
Building Secure and Efficient
Blockchain Systems

by

Bin Yu

A thesis
presented to Monash University

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

information technology

Monash University, Melbourne, Australia, 2019



c© Bin Yu 2019

ii



Publications during enrolment 

 [1] Yu, B., Wright, J., Nepal, S., Zhu, L., Liu, J. and Ranjan, R., 2018. IoTChain: 
Establishing trust in the internet of things ecosystem using blockchain. IEEE Cloud 
Computing, 5(4), pp.12-23. 

[2] Yu, B., Liu, J.K., Sakzad, A., Nepal, S., Steinfeld, R., Rimba, P. and Au, M.H., 
2018, September. Platform-independent secure blockchain-based voting system. In 
International Conference on Information Security (pp. 369-386). Springer, Cham. 

[3] Yu, B., Kermanshahi, S.K., Sakzad, A. and Nepal, S., 2019, October. Chameleon 
Hash Time-Lock Contract for Privacy Preserving Payment Channel Networks. In 
International Conference on Provable Security (pp. 303-318). Springer, Cham. 

[4] Yu, B., Liu, J., Nepal, S., Yu, J. and Rimba, P., 2019. Proof-of-QoS: QoS Based 
Blockchain Consensus Protocol. Computers & Security, p.101580. 

Thesis including published works declaration 

I hereby declare that this thesis contains no material which has been accepted for the award 
of any other degree or diploma at any university or equivalent institution and that, to the best 
of my knowledge and belief, this thesis contains no material previously published or written 
by another person, except where due reference is made in the text of the thesis. 

This thesis includes 4 original papers published in peer reviewed journals/conferences and 1 
unpublished publication. The core theme of the thesis is secure protocol design for 
blockchain systems. The ideas, development and writing up of all the papers in the thesis 
were the principal responsibility of myself, the student, working within the Faculty of 
Information and Technology, Monash University under the supervision of Joseph Liu, Ron 
Steinfeld and Surya Nepal (data61 CSIRO). 

(The inclusion of co-authors reflects the fact that the work came from active collaboration 
between researchers and acknowledges input into team-based research.)  

My contribution to the work involved the following: 

Thesis 
Chapter Publication Title Status  Nature and % of 

student contribution 
Co-author name(s) Nature 

and % of Co-author’s 
contribution* 

Co-
author(

s),
Monas

h
studen
t Y/N*

2
P2PBFS: P2P Based 
Blockchain File System Submitted

80%. Concept 
and collecting 

data and writing 
first draft 

1. Joseph Liu, Supervision 5% 
2. Surya Nepal, Supervision 5% 
3. Amin Sakzad, Supervision 5% 
4. Jiangshan Yu, Supervision 5% 

No 



3

Proof-of-QoS: QoS 
Based Blockchain 
Consensus Protocol  Published 

80%. Concept 
and collecting 
data and writing 
first draft

1. Joseph Liu, Supervision 5%
2. Surya Nepal, Supervision 5%
3. Jiangshan Yu, Supervision 5% 
4. Paul Rimba, offer comments 5%

No

4

Chameleon Hash 
Time-Lock Contract 
for Privacy Preserving 
Payment Channel 
Networks

Published 
70%. Concept 
and collecting 
data and writing 
first draft

1.Shabnam Kasra Kermanshahi,
contribute in proof and algorithm
design 20%
2.Surya Nepal, Supervision 5%
3.Amin Sakzad, Supervision 5%

Yes

5.1

IoTChain:
Establishing Trust in 
the IoT-based 
Applications
Ecosystem Using 
Blockchain 

published 

75%. Concept 
and collecting 
data and writing 
first draft

Jarod Wright 10%, 
Surya Nepal,Supervision 5% 
Liming Zhu,Supervision 3% 
Joseph Liu,Supervision 4% 
Rajiv Ranjan 3%,

No

5.2
Platform-independent
Secure Blockchain-
Based Voting System 

Published 

75%. Concept 
and collecting 
data and writing 
first draft

1. Joseph Liu, Supervision 5%
2. Surya Nepal, Supervision 5%
3. Amin Sakzad, Supervision 5%
4. Ron Steinfeld, Supervision 5%
5.Paul Rimba, offer comments 2.5%
6. Man Ho  Au, offer SLRS algorithm
2.5%

No

I have not renumbered sections of submitted or published papers in order to generate a 
consistent presentation within the thesis. 

Student signature:     
               

Date:  

The undersigned hereby certify that the above declaration correctly reflects the nature and 
extent of the student’s and co-authors’ contributions to this work. In instances where I am not 
the responsible author I have consulted with the responsible author to agree on the respective 
contributions of the authors. 

Main Supervisor signature: Date: 



Publications

The following are the submitted/published papers during the P.h.D study.

[1] Yu, Bin, Joseph K. Liu, Amin Sakzad, Surya Nepal, Ron Steinfeld, Paul Rimba, and
Man Ho Au. ”Platform-independent secure blockchain-based voting system.” In Interna-
tional Conference on Information Security, pp. 369-386. Springer, Cham, 2018. [published]

[2] Yu, Bin, Jarod Wright, Surya Nepal, Liming Zhu, Joseph Liu, and Rajiv Ranjan.
”IoTChain: Establishing trust in the internet of things ecosystem using blockchain.” IEEE
Cloud Computing 5, no. 4 (2018): 12-23. [published]

[3] Yu, Bin, Shabnam Kasra Kermanshahi, Amin Sakzad, and Surya Nepal. ”Chameleon
Hash Time-Lock Contract for Privacy Preserving Payment Channel Networks.” In Inter-
national Conference on Provable Security, pp. 303-318. Springer, Cham, 2019. [published]

[4] Yu, Bin, Joseph Liu, Surya Nepal, Jiangshan Yu, and Paul Rimba. ”Proof-of-
QoS: QoS Based Blockchain Consensus Protocol.” Computers & Security (2019): 101580.
[published]

[5] P2PBFS: P2P based blockchain file system [submitted]

iii



Abstract

With the fast development of computer science, the public is becoming more sensitive to
the security of their private data. The public wants their data to be processed quickly
but also securely. Data encryption, zero-knowledge proof and secret sharing schemes have
been proposed to provide a secure environment for participants to exchange their data
without leaking it to unrelated parties. However, for the majority of the secure distribution
systems, we need a trusted third-party to organise the communication between different
participants. For instance, a secured voting system needs all the voters to be able to trust
the results published by the tallying centre or voting administrator. The security of the
system can be improved if the trusted third party is removed from the distributed systems.

Bitcoin was proposed by Satoshi Nakamoto in 2008. It takes advantage of a peer-to-peer
network in order to construct a system described as “a system for electronic transactions
without relying on trust”. In Bitcoin, a set of transactions are stored in an immutable
structure called blocks and through the peer-to-peer network the blocks are duplicated
and stored for all the participants. Consensus protocols ensure that the majority of the
participants have a consistent view of the order of the blocks, which are generated by
participants known as miners. Since the transactions in the block are verified by all the
participants there exists no requirement for a trusted third-party to be involved in the sys-
tem. The trust-free feature has aroused the interests of researchers and the Bitcoin design
scheme has been generalised and implemented in a system known as Blockchain. The con-
cept of having computer protocol that is intended to digitally facilitate, verify, or enforce
the negotiation or performance of a contract, without the need for third parties, has been
achieved with the help of blockchain. Blockchain technology not only brings this revolu-
tionary business model to industry but also drives forward cryptographic research such as
multi-party computation, succinct zero-knowledge proof and threshold signatures.

Though blockchain technology brings a great convenience to the industry, the public is
still concerned with the security and efficiency of blockchain systems. My research focuses
on the following aspects: 1) The issue of increasing storage demand for blockchain sys-
tems. The miners in blockchain systems need to store all the blocks created, starting with
the genesis block, and with the fast development of blockchain technology, the storage re-
quirement to participate in the system has increased greatly. This discourages participants
who have restricted storage, such as IoT and mobile devices, to contribute to the system.
It is therefore crucial to quickly resolve this storage consumption issue by proposing new
blockchain storage schemes; 2) The issue of the efficiency of the blockchain consensus pro-
tocols. The proof-of-work transaction throughout is often blamed, while the proof-of-stake
based consensus protocols can be easily dominated by the stakeholders, who occupies a
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vast amount of resources. Improving the blockchain consensus protocol throughput while
providing a fair environment for all the participants is a popular research topic; 3) The
leakage of the payment path in the payment channel networks. Though the payment chan-
nel networks increase the transaction throughput, it may leak the payment path from the
sender to the receiver; 4) The security of the blockchain-based applications. Since all the
data in the blockchain is publicly accessible it is compulsory to have cryptographic schemes
to ensure that blockchain-based applications achieve public verifiability, whilst preserving
the privacy and security.

In the last three years’ of study, I contributed to the security and privacy protection
in blockchain research in the following four aspects: 1) To address the issue of growth
of blockchain storage consumption, I proposed a peer-to-peer blockchain-based system
that decouples the need for miners to store all the blocks locally. With the help of our
blockchain-based system, storage restricted devices can also be involved in the blockchain
mining process; 2) To address the blockchain consensus protocol low-throughput issue, I
proposed a hybrid consensus protocol that takes advantage of the Byzantine Fault Toler-
ance based consensus protocol to achieve a high transaction throughput while preserving
the openness of the scheme, which allows the public to join the system without obtaining
any permission from a third party; 3) To address the payment path leakage in the payment
channel networks, I propose a Chameleon Hash based payment scheme that avoids anyone
recovering the payment path from the sender to the receiver; 4) To address the security
of blockchain-based applications, I propose two papers which demonstrate that blockchain
can be applied to build a secure and privacy-preserving electronic voting system, and also
used to trace and manage the ownership of IoT devices and their data, without any trusted
parties.
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Chapter 1

Introduction

1.1 Research Background

1.1.1 Blockchain

Trust plays a critical role in information exchanges. It helps different entities deal with each
other more effectively and is often a key element in any collaborative system. Traditionally,
trust is established among different entities by centralised institutions, such as banks or
government agencies. With the help of these centralised institutions, different entities can
cooperate with a certain degree of confidence. Blockchain, known as an electronic ledger,
tries to replace such centralised institutions by distributing the trust in a decentralised
network. In a blockchain system, the ledger is immutable and not held on a single server,
instead it is held on all servers in the network. This open feature of blockchain allows any
participant to modify the ledger under a set of rules dictated by a consensus protocol. The
consensus protocol requires the majority of the blockchain participants to agree on the
modification of the ledger to ensure the trustworthiness of the blockchain. Once the ledger
is updated, all participants update their ledger locally and simultaneously. If any of the
participants violate the consensus protocol to propose a new data entry on the chain, the
network treats that update as an invalid operation. In practical terms, transactions are
bundled together and submitted to the blockchain as a block. Cryptographic techniques
are applied to link all blocks in a deterministic order. The cryptographic algorithm also
guarantees that the blocks are immutable, which means that once a block is appended
to the chain it cannot be tampered with. Compared with other distribution systems,
blockchain has the following two outstanding features: 1) It distributes the trust of the
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system from one, or a few, central node(s) to a set of nodes and 2) The blockchain service
can be offered by any of the available participants, thus makes the Denial-of-service attack
difficult to be deployed.

1.1.2 Smart Contract

The terminology “smart contracts” was coined by computer scientist Nick Szabo in 1994,
to bring together contract law, and related business practices, and the design of electronic-
commerce protocols between strangers on the Internet [7]. If we take the chain as an
append-only database for a complete blockchain system, a Turing-complete language is
needed to guide how the blocks are constructed and stored. Smart contracts can be re-
garded as the Turing-complete language that guides the block generation 1. Smart con-
tracts enables interactions between end-users and a blockchain by allowing the end-users
to create and/or query data on the blockchain. With the help of the smart contract, a
business model in which it is difficult to establish trust can be migrated onto blockchain.

We take Hyperledger fabric [8] as an example to show the general scheme of the smart
contract. At least three interfaces should be implemented, which are; init(), invoke(),
and query(). init() is the interface that is invoked when the smart contract is loaded.
init() initialises the smart contract system parameters before the end-user interacts with
the smart contract. query() is how the interface handles the query request from the
blockchain end-users. invoke() is the interface that is called when the end-user wants to
put the data on the blockchain. Unlike query(), invoke() is executed on all validation
nodes to ensure the consistency of data on the blockchain.

We demonstrate how the smart contract is deployed on blockchain in Fig. 1.1. First,
the smart contract administrator needs to compile the smart contract application into a
binary code, so that it can be executed on the Hyperledger fabric. The administrator
then deploys the smart contract on the blockchain through the smart contract front-end.
The administrator receives notifications when the status of the smart contract is updated.
For instance, when the smart contract is deployed successfully, the application receives a
message saying that the smart contract is now running on the blockchain. Finally, end-
users can access the service through the interface provided by the smart contract front-end
server.

In the high level, we can divide the transaction confirmation on the blockchain into 6
steps.

1If there is no factor that forces the smart contract to terminate such as gas limitation in Ethereum.
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Figure 1.1: Smart contract on blockchain.

1. The administrator compiles and deploys the smart contract on the blockchain through
the smart contract front end server.

2. The end-users invoke the smart contract through the smart contract front-end server.

3. The validity of the transaction is verified by the miners and the valid transaction is
involved into a block together with other valid transactions.

4. The miner who generates the block broadcasts the block to the whole network.

5. Based on different consensus protocols, for a given time slot, only one of the blocks
is regarded as authoritative by the system.

6. The rest of the miners verify the correctness of the block and append new blocks to
the chain.

Finally, the execution result of the smart contract is accepted and stored on the blockchain.

1.1.3 Consensus Protocol and Block Storage

Blockchain is an append-only ledger [9]. It can be regarded as a distributed database
that stores the transactions in a unique tree structure known as a Merkle tree [10]. If
a transaction passes the validity check, it is included in a candidate block together with
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other transactions. Nodes in the blockchain system collaborate to determine the sequence
of the blocks on the chain (consensus protocol). Consensus protocol guarantees that all the
participants in the system have an identical view of the sequence of the blocks. However, in
a practical scenario, due to the network latency of transaction propagation and malicious or
faulty nodes, nodes may end up with different views of the block sequences (branches in the
blockchain system). The consequence of the inconsistent view is the possibility of double-
spending. For each block generation interval, called an epoch or a round, the consensus
protocol nominates one node as a leader to propose the block while the rest agrees on
the proposed block by appending it to their chain. Three main consensus protocols are
applied in current blockchain systems. The first one is Proof-of-Work (PoW) consensus
protocol, which selects the block nomination node by asking the blockchain participants to
resolve a “maths puzzle”. The PoW based blockchain achieves maximum system scalability
by allowing all the participants to contribute to the block generation. However, poor
transaction throughput and huge energy consumption in block generation are often blamed.

For the PoW based protocol, node nomination is based on solving a cryptographic puz-
zle. For the Practical Byzantine Fault Tolerance (PBFT) based protocol, node nomination
is based on negotiation among participants. Finally, the proof-of-X (PoX) protocol nom-
inates a leader based on the resource (denoted as X) that each node has (the resources
can be the deposit that nodes made or the storage that the nodes can provide). Hybrid
protocols take advantage of different types of consensus protocols in their block generation
phase.

For the majority of the blockchain system, the generated blocks are stored and main-
tained in a given order for all the miners. Once each miner receives a new block from the
network, they verify the correctness of the block and append the new block at the end of
their local chain. Each given block should be identical among all the miners, otherwise, the
system fails to achieve consistency. Additionally, since blockchain is an append-only sys-
tem, the storage consumption on each miner increases with the growth of the total amount
of transactions. Since the origin of Bitcoin, the system data size has been increased from
about 10 GB in 2011 to about 150GB in early 2019. Since all the miners have had all
identical blocks since the genesis, it has resulted in a vast storage waste. “Lightweight
client” has been proposed by Bitcoin 2 to allow some nodes to participant in the block
generation without storing all the blocks. When the “lightweight client” needs a specific
block, it sends a query to the full nodes it trusts, and so fully trusts the blocks returned by
the full node. This scheme has already been deployed in the Bitcoin network and benefits
the nodes that have restricted storage.

2https://bitcoin.org/en/full-node

4



1.1.4 Payment Channel Network

For the PoW based blockchain, the transaction throughput is often blamed, as it can only
process 3 to 7 transactions per second. To address this issue, an off-chain transaction
scheme has been implemented in the Bitcoin network, called the Lightning Network [11].
The high-level idea for the Lightning Network is to have participants involved in a payment
session to make a deposit in a joint account, which needs both of their signatures to spend
the money. They put this joint account on the blockchain to let the blockchain network
confirm its validity. Once their joint account is accepted by the blockchain and a payment
channel is established between them they can have transactions off-the-chain and these
two parties can arrange how to allocate the deposit in the joint account. If either of them
does not comply with the protocol, he/she faces the chance of losing all his/her deposit.
When they want to cancel the channel, either of them needs to commit the joint account’s
latest status on the blockchain. With the help of the payment channel, the two parties can
have as many transactions as they require, and the transaction throughput is beyond the
restriction of the blockchain.

Though the payment channel addressed the issue of low transaction throughput, it needs
the two parties who are involved in a payment to have the payment channel established
first, which discourages users who do not have frequent payments. To address this issue,
we may find some existing channels in the network and asks these channels to forward
the transactions for us by paying them a reasonable fee. This payment model benefits the
payer/payee as they can enjoy the high transaction throughput without establishing the
channel in advance, additionally, the participants who forward the payment can obtain the
transaction fees that are offered by the payer.

1.2 Research Questions and Scope

Blockchain, which is regarded as a prominent solution for providing a self-organised data
sharing and computation platform also brings research questions, such as: 1) It is necessary
to consider how to build secured trust-free applications on the blockchain platform; 2) It is
critical to propose a consensus protocol that blockchain networks can reach the consensus
state within a reasonable time latency; 3) It is necessary to increase the blockchain trans-
action throughput by providing a fast and secure payment channel and 4) It is necessary
to deal with the increasing demand of blockchain storage.

To better focus on the security issues and the efficient of the blockchain platform, I
define my research questions as:
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1. How to deal with the increase of the storage demand in the blockchain?

Since the full nodes (regarded as the miners) are responsible for verifying the cor-
rectness of proposed transactions and in replying to transaction queries from the
end-users, they need to store all the blocks since the start of the system. As the
total number of the blocks is constantly increasing, the storage needs have attracted
researchers’ attention. Roughly speaking, two approaches exist to address this issue.
One is transaction relocation, which means the system inspects the transactions reg-
ularly to generate the summary of the previous block status, known as checkpoints.
As a result, the system does not need to store all the blocks since the genesis, it only
needs to store the blocks since the checkpoint, which was an approach introduced
by Amelchenko [12]. However, Amelchenko’s approach requires a routine service to
inspect every transaction, which results in a high workload, and this scheme is impos-
sible for the light-weight clients, such as Internet of Things (IoT) devices. Another
approach is to allow some nodes to only store the block head and when they need
to know the transactions within a block, they request the block from the full nodes.
In this way, the nodes have full control of whether to store the duplicated blocks or
not. In Ethereum, these nodes that do not hold the whole blocks are called light
nodes. The light node scheme was first implemented in Ethereum version 1.8 and
currently works within the Ethereum main network seamlessly. As the light node is
a compromise between functionality and storage, light nodes are not responsible for
querying the transactions in a specific block.

In order to allow some storage restricted devices, like the IoT devices, to partici-
pant in the blockchain system, blockchain systems usually provide a scheme to allow
the storage-restricted nodes to communicate with some trusted peers in order to
obtain the blocks. The issue with this scheme is the unstable connection between
the storage-restricted devices and the trusted peers. As a result, the performance of
the storage-restricted devices is unpredictable. Since there is no unified block access
method/policy among all the participants, the performance of the whole system can-
not be easily optimised. All the nodes who offer the block query service are required
to have all the blocks created since the start of this blockchain system. The conse-
quence of the aforementioned requirement is the data redundancy, which could be
avoided.

2. How to achieve a high transaction throughput while preserving the pre-
defined security requirement?

For any blockchain system, there is no node acting as a management node to coor-
dinate the communication between different participants. Keeping data consistent
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among a large number of nodes is a serious problem. Typically, three protocols exist
to address this issue: 1.) PoW protocol, which is widely adopted by crypto-currency
blockchain systems like Bitcoin [13] and Zcash [14]. 2). PBFT protocol, which is
applied by hyperledger [15]. The PoW protocol shows a remarkable performance in
nodes scalability, which means the PoW protocol can support large scale networks.
However, the network latency is poor, which means it takes a long time before the
whole network reaches a consistent state. PBFT protocol has great performance on
network latency but suffers from restrictions of network scale, which means it can
only support a limited number of nodes and 3.) Instead Proof-of-Stake (PoS) con-
sensus protocol use is proposed in order to address the issues of the PoW and PBFT.
PoS allows some nodes that hold the majority of the resources in the network to deal
with the blockchain generation. It raises the concern that these stakeholders may
collude with each other to dominate the whole system.

3. How to build a secure payment channel network to achieve high transac-
tion throughput?

Due to the nature of blockchain, the transaction throughput is much slower than
the centralised trading systems. For the blockchain system, the majority of time is
spent on transaction confirmation among all the participants. However, if the two
parties that are involved in the trading agree on the transactions, it is not necessary
to put their transactions on the blockchain. The idea of having off-chain transactions
is implemented in the Bitcoin network known as the lighting network, in which the
two parties can have a payment connection, known as the payment channel, directly
without interacting in the blockchain. The issue with this scheme is how we can
ensure that all the parties in a given payment channel obey the protocol. Some
nodes may not have transactions that frequently, so they may not wish to maintain
the payment channel while enjoying the benefits provided. One of the solutions is
to ask the nodes that have the channel established to forward the traffic, by paying
them a transaction fee. It is required that the system preserves the payment path
for the nodes that forward the transaction and therefore ensures that if any interme-
diate nodes do not cooperate in forwarding the transaction, none of the participates
involved in the payment paths suffers from any financial loss.

4. How to build secure applications on blockchain?

Although blockchain provides distributed trust and an anonymous environment for
applications which are trust sensitive, there is still an issue about how can we leverage
these features while preserving the participants’ privacy. Since all the data on the
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chain is shared among the blockchain miners if the sensitive data is not handled prop-
erly it could result in a data leak. Another issue is how to design a proper protocol
to address the existing issues that need to be deployed in a trust-free environment,
which should preserve the security assumptions while also achieving reasonable sys-
tem performance. Thanks to the blockchain, the ownership and management of data
and devices can also be migrated from the centralised system to the trust-free en-
vironment. However, there is the issue of how the blockchain system can manage
the data access on devices when they are transferred from one user to another. Ad-
ditionally, the blockchain system should also stop the previous owner from tracking
the ownership of the device once it is transferred to another owner.

1.3 Contribution to Knowledge

My research mainly focuses on the blockchain storage optimisation, blockchain consensus
protocols, blockchain payment network and the security and privacy preserving applica-
tions. The contributions are summarised as:

1. Distributed Blockchain File System

P2PBFS: P2P Based Blockchain File System in chapter 2.

In this paper, we propose a Peer-to-Peer (P2P) based file system to deal with the
growth of the demand for the block storage, and the vast amount of duplicated block
data. With the proposed system, the miners do not need to have the full copy of
the whole blockchain, and they can mainly focus on the block generation while free
from maintaining the storage of the blocks. With the unified file operation interface,
it decouples the block storage from the block generation, so the devices which have
limited storage can join the system to do the verification without storing any blocks.
With the help of the distributed file system, the performance of the whole distributed
system is easier to be managed by asking all the nodes who contribute in the block
storage to comply with the distributed file system protocol. The contribution of this
paper is summarised as follows:

(a) A new economic model for blockchain participants: In the existing
blockchain systems, the primary motivation to participate is to claim mining
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rewards. However, the nodes which fail to generate the blocks end up with noth-
ing even though they contribute to providing computing and storage resources.
Different from any existing blockchain economic model, in our framework, the
participants, who provide the storage resources without participating in mining
(e.g., PoW, PoS), can also get rewards by offering the block query service to the
blockchain system.

(b) An innovative distributed file system dedicated for block storage: The
features of P2PBFS are summarised as:

• New blockchain system architecture to resolve block duplication
issue: To the best of our knowledge, all existing blockchain systems require
the full nodes to have a copy of all the blocks since genesis. P2PBFS
decouples the function of block storage from block generation by migrating
the function of block storage to some dedicated nodes, known as storage
nodes. In P2PBFS, miners only need to store the block abstract (detail is
discussed in Section 2.6.1). Compared with the Bitcoin system, miners in
P2PBFS saves 99.96% storage in blockchain maintenance.
The innovative blockchain architecture is shown in Fig. 2.1(b). Since the
miners are free from storing blocks, the issue of a large number of duplicate
blocks can be avoided. Additionally, since the role of storing the blockchain
data is separated from the miner, resource-constrained mobile and IoT de-
vices may take this advantage and be involved in the mining process, where
intensive computing power is not needed (e.g. PoW), to increase the degree
of decentralisation.

• Transparent block access/store with the optimized query: We
achieve block access transparency by providing a P2PBFS driver. The
driver offers the standard file operations (open, write, read and close).
The block storage transparency is achieved by employing an operating sys-
tem mutex-lock scheme. Additionally, Since P2PBFS does not record the
sequence of the block, it is free from handing the “forks” in the blockchain
systems. By caching storage node information in block abstract, miners can
locate a block instantly without searching in the storage network, which is
dramatically faster than the general P2P storage solutions.

• Scalability and availability: We allow the storage node to join and leave
P2PBFS freely. When the new nodes join the network, routing service
running on the nodes will migrate the blocks to the new nodes according
to the XOR distance between the node ID and the block hash. Block
migration is transparent to the clients (The implementation of scalability is
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discussed in section 2.6.3.7). To achieve availability, we duplicate the blocks
on to multiple nodes, and this duplication is independent of the miners and
much less than duplications per miner. Based on our experiment results
(in the system consists of 20, 000 nodes and 200, 000 blocks), P2PBFS can
still achieve 100% block query successful rate even though 35% of nodes are
off-line.

• Secure, practical, and comprehensive performance evaluations:
One of our system design targets is to have a good tolerance under dif-
ferent kinds of attacks (e.g., grinding attack [16] and Sybil attack [1]). We
discuss the possibility of launching different types of attacks toward our
system in Section 2.7 to show the robustness of our system. The details of
our system performance evaluation are provided in Section 2.8.

• Profit-driven decentralized file system: Compared with the solution of
storing the blocks in the existing cloud file system (e.g., Dropbox and Google
Drive), our scheme does not depend on any third party to guarantee service
quality. Additionally, each participant who provides storage can claim fees
from the data they provided which is irrelevant to the mining fees.

2. A High Throughput Blockchain Consensus Protocol

Proof-of-QoS: QoS Based Blockchain Consensus Protocol [2] in chapter 3.

In this paper, we address the trade-off between the network latency and deployment
scalability [17] by proposing a new hybrid consensus protocol called PoQ. In PoQ,
we divide the whole blockchain network into different regions, in a block proposal
round, each region nominate a node based on the nodes Quality of service (the deposit
the node made, the error rate, the activity rate and the reference factor who refer
this node to join in the network). The nominated nodes from different regions run
Byzantine Fault Tolerance (BFT) based protocol to propose the blocks that accepted
by all the nominated nodes. Once the new blocks are generated, they are broadcast
to the whole network, and the rest of nodes append this new block to the end of their
own chain.

The contributions of this paper are summarised as the following:

• Openness: PoQ achieves openness by segregating the whole network into au-
tonomous regions. New nodes are free to join one of the regions they prefer.
When a node joins a region, peer nodes check whether this node’s deposit has
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already existed in the MGB to avoid a node joining multi-regions with the same
identity (node address).

• Fairness and energy-saving: From the perspective of the nodes, PoQ pro-
vides a fair environment by selecting a representative of a region based on its
QoS. Activity rate factor is introduced to avoid some nodes dominating the
block generation by making a vast amount of deposit. A random function is
applied to allow nodes with a similar QoS level to have an equal chance to be the
representative. The online QoS update scheme encourages the nodes to com-
ply with the protocol rules; otherwise, they will not only lose their QoS score
but also lose their deposit as a punishment. It is an energy-saving protocol as
nodes do not waste a tremendous amount of energy for competing for the block
proposal.

• Resilience and Robust: Our protocol offers the liveness and safety proper-
ties, provided that at most bn−1

3
c out of n regions are simultaneously faulty.

In PoQ, compromising the node nomination is more difficult and expensive —
the nodes are nominated based on their QoS. If a node is deemed malicious, its
nomination frequency drops dramatically as shown in Fig.3.3(c). It is impracti-
cal for a malicious node to misbehave in the system while not being caught by
the peer nodes for a long time. Since the node nomination is not based on the
asset or computing power, and no one can increase its nomination frequency by
occupying a large number of resources in the network. Instead, PoQ encourages
the node to do the mining by providing high QoS.

• Performance: High throughput is achieved by allowing the regions’ repre-
sentative nodes to construct the PBFT network to propose and accept blocks
among all regions. Through the experiments, we show that the system creates a
fair environment for all the participants, and it achieves a very high transaction
throughput of up to 9.7K transactions per second (TPS). Considering Paypal
and VISA, which handles hundreds of TPS and 2K TPS respectively [18], the
proposed system is suitable for practical use. We also implement PoQ on BFT-
SMaRt [19] to demonstrate the feasibility of building PoQ on the existing BFT
protocols.

3. Privacy Preserving Payment Channel Network

Chameleon Hash Time-Lock Contract for Privacy Preserving Payment
Channel Networks in chapter 4.
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The idea of payment channel is proposed to address the low transaction throughput
in blockchain systems. With the help of the payment channel, two parties can have as
many off-chain transactions as they wish while free from the transaction throughput
limitations on the blockchain. By paying a reasonable amount of fee, end users can
employ the existing payment channels to forward the payment thus avoid having the
payment channel established firstly. Hash Time-Locked Contracts (HTLC) is one
of the protocols applied by Bitcoin lighting network to ensure that all the parties
involved in a payment to obey the protocols in a payment. However, for the HTLC
protocol, one of the privacy issues is the leakage of the payment path to the parties
involved. To address this issue, we propose a new scheme called CHTLC to make
the trace of the payment path impossible. The contributions of our scheme are
summarised as follows:

• We propose a new payment protocol called CHTLC, which hides the payment
path from the view of payment participants and the observer who analyses the
blocks that are committed on the chain. We also prove the security of CHTLC
and show that CHTLC achieves the same level of security as Multi-hop Hash
Time-Lock Contract (MHTLC).

• We conduct computer simulations to show that our proposed CHTLC protocol
is efficient both in time and space. Our experimental results indicate that in
comparison with MHTLC protocol [20], our protocol is much more efficient in
payment forwarding. That is, MHTLC spends 309 ms per user to generate
the zero-knowledge proof required for the payment, whereas such procedure is
avoided in our protocol. For each intermediate node, MHTLC needs to transmit
1, 650KB data between each node, while it is reduced to only 0.96KB data in
our CHTLC protocol.

4. Blockchain-based applications

Though blockchain has existed for almost ten years, the application scenarios and
how it can contribute to the existing business model are not well studied. Through
this study, I proposed two papers that address the security and the privacy of the
blockchain-based applications.

IoTChain: Establishing Trust in the Internet of Things Ecosystem Using
Blockchain [3] in chapter 5.

For the traditional data/devices management system, it needs a trusted third party
to be involved in managing the transferring of the data/devices from one use to
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another. This scheme works perfectly if all the participants involved in the system
trust the third party will not collude with any use or release the sensitive data to the
public. In a practical scenario, this assumption is difficult to achieve.

To address the trust issue described above, we provide the IoTchain which has the
following features.

• We elaborate how blockchain can be applied in the device/data ownership man-
agement scenario in which trust is difficult to achieve.

• We propose a reference platform called IoTchain to demonstrate the feasibility
of employing the blockchain to manage the IoT device/data ownership without
trusting any third party.

• We introduce some future research directions and challenges in blockchain-based
ownership management systems.

Blockchain-based Privacy Preserving voting System [4] in chapter 5.

