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Abstract

This dissertation introduces a Bayesian approach for Markov chain Monte Carlo
(MCMC) sampling from distributions with many local maxima.

The new approach is called Bayesian Adaptive Independence Sampling with
Latent variables (BAIS+L) and is an extension of the Bayesian Adaptive Inde-
pendence Sampler (BAIS) that replaces its single normal distribution proposal
with a mixture of normal distributions. As such, BAIS+L simultaneously gener-
ates multiple chains of samples using a Metropolis-Hastings-like approach. Just
as in BAIS, the current states of these sampling chains are used to update the
proposal distribution parameters, by sampling them directly from their posterior
distributions, given the current chain states.

By replacing the single normal distribution proposal of BAIS with a mixture
of normal distributions, BAIS+L aims to provide greater flexibility in captur-
ing the shape of a target distribution in Euclidean space that has many local
maxima. Through this greater flexibility, BAIS+L allows the proposal distri-
bution to more closely approximate the target distribution, thereby improving
sampling efficiency.

To enable direct sampling from the proposal distribution, a latent variable
is introduced to indicate the component of the mixture from which a sample
is drawn. The use of this latent variable complicates the relationship of the
underlying Bayesian model used. To bypass this complication, an approximation
is introduced into the Metropolis-Hastings acceptance ratio used in BAIS+L.
This approximation leads to the stationary distribution of the sampler being an
approximation of the target.

Approaches that are commonly used in the literature to guarantee ergodicity
of MCMC methods are not applicable to BAIS+L, so conditions are provided
to ensure uniform ergodicity of the new sampler, along with proofs of their
sufficiency.

BAIS+L is shown to have comparable performance to the Equi-Energy Sam-
pler (EES) when sampling from targets on a Euclidean state space, despite its
approximate nature. However, simulations from a two-dimensional spin glass
application demonstrate existing pitfalls with BAIS+L, for which possible reme-
dies are suggested.

Finally, an exact version of BAIS+L, called Exact Bayesian Adaptive Inde-
pendence Sampling with Latent variables (EBAIS+L) is introduced and com-
pared to BAIS+L. This exact version is used to justify the use of the approxi-
mate BAIS+L, which is demonstrated to be more efficient than its exact coun-
terpart.
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Introduction

In many areas of scientific research and application there is a need to sample
from probability distributions in order to evaluate some quantity of interest.
Some probability distributions, including the uniform distribution on a subset
of R, may be sampled directly, using pseudorandom number generation algo-
rithms, such as the Mersenne Twister (Matsumoto and Nishimura, 1998). Other
distributions for which direct sampling methods are not known, may neverthe-
less be obtained by transforming pseudorandom samples from a distribution
for which direct methods do exist. An example of a distribution that can be
sampled in this manner is the normal distribution, from which samples may
be obtained by applying the Box-Muller transform (Box and Muller, 1958) to
uniformly distributed pseudosamples on [0, 1).

There are many other distributions for which no known direct sampling
schemes or transformations exist. For these distributions, a stochastic approach
is often used in the form of Monte Carlo (MC) or Markov chain Monte Carlo
(MCMC) sampling. MC and MCMC approaches vary greatly in their perfor-
mance, depending on how they are implemented and which distributions they
are used to sample. Each has its own requirements and features, which impact
its efficiency and the quality of the samples that it produces.

Some of these features include the proposal distributions in both MC and
MCMC, the importance functions in some MC samplers, the partitioning scheme
of the state vector in Gibbs sampling (an MCMC technique discussed in Sec-
tion 1.3.2) and the acceptance ratio in Metropolis-Hasting sampling (another
MCMC technique, discussed in Section 1.3.1). Early MC and MCMC methods
kept these features fixed but, more recently, there has been interest in sam-
plers that adapt them as the sampler progresses. Of particular interest is the
area of adaptive MCMC methods, which is the primary focus of the current
dissertation.

Many adaptive and non-adaptive MC and MCMC methods have already
been successfully applied to problems in the natural and social sciences, includ-
ing the seminal application to thermonuclear research at Los Alamos during
World War II (Metropolis, 1987; Eckhardt, 1987). MC and MCMC methods
form an ongoing area of research with a wealth of exciting and novel methods
and applications just waiting to be discovered.

This dissertation further extends the MCMC practitioner’s toolkit by intro-
ducing a new adaptive MCMC method: the Bayesian Adaptive Independence
Sampler with Latent variables (BAIS+L). This new method is an approximate
extension of the earlier Bayesian Adaptive Independence Sampler (BAIS) of
Keith et al. (2008), which progressively homes in on the optimum normal dis-
tribution proposal in a Metropolis-Hastings sampler. However, due to its pro-

11



12 INTRODUCTION

posal distribution having a single local maximum, BAIS is not appropriate for
sampling from target distributions with many local maxima, since its proposal
distribution is unable to capture the finer details of this structure. Being an
independence sampler, good approximation of the proposal distribution to the
target is important for efficient sampling (Gelman et al., 2004, 305–306), as
discussed in Section 1.3.1.

BAIS+L increases the applicability of BAIS by replacing this normal pro-
posal distribution with a mixture of normal distributions, thereby allowing it
to more closely approximate distributions with multiple local maxima. The
sampler uses a latent variable to select a mixture component before perform-
ing direct sampling from it. In this dissertation, this new method is developed
and its performance studied through a comparison to the equi-energy sampler
of Kou et al. (2006). A demonstration is then provided of one possible avenue
for using BAIS+L to study a significant computational problem in condensed
matter physics; that of the Edwards-Anderson model of the spin glass. Finally,
an exact version of BAIS+L is introduced and compared to the approximate
version of the sampler.

This dissertation is structured as follows. The first part reviews the rele-
vant literature and is split into two chapters: one that reviews MC and MCMC
theory; and another that reviews the target distributions and applications con-
sidered in Part II.

The second part of this dissertation is divided into four chapters. The first
of these chapters presents a detailed description of the development of BAIS+L
and provides sufficient conditions that will guarantee its ergodicity. Proofs are
provided for the sufficiency of these conditions as well as a study of how they may
be enforced in practice. It then concludes with a discussion of some conjectured
properties of the sampler.

The second of these chapters compares BAIS+L to the equi-energy sampler
of Kou et al. (2006); a powerful Monte Carlo method designed to sample from
distributions with multiple local maxima. It considers both the relative effi-
ciency and accuracy of BAIS+L by testing its performance on three targets in
Euclidean space, to which Kou et al. (2006) applied the equi-energy sampler.

The third of these chapters initiates the use of BAIS+L as a tool to study spin
glasses. It demonstrates some of the pitfalls that exist with its implementation
to such a problem, while suggesting potential solutions to them, as avenues for
future work.

The last of these chapters outlines an exact extension of BAIS, the Exact
Bayesian Adaptive Independence Sampler with Latent Variables (EBAIS+L),
which also uses a mixture of normal distributions to generate proposed states but
with a different dependence on the current ones. This chapter then compares
BAIS+L to EBAIS+L, highlighting the advantages of using the approximate
approach over an exact one.

This dissertation concludes by tying together the presented results before
providing suggestions for future work.



Part I

Literature Review
This part of the dissertation provides a review of the current state
of knowledge in the fields of adaptive MCMC methods and their
applications.

The first chapter is an introduction to MC and MCMC methods, de-
tailing their development from their initial use to the present time. A
number of important algorithms from both an historical perspective
and a practical one, at the cutting-edge, are presented. The chap-
ter also reviews theorems relevant to Markov chains and MCMC
practice, which are referenced in Section 3.3.

The second chapter of this part discusses applications in which MC
and MCMC methods play an important role. It introduces some
examples, emphasising how and why stochastic numerical methods
are used to study them. In particular, spin glass theory is detailed,
along with common current approaches used to study them.

13





Chapter 1

Monte Carlo and Markov
Chain Monte Carlo Theory

The advent of electronic computers during the Twentieth Century has made
fast sampling from probability distributions practical. The strict rules that
govern computers and the fast evaluation of functions that they permit allow
algorithmic solutions to problems to be implemented easily and quickly.

As stated in the introduction, pseudorandom samples from specific distri-
butions can be generated using deterministic algorithms, such as the Mersenne
Twister (Matsumoto and Nishimura, 1998) for sampling from the uniform dis-
tribution on a subset of R. When such algorithms do not exist, MC and MCMC
methods provide a straightforward avenue for generating samples. These meth-
ods have played an important role in solving many problems that require the
approximation of high-dimensional or otherwise analytically intractable inte-
grals (Gilks et al., 1996, pp. 1). MC and MCMC methods essentially filter or
transform directly-generated samples, such as those from a uniform or normal
distribution, with the end result being a collection of samples from (virtually)
any chosen distribution.

This chapter reviews MC and MCMC methods, starting with an introduction
to MC. It discusses its initial development and the details of some examples that
are used in practice.

It then moves on to MCMC, which is a type of iterative MC approach that
produces a Markov chain of arbitrary length, instead of a fixed number of inde-
pendent samples. This section begins with discussions of two important exam-
ples of MCMC approaches: Metropolis-Hastings sampling and Gibbs sampling.
Their implementations are outlined and simple proofs are reviewed, which guar-
antee that their samples have the correct limiting distributions.

The next section then considers a technical aspect of Metropolis-Hastings
samplers: the importance of having a well-chosen proposal distribution. In
particular, it looks at why it is important for the proposal distribution in an
independence sampler (cf. Section 1.3.1) to be as close to the target distribution
as possible, and the ensuing pitfalls when this is not the case. Some methods
that approximate arbitrary distributions using standard distributions that can
be sampled directly are then reviewed. Specifically, this review consists of those
methods that fit a normal mixture approximation to the distribution of interest.

15
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This study then leads to the concept of adaptive MCMC. Adaptive MCMC
methods attempt to optimise the choice of transition kernel in an MCMC sam-
pler automatically, by using information gathered during the simulation, such
as measurements of past performance (Robert and Casella, 2004, pp. 284). This
section primarily focusses on adaptive MCMC methods that seek to select an
optimum proposal distribution.

Some adaptive MCMC methods update their transition kernels using sam-
ples drawn from multiple previous iterations, which breaks the Markov property
of the resulting stochastic process. This introduces complications to their im-
plementation that are not present in non-adaptive approaches. Therefore, a
section is devoted to reviewing the theory of adaptation schemes, highlighting
when they can be safely applied as well as how researchers have shown that they
produce the desired output.

This chapter also describes some examples of adaptive MCMC samplers,
grouped by their methods of adaptation. In particular, it reviews three sam-
plers that are designed to ease the difficulty of sampling from distributions with
multiple local maxima. One of these is parallel tempering (PT), which is used
extensively in the study of disordered systems, including spin glasses (Contucci
and Giardinà, 2013, pp. 165). Another is the Equi-Energy Sampler (EES) of
Kou et al. (2006), which its authors showed to be very powerful. The other
is the Adaptive Independent Metropolis-Hastings (AIMH) sampler of Giordani
and Kohn (2010), which adaptively refines a normal mixture proposal using
existing samples.

The review then takes an in-depth look at the sampler that is the main moti-
vation of the current dissertation: the Bayesian Adaptive Independence Sampler
(BAIS) of Keith et al. (2008). Its design and implementation are discussed, and
a theorem that guarantees that this sampler has the correct limiting distribution
is reviewed. The shortcomings of the sampler are then considered with respect
to targets with multiple local maxima.

The final section of this chapter is dedicated to the theoretical properties of
Markov chains and sequences. It reviews important results that are referenced in
the proofs of Section 3.3 and a result of Besag et al. (1995) that justifies the exact
algorithm presented in Chapter 6. This section concludes with descriptions of
the convergence diagnostics that are used in the numerical simulations presented
later in this dissertation.

1.1 Monte Carlo Methods

This section reviews Monte Carlo (MC) methods. It first discusses their foun-
dations, beginning with their motivation and subsequent development. It then
describes the general idea behind MC methods before reviewing some notable
examples.

1.1.1 Foundations

The following discussion reviews the main ideas behind MC methods, starting
with their motivation. It is then followed by a brief description of the general
MC approach.
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Motivation

With the advent of computer technology during the first half of the Twentieth
Century, the ability to perform many calculations quickly became possible. This
enabled the computation of quantities that previously required many hands to
compute (Metropolis, 1987) and permitted the growth of new fields of numerical
research and application. In particular, their speed and the strict rules governing
their operation made it possible to automate the generation of pseudosamples
from probability distributions. Large numbers of such pseudosamples are re-
quired in diverse fields for the estimation of pertinent quantities that cannot be
evaluated analytically (cf. Chapter 2 for examples).

As stated in the introduction to this dissertation, the uniform distribution
on a subset of R may be (pseudo-)sampled using a deterministic algorithm,
such as the Mersenne Twister of Matsumoto and Nishimura (1998). The par-
ticular example that they introduced is an iterative procedure that produces
a deterministic sequence of integers using bitwise operations on a collection of
n-bit integers, such that the resulting sequence has the properties of a random
sequence of independent and identically uniformly distributed (i.i.d.) samples
from the set of integers {0, . . . , 2n−1}. It is trivial to rescale such a sequence
to one of n-bit floating-point numbers, representing real numbers on any finite
sub-interval of the real line.

It is also possible to transform (appropriately-scaled) uniform variates into
normal ones using the Box-Muller transform, introduced by Box and Muller
(1958). This method takes two independent uniform random variates,

U1, U2 ∼ U(0, 1),

and transforms them via Equation (1.1),

X1 =
√
−2 logU1 cos(2πU2), (1.1)

to produce a standard normal random variate X1 ∈ R. Box and Muller (1958)
also noted that, using the same two uniform variates, it is possible to produce
a second normal random variate X2, which is independent of X1, via Equa-
tion (1.2),

X2 =
√
−2 logU2 sin(2πU1). (1.2)

In both Equations (1.1) and (1.2) “log” represents the natural logarithm.
Unfortunately, it is not always practical to use a direct sampling approach

for a given probability distribution, so another approach is required to sample
from them. One such class of approaches is that of MC methods.

General Idea

Like direct sampling methods, MC sampling generates a collection of samples
that in some way resemble samples drawn from the target distribution. How-
ever, these samples are not generated directly, using number-theoretic properties
to produce a pseudo-independent sequence that mimics random samples from
the target distribution. Instead, MC simulation modifies direct samples, using
probabilistic criteria. It does this by first sampling points at random in the
support of the function of interest, but from an alternative distribution. This
alternative distribution is known by a number of different names, depending on
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Figure 1.1: An example of a univariate target distribution π(x) (solid line),
whose mean is to be estimated by first drawing samples randomly from the
normal distribution represented by the dashed line. The height of π(x) is used
only for illustrative purposes.
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the context. These include “importance distribution” in importance sampling
(cf. Section 1.1.2), or “proposal” or “jumping distribution” (Gelman et al., 2004,
pp. 298) in MCMC (cf. Section 1.3). Throughout most of this dissertation, the
name proposal distribution will be preferred for its more general connotation.

The proposal distribution is one that can be sampled easily (Gelman et al.,
2004, pp. 292) or even directly. MC then filters or reweights the generated
samples based on their densities with respect to the target function (Gelman
et al., 2004, pp. 285).

As an example, consider Figure 1.1, in which the solid line represents the
shape of a target density π(x) that cannot be sampled directly. Also assume
that the normalisation constant of π(x) is unknown, so its height in the figure
is used only for illustrative purposes.

Say that the estimand of interest is the mean Eπ[f(x)] of some functional
f , with respect to π. This may not be able to be computed directly but, as
already seen, it is possible to sample points directly from a normal distribution
N (·|µ,Σ), whose support includes that of the target. This normal distribution
is represented by the dashed line in Figure 1.1.

Once a collection of, say N , samples {x1, . . . , xN} has been drawn from
the normal distribution, an MC technique, such as importance sampling (cf.
Section 1.1.2) may be used to appropriately weight them. The sum of the
product of these weights and their corresponding values of f(xn) is then used
to give an estimate of Eπ[f(x)].

Many other approaches exist, which use more sophisticated proposal distri-
butions, refinement of the samples or sample rejection schemes. These methods
vary in both their efficiency and complexity, depending on the target distribu-
tion.
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1.1.2 Notable Examples

This section reviews some notable MC methods from the literature. These
methods have been selected for discussion due to their historical significance
or their relation to more sophisticated methods reviewed later in the current
chapter.

Rejection Sampling

The Rejection Sampling (RS) method was introduced by John von Neumann
(Forsythe, 1972) as a means to filter samples that have already been generated
but which do not represent samples from the target distribution. As its name
suggests not all samples necessarily become part of the final collection because
they are filtered using a rejection criterion. This criterion places a probability of
acceptance on each sample. A uniform random number is then generated and if
it is less than this probability the sample is retained. Otherwise it is discarded.

RS is attractive because of its simplicity and ease of implementation. How-
ever, if the proposed samples are generated in low density parts of the state space
they will have a high chance of being discarded, thereby making the sampler
inefficient.

A rejection sampling approach, described by Gelman et al. (2004, pp. 284–
285), is summarised in Algorithm A.1 of Appendix A.

