6

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ā

x̄ +
⎡⎢⎢⎢⎢⎢⎣

B1

TpB2

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

B̄

u +
⎡⎢⎢⎢⎢⎢⎣

M1 A1

TpM2 TpA4

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

M̄

f̄ +
⎡⎢⎢⎢⎢⎢⎣

Q1

TpQ2

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

Q̄

ξ, (4.16)

y = [0 Ip]
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

C̄

x̄. (4.17)

Notice that rank

⎡⎢⎢⎢⎢⎢⎣

Ē

C̄

⎤⎥⎥⎥⎥⎥⎦
= n̄ (which is full-column rank) and the output of the reduced

order system (4.16)–(4.17) is a measurable signal y. Hence the observer by Yeu et al.

[157] can now be designed based on (Ē, Ā, M̄ , C̄) and driven by u and y to estimate x̄

and f̄ , thus estimating x and f . In order to be able to fully reconstruct f̄ , the top n̄ − p

rows of M̄ (i.e. [M1 A1]) need to be made zero, i.e. the following equation must be

satisfied:

rank

⎡⎢⎢⎢⎢⎢⎣

M1 A1

TpM2 TpA4

⎤⎥⎥⎥⎥⎥⎦
= rank [TpM2 TpA4] . (4.18)

If (4.18) holds (the satisfaction of (4.18) will be addressed later in Proposition 4.3),

then define the following state equation transformation:

Tl =
⎡⎢⎢⎢⎢⎢⎣

In̄−p −X
0 Ip

⎤⎥⎥⎥⎥⎥⎦
, (4.19)

where X = [M1 A1] [TpM2 TpA4]
†
, and [TpM2 TpA4]

†
represents the left pseudo-

inverse (also known as the Moore-Penrose inverse) of [TpM2 TpA4], where

[TpM2 TpA4]
†
[TpM2 TpA4] =

⎡⎢⎢⎢⎢⎢⎣

Iq+ra 0

0 0

⎤⎥⎥⎥⎥⎥⎦
, (4.20)

where ra = rank(A4). Apply the state equation transformation Tl onto system (4.16)–
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(4.17) to obtain following transformed matrices with the structures

Ē =
⎡⎢⎢⎢⎢⎢⎣

In̄−p Ē21

0 TpE22

⎤⎥⎥⎥⎥⎥⎦
, Ā =

⎡⎢⎢⎢⎢⎢⎣

Ā2 Ā3

TpA5 TpA6

⎤⎥⎥⎥⎥⎥⎦
, B̄ =

⎡⎢⎢⎢⎢⎢⎣

B̄1

TpB2

⎤⎥⎥⎥⎥⎥⎦
,

M̄ =
⎡⎢⎢⎢⎢⎢⎣

0 0

TpM2 TpA4

⎤⎥⎥⎥⎥⎥⎦
, Q̄ =

⎡⎢⎢⎢⎢⎢⎣

Q̄1

TpQ2

⎤⎥⎥⎥⎥⎥⎦
, C̄ = [0 Ip] ,

(4.21)

where Ē21 = E21−XTpE22, Ā2 = A2−XTpA5, Ā3 = A3−XTpA6, B̄1 = B1−XTpB2, Q̄1 =

Q1 − XTpQ2. The observer by Yeu et al. [157] can now be applied to reconstruct f̄ ,

thereby reconstructing f , as will be shown in the next subsection.

4.3 The sliding mode observer for fault reconstruction

The observer by Yeu et al. [157] for system (4.21) is given in compact form as follows:

ż = (RĀ −GlC̄) z −RB̄u − (Gl(Ip − C̄V ) +RĀV ) y −Gnν, (4.22)

ˆ̄x = V y − z, (4.23)

ν = −ρ ey
∥ey∥

, ey = C̄ ˆ̄x − y, (4.24)

where R ∈ Rn̄×n̄ is invertible and V ∈ Rn̄×p. The following theorem forms the main result

of this chapter.

Theorem 4.1 The observer by Yeu et al. [157] can reconstruct f for system (4.1)–(4.2) if

and only if the following conditions hold:

E1. rank

⎡⎢⎢⎢⎢⎢⎣

M1 A1

M2 A4

⎤⎥⎥⎥⎥⎥⎦
= rank [M2 A4],

E2. rank [M2 A4] = q + ra,

E3. p ≥ q + ra,

where ra = rank(A4). The following condition is necessary, and also sufficient if p − q −

ra > 0:

E4. rank

⎡⎢⎢⎢⎢⎢⎣

sE −A M

C 0

⎤⎥⎥⎥⎥⎥⎦
= n̄ + q + ra ∀s ∈ C+.
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If p − q − ra = 0, the necessary condition is E4, and the sufficient condition is that

E5. the eigenvalues of Ā2 are stable. ♯

Proof The remainder of this section presents the constructive proof for Theorem 4.1.

Let the gain matrices Gl and Gn have the following structures

Gl =
⎡⎢⎢⎢⎢⎢⎣

Gl1

Gl2

⎤⎥⎥⎥⎥⎥⎦
, Gn =

⎡⎢⎢⎢⎢⎢⎣

0

Gn2

⎤⎥⎥⎥⎥⎥⎦

↕ n̄ − p
↕ p

, (4.25)

where Gn2 is invertible. Next, pre-multiply the state-equation (4.16) (with the structures

in (4.18)) with R and add V ẏ to both sides to obtain

RĒ ˙̄x + V ẏ = (RĒ + V C̄) ˙̄x = RĀx̄ +RB̄u +RM̄f̄ +RQ̄ξ + V ẏ. (4.26)

Suppose that RĒ + V C̄ = In̄. Hence (4.26) becomes

˙̄x = RĀx̄ +RB̄u +RM̄f̄ +RQ̄ξ + V C̄ ˙̄x. (4.27)

Corollary 4.1 The matrices R,V from (4.22)–(4.23) will have the following structures:

R =
⎡⎢⎢⎢⎢⎢⎣

In̄−p R2

0 R4

⎤⎥⎥⎥⎥⎥⎦
, V =

⎡⎢⎢⎢⎢⎢⎣

−(Ē21 +R2TpE22)
Ip −R4TpE22

⎤⎥⎥⎥⎥⎥⎦
, (4.28)

where ∣R4∣ ≠ 0. ♯

Proof Since rank

⎡⎢⎢⎢⎢⎢⎣

Ē

C̄

⎤⎥⎥⎥⎥⎥⎦
= n̄, then the matrices R and V can be chosen such that

[R V ]
⎡⎢⎢⎢⎢⎢⎣

Ē

C̄

⎤⎥⎥⎥⎥⎥⎦
= In̄, (4.29)

i.e. [R V ] is chosen to be the Moore-Penrose inverse of

⎡⎢⎢⎢⎢⎢⎣

Ē

C̄

⎤⎥⎥⎥⎥⎥⎦
. Partition the matrices R

and V generally as follows:

[R V ] =
⎡⎢⎢⎢⎢⎢⎣

R1 R2 V1

R3 R4 V2

⎤⎥⎥⎥⎥⎥⎦
, (4.30)

where R1 ∈ R(n̄−p)×(n̄−p) and R4 ∈ Rp×p. By substituting Ē and C̄ from (4.21) and R and

V from (4.30) into (4.29), it is straightforward to see that R and V would take the forms

given in (4.28). ∎
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Next, substitute z from (4.23) into (4.22) to obtain

(V ẏ − ˙̄̂x) = (RĀ −GlC̄) (V y − ˆ̄x) −RB̄u − (Gl (Ip − C̄V ) +RĀV ) y −Gnν

⇒ ˙̄̂x = (RĀ −GlC̄) ˆ̄x +RB̄u +GlC̄x̂ +Gnν + V C̄ ˙̄x. (4.31)

Define the state estimation error e as follows:

e =
⎡⎢⎢⎢⎢⎢⎣

e2

ey

⎤⎥⎥⎥⎥⎥⎦

↕ n̄ − p
↕ p

. (4.32)

Hence by subtracting (4.27) from (4.31), the error equation (which characterises the

performance of the observer) becomes

ė = (RĀ −GlC̄)e −RM̄f̄ −RQ̄ξ +Gnν. (4.33)

Therefore, expand (4.33) using (4.21) and (4.32) to obtain

⎡⎢⎢⎢⎢⎢⎣

ė2

ėy

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

A2 + (R2 −X)TpA5 A3 + (R2 −X)TpA6 −Gl1

R4TpA5 R4TpA6 −Gl2

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

e2

ey

⎤⎥⎥⎥⎥⎥⎦

−
⎡⎢⎢⎢⎢⎢⎣

R2TpM2 R2TpA4

R4TpM2 R4TpA4

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

f

x1

⎤⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎣

Q1 + (R2 −X)TpQ2

R4TpQ2

⎤⎥⎥⎥⎥⎥⎦
ξ +

⎡⎢⎢⎢⎢⎢⎣

0

Gn2

⎤⎥⎥⎥⎥⎥⎦
ν.

(4.34)

4.3.1 Convergence of the sliding mode observer

Proposition 4.2 Suppose there exists a positive-definite matrix P that satisfies

P (RĀ −GlC̄) + (RĀ −GlC̄)TP < 0, (4.35)

where P =
⎡⎢⎢⎢⎢⎢⎣

P1 0

0 G−1
n2

⎤⎥⎥⎥⎥⎥⎦
, P1 ∈ R(n̄−p)×(n̄−p). If ρ in (4.24) is chosen as follows:

ρ ≥ 2∥G−1
n2R4TpA5∥µ1β/µ0 + ∥G−1

n2R4Tp [M2 A4] ∥α + ∥G−1
n2R4TpQ2∥β + η,

µ0 = −λmax (P (RĀ −GlC̄) + (RĀ −GlC̄)TP ),

µ1 = ∥PRQ̄∥, α ≥ ∥f∥max + ∥x1∥max, β ≥ ∥ξ∥,

(4.36)

where η is an arbitrarily small positive scalar, then an ideal sliding motion takes place on

the surface S = {e ∶ C̄e = 0} in finite time. ♯
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Proof The first portion of the proof is to show that e can be made to be ultimately bounded

by setting a suitable value for ρ. Define a candidate Lyapunov function W = eTPe > 0.

Differentiating W with respect to time yields

Ẇ = eT (P (RĀ −GlC̄) + (RĀ −GlC̄
TP ))e − 2eTPRM̄f̄ − 2eTPRQ̄ξ + 2eTPGnν

≤ −µ0∥e∥2 + 2∥e∥µ1β − 2∥ey∥(ρ − ∥G−1
n2C̄RM̄∥α). (4.37)

If ρ is set to satisfy

ρ ≥ ∥G−1
n2C̄RM̄∥α + η, (4.38)

then (4.37) becomes

Ẇ ≤ ∥e∥ (−µ0∥e∥ + 2µ1β) . (4.39)

When the magnitude of the error e is smaller than or equal than a certain bound, i.e.

∥e∥ ≤ 2µ1β
µ0

, then (4.39) becomes

Ẇ ≤ κ, (4.40)

where κ ≥ 0, and thus the magnitude of e can grow, shrink, or remain constant within

this bound. It can however be seen that if the magnitude of the error e is larger than the

aforementioned bound, i.e. ∥e∥ > 2µ1β
µ0

, then (4.39) becomes

Ẇ < 0, (4.41)

and ∥e∥ would shrink. This implies that the magnitude of e will be bounded (∥e∥ ≤ 2µ1β
µ0

)

in finite time if (4.38) is satisfied.

The next (and remaining) portion of the proof aims to show how sliding motion

(ey, ėy = 0) is induced. Define another candidate Lyapunov function Wy = eTyG−1
n2ey > 0.

Differentiating Wy with respect to time yields

Ẇy = eTy (G−1
n2 (R4TpA6 −Gl2) + (R4TpA6 −Gl2)T G−1

n2) ey

+ 2eTy (G−1
n2R4TpA5e2 −G−1

n2R4Tp [M2 A4] f̄ −G−1
n2R4TpQ2ξ + ν)

≤ − 2∥ey∥(ρ − 2∥G−1
n2R4TpA5∥µ1β/µ0 + ∥G−1

n2R4Tp [M2 A4]α

+ ∥G−1
n2R4TpQ2∥β). (4.42)
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Notice that

∥ey∥2 = (
√
G−1
n2ey)

T
Gn2 (

√
G−1
n2ey) ≥ λmin (Gn2) ∥

√
G−1
n2ey∥2 = λmin (Gn2)Wy. (4.43)

Then, by setting ρ such that (4.36) is satisfied (which also satisfies (4.38)), inequality

(4.42) becomes

Ẇy ≤ −2η∥ey∥ ≤ −2η
√
λmin (Gn2)

√
Wy, (4.44)

which is the reachability condition that will result in ey = 0 in finite time, and a sliding

motion takes place on the surface S = {e ∶ C̄e = 0} [128]. ∎

Remark 4.1 Notice from (4.36) that x, f, ξ need to be bounded, and the bounds need to

be known in order to calculate ρ. In practical situations, the bounds could be obtained by

knowing the physical operation of the system, or by simulating the system operating under

practical scenarios. It is reasonable to assume that x is bounded, as a controller will be

put in place to stabilise the system, but the design of the controller is not considered as

it has no effect on the fault reconstruction, since u does not appear in the error equation

from (4.33) onwards.

Since the upper bounds of ∥x∥, ∥f∥, ∥ξ∥ are only required to calculate ρ in (4.36), in

situations where it is not easy to obtain these upper bounds, ρ can be set to be adaptive,

where the magnitude of ρ can be adjusted to achieve convergence of ey. This way, the

bounds of ∥x∥, ∥f∥, ∥ξ∥ do not need to be known a-priori, and ρ will also be smaller (less

conservative), which can reduce chattering. One such adaptive scheme to calculate ρ is

from [47], given as follows:

ρ(t) = ρ̄ + β (ey(t)) + η0, (4.45)

where β (⋅) is an exponentially decaying term driven by the output estimation error, η0 is

an arbitrarily small positive scalar, and ρ̄ is given by

˙̄ρ = α0Φ (∥ey(t)∥) − α1
¯ρ(t), ρ̄(0) = ρ0, (4.46)

where α0 and α1 are positive scalars, ρ0 ≥ 0, and Φ (⋅) is a dead-zone function such that

Φ(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if ∥x∥ ≤ ε

x − ε sign(x) otherwise,
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where ε is a positive scalar. If f̄ and ξ remain bounded, then ey would be driven to a

boundary layer about the sliding surface S = {e ∶ C̄e = 0}. The proof for this design

procedure can be found in [47]. ♯

Remark 4.2 Chattering is an inherent problem arising in SMOs which may corrupt the

reconstruction of fault signals. The effects of chattering can be alleviated through proper

tuning of ρ, and by introducing a small positive scalar δ such that ν in (4.24) becomes

ν = −ρ ey
∥ey∥ + δ

. (4.47)

Setting δ to be larger and ρ to be smaller (while still satisfying (4.36)) reduces chat-

tering in the fault reconstruction. The parameter δ, however, causes the sliding motion of

ey to take place within a small boundary layer near 0 instead of perfectly sliding on the

surface S = {e ∶ C̄e = 0}. A larger δ would result in a larger boundary layer, which in

turn diminishes the accuracy of the reconstructed fault [8]. ♯

Remark 4.3 Note that the requirement for f to be bounded even though x(0) is unknown

reduces the scheme’s applicability since it does not cater to cases where f is unbounded.

This is however not a stringent restriction: practical systems operate around a certain

operating point, and by finding reasonable bounds on the faults affecting the system as

per Remark 4.1, the scheme can still be applied across a wide range of systems. ♯

After sliding motion is achieved, ey, ėy = 0, and system (4.34) becomes

ė2 = (A2 + (R2 −X)TpĀ5) e2 −R2Tp [M2 A4] f̄ − (Q1 + (R2 −X)TpQ2)ξ, (4.48)

0 = R4TpA5e2 −R4Tp [M2 A4] f̄ −R4TpQ2ξ +Gn2ν. (4.49)

4.3.2 Robustly reconstructing the fault

Define a measurable signal ν̄ = R−1
4 Gn2ν. Equation (4.49) can then be rearranged to

become

ν̄ = −TpA5e2 + TpQ2ξ + TpA4x1 + TpM2f. (4.50)
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For the purpose of fault reconstruction, it is desirable to be able to extract f without

influence from x1, i.e. a linear combination of (4.50) can be formed such that x1 is

eliminated. To achieve this, it is required that

rank (TpM2) = q, (4.51)

rank [TpM2 TpA4] = rank (TpM2) + rank (TpA4) . (4.52)

Equation (4.51) implies that all components of f can be recovered, while (4.52) im-

plies that the columns of TpM2 and TpA4 are independent of each other so that x1 does

not influence f . Combining (4.51)–(4.52) results in

rank [TpM2 TpA4] − rank (TpA4) = q. (4.53)

Proposition 4.3 A suitable choice of Tp exists to satisfy (4.18) and (4.53) if and only if

E1–E3 hold true. ♯

Proof To prove the necessity of E1, suppose that it does not hold, i.e.

rank

⎡⎢⎢⎢⎢⎢⎣

M1 A1

M2 A4

⎤⎥⎥⎥⎥⎥⎦
< rank [M2 A4] . (4.54)

Notice that (4.54) can never hold, since adding more rows to a matrix does not reduce

its rank - it is assumed only to show the necessity of E1. Since rank (Tp [M2 A4]) ≤

rank [M2 A4], if E1 does not hold, then

rank (Tp [M2 A4]) < rank

⎡⎢⎢⎢⎢⎢⎣

M1 A1

TpM2 TpA4

⎤⎥⎥⎥⎥⎥⎦
, (4.55)

which violates the assumption made in (4.18), thus proving the necessity of E1.

Then to prove the necessity of E2, suppose that it is not met, i.e.

rank [M2 A4] < q + ra, (4.56)

which implies that M2 and A4 would have dependent columns, or that M2 does not have

full-column rank, or both. Hence, the columns of TpM2 and TpA4 will be dependent, or

even if they did have independent columns, rank (M2) < q, and (4.53) will never hold,

thus proving the necessity of E2.
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Since rank (A4) = ra, use SVD to decompose A4 into

A4 = T Tc1
⎡⎢⎢⎢⎢⎢⎣

Ira 0

0 0

⎤⎥⎥⎥⎥⎥⎦
T Td1, (4.57)

where Tc1 and Td1 are orthogonal. Since A4 ∈ R(n−n̄+p)×(n−n̄), then ra ≤ n− n̄. Introduce a

state equation transformation Tc and a state transformation Td such that x↦ Tdx, where

Tc =
⎡⎢⎢⎢⎢⎢⎣

In̄−p 0

0 Tc1

⎤⎥⎥⎥⎥⎥⎦
, Td =

⎡⎢⎢⎢⎢⎢⎣

Td1 0

0 In̄

⎤⎥⎥⎥⎥⎥⎦
. (4.58)

Apply these transformations onto M and A in the coordinates of (4.5) to obtain

M ↦ TcM =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1

M21

M22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A↦ TcAT
−1
d =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A2 A3

Ira 0 A51 A61

0 0 A52 A62

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.59)

Substitute the structures of M and A from (4.59) into E2 to obtain

rank [M2 A4] − rank(A4) = rank

⎡⎢⎢⎢⎢⎢⎣

M21 Ira 0

M22 0 0

⎤⎥⎥⎥⎥⎥⎦
− rank

⎡⎢⎢⎢⎢⎢⎣

Ira 0

0 0

⎤⎥⎥⎥⎥⎥⎦
= q. (4.60)

Equation (4.60) implies

rank (M22) = q. (4.61)

Thus, perform QR decomposition on M22 to obtain

Te1M22 =
⎡⎢⎢⎢⎢⎢⎣

Iq

0

⎤⎥⎥⎥⎥⎥⎦
, (4.62)

where Te1 is invertible. Hence define the state equation transformation Te such that

Te =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

In̄−p 0 0 0

0 0 Iq 0

0 Ira −M21 0

0 0 0 In−n̄+p−q−ra

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

In̄−p+ra 0

0 Te1

⎤⎥⎥⎥⎥⎥⎦
. (4.63)

Apply this transformation onto the system in the coordinates of (4.59) to obtain

M ↦ TeM =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1

Iq

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A↦ TeA =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A2 A3

0 0 A51 A61

Ira 0 A52 A62

0 0 A53 A63

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.64)
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The structures of M and A from (4.64) imply the following

rank

⎡⎢⎢⎢⎢⎢⎣

M1 A1

M2 A4

⎤⎥⎥⎥⎥⎥⎦
= rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1 A11 A12 A2 A3

Iq 0 0 A51 A61

0 Ira 0 A52 A62

0 0 0 A53 A63

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

rank [M2 A4] = rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Iq 0 0 A51 A61

0 Ira 0 A52 A62

0 0 0 A53 A63

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(4.65)

By substituting for the structures of M and A from (4.65), condition E1 (which states

that the LHS terms in (4.65) are equal) implies A12 = 0. Therefore, set

Tp =
⎡⎢⎢⎢⎢⎢⎣

Iq+ra 0

0 T33

⎤⎥⎥⎥⎥⎥⎦
, (4.66)

where T33 ∈ R(p−q−ra)×(n−n̄+p−q−ra) is chosen such that Tp is full-row rank. To show the

necessity of E3, suppose it is not satisfied, i.e. p < q+rank (A4). Then it is straightforward

to see in this case that T33 (and therefore Tp) does not exist, violating the proposition that a

suitable choice of Tp exists to satisfy (4.18) and (4.53). On the other hand, the sufficiency

of E3 is obvious: if E3 is satisfied, i.e. p ≥ q + ra, then T33 exists and can be freely chosen

such that Tp is full-row rank. Thus, Proposition 4.3 is proven. ∎

Let R2 from (4.28) and Q2 in the coordinates of (4.64) take the forms

R2 = [0 L] , Q2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q21

Q22

Q23

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

↕ q

↕ ra

↕ n − n̄ + p − q − ra

, (4.67)

where L ∈ R(n̄−p)×(p−q−ra) represents design freedom. By substituting for the structures of

M and A in (4.64), then M̄ from (4.16), X from (4.19), and Ā2 from (4.21) would have

the following forms:

M̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1 A11 0

Iq 0 0

0 Ira 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, X = [M1 A11 0] , Ā2 = A2 −M1A51 −A11A52. (4.68)
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Therefore, using (4.50) and the structure of M̄ from (4.68), define the fault recon-

struction signal to be

f̂ = Y ν̄, (4.69)

where Y = [Iq 0 W ], where W ∈ Rq×(p−q−ra) represents design freedom. Pre-multiply

(4.50) with Y , and substitute for A5 and M2 from (4.64), Tp from (4.66), Q2 from (4.67),

and A4 from (4.68) to obtain

f̂ = (−A51 −WT33A53) e2 + (Q21 +WT33Q23) ξ + f, (4.70)

which estimates f completely and x1 does not appear. However, e2 and ξ affect f̂ ; this

issue will be addressed later in §4.3.3 when the observer is designed to minimise their

effects on f̂ .

Define the fault reconstruction error

ef = f̂ − f. (4.71)

Rearranging (4.48)–(4.49) using (4.66)–(4.71) yields

ė2 = (Ā2 +LT33A53)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ă

e2 + (−Q1 +M1Q21 +A11Q22 −LT33Q23)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B̆

ξ, (4.72)

ef = (−A51 −WT33Q53)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C̆

e2 + (Q2 +WT33Q23)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

D̆

ξ, (4.73)

which is a state-space system that shows how the disturbance ξ affects the fault recon-

struction error ef . It can be seen that for ef to be stable, the error system (4.72)–(4.73)

needs to be stable.

Proposition 4.4 For a suitable T33 (and hence Tp) to exist such that the error system

(4.72)–(4.73) is stable, E4 is necessary. If p − q − ra > 0, then E4 is also sufficient;

otherwise (for p − q − ra = 0), E5 is sufficient. ♯

Proof Expand the left-hand side of E4 using (4.10):

rank

⎡⎢⎢⎢⎢⎢⎣

sE −A M

C 0

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

R(s)

= rank

⎡⎢⎢⎢⎢⎢⎣

−A1 sI −A2 M1

−A4 −A5 M2

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

R2(s)

+p, (4.74)



Ch. 4. Robust fault reconstruction for NIODS 81

where R(s) is the Rosenbrock matrix of (E,A,M,C), and the values of s that make it

lose rank are the zeros of the system (E,A,M,C) [109]. Substitute for A1,A4,A5, and

M2 from (4.64) to obtain

rank (R2(s)) = rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

In̄−p −M1 −A11 0

0 Iq 0 0

0 0 Ira 0

0 0 0 −Ip−q−ra

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 0 sIn̄−p −A2 M1

0 0 −A51 Iq

−Ira 0 −A52 0

0 0 −A53 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 sI − Ā2 0

0 −A51 Iq

Ira A52 0

0 A53 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= rank

⎡⎢⎢⎢⎢⎢⎣

sIn̄−p − Ā2

A53

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

D(s)

+q + ra. (4.75)

From the Popov-Hautus-Rosenbrock (PHR) rank test [60], if the values of s that make

D(s) lose rank (i.e. the unobservable modes of Ā2) are stable, the pair (Ā2,A53) is said

to be detectable - hence E4 can be recast as: (Ā2,A53) is detectable.

Proof of Necessity:

Recall that for error state equation (4.72) to be stable, it is required that Ă is stable, which

implies λ (Ā2 +LT33A53) < 0, i.e. (Ā2, T33A53) is detectable. Notice that the detectabil-

ity of (Ā2, T33A53) depends also on T33, which constitutes design freedom. Hence, the

requirement is recast as: matrix T33 exists such that (Ā2, T33A53) is detectable. From

the PHR rank test, if the values of s that make the following matrix D2(s) lose rank are

stable, then (Ā2, T33A53) is said to be detectable, whereby

D2(s) =
⎡⎢⎢⎢⎢⎢⎣

sIn̄−p − Ā2

T33A53

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

In̄−p 0

0 T33

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

sIn̄−p − Ā2

A53

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

D(s)

. (4.76)

From (4.76), it follows that rank (D2(s)) ≤ rank (D(s)). Therefore if a value of

s makes D(s) lose rank, it will also make D2(s) lose rank, and hence the zeros of

(E,A,M,C) are also the unobservable modes of (Ā2, T33A53). This therefore shows
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that E4 is necessary for (Ā2, T33A53) to be detectable.

Proof of Sufficiency:

For the case where p − q − ra > 0, let Z be a matrix containing the generalised right-

eigenvectors of Ā2. Therefore Z−1Ā2Z is a matrix in the Jordan canonical form, where

the diagonal elements are the real parts of the eigenvalues of Ā2 [98]. Pre-multiply D2(s)

from (4.76) with

⎡⎢⎢⎢⎢⎢⎣

Z−1 0

0 Ip−q−ra

⎤⎥⎥⎥⎥⎥⎦
and post-multiply with Z, i.e.

⎡⎢⎢⎢⎢⎢⎣

Z−1 0

0 Ip−q−ra

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

sIn̄−p − Ā2

T33A53

⎤⎥⎥⎥⎥⎥⎦
Z =

⎡⎢⎢⎢⎢⎢⎣

In̄−p 0

0 T33

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

Z−1(sIn̄−p − Ā2)Z
A53Z

⎤⎥⎥⎥⎥⎥⎦
. (4.77)

A zero of (E,A,M,C), which is an unobservable mode of (Z−1Ā2Z,T33A53Z), will

therefore appear as an element of Z−1Ā2Z where its corresponding column in T33A53Z

is zero. If E4 is satisfied, however, the columns within A53Z corresponding to positive

diagonal elements (which indicate unstable eigenvalues) within Z−1Ā2Z will be non-

zero. Recall that T33 is design freedom. Thus, a single row within T33 can be chosen

such that T33A53Z has non-zero elements at the columns corresponding to the diagonals

of Z−1Ā2Z that are unstable in order to guarantee that the unstable modes are observable

(and therefore are not a zero of (E,A,M,C)). Thus, the sufficiency of E4 when p−q−ra >

0 is shown.

