
Neural Machine Translation for
Bilingually Low-Resource Scenarios

by

Poorya Zaremoodi

Thesis

Submitted for the fulfilment of the requirements for the degree of

Doctor of Philosophy

Faculty of Information Technology

Monash University

January, 2020

ii

To my parents.

c© Copyright by

Poorya Zaremoodi

2020

Except as provided in the Copyright Act 1968, this thesis may not be reproduced in

any form without the written permission of the author.

I certify that I have made all reasonable efforts to secure copyright permissions for

third-party content included in this thesis and have not knowingly added copyright

content to my work without the owner’s permission.

Declaration

I hereby declare that this thesis contains no material which has been accepted for

the award of any other degree or diploma at any university or equivalent institution

and that, to the best of my knowledge and belief, this thesis contains no material

previously published or written by another person, except where due reference is

made in the text of the thesis.

Poorya Zaremoodi

January 30, 2020

v

Abstract

Neural Machine Translation (NMT) is revolutionising machine translation

and has achieved great success across several language pairs. Like many

deep learning methods, NMT is a data-hungry technology. However, we

do not have the luxury of having large parallel datasets for many lan-

guages, a setting referred to as bilingually low-resource scenario. This

thesis aims to improve the quality of NMT in this setting by leveraging

curated monolingual linguistic resources for compensating the shortage of

bilingual training data.

Linguistic resources are available in the form of annotated datasets, e.g.,

treebanks for syntactic parsing or part-of-speech tagged sentences. Two

main approaches for incorporating the linguistic knowledge in these re-

sources are: (1) use off-the-shelf/pre-trained tools to generate linguistic

annotations; (2) directly injecting the linguistic knowledge using Multi-

Task Learning (MTL). In this thesis, we investigate the use of these ap-

proaches to improve the quality of NMT in bilingually low-resource sce-

narios.

Firstly, we look at the case of using automatically generated linguistic

annotations for improving the translation quality. We argue these anno-

tations are generated by imperfect tools, and inevitably incorporate errors

and uncertainties. We, therefore, propose a novel approach for handling

these uncertainties and errors in the translation process by leveraging a

collection of these generated annotations, e.g., using a parse forest instead

of a single parse tree. This amounts to a novel forest-to-sequence neural

transducer, which conditions on multiple linguistic analyses of the source

sentence in the translation process.

Secondly, we take an MTL approach to inject a combination of semantic

and syntactic knowledge into the translation model. This is achieved by

sharing parts of parameters of the models trained for the main transla-

tion and various auxiliary syntactic/semantic tasks. We propose effective

parameter sharing strategies for making a better use of knowledge in lin-

guistic resources. As it may be hard to decide manually which parameters

to share, we propose an approach to automatically learn the sharing strat-

egy.

Finally, we introduce a novel training schedule for MTL by proposing

a rigorous data-driven approach to adaptively change the importance of

tasks throughout the training of an MTL model to make the best use

of auxiliary syntactic and semantic tasks. We introduce a novel frame-

work for automatically learning effective training schedules by formulating

MTL training as a sequential decision making, i.e., which task to select

to get data for the parameter update in the next training step. We then

formulate this as a Markov Decision Process (MDP), and make use of

Imitation Learning to learn a reasonable policy for effective scheduling of

the training process in MTL.

vii

Acknowledgements

I would like to express my sincere gratitude to my supervisors, Assoc.

Prof. Gholamreza (Reza) Haffari, Prof. Wray Buntine and Dr Sarvnaz

Karimi (CSIRO Data61). I was lucky to foster the development of research

skills under their patient guidance, motivation and immense knowledge.

I owe my deepest gratitude to Reza for his unconditional support, and

being a role model for “Never Give Up”.

I am grateful to my examiners Dr Marine Carpuat (University of Mary-

land) and Dr Shahram Khadivi (eBay) for their constructive feedback on

this thesis.

I would like to thank Monash University for generously supporting me

with Monash International Postgraduate Research Scholarship and Monash

Graduate Scholarship. Also, I thank CSIRO Data61 for supporting me

with a top-up scholarship.

I have greatly benefited from Multi-modal Australian ScienceS Imaging

and Visualisation Environment (MASSIVE) and Monash Advanced Re-

search Computing Hybrid (MonARCH) by providing me with the oppor-

tunity to run many resource-intensive experiments.

Special gratitude goes to my parents for their love, motivation, encour-

agement, endless moral and emotional support over many years; words

cannot describe how thankful I am.

I am grateful to my colleagues and officemates in Monash, Ehsan, Fahimeh,

Ming, Najam, Narjes, Philip, Sameen, Snow, Trang, Xuanli, for their sup-

port, kindness, and the fun we have had over the last years. Finally, I

would like to offer my special thanks to my dearest friends that are more

like my family: Shokoufeh, Farshid, Mohammad, Hooman, Keyvan, Ali,

and Zohreh.

Publications

The publications arising from my thesis are:

• (Published) P. Zaremoodi, G. Haffari, “Incorporating Syntactic Uncertainty in

Neural Machine Translation with a Forest-to-Sequence Model”, Proceedings of

the 27th International Conference on Computational Linguistics (COLING),

2018.

• (Published) P. Zaremoodi, G. Haffari, “Neural Machine Translation for Low

Resource Scenarios: A Deep Multi-Task Learning Approach”, Proceedings of

Annual Meeting for North American Chapter of Association of Computational

Linguistics (NAACL), 2018.

• (Published) P. Zaremoodi, W. Buntine, G. Haffari, “Adaptive Knowledge Shar-

ing in MTL: Improving Low-Resource NMT”, Proceedings of Annual Meeting

of Computational Linguistics (ACL), 2018.

• (Published) P. Zaremoodi, G. Haffari, “Adaptively Scheduled Multitask Learn-

ing: The Case of Low-Resource Neural Machine Translation”, Proceedings of

the 3rd Workshop on Neural Machine Translation and Generation, Co-located

with EMNLP 2019.

• (Submitted) P. Zaremoodi, G. Haffari, “Learning to Multi-Task Learn for Better

Neural Machine Translation”, Submitted to the Twenty-Ninth International

Joint Conference on Artificial Intelligence (IJCAI), 2020.

ix

Contents

List of Figures xvii

List of Notations xviii

List of Abbreviations 1

1 Introduction 1

1.1 Motivation . 1

1.1.1 Transduction of Complex Structures for Incorporating Linguis-

tic Annotations . 4

1.1.2 Injecting Linguistic Inductive Biases via Multi-Task Learning . 4

1.2 Research Objectives . 6

1.3 Thesis Outline and Contributions . 7

2 Background 10

2.1 Deep Learning . 10

2.1.1 Multi-Layer Perceptron (MLP) 11

2.1.2 Recurrent Neural Network (RNN) 12

2.1.3 Backpropagation . 13

2.1.4 Long Short-Term Memory (LSTM) 15

2.1.4.1 Tree-LSTM . 17

2.1.5 Regularisation . 19

2.1.5.1 Early Stopping . 19

2.1.5.2 Dropout . 20

2.1.6 Deep Learning for NLP . 21

2.1.6.1 Word Embedding . 21

2.1.6.2 Statistical Language Modelling 22

2.2 Neural Machine Translation . 24

2.2.1 Seq2Seq model . 24

x

2.2.2 Attentional Seq2Seq model 26

2.2.3 Convolutional Seq2Seq model 28

2.2.4 Self-attention Seq2Seq model 30

2.2.5 Evaluation metrics . 31

2.3 Low-Resource Neural Machine Translation 33

2.3.1 Incorporate Linguistic Annotation by Transduction of Complex

Structures . 34

2.3.2 Multi-Task Learning for Directly Injecting Auxiliary Knowledge 39

2.3.2.1 Multi-Task Learning 40

2.3.2.2 Multi-Task Learning and Transfer Learning 41

2.3.2.3 Multi-Task Learning in Practice 42

2.3.2.4 Multi-task learning for injecting linguistic knowledge

in NMT . 43

2.3.3 Other Approaches . 45

2.3.3.1 Active Learning . 45

2.3.3.2 Back-translation and Dual Learning 46

2.3.3.3 Adversarial training 47

2.3.3.4 Zero/Few Shot Learning 47

2.4 Summary . 48

I Transduction of Complex Structures 49

3 An Attentional Forest-To-Sequence Model 50

3.1 Introduction . 51

3.2 Neural Forest-to-Sequence Translation 52

3.2.1 Forest Encoder . 52

3.2.2 Sequential Decoder . 54

3.2.3 Training . 54

3.3 Computational Complexity Analysis 54

3.4 Experiments . 55

3.4.1 The Setup . 55

3.4.2 Results . 56

3.4.3 Analysis . 57

3.5 Summary . 60

xi

II Multi-Task Learning: Architectural Design 61

4 Deep Seq2Seq MTL for NMT 62

4.1 Introduction . 63

4.2 Seq2Seq Multi-Task Learning . 64

4.3 Adversarial Training . 66

4.4 Experiments . 67

4.4.1 Bilingual Corpora . 67

4.4.2 Auxiliary Tasks . 69

4.4.3 Models and Baselines . 69

4.4.4 Results . 71

4.4.5 Analysis . 73

4.5 Summary . 76

5 Adaptive Knowledge Sharing in Deep Seq2Seq MTL 77

5.1 Introduction . 78

5.2 Routing Networks for Deep Neural Networks 79

5.3 Seq2Seq MTL Using Recurrent Unit with Adaptive Routed Blocks 79

5.3.1 Routing Mechanism . 80

5.3.2 Block Architecture . 81

5.3.3 Training Objective and Schedule. 81

5.4 Experiments . 81

5.4.1 Models and Baselines . 83

5.4.2 Results and analysis . 84

5.5 Summary . 85

III Multi-Task Learning: Training Schedule 86

6 Adaptive scheduling for Deep Seq2Seq MTL 87

6.1 Introduction . 88

6.2 Learning to Reweigh Mini-Batches 89

6.3 Experiments . 93

6.3.1 Bilingual Corpora and Auxiliary Tasks 93

6.3.2 MTL architecture and training schedule 93

6.3.3 Results and Analysis . 94

6.4 Summary . 99

xii

7 Learning to Multi-Task Learn 100

7.1 Introduction . 101

7.2 MTL training schedule as a Markov Decision Process 102

7.3 An Oracle Policy for MTL-MDP . 105

7.4 Learning to Multi-Task Learn . 107

7.5 Experiments . 110

7.5.1 MTL architectures . 110

7.5.2 Results . 111

7.6 Analysis . 112

7.7 Summary . 115

8 Conclusion and Future Directions 117

8.1 Future Directions . 119

Bibliography 120

xiii

List of Figures

1.1 BLEU scores (higher is better) for PBSMT and NMT models on Ger-

man → English translation task using the TED data from the IWSLT

2014 shared translation task. The number of words in parallel train-

ing data varies from 0.1 to 3.2 million. Image source: (Sennrich and

Zhang, 2019). 3

2.1 Perceptron and Multi-layer Perceptron models. 11

2.2 Elman RNN, unfolded Elman RNN and unfolded generative RNN. . . 13

2.3 Architecture of the LSTM unit. 16

2.4 Tree and sequence structured LSTMs. Here we used “A” to show an

LSTM unit and emphasise that the unit and weights remain the same

while traversing the structure. 17

2.5 An example of learning curves that show the behaviour of the negative

log-likelihood loss for the training set and validation set; Image source:

(Goodfellow et al., 2016). 19

2.6 Dropout out mechanism. Left: a standard two-layer network. Right:

a thinned version of the network after applying dropout and dropping

crossed units (Srivastava et al., 2014). 20

2.7 Architecture of an n-gram neural probabilistic language model; Image

source: (Bengio et al., 2003). 23

2.8 Example of Seq2Seq model for English to German translation. . . . 25

2.9 Attentional Encoder-Decoder model. 27

2.10 The general architecture of a convolutional Seq2Seq model. The En-

glish source sentence (top) is encoded, and the attention for four target

words are calculated simultaneously (middle). Image source: (Gehring

et al., 2017). 28

2.11 The general architecture of the Transformer model. Image source:

(Vaswani et al., 2017). 29

2.12 Attentional Tree-to-Sequence model. 35

xiv

2.13 A two-layer syntactic GCN on top of the embeddings, updating them

concerning a dependency parse tree. To simplify image, gates and some

labels are removed. Image source: (Bastings et al., 2017) 37

2.14 An example of a source sentence, and its translation in the form of

linearised lexicalised constituency tree (Aharoni and Goldberg, 2017). 39

3.1 An example of generating a phrase from two different parse trees . . . 52

3.2 (a) BLEU scores for bucketed En→Ch dataset. (b) Percentage of more

correct n-grams generated by the Tree2Seq and Forest2Seq mod-

els compared to Seq2Seq model for En→Ch dataset. 57

3.3 (a) Attention ratios for En→Fa bucketed dataset.(b) Inference time

(seconds) required for the test set of En→Fa dataset using trained

models. 59

4.1 Percentage of more correct n-grams generated by the deep MTL models

compared to the single-task model (only MT) for En→Vi translation. 73

4.2 BLEU scores for different numbers of shared layers in encoder (from

top) and decoder (from bottom). The vocabulary is shared among

tasks while each task has its own attention mechanism. 74

4.3 Percentage of more corrected n-grams with at least one noun generated

by MT+NER model compared with the only MT model (only MT) for

En→Vi language pair. 76

5.1 High-level architecture of the proposed recurrent unit with 3 shared

blocks and 1 task-specific. 80

5.2 Average percentage of block usage for each task. 84

6.1 The dynamic in the relative importance of named entity recognition,

syntactic parsing, and semantic parsing as the auxiliary tasks for the

main machine translation task (based on our experiments in Section

6.3). The plot shows our proposed adaptive scheduling vs. fixed

scheduling (Kiperwasser and Ballesteros, 2018) (scaled down for better

illustration). 88

6.2 High-level idea for training an MTL architecture using adaptive impor-

tance weights (AIWs). Here, translation is the main task along with

syntactic and semantic parsing as auxiliary linguistic tasks. 91

6.3 Computation graph of the proposed method for adaptively determining

weights. 93

xv

6.4 Weights assigned to the training pairs of different tasks (averaged over

200 update iteration chunks). Y-axis shows the average weight and

X-axis shows the number of update iteration. In the top figures, the

main translation task is English→Spanish while in the bottom ones it

is English→Turkish. 97

6.5 The number of words in the gold English→Spanish translation which

are missed in the generated translations (lower is better). Missed words

are categorised by their tags (Part-of-Speech and named-entity types). 98

7.1 Overview of training an MTL architecture using adaptive scheduling.

Translation is the main task with syntactic and semantic parsing as

auxiliary linguistic tasks. 104

7.2 The policy/scheduler network. 108

7.3 Average second per step for different MTL model on the Transformer

setting (En→De). We achieve ∼8.3X speed up in the training of MTL

by simultaneously training and using the scheduler network. 112

7.4 Average weights of auxiliary tasks during the training on the English

to German language pair. Weights are averaged over 100-steps chunks. 114

7.5 The number of missed words in the generated translations of English-

to-German language pair. Words are categorised based on their POS

tags. 115

xvi

List of Notations

Markov Decision Process

st The state at time step t

aaat The actions at time step t

R(st, aaat, st+1) The instantaneous reward

πφ The policy function

φ The parameters of the policy function

Other Symbols

H[.] The entropy of a distribution

Translation and Multi-Task Learning

x The input/source sentence

y The target/output sentence

x
(k)
i ,y

(k)
i The ith source or target sentence of task k

bkt The tth mini-batch of task k

Dk := {(x(k)
i ,y

(k)
i)}Nk

i=0 Training set of task k

w
(k)
i The weight of ith sentence pair of task k

Θmtl The parameters of the MTL model

ht The hidden representation of tth step in the encoder or decoder RNN

EEES,EEET The embedding table of the input or target space

W ,U Parameter matrices

xvii

List of Abbreviations

Abbreviation Definition
AI Artificial Intelligence
AL Active Learning
GRU Gated Recurrent Unit
IL Imitation Learning
LM Language Model
LSTM Long Short-Term Memory
MDP Markov Decision Process
MT Machine Translation
MTL Multi-Task Learning
NLP Natural Language Processing
NMT Neural Machine Translation
RL Reinforcement Learning
RNN Recurrent Neural Network

xviii

Chapter 1

Introduction

1.1 Motivation

Deep learning is a comparatively new player in artificial intelligence (AI), but with

an old history. Its origin goes back to decades ago when the subject of artificial

neural networks started (McCulloch and Pitts, 1943; Rosenblatt, 1958; Minsky and

Papert, 1969). Neural networks are, in fact, representation learning methods based

on a multi-layer hierarchy of data abstraction. The power of neural networks is rooted

in the fact that the representations are learned automatically and data-driven via a

general-purpose algorithm, removing the need for hand-engineered features. Thanks

to the recent advances in parallel computing and the abundance of big data, deep

neural networks, aka deep learning, has started to transform AI. The deep learning

tsunami1 lapped the shores of many areas in AI, including computer vision, self-

driving vehicles, robotics, natural language processing, and more specifically Machine

Translation (MT).

Machine Translation is the task of automatically translating a text from one nat-

ural language to another. The translation should preserve the meaning of the source

sentence while being fluent in the target language. Statistical Machine Translation

(SMT) models dominated this area for decades. The most successful SMT model is

phrase-based (Koehn et al., 2003; Brown et al., 1990), which segments the source sen-

tence into phrases, translates these phrases, and re-orders them. The SMT systems

consist of several sub-components which should be tuned separately, some of them

requiring hand-engineered features along with large amounts of memory to store in-

formation in the form of phrase tables/dictionaries.

1A term coined by Manning (2015)

1

The deep learning revolution has now reached MT, leading to the state-of-the-

art for many language pairs (Luong et al., 2015b,a; Wu et al., 2016; Edunov et al.,

2018; Wu et al., 2019). This approach, called Neural Machine Translation (NMT),

translates via a large neural network which reads the input sentence and outputs its

corresponding translation.

The advantage of NMT models is their ability to learn end-to-end, without the

need for many brittle design choices and hand-engineered features of those in SMT.

However, as stated by Andrew Ng, one of the deep learning pioneers, deep learning is a

powerful yet data-hungry technology.2 However, we do not have the luxury of having

large parallel datasets for many languages, a setting referred to as bilingually low-

resource scenario. Koehn and Knowles (2017); Lample et al. (2018b) have reported

NMT needs large amounts of bilingual training data to achieve reasonable translation

quality; furthermore, it underperforms phrase-based SMT (PBSMT) models in bilin-

gually low-resource scenarios where we. These findings have motivated research for

improving the low-resource NMT, mostly by incorporating linguistic and monolingual

resources.

More recently, Sennrich and Zhang (2019) has re-visited the case of low-resource

NMT and shown that low-resource NMT with an optimised practice3 is, in fact,

a realistic option for low-resource regimes as well; see Figure 1.1. Further, they

argue that “best practices differ between high-resource and low-resource settings”.

To summarise, there are two key messages in these findings: (1) low-resource NMT

is very sensitive, and its best practice is different from those of high-resource; (2)

the performance of an NMT model trained with small amount of training data still

is much less than the one trained with millions of sentence pairs, and there is a

great room for improvement to take full advantage of NMT models in small bilingual

training data conditions. These key findings have shown the importance and need for

investigating NMT exclusively for the case of bilingually low-resource scenarios.

For compensating the lack of bilingual data, a practical approach is to use auxiliary

data in the form of curated monolingual linguistic resources, monolingual sentences

or multilingual sentence pairs (a mixture of high- and low-resource). In this thesis,

the focus is on using curated monolingual resources; however, this work is orthogonal

to other approaches and could be combined with the others, e.g., a combination of

linguistic resources and monolingual sentences. More specifically, we assume that rich

2https://www.wired.com/brandlab/2015/05/andrew-ng-deep-learning-mandate-humans-not-
just-machines/

3In terms of architectural design, techniques and hyperparameters such as dropout, BPE (and
its vocabulary size), tying parameters, and others.

2

BLEU

ID system 100k 3.2M

1 phrase-based SMT 15.87 ± 0.19 26.60 ± 0.00

2 NMT baseline 0.00 ± 0.00 25.70 ± 0.33

3 2 + ”mainstream improvements” (dropout, tied embeddings,
7.20 ± 0.62 31.93 ± 0.05

layer normalization, bideep RNN, label smoothing)

4 3 + reduce BPE vocabulary (14k! 2k symbols) 12.10 ± 0.16 -
5 4 + reduce batch size (4k! 1k tokens) 12.40 ± 0.08 31.97 ± 0.26
6 5 + lexical model 13.03 ± 0.49 31.80 ± 0.22

7 5 + aggressive (word) dropout 15.87 ± 0.09 33.60 ± 0.14
8 7 + other hyperparameter tuning (learning rate, 16.57 ± 0.26 32.80 ± 0.08

model depth, label smoothing rate)
9 8 + lexical model 16.10 ± 0.29 33.30 ± 0.08

Table 2: German!English IWSLT results for training corpus size of 100k words and 3.2M words (full corpus).
Mean and standard deviation of three training runs reported.

1
05

1
06

0

10

20

30

32.8

30.8

28.7

24.4

20.6

16.6

26.6

24.9

23

20.5

18.3

16

25.7

18.5

11.6

1.81.3
0

corpus size (English words)

B
L

E
U

neural MT optimized
phrase-based SMT
neural MT baseline

Figure 2: German!English learning curve, showing
BLEU as a function of the amount of parallel training
data, for PBSMT and NMT.

4.3 NMT Systems

We train neural systems with Nematus (Sennrich
et al., 2017b). Our baseline mostly follows the
settings in (Koehn and Knowles, 2017); we use
adam (Kingma and Ba, 2015) and perform early
stopping based on dev set BLEU. We express our
batch size in number of tokens, and set it to 4000
in the baseline (comparable to a batch size of 80
sentences used in previous work).

We subsequently add the methods described in
section 3, namely the bideep RNN, label smooth-
ing, dropout, tied embeddings, layer normaliza-
tion, changes to the BPE vocabulary size, batch

4Signature BLEU+c.mixed+#.1+s.exp+tok.13a+v.1.3.2.

size, model depth, regularization parameters and
learning rate. Detailed hyperparameters are re-
ported in Appendix A.

5 Results

Table 2 shows the effect of adding different meth-
ods to the baseline NMT system, on the ultra-low
data condition (100k words of training data) and
the full IWSLT 14 training corpus (3.2M words).
Our ”mainstream improvements” add around 6–7
BLEU in both data conditions.

In the ultra-low data condition, reducing the
BPE vocabulary size is very effective (+4.9
BLEU). Reducing the batch size to 1000 token re-
sults in a BLEU gain of 0.3, and the lexical model
yields an additional +0.6 BLEU. However, ag-
gressive (word) dropout6 (+3.4 BLEU) and tuning
other hyperparameters (+0.7 BLEU) has a stronger
effect than the lexical model, and adding the lex-
ical model (9) on top of the optimized config-
uration (8) does not improve performance. To-
gether, the adaptations to the ultra-low data setting
yield 9.4 BLEU (7.2!16.6). The model trained
on full IWSLT data is less sensitive to our changes
(31.9!32.8 BLEU), and optimal hyperparameters
differ depending on the data condition. Subse-
quently, we still apply the hyperparameters that
were optimized to the ultra-low data condition (8)

5beam search results reported by Wiseman and Rush
(2016).

6p = 0.3 for dropping words; p = 0.5 for other dropout.

Figure 1.1: BLEU scores (higher is better) for PBSMT and NMT models on Ger-
man → English translation task using the TED data from the IWSLT 2014 shared
translation task. The number of words in parallel training data varies from 0.1 to 3.2
million. Image source: (Sennrich and Zhang, 2019).

linguistic annotation is available on the source language. The linguistic resources are

available in the form of annotated datasets, e.g., treebanks for syntactic parsing or

part-of-speech tagged sentences. There are two main approaches for incorporating

linguistic knowledge in MT:

1. Use these monolingual resources to build tools which can then be used to anno-

tate bilingual sentences. These annotations convey linguistic information in the

form of combinatorial structures, and modelling them changes the translation

task from a sequence-to-sequence task to the transduction of more complex com-

binatorial structures, e.g., tree-to-sequence (Eriguchi et al., 2016; Chen et al.,

2017a).

2. Directly injecting linguistic knowledge into the translation model to improve

its performance. Multi-Task Learning (MTL) is an effective approach to inject

knowledge into a task, which is learned from other related tasks, aka auxiliary

tasks.

3

1.1.1 Transduction of Complex Structures for Incorporating
Linguistic Annotations

One of the central premises about natural language is that words of a sentence are

interrelated according to a (latent) hierarchical structure (Chomsky, 1957), i.e., the

syntactic tree. Therefore, it is expected that modelling the syntactic structure should

improve the performance of NMT, especially in low-resource or linguistically divergent

scenarios, such as English-Farsi, by learning better reorderings. Recently, Eriguchi

et al. (2016); Chen et al. (2017a) have proposed methods to incorporate the hier-

archical syntactic constituency information of the source sentence. They propose

tree-to-sequence NMT models, which use the top-1 parse tree of the source sentence

generated by a parser. They showed that the syntax-aware NMT model outperforms

the vanilla sequence-to-sequence NMT model.

This approach relies on the accuracy of top-1 parse tree while automati-

cally generated annotations are error-prone. As mentioned, curated monolin-

gual linguistic resources can be used to build tools which then can provide the NMT

model with the linguistic annotations of the source sentences. One should note that

the automatically generated annotations incorporate errors and uncertainties of the

tools, e.g., generated top-1 syntactic constituency trees are prone to parser errors;

moreover, they cannot capture semantic ambiguities of the source sentence.

Although this is a practical approach for one type of linguistic information, adding

more types of linguistic annotation requires the model to be re-designed and gets more

and more complicated.

1.1.2 Injecting Linguistic Inductive Biases via Multi-Task
Learning

As the translation task is, in fact, “function approximation”, we can start by analysing

it from the learning theory perspective. Neural networks are universal function ap-

proximators (Csáji, 2001), and theoretically, they can learn any function under mild

conditions. While NMT models have infinite hypothesis space, they perform rela-

tively weak in low-resource regimes. Therefore, the small sample size could be a

reason for their weak generalisation. The generalisation is the cornerstone of machine

translation (machine learning in general), and we need inductive biases in learning

generalisation (Mitchell, 1980). Recent research has shown that NMT models can

learn linguistic-related inductive biases (Shi et al., 2016; Belinkov et al., 2017; Poliak

4

et al., 2018). In addition, Dalvi et al. (2017) shows explicitly injecting morphology

can improve translation quality. Hence, incorporating linguistically based inductive

biases is a promising direction to improve the generalisation of NMT models in low-

resource data regimes.

Multi-Task Learning is a practical approach to acquire inductive biases from re-

lated tasks, and its primary goal is to improve the generalisation performance (Caru-

ana, 1997). MTL provides a general framework to incorporate different kinds of

linguistic information into the translation model, and multiple different types of lin-

guistic knowledge can be used (or added) without changing the model architecture

or the need to replace the model with a more complicated one.

MTL is effective yet challenging. Various recent works have attempted to im-

prove NMT with an MTL approach (Domhan and Hieber, 2017; Zhang and Zong,

2016; Niehues and Cho, 2017; Kiperwasser and Ballesteros, 2018); although their re-

sults are promising, these methods usually suffer from shortcomings which prevent

them from maximally exploiting the knowledge in auxiliary tasks. These shortcom-

ings are mainly rooted in the fact that injecting knowledge from auxiliary tasks is

a double-edged sword. While “positive transfer” may help to improve the perfor-

mance of the main translation task, “negative transfer” (i.e. task interference) may

have unfavourable effects and degrade the translation quality. Addressing the neg-

ative transfer phenomena is challenging and needs to be tackled at different levels:

architectural design and training schedule.

Architectural design: MTL in neural networks is best achieved by parameter

sharing. The trivial approach of fully sharing the entire model parameters provokes

the task interference issue, because tasks may need to learn task-specific knowledge

which then should be learned in the fully shared parameters. Another point is that

sharing parameters among all tasks may also lead to task interference or inability to

leverage commonalities among subsets of tasks. Therefore, a capable MTL architec-

ture is crucial to share the parameters of various neural components among subsets

of tasks.

Training schedule: With shared parameters, the negative transfer phenomenon is

inevitable (Ruder, 2017). Therefore, it is crucial to have an effective training schedule

to balance out the importance, i.e., the participation rate of different tasks throughout

5

the training process, in order to make the best use of knowledge provided by auxiliary

tasks.

1.2 Research Objectives

The main purpose of this research is to improve the performance of Neural Machine

Translation in bilingually low-resource scenarios using linguistic knowledge, inspired

by the following hypothesis:

Incorporating linguistic knowledge can improve the quality of Neural Machine

Translation in bilingually low-resource scenarios.

Motivated by the literature gaps mentioned in the previous section, this thesis

will address the following objectives:

• Incorporating uncertainty of automatically generated annotations in

translation (Part I). As the off-the-shelf/pre-trained tools are error-prone,

the errors and uncertainties of these tools should be taken into account in the

translation process. Otherwise, it may affect the quality of the generated trans-

lation. For overcoming this challenge for syntactic annotations, this thesis pro-

poses a novel approach for efficiently considering parser uncertainties and errors

in annotations for generating better translations (Chapter 3).

• Effective MTL architectural design for injecting both semantic and

syntactic knowledge into the underlying translation task (Part II).

This thesis injects linguistic inductive biases into the translation using a com-

bination of semantic and syntactic auxiliary tasks. It does so by proposing

partial parameter tying and adversarial training to make better use of linguistic

knowledge (Chapter 4). Then, it proposes an effective method to automatically

learn an MTL architecture, mitigating the need to search for parameter sharing

strategies (Chapter 5).

• Effectively train an MTL model to improve the translation the most

(Part III). The training schedule is the beating heart of MTL. It is responsible

for balancing the importance of tasks during the training. A proper balance is

crucial for making the best use of auxiliary linguistic tasks in favour of the

translation task. This thesis proposes a data-driven approach for adaptively

and dynamically training an MTL model (Chapter 6). In addition, a novel

framework is proposed for learning to multi-task learn (Chapter 7).

6

1.3 Thesis Outline and Contributions

Chapter 2: Background

In Chapter 2, we review the foundations and related work for the research in this

thesis. We start by discussing the foundations of deep learning and its use in NLP.

Then, we review NMT and focus on the case of bilingually low-resource scenarios.

Part I: This part is dedicated to the transduction of complex structures where the

model uses automatically generated annotations.

Chapter 3: An Attentional Forest-To-Sequence Model

This chapter is based on:
P. Zaremoodi, G. Haffari, “Incorporating Syntactic Uncertainty in Neural Machine Transla-
tion with a Forest-to-Sequence Model”, Proceedings of the 27th International Conference on
Computational Linguistics (COLING), 2018.

To handle errors and uncertainties in the generated syntactic annotations, we pro-

pose a model to translate from a source sentence along with its corresponding parse

forest provided by a parser. By using a forest of parse trees, our forest-to-sequence

model efficiently considers combinatorially many constituency trees, hence taking into

account the parser uncertainties and errors.

Part II: This part focuses on MTL in order to directly inject the linguistic knowl-

edge into the translation model. We contribute to the architectural design aspect of

MTL:

Chapter 4: Deep Seq2Seq MTL for NMT

This chapter is based on:
P. Zaremoodi, G. Haffari, “Neural Machine Translation for Low Resource Scenarios: A Deep
Multi-Task Learning Approach”, Proceedings of Annual Meeting for North American Chapter
of Association of Computational Linguistics (NAACL), 2018.

We make use of curated monolingual linguistic resources in the source side to im-

prove NMT in bilingually scarce scenarios. We scaffold the machine translation task

on auxiliary tasks including syntactic parsing, named-entity recognition and seman-

tic parsing. To the best of our knowledge, our work is the first to inject semantic

7

knowledge into a neural translation model using MTL. This is achieved by casting

the auxiliary tasks as sequence-to-sequence (Seq2Seq) transduction tasks and tying

the parameters of these neural models with those of the main translation task. Our

MTL architecture makes use of deep stacked models, where the parameters of the

top layers are shared across the tasks. We further prevent the contamination of com-

mon knowledge with task-specific information using a technique so-called adversarial

training. Our extensive empirical results demonstrate the effectiveness of our MTL

approach in improving the translation quality.

Chapter 5: Adaptive Knowledge sharing in Deep Seq2Seq MTL

This chapter is based on:
P. Zaremoodi, W. Buntine, G. Haffari, “Adaptive knowledge Sharing in MTL: Improving Low-
Resource NMT”, Proceedings of Annual Meeting of Computational Linguistics (ACL), 2018.

We propose an MTL model, which learns how to control the amount of sharing

among all tasks dynamically. We propose a new neural recurrent unit by extending

existing ones to process multiple information flows through time. The proposed unit

is equipped with a trainable routing mechanism that enables adaptive collaboration

by dynamic sharing of information flows conditioned on the task at hand, input, and

model state. Our experimental results and analyses show the effectiveness of the

proposed approach on leveraging commonalities among subsets of tasks without the

need to search on parameter sharing strategies.

Part III: This part is focused on the effective training of an MTL model for making

the best use of auxiliary linguistic knowledge in translation.

Chapter 6: Adaptive Scheduling for Deep Seq2Seq MTL

This chapter is based on:
P. Zaremoodi, G. Haffari, “Adaptively Scheduled Multitask Learning: The Case of Low-Resource
Neural Machine Translation”, Proceedings of the 3rd Workshop on Neural Machine Translation
and Generation, Co-located with EMNLP 2019.

We propose a rigorous general approach for adaptively changing the training schedule

in MTL to make the best use of auxiliary syntactic and semantic tasks. To balance

the importance of the auxiliary tasks versus the main translation task, we re-weight

8

training data of the tasks based on their contributions to the generalisation capabil-

ities of the resulted translation model. Our main idea is to learn these importance

weights automatically by maximising the performance of the main task on a validation

set, separated from the training set, in each parameter update step. In addition, our

analysis shed light on the relative importance of auxiliary linguistic tasks throughout

the training of an MTL model, showing a tendency from syntax to semantics.