Cryptographic techniques are employed to ensure the security of voting systems in
order to increase its wide adoption. However, in such electronic voting systems,
the public bulletin board that is hosted by the third party for publishing and au-
diting the voting results should be trusted by all participants. Recently a number
of blockchain-based solutions have been proposed to address this issue. However,
these systems are impractical to use due to the limitations on the voter and can-
didate numbers supported, and their security framework, which highly depends on
the underlying blockchain protocol and suffers from potential attacks (e.g., force-
abstention attacks). To deal with two aforementioned issues, we propose a practical
platform-independent secure and verifiable voting system that can be deployed on any
blockchain that supports the execution of a smart contract. Verifiability is inherently
provided by the underlying blockchain platform, whereas cryptographic techniques
like Paillier encryption, proof-of-knowledge, and linkable ring signature are employed
to provide a framework for system security and user-privacy that are independent
from the security and privacy features of the blockchain platform. We analyse the
correctness and coercion-resistance of our proposed voting system. We employ Hy-
perledger Fabric to deploy our voting system and analyse the performance of our
deployed scheme numerically.

The contributions of our electronic voting system are summarised as:
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• Our voting system does not depend on a centralised trusted party for ballots
tallying and result publishing. Compared with traditional voting systems, which
highly depend on a centralised trusted party to tally the ballots and publish the
result, our voting system takes advantage of a blockchain protocol to eliminate
the need for a centralised trusted party.

• Our voting system is platform-independent and provides comprehensive security
assurances. Existing blockchain-based voting systems highly depend on the
underlying cryptocurrency protocols. Receipt-freeness [21] and correctness of
the voting result are hard to achieve (we analyse the blockchain-based voting
system explicitly in Section 5.2.3). The security of our voting system is achieved
by cryptographic techniques provided by our voting protocol itself, thus, our
voting system can be deployed on any blockchain that supports smart contract.
To achieve the goal of providing a comprehensive security, we employ the Paillier
system to enable ballots to be counted without leaking candidature information
in the ballots. Proof-of-knowledge is employed to convince the voting system
that the ballot cast by a voter is valid without revealing the content of the
ballot. Linkable ring signature is employed to ensure that the ballot is from one
of the valid voters, while no one can trace the owner of the ballot.

• Our voting system is scalable and applicable. In order to support voting scala-
bility, we propose two optimised short linkable ring signature key accumulation
algorithms given in algorithm 8 and algorithm 9 to achieve a reasonable latency
in large scale voting. We evaluate our system performance with 1 million voters
to show the feasibility of running a large scale voting with the comprehensive
security requirements.
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Chapter 2

P2PBFS: P2P Based Blockchain File
System

2.1 Abstract

The majority of the blockchain systems require all the participating nodes in block gen-
eration to duplicate all the blocks in the whole network. This results in a high level
of redundant blocks and a considerable amount of storage cost/waste. Additionally, the
current design discourages pervasive, resource-constrained mobile, and IoT devices to par-
ticipate in the block generation as they usually have limited storage capacity. To address
the aforementioned issue, we propose an innovative P2P based file system, called P2PBFS,
to store blocks for different blockchain platforms. In P2PBFS, miners are free from storing
the blocks, which results in avoiding the high duplication of blocks. Additionally, the stor-
age restricted devices can also contribute to the system by providing the storage. Through
the system implementation and evaluation, we demonstrate the feasibility of deploying
P2PBFS in a real distributed environment to support P2PBFS based blockchain systems.

2.2 Introduction

With the tremendous success of the Bitcoin system [13] and its use in many real-life ap-
plications, a large number of blockchain-based cryptocurrency systems and business appli-
cations have been developed and deployed. Founded on the principle of distributed trust,
these early blockchain systems have encountered challenges regarding privacy, security,
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Figure 2.1: The growth of blockchain size and recommend structure of P2PBFS based
blockchain system.

fairness, and performance, more specifically transaction throughput. Blockchain systems
like Monero [22] and Zerocash [14] employ some cryptographic techniques to enhance the
transaction privacy protection. Others like snow-white [23] and Ouroboros [16] address the
transaction throughput by replacing Proof-of-Work (PoW) consensus protocol with Proof-
of-X (X denoting a type of resource, e.g., stake, storage, activity) ones. The performance
of PBFT consensus protocol is analyzed by Sukhwani et al. [24] and the avaliability of the
blockchain-based systems is studied by Weber et al. [25]. Researchers like Ekparinya et al.
[26] focus on the man-in-the-middle attack while others focus on enhancing the security of
the blockchain systems by improving the resilience of the blockchain network layer[27, 28].
It is important to note that the underlying P2P network has remained the same since
the start of the Bitcoin project[27] and the same problems are carried over to follow-on
blockchain systems such as Ethereum [29]. The majority of the blockchain research is
focused on enhancing the system performance, availability, and data privacy, while a few
studies have been carried out on blockchain storage optimization, one of the key challenges
in existing blockchain systems. Furthermore, with the growth of the blockchain size such
as Ethereum (shown in Fig. 2.1(a)), it has become urgent to deal with the growth of the
block storage requirement. For the current design of blockchain systems, they require all
the miners to have a large volume of storage to store all the blocks which discourages a
large number of nodes with resource-constrained devices to participate in the network as
miners. If this continues, it will have a detrimental effects on the founding principles of
the blockchain system as a few rich nodes are only able to perform the mining jobs. To ad-
dress this challenge, Ethereum has proposed the “lightweight clients” [30] which only store
the head of the blocks, and fetch the block from peer members when a block is needed1.

1The scheme is described at project wiki https://github.com/ethereum/wiki/wiki/Light-client-
protocol
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However, these “lightweight clients” fail to have the features of the “full nodes”2 and their
mining process depends on the “full nodes”.

To address the aforementioned problems of ever growing block storage requirement and
limitations in the existing proposal, we propose a P2P based file system, called P2PBFS,
to distribute the blocks into a P2P network. As a result, all blockchain participants
can retrieve the blocks from the P2P network through the standard operating system
file interface transparently.

The contributions of our work are summarised as follows:

1. A new economic model for blockchain participants: In the existing blockchain sys-
tems, the primary motivation to participate is to claim mining rewards. However,
the nodes which fail to generate the blocks end up with nothing even though they
contribute to providing computing and storage resources. Different from any existing
blockchain economic model, in our framework, the participants, who provide the stor-
age resources without participating in mining (e.g., Proof-of-Work, Proof-of-Stake,
Proof-of-Storage), can also get rewards by offering the block query service to the
blockchain system.

2. An innovative distributed file system dedicated for block storage: The features of
P2PBFS are summarised as:

• New blockchain system architecture to resolve block duplication issue:
To the best of our knowledge, all existing blockchain systems require the “full
nodes” to have a copy of all the blocks since genesis. P2PBFS decouples the
function of block storage from block generation by migrating the function of
block storage to some dedicated nodes, known as storage nodes. In P2PBFS,
miners only need to store the block abstract. Compared with Bitcoin system,
miners in P2PBFS saves 99.96% storage in blockchain maintenance.

Since the miners are free from storing blocks, the issue of a large number of du-
plicate blocks can be avoided. Additionally, since role of storing the blockchain
data is separated from the miner, resource-constrained mobile and IoT devices
may take this advantage and be involved in the mining process, where heavy
computing power is not needed (e.g. PoS), to increase the degree of decentrali-
sation.

2“full nodes” are the nodes who store all the blocks in the blockchain.
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• Transparent block access/store with optimized query: We achieve block
access transparency by providing a P2PBFS driver. The driver offers the stan-
dard file operations (open, write, read and close). The block storage trans-
parency is achieved by employing an operating system mutex-lock scheme. Ad-
ditionally, Since P2PBFS does not record the sequence of the block, it is free
from handing the “forks” in the blockchain systems. By caching storage node in-
formation in block abstract, miners can locate a block instantly without search-
ing in the storage network which is dramatically faster than the general P2P
storage solutions.

• Scalability and availability: We allow the storage node to join and leave
P2PBFS freely. When the new nodes join the network, routing service running
on the nodes will migrate the blocks to the new nodes according to the XOR dis-
tance between the node ID and the block hash. Block migration is transparent
to the clients (The implementation of scalability is discussed in section 2.6.3.7).
To achieve availability, we duplicate the blocks on to multiple nodes and this
duplication is independent of the miners and much less than duplications per
miner. Based on our experiment results (in the system consists of 20, 000 nodes
and 200, 000 blocks), P2PBFS can still achieve 100% block query successful rate
even though 35% of nodes are off-line.

• Secure, practical, and comprehensive performance evaluations: One of
our system design targets is to have a good tolerance under different kinds of
attacks (e.g., grinding attack [16] and Sybil attack [1]). We discuss the possi-
bility of launching different types of attacks toward our system in Section 2.7
to show the robustness of our system. The details of our system performance
evaluation are provided in Section 2.8.

• Profit-driven decentralized file system: Compared with the solution of
storing the blocks in the existing cloud file system (e.g., Dropbox and Google
Drive), our scheme does not depend on any third party to guarantee the service
quality. Additionally, each participant who provides storage can claim fees from
the data they provided which is irrelevant to the mining fees.

The feasibility of P2PBFS is based on the following four facts. (1) With the develop-
ment of the high bandwidth network infrastructure, the impact of the network delay
for retrieving a few MB data has become a minor factor to affect the service qual-
ity. (2) The development of storage technology makes it possible to provide a large
storage solution with a relatively low cost (e.g., the Network-attached Storage). (3)
The unspent transaction output (UTXO) pool scheme [31] allows the miners to ver-
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ify the validity of the transactions without communicating with P2PBFS frequently.
(4) The simplified payment verification (SPV) scheme [13] allows end-users (e.g., the
cryptocurrency wallets) to confirm the transactions without inspecting all the related
blocks3.

2.3 Related work

2.3.1 Blockchain-based File Systems

The idea of proof-of-storage has been applied in mining for some blockchain systems such
as FileCoin [32] and Chia [33]. Some of these systems take advantage of blockchain to
store general data while our P2PBFS is dedicated to store blockchain blocks for different
blockchain platforms. Our work is irrelevant to the research that taking advantage of
blockchain to store data distributively. Additionally, in FileCoin and Chia, proof-of-storage
is applied in mining while P2PBFS is not involved in any mining process and storage node
gets rewards by offering the blocks.

2.3.2 LookUp Scheme in P2P Network

One of the key issue in all the P2P based distributed network is resource lookup. One
simple and effective approach is to distribute the resources into a distributed hash table
(DHT). Data items are stored in this DHT and found by specifying a unique key for
that data. The P2P algorithms like CAN [34], Chord [35], Kademlia [36], Pastry [37],
Tapestry [38], and Viceroy [39] are all structured DHT based ones.

In P2PBFS, we applied XOR “distance” to locate a resource in the network, and similar
to Kademlia, thus, we avoid the potential attacks which exists in the Chord network that
given all nodes address on the ring, the attacker can predict the routing path.

2.3.3 P2P File System

BitTorrent [40] is one of the most popular P2P file systems [41]. It relies on other (global)
components, such as websites, for finding files and resources. However, one of the disad-
vantages is that it depends on a third party channel to publish the resources, and more

3Bitcoin paper and the BIP-0037 https://github.com/bitcoin/bips/blob/master/bip-
0037.mediawiki
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seriously, there lacks of incentives for the nodes to provide resources while they need to
offer a reasonable bandwidth to benefit other peers who download the resource from them.

IPFS [42] is a Distributed Hash Table based hypermedia protocol which claims to
make the web faster, safer and more open. It takes advantage of Merkle tree, GIT version
control system, IPLD [43] to locate and update the unique resources efficiently. However,
IPFS is too heavy to be applied in storing the blockchain data as the schemes of data
updating is not needed. Since P2PBFS is dedicated for storing the blocks, it is optimized
with blockchain application scenario and is more light-weighted and efficient. In P2PBFS,
clients cache the storage nodes information to avoid searching the blocks in the whole P2P
network. Additionally, IPFS is not optimized for the scenario that read is more common
than write in the design.

Compared with general P2P storage system, P2PBFS is optimized for the blockchain
storage scenario in the following aspects: 1. Since it is possible for different client writes
the same block at the same time, we avoid the atom write operation. 2. Since no block
updates function is needed in P2PBFS, we use dictionary structure to store the block with
fixed position in the dictionary to achieve constant block query time. 3. For the miners,
we cache the frequently visited storage nodes to avoid the search for these nodes in the
network.

2.4 Architecture and New Economic Model

We decouple the block storage from the mining. As shown in Fig. 2.1(b), we divide the
blockchain system into four layers. The bottom layer is the hardware layer which consists
of the storage nodes. The function of the hardware layer is to offer the physical machines
to store the blocks. We allow any entities that can provide enough storage space to join
the network (it could be X86 servers or IoT devices). We also allow the nodes to join and
leave the file system anytime they wish. The second layer is our blockchain file system,
P2PBFS, which accepts the API calls from the miners or the broker service. P2PBFS
layer collaborates with the operating system to hide the details of the storage service from
the view of the mining service and the end-user broker service. It also maintains the
data structure to store/query the blocks in the infrastructure layer more efficiently. The
third layer is a service layer consisting of blockchain mining service and end-user broker
service. Miners participate in the mining service to generate new blocks, and the end-user
broker service provides the query and verification services for the end-users such as the
blockchain wallet running in smartphones. The top layer is the blockchain API interface,
which interacts with blockchain applications.
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We also define three different types of nodes in the blockchain system. The first type
is the end-user node, denoted as Nu, which submits the transactions to the system; The
second type is the miners, denoted as Nm, which proposes new blocks in the system, they
are the clients of the P2PBFS which store/query blocks from P2PBFS. The last type is
the storage nodes, denoted as Ns, which store the blocks in their local storage. Ns are paid
when they provide blocks to Nm or Nu. They are not involved in block mining and claim
no fees from any mining process.

P2PBFS brings a new economic pattern for blockchain systems. For the P2PBFS based
blockchain systems, Ns can charge Nm a certain amount of fee for the blocks they offer.

2.5 P2PBFS Design Overview

2.5.1 Assumptions and Scope

The following principals and assumptions guide the design of P2PBFS:

• We focus on how to provide block storage service effectively. The research issues
related to mining and block transaction fee optimization are beyond our research
scope.

• It is the fact that the majority of blockchain systems have the block size of a few
MB. Reads is more common than Writes. Since blockchain is an append-only system,
our file system does not support update operation.

• The system is designed for the scenario where participants are heterogeneous and
can join and leave the system at any time.

• P2PBFS is dedicated to providing a service to support the functionalities of blockchain
systems. It does not fully support standard file system APIs such as POSIX [44].

• There should be at least two storage nodes available to support the functionalities of
P2PBFS.

• We assume that there are a few proportions of miners that query the same storage
node at the same time. For the PoW based blockchain, the possibility that the miners
generate identical blocks at the same time is negligible. For the consensus protocol
which nominates a few miners to be responsible for block generation for each round
(e.g., PoX or PBFT), the total number of block query requests is limited.
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• We focus on how to provide efficient block querying and storing services. The internal
storage architecture in each storage node and its reliability is beyond our research
scope.

2.5.2 Interfaces

In this section, we describe how P2PBFS works in sync with the operating system. To
make the discussion concise, we take the Linux operating system as an example to show
how it works.

On the P2PBFS client side, the P2PBFS driver supports the standard file system API
(e.g. open, write, close) calls. From the miners’ point of view shown in Fig. 2.2(a), it calls
the Linux virtual file system (VFS) with the standard POSIX APIs. The request is then
sent to the file system in user space (FUSE) module. FUSE then sends the system calls to
the P2PBFS driver. P2PBFS invokes low-level functions like LookupBlock, LookupNode to
reply the calling from file system API (e.g., open, write). In response, the P2PBFS storage
node locates the specific resource and sends it back to the miner as a result of the API call.
On the storage node, the requests from the client are handled by performing store/query
operation for the specific block from their own storage through the VFS.

In P2PBFS, we implement six APIs to support the interactions with the blockchain
storage system.

• open(blockID): This allocates a file handler denoted as fd associated to the given
block, and returns the file handle to the client. The input of open is the block hash
value blockID.

• write(fd, block): This stores a block into the blockchain file system. The input of
write is the file handler fd returned by open and the block that needs to be written.
The returned value of write is the status flag indicating whether this block is stored
in the system successfully and the list of storage nodes, where this block is stored.

• read(fd): The input of read is the file handler fd and it returns the block from
the P2PBFS. It invokes VerifyBlock to avoid the storage node from returning the
tampered blocks.

• ioctl(fd, opt, data): This interface allows the end-user to call the special functions that
are provided by our file system (e.g., VerifyBlock or RandomWalk). The parameter
opt indicates what kind of function the end-user implicate to call and the parameter
data is employed to transfer information between end-user and P2PBFS.
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• close(fd): This unlinks the file handler fd from P2PBFS.

To support the aforementioned APIs, we implement the following functions in P2PBFS:
LookupNode, LookupBlock, VerifyBlock, StoreBlock and RandomWalk. The details of these
functions are explained in section 2.6.2.

• LookupNode: The input of the function is the storage node ID and the output is the
target node or a list of k1 storage nodes that may know this target node, where k1 is
a file system global parameter which indicates the number of nodes that may know
the target node.

• LookupBlock: The input of this function is the ID of the block, and the output is a
set of k2 nodes which holds this block or may know the node that holds this block.
k2 is a file system global parameter which indicates the number of nodes may know
the target block.

• VerifyBlock: The input of this function is the hash value of the blocks retrieved from
the storage node and the block abstract chain. The output is the flag telling whether
this block is tampered.

• StoreBlock: The input of the function is the block itself and the output is k3 storage
nodes in which this block may be put on. The file system parameter k3 indicates
how many duplicates we should have for a given block. A larger k3 provides better
block accessibility while increasing the demand for storage.

• RandomWalk: The input of this function is a storage node ID. The output is a set
of blocks.

We next discuss how P2PBFS interacts with the blockchain systems. To make the
discussion concise, we assume that the blockchain system is a PoW based blockchain.

1. Based on the unspent transaction data, miners verify the validity of the transactions
and try to propose a new block containing a set of valid transactions.

2. The miner who generates a new block appends the block abstract to its local block
abstract chain.
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3. Instead of storing the block locally, it invokes API open provided by blockchain file
system driver to obtain the file handler of this new block, then calls API write to
store the block into the blockchain file system. The miner who proposes the new
block calls the API ioctl to ensure the block can be retrieved from k3 storage node.
Finally, it broadcast the new block to the miners’ network.

4. For the rest of the miners, they verify the validity of the block once it is received and
store the block abstract in their local block abstract chain.

5. When the miners want to query a block, it calls read to retrieve the block from
P2PBFS. read invokes the lower-function verifyBlock to ensure the block has not
been tampered by the storage nodes.

For a given block, we cache the storage nodes which may hold the block in block
abstract; thus, when API open tries to link a block with a file handler, P2PBFS can
locate the storage node by searching in the block abstract rather than calling LookupBlock
function to search in the whole network. The details of the cache scheme are discussed in
Section 2.6.1.2.

For the storage nodes, they need to maintain node buckets to maintain the information
of peers’ storage nodes. Additionally, they need to maintain a dictionary to help them to
locate the block within a constant time. The details of the data structure on the storage
node are discussed in section 2.6.1.

2.6 P2PBFS Internals

In this section, we first explain the data structure of the blockchain storage node and the
miners. Then we explain the implementation of the interface in detail. We assume that
the block hash value and the node ID are both 512 bits long.

2.6.1 Data Structures and Routing Table

2.6.1.1 Storage Nodes data Structure

For a storage node, it maintains a block dictionary which maps the block hash value to
the address where the block is stored. As it is shown in Fig. 2.2(b), to locate a block with
the hash value of 0x32, the storage node looks up the key value of 0x32 in the dictionary
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(a) Integration with Linux Operating System. (b) Data structure on Storage node.

Figure 2.2: Integration with Linux and Data structure on storage node.

(a) Message structure. (b) Block abstract structure.

Figure 2.3: Message structure and Block abstract structure.
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and finally locates the specific block in the array. When a new block appears, it is mapped
into one of the buckets and an entry is created in the dictionary.

2.6.1.2 Miners’ Data Structure

The miners, Nm, need to store the abstracts of the blocks to verify the integrity of the
blocks that received from the storage nodes. We define the block abstract, which includes
at least Current block hash, Chaininfo, and Storage node list. The reference block
abstract structure is shown in Fig. 3.2.

• Current block hash: This segment is to help the miners to verify the validity of
the blocks that retrieved from the P2PBFS.

• Chaininfo: It is the critical part of the block abstract, similar to Bitcoin block,
it contains hashPrevBlock, hashMerkleRoot, and TimeStamp. For the PoW based
blockchain, it should also contain the segments to store the difficult Bits and the
Nonce. The functions of these variables are similar to that in Bitcoin blockchain
systems. All the data in Chaininfo is read-only.

• Storage node list: This is to cache a number of nodes that may potentially hold
this block. Thus, when the miner needs to lookup for a block, it firstly searches from
the peers in the peer list to avoid calling LookupBlock. The storage list is updated
every time when this block is visited since the block may migrates to other storage
nodes due to the variation of the network.

2.6.1.3 Node Routing Table

The routing table contains the object < ip, portnumber, nodeID > for each peer, known as
the address. With the ip address and the portnumber of the peer, a storage node can easily
connect to a given service running on the peers. To store the address in a hierarchical way,
for a given node j, we create n buckets where n is the bit length of the nodes’ address. For
different peer nodes, node j allocates them into different buckets according to the longest
common prefixes (LCP) the peer nodes share with node j. For the bucket-0, it stores the
nodes that have the address which the most significant bit is different from node j. For
the nodes with 5 common prefix in addresses, they should be stored in the fifth-bucket,
bucket-5. For the 512-bit address space, half of the total nodes belong to the bucket-0 and

2
512
k+1 nodes belongs to bucket-k.
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One can observe that bucket-511 has only 2 nodes while bucket-0 could have 2512 nodes.
To address this un-balanced node distribution in buckets, we set the space in each bucket
as a dynamic value to allow some buckets have more space to contain more peer nodes.
Let L be the bit length of the nodeID; For the bucket from bucket-500 to bucket-511, we
set the size of bucket-x as 2511−x. For the rest of the buckets, we set them to have fix sizes,
which can contain 1024 peer storage nodes.

2.6.2 Low-Level Operations

In this section, we describe the algorithms of low-level operations in P2PBFS including
LookupNode, LookupBlock, StoreBlock, and RandomWalk.

• LookupNode: When a node a (a miner or a storage node) locates another storage
node denoted as node b, it invokes the function LookupNode() with node b’s ID as
input. LookupNode() first calculates the LCP with node b. We denote the Exclusive
OR (XOR) value between node a and node b as z. It then looks up the nodes in
bucket-z. In the best scenario, node a can locate the node b in the first attempt.
Otherwise, it asks γ closest nodes to node b in bucket-z to help it find the target
peer simultaneously. If these peers know the address of the target peer, they will
return it; otherwise, they will return k1 nodes that are closest to node b to the best
of their knowledge. For each lookup operation, the node a obtains the nodes that
are closer to the node b and appends these nodes to the search queue. Then, node
a randomly picks up γ nodes from the search queue and repeats the aforementioned
process. The lookup process terminates when the node b’s address is found or there
is no new nodes, which potentially know node b appended to the search queue 4. In
the worst case, node a has to search dlog2 ne times to locate the target peer where n
is the number of storage nodes in the network. In practice, the time consumption of
search operations is much less than the worst case since we store more than one peer
in a bucket and we involve multiple nodes in search operation simultaneously.

• LookupBlock: To find a block denoted as B in the network, miner c firstly contacts
the storage nodes that stored in the Storage node list in this block’s abstract to
retrieve the block. If none of these storage nodes can offer the requested block, the
block search operation is performed which can be divided into two steps. In step
I, miner c communicates with one of the storage nodes denoted as d to ask for the
block B. If node d does not have the block, it calculates the LCP between its ID

4We assume that the number of the storage node is larger than k1.
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and the block B’s hash value denoted as z. Node d then returns k2 storage nodes
that in its bucket-z that may know block B to miner c (if the number of nodes in
this bucket is smaller than k2, all the nodes in the bucket are returned). Miner c
puts these returned nodes in the search queue G and repeats step I with γ nodes in
queue G. Step I terminates when a(some) storage node(s) in G claim they have the
block or no new storage node that potentially has block B appended to the queue
G. In step II, miner c pays one of the storage nodes who has the block and retrieves
the block from it.5 c checks the hash value of the block against the block’s abstract
it holds to ensure the validity of the block. Node c updates the Storage node list
with the nodes in G that can provide the valid block.

• StoreBlock: The operation of storing a block can also be divided into two stages. In
step I, the miner m maps the block W hash value to the node ID space and then
applies the same algorithm described in LookupNode to return the nodes that are
currently top-k3 closest to the block W . In step II, the node m sends the block to
all the nodes in the set S, and the storage nodes in the set S will store the block
locally and create a new entry in their block dictionary.

• VerifyBlock: To verify the integrity of a retrieved block, the miners calculate the hash
value of the returned block and compare it against the block hash value stored on the
block abstract. VerifyBlock avoids the possibility that the miner modify the block.

• RandomWalk: It is designed to help the miners to receive a batch of the blocks in a
more efficient way. It starts from a storage node S and then ask node S to return
the list of peer storage nodes in S’s bucket denoted as F , and the miner randomly
picks up some storage nodes from F and gets all the blocks from these selected nodes.
Then, it replaces node S with a random node in F and repeats the aforementioned
process. This function can be run recursively.

2.6.3 System Operations and Maintenance

In this section, we first introduce the message structure of P2PBFS. We then use the lower-
level operations described in section 2.6.2 to implement the functions such as query/store
the block from the Ns’s point of view.

5The payment is a transaction, if the storage node provides an invalid block, this transaction is discarded
by the miners. By checking the signature, other miners mark this storage node as dishonest. It may loose
the chance to get profit from offering the blocks since miners do not trust and accept its block any more.
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2.6.3.1 Protocol Message Structure

The file system message is shown in Fig. 2.3(a) which consists of two parts: message head
and message body which is the encrypted message content. Message head: The structure
of the message head consists of the following segments:

• Version: This represents the version number of the message.

• Msg Type: The message type enables the receiver to call the suitable function to
handle it.

• Total Length and Header Length: Since the length of the content is flexible, we
need to have the total length and header length to locate the message.

• Sender ID: This is the ID of the sender. It is also known as the nodeID. The ID
is the hash value of the public key of the sender.

• Sender Public Key: This is the public key of the sender. It is applied to verify the
correctness of the nodeID to prevent the adversary from pretending to be another
node (impersonate attacks [45]).

• Signed Message Hash Value: This segment is included to verify the integrity of
the message body. It also guarantees that the message sender holds the public key,
which is claimed in Sender Public Key segment.

• Encrypted Message Body: The message body could be either a list of the peers
information or the block data.

Message type: In the message type segment, we support the following operations:

• Ping – This message is sent by the nodes to check whether the destination node is
still active.

• Pong – This message is the response to the Ping message.

• FindNode – This message indicates the request of finding a specific node.

• FindNodeReply – This message indicates a list of the nodes that are closer to a given
nodes.

• FindBlock – This indicates the request of finding a specific block.

• FindBlockReply – This could be either the a list of nodes that may hold the block or
the target block itself.

29



2.6.3.2 Bootstrapping the File System Storage Node

In order to bootstrap the storage nodes, we should have at least two nodes whose addresses
are publicly known. These two nodes are served as the bootstrap nodes in the network,
which help the new nodes to update their buckets. Other nodes can also have the role of
bootstrap nodes to help other storage nodes to join the network by publishing their address
to the public.

The file system global parameters k1, k2, and k3 should be agreed among all the file
system participants. These parameters can be assigned with different values according to
message version. Parameters like γ is a local parameter which allows different storage node
to be customised. Larger γ may increase the systems working load as we invoke multiple
threads to search for a block/node simultaneously, while it could decrease the block/node
lookup waiting time.

2.6.3.3 Client Nodes Join the Blockchain Network

All the nodes that retrieve/store blocks from storage nodes are regarded as the clients.
For the clients, they follow the similar process of joining the existing blockchain network
(the detail of how a node joins the blockchain network is beyond our research scope). The
P2PBFS driver should be loaded into the operating system.

2.6.3.4 Storage Nodes Join the Network

When a storage node joins the file system, it needs to connect to a set of the bootstrapping
nodes. When the new node connects with the bootstrapping nodes, it sends a request
LoopkupNode to the bootstrapping node with the NodeId of itself. In this way, the new
node has the knowledge of the peer nodes that are closer to it.

2.6.3.5 Storage Nodes Leave the Network

When a node quits the network, it does not need to notify any peers. Since the blocks
that the node holds are also stored on other peers. The system can still provide the service
normally.
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2.6.3.6 Address Bucket Update

To update their address bucket, they can “ping” each node in the buckets and evict the
off-line node. They can also invoke LookupNode() with the ID of themselves to update the
knowledge of the nodes that around them.

2.6.3.7 Block migration (Scalability)

To achieve scalability, P2PBFS provide a on-the-fly block migration and address buckets
updating scheme to fit in with the variation of the storage network. When a node j
checks the availability of its neighbours and finds a new neighbour denoted as node k,
node j checks whether the blocks that share the same LCP with node k closer to node k or
not. If the block is closer to the node k, node j sends the blocks to the node k and deletes it
from node j’s local storage. When the node k receives the block, node k checks whether its
node ID is closer to the received block compared with node j or not, and decides whether
to store or ignore the block.

2.6.3.8 Blockchain Construction

For a practical blockchain system, it should allow the new miners to construct the blockchain
by visiting all the blocks since genesis. In P2PBFS based blockchain system, we suggest
applying a hybrid strategy which combines storage node RandomWalk and LookupBlock.
For the miner j, it firstly queries any block that is broadcast by other miners. It then,
invokes LookupBlock to retrieve this block from the storage node S, furthermore, miner j
retrieves all the blocks on the node S and invokes RandomWalk to get a batch of blocks. It
constructs the chain according to the preblockhash stored in Chaininfo segment. When few
new blocks can be reterieved by RandomWalk, miner j then applies LookupBlock to query
for the missing blocks.

2.7 Security Discussion

In this section, we present a security discussion considering the possibility of launching
different attacks toward our file system.
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2.7.1 Impersonate Attack

For this attack, the adversary may create a node with the ID that is identical with one of
the existing nodes in the network; thus, the communication to the victim node could be
redirected to the adversary.

This attack is impossible in our system. Since the nodeID is generated from the node’s
public key, the verifier can check whether the nodeID matches with the node’s public key.
It is impossible for the adversary to provide a fake public key as the sender needs to sign
on the message body with the private key that matches with the public key it claims. In
conclusion, since the adversary cannot generate the private key based on the public key it
carefully crafted, it is impossible for the adversary to impersonate other participates.

2.7.2 Grinding Attack

For the grinding attack, the adversary tries to generate a special set of nodeID’s that are
close to each other thus he could ensure a proportion of blocks are stored on the nodes
controlled by the adversary. However for the system with the nodeID of 512 bits length,
the possibility of finding 100 nodes that are closest to a given node is 100

2512
which is negligible.

The huge nodeID space also makes the brute force attack impossible.

2.7.3 Eclipse Attack

In this attack, the adversary eclipses a number of nodes from the rest of the network so
that the compromised nodes cannot respond to any requests from the file system. Since our
system allows one block to have multiple copies that are stored on different nodes, the cost
of launching an effective attack is increased dramatically. According to our experiments
in Fig. 2.4(b), in a 20, 000 nodes’ system, even if 60% of the total nodes are eclipsed, the
system can still respond to 99.40% of the requests.

The adversary may also firstly look up all the nodes that hold the block L and then
eclipse the nodes which store the block L from the rest of the network. However since
different nodes have different security levels, and they may work in different physical net-
works. The cost of eclipse the block L can be dramatically high, thus, make the attack
towards a set of blocks impractical.
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2.7.4 Nodes Collusion Attack

For the node collusion attack, the adversary tries to collude a set of nodes to disable the
accessibility of a certain amount of nodes. However, this type of attack is also not feasible
due to the following reasons: (1) The benefit of being honest overwhelms being dishonest.
Since the majority of the storage nodes are profit-driven, they can claim fees continuously
from offering the storage service. Once the service quality of the file system degrades, fewer
users will use the blockchain file system and the income of offering the storage resource is
also decreased. (2) The attack is of low efficiency. With k3 = 10, the adversary needs to
collude with at least 10 nodes to invalid a block. According to our experiment result in the
20,000 nodes system with 200,000 blocks, we found that with ε = 30, the average blocks
redundancy is 85% and each node stores 100 blocks; this mean for a group of nodes, 15
nodes are unique which account for 0.0075% of the total nodes. Roughly speaking, for our
test system, even if 100 groups have colluded which includes 1, 000 nodes, it only affects
0.75% of the total blocks in the system.