When p − q − ra = 0, Tp in (4.66) becomes

Tp = [Iq+ra 0] . (4.78)

Since T33 does not exist, Ă in (4.72) becomes Ā2, so it is sufficient that the eigenvalues

of Ā2 are stable (i.e. E5 is satisfied) for the error system (4.72)–(4.73) to be stable. ∎

Therefore, Propositions 4.3 and 4.4 have been proven: if E1–E4 (and E5 if necessary)

are satisfied, the observer by Yeu et al. [157] can reconstruct f for system (4.1)–(4.2),

thus proving Theorem 4.1. ◻

Remark 4.4 If ξ = 0 (i.e. system (4.1)–(4.2) is not affected by external disturbances),
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error system (4.72)–(4.73) becomes

ė2 = (A2 +LT33A53) e2, (4.79)

ef = − (A51 +WT33Q53) e2. (4.80)

It can be seen that ef → 0, which implies f̂ → f . Therefore, in the absence of external

disturbances, the proposed scheme is able to asymptotically reconstruct the faults. ♯

4.3.3 Observer design for robust fault reconstruction

Recall from (4.72)–(4.73) that disturbance ξ affects the fault reconstruction error ef and

may therefore corrupt the fault reconstruction f . The objective now is to minimise the

L2 gain from ξ to ef , by choice of L and W . This would be achieved using linear matrix

inequalities (LMIs). The following portion introduces LMIs, and motivates it with a

simple example.

An introduction to linear matrix inequalities [124]

Many problems in system and control theory (e.g. LQR and H∞) can be reduced into a

few standard problems involving LMIs. An LMI has the form

F (x) = F0 +
m

∑
i=1

xiFi > 0, (4.81)

where x ∈ Rm is a vector whose scalar variable(s) and the symmetric matrices Fi (where

i = 0,1, . . . ,m) are given quantities. The inequality sign in (4.81) implies F (x) is positive

definite. Generally, LMI problems can then be split into:

1. feasibility problems, where it is of interest to find a value for x that satisfies the LMI

system A(x) < B(x), where A(x) and B(x) are two affine functions in x (such as

in (4.81)).

2. minimisation of a linear objective problems, where the goal is to minimise f(x),

where f(x) is an affine function in x that satisfies A(x) < B(x).
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3. generalised eigenvalue problems, where the scalar λ is to be minimised, subject to

A(x) < B(x), C(x) < λD(x), 0 < D(x), where C(x) andD(x) are affine functions

in x.

Each of these types of problems have their corresponding solvers in the MATLAB

LMI Toolbox [52]. To illustrate the concept of LMIs, consider the following example

from [124]: it is of interest to find the Lyapunov matrix P = P T > 0 and matrices Gl, A,

and C with the following structures

P =
⎡⎢⎢⎢⎢⎢⎣

p1 0

0 po

⎤⎥⎥⎥⎥⎥⎦
, Gl =

⎡⎢⎢⎢⎢⎢⎣

g1

g2

⎤⎥⎥⎥⎥⎥⎦
, A =

⎡⎢⎢⎢⎢⎢⎣

−2 −3

1 3

⎤⎥⎥⎥⎥⎥⎦
, C = [0 1] (4.82)

where p1, po, g1, g2 ∈ R, such that P and Gl satisfy the inequality

P (A −GlC) + (A −GlC)T P < 0. (4.83)

Substituting (4.82) into (4.83) yields
⎡⎢⎢⎢⎢⎢⎣

p1 0

0 po

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

−2 −3 − g1

1 3 − g2

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

−2 1

−3 − g1 −3 − g2

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

p1 0

0 po

⎤⎥⎥⎥⎥⎥⎦
< 0

⇒
⎡⎢⎢⎢⎢⎢⎣

−4p1 −3p1 + po − p1g1

−3p1 + po − p1g1 6po − 2pog2

⎤⎥⎥⎥⎥⎥⎦
< 0

⇒ p1

⎡⎢⎢⎢⎢⎢⎣

−4 −3

−3 0

⎤⎥⎥⎥⎥⎥⎦
+ po

⎡⎢⎢⎢⎢⎢⎣

0 1

1 6

⎤⎥⎥⎥⎥⎥⎦
+ p1g1

⎡⎢⎢⎢⎢⎢⎣

0 −1

−1 0

⎤⎥⎥⎥⎥⎥⎦
+ pog2

⎡⎢⎢⎢⎢⎢⎣

0 0

0 −2

⎤⎥⎥⎥⎥⎥⎦
< 0. (4.84)

Inequality (4.84) can then be re-written as an LMI of the form (4.81), where the con-

stant matrices are

F0 = 02×2, F1 =
⎡⎢⎢⎢⎢⎢⎣

4 3

3 0

⎤⎥⎥⎥⎥⎥⎦
, F2 =

⎡⎢⎢⎢⎢⎢⎣

0 −1

−1 −6

⎤⎥⎥⎥⎥⎥⎦
, F3 =

⎡⎢⎢⎢⎢⎢⎣

0 1

1 0

⎤⎥⎥⎥⎥⎥⎦
, F4 =

⎡⎢⎢⎢⎢⎢⎣

0 0

0 2

⎤⎥⎥⎥⎥⎥⎦
, (4.85)

and the LMI variables are

x1 = p1, x2 = po, x3 = p1g1, x4 = pog2. (4.86)

The LMI Toolbox can then be used to solve (4.84), and given solutions for x1, x2, x3, x4,

variables p1, po, g1, g2 can be determined. Thus by using the LMI toolbox routine feasp

(which calculates a feasible solution to (4.84)), the following values are obtained:

x1 = p1 = 2.130, x2 = po = 1.633, x3 = −5.126, x4 = 8.158. (4.87)
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From the definitions of Gl and P in (4.82), and x3, x4 in (4.86), matrices Gl and P are

found to be

Gl =
⎡⎢⎢⎢⎢⎢⎣

−2.406

4.995

⎤⎥⎥⎥⎥⎥⎦
, P =

⎡⎢⎢⎢⎢⎢⎣

2.130 0

0 1.633

⎤⎥⎥⎥⎥⎥⎦
(4.88)

Thus a solution to inequality (4.83) has been found using LMIs. This example there-

fore serves as motivation to the next portion, where the observer design problem will be

framed as an LMI system.

Using LMIs to minimise the effect of disturbances on the fault reconstruction error

To minimise the L2 gain from ξ to ef , through the choice of L and W , the following

lemma is used to frame the problem as an LMI:

Lemma 4.2 (The Bounded Real Lemma [26, 52, 128]) Consider the following state-space

system:

ẋr = Arxr +Brur, (4.89)

yr = Crxr +Drur, (4.90)

where ur ∈ Rmr , yr ∈ Rpr . The L2 norm from ur to yr does not exceed the positive scalar

γr if the following inequality is satisfied:
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

PrAr +ATr Pr PrBr CT
r

BT
r Pr −γrImr DT

r

Cr Dr −γrIpr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (4.91)

where Pr = P T
r > 0. ♯

By applying the Bounded Real Lemma onto error system (4.72)–(4.73), the L2 gain

from ξ to ef will not exceed the positive scalar γ if there exists a matrix P1 = P T
1 > 0 such

that
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1Ă + ĂTP1 P1B̆ C̆T

B̆TP1 −γIh D̆T

C̆ D̆ −γIq

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (4.92)

The objective is therefore to find the solution for γ,P1, L, and W that minimises γ

subject to inequality (4.92), while also satisfying

P (RĀ −GlC̄) + (RĀ −GlC̄)T P < 0, (4.93)
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which (as in Proposition 4.2) guarantees that sliding motion will occur. The choice of

Gl is not unique; any value that satisfies (4.93) is suitable. In this chapter, Gl will be

designed using the method by [128], which is to satisfy the following inequality:
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

P (RĀ) + (RĀ)TP − γ0C̄T (D̄D̄T )−1C̄ −P (RQ̄) F̄ T

−(RQ̄)TP −γ0Ih D̆T

F̄ D̆ −γ0Iq

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (4.94)

where D̄ ∈ Rp×p, and

F̄ = [C̆ F1] , P =
⎡⎢⎢⎢⎢⎢⎣

P1 0

0 P2

⎤⎥⎥⎥⎥⎥⎦
. (4.95)

Finally, Gl is calculated using Gl = γ0P −1C̄T (D̄D̄T )−1. Note that some terms in the

inequalities are not affine, whereby there are instances of non-linearity in the variables,

i.e. P1L. This can be solved by introducing a change in variables. Define a new variable

J = P1L. (4.96)

After the software solver returns values for P1 and J , then L can be calculated as

L = P −1
1 J. (4.97)

By applying this technique onto (4.93), the Bounded Real Lemma for system (4.72)–

(4.73) has the form
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1Ā2 + JT33A53 + (P1Ā2 + JT33A53)T ∗ ∗
−Q̌TP1 − (JT33Q23)T −γIh ∗
−(A51 − T33A53) Q21 +WT33Q23 −γIq

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (4.98)

where Q̌ = Q1−M1Q21−A11Q22, and ∗ are terms that make (4.98) symmetrical. Hence if

a set of values for P1, J,W, γ satisfying (4.98) can be found, the L2 gain from ξ to ef will

not exceed the positive scalar γ. Therefore, the observer design problem can be recast as:

• Minimise γ with respect to the variables P1, P2, F1, J,W, γ subject to (4.94) and

(4.98), and P1, P2 > 0.

• The gain W is extracted as is from the solution to LMI (4.98), L is calculated from

(4.97), and the observer gain matrices Gl and Gn are determined using:

Gl = γ0P
−1C̄T (D̄D̄T )−1, Gn =

⎡⎢⎢⎢⎢⎢⎣

0

P −1
2

⎤⎥⎥⎥⎥⎥⎦
. (4.99)
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Remark 4.5 Let X̆ = P1Ā2 + JT33A53 + (P1Ā2 + JT33A53)T . For the LMIs in (4.94) and

(4.98) to have a feasible solution, it is necessary that X̆ < 0 as it is on the main diagonal

of the LMI in (4.98). For X̆ < 0, it is required that (Ā2, T33A53) is detectable (so that Ă

can be made stable), which has been shown in Proposition 4.4 to be equivalent to E4 (i.e.

(E,A,M,C) is minimum phase) when p − q − ra > 0. Hence E4 is a necessary condition

for the LMIs to be feasible when p − q − ra > 0.

However, there is no analytical expression (nor condition) that guarantee the solv-

ability of the LMIs (4.94) and (4.98), though it is possible to know the effect of the design

parameters D̄ and γ0 on solvability as follows:

• Setting a smaller γ0 would cause the diagonals of LMI (4.94) to become less nega-

tive; since LMI (4.94) is negative, this would restrict the feasibility of the LMI.

• Setting a smaller value of D̄ causes the top-left element on the main diagonal of

(4.94) to become more negative, increasing the feasibility of the LMI.

Knowing these effects would allow the designer to choose appropriate values for D̄

and γ0. ♯

The solution of γ to the LMIs in (4.94) and (4.98) would be the upper bound of the L2

norm from ξ to ef . As long as there exists an upper bound on ∥ξ∥, then there would also

exist an upper bound on ef , given by ∥ef∥ ≤ γ∥ξ∥.

Remark 4.6 For the specific case of regular state-space systems (i.e. when E = In), the

approach proposed in this chapter would be similar to the method presented in [128]. This

can be shown by letting E = In and proceeding with the method outlined in this chapter.

In fact, the proposed scheme in this chapter is also applicable with infinitely observable

descriptor systems
⎛
⎜
⎝

i.e. systems where rank

⎡⎢⎢⎢⎢⎢⎣

E

C

⎤⎥⎥⎥⎥⎥⎦
= n

⎞
⎟
⎠

. The proposed method is therefore

more general than those presented in [128] and [160]. ♯

The observer scheme proposed in this chapter has been shown to be able to reconstruct

f robustly against ξ, thus concluding its analysis. The strengths of the proposed scheme

over existing works are summarised as follows:
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• The proposed scheme is able to asymptotically reconstruct the faults (in the absence

of disturbances) for a class of non-infinitely observable descriptor systems. This is

not possible in the scheme by Yeu et al. [156, 157, 160], which requires the system

to be infinitely observable.

• The existence conditions of the scheme are presented in terms of the original system

matrices, allowing the designer to determine from the outset whether the scheme

is applicable to the system. This improves on the work by Nikhoukhah et al. [97],

where the feasibility of the scheme is analysed in terms of the augmented system

matrices, but no analysis was conducted on the original system matrices.

• The proposed scheme is able to reconstruct the faults robustly against disturbances.

This is in contrast to the findings in [97] and [100], which did not consider distur-

bances or their effects on the fault reconstruction.

4.3.4 Design procedure

The design procedure for the proposed observer scheme can be summarised as follows:

1. Use the transformations introduced in Proposition 4.1 to obtain the system with

(E,C) taking the forms given in (4.5).

2. Check that the existence conditions E1–E4 (E5 if necessary) given in Theorem 4.1

hold for the system. If they are not satisfied, do not continue as the observer scheme

is inapplicable for the system.

3. Apply the state equation transformation TeTc and the state transformation x↦ Tdx,

where Tc, Td, Te are given in Proposition 4.3.

4. Determine T33 such that the pair (Ā2, T33A53) is detectable. Apply the state equa-

tion transformation T given in (4.12), where Tp is given in (4.66).

5. Derive the reduced-order system using (4.16)–(4.17).
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6. Determine X from (4.68), and apply the state equation transformation Tl given in

(4.19).

7. Choose an invertible matrix R4 such that R4TpE22 + V2 = Ip.

8. Choose values for LMI design parameters D̄, γ0.

9. Use an LMI solver to determine P,J,W,γ from (4.94) and (4.98). Then calculate L

from (4.97), and Gl,Gn from (4.99). If necessary, repeat from step 8 until suitable

values of Gl,Gn are obtained. A large γ0 or small D̄ increases the magnitude of Gl,

amplifying disturbances, while a small γ0 or large D̄ restricts the feasibilty of the

LMIs from (4.94) and (4.98).

10. If the upper bounds of ∥x∥, ∥f∥, and ∥ξ∥ can be determined, calculate ρ from (4.36).

Otherwise, define a suitable function β (⋅) in (4.45), and set suitable values for

α0, α1, ρ0, ε, and δ from (4.45)–(4.46).

11. If necessary, set a suitable value for δ in (4.47).

4.4 Simulation example

To demonstrate the effectiveness of the scheme in this chapter, consider a modified version

of the chemical mixing tank given in [157] described by the following dynamical model:

ċ3 = −0.375c3 − 0.0667q3 + 0.1q1, (4.100)

0 = −q3 + q1, (4.101)

ċ5 = 0.3c3 + 0.0533q3 − 0.5c5 − 0.04q5 + 0.02q4, (4.102)

0 = q3 − q5 + q4, (4.103)

where q1 is the flow rate of the influent into the first tank, c3 and q3 are the concentration

and flow rate of the influent from the first tank into the second tank, respectively, q4

is the flow rate of influent from another pipe into the second tank, and c5 and q5 are

the concentration and flow rate of the effluent from the second tank, respectively. The
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actuator signal for q1 is generated by a faulty first-order device

q̇1 = −2q1 + 2q1,e + f1, (4.104)

where q1,e is the reference signal, and f1 is the fault. Additionally, the pipe connecting

the two tanks is known to be leaky, and thus (4.101) becomes

0 = −q3 + q1 − f2, (4.105)

where f2 is the fault representing the leak.

4.4.1 System formulation

The system matrices (E,A,B,M) in the framework of (4.1)–(4.2) are

E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.375 −0.0667 0 0 0.1

0 −1 0 0 1

0.3 0.0533 −0.5 −0.04 0

0 1 0 −1 0

0 0 0 0 −2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.106)

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0.02

0 1

2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 −1

0 0

0 0

1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.107)

for the system variables

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

concentration, c3 (mol/l)

flow rate, q3 (l/s)

concentration, c5 (mol/l)

flow rate, q5 (l/s)

flow rate, q1 (l/s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, f =
⎡⎢⎢⎢⎢⎢⎣

f1 (l/s)

f2 (l/s)

⎤⎥⎥⎥⎥⎥⎦
,

u =
⎡⎢⎢⎢⎢⎢⎣

flow rate reference, q1,e (l/s)

flow rate, q4 (l/s)

⎤⎥⎥⎥⎥⎥⎦
.

(4.108)

There exists a third inlet pipe into the tank system ideally does not output any fluid,

i.e. q2 = 0. To demonstrate the robustness of the observation scheme, assume that the
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outlet leaks fluid, i.e. q2 forms a disturbance signal ξ1. At the system’s operating point at

equilibrium the leak results in disturbances in the concentration states. Additionally, the

chemical concentration entering the first tank is uncertain - this uncertainty is modelled

as another disturbance signal ξ2. Hence define ξ =
⎡⎢⎢⎢⎢⎢⎣

ξ1

ξ2

⎤⎥⎥⎥⎥⎥⎦
, and assume that measurements

are only available for q3, c5, and q1, so Q and C have the form

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

0 0

1 0

0 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.109)

Notice that rank

⎡⎢⎢⎢⎢⎢⎣

E

C

⎤⎥⎥⎥⎥⎥⎦
= 4 < 5, and therefore A1 is not satisfied, which means that

the observer by Yeu et al. [157] is not applicable. We now design the observer scheme

proposed in this chapter.

4.4.2 Observer design

To ease readability, the steps in §4.3.4 will be referred to in the following design of the

observer scheme.

Step 1: To obtain the structures of the system in (4.5), apply the state equation transfor-

mation Ta and state transformation x↦ (TzTb)−1x, where

Ta = I5, (TzTb)−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0

0 0 −1 0 0

0 0 0 1 0

1 0 0 0 0

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.110)

Steps 2–5: The following partitions are obtained:

M1 = [0 0] , M2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1

0 0

0 0

1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A1 = 0, A4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0.04

1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.111)
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From (4.107), (4.109), and (4.111), the following can be verified:

rank

⎡⎢⎢⎢⎢⎢⎣

M1 A1

M2 A4

⎤⎥⎥⎥⎥⎥⎦
= rank [M2 A4] = 3 (= q + ra) , p − q − ra = 0,

rank

⎡⎢⎢⎢⎢⎢⎣

sE −A M

C 0

⎤⎥⎥⎥⎥⎥⎦
= 7 ∀ s ∈ C+,

(4.112)

that is, E1–E4 hold for the system. Note that since p − q − ra = 0, E5 needs to be verified.

The transformations TeTc and Td are chosen to be

TeTc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 0 0 0 1

0 −1 0.04 −0.0016 0

0 0 0.0399 0.9984 0

0 0 −0.9992 0.04 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Td = I5. (4.113)

Since p − q − ra = 0, T33 does not exist, and hence T = I5. Then Ā2 is found to be

Ā2 = −0.375 < 0, (4.114)

that is, E5 is also satisfied, and the existence of the observer scheme proposed in this

chapter is guaranteed. The proposed observer scheme is now designed.

Steps 5–6: The reduced-order system (4.16)–(4.17) is determined to be

Ē =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 0 0 1

0 0 0.04 0

0 0 0.0399 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ā =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.375 −0.0667 0 0.1

0 0 0 −2

0.012 1.0005 −0.02 −1

0.012 1.0005 −0.02 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

2 0

0 0.0008

0 0.9992

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, M̄ =
⎡⎢⎢⎢⎢⎢⎣

0

I3

⎤⎥⎥⎥⎥⎥⎦
, Q̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

0 1

0.04 0

0.0399 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, C̄ = [0 I3] .

(4.115)

Since X = [0 0 0] , Tl from (4.19) is determined to be Tl = I4, and the reduced-

order system in (4.21) is identical to (4.115). Notice that rank

⎡⎢⎢⎢⎢⎢⎣

Ē

C̄

⎤⎥⎥⎥⎥⎥⎦
= 4, and A1–A2

are satisfied for (4.115), and thus the observer by Yeu et al. [157] can be applied onto
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the reduced-order system (4.115). The reduced-order system (4.115) is found to have no

invariant zeros.

Steps 7–8: The matrix R4 and LMI design parameters D̄ and γ0 were set as

R4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 −0.9992

0 1 1

2 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, D̄ = 0.1I3, γ0 = 3. (4.116)

Step 9: Using the Robust Control Toolbox within MATLAB, the following values for the

LMI variables were obtained:

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5444 0 0 0

0 485.4 −174.3 8.633

0 −174.3 138.1 −0.6325

0 8.633 −0.6325 11.35

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, γ = 1.0007. (4.117)

Note that the value of γ being close to unity is most likely due to there not being

sufficient design freedom to attenuate the effect of ξ on the fault reconstruction. The

parameters Gl, Gn, R, and V were calculated to be

Gl =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

1.154 1.452 −0.7964

1.452 4.001 −0.8818

−0.7964 −0.8818 26.97

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Gn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0.0038 0.0048 −0.0027

0.0048 0.0133 −0.0029

−0.0027 −0.0029 0.0899

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 0 1 −0.9992

0 0 1 1

0 2 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

1 0 0

0 0.9201 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(4.118)

The poles of the observer were found to be {−0.3744,−1.4681,−3.7361,−30.96},

while the pole of the sliding motion is {−0.375}.

Steps 10–11: To design ρ in this example, we used the adaptive method by [47] presented

in Remark 4.1. For simplicity, let β (⋅) = 0. The remaining parameters were set as

α0 = 10000, α1 = 0.003, ρ0 = 500, ε = 5 × 10−5, η = 1, while δ was set to be δ = 5 × 10−4.
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Figure 4.1: Faults (solid) and their reconstructions (dashed) in the disturbance-free sce-

nario.

4.4.3 Simulation results

Two scenarios were simulated to demonstrate the effectiveness of the proposed scheme.

The first scenario is disturbance-free (ξ = 0) to show the efficacy of the fault reconstruc-

tion. In the second scenario, the disturbance signals are non-zero to show the effectiveness

of the approach at bounding the L2 gain from the disturbances to the fault reconstruction

as follows:

ξ1 = 0.1 sin (0.1t + π) + 0.3, ξ2 = 0.1 sin(0.2t + π
6
) + 0.2, (4.119)

In both scenarios for the simulation, the initial condition of the system was set as

x(0) = {2,0.0670,3,6.067,1}, while the initial condition of the observer was set at zero.

The inputs q1,e and q4 were set as step inputs with magnitudes of 5 and 6, respectively.

The fault signals were simulated as

f1 = 0.2 sin(0.5t + π
4
) + 1, f2 = 0.5 sin(0.3t + π

3
) + 0.5. (4.120)

Figure 4.1 shows the reconstruction of the faults in the disturbance-free scenario. It

can be seen that asymptotic fault reconstruction is achieved, confirming the efficacy of the

proposed method of fault reconstruction. Figure 4.2 shows the reconstruction of the faults

in the scenario with non-zero disturbances using the same method. It can be seen that the

reconstruction of both faults are affected by the disturbance signals. Figure 4.3 however

shows that the magnitudes of the fault reconstruction errors for both faults are bounded
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Figure 4.2: Faults (solid) and their reconstructions (dashed) in the scenario with non-zero

disturbances.
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Figure 4.3: Fault reconstruction errors (solid) in the scenario with non-zero disturbances.

The dashed lines represent the upper bounds of ef derived from LMIs (4.94) and (4.98).
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within ±γ∥ξ∥ (which is indicated by the red dashed lines), verifying that the method is

effective at bounding the effect of the disturbances on the fault reconstructions.

4.5 Conclusion

This chapter has presented a robust fault reconstruction scheme for a class of NIODS

using SMOs, which improves on previous work that is only applicable to infinitely ob-

servable systems, or did not consider robustness in fault reconstruction. This was done

by removing certain states and treating them as unknown inputs, thus creating a reduced-

order system that is infinitely observable. A standard SMO scheme was then applied onto

the reduced-order system to estimate the states and reconstruct the fault signal. The nec-

essary and sufficient conditions for the existence of the scheme were presented in terms

of the original system matrices. LMI techniques were used to minimise the effect of dis-

turbances on the fault reconstruction, and the design procedure for the observer scheme

was shown. Finally, a simulation was carried out, and the results verify the efficacy of the

scheme.



Chapter 5

Estimation for NIODS using two sliding mode observers

in cascade

5.1 Introduction

In the previous chapter, the sliding mode observer (SMO) by Yeu et al. [157] was used to

reconstruct faults affecting a non-infinitely observable descriptor system (NIODS) such

that the reconstructions are robust against disturbances. The scheme presented however

requires the fault distribution matrix to satisfy restrictive rank constraints (in particular,

E1–E4 in §4.3), limiting its applicability. This chapter thus aims to build on that work by

developing a two-SMO scheme for a class of NIODS to relax the necessary and sufficient

conditions required for the scheme, and thereby increasing its applicability.

The chapter first introduces a set of preliminary transformations that facilitates further

analysis and observer design in §5.2. Similar to the previous chapter, certain states are

then removed and treated as unknown inputs, forming an infinitely observable reduced-

order system. In §5.3, the observer by Yeu et al. [157] is used to estimate the states of the

system and some fault components. The switching term of the observer is then processed,

and is found to be the output of an analytical regular (non-descriptor) state-space system

that treats the remaining fault components as unknown inputs. The Edwards-Spurgeon

observer [8] is then designed based on this analytical system to estimate the remaining

faults. The necessary and sufficient existence conditions for the scheme are then pre-

sented. A design algorithm is then outlined. Finally, a simulated example is shown in

§5.4 to demonstrate the efficacy of the observer scheme.

The work in this chapter has been published; its reference is J. C. L. Chan, C. P. Tan,
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H. Trinh, and M. A. S. Kamal, State and fault estimation for a class of non-infinitely

observable descriptor systems using two sliding mode observers in cascade, Journal of

the Franklin Institute, 356(5):3010–3029, 2019.

5.2 Preliminary transformations

Consider the following non-infinitely observable descriptor system (NIODS):

Eẋ0 = Ax0 +Bu +Mf0, (5.1)

y = Cx0, (5.2)

where E,A ∈ Rn×n, B ∈ Rn×m, M ∈ Rn×q, and C ∈ Rp×n. The vectors x0, u, y, and f0

represent the states, inputs, outputs, and faults, respectively. Only u and y are measurable.

The fault signal f0 represents an abnormal condition acting upon the system that needs to

be reconstructed so that information on its shape and magnitude could be obtained such

that timely maintenance can be taken. The system is assumed to be regular (that is, there

exists a scalar γ ∈ C such that ∣sE −A∣ ≠ 0 [41]); this is not restrictive as most practical

systems are regular [117]. Assume without loss of generality that E is rank deficient, i.e.

rank(E) = r < n, and that M and C are full-column rank and full-row rank, respectively,

i.e. rank(M) = q, rank(C) = p. The objective of this chapter is to estimate x0 and f0 in

finite time.

Similar to the previous chapters, system (5.1)–(5.2) is first re-expressed in a form fa-

cilitating further analysis using Lemma 4.1 and Proposition 5.1. Introduce a non-singular

matrix Ta =
⎡⎢⎢⎢⎢⎢⎣

NT
C

C

⎤⎥⎥⎥⎥⎥⎦
, where NC spans the null-space of C, i.e. CNC = 0. Hence

E ↦ ET −1
a = [Ea1 Ea2] , C ↦ CT −1

a = [0 Ip] . (5.3)

Since rank

⎡⎢⎢⎢⎢⎢⎣

E

C

⎤⎥⎥⎥⎥⎥⎦
= n̄, it follows from (5.3) that rank (Ea1) = n̄ − p. Using singular-

value decomposition (SVD), Ea1 can be decomposed as

TbEa1Tc1 =
⎡⎢⎢⎢⎢⎢⎣

0 In̄−p

0 0

⎤⎥⎥⎥⎥⎥⎦
, (5.4)
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where Tb and Tc1 are non-singular matrices. Define another non-singular matrix Tc =⎡⎢⎢⎢⎢⎢⎣

T −1
c1 0

0 Ip

⎤⎥⎥⎥⎥⎥⎦
, and hence matrix E is transformed to become

TbE (TcTa)−1 =
⎡⎢⎢⎢⎢⎢⎣

0 In̄−p E1

0 0 E2

⎤⎥⎥⎥⎥⎥⎦
. (5.5)

In the coordinates of (5.5), matrices M and A are transformed accordingly and parti-

tioned as

TbM =
⎡⎢⎢⎢⎢⎢⎣

M1

M2

⎤⎥⎥⎥⎥⎥⎦
, TbA (TcTa)−1 =

⎡⎢⎢⎢⎢⎢⎣

A1 A2 A3

A4 A5 A6

⎤⎥⎥⎥⎥⎥⎦
, (5.6)

where M2 ∈ R(n−n̄+p)×q, A1 ∈ R(n̄−p)×(n−n̄) and A5 ∈ R(n−n̄+p)×(n̄−p). Define rank(M2) =

q2 < q and perform SVD on M2 to obtain

Td1M2T
−1
e =

⎡⎢⎢⎢⎢⎢⎣

0 Iq2

0 0

⎤⎥⎥⎥⎥⎥⎦
, Td1 [A4 A5] =

⎡⎢⎢⎢⎢⎢⎣

A41 A51

A42 A52

⎤⎥⎥⎥⎥⎥⎦
, (5.7)

where A52 ∈ R(n−n̄+p−q2)×(n̄−p), and Td1 and Te are non-singular matrices.