Importance Sampling

The idea of importance sampling is to place weights on samples in order to
determine which of them contribute the most to the final result of a Monte
Carlo run (Hammersley and Morton, 1954). An example of such a scheme
is the Bayesian Importance Sampler (BIS) of Geweke (1989), which aims to
estimate the mean of a functional f : X → R with respect to an unnormalised
measure with density π(x), as in Equation (1.3),

Eπ[f(x)] =

∫
X f(x)π(x)dx∫
X π(x)dx

. (1.3)

To do so, BIS uses a collection of N i.i.d. samples {xn}Nn=1, generated
from an importance function g, whose normalising constant is known. It then
approximates the expectation using a weighted sum of these samples, as in
Equation (1.4),

Eπ[f(x)] ≈ fN (x) =

∑N
n=1 f(xn)π(xn)/g(xn)∑N

n=1 π(xn)/g(xn)
, (1.4)

which they showed converges to the true mean as the number of samples N
increases, provided

1. π is proportional to a proper probability density on X ,

2. g has support on all possible values of x,

3. f(x) has a finite expectation with respect to the measure that π is assumed
to admit.
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To ensure the last point, Geweke (1989) assumed that f was integrable with
respect to the measure mentioned in the last condition.

The remaining sections of this review of MC methods will take a look at
three methods that are based on importance sampling.

Sequential Importance Sampling

An iterative importance sampler that is based on BIS is the Sequential Im-
portance Sampler (SIS) of Doucet et al. (2000), which represents a “unified
framework” that they referred to as a “sequential MC filter”. Doucet et al.
(2000) were motivated by the Bayesian filtering problem, which considers an
unobserved process

{
x(t)

}∞
t=0

in p-dimensional Euclidean space with transition

density p[x(t)|x(t−1)]. Given an observed time-series
{
y(t)

}∞
t=0

that is related to
the process by the density given by Equation (1.5),

π
[{

y(t)
}∞
t=0

∣∣∣{x(t)
}∞
t=0

]
, (1.5)

the goal at each time step T , is to evaluate estimates of a π-integrable function
f (T ), with respect to the posterior distribution of the unobserved process, which
is given by Equation (1.6),

π

[{
x(t)

}T
t=0

∣∣∣∣{y(t)
}T
t=0

]
. (1.6)

Doucet et al. (2000) followed the BIS approach of Equation (1.4), using N
weighted samples from the unobserved process of Equation (1.6) at times t = 0
to t = T , as given by Equation (1.7),

E
[
f (T )(x)

]
=

∫
f (T )

[{
x(t)

}T
t=0

]
π

[{
x(t)

}T
t=0

∣∣∣∣{y(t)
}T
t=0

]
d
{

x(t)
}T
t=0

≈ f (T )
N (x)

=

N∑
n=1

f (T )

[({
x(t)
n

}T
t=0

)]
w̃(T )
n . (1.7)

Here w̃
(T )
n is the normalised weight of the nth sampling time series

{
x

(t)
n

}T
t=0

,

with x(t) sampled from the importance function at time step t. Doucet et al.
(2000) wrote this weight differently from Geweke (1989), highlighting the de-
pendence on the observed sequence up to time T . The unnormalised weight is
given in Equation (1.8),

w(T )
n =

π

[{
y(t)

}T
t=0

∣∣∣∣{x
(t)
n

}T
t=0

]
π

[{
x

(t)
n

}T
t=0

]
g

[{
x

(t)
n

}T
t=0

∣∣∣{y(t)
}T
t=0

] , (1.8)

where g is the importance function, and π(x) is the prior distribution on the
unobserved sequence.

To extend BIS to this sequential setting, Doucet et al. (2000) assumed that
samples could be drawn from π and that the likelihood (the first factor in
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the numerator of Equation (1.8)) of the observed sequence, given the inferred
hidden sequence, could be evaluated pointwise. To satisfy these assumptions
they chose the importance function at time step T to be dependent on the
observed sequence. By noting the time-dependence between the hidden variables
they factored the importance function as in Equation (1.9).

g
[
x(0), . . . ,x(T )

∣∣∣y(t), . . . ,y(T )
]

= g
[
x(0),y(0)

] T∏
t=1

g
[
x(t)

∣∣∣x(0), . . . ,x(t−1),y(0), . . . ,y(t)
]
. (1.9)

SIS infers each hidden variable sequentially in time (hence the name), starting

with each x
(0)
n , by proposing a new state for each inferred unobserved sequence

from its corresponding factor in Equation (1.9). Once all inferred unobserved
sequences at time t have been updated, the algorithm computes their unnor-
malised weights recursively from the weights at time step t − 1, using Equa-
tion (1.10),

w(t)
n = w(t−1)

n

π
[
y(t)

∣∣∣x(t)
n

]
π
[
x

(t)
n

∣∣∣x(t)
n−1

]
g
[
x

(t)
n

∣∣∣x(0)
n , . . . ,x

(t−1)
n ,y(0), . . . ,y(t)

] . (1.10)

To limit degeneracy of the algorithm to placing all importance weight on
just one population member n, Doucet et al. (2000) suggested that each factor
of the importance function in Equation (1.9) be the one that results in mini-
mum variance of the importance weights. They showed that this requirement
is satisfied by using the posterior distribution as the importance function, as in
Equation (1.11),

g
[
x(t)
n

∣∣∣x(t−1)
n ,y(t)

]
= π

[
x(t)
n

∣∣∣x(t−1)
n ,y(t)

]
. (1.11)

They argued that one way to measure the level of degeneracy encountered
in an importance sampler run is to use the importance weights to compute the
effective number of samples Neff (Kong et al., 1994). To do this Doucet et al.
(2000) suggested the estimator in Equation (1.12),

N̂
(t)
eff =

N∑N
n=1

[
w

(t)
n

]2 . (1.12)

When N̂
(t)
eff is below a pre-determined level, Doucet et al. (2000) recommended

following the advice of Rubin (1988) by resampling the population members via
(1.13),

i′n ∼ Categorical
[
w̃

(t)
1 , . . . , w̃

(t)
N

]
,∀n ∈ {1, . . . , N}. (1.13)

Combining the sequential importance sampling approach with this resam-
pling step, Doucet et al. (2000) produced the general procedure outlined in
Algorithm A.2 of Appendix A.

Doucet et al. (2000) showed that their algorithm generalises earlier, more
specific examples of importance sampling. These include the methods of Hand-
schin and Mayne (1969) and Handschin (1970) for multi-stage non-linear fil-
tering, the Bayesian Importance Sampler of Geweke (1989) and the Bootstrap
filter of Gordon et al. (1993).
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Similar filtering methods were introduced by Del Moral et al. (1993) and
Del Moral et al. (1995) for processing radar and sonar signals.

Population Monte Carlo

Population Monte Carlo (PMC) is another extension of importance sampling,
introduced by Cappé et al. (2004). Like importance sampling, it produces a set
of samples in one step from a known generating distribution and then weights
them based on their relative densities with respect to the target. Unlike impor-
tance sampling, it is an iterative process, which can be repeated indefinitely to
achieve a desired level of precision.

Cappé et al. (2004) designed PMC on the premise of Mengersen and Robert
(2003), that instead of sampling from the desired target π(x) on its support X ,
one can sample from the product of N copies of it, thereby creating a “pop-
ulation” of samples. At every iteration t of the sampler, this population is
updated by first randomly selecting indicators {z1, . . . , zN}, representing from

which of the K generating distributions
{
g

(t)
1 , . . . , g

(t)
K

}
each population member

n ∈ {1, . . . , N} is to be sampled. It then draws each new state n from its chosen

distribution and computes its importance weight w̃
(t)
n , whose unnormalised form

is given by Equation (1.14),

w(t)
n ∝

π
[
x

(t)
n

]
g

(t)
zn

[
x

(t)
n

] . (1.14)

As in the sequential importance sampler, Cappé et al. (2004) followed the ad-
vice of Rubin (1987) and prescribed resampling of the population to mitigate
degeneracy of the algorithm.

Cappé et al. (2004) stressed that an important property of their method is

the freedom of the generating distributions
{
g

(t)
1 , . . . , g

(t)
K

}
to vary with time,

possibly depending on (any number of) samples from previous iterations.
Algorithm A.3 of Appendix A details the general structure of a PMC sam-

pler.

Sequential Monte Carlo

The Sequential Monte Carlo (SMC) method of Liu and Chen (1998) is a “general
framework” that combines RS, SIS and MCMC (cf. Section 1.3) to perform se-
quential sampling of a dynamic probability distribution

{
π(t)
}∞
t=0

. The dynamic
setting considered by Liu and Chen (1998) was similar to the Bayesian filtering
problem that was reviewed earlier, in the discussion of SIS (cf. Section 1.1.2).
Like SIS, SMC aims to approximate the evolving target distribution by drawing
weighted samples at each time step t ∈ Z+. That is, at each time t, the ap-
proximation in Equation (1.15) is used to estimate the mean of a π(t)-integrable
function f (t).

Eπ(t)

[
f (t)(x)

]
≈

N∑
n=1

w(t)
n f

[
x(t)
n

]
, (1.15)

where x
(t)
n is the nth sample at time t and w

(t)
n is its corresponding importance

weight.
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Liu and Chen (1998) combined multiple techniques into their approach for a
variety of reasons. Firstly, SIS is used to draw new samples for the N “streams”
at time step t, given those at time step t − 1 and their corresponding weights.
This is achieved by sampling from a distribution g(t), which Liu and Chen (1998)
recommended be set to the posterior estimation function, as demonstrated by
Equation (1.16),

g(t)
[
x(t)

∣∣∣x(0), . . . ,x(t−1)
]

= π(t)
[
x(t)

∣∣∣x(0), . . . ,x(t−1)
]
, (1.16)

and setting incremental weights as in Equation (1.17)

w(t)
n = u(t)

n w(t)
n , (1.17)

where u
(t)
n is given as the ratio of the density of the samples up to time t − 1

under the target at time t to their density under the target at time t− 1, as in
Equation (1.18)

u(t)
n =

π(t)
[
x

(0)
n , . . . , x

(t)
n

]
π(t−1)

[
x

(0)
n , . . . , x

(t)
n

] . (1.18)

Resampling is used to focus future sampling on the streams with highest
weight to improve efficiency. Liu and Chen (1998) suggested doing so when the
estimate of the square of the coefficient of variation (Hammersley and Hand-
scomb, 1964, pp. 14), [

c(t)v

]2
=

Var
[
w(t)

]{
E
[
w(t)

]}2 ,

of the weights w(t) =
[
w

(t)
1 , . . . , w

(t)
N

]
is higher than some threshold cthresh or at

pre-determined resampling times.
MCMC methods are used when direct sampling from π(t) is not possible. Liu

and Chen (1998) suggested and outlined the details of a Hastings Independence
sampler (cf. Section 1.3.1) for this purpose.

Finally, Liu and Chen (1998) suggested rejection sampling (cf. Section 1.1.2)
as an alternative to MCMC sampling that does not suffer from the need to run
multiple iterations. However, they pointed out that a “covering constant” must
be computed in this case, which they also provided.

Algorithm A.4 of Appendix A summarises the general framework of Liu and
Chen (1998).

1.2 Markov Chain Theory

An alternative approach to MC as a means to generate samples for inference,
is to generate the samples as a sequence, in which each successive sample is
dependent on those preceding it. When the probability of a sample in such
a sequence, conditional on all those preceding it, is the same the probability,
conditional only on the immediate predecessor, then the sequence is called a
Markov chain (Gelman et al., 2004, pp. 286). MC methods that produce their
samples as a Markov chain are called Markov chain Monte Carlo (MCMC)
methods (Gelman et al., 2004, pp. 285–286).
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Before discussing such methods, however, it is important to understand
the theory behind Markov chains. This section briefly reviews the theoreti-
cal Markov chain concepts that are needed to understand concepts discussed
throughout this dissertation. Most importantly, it discusses the topic of ergod-
icity, which is used to justify the validity of the main sampler introduced in
this dissertation, as discussed in Section 3.3. It also reviews some convergence
diagnostics used in practice, which will be useful in Part II.

1.2.1 Using Markov Chains for Inference

Since the primary interest of this dissertation is a new MCMC method for
sampling from a density π, it is imperative that the Markov chains constructed
using it have particular properties that make it suitable for inference. The
first of these properties is that estimates of any particular quantity of interest
adequately represent their true values. That is, they need to be consistent.

The following discussion follows the definitions of consistency provided by
Lehmann and Casella (1998, pp. 54), which they described in terms of conver-
gence in probability. This concept is formalised by Definition 1.

Definition 1 (Convergence in probability). (Lehmann and Casella, 1998, pp.
54) Let {X(t)}∞t=1 be a sequence of random variables defined on state space X .
If the probability of a difference of at least r between X(t) and some constant
c ∈ X tends to zero as t increases, for all r > 0, then {X(t)}∞t=1 is said to
converge in probability to c. That is, if it satisfies Equation (1.19),

P(|X(t) − c| ≥ r)→ 0 as t→∞ ∀r > 0. (1.19)

Consistency of an estimator is then given by Definition 2.

Definition 2 (Consistent estimator). (Lehmann and Casella, 1998, pp. 54)

Let f be a scalar of interest on state space X and let {f̂ (t)(x)}∞t=1 be a sequence

of estimators f̂ of f . Then f̂ is said to be consistent if f̂ (t)(x) converges in
probability to f for every x ∈ X .

Normally, estimates made from a Markov chain, started at some state X(0) =
x(0), are made after some initial period representing an initial portion of the
chain that does not yet resemble a sequence of samples from a stationary or
limiting distribution of the chain (if it has one) (Gelman et al., 2004, pp. 295).

Informally, a stationary distribution of a process is one that does not change
with time, and a process that has such a distribution is called a stationary
process. Formally, a stationary process is described by Definition 3.

Definition 3 (Stationary process). (Meyn and Tweedie, 1993, pp. 235) Let
{X(t)}∞t=1 be a stochastic process on X . If the marginal distribution of
{X(t), . . . , X(t+k)} does not change with t for any k ∈ N, then {X(t)}∞t=1 is
said to be stationary.

The concept of a stationary distribution on a general state space is formalised
in terms of an invariant measure. Before discussing what an invariant measure
is, a few extra definitions are required.

First, let X be a topological (state) space with Borel σ-algebra B(X ) and
let π : B(X ) → (0,∞) be a positive σ-finite measure. Then π is σ-finite if it
satisfies Definition 4.
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Definition 4. (Meyn and Tweedie, 1993, pp. 521) A σ-finite measure µ is one
that is positive µ(A) ≥ 0, on any A ∈ B(X ) and finite on each set Ak ∈ B(X )
in a countable cover of X = ∪∞k=1Ak.

An invariant measure is then formalised by Definition 5.

Definition 5 (Invariant measure). (Meyn and Tweedie, 1993, pp. 234) Let
π : B(X )→ (0,∞) be a σ-finite measure on X and let P(x, ·) be the probability
of a transition from state x ∈ X . π is said to be invariant with respect to P(x, ·)
if it is unchanged by P(x, ·). That is, if it satisfies Equation (1.20),

π(A) =

∫
X
π(dx)P(x,A), (1.20)

for every A ∈ B(X ).

This dissertation is concerned with probability measures, for which π(X ) =
1 (Meyn and Tweedie, 1993, pp. 521).

While stationarity of a Markov chain is important for making use of the
samples that it generates, it is useless if the stationary distribution is not the
unique limiting distribution of the chain. When using MCMC to sample from
a target density π, the resulting Markov chain must be designed to produce π
as a stationary distribution. This leads to the important property of ergodicity,
which guarantees that inferences made using a chain increase in precision and
accuracy the longer a chain is run. Due to the great importance of this property,
Section 1.2.2 is dedicated to its review.

1.2.2 Ergodicity

Ergodicity is a crucial concept, as it guarantees convergence of a Markov chain
to a stationary distribution (Meyn and Tweedie, 1993, pp. 313). This essentially
means that the chain, if allowed to run for an infinite time, will appear to be a
collection of samples from the stationary distribution.

Before delving into a discussion of ergodicity, it is first important to under-
stand the notions of the total variation of a measure and the periodicity of a
Markov chain.

First note that the set of finite measures on the Borel σ-algebra B(X ) of a
topological space X trivially forms a vector space under the usual operations of
addition (µ+ ν)(S) = µ(S) + ν(S) and scalar multiplication (λµ)(S) = λµ(S),
where µ, ν are measures on B(X ) and S ∈ B(X ).

The total variation of a measure is understood in terms of its total variation
norm, which is given by Definition 6.

Definition 6 (Total variation norm). (Meyn and Tweedie, 1993, pp. 315)
The total variation norm ‖µ‖ of a measure µ : B(X )→ R is the largest possible
difference between any two values in its range, as given by Equation (1.21),

‖µ‖ := sup
A∈B(X )

µ(A)− inf
A∈B(X )

µ(A). (1.21)

The periodicity of a Markov chain on a general state space is defined in terms
of small sets. Theorem 1.3(ii) of Mengersen and Tweedie (1996) defined a small
set according to Definition 7, which is a modified version of the definition given
by Meyn and Tweedie (1993, pp. 109).



26 CHAPTER 1. MC AND MCMC THEORY

Definition 7 (Small set). If the probability Pn(x,B) of an n-step transition
from any state x ∈ A ∈ B(X ) into any set B ∈ B(X ) is bounded from below by
some non-trivial probability measure ν : B(X )→ R, scaled by positive constant
δ > 0, then the set A is said to be small. In other words, a small set satisfies
Equation (1.22),

Pn(x,B) ≥ δν(B),∀x ∈ A,∀B ∈ B(X ). (1.22)

The period of a set A ∈ B(X )+ of positive measure ν(A) > 0 is then
formalised according to Definition 8.