Chapter 7: Learning to Multi-Task Learn

This chapter is based on:
P. Zaremoodi, G. Haffari, “Learning to Multi-Task Learn for Better Neural Machine Transla-
tion”, Submitted to the Twenty-Ninth International Joint Conference on Artificial Intelligence
(IJCAI), 2020.

We propose a novel framework for learning how to multi-task learn to maximally

improve the main NMT task. This is achieved by formulating the problem as a

sequential decision making in a Markov Decision Process (MDP), enabling to treat the

training scheduler as the policy. We then use the re-weighting mechanism proposed

in Chapter 6 as the oracle policy. In order to scale up, we use the oracle policy as a

teacher to train a scheduler network within the Imitation Learning framework, using

Dagger (Ross et al., 2011), to train and use the network simultaneously. As a result,

the scheduler and MTL model is learned in the course of a single training run.

Chapter 8: Conclusions and Future Directions

Chapter 8 concludes this thesis by outlining the contributions as well as potential

directions for future research.

9

Chapter 2

Background

In this chapter, the foundations and prior related works for the research in this the-

sis are overviewed. As the aim of this thesis is to improve bilingually low-resource

Neural Machine Translation (NMT) by injecting linguistic knowledge, we review the

recent progress in: deep learning fundamentals, Neural Machine Translation and low-

resource NMT.

In Section 2.1, we start by overviewing fundamental concepts and methods in

deep learning by discussing multi-layer perceptron (MLP), recurrent neural network

(RNN) and its variants along with two popular regularisation techniques. Then, we

cover the use of deep learning in the fundamentals of NLP: word embedding and

statical language model.

In Section 2.2, we review the recent progress in NMT and discuss the leading

families of architectures based on RNN, convolution and self-attention. Moreover, we

describe how to evaluate the performance of an NMT model using different metrics.

In Section 2.3, we outline recent progress in bilingually low-resource NMT with the

focus on describing how monolingual resources are used to compensate for the lack of

bilingual data. Also, we narrow down on the usage of linguistic knowledge and explain

two commonly used techniques for doing so: (1) transduction of complex structures

for incorporating linguistic annotations; (2) Multi-Task Learning for directly injecting

the linguistic knowledge into the NMT system.

2.1 Deep Learning

Deep learning, in fact, is a rebranding of Artificial Neural Networks with multiple lay-

ers (aka Deep Neural Networks). Although this popularity has been gained recently,

the history of Neural Networks goes back to decades ago (McCulloch and Pitts, 1943;

Rosenblatt, 1958; Minsky and Papert, 1969).

10

x1

x2

xn

w1

w2

wn

∅(%
&'(

)
*&+& + -)

input output

b

(a) Perceptron

x1

. . .

. . .

. . .

. . .y2y1 yn

x2 xm

output layer (y)

input layer (x)

n hidden layers
(h1, …, hn)

ℎ(,(ℎ(,1 ℎ(,23

ℎ),(ℎ),1 ℎ),24

(b) Multi-layer Perceptron

Figure 2.1: Perceptron and Multi-layer Perceptron models.

Deep learning methods are representation learning methods composed of multiple

stacked-up layers of data abstraction. Starting with the raw data, they transform the

representation of each level to a slightly higher abstract representation in the next

level by using simple non-linear modules. Very complex functions can be learned with

this architecture if enough composition of this transformations is stacked-up (LeCun

et al., 2015). For example, in a classification task, higher levels show representations

which reflects important information for discriminating classes without contamination

by irrelevant information. The key point in learning deep models is that intricate

structures can be learned using a general-purpose learning procedure.

In the rest of this section, we cover related neural network methods which are

building blocks of more complicated models. Also, we discuss two popular regulari-

sation methods broadly used in deep learning.

2.1.1 Multi-Layer Perceptron (MLP)

Perceptron is the building block of the MLP model. As depicted in Figure 2.1a, a

neuron maps its input to output by passing the weighted input (
∑

iwixi+ b) through

an activation function φ. Activation functions should be nonlinear; otherwise, a multi-

layer network can be reduced to an equivalent single-layer network realising a linear

transform. One popular choice is the sigmoid function whose range is [0, 1]:

φ(v) =
1

1 + e−v
. (2.1)

The other choice is the hyperbolic tangent function whose range is [-1, 1]:

φ(v) = tanh(v) =
ev − e−v
ev + e−v

. (2.2)

11

A single layer of neurons (perceptrons) can learn simple mapping but not able to

learn nonlinearly separable data. MLP (Rumelhart et al., 1985) addresses this issue

by adding multiple intermediate layers where the inputs to neurons in a layer are the

outputs of neurons in previous layers, as shown in Figure 2.1b. The output calculated

by this network is equivalent to the following equation:

y = φo (Uφn (Wnφn−1 (Wn−1...φ1 (W1x)))) , (2.3)

where W(i) shows the matrix weight of i-th hidden layer, U is the weight matrix

connecting last hidden layer to the output layer, and φi is the activation function.

Generally, element-wise functions like sigmoid and hyperbolic tangent are used in the

hidden layer, and normalisation functions like softmax are used for the output layer.

If we define each layer i as a non-linear module mi,

mi(h) = φi(Wih), (2.4)

then

y = φo (U (mn ◦mn−1 ◦ ... ◦m1(x))) , (2.5)

where ◦ denotes the function composition. As seen, MLP is, in fact, composed of

multiple-layers of parametrised non-linear modules (Bengio et al., 2007). Each layer

transforms representation of its previous layer to a higher, slightly more abstract

representation using a non-linear module:

hi = mi(hi−1) = φi(Wihi−1). (2.6)

MLP is a simple yet powerful computational model, and an MLP with as little

as one hidden-layer is proved to be a universal function approximator under certain

conditions (Hornik, 1991).

2.1.2 Recurrent Neural Network (RNN)

A recurrent neural network is a network of neurons for which the connection between

nodes forms a cyclic directed graph. In this cyclic architecture, the model can use its

internal representations as a memory to store the summary of its previous inputs to

the moment. Because of this feature, RNN is a proper choice for processing variable-

length sequences, e.g., sentences.

Elman network (Elman, 1990) is one of the most popular RNN architectures.

It is similar to a single-layer MLP with a self-feedback connection, as depicted in

Figure 2.2a. Unfolding it through time results in a network similar to a multi-layer

12

y

x

56"

5""

5"7

(a) Elman RNN

yt-1

xt-1

56"

5"7

yt

xt

56"

5"7

yt+1

xt+1

56"

5"7

5"" 5"" 5""5""

(b) unfolded Elman RNN

yt-1

xt-1

56"

5"7

yt

xt

56"

5"7

yt+1

xt+1

56"

5"7

5"" 5"" 5""5""

(c) unfolded generative RNN

Figure 2.2: Elman RNN, unfolded Elman RNN and unfolded generative RNN.

MLP; see Figure 2.2b. Here, the representation in the hidden layer aka “state” of the

model at time t is calculated as:

ht = φh(Whhht−1 +Whixt) (2.7)

where Whh and Whi are weight matrices corresponding to feedback loop and input

to hidden layer, respectively. φh is activation function (e.g. sigmoid), and xt is the

input vector at time t. The output at time t is:

yt = φo(Wohht), (2.8)

where Woh is the weight matrix of connection between hidden and output layers, and

φo is a normalisation function, e.g. softmax.

Generative RNN is another kind of RNN architecture proposed to generate a

sequence. In this model, output is feed-backed as the next input (Figure 2.2c). In an

NLP task, we normally use a normalisation function as the activation function of the

output layer (φo), then the output vector yi would be a probability distribution on

symbols (e.g., words) at time i. At each time step, we draw a sample symbol (word)

from this distribution and the symbol will be the input of the network at the next

time step.

2.1.3 Backpropagation

Backpropagation (BP) is an algorithm for the supervised learning of neural models. It

calculates the gradients in an MLP, which in turn is essential for training the model,

and is consist of two phases: forward and backward. In the forward phase, the input

is fed to the model and output is calculated. In the backward pass BP calculates

13

the error between the output y and the target output t with respect to an objective

function, for example:

J(Θ) =
1

2
(t− z)2, (2.9)

where Θ denotes all weights and biases in the network. For each node i in layer l,

BP calculates a local gradient δ
(l)
i that is a measure showing how much the node was

responsible for the error in the output. Then gradients are fed into an optimisation

algorithm like Stochastic Gradient Descent (SGD) to update the weights:

W
(l)
ij = W

(l)
ij − η

∂

∂W
(l)
ij

J(Θ), (2.10)

where W
(l)
ij refers to the weight connecting j-th node of layer (l− 1) to the i-th node

at the layer l, and η is the step size (aka learning rate).

We can calculate the derivative of the error with respect to each weight in the

network using the chain rule. There is a systematic way to perform it layer-by-layer.

In this way, we calculate the local gradient of nodes layer-by-layer (descending order)

then we use them to calculate gradients of weights. The local gradients for the neurons

at the output layer is calculated as:

δ
(o)
j = (ti − yi)φ′o(voj), (2.11)

where voj is the input of the neuron (inner product of previous layer signals with

corresponding weights). The error is backpropagated to the other layers with chain

rule, which results in the following equation for the local gradients of j-th node in

l-th layer:

δ
(l)
j = φ′(vlj)

∑

k

δ
(l)
k W

(l+1)
kj . (2.12)

Now we calculate the desired partial derivatives as follows:

∂

∂W
(l)
ij

J(Θ) = φj(v
(l)
j)δ

(l+1)
i , (2.13)

where v
(l)
j is the input of the j-th neuron in l-th layer.

Backpropagation is designed for networks without a loop, e.g. MLP. There is a

modified version of it called Backpropagation Through Time (BPTT) which is used

for RNNs. It simply unrolls RNN and applies the standard BP algorithm. In BPTT,

for each weight, we sum its gradients at different time steps.

Hochreiter (1991) first discovered the vanishing and exploding gradient problem

in training RNNs using backpropagation. Here we analyse this problem in the one-

dimensional scenario as it is easier to understand; the extension to higher dimensions

14

can be found in (Pascanu et al., 2013). The hidden state of RNN at time t can be

calculated by eqn. 2.7. If we simplify it by assuming only one neuron in the hidden

layer and also removing the input, then we have:

ht = φh(whhht−1). (2.14)

In order to show the problem more clearly, we directly use the chain rule instead of

the systematic layer-by-layer approach. Thus, by taking the derivative of the hidden

layer at time t+ l with respect to it at time t we have:

∂ht+l
∂ht

=
l∏

k=1

whhφ
′(whhht+(l−k)) = wlhh

l∏

k=1

φ′(wht+(l−k)). (2.15)

The wlhh is the factor that causes the problem. As seen, if the weight is not equal to

1, it will decay to zero, or grow exponentially fast. This vanishing or exploding of the

gradient causes RNN to be unable to learn long-term dependencies efficiently. One

way to avoid this problem is to use ReLU activation function:

ReLU(x) = max(0, x). (2.16)

The derivation of this function is whether 0 or 1. Thus, it is not as likely to suffer from

the vanishing or exploding problem. A more popular approach is Long Short-Term

memory which is explained in the following.

2.1.4 Long Short-Term Memory (LSTM)

LSTM is a special kind of RNN proposed to be able to learn long-term dependen-

cies (Hochreiter and Schmidhuber, 1997b). The LSTM addresses the vanishing and

exploding gradient problem by using a gating mechanism.

The LSTM keeps a cell state (c), and add or remove information from the cell.

This process is regulated through structures called gates. Gates are sigmoid layers

that generate numbers in the range [0, 1]. These numbers show how much the corre-

sponding component can participate in the information flow. The architecture of the

LSTM unit is depicted in Figure 2.3.

The first gate we analyse is the forget gate. It controls how much information we

should keep from the previous cell state ct−1. For example, in language modelling, it

may keep information about the subject to remember that present verb should end

with “s”. However, if the current input is a new subject, the model may want to

15

ct89:"

78 68

;

input gate output gate

forget gate

cell

ht

[xt; ht-1][xt; ht-1]

[xt; ht-1]

[xt; ht-1]

<8

;;

89:"

Figure 2.3: Architecture of the LSTM unit.

forget the old one. In the LSTM model, forget gate is fed with the previous hidden

state and current input:

ft = σ(W (f)xt +U (f)ht−1 + b(f)), (2.17)

where W and U are weight matrices, and b is bias vector.

The forget gate determines how much information should remain from the pre-

vious cell state. In order to update the cell state, we also need to determine which

information we want to add to it. As mentioned for the language modelling example,

it is clear that we want to add information provided by the current input with respect

to the current hidden state. Thus, at the first step, we create a new candidate vector,

c̃t, that could be added to the cell:

c̃t = tanh(W (c̃)xt +U (c̃)ht−1 + b(c̃)). (2.18)

Now, for a higher level regulation on the added information, we calculate an input

gate which is very similar to the forget gate but with a different set of weights:

it = σ(W (i)xt +U (i)ht−1 + b(i)). (2.19)

Now, everything is ready to update the cell state. In terms of language modelling

example, we want to drop information related to the old subject, and replace them

16

A

xt-1

yt-1

A

xt

yt

A

xt+1

yt+1

[ct-1; ht-1] [ct; ht]

(a) Chain-structured LSTM

A

x4

y4

A

x5

y5

A

x3

y3

A

x1

y1

A

x2

y2

[c2; h2][c1; h1]

[c3; h3][c4; h4]

(b) Tree-structured LSTM

Figure 2.4: Tree and sequence structured LSTMs. Here we used “A” to show an
LSTM unit and emphasise that the unit and weights remain the same while traversing
the structure.

with information about the new subject:

ct = ft � ct−1 + it � c̃t. (2.20)

The output of the LSTM unit, ht, shows the hidden representation of the LSTM,

which can be used by exterior units. The output is a filtered version of the cell, and

the output gate is responsible for gating the information:

ot = σ(W (o)xt +U (o)ht−1 + b(o)). (2.21)

Then, a hyperbolic tangent is applied to the cell to push values in the [-1, 1] range.

Finally, the output of the unit would be:

ht = ot � tanh(ct). (2.22)

As seen, the cell is a linear unit with a fixed-weight self-connection (Hochreiter and

Schmidhuber, 1997a) , and avoids the vanishing or exploding gradient problem. In-

spired by LSTM, Cho et al. (2014b) proposed Gated Recurrent Unit (GRU) that

modulates the flow of information using two gates, without having a separate mem-

ory cell.

2.1.4.1 Tree-LSTM

The LSTM has the ability to preserve long-term information over time. This ability

causes the LSTM to be a powerful tool for chain-structured topologies like temporal

17

sequences. However, in some tasks, we deal with the tree-structure data flow. Tai

et al. (2015) proposed two extensions to the original LSTM architecture for tree-

structured network typologies: Child-sum Tree-LSTM and N-ary Tree-LSTM.

In the standard LSTM, the unit updates the cell concerning the current input

and the state of the cell in the previous time step t − 1. We can think about this

temporal sequence as a linear tree; see Figure 2.4a. Thus, an LSTM at position t is

dependent on the current input and its child (the unit state at time t−1). Now, tree-

structure topology (Figure 2.4b) can be considered as a generalisation to the linear

tree structure. Here each node may have more than one child. Hence, Tree-LSTM

has a forget gate for each child.

Child-sum Tree-LSTM: If we are given a tree and C(j) denotes the children of

node j, the transition functions for this unit are as follows:

h̃j =
∑

k∈C(j)

hk, (2.23)

ij = σ(W (i)xj +U (i)h̃j + b(i)), (2.24)

fjk = σ(W (f)xj +U (f)h̃j + b(f)), (2.25)

oj = σ(W (o)xj +U (o)h̃j + b(o)), (2.26)

c̃ = tanh(W (c̃)xj +U (c̃)h̃j + b(c̃)). (2.27)

cj =
∑

k∈C(j)

fjk � ck + ij � c̃j, (2.28)

hj = oj � tanh(cj). (2.29)

Here, for each child k we calculate a forget gate fjk. In this architecture, each

component is conditioned on the sum of children hidden states hk. Thus, it is a good

option when the branching factor is high, and the order of children is not important.

N-ary Tree-LSTM: This kind of Tree-LSTM is designed for the cases that the

branching factor is at most N and the order is important. The mathematical equa-

tions of this model are as follows:

ij = σ(W (i)xj +
N∑

l=1

U
(i)
l h̃jl + b(i)), (2.30)

fjk = σ(W (f)xj +
N∑

l=1

U
(f)
kl h̃jl + b(f)), (2.31)

oj = σ(W (o)xj +
N∑

l=1

U
(o)
l h̃jl + b(o)), (2.32)

18

Figure 2.5: An example of learning curves that show the behaviour of the negative
log-likelihood loss for the training set and validation set; Image source: (Goodfellow
et al., 2016).

c̃ = tanh(W (c̃)xj +
N∑

l=1

U
(c̃)
l h̃jl + b(c̃)), (2.33)

cj =
N∑

l=1

fjl � cjl + ij � c̃j, (2.34)

hj = oj � tanh(cj). (2.35)

In contrast with Child-sum Tree-LSTM that shares a set of weights among children,

this model keeps a different set of weights for each child.

2.1.5 Regularisation

A major challenge in deep learning and general machine learning is to develop a

method that performs well not just on the training data but also on new inputs.

Regularisation is an umbrella name for strategies that help to prevent a machine

learning model from overfitting and reduce test errors, possibly at the expense of an

increase in the training error (Goodfellow et al., 2016). In the following, we discuss

two popular methods for regularisation in deep models.

2.1.5.1 Early Stopping

When we train a model with a large set of parameters, the model may overfit the

task. We often observe the error in the training set steadily decreases while at some

point, error in the validation set starts to increase (Figure 2.5).

In this approach, we save a copy of the model parameters when the error on the

validation set decreases. We run an optimisation algorithm until the error of the

19

(a) Standard neural network (b) After applying dropout

Figure 2.6: Dropout out mechanism. Left: a standard two-layer network. Right: a
thinned version of the network after applying dropout and dropping crossed units
(Srivastava et al., 2014).

validation set has not decreased for some amount of time. After termination, the last

saved model is returned. By using this approach, we obtain a model with a better

validation set error which hopefully results in a better test set error.

2.1.5.2 Dropout

Large neural networks are usually slow to run and train; thus, it is challenging to

overcome overfitting by techniques like bagging (Breiman, 1996) that combines many

different models. Dropout is proposed to deal with this problem (Srivastava et al.,

2014). The idea is to drop some neurons and their corresponding connections ran-

domly. This approach prevents co-adapting of neurons.

The standard dropout randomly drops neurons from non-output layers at the

training time. It uses an independent Bernoulli random variable with parameter p

for each neuron to decide whether it should be dropped or not. This process can

be thought as sampling from an exponential number of different “thinned” networks

as depicted in Figure 2.6. If the network has n neurons in the input and hidden

layers, then this process samples from a set of 2n different networks. As averaging the

predictions of exponentially many “thinned” models is not feasible in the test time,

authors proposed a simple approximate averaging method. During the test, they use

the original network without dropping neurons. In this network, outgoing weights

20

of each neuron are multiplied by p to obtain a scaled-down version of the trained

weights.

Dropout is widely used in the modern deep learning models, and have shown em-

pirically to significantly lower generalisation error. Some works investigate a Bayesian

perspective of the dropout and propose different variants of it. Wang and Manning

(2013) shows that applying dropout in training can be seen as a Monte Carlo approxi-

mation. They propose Gaussian dropout to do fast dropout training by sampling from

or integrating a Gaussian approximation instead. Kingma et al. (2015) proposes Vari-

ational dropout, which is a generalisation of Gaussian dropout, and optimal dropout

rates are inferred from the data. Gal and Ghahramani (2016) proposes Monte Carlo

dropout, which applies dropout at test time as well. At test time, it performs T

stochastic forward passes through the network and averages the results.

2.1.6 Deep Learning for NLP

2.1.6.1 Word Embedding

Word is a building block of language; similarly, word embedding is a building block

of NLP. Each language consists of a collection of words, aka dictionary. In order to

feed in/out words from a neural network, we need to convert them into numerical

representations. There are three ways to represent words:

• Dictionary Lookup. This is the simplest form which a word is represented by

its index in the dictionary. The problem is that it imposes an explicit ordering

on words, e.g., the model may put more importance on words with higher index

while there is no ordering in words.

• One-Hot Encoding. This approach addresses the ordinal representation of the

previous approach by representing each word in a one-hot encoding format. The

idea is to create a binary vector with the size of vocabulary where all elements

are zero except one. For representing a word, its corresponding columns will be

filled by 1. This immense and sparse representation of input/output provokes

a need for larger weight matrices in input/output layers and imposes memory

and computation burden.

• Distributed Representation. In this approach, words are mapped into a

real-valued vector in low-dimensional continuous space where each dimension

is responsible for a latent feature of the word. Ideally, in the mapped space,

semantically similar words would be located close to each other. Although the

21

embedding table of words can be learned end-to-end, it also can be pre-trained

and used for transfer learning. There are different approaches for training the

word embeddings; however, the idea behind all of them is that semantically

similar words tend to appear within the same context. There are two main

types of pre-training methods: (1) prediction-based methods which learn the

word embeddings in such a way to improve the predictive ability of the target

word given context words, e.g. Word2Vec (Mikolov et al., 2013) for local context

and Global Vectors (GloVe) (Pennington et al., 2014) for global context; (2)

count-based methods that construct co-occurrence counts matrix with the aim

to capture global statistics and perform dimensionality reduction techniques

over the matrix (Church and Hanks, 1989; Deerwester et al., 1990; Turney and

Pantel, 2010; Levy et al., 2015).

2.1.6.2 Statistical Language Modelling

Statistical Language Models (LM) are one of the key building blocks in most of the

natural language processing tasks, including machine translation. A statistical lan-

guage model predicts the probability of a sequence of tokens, e.g., words (w1w2...wT).

It is used to predict the next token (e.g., character, word, sentence) considering the

preceding context. At time t, the probability of token wt given its proceedings is:

p(wi|wi−1, ..., w1). (2.36)

And, applying it for T times gives the probability of the sequence:

p(w) = p(w1, w2, .., wT) =
T∏

i=1

p(wi|wi−1, ..., w1). (2.37)

n-gram Language Models Considering millions of words in the vocabularies of

languages, a fundamental problem which makes the language modelling difficult is

the curse of dimensionality. A practical approach for reducing the curse of dimen-

sionality is to take advantage of word orders and approximate the history by just a

few preceding words.

An n-gram language model applies Markov assumption to condition each word

only on n preceding words:

p(w) = p(w1, w2, .., wT) ≈
T∏

i=1

p(wi|wi−1, .., wi−n+1) (2.38)

The main issues in the n-gram LMs are as follows:

22

BENGIO, DUCHARME, VINCENT AND JAUVIN

softmax

tanh

.

.

.

across words

most computation here

index for index for index for

shared parameters

Matrix

in
look−up
Table

. . .

C

C

wt�1wt�2

C(wt�2) C(wt�1)C(wt�n+1)

wt�n+1

i-th output = P(wt = i | context)

Figure 1: Neural architecture: f (i,wt�1, · · · ,wt�n+1) = g(i,C(wt�1), · · · ,C(wt�n+1)) where g is the
neural network andC(i) is the i-th word feature vector.

parameters of the mapping C are simply the feature vectors themselves, represented by a |V |⇥m
matrixC whose row i is the feature vectorC(i) for word i. The function g may be implemented by a
feed-forward or recurrent neural network or another parametrized function, with parameters ω. The
overall parameter set is θ= (C,ω).

Training is achieved by looking for θ that maximizes the training corpus penalized log-likelihood:

L=
1
T ∑t

log f (wt ,wt�1, · · · ,wt�n+1;θ)+R(θ),

where R(θ) is a regularization term. For example, in our experiments, R is a weight decay penalty
applied only to the weights of the neural network and to theC matrix, not to the biases.3

In the above model, the number of free parameters only scales linearly with V , the number of
words in the vocabulary. It also only scales linearly with the order n : the scaling factor could
be reduced to sub-linear if more sharing structure were introduced, e.g. using a time-delay neural
network or a recurrent neural network (or a combination of both).

In most experiments below, the neural network has one hidden layer beyond the word features
mapping, and optionally, direct connections from the word features to the output. Therefore there
are really two hidden layers: the shared word features layer C, which has no non-linearity (it would
not add anything useful), and the ordinary hyperbolic tangent hidden layer. More precisely, the
neural network computes the following function, with a softmax output layer, which guarantees
positive probabilities summing to 1:

P̂(wt |wt�1, · · ·wt�n+1) =
eywt
∑i eyi

.

3. The biases are the additive parameters of the neural network, such as b and d in equation 1 below.

1142

Figure 2.7: Architecture of an n-gram neural probabilistic language model; Image
source: (Bengio et al., 2003).

• Sparsity Estimating the conditional probability in eqn. 2.38 using the maxi-

mum likelihood estimate results in:

p(wi|wi−1, .., wi−n+1) ≈
Count(wi, wi−1, .., wi−n+1)

Count(wi−1, .., wi−n+1)
,

In fact, conditional probability is estimated by the frequency ratio of co-occurrence.

This estimation suffers from the sparsity problem. It may arise when a given

word sequence has not been observed during the training, or the test data con-

tains unseen words aka out-of-vocabulary. This problem is exacerbated when

the training data is small, e.g., in low-resource machine translation.

• The curse of dimensionality Usually languages contain millions of words and

even with a small n, the matrix of co-occurrence would be enormously large.

• Fixed-length context Applying the Markov assumption makes the n-gram

language model restrictive to a fixed-length context. Therefore, it would be

unable to capture long term dependencies.

23

Neural Probabilistic Language Model Bengio et al. (2003) proposed the first

Neural Probabilistic Language Model (NPLM) to address the sparsity and curse of

dimensionality issues in n-gram LMs by learning a distributed representation for

words. As depicted in Figure 2.7, the core idea is to convert words to distributed

embeddings and use a feed-forward neural network to predict the next word. As the

feed-forward neural network requires a fixed-size input, each word can be conditioned

on fixed-size window of its context p(wi|wi−1, ..., wi−n+1).

Recurrent Neural Network Language Model Although NPLM addresses the

sparsity and curse of dimensionality issues of the n-gram LM, it still suffers from the

fixed-length context. Mikolov et al. (2010, 2011) address this issue by proposing a

Recurrent Neural Network Language Model (RNNLM) by replacing the feed-forward

component in the NPLM by a recurrent neural network component. By using a

generative RNN, the model would be able to process arbitrary-length context. At

each time step i, the hidden state of the unit is calculated as follows:

hi = RNN(hi−1,EEE[wi])

where EEE is the distributed embedding table. The hidden state of RNN will capture

the context for all the previous words (wi−1, ..., w1) and the probability of the i-th

words can be determined as follows:

wi ∼ softmax(Wohht).

2.2 Neural Machine Translation

Neural Machine Translation refers to machine translation based purely on neural

networks. An NMT model often is composed of an encoder to read the input sentence,

and a decoder to generate the output. The encoder reads the source sentence yielding

fixed-length vector representation(s) which then are used by a decoder to generate

translation. As the translation task is intrinsically transduction of a sequence to

another one, a sequence-to-sequence (Seq2Seq) model is a natural option.

2.2.1 Seq2Seq model

Sutskever et al. (2014) proposed the first Seq2Seq model. As shown in Figure 2.9,

the encoder reads the words in the source sentence sequentially and generates a vector

representation as the summary of the source sentence. The summary vector is then

24

h1 s1h2

This is

h3 h4

a test <SOS>

s2h5

<EOS>

Das ist

s3

ein

s4

Test

s5

<EOS>

c

Figure 2.8: Example of Seq2Seq model for English to German translation.

used by the decoder as the context to generate the target sentence word by word. As

the length of sentences can have arbitrary lengths, a special end-of-sentence (EOS)

symbol is used to signal encoder and decoder about the end of the sentence.

Encoder. The encoder is a uni-directional RNN whose hidden states represent to-

kens of the input sequence. These representations capture information not only of

the corresponding token but also other tokens in the sequence to leverage the context.

The RNN runs in the left-to-right direction over the input sequence:

hi = RNN(hi−1,EEES[xi]) (2.39)

where EEES[xi] is the embedding of the token xi from the embedding table EEES of the

input (source) space, and hi is the hidden states of the RNNs which can be based

on the LSTM or GRU units. The hidden state, after reading the last symbol is

the fixed-length vector representation of the source sentence, which is called context

(c = hT).

Decoder. The backbone of the decoder is a uni-directional RNN which generates

the token of the output one-by-one from left to right. The generation of each token

yj is conditioned on all of the previously generated tokens y<j via the state of the

RNN decoder sj, and the input sequence via a fixed context vector c:

yj ∼ softmax(Wy · rj + br) (2.40)

rj = tanh(sj +Wrc · c+Wrj ·EEET [yj−1]) (2.41)

sj = tanh(Ws · sj−1 +Wsj ·EEET [yj−1] +Wsc · c) (2.42)

25

where EEET [yj] is the embedding of the token yj from the embedding table EEET of the

output (target) space, and the W matrices and br vector are the parameters.

Training and Decoding. Suppose we are given a training set D := {(xi,yi)}Ni=0,

the model parameters are trained end-to-end by maximising the (regularised) log-

likelihood of the training data:

arg max
Θ

∑

(x,y)∈D

logPΘ(y|x),

where according to eqn. 2.40 it can be defined as:

arg max
Θ

∑

(x,y)∈D

|y|∑

j=1

logPΘ(yj|y<j,x).

In the decoding time, the best output sequence for a given input sequence is

produced by

arg max
y

PΘ(y|x) =
∏

j

PΘ(yj|y<j,x).

Greedy decoding or beam search algorithms can be employed to find an approximate

solution, since solving the above optimisation problem exactly is computationally

hard.

The bottleneck of this model is that the model should compress all the necessary

information of source sentence into a fixed-length vector. Cho et al. (2014a) showed

that this method performs relatively well on short sentences, but its performance

deteriorates rapidly with the increase in the length of the source sentence.

2.2.2 Attentional Seq2Seq model

To address the bottleneck of fixed-vector representation in the Seq2Seq model, Bah-

danau et al. (2015) proposed an attention mechanism which dynamically attends to

relevant parts of the input sequence necessary for generating the next token in the

output sequence; see Figure 2.9. Moreover, attentional Seq2Seq model is usually

equipped with a bi-directional encoder to capture context of both past and future.

Bi-directional encoder. The encoder is a bi-directional RNN consists of two

RNNs running in the left-to-right and right-to-left directions over the input sequence:

−→
hi = RNN(

−→
h i−1,EEES[xi]) (2.43)

26

. . . s1 . . . sj

cj

!j yj

h1

"1

"1

h2

"2

"2

hn

"n

"n. . .

Figure 2.9: Attentional Encoder-Decoder model.

←−
h i = RNN(

←−
h i+1,EEES[xi]) (2.44)

where
−→
h i and

←−
h i are the hidden states of the forward and backward RNNs which

can be based on the LSTM or GRU units. Each source token is then represented by

the concatenation of the corresponding bidirectional hidden states, hi = [
−→
h i;
←−
h i].

Attentional decoder. The backbone of the decoder is similar to Seq2Seq model

with the difference that the generation of each token yj is conditioned on the input

sequence via a dynamic context vector cj (explained shortly):

yj ∼ softmax(Wy · rj + br) (2.45)

rj = tanh(sj +Wrc · cj +Wrj ·EEET [yj−1]) (2.46)

sj = tanh(Ws · sj−1 +Wsj ·EEET [yj−1] +Wsc · cj) (2.47)

where EEET [yj] is the embedding of the token yj from the embedding table EEET of the

output (target) space, and the W matrices and br vector are the parameters.

A crucial element of the decoder is the attention mechanism which dynamically

attends to relevant parts of the input sequence necessary for generating the next token

in the output sequence. Before generating the next token yj, the decoder computes

the attention vector αj over the input token:

αj = softmax(aaaj)

aji = v · tanh(Wae · hi + Wat · sj−1)

27

Convolutional Sequence to Sequence Learning

inputs. Non-linearities allow the networks to exploit the
full input field, or to focus on fewer elements if needed.

Each convolution kernel is parameterized as W 2 R2d⇥kd,
bw 2 R2d and takes as input X 2 Rk⇥d which is a
concatenation of k input elements embedded in d dimen-
sions and maps them to a single output element Y 2 R2d

that has twice the dimensionality of the input elements;
subsequent layers operate over the k output elements of
the previous layer. We choose gated linear units (GLU;
Dauphin et al., 2016) as non-linearity which implement a
simple gating mechanism over the output of the convolu-
tion Y = [A B] 2 R2d:

v([A B]) = A⌦ �(B)

where A, B 2 Rd are the inputs to the non-linearity, ⌦ is
the point-wise multiplication and the output v([A B]) 2
Rd is half the size of Y . The gates �(B) control which
inputs A of the current context are relevant. A similar non-
linearity has been introduced in Oord et al. (2016b) who
apply tanh to A but Dauphin et al. (2016) shows that GLUs
perform better in the context of language modelling.

To enable deep convolutional networks, we add residual
connections from the input of each convolution to the out-
put of the block (He et al., 2015a).

hl
i = v(W l[hl�1

i�k/2, . . . , h
l�1
i+k/2] + bl

w) + hl�1
i

For encoder networks we ensure that the output of the con-
volutional layers matches the input length by padding the
input at each layer. However, for decoder networks we have
to take care that no future information is available to the de-
coder (Oord et al., 2016a). Specifically, we pad the input
by k � 1 elements on both the left and right side by zero
vectors, and then remove k elements from the end of the
convolution output.

We also add linear mappings to project between the embed-
ding size f and the convolution outputs that are of size 2d.
We apply such a transform to w when feeding embeddings
to the encoder network, to the encoder output zu

j , to the fi-
nal layer of the decoder just before the softmax hL, and to
all decoder layers hl before computing attention scores (1).