Proposition 5.1 Assume that

rank [A42 A52] = n − p, (5.8)

that is, [A42 A52] is full-column rank (the satisfaction of (5.8) will be addressed later in

Proposition 5.4). Then there exists a set of transformations introduced in Lemma 4.1 for

system (5.1)–(5.2) such that system (5.1)–(5.2) would have the following structure:

⎡⎢⎢⎢⎢⎢⎣

0 In̄−p E1

0 0 Ē2

⎤⎥⎥⎥⎥⎥⎦
ẋ =

⎡⎢⎢⎢⎢⎢⎣

A1 A2 A3

Ā4 Ā5 Ā6

⎤⎥⎥⎥⎥⎥⎦
x +

⎡⎢⎢⎢⎢⎢⎣

B1

B̄2

⎤⎥⎥⎥⎥⎥⎦
u +

⎡⎢⎢⎢⎢⎢⎣

M11 M12

0 M̄2

⎤⎥⎥⎥⎥⎥⎦
f, (5.9)

y = [0 0 Ip]x, (5.10)

Ē2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E21

E221

E222

E223

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ā4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A41

In−n̄

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ā5 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A51

0

In̄−p

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, M̄2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Iq2

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

↕ q2

↕ n − n̄
↕ n̄ − p
↕ 2p − n̄ − q2

, (5.11)

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

↕ n − n̄
↕ n̄ − p
↕ p

, f =
⎡⎢⎢⎢⎢⎢⎣

f1

f2

⎤⎥⎥⎥⎥⎥⎦

↕ q − q2

↕ q2

, (5.12)
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where the partitions of Ē2, Ā4, Ā5, M̄2 have the same row dimensions, the dimensions

of (E,A) are conformable to the partitions of x, whilst the column partitions of M are

conformable to the partitions of f . ♯

Proof Since [A42 A52] is full column rank, apply QR decomposition on [A42 A52]

such that

Tf1 [A42 A52] =
⎡⎢⎢⎢⎢⎢⎣

In−p

0

⎤⎥⎥⎥⎥⎥⎦
. (5.13)

Define two non-singular matrices Td =
⎡⎢⎢⎢⎢⎢⎣

In̄−p 0

0 Td1

⎤⎥⎥⎥⎥⎥⎦
and Tf =

⎡⎢⎢⎢⎢⎢⎣

In̄−p+q2 0

0 Tf1

⎤⎥⎥⎥⎥⎥⎦
. Hence

apply the state equation transformation TfTdTb, the state transformation TcTa, and the

fault transformation Te such that

E ↦ (TfTdTb)E(TcTa)−1, A↦ (TfTdTb)A(TcTa)−1, B ↦ (TfTdTb)B,

M ↦ (TfTdTb)M(Te)−1, C ↦ C(TcTa)−1, x0 ↦ (TcTa)x0 = x, f0 ↦ Tef0 = f.
(5.14)

It can be seen from the structures of M2 from (5.7) and [A42 A52] from (5.13) that

the system in the coordinates of (5.14) is identical to the structures given in (5.9)–(5.12),

thus completing the proof. ∎

Note that (5.8) is the necessary condition for the structure in (5.13) to be obtained. The

system in the form of (5.9)–(5.12) allow the following comparison to be made between

the proposed scheme and existing SMO schemes in the literature.

Remark 5.1 Existing schemes that use a single SMO (such as [157] from Chapter 3, and

[17, 100, 101]) are able to estimate all faults if and only if rank(M2) = rank(M), which

is clearly not satisfied in this case, as shown in (5.7). On the other hand, Ooi et al. [99]

showed that a scheme consisting of a linear observer and a SMO in cascade can estimate

x0 and f0 asymptotically, if and only if the following conditions are satisfied:

F1. rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M A 0 E 0

0 E 0 0 0

0 C 0 0 0

0 0 M A E

0 0 0 C 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

M A E

0 E 0

0 C 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

= rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

M A

0 E

0 C

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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F2. rank

⎡⎢⎢⎢⎢⎢⎣

sE −A M

C 0

⎤⎥⎥⎥⎥⎥⎦
= rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

M A

0 E

0 C

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

F3. rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A E

E 0

C 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

= n + r.

By substituting (5.9)–(5.12) into F1–F3, the following conditions are found to be re-

quired for F1 and F3 to be satisfied:

G1. rank

⎡⎢⎢⎢⎢⎢⎣

M11 E222

0 E223

⎤⎥⎥⎥⎥⎥⎦
− rank

⎡⎢⎢⎢⎢⎢⎣

E222

E223

⎤⎥⎥⎥⎥⎥⎦
= q − q2,

G2. rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E21

E221

E222

E223

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

E21 −A41E221

E222

E223

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Additionally, Yu et al. [161] showed that by treating some components of the control

input u as measurable outputs and then feeding these input and output signals into two

cascaded SMOs, x0 and f0 can be estimated in finite time, if and only if the following

conditions are satisfied:

H1. rank

⎡⎢⎢⎢⎢⎢⎣

E A M

0 C 0

⎤⎥⎥⎥⎥⎥⎦
= n + p,

H2. rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

E A M

0 E 0

0 C 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

= rank [E M] + n,

H3. rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E A 0 M 0 0

0 E A 0 M 0

0 0 E 0 0 M

0 C 0 0 0 0

0 0 C 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

E A M 0

0 E 0 M

0 C 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ n + q,



Ch. 5. Estimation for NIODS using two sliding mode observers in cascade 102

H4. rank

⎡⎢⎢⎢⎢⎢⎣

sE −A M

C 0

⎤⎥⎥⎥⎥⎥⎦
= n + q ∀s ∈ C+.

By substituting (5.9)–(5.12) into H1–H4, the following conditions are found to be

required for H1 and H2 to be satisfied:

J1. rank (E223) = 2p − n̄ − q2,

J2. rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

E221

E222

E223

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

= rank

⎡⎢⎢⎢⎢⎢⎣

E222

E223

⎤⎥⎥⎥⎥⎥⎦
. ♯

Conditions G1–G2 and J1–J2 present additional constraints for the estimation of x0

and f0. Thus, the contribution of this chapter is to improve on the works by [17, 99, 100,

101, 161] by estimating x0 and f0 in finite time and requiring less stringent conditions, as

will be shown in Theorem 5.1.

Define an invertible matrix

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

In̄−p 0

0 Tp

0 T̄p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.15)

where Tp ∈ Rp×(n−n̄+p) is design freedom to be exploited. Apply the state equation trans-

formation T onto system (5.9)–(5.12) to obtain:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 In̄−p E1

0 0 TpĒ2

0 0 T̄pĒ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ1

ẋ2

ẏ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 A2 A3

TpĀ4 TpĀ5 TpĀ6

T̄pĀ4 T̄pĀ5 T̄pĀ6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1

TpB̄2

T̄pB̄2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

u

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

M11 M12

0 TpM̄2

0 T̄pM̄2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

f1

f2

⎤⎥⎥⎥⎥⎥⎦
, (5.16)

y = [0 0 Ip]x. (5.17)

Then treat x1 as an unknown input, and define

x̄ =
⎡⎢⎢⎢⎢⎢⎣

x2

y

⎤⎥⎥⎥⎥⎥⎦
, f̄ =

⎡⎢⎢⎢⎢⎢⎣

f

x1

⎤⎥⎥⎥⎥⎥⎦
. (5.18)
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System (5.16)–(5.17) can then be re-expressed as the following reduced-order system:

⎡⎢⎢⎢⎢⎢⎣

In̄−p E1

0 TpĒ2

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ē

⎡⎢⎢⎢⎢⎢⎣

ẋ2

ẏ

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

A2 A3

TpĀ5 TpĀ6

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ā

⎡⎢⎢⎢⎢⎢⎣

x2

y

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

B1

TpB̄2

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

B̄

u

+
⎡⎢⎢⎢⎢⎢⎣

M11 M12 A1

0 TpM̄2 TpĀ4

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

M̄

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1

f2

x1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.19)

y = [0 Ip]
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

C̄

x̄. (5.20)

Notice that rank

⎡⎢⎢⎢⎢⎢⎣

Ē

C̄

⎤⎥⎥⎥⎥⎥⎦
= n̄ (which is full-column rank) and the output of the reduced

order system (5.19)–(5.20) is a measurable signal y. The observer by Yeu et al. [157]

can therefore be designed based on (Ē, Ā, M̄ , C̄) and driven by u and y, and applied onto

system (5.19)–(5.20) to estimate x̄ and f̄ , thereby estimating x0 and f0.

5.3 The two-observer scheme

Figure 5.1 shows a schematic diagram of the cascaded observer scheme proposed in this

chapter.

u

f0

System

(5.1)–(5.2)

y

Observer One

(5.21)–(5.23) ν̄ Observer Two

(5.55)–(5.56)

f̂1

x̂, f̂2

Observer Scheme

Figure 5.1: Schematic diagram of the scheme proposed in the chapter.
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5.3.1 Observer One

Observer One for system (5.19)–(5.20) has the following structure [157]:

ż = (RĀ −GlC̄) z −RB̄u − (Gl (Ip − C̄V ) +RĀV ) y −Gnν, (5.21)

ˆ̄x = V y − z, (5.22)

ν = −ρ ey
∥ey∥

, ey = C̄ ˆ̄x − y, ˆ̄x =
⎡⎢⎢⎢⎢⎢⎣

x̂2,0

ŷ

⎤⎥⎥⎥⎥⎥⎦
(5.23)

where R ∈ Rn̄×n̄ is invertible, and V ∈ Rn̄×p. The gain matrices Gl and Gn are chosen

such that

Gl =
⎡⎢⎢⎢⎢⎢⎣

A3 +R2TpĀ6

J1 +R4TpĀ6

⎤⎥⎥⎥⎥⎥⎦
, Gn =

⎡⎢⎢⎢⎢⎢⎣

0

Gn2

⎤⎥⎥⎥⎥⎥⎦
, (5.24)

where J1 ∈ Rp×p > 0 and Gn2 = GT
n2 > 0. Pre-multiply (5.19) with R and add V ẏ to both

sides to obtain

RĒ ˙̄x + V ẏ = (RĒ + V C̄) ˙̄x = RĀx̄ +RB̄u +RM̄f̄ + V ẏ. (5.25)

Next, suppose RĒ + V C̄ = In̄. Equation (5.25) becomes

˙̄x = RĀx̄ +RB̄u +RM̄f̄ + V C̄ ˙̄x. (5.26)

Corollary 5.1 The matrices R,V from (5.21)–(5.22) will have the following structures:

R =
⎡⎢⎢⎢⎢⎢⎣

In̄−p R2

0 R4

⎤⎥⎥⎥⎥⎥⎦
, V =

⎡⎢⎢⎢⎢⎢⎣

−(Ē1 +R2TpĒ2)
Ip −R4TpĒ2

⎤⎥⎥⎥⎥⎥⎦
, (5.27)

where ∣R4∣ ≠ 0. ♯

Proof Since rank

⎡⎢⎢⎢⎢⎢⎣

Ē

C̄

⎤⎥⎥⎥⎥⎥⎦
= n̄, then the matrices R and V can be chosen such that

[R V ]
⎡⎢⎢⎢⎢⎢⎣

Ē

C̄

⎤⎥⎥⎥⎥⎥⎦
= In̄, (5.28)

that is, [R V ] is chosen to be the Moore-Penrose inverse of

⎡⎢⎢⎢⎢⎢⎣

Ē

C̄

⎤⎥⎥⎥⎥⎥⎦
. Partition the matrices

R and V generally as follows:

[R V ] =
⎡⎢⎢⎢⎢⎢⎣

R1 R2 V1

R3 R4 V2

⎤⎥⎥⎥⎥⎥⎦
, (5.29)
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where R1 ∈ R(n̄−p)×(n̄−p) and R4 ∈ Rp×p. By substituting Ē and C̄ from (5.19)–(5.20) and

R and V from (5.29) into (5.28), it can be seen that R and V would take the forms given

in (5.27). ∎

Then substitute z from (5.22) into (5.21) to obtain

(V ẏ − ˙̄̂x) = (RĀ −GlC̄) (V y − ˆ̄x) −RB̄u − (Gl (Ip − C̄V ) +RĀV ) y −Gnν

˙̄̂x = (RĀ −GlC̄) ˆ̄x +RB̄u +GlC̄x̄ +Gnν + V C̄ ˙̄x. (5.30)

Define the state estimation error for Observer One as follows:

e = ˆ̄x − x̄ =
⎡⎢⎢⎢⎢⎢⎣

e2

ey

⎤⎥⎥⎥⎥⎥⎦

↕ n̄ − p
↕ p

. (5.31)

Therefore, by subtracting (5.26) from (5.30), the error equation for Observer One

(which characterises its performance) is given by:

ė = (RĀ −GlC̄) e −RM̄f̄ +Gnν. (5.32)

Substitute Gl and Gn from (5.24) into (5.32), and partition according to (5.19)–(5.20)

to obtain

⎡⎢⎢⎢⎢⎢⎣

ė2

ėy

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

A2 +R2TpĀ5 0

R4TpĀ5 −J1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

e2

ey

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

0

Gn2

⎤⎥⎥⎥⎥⎥⎦
ν

−
⎡⎢⎢⎢⎢⎢⎣

M11 M12 +R2TpM̄2 A1 +R2TpĀ4

0 R4TpM̄2 R4TpĀ4

⎤⎥⎥⎥⎥⎥⎦
f̄ . (5.33)

Proposition 5.2 Suppose there exists a matrix P = P T > 0 that satisfies

P (RĀ −GlC̄) + (RĀ −GlC̄)T P < 0, (5.34)

where P =
⎡⎢⎢⎢⎢⎢⎣

P1 0

0 G−1
n2

⎤⎥⎥⎥⎥⎥⎦
, P1 ∈ R(n̄−p)×(n̄−p). If ρ in (5.23) is chosen as follows:

ρ ≥ (2∥G−1n2R4TpĀ5∥∥PRM̄∥

µ + ∥G−1
n2R4Tp [0 M̄2 Ā4] ∥)α1 + η,

µ = −λmax (P (RĀ −GlC̄) + (RĀ −GlC̄)T P) > 0,

α1 > ∥f∥max + ∥x1∥max, η > 0,

(5.35)

then an ideal sliding motion (ey, ėy = 0) takes place in finite time. ♯
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Proof The proof of convergence will be an adaptation of the one in [128], and will con-

sist of two parts: the first part would show that by setting ρ appropriately, e can be made

to be ultimately bounded. Define a candidate Lyapunov function W = eTPe > 0. Differ-

entiating W with respect to time yields

Ẇ = eT (P (RĀ −GlC̄) + (RĀ −GlC̄)T P) e − 2eTPRM̄f̄ + 2eTPGnν

≤ −µ∥e∥2 + 2∥e∥∥PRM̄∥α1 − 2ρ∥ey∥. (5.36)

By setting ρ ≥ η, (5.36) becomes

Ẇ ≤ ∥e∥ (−µ∥e∥ + 2∥PRM̄∥α1) . (5.37)

When the magnitude of the error e is smaller than or equal to a certain bound, i.e.

∥e∥ ≤ 2∥PRM̄∥α1

µ , then (5.37) becomes

Ẇ ≤ κ, (5.38)

where κ ≥ 0, and thus the magnitude of e can increase, decrease, or remain unchanged

within this bound. If, however, the magnitude of the error e is larger than that bound, i.e.

∥e∥ ≥ 2∥PRM̄∥α1

µ , then (5.37) becomes

Ẇ < 0, (5.39)

and ∥e∥ will shrink. This implies that the magnitude of ewould be bounded (∥e∥ ≤ 2∥PRM̄∥α1

µ )

in finite time if ρ is set such that ρ ≥ η.

The next (and remaining) part of the proof would show how sliding motion (ey, ėy = 0)

is induced. Define another candidate Lyapunov function Wy = eTyG−1
n2ey > 0, where

G−1
n2J1 + JT1 G−1

n2 > 0. (5.40)

Differentiating Wy with respect to time yields

Ẇy = −eTy (G−1
n2J1 + JT1 G−1

n2) ey + 2eTyG
−1
n2R4Tp (Ā5e2 − [0 M̄2 Ā4] f̄) + 2eTy ν

≤ −2∥ey∥(ρ − (2∥G−1
n2R4TpĀ5∥∥PRM̄∥

µ
+ ∥G−1

n2R4Tp [0 M̄2 Ā4] ∥)α1) . (5.41)
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Notice that

∥ey∥2 = (
√
G−1
n2ey)

T
Gn2 (

√
G−1
n2ey) ≥ λmin (Gn2) ∥

√
G−1
n2ey∥2 = λmin (Gn2)Wy. (5.42)

Then by setting ρ such that (5.35) is satisfied (which also satisfies ρ ≥ η), (5.41)

becomes

Ẇy ≤ −2η∥ey∥ ≤ −2η
√
λmin (Gn2)

√
Wy, (5.43)

which is the reachability condition [128], resulting in ey = 0 in finite time and a sliding

motion taking place on the surface S1 = {e ∶ C̄e = 0}, thus proving the proposition. ∎

After sliding motion is achieved, (5.33) becomes

ė2 = (A2 +R2TpĀ5) e2 − [M11 M12 +R2TpM̄2 A1 +R2TpĀ4] f̄ , (5.44)

0 = R4Tp (Ā5e2 − [0 M̄2 Ā4] f̄) +Gn2ν. (5.45)

5.3.1.1 Estimating x and f2 in finite time

Let Tp from (5.15) and R2 take the structure

Tp =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Iq2 −A41 −A51 T14

0 In−n̄ 0 T24

0 0 −In̄−p T34

0 0 0 T44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, R2 = [−M21 −A1 A2 + J2 R24] , (5.46)

where T44 ∈ R(2p−n−q2)×(2p−n̄−q2) is chosen such that Tp is full-row rank, and J2 ∈ R(n̄−p)×(n̄−p) >

0. Define a measurable signal

ν̄ = R−1
4 Gn2ν. (5.47)

Substitute for Tp and R2 from (5.46) into (5.44)–(5.45), and rearrange the terms to

obtain

ė2 = −J2e2 − [M11 0 0] f̄ , (5.48)

ν̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ν1

ν2

ν3

ν4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

In̄−p

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

e2 +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 Iq2 0

0 0 In−n̄

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

f̄

↕ q2

↕ n − n̄
↕ n̄ − p
↕ 2p − n − q2

. (5.49)
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Define the following measurable signals:

x̂1 = ν2, x̂2 = x̂2,0 − ν3, f̂2 = ν1. (5.50)

From (5.49) and the structure of f̄ in (5.18), it is obvious that

ν1 = f2, ν2 = x1, ν3 = e2. (5.51)

Hence the estimates for x1, x2 and f2 can be obtained from the signals in (5.50) as

x̂1 = x1, x̂2 = x̂2,0 − e2 = x2, f̂2 = f2. (5.52)

Furthermore, recall from Proposition 5.2 that (5.44)–(5.45) (and hence (5.48)–(5.49)

as well) and ŷ = y occur in finite time; therefore x and f2 are estimated in finite time.

Remark 5.2 Notice that only f2 can be estimated (in finite time) from Observer One,

while f1 cannot be obtained from the measurable signals in (5.49). This limitation is also

found in other schemes utilising a single SMO [17, 100, 101]. Hence a second observer

is required to estimate the remaining fault component f1. ♯

5.3.2 Observer Two

To reconstruct f1, a system based on measurable signals from (5.48)–(5.49) first needs

to be formulated. By rearranging (5.48)–(5.49), the following system with measurable

output ν3 is formed:

ė2 = −J2e2 −M11f1, (5.53)

ν3 = e2. (5.54)

Notice that (5.53)–(5.54) is a state-space system, and therefore the Edwards-Spurgeon

SMO can be designed based on the triple (−J2,−M11, In̄−p) and driven by ν3 to estimate

f1. Observer Two for system (5.53)–(5.54) has the following structure [8]:

˙̂e2 = −J2ê2 − G̃lẽ + G̃nν̃, (5.55)

ν̃ = −ρ̃ ẽ

∥ẽ∥ , (5.56)
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where ẽ = ê2−ν3, ρ̃will be defined later in (5.58), and the gain matrices G̃l, G̃n are chosen

such that

λ (J2 + G̃l) > 0, G̃n = G̃T
n > 0. (5.57)

Notice that all states of system (5.53)–(5.54) are measurable, and hence observer

(5.55)–(5.56) is a specific case of the Edwards-Spurgeon SMO whereby the number of

states is the same as the number of outputs.

Remark 5.3 Note that the purpose of Observer Two is not to estimate e2 (which is already

estimated by Observer One). Rather, it is designed and implemented based on system

(5.53)–(5.54) to estimate f1 which is the unknown input. ♯

Proposition 5.3 By setting ρ̃ such that

ρ̃ ≥ ∥G̃−1
n M11∥α2 + ζ, α2 ≥ ∥f1∥max, ζ > 0, (5.58)

then sliding motion (ẽ, ˙̃e = 0) occurs in finite time. ♯

Proof By subtracting (5.53) from (5.55), the error equation for Observer Two is

˙̃e = − (J2 + G̃l) ẽ +M11f1 + G̃nν̃. (5.59)

Define a candidate Lyapunov function W̃ = ẽT G̃−1
n ẽ > 0, where

G̃−1
n (J2 + G̃l) + (J2 + G̃l)

T
G̃−1
n > 0. (5.60)

Differentiating W̃ with respect to time gives

˙̃W = −ẽT (G̃−1
n Ã + ÃT G̃−1

n ) ẽ + 2ẽT G̃−1
n M11f1 + +2ẽT ν̃

≤ −2∥ẽ∥ (ρ̃ − ∥G̃−1
n M11∥α2) . (5.61)

Note that by using similar arguments as in [128], the following is obtained

∥ẽ∥2 = (
√
G̃−1
n ẽ)

T

G̃n (
√
G̃−1
n ẽ) ≥ λmin (G̃n) ∥

√
G̃−1
n ẽ∥2 = λmin (G̃n) W̃ . (5.62)

By setting ρ̃ such that (5.58) is satisfied, (5.61) becomes

˙̃W ≤ −2ζ∥ẽ∥ ≤ −2ζ
√
λmin (G̃n)

√
W̃ , (5.63)
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which is the reachability condition. This condition will then result in ẽ = 0 and a slid-

ing motion on the surface S2 = {ẽ ∶ ẽ = 0} occurring in finite time, thus proving the

proposition. ∎

After sliding motion is achieved, (5.59) becomes

M11f1 + G̃nν̃ = 0. (5.64)

Recall the structure of M in (5.9); since M is full-column rank, M11 is also full-

column rank. Hence M †
11 (which is the Moore-Penrose inverse of M11) exists, where

M †
11M11 = Iq−q2 . Therefore, define the following signal as the estimate of f1:

f̂1 = −M †
11G̃nν̃. (5.65)

Recall from Proposition 5.3 that (5.65) occurs in finite time, and hence f1 is estimated

in finite time.

5.3.3 Existence conditions

Theorem 5.1 The proposed cascaded SMO scheme can estimate x0 and f0 in finite time

for system (5.1)–(5.2) if and only if the following conditions hold:

K1. rank [M2 A4 A5] − rank(M2) = n − p,

K2. p + q − n̄ ≤ rank(M2) ≤ 2p − n. ♯

Proof The remainder of this subsection forms the constructive proof for Theorem 5.1.

Remark 5.4 Note that the scheme does not directly require minimum phase restrictions.

This is because K1–K2 already imply (as will be shown in Corollary 5.2) that system

(5.53)–(5.54) is minimum phase, and that error system (5.44)–(5.45) can always be made

stable by choice of R2 in (5.46). ♯

In the formulation of the cascaded SMO scheme (in the preceding subsections), the

following assumptions were made:
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L1. rank [A42 A52] = n− p in (5.8), so Tf1 in (5.13) exists such that Tf1 [A42 A52] =
⎡⎢⎢⎢⎢⎢⎣

In−p

0

⎤⎥⎥⎥⎥⎥⎦
,

L2. Matrix T44 in (5.46) exists such that it has the dimensions T44 ∈ R(2p−n−q2)×(2p−n̄−q2),

L3. rank(M11) = q − q2, so that M †
11 in (5.65) exists such that M †

11M11 = Iq−q2 ,

L4. The error systems (5.44)–(5.45) (and therefore (5.48)–(5.49)) and (5.59) can be

made stable.

It is thus of interest to re-express these conditions in terms of the original system

matrices so that it is easier for the designer to check whether the proposed scheme is

applicable from the outset.

Proposition 5.4 Condition K1 is necessary and sufficient for L1 to be satisfied. ♯

Proof Apply the transformations Ta, Tb, Tc, Td, Te in (5.3)–(5.7) to obtain

M2 =
⎡⎢⎢⎢⎢⎢⎣

0 Iq2

0 0

⎤⎥⎥⎥⎥⎥⎦
, [A4 A5] =

⎡⎢⎢⎢⎢⎢⎣

A41 A51

A42 A52

⎤⎥⎥⎥⎥⎥⎦
. (5.66)

Suppose K1 is not satisfied, i.e.

rank [M2 A4 A5] − rank(M2) < n − p. (5.67)

Equation (5.67) implies

rank [A42 A52] < n − p, (5.68)

that is, L1 is not satisfied, which shows the necessity of K1. On the other hand, if K1

is satisfied, then from the structures of M2 and [A4 A5] from (5.66), it can easily be

deduced that

rank [A42 A52] = n − p, (5.69)

that is, L1 is satisfied, thus proving the sufficiency of K1. ∎

Proposition 5.5 Conditions L2 and L3 are satisfied if and only if K2 is satisfied. ♯
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Proof The necessity of K2 is shown through the two cases where K2 is not satisfied, i.e.

rank(M2) > 2p − n, (5.70)

rank(M2) < p + q − n̄ (5.71)

The matrix T44 is assigned the dimensions T44 ∈ R(2p−n−q2)×(2p−n̄−q2) in (5.46), where

q2 = rank(M2). Equation (5.70) would imply T44 does not exist, and thus L2 is not

satisfied. Next, (5.71) implies

n̄ − p < q − q2. (5.72)

Since M11 ∈ R(n̄−p)×(q−q2),

rank(M11) = min{n̄ − p, q − q2} ≤ n̄ − p < q − q2, (5.73)

that is, M11 is not full-column rank, and L3 can never be satisfied, thus showing the

necessity of K2. On the other hand, if K2 is satisfied, since n − n̄ > 0 it is straightforward

to see that T44 can be assigned the dimensions in (5.46) and M11 would be full-column

rank, satisfying L2–L3 and showing the sufficiency of K2. ∎

Corollary 5.2 Condition L4 is always satisfied. ♯

Proof For error system (5.44)–(5.45) (and therefore (5.48)–(5.49)) to be stable, it is re-

quired that there exists a matrix J2 ∈ R(n̄−p)×(n̄−p) > 0 such that

λ (A2 +R2TpĀ5) = λ (−J2) < 0. (5.74)

If n̄ = p (all states of system (5.19)–(5.20) are measurable outputs), then e2 (and

therefore J2) does not exist. If n̄ > p, then J2 exists and can be freely chosen such that

λ (−J2) < 0, i.e. error (5.44) (and (5.48)) is stable.

To stabilise error (5.59), the zeros of (−J2,−M11, In̄−p) need to be stable. Define the

following matrix D(s):

D(s) =
⎡⎢⎢⎢⎢⎢⎣

sI + J2 −M11

In̄−p 0

⎤⎥⎥⎥⎥⎥⎦
, (5.75)

where D(s) is the Rosenbrock matrix for (−J2,−M11, In̄−p) [109], and the values of

s that make D(s) lose rank are zeros of (−J2,−M11, In̄−p). Recall however, from the
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satisfaction of K2,

rank(M11) = q − q2 ≤ n̄ − p, (5.76)

that is, M11 is always full-column rank. It is thus straightforward from (5.75) that D(s)

will always be full-column rank, and therefore (−J2,−M11, In̄−p) has no zeros, and error

(5.59) can always be stabilised. Thus L4 is shown to always be satisfied. ∎

Remark 5.5 Propositions 5.4 and 5.5 re-express the assumptions L1–L3 as conditions

K1–K2 (which are necessary and sufficient for the feasibility of the scheme proposed in

this chapter), that are expressed in terms of the original system matrices (which greatly

helps the designer know at the outset whether the scheme is applicable to a particular

system or not). Then Corollary 5.2 shows that the observers can always be designed to

be stable (i.e. L4 is always satisfied) if K1–K2 are satisfied.