Definition 8 (Period of a set). (Meyn and Tweedie, 1993, pp. 119–120) Let
A ∈ B(X )+ be a set in the Borel σ-algebra of state space X , with positive
measure ν(A) > 0, and let EA be the set of times n ∈ Z+ such that A is small
with respect to measure νn = δnν for some step-dependent constant δn > 0,

EA :=
{
n ∈ Z+ : Pn(x,B) ≥ δnν(B),∀x ∈ A,∀B ∈ B(X ), for some δn > 0

}
.

Then the period d of A is the greatest common divisor of the elements of EA.

An aperiodic set is one for which d = 1 (Meyn and Tweedie, 1993, pp. 119).
A φ-irreducible Markov chain on a state space X is said to be aperiodic if every
A ∈ B(X )+ is aperiodic (Meyn and Tweedie, 1993, pp. 121).

The concept of φ-irreducibility is given by Definition 9.

Definition 9 (φ-irreducible Markov chain). (Meyn and Tweedie, 1993, pp. 89)
A Markov chain

{
X(t)

}∞
t=1

is φ-irreducible if every set A ∈ B(X ) of positive
measure φ(A) > 0 is visited in finite time with strictly positive probability, by a
Markov chain

{
X(t)

}∞
t=1

, started at any state x ∈ X , where φ is some common
measure on X . That is, if Equation (1.23) is satisfied,

φ(A) > 0 =⇒ P[τA <∞] > 0, (1.23)

where τA is the time of first arrival of the Markov chain into A.

A φ-irreducible Markov chain
{
X(t)

}∞
t=1

with invariant probability measure
π is said to be positive (Meyn and Tweedie, 1993, pp. 235).

The ergodicity of a Markov chain is described by Definition 10, which sum-
marises the discussion of Meyn and Tweedie (1993, pp. 315–316).

Definition 10 (Ergodic chain). (Meyn and Tweedie, 1993, pp. 315–316) Let
π be the unique invariant probability measure of an aperiodic Markov chain{
X(t)

}∞
t=1

on state space X , and let Pn(x, ·) be the n-step transition probability
from state x ∈ X . If the total variation norm between Pn(x, ·) and π tends to
zero for all x ∈ X , as n increases, then

{
X(t)

}∞
t=1

is said to be ergodic. That
is, if Equation (1.24) is satisfied,

lim
n→∞

‖Pn(x, ·)− π‖ = 0,∀x ∈ X . (1.24)

The particular version of ergodicity of interest to the sampler introduced
in Chapter 3 of this dissertation is that of uniform ergodicity. While general
ergodicity guarantees convergence to a stationary distribution, this stronger
form guarantees an upper bound on the rate of convergence in distribution of
a sequence to its stationary distribution, irrespective of the starting position of
the chain (Meyn and Tweedie, 1993, pp. 387).

The uniform ergodicity of a Markov chain is formalised by Definition 11.
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Definition 11 (Uniformly ergodic chain). (Meyn and Tweedie, 1993, pp. 388)
If the supremum over all x ∈ X of the total variation norm between the n-step
transition probability with stationary distribution π and n-step transition kernel
Pn(x, ·) decreases to zero as n → ∞, as in Equation (1.25), then the Markov
chain is said to be uniformly ergodic.

lim
n→∞

sup
x∈X
‖Pn(x, ·)− π(·)‖ = 0. (1.25)

To guarantee that Definition 11 is met in this dissertation, Theorem 1 will be
used. It is summarised from the equivalent forms of Theorem 16.0.2(v) of Meyn
and Tweedie (1993, pp. 389) and Theorem 1.3(ii) of Mengersen and Tweedie
(1996).

Theorem 1. A Markov chain
{
X(t)

}∞
t=1

on X is uniformly ergodic if and only
if the entire state space is small.

Recall that the meaning of small was given in Definition 7.
Meyn and Tweedie (1993, pp. 396) showed that uniform ergodicity of an

aperiodic Markov chain was equivalent to an important condition known as
Doeblin’s Condition, which is given by Definition 12.

Definition 12 (Doeblin’s condition). (Meyn and Tweedie, 1993) There exists
a probability measure φ for which a particular n-step probability of a transition
from any x ∈ X into any measurable set A ∈ B(X ) is at least δ whenever A
has measure of at least ε with respect to φ, for some ε < 1 and δ > 0. This
definition is equivalent to Equation (1.26),

φ(A) > ε =⇒ Pn(x,A) ≥ δ, ∀x ∈ X . (1.26)

Doeblin’s Condition has important implications on the rate of convergence
of a uniformly ergodic Markov chain, which will be reviewed in Section 1.2.4.

Uniform ergodicity is a strong form of ergodicity that may not be achieved in
practice. Nonetheless, a Markov chain may satisfy a weaker form of ergodicity,
called geometric ergodicity.

Geometric ergodicity requires an understanding of what it means for a set to
be recurrent. The basic notion of recurrence of a set is given by Definition 13.

Definition 13 (Recurrent set). (Meyn and Tweedie, 1993, pp. 177) Let ηA be
the number of times that a Markov chain {X(t)}∞t=1 on state space X visits set
A ∈ B(X ). Then A is said to be recurrent if it is expected that {X(t)}∞t=1 visits
it infinitely many times. That is, if Equation (1.27) is satisfied,

E(ηA) =∞. (1.27)

For a Markov chain to be geometrically ergodic it is necessary that the sets
that it visits satisfy a stronger form of recurrence, known as Harris recurrent,
which Meyn and Tweedie (1993, pp. 204) defined as follows.

Definition 14 (Harris recurrent set). (Meyn and Tweedie, 1993, pp. 204) If
a Markov chain

{
X(t)

}∞
t=1

almost surely visits a measurable set A ∈ B(X ), in
the Borel σ-algebra of X , infinitely often, then A is said to be Harris recurrent.
That is, if Equation (1.28) is satisfied,

Px(ηA =∞) = 1, (1.28)
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where ηA is the number of visits to A and the subscript x of the probability
operator indicates that the initial state is x.

The definition of Harris recurrence extends to a Markov chain by considering
all sets that can be visited by a Markov chain, according to Definition 15.

Definition 15 (Harris recurrent Markov chain). (Meyn and Tweedie, 1993, pp.
204). A φ-irreducible Markov chain, for which every set A ∈ B(X ) of positive
measure φ(A) > 0 satisfies Definition 14, is also said to be Harris recurrent.

If every A ∈ B(X ), satisfies the weaker definition of recurrence given in
Definition 13, then a φ-irreducible Markov chain on X is said to be recurrent
(Meyn and Tweedie, 1993, pp. 178).

A Harris recurrent Markov chain that is also positive is said to be positive
Harris (Meyn and Tweedie, 1993, pp. 236).

Meyn and Tweedie (1993, pp. 235) ensured the uniqueness of an invari-
ant measure of a (Harris) recurrent Markov chain when it exists, according to
Theorem 2.

Theorem 2 (Uniqueness of the invariant measure). (Meyn and Tweedie, 1993,
pp. 235) A recurrent Markov chain admits a unique invariant measure.

Definition 16 ties together the preceding definitions, to formally define geo-
metric ergodicity.

Definition 16 (Geometrically ergodic Markov chain). (Meyn and Tweedie,
1993, pp. 359) If the geometric sum

∞∑
n=1

rn ‖Pn(x, ·)− π‖

of the total variation norm between the n-step transition kernel of a positive
Harris Markov chain

{
X(t)

}∞
t=1

with finite stationary distribution π, with the
nth term scaled by the nth power of a constant r > 1, is strictly finite, then{
X(t)

}∞
t=1

is said to be geometrically ergodic.

An equivalent definition of geometric ergodicity is that the total variation
norm between the stationary density π and the n-step transition kernel from
any x ∈ X be bounded above by the nth power of a constant c < 1 multiplied
by some function h(x), as in Equation (1.29) (Chan, 1993),

‖Pn(x, ·)− f‖ ≤ cnh(x). (1.29)

Chan (1993) noted that in this definition, uniform ergodicity follows if h(x) is
bounded.

In practice, for the MCMC practitioner to be satisfied that sampling from
the stationary distribution is taking place, a convergence diagnostic may be
used (cf. Section 1.2.5). However, in a finite-length chain of N samples, it may
appear that a distribution satisfying Definition 3 has been achieved but after a
long time M >> N it may appear to have a different stationary distribution. In
this situation, the process exhibits the quasi-ergodic problem, which is described
by Definition 17.
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Definition 17 (Quasi-ergodic problem). (Wood and Parker, 1957) The state
space on which a stochastic process is defined can be split into multiple regions of
significance, where the probability of transition between them in any (reasonable)
finite time is extremely low.

The result of this problem, according to Wood and Parker (1957), is that
such a process may appear to have converged even if it has not. In other words,
for a quasi-ergodic process, Definition 3 is satisfied for some measure π for some,
but not all, n ∈ N.

1.2.3 Detailed Balance

As stated in the preceding sections, the existence of a stationary distribution of
a Markov chain generated by the Metropolis-Hastings Sampler, is guaranteed
by detailed balance. The current section describes this concept and why it is
sufficient for a stationary distribution to exist.

Detailed balance is summarised by Definition 18, which follows the discussion
of Robert and Casella (2004, pp. 230), while not assuming that the invariant
measure π has an associated density.

Definition 18 (Detailed balance). Robert and Casella (2004, pp. 230) Let
{X(t)}∞t=1 be a Markov chain on a topological (state) space X , with P(x,B),
representing the probability of a transition from state x into a measurable set
B ∈ B(X ) in the Borel σ-algebra of X . Then {X(t)}∞t=1 satisfies the detailed
balance condition if there is a measure π for which Equation (1.30) holds for all
measurable sets A,B ∈ B(X ) in the Borel σ-algebra of X .∫

A

P(x,B)dπ(x) =

∫
B

P(x,A)dπ(x). (1.30)

As noted by Robert and Casella (2004, pp. 230), taking one of A or B to
be the entire state space X in Equation (1.112) immediately gives the definition
of an invariant measure (cf. Definition 5), with π as the invariant measure, as
follows, ∫

X
P(x,A)dπ(x) =

∫
A
P(x,X )dπ(x)

=

∫
A
dπ(x)

= π(x),

An important consequence of detailed balance is the property of reversibility.

Definition 19 (Reversible Markov chain). (Robert and Casella, 2004, pp. 230)
A stationary Markov chain {X(t)}∞t=1, for which the conditional distributions of
X(t) given X(t−1) and given X(t+1), respectively, are the same, is said to be
reversible.

This implies that the density π is stationary with respect to the transition
kernel, as formalised by Theorem 3.
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Theorem 3. (Robert and Casella, 2004, pp. 230) Let X be a topological
(state) space with Borel σ-algebra B(X ) and let P(x,B) be the probabiliy of a
transition of the Markov chain {X(t)}∞t=1 on X from state x into a measurable
set B ∈ B(X ). If this transition satisfies Definition 18 with some probability
density π, then the chain is reversible with π as an invariant density.

Recall from Theorem 2 that, on an uncountable state space, π is unique if
the Markov chain is recurrent.

Preserving Detailed Balance with Adaptive Proposal Parameters

An important concept that will be key to the exact approach introduced in
Chapter 6 is that of preserving detailed balance in a Markov process when the
transition mechanism is allowed to vary randomly with time. Besag et al. (1995)
showed that, as long as the mechanism to update the state xn of a sampling
chain n has no dependence on xn, then detailed balance is preserved.

Formally, for product sets, their result is expressed by Theorem 4. In this
theorem ν and π are used to represent a product measure and density, respec-
tively, on XN . To be consistent with the notation of Besag et al. (1995), these
symbols are also used to represent the corresponding measures on coordinate
subspaces and conditional densities, respectively.

Theorem 4. (Besag et al., 1995) Consider a topological (state) space X , with
Borel σ-algebra B(X ), and denote the Borel σ-algebra of XN by B(XN ). Let
x = (x1, . . . , xN ) ∈ XN be a vector of N parallel sampling chain states, each
on state space X , and let x−n ∈ XN−1 be x without the nth element. Denote
the probability of a transition of the nth sampling chain from state xn, taking
x into a measurable set A ∈ B(XN ), by Pθn

n (x, A), where the parameter vector
θn is a random variable with density p(θn|x−n), supported on an appropriate
parameter space T . Furthermore, assume that Pθn

n (x, ·) satisfies detailed balance
for each n ∈ {1, . . . , N}, each x−n ∈ XN−1 and each θn ∈ T , with common
stationary distribution π, with respect to a σ-finite product measure ν, as shown
in Equation (1.31),∫

A

π(xn|x−n)Pθn
n (x, B)dν(xn) =

∫
B

π(xn|x−n)Pθn
n (x, A)dν(xn), (1.31)

where dν(x) = dν(x1)× · · · × dν(xN ).
Finally, assume that all sampling chains are updated sequentially. Then the

overall transition of all N chains also satisfies detailed balance, with stationary
distribution π for all product sets A,B ∈ B(XN ). That is, Equation (1.32) is
satisfied, ∫

A

π(x)

∫
Pθn
n (x, B)dµ(θn|x−n)dν(x)

=

∫
B

π(x)

∫
Pθn
n (x, A)dµ(θn|x−n)dν(x), (1.32)

for all product sets A,B ∈ B(XN ).

The proof of Theorem 4 makes use of Tonelli’s Theorem, which is provided
by Theorem 5.
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Theorem 5 (Tonelli). (Billingsley, 1995, pp. 232–234) Let f be a non-negative
function on the product space X × Y with product measure µ × ν. Then Equa-
tion (1.33) holds,∫

f(x, y)d(µ× ν)(x, y) =

∫ ∫
f(x, y)dν(y)dµ(x) =

∫ ∫
f(x, y)dµ(x)dν(y).

(1.33)

Proof of Theorem 4. (Besag et al., 1995) Let A,B ⊆ XN be two measurable
subsets of the overall product space XN , where

A = A1 × · · · ×AN
B = B1 × · · · ×BN ,

and An, Bn are the projections of A and B, respectively onto the coordinate
subspace corresponding to the nth sampling chain. Also let A−n and B−n be
the projections of A and B, respectively onto the coordinate subspaces corre-
sponding to all but the nth sampling chain.

Factor π(x) into π(x−n)π(xn|x−n) and take π(xn|x−n) inside the inner in-
tegral. The left-hand side of Equation (1.32) is then expressed according to
Equation (1.34), ∫

A

π(x)

∫
Pθn
n (x, B)dµ(θn|x−n)dν(x)

=

∫
A−n

π(x−n)

∫
An

∫
π(xn|x−n)

× Pθn
n (x, B)dµ(θn|x−n)dν(xn)dν(x−n) (1.34)

Since π is a probability density and since Pθn
n is a probability measure for each

θn ∈ T , the integrand is non-negative. Therefore, by Tonelli’s Theorem (Theo-
rem 5), the order of integration of the inner two integrals may be swapped, to
give Equation (1.35),∫

A−n

π(x−n)

∫
An

∫
π(xn|x−n)

× Pθn
n (x, B)dµ(θn|x−n)dν(xn)dν(x−n)

=

∫
A−n

π(x−n)

∫ ∫
An

π(xn|x−n)

× Pn(x, B)dν(xn)dµ(θn|x−n)dν(x−n). (1.35)

Invoking the detailed balance of the nth sampling chain, Equation (1.35) is
further rewritten according to Equation (1.36),∫

A−n

π(x−n)

∫ ∫
An

π(xn|x−n)

× Pθn
n (x, B)dν(xn)dµ(θn|x−n)dν(x−n)

=

∫
A−n

π(x−n)

∫ ∫
Bn

π(xn|x−n)

× Pθn
n (x, A)dν(xn)dµ(θn|x−n)dν(x−n). (1.36)
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Note that, under a transition of sampling chain n, all other sampling chains
remain fixed. Since Pθn

n (x, B) = 0 for all x−n /∈ B−n, the integrand is zero on
A−n \ B−n. Therefore, Equation (1.36) may be further rewritten according to
Equations (1.37) and (1.38),∫

A−n

π(x−n)

∫ ∫
Bn

π(xn|x−n)

× Pθn
n (x, A)dν(xn)dµ(θn|x−n)dν(x−n)

=

∫
A−n∩B−n

π(x−n)

∫ ∫
Bn

π(xn|x−n) (1.37)

× Pθn
n (x, A)dν(xn)dµ(θn|x−n)dν(x−n).

=

∫
B−n

π(x−n)

∫ ∫
Bn

π(xn|x−n) (1.38)

× Pθn
n (x, A)dν(xn)dµ(θn|x−n)dν(x−n).

Observe that the right-hand side Equation (1.38) is just the right-hand side
of Equation (1.35), with the roles of A and B swapped. Therefore it may finally
be expressed according to Equation (1.39),∫

B−n

π(x−n)

∫ ∫
Bn

π(xn|x−n)

× Pθn
n (x, A)dν(xn)dµ(θn|x−n)dν(x−n)

=

∫
B

π(x)

∫
Pθn
n (x, A)dν(x). (1.39)

Thus, detailed balance is satisfied for all product sets A,B ∈ B(XN ).