2.7.5 Sybil Attack [1]

The adversary may take advantage of the scalability of the system to employ cloud re-
sources and generate a huge amount of fake storage nodewithin a second and deploy in the
blockchain file system. After waiting for a certain amount of time to allow the blocks to
be migrated on to them, they reject all the block requests from the client.

According to our experiment result, for a system which has 20, 000 nodes and 200, 000
blocks, even if 60% of the node are compromised, the system can still respond to 99.40% of
the requests. Additionally, we ask all the storage nodes to make a deposit in the blockchain
before they are accepted by the system. In this case, compared with other participants,
if the adversary dominates the system by making the majority of the deposit, he has no
motivation to ruin the system and lost all his deposit.

2.8 System Evaluation

2.8.1 Experiments Setup

In this section, we evaluate the performance of P2PBFS in a 200,000 blocks blockchain
with 20,000 nodes. The nodes we mentioned in this section are storage nodes by default.
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(a) The accumulation of
the possibility to locate a
node within a given hops.

(b) Successful rate of re-
trieving blocks.

Figure 2.4: CDF of locating a node and successful rate of retrieving blocks.

(a) Hops for node lookup. (b) Hops for node lookup. (c) Hops for node lookup.

(d) block distribution. (e) block distribution. (f) block distribution.

Figure 2.5: Nodes lookup and blocks distribution with different ε.
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(a) RandomWalk effiency (ε =
50%).

(b) RandomWalk effiency (ε =
70%).

(c) Storage consumption on
P2PBFS and Bitcoin.

Figure 2.6: RandomWalk coverage with different ε and system storage consumption.

We set k1 = 20, k2 = 20, k3 = 10, and γ = 3 for all nodes. In P2PBFS, the ideal number
of blocks for each node is denoted by Bidea and is calculated as:

Bidea =
Numblock ∗ k3

Numnode

,

where Numblock and Numnode are the number of blocks and nodes in the system, respec-
tively.

In reality, it is impossible for any node to communicate with the rest of the nodes in the
network. For a node, we define the proportion of peer nodes it once communicated with
as the node’s communication coverage. We denote such quantity by ε. In our evaluation,
we set ε = 70%, ε = 50%, and ε = 30%, respectively.

We evaluate: (I) the number of hops that are needed to locate a storage node in
the system, (We avoid LookupBlock evaluation since it is similar to LookupNode) (II) the
distribution of blocks in the file system, (III) the success rate of locating blocks with the
variation of the number of online nodes, and (IV) the efficiency of RandomWalk to retrieve
blocks from P2PBFS.

According to our evaluation tasks, we run the P2PBFS simulator on 8 core i7 CPU
with 32GB memory. The simulator runs 20,000 nodes structure and updates the nodes
information according to the exchange of the peer information with other nodes. Multiple
threads are adopted in the simulator to simulate the parallel communication in the P2P
network.
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2.8.2 Evaluation of Finding a Node

The experiment results of the hops that are needed for locating a node with different ε
are shown in Fig. 2.5(a), Fig. 2.5(b) and Fig. 2.5(c), respectively. We define β as the ratio
between the number of lookup operations that are needed for a given hop and the total
number of lookup operations. It can be observed that the lookup operations which takes 5
hops have the highest β, which are 13.0%, 17.5%, and 20.0% for different chosen ε values.
The amount of β drops dramatically with the increase of hops for a given LookupNode
operation. It can also be observed that with the increase of ε, the average of number of
hops drops, which indiates the more nodes communicate with each other, the less hops to
locate a block(in Fig. 2.5(a), the average of hops is 8.25 while it is 5.58 in Fig. 2.5(c).).

In Fig.2.4(a), we demonstrate the accumulation of possibility to locate a node within
a given number of hops. It can be observed that for all different ε, half of the node lookup
operations can be finished within 7 hops (For ε = 70%, it is 74%, for ε = 50%, it is 67%
and for ε = 30%, it is 53%). When ε = 50%, 80% of the node lookup operations can be
finished within 10 hops, whereas the value is 65% for ε = 30%.

It can be concluded that fewer hops can be achieved by allowing nodes to exchange their
peer nodes’ address more frequently. Our system achieves a high node locating efficiency
as 74% of LookupNode operation can be completed within 7 hops.

2.8.3 Blocks Distribution

In this experiment, we discuss how the blocks are distributed among different nodes in the
file system. The experiment results are shown in Fig. 2.5(d), Fig. 2.5(e), and Fig. 2.5(f),
respectively. For the whole network, about 6.8%, 14%, and 32% of nodes store none of
the blocks with the ε = 70%, ε = 50%, and ε = 30%, respectively. It demonstrates that
with the larger ε, the more storage nodes can be involved in the blocks storage. The lower
standard deviation σ indicates the blocks are distributed more closer to average number of
blocks on a node. The higher blocks are distributed evenly, the higher efficiency for the
LookupBlock and RandomWalk. It can be concluded that with more storage nodes exchange
the peer address in the network, the blocks are distributed more evenly in the network.

2.8.4 File System Resilience Evaluation

In this experiment, we evaluate how the success rate of retrieving blocks varies with the
growth of the proportion of online nodes. We conduct three evaluations with ε = 30,
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ε = 50, and ε = 70 respectively. We conduct retrieving a block operation 20, 000 times in a
system which has 200, 000 blocks and consists of 20, 000 nodes. It is shown in Fig. 2.4(b),
with the growth of proportion of off-line nodes, the success rate of retrieving blocks drops
slightly before 70% of the nodes are offline. It is shown that even 35% of the nodes are
off-line, the system can still achieve 100% success rate, which means all the blocks can be
located in the system. The system can still achieve 97.12% successful rate even if 70% of
the nodes are off-line. It also demonstrates that system can achieve same level of resilience
with different ε’s. The high system resilience is achieved by duplicating every blocks on
k3 = 10 nodes.

2.8.5 RandomWalk Evaluation

In this section, we evaluate the efficiency of RandomWalk to see how many block can be
retrieved by visiting a certain number of nodes. We evaluate the system with ε = 50%
and ε = 70% respectively. For each scenario, we generate different number of blocks and
evaluate the increase of the proportion of blocks we retrieved while considering 10, 000
storage nodes. It can be concluded from Fig. 2.6(a) and Fig. 2.6(b) that for different
ε, the growth trend of the blocks that are retrieved in the system is similar with the
increase in visited nodes. It can also be concluded that the system has a similar result
with different number of blocks in the system. For the first 750 nodes, the number of
blocks we retrieved in RandomWalk increases dramatically (shown in magenta dash line
in Fig. 2.6(a)). Thereafter, the proportion of retrieved blocks increases slightly, which
indicates the drop of the RandomWalk efficiency. Fig. 2.6(a) also indicates that the number
of blocks in the system makes little impact on the RandomWalk efficiency. Fig. 2.6(b)
demonstrates that RandomWalk can retrieve similar proportion of blocks with a similar
proportion of storage nodes that visited regardless of the total number of nodes and blocks
in P2PBFS. For instance, as shown in Fig. 2.6(b), to achieve 80% of the blocks in the
system, miners need to visit 1, 500 storage nodes (15% of total nodes), 800 storage nodes
(16% of total nodes) and 400 storage nodes (16% of total nodes) for the P2PBFS consists
of 10, 000 nodes, 5, 000 nodes, and 2, 500 nodes, respectively.

2.8.6 Storage Consumption Comparison Between Bitcoin and
P2PBFS

In this section, we analysis the storage consumption between P2PBFS and Bitcoin. To
make the discussion concise, we assume each block consumes Bsize = 1MB and analysis
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the growth of the storage consumption from the view of miners and the whole blockchain
system respectively.

Compared with Bitcoin, miners in P2PBFS based blockchain system does not need to
store the whole block but the block abstract. We assume each block abstract contains 10
storage nodes. The current block hash consumes 64 bytes, Chaininfo section consumes
148 bytes and the rest storage node list section consumes 180 bytes. In total, the block
abstract denoted as Ba consumes 392 bytes. Compared with 1MB Bitcoin block, for the
miners, P2PBFS saves about 99.96% of the total storage.

In P2PBFS, the storage cost for the system to store a block consist of two parts, one
is the block abstract on the miners, and the other is the storage that consumes on the
storage node to store the block and block directory. We assume that the system has Pm
miners and Ps storage nodes. We ignore the storage of the blockchain directory 2.2(b),
since 12MB dictionary can store 1 million blocks. Bitcoin system consumes Bsize ∗Pm MB
while P2PBFS consumes (Bsize∗Ps)∗k3 +Ba∗Pm bytes. For a system that has Pm = 1000,
Ps = 1000 and k3 = 10, the storage growth with the increasing of the blocks is given in
Fig 2.6(c). It shows roughly that for the whole blockchain system, bitcoin spends about
10GB to store 60 block while P2PBFS only spends 100MB.

Experiments results demonstrate that our P2PBFS can achieve high efficiency in LookupN-
ode and the RandomWalk. We also demonstrate that P2PBFS achieves a high resilience
by duplicate blocks on k3 different nodes. The efficiency of the system can be improved
by allowing storage nodes exchange the peer nodes’ address frequently. We also demon-
strate that P2PBFS achieve the design goal of saving more storage compared with other
blockchain systems.

2.9 Conclusion

In this paper, we also propose an innovative distributed blockchain file system (P2PBFS)
to address the increasing demand for the block storage which also benefit the participate
who offer their storage. Through the system evaluation, we demonstrated that our file
system can store/retrieve a block with reasonable time and have a good system resilience,
when some participants are faulty.
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Chapter 3

Proof-of-QoS: QoS Based Blockchain
Consensus Protocol [2]

3.1 Abstract

The consensus protocol is the foundation of all blockchain systems. Existing consensus
protocols like PoW consume a vast amount of energy. However, they are severely limited
to transaction throughput. Consensus protocols like PoS have been proposed to address
this challenge. However, these protocols have compromised the fairness by discouraging
the “poorer” participants and allowing “richest” stakeholders to have full control over
the generation of blocks. Towards meeting these conflicting requirements on throughput
and fairness, we propose a blockchain consensus protocol based on the QoS. In our PoQ
protocol, the entire network is divided into small regions. Each region nominates a node
based on its QoS. A deterministic BFT consensus is then run among all nominated nodes.
PoQ aims to achieve a very high transaction throughput as a permissionless protocol and
provides a fairer environment for participants. Our experimental results show that PoQ
can achieve 9.7K transactions per second (TPS) for a network of 12 regions.

3.2 Introduction

Blockchain transits the trust from one or a few centralized nodes to the decentralized
system consisting of many nodes. The trust-free feature brings great advantages to the
security and privacy of sensitive applications such as anonymous payment systems like
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Bitcoin [13] and Ethereum [46]. The fundamental of all blockchain systems is the consensus
protocol which synchronizes the data among all the participants. The goal of consensus
protocol is to provide a consistent view of the data from the user’s perspective. One
of the core considerations for all consensus protocols is the “double-spending” problem,
where a blockchain participant can consume the same resource more than once [47]. In
the last 40 years, the problem of consensus among distributed nodes has been studied by
the distributed system community extensively; research like [48, 49] developed the robust
and practical protocols that can tolerate faulty and malicious nodes in a closed system.
However, achieving such an agreement in a permissionless system, where anyone can join
and leave at any time of the protocol can be difficult. Traditional consensus protocols,
which depend on a fraction of honest nodes, do not work as the adversary can launch a
Sybil attack by creating an arbitrary number of “pseudonyms” nodes [50].

Bitcoin addresses the “double-spending” issue by using the PoW-based consensus pro-
tocol [13] to elect the leader for block generation in a probabilistic order. However, the
transaction throughput of PoW is poor [51] and a vast amount of energy is wasted [52].
In addition, the winner-takes-all scheme discourages the nodes, who do not have the ad-
vanced hardware to win in the block proposal process, known as mining. Although BFT
[48] based protocols have a high transaction throughput, the number of participants for
reaching an agreement is restricted, and it is designed for the closed systems. Hyperledger
Fabric [8] takes advantage of the traditional BFT protocol to pre-define a set of blockchain
participants to achieve consensus with a high transaction throughput. PoS [23, 53, 16] is
another popular protocol in which the probability of creating a block depends on the ratio
of asset the nodes hold in the system. In effect, this yields a self-referential discipline —
the maintenance of the blockchain relies on the stakeholders who assign work and reward
to themselves [16]. This can be unfair to the nodes with a small number of assets as they
have to trust the “richest” nodes in the network.

We propose a new blockchain consensus protocol in this paper, called PoQ. It is a
hybrid protocol which selects nodes using Proof-of-QoS (we take the deposit ratio, error
rate, activity rate and reference factor as the QoS factors of a given node) for running
a BFT-style consensus. In PoQ, the order of blocks is deterministic; which avoids the
probability of creating forks (so the possibility of double spending the same resources) in
the chain. We segregate the whole blockchain network into autonomous regions. For each
block proposal round, based on the QoS score, each region nominates a node to propose
the transactions to be put on the chain. These selected nodes form a committee and will
reach a consensus on a block using classic deterministic Byzantine agreement protocols,
such as PBFT protocol [48]. Finally, all the nodes clone the new block and append it to
their chain. As a result, the system reaches a consensus on the order of the transactions.
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Honest nodes are motivated to improve their QoS to gain the probability to be elected as
the committee member in this region in order to claim a reward from the proposed blocks.

The unique contribution of our consensus protocol is we not only take “stake” (e.g.,
deposit) as the criterion for participating in block generation but also take nodes’ overall
real-time performance (e.g., activity rate, error rate) into consideration. Our real-time
QoS evaluation scheme encourages the nodes competing for providing better QoS while
despairing the nodes which want to dominate the block generation only by making a vast
amount of deposit. Other features of PoQ are summarized as follows:

• Openness: PoQ achieves openness by segregating the whole network into autonomous
regions. New nodes are free to join one of the regions they prefer. When a node joins
a region, peer nodes check whether this node’s deposit has already existed in the
MGB to avoid a node joining multi-regions with the same identity (node address).

• Fairness and energy-saving: From the perspective of the nodes, PoQ provides a
fair environment by selecting a representative of a region based on its QoS. Activity
rate factor is introduced to avoid some nodes dominating the block generation by
making a huge amount of deposit. A random function is applied to allow nodes with
a similar QoS level to have an equal chance to be the representative. The online QoS
update scheme encourages the nodes to comply with the protocol rules; otherwise,
they will not only lose their QoS score but also lose their deposit as a punishment. It
is an energy-saving protocol as nodes do not waste a tremendous amount of energy
for competing for the block proposal.

• Resilience and Robust: Our protocol offers the liveness and safety properties,
provided that at most bn−1

3
c out of n regions are simultaneously faulty. In PoQ,

compromising the node nomination is more difficult and expensive — the nodes
are nominated based on their QoS. If a node is deemed malicious, its nomination
frequency drops dramatically as shown in Fig.3.3(c). It is impractical for a malicious
node to misbehave in the system while not being caught by the peer nodes for a
long time. Since the node nomination is not based on the asset or computing power,
and no one can increase its nomination frequency by occupying a large number of
resources in the network. Instead, PoQ encourages the node to do the mining by
providing high QoS.

• Performance: High throughput is achieved by allowing the regions’ representative
nodes to construct the PBFT network to propose, and accept blocks among all re-
gions. Through the experiments, we show that the system creates a fair environment
for all the participants and it achieves a very high transaction throughput of up
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to 9.7K transactions per second (TPS). Considering Paypal and VISA, which han-
dles hundreds of TPS and 2K TPS respectively [18], the proposed system is suitable
for practical use. We also implement PoQ on BFT-SMaRt [19] to demonstrate the
feasibility of building PoQ on the existing BFT protocols.

The remainder of the paper is organized as follows. We compare PoQ with existing
consensus protocols in Section 3.2.1. The PoQ protocol and algorithms are described
in Section 3.3. We discuss the threat model and analyze the security of the protocol in
Section 3.6. The protocol implementation and evaluation are described in Section 3.7.
We conclude our work in Section 3.8 and discuss future research directions.

3.2.1 Related Work

The blockchain is an append-only ledger [9]. It can be regarded as a distributed database
which stores the transactions in a special tree structure known as Merkle tree [10]. If a
transaction passes the validity check, it is included in a candidate block together with other
transactions. Nodes in the blockchain system collaborate on the sequence of the blocks that
can be on the chain (consensus protocol). All the participants in the system should have
an identical view of the sequence of the blocks. However, in a practical scenario, due to
the network latency of transaction propagation and malicious or faulty nodes, nodes may
end up with different views of the block sequences (branches in the blockchain system).
The consequence of the inconsistent view is the possibility of double-spending. For each
block generation interval called an epoch or a round, the consensus protocol nominates
one node as a leader to propose the block while the rest agrees on the proposed block by
appending it to their chain. For the PoW based protocol, the node nomination is based
on solving a crypto puzzle. For the PBFT based protocol, the node nomination is based
on the negotiation among participants. While the proof-of-X (PoX) protocol nominates a
leader based on the resources each node has (the resources can be the deposit that nodes
made or the storage that the nodes provide). Hybrid protocols take advantages of different
types of consensus systems by combining them in novel ways.

• Proof-of-Work (PoW): As initially proposed and used in Bitcoin, PoW-based
consensus (a.k.a. Nakamoto consensus) is the first permissionless consensus protocol
where anyone can join and leave at any time.

To propose a block, nodes, also known as miners, should solve a crypto puzzle by
finding a specific nonce which matches with the generated block. It is possible to have
multiple valid blocks proposed concurrently, which forms a fork of the chain. In this
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case, the miners work on the first block (of the same height) that they received and
regard the longest branch as authoritative. To confirm the authoritative of a block in
the chain, the applications must wait for several blocks (6 blocks are recommended in
Bitcoin) to be appended to it. For time-sensitive applications, this latency may not
be acceptable. Another issue is that a winner-takes-all scheme encourages the miners
to upgrade their hardware to increase their chances to be rewarded and thus creating
a destructive competition for all the nodes. Moreover, wasted energy is another big
concern for PoW-based systems.

• Byzantine agreement: BFT consensus is designed to replicate a service in a
small group of pre-defined nodes. Inspired by this idea, Hyperledger Fabric1 applies
a variant of PBFT [48] to make all the participants have the same order of the trans-
actions. A membership server is needed to control the accessibility of the blockchain
to avoid a Sybil attack. Although BFT is a good solution for permissioned blockchain
systems, it is not suitable for permissionless ones.

• Proof-of-stake: Proof-of-Stake (PoS) protocols [54] are proposed to eliminate the
issues of energy wasting. In particular, PoS protocols randomly choose a subset of
system participants to reach consensus, rather than requiring heavy computational
work. However, a pure PoS system has been criticised as the safety mainly depends
on the correctness of rich participants, which may not be desired.

• Delegated-proof-of-stake: Delegated-proof-of-stake (DPoS) is employed in EOS2

to provide a democratic and vote-based consensus. In DPoS, a small number of nodes,
called producer are elected to run the consensus. It is possible for an adversary to
vote for a dedicated producer by launching a ballot-buying attack.

• Hybrid consensus protocol: Roughly speaking, hybrid consensus protocols com-
bine PoW and BFT protocols, where PoW is used to select voters to run BFT
schemes. Hence, Hybrid consensus protocols achieve a high transaction throughput
in a permissionless environment. In particular, RepuCoin [55] is the most relevant
protocol to PoQ. With RepuCoin, each miner has a reputation, and top reputed
miners will be dynamically selected to run consensus. The reputation of each miner
is computed based on both the total amount of valid work a miner has contributed
to the system, and the regularity of that work in the system. However, it consumes
a huge amount of energy.

1https://www.hyperledger.org/
2https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
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Blockchain Systems Openness Throughput Safety Penalty Type of consensus Resource/stake

Bitcoin [13] (PoW)
Flexible for nodes
to join and leave

Poor
51% of the computing
power to attack the system

No penalty applied
when misbehaving

Probabilistic computing power

Hyperledger
fabric
[8] (PBFT)

Can only support a few
numbers of nodes

Excellent
More than 1/3 of the nodes
need to be compromised

No penalty applied
when misbehaving

Deterministic N/A

EoS [56] (DPoS)
Flexible for nodes to
join and leave

Excellent
More than 1/3 of the committee
need to be compromised

Lose their deposit
when misbehaving

Deterministic Deposit

PoQ (Hybrid)
Flexible for nodes to
join and leave

Excellent

Node nomination process
needs to be compromised to
ensure more than 1/3 of
committee members
are malicious

Lose the chance to
propose blocks
and deposit as well

Deterministic Overall performance

Table 3.1: Comparison with some popular blockchain protocols (platforms)

PoQ follows the direction of a hybrid system by combining proof-of-stake protocol
with BFT protocol thus eliminates the problem of wasted energy. In addition, it avoids
the destructive competition by providing fairness — allowing all the nodes with similar
QoS to have a similar probability to claim the reward. Our protocol adopts BFT based
technology to achieve a reasonable transaction throughput. Furthermore, to achieve the
goal of openness, PoQ segregates the whole system into sub-regions and nodes can join the
regions freely with a certain amount of deposit.

PoQ takes the deposit one node holds alone with other factors (i.e., error rate, activity
rate, and reference factor) to evaluate the QoS of a node. As the node’s activity rate
is updated after each block proposal round, the fairness of the nomination is achieved
by allowing some low activity rate nodes to have a chance to participate in the block
generation.

In conclusion, compared with PoW based consensus protocol, PoQ has a higher transac-
tion throughput and is energy-saving. Compared with BFT based protocols, our protocol
has better network scalability and openness. To compromise PoQ, more than 1/3 of the
committee members from different regions should be compromised. Compared with hybrid
consensus protocol, we mitigate the case whereby different legal nodes are nominated at
the same time, which is known as forks in nodes nomination. Table 3.1 shows that PoQ
not only achieves a high transaction throughput but also avoids the issue that some nodes
dominate the block generation.
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3.3 Protocol Overview

In this section, we firstly give an overview of the proposed protocol, then we discuss the
terminologies and the protocol assumptions, at last, we present the design of the protocol.

Figure 3.1: QoS protocol overview

3.3.1 Protocol Overview

In PoQ, new miners should make a deposit in the blockchain before they join the region.
They also need to upload their public key to the blockchain for further communications. By
observing the updates on the blockchain, the new miners are accepted by the corresponding
regions. As it is shown in Fig. 3.1, we assume that there are 4 regions in the system. Each
region has 3 miners. In PoQ, the block generation can be divided into three stages. In the
first stage, miners in different regions run the PoQ candidate nomination scheme to elect
the representative of the region according to the QoS of the miners. In the second stage,
the nominated miners (miner 12 from region 1, miner 21 from region 2, miner 32 from
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region 3 and miner 41 from region 4) share the transactions they have with each other and
apply PBFT to decide which transactions should they involved in the proposed block. In
the third stage, the nominated miners broadcast the new block within the region, and the
rest of the nodes from the region verify the identity of the miner and the correctness of the
block to decide whether to append the new block onto their own chain. In this way, the
whole system is updated with the new block.

3.3.2 Terminologies in the Protocol

• QoS: QoS is employed to evaluate the quality of service that one node can provide.
For our system, we employ deposit ratio, error rate, activity rate, reference factor as
the QoS factors.

• Region: A region is a collection of nodes. The region is predefined before boot-
strapping the protocol. When a new node joins the protocol, it chooses the region
not based on the physical distance to that region but based on the QoS it could be
evaluated. High QoS means a higher chance to be nominated.

• Committee members: A committee member is a node that is elected based on
their QoS to represents its region. Its role is to communicate with other committee
members to work out the transactions that needed to be put on the chain for this
round.

• Committee members’ Queue: For each nodes nomination round, a certain num-
ber of nodes is elected and then ordered in a queue. The queue is served as a cache
since a nomination process can prepare the committee members for more than one
block proposal rounds.

• MGB block: The role of the management block (MGB) is to store the address of
deposit transaction made by a node and the signature from the node who recommends
this new node.

• Seed: A seed is the hash value generated by a one-way hash function (e.g., sha2,
sha3) with the input of the content in the latest MGB and the time stamp when this
MGB is created.

• Nodes: We define the nodes as the protocol participants in the way of contributing
to generating blocks. Based on the QoS score, nodes in different regions have the
chance to be nominated as the committee member to propose blocks; otherwise, they
replicate the new blocks in the system to keep their local chain updated.
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3.3.3 Protocol Assumptions

PoQ can run securely in an application scenario with the following assumptions.

• Honest users execute defects-free software and will not disclose their secret key to the
public. How to protect the individual from attacking is beyond our research scope.

• We assume that the network within the region is strongly synchronized while allowing
some nodes to be off-line for a while before it can recover liveness. We allow the
attacker to block some nodes’ communication, while it is impossible for the attacker to
block all the communication within the region know as eclipse attack. The probability
and countermeasures of eclipse attack are beyond our research scope and are discussed
by Heilman [27].

• We consider the scenario that the malicious committee member always remains under
1/3 of the total.

• Secured bootstrapping can be achieved which means the initial participants are trust-
worthy during the system bootstrapping stage.

3.4 Protocol Design

In this section, we discuss the design of the protocol. We mainly focus on the design of the
QoS evaluation scheme, the MGB block and the function of the seed. We also discuss how
the whole system gets synchronized and protocol time-out strategy for handling exceptions.

3.4.1 Quality of Service (QoS)

We define the QoS evaluation factors as follows:

• The deposit ratio: We denote the deposit that a node i made as mi. We define
M =

∑
mi as the sum of the deposit in a region. We define the deposit factor for the

node i as ηi = mi

M
∈ [0, 1]. For any nodes, their deposit must larger than a specific

value agreed among all nodes in this region to participant in block generation.
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• Error rate: Let se be the number of times that node e failed to generate a block
and S be the total number of attempts that made by this node to generate blocks.
We define the error rate factor for node e as βe = se

S
∈ [0, 1] and we define the error

rate of the nodes which has generate no blocks as 0. To enhance the efficiency, we
set a sliding window with the width of de for the calculation of the Error rate; which
means we only calculate the latest de blocks that generated by this node. Since the
errors one node made are historical data recorded on peer nodes, it is impossible for
the attacker to revise. The width of the window de reflects how much historical data
we applied to evaluate current status.

• Activity rate: Let B be the total number of block generation attempts since
node i joined the network and bi be the times of node i has been nominated. We
define the activity rate as for node i as γi = bi

B
∈ [0, 1], and we define γi = 0 when

there is no block generated. Same as the calculation of error rate, we set the window
width of da for the activity rate evaluation. Different from other QoS systems, we
take activity rate as a negative factor which indicates that the nodes nomination
probability decreases with the increase of activity rate.

• Reference factor: Let φ be the reference factor. This factor reflects the quality of
the node that refers to this node. If the recommended nodes’ error rate is lower than
the threshold, this factor is increased by a given value in MGB. This incentivizes the
existing nodes to recommend new nodes and helps to bootstrap the system. In order
to have a higher score for φ, nodes are motivated to recommend high QoS nodes to
increase their reference factor score.

For our PoQ protocol, we denote QoS vector for node i as ~vi = [ηi, βi, γi, φi] and we define
the weight vector as ~w = [α1,−α2,−α3, α4]. Different regions may have different ~w. We
define QoS of node i as ξi = ~vi × ~wi.

It can be seen that all the QoS factors we introduced here are calculated on the nodes’
historical data, and the evaluation result is subjective; which means that all the peer nodes
should have the identical value for a given node. Since these QoS evaluation data are stored
on the chain as a history, it is immutable; thus the adversary cannot introduce a bias on
the QoS score by simply revising nodes’ historical performance. For instance, to calculate
a node’s error rate, we need to divide the number of times that a node failed to propose
the block by the total number of times it attempts to propose the blocks. Similarly, to
compute the deposit ration, we need to find the total deposit that this node has made
divided by the net worth of the region where the node belongs to.
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Figure 3.2: Block structure for nodes enrollment/resignation

The factor deposit ratio affects the nomination frequency of a given node. We set a
maximum deposit for the whole system to avoid some nodes dominate the node nomination
by making a tremendous amount of money. With the same Error rate and reference factor,
the new node with a higher deposit has a higher chance to be nominated at first a few
rounds. However, from the long-term perspective, its nomination frequency is roughly
equal to the nodes that have the same error rate as the activity rate has a negative impact
on the QoS evaluation. For an investor, considering their nomination chance is not directly
enhanced by making a higher deposit, they may be unwilling to make the deposit much
higher than the average in that region. This feature contributes to our design goal which
encourages nodes to provide better service rather than competing by making a higher
deposit.

We introduce the factor activity rate to balance the node nomination probability. As a
result, no nodes can dominate the block generation just by proving low error rate and high
deposit. For instance, there are two nodes denoted as node p and node q with the same error
rate and reference factor. Node p makes a higher deposit, without introducing the activity
rate factor, compared with node q, nodes p always has a higher chance to be nominated
through their error rate is the same. When the activity rate factor is introduced in the
system, the nomination probability of q increases with the growth of the idle time (the
negative of the activity rate) in the system. As a result, it is unlikely to see that compared
with node p, node q has no advantage in committee member election competition.
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3.4.2 Region

The purposes of the region can be summarised in the following aspects: 1) It simplifies the
block broadcasting process. Compared with broadcasting new blocks in the whole network,
in our protocol, the peer nodes only need to query the new block from the committee
members within the region. The network has less convergence time. 2) It is more difficult
to launch the eclipse [27] attack which targets at partitioning the network to generate an
inconsistent view among different regions. Even if the network partition happened in less
than 1/3 regions, the rest of the regions could still nominate nodes, and these nominated
nodes can collaborate to generate new blocks. 3) It reduces the nodes’ workload as the
node within the region only needs to maintain the QoS of the nodes within the region. 4)
It optimizes the node distribution. Since the nodes are motivated to have a higher QoS
score, they prefer to stay with the nodes that have less network latency. As a result, the
network latency among all the regions as a whole is optimized.

To maximize the node’s profit, before a node joins a region, it should investigate the
existing number of nodes in the region, the network latency with the nodes in that region
and the deposit other nodes made. The best strategy is to join the network that has fewer
nodes and also maximize the effect of the deposit which means increasing the ratio between
the reward it gets and the deposit it makes. With more nodes join a specific region, the
competition in that region becomes fierce, and finally, the number of nodes among all
regions reaches a balance dynamically. Since all nodes make the decision independently
and they want to maximize their profits while having no idea about peer nodes strategy, the
protocol will reach the Nash Equilibrium [57]. In other word, all the protocol participants
have nothing to gain by changing by moving from one region to another.

Each of the regions elects a node to act on behalf of the region to propose the trans-
actions to be put in the block. In order to increase the system throughput, each region
nominates and caches T committee members which can be used for the next T − 1 block
proposal rounds without performing the nomination process again3.

3.4.3 MGB Block

We propose the MGB block to store the deposit one node made and its recommendation
information. As it is shown in fig.3.2, MGB block is created regularly in the region. For

3The attacker does not have enough time to attack the cache as it is flushed within 1 second. For
instance, if the throughput is 9.7K TPS (about 24 blocks per second) and the cache contains 100 nodes,
the cache will be flushed roughly every 4.1 seconds.
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any blockchain generation round, if the committee members fail to generate the block with
a given time. This round’s block generation is marked as a failure, and the deposit of the
committee members is deducted in the MGB block proposed by the next round committee
members. The nodes which have less than a specific amount of deposit are not qualified
for participating in block generation.

The block structure for node enrollment and resignation is shown in Fig. 3.2. In the
MGB, “ref block” indicates the block that this node made the deposit and “signing node”
indicates which node creates this record. The block tagged with “NB” means a normal
data block. In our protocol, to ensure that the seed can be updated frequently to avoid
the grinding attack (if a seed exists for a long time, the adversary may find the suitable
address to win the committee member election), we ask every MGB block is followed by a
certain number of “NB” blocks. If none of the node information in the MGB is updated,
we update the time stamp of the MGB to ensure the seed is updated.