Remark 5.6 The existence conditions in this chapter can be summarised as follows:

• Conditions F1–F3 are the existence conditions for the scheme by Ooi et al. [99].

Likewise, G1–G4 are required for the scheme by Yu et al. [161] to be applicable.

• Conditions L1–L4 represent the assumptions made in designing the scheme pro-

posed in this chapter. These assumptions are required for the transformations in

§5.2 to exist, and for the scheme to be applicable.

• After applying the transformations in §5.2 (i.e. assuming L1–L4 are valid), the

schemes by Ooi et al. [99] and Yu et al. [161] still require the satisfaction of

G1–G2 and J1–J2 to be applicable, respectively. Thus the scheme proposed in this

chapter is more relaxed than those by Ooi et al. and Yu et al.

• Finally, K1–K2 are conditions in terms of the original system matrices that are

shown to be equivalent to L1–L4. Conditions K1–K2 allow system designers to

quickly verify if the scheme proposed in this chapter is applicable to their system.

Thus, Theorem 5.1 is proven. ◻

The following summarises the strengths of the proposed scheme over previous works:
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• The proposed scheme is able to estimate all states and faults for a class of non-

infinitely observable descriptor systems where rank(M2) ≠ rank(M). This is not

possible in schemes utilising a single SMO [17, 100, 101], as shown in Remark 5.2.

• The convergence of the estimates occur in finite time, unlike in [161] where the

estimates converge only asymptotically.

• The existence conditions of the scheme are found to be more relaxed than those

in existing cascaded SMO schemes [99, 161], as shown in Remark 5.1. Condition

K2 only limits the number of faults that can be estimated by the proposed scheme.

This is in contrast to G1–G2 and J1–J2 required by existing schemes, which form

stringent rank conditions on matrix E.

5.3.4 Design procedure

The design procedure for the proposed cascaded observer scheme can be summarised as

follows:

1. Determine Ta, Tb, Tc in (5.3)–(5.5), and apply the state equation transformation Tb

and state transformation TcTa.

2. Check that K1–K2 hold for the system. If they do are not satisfied, do not continue

as the observer scheme is not applicable.

3. Determine Td, Te, Tf from (5.7)–(5.13), and apply the state equation transformation

TfTd and the fault transformation Te.

4. Set values for T14, T24, T34, T44 in (5.46). Apply the state equation transformation

T given in (5.15).

5. Form the reduced-order system in (5.19)–(5.20).

6. Set R2 from (5.46), choose R4 to be an invertible symmetric positive-definite ma-

trix. If n̄ > p, choose a value for J2 such that J2 > 0.

7. Calculate Gl and Gn from (5.24), and V from (5.27).
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8. Form the reduced-order system in (5.53)–(5.54).

9. Set G̃n as an invertible symmetric positive-definite matrix, and choose G̃l such that

λ (J2 + G̃l) > 0.

10. Choose ρ and ρ̃ to satisfy (5.35) and (5.58), respectively. If the bounds α1 and α2

are difficult to determine, ρ and ρ̃ can be designed to be adaptive according to the

method outlined in [47].

5.4 Simulation example

To demonstrate the effectiveness of the scheme in this chapter, consider a modified version

of the chemical mixing tank given in [157]. Note that the example is deliberately set to

be similar to that in Chapter 4 to ease the comparison between the schemes presented

in Chapter 4 and this chapter. The dynamics of the mixing tank are described by the

following dynamical model:

ċ3 = −0.375c3 − 0.0667q3 + 0.1q1, (5.77)

0 = −q3 + q1, (5.78)

ċ5 = 0.3c3 + 0.0533q3 − 0.5c5 − 0.04q5 + 0.02q4, (5.79)

0 = q3 − q5 + q4, (5.80)

where q1 is the flow rate of the influent into the first tank, c3 and q3 are the concentration

and flow rate of the influent from the first tank into the second tank, respectively, q4

is the flow rate of influent from another pipe into the second tank, and c5 and q5 are

the concentration and flow rate of the effluent from the second tank, respectively. The

actuator signal for q1 is generated by a faulty first-order device

q̇1 = −2q1 + 2q1,e + fa, (5.81)

where q1,e is the reference signal, and fa is the fault. Furthermore, the input chemical

concentration c3 is known to fluctuate about its equilibrium value, and hence its dynamical

equation becomes:

ċ3 = −0.375c3 − 0.0667q3 + 0.1q1 − fb, (5.82)
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where fb is the fault representing the fluctuations.

5.4.1 System formulation

The system matrices (E,A,B,M) in the framework of (5.1)–(5.2) are

E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.375 −0.0667 0 0 0.1

0 −1 0 0 1

0.3 0.0533 −0.5 −0.04 0

0 1 0 −1 0

0 0 0 0 −2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0.02

0 1

2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1

0 0

0 0

0 0

1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(5.83)

for the system variables

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

concentration, c3 (mol/l)

flow rate, q3 (l/s)

concentration, c5 (mol/l)

flow rate, q5 (l/s)

flow rate, q1 (l/s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, f =
⎡⎢⎢⎢⎢⎢⎣

fa (l/s)

fb (mol/l.s)

⎤⎥⎥⎥⎥⎥⎦
,

u =
⎡⎢⎢⎢⎢⎢⎣

flow rate reference, q1,e (l/s)

flow rate, q4 (l/s)

⎤⎥⎥⎥⎥⎥⎦
.

(5.84)

It can be verified that the system is regular. Assume that measurements are only

available for q3, c5, and q1, so C has the form

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.85)

5.4.2 Design of observers

To ease readability, the steps in §5.3.4 will be referred to in the following design of the

cascaded observer scheme.
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Step 1: To obtain the system in the form of (5.9)–(5.12), apply the state equation trans-

formation Tb and the state transformation TcTa, where

Tb = I5, TcTa =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 0

I3 0 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.86)

Step 2: The following partitions are then obtained:

M2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0

1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0.04

1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A5 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0.3

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.87)

Equation (5.87) allows the following to be verified:

rank [M2 A4 A5] − rank(M2) = 2, p + q − n̄ ≤ rank(M2) ≤ 2p − n, (5.88)

that is, K1–K2 hold for the system, thereby guaranteeing the existence of the proposed

observer scheme. The scheme proposed in the chapter is now designed.

Step 3: The state equation transformation TfTd and the fault transformation Te were

calculated to be

TfTd =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 0 0 0 −1

0 0 0 1 0

0 0 3.333 −0.1333 0

0 −1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Te =
⎡⎢⎢⎢⎢⎢⎣

0 1

−1 0

⎤⎥⎥⎥⎥⎥⎦
. (5.89)

Step 4: The parameters for Tp in (5.46) were set as T14 = T24 = T34 = 1.

Step 5: The reduced-order system (5.19)–(5.20) is found to be

Ē =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 0 0 −1

0 0 0 0

0 0 −3.333 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ā =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.375 −0.0667 0 0.1

1 1 0 1

0 2 0 −1

−1 0.9557 1.667 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

−2 0

0 1

0 0.0667

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, M̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0

0 1 0

0 0 1

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, C̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(5.90)
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Steps 6–7: The poles of Observer One were chosen to be {−10,−10,−10,−10}, while the

pole of the sliding motion was chosen as {−10}. The parameters for Observer One are

then calculated to be

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 9.625

0 1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 32.08 0

1 0 1

0 1 0

0 3.333 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Gl =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9.131 16.04 −9.525

11 0 1

2 10 −1

0.9557 1.667 9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Gn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

1 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(5.91)

Step 8: The reduced-order system (5.53)–(5.54) is found to be

ė2 = −10e2 + f1, ν3 = e2. (5.92)

Step 9: The pole for Observer Two was chosen as {−20}, and hence the parameters for

Observer Two are

G̃l = 10, G̃n = 1. (5.93)

Step 10: The bounds α1, α2 are assumed to be unknown, and hence ρ, ρ̃ are designed to

be adaptive according to the method given in [47] as follows. Define the two time-varying

scalars ρ1 and ρ2, where

ρ̇1(t) = α0,1Φ (∥ey(t)∥) − α1,1ρ1(t), ρ̇2(t) = α0,2Φ (∥ẽ(t)∥) − α1,2ρ2(t),

α0,1, α0,2, α1,1, α1,2 > 0, ρ1(0) = ρ0, ρ2(0) = ρ̃0,

(5.94)

and Φ (⋅) represents a dead-zone function such that

Φ(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if ∣x∣ ≤ ε

x − ε sign(x) otherwise,

where ε > 0. Thus define ρ, ρ̃ as

ρ(t) = ρ1(t) + δ1, ρ̃(t) = ρ2(t) + δ2, δ1, δ2 > 0. (5.95)



Ch. 5. Estimation for NIODS using two sliding mode observers in cascade 119

The parameters for ρ are set as ρ0 = 10, α0,1 = 100, α1,1 = 0.1, ε = 0.001, and δ1 =

0.001, whereas the parameters for ρ̃ are set to beρ̃0 = 50, α0,2−10, α1,2 = 0.1, ε = 0.0001,

and δ2 = 0.01.

Remark 5.7 The design of the observers (i.e. the scheme in this chapter) is complete. It

will now be shown that previous methods for state/fault estimation in descriptor systems

cannot be applied to the example in (5.83) and (5.85), as follows:

• The system is not infinitely observable, i.e. rank

⎡⎢⎢⎢⎢⎢⎣

E

C

⎤⎥⎥⎥⎥⎥⎦
= 4 < 5, and therefore the

schemes in [54, 55, 77, 78, 153, 157, 160] are not applicable.

• From (5.87), rank(M2) = 1 < 2. Hence the schemes utilising a single SMO in

[17, 100, 101] cannot estimate all components of f0, and are thus inapplicable.

• In the coordinates of (5.89), the following partitions are obtained:

M11 = −1,

⎡⎢⎢⎢⎢⎢⎣

E222

E223

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

0 3.333 0

0 0 0

⎤⎥⎥⎥⎥⎥⎦
. (5.96)

Therefore it can be shown that

rank

⎡⎢⎢⎢⎢⎢⎣

M11 E222

0 E223

⎤⎥⎥⎥⎥⎥⎦
− rank

⎡⎢⎢⎢⎢⎢⎣

E222

E223

⎤⎥⎥⎥⎥⎥⎦
= 0 < 1, rank(E223) = 0 < 1, (5.97)

that is, G1 and J1 are not satisfied, and so the schemes [99, 161] are also not

applicable. ♯

5.4.3 Simulation results

The initial conditions of the system was set at x(0) = {2,1,3,6,1}, while the initial

condition of the observers was set at zero. The inputs q1,e and q4 were set as step inputs

with magnitudes of 10 and 5, respectively. The fault signals were simulated as

fa = 0.1 sin(1.2t) + 0.6, fb = 0.1 sin(t + 2π

3
) + 0.15. (5.98)

Figures 5.2–5.6 show the states and their estimates, while Figures 5.7–5.8 show the

fault signals and their estimates. It can be seen that the estimates converge to the real

signals in finite time, proving the efficacy of the scheme.
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Figure 5.2: The first state (dash-dotted) and its estimate (solid).
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Figure 5.3: The second state (dash-dotted) and its estimate (solid).
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Figure 5.4: The third state (dash-dotted) and its estimate (solid).
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Figure 5.5: The fourth state (dash-dotted) and its estimate (solid).
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Figure 5.6: The fifth state (dash-dotted) and its estimate (solid).
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Figure 5.7: The first fault signal (dash-dotted) and its estimate (solid).



Ch. 5. Estimation for NIODS using two sliding mode observers in cascade 122

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

Time (s)

f b
 (

m
o
l/
l.
s
)

0 0.1 0.2 0.3
0

50
100

Figure 5.8: The second fault signal (dash-dotted) and its estimate (solid).

5.5 Conclusion

This chapter has presented an observer scheme consisting of two cascaded SMOs for

a class of NIODS. Certain states were treated as unknown inputs to form an infinitely

observable reduced-order system. The observer by Yeu et al. [157] was then applied

onto this reduced-order system to estimate the states and some components of the fault

in finite time. The switching term from the first SMO is found to be the output of an an-

alytical standard (non-descriptor) state-space system which treats the remaining faults as

unknown inputs. Thus the switching term is fed into a standard Edwards-Spurgeon SMO

to estimate the remaining faults in finite time. The necessary and sufficient conditions for

the existence of the scheme were presented in terms of the original system matrices, and

are found to be more relaxed than those for existing state and fault estimation schemes

for NIODS. Finally, a simulation was carried out, and the results verify the efficacy of the

scheme.



Chapter 6

Robust fault reconstruction for NIODS using two SMOs

in cascade

6.1 Introduction

The previous chapter introduced a scheme to estimate states and faults in a class of

non-infinitely observable descriptor systems (NIODS) using two sliding mode observers

(SMOs) [45, 157] in cascade. The work in that scheme however does not fully exploit

the design freedom inherent in the system. Furthermore, in practical systems, there may

be unmodelled dynamics or external disturbances acting upon the system, which may

corrupt the fault reconstruction and raise false positives, or even mask the effects of the

fault. Hence this chapter aims to build on the work in the previous chapter by developing

a fault reconstruction scheme for a class of NIODS utilising two SMOs in cascade such

that the L2 gain from the disturbances to the fault reconstruction is minimised, therefore

achieving robust fault reconstruction.

This chapter begins by introducing the preliminary transformations to re-express the

descriptor system in a form facilitating analysis and gain design in §6.2. The dynamics

of the disturbances are augmented into the system. Certain states are then removed and

treated as unknown inputs, formulating an infinitely observable reduced-order system.

Next, in §6.3, the observer by Yeu et al. is applied onto the system to process the signals

from the system and reconstruct a component of the fault. The switching signal from the

observer is found to be the output of an analytical system that treats the remaining fault

signals as an unknown input. A second SMO [45] is then implemented to reconstruct

the remaining faults. Then in §6.3.3, linear matrix inequality (LMI) techniques and the
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Bounded Real Lemma [128] are used to design the gains of the observers such that the

L2 gain from the external disturbances onto the fault reconstruction is minimised. The

existence conditions of the scheme are investigated and presented in terms of the original

system matrices. Interestingly, the gains for both cascaded observers can be designed in a

single LMI pair. Previous works on LMI-designed SMOs [17, 91, 128, 129] designed each

SMO using a separate LMI pair, which would increase conservativeness in the solution.

The LMI solution in this paper would therefore be less conservative. A set of design

procedures is outlined. Finally, a numerical example is presented in §6.4 to demonstrate

the effectiveness of the observer scheme.

The work in this chapter has been published; its reference is J. C. L. Chan, C. P. Tan,

H. Trinh, M. A. S. Kamal, and Y. S. Chiew, Robust fault reconstruction for a class of non-

infinitely observable descriptor systems using two sliding mode observers in cascade,’

Applied Mathematics and Computation, 350:78–92, 2019.

6.2 Preliminary transformations

Consider the following non-infinitely observable descriptor system (NIODS):

E0ẋ0 = A0x0 +B0u +M0f0 +Q0ξ0, (6.1)

y = C0x0, (6.2)

where E0,A0 ∈ Rn×n, B0 ∈ Rn×m, M0 ∈ Rn×q, Q0 ∈ Rn×h, C0 ∈ Rp×n, whereas

x0, u, y, f0, and ξ0 represent the states, inputs, outputs, faults, and disturbance sig-

nals, respectively. Only u and y are measurable. The fault signal f0 represents anomalous

behaviour in the system which needs to be reconstructed to obtain information regarding

its shape and magnitude so that timely and accurate maintenance can be performed. The

unknown disturbance signal ξ0 (which is not a fault, and could arise from unmodelled

dynamics or deviations from the assumptions made during the modelling process [83])

may however corrupt the fault reconstruction. The erroneous reconstruction could raise

false positives, or even worse, mask the effects of a fault. Therefore it is of interest to

reconstruct f0 while minimising the effect of ξ0 on its reconstruction. It is assumed that
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E0 is rank deficient, i.e. rank(E0) = r < n, and that M0 and C0 are full-column rank and

full-row rank, respectively, i.e. rank(M0) = q, rank(C0) = p. Finally, ξ0 is assumed to

be piecewise continuous, and the upper bound of its bandwidth (hereafter labelled ωc) is

assumed to be known. Hence the dynamics of ξ0 can be modelled as a first-order low-pass

filter with cut-off frequency ωf ≫ ωc [112] as follows:

ξ̇0 = AΩξ0 +BΩξ, (6.3)

where AΩ,BΩ ∈ Rh×h are known, ξ is a bounded unknown signal generating the distur-

bance signal ξ0, and λ(AΩ) < 0. The objective is to reconstruct f0 while rejecting the

influence of ξ0.

Remark 6.1 Note that no ‘physical’ filtration of the disturbance actually occurs; fil-

ter (6.3) only implies that ξ0 can be considered to be the output of a low-pass filter

GΩ(s) = (sIh −AΩ)−1
BΩ driven by ξ. The choice of (AΩ,BΩ) is also not unique; the

first-order linear filter realisation is chosen in this chapter, but other higher order filters

could equally have been selected. The more important consideration is the bandwidth of

the filter: if the upper bound of the bandwidth of ξ0 is ωc, then choose

AΩ = −ωfIh,BΩ = ωfIh, (6.4)

where ωf ≫ ωc. A choice of ωf

ωc
≥ 10 would be sufficient to ensure ξ ≈ ξ0 [129]. Hence

by making the reconstruction of f robust against ξ, the reconstruction is also made to be

robust against ξ0. ♯

Similar to previous chapters, system (6.1)–(6.2) is first re-expressed such that it takes

on a form that eases further analysis and gain design using Lemma 4.1 and Proposition

6.1. First, define a non-singular matrix Ta =
⎡⎢⎢⎢⎢⎢⎣

NT
C

C0

⎤⎥⎥⎥⎥⎥⎦
, where C0NC = 0 and hence

E0 ↦ E0T
−1
a = [Ea1 Ea2] , C0 ↦ C0T

−1
a = [0 Ip] . (6.5)

Since rank

⎡⎢⎢⎢⎢⎢⎣

E0

C0

⎤⎥⎥⎥⎥⎥⎦
= n̄, it follows from (6.5) that rank(Ea1) = n̄ − p. Using singular-

value decomposition (SVD), Ea1 can be decomposed as

TbEa1Tc1 =
⎡⎢⎢⎢⎢⎢⎣

0 In̄−p

0 0

⎤⎥⎥⎥⎥⎥⎦
, (6.6)
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where Tb and Tc1 are non-singular matrices. Define another non-singular matrix Tc =⎡⎢⎢⎢⎢⎢⎣

T −1
c1 0

0 Ip

⎤⎥⎥⎥⎥⎥⎦
, and let (E0,M0,A0) in the coordinates of (6.1) be transformed to attain the

following structures:

TbE0(TcTa)−1 =
⎡⎢⎢⎢⎢⎢⎣

0 In̄−p E1

0 0 E2

⎤⎥⎥⎥⎥⎥⎦
, TbM0 =

⎡⎢⎢⎢⎢⎢⎣

M1

M2

⎤⎥⎥⎥⎥⎥⎦
,

TbA0(TcTa)−1 =
⎡⎢⎢⎢⎢⎢⎣

A1 A2 A3

A4 A5 A6

⎤⎥⎥⎥⎥⎥⎦
,

(6.7)

where E2 ∈ R(n−n̄+p)×p, A1 ∈ R(n̄−p)×(n−n̄), and A5 ∈ R(n−n̄+p)×(n̄−p). Define rank(M2) =

q2 < q, and perform SVD on M2 such that

⎡⎢⎢⎢⎢⎢⎣

In̄−p 0

0 Td1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

M1

M2

⎤⎥⎥⎥⎥⎥⎦
T −1
e =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

M11 M12

0 Iq2

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Td1 [A4 A5] =
⎡⎢⎢⎢⎢⎢⎣

A41 A51

A42 A52

⎤⎥⎥⎥⎥⎥⎦
, (6.8)

where A52 ∈ R(n−n̄+p−q2)×(n̄−p), and Td1 and Te are non-singular matrices.

Proposition 6.1 Assume that

rank [A42 A52] = n − p, (6.9)

that is, [A42 A52] is full-column rank (the satisfaction of (6.9) will be addressed later in

Proposition 6.5). Then there exists a set of transformations introduced in Lemma 4.1 for

x0 and f0 such that system (6.1)–(6.2) can be rewritten as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 Ih 0 0

0 −Q222 In̄−p Ē1

0 0 0 Ē2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

E

ẋ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 AΩ 0 0

0 Q̄1 0 Ā3

Ā4 Q̄2 Ā5 Ā6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A

x +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

B̄1

B̄2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
²

B

u +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

M11 0

0 M̄2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

M

f, (6.10)

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

BΩ

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
²

Q

ξ, x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

ξ0

x2

y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

↕ n − n̄
↕ h

↕ n̄ − p
↕ p

, f =
⎡⎢⎢⎢⎢⎢⎣

f1

f2

⎤⎥⎥⎥⎥⎥⎦

↕ q − q2

↕ q2

,

y = [0 Ip]
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

C

x, (6.11)
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Ē2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ē21

E221

E222

E223

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ā4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

In−n̄

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Q̄2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q̄2

0

0

Q223

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ā5 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

In̄−p

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, M̄2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Iq2

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

↕ q2

↕ n − n̄
↕ n̄ − p
↕ 2p − n̄ − q2

,

(6.12)

where the partitions of Ē2, Ā4, Ā5, M̄2, Q̄2 have the same row dimensions, the dimensions

of the partitions ofE,A are conformable to the partitions of x, while the column partitions

of M are conformable to the partitions of f . ♯

Proof The first portion of the proof transforms system (6.1)–(6.2) into the form in (6.16)–

(6.17) which has special structures facilitating further analysis. Since [A42 A52] is full-

column rank, apply QR decomposition on [A42 A52] such that

Tf1 [A42 A52] =
⎡⎢⎢⎢⎢⎢⎣

In−p

0

⎤⎥⎥⎥⎥⎥⎦
. (6.13)

Define three non-singular matrices Td, Tf , and Tg, where

Td =
⎡⎢⎢⎢⎢⎢⎣

In̄−p 0

0 Td1

⎤⎥⎥⎥⎥⎥⎦
, Tf =

⎡⎢⎢⎢⎢⎢⎣

In̄−p+q2 0

0 Tf1

⎤⎥⎥⎥⎥⎥⎦
,

Tg =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

In̄−p −M12 −Ā1 −Ā2 0

0 Iq2 −A41 −A51 0

0 0 In−n̄ 0 0

0 0 0 In̄−p 0

0 0 0 0 I2p−n̄−q2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(6.14)

where Ā1 = A1 −M12A41 and Ā2 = A2 −M12A51. Therefore, apply the state equation

transformation Tpre = TgTfTdTb, the state transformation T −1
aft = TcTa, and the fault trans-

formation Te such that

E0 ↦ TpreE0Taft, A0 ↦ TpreA0Taft, B0 ↦ TpreB0, M0 ↦ TpreM0T
−1
e ,

Q0 ↦ TpreQ0, C0 ↦ C0Taft, x0 ↦ xf = T −1
aftx0, f0 ↦ f = Tef0.

(6.15)

From the structures of M2 from (6.8) and [A42 A52] from (6.13), the system in the
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coordinates of (6.15) can be expressed as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 In̄−p Ē1

0 0 Ē21

0 0 E221

0 0 E222

0 0 E223

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ě

ẋf =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 Ā3

0 0 Ā61

In−n̄ 0 A621

0 In̄−p A622

0 0 A623

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ǎ

xf +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B̄1

B̄21

B221

B222

B223

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶

B̌

u +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M11 0

0 Iq2

0 0

0 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

M̌

f +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q̄1

Q̄21

Q221

Q222

Q223

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

Q̌

ξ0,

(6.16)

y = [0 0 Ip]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Č

xf . (6.17)

Note that system (6.16)–(6.17) is unrelated to filter (6.4), and thus the disturbances

affecting it are still denoted as ξ0. In the next (and remaining) portion of the proof, the

dynamics of the disturbance signals ξ0 are augmented into the system to ease observer

design in the later sections of the chapter. Define an augmented state xg as follows:

xg =
⎡⎢⎢⎢⎢⎢⎣

ξ0

xf

⎤⎥⎥⎥⎥⎥⎦
. (6.18)

Using the dynamics of ξ0 from (6.3)-(6.4) and (6.16)–(6.17), the following augmented

system is formulated:

⎡⎢⎢⎢⎢⎢⎣

Ih 0

0 Ě

⎤⎥⎥⎥⎥⎥⎦
ẋg =

⎡⎢⎢⎢⎢⎢⎣

AΩ 0

Q̌ Ǎ

⎤⎥⎥⎥⎥⎥⎦
xg +

⎡⎢⎢⎢⎢⎢⎣

0

B̌

⎤⎥⎥⎥⎥⎥⎦
u +

⎡⎢⎢⎢⎢⎢⎣

0

M̌

⎤⎥⎥⎥⎥⎥⎦
f +

⎡⎢⎢⎢⎢⎢⎣

BΩ

0

⎤⎥⎥⎥⎥⎥⎦
ξ, (6.19)

y = [0 Č]xg. (6.20)
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By substituting from the structures in (6.16)–(6.17), system (6.19)–(6.20) becomes
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ih 0 0 0

0 0 In̄−p Ē1

0 0 0 Ē21

0 0 0 E221

0 0 0 E222

0 0 0 E223

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

E

ẋg =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AΩ 0 0 0

Q̄1 0 0 Ā3

Q̄21 0 0 Ā61

Q221 In−n̄ 0 A621

Q222 0 In̄−p A622

Q223 0 0 A623

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A

xg +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

B̄1

B̄21

B221

B222

B223

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶

B

u +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

BΩ

0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
²

Q

ξ

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

M11 0

0 Iq2

0 0

0 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

M

f, (6.21)

y = [0 0 0 Ip]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C

xg. (6.22)

Finally, define an invertible matrix Th such that

Th =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q221 In−n̄ 0 0

Ih 0 0 0

Q222 0 In̄−p 0

0 0 0 Ip

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6.23)

Apply the state transformation Th onto system (6.21)–(6.22) as follows:

E ↦ ET −1
h , A↦ AT −1

h , C ↦ CT −1
h , xg ↦ x = T −1

aftxf =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

ξ0

x2

y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6.24)

It can then be seen by comparison that system (6.10)–(6.12) and system (6.21)–(6.22)

in the coordinates of (6.24) are identical, thus completing the proof. ∎

Note that (6.9) is the necessary condition for the structure in (6.13) to be obtained. The

system in the form of (6.10)–(6.12) allows the following comparison to be made between

the proposed scheme and existing SMO schemes in the literature.
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Remark 6.2 In earlier work on fault reconstruction for descriptor systems, the schemes

utilising a single SMO (such as [157] from Chapter 3, and [17, 100, 101]) require

rank(M2) = rank(M). This condition sets constraints on the faults and satisfying it may

require more measurable outputs. This condition, however, is not required by the scheme

proposed in this chapter. Furthermore, the cascaded observer schemes by [99, 161] also

require the following additional conditions to be satisfied:

M1. rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ē21

E222

E223

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

= r − n̄ + p (for [99]),

M2. rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

E221

E222

E223

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

= rank

⎡⎢⎢⎢⎢⎢⎣

E222

E223

⎤⎥⎥⎥⎥⎥⎦
(for [161]). ♯

Conditions M1–M2 limit the applicability of the schemes in [99, 161]. Moreover,

the schemes in [99, 100, 101, 161] do not consider the effect of disturbances on the fault

reconstruction. The contribution of this chapter is therefore to improve on the schemes

presented in [17, 99, 100, 101, 161] by relaxing the conditions required to reconstruct f ,

and also to make the reconstruction robust against ξ0. Define an invertible matrix

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ih+n̄−p 0

0 Tp

0 T̄p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.25)

where Tp ∈ Rp×(n−n̄+p). Then apply the state equation transformation T onto system
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(6.10)–(6.12) to obtain
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 Ih 0 0

0 −Q222 In̄−p Ē1

0 0 0 TpĒ2

0 0 0 T̄pĒ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ1

ξ̇0

ẋ2

ẏ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 AΩ 0 0

0 Q̄1 0 Ā3

TpĀ4 TpQ̄2 TpĀ5 TpĀ6

T̄pĀ4 T̄pQ̄2 T̄pĀ5 T̄pĀ6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

ξ0

x2

y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

B̄1

TpB̄2

T̄pB̄2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

M11 0

0 TpM̄2

0 T̄pM̄2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

f1

f2

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

BΩ

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ξ, (6.26)

y = [0 0 0 Ip]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

ξ0

x2

y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6.27)

Then treat x1 as an unknown input, and define

x̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ0

x2

y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, f̄ =
⎡⎢⎢⎢⎢⎢⎣

f

x1

⎤⎥⎥⎥⎥⎥⎦
, (6.28)

which respectively are the state and fault of the following reduced-order system (that has

been re-expressed from (6.26)–(6.27)):

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ih 0 0

−Q222 In̄−p Ē1

0 0 TpĒ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ē

˙̄x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

AΩ 0 0

Q̄1 0 Ā3

TpQ̄2 TpĀ5 TpĀ6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ā

x̄ +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

B̄1

TpB̄2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

B̄

u

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

M11 0 0

0 TpM̄2 TpĀ4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

M̄

f̄ +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

BΩ

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
²̄

Q

ξ, (6.29)

y = [0 0 Ip]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C̄

x̄. (6.30)

Note that the rows pre-multiplied with T̄p are linearly dependent on those pre-multiplied

with Tp (from its definition in (4.12)), and are hence omitted from further analysis. Fur-
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thermore, notice that rank

⎡⎢⎢⎢⎢⎢⎣

Ē

C̄

⎤⎥⎥⎥⎥⎥⎦
= h + n̄ (which is full-column rank) and the output of the

reduced-order system (6.29)–(6.30) is a measurable signal y. The observer by Yeu et al.