Finally, we compute a distribution over the T possible next
target elements yi+1 by transforming the top decoder out-
put hL

i via a linear layer with weights Wo and bias bo:

p(yi+1|y1, . . . , yi,x) = softmax(Woh
L
i + bo) 2 RT

3.3. Multi-step Attention

We introduce a separate attention mechanism for each de-
coder layer. To compute the attention, we combine the cur-
rent decoder state hl

i with an embedding of the previous

Figure 1. Illustration of batching during training. The English
source sentence is encoded (top) and we compute all attention
values for the four German target words (center) simultaneously.
Our attentions are just dot products between decoder context rep-
resentations (bottom left) and encoder representations. We add
the conditional inputs computed by the attention (center right) to
the decoder states which then predict the target words (bottom
right). The sigmoid and multiplicative boxes illustrate Gated Lin-
ear Units.

target element gi:

dl
i = W l

dh
l
i + bl

d + gi (1)

For decoder layer l the attention al
ij of state i and source el-

ement j is computed as a dot-product between the decoder
state summary dl

i and each output zu
j of the last encoder

block u:

al
ij =

exp
�
dl

i · zu
j

�
Pm

t=1 exp
�
dl

i · zu
t

�

The conditional input cl
i to the current decoder layer is a

weighted sum of the encoder outputs as well as the input
element embeddings ej (Figure 1, center right):

cl
i =

mX

j=1

al
ij(z

u
j + ej) (2)

This is slightly different to recurrent approaches which
compute both the attention and the weighted sum over zu

j

3

Figure 2.10: The general architecture of a convolutional Seq2Seq model. The En-
glish source sentence (top) is encoded, and the attention for four target words are
calculated simultaneously (middle). Image source: (Gehring et al., 2017).

which intuitively is similar to the notion of alignment in word/phrase-based statistical

MT (Brown et al., 1993). The attention vector is then used to compute a fixed-length

dynamic representation of the source sentence

cj =
∑

i

αjihi. (2.48)

which is conditioned upon in the RNN decoder when computing the next state or

generating the output word (as mentioned above).

The RNN-based attentional Seq2Seq models have two limitations. First, as RNN

needs to maintain a hidden state that imposes sequential dependency, it cannot be

parallelised. Second, RNNs, even including LSTM, are infamous for their weakness

in capturing long-term dependencies.

2.2.3 Convolutional Seq2Seq model

To address the parallelisation and to some extent the long-term dependency issues

of RNN-based Seq2Seq model, convolutional based neural networks (LeCun and

28

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

Figure 2.11: The general architecture of the Transformer model. Image source:
(Vaswani et al., 2017).

Bengio, 1998) are proposed e.g., ByteNet (Kalchbrenner et al., 2017) and ConvS2S

(Gehring et al., 2017). The high-level architecture of ConvS2S model is depicted in

Figure 2.10. As seen, convolutional layers operate over a fixed-size window of input

tokens and therefore can be operated in parallel. Although the generated representa-

tions are for a fixed-size context, stacking convolutional layers leads to a larger effec-

tive window size. A multi-layer convolutional neural network creates a hierarchical

representation over the input sentence where lower layer capture nearby dependencies

and higher layers capture long-term dependencies. Assume we are given a sentence

with n tokens, a convolutional network with the kernel size of k can capture depen-

dencies with applying O(
n

k
) operations. The number of operations for a recurrent

unit is linear to the size of input O(n).

29

2.2.4 Self-attention Seq2Seq model

Although convolutional neural network-based models are able to parallelise the train-

ing of Seq2Seq model and capture longer dependencies than RNN-based models,

they still suffer from the inability to capture long-term dependencies. Vaswani et al.

(2017) proposed Transformer, an architecture solely based on self-attention. The

Transformer can be seen as an adaptive weighted convolutional kernel with the

window-length of the sequence size. In the convolution kernel, the weights are depen-

dent on the position and not content. Therefore, when we slide the windows through

the sequence, weights are fixed. However, in the Transformer, weights are determined

with respect to the representation of the current position and the representation of

other positions. In other words, the idea is that the position should not be a limi-

tation, and if two tokens are related, they should have higher weights for each other

even if they are distant.

As depicted in Figure 2.11, each layer is consists of a Multi-head attention sublayer

followed by a feed-forward neural network. The difference between the encoder and

the decoder is two-fold: (1) the decoder also attends to the encoder representations;

(2) the decoder does not have attention to the future.

Attention Mechanism in Transformer Transformer is solely based on self-

attention, and benefits from two extensions to the current attention mechanism: (1)

scaled dot-product attention; (2) multi-head attention.

Vaswani et al. (2017) proposed a scaled version of the dot-product attention where

the input to the attention mechanism is consist of queries and keys with dk dimensions

and values with dv dimensions. The scaled dot-product attention is similar to vanilla

dot-product attention that is scaled by the factor of
√
dk:

ScaledAttention(Q,K,V) = softmax

(
QKT

√
dk

)
V (2.49)

The scaling extension is proposed to address the poor performance of the vanilla dot-

product attention in comparison to additive attention (Bahdanau et al., 2015) for

large values of dk (Britz et al., 2017). It is suspected that for large values of dk, the

vanilla dot-product grows large in magnitude and pushes the softmax function into

regions with extremely small gradients, and scaling can fix this issue.

The Transformer also uses a novel multi-head attention mechanism with the idea of

projecting the key, query and value into several representation subspaces, and jointly

attend to information in these subspaces. Intuitively, each subspace may capture a

30

different kind of information, and the result could be considered as an ensemble of

attentions.

MultiHead(Q,K,V) = Concat(head1, ..., headh) (2.50)

where headi = ScaledAttention(QWQ
i ,KW

K
i ,VW

V
i) (2.51)

where Wis are learned parameters. The Transformer applies the mentioned attention

mechanism in three different ways:

1. Self-attention in Encoder In order to obtain the representation of the source

sentence, the Transformer employs self-attention where the Q, K and V come

from the encoder, i.e., embedding of words for the first layer or embedding of

the previous layer for the rest.

2. Cross-attention from Decoder to Encoder As the generation of the target

sequence should be conditioned on the input sentence, the decoder needs to

attend to the relevant part of the source sentence. Therefore, the attention

mechanism is employed with queries Q that comes from the previous layer of

decoder along with key K and values V from the encoder output.

3. Self-attention in Decoder In order to obtain the representation of the gen-

erated sequence so far, self-attention is applied on Q, K and V come from the

decoder, i.e., embedding of generated words for the first layer or embedding of

the previous layer for the rest.

Positional embedding Unlike RNN, the Transformer does not process input to-

kens with respect to their temporal position. Therefore, it needs to be informed about

the relative or absolute position of the tokens in the sequence in order to make use of

sequence order. To encode the position, Vaswani et al. (2017) used sinusoidal func-

tions with different frequencies to extrapolate to sequence lengths even larger than

those observed during the training. Finally, the position embedding is added to the

word embeddings to enrich them with positional information.

2.2.5 Evaluation metrics

There are several methods for evaluating machine translation models. In this section,

we explain four popular evaluation measures.

31

Perplexity (PPL): is the inverse probability of the translation sentence, nor-

malised by the number of words.

PPL(y) = T

√
1∏T

i=1 p(yi|y<i,x)
. (2.52)

Intuitively, PPL is a measure to determine “how confused is the model about its

decision?” (Neubig, 2017).

TER (Snover et al., 2006): Translation Edit Rate (TER) is a machine trans-

lation measure that determines the amount of post-editing required for a generated

translation to exactly matches one of the references. It counts the minimum number

of possible edits including insertion, deletion, shifts of sequence and substitution of

words, and normalise it with the average weight of the references:

TER =
Minimum # of required edits

Average # of reference words
(2.53)

BLEU1 (Papineni et al., 2002): The idea behind this measure is “the closer a

machine translation is to a professional human translation, the better it is” (Papineni

et al., 2002). This measure has a high correlation with the human judgment of

quality and is one of the most popular evaluation measures for machine translation.

It is based on modified precision for n-grams. The n-gram is a contiguous sequence

of words in a given sequence. Modified n-gram precision for a candidate translation

generated by the model is calculated:

pn =

∑
n-gram∈{candidate translation }Countclip(n-gram)
∑

n-gram′∈{candidate translation }Count(n-gram′)
, (2.54)

where Count(n-gram) is the number of mutual n-grams in a candidate translation

and true translation. Countclip(n-gram) is the number of mutual n-grams clipped by

the maximum repetition of n-grams in the true translation.

Next, for a candidate with the length c and the true translation of length r, the

BLEU score is calculated as follows:

BLEU = BP ·
(

N∑

n=1

wn log pn

)
, (2.55)

where wn is weight for the modified n-gram precision and usually is uniform. BP is

the Brevity Penalty:

BP =

{
1 if c > r
e(1−r/c) if c ≤ r

(2.56)

METEOR2 (Banerjee and Lavie, 2005): This score measures sentence-level

1BiLingual Evaluation Understudy
2Metric for Evaluation for Translation with Explicit Ordering

32

similarity scores by explicitly aligning words between the generated translation and

a given reference translation. The matching of two words is done by applying the

following matchers: Exact (identical surface form), Stem (identical stem), Synonym

(common synonym). It then calculates an F-score:

Fmean =
P ·R

α · P + (1− α) ·R, (2.57)

where P and R are precision and recall based on single-word matches. In the next

step, METEOR penalises the translation concerning the order of matched words in

the generated translation and reference. The penalty coefficient is Pen ∝ c/m where

c is the smallest number of “chunks” of matched words such that the words in each

chunk are adjacent (in the generated translation and reference) and in same word

order, and m is the number of matched words:

METEOR = (1− Pen) · Fmean. (2.58)

Statistical Significance: One approach for measuring the statistical significance

is to use approximate randomisation (AR) test (Clark et al., 2011). It randomly

exchanges sentences between the generated translations and references, and estimates

the p-value that a measured score arose by chance. Clark et al. (2011) provides a

tool3 that calculates statistical significance for TER, BLEU and METEOR scores.

2.3 Low-Resource Neural Machine Translation

Like many deep learning methods, NMT requires a large amount of annotated data,

i.e., bilingual sentence pairs, to train a model with a reasonable translation quality

(Koehn and Knowles, 2017). However, for many languages, we do not have the luxury

of having large parallel datasets, a setting referred to as bilingually low-resource

scenario. Therefore, it is critical to compensate for the lack of sizeable bilingual train

data using effective approaches.

The difference between low- and high-resource NMT is more than bilin-

gual data availability! It has been shown that in bilingually low-resource scenar-

ios, Phrase-Based Statical Machine Translation (PBSMT) models outperform NMT

models while for the high-resource the situation is reversed (Koehn and Knowles, 2017;

Lample et al., 2018b). Other works reported different improvements of a model or

3https://github.com/jhclark/multeval

33

technique in different data condition regimes (Qi et al., 2018; Kiperwasser and Balles-

teros, 2018). Recently, Sennrich and Zhang (2019) re-visited low-resource NMT and

showed that low-resource NMT is very sensitive to hyperparameters, architectural de-

sign and other design choices. They have shown that typical settings for high-resource

are not the best for low-resource, and NMT can be unleashed and outperform PBSMT

in low-resource scenarios with a proper setting. However, note that the performance

of an NMT model trained with hundreds of bilingual pairs still is much less than the

one trained with millions.

A practical approach to compensate for the lack of bilingual data in low-resource

NMT is to use auxiliary data. The auxiliary data could be in the form of curated

monolingual linguistic resources, monolingual sentences or multilingual sentence pairs,

i.e., a mixture of high- and low-resource. In this thesis, we will focus on the first type

and leverage curated monolingual for compensating the shortage of bilingual training

data. These resources are mostly available in the form of annotated datasets, e.g.,

treebanks for syntactic parsing or part-of-speech tagged sentences. There are two

main approaches to incorporate these resources into the training of an NMT model:

(1) Using these monolingual resources to build tools which can then be used to an-

notate source sentences (covered in Section 2.3.1); (2) Directly injecting linguistic

knowledge into the translation model (covered in Section 2.3.2). There are other ap-

proaches for improving low-resource NMT that are mainly focusing on using auxiliary

monolingual and multilingual data, and we will cover them in Section 2.3.3.

2.3.1 Incorporate Linguistic Annotation by Transduction of
Complex Structures

Attentional tree-to-sequence Model

Eriguchi et al. (2016) proposed a method to incorporate the hierarchical syntactic

information of the source sentence. Their method is based on the hypothesis that

incorporating syntactic information in NMT can lead to better reorderings, particu-

larly useful when the language pairs are syntactically highly divergent or when the

training bitext is not large. Their model is an extension to the attentional Seq2Seq

model (Section 2.2.2) by calculating embeddings of phrases in addition to the words.

Then, in the decoding process, it will attend on both words and phrases to take into

account the hierarchical syntactic information of the source sentence; see Figure 2.12.

Phrase embeddings are calculated in a bottom-up fashion which is directed by the

34

h1 .	.	. g1 .	.	.h2 hn gj

cj

!j

uj

yj

hn+1
(phr)

h2n-1

(phr)

.	.	.

Figure 2.12: Attentional Tree-to-Sequence model.

parse tree of the source sentence. As generating gold-standard parse trees is not pos-

sible in real-world scenarios, the author proposed to use binary constituency parse

trees4 generated by an off-the-shelf parser.

Tree Encoder It consists of sequential and recursive parts. The sequential part is

the vanilla sequence encoder discussed in Section 2.2.1, which calculates the embed-

dings of words. Then, the embeddings of phrases are calculated using the embeddings

of their constituent words in a recursive bottom-up fashion:

h
(phr)
k = TreeLSTM(hlk,h

r
k).

where hlk and hrk are hidden states of left and right children respectively. This method

uses TreeLSTM units (Tai et al., 2015) to calculate the embedding of a parent node

using its two children units as follow:

i = σ(U
(i)
l h

l +U (i)
r h

r + b(i))

f l = σ(U
(fl)
l hl +U (fl)

r hr + b(fl))

f r = σ(U
(fr)
l hr +U (fr)

r hr + b(fr))

o = σ(U
(o)
l h

l +U (o)
r h

r + b(o))

c̃ = tanh(U
(c̃)
l h

l +U (c̃)
r h

r + b(c̃))

4A constituency parse tree breaks a sentence into sub-phrases.

35

c(phr) = i� c̃+ f l � cl + f r � cr

h(phr) = o� tanh(c(phr))

where i, f l, f r, oj,c̃j are the input gate, left and right forget gates, output gate, and

a state for updating memory cell; cr and cl are memory cells of the right and left

units.

Sequential Decoder Eriguchi et al. set the initial state of the decoder by com-

bining the final state of the sequential and tree encoders as follow:

g0 = TreeLSTM(hn,h
(phr)
root),

The rest of the decoder is similar to the vanilla attentional decoder discussed in

Section 2.2.2. The difference is that, in this model, the attention mechanism makes

use of phrases as well as words. Thus, the dynamic context is calculated as follows:

cj =
n∑

i=1

αjihi +
2n−1∑

i′=n+1

αji′h
phr
i′

Chen et al. (2017a) extended this work by proposing a bidirectional tree encoder.

Though the results for Tree2Seq models are promising, the top-1 trees are prone

to the parser error, and cannot capture semantic ambiguities of the source sentence.

In Chapter 3, we address the issues mentioned above by using combinatorially many

trees encoded in a forest instead of a single top-1 parse tree. We capture the parser

uncertainty by considering many parse trees along with their probabilities using our

ForestLSTM architecture. Following our work, Ma et al. (2018) has also proposed a

forest-based NMT model with a different approach of linearising the forest and using

a Seq2Seq model.

Attentional graph-to-sequence Model

A graph is a mathematical structure to capture relations between entities and is able

to capture more generalised structures than a tree. Graph-to-sequence models are

based on encoding the relationship among the words in the source sentences where

the relationship among the words are given in the form of a graph.

Bastings et al. (2017) proposed a graph-to-sequence method to incorporate the

dependency parse tree of the source sentence. In the dependency parse tree, each

node corresponds to a word in the sentence, and a unique root node (ROOT) is

added. For a sentence of length N , dependency parse tree can be represented by a

36

h(0)

h(1)

h(2)

Figure 2.13: A two-layer syntactic GCN on top of the embeddings, updating them
concerning a dependency parse tree. To simplify image, gates and some labels are
removed. Image source: (Bastings et al., 2017)

.

set of tuples: (wi, Hwi
, lwi

) where wi is i-th word in the sentence, its parent node

(head) is Hwi
∈ {w1, ..., wn, Root}, and lwi

is a dependency tag (label). The encoding

process has two phases: First, they calculate an initial embeddings of words. Second,

they refine and enrich these embeddings concerning the dependency tree.

Initial embeddings can be obtained from an embedding weight matrix or calcu-

lated using an encoder to incorporate contextual information. In the second phase,

a syntactic Graph Convolutional Network (Marcheggiani and Titov, 2017) is used

to update the initial embeddings. As shown in Figure 2.13, each layer updates the

embeddings of nodes with respect to their neighbours in the graph (in this case de-

pendency tree). It means that with k layers, nodes will receive information from

the neighbours at most k hopes away. H-dimensional embedding of word v in the

(j + 1)-th layer is updated:

h(j+1)
v = ρ

 ∑

u∈N(v)

g(j)u,v

(
W

(j)
dir(u,v)h

(j)
u + b

(j)
lab(u,v)

)

 , (2.59)

where N(v) is neighbors of v in dependency tree, and ρ is activation function.

W
(j)
dir(u,v) ∈ RH×H is a weight matrix associated with the direction of edge between u

and v, and b
(j)
lab(u,v) ∈ RH is a bias vector associated with the type of edge (dependency

type). g
(j)
u,v is an edge-wise gating layer to control the contribution of each edge, and

37

is calculated as follows:

g(j)u,v = σ
(
h(j)
u .ŵ

(j)
dir(u,v) + b̂

(j)
lab(u,v)

)
, (2.60)

where ŵdir(u,v) ∈ RH and b̂lab(u,v) ∈ R are learned parameters.

Marcheggiani et al. (2018) has applied the architecture mentioned above to incor-

porate semantic dependency graphs. Beck et al. (2018) has taken another approach

for graph-to-sequence transduction by using Gated Graph Neural Networks (Li et al.,

2015). Recently, Song et al. (2019) has proposed another variant by adopting Graph

Recurrent Network (GCN) (Song et al., 2018) to incorporate semantic knowledge

within an Abstract Meaning Representation (AMR) graph.

In a different direction, Hashimoto and Tsuruoka (2017) proposed an NMT model

with source-side latent graph parsing. Their method is an extension of attentional

Seq2Seq model which learn a latent graph parser as part of the encoder. They

calculate two embeddings for each word. First, they run a sequential encoder on

source sentence to calculate embeddings of words. Second, they calculate another

embedding for each word with respect to the graph.

The graph structure is like a dependency tree with “soft” connections, and without

constraint on the tree structure. This latent graph is presented as a set of tuples: (wi,

p(Hwi
|wi), p(lwi

|wi)) where p(Hwi
|wi) is the probability distribution of the parent of

wi, and p(lwi
|wi) is the probability over dependency tags. In order to obtain this latent

graph for a sentence, they used dependency parsing model proposed by Hashimoto

et al. (2016). First, a bidirectional LSTM traverses over the sentence and calculates

h
(1)
i for words. Then, for each word, the hidden state is fed to a softmax layer to

predict a probability distribution p
(1)
i ∈ RC(1)

over Part Of Speech (POS) tags. Then,

another bidirectional LSTM layer traverses over the sentence to calculate second layer

embeddings. In order to calculate h
(2)
i , the LSTM is fed with the concatenation of

h
(1)
i and W

(1)
l p

(1)
i , where W

(1)
l is a weight matrix. After calculating these two layers,

“soft” edges of the latent graph are calculated as follows:

p(Hwi
= wj|wi) =

exp(m(i, j))∑
k 6=i exp(m(i, k))

, (2.61)

where m(i, j) = h
(2)T
k Wdph

(2)
i is a scoring function with weight matrix Wdp. To

predict the probability distribution p(lwi
|wi), they feed [h

(2)
i ; z(Hwi

)] into a softmax

function. z(Hwi
) is the weighted average of parent’s hidden states:

∑
j 6=i p(Hwi

=

wj|wi)h(2)
j . The parameters of this parsing model are learned by propagating errors

from the translation objective function.

38

Jane	hatte eine Katze .	� (ROOT (S (NP Jane)NP (VP had (NP a	cat)NP)VP .)S)ROOT

Figure 2.14: An example of a source sentence, and its translation in the form of
linearised lexicalised constituency tree (Aharoni and Goldberg, 2017).

After calculating the latent graph, this model uses a modified version of the atten-

tional Seq2Seq model to translate. In the encoder, a sequential encoder generates

embedding of words ei. Then, for each word, another embedding is calculated with

respect to the latent graph:

depi = tanh(Wdep[ei; h̄(Hwi
); p(lwi

|wi)]), (2.62)

where Wdep is weight matrix, and h̄(Hwi
) =

∑
j 6=i p(Hwi

= wj|wi)ej is a weighted

sum of parent’s hidden states. The decoder of this model is a standard LSTM-based

decoder that attends on both types of embeddings (ei and depi).

Attentional sequence-to-tree Model

Aharoni and Goldberg (2017) proposed a method to incorporate syntactic constituency

information of the target language in NMT. As shown in Figure 2.14, they replaced

the target sentence with its linearised lexicalised constituency tree. Then, they use

an attentional Seq2Seq model that learns to parse and translate.

Eriguchi et al. (2017) proposed another method for learning to parse and translate.

Their method inspired by the idea of Multi-Task Learning (Caruana, 1997; Collobert

et al., 2011), and implicitly incorporate linguistics priors. The idea is to modify the

decoder part of standard attentional sequence-to-sequence model in order to generate

parse tree and translation simultaneously. It is done by hybridising decoder using Re-

current Neural Network Grammar (RNNG) (Dyer et al., 2016). RNNG is a generative

model that models both words and their tree-based compositions. By hybridising,

the model can generate a sentence with its parse tree, which is conditioned on the

source sentence.

2.3.2 Multi-Task Learning for Directly Injecting Auxiliary
Knowledge

Multi-Task Learning (Caruana, 1997) is an elegant approach to inject inductive biases

contained in the training signals of related tasks in order to improve generalisation.

It performs the transfer of inductive biases by parallel training of tasks and sharing

representations. The inductive biases cause the MTL model to prefer hypotheses that

explain more than a single task (Ruder, 2017).

39

2.3.2.1 Multi-Task Learning

Sharing strategies aka architectural design. Multi-task learning is possible

by sharing representations among tasks; and is best achieved by sharing parameters

among them. Therefore, a subset of all of the parameters is tied across the tasks. This

is the most commonly used type of sharing and goes back to (Caruana, 1997). There

is another form of sharing inspired by the idea of generating similar (not necessarily

identical) representations for different tasks. This type of sharing is based on keeping

a separate set of parameters for each task, and regularise the distance between the

parameters across them (Duong et al., 2015; Yang and Hospedales, 2016). This setting

is referred to as soft parameter sharing (Ruder, 2017), and is not widely used as it is

sensitive to the tuning of regularisation sensitivity parameters. From the amount of

sharing aspect, MTL models can be divided into the following categories:

• Full sharing: In this case, a single model performs all of the tasks. For

informing the model regarding the desired task, a special tag could be added to

the corresponding input.

• Partial sharing: The idea behind this model is that not all of the representa-

tions need to be shared across tasks. Each task has its own set of parameters to

learn task-specific representations, while some of the parameters are tied among

tasks to make knowledge sharing possible.

Training Schedule. Training schedule is the beating heart of MTL, and has a

critical role in the performance of the resulted model. Training schedule is responsible

for balancing out the importance (participation rate) of different tasks throughout the

training process, in order to make the best use of the knowledge provided them. There

is more than one task involve in the training of an MTL model. We categorise the

MTL approaches based on the flavour of MTL they consider:

• General-MTL: where the goal is to improve all of the tasks (Chen et al., 2018b;

Guo et al., 2018);

• Biased-MTL: where the aim is to improve one of the tasks, referred to as the

main task, the most (Kiperwasser and Ballesteros, 2018; Guo et al., 2019). As

the main aim of this thesis is to improve the translation task, we use these

flavour MTL.

40

Note that prior works solely use “MTL” to refer to either of these categories, however

we distinguish between them to make comparison easier.5

2.3.2.2 Multi-Task Learning and Transfer Learning

In this Section, we want to show the relation of the MTL to other learning frameworks.

Note that there is no universal definition for some of the learning frameworks. For

example, researchers use different definitions of transfer learning; some try to put

MTL in the umbrella of transfer learning (Pan and Yang, 2009) while others try to

distinguish between them (Torrey and Shavlik, 2010). We stick with the definition

of Pan and Yang (2009). Assume we are given a source set DS := {(x(S)
i ,y

(S)
i)}NS

i=0

from the source joint PS(X, Y), and a target set DT := {(x(T)
i ,y

(T)
i)}NT

i=0 comes from

the target joint PT (X, Y). Transfer learning aims to improve the target learned

hypothesis (model) hT in PT (X) by using DS. Please note that with this definition,

the General-MTL is not necessarily a transfer learning method because of following

reasons: (1) in General-MTL we cannot define source and target tasks as all of the

tasks are regarded as same; (2) the goal is to improve (in expectation) all of the tasks

even with the cost of degradation in the performance of some of them. On the other

side, Biased-MTL can be seen as inductive transfer learning where the source and

target tasks are different and trained together. Now, we can consider auxiliary tasks

as source tasks and the main task as the target.

Multi-task learning and positive/negative transfer. Sharing information among

tasks is a double-edged sword. If transfer causes performance decrease, then negative

transfer has occurred. If transfer helps to improve the performance, we then call it

positive transfer. As all of the tasks are not entirely related, the main goal of MTL

is to maximise the positive transfer while minimising the negative transfer.

Recently, Wang et al. (2019) proposed a formal definition of negative transfer

in transfer learning. Following them, we formalise the negative transfer for Biased-

MTL. Suppose we are given a set of a main task along with one auxiliary task (it

can be easily extended to more auxiliary tasks). Each task has its own training set

Dk := {(x(k)
i ,y

(k)
i)}Nk

i=0, where k = 0 denotes the main task. An MTL approach

takes training data of tasks as input, and outputs a hypothesis h = MTL
(
{Dk}1k=0

)
.

5Recently, Liu et al. (2019b) coined the term “auxiliary learning” to refer to Biased-MTL, however
we stick with the term Biased-MTL as it is self-descriptive and more consistent with the part of
literature that solely used “MTL” term.

41

Assuming ` is the loss for the main task, and P0(X, Y) is the joint distribution of the

main task, then the standard expected risk is defined as follows:

RP0(h) := E(x,y)∼P0 [`(h(x),y)].

Note that the expected risk should be measured on a separate test set. Then we

define negative transfer condition for any Biased-MTL approach as:

RP0

(
MTL

(
{D0,D1}

))
> RP0

(
MTL

(
{D0}

))
.

where MTL ({D0}) refers to the hypothesis generated for the single main task. This

definition can also be extended to examine whether a training schedule and/or ar-

chitecture A is better than B for capturing positive transfer and avoiding negative

transfer as follows:

RP0

(
MTLB

(
{D0,D1}

))
> RP0

(
MTLA

(
{D0,D1}

))
,

The current research on MTL is focused on encouraging positive transfer and

preventing the negative transfer phenomena in two lines of research: architectural

design and training schedule.

2.3.2.3 Multi-Task Learning in Practice

MTL has been applied in different areas of machine learning. For non-deep learning

methods, MTL has been applied in different settings including support vector ma-

chines (Evgeniou and Pontil, 2004), multiple linear regression (Jalali et al., 2010),

image classification (Yuan et al., 2012), relation extraction (Jiang, 2009), linguistic

annotation (Reichart et al., 2008). Recently, with the raising wave of deep learning,

deep MTL becomes popular for different applications including visual representation

learning (Doersch and Zisserman, 2017), face detection (Ranjan et al., 2017), scene

understanding (Kendall et al., 2018), medical image segmentation (Moeskops et al.,

2016), speaker-role adaptation in conversational AI (Luan et al., 2017).

MTL and NLP. Deep MTL has also been used for various NLP problems, including

graph-based parsing (Chen and Ye, 2011) and key-phrase boundary classification

(Augenstein and Søgaard, 2017) . (Chen et al., 2017b) has applied to Multi-Task

Learning for Chinese word segmentation, and (Liu et al., 2017) applied it for text

classification problem. Both of these works have used adversarial training to make

sure the shared layer extract only common knowledge.

42

MTL has been used effectively to learn from multimodal data. Luong et al. (2016)

has proposed MTL architectures for neural Seq2Seq transduction for tasks including

MT, image caption generation, and parsing. They fully share the encoders (many-to-

one), the decoders (one-to-many), or some of the encoders and decoders (many-to-

many). Pasunuru and Bansal (2017) has made use of an MTL approach to improve

video captioning with auxiliary tasks, including video prediction and logical language

entailment based on a many-to-many architecture.

MTL for NMT Multi-task learning has attracted attention to improve NMT in

recent works. (Zhang and Zong, 2016) has made use of monolingual sentences in

the source language in a Multi-Task Learning framework by sharing encoder in the

attentional encoder-decoder model. Their auxiliary task is to reorder the source text

to make it close to the target language word order. (Domhan and Hieber, 2017)

proposed a two-layer stacked decoder, which the bottom layer is trained on language

modelling on the target language text. The next word is jointly predicted by the

bottom layer language model and the top layer attentional RNN decoder. They

reported only moderate improvements over the baseline and fall short against using

synthetic parallel data.

2.3.2.4 Multi-task learning for injecting linguistic knowledge in NMT

The current research on MTL is focused on encouraging positive transfer and prevent-

ing the negative transfer phenomena in two lines of research: (1) Architecture design:

works in this area, including part II of this thesis, try to learn effective parameter

sharing among tasks; (2) Training schedule: works in this area, including part III of

this thesis, focus on setting the importance of tasks throughout the training.

Linguistic auxiliary tasks and architectural design Søgaard and Goldberg

(2016) and Hashimoto et al. (2016) have proposed architectures by stacking up tasks

on top of each other according to their linguistic level, e.g. from lower-level tasks (POS

tagging) to higher-level tasks (syntactic parsing). In this approach, each task uses

predicted annotations and hidden states of the lower-level tasks for making a better

prediction. Dalvi et al. (2017) investigated the amount of learned morphology and

how it can be injected using MTL. Kiperwasser and Ballesteros (2018) has investigated

part-of-speech tagging and dependency parsing tasks where models with fully shared

parameters are trained jointly on multiple tasks.

43

Niehues and Cho (2017) has made use of part-of-speech tagging and named-entity

recognition tasks to improve NMT. They have used the attentional encoder-decoder

with a shallow architecture, and share different parts, e.g. the encoder, decoder, and

attention. They report the best performance with fully sharing the encoder.

In Chapter 4, for the first time to the best of our knowledge, we have used semantic

parsing as an auxiliary task along with others, i.e. syntactic parsing, and named-

entity recognition. We propose an architecture that uses partial sharing on deep

stacked encoder and decoder components, and the results show that it is critical for

NMT improvement in MTL. Furthermore, we propose adversarial training to prevent

contamination of shared knowledge with task-specific details. Then, in Chapter 4,

we propose a model that learns how to control the amount of sharing among tasks

dynamically.

Training schedule. Since there is more than one task involved in MTL, training

schedules are designed specifically for each flavour of MTL: General-MTL and Biased-

MTL. Training schedules designed for the global-MTL are focused on co-evolving easy

and difficult tasks uniformly. These methods are designed to achieve competitive

performance with existing single-task models of each task (Chen et al., 2018b; Guo

et al., 2018). On the other hand, training schedules for Biased-MTL focus on achieving

greater improvements on the main task, and our method belongs to this category.

Since this thesis aims to improve the translation task the most, we will focus on this

flavour.

Training schedules can be fixed/dynamic throughout the training and be hand-

engineered/adaptive. In Chapter 4, we propose a fixed hand-engineered schedule for

improving low-resource NMT with auxiliary linguistic tasks. Recently, Guo et al.

(2019) has proposed an adaptive way to calculate the importance weights of tasks.

Instead of manual tuning of importance weights via an extensive grid search, they

model the performance of each set of weights as a sample from a Gaussian Process

(GP) and search for optimal values. Their method is not entirely adaptive as strong

prior needs to be set for the main task. This method can be seen as a guided yet

computationally exhaustive trial-and-error, where in each trial, MTL models need

to be re-trained (from scratch) with the sampled weights. Moreover, the weight of

tasks is fixed throughout the training. At least, for the case of low-resource NMT,

Kiperwasser and Ballesteros (2018) shows that dynamically changing the weights

throughout the training is essential to make better use of auxiliary tasks. They have

44

proposed hand-engineered training schedules for MTL in NMT, where they dynami-

cally change the importance of the main task vs. the auxiliary tasks throughout the

training process. Their method relies on hand-engineered schedules which should be

tuned by trial-and-error, In Part III, we will introduce a learning to multi-task learn

method to adaptively and dynamically set the importance of the tasks and learn the

MTL model in the course of a single training run.

Zhang et al. (2018a) has proposed a learning-to-MTL framework in order to learn

effective MTL architectures for generalising to new tasks. This is achieved by col-

lecting historical multi-task experience, represented by tuples consisting of the MTL

problem, MTL architecture, and its relative error. In contrast, our learning-to-MTL

framework tackles the problem of learning effective training schedules to use auxiliary

tasks in such a way to improve the main translation task the most.

2.3.3 Other Approaches

2.3.3.1 Active Learning

The key idea behind active learning (AL) is that we can achieve better accuracy with

fewer labels if the model is able to choose the training data it learns from (Settles,

2009). AL approaches are based on the assumption that there is a pool or stream of

unlabelled data and a limited budget for the annotation. Traditional AL methods are

mostly based on heuristics to guide the selection of unlabelled data for the annotation.

Tong and Chang (2001) proposed policies to select data considering the confidence of

the classifier while Gilad-Bachrach et al. (2006) introduced an approach based on a

query on a committee of classifiers. Yang et al. (2015) proposed an approach based on

the heuristic of making the selected data as diverse as possible. There are much more

heuristics in the literature which also could be mixed and matched. Although these

heuristics have shown to be beneficial, the effectiveness of these heuristics is limited,

and their performance varies with between datasets. Recently, deep Reinforcement

Learning has been used for learning the active learning algorithm. Woodward and

Finn (2017) combined the RL with one-shot learning for learning how and when to

request labels in stream-based AL. Bachman et al. (2017) used policy gradients to

select the unlabelled data, and also the order of selection for the pool-based AL. The

learning to active learning methods also have been successfully applied on some NLP

classification tasks (Fang et al., 2017; Liu et al., 2018; Vu et al., 2019).