Besag et al. (1995) implied that the result of Theorem 4 extends to more
general sets than product sets. This extension is a result of Dynkin’s π − λ
Theorem, which first requires definitions of π- and λ-systems. These systems
are formalised by Definitions 20 and 21.

Definition 20 (π-System). (Billingsley, 1995, pp. 41) Let Ω be a set of interest
and let P ⊆ 2Ω be a collection of subsets of Ω. If the intersection A ∩B of any
two sets A,B ∈ P is also in P, then P is a π-system. That is, if the following
condition is met,

A,B ∈ P =⇒ A ∩B ∈ P.
Definition 21 (λ-System). (Billingsley, 1995, pp. 41) Let Ω be a set of interest
and let L ⊆ 2Ω be a collection of subsets of Ω. If L contains

1. the complement of each of its elements,

A ∈ L ⇐⇒ Ac ∈ L,

2. all countable unions of disjoint elements,

((A1, A2, . . . ∈ L) ∧ ((Ai ∩Aj = ∅)∀i 6= j)) =⇒ ∪∞n=1An ∈ L,

3. and the generating space Ω,
Ω ∈ L,



1.2. MC THEORY 33

then L is a λ-system.

Dynkin’s π − λ Theorem is then formalised by Theorem 6.

Theorem 6 (Dynkin’s π − λ). (Billingsley, 1995, pp. 42) Let L be a λ-system
and let P be a π-system such that P ⊂ L. Then the σ-algebra generated by P
is contained within L. That is, σ(P) ⊂ L.

Finally, the extension of Theorem 4 will rely on the Monotone Convergence
Theorem for Integrals, which is stated in Theorem 7.

Theorem 7 (Monotone Convergence of Integrals). (Meyn and Tweedie, 1993,
pp. 522) Let (X ,B(X ), µ) be a measure space and let {fn}∞n=1 be a sequence of
µ-measurable functions fn : (X ,B(X )) → (R,B(R)) with limit f , as n → ∞,
such that it is monotonically increasing,

0 ≤ f1(x) ≤ f2(x) ≤ · · · ≤ f(x) ≤ 1,

for µ-almost every x ∈ X . Then the limit of the integral of fn as n → ∞ is
equal to the integral of its limit, f ,∫

X
f(x)dµ(x) = lim

n→∞

∫
X
fn(x)dµ(x).

With the Monotone Convergence Theorem and Dynkin’s π − λ Theorem
reviewed, the extension of Theorem 4 implied by Besag et al. (1995) follows
according to Theorem 8.

Theorem 8. Let (Ω1,F1) and (Ω2,F2) be measurable spaces and let (Ω,F) =
(Ω1×Ω2,F1×F2) be their product space. Also let P(x,A) be the probability of a
Markov transition from state x ∈ Ω into set A ∈ F . Then a probability measure
µ on F satisfies detailed balance,∫

A

P(x,B)dµ(x) =

∫
B

P(x,A)dµ(x),

for any µ-measurable sets A,B ∈ F if and only if it does so for any µ-measurable
sets of the forms A = A1 × A2 and B = B1 × B2, where A1, B1 ∈ F1 and
A2, B2 ∈ F2.

While Theorem 8 is a straightforward application of Theorems 6 and 7 to
product sets that satisfy detailed balance, to the best of the knowledge of the
author of this dissertation, its justification has not been outlined explicitly in
the literature. This elusive justification may be due to the simplicity of the ar-
gument, which is possibly taken for granted by everyone in the field. Therefore,
this argument is outlined in full in the following proof.

Proof. If detailed balance is satisfied for any A,B ∈ F , then it is, by definition,
satisfied for product sets A,B ∈ F , proving the “only if” part of the statement.

To prove the “if” part of the statement, first let R be the set of all product
sets in F . That is,

R := {A ∈ F : A = A1 ×A2;A1 ∈ F1;A2 ∈ F2}
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Therefore σ(R) = F , by the definition of a product σ-algebra. Observe that
R is a π-system. To see this, note that R contains at least the empty set,
which is trivially a product subset of F . Furthermore, if A,B ∈ R they may be
expressed as A = A1 × A2 and B = B1 × B2, respectively, where A1, B1 ∈ F1

and A2, B2 ∈ F2. Taking their intersection gives

A ∪B = (A1 ×A2) ∩ (B1 ×B2) = (A1 ∩B1)× (A2 ∩B2) ∈ R.

Therefore, R is a π-system.
Now let A be any set in R and let FA ⊆ F be the set of all sets B ∈ F that

satisfy detailed balance with respect to A,

FA :=

{
B ∈ F :

∫
A

P(x,B)dµ(x) =

∫
B

P(x,A)dµ(x)

}
.

Note that FA is a λ-system. To see this, recall that R ⊆ FA for all A ∈ R.
Therefore FA 6= ∅, since R is non-empty. Let B ∈ FA. Then∫

A

P(x,Bc)dµ(x) =

∫
A

P(x,Ω)dµ(x)−
∫
A

P(x,B)dµ(x).

Ω = Ω1×Ω2 is a product set, so it also satisfies detailed balance, by assumption.
Therefore, invoking detailed balance on each integral gives∫

A

P(x,Ω)dµ(x)−
∫
A

P(x,B)dµ(x) =

∫
Ω

P(x,A)dµ(x)−
∫
B

P(x,A)dµ(x)

=

∫
Bc

P(x,A)dµ(x),

so B ∈ FA ⇐⇒ Bc ∈ FA.
Now let B1, B2, . . . ∈ FA be a sequence of pairwise disjoint sets. Note that{

P
(
x,∪Nn=1Bn

)}∞
N=1

defines a sequence of µ-measurable functions with limit
P (x,∪∞n=1Bn) as N →∞, such that

0 ≤ P(x,B1) ≤ P(x,B1 ∪B2) ≤ · · · ≤ P (x,∪∞n=1Bn) ≤ 1.

Hence, by the Monotone Convergence Theorem for Integrals (Theorem 7),∫
A

lim
N→∞

P
(
x,∪Nn=1Bn

)
dµ(x) = lim

N→∞

∫
A

P
(
x,∪Nn=1Bn

)
dµ(x).

Since the Bn are pairwise disjoint, their probabilities add, giving
Equation (1.40),

lim
N→∞

∫
A

P
(
x,∪Nn=1Bn

)
dµ(x) = lim

N→∞

∫
A

N∑
n=1

P(x,Bn)dµ(x)

= lim
N→∞

N∑
n=1

∫
A

P(x,Bn)dµ(x). (1.40)

By definition, each Bn satisfies detailed balance with respect to A, giving

lim
N→∞

N∑
n=1

∫
A

P(x,Bn)dµ(x) = lim
N→∞

N∑
n=1

∫
Bn

P(x,A)dµ(x)
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=

∫
∪∞n=1Bn

P(x,A)dµ(x),

where the final equality again holds due to the pairwise disjoint nature of the
Bn. Taking the limit as N →∞ gives∫

A

P (x,∪∞n=1Bn) dµ(x) =

∫
∪∞n=1Bn

P(x,A)dµ(x).

Hence, all countable unions of disjoint sets in FA are also in FA, meaning
FA is a λ-system. By Dynkin’s π − λ Theorem (Theorem 6) σ(R) ⊆ FA ⊆ F .
Therefore, FA = F .

Now take any B ∈ F and let FB be the set of all sets in F that satisfy
detailed balance with respect to B. As just shown, every µ-measurable product
set in F satisfies detailed balance with any µ-measurable set in F . Therefore
R ⊆ FB .

Note that FB is also a λ-system. This result follows by an argument identical
to the one used to show that FA was a λ-system. Since R ⊂ FB , by Dynkin’s
π − λ Theorem (Theorem 6), σ(R) ⊂ FB . Once again, note that σ(R) = F , so
FB = F .

Therefore, detailed balance is satisfied for every A,B ∈ F .

1.2.4 Rates of Convergence to the Stationary Distribution

In practical applications it is not only important to guarantee that the values
in the generated Markov chain represent samples from the correct distribution,
as noted in Section 1.2.2, but also how efficient a sampler is at generating those
values. Since MCMC methods produce samples with autocorrelation, it may
take some time before the resulting chain sufficiently represents samples from the
stationary distribution; that is, before the distribution of the samples is within
some threshold distance from the stationary distribution, with respect to some
metric. Exactly how long this takes depends on the problem and the type of
sampler used. Determining this convergence rate is not easy (Rosenthal, 1995)
but, given appropriate conditions are satisfied, there are results that bound it.

One such bound is obtained when a Markov chain is uniformly ergodic.
Meyn and Tweedie (1993) showed, using the equivalence of Doeblin’s Condition
and the definition of uniform ergodicity, that the n-step transition kernel of a
uniformly ergodic Markov chain converges to the stationary distribution of the
chain at a rate bounded by a power of the measure of the complement of a
(small) subset of the state space, with respect to the measure νn that makes the
sets small. Their result is formalised by Theorem 9,

Theorem 9 (Geometric convergence of a uniformly ergodic Markov chain).
(Meyn and Tweedie, 1993, pp. 397) Let

{
X(t)

}∞
t=1

be a uniformly ergodic
Markov chain on X , where each set A ∈ B(X ) is small with respect to proba-
bility measure ν and the m-step transition probability Pm(x,A) satisfies Equa-
tion (1.41),

Pm(x,A) ≥ δν(A),∀x ∈ X , (1.41)

for some δ > 0.
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Then the total variation norm between the chain’s invariant measure π and
its probability of an n-step transition from any x ∈ X is bounded above by the
size of the complement of the entire state space, according to Equation (1.42),

‖Pn(x, ·)− π‖ ≤ [1− δν(X )]n/m. (1.42)

This property of uniform ergodicity was used by Mengersen and Tweedie
(1996) to provide conditions for the uniform ergodicity and, hence, geometric
convergence of the transition kernel of the Metropolis and independent Hastings
samplers. See Section 1.3 for a discussion of these samplers.

Specifically, for an independent Hastings sampler, that is, one where the
proposal density g(y) is independent of the current state x of the chain (cf.
Section 1.3.1), they provided Theorem 10.

Theorem 10. Let g be the proposal density of an independent Hastings algo-
rithm and let π be the target density. If there is a uniform ratio β > 0 such that
Equation (1.43) is satisfied for all x ∈ X ,

g(x)

π(x)
≥ β, (1.43)

then the Markov chain generated by the algorithm is uniformly ergodic.

They also showed that, in R, a Markov chain, generated using a Metropolis
algorithm with a symmetric proposal density g(x, y) from state x to state y satis-
fying g(x, y) = g(y−x) = g(x−y), converges geometrically if the tails of the tar-
get distribution are exponentially-decreasing and the symmetric proposal den-
sity also has a “finite absolute first moment”. In R, exponentially-decreasing in
the tails means that the target π satisfies Equation (1.44)
(Mengersen and Tweedie, 1996),

log π(x)− log π(y) ≥
{
α(y − x) if y ≥ x ≥ z
α(x− y) if y ≤ x ≤ z, (1.44)

where α > 0 and z ∈ R are constants.
Conditions for geometric convergence of the n-step transition kernel of a

Markov chain generated using a Gibbs sampler to its stationary distribution
have also been provided by Chan (1993).

1.2.5 Assessing Convergence and Mixing

If the Markov chain generated by an MCMC sampler is ergodic it eventually
forgets its initial state and, regardless of where it was started, the stationary
distribution will be the same (cf. Section 1.2.2). However, given the inherent
dependence of one Markov chain state on the one immediately preceding it, it
is reasonable to assume that the samples generated by an MCMC simulation
will exhibit autocorrelation. However, note the definition of the lag-τ autocor-
relation of the dth univariate marginal of a stationary p-dimensional Markov
chain {X(t)}∞t=1, which is given in Equation (1.45) (Madras and Slade, 1996,
pp. 296–297),

Corrτ (Xd) =
Ĉov

[
X

(t)
d , X

(t+τ)
d

]
V̂ar

[
X

(t)
d

] ∈ [−1, 1], (1.45)
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where Ĉov
[
X

(t)
d , X

(t+τ)
d

]
is the estimated covariance between the stationary

chain at times t and t + τ , and V̂ar
[
X

(t)
d

]
is the estimated variance of the

stationary chain.
Provided the correlation between any two successive samples is not perfect

(+1), the autocorrelation must diminish with the time lag τ between two sub-
sequences of the Markov chain, as evidenced by Equation (1.45).

The size of this autocorrelation determines how long the generated chain
must be run in order for estimates made from it to achieve a desired level of
precision. This property of the chain may be quantified by the related con-
cepts of integrated autocorrelation time and the effective number of samples
(cf. Section 1.2.5). Furthermore, the early portions of a Markov chain may
have behaviour that differs significantly from the long term behaviour of the
chain (Gelman et al., 2004, pp. 294).

Therefore, in MCMC simulations, it is customary to discard this initial part
of the chain in a practice called burn-in (Gelman et al., 2004, pp. 295). The
question is how long must the burn-in period be? This is not a straight-forward
quantity to know a priori, so various diagnostics have been developed to assist
MCMC practitioners with this task. These so called convergence diagnostics are
used to determine if the inferred distribution of the chain of samples generated
up to a particular time is significantly different from the stationary one. Hence,
they are used to diagnose non-convergence of the Markov chain.

The following is a brief look at some common convergence diagnostics.

Geweke’s Convergence Diagnostic

Geweke’s convergence diagnostic (Geweke, 1991) considers the output of a single
sequence of MCMC samples. It compares the mean value of an initial portion
of the sequence to a later portion. If the two have the same mean to a chosen
level of precision then convergence is not ruled out.

Gelman and Rubin’s Convergence Diagnostic

Gelman and Rubin’s convergence diagnostic (Gelman and Rubin, 1992) is de-
signed to measure convergence of a simulation involving independent parallel
sampling chains. The diagnostic works by comparing the average variance of
the sample average within each sampling chain to the variance of the sample
average between the chains. Specifically, following the notation of Gelman et al.
(2004, pp. 296), the within-chain variance W of the average of a quantity ψ is
given by Equation (1.46) and the between-chain variance B is given by Equa-
tion (1.47).

W =
1

N(T − 1)

T∑
t=1

N∑
n=1

[
ψ(t)
n − ψ̄n

]2
. (1.46)

B =
T

N − 1

N∑
n=1

[
ψ̄(t)
n − ψ̄

]2
, (1.47)

where ψ
(t)
n , ψ̄n and ψ̄ are the tth sample of chain n, the MC average of chain

n and the MC average over all chains in a simulation with N sampling chains
and T iterations (Gelman et al., 2004, pp. 296).
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Using these two quantities, an overestimate of the variance of ψ is computed
according to Equation (1.48),

ŝ+ =
1

T − 1
W +

1

T
B. (1.48)

This variance overestimate is useful to bound the variance of ψ when it is
computed from correlated samples.

To assess convergence, the diagnostic of Gelman and Rubin (1992) computes
the potential scale reduction factor (PSRF), which is given in Equation (1.49),

PSRF =

√
V̂

W

(
ν

ν − 2

)
, (1.49)

where

V̂ = ŝ+ +
B

NT
,

and ν is the degrees of freedom of the Student’s t distribution approximation of
the distribution of the samples.

The degrees of freedom is given by Equation (1.50)

ν = 2
V̂ 2

V̂ar
(
V̂
) , (1.50)

where, by letting

s2
n =

1

T − 1

T∑
t=1

[
ψ(t)
n − ψ̄n

]2
be the sample variance of the nth chain, Gelman and Rubin (1992) derived the

sampling variance V̂ar(V̂ ) of V̂ to be

v̂ar
(
V̂
)

=
1

N

(
T − 1

T

)2

V̂ar
(
s2
n

)
+

2

N − 1

(
N + 1

NT

)2

B2 + 2
(N + 1)(T − 1)

N2T

×
[
Ĉov

(
s2
n, ψ̂

2
n

)
− 2ψ̄Ĉov

(
s2
n, ψ̄n

)]
,

where V̂ar(·) and Ĉov(·, ·) represent the estimated/sampling variance and co-
variance, respectively, of the quantities enclosed in the parentheses, over the N
sampling chains.

Brooks and Gelman (1998) noted, however, that the ratio ν/(ν−2) in Equa-
tion (1.50) was incorrect and provided the correct potential scale reduction fac-
tor given in Equation (1.51)

PSRF =

√
V̂

W

(
ν + 3

ν + 1

)
. (1.51)

Brooks and Gelman (1998) also provided a number of alternative approaches
to assessing convergence that were based on the potential scale reduction factor,
including a multivariate version of the diagnostic.
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To assess convergence, the PSRF should be plotted over time to see its
evolution with the simulation. When it remains sufficiently close to 1 it is safe
to assume that the generated Markov chain has reached stationarity.

Note that the preceding convergence diagnostic assumes that the generated
chains of samples converge in distribution to the target. To avoid this assump-
tion, Gorham and Mackey (2015) introduced a convergence diagnostic, based
on Stein’s method (Stein, 1972), which has the ability to explicitly detect con-
vergence againt a target density. However, despite the more robust nature of
their diagnostic, it is considerably more involved. Therefore, the diagnostic of
Gorham and Mackey (2015) was not utilised in the numerical studies presented
in Part II of this dissertation.