[157] can therefore be designed based on (Ē, Ā, B̄, M̄ , Q̄, C̄) and driven by u and y, and

applied onto system (6.29)–(6.30) to reconstruct f̄ , and therefore reconstruct f0.

6.3 Observer formulation

Figure 6.1 shows a schematic diagram of the cascaded observer scheme proposed in this

chapter.

u

ξ0

f0

System

(6.1)–(6.2)

y

Observer One

(6.31)–(6.34) ν̄ Observer Two

(6.66)–(6.68)

f̂1

f̂2

Observer Scheme

Figure 6.1: Schematic diagram of the scheme proposed in the chapter.

6.3.1 Observer One

Observer One for system (6.29)–(6.30) has the following structure [157]:

ż = (RĀ −GlC̄) z −RB̄u − (Gl (Ip − C̄V ) +RĀV ) y −Gnν, (6.31)

ˆ̄x =V y − z, (6.32)

ν = − ρ ey
∥ey∥

, (6.33)

ey =C̄ ˆ̄x − y, Gl =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Gl1

Gl2

Gl3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Gn =
⎡⎢⎢⎢⎢⎢⎣

0

Gn3

⎤⎥⎥⎥⎥⎥⎦
, (6.34)

where Gl1 ∈ Rh×p, Gl2 ∈ R(n̄−p)×p, ∣Gn3∣ ≠ 0, R ∈ R(h+n̄)×(h+n̄) is invertible, and V ∈

R(h+n̄)×p. Pre-multiply (6.29) with R and add V ẏ to both sides to obtain

RĒ ˙̄x + V ẏ = (RĒ + V C̄) ˙̄x = RĀx̄ +RB̄u +RM̄f̄ +RQ̄ξ + V ẏ. (6.35)
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Suppose RĒ + V C̄ = In̄. Then (6.35) becomes

˙̄x = RĀx̄ +RB̄u +RM̄f̄ +RQ̄ξ + V C̄ ˙̄x. (6.36)

Corollary 6.1 The matrices R,V from (6.31)–(6.32) will have the following structures:

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ih 0 R3

Q222 In̄−p R6

0 0 R9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−R3TpĒ2

− (Ē1 +R6TpĒ2)

Ip −R9TpĒ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.37)

where R3 ∈ Rh×p and R6 ∈ R(n̄−p)×p have specific structures that will be defined later in

(6.55), and R9 ∈ Rp×p, ∣R9∣ ≠ 0. ♯

Proof Since rank

⎡⎢⎢⎢⎢⎢⎣

Ē

C̄

⎤⎥⎥⎥⎥⎥⎦
= h + n̄, then the matrices R and V can be chosen such that

[R V ]
⎡⎢⎢⎢⎢⎢⎣

Ē

C̄

⎤⎥⎥⎥⎥⎥⎦
= Ih+n̄, (6.38)

that is, [R V ] is chosen to be the Moore-Penrose inverse of

⎡⎢⎢⎢⎢⎢⎣

Ē

C̄

⎤⎥⎥⎥⎥⎥⎦
. Partition the matrices

R and V generally as follows:

[R V ] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1 R2 R3 V1

R4 R5 R6 V2

R7 R8 R9 V3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.39)

where R1 ∈ Rh×h, R5 ∈ R(n̄−p)×(n̄−p), and R9 ∈ Rp×p. By substituting Ē and C̄ from

(6.29)–(6.30) and R and V from (6.39) into (6.38), it is straightforward to see that R and

V would have the forms given in (6.37). ∎

Substitute z from (6.32) into (6.31) to obtain the following analytical structure for the

observer:

(V ẏ − ˙̄̂x) = (RĀ −GlC̄) (V y − ˆ̄x) −RB̄u − (Gl (Ip − C̄V ) +RĀV ) y −Gnν

˙̄̂x = (RĀ −GlC̄) ˆ̄x +RB̄u +GlC̄x̄ +Gnν + V C̄ ˙̄x. (6.40)
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Define the state estimation error for Observer One as

e = ˆ̄x − x̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

eξ

e2

ey

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

↕ h

↕ n̄ − p
↕ p

=
⎡⎢⎢⎢⎢⎢⎣

ē

ey

⎤⎥⎥⎥⎥⎥⎦
. (6.41)

Hence by subtracting (6.36) from (6.40), the error equation for Observer One (which

characterises its performance) is given by

ė = (RĀ −GlC̄) e −RM̄f̄ −RQ̄ξ +Gnν, (6.42)

Define Q̃1 = Q̄1 + Q222AΩ, and substitute the structures of Ā, M̄ , Q̄, C̄ from (6.29),

Gl,Gn from (6.34), and R from (6.37) into (6.42) to obtain

ė =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

AΩ +R3TpQ̄2 R3TpĀ5 R3TpĀ6 −Gl1

Q̃1 +R6TpQ̄2 R6TpĀ5 Ā3 +R6TpĀ6 −Gl2

R9TpQ̄2 R9TpĀ5 R9TpĀ6 −Gl3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

e −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

BΩ

Q222BΩ

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

ξ +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

Gn3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

ν

−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 R3TpM̄2 R3TpĀ4

M11 R6TpM̄2 R6TpĀ4

0 R9TpM̄2 R9TpĀ4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

f̄ . (6.43)

Proposition 6.2 Suppose there exists a matrix P = P T > 0 that satisfies

P (RĀ −GlC̄) + (RĀ −GlC̄)T P < 0, (6.44)

where P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

P11 0 0

0 P12 0

0 0 G−1
n3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, P11 ∈ Rh×h, P12 ∈ R(n̄−p)×(n̄−p). If ρ in (6.33) is chosen as

follows:

ρ > 2

µ1

∥Y [Q̄2 Ā5] ∥δ + ∥Y [0 M̄2 Ā4] ∥α1 + η,

µ1 = −λmax (P (RĀ −GlC̄) + (RĀ −GlC̄)TP ), δ = (∥PRM̄∥α1 + ∥PRQ̄∥β) ,

α1 > ∥f∥max + ∥x1∥max, β > ∥ξ∥max, Y = G−1
n3R9Tp, η ∈ R+,

(6.45)

then sliding motion (ey, ėy = 0) occurs in finite time.

Proof As (6.43) has the same form as the error system for the Edwards-Spurgeon SMO

for a system represented by the quadruple (RĀ,RM̄,RQ̄, C̄), the proof of convergence is
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adapted from [128]. There are two portions to the proof: the first portion aims to show that

by setting ρ appropriately, e can be made to be ultimately bounded. Define a candidate

Lyapunov function W = eTPe > 0, and differentiate it with respect to time as follows:

Ẇ = eT (P (RĀ −GlC̄) + (RĀ −GlC̄)T P) e − 2eT (PRM̄f̄ + PRQ̄ξ) + 2eTy ν,

≤ − µ1∥e∥2 + 2∥e∥δ − 2ρ∥ey∥. (6.46)

By setting ρ > η, (6.46) becomes

Ẇ ≤ ∥e∥ (−µ1∥e∥ + 2δ) . (6.47)

When the magnitude of the error e is smaller than or equal to a certain bound, i.e.

∥e∥ ≤ 2δ
µ1

, then (6.47) becomes

Ẇ ≤ κ1, (6.48)

where κ1 ≥ 0, and thus the magnitude of e can increase, decrease, or remain unchanged

within this bound. If the magnitude of the error e is larger than that bound however, i.e.

∥e∥ ≥ 2δ
µ1

, then (6.47) becomes

Ẇ < 0, (6.49)

and ∥e∥ will shrink. This implies that the magnitude of e would be bounded (∥e∥ ≤ 2δ
µ1

) in

finite time.

The succeeding (and remaining) portion of the proof aims to show how sliding motion

(ey, ėy = 0) is induced. Define another candidate Lyapunov function Wy = eTyG−1
n3ey > 0,

and differentiating it with respect to time to obtain

Ẇy = eTy (Y Ā6 −G−1
n3Gl3 + (Y Ā6 −G−1

n3Gl3)
T) ey

+ 2eTy Y ([Q̄2 Ā5] ē − [0 M̄2 Ā4] f̄) + 2eTy ν

≤ − 2∥ey∥ (ρ −
2

µ1

∥Y [Q̄2 Ā5] ∥δ − ∥Y [0 M̄2 Ā4] ∥α1) . (6.50)

Notice that

∥ey∥2 = (
√
G−1
n3ey)

T
Gn3 (

√
G−1
n3ey) ≥ λmin (Gn3) ∥

√
G−1
n3ey∥2 = λmin (Gn3)Wy. (6.51)



Ch. 6. Robust fault reconstruction for NIODS using two SMOs in cascade 136

Hence by setting ρ such that (6.45) is satisfied (which also satisfies ρ > η), (6.50)

becomes

Ẇy ≤ −2η∥ey∥ ≤ −2η
√
λmin (Gn3)

√
Wy, (6.52)

which is the reachability condition [128] resulting in ey = 0 in finite time and a sliding

motion taking place on the surface S1 = {e ∶ C̄e = 0}, thus proving the proposition. ∎

Remark 6.3 Notice that from Proposition 6.2, x, f , and ξ need to be bounded, and these

bounds are required to calculate ρ. Knowledge of these bounds can be obtained through

several methods, e.g. from simulations of the system operating under practical conditions,

by physically operating the system, or by utilising a controller to stabilise the system [17].

On the other hand, in cases where these bounds are not easy to determine, the magnitude

of ρ can be set to be adaptive to achieve convergence of ey without a-priori knowledge of

the upper bounds of ∥x∥, ∥f∥, and ∥ξ∥ [47]. ♯

After sliding motion (ey, ėy = 0) occurs, (6.43) becomes

˙̄e =
⎡⎢⎢⎢⎢⎢⎣

AΩ +R3TpQ̄2 R3TpĀ5

Q̃1 +R6TpQ̄2 R6TpĀ5

⎤⎥⎥⎥⎥⎥⎦
ē −

⎡⎢⎢⎢⎢⎢⎣

0 R3TpM̄2 R3TpĀ4

M11 R6TpM̄2 R6TpĀ4

⎤⎥⎥⎥⎥⎥⎦
f̄ −

⎡⎢⎢⎢⎢⎢⎣

BΩ

Q222BΩ

⎤⎥⎥⎥⎥⎥⎦
ξ, (6.53)

0 = R9Tp ([Q̄2 Ā5] ē − [0 M̄2 Ā4] f̄) +Gn3ν. (6.54)

6.3.1.1 Reconstructing f2

Let Tp from (6.25) and R3,R6 from (6.37) have the following structures:

Tp =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Iq2+n−n̄ 0 0

0 −In̄−p 0

0 0 T44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎣

R3

R6

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

0 0 R34

0 J 0

⎤⎥⎥⎥⎥⎥⎦
, (6.55)

where T44 ∈ R(2p−n−q2)×(2p−n̄−q2), R34 ∈ Rh×(2p−n−q2), and J ∈ R(n̄−p)×(n̄−p) > 0. Next,

define

⎡⎢⎢⎢⎢⎢⎣

R3t

R6t

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

0 0 R34T44

0 −J 0

⎤⎥⎥⎥⎥⎥⎦
, ν̄ = R−1

9 Gn3ν, ÃΩ = AΩ +R34T44Q223, (6.56)
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where ν̄ is a measurable signal. Substituting (6.55)–(6.56) into (6.53)–(6.54) yields

˙̄e =
⎡⎢⎢⎢⎢⎢⎣

AΩ +R3tQ̄2 R3tĀ5

Q̃1 +R6tQ̄2 R6tĀ5

⎤⎥⎥⎥⎥⎥⎦
ē −

⎡⎢⎢⎢⎢⎢⎣

0 R3tM̄2 R3tĀ4

M11 R6tM̄2 R6tĀ4

⎤⎥⎥⎥⎥⎥⎦
f̄ −

⎡⎢⎢⎢⎢⎢⎣

BΩ

Q222BΩ

⎤⎥⎥⎥⎥⎥⎦
ξ, (6.57)

ν̄ = Tp (− [Q̄2 Ā5] ē + [0 M̄2 Ā4] f̄) . (6.58)

Finally, substitute the structures of Ā4, Ā5, M̄2, and Q̄2 from (6.12) into (6.57)–(6.58)

to obtain

˙̄e =
⎡⎢⎢⎢⎢⎢⎣

ÃΩ 0

Q̃1 −J

⎤⎥⎥⎥⎥⎥⎦
ē −

⎡⎢⎢⎢⎢⎢⎣

0 0 0

M11 0 0

⎤⎥⎥⎥⎥⎥⎦
f̄ −

⎡⎢⎢⎢⎢⎢⎣

BΩ

Q222BΩ

⎤⎥⎥⎥⎥⎥⎦
ξ, (6.59)

ν̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ν1

ν2

ν3

ν4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Q̄21 0

0 0

0 In̄−p

−T44Q223 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ē +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 Iq2 0

0 0 In−n̄

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

f̄ . (6.60)

Define the reconstruction for f2 as

f̂2 = ν1 +Lν4, (6.61)

and define the corresponding reconstruction error as

ef2 = f̂2 − f2. (6.62)

From (6.60)–(6.61) it follows that

ef2 = − (Q̄21 +LT44Q223) ē. (6.63)

Remark 6.4 Notice that only f2 can be reconstructed from Observer One, as f1 cannot be

obtained from a linear combination of measurable signals in (6.60). This is a limitation

common to other schemes that utilise a single SMO [17, 100, 101]. A second observer is

therefore required to reconstruct the remaining faults. ♯

6.3.2 Observer Two

To reconstruct f1, a system based on the measurable signals from (6.59)–(6.60) is first

formulated. Rearrange (6.59)–(6.60) to form the following system with the measurable

output ν3:
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˙̄e =
⎡⎢⎢⎢⎢⎢⎣

ÃΩ 0

Q̃1 −J

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ã

ē +
⎡⎢⎢⎢⎢⎢⎣

0

−M11

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

M̃

f1 +
⎡⎢⎢⎢⎢⎢⎣

−BΩ

−Q222BΩ

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Q̃

ξ, (6.64)

ν3 = [0 In̄−p]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C̃

ē. (6.65)

It can be seen that (6.64)–(6.65) is a regular state-space system: hence the Edwards-

Spurgeon SMO (see p. 134 of [45]) can be designed based on the quadruple (Ã, M̃ , Q̃, C̃)

and driven by ν3 to reconstruct f1 robustly against ξ0. The observer (Observer Two) for

(6.64)–(6.65) has the following structure [8]:

˙̄̂e =Ãˆ̄e − G̃nν̃, (6.66)

ν̃ = − ρ̃ ẽ2

∥ẽ2∥
, (6.67)

ẽ2 =C̃ẽ, ẽ = ē − ˆ̄e =
⎡⎢⎢⎢⎢⎢⎣

ẽξ

ẽ2

⎤⎥⎥⎥⎥⎥⎦
, G̃n =

⎡⎢⎢⎢⎢⎢⎣

0

G̃n2

⎤⎥⎥⎥⎥⎥⎦
. (6.68)

where ∣G̃n2∣ ≠ 0.

Proposition 6.3 Suppose there exists a matrix P1 = P T
1 > 0 that satisfies

P1Ã + ÃTP1 < 0, (6.69)

where P1 =
⎡⎢⎢⎢⎢⎢⎣

P11 0

0 G̃−1
n2

⎤⎥⎥⎥⎥⎥⎦
. If ρ̃ in (6.67) is chosen as follows:

ρ̃ ≥ 2β

µ2

∥G̃−1
n2Q̃1∥∥P1Q̃∥ + ∥G̃−1

n2M11∥α2 + ∥G̃−1
n2Q222BΩ∥β + ζ,

µ2 = −λmax (P1Ã + ÃTP1) > 0, α2 > ∥f1∥max, ζ > 0,

(6.70)

then sliding motion (ẽ2, ˙̃e2 = 0) occurs in finite time. ♯

Proof From the definition of ẽ in (6.68), subtracting (6.66) from (6.64) yields

˙̄e = Ãẽ + M̃f1 + Q̃ξ + G̃nν̃. (6.71)



Ch. 6. Robust fault reconstruction for NIODS using two SMOs in cascade 139

Define a candidate Lyapunov function W̃ = ẽTP1ẽ > 0, and differentiating it with

respect to time yields

˙̃W = ẽT (P1Ã + ÃTP1) ẽ + 2ẽTP1M̃f1 + 2ẽTP1Q̃1ξ + 2ẽ2ν̃,

≤ − µ2∥ẽ∥2 + 2∥ẽ∥∥P1Q̃∥β − 2∥ẽ2∥ (ρ̃ − ∥G̃−1
n2M11∥α2) . (6.72)

By setting ρ̃ > ∥G̃−1
n2M11∥α2, (6.72) becomes

˙̃W ≤ ∥ẽ∥ (−µ2∥ẽ∥ + 2∥P1Q̃∥β) . (6.73)

If the magnitude of the error ẽ is smaller than or equal to a certain bound, i.e. ∥ẽ∥ ≤
2∥P1Q̃∥β

µ2
, then (6.73) becomes

˙̃W ≤ κ2, (6.74)

where κ2 ≥ 0, and the magnitude of ẽ can become smaller, larger, or remain constant

within this bound. If the magnitude of the error ẽ is however larger than that bound, i.e.

∥ẽ∥ > 2∥P1Q̃∥β
µ2

, then (6.73) becomes

˙̃W < 0, (6.75)

and ∥ẽ∥ would shrink. This implies that the magnitude of ẽwould be bounded (∥e∥ ≤ 2∥P1Q̃∥β
µ2

)

in finite time. The succeeding portion of the proof aims to show how sliding motion

(ẽ2, ˙̃e2 = 0) is induced.

Next, define another candidate Lyapunov function W̃y = ẽT2 G̃−1
n2ẽ2 > 0. Differentiating

W̃y with respect to time yields

˙̃Wy = ẽT2 (G̃−1
n2J + JT G̃−1

n2) ẽ2 + 2ẽT2 G̃
−1
n2 (Q̃1ẽξ −M11f1 −Q222BΩξ) + 2ẽT2 ν̃,

≤ − 2∥ẽ2∥ (ρ̃ −
2β

µ2

∥G̃−1
n2Q̃1∥∥P1Q̃∥ − ∥G̃−1

n2M11∥α2 − ∥G̃−1
n2Q222BΩ∥β) . (6.76)

Notice that

∥ẽ2∥2 = (
√
G̃−1
n2ẽ2)

T

G̃n2 (
√
G̃−1
n2ẽ2) ≥ λmin (G̃n2) ∥

√
G̃−1
n2ẽ2∥2 = λmin (G̃n2) W̃y. (6.77)

Hence by setting ρ̃ such that (6.70) is satisfied, (6.77) becomes

˙̃Wy ≤ −2ζ∥ẽ2∥ ≤ −2ζ
√
λmin (G̃n2)

√
W̃y, (6.78)

which is the reachability condition [128] resulting in ẽ2 = 0 (and sliding motion taking

place on the surface S2 = {ẽ ∶ C̃ẽ = 0}) in finite time, thus proving the proposition. ∎
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After sliding motion occurs, (6.71) becomes

˙̃eξ = ÃΩẽξ −BΩξ, (6.79)

0 = Q̃1ẽξ −M11f1 −Q222BΩξ + G̃n2ν̃. (6.80)

It can be seen that f1 can be reconstructed from ν̃ (which is measurable) from (6.80).

Hence define the reconstruction for f1 as

f̂1 =KM †
11G̃n2ν̃, (6.81)

where M †
11 is the Moore-Penrose inverse of M11 and is defined (along with K) as

M †
11M11 =

⎡⎢⎢⎢⎢⎢⎣

0

Iq−q2

⎤⎥⎥⎥⎥⎥⎦
, K = [K1 Iq−q2] , (6.82)

where K1 ∈ R(q−q2)×(n−n̄−q+q2). Define also the reconstruction error for f1 as follows:

ef1 = f̂1 − f1. (6.83)

From (6.80)–(6.82), (6.83) becomes

ef1 = −KQ̃1ẽξ +KQ222BΩξ. (6.84)

Thus the reconstructions for f (i.e. f̂1 and f̂2) have been derived. The signals ē, ẽξ,

and ξ however affect f̂1 and f̂2. The goal now is to design the observer gains such that

the effect of ξ on ef1 and ef2 will be minimised, which will be addressed in the next

subsection.

6.3.3 Observer design

Define the following:

ef =
⎡⎢⎢⎢⎢⎢⎣

ef1

ef2

⎤⎥⎥⎥⎥⎥⎦
, C̃ =

⎡⎢⎢⎢⎢⎢⎣

−KQ̃1

− (Q̄21 +LT44Q223)

⎤⎥⎥⎥⎥⎥⎦
, H =

⎡⎢⎢⎢⎢⎢⎣

KQ222BΩ

0

⎤⎥⎥⎥⎥⎥⎦
. (6.85)

where ef is referred to as the fault reconstruction error. From (6.59), (6.63), (6.69), and

(6.84), the following state-space system can be formed:

˙̆e = ÃΩĕ −BΩξ, (6.86)

ef = C̃ĕ +Hξ, (6.87)

where ĕ is a state variable representing eξ from (6.41) and ẽξ from (6.68).
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Remark 6.5 System (6.86)–(6.87) is a state-space system describing how the disturbance

ξ affects the fault reconstruction error ef . If ξ = 0 (i.e. system (6.1)–(6.2) is not affected

by disturbances), (6.86)–(6.87) becomes

˙̆e = ÃΩĕ, (6.88)

ef = C̃ĕ, (6.89)

which implies ef → 0, which in turn implies f̂1 → f1, f̂2 → f2. Therefore, in the absence of

disturbances, the proposed scheme is able to asymptotically reconstruct the faults. Thus,

the scheme proposed in this chapter are also applicable to systems without considerations

for external disturbances, and is therefore more general than the scheme proposed in the

previous chapter. ♯

The effect of ξ on ef is thus minimised using the Bounded Real Lemma, which has

been described in Lemma 4.2. Define P1 =
⎡⎢⎢⎢⎢⎢⎣

P11 0

0 P12

⎤⎥⎥⎥⎥⎥⎦
, where P1 = P T

1 > 0, P12 = G̃−1
n2.

By applying the Bounded Real Lemma onto error system (6.86)–(6.87), the L2 gain from

ξ to ef will not exceed the positive scalar γ if there exists a matrix P11 = P T
11 > 0 such that

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

P11ÃΩ + ÃΩP11 ∗ ∗
−BT

ΩP11 −γIh ∗
C̃ H −γIq

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (6.90)

where ∗ are terms that make LMI (6.90) symmetrical. The objective is therefore to find

solutions for γ, P11, K, and L to minimise γ subject to inequality (6.90), while also

satisfying

P > 0, P (RĀ −GlC̄) + (RĀ −GlC̄)T P < 0, P1Ã + ÃTP1 < 0, (6.91)

which are required to guarantee sliding motion in both observers (refer to Propositions

6.2 and 6.3). The choice of Gl and J is not unique; the only condition is that (6.91) is

satisfied. In this paper, Gl and J are designed using a modified version of the method in

[128] that will be outlined in Proposition 6.4 below.

Proposition 6.4 Define D̄ ∈ Rp×p and γ0 ∈ R+ as user-defined variables. Then define

P34 = P11R34, PJ = P12J, P9 = P2R9, F = [C̆ F1 F2] , (6.92)
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where F1 ∈ Rq×(n̄−p) and F2 ∈ Rq×p. Suppose there exists matrices P, K1, L, F1, F2, and

γ that satisfy the following inequalities:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

X ∗ ∗
− (RQ̄)T P −γ0Ih ∗

F H −γ0Iq

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (6.93)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P11AΩ + P34T44Q223

+ATΩP11 + (T44Q223)TP34

∗ ∗

−BT
ΩP11 −γIh ∗
C̆ H −γIq

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (6.94)

where ∗ are the terms that make (6.93)–(6.94) symmetric, and

X = P (RĀ) + (RĀ)T P − γ0C̄
T (D̄D̄T )−1

C̄. (6.95)

If the observer parameters are chosen as

R34 = P −1
11 P34, J = P −1

12 PJ , R9 = P −1
2 P9, Gl =

γ0

2
P −1C̄T (D̄D̄T )−1

, (6.96)

then (6.91) is satisfied, and ∥ef∥ ≤ γ∥ξ∥. ♯

Proof The structure of Gl in (6.96) implies

PGlC̄ + (GlC̄)TP = γ0C̄
T (D̄D̄T )−1C̄, (6.97)

that is, the top-left element of LMI (6.93) (i.e. X) becomes

X = P (RĀ −GlC̄) + (RĀ −GlC̄)TP. (6.98)

The structure of LMI (6.93) and X in (6.98) imply P (RĀ) + (RĀ)T P < 0. Further-

more, from the structures of Ā and C̄ from (6.29)–(6.30), and Gl and R from (6.37), the

following expression is obtained:

RĀ −GlC̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ih 0 R3

Q222 In̄−p R6

0 0 R9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

AΩ 0 0

Q̄1 0 Ā3

TpQ̄2 TpĀ5 TpĀ6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Gl1

Gl2

Gl3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

[0 0 Ip] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ÃΩ 0 ∗
Q̃1 −J ∗

∗ ∗ ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(6.99)
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where ∗ represents terms that do not contribute to succeeding analysis. From (6.64), it can

be seen that the top-left partition of RĀ −GlC̄ in (6.99) is equivalent to Ã. The structure

of P from Propositions 6.2 and 6.3, and X from (6.98) therefore imply that

X = P (RĀ −GlC̄) + (RĀ −GlC̄)TP

=
⎡⎢⎢⎢⎢⎢⎣

P1 0

0 P2

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

Ã ∗
∗ ∗

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

ÃT ∗
∗ ∗

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

P1 0

0 P2

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

P1Ã1 + ÃT1 P1 XT
1

X1 X2

⎤⎥⎥⎥⎥⎥⎦
. (6.100)

Since X < 0, P1Ã1 + ÃT1 P1 < 0. Thus both inequalities in (6.91) are satisfied, and

sliding motion is guaranteed in both observers. Lastly, by substituting P11 and P34 from

(6.96) into LMI (6.94), it can be seen that (6.94) has the same form as (6.90), which

describes the Bounded Real Lemma bounding the L2 gain from ξ to ef . Thus, the proof

is complete. ∎

Remark 6.6 Compared to the LMIs presented in [17], the formulation in this chapter

has enabled the LMI pair (6.93)–(6.94) to simultaneously calculate the gains of both

observers in cascade. This is because the formulation in the paper has caused the system

from ξ to both ef1 and ef2 to have the same ‘state equation’ - this can be verified by

comparing (6.86)–(6.87) with (6.59)–(6.63) and (6.79)–(6.84). If the approach in [17] is

used, the LMI pair (6.93)–(6.94) would calculate the gain of only one observer, and the

gain of the second observer will have to be calculated using another LMI pair [91], or

through a different method [129]. This may not be optimal, causing γ to be larger than

necessary and hence be conservative. Therefore, the LMI design method in this chapter

reduces the conservatism by design. The only remaining conservatism is caused by the

block-diagonal structure of P , which is required in Propositions 6.2 and 6.3 to reconstruct

the faults. ♯

6.3.4 Existence conditions

Theorem 6.1 The proposed cascaded SMO scheme can reconstruct f0 for system (6.1)–

(6.2) if and only if the following conditions hold:

N1. rank [M2 A4 A5] − rank(M2) = n − p,
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N2. p + q − n̄ ≤ rank(M2) ≤ 2p − n. ♯

Proof The remainder of this subsection forms the constructive proof for Theorem 6.1.