We make these information public accessible to avid a node joining two different regions
with the same identity. When the peer nodes verify the amount of the deposit one node
made, it can get the data in the blockchain without trusting any third party. The deposit in
the blockchain is regarded as a term deposit (we borrow the deposit idea that implemented
in Ethereum4, and the amount of the deposit can be located by investigating the deposit
transaction address in the blockchain.). The node can withdraw or spend this deposit after
a certain time.

3.4.4 Seed

A seed is the hash value generated by a one-way hash function (e.g., sha2, sha3) with the
input of the content in the latest MGB and the time stamp when this MGB is created.
Since the time when the new block is proposed is unpredictable, a timestamp is introduced
in the seed generation to make the seed hard to be predicted. For the node nomination
round, the seed is combined with the node’s address 5 to generate the “lucky number” for
this node. Among the nodes which offer top-n QoS (n is the protocol parameter which
defines the size of the committee member candidates set), the node which has the minimum
“lucky number” is elected as the committee member. To avoid the adversary preparing
the address to gain the chance to be elected by launching the grinding attack, a seed is
employed to randomize the output of the hash function mentioned in Algorithm 4 and thus

4https://medium.com/coinfi/how-to-create-your-ethereum-address-323d176e5aab
5In this paper, the node’s address is the public key of this node. The concept of node address is the

same as the client address in Bitcoin system.
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enabling the nodes with the same level of QoS to have a fair chance to be elected. The
value of the seed0 which bootstraps the committee member election is not generated from
the MGB block but chosen by the initial participants using distributed random number
generation [58] to avoid any participants prepare the parameters in the MGB to bias the
hash value of MGB.

3.4.5 Node

In our protocol, we take the nodes as the entities that contribute to generating blocks.
When a block is generated by a node, the node can claim transaction fees from the block.
The nodes have two roles. The first one is to calculate the QoS, and “elects” the commit-
tee member. The “election” process here is different from the traditional election which
asks the nodes to cast the votes. In our protocol, as the QoS evaluation is subjective,
the potential committee members are known, and the peer nodes only need to check the
qualification of the committee member by calling the Verifiable Random Function (VRF).
The detail of the node nomination is discussed in section 3.5.5. Another role is to provide
the block query service to the end user and wait for a chance to propose the blocks.

3.4.6 Network Synchronization and Time-out Scheme

For all the distributed systems, the synchronization of all participants is of great impor-
tance. In our protocol, we suggest applying the Network Time Protocol (NTP) server in
the network to achieve weak synchronization for the off-line node to catch up. A typical
delay of NTP protocol is 5 ms to 100 ms [59]. This is acceptable for our PoQ protocol
as we do not rely on all nodes to update the blocks and evaluate the QoS simultaneously
(PoQ only checks the blocks on a given node when it is elected to be a committee member
or involved in verifying the blocks on a committee member’s chain).

We also apply the time-out scheme to ensure the functionality of the protocol when
an exception happens (e.g., the committee member quits the protocol during the block
proposal round). For each block proposal round, a timer is set within a region for all
nodes. If no new block is appended to this round’s committee member after a given time,
the nodes will request the latest block from the committee members from other regions.
We also set an upper timer for the committee member who proposes new blocks. Within a
given time, if the committee members cannot agree on the blocks they propose, they quit
the block proposal round.
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In PoQ, we allow the cross-region communication to have weak synchronization, while
we suggest the communication within the region to have strong synchronization to achieve
higher performance.

3.5 Protocol Interactions

In this section, we discuss how the nodes join/leave the protocol and then, we describe
how the nodes collaborate to propose new blocks.

In PoQ, on a high level, we divide the block proposal into three stages. In Stage I,
each region nominates a node as a committee member who proposes the transactions to be
included in the chain on behalf of its region. In Stage II, the nominated nodes from different
regions form a block proposal committee to determine the transactions that should be put
on the chain and to be shared among all the regions. In Stage III, all nodes request the new
updates from the committee member of their region to synchronize their local chain. We
allow Stages I and II to be run in parallel. For each node nomination round, all the nodes’
QoS should be re-evaluated (Stage I) and this is relatively time-consuming and may take
longer than Stage II. To avoid the case where Stage II waits for the committee members to
be nominated, more than one node is nominated in each region for each node nomination
round, and the remaining committee members are cached in a queue. The block proposal
(Stage II) can only be run serially to keep the generated block in a strict order.

In the following paragraphs, we first discuss the bootstrapping of the system. Then,
we discuss how the new nodes join the system and how their QoS is evaluated. At last,
we discuss how the system nominates the committee members and how the committee
members collaborate to propose new blocks.

3.5.1 Bootstrapping the System

Before the system starts, the initial participants need to work out the number of regions.
To kick-off the system, at least four regions need to participate in the protocol (with the
tolerance of 1 faulty replica), and each region should nominate a committee member; oth-
erwise, the PBFT protocol cannot reach an agreement on the block generation. Similar
to the Hyperledger Fabric, we need to create a genesis MGB block before the protocol
starts. All initial participants should agree on the contents (e.g., the deposit each par-
ticipant made, reference factor of each participant) in the genesis MGB. We ask all the
initial participants disclose their address before applying the distributed random number
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generation function [58] to avoid any participant preparing the address to advantage them-
selves while performing the random sorting for the committee member election. We call
the generation of the genesis MGB as the secured bootstrap as all the initial participants
should be trusted and they have to cooperate to propose the first MGB.

3.5.2 Bootstrapping the New Nodes

Nodes that join the protocol should first choose one of the regions provided by the system.
Since the honest nodes are profit-driven, they prefer to join the region where they have a
higher chance to be nominated; thus they can claim rewards from the block proposal. To
find a suitable region, the following factors should take into consideration. 1) It should
have lower network latency in that region. If the network latency is high, the data on the
nodes may be out-of-date. If a node which elected as a committee member proposes the
out-of-date data, its proposal is rejected by the peer committee members. 2) The average
deposit in this region. The node should find the region that they can benefit from their
deposit.

To join in a specific region, the enrollment process is shown in Algorithm 1 and is
accomplished by finishing the following two compulsory steps. a) It makes a deposit to the
blockchain (line 1 Algorithm 1. If the node which has the same address already made the
deposit in the system, this process is rejected) b) It broadcasts its registration information
(e.g., address, the deposit it has made and the QoS information) to the whole region (line
2-6 of Algorithm 1). The node which is nominated as a committee member for this region
is responsible for proposing this new node’s information (e.g., node default QoS, node
join time stamp) to the MGB block. During the block generation, committee members
will apply the PBFT protocol to add the new nodes into the system (the validity of the
new nodes’ registration information is verified by all committee members). These two
steps avoid nodes joining different regions simultaneously and also increase the cost for the
malicious nodes to join different regions and attack those regions. For the new node, there
are two approaches to have customized QoS. One is to have the QoS derived from the node
that recommends it – a referential method (line 6 of Algorithm 1). The other is to increase
the total amount of deposit and has the default QoS value (line 4 of Algorithm 1). When
the deposit term is expired, we allow the nodes to update their deposit by updating their
deposit in an MGB block. For security concerns, we also allow the nodes to update their
addresses (public keys) by updating their address ina MGB block and use the previous key
to sign the block to make it valid.

Now we explain how can a new node join the system with different QoS values.
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• Deriving the QoS by reference: For the nodes that want to join the network with a
derived QoS, they should ask one of the active nodes from the same region to register
them on the blockchain. As it is shown in Algorithm 2, the blockchain can verify the
validity of this record by checking the signature of the referee (line 1 of Algorithm 2)
and also ensures the new nodes’ score of each QoS factor is no larger than the referee
(line 9 of Algorithm 2). The committee also verifies the qualification of the referee
by checking its online time and reference factor (line 3-5 of Algorithm 2). The referee
is motivated to assign reasonable scores for the new nodes; otherwise, its reputation
will be affected. For a node that wants to recommend other nodes, the following two
requirements should be satisfied. Firstly, this node should be online for a given time.
Secondly, this node should meet the minimum QoS recommendation requirements.
These two requirements avoid malicious nodes from recommending their partners
into the region within a short time and avoid the decrease in QoS of the given region
caused by a large amount of poor QoS nodes.

• Deriving the QoS by deposit: The new nodes can also increase its QoS score and
the possibility to be selected by making a higher deposit. As a result, compared to
other new nodes, the protocol has a higher chance to select it in the first few rounds.
However, because of the negative factor of the activity rate, with the time progresses,
the QoS of this node becomes stable and has an equal chance to other nodes that
offer the same QoS level. Fig. 3.3(b) shows the nomination frequency comparison
between the nodes that have a higher deposit and a regular deposit. This feature
discourages the nodes who want to make profits by investigating a large amount of
money.

3.5.3 Node Resignation

The node has two ways to quit the protocol. The first one is to quit the protocol without
withdrawing the deposit (line 2 of Algorithm 3). The protocol will realize the exit of the
node when the matured deposit is not claimed by its owner.

Another way is to wait for the maturity of the deposit. When its deposit term is
at maturity, the protocol refunds it automatically. Then, the nodes need to update the
addresses in the MGB (line 4 of Algorithm 3) before claiming the refund with the receipt
showing that he has quit the protocol by removing its address from the MGB block (line
6 of Algorithm 3).
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Algorithm 1 Nodes enrollment
1: ret, receipt←MakeDeopsit(m)
2: if ret == false then
3: return
4: end if
5: if ref == null then
6: ~v ← AssignDefaultQoS()
7: T imeNow ← GetCurrentT ime()
8: RecordItem← CreateRecord(~v, T imeNow, receipt)
9: sig ← CreateSignature(RecordItem, sk)
10: ret← PutOnAddressChain(record, sig)
11: else if

then
12: ret← PutRefChain(ref, receipt)
13: end if
14: return ret, receipt

3.5.4 QoS Evaluation

In PoQ, we take the node λ as an example to show how the QoS of all the other nodes
is evaluated. As the data on λ is synchronized with the blockchain, it retrieves the QoS
information locally. To improve the efficiency, λ creates a local metadata pool to cache
the QoS information for all the nodes including itself. Thus, it does not need to search on
chain frequently (nodepool in Algorithm 4 is the local cache for the QoS data). To evaluate
the QoS of node ψ , node λ retrieves the deposit made by ψ divided by the total amount
of deposit in the given region. For the calculation of the error rate, λ counts the times a
node ψ is nominated, denoted as S and the times ψ failed to propose the block denoted as
s, then calculate β = s

S
. The calculation of the other two factors are quite similar, and we

skip them to make the discussion concise. Since the QoS data is stored on the chain and
read-only, the QoS calculation result among all the honest nodes should be the same.

3.5.5 Node Nomination

The nomination process is explained in Algorithm 4. Firstly, each node retrieves the QoS
records of all the nodes in the same region from their local chain and calculates the QoS
score for each node. To accelerate the evaluation speed, each node may maintain the
statistic data for each node in a node pool, so that, it gets the QoS score from that pool
as shown in line 2 of Algorithm 4. After that, it maps the QoS with the node address
and sorts the nodes according to the QoS score (line 3 of Algorithm 4). Let K be the
number of candidates for the committee member. For the nodes which have the top-K
score, they provide a hash value according to their addresses appended with the seed (line
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Algorithm 2 QoS Reference Check
1: signature, ~v ← RetrieveSig(record)
2: ret← CheckSig(pk, signature)
3: if ret == false then
4: return false
5: end if
6: if timenow − timestamp < C then
7: return false
8: end if
9: if Reffactorref < C then
10: return false
11: end if
12: if Depositnew > Depositref then
13: return false
14: end if
15: for i, j ← ~vnew, ~vref do
16: if i > j then
17: return false
18: end if
19: end for
20: return true

Algorithm 3 Nodes resignation
1: if ForceQuit == true then
2: ret← UpdateAddress(sk, record)
3: else if

then
4: ret← UpdateAddress(sk, record)
5: if ret == false then return false
6: end if
7: refundret← AskForRefund(sk, receipt)
8: if refundret == false then
9: return retfundret
10: end if

return ret
11: end if

5-6 of Algorithm 4). At last, each node sorts the hash value, and the node which has the
smallest hash value is regarded as the committee member for this round. It generates the
proof of the committee member π and publishes this hash value together with π (line 7-8
of Algorithm 4). The nodes from the same region who fail to be in the committee member
verify the identity of the node who claims to be in the committee (line 9 of Algorithm 4)
to decide whether clone the new block from this node.
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Algorithm 4 Nodes Nomination
1: for address, ~v ← nodespool do
2: ~R← append(~v × ~w)
3: end for
4: ~R← sort(~R)

5: ~A← TopKmap(~R, addresspool)
6: for each← ~A do
7: ~QA← hash(each||seed)
8: end for
9: sort( ~QA)

10: if myself in ~QA[1] then
11: hash, π ← V RFsk(seed, address)
12: broadcast(hash, π)
13: else if

then
14: verifypk(hash, π, address, seed)
15: end if

3.5.6 Block Proposal

The committee members from different regions propose a list of y transactions based on
the transaction fee they offer. The PBFT network is constructed based on the nodes
nominated by different regions. Before employing PBFT to process the transactions, all
peer committee members conduct the committee member identity check with each other:
The peers need to check whether the proof matches with the address of the committee
member. If there is more than one node claim to be the committee member from the same
region, the peer nomination nodes investigate the correctness of tuple < hash, π > and
also the QoS of these two nodes. The node has a smaller hash value, and its QoS is within
K is regarded as authoritative. Fake committee member’s deposit is reduced in the MGB
block as a punishment.

We treat the PBFT algorithm as a black box. With the given transactions from different
regions, the PBFT algorithm generates the ordered transactions in this block that are
agreed upon by all the committee members. All the committee members sign on this block
to make it valid, and finally, this block is appended to the committee members’ chain. If
the PBFT algorithm fails to reach an agreement on the transactions, all the nodes will be
notified this failure by the PBFT algorithm and nodes in each region can evaluate the error
rate of peer nodes within the region. The committee member for the next round reduces
the deposit of previous committee members who failed to propose the blocks in the present
MGB block.
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3.5.7 Agreement Among All Nodes

The nodes in the same region monitor the committee member’s chain. If it is updated,
they verify the validity of this new block and put it on their chain. If they fail to observe
the new block on the committee member, they get updates from the committee member in
other regions by searching the committee member transaction in the MGB block in that
region. The error rate of committee members who fail to append the blocks on its chain is
increased and recorded by peer nodes.

3.6 Threat Models and Countermeasures

3.6.1 Threat Model

At the high level, to launch an effective attack against PoQ, an adversary need to compro-
mise at least 1/3 of the regions, due to the well-known quorum theory [60]. The adversary
can achieve that by compromising the nomination process in more than 1/3 of the regions
or by compromising the nominated committee members directly. For the latter approach,
the adversary can only attack one block proposal round as the committee members are
replaced by new members in the next round. To make the attack more efficient, the adver-
sary needs to compromise the protocol to elect the malicious nodes to be the committee
members constantly.

In this section, we discuss the thread models of our consensus protocol, we first present
the attack on the network infrastructure, and we then present the attack towards the
committee member nomination and block proposal.

3.6.1.1 Attacking the Network

The adversary attacks the network to delay message propagation. Two types of attacks are
possible: the first one is to isolate the committee members. If the communication between
the committee members is blocked due to the attack on the network infrastructure or
disabling the committee members to respond to any requests by a Denial-of-Service attack,
the PBFT protocol is suspended if the attack affects more than 1/3 of the total committee
members. The second type of attack is to attack nodes within the regions. An adversary
may attack the network infrastructure to delay the communication between nodes. Thus,
nodes in the same region cannot update their local chain immediately when the new block
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is generated by the committee members. As a result, the nodes in a region may evaluate the
QoS with out-of-date information, and when it is nominated to be the committee member,
the out-of-date local chain will be rejected by other committee members.

3.6.1.2 Attacking the Node Nomination

For this attack, the adversary needs to revise the malicious nodes’ QoS information in the
blockchain. As the QoS information is append-only, the adversary can only create a fake
QoS when the block generation is under the adversary’s control. It causes the chicken or
the egg causality dilemma. Another passive approach is to behave honestly for a period to
gain a high QoS, then attack the system when malicious nodes are nominated for PBFT
in more than 1/3 regions.

3.6.1.3 Attacking the Block Proposal

An adversary can attack the block proposal process in the following three ways: 1) It tries
to attend the BFT block proposal stage even if it is not the elected committee member
(i.e., a fake committee member). Since the block generation is based on PBFT algorithm,
the adversary can control the block generation by pretending to be the committee members
in more than 1/3 regions. 2) Compromise a committee node to refuse to append the new
block onto its chain or to try to replace it with a tampered block. The nodes that are in the
same region with this compromised committee node may append a fake block to their local
chain. This will create an inconsistency of the nodes in this region, and thus the nodes
from this region will be rejected by nodes in other regions for further block generation. 3)
the malicious nodes refuse to update the latest generated block to invalid the transactions
in the latest generated block.

3.6.1.4 Network Partition Attack

An adversary may attack the network by partitioning the whole network into small seg-
ments. As a result, different nodes may have a different view of the whole network. Be-
cause of the inconsistency view of the blockchain, the committee members fail to reach the
agreement on the proposed transactions that proposed, and the QoS of these committee
members will be affected. To launch an effective network partition attack, the adversary
needs to delay the new transactions’ propagation
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3.6.2 Attack Analysis and Countermeasures

In this section, we analyze the possibility of deploying the attacks that we mentioned in
section 3.6.1. We also discuss the countermeasures to these attacks.

3.6.2.1 Analysis of the Attack on the Network Infrastructure

The attack that targets at the network infrastructure is hard to deploy. When the net-
work congestion happens on some network infrastructures, other network infrastructures
are smart enough to redirect the data flow on the congested devices to other network in-
frastructures. During the attack, even the committee members fail to generate the new
blocks. The timeout scheme allows the blockchain participants to reform the committee
to avoid the deadlock situation.

To avoid the adversary blocking the communication of a given node by filling the nodes’
p2p address bucket with invalid addresses, protocol participants can cache some peers that
they trust in their p2p address bucket. Thus they can always get updated information
from these trusted nodes.

3.6.2.2 Analysis of the Attack on the Node Nomination

Based on the assumption that the majority of the nodes are motivated to comply with
the protocol to claim the reward, it is difficult for the adversary to collude with a certain
number of nodes to vote for the compromised nodes as the committee members. Once
the nodes are found to have disobeyed the protocol, their deposits are deducted. For our
protocol, the probability of being nominated depends on the objective QoS score, so the
adversaries should maintain a high QoS before the attack. For simplicity, we assume that
before the attack, the malicious node maintains a high QoS and has the probability of κ to
be nominated across all the compromised regions. Then the probability of attacking the
protocol successfully is shown in equation 1.

1−
bN−1

3
c∑

i=0

(
i

N

)
(κi ∗ (1− κ)N−i) (3.1)

For a 12 regions system, if κ = 30% of the nodes are malicious in more than three
regions, then, the adversary has 50% probability of controlling the block generation. How-
ever, in reality, maintaining κ as a high value for a long time is difficult, because 1) the
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malicious node should behave normally; otherwise its QoS drops and the result in the drop
of κ. 2) the malicious nodes need to wait for all its partners to be the committee member;
otherwise, it will be caught cheating by other committee members. There is no time guar-
antee when more than 1/3 committee members are its partner. If anyone has 30% of his
nodes to be nominated in more than 1/3 regions, he takes 50% of the total block proposal
reward. Since he can get half of the block proposal reward, he has no motivation to break
the protocol.

3.6.2.3 Analysis of the Attack on the Block Proposal

In PoQ, the committee member identity check, which is mentioned in Section 3.5, avoids
the probability that the malicious node is pretending to be the committee member. Because
the peer committee members can investigate the QoS of this node; if one is caught cheating,
it loses its deposit. If the malicious committee member refuses to update the block, the
nodes in the same region with the malicious node can query the latest block from the nodes
in other regions. We ask the committee member to sign on the generated block to avoid
any committee member tampering the block. If a node is trying to avoid some transactions
by refusing to update the block, the inconsistency of the blocks on its chain with that on
other nodes will be identified during the committee member identity check.

3.6.2.4 Analysis of the Attack on the MGB Block and QoS Value

Attacking the MGB block is impossible in our protocol. First, MGB as a block, once, it is
put on the blockchain, it is immutable. Second, for the malicious committee member who
wants to alter the node’s information during the MGB proposal stage is also difficult since
all the data on the blockchain is verified by other peer committee members.

It is possible for the adversary to delay an honest node’s network to increase its error
rate thus affect this node’s QoS. However, this attack will not affect the PoQ unless the
adversary can deploy the attack on a large scale. Additionally, since the nodes can have
some peers as the trusted nodes, the adversary cannot block the honest nodes’ communi-
cation by filling up the nodes’ address books with invalid addresses. The related analysis
is discussed in attacking the network section. How to help the administrator to protect a
node from such an attack is beyond our research scope. Since all the QoS factors are ob-
jective statistic data, the malicious node has no way to bias the QoS evaluation on honest
nodes.
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3.6.2.5 Sybil Attack and Grinding Attack

To launch an effective Sybil attack, the adversary should have enough financial support
to create enough malicious nodes in different regions. In the section of analysis of the
attack on the node nomination, we analyze the proportion of malicious node to lunch a
successful attack with 50% probability. The grinding attack by which the adversary tries
different address with the seed from MGB to ensure he has the smallest “lucky number”
is also impractical in our protocol. Since the one-way hash function generates all the
hash values, it takes a long time for the adversary to search for a suitable address to
make the “lucky number” smallest in a large search space. Additionally, as the seed are
updated regularly because of the routing updating of the MGB block. Concerning the seed
expiration frequency, it is impossible for any adversary to find a suitable address before
the seed gets expired.

In conclusion, attacking the network infrastructure could be possible to delay the nodes’
communication; however, the attack is usually difficult to deploy in an open distributed
environment when the nodes’ address book cannot be updated easily by arbitrary nodes.
Compromising the committee members can stop the system from generating the blocks
correctly; however, the number of compromised committee members should pass 1/3 of
the total numbers. The online QoS update scheme makes it difficult to attack the protocol
by simply employing a certain number of malicious nodes. Our reference scheme only
allows the qualified nodes to introduce new nodes in the region to guarantee the QoS of
the whole region. It is impossible to compromise the nodes in the network to nominated
the malicious node as the peer committee members will check the validity of each other.
“Sybil” attack is difficult to launch in PoQ as 1) variation of QoS factor weights avoid the
same attack pattern applied into different regions. 2) Sharing of the node address prevent
the same node from joining different regions simultaneously. 3) The deposit scheme creates
a barrier for introducing a large number of malicious nodes.

3.7 Protocol Architecture and Evaluation

In this section, we first evaluate the performance of PoQ in different simulation scenar-
ios. Then, we discuss one of the implementations to demonstrate the feasibility of the
practicality of the proposed implementation architecture.
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Figure 3.3: PoQ performance evaluation

3.7.1 Protocol Evaluation

We evaluate the PoQ performance by two approaches. In the first approach, we employ
two 16 core E5-2660 CPU with 128GB memory to evaluate the performance of the node
nomination scheme. We employ 40 docker instances to simulate the nomination process.
For each docker instance, we run 25 threads, and each thread stores the QoS information of
a simulated node. We observe the QoS and nominated frequency of the “simulated nodes”
within a given time. For the second approach, we deploy the PoQ core algorithm in a cluster
which contains 7 virtual machines representing 7 regions to evaluate the throughput. Inside
each virtual machine, we run 15 docker instances which represent PoQ participates/nodes.
The PoQ architecture which is deployed in the cluster is shown in Fig. 3.4(a).

3.7.1.1 Nomination Frequency Among All the Nodes

Firstly, we create 1,000 nodes and set all the nodes to have the default QoS values. We
run the experiments for 10,000 times to give all the nodes enough time to be evaluated.
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It is shown in Fig. 3.3(a) that only one node is nominated 970 times (least) and one
node is nominated 1,025 times (most). The nomination difference between “luckiest” node
and “unluckiest” is 55 for 10,000 rounds nomination and the majority of the nodes are
nominated between 990 times and 1,015 times. The fairness is achieved as the nomination
difference for the majority of the nodes is within 35 nominations for 10,000 rounds.

3.7.1.2 Nomination Frequency Between Different Nodes

For this experiment, we choose two nodes, one of them makes the default deposit, and the
other makes the deposit five times higher than the default deposit. We trace how these
two nodes are nominated in the region. The experiment result is shown in Fig. 3.3(b).
It is observed that for the first 300 rounds, the nomination frequency of the node which
makes a higher deposit is almost doubled compared to the node that makes the default
deposit. After the 3000th round, the nomination difference between these two nodes is
within 2 for a given interval. The experiment result shows that the nodes that made a
higher deposit are evaluated more frequently for the first few rounds. However, after the
protocol reached the balance of its QoS evaluation, the higher deposit has no advantages
in further nomination.

3.7.1.3 Impact of QoS Variation on Node Nomination

To show how the nomination frequency varies with the fluctuation of the QoS, we adjust
some nodes’ QoS by increasing their error rate. The nomination experiment result is shown
in Fig. 3.3(c) and it can be observed that it is not nominated for the interval between the
round 4,100 and 4,500 after the increase of the error rate and recovers to normal between
the round 4,700 and 5,900. We increase its error rate again at the round 6,100, and the
consequence of that is it is nominated less than five times during the interval 6,300 and
6,500, and then, the nomination frequency increases gradually after the round 6,500. The
experiment result shows that if the node does not comply with the protocol, the reduced
QoS evaluation has an impact on the probability to be elected. It takes time for the node
to recover from bad behavior.

3.7.1.4 PoQ Emulation Transaction Throughput

For this experiment, we set the size of a transaction as 256 Byte. We evaluate the per-
formance of the PBFT network in our block proposal process, and the result is shown in
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Fig. 3.3(d). Firstly, we increase the PBFT network from consisting of 4 nodes to 12 nodes.
Then, we test the impact of the block size increased from 1MB to 4MG for a given PBFT
network. For all the throughput tests, we set one node as a malicious node. It can be ob-
served that with the growth of the number of nodes in the PBFT network, the transaction
throughput drops dramatically. It shows that for the network that contains six committee
member, the throughput of the system has the blocks size of 4MB is 9.5K TPS which is
higher than 1MB block network which has the throughput of 9.1K TPS. It demonstrates
that though larger blocks need more time to be processed by the PBFT network, it can
contain more transactions. As a result, the transaction throughput for the larger block
can be higher than a small block. The experiment shows for a network that contains eight
nodes, setting the block size as 4MB can achieve the best transaction throughput while
3MB block size is the most suitable for a network that contains 12 nodes.

(a) PoQ deployment architecture
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Figure 3.4: PoQ architecture and throughput

3.7.2 Demonstration System

3.7.2.1 Protocol Architecture

The architecture of the PoQ we implemented is shown in Fig. 3.4(a). To make the archi-
tecture diagram concise, we only draw two regions and two nodes in each region in the
diagram (for a practical setting, at least four regions are needed). For each region, it has
two nodes. PoQ is running independently on each node. Protocol consumers send the
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transactions that need to be put on the chain to any nodes in the blockchain. The PoQ
protocol sends the transactions to all the nodes and finally puts them on the chain. To
implement PoQ, we take advantage of the open source project called BFT-SMaRt to run
the PBFT among committee members. We customized the BFT-SMaRt and integrated
it into our PoQ. We implement a Java interface to allow PoQ core to interact with BFT-
SMaRt. Protocol consumers interact with PoQ through the PoQ interface layer. However,
we have not implemented the Committee members’ Queue in our current design. As a
result, after the current committee member’s block proposal, a certain amount of time is
needed for the new committee members to confirm each other before the block generation.
The preparation time for different regions is discussed in section 3.7.2.2. It is our future
work to implement the committee member cache scheme to allow block generation and
committee member preparation to run in parallel. Currently, the purpose of this work is
to demonstrate the feasibility of PoQ protocol.

3.7.2.2 Initial Observation

We deploy the referenced PoQ system in Docker containers to demonstrate the feasibility
of the architecture. We set the size of a transaction as 256 Byte. We define the throughput
of the system as the transactions that have been successfully processed for a given time.
Since it does not have a committee member queue scheme, this single-thread design has
an impact on transaction throughput. The experiment results are shown in Fig. 3.4(b).
Firstly, we increase the PBFT network from consisting of 4 regions to 7 regions. Then, we
test the impact of the block size increased from 1KB to 5KB for a given PBFT network.
It can be observed that with the growth of the number of nodes in the PBFT network, the
transaction throughput drops dramatically. The system throughput increases gradually
with the growth of the block size and reaches the maximum value of 2.2 TPS. While the
throughput of the system which has the block size of 5MB drops to about 0.5 TPS in
the seven regions system, the transaction throughput increases with the increase of block
size as for each block proposal, the larger blocks contain more transactions. However,
with the growth of the block size, the committee member needs more time to process the
blocks. According to our experiments, it takes 2 seconds to finalize committee members
confirmation in the region of 4. However, it takes 6 seconds for updating the committee in
the region of 7.

The throughput difference between our initial observation and the throughput sim-
ulation can be explained as follows: 1) The committee members cache scheme is not
implemented in our referenced PoQ. Thus a certain amount of waiting time is consumed
for forming the committee before block generation. 2) The implementation of PoQ is not
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optimized. Instead of implementing the native BFT library, we take advantage of java
native call interfaces to invoke a third-party BFT library to run the BFT. The overhead
of the cross-module invocation is not negligible. Additionally, the third-party BFT library
itself needs to be tuned to achieve the best performance. 3) We do not deploy our refer-
enced PoQ on some high-performance infrastructures. The overhead caused by the docker
containers is not negligible. It is our future work to minimize the throughout gap between
the simulation and our implementation.

3.8 Conclusion

PoQ is a new permissionless blockchain consensus protocol which achieves a high transac-
tion throughput and fairness among all nodes. PoQ’s design is based on a hybrid protocol
which selects nodes using QoS for running a BFT-style consensus. Experimental results
show QoS based node nomination protocol creates a fairness environment for all the nodes
to compete for block nomination. The 9.7K TPS throughput demonstrates that PoQ can
work with the high-frequency trading scenarios.

In the future, we will optimize our PoQ architecture and deploy PoQ in a real environ-
ment. We will also evaluate the impact of Cross-region eclipse attack in PoQ and propose
practical countermeasures. We notice some blockchains [61, 62, 18] apply trees and di-
rected acyclic graph to replace the chain structure. We would investigate whether PoQ
can benefit from such a data structure to increase transaction throughput. We also notice
that a new cryptocurrency model called Payment Channel networks [63] has been proposed
to address the issue of poor transaction throughput in blockchain systems. However, there
is no dedicated underlying consensus protocol to support the payment channel networks.
It is our research interest to integrate PoQ with payment channel networks to provide a
more secure and efficient payment platform.
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Chapter 4

Chameleon Hash Time-Lock
Contract for Privacy Preserving
Payment Channel Networks

4.1 Abstract

PCN have been proposed to address the low transaction throughput of the permissionless
blockchain protocols. Though the PCNs allow users to have the unlimited number of trans-
actions in the channel without interacting with blockchain, it leaks the entire payment paths
to the public. To address the payment path leakage issue, we propose a Chameleon-hash
based payment protocol, called CHTLC. Using Chameleon-hash function in a multi-layer
fashion guarantees that no user can recover the payment path if at least one intermediate
payment node is honest. For the same payment path, compared with MHTLC protocol of
Malavolta et al. [20], CHTLC is 5 times faster in the payment data initialisation, and the
communication bandwidth is reduced significantly from 17, 000KB to just 7.7KB.

4.2 Introduction

Bitcoin [13] and Ethereum [46] are two largest cryptocurrencies in the world. Instead of
storing the transactions on a centralised ledger, these transactions are stored on different
participants in an immutable chain structure database. Consensus protocols are applied
to ensure the consistent view of the ledgers on different participants. However, due to the
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scalability nature, it is difficult to have all the nodes to achieve consistency in a relatively
short time which results in the low transaction throughput. On average, Bitcoin can only
handle 7 transactions per second [64], while Visa can handle 2000 transactions per second
[64].