For low-resource machine translation, we assume small bilingual corpora and a

pool of monolingual sentences along with an annotation budget. The active learner

45

aims to select the unlabelled data in such a way to make the best use of the anno-

tation budget in terms of the performance of the resulted translation model. There

are several heuristics for statistical MT for selecting the untranslated sentences by

considering the entropy of the potential translation, similarity-based selection, feature

decay to increase the diversity (Haffari et al., 2009; Haffari and Sarkar, 2009; Biçici

and Yuret, 2011). Recently, Liu et al. (2018) proposed an approach for learning active

learning policies for low-resource NMT by formulating the training as a hierarchical

MDP.

2.3.3.2 Back-translation and Dual Learning

A practical approach to leverage the monolingual sentences in source and target

languages for data augmentation using back-translation. Sennrich et al. (2016a) pro-

posed to use a pre-trained translation model to translate target monolingual sentences,

and then use them as additional parallel data to re-train the source-to-target NMT

model. Interestingly, it has been shown that even copying the monolingual target sen-

tence as its source (i.e., identical source and target) is also beneficial for low-resource

NMT (Currey et al., 2017). Hoang et al. (2018) suggest an iterative back-translation

approach for generating increasingly better syntactic bilingual pairs. Zhang et al.

(2018b) extended this approach to use both source and target monolingual data by

jointly optimising a source-to-target and target-to-source NMT models. Further, a

bi-directional NMT model can be served as both source-to-target and target-to-source

translation models (Niu et al., 2018). More importantly, it has been shown that dif-

ferent methods for generating back-translation have different effects on high versus

low-resource settings (Edunov et al., 2018).

Inspired by the success of back-translation, He et al. (2016) suggested a dual

learning mechanism for improving NMT. It can be seen as an extension to the iterative

back-translation by using deep RL approach., The idea is that any source-to-target

translation task has a dual task in the form of target-to-source where the primal and

dual tasks can form a closed loop. The primal and dual tasks can provide informative

feedback regarding the generated translations of each other, which ensures that a

translated sentence can be back-translated to the original one. Similarly, Cheng

et al. (2016); Tu et al. (2017) have also used the reconstruction score to leverage

monolingual corpora. In the dual learning, the models for primal and dual tasks are

represented by agents and trained using deep RL as back-propagating through the

sequence of discrete predictions is not differentiable. Lample et al. (2018a) instead

propose to use symmetric architectures for both models and freeze primal/dual model

46

when training the other dual/primal model, and vice versa. As a result, they were able

to apply their fully-differentiable model on unsupervised NMT effectively. Artetxe

et al. (2018) also proposed an approach based on dual learning to train an NMT model

in a completely unsupervised manner. They use a shared encoder for both primal

and dual models and use pre-trained unsupervised cross-lingual embeddings (Artetxe

et al., 2017). Therefore, the distributed representation of words would be language-

independent, and the model only needs to learn how to compose representations for

larger phrases. The last two approaches can be combined for a further improvement

(Lample et al., 2018b).

2.3.3.3 Adversarial training

Inspired by advances in Generative Adversarial Networks (Goodfellow et al., 2014),

adversarial training approaches have been proposed for co-training a discriminator

network along with the NMT model (Yang et al., 2018; Wu et al., 2017). The

NMT model (generator) tries to generate translations indistinguishable from human-

translated ones while a discriminator tries to distinguish between machine-generated

and human-translated ones. The two networks are co-trained by playing a min-max

game and achieve a win-win situation when they reach the Nash Equilibrium. Policy

gradient methods can be leveraged to co-train the NMT model and adversary. Al-

though these approaches have achieved some performance gains, one of the primary

bottlenecks in this direction is that the text generation remains a challenging task

even for modern GAN architectures (Nie et al., 2019).

2.3.3.4 Zero/Few Shot Learning

Johnson et al. (2017); Ha et al. (2016) are the first who have shown that multilin-

gual NMT models are somewhat capable of translating between untrained language

pairs; the setting referred to as zero-shot learning. Gu et al. (2018a) proposed a

new multilingual NMT model specifically to improve the translation of low-resource

languages. It shares the universal lexical and sentence level representations across

multiple source languages into one target language. This model enables the sharing

of resources between high-resource languages and low-resource ones. Further, Gu

et al. (2018b) proposed a meta-learning approach for low-resource NMT by using

the universal lexical representations. Inspired by the idea of model-agnostic meta-

learning algorithm (Finn et al., 2017), they view the training on NMT model on

different low-resource language pairs as separate tasks. Then, they train the NMT

model in such a way to rapidly adapt to new language pairs with a minimal amount

47

of bilingual language pairs. In a different direction, Neubig and Hu (2018) proposed

to use a pre-trained multilingual NMT model and fine-tune it on new low-resource

language pairs for rapid adaptation of NMT on new languages.

Recently, Arivazhagan et al. (2019) have investigated why multilingual NMT mod-

els do not perform well on unseen language pairs. They have found that the issue

raises when the model is not able to learn language invariant features and propose

auxiliary losses to impose language-invariant representations across languages. Gu

et al. (2019) investigated the issue rises as the results of capturing spurious correla-

tion in the training data. Then, they proposed to use language model pre-training

and back-translation to help the model to disregard such correlation.

2.4 Summary

In this chapter, we covered the foundations and prior related works to this thesis.

We overviewed deep learning fundamentals and its usage in NLP and machine trans-

lation. Then, we reviewed the case of bilingually low-resource NMT and described

how linguistic resources could be used to compensate for the lack of bilingual data.

This thesis aims to explore further and extend this line of research. In part I, we in-

corporate uncertainty in machine-generated linguistic annotations in Neural Machine

Translation by proposing a forest-to-sequence model. In parts II and III, we focus on

directly injecting the linguistic knowledge using Multi-Task Learning where Part II

is mainly focused on the architectural design aspect and part III is dedicated to the

training schedule.

48

Part I

Transduction of Complex
Structures

49

Chapter 3

An Attentional Forest-To-Sequence
Model

This chapter is based on:

P. Zaremoodi, G. Haffari, “Incorporating Syntactic Uncertainty in Neural Machine

Translation with a Forest-to-Sequence Model”, Proceedings of the 27th Interna-

tional Conference on Computational Linguistics (COLING), 2018.

The main aim of this thesis is to improve the performance of Neural Machine Trans-

lation in bilingually low-resource scenarios by incorporating linguistic knowledge. As

mentioned in Section 2.3, one approach is to train or use pre-trained parsers to provide

annotations of the source sentences. Incorporating syntactic information in Neural

Machine Translation (NMT) can lead to better reorderings (Eriguchi et al., 2016),

particularly useful when the language pairs are syntactically highly divergent or when

the training bitext is not large. Previous work on using syntactic information, pro-

vided by top-1 parse trees generated by (inevitably error-prone) parsers, has been

promising (Eriguchi et al., 2016; Chen et al., 2017a). In this chapter, we propose a

forest-to-sequence NMT model to make use of combinatorially many parse trees of

the source sentence to compensate for the parser errors. Our method represents the

collection of parse trees as a packed forest and learns a neural transducer to translate

from the input forest to the target sentence. Experiments on English to German,

Chinese and Farsi translation tasks show the superiority of our approach over the

sequence-to-sequence and tree-to-sequence neural translation models.

50

3.1 Introduction

One of the main premises about natural language is that words of a sentence are

inter-related according to a (latent) hierarchical structure (Chomsky, 1957), i.e. a

syntactic tree. Therefore, it is expected that modelling the hierarchical syntactic

structure should improve the performance of NMT, especially in low-resource or lin-

guistically divergent scenarios, such as English-Farsi. In this direction, Li et al. (2017)

uses a sequence-to-sequence model, making use of linearised parse trees. Chen et al.

(2018a) has proposed a model which uses syntax to constrain the dynamic encod-

ing of the source sentence via structurally constrained attention. Bastings et al.

(2017); Shuangzhi Wu (2017); Beck et al. (2018); Ding and Tao (2019) have incorpo-

rated syntactic information provided by the dependency tree of the source sentence.

Marcheggiani et al. (2018) has proposed a model to inject semantic bias into the

encoder of NMT model.

More related to our work, Eriguchi et al. (2016); Chen et al. (2017a) have proposed

methods to incorporate the hierarchical syntactic constituency information of the

source sentence. In addition to the embedding of words, calculated using the vanilla

sequential encoder, they calculate the embeddings of phrases recursively, directed by

the top-1 parse tree of the source sentence generated by a parser. Though the results

are promising, the top-1 trees are prone to parser error, and furthermore cannot

capture semantic ambiguities of the source sentence.

In this chapter, we address the issues mentioned above by using exponentially

many trees encoded in a forest instead of a single top-1 parse tree. We capture

the parser uncertainty by considering many parse trees and their probabilities. The

encoding of each source sentence is guided by the forest and includes the forest nodes

whose representations are calculated in a bottom-up fashion using our ForestLSTM

architecture (Section 3.2). Thus, in the encoding stage of this approach, different

ways of constructing a phrase are taken into consideration, along with the probability

of rules in the corresponding trees. We evaluate our approach on English to Chinese,

Farsi and German translation tasks, showing that forests lead to better performance

compared to top-1 trees and sequential encoders (Section 3.4).

Following our work, Ma et al. (2018) has also proposed a forest-based NMT model.

Instead of modelling the hierarchical structure of the forest, their model is based on

linearising the forest and using a Seq2Seq model.

51

saw

saw jane

jane with telescope

with telescope

jane with telescope

saw jane with telescope

0.3 0.6

0.4

0.5
0.8

Figure 3.1: An example of generating a phrase from two different parse trees

3.2 Neural Forest-to-Sequence Translation

The Tree2Seq model proposed by Eriguchi et al. (2016) (discussed in section 2.3.1)

uses the top-1 parse tree generated by a parser. Mistakes and uncertainty in parsing

could affect the performance of the translation. To address these issues, we propose a

method to consider combinatorially many parse trees along with their corresponding

probabilities. It consists of a forest encoder to encode a collection of packed parse

trees, in order to reduce error propagation due to using only the top-1 parse tree. Our

forest encoder calculates representations for words and phrases of the source sentence

with respect to its parse forest. A sequential decoder, then, generates output words

one-by-one from left-to-right by attending to both words and phrases (i.e., forest

nodes).

3.2.1 Forest Encoder

The forest encoder consists of sequential and recursive parts for obtaining representa-

tion for both words and phrases. The sequential part is the vanilla sequence encoder

(discussed in Section 2.2.1) that calculates the context-dependent representation of

words. Then, the embeddings of phrases are calculated with respect to the source

sentence parse forest in a recursive bottom-up fashion.

Embedding of Words. The source sentence is encoded by a sequential LSTM, as

in the vanilla Seq2Seq model (Luong et al., 2015a):

hi = SeqLSTM(hi−1,Ex[xi])

52

where Ex[xi] is the embedding of the word xi in the embedding table Ex of the source

language, and hi is the context-dependent embedding of xi.

Embedding of Phrases. We calculate the embedding of the forest nodes (phrases)

in a bottom-up fashion. For each hyper-edge, we calculate the embedding of the

head with respect to its tails using a TreeLSTM unit (Tai et al., 2015). In a forest,

however, a phrase can be constructed in multiple ways using the incoming hyper-

edges to a forest node, with different probabilities (see Figure 3.1). Our ForestLSTM

combines the phrase embeddings resulted from these hyper-edges, and takes into

account their probabilities in order to obtain a unified embedding for the forest node

and its corresponding phrase:

γ l = tanh

(
U γ

N∑

l′=1

1l 6=l′h
l′ +W γhl + vγpl + bγ

)

f l = σ

(
U f

N∑

l′=1

1l 6=l′ [h
l′ ;γ l

′
] +W f [hl;γ l] + bl

)

i = σ

(
U i

N∑

l=1

[hl;γ l] + bi

)

o = σ

(
U o

N∑

l=1

[hl;γ l] + bo

)

where N is the number of incoming hyper-edges, hl is the embedding for the head

of the l-th incoming hyper-edge and pl is its probability and vγ is the learned weight

for the probablity. γ l is a probability-sensitive intermediate representation for the

l-th incoming hyper-edge, which is then used in the computations of the forget gate

f l, the input gate i, and the output gate o. The representation of the phrase hphr is

then calculated as

c̃ = tanh

(
U c̃

N∑

l=1

[hl;γ l] + bc̃

)

cphr = i� c̃+
N∑

l=1

f l � cl

hphr = o� tanh(cphr)

where cl is the memory cell of the TreeLSTM unit used to calculate the representation

of the head for the l-th hyper-edge from its tail nodes.

53

3.2.2 Sequential Decoder

We use a sequential attentional decoder similar to that of the Tree2Seq model,

where the attention mechanism attends to both words and phrases in the forest:

cj =
n∑

i=1

αjihi +

np+n∑

i′=1+n

αji′h
phr
i′

where n is the length of the input sentence, and np is the number of forest nodes.

We initialise the decoder’s first state by using a TreeLSTM unit (Section 2.1.4.1)

to combine the embeddings of the last word in the source sentence and the root of

the forest:

g0 = TreeLSTM(hn,h
phr
root).

This provides a summary of phrases and words in the source sentence to the decoder.

3.2.3 Training

Suppose we are given a training set D := {(xi,yi,Fxi
)}Ni=0, the model parameters

are trained end-to-end by maximising the (regularised) log-likelihood of the training

data:

arg max
Θ

∑

(x,y,Fx)∈D

logPΘ(y|x,Fxi
),

where D is the set of triples consists of the bilingual training sentences (x,y) paired

with the parse forests of the source sentences Fx.

3.3 Computational Complexity Analysis

We now analyse the computational complexity of inference for Seq2Seq, Tree2Seq

and Forest2Seq models. We show that, interestingly, our method process combi-

natorially many trees with only a small linear overhead.

Let |x| denotes the length of the source sentence and O(Ws) and O(Wr) are

computational complexity of forward-pass for the sequential and Tree/Forest LSTM

units, respectively. Having N nodes in the tree/forest, the computational complexity

of the encoding phase would be:

O(2Ws|x|+WrN)

54

Sentence Length Avg. tree nodes Avg. forest nodes Avg. # of trees in forests

<10 7.94 9.77 6.13E+4
10-19 12.3 18.99 2.62E+16
20-29 21.18 41.79 2.76E+22
>30 31 78.72 2.21E+15

all 10.33 14.84 1.41E+20

Table 3.1: The average number of nodes in trees and forests along with average
number of trees in forests for En→Fa bucketed dataset.

where the first term shows the computational complexity of a bidirectional sequential

encoder to calculate the embeddings of words, and the latter one is the time for

computing the embeddings of phrases with respect to the corresponding tree/forest.

For generating each word in the target sentence, the attention mechanism performs

soft attention on words and phrases of the source sentence. If O(Wt) be the time for

updating the decoder state and generating the next target word, for a target sentence

with length |y| the decoding phase computational complexity would be:

O(Wt|y|+ |y|(N + |x|))

Hence, the total inference time for a sentence pair is:

O(2Ws|x|+WrN +Wt|y|+ |y|(N + |x|))

The difference among these three methods is N . For the Seq2Seq model N is 0.

For the Tree2Seq model, the number of nodes in the tree is a constant function

of the input size: N = |x| − 1. Since we used pruned forests obtained from the

parser in (Huang, 2008), the number of nodes in the forest is variable. Table 3.1

shows the average value of N for trees/forests for different source lengths for one of

the datasets we used in experiments. As seen, while forests contain combinatorially

many trees, on average, the number of nodes in parse forests is less than twice the

number of nodes in the corresponding top-1 parse trees. It shows that our method

considers combinatorially many trees instead of the top-1 tree using only a small

linear overhead.

3.4 Experiments

3.4.1 The Setup

Datasets. We make use of three different language pairs, translating from English

(En) to Farsi (Fa), Chinese (Ch), and German (De). Our research focus is to tackle

55

Train Dev Test

En → Fa 337K RND. 2k RND. 2k

En → Ch 44k devset1 2 devset 3

En → De 100K newstest2013 newstest2014

Table 3.2: The statistics of bilingual corpora.

NMT issues for bilingually low-resource scenarios, and En→Fa is intrinsically a low-

resource language. Moreover, we used small datasets for En→Ch and En→De lan-

guage pairs to simulate low-resource scenarios, where the source and target languages

are linguistically divergent and close, respectively. For En→Fa, we use the TEP cor-

pus (Tiedemann, 2009) which is extracted from movie subtitles. For En→Ch, we use

BTEC and for En→De, we use the first 100K sentences of Europarl1. The statistics

of the datasets has been summarised in Table 3.2.

We lowercase and tokenise the corpora using Moses scripts (Koehn et al., 2007).

Sentences longer than 50 words are removed, and words with the frequency less than

5 are replaced with <Unk>. Compact forests and trees for English source sentences

are obtained from the parser in (Huang, 2008), where the forests are binarised, i.e.

hyper-edges with more than two tail nodes are converted to multiple hyper-edges

with two tail nodes. This is to ensure a fair comparison between our model and the

Tree2Seq model (Eriguchi et al., 2016) where they use binary HPSG parse trees.

Furthermore, we prune the forests by removing low probability hyper-edges, which

significantly reduces the size of the forests. In all experiments, we use the development

sets for setting the hyper-parameters, and the test sets for evaluation.

Implementation Details. We use Mantis implementation of attentional NMT

(Cohn et al., 2016) to develop our code for Forest2Seq and Tree2Seq with DyNet

(Neubig et al., 2017). All neural models are trained end-to-end using Stochastic Gra-

dient Descent, where the mini-batch size is set to 128. The maximum training epochs

is set to 20, and we use early stopping on the development set as a stopping condition.

We generate translations using greedy decoding. The BLEU score is computed using

the “multi-bleu.perl” script in Moses.

3.4.2 Results

The perplexity and BLEU scores of different models for all translation tasks are pre-

sented in Table 3.4. In all translation tasks, Forest2Seq outperforms Tree2Seq

1http://www.statmt.org/wmt14/translation-task.html

56

(a) (b)

Figure 3.2: (a) BLEU scores for bucketed En→Ch dataset. (b) Percentage of more
correct n-grams generated by the Tree2Seq and Forest2Seq models compared to
Seq2Seq model for En→Ch dataset.

Perplexity BLEU

Forest encoder W/ sequential part 16.66 12.38
Forest encoder W/O sequential part 17.48 11.97

Table 3.3: The effect of the sequential part in the forest encoder (En → Fa).

as it reduces syntactic errors by using forests instead of top-1 parse trees. Our re-

sults confirm those in (Eriguchi et al., 2016) and show that using syntactic trees in

Tree2Seq improve the translation quality compared to the vanilla Seq2Seq. Com-

paring BLEU scores of the forest-based and tree-based models, the largest increase is

observed for English to Farsi pair. This can be attributed to the syntactic divergence

between English and Farsi (SVO vs. SOV) as well as the reduction of significant

errors in the top-1 parser trees for this translation task, resulted from the domain

mismatch between the parser’s training data (i.e. Penn Tree Bank) and the English

source (i.e. informal movie subtitles).

3.4.3 Analysis

The effect of the sequential part in the forest encoder The forest encoder

consists of sequential and recursive parts, where the former is the vanilla sequence

encoder. The attention mechanism attends to the embeddings of both sequential and

recursive parts. We investigate the effect of the sequential part in the proposed forest

encoder. Table 3.3 shows the results on the test set of En → Fa dataset. The results

show that the sequential part in the forest encoder leads to improvement in results.

Speculatively, the sequential part helps the forest encoder by providing the context-

aware embeddings for words which then be used to construct phrase embeddings.

57

E
n
gl

is
h
→

G
er

m
an

E
n
gl

is
h
→

C
h
in

es
e

E
n
gl

is
h
→

F
ar

si

M
et

h
o
d

H
P

er
p
le

x
it

y
B

L
E

U
P

er
p
le

x
it

y
B

L
E

U
P

er
p
le

x
it

y
B

L
E

U

S
e
q
2
S
e
q

25
6

33
.0

7
11

.9
8

6.
48

25
.4

3
19

.2
1

10
.1

7

(L
u
on

g
et

al
.,

20
15

a)
51

2
32

.6
1

12
.2

1
6.

12
26

.7
7

18
.4

10
.9

3

T
r
e
e
2
S
e
q

25
6

30
.1

3
13

6.
17

26
.8

5
17

.9
4

11
.3

2

(E
ri

gu
ch

i
et

al
.,

20
16

)
51

2
31

.8
6

13
.0

5
5.

71
28

16
.2

8
11

.7
1

ou
r

25
6

30
.8

3
1
3
.5

4
6.

16
27

.0
8

17
.6

2
11

.9
1

F
o
r
e
st

2
S
e
q

51
2

2
9
.2

5
13

.4
3

5
.4

9
2
8
.3

9
1
6
.6

6
1
2
.3

8

T
ab

le
3.

4:
C

om
p
ar

is
on

of
th

e
m

et
h
o
d
s

to
ge

th
er

w
it

h
d
iff

er
en

t
h
id

d
en

d
im

en
si

on
si

ze
(H

)
fo

r
al

l
d
at

as
et

s.

(a) (b)

Figure 3.3: (a) Attention ratios for En→Fa bucketed dataset.(b) Inference time (sec-
onds) required for the test set of En→Fa dataset using trained models.

For which sentence lengths the forest-based model is more helpful? To

investigate the effect of source sentence length, we divide En→Ch dataset into three

buckets with respect to the length of source sentences. Figure 3.2a depicts the BLEU

scores resulted from the models for different buckets. The Forest2Seq model

performs better than vanilla Seq2Seq model on all buckets. Interestingly, while

Tree2Seq model has a lower BLEU compared to Seq2Seq model for the sentences

whose lengths are between 10 and 20, the Forest2Seq model has a better BLEU

possibly due to reducing parsing errors. We also have seen similar results for the

other two language pairs.

The forest-based model results in correct larger n-grams in translations

We further analyse the effect of the incorporated syntactic knowledge on improving

the number of generated gold n-grams in translations. For each sentence, we compute

the number of n-grams in the generated translations which are common with those in

the gold translation. Then, after aggregating the results over the entire test set, we

compute the percentage of additional gold n-grams generated by syntax-aware models,

i.e. Tree2Seq and Forest2Seq, compared to the Seq2Seq model. The results are

depicted in Figure 3.2b. Generating correct high order n-grams is hard, and results

show that incorporating syntax is beneficial. As n increases, the Forest2Seq model

performs significantly better than the Tree2Seq model in generating gold n-grams,

possibly due to better reorderings between the source and target.

How much attention the forest-based and tree-based models pay to the

syntactic information? We next analyse the extent by which the syntactic in-

59

formation is used by the Tree2Seq and Forest2Seq models. We compute the

ratio of attention on phrases to words for both of the syntax-aware models in En→Fa

translation task, where the source and target languages are highly syntactically di-

vergent. For each triple in the test set, we calculate the sum of attention on words

and phrases during decoding. Then, the ratio of attention on phrases to words is

computed and is averaged for all triples. Figure 3.3a shows these attention ratios for

bucketed En→Fa dataset. It shows that for all sentence lengths, the Forest2Seq

model provides richer phrase embeddings compared to the Tree2Seq model, leading

to more usage of the syntactic information.

Investigating the effect of using trees/forests on inference time We mea-

sured the inference time required for the test set of En→Fa dataset using the trained

models. The results are depicted in Figure 3.3b. As seen, while using one parse tree

increases the inference time linearly, interestingly, our Forest2Seq model considers

combinatorially many trees also with a small linear overhead.

3.5 Summary

We have proposed a forest-to-sequence attentional NMT model, which uses a packed

forest instead of the top-1 parse tree in the encoder. Using a forest of parse trees,

our method efficiently considers combinatorially many constituency trees in order to

take into account parser uncertainties and errors. Experimental results show our

method is superior to the attentional tree-to-sequence model, which is more prone to

the parsing errors.

60

Part II

Multi-Task Learning: Architectural
Design

61

Chapter 4

Deep Seq2Seq MTL for NMT

This chapter is based on:

P. Zaremoodi, G. Haffari, “Neural Machine Translation for Low Resource Scenar-

ios: A Deep Multi-Task Learning Approach”, Proceedings of Annual Meeting for

North American Chapter of Association of Computational Linguistics (NAACL),

2018.

The main aim of this thesis is to improve bilingually low-resource NMT by incorpo-

rating linguistic knowledge. In Part I, we incorporated linguistic knowledge provided

in the form of annotations of source sentences. In this part and the next one, we

will focus on directly injecting linguistic knowledge. More specifically, we scaffold

the machine translation task on auxiliary tasks, including semantic parsing, syntac-

tic parsing, and named-entity recognition. As discussed in Section 2.3.2, a practical

approach for injecting knowledge from a task to others is Multi-Task Learning. It is

based on tying parameters among different tasks to share statistical strength. In this

chapter, we start by casting the auxiliary linguistic tasks as Seq2Seq transduction

tasks to make all tasks structurally homogeneous. Then, we propose a multitask ar-

chitecture that enables an effective sharing strategy between tasks by tying a fraction

of their parameters with those of the main translation task. Further, we make use

of adversarial training to protect shared representations from being contaminated by

task-specific features. Our extensive experiments and analyses show the effectiveness

of the proposed approach for improving bilingually low-resource NMT by incorporat-

ing linguistic knowledge in several language pairs.

62

4.1 Introduction

NMT with attentional encoder-decoder architectures (Luong et al., 2015c; Bahdanau

et al., 2015) has revolutionised machine translation, and achieved state-of-the-art for

several language pairs. However, NMT is notorious for its need for large amounts of

bilingual data (Koehn and Knowles, 2017) to achieve reasonable translation quality.

Leveraging existing monolingual resources is a potential approach for compensating

this requirement in bilingually scarce scenarios. Ideally, semantic and syntactic knowl-

edge learned from existing linguistic resources provides NMT with proper inductive

biases, leading to increased generalisation and better translation quality.

Multi-task learning is an effective approach to inject knowledge into a task from

other related tasks. Various recent works have attempted to improve NMT with an

MTL approach (Peng et al., 2017; Liu et al., 2017; Zhang and Zong, 2016); however,

they either do not make use of curated linguistic resources (Domhan and Hieber, 2017;

Zhang and Zong, 2016), or their MTL architectures are restrictive, yielding mediocre

improvements (Niehues and Cho, 2017). The current research leaves open how to

best leverage curated linguistic resources in a suitable MTL framework to improve

NMT.

In this chapter, we make use of curated monolingual linguistic resources in the

source side to improve NMT in bilingually scarce scenarios. More specifically, we

scaffold the machine translation task on auxiliary tasks, including semantic parsing,

syntactic parsing, and named-entity recognition. This is achieved by casting the aux-

iliary tasks as Seq2Seq transduction tasks and tie the parameters of their encoders

and/or decoders with those of the main translation task. Our MTL architectures

make use of deep stacked encoders and decoders, where the parameters of the top

layers are shared across the tasks. We further make use of adversarial training to

prevent contamination of shared knowledge with task-specific information.

We present empirical results on translating from English into Vietnamese, Turkish,

Farsi and Spanish; four target languages with varying degree of divergence compared

to English. Empirical results demonstrate the effectiveness of the proposed approach

in improving the translation quality for these four translation tasks in bilingually

scarce scenarios.

In summary, the contributions of this chapter can be categorised as follows:

• We propose a partial sharing strategy for Seq2Seq MTL models and show it

is crucial for improving low-resource NMT using curated linguistic resources.

63

• We further improve the partial sharing strategy by adding adversarial training

to prevent contamination of the shared representation space.

• We conduct extensive experiments, comparison and analysis on four language

pairs.

• We present an analysis of the effectiveness of different types of auxiliary tasks

on translation quality. To the best of our knowledge, our work is the first to

incorporate semantic parsing knowledge for improving NMT via MTL.

4.2 Seq2Seq Multi-Task Learning

We consider an extension of the basic attentional Seq2Seq model discussed in Sec-

tion 2.2.2, where the encoder and decoder are equipped with deep stacked layers.

Presumably, deeper layers capture more abstract information about a task; hence,

they can be used as a mechanism to share useful generalisable information among

multiple tasks.

Deep Stacked Encoder. The deep encoder consists of multiple layers, where the

hidden states in layer ` − 1 are the inputs to the hidden states at the next layer `.

That is,

−→
h `
i =
−−−→
RNN`

θθθ`,enc
(
−→
h `
i−1,h

`−1
i)

←−
h `
i =
←−−−
RNN`

θθθ`,enc
(
←−
h `
i+1,h

`−1
i)

where h`i = [
−→
h `
i ;
←−
h `
i] is the hidden state of the `’th layer RNN encoder for the i’th

source sentence word. The inputs to the first layer forward/backward RNNs are the

source word embeddings EEES[xi]. The representation of the source sentence is then

the concatenation of the hidden states for all layers hi = [h1
i ; . . . ;h

L
i] which is then

used by the decoder.

Deep Stacked Decoder. Similar to the multi-layer RNN encoder, the decoder

RNN has multiple layers:

s`j = RNN`
θθθ`,dec

(s`j−1, s
`−1
j)

where the inputs to the first layer RNNs are

Wsj ·EEET [yj−1] +Wsc · cj

64

in which cj is the dynamic source context, as defined in eqn. 2.48. The state of the

decoder is then the concatenation of the hidden states for all layers: sj = [s1j ; . . . ; s
L
j]

which is then used in eqn. 2.41 as part of the “output generation module”.

Shared Layer MTL. We share the deep layer RNNs in the encoders and/or de-

coders across the tasks, as a mechanism to share abstract knowledge and increase

model generalisation.

Suppose we have a total of M + 1 tasks, consisting of the main task plus M

auxiliary tasks. Let Θm
enc = {θθθm`,enc}L`=1 and Θm

dec = {θθθm`′,dec}L
′

`′=1 be the parameters of

multi-layer encoder and decoder for the taskm. Let {Θm
enc,Θ

m
dec}Mm=1 and {Θ0

enc,Θ
0
dec}

be the RNN parameters for the auxiliary tasks and the main task, respectively. We

share the parameters of the deep-level encoders and decoders of the auxiliary tasks

with those of the main task. That is,

∀m ∈ [1, ..,M] ∀` ∈ [1, .., Lmenc] : θθθm`,enc = θθθ0`,enc

∀m ∈ [1, ..,M] ∀`′ ∈ [1, .., L′
m
dec] : θθθm`′,dec = θθθ0`′,dec

where Lmenc and L′mdec specify the deep-layer RNNs need to be shared parameters.

Other parameters to share across the tasks include those of the attention module, the

source/target embedding tables, and the output generation module. As an extreme

case, we can share all the parameters of Seq2Seq architectures across the tasks.

Training Objective. Suppose we are given a collection of K Seq2Seq transduc-

tions tasks, each of which is associated with a training set Dk := {(x(k)
i ,y

(k)
i)}Nk

i=0,

where k = 0 denotes the main translation task. The parameters are learned by

maximising the MTL training objective:

Lmtl(Θmtl) :=
K∑

k=0

w(k)
∑

(x,y)∈Dk

logPΘmtl
(y(k)|x(k)). (4.1)

where Θmtl denotes all the parameters of the MTL architecture and w(k) denotes the

importance weight of task k and we set it to

w(k) =
γ(k)

Nk

where γm balances out its influence in the training objective. In Chapter 6, we will

back to this training objective by proposing adaptive importance weights.

65

Training Schedule. Variants of stochastic gradient descent (SGD) can be used

to optimise the objective in order to learn the parameters. Making the best use of

tasks with different objective geometries is challenging, e.g. due to the scale of their

gradients. One strategy for making an SGD update is to select the tasks from which

the next data items should be chosen. In our training schedule, we randomly select

a training data item from the main task and pair it with a data item selected from a

randomly selected auxiliary task for making the next SGD update. This ensures the

presence of a training signal from the main task in all SGD updates and avoids the

training signal being washed out by the auxiliary tasks. In Chapter 7, we will go back

to the scheduling of Biased-MTL and replace this predefined schedule by learning an

adaptive schedule.

4.3 Adversarial Training

The learned shared knowledge could be contaminated by task-specific information.

We address this issue by adding an adversarial objective. The basic idea is to augment

the MTL training objective with additional terms so that the identity of a task cannot

be predicted from its data items by the representations resulted from the shared

encoder/decoder RNN layers.

Task Discriminator. The goal of the task discriminator is to predict the identity

of a task for a data item based on the representations of the share layers. More

specifically, our task discriminator consists of two RNNs with LSTM units, each of

which encodes the sequence of hidden states in the shared layers of the encoder and

the decoder.1 The last hidden states of these two RNNs are then concatenated, giving

rise to a fixed dimensional vector summarising the representations in the shared layers.

The summary vector is passed through a fully connected layer, followed by a softmax

to predict the probability distribution over the tasks:

PΘd
(task id|hd) ∼ softmax(Wdhd + bd)

hd := disLSTMs(shrRepΘmtl
(x,y))

where disLSTMs denotes the discriminator LSTMs, shrRepΘmtl
(x,y) denotes the

representations in the shared layer of deep encoders and decoders in the MTL archi-

tecture, and Θd includes the disLSTMs parameters as well as {Wd, bd}.
1When multiple layers are shared, we concatenate their hidden states at each time step, which is

then inputted to the task discriminator’s LSTMs.

66

Adversarial Objective. Inspired by (Chen et al., 2017b), we add two additional

terms to the MTL training objective in eqn. 4.1. The first term is Ladv1(Θd) defined

as:

K∑

k=0

∑

(x,y)∈Dk

logPΘd
(m| disLSTMs(shrRepΘmtl

(x,y))).

Maximising the above objective over Θd ensures proper training of the discriminator

to predict the identity of the task. The second term ensures that the parameters of

the shared layers are trained so that they confuse the discriminator by maximising

the entropy of its predicted distribution over the task identities. That is, we add the

term Ladv2(Θmtl) to the training objective defined as:

K∑

k=0

∑

(x,y)∈Dk

H
[
PΘd

(.| disLSTMs(shrRepΘmtl
(x,y)))

]

where H[.] is the entropy of a distribution. In summary, the adversarial training leads

to the following optimisation

arg max
Θd,Θmtl

Lmtl(Θmtl) + Ladv1(Θd) + λLadv2(Θmtl).

We maximise the above objective by SGD, and update the parameters by alternating

between optimising Lmtl(Θmtl) + λLadv2(Θmtl) and Ladv1(Θd).