The following assumptions were made during the analysis of the cascaded SMO

scheme in the preceding subsections:

P1. rank [A42 A52] = n − p in (6.9), so that Tf1 in Proposition 6.1 exists such that

Tf1 [A42 A52] =
⎡⎢⎢⎢⎢⎢⎣

In−p

0

⎤⎥⎥⎥⎥⎥⎦
.

P2. Matrix T44 in (6.55) exists such that it has the dimensions T44 ∈ R(2p−n−q2)×(2p−n̄−q2).

P3. rank(M11) = q − q2, so that M †
11 in (6.81) exists such that M †

11M11 =
⎡⎢⎢⎢⎢⎢⎣

0

Iq−q2

⎤⎥⎥⎥⎥⎥⎦
.

P4. The error systems (6.53)–(6.54) (and therefore (6.59)–(6.60)) and (6.79)–(6.80) can

be made stable.

Therefore, it is of interest to re-express these conditions in terms of the original sys-

tem matrices so that it is easier for designers to verify whether the proposed scheme is

applicable from the outset.

Proposition 6.5 Condition P1 is satisfied if and only if N1 is satisfied. ♯

Proof Pre-multiply (M0,A0) with TdTb and post-multiply A0 and M0 with (TcTa)−1 and

T −1
e in Proposition 6.1 to obtain

M2 =
⎡⎢⎢⎢⎢⎢⎣

0 Iq2

0 0

⎤⎥⎥⎥⎥⎥⎦
, A4 =

⎡⎢⎢⎢⎢⎢⎣

A41

A42

⎤⎥⎥⎥⎥⎥⎦
, A5 =

⎡⎢⎢⎢⎢⎢⎣

A51

A52

⎤⎥⎥⎥⎥⎥⎦
. (6.101)

Suppose N1 is not satisfied, i.e.

rank [M2 A4 A5] − rank(M2) < n − p. (6.102)

Equation (6.102) implies

rank [A42 A52] < n − p, (6.103)
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that is, P1 is also not satisfied, which shows the necessity of N1. If N1 is satisfied,

however, it is straightforward to deduce from the structure of [M2 A4 A5] in (6.101)

that

rank [A42 A52] = n − p, (6.104)

which shows that P1 is satisfied, thus proving the sufficiency of N1. ∎

Proposition 6.6 Condition N2 is necessary and sufficient for P2–P3 to be satisfied. ♯

Proof Condition N2 is shown to be necessary through the two cases where it is not satis-

fied, i.e.

rank(M2) > 2p − n, (6.105)

rank(M2) < p + q − n̄. (6.106)

Recall from (6.7) that q2 = rank(M2), and from (6.55) that T44 ∈ R(2p−n−q2)×(2p−n̄−q2),

where q2 = rank(M2). Equation (6.105) implies T44 does not exist, and P2 is not satisfied.

Next, (6.106) implies

n̄ − p < q − q2, (6.107)

Since M11 ∈ R(n̄−p)×(q−q2),

rank(M11) ≤ min{n̄ − p, q − q2} ≤ n̄ − p < q − q2, (6.108)

that is, M11 is not full-column rank, and P3 can never be satisfied, thus showing the

necessity of N2. On the other hand, if N2 is satisfied, since n− n̄ > 0, it is straightforward

to see that T44 can be assigned the dimensions in (6.55), and M11 would be full-column

rank, satisfying P2–P3 and showing the sufficiency of N2. ∎

Corollary 6.2 Condition P4 is always satisfied. ♯

Proof The eigenvalues of system (6.53) are {λ (ÃΩ) , λ (J)}. Recall from (6.3) and

(6.56) that

λ (ÃΩ) = λ (AΩ +R34T44Q223) , λ (AΩ) < 0, (6.109)

where R34 ∈ Rh×(2p−n−q2). Condition N2 implies

2p − n − q2 ≥ 0. (6.110)
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In the case 2p − n − q2 = 0, R34 does not exist, and hence

λ (ÃΩ) = λ (AΩ) < 0. (6.111)

If 2p − n − q2 > 0, then R34 can be freely chosen such that λ (ÃΩ) < 0. Therefore

λ (ÃΩ) < 0 is satisfied for all cases. It is also required that J ∈ R(n̄−p)×(n̄−p) exists such

that λ (J) > 0 for (6.53)–(6.54) (and therefore (6.59)–(6.60)) to be stable. If n̄ = p (all

states of system (6.29)–(6.30) are measurable outputs), then e2 (and therefore J) does not

exist. If n̄ > p then J exists and can be freely chosen such that λ (J) > 0. Therefore error

system (6.53)–(6.54) (and therefore (6.59)–(6.60)) can always be made stable.

To stabilise error system (6.79)–(6.80), the zeros of (Ã, M̃ , C̃) need to be stable, i.e.

D(s) is full rank for all s ∈ C+, where

D(s) =
⎡⎢⎢⎢⎢⎢⎣

sI − Ã M̃

C̃ 0

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

sIh − ÃΩ 0 0

−Q̃1 sIn̄−p + J −M11

0 In̄−p 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6.112)

Since rank (ÃΩ) < 0 and rank(M11) = q − q2 ≤ n̄ − p (from N2), D(s) will always be

full-column rank for s ∈ C+ and therefore system (6.79)–(6.80) can always be stabilised.

Thus P4 is always satisfied. ∎

Thus, N1–N2 are shown to be necessary and sufficient for P1–P4 to be satisfied (and

consequently no additional conditions are required). Therefore, Theorem 6.1 has been

proven. ◻

The strengths of the proposed scheme over existing work (and hence the contribution

of this chapter) are summarised as follows:

• The scheme considers disturbances (that will corrupt the fault reconstruction) and

makes the fault reconstruction robust against them. Disturbances were not consid-

ered in the prior schemes in [99, 100, 101, 161].

• The proposed scheme is able to asymptotically reconstruct the faults (in the absence

of disturbances) for a larger class of non-infinitely observable descriptor systems

compared to the works in [17, 99, 100, 101, 161].
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• Only a single LMI pair (i.e. (6.93)–(6.94)) is required to design the gains of both

observers simultaneously, which reduces conservatism when compared to previous

works [17, 91, 128, 129] where each observer was designed separately.

6.3.5 Design procedure

The design procedure for the proposed cascaded observer scheme is as follows:

1. Determine Ta, Tb, Tc in Proposition 6.1, and apply the state equation transformation

Tb and apply the state transformation T −1
aft = TcTa.

2. Check that N1–N2 hold; if they are not satisfied then the proposed scheme is not

applicable.

3. Calculate Tpre = TgTfTdTb and Te in Proposition 6.1, and apply the state equation

transformation Tpre, the state transformation T −1
aft, and fault transformation Te.

4. Determine suitable values for (AΩ,BΩ) in (6.3)–(6.4) based on knowledge of the

disturbance ξ0.

5. Augment the dynamics of ξ0 into the system using (6.19)–(6.20). Then determine

Th in (6.23), and apply the state transformation Th.

6. Set a value for T44 in (6.55) such that T44Q223 has as many non-zero columns as

possible. Apply the state equation transformation T given in (6.25).

7. Form the reduced-order system in (6.29)–(6.30).

8. Choose values for LMI parameters D̄ and γ0 in Proposition 6.4, and use a LMI

solver to determine P and γ from (6.93)–(6.95). Note that the gains for both ob-

servers are simultaneously designed here.

9. Using (6.96), determine R and V from (6.37), Gl and Gn from (6.34), L from

(6.61), G̃n from (6.68), and K from (6.82).

10. Set ρ and ρ̃ to satisfy (6.45) and (6.69), respectively, and determineM †
11 from (6.82).
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11. Reconstruct f according to (6.61) and (6.82).

6.4 Simulation example

The effectiveness of the proposed scheme is demonstrated through the following example:

consider a modified version of the generalised RLC circuit in [135] described by the

following dynamical model:

L1İL1 = −R1IL1 − VC1 + V1, (6.113)

C1V̇C1 = IL1, (6.114)

L2İL2 = −R2IL2 − VC2 + V2, (6.115)

C2V̇C2 = IL2, (6.116)

L12İL12 = −R12IL12 − VC12 + V1 − V2, (6.117)

C12V̇C12 = IL12, (6.118)

0 = − IL1 − IL12 + I, (6.119)

0 = − IL2 + IL12, (6.120)

where I is the input current, IL1, IL2, IL12 are the currents flowing across the induc-

tors L1, L2, and L12, respectively, VC1, VC2, and VC12 are the voltage drops across the

capacitors C1, C2, and C12 respectively, and V1 and V2 are the voltages at nodes 1 and

2, respectively. The inductor L1 is faulty, causing fluctuations in the voltage drop and

current across it (labelled as fa and fb respectively), and hence (6.113)–(6.114) become

L1İL1 = −R1IL1 − VC1 + V1 − fa, (6.121)

C1V̇C1 = IL1 − fb, (6.122)

Let the components have the following values:

L1 = L2 = L12 = 1 H, C1 = C2 = C12 = 1 F, R1 = R2 = R12 = 1 Ω. (6.123)
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6.4.1 System formulation

The system matrices (E0,A0,B0,M0) in the framework of (6.1)–(6.2) are

E0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

I6 0 0

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 0 0 0 0 1 0

1 0 0 0 0 0 0 0

0 0 −1 −1 0 0 0 1

0 0 1 0 0 0 0 0

0 0 0 0 −1 −1 1 −1

0 0 0 0 1 0 0 0

−1 0 0 0 −1 0 0 0

0 0 −1 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

0

1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, M0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−I2

0

0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(6.124)

for the system variables u = [input current, I (A)] and

x0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

current across L1, IL1 (A)

voltage across C1, VL1 (V)

current across L2, IL2 (A)

voltage across L2, VL2 (V)

current across L12, IL12 (A)

voltage across C12, VL12 (V)

voltage at node 1, V1 (V)

voltage at node 2, V2 (V)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, f0 =
⎡⎢⎢⎢⎢⎢⎣

fa (A/s)

fb (V/s)

⎤⎥⎥⎥⎥⎥⎦
. (6.125)

To demonstrate the robustness of the observer scheme, assume that the currents flow-

ing across capacitors C1 and C12 fluctuate by ξ1 and ξ2. Hence define the disturbance sig-

nal ξ0 =
⎡⎢⎢⎢⎢⎢⎣

ξ1

ξ2

⎤⎥⎥⎥⎥⎥⎦
, and assume that measurements are only available for VC1, VC2, IL12, VC12,
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and V1, so Q0 and C0 have the form

Q0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0

−1 0

0 0

0 −1

0 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, C0 =
⎡⎢⎢⎢⎢⎢⎣

0 1 0 0 0

0 0 0 I4 0

⎤⎥⎥⎥⎥⎥⎦
. (6.126)

6.4.2 Design of observers

To ease readability, the steps to design the cascaded observer scheme in §6.3.5 will be

referred to in the following subsection.

Step 1: To obtain the system in the form (6.10)–(6.12), apply the state equation transfor-

mation Tb and state equation transformation T −1
aft, where

Tb =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 I5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Taft =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 0 I4

1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6.127)

Step 2: The following partitions are obtained:

M2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1

0 0

0 0

0 0

0 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

−1

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A5 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

0 1

0 0

0 0

−1 0

0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6.128)

From (6.128), the following can then be verified:

rank [M2 A4 A5] − rank(M2) = 3, p + q − n̄ ≤ rank(M2) ≤ 2p − n. (6.129)
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Equation (6.129) shows that N1–N2 hold for the system, and therefore guarantees the

existence of the proposed observer scheme. The observer scheme proposed in the chapter

is now designed.

Step 3: Apply the state equation transformation Tpre, the state transformation T −1
aft, and

fault transformation Te, where

Tpre =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 −1 0

0 0 1 1 1 0 0 0

0 1 0 0 0 0 1 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 0 −1 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Te = −I2. (6.130)

Step 4: The disturbance ξ0 is assumed to have a frequency content of ω < 2 rad/s.

Therefore, choose ωf = 20 rad/s, and hence

AΩ = −20I2, BΩ = 20I2. (6.131)

Step 5: The dynamics of ξ0 are augmented into the system using (6.18)–(6.20). Fi-

nally, the state transformation Th is applied onto the augmented system, where

Th =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

−1 0 0 0 1 0

0 0 0 0 0 I5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6.132)
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The following augmented system in the coordinates of (6.24) is obtained:

E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 0

0 0 I2 0 0 0 0 0 0

0 1 0 1 0 1 1 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

−1

0

1

0

−1

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

1 0

0 0

0 1

0 0

0 0

0 0

0 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

20I2

0

0

0

0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −20 0 0 0 0 0 0 0 0

0 0 −20 0 0 0 0 0 0 0

0 0 0 0 0 −1 0 1 0 1

0 −1 0 0 0 0 −1 −1 −1 1

0 0 0 0 0 0 0 −1 0 0

1 0 0 0 0 0 0 1 1 −1

0 0 0 1 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0

0 0 −1 0 0 0 0 1 0 0

0 −1 0 0 0 0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, C = [0 I5] .

(6.133)

It can be seen from (6.133) that Q223 =
⎡⎢⎢⎢⎢⎢⎣

0 −1

−1 0

⎤⎥⎥⎥⎥⎥⎦
; hence for Tp in (6.55), set T44 =

[1 1] (so T44Q223 = [−1 −1] has non-zero columns). The reduced-order system (6.29)–

(6.30) is then found to be
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Ē =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

0 I2 0 0 0 0 0 0

1 0 1 0 1 1 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 −1 0 1 0

0 0 0 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

−1

0

1

0

1

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, M̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

1 0

0 0

0 I2

0 0

0 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Q̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

20I2

0

0

0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ā =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−20 0 0 0 0 0 0 0 0

0 −20 0 0 0 0 0 0 0

0 0 0 0 −1 0 1 0 1

−1 0 0 0 0 −1 −1 −1 1

0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 1 1 −1

0 0 −1 0 0 0 −1 0 0

0 0 0 −1 0 0 0 0 0

−1 −1 0 0 0 0 2 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, C̄ = [0 I5] .

(6.134)

The LMI design parameters in Proposition 6.4 were chosen as D̄ = I2 and γ0 = 1. By

using the LMI Control Toolbox within MATLAB on LMIs (6.93)–(6.94), the following

values of P and γ were obtained:

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0053 −0.0043 0 0 0

−0.0043 0.0053 0 0 0

0 0 0.4687 −0.001 0

0 0 −0.001 0.002 0

0 0 0 0 0.7577I5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, γ = 0.0956. (6.135)
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The observer parameters are found to be

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 168.9

0 1 0 0 0 0 0 0 169.8

0 0 1 0 0 0 0.7145 0.4050 0

−1 0 0 1 0 0 1.463 186.9 0

0 0 0 0 0.4655 0.022 −0.5584 −0.0110 −0.0553

0 0 0 0 0.0220 −0.0106 −0.1517 0.0730 −0.0482

0 0 0 0 −0.5584 −0.1517 1.110 −0.0038 0.4562

0 0 0 0 −0.0110 0.0730 −0.0038 −0.0042 0.0105

0 0 0 0 −0.0553 −0.0482 0.4562 0.0105 0.0892

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −168.9 0 −168.9 0

0 −169.8 0 −169.8 0

0 0.4050 0 0 0

0 185.9 −1 0 0

0.5345 0.0443 0.0220 0.0553 0

−0.0220 1.121 −0.0106 0.0482 0

0.5584 −0.4600 0.8483 −0.4562 0

0.0110 −0.0147 0.0730 0.9895 0

0.0553 −0.0787 −0.0482 −0.0892 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, L = 0, K = [0 1]

Gl =
⎡⎢⎢⎢⎢⎢⎣

04×5

0.6599I5

⎤⎥⎥⎥⎥⎥⎦
, Gn =

⎡⎢⎢⎢⎢⎢⎣

04×5

1.320I5

⎤⎥⎥⎥⎥⎥⎦
, G̃n =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

02×2

2.136 1.050

1.050 490.6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(6.136)

The poles of Observer One are then calculated to be {−357.9,−187.0,−20,−0.9761 ±

j1.113,−0.6371±j0.109,−0.6599,−0.6594}, while the poles of its sliding motion (which

are also the poles for Observer Two) are {−358.8,−187.0,−20,−0.7114}. The poles for

the sliding motion of Observer Two are {−358.8,−20}. The parameters ρ, ρ̃, and M †
11 are

as follows:

ρ = ρ̃ = 5, M11 =
⎡⎢⎢⎢⎢⎢⎣

0 1

1 0

⎤⎥⎥⎥⎥⎥⎦
. (6.137)

Remark 6.7 The design of the observers (i.e. the scheme in this chapter) is complete. It

will now be shown that existing fault reconstruction schemes for descriptor systems will

not work for the example in (6.124) and (6.126) as follows:
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• The system is not infinitely observable, i.e. rank

⎡⎢⎢⎢⎢⎢⎣

E0

C0

⎤⎥⎥⎥⎥⎥⎦
= 7 < 8, and therefore the

schemes in [5, 34, 39, 143, 167, 168] are inapplicable.

• From (6.128), rank(M2) = 1 < 2. Thus, the schemes utilising a single SMO in [17,

100, 101] cannot reconstruct all components of f0, and are therefore inapplicable.

• In the coordinates of (6.130), the following partitions are obtained:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ē21

E221

E222

E223

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 0 −1 0 0

0 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A41 = 0. (6.138)

Therefore, it can then be shown that

rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ē21

E222

E223

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 3 ≠ r − n̄ + p, rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

E221

E222

E223

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

≠ rank

⎡⎢⎢⎢⎢⎢⎣

E222

E223

⎤⎥⎥⎥⎥⎥⎦
, (6.139)

that is, M1–M2 are not satisfied, and therefore the schemes in [99, 161] are also

inapplicable to the example. In fact, for the cascaded SMO schemes in [99, 161] to

be applicable, the eighth state of (6.125) needs to be measurable (which also results

in the system becoming infinitely observable). Even then, the schemes utilising a

single SMO in [17, 100, 101] are still unable to reconstruct all components of f

since rank(M2) < rank(M) in this case. ♯

6.4.3 Simulation results

To show the effectiveness of the proposed scheme at bounding the L2 gain from the dis-

turbances to the fault reconstruction, the disturbance signals are set as

ξ1 = 0.2 sin(t + π
2
) + 0.3, ξ2 = 0.1 sin(0.8t + π

6
) + 0.2. (6.140)
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The initial condition of the system is set as {−1,2,1,5,1,3,4.45,3.225}, while the

observers are set to have zero initial conditions. The case where the current source is

disconnected is simulated, i.e. I = 0. The fault signals are simulated as

f1 = 0.2 sin(2t + π
3
) + 0.6, ḟ2 = −10f2 + 10f̄ , (6.141)

where the signal f̄ is given by

f̄ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.05 for t ≤ 0.5,

t − 0.45 for 0.5 < t ≤ 1.2,

0.75 for 1.2 < t ≤ 2,

−1.5t + 3.75 for 2 < t ≤ 2.3,

0.3 for t > 2.3.

(6.142)
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Figure 6.2: Faults (dash-dotted) and their reconstructions (solid).

Figure 6.2 shows the fault signals and their reconstructions, whereas Figure 6.3 shows

the fault reconstruction errors. Notice that f̂b converges onto fb at around t = 0.15 s,

while f̂a converges onto fa at around t = 0.19 s. It can be seen that fault reconstruction

is achieved even in the presence of disturbances (due to the small value of γ), and that

the magnitudes of the fault reconstruction errors are bounded within ±γ∥ξ0∥. Thus the

method is verified as effective at bounding the effect of the disturbances on the fault

reconstructions.
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Figure 6.3: Fault reconstruction errors (solid). The dashed lines represent the upper

bounds of ef derived from LMIs (6.93)–(6.94).

6.5 Conclusion

This chapter has presented a robust fault scheme consisting of two cascaded SMOs for

a class of NIODS. Certain states were treated as unknown inputs to form an infinitely

observable system. A standard SMO was then applied onto this reduced-order system to

reconstruct a component of the fault, and its switching term is fed into a second SMO to

reconstruct the remaining faults. LMI techniques were employed to minimise the L2 gain

from the disturbances to the fault reconstruction. The necessary and sufficient conditions

for the existence of the scheme were investigated and are found to be more relaxed than

those for existing fault reconstruction schemes for non-infinitely observable descriptor

systems. The LMIs were formulated such that the gains for both observers are designed

simultaneously, and are thus less conservative than existing methods, which design each

observer separately. Finally, a simulation was carried out and its results verify the efficacy

of the scheme.



Chapter 7

New results in robust fault reconstruction for NIODS

7.1 Introduction

In the previous chapters, several schemes for reconstructing faults in non-infinitely ob-

servable descriptor systems (NIODS) using sliding mode observers (SMO) have been

presented. These schemes investigated in these chapters however did not fully exploit all

design freedom when treating certain states as unknown inputs. In addition to treating

certain states as unknown inputs, Ooi et al. [101] proposed a scheme which also re-

expressed certain states as a linear combination of other states, thus reducing the number

of states that are treated as unknown inputs and reducing the number of sensors poten-

tially required. Their scheme however did not consider the effect of disturbances on the

fault reconstruction. The contribution of this chapter is therefore to build on the work by

Ooi et al. [101] by developing a fault reconstruction scheme for a class of NIODS such

that the L2 gain from the external disturbances to the fault reconstruction is minimised,

thereby achieving robust fault reconstruction.

The chapter starts off by introducing the preliminary transformations to re-express the

descriptor system in a form that facilitates analysis and gain design in §7.2. Some states

are re-expressed in terms of other states, and certain other states are treated as unknown

inputs, thereby forming an infinitely observable reduced-order system; this was not done

in the previous chapters. In §7.3, the observer by Yeu et al. [157] is applied onto the

reduced-order system. The design parameters are then designed using the Bounded Real

Lemma [128] such that the L2 gain from the disturbances to the fault reconstruction is

minimised. The necessary and sufficient existence conditions for the observer are studied

and presented in terms of the original system matrices. A summarised design procedure
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for the scheme is shown. Finally, a simulation example is performed in §7.4 to demon-

strate the efficacy of the proposed scheme.

The work in this chapter has been accepted for presentation in the American Control

Conference (ACC) 2019.

7.2 Preliminary transformations

Consider the non-infinitely observable descriptor system (NIODS):

E0ẋ0 =A0x0 +B0u +M0f0 +Q0ξ, (7.1)

y =C0x0, (7.2)

where E0,A0 ∈ Rn×n, B0 ∈ Rn×m, M0 ∈ Rn×q, Q0 ∈ Rn×h, C0 ∈ Rp×n, while x0, u, y, f0,

and ξ are the states, inputs, outputs, faults, and disturbance signals, respectively. Only

u and y are measurable. The fault signal f0 represents irregular behaviour in the system

which needs to be reconstructed so that information on its shape and magnitude can be

extracted for purposes of timely and precise corrective action. The unknown disturbance

signal ξ (which is not a fault, and could arise due to errors in modelling or from parasitic

dynamics [95]) may corrupt the fault reconstruction, resulting in erroneous estimates of

the fault. These inaccurate reconstructions could lead to false positives being raised, or

even worse, false negatives where the effects of the faults are masked. Thus it is of interest

to reconstruct f0 while minimising the effect of ξ on its reconstruction. It is assumed that

E0 is rank-deficient, i.e. rank(E0) = r < n, and that M0 and C0 are full-column rank and

full-row rank, respectively, i.e. rank(M0) = q, rank(C0) = p.

Similar to the previous chapters, system (7.1)–(7.2) is first re-expressed into a form

facilitating further analysis and observer gain design using Lemma 4.1 and Proposition

7.1. Define a non-singular matrix Ta =
⎡⎢⎢⎢⎢⎢⎣

NT
C

C0

⎤⎥⎥⎥⎥⎥⎦
, where C0NC = 0, which results in

E0 ↦ E0T
−1
a = [Ea1 Ea2] , C0 ↦ C0T

−1
a = [0 Ip] . (7.3)

Since rank

⎡⎢⎢⎢⎢⎢⎣

E0

C0

⎤⎥⎥⎥⎥⎥⎦
= n̄, it follows from (7.3) that rank(Ea1) = n̄ − p. Using singular-
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value decomposition (SVD), Ea1 can be decomposed as

TbEa1Tc1 =
⎡⎢⎢⎢⎢⎢⎣

0 In̄−p

0 0

⎤⎥⎥⎥⎥⎥⎦
, (7.4)

where Tb and Tc1 are non-singular matrices. Define another non-singular matrix Tc =⎡⎢⎢⎢⎢⎢⎣

T −1
c1 0

0 Ip

⎤⎥⎥⎥⎥⎥⎦
, and let (E0,A0,M0) in the coordinates of (7.1) be transformed to have the

following structures:

TbE0(TcTa)−1 =
⎡⎢⎢⎢⎢⎢⎣

0 In̄−p E1

0 0 Ec2

⎤⎥⎥⎥⎥⎥⎦
, TbM0 =

⎡⎢⎢⎢⎢⎢⎣

M1

Mc2

⎤⎥⎥⎥⎥⎥⎦

TbA0(TcTa)−1 =
⎡⎢⎢⎢⎢⎢⎣

A1 A2 A3

Ac4 Ac5 Ac6

⎤⎥⎥⎥⎥⎥⎦
.

(7.5)

From r = rank(E0) and (7.5), it can be seen that rank(Ec2) = r − n̄ + p. Therefore

there exists an invertible matrix Td1 such that

Td1Ec2 =
⎡⎢⎢⎢⎢⎢⎣

E2

0

⎤⎥⎥⎥⎥⎥⎦
, (7.6)

where E2 ∈ R(r−n̄+p)×p is full-row rank. Therefore, define an invertible matrix Td =
⎡⎢⎢⎢⎢⎢⎣

In̄−p 0

0 Td1

⎤⎥⎥⎥⎥⎥⎦
, and let (A0,M0) in the coordinates of (7.1) be transformed to have the fol-

lowing structures:

TdTbA0(TcTa)−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 A2 A3

A4 A5 A6

A7 A8 A9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, TdTbM0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1

M2

M3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7.7)

where A1 ∈ R(n̄−p)×(n̄−p), A5 ∈ R(r−n̄+p)×(n̄−p), A9 ∈ R(n−r)×p. Define

a = rank(A7) ≤ n − n̄, (7.8)

and therefore apply SVD on A7 as follows:

Te1A7Tf1 =
⎡⎢⎢⎢⎢⎢⎣

0 A71

0 0

⎤⎥⎥⎥⎥⎥⎦
, (7.9)

where A71 ∈ Ra×a, Te1, and Tf1 are non-singular. Next, let

Te1M3 =
⎡⎢⎢⎢⎢⎢⎣

M31

M32

⎤⎥⎥⎥⎥⎥⎦
, (7.10)
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where M31 ∈ Ra×q and M32 ∈ R(n−r−a)×q. Define q21 = rank(M31) and q22 = rank(M32),

where q2 = q21 + q22. Therefore, performing SVD on M31 and M32 yields

Te2M31T
−1
g =

⎡⎢⎢⎢⎢⎢⎣

0 −Iq21 0

0 0 0

⎤⎥⎥⎥⎥⎥⎦

↕ q21

↕ a − q21

,

Te3M32T
−1
g =

⎡⎢⎢⎢⎢⎢⎣

0 0 Iq22

0 0 0

⎤⎥⎥⎥⎥⎥⎦

↕ q22

↕ n − r − a − q22

.

