1	
2	Supporting Information (SI)
3	
4	Structural studies of thyroid peroxidase (TPO) show the monomer interacting with
5	autoantibodies in thyroid autoimmune disease: implications for autoimmunity to TPO
6	
7	Daniel E. Williams, Sarah N. Le, David E. Hoke, Peter G. Chandler, Monika Gora,
8	Marlena Godlewska, J. Paul Banga and Ashley M. Buckle
9	

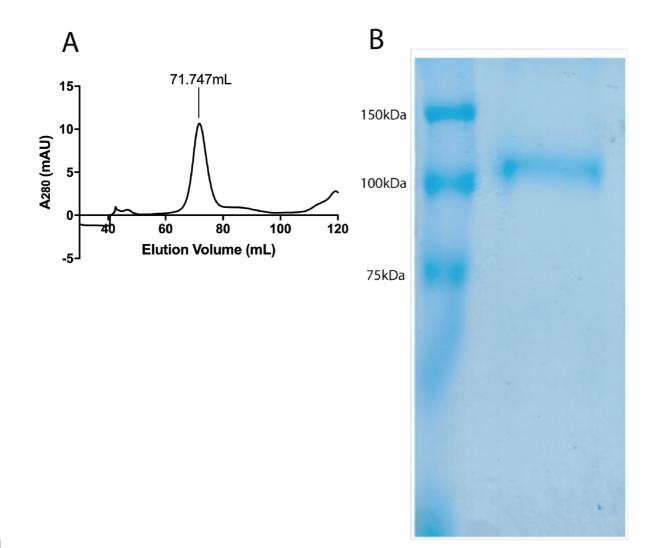
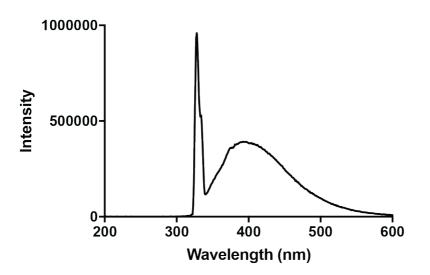


Figure S1 - Purification of the TPO construct ΔproTPOe-GCN4 (A) A chromatogram
from a Superdex S200 16/60 column, showing ΔproTPOe-GCN4 eluting as a single
major peak at 71.7mL, consistent with a 110 kDa protein. No other major large species
appears to be present. (B) Reducing SDS-PAGE analysis of purified ΔproTPOe-GCN4
shows a major band at ~110 kDa.

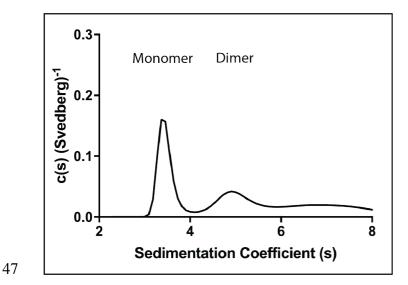
1	MRALAVLSVT	LVMACTEAFF	PFISRGKELL	WGKPEESRVS	SVLEESKRLV
51	DTAMYATMQR	NLKKRGILSP	AQLLSFSKLP	EPTSGVIARA	AEIMETSIQA
101	MKRKVNLKTQ	QSQHPTDALS	EDLLSIIANM	SGCLPYMLPP	KCPNTCLANK
151	YRPITGACNN	RDHPRWGASN	TALARWLPPV	YEDGFSQPRG	WNPGFLYNGF
201	PLPPVR EVTR	HVIQVSNEVV	TDDDRYSDLL	MAWGQYIDHD	IAFTPQSTSK
251	AAFGGGADCQ	MTCENQNPCF	PIQLPEEAR P	AAGTACLPFY	R SSAACGTGD
301	QGALFGNLST	ANPR QQMNGL	TSFLDASTVY	GSSPALER QL	RNW TSAEGLL
351	R VHARLRDSG	RAYLPFVPPR	APAACAPEPG	IPGETRGPCF	LAGDGRASEV
401	PSLTALHTLW	LR EHNR LAAA	LKALNAHWSA	DAVYQEARKV	VGALHQIITL
451	RDYIPR ilgp	EAFQQYVGPY	EGYDSTANPT	VSNVFSTAAF	RFGHATIHPL
501	VRRLDASFQE	HPDLPGLWLH	QAFFSPWTLL	RGGGLDPLIR	GLLAR PAKLQ
551	VQDQLMNEEL	TERLFVLSNS	STLDLASINL	QRGRDHGLPG	YNEWREFCGL
601	PRLETPADLS	TAIASRSVAD	KILDLYKHPD	NIDVWLGGLA	ENFLPR AR TG
651	PLFACLIGKQ	MKAL RDGDWF	WWENSHVFTD	AQRRELEKHS	LSRVICDNTG
701	LTRVPMDAFQ	VGK FPEDFES	CDSITGMNLE	AWRETFPQDD	KCGFPESVEN
751	GDFVHCEESG	RRVLVYSCRH	GYELQGR EQL	TCTQEGWDFQ	PPLCK DVNEC
801	ADGAHPPCHA	SAR CRNTK GG	FQCLCADPYE	LGDDGR TCVD	SGRLPRRMKQ
851	LEDKVEELLS	KNYHLENEVA	RLKKLVGERG	тсзнннннн	Н