Integrated Autocorrelation Time

Another method for assessing convergence of a variable it to study the evolu-
tion of its integrated autocorrelation time (IAT), which estimates the average
distance between uncorrelated samples in a chain. By recording all samples
x = [x(t0), . . . , x(T+t0)] in a simulation of length T starting at time t0 one uses
(1.52) to determine the IAT (Madras and Slade, 1996, pp. 296–297).

IAT =
1

2
+

∞∑
t=1

Corrt(x) (1.52)

where Corrt(x) is the lag-t autocorrelation of x.
Once this quantity remains constant within a chosen level of tolerance it

may be assumed that the variable has converged in distribution.
As in the case of Gelman and Rubin’s diagnostic it is possible to use the

IAT of a simulation to determine the effective number of independent sam-
ples (Madras and Slade, 1996, pp. 297). This is achieved by simply dividing
the true number of samples by twice the IAT, as in Equation (1.53),

Neff =
N

2IAT
. (1.53)

1.3 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods represent a subclass of MC meth-
ods, in which each sample produced is dependent on the one immediately pre-
ceding it (Gelman et al., 2004, pp. 286). This section describes the development
of MCMC methods starting with two important examples. These two examples
are the Metropolis-Hastings (MH) sampler and the Gibbs sampler.

In addition to descriptions of these two methods, their validities are consid-
ered, and reviews of important results provided.

1.3.1 Metropolis-Hastings Sampling

A widely-used class of MCMC methods was introduced by Metropolis et al.
(1953). In their paper, the authors proposed a method to generate a Markov
chain, whose limiting distribution is the target distribution. The method, which
has come to be known as the Metropolis algorithm (Betancourt, 2019), first pro-
poses a sample from a distribution that can be sampled directly, before accepting
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or rejecting it using a ratio based on the target densities at the current and pro-
posed states of the Markov chain. The distribution used to propose samples in
the Metropolis algorithm is symmetric but it was later extended by Hastings
(1970) to asymmetric proposal distributions, using a suitable modification of
the sampler’s acceptance criterion.

Motivation

Metropolis et al. (1953) were interested in solving the state equations of an
interacting particle system. They justified their new approach by considering a
collection of N particles on a square with periodic boundary conditions. The
authors argued against a näıve MC approach consisting of taking the weighted
sum of a function evaluated at randomly-selected points on the square in order
to compute the expectation of that function. In particular, for close-packed
configurations, they noted that there is a high probability of randomly selecting
points of low density, leading to an overall configuration of low weight. This, in
turn, results in inaccurate estimation of the expectation being sought.

Instead, Metropolis et al. (1953) suggested selecting the points based on
their densities under the target of interest and weighting them equally.

Description of the Metropolis Sampler

The method of Metropolis et al. (1953) generates a Markov chain whose sta-
tionary distribution is the target. In the case of Metropolis et al. (1953) this
target was the Boltzmann distribution over configurations of the N particles
within the state space.

Each iteration of the algorithm begins by proposing a sample from a sym-
metric density g that can be sampled directly, as in Equation (1.54),

y ∼ g(·|x,θ). (1.54)

In Equation (1.54) the vector of parameters θ of g has been explicitly stated in
order to highlight its importance in the current study.

The symmetry of g means that the density associated with a move from
state x to state y is the same as that of a move from state y to state x. This
situation is described by Equation (1.55),

g(y|x,θ) = g(x|y,θ). (1.55)

In particular, Mengersen and Tweedie (1996) studied a proposal distribution
that can be written g(|y−x||θ) (cf. Section 1.2.4), which determines the size of
a jump, relative to the current state x of the Markov chain to a proposed state
y, regardless of the current state. As noted by Mengersen and Tweedie (1996),
such a proposal distribution is trivially symmetric.

Metropolis et al. (1953) noted that this proposal distribution must have
positive support on the entire state space, so as to ensure ergodicity (cf. Sec-
tion 1.2.2) of the method and that the stationary distribution is indeed the tar-
get. In their illustration of the method they moved each of the N particles one
at a time, proposing a new position from a uniform distribution centred about
the current one, with the allowable moves in each dimension chosen within some
maximum distance from the current position.
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Once a new state has been proposed, the sampler then uses the ratio of the
target density π at the proposed state to the target density at the current state
to compute the probability of accepting the proposed move. For their inter-
acting particle model, an individual state was the configuration of the particles
(Metropolis et al., 1953). If the ratio is greater than one, indicating that the
new state has a higher density under the target than the current one, then ac-
ceptance is guaranteed. Otherwise the move is accepted with probability equal
to the ratio. This acceptance ratio is summarised in Equation (1.56),

α(x, y) = min

{
1,
π(y)

π(x)

}
. (1.56)

If the proposed move is accepted at the current time step then the Markov chain
is updated to the proposed value. Otherwise the chain remains at its current
state. However, Metropolis et al. (1953) emphasised that the Markov chain
produced by the method must repeat the current state if a proposed move is
rejected, in order to preserve the stationary distribution.

Independence Sampling and Random Walk Sampling

The previous section discussed the Metropolis sampler in the context of a ran-
dom walk. By considering moving particles, Metropolis et al. (1953) necessarily
conditioned the proposed position of a particle on its current one, as demon-
strated by the dependence exhibited in Equation (1.54).

While a random walk had a physical justification in the work of Metropo-
lis et al. (1953), in other problems, a random walk may not be suitable. In
situations where the current state has no bearing on a proposed one, a pro-
posal density that is constant with respect to the current state of the Markov
chain may be more appropriate. Such lack of a proposed state on the cur-
rent one describes an independence sampler, whose proposal density resembles
Equation (1.57),

g(·|x,θ) = g(·|θ). (1.57)

This distinction between independence and random walk samplers is im-
portant as it is fundamental to the ideas developed in Part II of the current
dissertation.

Hastings’ Extension to Asymmetric Proposals

The condition of the Metropolis proposal distribution being symmetric is rather
restrictive and care must be taken to ensure that it is satisfied when using the
Metropolis sampler. Hastings (1970) overcame this restriction by introducing
an extension of the Metropolis sampler that weakens the assumptions on the
proposal distribution. That is, Hastings’ sampler works with an asymmetric pro-
posal distribution. With this weaker assumption, Equation (1.54) is no longer
satisfied and a modified acceptance ratio must be used to account for this dif-
ference. Equation (1.58) provides the acceptance ratio introduced by Hastings
(1970), which allows the use of an asymmetric proposal distribution,

α(x, y) = min

{
1,
π(y)

π(x)
· g(x|y,θ)

g(y|x,θ)

}
. (1.58)
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Note that when the proposal distribution is symmetric, the second fraction is
equal to 1, giving the Metropolis acceptance ratio.

Algorithm A.5 describes this general MH sampler, of which the Metropolis
sampler is a specific case when the proposal distribution is symmetric.

Stationary Distribution

The Metropolis and Hastings algorithms each induce a Markov process. As with
any such process it is important to ascertain its limiting properties. Specifically,
the chain needs to be ergodic (cf. Section 1.2.2) and its stationary distribution
(cf. Section 1.2.1) needs to be the desired target.

Assume that the target distribution π, with support X , admits a density,
which shall also be denoted by π. Also assume that an appropriate proposal
density g(y|x,θ), whose support includes X , is used.

Chib and Greenberg (1995) noted that for an accept/reject MCMC sampler,
such as MH, the transition kernel from state x ∈ X into some π-measurable set
A ∈ B(X ) in the Borel σ-algebra B(X ) of X considers both accepted moves
into A and, if x ∈ A, any rejected moves. Thus, the transition kernel may be
written,

P(x,A) =

∫
A

pθ(x, y)dy + IA(x)

[
1−

∫
X
pθ(x, y)dy

]
, (1.59)

where IA(x) = 1 if x ∈ A and 0 otherwise, and pθ(x, y) represents the density
associated with an accepted move from state x to state y.

The form of pθ for an MH sampler is given by Equation (1.60),

pθ(x, y) = g(y|x,θ) min

{
1,
π(y)

π(x)
· g(x|y,θ)

g(y|x,θ)

}
, (1.60)

which Chib and Greenberg (1995) noted, satisfies detailed balance (cf. Section
1.8.3 for a discussion of detailed balance) with the target density π, by design,
according to Equation (1.61),

π(x)g(y|x,θ) min

{
1,
π(y)

π(x)
· g(x|y,θ)

g(y|x,θ)

}
= π(y)g(x|y,θ) min

{
1,
π(x)

π(y)
· g(y|x,θ)

g(x|y,θ)

}
. (1.61)

In general, Chib and Greenberg (1995) showed that if pθ satisfies detailed
balance, then π is invariant with respect to the transition kernel of Equa-
tion (1.59). This result is given by Theorem 11.

Theorem 11. Let π denote a target distribution of an accept/reject MCMC
sampler, such as MH, on a state space X . Assume that π admits a density,
which shall also be denoted by π. Let pθ(x, y) denote the density associated with
an accepted move from state x to state y and assume that it satisfies detailed
balance with π, so that

π(x)pθ(x, y) = π(y)pθ(y, x).

Then π is a stationary distribution of the generated Markov chain.
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Proof. (Chib and Greenberg, 1995) Consider the effect on π of a transition
P(x,A) from any x ∈ X into a π-measurable set A ⊆ X∫

X
π(x)P(x,A)dx, (1.62)

Substituting Equation (1.59) into Equation (1.62) gives∫
X
π(x)P(x,A)dx =

∫
X
π(x)

∫
A

pθ(x, y)dydx

+

∫
X
IA(x)

[
1−

∫
X
pθ(x, y)dy

]
dx.

Observing that all densities are non-negative, allowing Tonelli’s Theorem
(cf. Section 1.8.3) to be used to swap the order of integration, the first integral
on the right-hand side may be rewritten as∫

X
π(x)

∫
A

pθ(x, y)dydx =

∫
A

π(y)

∫
X
pθ(y, x)dxdy.

Observe that multiplyng the integrand of the second integral by IA(x) is
equivalent to integrating over A,∫

X
IA(x)π(x)

[
1−

∫
X
pθ(x, y)dy

]
dx

=

∫
A

π(y)

[
1−

∫
X
pθ(y, x)dx

]
dy,

where the last equality takes advantage of the fact that swapping the roles of x
and y does not change the integral.

Putting together these two equations back together gives∫
X
π(x)P(x,A)dx =

∫
A

π(y)

∫
X
pθ(y, x)dxdy

+

∫
A

π(y)

[
1−

∫
X
pθ(y, x)dx

]
dy

=

∫
A

π(y)dy.

Hence, the target density π is invariant under MH transitions.

Corollary 1. Metropolis transitions between states x and y satisfy detailed
balance, with the target π being a stationary distribution of the induced Markov
chain.

Proof. It is clear that the Metropolis algorithm is a special case of the MH
algorithm, where g is a symmetric proposal. Hence, the Metropolis sampler
admits the target π as its stationary distribution.

Clearly an issue arises if both g(x|y,θ) and g(y|x,θ) are zero in Theorem 11,
as their ratio is then undefined. However, Roberts and Smith (1994) provided
conditions that avoid this issue and which ensure ergodicity of the Markov chain,
with π as its unique stationary distribution.
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They showed that if g (without an accept/reject mechanism) results in an
aperiodic and π-irreducible Markov chain (cf. Section 1.2.2) and if g(x|y,θ) = 0
if and only if g(y|x,θ) = 0, then the Markov chain induced by the MH sampler
(i.e. with the accept/reject mechanism) is also aperiodic and π-irreducible. As
discussed in Section 1.2.2, the conditions of aperiodicity and π-irreducibility are
sufficient for such a process to result in an ergodic Markov chain. Roberts and
Smith (1994) explained that such conditions are easy to implement in practice.

1.3.2 Gibbs Sampling

The second of the two foundational MCMC samplers reviewed in this section is
Gibbs sampler. This sampler was introduced by Glauber (1963) in the context
of sampling spins on a regular lattice and independently by Geman and Geman
(1984) as a means of sampling from the posterior distribution in a Bayesian
image restoration model. The case studied by Glauber (1963) is discussed in
Section 2.3.4, as part of the review of spin glasses, while the current section is
devoted to the more general framework of Geman and Geman (1984).

As in the review of the MH sampler, this section begins by reviewing the
motivation of the Gibbs sampler’s development, before describing its general
implementation.

Motivation

Geman and Geman (1984) were interested in the problem of image restoration.
Given a degraded image represented by a lattice of pixel intensities, they wished
to infer the maximum a posteriori (MAP) estimate of the original undegraded
image. To do so they used a combination of “stochastic relaxation” and an
annealing schedule to generate a Markov chain that converged to the MAP
estimate of the original image, given a degraded input image. The annealing
schedule was used to increase the peakedness of the target distribution over the
course of a simulation (cf. Section 1.4.2 for a discussion of its use).

Geman and Geman (1984) noted that the relatively large size of the space
of possible images, compared to the small number of significant mass images,
prohibited näıve updating of the generated Markov chain by sampling a full
image each time. Therefore, they used a simpler approach of updating the state
of each lattice individually, based on the current states of all other lattice sites.
Their justification was that the conditional distributions are usually easier to
sample than the full posterior. In fact, for the image restoration model that they
employed, the conditional distribution of the state of each lattice site could be
sampled directly. As such, there was no need for the use of acceptance ratios
as is the case for MH sampling. This conditional sampling is the heart of the
Gibbs sampler.

While their method was originally developed for the discrete state-space
problem of image restoration, its applicability has successfully been extended
to problems in which the state space is not discrete but in which conditional
distributions of the target are still known. Such examples include the latent vari-
able approach of Tanner and Wong (1987), which essentially describes a Gibbs
sampler on a two-dimensional Euclidean state space, and the generalisation of
that approach to Euclidean state spaces of higher finite dimension, provided by
Gelfand and Smith (1990).
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Description

Let X be the p-dimensional state space on which the target distribution π is
defined, and let S = ∪Nn=1Sn be a partition of {1, . . . , p} into N subsets.

In the general case (Gelman et al., 2004, p. 284), for a target distribu-
tion, represented by the scalar quantity π(x), with x ∈ X , whose conditional
distributions,

π
(
{xi}i∈Sn

∣∣∣{xi}i∈S\Sn

)
can be sampled directly, the Gibbs sampler updates each {xi}i∈Sn

one at a
time from its conditional distribution, with the current state of all the other
components held fixed. That is,

xi ∼ π
(
·
∣∣∣{xi}i∈S\Sn

)
.

Geman and Geman (1984) noted that the sampler could be made to run in
parallel but did not demonstrate this in their paper, due to the necessary hard-
ware being unavailable to them at the time. If some parts of x are independent
of others then this independence can be exploited to update separate parts in
parallel.

Algorithm A.6 of Appendix A outlines the general form of the Gibbs sampler.

The Gibbs sampler has since seen further developments, particularly in the
aforementioned cases of Tanner and Wong (1987) and Gelfand and Smith (1990),
which extended it to problems outside of image restoration and processing.

The Gibbs sampler has also been combined with MH sampling in cases where
direct sampling from the conditional distributions is not possible (Müller, 1991,
1993). In these cases one or more conditional distributions are sampled using a
MH sampler, to give what is called a Metropolis-within-Gibbs scheme (Robert
and Casella, 2004, pp. 393).

Ergodicity

Since the transition kernel in a Gibbs sampler is not constant, Geman and
Geman (1984) were unable to use the same approach as Metropolis et al. (1953)
to prove ergodicity of the resultant Markov chain. For their image restoration
application, they did, nonetheless, show that their method produces an ergodic
Markov chain with the target as its stationary distribution.

In Theorem C of Geman and Geman (1984) the authors stated, without
proof, the ergodicity of the Gibbs sampler for image restoration. In Theorem
A of Geman and Geman (1984) they noted that if each site of the lattice in an
image restoration model is visited infinitely often using the Gibbs sampler, then
the limiting probability of any particular configuration is equal to the density
of that configuration under the target. The proof of Theorem A is considerably
more involved than the proof of detailed balance of the MH sampler and the
reader is directed towards the appendix of the original paper for its details.

Theorems A and C of Geman and Geman (1984) are specific to applications
substantially similar to image restoration. However, Chan (1993) and Roberts
and Smith (1994) provided conditions that guarantee ergodicity in more general
applications, as well as conditions that guarantee geometric ergodicity of the
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induced Markov chain. In particular, the conditions given by Roberts and Smith
(1994) are easy to implement in practice.

Roberts and Smith (1994) showed that for a discrete target π it is sufficient
for a Gibbs transition kernel to result in a π-irreducible Markov chain in order
for it to converge pointwise to π. They also provided another set of conditions
to ensure ergodicity of the Markov chain generated by Gibbs sampling.

Specifically, Roberts and Smith (1994) showed that for a probability space
whose underlying measure is Lesbegue, if the target is lower semicontinuous
at 0, has connected support and the integral

∫
π(x)dxi over each block i of

simultaneously-updated coordinates of x forms a locally bounded family, then
pointwise convergence of the transition kernel to the target and, hence, ergodic-
ity of the Markov chain, is guaranteed. For definitions of “connected”, “locally
bounded” and “lower semicontinuous” see, for example, Tao (2006, pp. 430),
Conway (1978, pp. 153) and Dixmier (1984, pp. 77–78), respectively. For a
discussion of aperiodicity and π-irreducibility see Section 1.2.2.

As seen in Section 1.2, the concept of geometric ergodicity has important
implications on the rate of convergence of the transition kernel to the stationary
distribution.