4.4 Experiments

4.4.1 Bilingual Corpora

We use four language-pairs, translating from English to Vietnamese, Turkish, Farsi

and Spanish. We have chosen these languages to analyse the effect of Multi-Task

Learning on languages with different underlying linguistic structures.2 The sentences

are segmented using BPE (Sennrich et al., 2016b) on the union of source and tar-

get vocabularies with a 40k vocabulary size for English to Vietnamese Spanish and

Turkish. For English-Farsi, BPE is performed using separate vocabularies due to the

disjoint alphabets with 30k vocabulary sizes.

Table 4.1 show some statistics about the bilingual corpora. Further details about

the corpora and their pre-processing is as follows:

2English, Vietnamese and Spanish are SVO while Farsi and Turkish are SOV.

67

Train Dev Test
En → Vi 133K 1,553 1,268
En → Tr 200K 2,910 2,898
En → Es 150K 2,928 2,898
En → Fa 98K 3,000 4,000

Table 4.1: The statistics of bilingual corpora.

• The English-Vietnamese is from the translation task in IWSLT 2015, and we use

the preprocessed version provided by (Luong and Manning, 2015). The sentence

pairs in which at least one of their sentences had more than 300 units (after ap-

plying BPE) are removed. “tst2012” and “tst2013” parts are used for validation

and test sets, respectively.

• The English-Farsi corpus is assembled from all the parallel news text in LDC2016E93

Farsi Representative Language Pack from the Linguistic Data Consortium, com-

bined with English-Farsi parallel subtitles from the TED corpus (Tiedemann,

2012). Since the TED subtitles are user-contributed, this text contained con-

siderable variation in the encoding of its Perso-Arabic characters. To address this

issue, we have normalised the corpus using the Hazm toolkit.3 Sentence pairs in

which one of the sentences has more than 80 (before applying BPE) are removed,

and BPE is performed with a 30k vocabulary size. Random subsets of this corpus

(3k and 4k sentences each) are held out as validation and test sets, respectively.

• The English-Turkish is from WMT parallel corpus (Bojar et al., 2016) with about

200K training pairs gathered from news articles. We use the Moses toolkit (Koehn

et al., 2007) to filter out pairs where the number of tokens is more than 250 tokens

(after applying BPE) and pairs with a source/target length ratio higher than 1.5.

“newstest2016” and “newstest2018” parts are used as validation and test set.

• For English-Spanish pair, we have used the first 150K training pairs of Europarl

corpus (Koehn, 2005). We also have applied the similar filtering process that we

have done on English-Turkish. “newstest2011” and “newstest2013” parts are used

as validation and test set, respectively.

3www.sobhe.ir/hazm

68

4.4.2 Auxiliary Tasks

We have chosen the following auxiliary tasks to provide the NMT model with syntactic

and/or semantic knowledge, in order to enhance the quality of translation:

Semantic Parsing. Preserving the meaning is an important characteristic of the

desired translation. Learning semantic parsing helps the model to abstract away the

meaning from the surface in order to convey it in the target translation. For this

task, we have used the Abstract Meaning Representation (AMR) corpus Release 2.0

(LDC2017T10).4 This corpus contains natural language sentences from newswire,

weblogs, web discussion forums and broadcast conversations. We cast this task to a

Seq2Seq transduction task by linearising the AMR graphs (Konstas et al., 2017).

Syntactic Parsing. By learning the phrase structure of the input sentence, the

model would be able to learn better re-ordering. Especially, in the case of language

pairs with the high level of syntactic divergence (e.g. English-Farsi). We have used

Penn Tree Bank parsing data with the standard split for training, development, and

test (Marcus et al., 1993). We cast syntactic parsing to a Seq2Seq transduction task

by linearising constituency trees (Vinyals et al., 2015).

Named-Entity Recognition (NER). It is expected that learning to recognise

named-entities help the model to learn the translation pattern by masking out named-

entities. We have used the NER data comes from the CONLL shared task.5 Sentences

in this dataset come from a collection of newswire articles from the Reuters Corpus.

These sentences are annotated with four types of named entities: persons, locations,

organisations and names of miscellaneous entities.

4.4.3 Models and Baselines

At the beginning of this project, methods were implemented using the Mantidae

(Cohn et al., 2016) toolkit, on top of the DyNet (Neubig et al., 2017) library. How-

ever, as the idea of Chapter 6 required the support for the backpropagation through

backpropagation operation, we moved to the PyTorch (Paszke et al., 2017) library.

We have implemented the proposed Multi-Task Learning architectures using PyTorch,

on top of the OpenNMT (Klein et al., 2017) toolkit. In our multi-task architecture,

we do partial sharing of parameters, where the parameters of the top stacked layers

4https://catalog.ldc.upenn.edu/LDC2017T10
5https://www.clips.uantwerpen.be/conll2003/ner

69

E
n

gl
is

h
→

V
ie

tn
am

es
e

E
n

g
li

sh
→

T
u

rk
is

h
E

n
g
li

sh
→

S
p

a
n

is
h

E
n

g
li

sh
→

F
a
rs

i

D
ev

T
es

t
D

ev
T

es
t

D
ev

T
es

t
D

ev
T

es
t

T
E

R
B

L
E

U
T

E
R

B
L

E
U

T
E

R
B

L
E

U
T

E
R

B
L

E
U

T
E

R
B

L
E

U
T

E
R

B
L

E
U

T
E

R
B

L
E

U
T

E
R

B
L

E
U

N
M

T
58

.4
22

.8
3

55
.7

2
4.

15
10

4.
2

8
.5

5
1
0
1
.2

8
.5

7
3
.1

1
4
.4

9
7
3
.6

1
3
.4

4
9
6
.1

1
2
.1

6
9
6
.7

1
1
.9

5

M
T

L
(F

u
ll

)

+
A

ll
T

as
k
s

57
.2

†
22

.7
1

55
.1

24
.7

1
90

†
9
.1

2†
8
8
.8

†
8
.8

4
7
1
.2

†
1
4
.6

3
7
1†

1
3
.7

5
7
6
.5

†
1
2
.6

7
†

7
6
.6

†
1
2
.4

5
†

M
T

L
(P

ar
ti

al
)

+
S

em
an

ti
c

56
.8

†
23

.2
6

54
.5

2†
25

.0
9†

88
.2

4
†

9
.2

4†
8
7
.0

6†
8
.2

5
7
1
.1

†
1
4
.6

8
7
0
.9

†
1
3
.9

5†
7
4
.8

†
1
2
.7

3
†

7
5
.2

1
2
.2

7

+
N

E
R

57
.7

†
22

.5
4

54
.7

2†
25

†
83

.1
4
†

9
.3

†
8
1
.4

7
†

9†
7
3
.7

1
4
.2

3
7
3
.8

1
3
.2

8
7
4
.7

1†
1
3
.3

4
†

7
3
.4

3
†

1
3
.1

7
†

+
S

y
n
ta

ct
ic

57
.3

†
23

.0
2

54
.7

2†
24

.7
4

80
.3

9†
9
.7

2†
7
9
.9

†
9
.0

1†
7
1
.8

†
1
4
.3

9
7
1
.6

†
1
3
.5

9
7
3
.0

4†
1
3
.4

3
†

7
3
.8

2†
1
3
.4

3
†

+
A

ll
T

as
k
s

57
.4

†
23

.4
2
†

54
.3

2
†

25
.2

2†
79

.1
2
†

1
0
.0

6
†

7
9
.6

1
†

9
.5

3†
7
0
.4

†
1
5
.1

4†
7
0
.2

†
1
4
.1

1†
7
2
.8
4
†

1
3
.5
3
†

7
3
.4
3
†

1
3
.4
7
†

+
A

ll
+

A
d

v
.

5
7
†

2
3
.4
9
†

5
4
.2
2
†

2
5
.5
6
†

7
7
.8
4
†

1
0
.4
4
†

7
8
.4
3
†

9
.9
8
†

7
0
.2

†
1
5
.2

†
7
0
†

1
4
.2
8
†

7
3
.3

3
†

1
3
.2

3
†

7
3
.4

3
†

1
3
.1

7
†

T
ab

le
4.

2:
B

L
E

U
an

d
T

E
R

sc
or

es
of

th
e

b
as

el
in

es
v
s.

ou
r

p
ar

ti
al

p
ar

am
et

er
sh

ar
in

g
M

T
L

ar
ch

it
ec

tu
re

w
it

h
va

ri
ou

s
au

x
il
ia

ry
ta

sk
s

on
th

e
b
il
in

gu
al

d
at

as
et

s.
† :

S
ta

ti
st

ic
al

ly
si

gn
ifi

ca
n
tl

y
b

et
te

r
th

an
th

e
N

M
T

b
as

el
in

e
(p
<

0.
05

).

are shared among the encoders of the tasks. Moreover, we share the parameters of

the bottom layers of stacked decoders among the tasks. As we will show in Section

4.4.5, different sharing scenarios (i.e. the number of shared layers) lead to the best

performance for different language pairs. In the experiments, we have used the best

sharing scenario for each of the language pairs reported in Section 4.4.5. Additionally,

source and target embedding tables are shared among the tasks, while the attention

component is task-specific.6 We compare against the following baselines:

• Baseline 1: The vanilla attentional Seq2Seq model trained only on translation

training data (single-task).

• Baseline 2: The multi-tasking architecture proposed in (Niehues and Cho, 2017),

which is a special case of our approach where all the parameters of encoders and/or

decoders are shared among the tasks.7 They have not used deep stacked layers in

encoder and decoder as we do, so we extend their work to make it comparable with

ours.

The configuration of models is as follows. The encoders and decoders make use of

LSTM units with 512 hidden dimensions. For training, we used Adam algorithm

(Kingma and Ba, 2014) with the initial learning rate of 0.001 for all of the tasks.

Learning rates are halved when the performance on the corresponding dev set de-

creased. In order to speed-up the training, we use mini-batching with the size of 32.

Dropout rates for both encoder and decoder are set to 0.3, and models are trained for

25 epochs where the best models are selected based on the perplexity on the dev set.

λ for the adversarial training is set to 0.1. Once trained, the NMT model translates

using the greedy search. We use BLEU (Papineni et al., 2002) and TER (Snover

et al., 2006) to measure translation quality, and measure the statistical significance

p < 0.05 using the approximate randomisation (Clark et al., 2011).

4.4.4 Results

Table 5.1 reports the BLEU and TER scores for the baseline and our proposed method

on the four translation tasks mentioned above. It can be seen that the performance

6In our experiments, models with task-specific attention components achieved better results than
those sharing them.

7We have used their reported best performing architecture (shared encoder) and changed the
training schedule to ours.

71

W/O Adaptation W/ Adaptation
Partial Part.+Adv. Full Partial Part.+Adv. Full

En → Vi 25.22 25.56 24.71 25.45 25.86 24.83
En → Tr 9.53 9.98 8.84 9.63 10.09 9.18
En → Sp 14.11 14.28 13.75 14.05 14.2 13.46
En → Fa 13.47 13.17 12.45 13.23 12.99 12.21

Table 4.3: Our method (partial parameter sharing) against Baseline 2 (full parameter
sharing). Part.+Adv. means partial parameter sharing and adversarial training have
been employed.

of Multi-Task Learning models is better than Baseline 1 (only MT task). This con-

firms that adding auxiliary tasks helps to increase the performance of the machine

translation task.

As expected, the effect of different tasks are not similar across the language pairs,

possibly due to the following reasons: (i) these translation tasks datasets come from

different domains, so they have various degree of domain relatedness to the auxiliary

tasks, and (ii) the BLEU and TER scores of the Baseline 1 show that the four trans-

lation models are on different quality levels which may entail that they benefit from

auxiliary knowledge on different levels. In order to improve a model with low-quality

translations due to language divergence, syntactic knowledge can be more helpful as

they help to perform better reorderings. In a higher-quality model, however, semantic

knowledge can be more useful as a higher-level linguistic knowledge. This pattern can

be seen in the reported results: syntactic parsing leads to more improvement on Farsi

translation which has a low BLEU score and high language divergence to English, and

semantic parsing yields more improvement on the Vietnamese translation task which

already has a high BLEU score. The NER task has led to a steady improvement in

all the translation tasks, as it leads to better handling of named entities.

We have further added adversarial training to ensure the shared representation

learned by the encoder is not contaminated by the task-specific information. As the

MTL focuses on extracting extracting the common and task-invariant features. The

results are in the last row of Table 5.1. The experiments show that adversarial training

leads to further gains in MTL translation quality, except when translating into Farsi.

We speculate this is due to the low quality of NMT for Farsi, where updating shared

parameters with respect to the entropy of discriminator’s predicted distribution may

negatively affect the model.

Table 4.3 compares our Multi-Task Learning approach to Baseline 2. As Table

4.3, our partial parameter sharing mechanism is more effective than fully sharing

72

1-gram 2-gram 3-gram 4-gram 5-gram 6-gram 7-gram
0

2

4

6

8

10

12

14

16
MT + Semantic
MT + NER
MT + Syntactic
MT + All tasks

Figure 4.1: Percentage of more correct n-grams generated by the deep MTL models
compared to the single-task model (only MT) for En→Vi translation.

the parameters (Baseline 2), due to its flexibility in allowing access to private task-

specific knowledge. We also applied the adaptation technique (Niehues and Cho,

2017) as follows: upon finishing MTL training, we continue to train the best saved

model only on the MT task for another 20 epochs and choose the best model based

on perplexity on dev set. Adaptation has led to gains in the performance of our MTL

architecture and Baseline 2 on two language pairs.

4.4.5 Analysis

How many layers of encoder/decoder to share? In this analysis, we want to

see the effect of the number of shared layers in encoders and decoders on the perfor-

mance of the MTL model. Figure 4.2 shows the results on the En→Vi translation

task. The results confirm that the partial sharing of stacked layers is better than

full sharing. Intuitively, partial sharing provides the model with an opportunity to

learn task-specific skills via the private layers, while leveraging the knowledge learned

from other tasks via shared layers. The figure shows the best sharing strategy for

En→Vi translation task is 1-2 where 1 and 2 layers are shared among encoders and

decoders, respectively. We have found that this strategy works very well for En→Tr

and En→Fa as well. However, this sharing strategy does not work well for En→Sp

task, and the performance of the resulted MTL model is even worse than the single-

task NMT model. Interestingly, we have found it is better for En→Sp task to use 2-1

sharing strategy although the strategy does not work well for other language pairs.

Therefore, there is a need for tuning over sharing strategies for each language pair. To

73

0 1 2 3
shared decoder layers

0
1

2
3

sh

ar
ed

 e
nc

od
er

 la
ye

rs

24.57 24.86 24.94 24.38

24.75 23.93 25.22 24.87

24.74 24.4 24.89 24.78

24.71 24.73 23.72 24.61

23.0

23.5

24.0

24.5

25.0

25.5

Figure 4.2: BLEU scores for different numbers of shared layers in encoder (from top)
and decoder (from bottom). The vocabulary is shared among tasks while each task
has its own attention mechanism.

speed up, the tuning process can be performed only on 1-2 and 2-1 sharing strategies.

Statistics of gold n-grams in MTL translations. Generating high order gold

n-grams is hard. We analyse the effect of syntactic and semantic knowledge on

generating gold n-grams in translations for En→Vi language pair.

For each sentence, we first extract n-grams in the gold translation, and then

compute the number of n-grams which are common with the generated translations.

Finally, after aggregating the results over the entire test set, we compute the percent-

age of additional gold n-grams generated by each MTL model compared to the ones

in single-task MT model. The results are depicted in Figure 4.1. Interestingly, the

MTL models generate more correct n-grams relative to the vanilla NMT model, as n

increases.

Effect of the NER task. The NMT model has difficulty translating rarely oc-

curred named-entities, particularly when the bilingual parallel data is scarce. We

expect learning from the NER task leads the MTL model to recognise named-entities

and learn underlying patterns for translating them. The top part in Table 4.4 shows

an example of such a situation. As seen, the MTL is able to recognise all of the

named-entities in the sentence and translate the while the single-task model missed

“1981”.

74

English AIDS was discovered 1981 ; the virus , 1983 .
Reference AIDS disease was discovered 1981 ; its virus on 1983 .

MT only model AIDS was discovered 1998 ; virus , 1983 .
MT+NER model AIDS was discovered 1981 ; virus , 1983 .

English of course , you couldn’t have done that all alone .
Reference of course, you couldn’t all that alone have done that .

MT only model of course, you cannot have done that .
MT+semantic model of course, you couldn’t all that alone have done that .

English
in hospitals , for new medical instruments ; in streets for traffic
control .

Reference
in hospitals , for instruments medical new ; in streets for
control traffic .

MT only model
in hospitals , for equipments medical new , in streets for
control instruments new .

MT+syntactic model
in hospitals , for instruments medical new ; in streets for
control traffic .

Table 4.4: Example of translations on Farsi test set. In this examples each Farsi word
is replaced with its English translation, and the order of words is reversed (Farsi is
written right-to-left). The structure of Farsi is Subject-Object-Verb (SOV), leading
to different word orders in English and Reference sentences.

For more analysis, we have applied a Farsi POS tagger (Feely et al., 2014) to gold

translations. Then, we extracted n-grams with at least one noun in them, and report

the statistics of correct such n-grams, similar to what reported in Figure 4.1. The

resulting statistics is depicted in Figure 4.3. As seen, the MTL model trained on MT

and NER tasks leads to the generation of more correct unigram noun phrases relative

to the vanilla NMT, as n increases.

Effect of the semantic parsing task. Semantic parsing encourages a precise

understanding of the source text, which would then be useful for conveying the correct

meaning to the translation. The middle part in Table 4.4 is an example translation,

showing that semantic parsing has helped NMT by understanding that “couldn’t have

done that all alone”.

Effect of the syntactic parsing task. Recognising the syntactic structure of the

source sentence helps NMT to translate phrases better. The bottom part of Table

4.4 shows an example of translation demonstrating such case. The source sentence

is talking about “new medical instruments” and “traffic control”, which the second

term is correctly translated by the MTL model while vanilla NMT has mistakenly

translated it to “control instruments new”.

75

1-grams 2-grams 3-grams 4-grams 5-grams 6-grams 7-grams
0

2

4

6

8

10

12

14
MT+NER

Figure 4.3: Percentage of more corrected n-grams with at least one noun generated by
MT+NER model compared with the only MT model (only MT) for En→Vi language
pair.

4.5 Summary

We have presented an approach to improve NMT in bilingually scarce scenarios,

by leveraging curated linguistic resources in the source, including semantic parsing,

syntactic parsing, and named entity recognition. This is achieved via a powerful

MTL architecture, based on deep stacked encoders and decoders, to share common

knowledge among the MT and auxiliary tasks. Our experimental results show the

effectiveness of the proposed approach on improving the translation quality when

translating from English to Vietnamese, Turkish, Spanish and Farsi in bilingually

scarce scenarios.

76

Chapter 5

Adaptive Knowledge Sharing in
Deep Seq2Seq MTL

This chapter is based on:

P. Zaremoodi, W. Buntine, G. Haffari, “Adaptive Knowledge Sharing in MTL: Im-

proving Low-Resource NMT”, Proceedings of Annual Meeting of Computational

Linguistics (ACL), 2018.

In the previous chapter, we proposed an MTL architecture based on deep stacked lay-

ers in encoder/decoder and sharing the layers partially. The hypothesis behind partial

sharing is that although similar tasks share some commonalities, they have some un-

derlying differences which should be captured. Otherwise, the MTL models would

not be able to make the best use of auxiliary tasks. Empirical results and analyses

support the hypothesis by showing that dedicating task-specific parameters is crucial

and provides the model with the capacity to learn task-specific representations. How-

ever, the approach has two limitations: (1) the shared components (layers) are shared

among all of the tasks, causing this MTL approach to suffering from task interfer-

ence; (2) finding the optimal sharing policy is a computationally expensive search.

In this chapter, we address both of these limitations by learning how to adaptively

control the amount of sharing. We extend the recurrent units with multiple blocks

along with a routing network to dynamically control sharing of blocks conditioned on

the task at hand, the input, and model state. Empirical results and analyses show

the effectiveness of the proposed approach on four bilingually low-resource scenarios.

77

5.1 Introduction

MTL has been used for various NLP problems, e.g. dependency parsing (Peng et al.,

2017), video captioning (Pasunuru and Bansal, 2017) key-phrase boundary classifica-

tion (Augenstein and Søgaard, 2017), Chinese word segmentation, and text classifi-

cation problem (Liu et al., 2017). More specifically, as seen in the previous chapter,

MTL is an effective approach for injecting knowledge obtained from linguistic tasks

to improve the performance of the underlying translation model. However, injecting

knowledge from auxiliary tasks is a double-edged sword. While positive transfer may

help to improve the performance of the main translation task, the negative trans-

fer may have unfavourable effects and degrade the translation quality. This can be

seen in the observations of the previous chapter that show dedicating task-specific

parameters is crucial, as it provides the model with the capacity to learn task-specific

representations. Although the proposed approach encouraged a more positive trans-

fer compared to the full sharing approach, it still has two limitations: (1) Since the

shared components (layers) are shared among all of the tasks, the approach still suf-

fers from task interference, and it is not able to fully capture commonalities among

subsets of tasks. (2) Experiments have shown that different language pairs have dif-

ferent optimal sharing strategy, and we need to perform a computationally expensive

search to find the optimal strategy. Recently, Ruder et al. (2017) tried to address the

task interference issue; however, their method is restrictive for Seq2Seq scenarios

and does not consider the input at each time step to modulate parameter sharing.

In this chapter, we address the aforementioned issues by learning how to control

the amount of sharing among the tasks “dynamically”. We propose a novel recurrent

unit which is an extension of conventional recurrent units. It has multiple flows of

information, controlled by multiple blocks, and is equipped with a “routing network”

to dynamically control sharing of blocks conditioning on the task at hand, the input,

and model state. Empirical results on four low-resource translation scenarios, English

to Vietnamese, Turkish, Spanish and Farsi, show the effectiveness of the proposed

model.

In summary, the contributions of this chapter are as follows:

• We propose a novel recurrent unit with multiple flows of information along with

a router network to dynamically control the amount of sharing among all tasks.

• We present empirical results and analyses that show the effectiveness of the

proposed approach on leveraging the commonalities among subsets of tasks.

78

5.2 Routing Networks for Deep Neural Networks

Our work is related to the Mixture-of-Expert (MoE) architectures, where multiple

experts (sub-networks) are learned to cover different subspaces of the problem. The

beating heart of an MoE model is its routing network (aka gating network) responsible

for modulating input and output of these experts. MoE has introduced two decades

ago (Jacobs et al., 1991; Jordan and Jacobs, 1994), and has gained attention in deep

learning recently. Shazeer et al. (2017) uses MoEs (feed-forward sub-networks) be-

tween stacked layers of recurrent units, to adaptively gate state information vertically.

This is in contrast to our approach where the horizontal information flow is adaptively

modulated, as we would like to minimise the task interference in MTL. Rosenbaum

et al. (2018) has proposed a routing network for adaptive selection of non-linear func-

tions for MTL. However, it is for fixed-size inputs based on a feed-forward architecture

and is not applicable to Seq2Seq scenarios such as MT.

There are two variants of routing networks wrt type of their decisions: hard- versus

soft-decision. In this chapter, we employed soft decision making. The hard-decision

making is not differentiable, and could be solved by techniques like Gumbel-Softmax

(Jang et al., 2016) or Reinforcement Learning (RL). It becomes more challenging

as the environment is non-stationary as both the router and experts are trained

simultaneously. After the publication of our work, it has been followed by Cases

et al. (2019) that proposes a hard version of the routing mechanism using RL.

5.3 Seq2Seq MTL Using Recurrent Unit with Adap-

tive Routed Blocks

Our MTL model is based on the sequential encoder-decoder architecture with the at-

tention mechanism (Section 2.2.2). The encoder/decoder consists of recurrent units

to read/generate a sentence sequentially. In the previous chapter, we have done MTL

by sharing the parameters of these recurrent units among tasks. Sharing the param-

eters of the recurrent units among different tasks is indeed sharing the knowledge

for controlling the information flow in the hidden states. Sharing these parameters

among all tasks may, however, lead to task interference or inability to leverages com-

monalities among subsets of tasks. We address this issue by extending the recurrent

units with multiple blocks, each of which processing its own information flow through

the time. The state of the recurrent unit at each time step is composed of the states

of these blocks. The recurrent unit is equipped with a routing mechanism to softly

79

 Block 1

 Block 2

 Block 3

 Block 4

Routing
Network

h(2)

h(1)

h(3)

ht-1

xt

ht

h(4)

h(2)

h(1)

h(3)

h(4)

t

t

t

t

t-1

t-1

t-1

t-1

Figure 5.1: High-level architecture of the proposed recurrent unit with 3 shared blocks
and 1 task-specific.

direct the input at each time step to these blocks (see Figure 5.1). Each block mimics

an expert in handling different kinds of information, coordinated by the router. In

MTL, the tasks can use different subsets of these shared experts.

Assuming there are n blocks in a recurrent unit, we share n− 1 blocks among the

tasks, and let the last one be task-specific.1 The task-specific block receives the input

of the unit directly while shared blocks are fed with modulated input by the routing

network. The state of the unit at each time-step would be the aggregation of blocks’

states.

5.3.1 Routing Mechanism

At each time step, the routing network is responsible to softly forward the input to

the shared blocks conditioning on the input xt, and the previous hidden state of the

unit ht−1 as follows:

st = ReLU(Wx · xt +Wh · ht−1 + bs), (5.1)

τt = softmax(Wτ · st + bτ), (5.2)

where W ’s and b’s are the parameters. Then, the i-th shared block is fed with the

input of the unit modulated by the corresponding output of the routing network

x̃
(i)
t = τt[i]xt where τt[i] is the scalar output of the routing network for the i-th block.

The hidden state of the unit is the concatenation of the hidden state of the shared

and task-specific parts ht = [h
(shared)
t ;h

(task)
t]. The state of task-specific part is the

1Multiple recurrent units can be stacked on top of each other to consist a multi-layer component.

80

state of the corresponding block h
(task)
t = h

(n)
t , and the state of the shared part is

the sum of states of shared blocks weighted by the outputs of the routing network

h
(shared)
t =

∑n−1
i=1 τt[i]h

(i)
t .

5.3.2 Block Architecture

Each block is responsible to control its own flow of information via a standard gating

mechanism. Our recurrent units are agnostic to the internal architecture of the blocks;

we use the long short-term memory unit (Hochreiter and Schmidhuber, 1997b) in this

chapter. For the i-th block the corresponding equations are as follows:

fff
(i)
t = σ(W

(i)
f x̃

(i)
t +U

(i)
f h

(i)
t−1 + b

(i)
f),

r
(i)
t = σ(W (i)

r x̃
(i)
t +U (i)

r h
(i)
t−1 + b(i)r),

o
(i)
t = σ(W (i)

o x̃
(i)
t +U (i)

o h
(i)
t−1 + b(i)o),

c̃
(i)
t = tanh(W

(i)
c̃ x̃

(i)
t +U

(i)
c̃ h

(i)
t−1 + b

(i)
c̃),

c
(i)
t = f

(i)
t � c(i)t−1 + i

(i)
t � c̃(i)t ,

h
(i)
t = o

(i)
t � tanh(c

(i)
t).

5.3.3 Training Objective and Schedule.

The rest of the model is similar to attentional Seq2Seq model (Section 2.2.2) which

computes the conditional probability of the target sequence given the source PΘ(y|x) =∏
j PΘ(yj|y<j,x). For the case of training K Seq2Seq transduction tasks, we use

the same objective function presented in Section 4.2. Since we aim to improve the

underlying translation task the most, we use the Biased-MTL. We use the training

schedule introduced in Section 4.2 where at each update iteration, selects a mini-

batch from the main task and another one from a randomly selected auxiliary task.

It ensures the presence of a training signal from the main task in all update iterations.

5.4 Experiments

For the experiments of this chapter, we have used the bilingual corpora and auxiliary

tasks discussed in Sections 4.4.1 and 4.4.2, respectively.

81

E
n

gl
is

h
→

V
ie

tn
am

es
e

E
n

gl
is

h
→

T
u

rk
is

h
E

n
gl

is
h
→

S
p

a
n

is
h

E
n

g
li

sh
→

F
a
rs

i

D
ev

T
es

t
D

ev
T

es
t

D
ev

T
es

t
D

ev
T

es
t

T
E

R
B

L
E

U
T

E
R

B
L

E
U

T
E

R
B

L
E

U
T

E
R

B
L

E
U

T
E

R
B

L
E

U
T

E
R

B
L

E
U

T
E

R
B

L
E

U
T

E
R

B
L

E
U

N
M

T
58

.4
22

.8
3

55
.7

24
.1

5
10

4.
2

8.
55

10
1.

2
8.

5
73

.1
14

.4
9

73
.6

1
3
.4

4
9
6
.1

1
2
.1

6
9
6
.7

1
1
.9

5

M
T

L
(F

u
ll

)
57

.2
22

.7
1

55
.1

24
.7

1
90

9.
12

88
.8

8.
84

71
.2

14
.6

3
7
1

1
3
.7

5
7
6
.5

1
2
.6

7
7
6
.6

1
2
.4

5

M
T

L
(P

ar
ti

al
)

57
.4

23
.4

2
54

.3
2

25
.2

2
79

.1
2

10
.0

6
79

.6
1

9.
53

70
.4

15
.1

4
70

.2
1
4
.1

1
7
2
.8

4
1
3
.5

3
7
3
.4

3
1
3
.4

7

M
T

L
(R

ou
ti

n
g)

5
5
.6
9
†

2
4
.1
7
†

5
2
.9
4
†

2
6
.3
9
†

7
4
.4
3
†

1
1
.0
9
†

7
4
.6
2
†

1
0
.6
2
†

6
8
.4
3
†

1
6
.2
3
†

6
8
.0
4
†

1
5
.1
†

6
8
.6
1
†

1
4
.9
†

6
9
.0
7
†

1
4
.6
4
†

T
ab

le
5.

1:
T

h
e

p
er

fo
rm

an
ce

of
th

e
b
as

el
in

es
v
s.

ou
r

M
T

L
ar

ch
it

ec
tu

re
on

th
e

b
il
in

gu
al

d
at

as
et

s.
† :

S
ta

ti
st

ic
al

ly
si

gn
ifi

ca
n
tl

y
b

et
te

r
(p
<

0.
05

)
th

an
th

e
M

T
L

(p
ar

ti
al

).

5.4.1 Models and Baselines

We have implemented the proposed MTL architecture along with the baselines in

PyTorch on top of OpenNMT. For our MTL architecture, we used the proposed

recurrent unit with 3 blocks in encoder and decoder. For the fair comparison in

terms the of number of parameters, we used 3 stacked layers in both encoder and

decoder components for the baselines. We compare against the following baselines:

• Baseline 1: The vanilla Seq2Seq model (Luong et al., 2015a) without any

auxiliary task.

• Baseline 2: The MTL architecture proposed in (Niehues and Cho, 2017) which

fully shares parameters in components. We have used their best performing

architecture with our training schedule. We have extended their work with

deep stacked layers for the sake of comparison.

• Baseline 3: The MTL architecture proposed in Chapter 4 which uses deep

stacked layers in the components and shares the parameters of the top/bottom

stacked layers among encoders/decoders of all tasks. For each language pair,

we have used the best performing sharing strategy.

For the proposed MTL, we use recurrent units with 512 hidden dimensions for

each block. The encoders and decoders of the baselines use GRU units with 400

hidden dimensions. The attention component has 512 dimensions. We use Adam

optimiser (Kingma and Ba, 2014) with the initial learning rate of 0.001 for all the

tasks. Learning rates are halved on the decrease in the performance on the dev set

of the corresponding task. Mini-batch size is set to 32, and the dropout rate is 0.3.

All models are trained for 25 epochs, and the best models are saved based on the

perplexity on the dev set of the translation task.

For each task, we add special tokens to the beginning of source sequence (similar

to (Johnson et al., 2017)) to indicate which task the sequence pair comes from. We

have used the same data for all models and baselines.

We used greedy decoding to generate translation. In order to measure the trans-

lation quality, we use BLEU (Papineni et al., 2002) and TER (Snover et al., 2006)

scores, and measure the statistical significance (p < 0.05) using the approximate

randomisation (Clark et al., 2011).

83

Model Number of Parameters

NMT 41M
MTL (Full) 51M

MTL (Partial) 100M
MTL (Routing) 105M

Table 5.2: The number of parameters for different models (for En→Vi language pair).
For MTL models, we report the total number of parameters for all of the tasks (shared
parameters are counted once).

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Block 1 Block 2 Block 3

MT Semantic Syntactic NER

Figure 5.2: Average percentage of block usage for each task.

5.4.2 Results and analysis

Table 5.1 reports the results for the baselines and our proposed method on the two

aforementioned translation tasks. As expected, the performance of MTL models is

better than the baseline 1 (only MT task). As seen, partial parameter sharing is

more effective than fully parameter sharing. Furthermore, our proposed architecture

with adaptive sharing performs better than the other MTL methods on all tasks, and

achieve up to +1 BLEU score improvements on the test sets. The improvements in the

translation quality of NMT models trained by our MTL method may be attributed

to less interference with multiple auxiliary tasks. The number of parameters for each

model is reported in Table 5.2. As seen, our method performs better than the partial

parameter sharing model by using a slightly higher number of parameters. In addition,

the sharing scenario of Baseline 3 (partial sharing) should be manually tuned via a

search that is computationally expensive. However, the proposed architecture does

not require such a tuning as it performs on-the-fly adaptive sharing.

84

Figure 5.2 shows the average percentage of block usage for each task in an MTL

model with 3 shared blocks, on the English-Farsi test set. We have aggregated the

output of the routing network for the blocks in the encoder recurrent units over all

the input tokens. Then, it is normalised by dividing the total number of input tokens.

Based on Figure 5.2, the first and third blocks are more specialised (based on their

usage) for the translation and NER tasks, respectively. The second block is mostly

used by the semantic and syntactic parsing tasks, so specialised for them. This

confirms our model leverages commonalities among subsets of tasks by dedicating

common blocks to them to reduce task interference.