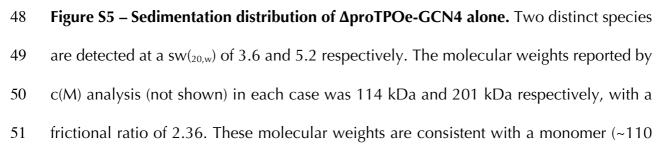
20


Figure S2 – Mass spectrometry analysis of Δ proTPOe-GCN4. Sequence coverage was reported as 70% with a protein score of 19294, making Δ proTPOe-GCN4 the most abundant species in the sample. Full length TPOe-GCN4 is in black lettering, with detected peptides highlighted in red. Note that residues 1 through 108 comprise the signal peptide and propeptide that are not incorporated into full length Δ proTPOe-GCN4, though are included here to demonstrate their successful non-inclusion in our construct.

28

2	n
Э	υ


1	MRALAVLSVT	LVMACTEAFF	PFISRGKELL	WGKPEESRVS	SVLEESKRLV
51		NLKKRGILSP	ZOTT SESKT P	EPTSGVIARA	AEIMETSIOA
	~		~		~
101	MKRKVNLKTQ	QSQHPTDALS	EDLLSIIANM	SGCLPYMLPP	KCPNTCLANK
151	YRPITGACNN	RDHPR WGASN	TALARWLPPV	YEDGFSQPRG	WNPGFLYNGF
201	PLPPVR EVTR	HVIQVSNEVV	TDDDRYSDLL	MAWGQYIDHD	IAFTPQSTSK
251	AAFGGGADCQ	MTCENQNPCF	PIQLPEEAR P	AAGTACLPFY	R SSAACGTGD
301	QGALFGNLST	ANPR QQMNGL	TSFLDASTVY	gsspaler QL	RNWTSAEGLL
351	RVHARLRDSG	RAYLPFVPPR	APAACAPEPG	IPGETRGPCF	LAGDGRASEV
401	PSLTALHTLW	LR EHNRLAAA	LK ALNAHWSA	DAVYQEARKV	VGALHQIITL
4 5 1					
451	RDYIPR ilgp	EAFQQYVGPY	EGYDSTANPT	VSNVFSTAAF	RFGHATIHPL
			EGYDSTANPT QAFFSPWTLL		
501	VRRLDASFQE	HPDLPGLWLH		RGGGLDPLIR	GLLARPAK <mark>LQ</mark>
501	VRRLDASFQE VQDQLMNEEL	HPDLPGLWLH	QAFFSPWTLL STLDLASINL	RGGGLDPLIR	GLLARPAK LQ YNEWREFCGL
501 551 601	VRRLDASFQE VQDQLMNEEL	HPDLPGLWLH TERLFVLSNS TAIASRSVAD	QAFFSPWTLL STLDLASINL	RGGGLDPLIR QRGRDHGLPG NIDVWLGGLA	GLLARPAK LQ YNEWREFCGL
501 551 601	VRRLDASFQE VQDQLMNEEL PRLETPADLS	HPDLPGLWLH TERLFVLSNS TAIASRSVAD MKALRDGDWF	QAFFSPWTLL STLDLASINL KILDLYKHPD	RGGGLDPLIR QRGRDHGLPG NIDVWLGGLA	GLLARPAKLQ YNEWREFCGL ENFLPRARTG LSRVICDNTG
501 551 601 651	VRRLDASFQE VQDQLMNEEL PRLETPADLS PLFACLIGKQ LTRVPMDAFQ	HPDLPGLWLH TERLFVLSNS TAIASRSVAD MKALRDGDWF	QAFFSPWTLL STLDLASINL KILDLYKHPD WWENSHVFTD	RGGGLDPLIR QRGRDHGLPG NIDVWLGGLA AQRRELEKHS	GLLARPAKLQ YNEWREFCGL ENFLPRARTG LSRVICDNTG KCGFPESVEN
501 551 601 651 701	VRRLDASFQE VQDQLMNEEL PRLETPADLS PLFACLIGKQ LTRVPMDAFQ GDFVHCEESG	HPDLPGLWLH TERLFVLSNS TAIASRSVAD MKALRDGDWF VGKFPEDFES RRVLVYSCRH	QAFFSPWTLL STLDLASINL KILDLYKHPD WWENSHVFTD CDSITGMNLE	RGGGLDPLIR QRGRDHGLPG NIDVWLGGLA AQRRELEKHS AWRETFPQDD TCTQEGWDFQ	GLLARPAKLQ YNEWREFCGL ENFLPRARTG LSRVICDNTG KCGFPESVEN PPLCKDVNEC
501 551 601 651 701 751	VRRLDASFQE VQDQLMNEEL PRLETPADLS PLFACLIGKQ LTRVPMDAFQ GDFVHCEESG ADGAHPPCHA	HPDLPGLWLH TERLFVLSNS TAIASRSVAD MKALRDGDWF VGKFPEDFES RRVLVYSCRH SARCRNTKGG	QAFFSPWTLL STLDLASINL KILDLYKHPD WWENSHVFTD CDSITGMNLE GYELQGREQL	RGGGLDPLIR QRGRDHGLPG NIDVWLGGLA AQRRELEKHS AWRETFPQDD TCTQEGWDFQ LGDDGRTCVD	GLLARPAKLQ YNEWREFCGL ENFLPRARTG LSRVICDNTG KCGFPESVEN PPLCKDVNEC SGRLPRRMKQ