1.4 Targeting Distributions with Multiple Local
Maxima

In many practical uses of MC and MCMC methods, the state space may have
multiple local maxima. One such situation has already been mentioned in the
motivation of Geman and Geman (1984), who noted that an image restoration
model may have many local maxima. Other important examples include the
energy landscapes of spin glass models (cf. Section 2.3) or the rough “funnel”
of a protein’s conformational landscape (Onuchic et al., 1995).

1.4.1 The Problem

Target distributions with many local maxima present a problem because the
high density regions are separated by low density ones. When sampling from
such a distribution, an MCMC sampler must traverse these low density regions
in order to sample all regions of significant mass.

As the samples generated in an MCMC procedure are realisations of a
Markov chain, there is an inherent dependence between successive samples.
Chains with high autocorrelations will have a low effective sample size (Gelman
et al., 2004, pp. 298). Consequently, a large number of samples may be required
before the stationary distribution is adequately represented.

Another concern is the issue of burn-in. Due to the aforementioned autocor-
relation, the starting position of the chain will affect early samples. To reduce
the impact of the starting position on quantities inferred from the chain, it is
beneficial to discard an early portion of them (Gelman et al., 2004, pp. 295).
High autocorrelations lead to a stronger effect, so a larger number of samples
must be discarded for the remainder to be sufficiently uncorrelated with the
starting position.

Recall the fractional component of the MH acceptance ratio given in Equa-
tion (1.58), for a transition from state x to state y under the target distribution
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Figure 1.2: A näıve implementation of an MH independence sampler with a
normal proposal distribution, applied to a target distribution on R with two local
maxima. Note that one proposal distribution (dashed line) places significant
mass on the low density region between local maxima, while the other (dotted
line) places most mass around one local maximum and very little around the
other.
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π(y)

π(x)

/
g(y|x,θ)

g(x|y,θ)
(1.63)

where θ represents the parameters of g.

The focus of Part II of this dissertation will be on an independence sampler,
in which Equation (1.63) simplifies to Equation (1.64),

π(y)

π(x)
· g(x|θ)

g(y|θ)
=
π(y)

π(x)

/
g(y|θ)

g(x|θ)
(1.64)

In this case, it is clear that the closer that g is to π in distribution, the closer
the outer fraction in Equation (1.64), and hence, the acceptance ratio, is to 1.
However, if g differs greatly from π then the probability of proposing states with
low density with respect to π may be high, resulting in them being likely to be
rejected. Obviously, such rejections are wasteful and lead to slow movement of
the Markov chain throughout the state space due to long periods of no change
in its state.

Now consider the simple example of a normal mixture target on R with
component centres x = −3 and x = 3, as demonstrated by the solid line in
Figure 1.2. The dashed line in Figure 1.2 shows a näıve proposal distribution
for an MH independence sampler. This proposal is a single normal distribution
centred at the global mean of the target and with variance σ2. It covers both true
local maxima equally. However, it places greatest mass on the region between
the local maxima, where the target density is low. As such, the majority of



48 CHAPTER 1. MC AND MCMC THEORY

proposed moves will be rejected due to their low density under the target. These
rejections will lead to the sampler moving slowly through the state space.

An alternative approach for this independence sampler is to place the mean
of the proposal distribution at one of the true local maxima of the target. For
example, it may be placed at the leftmost local maximum (dotted line). While
the sampler has a high chance of proposing and accepting moves around this
local maximum, there is a low probability of proposing states around the second
local maximum, due to the low mass assigned to it by the proposal.

Clearly neither of the discussed proposal distributions can effectively capture
the shape of the target distribution on their own, which leads to inefficient
exploration of the state space and a Markov chain with large autocorrelation.

Recall from Section 1.2.5 that the lag-τ autocorrelation of the dth univariate
marginal of a stationary p-dimensional Markov chain

{
X(t)

}∞
t=1

, is given by
Equation (1.65) (Madras and Slade, 1996, pp. 296–297),

Corrτ (Xd) =
Ĉov

[
X

(t)
d , X

(t+τ)
d

]
V̂ar

[
X

(t)
d

] ∈ [−1, 1], (1.65)

where Ĉov
[
X

(t)
d , X

(t+τ)
d

]
is the estimated covariance between the stationary

chain at times t and t + τ , and V̂ar
[
X

(t)
d

]
is the estimated variance of the

stationary chain.

The closer the autocorrelation is to zero, the more efficient the process.

If the sampler is an independence sampler, in which the location of the
proposal distribution does not depend on the current state of the sampling
chain, then the most likely states to be proposed are those around the peak of
the proposal distribution. In the case of the proposal density represented by the
red dashed line, this peak is centered at a position where the target density is
very low. If the current state of the Markov chain is in one of the peaks of the
target but the proposed state is in the peak of the proposal then π(y)/g(y|θ)
will be low and g(x|θ)/π(x) << 1, resulting in their product being even lower.
Since such values of y are the most likely to be proposed, such a low acceptance
scenario will be very likely.

Now consider a random walk, in which the proposal distribution is centred
on the current state—which is again taken to be in one of the two larger peaks of
the target. There still exists the problem of some states that have low acceptance
probability being likely proposal candidates but there is now also another issue:
the probability of proposing a state in the larger peak on the opposite side of the
target is very low. This means that, while high-probability moves are proposed,
they will tend to be in the vicinity of the proposal density’s maximum. Even
though the resulting acceptance rate will be high, it may be a long time before
the other peak of the target is visited by the sampling chain.

In all three cases just discussed, the resulting chain of states will mix (move
about the state space) slowly and exhibit strong autocorrelation. This high
autocorrelation is the result of successive states being the same, due to either
low acceptance probabilities or small accepted moves relative to the current
state of the chain.
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1.4.2 An Important Metaheuristic

One approach to reducing the aforementioned difficulty in passing through low-
density regions of the state space into high-density ones is to flatten the dis-
tribution, thereby reducing the barrier between local maxima and, hence, the
difficulty of switching between them.

Simulated annealing (SA) is a metaheuristic independently introduced by
Kirkpatrick et al. (1983) and Černý (1985) . It is similar to MCMC in that it
generates a chain of values that is driven by an underlying function, although
it has a different goal. Instead of sampling from a probability density, it aims
to find the global optimum of a rough function. That is, one with many local
optima.

To avoid becoming trapped in local minima, SA employs a series of temper-
atures Tmax = ∞ > T1 > · · · > TN = Tmin. The choice of the intermediate
temperatures between Tmax and Tmin, as well as the rate at which the optimisa-
tion process progresses from one temperature to the next, depends on a cooling
schedule, which determines the spacing between temperatures. This cooling
schedule is dependent on the target function π : X → R being optimised.

SA concerns target functions that can be expressed as Boltzmann distribu-
tions, with energy function h, as demonstrated in Equation (2.5),

πT (x) =
1

ZT
exp

[
−h(x)

T

]
, (1.66)

where ZT is the partition function, which serves to normalise πT , and is defined
by Equation (1.67)

ZT =

∫
X
πT (x)dx. (1.67)

The roughness of the target at a given step of SA is dependent on the
temperature, with higher temperatures leading to distributions with smaller
variation in the heights of their local maxima. As the temperature is lowered
and the distribution becomes more peaked, the chance of becoming trapped
in a local minimum increases. However, it was shown by Geman and Geman
(1984) that if the cooling is sufficiently slow then the method is guaranteed to
reach the global optimum. Unfortunately, to determine the optimum cooling
rate is not a straightforward problem and even if found it may be too slow to
be of use to the MCMC practitioner. Geman and Geman (1984) encountered
this problem in their image restoration application where they found that the
theoretical cooling rate that would guarantee the correct MAP estimate was too
slow to be used in practice.

SA is summarised in Algorithm A.7 of Appendix A.
This method has inspired temperature-based MC and MCMC methods, such

as population annealing, parallel tempering and equi-energy sampling, all of
which will be discussed in Section 1.4.3.

1.4.3 Methods that Use Multiple Temperatures

The following methods all have the same motivation as simulated annealing.
That is, they all take advantage of a range of temperatures to enable more
effective exploration of the state space. However, the objective of these methods
is not optimisation of a function but rather the generation of samples from a
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probability distribution. The three methods reviewed in this section are the
MCMC approaches of equi-energy sampling and parallel tempering and the MC
method of population annealing.

Parallel Tempering

A method that has seen much use in estimating quantities of interest, includ-
ing in spin glass research (Contucci and Giardinà, 2013, pp. 165), is that of
parallel tempering (PT), which was developed independently by Geyer (1991)
and Hukushima and Nemoto (1996). PT involves the use of multiple simultane-
ous instances of the same canonical target distribution πT (x) = exp[−h(x)/T ]
simulated at different temperatures.

The use of multiple instances or “replicas” was pioneered by Swendsen and
Wang (1986) as a means to accelerate simulation of spin glasses, an impor-
tant application in statistical mechanics (cf. Section 2.3). They achieved this
acceleration by coupling the replicas using an appropriate scheme, and justi-
fied their use by noting that in the statistical mechanics literature, functions
of interest need to be evaluated at multiple temperatures. Just as in SA, the
higher-temperature replicas enable faster exploration of the state space, while
the lower-temperature replicas highlight finer details of the target.

PT was formalised as Metropolis-coupled Markov chain Monte Carlo by
Geyer (1991), for maximum-likelihood estimation and independently as ex-
change Monte Carlo by Hukushima and Nemoto (1996), for simulating dis-
ordered systems.

Instead of coupling replicas explicitly, PT first simulates each one inde-
pendently and then uses a “replica exchange” mechanism to potentially swap
randomly-selected pairs of replicas. Geyer (1991) attempted the swap after each
iteration, while Hukushima and Nemoto (1996) did so less frequently.

The replica exchange mechanism involves a Metropolis move with the general
odds ratio given by Geyer (1991) in Equation (1.68) to determine the probability
of swapping thermally-neighbouring replicas n and m,

pswap(n,m) = min

{
1,
πn(xm)

πn(xn)
· πm(xn)

πm(xm)

}
, (1.68)

where πn and xn represent the target density and the state, respectively, of
replica n and πm and xm represent those of replica m. Hukushima and Nemoto
(1996) suggested swapping neighbouring states since the probability of a swap
diminishes with the temperature difference between them. They also suggested
guidelines for determining the temperatures T0, . . . , TN of the N + 1 replicas.

PT produces N + 1 sampling chains, each with the stationary distribution
equal to the target distribution, albeit at a different temperature. The form
of the target distribution of the nth replica is the same as the modified target
function of simulated annealing, given in Equation (1.66). Therefore, the model
being simulated needs to be able to be expressed in terms of an energy function
h.

PT is summarised in Algorithm A.8 of Appendix A.
The preceding method makes use of a temperature to flatten the target distri-

bution. An interesting application of this approach is that of prior parallel tem-
pering (PPT), which was introduced by van Havre et al. (2015) to aid in fitting
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a finite mixture model to observed data. By assuming a mixture model, with
kernel f , on a set y = {yn}Nn=1 of observations according to Equation (1.69),

p(y|w,θ) =

N∏
n=1

K∑
k=1

wkf(yn|θk), (1.69)

their goal was to sample component weights w = {wk}Kk=1 and component

parameters θ = {θk}Kk=1 from their posterior distribution p(w,θ|y), given the
observations. To increase applicability of their approach, they employed PT
on the prior distributions of the weights w. They assumed N different prior
distributions on the weights {pn(w)}Nn=1, with the same prior distributions on
the other components θ, in order to produce N different posterior distributions
for sampling. That is, instead of simulating a canonical posterior distribution
at different temperatures, they assumed different temperatures on a canonical
prior distribution of the weights.

Since the means of flattening is different from standard PT, a modified ac-
ceptance ratio must be used for replica exchange. van Havre et al. (2015) noted
that the acceptance ratio only depends on the prior distributions {pn}Nn=1 on
the weights w = {wk}Kk=1. They gave the probability of exchanging the inferred
weights wn and wn+1 of replicas n and n+ 1, respectively, by Equation (1.70),

α(n, n+ 1) = min

{
1,
pn (wn+1) pn+1 (wn)

pn (wn) pn+1 (wn+1)
.

}
(1.70)

Lastly, a similar approach to PT, which uses random temperatures on a
single chain, instead of multiple temperatures on multiple chains, is that of
simulated tempering (ST) (Marinari and Parisi, 1992), which was introduced as
an extension of SA.

Population Annealing

Population annealing (PA) is a population MC method of Hukushima and Iba
(2003), which applies a modified SA approach to a population of samples. The
goal is to calculate averages of a canonical distribution that is parameterised by
a quantity β.

To motivate their sampler, Hukushima and Iba (2003) chose this parameter
to be the inverse temperature β = 1/T , so that the canonical distribution was
the familiar Boltzmann distribution given in Equation (1.66) of Section 1.4.2.
Parameterising by the inverse temperature, Hukushima and Iba (2003) used the
form of the Boltzmann distribution given in Equation (1.71),

πβ(x) =
1

Zβ
exp [−βh(x)] , (1.71)

where Zβ is the partition function at inverse temperature β.
PA performs a single sweep down a pre-chosen decreasing temperature range

T1 > · · · > TK . Equivalently, it performs a single sweep up the range of inverse
temperatures β1 < · · · < βK .

As a population MC approach, at each temperature index t, PA uses a collec-

tion of simultaneous samples
{
x

(t)
n

}N
n=1

with corresponding weights
{
w

(t)
n

}N
n=1

.
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These weights are all initially set equal to 1 and are recursively updated from
the weights at the previous index using Equation (1.72),

w(t)
n = w(t−1)

n exp
{
−(βt − βt−1)h

[
x(t)
n

]}
. (1.72)

Hukushima and Iba (2003) called Equation (1.72) the “Neal-Jarzynksi” fac-
tor because it is based on an equality demonstrated by Jarzynski (Jarzynski,
1997b,a), which was then adapted by Neal (Neal, 2001) to MC sampling with
temperature annealing. Hukushima and Iba (2003) noted that the approach of
Neal (2001) was unsuccessful due to a highly-fluctuating weight factor, so they
proposed that the weights be resampled only once every M temperature indices,
where the probability of selecting population member n at temperature index t
is given by Equation (1.73),

p(t)
n =

w
(t)
n∑N

m=1 w
(t)
m

. (1.73)

This approach is reminiscent of the resampling approach reviewed in
Section 1.1.2. After a resampling step Hukushima and Iba (2003) prescribed

that each w
(t)
n be reset to 1.

The preceding approach is summarised in Algorithm A.9 of Appendix A.

At each inverse temperature βt, Hukushima and Iba (2003) gave the for-
mula for computing a canonical average 〈f〉βt

≡ f̄βt
of a function f(x) that is

presented in Equation (1.74),

f̄βt
=

∑N
n=1 f

[
x

(t)
n

]
w

(t)
n∑N

n=1 w
(t)
n

, (1.74)

where t represents the index in the temperature ladder corresponding to inverse
temperature βt.

They also noted that the ratio Zβt
/Zβ0

of the partition function at inverse
temperature βt to that at inverse temperature β0 can be estimated directly from
the empirical weights,

Zβt

Zβ0

≈ 1

N

N∑
n=1

w(t)
n .

Hukushima and Iba (2003) noted that without the weights or resampling
their algorithm reduces to N instances of SA. Omitting only the resampling,
their method reduces to the fast-growth method of Hendrix and Jarzynski (2001)
or the method of Neal (2001). They also demonstrated that in the case of
a three-dimensional Ising spin glass (cf. Section 2.3 for a discussion of spin
glasses), their PA algorithm performed comparably to PT and that both algo-
rithms performed significantly better than SA.

The population annealing algorithm of Hukushima and Iba (2003) bears a
striking resemblance to the particle filter of Chopin (2002). However, a distin-
guishing feature of population annealing is the use of the temperature ladder,
which allows the weights to be computed recursively from one temperature to
the next.
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Equi-Energy Sampling

The Equi-Energy Sampler (EES) was introduced by Kou et al. (2006) and is
another method that makes use of a temperature ladder to improve sampling
efficiency and state-space exploration. Like both PT and PA, it generates mul-
tiple sampling chains at different temperatures, to mitigate the effect of energy
barriers. However, unlike PT, it was not developed directly from tempera-
ture considerations but energy ones. As such Kou et al. (2006) referred to
temperature-motivated approaches as “temperature-domain” methods and their
own energy-based approach as an “energy-domain” method.

They noted the duality between temperature and energy in a statistical
mechanical system in the form of a Laplace transform pair of the partition
function Z(T ) of a system at temperature T ,

Z(T ) =

∫
exp

[
−h(x)

T

]
dx

and the density of states Ω(u) at energy u,

Ω(u) ∝
∫
Iu [h(x)] dx,

where h(x) is the Hamiltonian or energy of the system and Iu(x) is the indicator
function, which equals 1 when x = u.

Kou et al. (2006) associated with the sampling chains an increasing sequence
of minimum energy truncation levels,

H0 < H1 < · · · < HN < HN+1 =∞,

and an increasing sequence of temperatures

1 = T0 < T1 < · · · < TN < TN+1 =∞,

with the minimum energy H0 of the lowest-temperature chain being at most
the lowest possible energy of the system,

H0 ≤ inf
x
h(x).