(7.11)

Define an invertible matrix

Tf2 =
⎡⎢⎢⎢⎢⎢⎣

In−n̄−a 0

0 (Te2A71)−1

⎤⎥⎥⎥⎥⎥⎦
, (7.12)

and therefore by substituting for structures of A1,A4,A7,M1,M2,M31,M32 from (7.7)–

(7.11), the following is obtained:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ir 0 0

0 Te2 0

0 0 Te3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 M1

A4 M2

A7

M31

M32

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

Tf1Tf2 0

0 T −1
g

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 M11 M12 M13

A41 A42 A43 M21 M22 M23

0 Iq21 0 0 −Iq21 0

0 0 Ia−q21 0 0 0

0 0 0 0 0 Iq22

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(7.13)

Proposition 7.1 Assume that [A41 M21] is full-column rank, i.e.

rank [A41 M21] = n − n̄ − a + q1, (7.14)

where q1 = q − q21 − q22 (the satisfaction of (7.14) will be addressed later in Proposition

7.4). Therefore, there exists a non-singular matrix Th1 such that

Th1 [A41 A42 M21 M22] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 A421 Iq1 M221

In−n̄−a A422 0 M222

0 A423 0 M223

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7.15)
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where M223 ∈ R(p−q−(n−r−a−q2))×q21 . Let Ãm = A423 +M223, and assume that Ãm is full-

column rank, i.e.

rank(Ãm) = q21, (7.16)

where the satisfaction of (7.16) will also be addressed later in Proposition 7.4. Then

there exists a set of transformations such that system (7.1)–(7.2) can be re-expressed as

follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 In̄−p Ē1

0 0 Ẽ2

0 0 Ē3

0 0 Ẽ4

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

E

ẋ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 Ā2 Ā3

Ã4 Ã5 Ã6

Ā7 Ā8 Ā9

0 Ã11 Ã12

0 Ā14 Ā15

Ā16 Ā17 Ā18

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A

x +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B̄1

B̃2

B̄3

B̃4

B̄5

B̄6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
²

B

u +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

M̃2

0

0

0

M̄6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
²
M

f +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q̄1

Q̃2

Q̄3

Q̃4

Q̄5

Q̄6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
²

Q

ξ, (7.17)

y = [0 0 Ip]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C

x, x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11

x121

x122

x2

y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

↕ n − n̄ − a
↕ q21

↕ a − q21

↕ n̄ − p
↕ p

, f =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1

f21

f22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

↕ q1

↕ q21

↕ q22

, (7.18)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ã4 Ã5 M̃2

Ā7 Ā8 0

Ā16 Ā17 M̄6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 Ã51 Iq1 0 0

0 Iq21 0 Ã52 0 0 0

0 0 0 Ã53 0 0 Iq22

In−n̄−a 0 0 Ā8 0 0 0

0 Iq21 0 Ā171 0 −Iq21 0

0 0 Ia−q21 Ā172 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7.19)

where the dimensions of (E,A,C) are conformable to the partitions of x, whilst the

column partitions of M are conformable to the partitions of f . ♯

Proof The proof consists of two portions: the first part aims to re-express certain system

matrices in a form facilitating further analysis. In the coordinates of (7.15), assign the
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following structures:

Th1 [A43 M23] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A431 M231

A432 M232

A433 M233

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7.20)

Furthermore, since Ãm is full-column rank, there exists a non-singular matrix Ti1 such

that

Ti1 [Ãm A433 M233] =
⎡⎢⎢⎢⎢⎢⎣

Iq21 A4331 M2331

0 A4332 M2332

⎤⎥⎥⎥⎥⎥⎦

↕ q21

↕ p − q − (n − r − a − q22)
. (7.21)

In the following (and remaining) portion of the proof, the transformations to re-

express the system are defined and applied. Define the non-singular matrices

Te =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ir 0 0

0 Te2 0

0 0 Te3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

Ir 0

0 Te1

⎤⎥⎥⎥⎥⎥⎦
, Tf =

⎡⎢⎢⎢⎢⎢⎣

(Tf1Tf2)−1 0

0 In̄

⎤⎥⎥⎥⎥⎥⎦
,

Th =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

In̄−p 0 0

0 Th1 0

0 0 In−r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ti =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

In−p+q1−a 0 0

0 Ti1 0

0 0 In−r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ti2, Tj =
⎡⎢⎢⎢⎢⎢⎣

Tj1 Tj2

0 Tj4

⎤⎥⎥⎥⎥⎥⎦
,

(7.22)
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where the partitions Ti1, Tj1, Tj2, and Tj4 are defined as

Ti2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

In−p+q1−a 0 0 0

0 Ir+p+a−q1−n M223 0

0 0 Iq21 0

0 0 0 In−r−q21

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Tj4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 In−r−a−q22

Iq21 0 0 0

0 Ia−q21 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Tj1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

In̄−p −M11 −A11 −X1 0

0 Iq−q2 0 −X2 0

0 0 0 Iq21 0

0 0 0 0 0

0 0 In−n̄−a −X3 0

0 0 0 0 Ip−q−(n−r−a−q22)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7.23)

Tj2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Tj21 Tj22 Tj23 0

M221 X2A4331 −A431 X2M2331 −M231 0

0 −A4331 −M2331 0

0 0 Iq22 0

M222 X3A4332 −A432 X3M2332 −M232 0

0 −A4332 −M2332 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the elements X1, X2, X3, Tj21, Tj22, and Tj23 are

X1 = − (M12 +A12 −M11X2 −A11X3) , X2 = A421 +M221, X3 = A422 +M222,

Tj21 =M12 −M11M221 −A11M222, Tj22 = −A13 +M11A431 +A11A432 −X1A4331,

Tj23 = −M13 +M11M231 +A11M232 −X1M2331. (7.24)

Therefore, apply the state equation transformation Tpre = TjTiThTeTdTb, the state

transformation Taft = TaTcTf , and the fault transformation Tg such that

E0 ↦ TpreE0T
−1
aft, A0 ↦ TpreA0T

−1
aft, B0 ↦ TpreB0, M0 ↦ TpreM0T

−1
e ,

Q0 ↦ TpreQ0, C0 ↦ C0T
−1
aft, x0 ↦ x = Taftx0, f0 ↦ f = Tgf0.

(7.25)

It can be seen from the structures in (7.5)–(7.7), (7.13), (7.15), and (7.21) that the

system in the coordinates of (7.25) is identical to the structures given in (7.17)–(7.19),

thus completing the proof. ∎
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Note that (7.14) and (7.16) are necessary conditions for the structures in (7.15) and

(7.21) to be obtained. Next, define an invertible matrix T , where

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

In̄−p 0

0 Tp

0 T̄p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Tp =
⎡⎢⎢⎢⎢⎢⎣

Iq+n−n̄−a 0 0 0

0 T51 T52 0

⎤⎥⎥⎥⎥⎥⎦
. (7.26)

where Tp ∈ Rp×(n−n̄+p) is full-row rank and T̄p ∈ R(n−n̄)×(n−n̄+p). The matrix Tp represents

design freedom to be exploited, while T̄p is solely to make T full rank. One suitable

choice of T̄p would be the transpose of the right null-space of Tp, i.e. TpT̄ Tp = 0. Next,

let T51 and T52 have the following dimensions: T51 ∈ R(p−q−n+n̄+a)×(p−q−(n−r−a−q22)), T52 ∈

R(p−q−n+n̄+a)×(n−r−a−q22). Apply the state equation transformation T onto the system in the

coordinates of (7.17)–(7.19) to obtain

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 In̄−p Ē1

0 0 Ẽ2

0 0 Ē3

0 0 Ē4

0 0 0

0 0 T̄pĚ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ẋ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 Ā2 Ā3

Ã4 Ã5 Ã6

Ā7 Ā8 Ā9

0 Ā11 Ā12

Ā16 Ā17 Ā18

T̄pǍ1 T̄pǍ2 T̄pǍ3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B̄1

B̃2

B̄3

B̄4

B̄6

T̄pB̌

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

M̃2

0

0

M̄6

T̄pM̌

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

f +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q̄1

Q̃2

Q̄3

Q̄4

Q̄6

T̄pQ̌

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ξ, (7.27)

y = [0 0 Ip]x. (7.28)

By substituting for the structures of Ã4, Ā7, Ā16, M̃2, and M̄6 from (7.19) system

(7.27)–(7.28) can be expanded to become:
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 In̄−p Ē1

0 0 0 0 Ẽ21

0 0 0 0 Ẽ22

0 0 0 0 Ẽ23

0 0 0 0 Ē3

0 0 0 0 Ē4

0 0 0 0 0

0 0 0 0 0

0 0 0 0 T̄pĚ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ11

ẋ121

ẋ122

ẋ2

ẏ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 Ā2 Ā3

0 0 0 Ã51 Ã61

0 Iq21 0 Ã52 Ã62

0 0 0 Ã53 Ã63

In−n̄−a 0 0 Ā8 Ā9

0 0 0 Ā11 Ā12

0 Iq21 0 Ā171 Ā181

0 0 Ia−q21 Ā172 Ā182

T̄pǍ11 T̄pǍ12 T̄pǍ13 T̄pǍ2 T̄pǍ3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11

x121

x122

x2

y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B̄1

B̃21

B̃22

B̃23

B̄3

B̄4

B̄61

B̄62

T̄pB̌

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

Iq1 0 0

0 0 0

0 0 Iq22

0 0 0

0 0 0

0 −Iq21 0

0 0 0

T̄pM̌1 T̄pM̌2 T̄pM̌3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1

f21

f22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q̄1

Q̃21

Q̃22

Q̃23

Q̄3

Q̄4

Q̄61

Q̄62

T̄pQ̌

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ξ,

(7.29)

y = [ 0 0 0 0 Ip ]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11

x121

x122

x2

y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7.30)

It can be seen from (7.29)–(7.30) that

⎡⎢⎢⎢⎢⎢⎣

x121

x122

⎤⎥⎥⎥⎥⎥⎦
can be re-expressed as a linear combina-

tion of x2, y, u, f , and ξ as follows:

⎡⎢⎢⎢⎢⎢⎣

x121

x122

⎤⎥⎥⎥⎥⎥⎦
= −

⎡⎢⎢⎢⎢⎢⎣

Ā171 Ā181

Ā172 Ā182

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

x2

y

⎤⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎣

B̄61

B̄62

⎤⎥⎥⎥⎥⎥⎦
u +

⎡⎢⎢⎢⎢⎢⎣

0 Iq21 0

0 0 0

⎤⎥⎥⎥⎥⎥⎦
f −

⎡⎢⎢⎢⎢⎢⎣

Q̄61

Q̄62

⎤⎥⎥⎥⎥⎥⎦
ξ. (7.31)
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Using the re-expression (7.31), system (7.29)–(7.30) can be re-expressed as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 In̄−p Ē1

0 0 Ē21

0 0 Ē22

0 0 Ē23

0 0 Ē3

0 0 Ē4

0 0 T̄pĚ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ11

ẋ2

ẏ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 Ā2 Ā3

0 Ā51 Ā61

0 Ā52 Ā62

0 Ā53 Ā63

In−n̄−a Ā8 Ā9

0 Ā11 Ā12

T̄pǍ11 T̄pǍ12 T̄pǍ13

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11

x2

y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B̄1

B̄21

B̄22

B̄23

B̄3

B̄4

T̄pB̌

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

Iq1 0 0

0 Iq21 0

0 0 Iq22

0 0 0

0 0 0

T̄pM̌1 T̄pM̌2 T̄pM̌3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1

f21

f22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q̄1

Q̄21

Q̄22

Q̄23

Q̄3

Q̄4

T̄pQ̌

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ξ, (7.32)

y = [0 0 Ip]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11

x2

y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7.33)

Then treat x11 as an unknown input, and define

x̄ =
⎡⎢⎢⎢⎢⎢⎣

x2

y

⎤⎥⎥⎥⎥⎥⎦
, f̄ =

⎡⎢⎢⎢⎢⎢⎣

f

x1

⎤⎥⎥⎥⎥⎥⎦
. (7.34)

System (7.32)–(7.33) can then be re-expressed as the following reduced-order system:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

In̄−p Ē1

0 Ē21

0 Ē22

0 Ē23

0 Ē3

0 Ē4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

˙̄x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ā2 Ā3

Ā51 Ā61

Ā52 Ā62

Ā53 Ā63

Ā8 Ā9

Ā11 Ā12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x̄ +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B̄1

B̄21

B̄22

B̄23

B̄3

B̄4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

Iq1 0 0 0

0 Iq21 0 0

0 0 Iq22 0

0 0 0 In−n̄−a

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

f̄ +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q̄1

Q̄21

Q̄22

Q̄23

Q̄3

Q̄4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ξ,

(7.35)

y = [0 Ip] x̄. (7.36)
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For ease of analysis, denote the partitions for (7.35)–(7.36) as follows:
⎡⎢⎢⎢⎢⎢⎣

In̄−p Ē1

0 Ē2

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ē

˙̄x =
⎡⎢⎢⎢⎢⎢⎣

Ā2 Ā3

Ā5 Ā6

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ā

x̄ +
⎡⎢⎢⎢⎢⎢⎣

B̄1

B̄2

⎤⎥⎥⎥⎥⎥⎦
²̄

B

u +
⎡⎢⎢⎢⎢⎢⎣

0 0

M̄2 Ā4

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

M̄

f̄ +
⎡⎢⎢⎢⎢⎢⎣

Q̄1

Q̄2

⎤⎥⎥⎥⎥⎥⎦
²̄

Q

ξ, (7.37)

y = [0 Ip]
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

C̄

x̄, [Āa5 Q̄a2] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ā51 Q̄21

Ā52 Q̄22

Ā53 Q̄23

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7.38)

Notice that rank

⎡⎢⎢⎢⎢⎢⎣

Ē

C̄

⎤⎥⎥⎥⎥⎥⎦
= n̄ (which is full-column rank) and the output of the reduced-

order system (7.37)–(7.38) is a measurable signal y. Thus the observer by Yeu et al.

[157] can be designed based on (Ē, Ā, B̄, M̄ , Q̄, C̄) and driven by u and y, and applied

onto system (7.37)–(7.38) to reconstruct f̄ , and therefore reconstruct f0.

7.3 Observer formulation

The observer by Yeu et al. for system (7.37)–(7.38) has the following structure:

ż = (RĀ −GlC̄) z −RB̄u − (G (Ip − C̄V ) +RĀV ) y −Gnν, (7.39)

ˆ̄x = V y − z, (7.40)

ν = − ρ ey
∥ey∥

, (7.41)

ey = C̄ ˆ̄x − y, Gl =
⎡⎢⎢⎢⎢⎢⎣

Gl1

Gl2

⎤⎥⎥⎥⎥⎥⎦
, Gn =

⎡⎢⎢⎢⎢⎢⎣

0

Gn2

⎤⎥⎥⎥⎥⎥⎦
, (7.42)

where Gl1 ∈ R(n̄−p)×p, ∣Gn2∣ ≠ 0, R ∈ Rn̄×n̄ and V ∈ Rn̄×p. Pre-multiply (7.37) with R and

add V ẏ to both sides to obtain

RĒ ˙̄x + V ẏ = (RĒ + V C̄) ˙̄x = RĀx̄ +RB̄u +RM̄f̄ +RQ̄ξ + V ẏ. (7.43)

Next, suppose RĒ + V C̄ = In̄. Equation (7.43) becomes

˙̄x = RĀx̄ +RB̄u +RM̄f̄ +RQ̄ξ + V C̄ ˙̄x. (7.44)

Corollary 7.1 The matrices R,V from (7.39)–(7.40) will have the following structures:

R =
⎡⎢⎢⎢⎢⎢⎣

In̄−p R2

0 R4

⎤⎥⎥⎥⎥⎥⎦
, V =

⎡⎢⎢⎢⎢⎢⎣

− (Ē1 +R2Ē2)

Ip −R4Ē2

⎤⎥⎥⎥⎥⎥⎦
(7.45)
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where R4 ∈ Rp×p, ∣R4∣ ≠ 0. ♯

Proof Since rank

⎡⎢⎢⎢⎢⎢⎣

Ē

C̄

⎤⎥⎥⎥⎥⎥⎦
= n̄, then the matrices R and V can be chosen such that

[R V ]
⎡⎢⎢⎢⎢⎢⎣

Ē

C̄

⎤⎥⎥⎥⎥⎥⎦
= In̄, (7.46)

that is, [R V ] is chosen to be the Moore-Penrose inverse of

⎡⎢⎢⎢⎢⎢⎣

Ē

C̄

⎤⎥⎥⎥⎥⎥⎦
. Partition the matrices

R and V generally as follows:

[R V ] =
⎡⎢⎢⎢⎢⎢⎣

R1 R2 V1

R3 R4 V2

⎤⎥⎥⎥⎥⎥⎦
, (7.47)

where R1 ∈ R(n̄−p)×(n̄−p) and R4 ∈ Rp×p. By substituting Ē and C̄ from (7.37)–(7.38) and

R and V from (7.47) into (7.46), it can be seen that R and V would take the forms given

in (7.45). ∎

Substitute z from (7.40) into (7.39) to obtain the following analytical structure for the

observer:

(V ẏ − ˙̄̂x) = (RĀ −GlC̄) (V y − ˆ̄x) −RB̄u − (Gl (Ip − C̄V ) +RĀV ) y −Gnν

˙̄̂x = (RĀ −GlC̄) ˆ̄x +RB̄u +GlC̄x̄ +Gnν + V C̄ ˙̄x. (7.48)

Define the state estimation error for the observer as

e = ˆ̄x − x̄ =
⎡⎢⎢⎢⎢⎢⎣

e2

ey

⎤⎥⎥⎥⎥⎥⎦

↕ n̄ − p
↕ p

. (7.49)

Hence by subtracting (7.44) from (7.48), the error equation for the observer (which

characterises its performance) is given by

ė = (RĀ −GlC̄) e −RM̄f̄ −RQ̄ξ +Gnν. (7.50)

Let R2 have the structure

R2 = [0 R23] , (7.51)
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where R23 ∈ R(n̄−p)×(p−q−(n−n̄−a)). By substituting the structures of Ā, M̄ , Q̄, C̄ from

(7.37)–(7.38), Gl and Gn from (7.42), and R from (7.45) and (7.51) into (7.50), the fol-

lowing error system is obtained:

⎡⎢⎢⎢⎢⎢⎣

ė2

ėy

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

Ā2 +R23Ā11 Ā3 +R23Ā12 −Gl1

R4Ā5 R4Ā6 −Gl2

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

e2

ey

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

0

Gn2

⎤⎥⎥⎥⎥⎥⎦
ν

−
⎡⎢⎢⎢⎢⎢⎣

0 0

R4M̄2 R4Ā4

⎤⎥⎥⎥⎥⎥⎦
f̄ −

⎡⎢⎢⎢⎢⎢⎣

Q̄1 +R23Q̄4

R4Q̄2

⎤⎥⎥⎥⎥⎥⎦
ξ.

(7.52)

7.3.1 Convergence of the observer

Proposition 7.2 Suppose there exists a matrix P = P T > 0 that satisfies

P (RĀ −GlC̄) + (RĀ −GlC̄)T P < 0, (7.53)

where P =
⎡⎢⎢⎢⎢⎢⎣

P1 0

0 G−1
n2

⎤⎥⎥⎥⎥⎥⎦
, P1 ∈ R(n̄−p)×(n̄−p). If ρ in (7.41) is chosen as follows:

ρ > ∥G−1
n2R4Ā5∥

2µ1β

µ0

+ ∥G−1
n2R4 [M̄2 Ā4] ∥α+∥G−1

n2R4Q̄2∥β + η,

µ0 = −λmax (PA +ATP ) > 0, µ1 = ∥PRQ̄∥, η ∈ R+,

α ≥ ∥f∥max + ∥x11∥max, β ≥ ∥ξmax∥,

(7.54)

then sliding motion (ey, ėy = 0) takes place in finite time. ♯

Proof The error system (7.52) has the same form as that of the Edwards-Spurgeon SMO

for a system represented by the quadruple (RĀ,RM̄,RQ̄, C̄), and so the proof of con-

vergence is adapted from [128] as follows: define a candidate Lyapunov function W =

eTPe > 0, and differentiate W with respect to time to obtain

Ẇ = eT (P (RĀ −GlC̄) + (RĀ −GlC̄)T P) e − 2eTPRM̄f̄ − 2eTPRQ̄ξ + 2eTy ν

≤ − µ0∥e∥2 + 2∥e∥µ1β − 2∥ey∥ (ρ − ∥G−1
n2C̄RM̄∥α) . (7.55)

By setting ρ > ∥G−1
n2C̄RM̄∥α, (7.55) becomes

Ẇ ≤ ∥e∥ (−µ0∥e∥ + 2µ1β) , (7.56)
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By using the same arguments in Proposition 4.2, it can be shown that the magnitude

of e would be bounded (∥e∥ ≤ 2µ1β
µ0

) in finite time. The next (and remaining) portion of

the proof aims to show how sliding motion (ey, ėy = 0) is achieved.

Define another candidate Lyapunov function Wy = eTyG−1
n2ey > 0. Differentiating it

with respect to time yields

Ẇy = eTy (G−1
n2 (R4Ā6 −Gl2) + (R4Ā6 −Gl2)

T
G−1
n2) ey

+ 2eTy (G−1
n2R4Ā5e2 −G−1

n2R4 [M̄2 Ā4] f̄ −G−1
n2R4Q̄2ξ)

≤ − 2∥ey∥ (ρ − ∥G−1
n2R4Ā5∥

2µ1β

µ0

− ∥G−1
n2R2 [M̄2 Ā4] ∥α − ∥G−1

n2R4Q̄2∥β) . (7.57)

Note that

∥ey∥2 = (
√
G−1
n2ey)

T
Gn2 (

√
G−1
n2ey) ≥ λmin (Gn2) ∥

√
G−1
n2ey∥2 = λmin (Gn2)Wy. (7.58)

Hence by setting ρ such that (7.54) is satisfied (which also satisfies ρ > ∥G−1
n2C̄RM̄∥α),

(7.58) becomes

Ẇy ≤ −2η∥ey∥ ≤
√
λmin (Gn2)

√
Wy, (7.59)

which is the reachability condition [128] resulting in ey = 0 in finite time, and a sliding

motion taking place on the surface S = {e ∶ C̄e = 0}, thus proving the proposition. ∎

After sliding motion (ey, ėy = 0) occurs, (7.52) becomes

ė2 = (Ā2 +R23Ā11) e2 − (Q̄1 +R23Q̄4) ξ, (7.60)

0 = R4 (Ā5e2 − [M̄2 Ā4] f̄ −R4Q̄2ξ) +Gn2ν. (7.61)

7.3.2 Robustly reconstructing the fault

Define the measurable signal ν̄ = R4G−1
n2ν. By substituting the structures of Ā5, M̄2, Ā4,

and Q̄2 from (7.35) and (7.38), the following expression is obtained:

ν̄ = −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Āa5

Ā8

Ā11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

e2 +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Iq 0

0 In−n̄−a

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

f

x11

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q̄a2

Q̄3

Q̄4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

ξ. (7.62)
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Define the fault reconstruction signal as

f̂ = Lν̄, (7.63)

where L = [Iq 0 L0], where L0 ∈ Rq×(p−q−n+n̄+a) represents design freedom. Pre-

multiply (7.62) with L to obtain

f̂ = −(Āa5 +L0Ā11)e2 + (Q̄a2 +L0Q̄4)ξ + f, (7.64)

which estimates f completely. Note that x11 does not appear and thus has no effect on

f̂ , but e2 and ξ affect f̂ ; this issue will be addressed later in §7.3.2 when the observer is

designed to minimise their effects on f̂ .

Define the fault reconstruction error

ef = f̂ − f. (7.65)

Rearranging (7.60)–(7.61) using (7.64)–(7.65) yields

ė2 = (Ā2 +R23Ā11)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ă

e2 + (−Q̄1 −R23Q̄4)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B̆

ξ, (7.66)

ef = (−Āa5 −L0Ā11)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C̆

e2 + (Q̄a2 +L0Q̄4)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

D̆

ξ, (7.67)

which is a state-space system that shows how the disturbance ξ affects the fault recon-

struction error ef . The goal now is to design the observer such that the L2 gain from ξ to

ef is minimised, by choice of L0 and R23.

Remark 7.1 If ξ = 0 (i.e. system (7.1)–(7.2) is not affected by external disturbances),

(7.66)–(7.67) becomes

ė2 = Ăe2, (7.68)

ef = C̆e2, (7.69)

which implies ef → 0, which in turn implies f̂ → f . Thus, in the absence of disturbances,

the proposed scheme is able to asymptotically reconstruct the faults. ♯
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7.3.3 Observer design for robust fault reconstruction

The effect of ξ on ef is minimised using the Bounded Real Lemma, which has been de-

scribed in Lemma 4.2. By applying the Bounded Real Lemma onto error system (7.66)–

(7.67), the L2 gain from ξ to ef would not exceed the positive scalar γ if there exists a

matrix P1 = P T
1 > 0 such that

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1Ă + ĂTP1 P1B̆ C̆T

B̆TP1 −γIh D̆T

C̆ D̆ −γIq

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (7.70)

Thus, the objective is to find the solution for γ, P1, L0, and R23 that minimises γ

subject to inequality (7.70), while also satisfying

P (RĀ −GlC̄) + (RĀ −GlC̄)T P < 0, (7.71)

which is required to guarantee sliding motion in the observer (refer to Proposition 7.2).

The choice of Gl is not unique; the only requirement is that (7.71) is satisfied. In this

paper, Gl is designed using a modified version of the method in [128], which is described

in Proposition 7.3 below.

Proposition 7.3 Define D̄ ∈ Rp×p and γ0 ∈ R+ as user-defined variables. Then define

J = P1R23, F̄ = [C̆ F1] , (7.72)

where F1 ∈ Rq×p. Suppose there exists matrices P, R23, L0, F1, J , and γ that satisfy the

following inequalities:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

P (RĀ) + (RĀ)TP − γ0C̄T (D̄D̄T )−1C̄ −P (RQ̄) F̄ T

−(RQ̄)TP −γ0Ih D̆T

F̄ D̆ −γ0Iq

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (7.73)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1Ā2 + JĀ11 + (P1Ā2 + JĀ11)T −P1B̆ C̆T

−B̆TP1 −γIh D̆T

C̆ D̆ −γIq

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (7.74)

If the observer parameters are chosen as

R23 = P −1
1 J, Gl =

γ0

2
P −1C̄T (D̄D̄T )−1, (7.75)

then (7.71) is satisfied, and ∥ef∥ ≤ γ∥ξ∥. ♯
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Proof From the structure of Gl in (7.75), the following can be inferred:

PGlC̄ + (GlC̄)TP = γ0C̄
T (D̄D̄T )−1C̄. (7.76)

that is, the top-left element of LMI (7.73) can be re-expressed as

P (RĀ −GlC̄) + (RĀ −GlC̄)TP. (7.77)

The structure of LMI (7.73) and equation (7.77) imply (7.71) is satisfied. Furthermore,

by substituting R23 from (7.75) into LMI (7.74), it can be seen that (7.74) has the same

form as (7.70), which describes the Bounded Real Lemma bounding the L2 gain from ξ

to ef . Thus, the proof is complete. ∎

The solution γ to the LMI pair (7.73)–(7.74) would be the upper bound of the L2 gain

from ξ to ef . As long as there exists an upper bound on ∥ξ∥, then there would also exist

an upper bound on ef , given by ∥ef∥ ≤ γ∥ξ∥.

7.3.4 Existence conditions

Theorem 7.1 The proposed SMO scheme can reconstruct f0 for system (7.1)–(7.2) if and

only if the following conditions hold:

Q1. rank [Mc2 Ac4] = q + n − n̄,

Q2. p ≥ q + n − n̄ − a.

The following condition is necessary, and also sufficient if p − q − n + n̄ + a > 0:

Q3. rank

⎡⎢⎢⎢⎢⎢⎣

sE0 −A0 M0

C0 0

⎤⎥⎥⎥⎥⎥⎦
= n + q ∀ s ∈ C+.

If p − q − n + n̄ + a = 0, the sufficient condition is that

Q4. The eigenvalues of Ā2 (as defined in (7.17)) are stable. ♯

Proof The remainder of this subsection forms the constructive proof for Theorem 7.1.

In the analysis of the observer scheme in the prior sub-sections, several assumptions

were made and are listed as follows:
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R1. [A41 A51] is full-column rank in (7.14) so that Th1 in (7.15) exists.

R2. Ãm in (7.16) is full-column rank so that Ti1 in (7.21) exists.

R3. Matrices T51 and T52 in (7.26) exist such that they have the dimensions T51 ∈

R(p−q−n+n̄+a)×(p−q−(n−r−a−q22)) and T52 ∈ R(p−q−n+n̄+a)×(n−r−a−q22).