Figure S3 – Mass spectrometry analysis of suspected degraded Δ proTPOe-GCN4 fragment. Sequence coverage was reported as 63% with a protein score of 8710, making a degraded form of Δ proTPOe-GCN4 the most abundant species in the sample. Full length Δ proTPOe-GCN4 is in black lettering, with detected peptides highlighted in red. Note that residues 1 through 108 comprise the signal peptide and propeptide that are not incorporated into full length Δ proTPOe-GCN4, though are included here to demonstrate their successful non-inclusion in our construct.

41 Figure S4 – Characterisation of enzyme activity of ΔproTPOe-GCN4. Spectral scan of
42 ΔproTPOe-GCN4 after excitation using a wavelength of 330nm resulted in a Soret peak
43 at 385nm, which is characteristic of hemoproteins. This indicates successful heme group
44 incorporation into ΔproTPOe-GCN4.

kDa) and a dimer (~220 kDa) species. The relative abundance of each of the two species was analysed by SEDFIT (using area under the curve), with a monomer:dimer ratio of approximately 1.33:1, indicating the monomer is more abundant. The Stokes radii (Table S3) and frictional ratio of 2.36 suggest a non-spherical, elongated shape, consistent with our previous modelling (a frictional ratio of 1 would suggest a perfect sphere) (8).

- 57
- 58

60

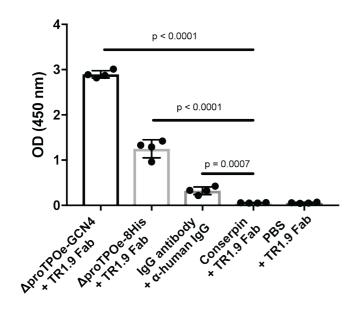


Figure S6 – ELISA results of TPO-Fab binding. TR1.9 Fab shows statistically significant binding to both TPO constructs, with a p value less than 0.0001 compared to a nonspecific protein that does not have the required epitope (conserpin (20), negative control), as well as a PBS blank. IgG antibody and anti-human IgG was used as a positive control. Error bars are standard deviation from the mean and statistical tests were performed with a two-tailed t-test with a 95% confidence interval. All samples were performed in quadruplicate.