5.5 Summary

In this chapter, we address two of the main issues in previous MTL models: (1)

task interference that causes the inability to fully capture the commonalities among

subsets of tasks; (2) need for a computationally expensive search to find optimal

sharing strategy. We address the issues by extending conventional recurrent units

with multiple blocks along with a trainable routing network. Each block mimics an

expert in handling a different kind of information, and the routing network guides the

input to these blocks conditioning on the task at hand, the input, and the model state.

Our experimental results on low-resource English to Vietnamese, Turkish, Spanish

and Farsi datasets, show the effectiveness of the proposed approach compared to the

full and partial sharing MTL models.

85

Part III

Multi-Task Learning: Training
Schedule

86

Chapter 6

Adaptive scheduling for Deep
Seq2Seq MTL

This chapter is based on:

P. Zaremoodi, G. Haffari, “Adaptively Scheduled Multitask Learning: The Case

of Low-Resource Neural Machine Translation”, Proceedings of the 3rd Workshop

on Neural Machine Translation and Generation, Co-located with EMNLP 2019.

Scarcity of parallel sentence pairs is a major challenge for training high-quality Neural

Machine Translation (NMT) models in bilingually low-resource scenarios, as NMT is

data-hungry. As seen in part II, Multi-Task Learning can alleviate this issue by

injecting inductive biases into NMT, using auxiliary syntactic and semantic tasks.

However, an effective training schedule is required to balance the importance of tasks

to get the best use of the training signal. The role of training schedule becomes even

more crucial in Biased-MTL where the goal is to improve one of tasks the most, e.g.

the translation quality in our setting. Current approaches for Biased-MTL are based

on brittle hand-engineered heuristics that require trial and error, and should be (re-

)designed for each learning scenario. To the best of our knowledge, ours is the first

work on adaptively and dynamically changing the training schedule in Biased-MTL.

We propose a rigorous approach for automatically reweighing the training data of the

main and auxiliary tasks throughout the training process based on their contributions

to the generalisability of the main NMT task. Empirical results and analyses show

the effectiveness of the proposed approach on four bilingually low-resource scenarios.

Additionally, our analyses shed light on the dynamic of needs throughout the training

of NMT: from syntax to semantics.

87

0

0.05

0.1

0.15

0.2

0.25

20
0

60
0
10
00

14
00

18
00

22
00

26
00

30
00

34
00

38
00

42
00

46
00

50
00

54
00

58
00

62
00

66
00

70
00

74
00

78
00

82
00

86
00

90
00

94
00

98
00

Av
er

ag
e

W
ei

gh
t

Training iteration

Adaptive vs Fixed schedules

Adaptive-Semantic
Adaptive-Syntactic
Adaptive-NER
Fixed-schedule

Figure 6.1: The dynamic in the relative importance of named entity recognition,
syntactic parsing, and semantic parsing as the auxiliary tasks for the main machine
translation task (based on our experiments in Section 6.3). The plot shows our
proposed adaptive scheduling vs. fixed scheduling (Kiperwasser and Ballesteros, 2018)
(scaled down for better illustration).

6.1 Introduction

The majority of the MTL literature, including part II of this thesis, has focused on

investigating how to share common knowledge among the tasks through tying their

parameters and joint training using standard algorithms. However, a big challenge

of MTL is how to get the best signal from the tasks by changing their importance in

the training process aka training schedule; see Figure 1.

Crucially, as discussed in Section 2.3.2, a proper training schedule would encourage

positive transfer and prevent the negative transfer, as the inductive biases of the

auxiliary tasks may interfere with those of the main task leading to degradation of

generalisation capabilities. Most of the works on the training schedule focus on general

MTL where the goal is to improve the performance of all tasks. They are based on

addressing the imbalance in task difficulties and co-evolve easy and difficult tasks

uniformly (performance-wise). These methods achieve competitive performance with

existing single-task models of each task, and not necessarily much better performance

(Chen et al., 2018b; Guo et al., 2018). On the other hand, Biased-MTL focuses on

the main task to achieve higher improvements in it. In Chapter 4, we have proposed

a fixed training schedule to balance out the importance of the main NMT task vs.

auxiliary task to improve NMT the most. Kiperwasser and Ballesteros (2018) has

shown the effectiveness of a changing training schedule through the MTL process.

88

However, their approach is based on hand-engineered heuristics, and should be (re-

)designed and fine-tuned for every change in tasks or even training data.

In this chapter, for the first time to the best of our knowledge, we propose a method

to adaptively and dynamically set the importance weights of tasks for Biased-MTL.

By using influence functions from robust statistics (Cook and Weisberg, 1980; Koh

and Liang, 2017), we adaptively examine the influence of training instances inside

mini-batches of the tasks on the generalisation capabilities on the main task. The

generalisation is measured as the performance of the main task on a validation set,

separated from the training set, in each parameter update step dynamically. As our

method is general and does not rely on hand-engineered heuristics, it can be used for

effective learning of multi-task architectures beyond NMT.

We evaluate our method on translating from English to Vietnamese, Turkish,

Spanish and Farsi, with auxiliary tasks including syntactic parsing, semantic parsing,

and named entity recognition. Compared to the strong training schedule baselines,

our method achieves considerable improvements in terms of BLEU score. Addition-

ally, our analyses on the weights assigned by the proposed training schedule show that

although the dynamic of weights are different for different language pairs, the under-

lying pattern is to gradually alter tasks importance from syntactic to semantic-related

tasks.

In summary, our main contributions to MTL and low-resource NMT are as follows:

• We propose an effective training schedule for Biased-MTL that adaptively and

dynamically set the importance of tasks throughout the training to improve the

main task the most.

• We extensively evaluate four language pairs, and experimental results show that

our model outperforms the hand-engineered heuristics.

• We present an analysis to better understand and shed light on the relative

importance of auxiliary linguistic tasks throughout the training of an MTL

model: from syntax to semantics.

6.2 Learning to Reweigh Mini-Batches

Suppose we are given a set of a main task along with K auxiliary tasks, each of

which with its own training set Dk := {(x(k)
i ,y

(k)
i)}Nk

i=0. In multi-task formulation,

89

parameters are learned by maximising the log-likelihood objective:

arg max
Θmtl

K∑

k=0

Nk∑

i=0

w
(k)
i logPΘmtl

(y
(k)
i |x(k)

i).

Without loss of generality, let us assume we use mini-batch-based stochastic gradient

descent (SGD) to train the parameters of the multi-task architecture. In standard

Multi-Task Learning w
(k)
i is set to 1, assuming all of the tasks and their training in-

stances have the same importance. Conceptually, these weights provide a mechanism

to control the influence of the data instances from auxiliary tasks in order to maximise

the benefit in the generalisation capabilities of the main task. Recently, (Kiperwasser

and Ballesteros, 2018) and our work in Chapter 4 have proposed hand-engineered

heuristics to set the importance weights. Following a fixed pre-defined schedule, the

former one changes the importance of weights dynamically throughout the training

process, e.g., iterations of the stochastic gradient descent (SGD). However, there is

no guarantee that these fixed schedules give rise to learning the best inductive biases

from the auxiliary tasks for the main task.

Our main idea is to adaptively determine the importance weights w
(k)
i for each

training instance based on its contribution to the generalisation capabilities of the

MTL architecture for machine translation, measured on a validation set Dval sepa-

rated from the training set which we call meta-validation set. As shown in Figure

6.2, at each parameter update iteration for the MTL architecture, the MTL train-

ing mini-batch is the concatenation of single mini-batches from all MTL tasks. We

then assign an Adaptive Importance Weight (AIW) to each training instance in the

MTL mini-batch, regardless of the task which they come from. In the experiments

of Section 6.3, we will see that our proposed method automatically finds interesting

patterns in how to best make use of the data from the auxiliary and main tasks, e.g.

it starts by assigning higher weights (on average) to syntactic parsing which is then

shifted to semantic parsing.

More specifically, we learn the AIWs based on the following optimisation problem:

arg min
ŵww
−
∑

(x,y)∈Dval

logPΘ̂mtl(ŵww)
(y|x) (6.1)

Θ̂mtl(ŵww) := Θ
(t)
mtl + η

K∑

k=0

|b(k)|−1∑

i=0

ŵ
(k)
i ∇ logP

Θ
(t)
mtl

(y
(k)
i |x(k)

i) (6.2)

90

Translation Syntactic
Parsing

Semantic
Parsing

Adaptive
Importance Weights

Multi-Task NMT

Figure 6.2: High-level idea for training an MTL architecture using adaptive impor-
tance weights (AIWs). Here, translation is the main task along with syntactic and
semantic parsing as auxiliary linguistic tasks.

where ŵ
(k)
i is the raw weight of the ith training instance in the mini-batch b(k) of the

kth task, Θ̂mtl is the resulting parameters in case SGD update rule is applied on the

current parameters Θ
(t)
mtl using instances weighted by ŵww. Following (Ren et al., 2018),

we zero out negative raw weights, and then normalise them with respect to the other

instances in the MTL training mini-batch to obtain the AIWs: w
(k)
i =

w̃
(k)
i∑

k′
∑

i′ w̃
(k′)
i′

where w̃
(k)
i = ReLU(ŵ

(k)
i).

In the preliminary experiments, we observed that using w
(k)
i as AIW does not

perform well. We speculate that a small validation set does not provide a good

estimation of the generalisation, hence influence of the training instances. This is

exacerbated as we approximate the validation set by only one of its mini-batches

for computational efficiency. Therefore, we hypothesise that the computed weights

should not be regarded as the final verdict for the usefulness of the training instances.

Instead, we regarded them as rewards for enhancing the training signals of instances

that lead to a lower loss on the validation set. Hence, we use 1 + w
(k)
i as our AIWs

in the experiments. The full algorithm is in Algorithm 1.

Implementation Details. As exactly solving the optimisation problem in eqn. 6.2

is challenging; we resort to an approximation and consider the raw weights as the

gradient of the validation loss wrt the training instances’ weights around zero. This

is a notion called influence in robust statistics (Cook and Weisberg, 1980; Koh and

91

Algorithm 1 Adaptively Scheduled Multitask Learning

1: while t=0 ... T-1 do

2: b(1), .., b(K) ← SampleMB(D(1), ..,D(K))

3: b(val) ← SampleMB(D(val))

. Step 1: Update model with initialised weights

4: `
(k)
i ← − logPΘt

mtl
(y

(k)
i |x(k)

i) . Forward

5: ŵ
(k)
i,0 ← 0 . Initialise weights

6: Ltrn ←
∑K

k=1

∑|b(k)|
i=1 ŵ

(k)
i,0 `

(k)
i

7: gtrn ← Backward(Ltrn,Θt
mtl)

8: Θ̂t
mtl = Θt

mtl + ηgtrn

. Step 2: Calculate loss of the updated model on validation MB

9: Lval = −∑|bval|i=1 logPΘ̂t
mtl

(yi|xi)
. Step 3: Calculate raw weights.

10: gval ← Backward(Lval, ŵ(k)
0)

11: ŵ(k) = gval

. Step 4: Normalise weights to get AIWs

12: w̃
(k)
i = ReLU(ŵ

(k)
i)

13: w
(k)
i =

w̃
(k)
i∑

k′
∑

i′ w̃
(k′)
i′

+ 1

. Step 5: Update MTL with AIWs

14: L̂trn ←
∑K

k=1

∑|b(k)|
i=1 w

(k)
i `

(k)
i

15: ĝtrn ← Backward(L̂trn,Θt
mtl)

16: Θt+1
mtl = Θt

mtl + ηĝtrn

17: end while

Liang, 2017).

More concretely, let us define the loss function L(Θ̂mtl) := −∑|bval|−1i=0 logPΘ̂mtl
(yi|xi),

where bval is a mini-batch from the validation set. The training instances’ raw weights,

i.e. influences, are then calculated using the chain rule:

ŵww = ∇ŵ0L(Θ̂mtl(ŵ0))
∣∣∣
ŵ0=000

= ∇Θ̂mtl
L(Θ̂mtl)

∣∣∣
Θ̂mtl=Θ

(t)
mtl

· ∇ŵ0Θ̂mtl(ŵ0)
∣∣∣
ŵ0=000

The last term ∇ŵ0Θ̂mtl involves backpropagation through Θ̂mtl wrt ŵ0, which ac-

cording to eqn. 6.2, involves an inner backpropagation wrt Θmtl. The computation

graph is depicted in Figure 6.3.

92

(3
) b

ac
kw

ar
d

ov
er

 b
ac

kw
ar

d

 Multi-
Task
NMT

 Multi-
Task
NMT

 Multi-
Task
NMT(1

) F
or

w
ar

d

(2
) b

ac
kw

ar
d

Figure 6.3: Computation graph of the proposed method for adaptively determining
weights.

6.3 Experiments

6.3.1 Bilingual Corpora and Auxiliary Tasks

For the experiments of this chapter, we have used the bilingual corpora and auxiliary

tasks discussed in Sections 4.4.1 and 4.4.2, respectively. In addition, we use sepa-

rate Val (meta-validation) sets for the proposed AIW-based approach. For English-

Vietnamese, “tst2012” is divided and used as Dev and Val sets (with the ratio 2 to 1).

For English-Turkish and English-Spanish, we use “newstest2017” and “newstest2012”

parts as Val set, respectively. For English-Farsi, a random 3K subset of the corpus

is held out as Val set. For a fair comparison, we add the meta-validation set used in

the AIW-based approach to the training set of the competing baselines.

6.3.2 MTL architecture and training schedule

Since partial sharing is shown to be more effective than full sharing, we use the MTL

architecture proposed in Chapter 4 with the best sharing strategy for each language

pair. We have implemented the methods using PyTorch1 on top of OpenNMT.

Fixed hand-engineered schedule baselines. We use different MTL scheduling

strategies where at each update iteration:

• Uniform: Selects a random mini-batch from all of the tasks.

1We have modified the PyTorch source code as the official version does not support some of the
backpropagation-through-backpropagation operations on GPU at the time of writing this thesis.

93

• Biased: It is introduced in Section 4.2 and selects a random mini-batch from the

translation task (bias towards the main task) and another one for a randomly

selected task.

We also use schedules proposed in (Kiperwasser and Ballesteros, 2018). They

consider a slope parameter2 α and the fraction of training epochs done so far, t =

sents/||corpus||. The schedules determine the probability of selecting each of the

tasks as the source of the next training pair. In each of these schedules the probability

of selecting the main task is:

• Constant: Pm(t) = α; When α is set to 0.5, it is similar to the Biased schedule

we have seen before.

• Exponential: Pm(t) = 1 − e−αt; In this schedule the probability of selecting

the main task increases exponentially throughout the training.

• Sigmoid: Pm(t) =
1

1 + e−αt
; Similar to the previous schedule, the probability

of selecting the main task increases, following a sigmoid function.

In each of these schedules, the rest of the probability is uniformly divided among the

remaining tasks. By using them, a mini-batch can have training pairs from different

tasks which makes it inefficient for partially shared MTL models. Hence, we modified

these schedules to select the source of the next training mini-batch.

Combination of Adaptive and Fixed schedules As mentioned in Section 6.2,

we assign an AIW to each training instance inside mini-batches of all tasks, i.e.

applying AIWs on top of Uniform schedule. Additionally, we also apply it on top of

Biased schedule to analyse the effect of the combination of AIWs (for instances) and

a hand-engineered heuristic (for mini-batch selection).

1

6.3.3 Results and Analysis

The results for baselines and the proposed method are reported in Table 7.2.3 As

seen, our method has made better use of the auxiliary tasks and achieved the highest

performance. It shows that while some of the heuristic-based schedules are benefi-

cial, our proposed Adaptive Importance Weighting approach outperforms them. The

2Following their experiments, we set α to 0.5.
3METEOR score (Banerjee and Lavie, 2005) is reported only for Spanish as it is the only target

languages in our experiments which is officially supported by it.

94

E
n
gl

is
h
→

V
ie

tn
am

es
e

E
n
gl

is
h
→

T
u
rk

is
h

E
n
gl

is
h
→

S
p
an

is
h

E
n
gl

is
h
→

F
ar

si

B
L

E
U

B
L

E
U

B
L

E
U

M
E

T
E

O
R

B
L

E
U

D
ev

T
es

t
D

ev
T

es
t

D
ev

T
es

t
D

ev
T

es
t

D
ev

T
es

t

M
T

on
ly

22
.8

3
24

.1
5

8.
55

8.
5

14
.4

9
13

.4
4

31
.3

31
.1

12
.1

6
11

.9
5

M
T

L
w

it
h

F
ix

ed
S
ch

ed
u
le

+
U

n
if

or
m

23
.1

0
24

.8
1

9.
14

8.
94

12
.8

1
12

.1
2

29
.6

29
.5

13
.5

1
13

.2
2

+
B

ia
se

d
(C

on
st

an
t)
†‡

23
.4

2
25

.2
2

10
.0

6
9.

53
15

.1
4

14
.1

1
31

.8
31

.3
13

.5
3

13
.4

7

+
E

x
p

on
en

ti
al
‡

23
.4

5
25

.6
5

9.
62

9.
12

12
.2

5
11

.6
2

28
.0

28
.1

14
.2

3
13

.9
9

+
S
ig

m
oi

d
‡

23
.3

5
25

.3
6

9.
55

9.
01

11
.5

5
11

.3
4

26
.6

26
.9

14
.0

5
13

.8
8

M
T

L
w

it
h

A
d
ap

ti
ve

S
ch

ed
u
le

+
B

ia
se

d
+

A
IW

23
.9

5♦
25

.7
5

10
.6

7♦
10

.2
5♦

11
.2

3
10

.6
6

27
.5

27
.4

14
.4

1
14

.2

+
U

n
if

or
m

+
A

IW
2
4
.3

8
♦

2
6
.6

8
♦

1
1
.0

3
♦

1
0
.8

1
♦

1
6
.0

5
♦

1
4
.9

5
♦

3
3
.0
♦

3
2
.5
♦

1
5
.2

4
♦

1
5
.0

8
♦

T
ab

le
6.

1:
R

es
u
lt

s
fo

r
th

re
e

la
n
gu

ag
e

p
ai

rs
.

”+
A

IW
”

in
d
ic

at
es

A
d
ap

ti
ve

Im
p

or
ta

n
ce

W
ei

gh
ti

n
g

is
u
se

d
in

tr
ai

n
in

g.
† :

P
ro

p
os

ed
in

C
h
ap

te
r

4,
‡ :

P
ro

p
os

ed
in

(K
ip

er
w

as
se

r
an

d
B

al
le

st
er

os
,

20
18

).
♦

:
S
ta

ti
st

ic
al

ly
si

gn
ifi

ca
n
tl

y
b

et
te

r
(p
<

0.
05

)
th

an
th

e
b

es
t

M
T

L
w

it
h

fi
x
ed

sc
h
ed

u
le

.

reason is likely that the hand-engineered strategies do not consider the state of the

model, and they do not distinguish among the auxiliary tasks.

It is interesting to see that the Biased schedule is beneficial for standard MTL,

while it is harmful when combined with the AIWs. The standard MTL is not able to

select training signals on-demand, and using a biased heuristic strategy improves it.

However, our weighting method can selectively filter out training signals; hence, it is

better to provide all of the training signals and leave the selection to the AIWs.

Analysis on how/when auxiliary tasks have been used? This analysis aims

to shed light on how AIWs control the contribution of each task through the training.

As seen, our method has the best result when it is combined with the Uniform MTL

schedule. In this schedule, at each update iteration, we have one mini-batch from

each of the tasks, and AIWs are determined for all of the training pairs in these mini-

batches. For this analysis, we divide the training into 200 update iteration chunks.

In each chunk, we calculate the average weights assigned to the training pairs of each

task.

Figure 6.1 shows the results of this analysis for the MTL model trained with

En→Vi as the main task. and Figure 6.4 shows the results of this analysis for En→Es

and En→Tr. Also, it can be seen that at the beginning of the training, the Adaptive

Importance Weighting mechanism gradually increases the training signals which come

from the auxiliary tasks. However, after reaching a certain point in the training, it

will gradually reduce the auxiliary training signals to concentrate more on the adap-

tation to the main task. It can be seen that the weighting mechanism distinguishes

the importance of auxiliary tasks. More interestingly, it can be seen that for the

En→Tr, the contribution of NER task is more than the syntactic parsing while for

the other languages we have seen the reverse. It shows that our method can adap-

tively determine the contribution of the tasks by considering the demand of the main

translation task.

As seen, it gives more weight to the syntactic tasks at the beginning of the train-

ing while it gradually reduces their contribution and increases the involvement of

the semantics-related task. We speculate the reason is that at the beginning of the

training, the model requires more lower-level linguistic knowledge (e.g. syntactic pars-

ing and NER) while over time, the needs of model gradually change to higher-level

linguistic knowledge (e.g. semantic parsing).

96

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20
0

60
0

10
00

14
00

18
00

22
00

26
00

30
00

34
00

38
00

42
00

46
00

50
00

54
00

58
00

62
00

66
00

70
00

74
00

78
00

82
00

86
00

90
00

94
00

98
00

Auxiliary tasks Translation

(a) Translation task (En→Es) vs. auxiliary
tasks.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

20
0

60
0

10
00

14
00

18
00

22
00

26
00

30
00

34
00

38
00

42
00

46
00

50
00

54
00

58
00

62
00

66
00

70
00

74
00

78
00

82
00

86
00

90
00

94
00

98
00

Semantic Parsing Syntactic Parsing Named-Entity Recognition

(b) Auxiliary tasks vs. each other.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20
0

60
0

10
00

14
00

18
00

22
00

26
00

30
00

34
00

38
00

42
00

46
00

50
00

54
00

58
00

62
00

66
00

70
00

74
00

78
00

82
00

86
00

90
00

94
00

98
00

Auxiliary tasks Translation

(c) Translation task (En→Tr) vs. auxiliary
tasks.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

20
0

60
0

10
00

14
00

18
00

22
00

26
00

30
00

34
00

38
00

42
00

46
00

50
00

54
00

58
00

62
00

66
00

70
00

74
00

78
00

82
00

86
00

90
00

94
00

98
00

Semantic Parsing Syntactic Parsing Named-Entity Recognition

(d) Auxiliary tasks vs. each other.

Figure 6.4: Weights assigned to the training pairs of different tasks (averaged over
200 update iteration chunks). Y-axis shows the average weight and X-axis shows
the number of update iteration. In the top figures, the main translation task is
English→Spanish while in the bottom ones it is English→Turkish.

97

200

300

400

500

600

700

800

900

1000

1100

1200

OTROS ORG PERS LUG

MT MTL-Biased MTL-Uniform + AIW

(a) Named-Entities

0

2000

4000

6000

8000

10000

12000

14000

Adjecti
ve

s

Conjuncti
ons

Determ
iners

Punctu
ati

on
Nouns

Pronouns

Adverbs

Preposit
ions

Verbs
Dates

Numerals

MT MTL-Biased MTL-Uniform + AIW

(b) Part-of-Speech tags

Figure 6.5: The number of words in the gold English→Spanish translation which are
missed in the generated translations (lower is better). Missed words are categorised
by their tags (Part-of-Speech and named-entity types).

Analysis of The Effect of Auxiliary Tasks on The Generated Translations

In this analysis, we want to take a deeper look at the generated translations and see

how the proposed method improves the quality of the translations. More specifically,

we want to compare the number of words in the gold translations which are missed

in the generated translations produced by the following systems: (i) MT only; (ii)

MTL-Biased; (iii) MTL-Uniform + AIW. To find out what kind of knowledge is

missed in the process of generating the translations, we categorise words by their

Part-of-Speech tags and named-entities types. We have done this analysis on En→Es

language pair as there are accurate annotators for the Spanish language. We use

Stanford POS tagger (Toutanova et al., 2003) and named-entity recogniser (Finkel

et al., 2005) to annotate Spanish gold translations. Then, we categorise the missed

words in the generated translations concerning these tags, and count the number of

missed words in each category. Figure 6.5 depicts the result. As seen in Figure 6.5a,

the knowledge learned from auxiliary tasks helps the MTL model to miss less number

of named-entities during translation. Moreover, AIWs help the MTL model further

by making better use of the knowledge conveyed in the auxiliary tasks. We can see

the same pattern for the POS of missed words. As seen, for most POS categories,

the standard MTL has missed less number of words in comparison to the MT only

baseline. Furthermore, our method helps the MTL model to miss even less amount of

words in every of the POS categories (specifically in Noun and Preposition categories).

We speculate the reason is that the AIWs makes it possible to control the contribution

of each of the auxiliary tasks separately and taking into account the demand of the

model at each stage of the training procedure.

98

6.4 Summary

This chapter presents a rigorous approach for adaptively and dynamically changing

the training schedule in Biased-MTL to make the best use of auxiliary tasks. To

balance the importance of the auxiliary tasks versus the main task, we re-weight

training data of tasks to adjust their contributions to the generalisation capabilities

of the resulted model on the main task. Our experimental results on English to Viet-

namese/Turkish/Spanish/Farsi show up to +1.2 BLEU score improvement compared

to strong baselines. Additionally, the analyses show that the proposed method auto-

matically finds a schedule which places more importance on the auxiliary syntactic

tasks at the beginning while gradually altering the importance toward the auxiliary

semantic task.

99

Chapter 7

Learning to Multi-Task Learn

This chapter is based on:

P. Zaremoodi, G. Haffari, “Learning to Multi-Task Learn for Better Neural Ma-

chine Translation”, Submitted to the Twenty-Ninth International Joint Confer-

ence on Artificial Intelligence (IJCAI), 2020.

As discussed in the previous chapter, one of the main challenges in MTL is to devise

effective training schedules, prescribing when to make use of the auxiliary tasks during

the training process to fill the knowledge gaps of the main task, a setting referred

to as Biased-MTL. In that chapter, we present a rigorous approach for adaptively

and dynamically changing the training schedule in Biased-MTL by re-weight training

instances of tasks to adjust their contributions to the generalisation capabilities of

the resulted model on the main task. We have shown that the proposed method

is effective and has devised interesting weighting patterns. One major limitation,

however, is the computational complexity of the method. This chapter is built upon

the learned lessons of the previous chapter and introduces a generalised framework

to extend our previous work and make it more efficient.

We propose a novel framework for learning the training schedule, i.e., learning to

multi-task learn, for a given MTL setting. We formulate the training schedule as a

Markov Decision Process which paves the way to employ policy learning methods to

learn the scheduling policy. We effectively and efficiently learn the training sched-

ule policy within the Imitation Learning framework using an oracle policy algorithm

that dynamically sets the importance weights of auxiliary tasks based on their con-

tributions to the generalisability of the main task. Experiments on both low-resource

100

and standard NMT settings show the resulting automatically learned training sched-

ulers are competitive with the best heuristics and lead to up to +1.1 BLEU score

improvements.

7.1 Introduction

The training schedule, the beating heart of MTL, is responsible for balancing out the

importance (participation rate) of different tasks throughout the training process, in

order to make the best use of the knowledge provided by the tasks. In the previous

chapter, we have proposed an approach to automatically re-weight training instances

of tasks to adjust their contributions to the generalisation capabilities of the resulted

model on the main task. Although the proposed method is effective and has found

interesting patterns, it is computationally expensive. This chapter is built upon the

hypotheses derived from the lessons learnt from the previous chapter: (1) As seen,

although we have calculated weights for individual training instances, interesting

task-related patterns have also emerged, e.g., shifting the importance from syntax

to semantic-related tasks. Therefore, we may approximate the instance-weights by

task-weights. (2) We have seen the weights of auxiliary tasks are small relative to the

main translation task, which means they have smaller contributions. However, the

computational complexity for processing an instance/mini-batch is almost agnostic

to the weight coefficient in its loss objective. As the task-weights determine the

contribution of tasks, we can use them as “sampling ratios” instead of coefficients in

the loss. Previously, at each iteration, we use a mini-batch from all of the tasks and

use weights as coefficients in the loss objective. Now, we only select one of the tasks

wrt the task-weights (i.e. higher weight means the higher chance for selection). The

expected training objective would be the same while we save computation time. (3)

On top of all the above mentioned hypotheses, the training schedule is a sequential

decision making process, so we can learn it.

To the best of our knowledge, there is no approach for automatically learning

a dynamic training schedule for Biased-MTL. In this chapter, we propose a novel

framework for automatically learning how to multi-task learn to maximally improve

the main translation task. This is achieved by formulating the problem as a Markov

Decision Process (MDP), enabling us to treat the training scheduler as the policy. We

solve the MDP by proposing an effective yet computationally expensive oracle policy

(inspired from the previous chapter) that sets the participation rates of auxiliary

tasks with respect to their contributions to the generalisation capability of the main

101

translation task. In order to scale up the decision making, we use the oracle policy

as a teacher to train a scheduler network within the Imitation Learning framework

using Dagger (Ross et al., 2011). Thanks to the ∼8X speedup, we jointly train

and use the scheduler along with the MTL model in the course of a single run. Our

experimental results on low-resource (English to Vietnamese/Turkish/Spanish/Farsi)

setting show up to +1.1 BLEU score improvements over heuristic training schedules

and comparable to the approach of the previous chapter. Additionally, we investigate

the effectiveness of the proposed approach on a high-resource setting for WMT17

English to German to show the scalability of the approach further. Our analyses

on the automatically learned scheduling policies show interesting patterns among

auxiliary tasks for high-resource setting, e.g. gradually altering importance from

syntactic to auxiliary semantic tasks (similar to what we have seen for the low-resource

setting in the previous chapter).

To summarise, this chapter contributions are as follows:

• We propose a novel framework for learning the training schedule in MTL by

formulating it as an MDP.

• We use the approach proposed in the previous chapter as an algorithmic oracle

policy that adaptively and dynamically selects tasks throughout the training.

As the algorithmic oracle is computationally demanding, we scale up our ap-

proach by introducing a scheduler policy trained and used simultaneously using

Imitation Learning to mimic the oracle policy.

• We evaluate our approach in low/high resource bilingual data scenarios using

RNN/Transformer architectures. Our analyses unveil an interesting linguistic

phenomenon in MTL training of NMT for high-resource setting: from syntax

to semantics.

7.2 MTL training schedule as a Markov Decision

Process

MTL Setup Suppose we are given a set of a main task along with K auxiliary

tasks, each of which with its own training set Dk := {(x(k)
i ,y

(k)
i)}Nk

i=0, where k = 0

denotes the main task. We are interested to train a probabilistic MTL architecture

PΘmtl
(y|x), which accurately maps x ∈ X k to its corresponding y ∈ Yk for each

task k. Without loss of generality, we assume that the model parameters Θ are fully

102

shared across all the tasks. The MTL parameters are then learned by maximising the

log-likelihood objective:

arg max
Θmtl

K∑

k=0

w(k)

Nk∑

i=0

logPΘ(y
(k)
i |x(k)

i). (7.1)

Typically, the tasks are assumed to have a predefined importance, e.g. their weights

are set to the uniform distribution w(k) = 1
K+1

, or set proportional to the size of

the tasks’ training datasets. As mentioned, we consider task-level weights instead of

instance-level ones.

Assuming an iterative learning algorithm, the standard steps in training the MTL

architecture at time step t are as follows: (i) A collection of training mini-batches

bt := {bkt }Kk=0 is provided, where bkt comes from the k-th task, and (ii) The MTL

parameters are re-trained by combining information from the mini-batches according

to tasks’ importance weights. For example, the mini-batch gradients can be combined

according to the tasks’ weights, which can then be used to update the parameters

using a gradient-based optimisation algorithm.

Markov Decision Process Formulation As shown in the previous chapter, tasks’

weights in the MTL training objective (eqn. 7.1) should be dynamically changed dur-

ing the training process to maximise the benefit of the main task from the auxiliary

tasks. Intuitively, dynamically changing the weights provides a mechanism to inject

proper linguistic knowledge to the MTL architecture, in order to maximally increase

the generalisation capabilities on the main task.

In this chapter, we automatically learn MTL training policies/schedules from the

data in order to optimally change tasks’ importance weights (see Figure 7.1). To

achieve this goal, we formulate the training process of an MTL architecture as a

Markov Decision Process (MDP), where its elements (S,A, Pr(st+1|st, aaat), R) are as

follows.

• At the time step t in the training process, the state st includes any feature which

summarises the history of the training trajectory. For example, it may include the

loss values encountered during the training of the intermediate models or any foot-

print of the model parameters. The state space S is accordingly specified by these

features.

• Provided with a collection of training mini-batches bt, the action aaat then corresponds

to the tasks’ importance weights. That is, the action space A is the K-dimensional

simplex 4K , consisting of K + 1 dimensional vectors with non-negative elements

103

Multi-Task NMT

…

…

Stochastic
Scheduler Net

Val

T

…

S

…

N

…

Tr
an

sla
tio

n

Se
m

an
tic

NE
R

N

Figure 7.1: Overview of training an MTL architecture using adaptive scheduling.
Translation is the main task with syntactic and semantic parsing as auxiliary linguistic
tasks.

where the sum of the elements is one.

• Pr(st+1|st, aaat) is the transition function, which determines updated model parame-

ters in the next time step, having an action aaat ∈ A taken at the state st ∈ S. In other

words, it corresponds to the update rule of the underlying optimisation algorithm,

e.g. Stochastic Gradient Descent (SGD), having decided about the tasks’ weights in

the MTL training objective (eqn. 7.1) in the current state.

• R(st, aaat, st+1) specifies the instantaneous reward, having an action aaat taken from

the state st and transitioned to the new state st+1. In our case, it should show the

increase in the generalisation capabilities on the main task, having decided upon the

tasks’ importance weights, and accordingly updated the MTL model parameters. It

is not trivial how to formalise and quantify the increase of the generalisation of the

MTL architecture on the main task. Our idea is to use a held-out validation set from

the main task Dval, and then use a loss function on this set to formalise the general-

isation capability. More specifically, we take −loss(Θt+1,Dval) + loss(Θt,Dval) as a

proxy for the increase in the generalisation capability of the main task.

• Having set up the MDP formulation, our aim is to find the optimal policy produc-

ing the best MTL training schedule aaat = πφ(Θt, bt), where φ is the parameter of the

policy network. The policy prescribes what should be the importance of the MTL

tasks at the current state, in order to get the best performing model on the main

task in the long run. We consider πφ(Θt, bt) ∈ 4K as a probability distribution for

selecting the next task and its training mini-batch. It gives rise to a stochastic policy

for task selection.