R4. Error system (7.60)–(7.61) (and therefore (7.66)–(7.67)) can be made stable.

Therefore it is of interest to re-express these conditions in terms of the original system

matrices so that it is easier for the designer to check if the proposed scheme is applicable

from the outset.

Proposition 7.4 Condition Q1 is necessary and sufficient for the satisfaction of R1–R2. ♯

Proof Pre-multiply (M0,A0) with TeTdTb and post-multiplyM0 andA0 with (TaTcTf)−1

and T −1
g , respectively in Proposition 7.1 to obtain

[Mc2 Ac4] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M21 M22 M23 A41 A42 A43

0 −Iq21 0 0 Iq21 0

0 0 0 0 0 Ia−q21

0 0 Iq2 0 0 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7.78)

Since [Mc2 Ac4] ∈ R(n−n̄+p)×(n−n̄+q) from (7.5),

rank [Mc2 Ac4] = min{n − n̄ + p, n − n̄ + q} ≤ n − n̄ + q. (7.79)

Equations (7.78)–(7.79) imply

rank [Mc2 Ac4] = rank

⎡⎢⎢⎢⎢⎢⎣

M21 M22 A41 A42

0 −Iq21 0 Iq21

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Mac

+a − q21 + q22. (7.80)
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The matrix Mac (and therefore (7.80)) could be further simplified as follows:

rank (Mac) = rank

⎡⎢⎢⎢⎢⎢⎣

M21 M22 A41 A42

0 −Iq21 0 Iq21

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Iq1 0 0 0

0 Iq21 0 0

0 0 In−n̄−a 0

0 Iq21 0 Iq21

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= rank

⎡⎢⎢⎢⎢⎢⎣

M21 M22 +A42 A41 A42

0 0 0 Iq21

⎤⎥⎥⎥⎥⎥⎦
= rank [M21 M22 +A42 A41] + q21. (7.81)

Therefore, (7.79)–(7.81) imply

rank [M21 M22 +A42 A41] ≤ n − n̄ − a + q − q22. (7.82)

Conditions R1–R2 imply [M21 M22 +A42 A41] is full-column rank, i.e.

rank [M21 M22 +A42 A41] = n − n̄ − a + q − q22. (7.83)

To show that Q1 is necessary, suppose Q1 is not satisfied, i.e.

rank [Mc2 Ac4] < q + n − n̄. (7.84)

By comparing (7.84) with (7.79), (7.84) would imply

rank [M21 M22 +A42 A41] < n − n̄ − a + q − q22, (7.85)

that is, (7.83) is not satisfied. This would in turn imply that R1–R2 cannot both be satisfied

(it is possible either R1 or R2 is still satisfied, but never both), and it would be impossible

to attain the structures in both (7.15) and (7.21), thus showing the necessity of Q1. On the

other hand, if Q1 is satisfied, then it is straightforward to see from (7.15) and (7.21) that

Th1 and Ti1 would exist such that

Th1 [M21 A41] =
⎡⎢⎢⎢⎢⎢⎣

Iq1+n−n̄−a

0

⎤⎥⎥⎥⎥⎥⎦
, Ti1 (Ãm) =

⎡⎢⎢⎢⎢⎢⎣

Iq1

0

⎤⎥⎥⎥⎥⎥⎦
, (7.86)

i.e. R1–R2 are satisfied, showing the sufficiency of Q1 and therefore proving the propo-

sition. ∎
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Proposition 7.5 Condition R3 is satisfied if and only if Q2 is satisfied. ♯

Proof Matrices T51 and T52 have been defined in (7.26) such that they have the dimen-

sions T51 ∈ R(p−q−n+n̄+a)×(p−q−(n−r−a−q22)) and T52 ∈ R(p−q−n+n̄+a)×(n−r−a−q22). To prove that

Q2 is necessary, suppose Q2 is not satisfied, i.e.

p < q + n − n̄ − a. (7.87)

It is straightforward to see that T51 and T52 would not exist if this is the case (and

therefore R3 is not satisfied), proving the necessity of Q2. To show that Q2 is sufficient,

recall from (7.11) and (7.21) that

Te3M32T
−1
g =

⎡⎢⎢⎢⎢⎢⎣

0 Iq22

0 0

⎤⎥⎥⎥⎥⎥⎦

↕ q22

↕ n − r − a − q22

,

Ti1Ãm =
⎡⎢⎢⎢⎢⎢⎣

Iq21

0

⎤⎥⎥⎥⎥⎥⎦

↕ q21

↕ p − q − (n − r − a − q22)
.

(7.88)

Equation (7.88) implies

n − r − a − q22 ≥ 0, p − q − (n − r − a − q22) ≥ 0. (7.89)

Therefore, if Q2 is satisfied (i.e. p ≥ q + n − n̄ − a), then T51 and T52 would have the

dimensions T51 ∈ R(p−q−n+n̄+a)×(p−q−(n−r−a−q22)) and T52 ∈ R(p−q−n+n̄+a)×(n−r−a−q22) (i.e. R3

is satisfied), thus completing the proof. ∎

Proposition 7.6 For R4 to be satisfied, Q3 is necessary. If p − q − n + n̄ + a > 0, then Q3

is also sufficient; otherwise (for p − q − n + n̄ + a = 0), Q4 is sufficient. ♯

Proof Expand the left-hand side of Q3 using (7.17)–(7.18) to get

rank

⎡⎢⎢⎢⎢⎢⎣

sE0 −A0 M0

C0 0

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

R(s)

= rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 sIn̄−p − Ā2 sĒ1 − Ā3 0

−Ã4 −Ã5 sẼ2 − Ã6 M̃2

−Ā7 −Ā8 sĒ3 − Ā9 0

0 −Ã11 sẼ4 − Ã12 0

0 −Ā14 −Ā15 0

−Ā16 −Ā17 −Ā18 M̄6

0 0 Ip 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7.90)
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where R(s) is the Rosenbrock matrix of (E0,A0,M0,C0), and the values of s that make

R(s) lose rank are the zeros of the system (E0,A0,M0,C0) [109]. Further expanding and

simplifying R(s) using (7.19) yields

rank (R(s)) = rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 sIn̄−p − Ā2 0 0 0

0 0 0 −Ã51 Iq1 0 0

0 −Iq21 0 −Ã52 0 0 0

0 0 0 −Ã53 0 0 Iq22

−In−n̄−a 0 0 −Ā8 0 0 0

0 0 0 −Ã11 0 0 0

0 0 0 −Ã14 0 0 0

0 −Iq21 0 −Ã171 0 −Iq21 0

0 0 −Ia−q21 −Ã172 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R2(s)

+p.

(7.91)

Simplifying R2(s) then gives the following:

rank (R2(s)) = rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

sIn̄−p − Ā2

Ã11

Ā14

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ q + n − n̄ = rank

⎡⎢⎢⎢⎢⎢⎣

sIn̄−p − Ā2

Āa11

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

R3(s)

+q + n − n̄. (7.92)

From the Popov-Hautus-Rosenbrock (PHR) rank test [60], if the values of s that make

R3(s) lose rank (i.e. the unobservable modes of Ā2) are stable, the pair (Ā2, Āa11) is said

to be detectable - hence Q3 can be recast as: (Ā2, Āa11) is detectable.

Proof of Necessity:

Recall that for error state equation (7.60) to be stable, it is required that Ă is stable, which

implies λ (Ā2 +R23Ā11) < 0, i.e. (Ā2, Ā11) is detectable. From (7.19) and (7.26)–(7.27),

Ā11 = T51Ã11 + T52Ā14 = [T51 T52]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

T5

Āa11. (7.93)

Equation (7.93) implies that the detectability of (Ā2, Ā11) depends on T5, which con-

stitutes design freedom. Hence, the requirement is recast as: matrix T5 exists such that a
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is detectable. From the PHR rank test, if the values of s that make the following matrix

R4(s) lose rank are stable, then (Ā2, Ā11) is said to be detectable, whereby

R4(s) =
⎡⎢⎢⎢⎢⎢⎣

sIn̄−p − Ā2

Ā11

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

In̄−p 0

0 T5

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

sIn̄−p − Ā2

Āa11

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

R3(s)

. (7.94)

From (7.94) it follows that rank (R4(s)) ≤ rank (R3(s)). Therefore if a value of

s makes R3(s) lose rank, it would also make R4(s) lose rank, and hence the zeros of

(E0,A0,M0,C0) are also the unobservable modes of (Ā2, Ā11). This therefore shows

that Q3 is necessary for (Ā2, Ā11) to be detectable (i.e. for R4 to be satisfied).

Proof of Sufficiency:

For the case where p− q−n+ n̄+a > 0, let Z be a matrix containing the generalised right-

eigenvectors of Ā2; therefore Z−1Ā2Z is a matrix in the Jordan canonical form, where

the diagonal elements are the real parts of the eigenvalues of Ā2 [98]. Pre-multiply R4(s)

from (7.94) with

⎡⎢⎢⎢⎢⎢⎣

Z−1 0

0 Ip−q−n+n̄+a

⎤⎥⎥⎥⎥⎥⎦
and post-multiply with Z to obtain

⎡⎢⎢⎢⎢⎢⎣

Z−1 0

0 Ip−q−n+n̄+a

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

sIn̄−p − Ā2

Ā11

⎤⎥⎥⎥⎥⎥⎦
Z =

⎡⎢⎢⎢⎢⎢⎣

In̄−p 0

0 T5

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

Z−1 (sIn̄−p − Ā2)Z
Āa11Z

⎤⎥⎥⎥⎥⎥⎦
. (7.95)

A zero of (E0,A0,M0,C0), which is an unobservable mode of (Z−1Ā2Z, Ā11Z), will

therefore appear as an element of Z−1Ā2Z where its corresponding column in Ā11Z is

zero. If Q3 is satisfied, however, the columns within Āa11Z corresponding to elements

within Z−1Ā2Z would be non-zero. Recall that T5 is design freedom; therefore, a single

row within T5 can be chosen such that Ā11Z has non-zero elements at the columns corre-

sponding to the diagonals of Z−1Ā2Z that are unstable. Thus, the sufficiency of Q4 when

p − q − n + n̄ + a > 0 is proven.

When p − q − n + n̄ + a = 0, Tp in (7.26) becomes

Tp = [Iq+n−n̄−a 0] . (7.96)

Since T5 does not exist, then Ă in (7.66) becomes Ā2. Hence it is sufficient that the
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eigenvalues of Ā2 are stable (i.e. Q4 is satisfied) for error system (7.60)–(7.61) (and

therefore (7.66)–(7.67)) to be made stable (i.e. R4 is satisfied). ∎

Thus, Theorem 7.1 is proven. The following summarises the strengths of the proposed

scheme over previous works:

• The work presented in this chapter supersedes the work presented in [17, 100] and

Chapter 4 as the scheme in this chapter treats less states as unknown inputs (by re-

expressing some as a linear combination of other states instead), thereby reducing

the number of sensors potentially required for the scheme.

• Since the work presented in Chapters 5 and 6 build on the technique developed

in Chapter 4, the scheme presented in this chapter could also further reduce the

number of sensors potentially required by the schemes in Chapters 5 and 6.

• The proposed scheme is able to reconstruct faults robustly against disturbances.

This improves on previous findings in [99, 100, 101, 161], which did not consider

the effect of external disturbances on the fault reconstruction.

7.3.5 Design procedure

The design procedure for the proposed observer scheme can be summarised as follows:

1. Determine Ta, Tb, Tc, Td from (7.3)–(7.4) and (7.6), and apply the state equation

transformation TdTb and the state transformation TcTa.

2. Check that Q1–Q3 (and Q4 if necessary) given in Theorem 7.1 hold for the system.

If they do not hold, do not continue as the observer scheme is not applicable.

3. Determine Te, Tf , Tg, Th, Ti from (7.22)–(7.24). Apply the state equation transfor-

mation Tpre, the state transformation Taft, and the fault transformation Tg according

to (7.25).

4. Set values for T51 and T52 in (7.26) such that the pair (Ā2, Ā11) is detectable.

5. Derive the reduced-order system (7.37)–(7.38) using (7.31)–(7.36).
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6. Choose R4 such that R4 is invertible, and R4Ē2 + V2 = Ip.

7. Choose values for LMI design parameters D̄, γ0.

8. Use an LMI solver to determine P,L0, J, γ from (7.73)–(7.74). Then calculate

R23,Gl from (7.75), and Gn from (7.42) and (7.53).

9. Set ρ to satisfy (7.54).

10. Reconstruct f according to (7.63).

7.4 Simulation example

The efficacy of the proposed scheme is demonstrated through the following example: con-

sider a modified version of the chemical mixing tank in [157] described by the following

dynamical model:

ċ3 = −0.375c3 − 0.0667q3 + 0.1q1, (7.97)

0 = −q3 + q1, (7.98)

ċ5 = 0.3c3 + 0.0533q3 − 0.5c5 − 0.04q5 + 0.02q4, (7.99)

0 = q3 − q5 + q4, (7.100)

where q1 is the flow rate of the influent into the first tank, c3 and q3 are the concentration

and flow rate of the influent from the first tank into the second tank, respectively, q4 is

the flow rate of influent from another pipe into the second tank, and c5 and q5 are the

concentration and flow rate of the effluent from the second tank, respectively. In this

example, the influents from external sources are treated as faults, i.e.

fa = q1, fb = q4, (7.101)

where fa and fb are the faults.
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7.4.1 System formulation

The system matrices (E0,A0,M0) in the framework of (7.1)–(7.2) are

E0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, M0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1 0

1 0

0 0.02

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.375 −0.0667 0 0

0 −1 0 0

0.3 0.0533 −0.5 −0.04

0 1 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(7.102)

for the system variables

x0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

concentration, c3 (mol/l)

flow rate, q3 (l/s)

concentration, c5 (mol/l)

flow rate, q5 (l/s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, f0 =
⎡⎢⎢⎢⎢⎢⎣

fa (l/s)

fb (l/s)

⎤⎥⎥⎥⎥⎥⎦
. (7.103)

To showcase the robustness of the observer, the pipes connecting the tanks are as-

sumed to leak, causing the flow-rates to fluctuate by ξ1 and ξ2. Hence define the distur-

bance signal ξ =
⎡⎢⎢⎢⎢⎢⎣

ξ1

ξ2

⎤⎥⎥⎥⎥⎥⎦
, and assume that measurements are only available for c5 and q5, so

Q0 and C0 have the form

Q0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

−1 0

0 0

0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, C0 =
⎡⎢⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎦
. (7.104)

7.4.2 Observer design

To ease readability, the steps outlined in §7.3.5 will be referred to in the following design

of the observer scheme.

Step 1: To obtain the system in the form (7.17)–(7.19), apply the state equation transfor-
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mation TdTb and the state transformation TcTa, where

TdTb =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, TcTa =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7.105)

Steps 2–3: The following partitions are obtained:

Mc2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

0 0.02

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ac4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

−0.0533

−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A7 =
⎡⎢⎢⎢⎢⎢⎣

1

−1

⎤⎥⎥⎥⎥⎥⎦
. (7.106)

From (7.106), the following can then be verified:

rank [Mc2 Ac4] = 3 (= q + n − n̄), p = 3 > 2 (= q + n − n̄ − a), (7.107)

which shows that Q1–Q3 hold for the system, and the transformations introduced in

Proposition 7.1 exist for the system in (7.102) and (7.104). Since p − q − n + n̄ + a = 0,

the satisfaction of Q4 would need to be verified. Apply the state equation transformation

Tpre, the state transformation Taft, and the fault transformation Tg, where

Tpre =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −0.1 −1 0.02

0 0 −30.03 0.6006

0 0.7071 0 0.7071

0 0.5 0 −0.5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Taft =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Tg =
⎡⎢⎢⎢⎢⎢⎣

−0.5 0.5

0.7071 0.7071

⎤⎥⎥⎥⎥⎥⎦
.

(7.108)

Note that because n − n̄ − a + q1 = 0, A41 and M21 (and therefore Th1) do not exist,

and Th = I4. The value of Ā2 is found to be

Ā2 = −0.675 < 0, (7.109)

thus showing Q4 is also satisfied, thereby guaranteeing the existence of the observer

scheme proposed in this chapter. The proposed observer scheme is now designed.

Step 4: Since p − q − n + n̄ + a = 0, T5 does not exist, and therefore T in (7.26) becomes

T = I4. (7.110)
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Step 5: Furthermore, since a − q21 = 0, x122 in (7.18) does not exist. Thus, x121 is

re-expressed using (7.31) as follows:

x121 = [ 0 0 −0.05 ]
⎡⎢⎢⎢⎢⎢⎣

x2

y

⎤⎥⎥⎥⎥⎥⎦
+ [0.5 −0.5] ξ. (7.111)

By treating x11 as an unknown input and using (7.35)–(7.36), the following reduced-

order system is formed:

Ē =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0

0 −30.03 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ā =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.675 0.5 0.02

−9.009 15.01 0.1006

0 0 −0.7071

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, M̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

1 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1 −0.02

0.5 −1.100

−0.7071 −0.7071

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, C̄ =
⎡⎢⎢⎢⎢⎢⎣

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎦
.

(7.112)

Step 6: Since p − q − n + n̄ + a = 0, R23 in (7.51) does not exist, and therefore R4 and V

are chosen such that

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 −0.0333 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

0 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7.113)

Steps 7–8: The LMI design parameters in Proposition 7.3 are chosen as D̄ = I2 and

γ0 = 2. By using the LMI Control Toolbox within MATLAB on LMIs (7.73)–(7.74), the

following values of P and γ are obtained:

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

122.5 0 0

0 704.0 19.88

0 19.88 2.612

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, γ = 1.546. (7.114)

The observer parameters are found to be:

Gl = Gn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0.0018 −0.0138

−0.0138 0.4876

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, L = I2, (7.115)

where L0 does not exist since p− q −n+ n̄+ a = 0. The poles of the observer are found to

be {−0.1914,−0.9855,−1.194}, while the pole of its sliding motion is {−0.675}.

Step 9: The parameter ρ is set as

ρ = 50. (7.116)
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Remark 7.2 The design of the observer (i.e. the scheme in this chapter) is complete. It

will now be shown that existing fault reconstruction schemes for descriptor systems will

not work for the example in (7.102) and (7.104) as follows:

• System (7.102) and (7.104) is not infinitely observable, and hence the schemes in

[58, 104] are not applicable.

• The SMO schemes in [99, 100, 101, 161] and Chapter 5 do not consider robustness,

and therefore are not applicable.

• Since p = q, E3 is not satisfied, and therefore the scheme presented in Chapter 4

[17] is not applicable.

• Since rank(M2) = 2 > 2p−n = 0, N2 is not satisfied, and the cascaded SMO scheme

presented in Chapter 6 is not applicable. ♯

7.4.3 Simulation results

To showcase the effectiveness of the proposed scheme, two scenarios were simulated.

The first scenario is disturbance-free (ξ = 0) to show the efficacy of the fault reconstruc-

tion. In the second scenario, the disturbance signals are set to be non-zero to show the

effectiveness of the approach at bounding the L2 gain from the disturbances to the fault

reconstruction as follows:

ξ1 = 0.1 sin (0.1t) + 0.12, ξ2 = 0.05 sin(0.2t + π
2
) + 0.07. (7.117)

In both scenarios for the simulation, the initial condition of the system was set as

x(0) = {2,0.5398,3,0.8198}, while the initial condition of the observer was set at zero.

The fault signals were simulated as

fa = 0.3 sin(0.3t + π
3
) + 0.4 + 0.15u(t − 35),

fb = 0.2 sin(0.2t + 5π

6
) + 0.3 − 0.05u(t − 50),

(7.118)

where u(t − a) is the Heaviside unit step function.
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Remark 7.3 Since fa and fb are both discontinuous and time-varying, the schemes by

[102, 155] are not applicable. The scheme in [102] considers only constant faults (where

ḟ = 0), which is clearly not satisfied in this case. The scheme in [155] assumes the fault is

continuous, which is also not satisfied due to the presence of the Heaviside step function

in the fault signals. ♯
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Figure 7.1: Faults (dash-dotted) and their reconstructions (solid) in the disturbance-free

scenario.
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Figure 7.2: Faults (dash-dotted) and their reconstructions (solid) in the scenario with non-

zero disturbances.

Figure 7.1 shows the fault reconstructions in the disturbance-free scenario. It can

be seen that asymptotic fault reconstruction is achieved, verifying the effectiveness of
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Figure 7.3: Fault reconstruction errors (solid) in the scenario with non-zero disturbances.

The dashed lines represent the upper bounds of ef derived from LMIs (7.73)–(7.74).

the proposed method of fault reconstruction as per Remark 7.1. Figure 7.2 shows the

reconstruction of the faults in the scenario with non-zero disturbances. The fault re-

constructions are visibly affected, but Figure 7.3 shows that the magnitudes of the fault

reconstruction errors are bounded within ±∥ξ∥, thus validating that the method is effective

at bounding the effect of the disturbances on the fault reconstructions.

7.5 Conclusion

This chapter has presented a robust fault reconstruction scheme for a class of NIODS

using SMOs, which improves on previous work that required a larger number of measur-

able outputs, or did not consider disturbances and their effects on the fault reconstruction.

This was accomplished by first re-expressing certain states as a linear combination of

other states, and then treating some other states as unknown inputs. A standard SMO

scheme was then applied onto the reduced-order system to reconstruct the fault signal.

The necessary and sufficient conditions for the existence of the scheme were investigated

and presented in terms of the original system matrices. LMI techniques were used to

minimise the effect of disturbances on the fault reconstruction, and the design procedure

for the observer scheme was shown. Finally, a simulation was carried out, and the results

verify the efficacy of the scheme.



Chapter 8

Conclusion and recommendations for future research

This chapter concludes the thesis and summarises its main contributions. Possible future

work along the lines of the presented work are also recommended for consideration.

Chapter 3 discussed the sliding mode observer (SMO) by Yeu et al. [157] is presented.

The SMO by Yeu et al. is able to estimate states and faults for descriptor systems, but

requires the system to be infinitely observable. Two methods to re-express non-infinitely

observable descriptor systems (NIODS) as infinitely observable reduced-order systems

were then presented [100, 101]. In both methods, certain states were treated as unknown

inputs; in the second method, some states are also treated as a linear combination of other

states. After this re-expression, the SMO by Yeu et al. could be applied onto the system

to estimate the states and faults of the original descriptor system. Finally, a simulation

example utilising the second method was shown.

Chapter 4 presented a robust fault reconstruction scheme for a class of NIODS using

SMOs. This work improves on the scheme in [100] by incorporating robust fault recon-

struction via design of the observer gains. Certain states were removed and treated as

unknown inputs, thereby formulating an infinitely-observable reduced-order system. The

observer by Yeu et al. [157] was then applied onto the reduced-order system to recon-

struct the fault signal. The necessary and sufficient conditions guaranteeing the existence

of the scheme were presented in terms of the original system matrices. LMI techniques

were utilised to minimise the effect of disturbances on the fault reconstruction, and a

summarised design procedure for the observer scheme was shown. A simulation using a

chemical mixing tank model was performed, and the results verified the efficacy of the

scheme.
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Chapter 5 improved on the scheme developed in chapter 4 by utilising two SMOs in

cascade to perform state and fault estimation for a class of NIODS. Certain states were

treated as unknown inputs to formulate an infinitely observable reduced-order system.

The observer by Yeu et al. [157] was applied onto this reduced-order system to estimate

the states and some components of the fault in finite time. The switching term is found to

be the output of an analytical (non-descriptor) state-space system treating the remaining

unestimated components of the fault as unknown inputs. Thus the switching term was fed

into a second SMO (which is an Edwards-Spurgeon SMO [8]) to estimate the remaining

faults in finite time. The necessary and sufficient conditions for the existence of the

scheme were presented in terms of the original system matrices; these conditions are

found to be more relaxed than those for existing state and fault estimation schemes for

NIODS. Finally, a simulation was carried out, and the results verify the efficacy of the

scheme.

Chapter 6 built on the findings in chapter 5 by performing robust fault reconstruction

for a class of NIODS utilising two SMOs in cascade. The approach presented in chapter

5 was used to reconstruct the fault. LMI techniques were used to design the gains of

the observers such that the L2 gain from the disturbances to the fault reconstruction is

minimised. The necessary and sufficient conditions for the existence of the scheme were

investigated and are found to be more relaxed than those for existing fault reconstruc-

tion schemes for NIODS. The LMIs were also formulated such that the gains for both

observers are designed simultaneously, and are thus less conservative than existing meth-

ods, which design each observer separately. Finally, a simulation was carried out and its

results verify the efficacy of the scheme.

Chapter 7 then improved on the work in the previous chapters by first re-expressing

certain states as a linear combination of other states, before treating certain other states as

unknown inputs to formulate an infinitely observable descriptor system. This technique

would potentially reduce the number of measurable outputs, since the preceding work

may treat a larger number of states as unknown inputs compared to when this method of

reformulation is used. The chapter also improved on the work by [101] by also consider-
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ing robust fault reconstruction via design of the observer gains. The observer by Yeu et

al. [157] was then applied onto the reduced-order system to reconstruct the fault signal.

The necessary and sufficient conditions for the existence of the scheme were investigated

and presented in terms of the original system matrices. LMI techniques were used to

minimise the effect of disturbances on the fault reconstruction, and the design procedure

for the observer scheme was shown. Finally, a simulation was carried out, and the results

verify the efficacy of the scheme.

8.1 Recommendations for Future Work

This thesis presented investigations into state estimation and fault reconstruction. The

systems being considered however are linear, which greatly limits the applicability of the

observer schemes. Practical systems are often non-linear and operate at conditions that

are significantly different from their initial conditions. These large excursions due to non-

linearities may cause the system to generate false alarms, or even mask the effects of a

fault occurring altogether [28, 149, 150]. Thus a possible extension of current work would

be to consider the effect of non-linearities on state estimation and fault reconstruction

in non-infinitely observable descriptor systems. The LMI techniques by [128] could be

deployed to minimise the effects of the non-linearities on the state estimation and fault

reconstruction errors.

Another consideration for the systems under study would be the inclusion of time-

delays in the system. Aftereffects, where the past performance of the system affects the

current behaviour (which gives rise to the term ‘time-delay’), are prevalent across many

different fields [106]. These time-delays give rise to different considerations, such as the

stability of the system [50]. There have been investigations into observers for time-delay

systems [96, 131], but current schemes for descriptor systems with time-delays require

the system to be infinitely observable [167]. Hence the reformulation technique utilised

in this thesis can be used to further extend the applicability of observers into non-infinitely

observable descriptor systems (NIODS).

The scheme presented in Chapter 5 is for full-state estimation. For systems with a
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large number of states (i.e. high-dimensional systems), however, estimating the entire

state vector could be computationally demanding and impractical. Furthermore, in many

cases, information regarding only a subset of the state vector is required; not all states

need to be estimated. Functional observers are commonly used to estimate a part of the

state vector (as opposed to the entire state vector) [71, 110, 132]. Existing results for

functional observation in descriptor systems however require the system to be infinitely

observable [73]. Thus one possible future development would be to extend the use of the

reformulation technique in this thesis into the functional estimation of states for NIODS.

Tan and Edwards [129] have developed a robust fault reconstruction scheme for state-

space systems using multiple SMOs in cascade. By increasing the number of SMOs in

cascade (up until the number of observers equals the number of states), it is found that the

matching condition can be relaxed even further, thereby increasing the applicability of the

scheme. These findings are however only applicable to state-space systems. Furthermore,

current investigations for the use of SMOs in cascade for descriptor systems have only

considered at most two SMOs in cascade (the schemes presented in Chapters 5 and 6,

[99, 161]). Therefore, a potential line of inquiry would be studying the use of multiple

SMOs in cascade for NIODS.

There exist a class of systems known as singularly perturbed systems, where the states

of the system evolve on different time-scales, resulting in a slow and a fast subsystem

[10, 77, 145]. The implications on the mathematical model of the system would be that

the time-derivative of certain states are multiplied with a small parameter ε ≪ 1, re-

sulting in a quasi-infinitely observable descriptor system. Therefore, a possible line of

future investigation would be to apply the reformulation technique in this thesis onto

singularly-perturbed systems and to minimise the effects of ε on the state estimates and

fault reconstructions using LMI techniques introduced in [128].

Finally, the findings in this thesis have been verified through relatively simple ex-

amples. Practical engineering systems are however more complex and contain intricacies

absent in the examples used. Therefore, a case study applying the presented schemes onto

practical systems to demonstrate applicability could be a point for future development.
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