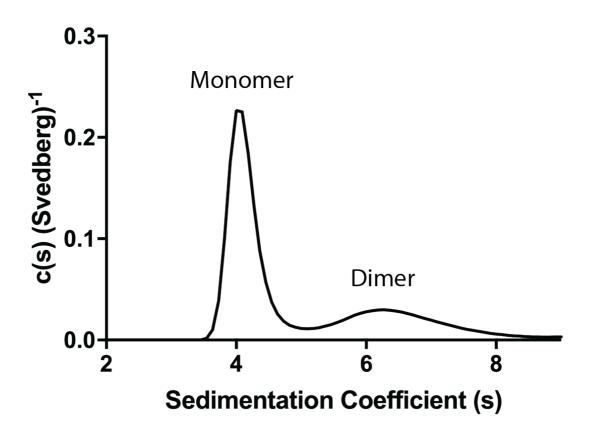
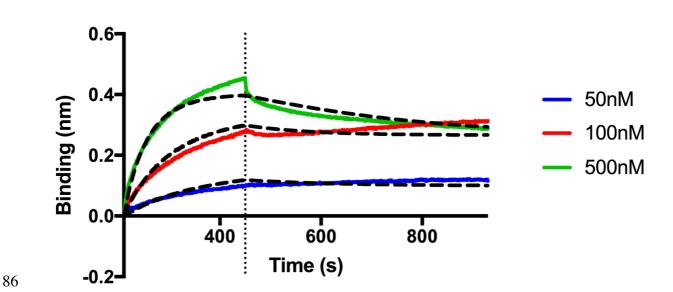
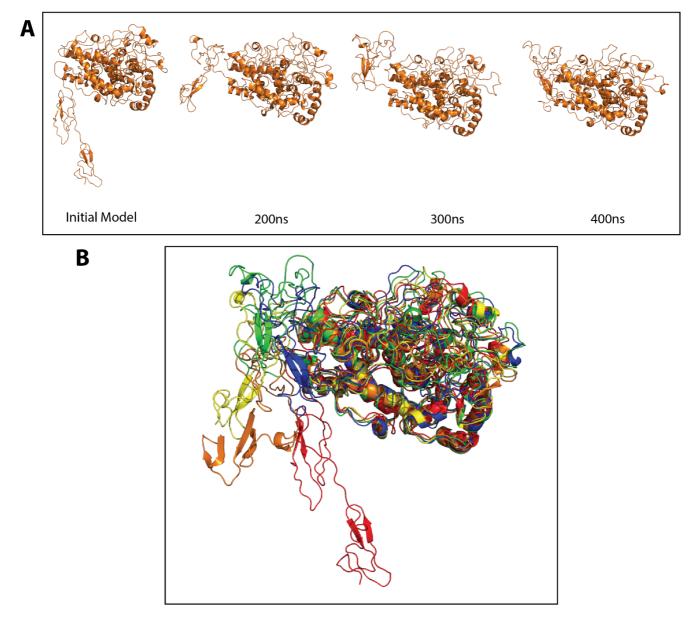
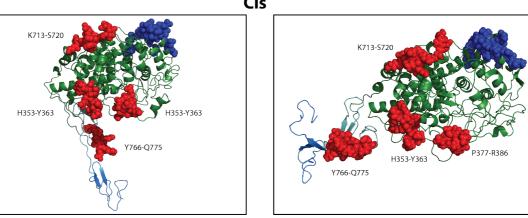
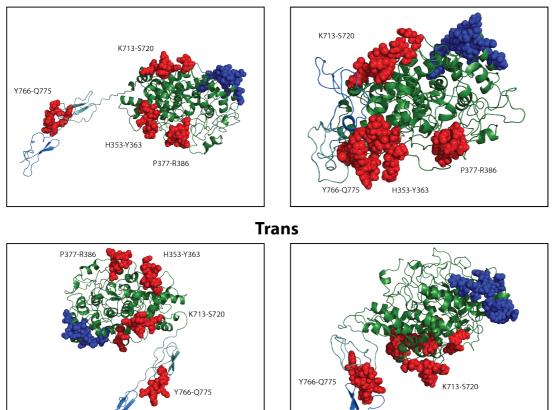