To address the low transaction throughput issue, Bitcoin proposes a new payment
scheme called “lightning network” [11] which supports off-chain transactions to avoid the
transaction confirmation time. In a nutshell, a pair of users open a payment channel by
locking their bitcoins in the smart contract as deposits. After that, off-chain payment
transactions can be placed by agreeing on the new distribution of the deposits. The
payment channel is closed by publishing the allocation of the final deposit on the blockchain
by any party. Though the transaction throughput is increased by avoiding putting all the
transactions on the blockchain, it limits the payment to be settled between two direct users.
It is a great convenience if the existing payment channels can forward the payment for the
users who has no direct payment channels. To address this issue, payment channel networks
(PCNs) are proposed and instantiated by some popular protocols [65, 66, 67, 68]. However,
there exists a serious payment privacy leakage in the PCNs [69, 70, 71]. If some/all the
intermediate nodes who are involved in the payment path put the transaction on the chain
as the closing transaction, anyone can recover the partial/full payment path. Additionally,
intermediate nodes can collude with each other to identify part/all of the nodes that are
involved in a given payment path.

For all the PCN, all the payment protocols should ensure that the payment is secured
which means none of the participants loses their money if the payment channel is termi-
nated unexpectedly. Additionally, to make the PCNs more attractive to privacy-sensitive
users, the system should prevent others from knowing who is paying whom. PriPay [72]
leverages the trusted hardware to encrypt the PCNs data at the server and uses oblivious
algorithms to hide the access patterns. Nevertheless, PrivPay suffers from the low scalabil-
ity and single point failure. TumbleBit [73] employs a trusted intermediary to achieve the
privacy of the payment path, however, all the participants should trust the intermediary.
SlientWhisper [71] employs the long-term keys and temporary keys schemes to ensure that
the payment between each intermediate nodes are signed by different keys, thus, no one can
link the transactions in a payment. However, the participants need to run a complicated
key management process. MHTLC [20] avoids the complicated key management and can
work in a trust-free environment. Our protocol aims to prevent the blockchain observer
from knowing the payment value between the sender and the receiver. In our framework,
unless all the intermediate nodes collude with each other, none can recover the payment
path between the sender and the receiver. Compared with MHTLC, for each intermediate
node, we reduce the communication size from 1650KB to 0.32KB; additionally, we avoid
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the time-consuming zero-knowledge proof generation process, which consumes 309ms in
MHTLC. Hence the contributions of our work are as follows:

• We propose a new payment protocol called CHTLC, which hides the payment path
from the view of payment participants and the observer who analyses the blocks that
are committed on the chain. We also prove the security of CHTLC and show that
CHTLC achieves the same level of security as MHTLC.

• We conduct computer simulations to show that our proposed CHTLC protocol is
efficient both in time and space. Our experimental results indicate that in com-
parison with MHTLC protocol [20], our protocol is much more efficient in payment
forwarding. That is, MHTLC spends 309 ms per user to generate the zero-knowledge
proof required for the payment, whereas such procedure is avoided in our protocol.
For each intermediate node, MHTLC needs to transmit 1, 650KB data between each
node, while it is reduced to only 0.96KB data in our CHTLC protocol.

4.3 Background

We first present the preliminaries required for understanding this paper. For the sake of
readability, the notations which are used frequently are presented in Table 4.1.

4.4 Payment Channel

A payment channel [74, 75, 76] establishes a private peer-to-peer medium, ruled by a
set of pre-set instructions, e.g., smart contract. The payment channel allows the involved
participants to consent to the state updates unanimously by exchanging authenticated state
transitions off-chain [77]. Fig.4.1(a) demonstrates how the payment channel is established
between two entities. Before the payment is placed, they need to agree on a transaction
known as the opening transaction to be put on the blockchain. In the opening transaction,
two parties make the deposit to the “joint-account” of which the signatures from both
parties are required to spend the money. After any party making the deposit in the
opening transaction, both parties can have the transactions off the chain. Any party can
close the channel by putting the latest transaction known as the closing transaction on the
blockchain which shows how the money in the “joint account” is distributed back to them.
To avoid any party publish the historical transaction unilaterally as the closing transaction
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(a) Off-chain payment.

(b) HTLC payment channel networks.

Figure 4.1: Payment Channel networks.

of his favor to invalid the rest of the transactions 1, asymmetric revocable commitment
schemes are employed [78]. Payment channels can be further extended with a special type
of smart contract (e.g.,HTLC) [74, 79], Global Preimage [70]) that allows the participants
to commit funds to a redeemable secret with an expiration time [78]. HTLC has already
been integrated with Bitcoin Lightning network [75] and DMCs [74]. HTLC enables the
cross-channel synchronization by allowing the sender to lock x coins in the senders’ and
receivers’ joint account that are only redeemable if the contracts conditions are fulfilled
[77]. We assume the sender Alice wants to pay Bob, x dollars, with the expectation y, the
hash function Hash and the locked time t, the HTLC looks like the following [75]:

1For instance, the sender pays the receiver 10 times through the channel, however, the sender may put
the first transaction on the chain to invalid the rest of the transactions.
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Notation Definition
B Blockchain
t Expiration time
f fee
v Channel capacity

c〈u,u′〉 A unique channel identifier between users u and u′

F Ideal functionality
L List of the off-chain payments
C List of the closed channels

|B| = t Time corresponds to the number of entries of the blockchain
h Entry identifier in L
u A user

Hi(x, r) Chameleon hash using public key of ui with input x and randomness r

Table 4.1: Notations

HTLC(Alice,Bob, x, y, t) If B can provide the condition R∗ such that Hash(R∗) = y
before t seconds, Alice pays Bob, x dollars.
Else if t seconds elapsed, Alice will be fully refund.

4.5 Payment Channel Networks

Though the off-chain payment path increases the transaction throughput, it has disadvan-
tages like different parties need to setup and maintain a “joint account”. It discourages
some parties who may not be willing to make a deposit to the one they do not have the
transactions frequently. To address this issue, HTLC based PCNs are proposed to avoid
setting up the payment channels while preserving the high transaction throughput. In
PCNs, the sender involves the nodes in the network to help them relay the payment by
offering transaction fees as the award for forwarding the payment. Fig.4.1(b) demonstrates
how Alice as a sender pays $4 to Alan as a receiver through the payment network (we as-
sume the transaction fees for all the intermediate nodes are set to $1). Firstly, Alan sends
hash value of a random secret R∗ to Alice. In the second step, Alice creates a payment
with Jan asking her to forward the payment to Tom. In the payment, “Alice is committing
7 of her channel balance to be paid to Jan if Jan releases the secret R∗ in 10 seconds, or
the money is refunded back to Alice if 10 seconds elapsed”. On receiving this payment,
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Jan knows that Tom can show her the secret R∗ and helps her to get the money that Alice
committed to her. She deducts $1 from the payment amount as the transaction fee and
creates a similar payment between herself and Tom. Finally, in step 5, Alan receives this
$4 payment commitment, as he is the one who has the secret R∗, thus revealing R∗ to Jim
to redeem the money from Jim’s commitment. Since Jim can only redeem the payment
from Tom by revealing the R∗, Jim sends the R∗ to Tom and claims the money. In this
way, the payment between Alice and Alan is settled without having a payment channel
established directly.

In HTLC, every participant is assigned with a maximum time frame that they can pull
the money from the sender to avoid any part suspends the channel by refusing forwarding
the payment. Since the intermediate node needs to pay the descendant before they pull
money from the predecessor, he needs to confirm that he is eligible to pull the money from
the predecessor, otherwise, he should refuse to make a commitment with the descendant.
Though HTLC is compatible with Bitcoin, it leads to serious privacy leakages. First, for
any colluded nodes, by exchanging the Hash(R∗) they received and sent, they can tell
whether they are involved in the same payment. Additionally, if they are the nodes that
linked directly with the sender and receiver, they can release the identities of the sender and
receiver. Second, if the HTLC commitments are broadcast on the blockchain, observers
who are not involved in the payment can recover the payment path by identifying the
transactions on the blockchain with the same Hash(R∗).

4.5.1 Syntax of PCN

We define the payment channel as a directed graph G := (V,E) where V is the set of
Bitcoin accounts and E is the set of currently open payment channels. A PCN consists of
following algorithms [20].

• OpenChannel(ui, uj, β, t, f) → {0, 1}: This algorithm admits two Bitcoin addresses
ui, uj ∈ V, an initial channel capacity β, a timeout t, and a fee value f , if the
operation is authorized by ui, and ui owns at least β bitcoins. Then, it creates a
new payment channel

(
c〈ui,uj〉, β, f, t

)
∈ E, where c〈ui,uj〉 is a fresh channel identifier.

Then this channel identifier is uploaded to B and returns 1. Otherwise, it returns 0.

• CloseChannel(c〈ui,uj〉, v)→ {0, 1}: This algorithm gets a channel identifier c〈ui,uj〉 and
a balance v as inputs. If the operation is authorized by both users, CloseChannel
removes the corresponding channel from G, includes the balance v in B, and finally
returns 1. Otherwise, it returns 0.
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• Pay
((
c〈u1,u2〉, . . . , c〈un−1,un〉

)
, v
)
→ {1, 0}: This algorithm inputs a list of channel

identifiers
(
c〈u1,u2〉, . . . , c〈un−1,un〉

)
which form a path from the sender u1 to the receiver

un and a payment value v. If each payment channel c〈ui,ui+1〉 in the path has at least

a current balance γi ≥ v′i, with v′i = v−
∑i−1

j=1 feeuj), the Pay operation decreases the
current balance for each payment channel c〈ui,ui+1〉 by v′i and returns 1. Otherwise,
none of the balances at the payment channels is modified and the Pay operation
returns 0.

4.5.2 PCN Security and Privacy Goals

The security and privacy goals of our PCNs system are summarised as follows:

• Balance security: It guarantees that any honest user involved in a payment does not
lose money even when the other involving participants are corrupted.

• Serializability: We require that the executions of PCN are serializable. That is, for
every concurrent execution of Pay operation, there exists an equivalent sequential
execution.

• (Off-path) Value Privacy: This ensures that for a Pay operation involving only honest
users, corrupted users outside the payment path learn no information about the
payment value.

• (On-path) Relationship Anonymity: Given two simultaneous successful Pay operations
of the form

{
Payi

((
c〈si,u1〉, . . . , c〈un,ri〉

)
, v
)}

i∈[0,1]
with at least one honest intermediate

user uj∈[1,n] corrupted intermediate users cannot determine the pair (si, ri) for a given
Payi with probability better than 1/2.

4.5.3 Ideal World Functionality

To satisfy the security and privacy of our construction, we apply the ideal functionality
as defined in [20]. This model captures Balance security, Serializability, Value privacy, and
Relationship anonymity (see [20] for detailed discussions). The ideal world functionality F
for PCNs consists of three main algorithms: OpenChannel, CloseChannel, and Pay. This is a
trusted functionality, which interacts with the users and maintains the blockchain B using
two lists L and C. The adversary A is a probabilistic polynomial-time machine which is
capable of adding users to the system and corrupt them at any time to gain the internal
state of the users and all of incoming/outgoing communications.
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• OpenChannel: This algorithm inputs
(
Open, c〈u,u′〉, v, u

′, t, f
)

from a user u. The ideal
functionality F checks c〈u,u′〉 for valid identifiers and not being duplicated, then sends(
c〈u,u′〉, v, t, f

)
to u′. If u′ authorizes the operation, F appends

(
c〈u,u′〉, v, t, f

)
to B

and
(
c〈u,u′〉, v, t, h

)
to L, for some random h. F returns h to u and u′.

• CloseChannel: This algorithm inputs
(
Close, c〈u,u′〉, h

)
from u or u′. In this framework,

F checks B for
(
c〈u,u′〉, v, t, f

)
and L for

(
c〈u,u′〉, v, t, h

)
where h 6= ⊥. If (c〈u,u′〉 ∈

C or t > |B| or t′ > |B|) the functionality aborts. Otherwise, the ideal functionality
F adds

(
c〈u,u′〉, u

′, v′, t′
)

to B and adds c〈u,u′〉 to C. Then, F notifies both users
involved with a message

(
c〈u,u′〉,⊥, h

)
.

• Pay: Given
(
Pay, v,

(
c〈u1,u2〉, . . . , c〈un−1,un〉

)
, (t0, . . . , tn)

)
from u1, the ideal function-

ality F performs the interactive payment protocol as presented in Algorithm 5.

As defined in Algorithm 5, F first ensures that the channel has enough capacity. Then,
each user decides to accept or reject a payment. At the end, F updates the L and notifies
the involving users.

4.6 Routing in PCNs

Discovering the payment path from the sender to the receiver is another research issue in
the PCNs. For an effective routing protocol, it should work out the payment path from the
sender to the receiver with a short time delay. It is also important that the routing protocol
can be applied in the dynamic PCNs, in which nodes may join/leave the network frequently.
Since it is impossible for the sender to store all the payment paths in the network, landmark
routing technique [80] is proposed to maintain a set of paths between the sender and the
receiver. The key idea is to provide a path from the sender to the receiver through an
intermediate node called landmark node. However, the landmark nodes may not contain
all the possible paths which may result in a payment path with low success probability
[72, 69]. Flare [81] asks all the participants to maintain some of the path information of the
neighbors. This design discourages the client which has limited computation source (e.g.,
smart phone payers), additionally, it cannot guarantee that the provided payment path
has the relatively low transaction fee. SpeedyMurmurs [82] is another routing algorithm
for PCNs which provides formal privacy guarantees in fully distributed settings. However,
because of the overhead in privacy guarantees, it is not that effective in a dynamic PCNs.
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Algorithm 5 Payment protocol in Ideal world

Input:
(
Pay, v,

(
c〈u1,u2〉, . . . , c〈un−1,un〉

)
, (t0, . . . , tn)

)
Output: updated L
1: for i = 2, . . . , n do
2: Sample hi at random
3: if

(
c〈ui−1 , u

′
i

〉
, vi, t

′
i, fi) ∈ B then

4: Send
(
hi, hi+1, c〈ui−1,ui〉, c〈ui,ui+1〉, v −

∑n
j=i fj , ti−1, ti

)
to ui 6=n via private channel

5: Send
(
hn+1, c〈un−1,un〉, v, tn

)
to the receiver

6: for
(
c〈ui−1,ui

〉
, v′i, ·, ·) ∈ L do

7: if v′i ≥
(
v −

∑n
j=i fj

)
& ti−1 ≥ ti then

8: Add di =
(
c〈ui−1,ui〉,

(
v′i −

(
v −

∑n
j=i fj

))
, ti,⊥

)
to L

9: else
10: Delete all di added in this phase to L and abort.
11: end if
12: end for
13: else
14: Abort
15: end if
16: end for
17: for i = n, . . . , 1 do
18: Query ui with (hi, hi+1) via private channel
19: if ∃ uj return ⊥ s.t. all ui returned > (i > j) then
20: j = 0
21: end if
22: end for
23: for i = j + 1, . . . , n do
24: Update di ∈ L to (−,−,−, hi)
25: Send ( success, hi, hi+1) to ui
26: end for
27: for i = 1 . . . , j where j 6= 0 do
28: Remove di from L
29: Send (⊥, hi, hi+1)
30: end for
31: return updated L

4.7 Chameleon-hash Functions

Chameleon-hash functions [83] also known as trapdoor-hash functions are the hash func-
tions which have a trapdoor allowing one to find arbitrary collisions in the domain of the
functions. However, as long as the trapdoor is not known, Chameleon-hash functions are
collision resistant. A chameleon-hash function CH consists of the following algorithms:

• CHSetup: This algorithm first chooses two large prime numbers p and q such that
p = kq + 1 for an integer k. Then, selects g of order q in Z∗p. Finally, it outputs
ξ ∈ Z∗q as the private key sk and y = gξ mod p as the public key pk.
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• CHash: On an input value x, this algorithm chooses a random value r ∈ Z∗q and
outputs Hpk(x, r) = gxyr mod p.

• Trapdoor collision: Given x, x′, r ∈ Z∗q as input, this algorithm outputs r′ such that
Hpk(x, r) = Hpk(x′, r′). This is done by solving for r′ in x+ ξr = x′ + ξr′ mod q.

Definition 1 (Indistinguishability). For all pairs of message x and x′, the probability distri-
bution of the random value Hpk(x, r) and Hpk(x′, r) are computationally indistinguishable.

Definition 2 (Collision-Resistance). Without the knowledge of trapdoor key sk, there exists
no efficient algorithm that, on input x, x′, and a random string r, outputs a string r′ that
satisfy Hpk(x, r) = Hpk(x′, r′), with non-negligible probability.

4.8 CHTLC Construction Overview

We consider the following assumptions and research scope regards to our CHTLC.

• The underlying blockchain system which PCNs interacts with is secure and free from
attacks. The security issues related with blockchain itself is beyond the scope of this
paper.

• We focus on design of the CHTLC protocol, the efficiency of the routing protocols
in PCNs is beyond our research scope. We applied the routing protocol proposed in
Flare [81] in our CHTLC.

• All the intermediate nodes in the PCNs are reasonable nodes. That is, they are
motivated by collecting transaction fees to forward the transactions unless they are
corrupted. Reasonable nodes will not disclose their secret key for encrypted commu-
nication between other nodes or any message they received through private channels
to the public.

• Some intermediate nodes might collude, while it is impossible for all the nodes that
include in a payment path to collude with each other.

• The communication between each pair of nodes in the network is encrypted.

• The network is bounded by a weak synchronous communication [84]. This indicates
that the participants in the network can achieve the same status within a suitable
time t. This assumption can be achieved by applying a loosely synchronised clock
among the users in PCN [85].
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Figure 4.2: CHTLC diagram.

• The security of the individual node is beyond our research scope. The system cannot
prevent the compromised nodes from paying other nodes through PCNs.

We now present a brief overview of CHTLC through an example. To make the discussion
concise, we take as an example the payment between uA and uD with no direct payment
channel to demonstrate the functionally of our protocol. To make the illustration simple we
avoid the details of the messages (e.g., the payment value, the time for lock the deposit) that
exchanged between two nodes and assume there exists a payment path of 4 nodes shown in
Fig. 4.2(a). We define uA as the S̊dr and uD as the R̊cv, the intermediate nodes are uB, uC
and uD. Firstly, uA receives the random value x from uD and calculates µD = HD(x, rD),
µC = HC(µD, rC), µB = HB(µC , rB), and µA = HA(µB, rA) with the public key of each node
retrieved from B. Second, uA sends (µB, rA), (µC , rB) to uB and uC respectively through
the private channels. Now, the payment can be carried out as uA makes a commitment
to uB saying if uB can provide a value (pB, rA) such that HA(HB(pB), rA) collides with µA
given seconds2, uA pays uB. User uB firstly checks that the µB on the blockchain satisfies
the condition that µA == HA(µB, rA), otherwise aborts the payment. Since uB does not
know the input µ′B, rB such that µB = HB(µ′B, rB), uB makes a commitment with uC saying
that if uC can provide (pC , rB) such that µB == HB(HC(pC), rB), node uB will pay uC the
promised money. Finally, uD with its secret key and secret value x, generates the collision
against Hd(x, rD) with (x′, r′) and sends p = (x′, r′, rC) to uC . Similarly, uC generates pC
that satisfy HB(HC(p′), rB) collides with µB and forwards (pC , rB) to uB. Finally, all the
nodes are paid with the promised amount of money.

2The money is locked within this time slot, if uB fails to satisfy uA, the money is refunded to uA
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4.8.1 CHTLC Construction

In this section, we discuss the details of the following operations:

OpenChannel(ui, uj, β, t, f): This operation establishes a direct channel between ui and
uj. f indicates the transaction fee charged by ui if ui helps other users to forward the
transaction to uj. β indicates the total amount of money that ui can transfer to uj. To
open a channel, ui needs to create an opening transaction in which the input is β from
ui’s wallet and the output is the joint-wallet in which the money need both ui’s and uj’s
permission to be spent. To avoid the scenario that uj’s does not cooperate and β is locked
in the contract, the money in the join-wallet will refund to ui if has not been spent within a
given time. After ui puts the opening transaction and path information cij = (eij, fij, β, t)
on B, this payment channel is accepted by PCNs.

CloseChannel(c〈ui,uj〉, v): When node ui wants to terminate the channel with node uj,
it needs to create a closing transaction. The input of the closing transaction is the joint
wallet and the output of the transaction is the ui’s private wallet and uj’s private wallet.
Let v as the balance in the joint wallet, vi, vj as the money that paid to node ui and
uj respectively. The close commitment is invalid if v 6= vi + vj. ui and uj sign on the
closing transaction and any node upload the close commitment on the B to finalize the
close channel operation.

Pay
((
c〈u1,u2〉, . . . , c〈un−1,un〉

)
, v
)
: The function pay pays v dollars from the u1 to un

(as the sender and receiver, respectively). The sender initiates the payment protocol by
running the setup algorithm shown in Algorithm 6.

We assume that there exists a payment path denoted as P = {u1, u2, . . . , un} where u1

is the payer and un is the receiver. un samples a random value denoted as x and sends it
to u1 in a private channel. Sender u1 retrieves the public key of all the nodes from B to
generate the commitment value µ for each intermediate nodes.
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Algorithm 6 Setup
1: function Setup(P, x, n)
2: for ui ∈ P do
3: µi ← GenMsg(x, ui, n)
4: end for
5: Return µi

6: end function
7: function GenMsg(x, ui, n)
8: for i = n, ..., 1 do
9: Choose a random value ri ∈ Z∗

q

10: if i = n then
11: µi = Hi(x, ri)
12: else
13: µi = Hi (GenMsg(x, µi+1, n)) , ri)
14: end if
15: i← i− 1
16: end for
17: Return µi

18: end function

We denote the cost of sending v dollars from u1 to un as v1 which is v1 = v +∑n−1
i=2 fee(ui). If u1 does not have enough money to pay all the transaction fees, it aborts

the process.

The detailed algorithm is shown in algorithm 7 (pay sender). u1 finds out the length
of the payment path, works out the path and locked time for each intermediate node. It
forwards (µi, ri−1) and path c〈ui,ui+1〉 to the intermediate nodes (line 9 in Sender node
section algorithm 7). Then, it creates a HTLC commitment with u2 saying that if u2 can
provide a pair (p2, r1) within t seconds such that H1(H2(p2), r1) = µ1, user u1 pays v1

dollars to u2 (line 10 in Sender node section algorithm 7). Finally, u1 sends message mn

to the receiver un to enable un claim the money from un−1.

For the intermediate node ui, when it receives the payment commitment from the node
ui−1, it verifies that 1. it has enough money to fulfill the payment. 2. The correctness
of the contract lock time ti+1. 3. whether node ui−1 provides the valid commitment (line
2 in Intermediate node algorithm 7). Then it makes the HTLC commitment with the
successor node ui+1. Finally, ui waits for ui+1 to send back m∗ = (pi+1, ri) to claim the
money from ui (line 7 in Intermediate node algorithm 7). With the help of pi+1, node ui
generate (pi) (line 9,10 in Intermediate node algorithm 7) and sends (pi, ri−1) to node
ui−1 and claims the money (line 11 in Intermediate node algorithm 7).
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For the receiver un, once it receives the commitment µn−1 from the previous node, it
verifies the validity of the commitment and whether it can meet the condition within the
time tn (line 1 in Receiver algorithm 7). Then it applies (x, r) with its secret key to
generate pn and send (pn, rn−1) to ui−1 to claim the money.

Since every intermediate node redeems the money by generating the collision with the
parameter it received from the successor nodes, it has to wait for the successor node to
redeem the money firstly. Finally, all the nodes are paid with the promised money.

Algorithm 7 Payment Protocol

Sender node:

1: v1 = v +
∑n−1

i=2 fee(ui)
2: if v1 ≤ cap(c〈u1,u2〉) then

3: cap(c〈u1,u2〉) := cap
(
c〈u1,u2〉

)
− v1

4: t0 := tnow + ∆ · n
5: for 1 < i < n do
6: vi := v1 −

∑i−1
j=1 fee (uj)

7: ti := ti−1 −∆
8: µi ← Setup(P, x, n)
9: Send mi = (c〈ui−1,ui〉, c〈ui,ui+1〉, vi+1,ti,

ti+1,µi, ri−1) to ui
10: end for
11: HTLC(u1, u2, v1,µ1,t1)
12: Send mn = (c〈un−1,un〉, vn,tn, µn, rn−1,rn) to un

13: else
14: Abort
15: end if

Receiver node (mn):

1: if Hn(x, rn) = µn and tn > tnow + ∆ then
2: Select x′ and compute r′ s.t. Hn(x′, r′) collides with

µn
3: pn ← (x′, r′)
4: Send (pn, rn−1) to un−1

5: else
6: Abort
7: end if

Intermediate node (mi):

1: Read µi−1 from B
2: if vi+1 ≤ cap(c〈ui,ui+1〉) and ti+1 = ti − ∆ and

Hi−1(µi, ri−1) = µi−1 then

3: cap(c〈ui,ui+1〉) := cap
(
c〈ui,ui+1〉

)
− vi+1

4: HTLC(ui, ui+1, vi+1,µi,ti+1)
5: else
6: Abort
7: end if
8: if receive m∗ = (pi+1 = (µ′i+1, r

′
i+1), ri) from ui+1 then

9: if Hi(Hi+1(pi+1), ri) = µi then
10: Select µ′i and compute r′i s.t. Hi(µ

′
i, r
′
i) collides

with µi
11: pi ← (µ′i, r

′
i)

12: Send (pi, ri−1) to u−1

13: else
14: Abort
15: end if
16: else
17: Abort
18: end if

4.8.2 Security Discussion

The proposed construction provides the same level of the security as [20] without requiring
zero knowledge proofs. The security of CHTLC follows the security model introduced by
[20] according to the universal composable (UC) security paradigm [86]. Let EXECπ,A ,E
be the ensemble of the outputs of the environment E when interacting with the adversary
A and parties running the protocol π. The UC-Security is defined as follows.
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Definition 3. A protocol π UC-realizes an ideal functionality F if for any adversary A
there exists a simulator S such that for any environment E, the ensembles EXECπ,A ,E and
EXECF ,S,E are computationally indistinguishable.

Theorem 1. Let H : {0, 1}∗ → {0, 1}λ be a Chameleon hash function modelled as a
random oracle, then CHTLC UC-realizes the ideal functionality F (as defined in Section
4.5.3).

Proof. We define the simulator S which simulates the real world execution protocol
while interacting with the ideal functionality F as defined in Section 4.5.3. It also handles
users corrupted by the adversary A and impersonates them until the environment E makes
a corruption query on one of the users. Upon such query, S hands over to A the internal
state of the target user and routes all of the subsequent communications to A , who can
reply arbitrarily. E does not expect any interaction with S regarding the operations exclu-
sively among corrupted users. Moreover, A does not learn anything about communication
between honest users that happened through secure channels. S simulates the random
oracle H via lazy-sampling. The operations to be simulated for a PCN are described in
the following.

OpenChannel
(
c〈u1,u2〉, β, t, f

)
: Let u1 be the user that initiates the request, the are two

possible cases as follows:

• Corrupted u1: A sends a request
(
c〈u1,u2〉, β, t, f

)
on behalf of u1 to S who in turn

initiates a two-user agreement protocol with A to convey upon a local fresh channel
identifier c〈u1,u2〉. If the protocol successfully terminates, S sends

(
open, c〈u1,u2〉, β, t, f

)
to F , which eventually returns

(
c〈u1,u2〉, h

)
.

• Corrupted u2: S receives a message
(
c〈u1,u2〉, v, t, f

)
from F engages A in a two-user

agreement protocol on behalf of u1 for the opening of the channel. If the execution is
successful, S sends an accepting message to F which returns

(
c〈u1,u2〉, h

)
, otherwise

it outputs ⊥.

If the opening was successful the simulator initializes an empty list Lc〈u1,u2〉 and appends
the value (h, v,⊥,⊥).

CloseChannel
(
c〈u1,u2

〉
, v): similar to Open Channel, there are two cases that might

happen as follows (assuming u1 is an initiator):

• Corrupted u1: A sends a closing request on behalf of u1 to S who fetches Lc〈u1,u2〉
for some value (h, v, x, y). If such a value does not exist then it aborts. Otherwise it
sends

(
close, c〈u1,u2〉, h

)
to F .
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• Corrupted u2: S receives
(
c〈u1,u2〉, h,⊥

)
from F and simply notifies A of the closing

of the channel c〈u1,u2〉.

Pay
((
c〈u1,u2〉, . . . , c〈un−1,un〉

)
, v
)
: the users acting differently according to their role in

the protocol, thus we consider the cases separately.

Sender : In order to initiate a payment, A must provide each honest user ui with mi =(
c〈ui−1,ui〉, c〈ui,ui+1〉, vi+1, ti, ti+1, µi, ri−1

)
and notifies the receiver with

(
c〈un,un+1〉, vn, tn, µn, rn−1, rn

)
.

If ti ≥ ti+1 then S sends
(
Pay, vi, (c〈ui−1,ui〉, c〈ui,ui+1〉), ti−1, ti

)
to F and sends

(
Pay, v, c〈un−1,un〉, tn

)
to the receiver, otherwise it aborts. For each intermediate user ui the simulator confirms the
payment only when receives from the user ui+1 a pair (pi+1, ri) such that Hi(Hi+1(pi+1), ri)
collides with µi. If the receiver is honest then S confirms the payment if the amount v
corresponds to what agreed with the sender and if Hn(pn, rn−1) = µn. If the payment is
confirmed the entry (hi, v

∗ − vi, µi) is added to Lc〈ui−1,ui〉
, where (h∗i , v

∗, ·, ·) is the entry of

Lc〈ui−1,ui〉
with the lowest v∗, and the same happens for the receiver.

Receiver : S receives some
(
h, c〈un−1,un〉, v, tn

)
from F , then it samples two random

x, r ∈ {0, 1}λ and returns pn = (x, r) to A the tuple (pn, Hn(pn, rn−1), v). If A returns
p∗ = pn, then S returns > to F , otherwise it sends ⊥.

Intermediate user : S is notified that a corrupted user is involved in a payment with a
message of the form

(
hi, hi+1, c〈ui−1,ui〉, c〈ui,ui+1〉, v, ti−1, ti

)
by F .

S samples three random values r, x′, r′ ∈ {0, 1}λ, sets p′ = (x′, r′) then sends the tuple(
c〈ui−1,ui〉, c〈ui,ui−1〉, µi = Hi(Hi+1(p′), r), µi+1 = Hi+1(p′), p′, v, ti−1, ti

)
to A . If A outputs

r∗ such that Hi(Hi+1(p′), r∗) collides with µi, then S aborts. At some point of the execution
the simulator is queried again on (hi, hi+1), then it sends r to A on behalf of ui+1. If A
outputs µ′i = Hi(Hi+1(p′), r) which collides with µi, the simulator sends > to F and
appends (hi, v

∗ − v, µ′i, Hi+1(p′)) to Lc〈ui−1,ui〉
, where (h∗i , v

∗, ·, ·) is the entry of Lc〈ui−1,ui〉
with the lowest v∗, otherwise it sends ⊥.

The OpenChannel and CloseChannel algorithms are exactly the same as [20] and the in-
distinguishability argument is trivial. Thus, we exclude further discussion about them. For
the payment, the sender provides the values to the user via private channel which mimics
exactly the real-world protocol. Each user ui confirms the transaction to F only once it
receives the values pi+1 and ri such that Hi(Hi+1(pi+1), ri) collides with µi. The payment
chain does not stop at a honest node (excluding the sender), thus the simulation does not
aborts. The simulation aborts if adversary aim to interrupt the payment by outputting r∗

such that Hi(Hi+1(pi+1), r∗) collides with µi without getting r from the simulator. Accord-
ing to Indistinguishability and Collision-Resistance properties of Chameleon hash function
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Scheme
Performance Key pair

generation
Generate
message

Verify
message

Redeem
payment

Multi-Hop HTLC NA 309 ms 130 ms Not Provided
CHTLC 8 ms 55 ms 20 ms 8 ms

Table 4.2: Performance comparison

as defined in Section 4.7, the probability that A be able to output p∗ in such a way is
negligible, hence Pr[abort] ≤ negl(λ).

4.9 Experimental Results

To evaluate the CHTLC protocol, we implement it in Golang language. We deploy our
experiment on the server equipped with i7-4770k CPU and 32GB memory. We set the
chameleon-hash key size as 2048 bits and the output of the hash function is 2048 bits.
According to our observation, 90% of the payment can be finished within 10 nodes, thus
we set our evaluation in the payment path consists of 10 nodes. We compare the size of
data transmitted and the protocol time consumption in CHTLC with MHTLC proposed
in [20].