104

The optimal policy is found by maximising the following objective function:

arg max
φ

Eπφ
[T∑

t=0

R(st, aaat, st+1)
]

(7.2)

where T corresponds to the maximum training steps for the MTL architecture. Cru-

cially, maximising the above long-term reward objective corresponds to finding a

policy, under which the validation loss of the resulting MTL model (at the end of the

training trajectory) is minimised. In this chapter, we will present methods to provide

such optimal/reasonable stochastic policies for training MTL architectures.

7.3 An Oracle Policy for MTL-MDP

In this section, we provide an oracle policy πoracle, which gives an approximation of the

optimal policy inspired by the method proposed in the previous chapter. The basic

idea is to find an importance weight vector for the tasks which minimises the loss of

the main task on a validation set. In other words, our oracle policy rolls-out for one

step from the current state in order to reduce computational complexity. However, we

note that it is still extremely computationally demanding to compute oracle actions.

Therefore, we scale up our approach in the next section using a scheduler policy which

mimics the oracle policy.

More specifically, our oracle learns the optimal tasks’ weights wopt based on the

following optimisation problem:

wopt := arg min
ŵww∈4K

−
∑

(x,y)∈bval
logPΘ̂(ŵww)(y|x)

︸ ︷︷ ︸
L(Θ̂(ŵ))

, (7.3)

such that

Θ̂(ŵww) := Θt + η

K∑

k=0

ŵ(k)

|bk|−1∑

i=0

∇ logPΘt(y
(k)
i |x(k)

i), (7.4)

where we use a mini-batch bval from the validation set for computational efficiency.

To find the optimal importance weights, we do one-step projected gradient descent

on the objective function L(Θt) starting from zero. That is, we firstly set ŵwwopt :=

∇ŵ0L(Θ̂(ŵ0))
∣∣∣
ŵ0=000

, then zero out the negative elements of ŵww, and finally normalise

the resulting vector to project back to the simplex and produce wopt ∈ 4K . Our

approach to define ŵ is based on the classic notion of influence functions from robust

statistics (Koh and Liang, 2017; Ren et al., 2018; Cook and Weisberg, 1980).

105

Computing ∇ŵ0L(Θ̂(ŵ0)) is computationally expensive and complicated, as it

involves backpropagation wrt ŵ0 to a function which itself includes backpropagation

wrt Θ. Interestingly, as proved at the end of this section, the component ŵ
(k)
opt is

proportional to the inner-product of the gradients of the loss over the mini-batches

from the validation set and the k-th,

|bval|−1∑

j=0

∇ logPΘt(y
(val)
j |x(val)

j) ·
|bk|−1∑

i=0

∇ logPΘt(y
(k)
i |x(k)

i).

This approach is also computationally expensive and limits the scalability of the

oracle, as it requires backpropagation over the mini-batches from all of the tasks and

validation set.

Proof for calculating weights efficiently. We prove that the raw weight for k-th

task (ŵ(k)) is proportional to the inner-product of the gradients of the loss over the

mini-batches from the validation set and the task.

ŵ
(k)
opt = ∇

ŵ
(k)
0
L(Θ̂(ŵ0))

∣∣∣
ŵ0=000

(7.5)

= ∇Θ̂L(Θ̂)
∣∣∣
Θ̂=Θt

· ∇
ŵ

(k)
0

Θ̂(ŵ0)
∣∣∣
ŵ0=000

where the first term is the gradient of the loss of the updated model (L(Θ̂(ŵ0)) on

Val set with respect to the parameters before update (Θ̂t). Since ŵ0 = 0, the value

of parameters before and after update remain the same i.e. Θ̂(ŵ0) = Θt. Therefore:

ŵ
(k)
opt = ∇ΘtL(Θt)︸ ︷︷ ︸

gval

·∇
ŵ

(k)
0

Θ̂(ŵ0)
∣∣∣
ŵ0=000

where the second term is equal to:

∇
ŵ

(k)
0

[Θt + η

K∑

m=0

ŵ
(m)
0

|bm|−1∑

i=0

∇ logPΘt(y
(m)
i |x(m)

i)]
∣∣∣
ŵ0=000

= η∇
ŵ

(k)
0

K∑

m=0

ŵ
(m)
0

|bm|−1∑

i=0

∇ logPΘt(y
(m)
i |x(m)

i)
∣∣∣
ŵ0=000

= η

|bk|−1∑

i=0

∇ logPΘt(y
(k)
i |x(k)

i)︸ ︷︷ ︸
g(k)

106

Therefore, the weight for the task is as follows:

ŵ
(k)
opt = η(gval · g(k))

= η

|bval|−1∑

j=0

∇ logPΘt(y
val
j |xvalj) ·

|bk|−1∑

i=0

∇ logPΘt(y
(k)
i |x(k)

i). (7.6)

Unlike eqn. 7.5, eqn. 7.6 does not require backpropagation of backpropagation and

deep learning frameworks e.g. PyTorch can compute it more efficiently.

7.4 Learning to Multi-Task Learn

In the previous section, we present an effective while computationally expensive oracle

policy to solve the MTL-MDP. In this section, we aim to scale up the decision making

by learning an efficient policy to properly schedule the training process of the MTL

architecture, i.e. learning to multi-task learn. Our MTL-MDP formulation paves

the way to make use of a plethora of algorithms in Imitation Learning (IL) and

Reinforcement Learning (RL) to learn the policy. It has been shown that we can

expect potentially exponentially lower sample complexity in learning a task with IL

than with RL algorithms (Sun et al., 2017). Therefore, in this chapter, we are going

to explore the use of Dagger (Ross et al., 2011), a simple and effective algorithm

for learning the policy within the IL framework. In what follows, we first describe

the architecture of our policy network and then mention its training using Dagger .

Policy/Scheduler Network We adopt a two-layer dense feed-forward neural net-

work, followed by a Softmax layer, as the policy network (see Figure 7.2). This is

motivated by preliminary experiments on different architectures, which show that this

architecture is effective for the MTL scenarios in this chapter.

The inputs to the network include the footprint of history of the training process

until the current time step st as well as the those for the provided mini-batches as the

possible actions bt. As the computational efficiency is critical when using the schedule

network for large-scale MTL scenario, we opt to use light features for summarising the

history of the training trajectory since the beginning. For each task k, we compute

the moving average of its loss values lkma over those time steps where a mini-batch

from this task was selected for updating the MTL parameters. These features only

depend on the mini-batches used in the history of the training process, and do not

depend on the provided mini-batches at the current time step bt.

107

Stochastic Scheduler Net

In
pu

t

FC
 (T

an
h)

1/7'

1/7#

1/7&

. .
 . …

FC
 (S

of
tm

ax
)

Figure 7.2: The policy/scheduler network.

These features are updated in an online manner during the MTL training process.

More specifically, let us assume that a mini-batch from a task kt is selected at the

time step t to re-train the MTL architecture. After updating the parameters of the

underlying MTL architecture, we update the moving average loss only for this task

as follows:

lktma ← (1− γ)lktma + γloss(Θt, b
kt
t)

where γ ∈ [0, 1]. Importantly, the loss value is already computed when updating

the MTL parameters, so this feature does not impose additional burden on the com-

putational graph. These features are inspired by those used in MentorNet (Jiang

et al., 2018), and our investigations with the oracle policy of Section 7.3 on finding

informative features predictive of the selected tasks.

Learning the Policy with IL. Inspired by the Dataset Aggregation (Dagger)

algorithm (Ross et al., 2011), we learn the scheduler network jointly with the MTL

architecture, in the course of a single training run. Algorithm 2 depicts the high-level

procedure of the training and making use of the scheduler network.

At each update iteration, we decide between using or training the scheduler net-

work with the probability of β1 (line 9). In case of training the scheduler network

(lines 12-14), we use the oracle policy πoracle in Section 7.3 to generate the optimal

weights. This creates a new training instance for the policy network, where the in-

put is the current state and the output is the optimal weights. We add this new

training instance to the memory replay buffer M , which is then used to re-train the

policy/scheduler network. In case of making use of the scheduler network (line 10),

we simply feed the state to the network and receive the predicted weights.

1For efficiency, we use the scheduler network at least 90% of times.

108

Algorithm 2 Learning the scheduler and MTL model

1: Input: Train sets for the tasksD0..DK , validation of the main taskDval, scheduler
usage ratio β

2: Init Θ0 randomly . MTL architecture parameters
3: Init φ randomly . scheduler network parameters
4: M ← {} . memory-replay buffer
5: lkma ← 0 ∀k ∈ {0, .., K}
6: t← 0
7: while the stopping condition is not met do
8: b0t , .., b

k
t , b

val ← sampleMB(D0, ..,DK ,Dval)
9: if Rand(0, 1) < β then

. Use the scheduler policy
10: wt ← πφ(l0ma, .., l

K
ma)

11: else
. Train the scheduler policy

12: wt ← πoracle(b0t , .., b
K , bval,Θt)

13: M ←M + {((l0ma, .., lKma),wt)}
14: φ← retrainScheduler(φ,M)
15: end if
16: kt ← sampleTask(wt)
17: Θt+1, loss← retrainModel(Θt, b

kt
t)

18: lktma ← (1− γ)lktma + γloss
19: t← t+ 1
20: end while

After getting the tasks’ importance weights, the algorithm samples a task (accord-

ing to the distribution wt) to re-train the MTL architecture and update the moving

average of the selected task (lines 16-18).

Re-training the Scheduler Network To train our policy/scheduler network, we

optimise the parameters such that the action prescribed by the network matches

that which was prescribed by the oracle. More specifically, let M := {(si, aaai)}Ii=1

be the collected states paired with their optimal actions. The state si comprises of

moving averages for the tasks (li,0ma, .., l
i,K
ma), and its paired action is the optimal tasks’

importance weights wi. The training objective is minφ
∑I

i=1 loss(aaai, πφ(si)), where

we explore `1-norm of the difference of the two probability distributions as the loss

function in the experiments of Section 7.5. To update the network parameters φ,

we select a random mini-batch from the memory replay M , and make one SGD step

based on the gradient of the training objective.

109

7.5 Experiments

We analyse the effectiveness of our scheduling method on MTL models learned on

languages with different underlying linguistic structures, and under different data

availability regimes. We have used the low-resource setting bilingual corpora and

auxiliary tasks discussed in Sections 6.3. Further, we have experiments with WMT17

English to German translation task with ∼4.6M training pairs to show the scalability

of the proposed approach on a high-resource scenario. We use “newstest2013“ as

the Dev set for early stopping, “newstest2017“ as the Val (meta-validation) set for

training the policy/scheduler network, and “newstest2014“ for testing.

7.5.1 MTL architectures

As baselines, we have used the hand-engineered training schedules discussed in Section

6.3.2. We have implemented our method and baselines using PyTorch (Paszke et al.,

2017) on top of OpenNMT (Klein et al., 2017). For the scheduler network, the number

of hidden dimensions and the decay factor (γ) are set to 200 and 0.7, respectively. For

its training, we use L1 loss function, and Adam optimiser with learning of 0.0001. For

low-resource language pairs, we use LSTM setting as discussed in previous chapter

while for the high resource scenario we have used Transformer. The β (ratio of using

over training the scheduler) is set to 0.99/0.9 for Transformer/LSTM settings.

Transformer setting. For this setting, we use a 6-layer Transformer architecture.

The embedding size, batch size and number of heads are set to 512, 2048 tokens and

8, respectively. For the optimisation, we use Adam optimiser (Kingma and Ba, 2014)

with the initial learning rate of 2 with noam as its decay method, and gradients are

computed based on single mini-batches. For sharing, we have shared 3 top/bottom

layers of encoders/decoders while the vocabulary is not shared among tasks.2 We

train all of the models for 3 days on a single NVIDIA V100 GPU3, and save the best

model based on the perplexity on the Dev set.

Mixture of hand-engineered and the proposed automatic training sched-

ules. As hand-engineered MTL training schedules for NMT do not distinguishes

among auxiliary tasks, we create a new schedule by combining a hand-engineered

schedule along with the proposed policy/scheduler network to see the effectiveness of

2In the preliminary experiments, we have found that sharing vocabulary is not beneficial for
Transformer.

3Equivalent to ∼40 epochs of training for the MT-only model.

110

their combination. In this schedule, the probability of selection of the main task is

determined by a hand-engineered schedule (Biased for low-resource setting and Ex-

ponential for high-resource setting). However, instead of uniformly distributing the

remaining probability among the auxiliary tasks, we use the scheduler network to

assign a probability to each of the auxiliary tasks based on their contribution to the

generalisation of the MTL model.

7.5.2 Results

Table 7.1 reports the results for our proposed method and the baselines for the bilin-

gually low-resource conditions, i.e. translation from English into Vietnamese, Turk-

ish, Spanish and Farsi. As seen, the NMT models trained with our scheduler network

perform the best across different language pairs. More specifically, the three MTL

training heuristics are effective in producing models which outperform the MT-only

baseline. Among the three heuristics, the Biased training strategy is more effective

than Uniform and Exponential, and leads to trained models with substantially better

translation quality than others. Although our policy learning is agnostic to this MTL

setup, it has automatically learned effective training strategies, leading to further im-

provements compared to Uniform as the best heuristic training strategy. We further

considered learning a training strategy which is a combination of the best heuristic

(i.e., Biased) and the scheduler network, as described before. As seen, this combined

policy is not as effective as the pure scheduler network, although it is still better than

the best heuristic training strategy.

Table 7.2 shows the results for English to German translation task, as the high

resource data condition. Among the three heuristics, Exponential is the most effective

training strategy compared to Biased and Uniform. Our automatically learned sched-

uler network leads to an NMT model which is competitive with the model trained

with the best heuristic. Furthermore, learning a combined policy resulted from the

scheduler network and the Exponential heuristic leads to the most effective training

strategy, where the trained NMT model outperforms all the other models wrt the

three translation quality metrics.

In the following section, we will elaborate more on the reasons behind the success of

the scheduler network by shedding light on how the scheduler controls the contribution

of each task throughout training.

111

BLEU ↑ METEOR ↑ TER ↓
MT only 24.32 43.5 58.1
Hand-engineered

+ Uniform 24.04 43.0 58.2
+ Biased (Constant)†‡ 23.37 42.8 59.0
+ Exponential‡ 25.06 44.0 57.1

Scheduler network
+ SN 24.6 43.5 57.4
+ Exponential + SN 25.3 44.2 56.6

Table 7.1: BLEU, METEOR and TER scores for English-German language pair. ”+
SN” indicates Scheduler Network is used in training. †: Proposed in Chapter 4, ‡:
Proposed in (Kiperwasser and Ballesteros, 2018).

0.265 0.266 0.295

2.449

0

0.5

1

1.5

2

2.5

3

MT only Exponential
schedule

MTL+ SN (β=0.99) MTL-Oracle policy

Se
c

Average second per step

Figure 7.3: Average second per step for different MTL model on the Transformer set-
ting (En→De). We achieve ∼8.3X speed up in the training of MTL by simultaneously
training and using the scheduler network.

7.6 Analysis

Scalability of training with the scheduler network As discussed in Section

7.4, we introduce the scheduler to make the oracle policy scalable. To analyse the

speed up, we calculated the average time of each step in the high-resource regime

with Transformer setting. As mentioned, for the Transformer setting, we train all the

models for a fixed time of 3 days (this time includes measuring perplexity and save

the model after each epoch). We divide the total number of training steps by this

time and depict the result in Figure 7.3. As seen, the oracle policy is computationally

expensive, and interestingly using the scheduler network lead to ∼8.3X speed up in

the MTL training. Although we both train and use the scheduler network in a single

112

E
n
gl

is
h
→

V
ie

tn
am

es
e

E
n
gl

is
h
→

T
u
rk

is
h

E
n
gl

is
h
→

S
p
an

is
h

E
n
gl

is
h
→

F
ar

si

B
L

E
U

B
L

E
U

B
L

E
U

M
E

T
E

O
R

B
L

E
U

D
ev

T
es

t
D

ev
T

es
t

D
ev

T
es

t
D

ev
T

es
t

D
ev

T
es

t

M
T

on
ly

22
.8

3
24

.1
5

8.
55

8.
5

14
.4

9
13

.4
4

31
.3

31
.1

12
.1

6
11

.9
5

M
T

L
w

it
h

F
ix

ed
S
ch

ed
u
le

+
U

n
if

or
m

23
.1

0
24

.8
1

9.
14

8.
94

12
.8

1
12

.1
2

29
.6

29
.5

13
.5

1
13

.2
2

+
B

ia
se

d
(C

on
st

an
t)
†‡

23
.4

2
25

.2
2

10
.0

6
9.

53
15

.1
4

14
.1

1
31

.8
31

.3
13

.5
3

13
.4

7

+
E

x
p

on
en

ti
al
‡

23
.4

5
25

.6
5

9.
62

9.
12

12
.2

5
11

.6
2

28
.0

28
.1

14
.2

3
13

.9
9

+
S
ig

m
oi

d
‡

23
.3

5
25

.3
6

9.
55

9.
01

11
.5

5
11

.3
4

26
.6

26
.9

14
.0

5
13

.8
8

M
T

L
w

it
h

A
d
ap

ti
ve

S
ch

ed
u
le

(C
h
ap

te
r

6)

+
B

ia
se

d
+

A
IW

23
.9

5♦
25

.7
5

10
.6

7♦
10

.2
5♦

11
.2

3
10

.6
6

27
.5

27
.4

14
.4

1
14

.2

+
U

n
if

or
m

+
A

IW
2
4
.3

8
♦

2
6
.6

8
♦

1
1
.0

3
♦

1
0
.8

1
♦

1
6
.0

5
♦

1
4
.9

5
♦

3
3
.0
♦

3
2
.5
♦

1
5
.2

4
♦

1
5
.0

8
♦

M
T

L
w

it
h

S
ch

ed
u
le

r
N

et
w

or
k

+
S
N

+
B

ia
se

d
23

.8
6

25
.7

0
10

.5
3♦

10
.1

8♦
13

.2
0

12
.3

8
29

.9
29

.7
14

.3
7

14
.5

1♦

+
S
N

+
U

n
if

or
m

2
4
.2

1
♦

2
6
.4

5
♦

1
0
.9

2
♦

1
0
.6

2
♦

1
6
.1

4
♦

1
5
.1

2
♦

3
3
.1
♦

3
2
.7
♦

1
5
.1

4
♦

1
4
.9

5
♦

T
ab

le
7.

2:
R

es
u
lt

s
fo

r
th

re
e

la
n
gu

ag
e

p
ai

rs
.

”+
S
N

”
in

d
ic

at
es

S
ch

ed
u
le

r
N

et
w

or
k

is
u
se

d
in

tr
ai

n
in

g.
† :

P
ro

p
os

ed
in

C
h
ap

te
r

4,
‡ :

P
ro

p
os

ed
in

(K
ip

er
w

as
se

r
an

d
B

al
le

st
er

os
,

20
18

).
♦

:
S
ta

ti
st

ic
al

ly
si

gn
ifi

ca
n
tl

y
b

et
te

r
(p

<
0.

05
)

th
an

th
e

b
es

t
M

T
L

w
it

h
fi
x
ed

sc
h
ed

u
le

.

Figure 7.4: Average weights of auxiliary tasks during the training on the English to
German language pair. Weights are averaged over 100-steps chunks.

run, thanks to using Imitation Learning, the procedure is so efficient that makes it

comparable to hand-engineered heuristics. From the other side, it is not feasible (at

least for us) to train an MTL model for the high-resource scenario by only using the

oracle policy as we need to train the model for 25 days (instead of 3) to process the

same number of steps.

How does the policy/scheduler network regulate the participation of each

auxiliary task? In this analysis, we want to shed light on the behaviour of the

scheduler network in a large-scale setting. We divide the training on the English to

German language pair into 100-step chunks; then inside each chunk, we calculate the

average of importance weights for each of the tasks. Figure 7.4 shows the weights

of auxiliary tasks. We removed the weights of the main task in order to scale the

plot for better visualisation, however it is easy to infer them as the sum of weights

is 1. As expected, the scheduler network determines much higher weights for the

main task. Similar to the low-resource setting analysis (Section 6.3.3), there is an

interesting pattern in the weights of auxiliary tasks. In the beginning, the scheduler

network dedicated more emphasis on syntactic-related tasks. Gradually, it decreases

their participation and increases the involvement of the semantic-related tasks. We

speculate the reason lies behind the requirement for lower-level linguistic knowledge

at the beginning (e.g. syntax related knowledge) to find better re-orderings. Then,

higher-level linguistic knowledge (i.e. semantic) is required for fully conveying the

underlying meaning in the generated translations.

114

0

1000

2000

3000

4000

5000

6000

7000

CONJ AUX NUM PUNCT PART ADJ DET VERB NOUN PROPN ADP

MT only MTL + best heuristic MTL+ best SN

Figure 7.5: The number of missed words in the generated translations of English-to-
German language pair. Words are categorised based on their POS tags.

How using the policy/scheduler network affects the generated translations

in the high-resource setting? In this analysis, we want to compare the gener-

ated translations of different models on the English to German translation task based

on the following measure: the number of missed words in the generated translation

categorised by their Part-of-Speech. First, we apply Stanford POS tagger (Toutanova

et al., 2003) on gold German translations. Then, for each of the generated transla-

tions, we look at the missing words in the generated translation and categorise them

based on their POS tags. Finally, we count the number of missed words for each of the

categories. Result is shown in Figure 7.5. As seen, compared to the MT only baseline,

MTL models missed fewer correct words in their translation which is resulted by ben-

efiting from the learned linguistic knowledge. Moreover, the MTL model enhanced

with the scheduler network is even able to make better use of the auxiliary tasks

and performs better than the other models specifically in noun, verb and adjective

categories. We speculate the reason is that the proposed scheduler network is able

to dynamically distinguish among auxiliary tasks throughout the training and make

better use of them.

7.7 Summary

We introduce a novel approach for automatically learning effective training schedules

for MTL. We formulate MTL training as a Markov Decision Process, paving the

way to treat the training scheduler as the policy. We then introduce an effective

oracle policy and use it to train a policy/scheduler network within the Imitation

115

Learning framework using Dagger in an on-policy manner. Our results on low-

resource (English to Vietnamese/Turkish/Spanish/Farsi) and high-resource (English

to German) settings using LSTM and Transformer architectures show up to +1.1

BLEU score improvement compared to the strong hand-engineered heuristics.

116

Chapter 8

Conclusion and Future Directions

This thesis presents a comprehensive study on using auxiliary linguistic data for

improving Neural Machine Translation (NMT) in bilingually low-resource scenarios.

We have explored two main approaches for this purpose: (1) using automatically

generated annotations; (2) directly injecting linguistic knowledge. For the first case,

we have shown that considering the errors and uncertainties of annotations could

help to improve the translation quality. For the second case, we have used Multi-

Task Learning (MTL) to inject linguistic inductive biases into the translation model.

We have shown that both the architecture and training schedule of MTL should be

carefully crafted, as they play crucial roles in making the best use of linguistic tasks

for improving the underlying translation task.

These thesis contributions can be categorised in three main directions: (1) han-

dling the uncertainty of automatically generated annotations in the translation pro-

cess (Part I); (2) Effective MTL architectural design for injecting both semantic and

syntactic knowledge into the underlying translation model (Part II); (3) Effective

strategies to train an MTL model to maximally improve the translation task (Part

III).

In Chapter 3, we looked at the case of using pre-trained parsers for generating

the syntactic constituency trees of source sentences. We argued that considering only

the top-1 tree may lead to an inability to capture parser uncertainties as well as se-

mantic ambiguities in the sentences. Then, we proposed a novel architecture for the

transduction of a collection of trees, aka a forest, to a sequence. Our proposed forest-

to-sequence considers combinatorially many parse trees of the source sentence along

with their probabilities in an efficient bottom-up fashion. Interestingly, the analysis

of computational complexity showed that our method processes a forest with com-

binatorially many trees with merely a small linear time overhead. The experimental

117

results and analyses backed our hypothesis and demonstrated the effectiveness and

efficiency of the proposed method in handling parsing errors and uncertainties.

Chapter 4 was our starting point for injecting linguistic inductive biases into the

translation task using MTL. We scaffolded the machine translation task on auxiliary

linguistic tasks, including named-entity recognition, syntactic parsing and for the first

time1 semantic parsing. It was done by casting auxiliary tasks to sequence-to-sequence

transduction tasks and proposing a partial sharing strategy for Seq2Seq MTL mod-

els. We have further improved the sharing strategy by incorporating adversarial

training to ensure the shared parameters are not dominated by the representations of

a minority of tasks (a potential cause for task interference). The experiments, com-

parisons and analyses on four language pairs led to the interesting findings. First, the

effect of different linguistic tasks varies from a language pair to another one. Second,

partial sharing is a better strategy than full sharing for making better use of auxiliary

tasks. It also can be enhanced by the proposed adversarial training approach. Third,

the best partial sharing practice can be different from one language pair to another

one. Therefore, there is a need for tuning the amount of sharing.

Inspired by the findings mentioned above, Chapter 5 proposed a novel approach

for adaptive knowledge sharing in deep Seq2Seq MTL. We extended the conven-

tional recurrent units to keep multiple flows of information, controlled by multiple

blocks. The amount of sharing among tasks is adaptively tuned via a routing network

responsible for modulating the input and output of each block conditioning on the

task at hand, the input, and model state. Empirical results showed the effectiveness of

the proposed approach for different language pairs. In addition, the analysis unveiled

that each block is mostly used by a subset of tasks, leveraging the commonalities

among subgroups of tasks.

In Chapter 6, we shifted our focus towards the beating heart of the MTL, the

training schedule. The training schedule is highly dependent on the aim of the MTL,

which could relatively improve all the tasks or only one of them. While in the

literature, the term “MTL” is used to refer to both of these scenarios, we make the

comparison more clear and categorised them as General-MTL and Biased-MTL, to

the best of our knowledge it was for the first time. This thesis was focused on the

latter as our goal was to improve the translation task. We proposed an approach for

adaptively and dynamically setting the importance of tasks throughout the training

in Biased-MTL. We showed that the proposed method is able to automatically find

1To the best of our knowledge.

118

interesting schedules that shed light on dynamics of needs throughout the training of

bilingually low-resource NMT: from syntax to semantics.

Chapter 7 was built upon the findings of its preceding chapter and proposed a novel

framework for learning to multi-task learn. We formulated the training schedule of

MTL as a Markov Decision Process (MDP), enabling to treat the training scheduler

as the policy. We solved the MDP by proposing an oracle policy inspired by the

approach proposed in Chapter 6, with several techniques to scale it up. Further,

we introduced a scheduler policy trained and used simultaneously using Imitation

Learning to mimic the oracle policy. The interesting point regarding the proposed

approach is its ability to jointly train and use the scheduler along with the MTL

model in the course of a single run. Moreover, thanks to the ∼8X speedup, we

showed that the proposed approach is highly efficient and can even be used in high-

resource scenarios without the need for extra training time in comparison to hand-

crafted training schedules. Finally, we showed that the interesting scheduling pattern

of “from syntax to semantics” is also valid in the high-resource cases.

8.1 Future Directions

There are various potential extensions to the findings of this thesis. Here we briefly

discuss some of them:

• Many of the findings and proposed approaches in the MTL-related parts of this

thesis are general and can be applied to other areas within NLP or other domains

like computer vision. More specifically, we are keen to see the application of the

adaptive training schedules on multi-task image classification. We expect it will

unveil interesting scheduling patterns similar to the “from syntax to semantic”

that we have seen in this thesis.

• In this thesis, we explored the incorporation of the linguistic knowledge for

source languages. A natural direction would be investing the effect of injecting

the linguistic knowledge related to target languages, or both source and target

languages.

• An optimisation algorithm is the companion of the training schedule. In this

thesis, we have introduced an adaptive training schedule for Biased-MTL. An

important extension of our work is to devise an exclusive optimiser for Biased-

MTL. Popular optimisation algorithms like Adam are based on adaptive learning

119

rates. Recently, it has been shown that the large variance of the adaptive

learning rate could be problematic (Liu et al., 2019a). Therefore, applying

variance reduction techniques is a natural direction as switching the tasks during

the training of MTL may lead to a higher variance of learning rates.

Returning to the bigger picture, as mentioned, deep learning tsunami is mainly driven

by the abundance of big data as well as computational power. The shortage of labelled

data in some areas make it difficult for deep learning to fully unleash its capabilities.

Therefore, this thesis is a step towards deep learning with less labelled data for the

target task of interest. This is achieved by employing labelled data from related tasks

with the aim to lap the waves of deep learning to the less potent areas.

120

Bibliography

Roee Aharoni and Yoav Goldberg. 2017. Towards string-to-tree neural machine trans-

lation. Proceedings of the 55th Annual Meeting of the Association for Computational

Linguistics, pages 132–140.

Naveen Arivazhagan, Ankur Bapna, Orhan Firat, Roee Aharoni, Melvin Johnson,

and Wolfgang Macherey. 2019. The missing ingredient in zero-shot neural machine

translation. arXiv preprint arXiv:1903.07091.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2017. Learning bilingual word

embeddings with (almost) no bilingual data. In Proceedings of the 55th Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),

pages 451–462.

Mikel Artetxe, Gorka Labaka, Eneko Agirre, and Kyunghyun Cho. 2018. Unsuper-

vised neural machine translation. In International Conference on Learning Repre-

sentations.

Isabelle Augenstein and Anders Søgaard. 2017. Multi-task learning of keyphrase

boundary classification. In Proceedings of the Annual Meeting of the Association

for Computational Linguistics, pages 341–346.

Philip Bachman, Alessandro Sordoni, and Adam Trischler. 2017. Learning algorithms

for active learning. In Proceedings of the 34th International Conference on Machine

Learning-Volume 70, pages 301–310.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine

translation by jointly learning to align and translate. International Conference on

Learning Representations.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An automatic metric for MT

evaluation with improved correlation with human judgments. In Proceedings of

121

https://openreview.net/forum?id=Sy2ogebAW
https://openreview.net/forum?id=Sy2ogebAW

the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine

Translation and/or Summarization, pages 65–72, Ann Arbor, Michigan.

Joost Bastings, Ivan Titov, Wilker Aziz, Diego Marcheggiani, and Khalil Sima’an.

2017. Graph convolutional encoders for syntax-aware neural machine translation.

arXiv preprint arXiv:1704.04675.

Daniel Beck, Gholamreza Haffari, and Trevor Cohn. 2018. Graph-to-sequence learning

using gated graph neural networks. In Proceedings of the 56th Annual Meeting of

the Association for Computational Linguistics (Volume 1: Long Papers), pages

273–283, Melbourne, Australia.

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Hassan Sajjad, and James Glass.

2017. What do neural machine translation models learn about morphology? In

Proceedings of the Annual Meeting of the Association for Computational Linguis-

tics, pages 861–872.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. 2003.

A neural probabilistic language model. Journal of machine learning research,

3(Feb):1137–1155.

Yoshua Bengio, Yann LeCun, et al. 2007. Scaling learning algorithms towards AI.

Large-scale kernel machines, 34(5):1–41.

Ergun Biçici and Deniz Yuret. 2011. Instance selection for machine translation us-

ing feature decay algorithms. In Proceedings of the Sixth Workshop on Statistical

Machine Translation, pages 272–283.

Ondrej Bojar, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry Had-

dow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, Varvara Logacheva,

Christof Monz, et al. 2016. Findings of the 2016 conference on machine translation.

In ACL 2016 First Conference On Machine Translation (WMT16), pages 131–198.

Leo Breiman. 1996. Bagging predictors. Machine learning, 24(2):123–140.

Denny Britz, Anna Goldie, Minh-Thang Luong, and Quoc Le. 2017. Massive ex-

ploration of neural machine translation architectures. In Proceedings of the 2017

Conference on Empirical Methods in Natural Language Processing, pages 1442–

1451.

122

https://doi.org/10.18653/v1/P18-1026
https://doi.org/10.18653/v1/P18-1026

Peter F Brown, John Cocke, Stephen A Della Pietra, Vincent J Della Pietra, Fredrick

Jelinek, John D Lafferty, Robert L Mercer, and Paul S Roossin. 1990. A statistical

approach to machine translation. Computational linguistics, 16(2):79–85.

Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della Pietra, and Robert L.

Mercer. 1993. The mathematics of statistical machine translation: Parameter esti-

mation. Computational Linguistics, 19(2):263–311.

Rich Caruana. 1997. Multitask learning. Machine learning, 28(1):41–75.

Ignacio Cases, Clemens Rosenbaum, Matthew Riemer, Atticus Geiger, Tim Klinger,

Alex Tamkin, Olivia Li, Sandhini Agarwal, Joshua D Greene, Dan Jurafsky, et al.

2019. Recursive routing networks: Learning to compose modules for language un-

derstanding. In Proceedings of the 2019 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies,

Volume 1 (Long and Short Papers), pages 3631–3648.

Huadong Chen, Shujian Huang, David Chiang, and Jiajun Chen. 2017a. Improved

neural machine translation with a syntax-aware encoder and decoder. In Proceed-

ings of the 55th Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), volume 1, pages 1936–1945.

Kehai Chen, Rui Wang, Masao Utiyama, Eiichiro Sumita, and Tiejun Zhao. 2018a.

Syntax-directed attention for neural machine translation. In Thirty-Second AAAI

Conference on Artificial Intelligence.

Xinchi Chen, Zhan Shi, Xipeng Qiu, and Xuanjing Huang. 2017b. Adversarial multi-

criteria learning for chinese word segmentation. In Proceedings of the Annual Meet-

ing of the Association for Computational Linguistics, pages 1193–1203.

Y. Chen and X. Ye. 2011. Projection Onto A Simplex. ArXiv preprint

arXiv:1101.6081.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. 2018b.

Gradnorm: Gradient normalization for adaptive loss balancing in deep multitask

networks. In International Conference on Machine Learning, pages 793–802.

Yong Cheng, Wei Xu, Zhongjun He, Wei He, Hua Wu, Maosong Sun, and Yang Liu.

2016. Semi-supervised learning for neural machine translation. In Proceedings of

the 54th Annual Meeting of the Association for Computational Linguistics (Volume

1: Long Papers), pages 1965–1974.

123

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio.

2014a. On the properties of neural machine translation: Encoder-decoder ap-

proaches. arXiv preprint arXiv:1409.1259.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. 2014b. Learning phrase repre-

sentations using RNN encoder-decoder for statistical machine translation. pages

1724–1734.