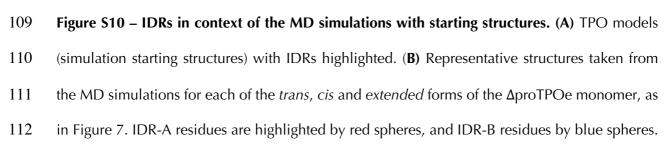
Figure S7 – Sedimentation distribution of ΔproTPOe-GCN4 bound to TR1.9 Fab. Two 70 71 distinct species are detected at a $sw(_{20,w})$ of 4.1 and 6.6 respectively. AUC analysis of an 72 equimolar mixture of TR1.9 Fab and ΔproTPOe-GCN4 shows two peaks. The lack of a peak at 2.6S suggests that none, or very little of the Fab, remained un-complexed. 73 74 Therefore, the two remaining peaks are most likely the TPO monomer/dimer peaks as 75 observed for ΔproTPOe-8His (Fig. 5C). The observed shift in their standardised weight-76 average sedimentation coefficients (4.1S, 6.6S, respectively) suggest a change in their 77 shape and mass, indicating Fab binding to both monomer and dimer ΔproTPOe-GCN4. 78 The frictional ratio has also changed to 1.77 (from 2.36 with ΔproTPOe-GCN4 alone), 79 indicating that TPO has taken a more spherical shape upon TR1.9 Fab binding. 80 Importantly, the ratio of monomer and dimer has shifted to approximately 2:1.

- 81
- 82


Figure S8 – Bio-layer interferometry (BLI) sensorgram data of ΔproTPOe-8His binding to Fab.
Sensorgram curves according to a TR1.9 Fab concentration range of between 0 and 500 nM.
ΔproTPOe-8His is immobilised on the biosensor surface. The data has been normalised against
a blank run of buffer (1x PBS, pH 7.4). Vertical line at 450 s represents the end of the association
phase. Dotted lines in black represent the fit calculated using a 1:1 binding model with global
fitting within the BLItz Pro software. R² values for the calculated fit were reported as 0.97. K_D
was calculated as 20 nM.


100Figure S9 – Snapshots from the trans ΔproTPOe MD trajectory show TPO changing101conformation from extended to more compact structure. Snapshots from the trans ΔproTPOe102MD trajectory as presented in Figure 6. (A) Representation of the starting model from Le and co-103workers (1), as well as *trans* ΔproTPOe after 200, 300 and 400 ns of simulation. (B) Structural104superpositions of the above snapshots with the starting trans ΔproTPOe model in red. Orange105indicates *trans* ΔproTPOe after 100 ns of simulation, yellow after 200 ns, green after 300 ns and106blue after 400 ns.



Cis

- 113 The MPO-like domain, CCP-like domain and EGF-like domain are coloured in forest green, light
- 114 teal and marine blue respectively (as in Figure 1).
- 115

Antibody	Number of	Epitopes	Study
Involved	Reported Epitopes		
IDR-A			
T13	4	H353-Y363, P377-R386, K713-S720, Y766-Q775	(2-6)
ICA1	1	H353-Y363	(2,3)
TR1.9	2	K713, K713-S720	(2,4,7)
126TO10	3	R225, R646, D707	(8,9)
126TP1	3	R225, R646, D707	(8,9)
126TP7	1	R225	(9)
IDR-B			l.
126TP5	5	D620, D624, K627, D630, F597-E604	(8-10)
126TP14	5	D620, D624, K627, D630, F597-E604	(8-10)
131TP7	1	K627	(9)
SP1.4	1	F597-E604	(10)
TR1.8	1	T611-V618	(10)
WR1.7	1	F597-E604	(10)

116 **Table S1** – Published residues involved in IDRs of TPO

117

118 The epitopes that have been identified as making up the immunodominant regions (IDRs) of

119 TPO, named IDR-A and IDR-B.

120

Table S2 – Melting point data of ΔproTPOe-8His in different buffer conditions

Buffer	рН	T _m (°C)
50 mM HEPES, 250 mM NaCl	8.0	52.3
50 mM HEPES, 250 mM NaCl	7.0	55.2
50 mM Sodium Phosphate, 250 mM NaCl	6.0	54.7
50 mM Sodium Acetate, 250 mM NaCl	5.5	53.9
50 mM Glycine, 250 mM NaCl	4.0	53.6

 $\textbf{Table S3} - \textbf{Theoretical and calculated Stokes Radii (R_s) of TPO}$

Reference Dataset	Equation	Stokes Radius (Å)	
		Monomer	Dimer
Globular Folded Proteins	$R_{s} = (4.75)N^{0.29}$	32.52	39.75
Denatured Unfolded Proteins	$R_s = (2.21)N^{0.57}$	96.93	143.89
Analytical SEC of TPO with no TM domain			51.31
AUC of AproTPOe-GCN4		75.7	91.4
AUC of AproTPOe-8His		64.9	77.1
AUC of ΔproTPOe-GCN4 with TR1.9		52.7	66.4
AUC of ΔproTPOe-8His with TR1.9		57.4	N/A

- AUC, analytical ultracentrifugation; SEC, size exclusion chromatography; TM, transmembrane
- domain.