4.9.1 Data size

In CHTLC, the sender needs to forward the secret value to each of the intermediate nodes
which accounts for 2048 bits (256 Bytes). For the path that consists of 10 nodes, the total
number of data sent by the sender is roughly 2.56 KB. However, according to the experiment
demonstrated in [20], the sender needs to forward about 17MB data. In MHTLC protocol,
the communication between the intermediate nodes is required to ensure the correctness of
the received data from the sender while it is not necessary for our scenario. In conclusion,
the data needed to be transmitted in much smaller than the MHTLC approach.

4.9.2 Time consumption

We evaluate the time consumption in CHTLC and make the comparison with MHTLC
protocol in Table 4.2. For CHTLC, we need each node to generate the chameleon hash
key pairs which takes about 8ms. In MHTLC, since it is based on a general hash function,
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this step is not needed(As it is shown as not available in Table 4.2 ). It takes 55 ms (for
the first intermediate node, it take 10 ms while the last node it takes 100 ms) on average to
generate the message which sent to each intermediate node. However, in MHTLC, it takes
309 ms. To verify the correctness of the message(proof in MHTLC), CHTLC needs 20 ms
while MHTLC consumes 130ms. To redeem the commitment from the previous node, our
protocol needs 8ms to generate the collision of the committed hash value, while in [20], this
evaluation is not addressed by the authors (As it is shown as not discussed in Table 4.2).

In conclusion, the data transferred in our protocol is much small than that transferred
in MHTLC. our protocol also has a great advantage in the time consumption of generat-
ing/verifying the message (proof). It takes 8 ms to redeem the money from the commitment
which is totally accepted by most of the scenarios.

4.10 Conclusion

In this paper, we propose a new payment protocol called CHTLC to address the payment
path privacy issue in PCNs. With the help of chameleon hash function, no one can recover
the payment path by analysing the payment commitment made by the payment partic-
ipants. It is demonstrated by the evaluation that compared with MHTLC, our protocol
consumes less bandwidth while much faster in transaction processing.
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Chapter 5

Secured Blockchain-Based
Applications

User privacy leakage has aroused the public’s attention. For all the privacy preserving
systems, at least one party should be trusted to manage the cryptographic schemes or the
processing of the data. In the traditionally privacy preserving systems, a trusted third party
needs to be presented to bootstrap the system and ensure all the participants obey the
system scheme. To remove the trust on the single party, secure Multi-party Computation
(MPC) scheme was firstly introduced by Andrew Yao in 1986 [87]. Though MPC transfers
the trust on one single device to multi-parties, the protocol itself is difficult to extend
to different application scenarios and suffers from high overhead. With the increase of
the parties numbers, the communication overhead becomes unaccepted for most of the
applications. Additionally, the MPC protocols suffer from the force-absent attack which
means once one or some party that involved in the MPC refuse to collaborate, the MPC
is suspend.

Blockchain which builds the trust not only on one single party but on all the participants
who are involved in the system can be applied in the scenario that trust is difficult to be
established. Additionally, thanks to the help of smart contract, compared with MPC, the
protocol which needs multi-party to be involved can easily to be generalized in different
application scenarios.

In this chapter, through three blockchain-based applications (IoTchian, blockchain-
based Evoting system and privacy preserved payment channel network), we demonstrate
how the blockchain can be applied to build the secured Evoting systems in which trust is
difficult to be established.
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5.1 IoTChain: Establishing Trust in the Internet of

Things Ecosystem Using Blockchain [3]

5.1.1 Application Background

IoT has already reshaped and transformed our lives in many ways, ranging from how we
communicate with people or manage our health to how we drive our cars and manage our
homes. With the rapid development of the IoT ecosystem in a wide range of applications,
IoT devices and data are going to be traded as commodities in the marketplace in near
future, similar to cloud services or physical objects. Developing such a trading platform
has previously been identified as one of the key grand challenges in the integration of IoT
and data science. Deployment of such a platform raises concerns about the security and
privacy of data and devices since their ownership is hard to trace and manage without a
central trusted authority. A central trusted authority is not a viable solution for a fully
decentralized and distributed IoT ecosystem with a large number of distributed device
vendors and consumers. Blockchain, as a decentralized system, removes the requirement
for a trusted third-party by allowing participants to verify data correctness and ensure its
immutability. IoT devices can use blockchain to register themselves and organize, store,
and share streams of data effectively and reliably. We demonstrate the applicability of
blockchain to IoT devices and data management with an aim of providing end-to-end trust
for trading. We also give a brief introduction to the topics and challenges for future research
toward developing a trustworthy trading platform for IoT ecosystems.

The number of IoT devices has already exceeded the world population. With rapid
advancement in hardware technologies, these smart devices have been applied in almost
every aspect of our daily lives. A large amount of data is generated every second and data
science research is actively defining algorithms to process such data to make and enact
better decisions for us in our daily activities. For example, wearable smart devices such as
smartwatches sense our heartbeat and blood pressure continuously to monitor our health
condition; a smart fridge enables us to control the fridge remotely and plan a healthier
diet; a smart air conditioner can track our living preferences and adjust the temperature
automatically; an autonomous vehicle frees our hands and minds while making our journey
safe.

One of the key grand challenges is how we ensure that users trust the IoT ecosystem
to make the right decisions and act on them. This involves trusting devices, data and
analytics, as previously identified in this column [88]. The focus of IoTchain is to analyze
different research and technical issues related to managing trust using blockchain in a fully
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decentralized IoT ecosystem.

Though these smart devices bring great convenience to us in our daily life, news such
as US cell carriers (including AT&T, T-Mobile. and Sprint) selling access to customers’
real-time phone location data to a little known company called Securus[89] raises public
concerns about the risk of personal data leakage and abuse. Such news prompts a debate
on whether these IoT devices are our friends or enemies. Trust is not a one-way street in
the IoT ecosystem. Data analysts have concerns about the integrity of the data that data
owners provide. At the same time, data owners are concerned about whether data analysts
only use their data for its declared purposes. Additionally, data owners care about how to
protect their own data (sometime captured by manufacturers) when IoT device ownership
changes during its life. For example, what happens to the data of a car owner when an
autonomous car is sold or the ownership of a car is changed?

Users find difficulties in enjoying the services provided by these smart devices if they
don’t meet the high security expectations from them. Some key challenges for building a
trustworthy trading platform for IoT devices and data are outlined below:

Lack of trust among participating entities Trust is hard to achieve among different
entities involved in IoT data processing due to the lack of a governance framework. As
defined by NIST in its Network-of-Things (NoT) [90] report, which aims to define IoT
formally, five key primitives are involved in real IoT applications: sensors (IoT devices
for generating data), aggregators (edge, fog or mist infrastructure for aggregating data),
communication channels (wired and wireless communication provided by communication
service providers), eUtility (SaaS, PaaS, IaaS provided by clouds), and decision triggers
(data analysis pipelines, decision making and enacting processes). Each of these primitives
is likely to be supported by different service providers. How can they trust to each other?
For example, in many cases, IoT device owners would not know who are the data processing
entities or cloud service providers. Unless they have a mechanism to trust them to handle
the data properly, they cannot use the services they provide to support the five primitives.
More seriously, there is no standard agreement among different entities to define the data
usage policy and it is hard to supervise the usage of personal data. The reliability and
security of all entities providing five primitives is important to establish the trust.

Lack of data supervision and management In many applications, data collected
by IoT devices is mostly maintained and processed by either the device manufacturer or
a trusted third party. For example, consider an IoT application of monitoring chronic
patients at home [91] where a patient is monitored for his activities (like exercises) and
health (blood pressure, heart beats) using IoT devices. A service provider may share
patient data with health data analytics, general practitioners, and related service providers,
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including cloud data service providers. Patients have limited knowledge about how their
data is processed and used. Additionally, when the data generated by IoT devices is
transferred from one party to another, there is often no data integrity verification. The
tampered data could result in misleading decisions and the source of the fraud is difficult
to identify.

Lack of devices’ life cycle management Every product undergoes a series of phases
in its life cycle: design, sourcing of components, manufacturing, distribution, retail, repair,
resale, and so on. For IoT devices, the management of devices and related data are critical
because the data generated by devices at different phases should be isolated and well
protected. To date, the visibility remains highly siloed and opaque across entities. For
instance, patient health data generated by an artificial cardiac pacemaker is fragmented
to the manufacturer, doctor, and insurance company. During the device’s life cycle, a
patient could change from one doctor to another; in such a scenario, the data accessibility
should also be transferred. Currently, the data is fragmented and held by many entities
and there is no regulation on auditing the ownership of IoT devices. Similarly, there is no
guarantee that the data held by each of them is consistent with others. If the patient is
transferred from one doctor to another, there is no mechanism on how the data accessibility
is managed.

A lot of effort has been put into resolving the issue of trust among different entities in
the IoT application ecosystem. Unfortunately, there is not a single reference scheme that
satisfies all stakeholders. The key issue for the traditional solutions is that they all depend
on a trusted third party, which has to be trusted by all stakeholders. Blockchain, as a new
data-sharing model, addresses this issue by removing the need for a trusted third-party. It
allows all stakeholders to participate in maintaining an immutable ledger in which the data
is consistent among all stakeholders. Since the data on the ledger is immutable, we avoid
the possibility that any participant tampers with the data by allowing all participants
to verify the correctness of the data. In this article, we argue that with the help of the
blockchain technology, the management of the IoT device life cycle and the corresponding
data privacy can be enhanced in the following ways:

• instead of trusting a third party, IoT devices can exchange data through the blockchain;

• IoT devices and the data generated by IoT devices can be traced to avoid the
manipula- tion of the data by malicious parties;

• different stakeholders can trust the validity and integrity of the data on the chain;

• the communication among different entities can be simplified as they only need to
inter- act with the blockchain to retrieve/upload data;
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• the deployment and operation cost of IoT can be reduced through a blockchain since
there is no intermediary;

• computation-intensive operations like end-user authentication and access control can
be processed on the blockchain instead of IoT devices;

• it is more convenient for the blockchain to maintain device and data ownership; and

• the distributed ledger eliminates a single point of failure within the ecosystem IoT
devices and end users can interact with any blockchain nodes to access the data;

In the following sections, we present a blockchain-based application called trustchain
to demostrate the feasibility of a trustworthy trading platform with the above stated ca-
pabilities.

5.1.2 Blockchain

Trust plays a critical role in information exchanges. It helps different entities deal with
each other more effectively and is often a key element in any collaborative system. Tra-
ditionally, centralized trusted institutions such as banks or government agencies manage
the trust problem. With the help of these centralized institutions, different entities can
cooperate with each other with a certain degree of confidence. Blockchain, known as an
electronic ledger, tries to replace such centralized institutions by distributing the trust in
a decentralized network. In a blockchain system, the ledger is immutable and not held on
a single server but among all servers in the network. The openness feature of blockchain
allows any participant to modify the ledger under a set of rules dictated by a “consensus
protocol.” The “consensus protocol” requires the majority of the blockchain participants
to agree on the modification of the ledger to ensure the trustworthiness of the blockchain.
Once a new consensus is achieved, all participants update their own ledger simultaneously.
If any of the participants violates the consensus protocol to propose a new data entry, the
network treats that entry as an invalid one.

Practically, transactions are bundled together and submitted to the blockchain as a
block. Cryptographic techniques are applied to link all blocks in a deterministic order.
The cryptographic algorithm also guarantees that the blocks are immutable, which means
that once a block is appended to the chain, it cannot be tampered with.

We take Hyperledger Fabric as an example blockchain platform to illustrate how a smart
contract service works in the blockchain. Figure 5.1 shows how a smart contract is deployed
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Figure 5.1: Smart contract on blockchain.

on the blockchain. First, the smart contract administrator needs to compile the smart
contract application into a binary code so that it can be executed on the Hyperledger fabric.
The administrator then deploys the smart contract on the blockchain. The application
receives status notifications when there is any change. For instance, when the smart
contract is deployed successfully, the application receives a message saying that the smart
contract is now running on the blockchain. Finally, end users can access the service through
the interface provided by the blockchain.

There are typically three different types of consensus protocols. The first is the PoW
[92], adopted by cryptocurrencies like Bitcoin [75] and Zcash [14]. For the PoW proto-
col, all participants are competing with each other to win the block proposal by solving
a specific math puzzle. The first participant to find the solution authorized to propose
the transactions in the block and the rest of the participants copy this block to their own
chain. A PoW based blockchain can provide an open environment, which allows anyone
to join/leave the blockchain freely. However, in this protocol, a high amount of energy
is consumed by each participant to solve the math puzzle. As a result, they have a poor
throughput. The second type of consensus protocol is based on BFT [48], which is adopted
by blockchain systems like Hyperledger Fabric [8]. The size of the network of a BFT-based
blockchain is relatively small. As a result, the majority of BFT-based blockchain systems
are permissioned blockchains, in which only authorized users can participant in block gen-
eration and verification. The last one is the PoS [93], which employs a certain number of
nodes to generate the blocks on behalf of the whole network. Typical examples of PoS-
based blockchain systems are Ouroboros [53], Neo [94], and Redd-coin [95]. However, in
such systems, rich nodes have more chances to generate blocks. To address such prob-
lems, Bitcoin-NG[96] advocates applying a hybrid consensus protocol, which combines the
advantages of the PoW and PoS. GHOST [18], SPECTRE [62], and MESHcash [61] are
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recent proposals for increasing the throughput by replacing the underlying chain structure
with a tree or a directed acyclic graph (DAG) structure. These protocols still rely on
the Nakamoto consensus using PoW. By carefully designing the selection rules between
branches of the trees/DAGs, they are able to substantially increase the throughput [47].

Since the blockchain removes a centralized trusted party and allows a participant
to verify the correctness of the data on the blockchain, it is widely applied in two do-
mains—cryptocurrency and the smart contract [97]. The great success of Bitcoin [13],
Litecoin [98], Zcash [14], Ripple [67], and EOS [56] demonstrates the potential market
value of the blockchain technology. The smart contract is another application based on
blockchain technology. In essence, the smart contract is a service that links different en-
tities together to construct a system to achieve dedicated functions. The approximate
turning-complete feature provided by the smart contract allows the majority of existing
programs to migrate to the blockchain.

Three key features that the blockchain technology brings to the industry and acdamia
are:

Openness: Trustworthiness is always a key issue for systems that involve multiple par-
ties. All communications between parties are based on a certain kind of trust assumptions.
Blockchain technology is so revolutionary that it allows exchanging value directly between
parties without them trusting each other. The openness feature allows anyone interested
in the system to join and verify the correctness of the data. Because the data on the chain
is immutable, it resolves concerns that the data owner might tamper with or modify the
data in the future.

Robustness: Denial of service and a single point of failure are common issues for
existing centralized systems. If the centralized servers are under attack, the quality of
service might be affected and system security could be compromised. However, since every
participant holds a copy of the data, and the network size could be large, it is impossible
for an adversary to attack the blockchain system by compromising the majority of the
distributed blockchain servers.

Cooperation: Blockchain enables a new cooperation pattern among multiple parties
in which untrusted parties can exchange data more confidently by hosting the servers lo-
cally to construct a blockchain network. For example, take an electronic voting system,
when the voting is conducted in a traditional way, all voters and stakeholders should agree
on a trusted third party to organize the voting. Blockchain removes this trusted party by
allowing all stakeholders to participate in the voting administration. That is, all stakehold-
ers can verify the correctness of the voting result by looking up the data on the blockchain
node held by themselves. There are two paradigms for blockchain resource management:
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permissioned Blockchain Permissionless Blockchain

Operational costs
Depends on the

redundancy requirements
High (Bitcoin estimate $657,000,000

per year in 2017 at $1000/BTC )
Interoperability Poor Excellent

Transaction Throughput Good Poor
Data Privacy Good Poor

Scalability Poor Good
System robust and resilience Fair Good

Table 5.1: Comparison between permissioned and permissionless blockchain

permissioned blockchain and permissionless blockchain. For the permissioned blockchain,
a membership service exists that asks all parties who want to contribute in the blockchain
maintenance to register with the blockchain system. Hence, only authorized users can ac-
cess the blockchain. In contrast, for the permissionless blockchain, everyone can access the
data on the blockchain and participate in the blockchain management without registering.
We make a comparison between permissioned and permissionless systems in Table 5.1. We
briefly describe them below.

Permissionless blockchain: The advantages of a permissionless blockchain are: 1) it
has an open network to enable anyone to join/quit the protocol freely; 2) the network typ-
ically has an incentivizing mechanism to encourage more participants to join the network;
and 3) it is suitable for cryptocurrency and applications that do not have strict privacy
requirements. However, it consumes a lot of power to maintain the distributed ledger at a
large scale for PoW based systems and the trust of the blockchain is hard to achieve for
PoS based systems. Furthermore, very limited transaction privacy is preserved since any
nodes in the permissionless blockchain can have a copy of all transactions.

Permissioned blockchain: The advantages of a permissioned blockchain are: 1) all
blockchain participants are registered and verified by the protocol administrator and as
a result, it is easy to identify nodes that do not comply with the protocol; 2) since the
public has no access to the blockchain, privacy is preserved; and 3) since the blockchain
administrator can control the network size by controlling the number of nodes involved
in the blockchain, the permissioned blockchain usually has a high transaction throughput.
However, the permissioned blockchain has a number of disadvantages: 1) the public may
have low confidence in the correctness of the blockchain because they have no access to the
verification of the data on the chain; 2) some stakeholders may collude with each other to
make some transactions invalid; 3) participants need to follow a series of strict policies to
join/quit the protocol (i.e., a membership server should assign/withdraw its access policy)
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and 4) some protocols (e.g., practical BFT) are based on assumptions that two or three of
the total nodes are always online.

5.1.3 Trustchain — a platform for IoT device and dat trcking
and trading

In this section, we provide a concrete example of how the blockchain is applied to enhance
the trust in a practical scenario to track and trade IoT devices and the corresponding data.

The popularity of wearable devices is increasing and people are regularly upgrading
their IoT devices, while few of them understand how to dispose of their out-of-date devices.
Trade-in or resale to another customer usually means the potential or accidental transfer
of all personal data on the device to the new buyer, resulting in personal data leakage.
On the other hand, when a device is put up for sale, the manufacturer needs to trace the
ownership of the device to provide a warranty to the correct customer and recall the device
if any defects are found. Current faulty airbag recalls on vehicles is a good example—many
consumers are not aware that their vehicles have been recalled.

Applying the blockchain technology in the above scenario, we demonstrate how our IoT
device and related data tracking and trading system resolves the trustworthiness issue in
the IoT ecosystem. Four entities are involved in our system: 1) manufactures, who sell the
products to retailers; 2) retailers, who buy the products from manufactures and sell them
to customers; 3) customers, who consume the service provided by products; and 4) data
analysis companies that buy the personal data for analysis.

For the IoT device and data tracking and trading system, we would like to have the
following functions: 1) a manufacturer can trace the status and ownership of the device
during its lifecycle; 2) a customer can transfer the ownership of his/her devices to another
customer; 3) a customer can share/sell the data generated by his/her IoT devices; and 4)
a smart contract that only allows the data owner to sell his/her own data; once the IoT
device is sold, he/she cannot access the data generated by that device any longer.

The logical architecture of our tracking and trading system is shown in Figure 2. It
demonstrates how cell phones, as IoT devices are transferred from a manufacturer to a
retailer, a retailer to a customer, and finally, a customer to another customer. With the
help of a smart contract, the manufacturer can transfer the ownership of the cell phone to
the retailer. When Alice as a customer purchases this item, a record that corresponds to
this purchase is appended to the smart contract, which demonstrates that the cell phone
is owned by the customer, Alice. If Alice agrees to sell her cell phone as a used device to
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Bob, the smart contract can inform the manufacturer that the device is owned by Bob.
The manufacturer then provides any remaining warranty service to Bob. Since the device
is transferred to Bob, Bob can sell the personal data generated by his cell phone to a data
analysis company. At the same time, he has no rights to handle the data generated by the
same device previously under the ownership of Alice.

Fig. 5.2(a) shows the interactions between different entities that are carried out through
a smart contract. Since the smart contract is regarded as an independent trusted party,
no entity can cheat others or modify the existing data related to this device.

The above case studies can be implemented in both permissioned and permissionless
blockchains. Let us first consider the permissioned blockchain. We employ Hyperledger
Fabric as a private blockchain that only allows relevant stakeholders to store IoT devices
and the data ownership information. Users who own IoT devices can verify the manu-
facturer of those devices and sell the data generated by them. Since the public does not
own the IoT device, they cannot trace any information related to the device. In practice,
to preserve the data privacy, we only allow the manufacturer, retailer, and government
consumer affairs office to host the blockchain validation nodes.

dddd The logical structure of Hyperledger Fabric is shown in Figure 3. It consists of
the following components.

Client: The client represents the entity that acts on behalf of an end-user. It must
connect to a peer to communicate with the blockchain. Clients create and thereby invoke
transactions.

Peer: The peer receives the ordered state updates in the form of blocks from the
ordering service and maintains the state and the ledger. The peer nodes are held by different
stakeholders to ensure that the data on the blockchain are verified by all stakeholders to
avoid any party tampering with or creating an incorrect block on the chain.

Ordering service: This service provides a communication channel to clients and peers,
and offers a broadcast service for messages containing transactions. The channel outputs
the same messages to all connected peers in the same logical order.

Certificate Authority (CA) server: The server is responsible for creating user/server
certificates and verifying servers’ validity in the network. Peer nodes in the blockchain net-
work also ask the CA server to verify the identity of peer nodes.
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5.1.4 Smart Contract Logic

In this section, we explain the portal and the interfaces of different entities in our system
to illustrate the logic of our smart contract in Fig. 5.3(a).

The smart contract runs atop the Ethereum blockchain as a form of distributed com-
putation. When the contract is interacted with, either by a retailer or a manufacturer
selling/buying a device on the blockchain or by an end user seeking to buy/modify a de-
vice, they call one of the functions outlined below. Both inputs and operations of these
functions are then computed across the whole blockchain. An individual who invokes
the function pays for all nodes in the network to perform that function through the use
of “gas.” Gas is the execution fee that scales according to the amount of computational
power needed to perform the invoked function by all nodes doing the computation. This
execution fee is the incentive for nodes in the system to actually perform the necessary
computations to ensure the contract is obliged by the blockchain. As the computation is
distributed and performed by all nodes in the Ethereum blockchain, the need for a trusted
authority to validate the operation is superseded by the use of the consensus protocol. By
needing all nodes performing the computation to agree to the output, the ability of bad
actors and malicious nodes to tamper with the operation of the contract is entirely negated.
However, due to the nature of the contract being executed across the entire network, the
contract will not be executed unless the blockchain is sure that the execution will be suc-
cessful. This prevents wasted operations on the network. The consensus-based nature of
this security model means that an attack to the system requires more than 50% of the
network to inject any malicious transactions into the blockchain, making it a highly secure
decentralized autonomous marketplace (when the continuous expansion and the current
size of the Ethereum network are considered).

Fig 5.3(b) shows an example of how cloud storage can be used. We next describe
current implementation of the services in our platform.

Manufacturers are the entity that produce new IoT devices. They have three func-
tions: Registration, Update, and Sale. The registration service is responsible for registering
a newly made device onto the blockchain. Actually, it creates device information containing
the metadata related to the device including device model, device ID, and device warranty
information. Manufacturers also need to update the device state, which indicates the de-
vice can be traded on the market. This update service allows manufacturers to update the
device information including the device owner, device price, device warranty, and device
status. For instance, when a manufacturer finds a specific product has a safety defect and
wants to recall the product, it can set the device status to untradeable. Customers need
to return them to the manufacturer; otherwise, they lose the rights to trade them in the
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platform. The sale service allows the manufacturer to put a specific device on the market
for sale. A retailer can buy the device from manufacturers. This service can only operate
when the manufacturer sets the device for sale indicator as true.

Retailers have the following three functions: Buy, Update and Sell. The buy service
enables retailers to buy a specific device from manufacturers with an expected price. Once
the agreement is made between a retailer and a manufacturer, the manufacturer transfers
the product’s ownership to the retailer. The update service allows the retailer to update
the device information including the device owner and the device price. This service
allows the retailer to set the price for a given device and allows the retailer to transfer the
ownership of the device to another retailer or customer when the ownership transferring
agreement is achieved. The sell service allows the retailer to put the specific device on the
market, enabling customers to buy the device from the retailer. The retailer needs to set
a reasonable price for the device before putting it on the market.

Customers also have three functions: Buy, Update and Sell. The buy service enables a
customer to buy a specific device or data from a retailer with the expected price. Once the
agreement is achieved between the customer and retailer, the retailer transfers the device’s
or data’s ownership to the customer. The update service allows the customer to update
the device/data information including the device/data owner, device/data price. The de-
vice/data owner can also set the price for a given device/data and allow the device/data
owner to transfer the ownership of the device to another customer when the ownership
transferring agreement is achieved. The sell service allows the customer to put a spe-
cific device/data on the market; thus, customers can buy the device/data from another
customer.

5.1.4.1 Future Research Challenges in Blockchain-Based Ownership Managemt
Systems

Through the case study, we demonstrated how a blockchain can be applied to develop a
trusted device and data trading platform for the IoT ecosystem where different entities can
cooperate with each other. However, blockchain is not a panacea to resolve the trust issue
in IoT environments. There are some challenges that still need to be studied. We outline
some research challenges and potential future works below:

Data privacy: Currently there is a dilemma/trade-off between public verifiability
and privacy. In a trustworthy data trading platform, the trust is established by provid-
ing verifiability. The challenge is how to protect privacy of data, device and individuals
without losing the verifiability property. One simple solution is to encrypt all data on
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the blockchain. This might help to address the privacy problem, but the data cannot be
verified by other validation nodes. One potential avenue to further this research is use of
Zero-Knowledge-Proof (ZKP). However, the computation overhead is often cited as a key
problem in using ZKP.

Delegating trust: Another challenge of any effective trust model is trust delegation.
In practice, it means how one can practically delegate trust to someone else. For exam-
ple, Bob brings a device home and he claims/registers it as his device, perhaps with a
straightforward method. Bob is the sole person who can control it and is privy to the data
it collects. In certain circumstances, Bob may want to give others access to his device.
There needs to be a scheme to ensure that operation can be done reliably and Bob has a
full understanding of the implications. The challenge is how to support a trust delegation
function without violating underlying security and privacy.

Dynamic access control: The access control mechanism is widely used to control ac-
cess to the data. These methods have been directly applied to IoT environments. However,
the IoT system is very dynamic and it operates in a context. For example, an emergency
doctor might be able to access the IoT health data or the IoT health data becomes ac-
cessible from the IoT devices worn by patients when they are in the emergency room. In
essence, it is difficult to predefine all potential access control rules. The device itself should
have a mechanism to generate access control rules dynamically based on the contextual
information. For example, a drunken driver would not be able to start the car. Though
there has been some progress in this area, further research is needed to build a reliable
dynamic access control mechanism for IoT applications.

IoT device identification: For the data and device trading platform to function
properly, IoT devices that are trusted need to be identifiable. This requires an easy to
use identity management system to be made available for all IoT devices at all times.
However, the identity management systems (such as username/password pairs, and X.509)
are invented for general purpose identification and are thus inadequate and rarely address
many known issues that exist in the IoT environment. There is no defined and accepted
standard for device identification management in the IoT environment. One of the key
features of such a device identification mechanism should be automatic discovery of devices.
The challenge is as soon as the device is powered and in operation, it would be discoverable
(without violating the underlying security and privacy).

Human-centric trust model: Human-centric trust models are another research
topic, which means a trust model aimed at giving effective administration of security
and privacy not to computing professionals, but to average users. This is a cross-cutting
topic to all of the challenges stated above. For example, a human-centric trust model can
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be designed for people to sensibly delegate the controls of data and device to others with
full understanding of security and privacy implications. The goal of a human-centric trust
model is to let the service itself evaluate the security risks and apply the security poli-
cies according to the potential attack; thus, an average person can enjoy the same device
security levels as security professionals.

Developing a holistic benchmarking kernel: Understanding performance bottle-
necks of blockchain-based large scale IoT application systems remains a challenge, hence
it is useful to identify benchmark kernels that are relevant for testing particular aspects
(e.g., overlay networking, consensus protocol, querying) of the blockchain. Existing bench-
marking literature in the context of IoT systems is limited as they are largely focused on
studying the scalability of data processing programming models. For instance, the bench-
mark (kernels) that are available in context IoT systems focus on following data processing
programming model aspects (not applicable to benchmarking performance of blockchain):

• Edge layer. TPCx-IoT (for data aggregation, real-time analytics & persistent stor-
age), Google ROADEF & Linear Road benchmarks (for stream processing).

• Cloud layer. TeraGen, TeraSort, TeraValidate, and BigDataBench (for batch-oriented
processing).

Hence, creating benchmark kernels that can test different aspects of the blockchain, and
more importantly, identify performance bottlenecks and dependencies need more attention
from the research community.

Scalable Search and Communication Developing a scalable protocol for search-
ing data blocks and smart contracts within a large scale blockchain network remains a
challenge. Existing search and consensus communication protocol adopted by the state of
the art blockchain networks are based on a complete broadcast routing algorithm. Draw-
backs for broadcast-based routing include high network communication overhead and non-
scalability. Hence, the future investigation will need to develop scalable methods for search
and consensus communication protocol. To this end, one possible research direction can
be to interconnect peer nodes in the blockchain network based on Distributed Hash Tables
(DHTs) overlay. In contrast, to broadcast based peer-to-peer systems, DHT overlays (e.g.,
Chord, Pastry, and Tapestry) have been proven to be more scalable as the size of the
network grows.

Solutions to these research challenges will form a building blocks and contribute to
components required for building a trustworthy data and device trading platform. We
believe the blockchain technology is key to finding appropriate solutions to these challenges
as it provides a basic foundation for trust in an untrusted, distributed IoT environment.
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5.1.5 Conclusion

Many our lives are influenced by IoT-driven data science applications, ranging from pre-
cision health/medicine to self-driving cars. While enjoying the convenience and benefits
brought by IoT devices, we must also face the challenge of trusting such IoT ecosystems.
Traditionally, a trusted party performs a supervisory role in data collection and analysis.
Blockchain, which is designed to remove the trusted third-party in a decentralized system,
is an ideal solution to resolve the trust issue in IoT ecosystems. With the help of blockchain,
different parties can trust and verify the data. Additionally, the ownership of IoT devices
and their related data can also be traced. Though the blockchain can resolve the trust
issue, it is not the panacea to every IoT challenge. A number of research challenges need
to be addressed including data security and privacy on the blockchain, trust delegation,
device identification, discovery, and authentication.

5.2 Blockchain-based Privacy Preserving voting Sys-

tem [4]

5.2.1 Abstract

Cryptographic techniques are employed to ensure the security of voting systems in order to
increase its wide adoption. However, in such electronic voting systems, the public bulletin
board that is hosted by the third party for publishing and auditing the voting results should
be trusted by all participants. Recently a number of blockchain-based solutions have been
proposed to address this issue. However, these systems are impractical to use due to the
limitations on the voter and candidate numbers supported, and their security framework,
which highly depends on the underlying blockchain protocol and suffers from potential
attacks (e.g., force-abstention attacks). To deal with two aforementioned issues, we propose
a practical platform-independent secure and verifiable voting system that can be deployed
on any blockchain that supports an execution of a smart contract. Verifiability is inherently
provided by the underlying blockchain platform, whereas cryptographic techniques like
Paillier encryption, proof-of-knowledge, and linkable ring signature are employed to provide
a framework for system security and user-privacy that are independent from the security
and privacy features of the blockchain platform. We analyse the correctness and coercion-
resistance of our proposed voting system. We employ Hyperledger Fabric to deploy our
voting system and analyse the performance of our deployed scheme numerically.
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5.2.2 Introduction

Voting plays a significant role in a democratic society. Almost every local authority allots
a significant amount of budget on providing a more robust and trustworthy voting system.
Cryptographic techniques like homomorphic encryption and Mix-net [99] are usually ap-
plied in contemporary electronic voting systems to achieve the voting result verifiability
while preserving voters’ secrecy. However, incidents like a security flaw that has erased
197 votes from the computer database in the 2008 United States elections [100] and the
compromise of 66,000 electronic votes in the 2015 New South Wales (NSW) state election
in Australia [101] raise the public concerns on the security of electronic voting systems. For
voting systems based on bulletin (e.g., [102, 103]), one of the major concerns is whether
the voting result that is published on the bulletin can be trusted. Blockchain with the
growing popularity and remarkable success in cryptocurrency provides a new paradigm to
achieve the public verifiability in such electronic voting systems.