Noam Chomsky. 1957. Syntactic Structures. Mouton and Co., The Hague.

Kenneth Ward Church and Patrick Hanks. 1989. Word association norms, mutual

information, and lexicography. In 27th Annual Meeting of the Association for

Computational Linguistics, pages 76–83, Vancouver, British Columbia, Canada.

Jonathan H Clark, Chris Dyer, Alon Lavie, and Noah A Smith. 2011. Better hypoth-

esis testing for statistical machine translation: Controlling for optimizer instability.

In Proceedings of the 49th Annual Meeting of the Association for Computational

Linguistics: Human Language Technologies: short papers-Volume 2, pages 176–181.

Trevor Cohn, Cong Duy Vu Hoang, Ekaterina Vymolova, Kaisheng Yao, Chris Dyer,

and Gholamreza Haffari. 2016. Incorporating structural alignment biases into an

attentional neural translation model. Proceedings of the 2016 Conference of the

North American Chapter of the Association for Computational Linguistics.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu,

and Pavel Kuksa. 2011. Natural language processing (almost) from scratch. Journal

of Machine Learning Research, 12(Aug):2493–2537.

R Dennis Cook and Sanford Weisberg. 1980. Characterizations of an empirical influ-

ence function for detecting influential cases in regression. Technometrics, 22(4):495–

508.

Balázs Csanád Csáji. 2001. Approximation with artificial neural networks. Faculty

of Sciences, Etvs Lornd University, Hungary, 24:48.

Anna Currey, Antonio Valerio Miceli Barone, and Kenneth Heafield. 2017. Copied

monolingual data improves low-resource neural machine translation. In Proceedings

of the Second Conference on Machine Translation, pages 148–156.

124

https://doi.org/10.3115/981623.981633
https://doi.org/10.3115/981623.981633

Fahim Dalvi, Nadir Durrani, Hassan Sajjad, Yonatan Belinkov, and Stephan Vogel.

2017. Understanding and improving morphological learning in the neural machine

translation decoder. In Proceedings of the International Joint Conference on Nat-

ural Language Processing, pages 142–151.

Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer, and

Richard Harshman. 1990. Indexing by latent semantic analysis. Journal of the

American society for information science, 41(6):391–407.

Liang Ding and Dacheng Tao. 2019. Recurrent graph syntax encoder for neural

machine translation. arXiv preprint arXiv:1908.06559.

Carl Doersch and Andrew Zisserman. 2017. Multi-task self-supervised visual learning.

In Proceedings of the IEEE International Conference on Computer Vision, pages

2051–2060.

Tobias Domhan and Felix Hieber. 2017. Using target-side monolingual data for neural

machine translation through multi-task learning. In Proceedings of the Conference

on Empirical Methods in Natural Language Processing, pages 1501–1506.

Long Duong, Trevor Cohn, Steven Bird, and Paul Cook. 2015. Low resource de-

pendency parsing: Cross-lingual parameter sharing in a neural network parser. In

Proceedings of the 53rd Annual Meeting of the Association for Computational Lin-

guistics and the 7th International Joint Conference on Natural Language Processing

(Volume 2: Short Papers), pages 845–850, Beijing, China.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and Noah A Smith. 2016. Re-

current neural network grammars. In Proceedings of the 2016 Conference of the

North American Chapter of the Association for Computational Linguistics, pages

199–209.

Sergey Edunov, Myle Ott, Michael Auli, and David Grangier. 2018. Understanding

back-translation at scale. In Proceedings of the 2018 Conference on Empirical

Methods in Natural Language Processing, pages 489–500.

Jeffrey L Elman. 1990. Finding structure in time. Cognitive science, 14(2):179–211.

Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa Tsuruoka. 2016. Tree-to-

sequence attentional neural machine translation. In Proceedings of the 54th Annual

Meeting of the Association for Computational Linguistics, pages 823–833.

125

https://doi.org/10.3115/v1/P15-2139
https://doi.org/10.3115/v1/P15-2139

Akiko Eriguchi, Yoshimasa Tsuruoka, and Kyunghyun Cho. 2017. Learning

to parse and translate improves neural machine translation. arXiv preprint

arXiv:1702.03525.

Theodoros Evgeniou and Massimiliano Pontil. 2004. Regularized multi–task learning.

In Proceedings of the tenth ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 109–117. ACM.

Meng Fang, Yuan Li, and Trevor Cohn. 2017. Learning how to active learn: A

deep reinforcement learning approach. In Proceedings of the 2017 Conference on

Empirical Methods in Natural Language Processing, pages 595–605.

Weston Feely, Mehdi Manshadi, Robert E Frederking, and Lori S Levin. 2014. The

CMU METAL Farsi NLP Approach. In LREC, pages 4052–4055.

Jenny Rose Finkel, Trond Grenager, and Christopher Manning. 2005. Incorporating

non-local information into information extraction systems by gibbs sampling. In

Proceedings of the 43rd annual meeting on association for computational linguistics,

pages 363–370.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-learning

for fast adaptation of deep networks. In Proceedings of the 34th International

Conference on Machine Learning-Volume 70, pages 1126–1135. JMLR. org.

Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a bayesian approximation:

Representing model uncertainty in deep learning. In international conference on

machine learning, pages 1050–1059.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin.

2017. Convolutional sequence to sequence learning. In Proceedings of the 34th In-

ternational Conference on Machine Learning-Volume 70, pages 1243–1252. JMLR.

org.

Ran Gilad-Bachrach, Amir Navot, and Naftali Tishby. 2006. Query by committee

made real. In Advances in neural information processing systems, pages 443–450.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT

Press.

126

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial

nets. In Advances in neural information processing systems, pages 2672–2680.

Jiatao Gu, Hany Hassan, Jacob Devlin, and Victor OK Li. 2018a. Universal neural

machine translation for extremely low resource languages. In Proceedings of the

2018 Conference of the North American Chapter of the Association for Computa-

tional Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages

344–354.

Jiatao Gu, Yong Wang, Yun Chen, Victor OK Li, and Kyunghyun Cho. 2018b. Meta-

learning for low-resource neural machine translation. In Proceedings of the 2018

Conference on Empirical Methods in Natural Language Processing, pages 3622–

3631.

Jiatao Gu, Yong Wang, Kyunghyun Cho, and Victor OK Li. 2019. Improved zero-

shot neural machine translation via ignoring spurious correlations. arXiv preprint

arXiv:1906.01181.

Han Guo, Ramakanth Pasunuru, and Mohit Bansal. 2019. Autosem: Automatic task

selection and mixing in multi-task learning. CoRR, abs/1904.04153.

Michelle Guo, Albert Haque, De-An Huang, Serena Yeung, and Li Fei-Fei. 2018.

Dynamic task prioritization for multitask learning. In Proceedings of the European

Conference on Computer Vision (ECCV), pages 270–287.

Thanh-Le Ha, Jan Niehues, and Alexander Waibel. 2016. Toward multilingual

neural machine translation with universal encoder and decoder. arXiv preprint

arXiv:1611.04798.

Gholamreza Haffari, Maxim Roy, and Anoop Sarkar. 2009. Active learning for statis-

tical phrase-based machine translation. In Proceedings of Human Language Tech-

nologies: The 2009 Annual Conference of the North American Chapter of the As-

sociation for Computational Linguistics, pages 415–423.

Gholamreza Haffari and Anoop Sarkar. 2009. Active learning for multilingual sta-

tistical machine translation. In Proceedings of the Joint Conference of the 47th

Annual Meeting of the ACL and the 4th International Joint Conference on Natural

Language Processing of the AFNLP: Volume 1-Volume 1, pages 181–189.

127

http://arxiv.org/abs/1904.04153
http://arxiv.org/abs/1904.04153

Kazuma Hashimoto and Yoshimasa Tsuruoka. 2017. Neural machine translation with

source-side latent graph parsing. arXiv preprint arXiv:1702.02265.

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsuruoka, and Richard Socher. 2016.

A joint many-task model: Growing a neural network for multiple NLP tasks.

Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai Yu, Tie-Yan Liu, and Wei-Ying Ma.

2016. Dual learning for machine translation. In Advances in Neural Information

Processing Systems, pages 820–828.

Vu Cong Duy Hoang, Philipp Koehn, Gholamreza Haffari, and Trevor Cohn. 2018.

Iterative back-translation for neural machine translation. In Proceedings of the 2nd

Workshop on Neural Machine Translation and Generation, pages 18–24.

Sepp Hochreiter. 1991. Untersuchungen zu dynamischen neuronalen Netzen. Ph.D.

thesis, Diploma thesis, Institut für Informatik, Lehrstuhl Prof. Brauer, Bechnische

Universität München.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997a. LTSM can solve hard time lag

problems. In Advances in Neural Information Processing Systems: Proceedings of

the 1996 Conference, pages 473–479.

Sepp Hochreiter and Jürgen Schmidhuber. 1997b. Long short-term memory. Neural

computation, 9(8):1735–1780.

Kurt Hornik. 1991. Approximation capabilities of multilayer feedforward networks.

Neural networks, 4(2):251–257.

Liang Huang. 2008. Forest reranking: Discriminative parsing with non-local features.

In ACL, pages 586–594.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, Geoffrey E Hinton, et al. 1991.

Adaptive mixtures of local experts. Neural computation, 3(1):79–87.

Ali Jalali, Sujay Sanghavi, Chao Ruan, and Pradeep K Ravikumar. 2010. A dirty

model for multi-task learning. In Advances in neural information processing sys-

tems, pages 964–972.

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categorical reparameterization with

gumbel-softmax. arXiv preprint arXiv:1611.01144.

128

Jing Jiang. 2009. Multi-task transfer learning for weakly-supervised relation extrac-

tion. In Proceedings of the Joint Conference of the 47th Annual Meeting of the

ACL and the 4th International Joint Conference on Natural Language Processing

of the AFNLP, pages 1012–1020, Suntec, Singapore.

Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. 2018. Mentornet:

Learning data-driven curriculum for very deep neural networks on corrupted labels.

In International Conference on Machine Learning, pages 2309–2318.

Melvin Johnson, Mike Schuster, Quoc V Le, Maxim Krikun, Yonghui Wu, Zhifeng

Chen, Nikhil Thorat, Fernanda Viégas, Martin Wattenberg, Greg Corrado, et al.

2017. Googles multilingual neural machine translation system: Enabling zero-shot

translation. Transactions of the Association for Computational Linguistics, 5:339–

351.

Michael I Jordan and Robert A Jacobs. 1994. Hierarchical mixtures of experts and

the em algorithm. Neural computation, 6(2):181–214.

Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan, Aaron van den Oord, Alex

Graves, and Koray Kavukcuoglu. 2017. Neural machine translation in linear time.

arXiv preprint arXiv:1610.10099.

Alex Kendall, Yarin Gal, and Roberto Cipolla. 2018. Multi-task learning using un-

certainty to weigh losses for scene geometry and semantics. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages 7482–7491.

Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980.

Durk P Kingma, Tim Salimans, and Max Welling. 2015. Variational dropout and

the local reparameterization trick. In Advances in Neural Information Processing

Systems, pages 2575–2583.

Eliyahu Kiperwasser and Miguel Ballesteros. 2018. Scheduled multi-task learning:

From syntax to translation. Transactions of the Association for Computational

Linguistics, 6:225–240.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander Rush.

2017. Opennmt: Open-source toolkit for neural machine translation. In Proceedings

of ACL 2017, System Demonstrations, pages 67–72.

129

https://www.aclweb.org/anthology/P09-1114
https://www.aclweb.org/anthology/P09-1114
http://aclweb.org/anthology/Q18-1017
http://aclweb.org/anthology/Q18-1017
http://aclweb.org/anthology/P17-4012

Philipp Koehn. 2005. Europarl: A parallel corpus for statistical machine translation.

In MT summit, volume 5, pages 79–86.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Fed-

erico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens,

Chris Dyer, Ondřej Bojar, Alexandra Constantin, and Evan Herbst. 2007. Moses:

Open source toolkit for statistical machine translation. In Proceedings of the 45th

Annual Meeting of the Association for Computational Linguistics on Interactive

Poster and Demonstration Sessions, pages 177–180.

Philipp Koehn and Rebecca Knowles. 2017. Six challenges for neural machine trans-

lation. In Proceedings of the First Workshop on Neural Machine Translation, pages

28–39.

Philipp Koehn, Franz Josef Och, and Daniel Marcu. 2003. Statistical phrase-based

translation. In Proceedings of the 2003 Conference of the North American Chapter

of the Association for Computational Linguistics on Human Language Technology-

Volume 1, pages 48–54.

Pang Wei Koh and Percy Liang. 2017. Understanding black-box predictions via

influence functions. In Proceedings of the 34th International Conference on Machine

Learning-Volume 70, pages 1885–1894. JMLR. org.

Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin Choi, and Luke Zettlemoyer.

2017. Neural amr: Sequence-to-sequence models for parsing and generation. In Pro-

ceedings of the Annual Meeting of the Association for Computational Linguistics,

pages 146–157.

Guillaume Lample, Alexis Conneau, Ludovic Denoyer, and Marc’Aurelio Ranzato.

2018a. Unsupervised machine translation using monolingual corpora only. In In-

ternational Conference on Learning Representations.

Guillaume Lample, Myle Ott, Alexis Conneau, Ludovic Denoyer, and Marc’Aurelio

Ranzato. 2018b. Phrase-based & neural unsupervised machine translation. arXiv

preprint arXiv:1804.07755.

Yann LeCun and Yoshua Bengio. 1998. The handbook of brain theory and neural

networks. chapter Convolutional Networks for Images, Speech, and Time Series,

pages 255–258. MIT Press, Cambridge, MA, USA.

130

http://dl.acm.org/citation.cfm?id=1557769.1557821
http://dl.acm.org/citation.cfm?id=1557769.1557821
https://openreview.net/forum?id=rkYTTf-AZ
http://dl.acm.org/citation.cfm?id=303568.303704
http://dl.acm.org/citation.cfm?id=303568.303704

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature,

521(7553):436–444.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Improving distributional similarity

with lessons learned from word embeddings. Transactions of the Association for

Computational Linguistics, 3:211–225.

Junhui Li, Deyi Xiong, Zhaopeng Tu, Muhua Zhu, Min Zhang, and Guodong Zhou.

2017. Modeling source syntax for neural machine translation. In Proceedings of the

55th Annual Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers), pages 688–697.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. 2015. Gated graph

sequence neural networks. arXiv preprint arXiv:1511.05493.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng

Gao, and Jiawei Han. 2019a. On the variance of the adaptive learning rate and

beyond. arXiv preprint arXiv:1908.03265.

Ming Liu, Wray Buntine, and Gholamreza Haffari. 2018. Learning to actively learn

neural machine translation. In Proceedings of the 22nd Conference on Computa-

tional Natural Language Learning, pages 334–344.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2017. Adversarial multi-task learning

for text classification. In Proceedings of the 55th Annual Meeting of the Association

for Computational Linguistics, pages 1–10.

Shikun Liu, Andrew J Davison, and Edward Johns. 2019b. Self-supervised generali-

sation with meta auxiliary learning. arXiv preprint arXiv:1901.08933.

Yi Luan, Chris Brockett, Bill Dolan, Jianfeng Gao, and Michel Galley. 2017. Multi-

task learning for speaker-role adaptation in neural conversation models. In Proceed-

ings of the Eighth International Joint Conference on Natural Language Processing

(Volume 1: Long Papers), pages 605–614.

Minh-Thang Luong and Christopher D. Manning. 2015. Stanford neural machine

translation systems for spoken language domain. In International Workshop on

Spoken Language Translation, Da Nang, Vietnam.

131

https://doi.org/10.1162/tacl_a_00134
https://doi.org/10.1162/tacl_a_00134
https://doi.org/10.18653/v1/P17-1001
https://doi.org/10.18653/v1/P17-1001

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. 2015a. Effective ap-

proaches to attention-based neural machine translation. In Proceedings of the 2015

Conference on Empirical Methods in Natural Language Processing (EMNLP). As-

sociation for Computational Linguistics.

Minh-Thang Luong, Ilya Sutskever, Quoc V Le, Oriol Vinyals, and Wojciech Zaremba.

2015b. Addressing the rare word problem in neural machine translation.

Thang Luong, Quoc V. Le, Ilya Sutskever, Oriol Vinyals, and Lukasz Kaiser. 2016.

Multi-task sequence to sequence learning. In International Conference on Learning

Representations.

Thang Luong, Hieu Pham, and Christopher D. Manning. 2015c. Effective Approaches

to Attention-based Neural Machine Translation. In Proceedings of the 2015 Con-

ference on Empirical Methods in Natural Language Processing, pages 1412–1421,

Lisbon, Portugal.

Chunpeng Ma, Akihiro Tamura, Masao Utiyama, Tiejun Zhao, and Eiichiro Sumita.

2018. Forest-based neural machine translation. In Proceedings of the 56th Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),

pages 1253–1263, Melbourne, Australia.

Christopher D Manning. 2015. Computational linguistics and deep learning. Com-

putational Linguistics, 41(4):701–707.

Diego Marcheggiani, Joost Bastings, and Ivan Titov. 2018. Exploiting semantics in

neural machine translation with graph convolutional networks. In Proceedings of

the 2018 Conference of the North American Chapter of the Association for Com-

putational Linguistics: Human Language Technologies, Volume 2 (Short Papers),

pages 486–492, New Orleans, Louisiana.

Diego Marcheggiani and Ivan Titov. 2017. Encoding sentences with graph convolu-

tional networks for semantic role labeling. arXiv preprint arXiv:1703.04826.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. 1993. Building

a large annotated corpus of english: The penn treebank. Computational Linguistics,

19(2):313–330.

Warren S McCulloch and Walter Pitts. 1943. A logical calculus of the ideas immanent

in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133.

132

https://doi.org/10.18653/v1/P18-1116
https://doi.org/10.18653/v1/N18-2078
https://doi.org/10.18653/v1/N18-2078

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation

of word representations in vector space. arXiv preprint arXiv:1301.3781.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khudan-

pur. 2010. Recurrent neural network based language model. In Eleventh annual

conference of the international speech communication association.

Tomáš Mikolov, Stefan Kombrink, Lukáš Burget, Jan Černockỳ, and Sanjeev Khu-

danpur. 2011. Extensions of recurrent neural network language model. In

2011 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 5528–5531. IEEE.

Marvin Minsky and Seymour Papert. 1969. Perceptrons - an introduction to compu-

tational geometry.

Tom M Mitchell. 1980. The need for biases in learning generalizations. Department

of Computer Science, Laboratory for Computer Science Research .

Pim Moeskops, Jelmer M Wolterink, Bas HM van der Velden, Kenneth GA Gilhuijs,

Tim Leiner, Max A Viergever, and Ivana Išgum. 2016. Deep learning for multi-task

medical image segmentation in multiple modalities. In International Conference

on Medical Image Computing and Computer-Assisted Intervention, pages 478–486.

Springer.

Graham Neubig. 2017. Neural machine translation and sequence-to-sequence models:

A tutorial. arXiv preprint arXiv:1703.01619.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed Ammar,

Antonios Anastasopoulos, Miguel Ballesteros, David Chiang, Daniel Clothiaux,

Trevor Cohn, Kevin Duh, Manaal Faruqui, Cynthia Gan, Dan Garrette, Yangfeng

Ji, Lingpeng Kong, Adhiguna Kuncoro, Gaurav Kumar, Chaitanya Malaviya, Paul

Michel, Yusuke Oda, Matthew Richardson, Naomi Saphra, Swabha Swayamdipta,

and Pengcheng Yin. 2017. DyNet: The dynamic neural network toolkit. arXiv

preprint arXiv:1701.03980.

Graham Neubig and Junjie Hu. 2018. Rapid adaptation of neural machine translation

to new languages. arXiv preprint arXiv:1808.04189.

Weili Nie, Nina Narodytska, and Ankit Patel. 2019. RelGAN: Relational generative

adversarial networks for text generation. In International Conference on Learning

Representations.

133

https://openreview.net/forum?id=rJedV3R5tm
https://openreview.net/forum?id=rJedV3R5tm

Jan Niehues and Eunah Cho. 2017. Exploiting linguistic resources for neural machine

translation using multi-task learning. In Proceedings of the Second Conference on

Machine Translation, pages 80–89.

Xing Niu, Michael Denkowski, and Marine Carpuat. 2018. Bi-directional neural ma-

chine translation with synthetic parallel data. In Proceedings of the 2nd Workshop

on Neural Machine Translation and Generation, pages 84–91.

Sinno Jialin Pan and Qiang Yang. 2009. A survey on transfer learning. IEEE Trans-

actions on knowledge and data engineering, 22(10):1345–1359.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a

method for automatic evaluation of machine translation. In Proceedings of the 40th

annual meeting on association for computational linguistics, pages 311–318.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 2013. On the difficulty of

training recurrent neural networks. ICML (3), 28:1310–1318.

Ramakanth Pasunuru and Mohit Bansal. 2017. Multi-task video captioning with

video and entailment generation. In Proceedings of ACL.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,

Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.

2017. Automatic differentiation in pytorch. In NIPS-W.

Hao Peng, Sam Thomson, and Noah A. Smith. 2017. Deep multitask learning for

semantic dependency parsing. In Proceedings of the 55th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers), pages 2037–

2048.

Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove: Global

vectors for word representation. In Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing (EMNLP), pages 1532–1543, Doha, Qatar.

Adam Poliak, Yonatan Belinkov, James Glass, and Benjamin Van Durme. 2018. On

the evaluation of semantic phenomena in neural machine translation using natural

language inference. arXiv preprint arXiv:1804.09779.

Ye Qi, Devendra Sachan, Matthieu Felix, Sarguna Padmanabhan, and Graham Neu-

big. 2018. When and why are pre-trained word embeddings useful for neural ma-

chine translation? In Proceedings of the 2018 Conference of the North American

134

https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/N18-2084
https://doi.org/10.18653/v1/N18-2084

Chapter of the Association for Computational Linguistics: Human Language Tech-

nologies, Volume 2 (Short Papers), pages 529–535, New Orleans, Louisiana.

Rajeev Ranjan, Vishal M Patel, and Rama Chellappa. 2017. Hyperface: A deep multi-

task learning framework for face detection, landmark localization, pose estimation,

and gender recognition. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 41(1):121–135.

Roi Reichart, Katrin Tomanek, Udo Hahn, and Ari Rappoport. 2008. Multi-task

active learning for linguistic annotations. In Proceedings of ACL-08: HLT, pages

861–869, Columbus, Ohio.

Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. 2018. Learning to

reweight examples for robust deep learning. In International Conference on Ma-

chine Learning, pages 4331–4340.

Clemens Rosenbaum, Tim Klinger, and Matthew Riemer. 2018. Routing networks:

Adaptive selection of non-linear functions for multi-task learning. In International

Conference on Learning Representations.

Frank Rosenblatt. 1958. The perceptron: A probabilistic model for information stor-

age and organization in the brain. Psychological review, 65(6):386.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. 2011. A reduction of imitation

learning and structured prediction to no-regret online learning. In Proceedings of

the fourteenth international conference on artificial intelligence and statistics, pages

627–635.

Sebastian Ruder. 2017. An overview of multi-task learning in deep neural networks.

arXiv preprint arXiv:1706.05098.

Sebastian Ruder, Joachim Bingel, Isabelle Augenstein, and Anders Søgaard. 2017.

Sluice networks: Learning what to share between loosely related tasks. arXiv

preprint arXiv:1705.08142.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. 1985. Learning

internal representations by error propagation. Technical report, DTIC Document.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016a. Edinburgh neural ma-

chine translation systems for wmt 16. In Proceedings of the First Conference on

Machine Translation: Volume 2, Shared Task Papers, pages 371–376.

135

https://www.aclweb.org/anthology/P08-1098
https://www.aclweb.org/anthology/P08-1098
https://openreview.net/forum?id=ry8dvM-R-
https://openreview.net/forum?id=ry8dvM-R-

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016b. Neural Machine Trans-

lation of Rare Words with Subword Units. In Proceedings of the Annual Meeting

of the Association for Computational Linguistics, pages 1715–1725.

Rico Sennrich and Biao Zhang. 2019. Revisiting low-resource neural machine trans-

lation: A case study. In Proceedings of the 57th Annual Meeting of the Association

for Computational Linguistics, pages 211–221, Florence, Italy.

Burr Settles. 2009. Active learning literature survey. Technical report, University of

Wisconsin-Madison Department of Computer Sciences.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey

Hinton, and Jeff Dean. 2017. Outrageously large neural networks: The sparsely-

gated mixture-of-experts layer. arXiv preprint arXiv:1701.06538.

Xing Shi, Inkit Padhi, and Kevin Knight. 2016. Does string-based neural mt learn

source syntax? In Proceedings of the Conference on Empirical Methods in Natural

Language Processing, pages 1526–1534.

Dongdong Zhang Shuangzhi Wu, Ming Zhou. 2017. Improved neural machine trans-

lation with source syntax. In Proceedings of the Twenty-Sixth International Joint

Conference on Artificial Intelligence, IJCAI-17, pages 4179–4185.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Linnea Micciulla, and John

Makhoul. 2006. A study of translation edit rate with targeted human annotation.

In Proceedings of association for machine translation in the Americas.

Anders Søgaard and Yoav Goldberg. 2016. Deep multi-task learning with low level

tasks supervised at lower layers. In Proceedings of the Annual Meeting of the

Association for Computational Linguistics, pages 231–235.

Linfeng Song, Daniel Gildea, Yue Zhang, Zhiguo Wang, and Jinsong Su. 2019. Se-

mantic neural machine translation using AMR. Transactions of the Association for

Computational Linguistics, 7:19–31.

Linfeng Song, Yue Zhang, Zhiguo Wang, and Daniel Gildea. 2018. A graph-to-

sequence model for amr-to-text generation. In Proceedings of the 56th Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-

pers), pages 1616–1626.

136

https://doi.org/10.18653/v1/P19-1021
https://doi.org/10.18653/v1/P19-1021
https://doi.org/10.24963/ijcai.2017/584
https://doi.org/10.24963/ijcai.2017/584
https://doi.org/10.1162/tacl_a_00252
https://doi.org/10.1162/tacl_a_00252

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. 2014. Dropout: A simple way to prevent neural networks from

overfitting. The Journal of Machine Learning Research, 15(1):1929–1958.

Wen Sun, Arun Venkatraman, Geoffrey J Gordon, Byron Boots, and J Andrew Bag-

nell. 2017. Deeply aggrevated: Differentiable imitation learning for sequential pre-

diction. In Proceedings of the 34th International Conference on Machine Learning-

Volume 70, pages 3309–3318. JMLR. org.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning

with neural networks. In Advances in Neural information Processing Systems, pages

3104–3112.

Kai Sheng Tai, Richard Socher, and Christopher D Manning. 2015. Improved seman-

tic representations from tree-structured long short-term memory networks. arXiv

preprint arXiv:1503.00075.

Jörg Tiedemann. 2009. News from OPUS-A collection of multilingual parallel cor-

pora with tools and interfaces. In Recent advances in natural language processing,

volume 5, pages 237–248.

Jörg Tiedemann. 2012. Parallel data, tools and interfaces in opus. In Proceedings of

the International Conference on Language Resources and Evaluation, pages 2214–

2218.

Simon Tong and Edward Chang. 2001. Support vector machine active learning for

image retrieval. In Proceedings of the ninth ACM international conference on Mul-

timedia, pages 107–118. ACM.

Lisa Torrey and Jude Shavlik. 2010. Transfer learning. In Handbook of research

on machine learning applications and trends: algorithms, methods, and techniques,

pages 242–264.

Kristina Toutanova, Dan Klein, Christopher D Manning, and Yoram Singer. 2003.

Feature-rich part-of-speech tagging with a cyclic dependency network. In Proceed-

ings of the 2003 conference of the North American chapter of the association for

computational linguistics on human language technology-volume 1, pages 173–180.

Zhaopeng Tu, Yang Liu, Lifeng Shang, Xiaohua Liu, and Hang Li. 2017. Neural

machine translation with reconstruction. In Thirty-First AAAI Conference on Ar-

tificial Intelligence.

137

Peter D Turney and Patrick Pantel. 2010. From frequency to meaning: Vector space

models of semantics. Journal of artificial intelligence research, 37:141–188.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In

Advances in neural information processing systems, pages 5998–6008.

Oriol Vinyals, L ukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and Geoffrey

Hinton. 2015. Grammar as a foreign language. In Advances in Neural Information

Processing Systems, pages 2773–2781.

Thuy-Trang Vu, Ming Liu, Dinh Phung, and Gholamreza Haffari. 2019. Learning

how to active learn by dreaming. In Proceedings of the 57th Annual Meeting of the

Association for Computational Linguistics, pages 4091–4101, Florence, Italy.

Sida Wang and Christopher Manning. 2013. Fast dropout training. In international

conference on machine learning, pages 118–126.

Zirui Wang, Zihang Dai, Barnabás Póczos, and Jaime Carbonell. 2019. Characterizing

and avoiding negative transfer. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 11293–11302.

Mark Woodward and Chelsea Finn. 2017. Active one-shot learning. arXiv preprint

arXiv:1702.06559.

Felix Wu, Angela Fan, Alexei Baevski, Yann Dauphin, and Michael Auli. 2019. Pay

less attention with lightweight and dynamic convolutions. In International Confer-

ence on Learning Representations.

Lijun Wu, Yingce Xia, Li Zhao, Fei Tian, Tao Qin, Jianhuang Lai, and Tie-Yan Liu.

2017. Adversarial neural machine translation. arXiv preprint arXiv:1704.06933.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolf-

gang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. 2016.

Google’s neural machine translation system: Bridging the gap between human and

machine translation. arXiv preprint arXiv:1609.08144.

Yi Yang, Zhigang Ma, Feiping Nie, Xiaojun Chang, and Alexander G Hauptmann.

2015. Multi-class active learning by uncertainty sampling with diversity maximiza-

tion. International Journal of Computer Vision, 113(2):113–127.

138

https://doi.org/10.18653/v1/P19-1401
https://doi.org/10.18653/v1/P19-1401
https://openreview.net/forum?id=SkVhlh09tX
https://openreview.net/forum?id=SkVhlh09tX

Yongxin Yang and Timothy M Hospedales. 2016. Trace norm regularised deep multi-

task learning. arXiv preprint arXiv:1606.04038.

Zhen Yang, Wei Chen, Feng Wang, and Bo Xu. 2018. Improving neural machine

translation with conditional sequence generative adversarial nets. In Proceedings of

the 2018 Conference of the North American Chapter of the Association for Com-

putational Linguistics: Human Language Technologies, Volume 1 (Long Papers),

pages 1346–1355.

Xiao-Tong Yuan, Xiaobai Liu, and Shuicheng Yan. 2012. Visual classification with

multitask joint sparse representation. IEEE Transactions on Image Processing,

21(10):4349–4360.

Jiajun Zhang and Chengqing Zong. 2016. Exploiting source-side monolingual data in

neural machine translation. In Proceedings of the Conference on Empirical Methods

in Natural Language Processing, pages 1535–1545.

Yu Zhang, Ying Wei, and Qiang Yang. 2018a. Learning to multitask. In S. Bengio,

H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,

Advances in Neural Information Processing Systems 31, pages 5771–5782.

Zhirui Zhang, Shujie Liu, Mu Li, Ming Zhou, and Enhong Chen. 2018b. Joint training

for neural machine translation models with monolingual data. In Thirty-Second

AAAI Conference on Artificial Intelligence.

139

	List of Figures
	List of Notations
	List of Abbreviations
	Introduction
	Motivation
	Transduction of Complex Structures for Incorporating Linguistic Annotations
	Injecting Linguistic Inductive Biases via Multi-Task Learning

	Research Objectives
	Thesis Outline and Contributions

	Background
	Deep Learning
	Multi-Layer Perceptron (MLP)
	Recurrent Neural Network (RNN)
	Backpropagation
	Long Short-Term Memory (LSTM)
	Tree-LSTM

	Regularisation
	Early Stopping
	Dropout

	Deep Learning for NLP
	Word Embedding
	Statistical Language Modelling

	Neural Machine Translation
	Seq2Seq model
	Attentional Seq2Seq model
	Convolutional Seq2Seq model
	Self-attention Seq2Seq model
	Evaluation metrics

	Low-Resource Neural Machine Translation
	Incorporate Linguistic Annotation by Transduction of Complex Structures
	Multi-Task Learning for Directly Injecting Auxiliary Knowledge
	Multi-Task Learning
	Multi-Task Learning and Transfer Learning
	Multi-Task Learning in Practice
	 Multi-task learning for injecting linguistic knowledge in NMT

	Other Approaches
	Active Learning
	Back-translation and Dual Learning
	Adversarial training
	Zero/Few Shot Learning

	Summary

	I Transduction of Complex Structures
	An Attentional Forest-To-Sequence Model
	Introduction
	Neural Forest-to-Sequence Translation
	Forest Encoder
	Sequential Decoder
	Training

	Computational Complexity Analysis
	Experiments
	The Setup
	Results
	Analysis

	Summary

	II Multi-Task Learning: Architectural Design
	Deep Seq2Seq MTL for NMT
	Introduction
	Seq2Seq Multi-Task Learning
	Adversarial Training
	Experiments
	Bilingual Corpora
	Auxiliary Tasks
	Models and Baselines
	Results
	Analysis

	Summary

	Adaptive Knowledge Sharing in Deep Seq2Seq MTL
	Introduction
	Routing Networks for Deep Neural Networks
	Seq2Seq MTL Using Recurrent Unit with Adaptive Routed Blocks
	Routing Mechanism
	Block Architecture
	Training Objective and Schedule.

	Experiments
	Models and Baselines
	Results and analysis

	Summary

	III Multi-Task Learning: Training Schedule
	Adaptive scheduling for Deep Seq2Seq MTL
	Introduction
	Learning to Reweigh Mini-Batches
	Experiments
	Bilingual Corpora and Auxiliary Tasks
	MTL architecture and training schedule
	Results and Analysis

	Summary

	Learning to Multi-Task Learn
	Introduction
	MTL training schedule as a Markov Decision Process
	An Oracle Policy for MTL-MDP
	Learning to Multi-Task Learn
	Experiments
	MTL architectures
	Results

	Analysis
	Summary

	Conclusion and Future Directions
	Future Directions

	Bibliography