EES simulates each chain n from its corresponding Boltzmann distribution,
given in Equation (1.75),

πn(x) ∝ exp

[
−hn(x)

Tn

]
, (1.75)

where the value of the Hamiltonian hn(x) of the nth chain is restricted to be at
least Hn,

hn(x) = max{h(x), Hn}.
By considering the energy of each sample, as well as the energy ladder, EES

partitions the state space into energy bands D0, . . . , DN , where the nth band
contains only those samples x with energy h(x) between Hn and Hn+1. The
estimated bands D̂0, . . . , D̂N , generated during simulation, are further parti-
tioned based on the chain from which the samples are generated. Specifically, a
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sample with energy between Hk and Hk+1 simulated from chain n is assigned

to estimated energy band D̂
(n)
k . Kou et al. (2006) referred to this energy band

as the nth “order energy ring”.

Unlike other parallel update algorithms, EES does not start all sampling
chains at the same time. Instead, as a simulation progresses the chains are
started in sequence from the highest temperature to the lowest temperature
and, once a chain has started, it continues to run for the rest of the simulation.

The specific approach outlined by Kou et al. (2006) involves starting chain
n = N (the one at the highest temperature) and sampling from its corresponding
Boltzmann distribution using a standard sampling scheme. After an initial
burn-in period of duration B, it begins construction of the Nth order energy
rings. After a further pre-chosen number of iterations R the sampler then starts
sampling the (N − 1)th chain.

For chains n = N − 1 down to n = 0 the sampler complements the standard
MC chain updates with an “equi-energy” jump. Instead of updating every
iteration with standard MC the sampler may perform an equi-energy jump
with probability pee. When such a move is attempted, the sampler uniformly

samples one of the states y in the estimated energy ring D̂
(n+1)
n , at the energy

one truncation level higher. The proposed state is then accepted to replace the
current state x with the probability given in Equation (1.76),

α = min

{
1,
πn(y)πn+1(x)

πn(x)πn+1(y)

}
(1.76)

where πn is the target density of chain n.

Just as in the case of the highest-temperate chain, there is a burn-in period
before the construction of energy rings commences, and a minimum number of
post burn-in samples before the next highest-energy chain is started.

EES is summarised in Algorithm A.10 of Appendix A.

Kou et al. (2006) illustrated their sampler by sampling from a mixture target
of Liang and Wong (2001) (cf. Section 2.1.1), before using it to study three
applications: a regression model (cf. Section 2.2); a motif-finding example in
genetic sequences; and a simplified protein-folding example.

Of these three applications, of most interest to the current study will be the
regression model, as it is the only one of the three that specifically targets a
non-denumerable state space–the focus of the methods introduced in Part II of
this dissertation.

Included in their results, Kou et al. (2006) provided a comparison to PT,
finding that EES performed better than PT in terms of mixing times, autocor-
relations, the number of local maxima visited and the means and mean squared
estimates of the target.

Chapter 4 compares the results of sampling from the mixture target of Liang
and Wong (2001) and the mixture exponential regression model to those pro-
duced by the sampler that is introduced in Chapter 3 of this dissertation.
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1.5 Approximating Distributions by Finite Mix-
tures

In the context of independence sampling, given the need for a proposal dis-
tribution to closely resemble the target while also being possible to sample
directly, it is prudent to consider how to construct such a proposal. One type
of distribution that is appealing for approximating other distributions on p-
dimensional Euclidean space Rp, due to its flexibility, is a mixture of normal
distributions (West, 1993).

Mixture models provide an obvious means of creating a proposal distribution
that can easily be tuned, due to their inherent flexibility. With a sufficient num-
ber of mixture components they can capture the detail of a target with multiple
local maxima by centering each component of the mixture near a local maximum
of the distribution to be approximated. Obviously, the combined support of all
mixture components should be equal to the support of the density/distribution
that it approximates.

Due to their flexibility, mixture models can be made as complex as required.
By increasing the number of components in the mixture, an arbitrary level of
agreement with the target of interest can be achieved (Frühwirth-Schnatter and
Pyne, 2010).

This section reviews methods and guidelines for constructing such approxi-
mations. Particular focus is paid to the case where the kernel of the mixture is
a normal distribution, as this type of mixture will be important to the methods
developed later in this dissertation.

1.5.1 Estimating Mixture Parameters by Clustering

One class of methods that can be used to construct mixtures of location-scale
distributions, such at the normal distribution, is that of clustering. This sub-
section reviews three well-established approaches: expectation maximisation;
k-means clustering; and k-harmonic means clustering, which is an extension of
k-means clustering.

Expectation Maximisation

A well-established concept that can be used to cluster data is that of expectation
maximisation (EM). This concept has been used in many settings, including
more than just clustering, as discussed by Dempster et al. (1977). Their seminal
paper collected many already-existing examples of EM and suggested a general
framework for its implementation. Since the focus of the current section is on
clustering methods, it does not review the general EM approach studied by
Dempster et al. (1977) but rather this restricted example.

Dempster et al. (1977) let y be a vector of N observations, with each ob-
servation n ∈ {1, . . . , N} assumed to have a corresponding latent allocation to
one of K components in an underlying mixture model. They also defined an
N×K matrix containing the probabilities of each yn belonging to each of the K
components, given a current estimate of the parameters of the mixture. That
is, each zn is a vector of length K, with the kth entry indicating the probability
that the nth observation originates from mixture component k.
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Dempster et al. (1977) then noted that the goal is to maximise the complete-
data log-likelihood function given in Equation (1.77),

log π(y, z|θ) =

N∑
n=1

zT
nU(yn|θ) +

N∑
n=1

zT
nV(θ), (1.77)

where U(y|θ) is the vector of the logarithms of the density at y under each
of the K mixture components and V(θ) is the vector of the logarithms of the
conditional weight of each mixture component.

For general EM, Dempster et al. (1977) split the process into two alternating
steps to be performed iteratively. The first step, which they referred to as the “E-
step”, keeps y and θ fixed and computes the expected values of the allocations
z, given the current estimates of the parameters θ(t) at iteration t. Then, with
y and z held fixed, the second step, which they called the “M-step”, maximises
Equation (1.77) for θ and sets the solution as θ(t+1),

The preceding steps are repeated until some stopping criterion for the pro-
cess is met. An example of such a criterion is a threshold change ∆thresh =
log π[y, z|θ(t)] − log π[y, z|θ(t)] between the log-likelihood at iterations t and
t− 1. Dempster et al. (1977) showed that, in general, the (log-)likelihood func-
tion used in an EM algorithm does not decrease with iteration. Therefore, such
a stopping criterion is guaranteed to eventually be satisfied.

EM for finite mixtures is summarised in Algorithm A.11 of Appendix A.
Dempster et al. (1977) noted that the preceding approach will, in general,

find one parameter set that locally maximises log π(y, z|θ). However, by starting
multiple instances of the algorithm in different parts of the parameter space T ,
it is possible to find more than one such solution (Gelman et al., 2004, p. 319).

Dempster et al. (1977) also suggested replacing the maximisation step with
a step that merely finds a value of θ(t+1) for which the log-likelihood of the
complete-data is higher than it is for θ(t), thereby alleviating the computational
burden at each step.

The current dissertation is concerned with mixtures of normal distributions,
for which Dempster et al. (1977) reviewed a number of important cases. In
particular, they noted that, in the case where the latent allocations are assumed
to be i.i.d., Hasselblad (1966) provided equations for performing iterative EM.
His paper considered a truncation approach, a steepest descent method and
Newton’s method. Dempster et al. (1977) also noted that the work of Hasselblad
(1966), which was developed in the context of univariate mixtures, was extended
by Wolfe (1970) to multivariate ones.

Considering the significant role of Markov chains in the current work, it
is also worth noting that Dempster et al. (1977) reviewed a case where the
latent allocations are assumed to evolve as a Markov process. In that case,
which was developed by Baum and Eagon (1967), Baum et al. (1970) and Baum
(1972), Dempster et al. (1977) noted that the complete-data log-likelihood in
Equation (1.77) must be replaced by the one in Equation (1.78), in order to
account for the Markovian structure,

log π(y, z|θ) =

N∑
n=1

zT
nU(yn|θ) +

N∑
n=1

zT
nV(θ)zn−1, (1.78)

where V∗(θ) is a Markov transition matrix for the zn and z0 is a vector of
probabilities of the Markov chain starting in each component of the mixture.
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k-Means Clustering

Another approach to clustering involves partitioning a state space, containing
N points, into K disjoint regions. Steinhaus (1956) presented a note on such
an idea, with the clusters having centres qk, k ∈ {1, . . . ,K}. The goal of this
problem was to find an optimal choice of regions Bk and points qk of the state
space to minimise Equation (1.79),

S
[
{(Bk,qk)}Kk=1

]
=

K∑
k=1

I (Bk,qk) , (1.79)

where the function I(C,d) represents the moment of inertia of a body C about
a point d. Steinhaus (1956) showed that there exists such a solution, for which
neighbouring centres are equidistant from the mutual boundary of their corre-
sponding regions and that the geometric centres of the regions are also their
respective centres of mass. The resulting partition is a Voronoi (Voronoi, 1908)
or Dirichlet (Dirichlet, 1850) tessellation of convex subsets.

The following year Lloyd (1957) presented an algorithm to Bell Laboratories,
describing an iterative method to produce such a solution in the context of pulse
code modulation (PCM), which he eventually published (Lloyd, 1982). At the
Eastern North American Region (ENAR) Spring Meeting of the International
Biometric Society, Forgy (1965) independently presented a similar approach for
the case where the centres are chosen from a fixed set of input data, rather than
R.

The basic k-means clustering method of Lloyd (1982) and Forgy (1965)
involves iterating through two steps: updating region boundaries; and up-
dating region centres. Starting with an initial arbitrary collection of regions
Bk, k ∈ {1, . . . ,K} the algorithm first computes their centres of mass, where
the centre of mass of the kth region is given by Equation (1.80),

qk =

∫
Bk

ydF (y)∫
Bk
dF (y)

. (1.80)

Here F (·) represents the probability measure associated with the density func-
tion of the collection of regions. In the case of a finite number N of equally-
weighted samples yn, n ∈ {1, . . . , N} in p-dimensional Euclidean space, treated
by Forgy (1965) qk is simply the arithmetic mean,

qk =

∑
y∈Bk

y

N
.

Once the qk have been computed, which Lloyd (1982) noted will generally
not be the geometric means of the regions, the region boundaries are then up-
dated. For the scalar approach on R, treated by Lloyd (1982), the method to
update the boundaries is the same as that proposed by Steinhaus (1956), namely,
setting region boundaries between neighbouring regions to be the points half-
way between their respective means. The result of such boundaries is that a
point in the state space y will be assigned to the region to whose centre they
are closest. That is, a data point y is placed in the region k for which Equa-
tion (1.81) is satisfied,

m(y,qk) ≤ m(y,qj),∀j ∈ {1, . . . ,K}, (1.81)



58 CHAPTER 1. MC AND MCMC THEORY

for some metric m(·, ·). When Equation (1.81) is satisfied by more than one j
then a tie-break procedure must be performed to select the appropriate cluster
membership.

This process is then repeated until the region centres do not change more
than some given threshold εthresh. That is, until

m
[
q

(t)
k ,q

(t−1)
k

]
≤ εthresh,∀k ∈ {1, . . . ,K}, (1.82)

where t is the iteration number.
Lloyd (1982) showed that at each iteration the sequence [B(t),q(t)]∞t=1 of re-

gions B(t) = {B(t)
1 , . . . , B

(t)
K } and their centres q(t) = {q(0)

1 , . . . ,q
(t)
K } converges

to some (B′,q′) that locally minimises Equation (1.79) for the PCM problem,
provided that such a minimum exists. This means that the Equation (1.82) will
eventually be satisfied.

The k-means method is summarised in Algorithm A.12 of Appendix A.
MacQueen (1967) discussed applications of the approach presented by Forgy

(1965) to general distributions, including the use of mixtures of normal distri-
butions to approximate the distributions of the input data. He referred to these
algorithms as “k-means”, due to the fact that they all involve finding the means
of K clusters.

k-Harmonic Means Clustering

An extension of k-means clustering is that of k-harmonic means clustering, in-
troduced by Zhang et al. (1999) and generalised by Zhang (2000) for partitioning
a collection of N samples {yn}Nn=1 into K clusters with centres {qk}Kk=1 in a
p-dimensional state space X . Unlike the k-means approach, k-harmonic means
clustering does not assign each sample to one of the clusters. Instead, each
point is simultaneously considered to be a member of all the clusters. As such,
k-harmonic means clustering does not produce a Voronoi tessellation, with dis-
joint regions, but a set of cluster centres, which, together, describe all data
points.

Like k-means and EM, k-harmonic means uses a function to assess the good-
ness of the clustering. Zhang et al. (1999) and Zhang (2000) gave this perfor-
mance function is given in Equation (1.83),

Perf
(
{yn}Nn=1, {qk}Kk=1

)
=

N∑
n=1

K∑K
k=1 [m (yn,qk)]

−a , (1.83)

where m(·, ·) is a suitable metric on X and a is an appropriately-chosen power
of it.

To update cluster centres {qk}Kk=1, Zhang (2000) gave the recursive formula
presented in Equation (1.84),

q
(t)
k =

∑N
n=1

{
m
[
yn,q

(t−1)
k

]}−a−2
(∑K

l=1

{
m
[
yn,q

(t−1)
l

]}−a)−2

yn

∑N
n=1

{
m
[
yn,q

(t−1)
k

]}−a−2
(∑K

l=1

{
m
[
yn,q

(t−1)
l

]}−a)−2 .

(1.84)
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To make Equation (1.84) easier to manage, Zhang et al. (1999) and Zhang
(2000) suggested updating the centres using the sequence of formulae given
in Equations (1.85), (1.86), (1.87), (1.88) and (1.89), which produce the same
result.

d(min)
n = min

k∈{1,...,K}

{
m
[
yn,q

(t−1)
k

]}
, (1.85)

b
(n)
k =

[
d

(min)
n

]a−2

 d
(min)
n

m
[
yn,q

(t−1)
k

]

a+2

∑K
k=1

 d
(min)
n

m
[
yn,q

(t−1)
k

]

a2 (1.86)

bk =

N∑
n=1

b
(n)
k , (1.87)

c
(n)
k =

b
(n)
k

bk
, (1.88)

q
(t)
k =

N∑
n=1

c
(n)
k yn. (1.89)

As in the case of k-means clustering, the algorithm stops once the change in
the performance function from iteration t − 1 to t drops below some threshold
level ∆thresh. That is, once

∆Perf =

∣∣∣∣Perf

(
{y}Nn=1 ,

{
q

(t−1)
k

}K
k=1

)
− Perf

(
{y}Nn=1 ,

{
q

(t)
k

}K
k=1

)∣∣∣∣
≤ ∆thresh.

Zhang et al. (1999) and Zhang (2000) prescribed that k-harmonic means
algorithm be repeated until the performance function stabilises, implying that
a threshold change in performance from one iteration to the next must eventually
be met.

The general k-harmonic means algorithm of Zhang et al. (1999) and Zhang
(2000) is given in Algorithm A.13 of Appendix A.

Zhang et al. (1999) and Zhang (2000) compared the k-harmonic means
method to the k-means and EM approaches, finding that, for the experimental
runs that they tested, k-harmonic means outperformed both of the other ap-
proaches. This claim was further supported by Hamerly and Elkan (2002), who
introduced two more versions of k-harmonic means clustering.

The k-harmonic means approach was used by Giordani and Kohn (2010) to
construct an adaptive MH sampler that will be reviewed in Section 1.6.4.

1.5.2 Sampling-Based Approaches

Given the interest of the current study in MCMC sampling, it is natural to
consider how such techniques may be used to construct mixture distributions.
As it turns out, there exist methods for achieving just this goal. The current
section considers two of them.
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Adaptive Mixture Refinement

A method introduced by West (1993) that uses MC to infer the parameters of
a mixture approximation to a target π(x) is that of adaptive mixture refine-
ment (AMR). This approach uses an adaptive importance sampling scheme to
successively “home in” on a refined kernel density estimate of π(x).