Table S4 – Model Fit Percentages

Model	Percentage of Molecules within the EM Map
Trans Monomer	73
Cis Monomer	72
Trans Dimer	54
Cis Dimer	59
Trans Monomer with Fab	53
Cis Monomer with Fab	55
Curled Monomer with Fab	58
Curled Monomer with scFv format of TR1.9	73
Trans Monomer with Fab sequentially fit*	68
Cis Monomer with Fab sequentially fit*	70
Trans Dimer with Fab	33
Cis Dimer with Fab	37

Fit percentages of various TPO models within the electron microscopy (EM) map. Asterisks (*) indicates configurations where TR 1.9 Fab was fitted into the available space in the envelope without regard to its epitope's location, rather than in a realistic orientation in which the complementarity determining regions (CDR) face the published epitope of K713-S720.

159 **References**

- Le SN, Porebski BT, McCoey J, Fodor J, Riley B, Godlewska M, Gora M, Czarnocka B, Banga JP, Hoke DE, Kass I, Buckle AM. Modelling of Thyroid Peroxidase Reveals Insights into Its Enzyme Function and Autoantigenicity. *PloS one*. 2015;10(12):e0142615.
- Bresson D, Cerutti M, Devauchelle G, Pugniere M, Roquet F, Bes C, Bossard C,
 Chardes T, Peraldi-Roux S. Localization of the discontinuous immunodominant region
 recognized by human anti-thyroperoxidase autoantibodies in autoimmune thyroid
 diseases. *The Journal of biological chemistry*. 2003;278(11):9560-9569.
- Rebuffat SA, Bresson D, Nguyen B, Peraldi-Roux S. The key residues in the immunodominant region 353-363 of human thyroid peroxidase were identified. *International immunology*. 2006;18(7):1091-1099.
- Bresson D, Pugniere M, Roquet F, Rebuffat SA, B NG, Cerutti M, Guo J, McLachlan
 SM, Rapoport B, Estienne V, Ruf J, Chardes T, Peraldi-Roux S. Directed mutagenesis in
 region 713-720 of human thyroperoxidase assigns 713KFPED717 residues as being
 involved in the B domain of the discontinuous immunodominant region recognized by
 human autoantibodies. *The Journal of biological chemistry*. 2004;279(37):3905839067.
- 177 5. Williams DE, Le SN, Godlewska M, Hoke DE, Buckle AM. Thyroid Peroxidase as an
 178 Autoantigen in Hashimoto's Disease: Structure, Function, and Antigenicity. *Hormone*179 *and metabolic research = Hormon- und Stoffwechselforschung = Hormones et*180 *metabolisme*. 2018;50(12):908-921.
- 181 6. Estienne V, Duthoit C, Blanchin S, Montserret R, Durand-Gorde JM, Chartier M, Baty
 182 D, Carayon P, Ruf J. Analysis of a conformational B cell epitope of human thyroid
 183 peroxidase: identification of a tyrosine residue at a strategic location for
 184 immunodominance. *International immunology*. 2002;14(4):359-366.
- 185 7. Guo J, Yan XM, McLachlan SM, Rapoport B. Search for the autoantibody
 186 immunodominant region on thyroid peroxidase: epitopic footprinting with a human
 187 monoclonal autoantibody locates a facet on the native antigen containing a highly
 188 conformational epitope. *Journal of immunology (Baltimore, Md : 1950)*.
 189 2001;166(2):1327-1333.
- B. Dubska M, Banga JP, Plochocka D, Hoser G, Kemp EH, Sutton BJ, Gardas A, Gora M.
 Structural insights into autoreactive determinants in thyroid peroxidase composed of
 discontinuous and multiple key contact amino acid residues contributing to epitopes
 recognized by patients' autoantibodies. *Endocrinology*. 2006;147(12):5995-6003.
- Gora M, Gardas A, Watson PF, Hobby P, Weetman AP, Sutton BJ, Banga JP. Key
 residues contributing to dominant conformational autoantigenic epitopes on thyroid
 peroxidase identified by mutagenesis. *Biochemical and biophysical research communications*. 2004;320(3):795-801.
- Bresson D, Rebuffat SA, Nguyen B, Banga JP, Gardas A, Peraldi-Roux S. New Insights
 into the Conformational Dominant Epitopes on Thyroid Peroxidase Recognized by
 Human Autoantibodies. *Endocrinology*. 2005;146(6):2834-2844.
- 201