In a blockchain-based system, there is no trusted centralised coordinator; instead, each
node that is involved in the blockchain system holds the data block locally. Based on
the assumption that the decentralised consensus protocol is secure and a sufficiently large
proportion of blockchain network nodes are honest, the blockchain can be thought of as
a conceptual third party that can be trusted for correctness and availability [104]. The
data on the blockchain is append-only and any operation that alters the data in any block
violates the blockchain consensus rule and are rejected by the blockchain network.

Recently a number of blockchain-based electronic voting systems have been developed
by exploiting its inherent features. These systems can be classified into three broad cat-
egories. (1) Cryptocurrency based voting systems (e.g., [105, 106, 107]). The ballots to
a candidate are based on the payment he/she receives from the voters; the problem with
such systems are malicious voters may refuse to “pay” the candidates to retain the money.
Furthermore, a centralised trusted party, who coordinates the payment between the can-
didates and voters must exist. (2) Smart contract based voting system [108], which only
supports two candidates and the voting is restricted to limited number of participants.
Furthermore, it requires all voters to cast their ballots before reaching an agreement on
the voting result. (3) Using blockchain as a ballot box to maintain the integrity of the
ballots [109, 110].

In summary, the security of these blockchain-based systems highly depends on the spe-
cific cryptocurrency protocol they employed. Additionally, these voting systems can only
work with a specific blockchain platform, and support a limited number of candidates and
voters. Based on our observations and studies, we believe that any blockchain-based voting
systems should have the following three features: (1) Platform-independence — this means
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the changes in the underlying blockchain protocols should not affect the voting schemes.
(2) Security framework — the voting system should be implemented with comprehensive
security features (the detail of security features are discussed in Section 5.2.6). The na-
ture of the blockchain allows everyone to obtain the data on it; thus, the comprehensive
security features have critical importance to ensure that the ballots are fully secured on
the blockchain. (3) Practical — it should be scalable, which means the large amount of
ballots casting and tallying can be finished in a reasonable time.

Our Contributions: In this paper, we propose an electronic voting (evoting) system
that supports the above identified three features as follows.

1. Our voting system does not depend on a centralised trusted party for ballots tallying
and result publishing. Compared with traditional voting systems, which highly de-
pend on a centralised trusted party to tally the ballots and publish the result, our
voting system takes the advantage of a blockchain protocol to eliminate the need for
a centralised trusted party.

2. Our voting system is platform-independent and provides comprehensive security as-
surances. Existing blockchain-based voting systems highly depend on the underlying
cryptocurrency protocols. Receipt-freeness [21] and correctness of the voting result
are hard to achieve (we analyse the blockchain-based voting system explicitly in Sec-
tion 2). The security of our voting system is achieved by cryptographic techniques
provided by our voting protocol itself, thus, our voting system can be deployed on
any blockchain that supports smart contract. To achieve the goal of providing a com-
prehensive security, we employ the Paillier system to enable ballots to be counted
without leaking candidature information in the ballots. Proof-of-knowledge is em-
ployed to convince the voting system that the ballot cast by a voter is valid without
revealing the content of the ballot. Linkable ring signature is employed to ensure
that the ballot is from one of the valid voters, while no one can trace the owner of
the ballot.

3. Our voting system is scalable and applicable. In order to support voting scalability,
we propose two optimised short linkable ring signature key accumulation algorithms
given in algorithm 8 and algorithm 9 to achieve a reasonable latency in large scale
voting. We evaluate our system performance with 1 million voters to show the feasi-
bility of running a large scale voting with the comprehensive security requirements.

The rest of the paper is organised as follows: we discuss the cryptographic techniques
applied in voting systems and analyse some typical voting systems in Section 5.2.3. Cryp-
tographic primitives and our voting protocol are presented in Section 5.2.4 and 5.2.5,
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respectively. We analyse the correctness and security of our voting system in Section 5.2.6.
In Section 5.2.7, we deploy our voting system and analyse its performance.

5.2.3 Related work

Secure evoting is considered as one of the most difficult problems in security literature as it
involves many security requirements. To satisfy these security requirements, cryptographic
techniques are mostly applied in constructing a secure evoting system. In this section, we
discuss the existing voting systems based on traditional public bulletin and blockchain
technology.

5.2.3.1 Public bulletin based voting systems:

In the following, we outline the key cryptographic techniques used in public bulletin based
voting systems and how such techniques address the corresponding security requirements.

• Homomorphic encryption: Homomorphism feature allows one to operate on ci-
phertexts without decrypting them [111]. For a voting system, this property allows
the encrypted ballots to be counted by any third party without leaking any informa-
tion in the ballot [112, 113, 114]. Typical cryptosystems applied in a voting system
are Paillier encryption [115, 116] and ElGamal encryption [117, 107].

• Mix-net: Mix-net was proposed in 1981 by Chaum [99]. The main idea of mix-net
is to perform a re-encryption over a set of ciphertexts and shuffle the order of those
ciphertexts. Mix node only knows the node that it immediately received the message
from and the immediate destination to send the shuffled messages to. The voting
systems proposed in [102, 118, 119] apply mix-net to shuffle the ballots from different
voters, thus the authority cannot relate a ballot to a voter. For the mix-net based
voting systems, they need enough amount of mix nodes and ballots to be mixed.

• Zero-knowledge proof: Zero-knowledge proof is often employed in a voting sys-
tem [103, 120, 121] to let the prover to prove that the statement is indeed what it
claimed without revealing any additional knowledge of the statement itself. In a
voting system, the voter should convince the authority that his ballot is valid by
proving that the ballot includes only one legitimate candidate without revealing the
candidate information.

105



• Blind signature and linkable ring signature: Voting systems like [122, 123,
124] employ blind signature [122] to convince the tallying centre that the ballot
is from a valid voter while not revealing the owner of the ballot. Simultaneously,
the authority who signs the ballot learns nothing about the voter’s selections. In
blind signature, both voters and tallying centre must trust the signer. If the signer
is compromised, the signature scheme may stop working. Unlike blind signature,
linkable ring signature [125] is proposed to avoid the untrusted signer. Instead, it
needs a certain number of voters to participate in the signing process. By comparing
the linkability tag, the authority can easily tell whether this voter has already voted.
When the voter signs on the ballot, he/she needs to include other voters’ public keys
to make his/her signature indistinguishable from other voters’ signatures.

5.2.3.2 Blockchain-based voting systems

The blockchain-based voting systems can be discussed under three broad categories as
follows.

• Voting systems using cryptocurrency: In [106], authors propose a voting sys-
tem based on Bitcoin. In their voting system, the ballot does not need to be en-
crypted/decrypted as they employ the protocol for lottery. Random numbers are
used to hide the ballot that are distributed via zero-knowledge proof. Making de-
posit before voting may keep the voters to comply with the voting protocol while
the malicious voters can still forfeit the voting by refusing to vote. However, only
supporting “yes/no” voting may restrict the adoption of this voting system.

In [105], authors proposed a voting system on the Zcash payment protocol [14] with-
out altering the inner working of Zcash protocol. The voter’s anonymity is ensured
by the Zcash address schemes. The correctness of the voting is guaranteed by the
trusted third-party and the candidates. In this system, the authority, who manages
the Zcash and voter status database should be trusted. If the authority is compro-
mised, double-voting or tracing the source of the ballot is possible.

• Voting systems using smart contract: In [108], the authors claim that their open
voting network is the first implementation of a decentralised and self-tallying Internet
voting protocol with maximum voter privacy using Blockchain. They employ smart
contract as a public bulletin to achieve self-tallying.1 However, their voting system

1Self-tallying means that after the casting phase, voters can count the ballots themselves.
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can only work with two candidates voting (yes/no voting) and the limitation of 50
voters makes it impractical for a real large scale voting system.

• Voting systems using blockchain as a ballot box: Tivi and Followmyvote
[109, 110] are commercial voting systems which employ the blockchain as a ballot
box 2. They claim to achieve verifiability and accessibility anytime anywhere, while
the voters’ privacy protection in these systems is hard to evaluate.

To summarize, most traditional voting systems need a centralised trusted party to
coordinate the whole voting process. In these systems, the centralised trusted party plays
a critical role in storing the ballots, counting the ballots, and publishing the voting result.
If it is compromised, the adversary can control the ballot counting and the whole voting
result, and there is no efficient approach for participants to detect any compromises. Hence,
there is a need of an independent public verifiability feature in such systems. Although the
existing blockchain-based voting systems take advantage of blockchain public verifibility,
the system security and user privacy of these systems depend on the features provided
by the underlying blockchain platform, which are limited and thus make such systems
vulnerable to a number of known attacks. Our proposed approach not only takes the
benefits of a decentralised trust offered by the blockchain technology to remove the need of
a centralised trusted party to do the ballots tallying, voting result decoding and publishing,
but also considers key security primitives proposed in the literature including traditional
evoting systems to build a practical platform independent secure evoting protocol that can
be deployed to any blockchain platforms that support smart contract.

5.2.4 Cryptographic Primitives

In this section, we describe the cryptography primitives borrowed from traditional voting
systems and apply in our evoting system. Note that the syntaxes, correctness conditions,
and security models of a linkable ring signature and a public key encryption are given in
Appendix A and Appendix B, respectively.

5.2.4.1 Message encode and decode

Before the voting starts, we must encode the candidate ID to make it suitable for vote
tallying. The encode/decode functions are defined as follows:

2The authors call the storage of the ballot as the ballot box.
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• Candidate encoding: We define ζ := Encode(m) ∈ Z as the candidate encoding
function. For ρ candidates, each labeled with an ID from P = {1, 2, . . . , ρ}, β = 2ρ+1

be the basis of encoding operation. We encode the mth candidate as ζ = βm where
m ∈ P . We choose 2 as the basis of β as the division operation can be replaced by
the CPU register right shift instruction to achieve a better performance.

• Candidate decoding: Let k = ktβ
t + · · ·+ knβ

n + kn−1β
n−1 + · · ·+ k1β+ k0 be the

representation of k base β, k ∈ Z, then we define the right shift k with n positions
as rsh(k, n) = ktβ

t−n +kt−1β
t−n−1 + · · ·+kn+1β+kn. Let sum = sρβ

ρ−1 + sρ−1β
ρ−2 +

· · ·+s2β+s1 be the addition of all the ballots where sj is the total number of ballots
that the candidate jth acquires. We define sj := Decode(sum, j) for 1 ≤ j ≤ ρ and is
computed as sj = rsh(sum, βj−1) mod β.

5.2.4.2 Paillier Encryption System [5]

Paillier Encryption system is employed to enable our voting system to tally the encrypted
ballots. In our voting system, we implement the following functions in Paillier system and
the detail of these functions are described in Appendix B.1.

• Key Generation: (skPaillier, pkPaillier) := GenPaillier(Klen) is the function to generate
the secret key skPaillier and the corresponding public key pkPaillier with the given key
length Klen.The voting administrator invokes this function to generate the key pair
and uploads the public key pkPaillier to the blockchain.

• Encryption: CBallot ← EncPaillier(ζBallot, pkPaillier) where ζBallot ∈ Zn is the plaintext
ballot to be encrypted. Voters download the pkPaillier from the blockchain and call
this function to encrypt their ballots. This function generates the encrypted ballot
CBallot.

• Decryption: ζRes := DecPaillier(CRes, skPaillier) where CRes ∈ Z∗n is the encrypted voting
result; the voting administrator invokes this function to decrypt the voting result.

• Message Membership Proof of Knowledge [126]: {vj, ej, uj}j∈P :=
PoKmem(CBallot, Υ ) where CBallot is the encrypted ballot, Υ is the set of the encoded
candidates. When a voter publishes his/her ballot, he/she invokes this function to
generate the proof {vj, ej, uj}j∈P that demonstrates his/her ballot encrypts only one
of the encoded candidates in Υ .
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• Decryption Correctness Proof of Knowledge: (ζRes, r) := PoK(CRes, skPaillier),
where ζRes is the plaintext and r is the random factor that generate the encrypted
voting result CRes. After publishing the voting result, the voting administrator in-
vokes this function to generate a unique value pair (ζRes, r) that constructs the CRes

to prove that he/she decrypts the voting result CRes correctly.

5.2.4.3 Linkable Ring Signatures

Linkable ring signature (LRS) can be applied in our system to protect the privacy of the
voters. In practice, we apply the short linkable ring signature (SLRS) [6] which extends all
the SLRS features to make the signature size constant with the growth of voter numbers, it
has the following features: (1) every ballot that is accepted by the system is from one of the
valid users, (2) the voter can check whether his ballot is counted by the blockchain, (3) the
size of the signature is constant to support scalability and (4) double-voting is prevented.
In our voting system, we implement the function tuple (Setup,KeyGen, Sign,Verify, Link).
The details of these functions are explained in Appendix A.2.

• Setup: param ← Setup(λ) is a function that takes λ as the security parameter
and generates system-wide public parameters param such as the group of quadratic
residues modulo a safe prime product N (explained in Appendix A.2) denoted as
QR(N), the length of the key, and a random generator g̃ ∈ QR(N).

• Key Generation: (ski, pki) ← KeyGen(param) is a function to generate a key pair
for each voter i.

• Signature: σ ← Sign(Y , sk,msg) is a function to generate the signature σ using all
voters’ public keys Y = {y1, y2, . . . , yb}, the message msg to be signed, and the voter’s
secret key sk. Voters should invoke this function to sign on his/her encrypted ballot.

• Verification: accept/reject← Verify(σ,Y ,msg); our voting system invokes this func-
tion to test the validity of every ballot. Based on the input of the encrypted ballot
itself, the voter’s signature and all the voters’ public keys, the blockchain accepts or
rejects this ballot to be put on the chain.

• Linkability: Link(σ1, σ2) → linked/unlinked. When a voter casts his/her vote, our
voting system invokes this function to check whether this voter has already catted his
vote. If this function returns linked, our voting system rejects this ballot; otherwise,
the ballot is recorded on the chain.

109



5.2.4.4 Blockchain

Blockchain as a new scheme targets at removing the centralised trusted party or regulatory
actors to achieve public verifiability. We employ these time-based blocks to store both
ballots and the voting results.

There are two typical approaches to achieve consensus; one is based on proof-of-work
(PoW) [13] and the other is based on Byzantine Fault Tolerance (BFT) network. To
achieve better network scalability, we can deploy our voting system on the PoW based
blockchain; the BFT based blockchain can be deployed to achieve better transaction pro-
cessing performance. Because of the page limitation, we give a brief introduction of a
Practical BFT (PBFT) protocol which is applied in our voting system.

PBFT protocol: PBFT protocol can tolerate any number of faults over the lifetime
of the system provided fewer than 1/3 of the replicas become faulty [48]. Compared
with the PoW protocol, PBFT based blockchain can achieve better performance (less
network latency) while it has the restriction of node scalability [17]. There is a leader node
accompanied by some validation nodes in PBFT network, When a transaction is submitted
to the leader node, the PBFT protocol does the following:

• The leader orders the transaction candidates that should be included in a block and
broadcasts the list of ordered transactions to all the validation nodes.

• When each of the validation node receives the list of transactions, it executes the
transactions on that list one by one.

• The validation nodes calculate a hash value for this newly created block (hash value
includes hashes for executed transactions and final state of this distributed system).

• Validation node broadcasts its hash value to other nodes in the network and starts
listening to responses from them.

• If any node finds that 2/3 of all nodes broadcast the same hash value from the
execution of ordered transactions list, it regards this block as a valid block and
commits this new block to its local ledger.

5.2.4.5 Smart Contract

For the blockchain system, the “smart contract” is widely used as a general purpose com-
putation that takes place on a blockchain. Smart contract enables interactions between end
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users and a blockchain by allowing end users to create/query data on the blockchain. We
adopt Hyperledger Fabric [8] as a smart contract running environment in our voting sys-
tem. To use the consistent terminologies, we call hyperledger chaincode as smart contract
hereafter. We discuss the smart contract roles and deployment scheme as follows.

Smart Contract Deployment Scheme: For a practical smart contract, at least
three interfaces should be implemented that are init(), invoke(), and query(). init() is
the interface that is invoked when the smart contract is loaded. init() initialises the smart
contract system parameters before end-user interacts with the smart contract. query() is
the interface handling the query request from the blockchain end users. invoke() is the
interface that is called when the end user wants to put the data on the blockchain. Unlike
query(), invoke() is executed on all validation nodes to ensure the consistency of data
on the blockchain.

A smart contract needs to be compiled before being deployed on the blockchain. The
Hyperledger administrator is responsible for running the smart contract on every validation
node and nominates one node as the front-end server to handle end users requests. The
detail of smart contract deployment is discussed in Section 5.2.5.

5.2.5 The Voting Protocol

In this section, we first provide an overview of the whole voting protocol and then discuss
each step in details. The whole voting process can be divided into 11 steps as shown in
Fig. 5.4(a). Except the smart contract administrator who setups the voting smart contract,
three entities are involved: voters, smart contract, and voting administrator. We take Bob
as a valid voter in this section to show how the voting protocol works. First, the smart
contract is initialised to prepare a voting. Then, the voting administrator uploads the
voting parameters. After all voters register themselves in this voting and upload their
SLRS public key to the blockchain (the SLRS secret keys are kept by voter themselves),
the administrator triggers the start of the voting. Bob as a voter casts his ballot before
the administrator triggers the tallying phase. It is optional for Bob to verify the tallying
result before the administrator acquires the encrypted tallying result. The administrator
needs to upload the voting result and the proof to the blockchain to show the correctness
of the result to the voters and all the stakeholders. The smart contract verifies whether the
result matches the proof uploaded by the administrator and finally publishes the decrypted
voting result on the blockchain.

The voting system consists of one front-end smart contract and several validation nodes
as shown in Fig. 5.4(b). The role of a validation node is to replicate the execution of the
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(a) The voting protocol diagram. (b) The blockchain evoting system.

Figure 5.4: The general voting protocol and how entities are connected.

smart contract codes to ensure its correct execution. The role of the front-end is similar
to the validation node except exporting RESTful API interfaces for communication with
voters and administrator. For a practical voting, the validation nodes could be held by
different entities/stakeholders, thus all ballots on the blockchain have been verified by
different entities/stakeholders. As all the entities/stakeholders have the agreement on the
data stored on the blockchain, the blockchain built on the servers owned by different entities
can be regarded as trustworthy. It is impractical for the attackers to compromise most of
the entities/stakeholders3.

5.2.5.1 Entities in the voting process

Four entities should be involved in our voting system shown in Fig. 5.4(a), and details are
explained as follows:

• smart contract administrator: he/she has the ability to access the smart con-
tract platform to deploy/terminate smart contract. In Hyperledger fabric, this ac-

3The number of entities to be compromised depends on the underlying consensus protocol.
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count is authorised by the membership service and a permission is granted to de-
ploy/terminate the Smart contract. In our voting system, we need at least one smart
contract administrator to deploy the voting smart contract.

• voting administrator: The role of voting administrator is to organize the vote by
setting up the voting parameters and triggering the the tallying and result publishing
phase. Although there are underlying mechanisms in hyperledger to authenticate
users, we use SLRS to prevent administrator from linking the ballots with the users.

• smart contract: The role of smart contract include 1.) store the encrypted ballots.
2.) verify the validity of the ballots. 3.) count the encrypted ballot. 4.) verify
the correctness of the voting result. 5.) publish the voting result and provide the
platform for the voters to verify the voting process.

• voters: Voters are the people who have the rights to cast their vote. They need to
register into the voting system before they cast their vote.

5.2.5.2 Smart contract initiation

The smart contract is initialised by generating an RSA keypair (pks, sks). This keypair is
employed to sign/verify every transaction between the smart contract and the end users to
avoid man-in-the-middle attacks. 4 Additionally, ensuring all the validation nodes run the
identical smart contract is of critical importance; otherwise, validation nodes may tamper
the smart contract with back doors and colludes with the adversary to get the ballots’ infor-
mation. We require the smart contract to be deployed as follows: Firstly, the smart contact
accompanied with a digital fingerprint is verified by all the voting entities/stakeholders to
ensure that there is no backdoor. This eliminates the possibility that an entity/stakeholder
colludes with a node to run tampered smart contract. Then, this fingerprint is tagged as
verified evoting smart contract fingerprint in blockchain platform. MD5, SHA1, and/or
SHA2 hashes are mostly employed to generate the fingerprint for a given file [127]. Sec-
ondly, when a new node wants to join the evoting blockchain, the fingerprint of this smart
contract is checked, if it is identical to the verified fingerprint, the smart contract is loaded,
otherwise, is rejected by the blockchain platform.

4As we will discuss later, we only accept verified smart contract to run on validation node, thus, avoiding
any malicious smart contract exporting the sks to anyone.
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5.2.5.3 Voting system set up

During the system set up, the voting administrator uploads the following three parameters
to the blockchain:

• The public key of the Paillier system pkPaillier.

• A set of encryptions of zero denoted as T , generated by the administrator’s Paillier
public key pkPaillier. For voting with 1 million voters, we suggest the set should contain
enough elements to make the randomised pool large enough and the detail of T is
discussed in receipt-freeness analysis 5.

• The SLRS scheme parameters, param.

5.2.5.4 Voter registration

Bob must register this voting system with his identity. The registration information could
be: (1) email address with a desired password, or (2) the identity number with a desired
password, or (3) an invitation URL sent by the administrator with a desired password.
After Bob passes the identity check conducted by the smart contract, he can login with
the desired password to download the SLRS param and the administrator’s Paillier public
key pkPaillier, then generates the SLRS key pair (ski, pki) by calling KeyGen(param); Bob
then uploads the public key pki to the smart contract (Bob’s secret key is kept off-chain
by himself). If the smart contract accepts his SLRS public key, the smart contract puts his
public key pki on the blockchain to complete his registration phase.

5.2.5.5 Vote casting phase

During this phase, Bob casts his vote as follows: (1) Bob chooses one of the candidates
m ∈ P and encodes it as ζ := Encode(m). (2) Bob invokes the Paillier encryption function
C ← EncPaillier(ζ, pkPaillier). (3) Bob needs to prove that C is an encryption of an element in
{ζ1, . . . , ζρ} (set of all encoded candidates) by calling {vj, ej, uj}j∈P := PoKmem(C, Υ ); hence
he sends π = {C, {vj, ej, uj}j∈P} to the smart contract.6 (4) Upon receiving {vj, ej, uj}j∈P ,

5To avoid requiring the administrator to upload the encryption of zero pool, coin flipping protocol can
be applied to generate the consistent encryption of zero on all the validation nodes and this is our future
work.

6Bob can choose none of the actual candidates by casting his ballot to a dummy candidate. When the
smart contract publishes the voting result, it ignores all the ballots that the dummy candidate gets.
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the smart contract verifies the validation of the encrypted ballot C. We denote φ as a
mapping of this transaction’s session id to T domain. If C is valid, the smart contract
takes an encryption of zero at φth position. Let ε be the addition of T [φ] and C. The
smart contract signs on ε denoted as s and sends (ε, s) back to Bob. (5) If Bob accepts s,
he invokes (v, ỹ, σ′) := Sign(ε, (pk, sk),Y) to generate the Signbob on ε and sends (ε, Signbob)
to the smart contract. (6) If the smart contract detects that Signbob has already been
recorded on the blockchain or cached in the memory, it rejects Bob’s vote; otherwise,
(ε, Signbob) is put on the blockchain.

5.2.5.6 Ballots tallying and result publishing

Due to the Paillier system’s homomorphic feature, counting the vote is as simple as fetching
the encrypted ballots from the blockchain and adding them together. The result publish-
ing mechanism is described in the following steps: (1) Let Esum be the sum of all the
encrypted votes and Signs be the signature signed by the smart contract on Esum. The
smart contract sends (Esum, Signs) to the administrator. (2) The administrator invokes
sum := DecPaillier(Esum, skPaillier) to compute plaintext sum, which encodes the ballots of
each candidate. The administrator also invokes (sum, r) := PoK(Esum, skPaillier) to calculate
the random r that constructs this Esum, and sends (sum, r) to the smart contract. (3)

The smart contract verifies the correctness of (sum, r) by checking if Esum
?
= gsumrn (g is

one of the elements of pkPaillier). (4) If the smart contract accepts the sum, it iteratively
invokes m := Decode(sum, i) to compute the ballots for each candidate i. Let Π be the
dictionary holding the voting result of all candidates. The smart contract finally puts Π
on the blockchain.

5.2.5.7 Ballot verifying

After tallying ballots and before the voting administrator decrypts the tallying result, the
public can verify ballots on the blockchain to make sure the validity of the voting process.
We define two roles for people who can verify the voting. The first one is those who have
the right to access the data on the blockchain while they do not have the right to vote. The
second one is those who have both rights to vote and access the data on the blockchain.
The public verifiability to those who have first role is as follows 1) Checking the number of
ballots that were counted and the number of people registered for this voting. 2) Checking
the correctness of the tallying result by downloading and adding all the encrypted ballots
to match with the tallying result published on the blockchain. Compared to those who
have the first role, people assigned to the second role can also verify that his/her ballot is
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recorded on the blockchain by checking whether there exists one ballot that is signed with
his/her signature; This ensure his/her vote is recorded and counted.

5.2.5.8 Validation nodes and the trustworthiness of blockchain

Under the assumption that the voting administrator will not disclose the Paillier secret key
and the encryption of zero (this is discussed in Security and Coercion-Resistance Analysis
section later), we discuss the role of the blockchain validation nodes and how they enhance
the trustworthiness of the blockchain. The responsibilities of the validation nodes include
(1) verify the validity of the ballots (check whether the ballots are from the same voters
and/or check whether the given ballot encrypts only one candidate), (2) check the validity
of the signature on the given ballot, (3) ballots tallying, and (4) verify the correctness of
the voting result. If any interaction between the blockchain and the voting participants
does not pass the verification conducted by the validation nodes, this interaction is rejected
by the voting system.

In practice, we suggest enhancing the trustworthiness of the blockchain by allowing
different political parties/stakeholders host their own validation nodes. The data on the
blockchain is verified by different entities/stakeholders, and it is unlikely that these enti-
ties/stakeholders collude with each other to publish a false voting result.

5.2.5.9 Comparison with other non-blockchain-based voting protocols

Compared with other non-blockchain-based evoting protocols, our voting system can be
differentiated using the following three security features. Firstly, there is no need for a
centralised trusted party to tally the ballots and publish the result. Our trustworthiness is
built on the assumption that it is impossible that most of the voting entities/stakeholders
who own the blockchain validation servers collude with each other. Smart contract fin-
gerprint guarantees that the smart contract which is deployed on the validation node is
verified by all the voting entities/stakeholders and no one can replace that with a tampered
one. Second, the correctness of the ballots processing (in vote casting phase) and tallying
is achieved by asking all the validation nodes to verify the validity of the process; the
blockchain network rejects the ballot if the validation nodes disagree on the verification of
the ballot process. Third, we allow the voters to verify that his/her ballot is recorded and
the correctness of the tallying. Additionally, voting entities/stakeholders can also verify
the validity of the vote tally and the voting result.
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5.2.6 Correctness and Security Analysis

5.2.6.1 Correctness analysis

The correctness of our voting system is guaranteed by the public verifiability provided
by the smart contract and the proof of knowledge provided by the cryptographic schemes.
More than that, the smart contract ensures the consistency of a transaction execution. Any
inconsistencies generate an error which results in the rejection of the transaction. This
means the voting participants can be assured that every transaction on the blockchain
is verified and accepted by all participating nodes. This prevents compromised nodes
from putting an invalid data on the blockchain unless the adversary can take control of a
proportion of the nodes in the whole blockchain network 7.

5.2.6.2 Security features of our voting system

• Privacy: The ballots on the public ledger are encrypted and only the voting ad-
ministrator who initiates the voting can decrypt the ballots. This ensures that the
tallying center can count the ballots without knowing the content of the ballots.

• Anonymity: The voters, candidates, or smart contract cannot tell the public key
of the signer with a probability larger than 1/b, where b is the number of the voters.
This can be guaranteed by the anonymity property of the linkable ring signature
(LRS) scheme. Details are explained in Appendix A.2.

• Double-voting-avoided: In our voting system, we take advantage of linkability
provided by the short ring signature scheme. This means it is infeasible for a voter
to generate two signatures such that they are determined to be unlinked. Our system
can detect whether the signatures are from the same voter. Hence, a voter can only
sign on one ballot and cast his/her ballot only once. This can be guaranteed by the
linkable property of the LRS scheme. Details are explained in Appendix A.2.

• Slanderability-avoided: A voter cannot generate a signature which is determined
to be linked with another signature not generated by him/her. In other words, an
adversary cannot fake other voters’ signature. This can be guaranteed by the non-
slanderability property of the LRS scheme. Details are explained in Appendix A.2.

7The number of nodes to be compromised depends on the underlying consensus protocol.
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• Receipt-freeness: Even if an adversary obtains a voter’s secret key, the adversary
cannot prove that this voter voted for a specific candidate. This is guaranteed by the
addition of encryption of zero which provides additional randomness to the ciphertext
which is unknown to the voter. Thus, even if the voter’s secret key is disclosed, no
one can prove his casted ballot. For our voting system, the security level of the
receipt-freeness is affected by the size of the encryption of zero pool, as the voters
can collude with each other to reconstruct the encryption of zero pool. One solution
is increase the size of zero pool thus more voters is required to reconstruct the pool.
Another solution is applying coin flipping protocol on all validation node to work out
a consistent randomness encryption of zero for each valid ballot. We have taken the
first approach in this paper with 4096 encryptions of zeros.

• Public verifiability: Anyone who has the relevant rights to access the blockchain
can verify that all the ballots are counted correctly; moreover, voters can also verify
whether their ballots have been recorded.

• Correctness: Proof-of-knowledge ensures the correctness of the voting process. Vot-
ing participants need to prove the correctness of the interactions with the blockchain.
Even if some blockchain nodes are compromised, others can still verify whether the
proof is correct.

• Vote-and-Go: Compared with the voting system proposed in [21], our voting system
does not need the voter to trigger the tallying phase. Moreover, in our system, voters
can also cast their vote and quit before the voting ends, unlike [108] which needs all
voters to finish voting before tallying the ballots.

5.2.6.3 Security and Coercion-Resistance Analysis

To address the security and coercion-resistance, we make the following assumptions:

• The trustworthiness of the blockchain platform is achieved by allowing different stake-
holders/entities to host the blockchain validation nodes.

• Voters cast their ballots in a secure terminal, which means it is assumed that no one
stand behind a voter or uses digital devices to record the voting process. We do not
take the physical voting environment security into our consideration.

• The possibility of an attacker to create a blockchain and apply a social engineering
technique to launch a phishing attack is beyond our research scope.

118



• The administrator should not reveal the Paillier system sercret key and the encryption
of zeros to anyone.

• Voters should cast their ballots by themselves. No one else can cast the ballot with
a voter’s identification except the voter himself.

We demonstrate the robustness of our system under two typical attacks below.

Man-in-the-Middle Attacks: Our voting system has strong resistance to this attack.
First, as the voters and the smart contract both sign their messages and the voting data is
encrypted, it is impossible for an adversary to forge the signature or alter the data on any
parties involved in the transactions. Second, the public keys used for signature verification
are all published on the blockchain, preventing the adversary from cheating any parties by
replacing the original public key with the adversary’s public key. The encryption of the
ballot also eliminates the possibility of the ballot leakage.

Denial-of-Service (DoS) Attacks: DoS attack is feasible to launch since the network
service is provided in a relatively centralised way. In addition, the servers have relatively
limited processing ability for a large number of requests. Distributing the service on differ-
ent nodes is one of the solutions to DoS attack as it is almost impossible for the adversary
to compromise all the servers.

Coercion-Resistance Analysis: Coercion-Resistance means it is infeasible for the
adversary to determine whether a coerced voter complies with the demand. Our vot-
ing system security features discussed in Section 5.2.6.2 make it impossible to launch the
Ballots-buyer attack and Double voting attack. Additionally, our voting system is free
from randomization attack.
For the Ballots-buyer attack, an attacker coerces a voter by requiring that he submits a
randomly composed ballot. Under such circumstances, both the attacker and the voter
have no idea about which candidate this voter casts the ballot for. The purpose of this
attack is to nullify the ballots. For our system, it is impossible to launch this attack as
the voter should prove that the ciphertext is one out of ρ encrypted candidates by calling
{vj, ej, uj}j∈P := PoKmem(EncPaillier(ζ, pk), Υ ). Since Υ is held by the smart contract, any
ballot that is not the encryption of any element in Υ is rejected and the voter is notified
that this transaction is failed.
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Step Time

generate T 13, 560ms

bottom half key accumulation < 34s

top half key accumulation < 23ms

download parameters 4ms

upload ballots ≈ 776ms

tally 3, 850ms

decode and publish < 2, 000ms

Table 5.2: Time consumed on each step.

 

Group1

 

Group2

 

Group u 

   

   

   

Line 29 

Line 25 Line 25 Line 25 

Line 7

Figure 5.5: The diagram of Algorithm 1.

5.2.7 System deployment and Experiments

5.2.7.1 System deployment

Our voting system can be deployed in any blockchain platforms with smart contract ca-
pability and achieve the same level of security. There might be some other reasons to
choose a particular platform such as voting latency and flexibility requirements. Different
consensus protocols have significant impact on the blockchain network latency and node
scalability [17]. If the ballots’ confirmation latency is not a major issue for the voting
system, the PoW-based blockchain system could be a good option to achieve maximum
node scalability. Otherwise, a BFT-based blockchain platform is a better solution. In our
scenario, we employ the BFT-based blockchain platform Hyperledger Fabric and deploy
our voting system in a practical scenario.

5.2.7.2 Experiments and performance evaluation

We deploy our system in docker containers running on a desktop with 4 cores i5-6500 CPU
and 8 GB DDR3 memory. We conduct 1 million voters voting process on the blockchain
that consists of 4 validation nodes and 1 PBFT leader node. Each of the validation nodes
runs in one dedicated container; thus, we run five docker containers to build our testing
blockchain system. We set a voter’s public key as 1024 and 2048 bits respectively and
the Paillier key pairs as 1024 bits. The deployment pattern is shown in Fig. 5.4(b). We
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summarize the time spent on our employed cryptographic processes for 1 million voters’
voting in Table 5.2.

Algorithm 8 Bottom half: Server side WS generation.

Input: Y : voter’s SLRS public key set with |Y| = b.
Input: Num: number of keys in one group.
Input: ψ, N , and φ(N): SLRS parameters.
Input: thisgroup :: temporary set containing SLRS keys belonging to a group.
Output: WS, gkeys.

1: function GenWs(Num,Y , b)
2: groupsv← GenGroupsv(Y , b,Num)
3: for j = 0 : 1 : len(groupsv) do
4: val← ψ
5: for i = 0 : 1 : len(groupsv) do
6: if j 6= i then
7: val← valgroupsv[i] mod N
8: end if
9: end for

10: WS[j]← val
11: end for
12: return WS
13: end function

Voting parameters setting up time (administrator side): To initialise the voting,
the administrator is responsible for uploading the voting parameters as discussed in Section
5.2.5. Let tcal be the time taken to generate T , and tupload be the time spent on uploading
T to the blockchain. With 1024 bits key length, the pool size is 1MB. According to our
test, tupload is < 1 second and Tcal is about 14s. In conclusion, under 100MB bandwidth
network, on the smart contract side, the majority of the time is spent on bottom half key
accumulation, and on the administrator side, the most time-consuming phase is generating
and uploading T (the pool of encryption of zeros).
SLRS parameter setting up time: Compared with LRS, SLRS enables the size of the
signature constant no matter how many signers are involved in this signature. This feature
is critical important for a large scale voting (i.e. the number of voters > 100, 000 1024-bits
keys) as the signature should be constant to be suitable for storing on the blockchain.
Compared with LRS, SLRS needs an extra step that accumulates all the signers’ public
keys. Let yi be the public key of ith voter and ψ be the SLRS public parameter for all
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14: function GenGroupsv(Y , b,Num)
15: if b <= Num then
16: localv← 1
17: for i = 0 : 1 : b do
18: localv = localv · Y [i]
19: end for
20: groupsv[0] = localv
21: return groupsv
22: else
23: thisgroup← 0
24: for i = 0 : 1 : b− 1 do
25: localv = (localv · Y [i]) mod (φ(N))
26: thisgroup = append(kgroup,Y [i])
27: if (i mod Num) == Num− 1 then
28: groupsv = append(groupsv, localv) and gkeys = append(gkeys, thisgroup)
29: thisgroup← 0 and localv = 1
30: end if
31: end for
32: groupsv = append(groupsv, localv)
33: end if
34: return groupsv, gkeys
35: end function
36:
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Algorithm 9 Top half: Voter computes the key accumulation.

Input: WS: array contains key accumulation from bottom half.
Input: Y ′: public keys array that this voter’s key belongs to.
Input: N and φ(N): SLRS parameters.
Input: j: the index of this voter.
Input: idx: the index of this voter’s public key in WS.
Output: ret: the result of key accumulation for this voter.

function GenKeyAcc(WS, Y, j, idx,Num)
2: x← 1

for i = 0 : 1 : Num− 1 do
4: if thenj 6= i

x = (x · Y ′[i]) mod φ(N)
6: end if

end for
8: ret← WS[idx]x mod N

return ret
10: end function

voters. We define the key accumulation operation for all the voters’ SLRS public keys
for the ith voter as wi = ψy1y2...yi−1yi+1yi+2...yb . In order to make the time spent on key
accumulation acceptable, we divide the key accumulation into two halves. The bottom
half is run on smart contract and the top half is run by each voter.

Bottom half time consumption (smart contract side): For the bottom half
(shown in Appendix Algorithm 8), on the smart contract, we divide the voter SLRS public
keys into m groups and pre-calculate the accumulation of all the public keys except the
keys in the given group i and denote this key accumulation as wsi. A diagram that shows
how Algorithm 8 works is also given in Fig. 5.5. We only discuss a case in which the number
of the voters is larger than 500; otherwise, the voters can generate the key accumulation
themselves within a reasonable computation time. We denote G as the group that contains
the voters’ SLRS public key pk and f the public key accumulation function. We invoke
an array operation function append to add an element into the array. We distribute the
voters’ SLRS public keys into u groups and each group has Num of keys (except the last
group). We denote the array WS to store all ws, and gkeys to store the voters’ SLRS public
keys groups. The most time-consuming part is the multiplication of public keys for each
group. In our implementation, we calculate the WS using four threads to save time.
We evaluate the performance for 1 million voters’ voting and the result is shown in
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Fig. 5.6(a). We find that the time spent on calculating WS decreases with the growth
of the voter numbers in one group. For example, for 1024 bits length and 2048 bit length
key accumulation, it decreases from 34s and 171s for the group that contains 3000 voters
to 13s and 35s for the group that contains 8, 000 voters, respectively. This is due to 1)
the time spent on running the exponential computation loop at line 7 in Algorithm 8 that
dominates the time spent for the whole algorithm2.) For the 1 million voters’ public key
accumulation, we decrease the number of groups by increasing the number of the voters in
a group to decrease the time spent on the loop at line 7 in Algorithm 8.

Top half time consumption (Voter side key accumulation): As shown in Ap-
pendix Algorithm 9, the voter downloads the array WS and the key group that his key
belongs to in gkeys from the blockchain. The time spent on downloading these parameters
is acceptable because of two reasons 1) the key size and the element size in WS are con-
stant. 2) The number of groups is relatively small. For instance, if we have 1 million voters
and we group 5000 voters in one group, and set the public key size as 1024 bits and N as
1024 bits, then the size of all the public keys in this group, denoted as Y ′, is approximately
624KB. The size of an element in WS is restricted by SLRS parameter N ; thus with the
parameters above, WS is 256KB. Therefore, the total size of Y ′ and WS is about 880KB.
The voter only needs to do one exponential operation, regardless of the voting scale. From
Fig. 5.6(b), it can be seen that with the key size of 1024 bits, it increase from 8.48ms for
the group that contains 3000 voters to 16.35ms for the group that contains 8000 voters.
The increase of time spent for the key accumulation on the voter’s side can be explained
as the increase of time spent at line 4 in Algorithm 9, as it dominates the total time spent
for the voter side key accumulation.
For 1 million voter’s voting, we could set the number of voters in one group smaller to
reduce the time spent on the voter side for key accumulation. For the key length of 1024
bits, we recommend to set each group contains about 7000 voters so that it takes 14s and
15.48ms on the smart contract side and the voter side key accumulation, respectively.

The time spent on casting votes can be divided into three parts. The first part is the
parameter preparation, that is, downloading the voting parameters from the server, denoted
as t1. The second part is the time spent for calculating the ring signature, denoted as t2.
The last part is the interactions between voters and the smart contract for uploading the
ballots and performing the proof of correctness, denoted as t3. t1 can be evaluated roughly
as the time spent on downloading WS and Y ′. For downloading the parameters of 1 million
voting, it takes about 4ms under 100MB network (see Table 5.2). t2 is approximately 15ms
and the average value of t3 in our test system is 776.60ms. In conclusion, it takes about
1s for a voter to cast his vote in a setting of 1 million voters’ voting.
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Figure 5.6: SLRS public key accumulation and searching a block on a given blockchain in
1 million voters’ voting
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Ballot tallying and result publishing time: As the Paillier system restricts the length
of each encrypted ballot within 2 times of the Paillier keypair size, the addition of encrypted
ballot can achieve constant and reasonable performance. We test the time spent on an
addition operation of encrypted ballots in a docker container. With 2048 bits length
cipher, it takes 3.85s to add 1 million encrypted ballots. The time spent on publishing the
result is < 2s as we optimise the decoding algorithm by using shifting operation.
Ballot verification time: Our voting system provides the public verifiability. Compared
with the time spent on checking the signature and tallying the result, the most time-
consuming part is searching the block that contains a given ballot. The length of the
blockchain and the size of each block have great impact on the search performance. We
evaluate the time spent on these two factors as follows. For the first case, we set the
evoting SLRS key size to 1024 bits length, and let each block contains 128 ballots, 256
blocks, and 512 blocks, respectively. It is observed in Fig. 5.6(c) that the time spent on
these three blockchains increases linearly with the increase on the number of ballots in one
block. For the second case, we set the total number of ballots to 1 million and the SLRS
key size as 1024 bits long; it is observed in Fig. 5.6(d) that the time spent on searching one
block grows linearly from 8.64ms in the blockchain that each block contains 128 ballots to
46.8ms in the blockchain that each block contains 768 ballots.

Based on the above experiments, it is clear that both the increases of the block size and
chain length increase the time spent on searching one given block in the blockchain. For
1 million voters’ voting system, the blockchain that consists of smaller blocks has better
search performance. However, the drawback of the smaller block size is that it increases
the number of searching operations (e.g., if we put all ballots in one block, users only
searches once to get them; whereas if we allocate all of them in 10 blocks, users have to
search 10 times to get them). Based on the experiment results shown in Fig. 5.6(c) and
Fig. 5.6(d), in practice, we recommend to set each block contains 640 ballots to achieve
both a reasonable search time latency and the average number of search operations.

5.2.8 Conclusion

To solve the problems that the current blockchain voting system cannot provide the com-
prehensive security features, and most of them are platform dependent, we have proposed
a blockchain-based voting system that the voters’ privacy and voting correctness are guar-
anteed by homomorphic encryption, linkable ring signature, and PoKs between the voter
and blockchain. We analyse the correctness and the security of our voting system. The
experimental results show that our voting system achieves a reasonable performance even
in a large scale voting.
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Chapter 6

Conclusion

Trust plays a critical role in information exchanges. It helps different entities to deal
with each other more effectively and is often a key element in any collaborative system.
Blockchain distributes the trust from one party to all the participants in the system.
Despite the advantages that blockchain brings, it has disadvantages like huge storage wast
and the low transactions throughput. Through my Ph.D. study, I propose a blockchain file
system to address the duplication of the blocks, a hybrid consensus protocol to address the
low transaction throughput. I also address the security of the blockchain-based applications
by applying the cryptographic schemes in the blockchain systems. In conclusion, blockchain
is an open system which allows all the participants to verify the correctness of the data on
the chain.

It is my future research direction to employ the cryptographic scheme to make the
blockchain-based system more secure and efficient. I would like to do the research which
combines the multi-party computation with the blockchain to free the protocol participants
from having a trusted party to initialise the communication. I would also like to do the
research on how to make the cryptographic schemes more applicable in industry with a
reasonable cost. It has no doubt that blockchain not only brings new research directions to
the applied cryptography but also brings the new message exchange model to the industry.
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[61] I. Bentov, P. Hubácek, T. Moran, and A. Nadler, “Tortoise and hares consensus:
the meshcash framework for incentive-compatible, scalable cryptocurrencies.” IACR
Cryptology ePrint Archive, vol. 2017, p. 300, 2017.

[62] Y. Sompolinsky, Y. Lewenberg, and A. Zohar, “Spectre: A fast and scalable cryp-
tocurrency protocol.” IACR Cryptology ePrint Archive, vol. 2016, p. 1159, 2016.

[63] L. Gudgeon, P. Moreno-Sanchez, S. Roos, P. McCorry, and A. Gervais, “Sok: Off
the chain transactions,” Cryptology ePrint Archive, Report 2019/360, 2019, https:
//eprint.iacr.org/2019/360.

[64] “Bitcoin transaction throughput,” https://en.wikipedia.org/wiki/Bitcoin
scalability problem, accessed on June 24, 2017.

[65] A. Ghosh, M. Mahdian, D. M. Reeves, D. M. Pennock, and R. Fugger, “Mecha-
nism design on trust networks,” in International Workshop on Web and Internet
Economics. Springer, 2007, pp. 257–268.

[66] “Stellar protocol,” https://www.stellar.org/, accessed on February 14 2018.

[67] “Ripple network,” https://ripple.com/, accessed on February 14 2018.

[68] R. Fugger, “Money as ious in social trust networks & a proposal for a decentral-
ized currency network protocol,” Hypertext document. Available electronically at
http://ripple. sourceforge. net, vol. 106, 2004.

[69] B. Viswanath, M. Mondal, K. P. Gummadi, A. Mislove, and A. Post, “Canal: Scal-
ing social network-based sybil tolerance schemes,” in Proceedings of the 7th ACM
european conference on Computer Systems. ACM, 2012, pp. 309–322.

[70] A. Miller, I. Bentov, R. Kumaresan, and P. McCorry, “Sprites: Payment channels
that go faster than lightning,” arXiv preprint arXiv:1702.05812, 2017.

133

http://alumni.media.mit.edu/~nelson/research/ntp-survey99
http://alumni.media.mit.edu/~nelson/research/ntp-survey99
https://eprint.iacr.org/2019/360
https://eprint.iacr.org/2019/360
https://en.wikipedia.org/wiki/Bitcoin_scalability_problem
https://en.wikipedia.org/wiki/Bitcoin_scalability_problem
https:// www.stellar.org/
https://ripple.com/


[71] G. Malavolta, P. Moreno-Sanchez, A. Kate, and M. Maffei, “Silentwhispers: Enforc-
ing security and privacy in credit networks,” in 24th Annual Network and Distributed
System Security Symposium, NDSS, 2017.

[72] P. Moreno-Sanchez, A. Kate, M. Maffei, and K. Pecina, “Privacy preserving payments
in credit networks,” in Network and Distributed Security Symposium, 2015.

[73] E. Heilman, L. Alshenibr, F. Baldimtsi, A. Scafuro, and S. Goldberg, “Tumblebit: An
untrusted bitcoin-compatible anonymous payment hub,” in Network and Distributed
System Security Symposium, 2017.

[74] C. Decker and R. Wattenhofer, “A fast and scalable payment network with bitcoin du-
plex micropayment channels,” in Symposium on Self-Stabilizing Systems. Springer,
2015, pp. 3–18.

[75] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-chain instant
payments,” 2016.
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APPENDICES

.1 Linkable Ring Signature

.1.1 Syntax of Linkable Ring Signature

• param ← Setup(λ) is a probabilistic polynomial time (PPT) algorithm which, on
input a security parameter λ, outputs the set of security parameters param which
includes λ. We denote by EID, M and Σ the domains of event-id, messages and
signatures, respectively.

• (ski, pki)← KeyGen(param) is a PPT algorithm which, on input a security parameter
λ ∈ N, outputs a private/public key pair (ski, pki). We denote by SK and PK the
domains of possible private keys and public keys, respectively.

• σ ← Sign(e, n,Y , pk,M) which, on input event-id e, group size n, a set Y of n public
keys in PK, a private key whose corresponding public key is contained in Y , and a
message M , produces a signature σ.

• accept/reject← Verify(e, n,Y ,M, σ) which, on input event-id e, group size n, a set Y
of n public keys in PK, a message-signature pair (M ,σ) returns accept or reject. If
accept, the message-signature pair is valid.

• linked/unlinked ← Link (e, n1, n2,Y1,Y2,M1,M2,, σ1, σ2) which, on input event-id e,
group size n1, n2, two sets Y1,Y2 of n1, n2 public keys respectively, two valid signature
and message pairs (M1, σ1,M2, σ2), outputs linked or unlinked.

Correctness. LRS schemes must satisfy:

• (Verification Correctness.) Signatures signed according to specification are accepted
during verification.
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• (Linking Correctness.) If two signatures are signed for the same event according to
specification, then they are linked if and only if the two signatures share a common
signer.

.1.2 Notions of Security of Linkable Ring Signature

Security of LRS schemes has four aspects: unforgeability, anonymity, linkability and non-
slanderability. Before giving their definition, we consider the following oracles which to-
gether model the ability of the adversaries in breaking the security of the schemes.

• pki ← JO(⊥). The Joining Oracle, on request, adds a new user to the system. It
returns the public key pk ∈ PK of the new user.

• ski ← CO(pki). The Corruption Oracle, on input a public key pki ∈ PK that is a
query output of JO, returns the corresponding private key ski ∈ SK.

• σ′ ← SO(e, n,Y , pkπ,M). The Signing Oracle, on input an event-id e, a group size
n, a set Y of n public keys, the public key of the signer pkπ ∈ Y , and a message M ,
returns a valid signature σ′.

If the scheme is proven in random oracle model, a random oracle is simulated.

1. Unforgeability. Unforgeability for LRS schemes is defined in the following game
between the Simulator S and the Adversary A in which A is given access to oracles
JO, CO, SO and the random oracle:

(a) S generates and gives A the system parameters param.

(b) A may query the oracles according to any adaptive strategy.

(c) A gives S an event-id e ∈ EID, a group size n ∈ N, a set Y of n public keys in
PK, a message M ∈M and a signature σ ∈ Σ.

A wins the game if:

(1) Verify(e, n,Y ,M, σ) = accept;

(2) All of the public keys in Y are query outputs of JO;

(3) No public keys in Y have been input to CO; and
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(4) σ is not a query output of SO.

We denote by
AdvunfA (λ) = Pr[A wins the game ]

Definition 4 (unforgeability). A LRS scheme is unforgeable if for all PPT adversary
A, AdvunfA (λ) is negligible.

2. Anonymity. It should not be possible for an adversary A to tell the public key of
the signer with a probability larger than 1/n, where n is the cardinality of the ring,
even assuming that the adversary has unlimited computing resources.

Specifically, anonymity for LRS schemes is defined in the following game between the
Simulator S and the unbounded Adversary A in which A is given access to oracle
JO.

(a) S generates and gives A the system parameters param.

(b) A may query JO according to any adaptive strategy.

(c) A gives S an event-id e ∈ EID, a group size n ∈ N, a set Y of n public keys in
PK such that all of the public keys in Y are query outputs of JO, a message
M ∈ M. Parse the set Y as {pk1, . . . , pkn}. S randomly picks πR ∈ {1, . . . , n}
and computes σπ = Sign(e, n,Y , skπ,M), where skπ is a corresponding private
key of pkπ. σπ is given to A.

(d) A outputs a guess π′ ∈ {1, . . . , n}.

We denote by

AdvAnon
A (λ) =

∣∣∣∣Pr[π′ = π]− 1

n

∣∣∣∣
Definition 5 (Anonymity). A LRS scheme is anonymous if for any adversary A,
AdvAnon

A (λ) is zero.

3. Linkability.

Linkability for LRS schemes is mandatory, that is, it should be infeasible for a signer to
generate two signatures such that they are determined to be unlinked using LRS.Link.
The following definition/game essentially captures a scenario that an adversary tries
to generate two LRS signatures, using strictly fewer than 2 user private keys, so that
these two signatures are determined to be unlinked using LRS.Link. If the LRS scheme
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is unforgeable (as defined above), then these signatures can only be generated if at
least 2 user private keys are known. If less than 2 user private keys are known, then
there must be one common signer to both of the signatures. Therefore, this model
can effectively capture the definition of linkability.

Linkability for LRS scheme is defined in the following game between the Simulator
S and the Adversary A in which A is given access to oracles JO, CO, SO and the
random oracle:

(a) S generates and gives A the system parameters param.

(b) A may query the oracles according to any adaptive strategy.

(c) A gives S an event-id e ∈ EID, group sizes n1, n2 ∈ N (w.l.o.g. we assume
n1 ≤ n2), sets Y1 and Y2 of public keys in pk of sizes n1 and n2 resp., messages
M1,M2 ∈M and signatures σ1, σ2 ∈ Σ.

A wins the game if

(1) All public keys in Y1 ∪ Y2 are query outputs of JO;

(2) Verify(e, ni,Yi,Mi, σi) = accept for i = 1, 2 such that σi are not outputs of SO;

(3) CO has been queried less than 2 times (that is, A can only have at most 1 user
private key); and

(4) Link(σ1, σ2) = unlinked.

We denote by
AdvLink

A (λ) = Pr[A wins the game].

Definition 6 (Linkability). A LRS scheme is linkable if for all PPT adversary A,
AdvLink

A is negligible.

4. Non-Slanderability.

Non-slanderability ensures that no signer can generate a signature which is deter-
mined to be linked by LRS.Link with another signature which is not generated by the
signer. In other words, it prevents adversaries from framing honest users.

Non-Slanderability for LRS schemes is defined in the following game between the
Simulator S and the Adversary A in which A is given access to oracles JO, CO, SO
and the random oracle:
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(a) S generates and gives A the system parameters param.

(b) A may query the oracles according to any adaptive strategy.

(c) A gives S an event e, group size n, a message M , a set of n public keys Y , the
public key of an insider pkπ ∈ Y such that pkπ has not been queried to CO or
has not been included as the insider public key of any query to SO. S uses the
private key skπ corresponding to pkπ to run Sign(e, n,Y , skπ,M) and to produce
a signatures σ′ given to A.

(d) A queries oracles with arbitrary interleaving. Except pkπ cannot be queries to
CO, or included as the insider public key of any query to SO. In particular, A
is allowed to query any public key which is not pkπ to CO.

(e) A delivers group size n∗, a set of n∗ public keys Y∗, a messageM∗ and a signature
σ∗ 6= σ′.

A wins the game if

(1) Verify(e, n∗,Y∗,M∗, σ∗) = accept;

(2) σ∗ is not an output of SO;

(3) All of the public keys in Y∗,Y are query outputs of JO;

(4) pkπ has not been queried to CO; and

(5) Link(σ∗, σ′) = linked.

We denote by
AdvNS

A (λ) = Pr[A wins the game].

Definition 7 (Non-Slanderability). A LRS scheme is non-slanderable if for all PPT
adversary A, AdvNS

A is negligible.

.1.3 Short Linkable Ring Signatures [6]

SLRS schemes are described by the tuple (Setup,KeyGen, Sign,Verify, Link). For our SLRS,
we define N as a safe prime product if N = pq = (2p′+ 1)(2q′+ 1) for some primes p, q, p′,
and q′ such that p′ and q′ are of the same length. We further denote by QR(N) the group
of quadratic residues modulo a safe prime product N .

145



• Setup: param ← Setup(λ) is a function that takes λ as the security parameter and
generates system-wide public parameters param such as the group QR(N), the length
of the key, and a random generator g̃ ∈ QR(N).

• Key Generation: (ski, pki)← KeyGen(param) is a function to generate key pair for
each voter i. This function generates (ski, pki) = ((pi, qi), yi ∈ Y) for voter i where
yi = 2piqi + 1.

• Signature: σ ← Sign(Y , sk,msg) is a function to generate the signature σ using all
voters’ public keys Y = {y1, y2, . . . , yb}, the message to be signed, msg ∈ {0, 1}∗, and
the voter’s secret key sk. The output of this function is the accumulation of public
keys v, the linkable tag ỹ and the signature σ′. For a voter i, the generation of SLRS
is described below:

1. Let ψ ∈ QR(N) be the public SLRS parameter that is generated once for all
voters. We compute the witness wi for voter i according to Algorithm 8 and
Algorithm 9 in Section 5.2.7.

2. We select parameters ` and u according to methods in [128]. Let y ∈ S(2`, 2u)
denote |y − 2`| < 2µ. We compute the signature of message msg ∈ {0, 1}∗ for

SPK


(
w y
p q

)
:

(wy = v mod N) ∧ (y = 2pq + 1)∧
(y ∈ S(2`, 2u)) ∧ (q ∈ S(2`/2, 2u))∧
(ỹ = g̃p+q mod N)

 (msg) (1)

3. Let σ′ be the result of signatures based on proofs of knowledge (SPK). Note
that the voter’s linkability tag ỹ is uniquely determined by the voter’s secret
key. The result of the Sign function is σ = (v, ỹ, σ′).

• Verification: accept/reject ← Verify(σ,Y ,msg) is a function to verify that the sig-
nature of msg ∈ {0, 1}∗ is from one of the valid voters and this voter has only voted
once. With the given key set Y , message msg, and signature σ, the verifier checks
whether

v
?
= ψ

∏
y∈Y

y

mod N

and the validity of σ′ respect to the SPK represented in Equation (1). If these two
conditions hold, the Verify function returns accept otherwise reject.

• Linkability: Link(σ1, σ2) → linked/unlinked is a function to test the linkability of
the given signatures σ1 and σ2. It extracts their respective linkability tags ỹ1 and ỹ2

from σ1 and σ2, respectively and returns linked if they are signed by the same person
or unlinked otherwise.
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Theorem 2. Under the assumptions that Decisional Diffie-Hellman (DDH) problem over
QR(N), the Link Decisional RSA (LD-RSA) problem, and the strong RSA (SRSA) are
hard, the SLRS construction of A.3 is not only unforgeable in the random oracle model but
also linkably-anonymous and non-slanderable w.r.t. the definition 1 to definition 4.

Proof. The proof is given in [6].

.2 Public-Key Encryption

Syntax: A public-key encryption scheme PKE = (Gen,Enc,Dec) consists of three al-
gorithms and a finite message space M (which we assume to be efficiently recognizable).
The key generation algorithm Gen outputs a key pair (pk, sk), where pk also defines a
randomness space R = R(pk). The encryption algorithm Enc, on input pk and a message
m ∈M, outputs an encryption c← Enc(pk,m) of m under the public key pk. If necessary,
we make the used randomness of encryption explicit by writing c := Enc(pk,m; r), where

r
$←− R and R is the randomness space. The decryption algorithm Dec, on input sk and

a ciphertext c, outputs either a message m = Dec(sk, c) ∈ M or a special symbol ⊥/∈ M
to indicate that c is not a valid ciphertext.

Correctness: We call a public-key encryption scheme is correct if

E[max
m∈M

Pr[Dec(sk, c) 6= m|c← Enc(pk,m)]] ≤ σ,

where the expectation is taken over (pk, sk)← Gen.

Security: Let PKE = (Gen,Enc,Dec) be a public-key encryption scheme with message
space M. We define the indistinguishable against Chosen-Plaintext Attacks (IND-CPA)
game is shown as below, and the IND-CPA advantage function of an adversary A = (A1, A2)
against PKE (such that A2 has binary output) as

AdvIND-CAP
PKE (A) :=

∣∣∣∣Pr[IND-CAPA ⇒ 1]− 1

2

∣∣∣∣ .
1. (pk, sk)← Gen

2. b
$←− {0, 1}

3. (m∗0,m
∗
0, st)← A1(pk)
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4. c∗ ← Enc(pk,m∗b)

5. b
′ ← A2(pk, c∗, st)

6. return [[b
′
= b]]

.2.1 Paillier Encryption System [5]

Let G = Z∗n2 and g be a random element from G, the Paillier encryption system is a
randomised encryption scheme that encrypts the message msg by raising basis g to the
power of msg and randomises it by a random factor. Given public key and the encryptions
of msg1 and msg2, one can compute the encryption of msg1 +msg2 without knowing msg1

and msg2. We use gcd(v, w) and lcm(v, w) to denote the greatest common divisor and
least common multiple of two values v and w, respectively. The quotient of a divided by
b is denoted by a÷ b.

• Key Generation: (skPaillier, pkPaillier) := GenPaillier(Klen) is the function to generate
the secret key skPaillier and the corresponding public key pkPaillier with the given key
length Klen. We choose two large prime numbers p and q randomly and independently
of each other and make sure gcd(p, q−1) = gcd(p−1, q) = 1. Let λ = lcm(p−1, q−1)
and L(b) = b−1

n
, where b ∈ Z∗n2 and n = p · q. Select random integer g where g ∈ Z∗n2

and compute µ = (L(gλ mod n2))−1 mod n. The public key is pkPaillier = (n, g) and
the secret key is skPaillier = (λ, µ, p, q). We store p and q in our secret key as we will use
these parameters to prove the correctness of the decryption in Paillier cryptosystem.

• Encryption: C ← EncPaillier(ζ, pkPaillier) Let ζ ∈ Zn be the plaintext to be encrypted.
Select random r ∈ Z∗n and compute C = gζrn mod n2.

• Decryption: ζ := DecPaillier(C, skPaillier) Let C ∈ Z∗n be the ciphertext, compute the
plaintext as ζ = (L(Cλ mod n2) · µ) mod n.

• Message Membership Proof of Knowledge [126]: {vj, ej, uj}j∈P :=
PoKmem(C, Υ ). In [126], the authors propose an efficient method to prove that a
given encrypted message is 1 out of n messages in a set. The non-interactive version
of this proof of knowledge is described as follows. Let n be the RSA modulus from
Paillier system, Υ = {ζ1, ζ2, . . . , ζρ} the set of ρ encoded candidates, P be the set
of n messages, and C the encryption of one encoded candidate. In this proof, the
prover P convinces the verifier V that C encrypts the ith message in Υ :
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1. P picks κ randomly from Z∗n, ρ−1 values {ej}j 6=i in Zn, and ρ−1 values {vj}j 6=i
in Z∗n. Then, (s)he computes ui = κn mod n2 and

{uj = vnj (gζj/C)ej mod n2}j 6=i

The prover sets e ∈ {0, 1}L as the hash value of
∑n

k=1,k 6=i uk (in our system, we
set L as 80). The prover further lets ei= e−

∑
k 6=i ek mod n and calculates

vi = ρ · rei · g(e−
∑

j 6=i ej)÷n mod n.

Finally, the prover sends {vj, ej, uj}j∈P to the verifier.

2. The verifier sets e ∈ {0, 1}L as the hash value of
∑n

k=1,k 6=i uk and checks whether

e
?
=
∑p

k=1 ek and that vnj
?
= uj(C/g

ζj)ej mod n2 for each j ∈ P .

• Decryption Correctness Proof of Knowledge: We define (δ, r) := PoK(C, skPaillier),
which is the function to compute the plaintext δ and the random factor r to the ci-
phertext C with the given Paillier system secret key skPaillier = (n, g, p, q). As Paillier
system is bijective [5] meaning EncPaillier : Z∗n × Zn → Zn2 is both one-to-one and
onto. The prover sends δ and r to the verifier to prove that (δ, r) is the only pair to
construct C.

The main idea to compute r ∈ Z∗n is described as follows: we denote g(r) = rn mod
n2. The g(r) can be calculated by c ·g−m. Then, based on the Little Fermat theorem,
rp = r mod p, thus, g(r) = rn ≡ rq mod p. Since gcd(q, p − 1) = 1, there exists i1
such that q · i1 = 1 + k(p− 1) and we get

g(r)i1 = (rq)i1 = r1+k(p−1) = r · rk(p−1) = r mod p

Similarly, we denote i2 as the modular inverse of p modulo q− 1 and we get g(r)i2 =
r mod q. We finally get r mod p and r mod q respectively and apply the Chinese
Remainder Theorem to obtain r mod n.
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