As in previous sections, the focus here is on approximations that use a multi-
variate normal kernel. In this context, AMR starts with an initial overdispersed
normal mixture approximation

g(0)

[
x

∣∣∣∣{w(0)
k ,µ

(0)
k

}K(0)

k=1
,Σ(0)

]
to f(x), as given by Equation (1.90),

π(x) ≈ g(0)

[
x

∣∣∣∣{w(0)
k ,µ

(0)
k

}K(0)

k=1
,Σ(0)

]
=

K(0)∑
k=1

w
(0)
k N

(
x
∣∣∣µ(0)
k ,Σ(0)

)
, (1.90)

where w
(t)
k and µ

(t)
k are the weight and mean, respectively, of component k and

Σ(t) is a variance-covariance matrix, which is common to all components. To
compute the weight of the kth component of refinement t, West (1993) used the
importance weight of Geweke (1989) at the component’s mean, as demonstrated
by Equation (1.91),

w
(t)
k =

π
[
µ

(t)
k

]
g(t−1)

[
x

(t)
k

]∑K(t)

k=1

π
[
µ

(t)
k

]
g(t−1)

[
µ

(t)
k

]

. (1.91)

West (1993) then prescribed following the Bayesian importance sampler of
Geweke (1989) (cf. Section 1.1.2) with importance function

g(0)

[
x

∣∣∣∣{w(0)
k ,µ

(0)
k

}K(0)

k=1
,Σ(0)

]
to produce K(1) samples

{
x

(1)
k

}K1

k=1
, whose

weighted average approximates the expected value of π(x). Kernel density esti-
mation is then performed on these samples to produce a refined approximation

g(1)

[
x

∣∣∣∣{w(1)
k ,µ

(1)
k

}K(1)

k=1
,Σ(1)

]
. If this refined approximation is insufficiently

accurate, then the process is repeated, using this new approximation as an
updated importance function. In general, at refinement t, this kernel density
estimate, is given by Equation (1.92),

g(t)

[
x

∣∣∣∣{w(t)
k ,µ

(t)
k

}K(t)

k=1
,Σ(t)

]
=

Kt∑
k=1

w
(t)
k N

(
x
∣∣∣µ(t)
k ,Σ

(t)
k

)
, (1.92)

where
{
µ

(t)
k

}K(t)

k=1
and Σ(t) are appropriately computed from {x(t)

k }Kt

k=1 West

(1993) suggested that the common matrix Σ(t) be an appropriately-scaled esti-

mate Σ̂ of the true variance-covariance matrix Σ of π(x), defined according to
Equation (1.93),

Σ(t) = h(t)Σ̂, (1.93)

where h(t) is a “smoothing parameter”.
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West (1993) noted that a typically-used scale for a p-dimensional x at re-
finement t is the form of h(t) given in Equation (1.94),

h(t) =

[
4

K(t)(1 + 2p)

]1/(1+4p)

. (1.94)

Multiplying h(t) by the MC estimate of the variance-covariance matrix of π(x)
gives Equation (1.95),

Σ(t) =

K(t)∑
k=1

w
(t)
k

[
x

(t)
k − x̄(t)

] [
x

(t)
k − x̄(t)

]T
. (1.95)

Here x̄(t) is the MC mean of refinement t, which is given by Equation (1.96),

x̄(t) =

K(t)∑
k=1

w
(t)
k x

(t)
k . (1.96)

West (1993) noted that the resulting refinement

g(t)

[
x

∣∣∣∣{w(t)
k ,µ

(t)
k

}K(t)

k=1
,Σ(t)

]
is always more disperse than π(x). For an initial

approximation (refinement 0) this property may be acceptable but the ultimate
goal is to obtain an approximation that is close to the target being approximated.
For this reason West (1993) used shrinkage to correct the overdispersion of the
refinement in his examples, so that their variances were equal to those of their
targets. To achieve this goal, he used the approach of West (1990), by setting
the mean in the expression for refinement t, given by Equation (1.92), according
to Equation (1.97),

µ
(t)
k = x

(t)
k

√
1−

[
h(t)
]2

+ x̄(t)

{
1−

√
1−

[
h(t)
]2}

. (1.97)

This choice results in component means that are closer to the target distri-
bution’s mean than they would otherwise be, thereby preserving the overall
variance of the target.

To determine when to stop refinement of the approximation it is necessary
to have some measure of change in the approximation. For this purpose West
(1993) suggested plotting a time-series of the variance of weights (the relative
numerical efficiency of Geweke (1989)) or using the entropy relative to unifor-
mity, which is given in Equation (1.98),

H

[{
w

(t)
k

}K(t)

k=1

]
= −

K(t)∑
k=1

w
(t)
k

log
[
w

(t)
k

]
log
[
K(t)

] . (1.98)

Once Equation (1.98) remains below some threshold, then refinement stops.
AMR is summarised in Algorithm A.14 of Appendix A.

Bayesian Estimation with Data Augmentation

An example of using MCMC for approximating a target by fitting mixtures of
skew-normal or skew-t distributions was given by Frühwirth-Schnatter and Pyne
(2010), who used a Gibbs-like approach to infer the parameters of the mixture.
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The most general kernel that they considered was that of a p-variate skew-t,
with density in the form given by Azzalini and Capitanio (2003). This density
is presented in Equation (1.99),

ST (y|ξ,Ω,α, ν) = 2tp(y|ξ,Ω, ν)Tp+ν

{
αT [Diag(Ω)]

− 1
2 (y − ξ)

×
√

ν + p

ν + (y − ξ)TΩ−1(x− ξ)

}
, (1.99)

where tp(·|ξ,Ω) is the PDF of a p-variate Student’s t-distribution with location
ξ, scale matrix Ω and degrees of freedom ν, Tp+ν(·) is the CDF of the univariate
standard Student’s t-distribution with p+ν degrees of freedom, α is a skewness
vector of dimension p and Diag(Ω) is a diagonal matrix with diagonal entries
equal to those of the variance-covariance matrix Ω.

Azzalini and Capitanio (2003) decomposed such a p-variate skew-t-
distributed random variable Y using Equation (1.100),

Y = ξ +
Z√
V
, (1.100)

where V ∼ χ2
ν/ν and Z is a zero-located p-variate truncated-normal random

variable on [0,∞)p.
Frühwirth-Schnatter and Pyne (2010) also considered skew-normal mixtures,

whose kernel was given by Azzalini and Dalla Valle (1996) according to Equa-
tion (1.101),

SN (y|ξ,Ω,α) = 2N (y|ξ,Ω)Φ

{
αT
[√

Diag(Ω)
]−1

(y − ξ)

}
, (1.101)

where Φ(·) is the CDF of a univariate standard normal random variable.
As a χ2

ν random variate, V can be obtained by first noting the relation of
a χ2

ν distribution to a gamma distribution, given in Equation (1.102) (Gelman
et al., 2004, pp. 580),

χ2
ν(x) = Gamma

(
x

∣∣∣∣ν2 , 1

2

)
. (1.102)

Then an appropriate specialised gamma generator, such as one of those discussed
in Devroye (1986, Chapter 9, Section 3), may be used to sample from the gamma
distribution before transforming the result using Equation (1.102) to obtain V .

To enable posterior inference of the parameters in Equations (1.99) and
(1.101), Frühwirth-Schnatter and Pyne (2010) expressed them as random effects
models, according to Equation (1.103),

Y = ξ +ψZ + ε, (1.103)

where ε ∼ N (· |0p,Σ ) for a skew-normal model and ε ∼ N (· |0p,Σ/b ) for a
skew-t one. Here 0p is the p-dimensional zero vector and b is a scaling factor
that depends on the degrees of freedom of the skew-t distribution.

This approach leads to a reparameterisation of the skew-normal and skew-t
distributions in terms of (ξ,ψ,Σ) and (ξ,ψ,Σ, b), respectively. The location
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parameter ξ is the same as in the expressions of Azzalini and Dalla Valle (1996)
and Azzalini and Capitanio (2003).

Frühwirth-Schnatter and Pyne (2010) noted that the scaling factor b is
gamma-distributed, according to Equation (1.104),

b ∼ Gamma
(ν

2
,
ν

2

)
. (1.104)

Using the preceding transformations, Frühwirth-Schnatter and Pyne (2010)
inferred the parameters (ξ,ψ,Σ, ν) in their study.

With these reparameterisations, Frühwirth-Schnatter and Pyne (2010) con-
sidered the mixtures of normal and skew-t distributions given in Equations (1.105)
and (1.106), respectively,

pSNM(y|ξ,Σ,α) =

K∑
k=1

dkSN (y|ξk,Σk,αk). (1.105)

pSTM(y|ξ,Σ,α,ν) =

K∑
k=1

dkST (y|ξk,Σk,αk, νk), (1.106)

where

ξ = {ξ1, . . . , ξK} ,
ψ = {ψ1, . . . ,ψK} ,
Σ = {Σ1, . . . ,ΣK} ,
α = {α1, . . . ,αK} ,
ν = {ν1, . . . , νK} ,

are vectors of the transformed parameters for each component k and dk are the
corresponding component weights.

They used the data augmentation approach of Diebolt and Robert (1994)
in a blocked Gibbs sampler, to iteratively update the parameters in Equa-
tions (1.105) and (1.106), given a fixed set of observations y = (y1, . . . ,yN )
from their underlying distribution π(y). This involved introducing latent indi-
cator variables S = (S1, . . . , SN ) for the observations, indicating the (unknown)
mixture component with which each is associated. The vectors z = (z1, . . . , zN )
and b = (b1, . . . , bN ) describe the (unobserved) allocations and random effects,
respectively, for the observations. Given a suitable prior distribution,

p(ξ,ψ,Σ)

on the parameters that are common to both distributions, Frühwirth-Schnatter
and Pyne (2010) noted that closed-form posterior distributions,

pSNM (ξ,ψ,Σ,α |d,S, z,y ) ,

and

pSTM (ξ,ψ,Σ,α |d,S, z,b,y ) ,

given all other variables, exist in closed form.
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By sampling from such a posterior, estimates of the skew-t mixture distri-
bution’s parameters are obtained. This, of course, requires transforming the
transformed parameters back into the desired form. Each ξk is already in the
form required. Frühwirth-Schnatter and Pyne (2010) related the scale Ω and the
skewness α to these new variables according to Equations (1.107) and (1.108),
respectively,

Ωk = Σkψkψ
T
k , (1.107)

αk =
1√

1−ψT
k Ω−1

k ψk

√
Diag(Ωk)Ω−1

k ψk. (1.108)

Frühwirth-Schnatter and Pyne (2010) summarised their method as two and
three block Gibbs samplers for the skew-normal and skew-t mixtures, respec-
tively. At iteration t, the first block for a skew-normal mixture is given by Equa-
tions (1.109) and (1.110), while the second block is given by Equation (1.111),

d(t) ∼ pSNM
[
·
∣∣∣S(t−1), z(t−1),y

]
, (1.109)

ξ(t),ψ(t),Σ(t) ∼ pSNM
[
·
∣∣∣S(t−1), z(t−1),y

]
, (1.110)

S(t), z(t) ∼ pSNM
[
·
∣∣∣ξ(t),ψ(t),Σ(t),d(t),y

]
. (1.111)

The first block for a skew-tmixture is given by Equations (1.112) and (1.113),
while the second is given by Equation (1.114).

d(t) ∼ pSTM
[
·
∣∣∣S(t−1), z(t−1),b(t−1),y

]
, (1.112)

ξ(t),ψ(t),Σ(t) ∼ pSTM
[
·
∣∣∣S(t−1), z(t−1),b(t−1),y

]
, (1.113)

S(t), z(t) ∼ pSTM
[
·
∣∣∣ξ(t),ψ(t),Σ(t),d(t),b(t−1),y

]
. (1.114)

The third block consists of updating the degrees of freedom and the scaling
factors. Frühwirth-Schnatter and Pyne (2010) noted that the posterior density
to update the degrees of freedom ν is not available in closed form and must be
updated using an MH sampler inside the Gibbs sampler to generate ν(t) and
b(t), given all other parameters, observations and latent allocations.

Frühwirth-Schnatter and Pyne (2010) left the update equations arbitrary,
which highlights that their forms depend on the chosen prior distributions.

The preceding approaches is summarised in Appendix A in Algorithm A.15
for skew-normal mixtures and Algorithm A.16 for skew-t mixtures.

1.5.3 Selecting the Number of Mixture Components

As the number of components in a mixture distribution increases so does its
flexibility. Increasing the number of components allows an approximation in Eu-
clidean space to more closely resemble the desired density/distribution
(Frühwirth-Schnatter and Pyne, 2010). However, there may exist a point of
diminishing return, where the rate of increase in improvement of the approxi-
mation is offset by the extra computational cost involved in using them (West,
1993). This section reviews an approach for decreasing the number of com-
ponents in a kernel density estimate, as well as a collection of techniques for
selecting a suitable number of components.
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Collapsing Mixtures

Starting with an overfitted mixture approximation to a distribution, West (1990)
demonstrated a method to cut down excess components in the mixture, for
reasons of computational efficiency, without unduly harming the approximation.
The idea behind the presented method was to merge the closest neighbouring
mixture component to the one with the largest weight. West (1993) employed
this approach in an iterative procedure to reduce an N -component mixture to
an M -component one, reducing the current mixture at each step by one.

Without loss of generality, assume that the lowest-weighted component is
indexed by k = 1 at step t−1. In the context of a normal kernel, the neighbour
of a mixture component is the component, out of all other components, whose

mean µ
(t−1)
k minimises Equation (1.115),

∆
(t−1)
k =

∥∥∥µ(t−1)
1 − µ(t−1)

k

∥∥∥ . (1.115)

Once the corresponding index i of the nearest neighbour has been found,
the smallest component is replaced by setting its weight according to Equa-
tion (1.116),

w
(t)
1 = w

(t−1)
1 + w

(t−1)
i , (1.116)

and its mean according to Equation (1.117),

µ
(t)
1 =

w
(t−1)
1 µ

(t−1)
1 + w

(t−1)
i µ

(t−1)
i

w
(t)
1

(1.117)

After collapsing the smallest component and its nearest neighbour, the in-
dices of the parameter vector are updated. For components k = 2 to i − 1 the
new parameters are set according to Equation (1.118),[

w
(t)
k ,µ

(t)
k

]
=
[
w

(t−1)
k ,µ

(t−1)
k

]
. (1.118)

and for components k = i+ 1 to k = N − t, the parameters are set according to
Equation (1.119), [

w
(t)
k ,µ

(t)
k

]
=
[
w

(t−1)
k+1 ,µ

(t−1)
k+1

]
. (1.119)

This process effectively eliminates component i of the mixture at step t to
reduce the approximation from one with N−t+1 components to one with N−t
components.

The method of West (1990) for collapsing normal mixtures is summarised in
Algorithm A.17 of Appendix A.

This process was advocated by West (1993) in the context of adaptive mix-
ture refinement, which was reviewed in Section 1.5.2. To know how many com-
ponents should be used in the final mixture, West (1993) suggested monitoring
the change in the approximation as the number of components is decreased and
stopping the procedure before too large a change is observed. In order to reflect
the change in the number of components, he also suggested that the smooth-
ing parameter h be recalculated using Equation (1.94) with the new number of
components.
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Model Choice

Another approach for selecting the number of mixture components in a mixture
approximation is that of using an information criterion for model selection. This
strategy was advocated by Frühwirth-Schnatter and Pyne (2010), who explored
its application to the assessment of their method for fitting skew-normal and
skew-t distributions, which was reviewed in Section 1.5.2. They considered five
different quantities.

The first quantity that they considered was the Bayesian Information Cri-
terion (BIC), which was introduced by Schwarz (1978). In what follows, the
component weights of a model are represented by w = (w1, . . . , wK) ∈ ∆K

(where ∆K is the K-simplex in RK) and the component-specific parameters by
θ = (θ1, . . . ,θK) ∈ T .

For the a fixed kernel type, the BIC of a K-component mixture is given by
the expression in Equation (1.120), which follows the notation of Frühwirth-
Schnatter and Pyne (2010),

BICK = −2 log p
(
y
∣∣∣ŵ, θ̂ ,K)+ φK logN. (1.120)

Here N is the number of observations, y = (y1, . . . ,yN ) is the vector of those

observations, ŵ and θ̂ are the joint maximum-likelihood estimates (MLE) of
the weights w and kernel parameters θ, respectively, in log p(y|w,θ,K) and

φK = (2p+ 1)K − 1 +
Kp(p+ 1)

2
+KIskew-t,

where p is the dimension of the state space and Iskew-t = 1 if the mixture kernel
is skew-t and 0 if it is normal.

The second quantity that they considered was the Approximate Weight of
Evidence (AWE) for a model to have K clusters, introduced by Banfield and
Raftery (1993). The AWE is given by Equation (1.121),

AWEK =

{∑K−1
k=1 Ek K > 1,

0, K = 1,
(1.121)

where c ∈ R is a constant and Ek is an approximation of twice the negative
of the natural logarithm of the Bayes factor, which represents the ratio of the
odds of a model with k components to one with k + 1 components. The Bayes
Factor is defined according to Equation (1.122) (Banfield and Raftery, 1993),

Bayes(k, k + 1) =
p(y|K = k)

p(y|K = k + 1)
. (1.122)

As its name suggests, the AWE involves a number of approximations. As
just stated, one of these approximations is the relationship between Ek and the
Bayes Factor. Banfield and Raftery (1993) expressed this relationship according
to Equation (1.123),

Ek = λk − 2δk

[
3

2
+ log(pNk,k+1)

]
≈ −2 log Bayes(k, k + 1), (1.123)

where p is the dimension of the state space, λk is the asymptotically χ2-
distributed test statistic of the likelihood ratio of the model with k components
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to the one with k + 1 components and δk is the reduction in the number of pa-
rameters when going from the k+ 1-component model to the k-component one.
Nk,k+1 is the number of observations in the component formed by merging two
of the components in the k + 1-component model to produce the k-component
model.

The other approximation is for K > 1, for which Banfield and Raftery (1993)
used Equation (1.124),

EK ≈ c+ 2 log p(K|y). (1.124)

For the purposes of assessing their skew-normal and skew-t mixtures with
latent allocations S, Frühwirth-Schnatter and Pyne (2010) used the form of
AWE given in Equation (1.125),

AWEK = −2 log p
(
y, Ŝ

∣∣∣θ̂)+ 2φK

(
3

2
+ logN

)
, (1.125)

with N being the number of observations, φK defined as earlier and (Ŝ, θ̂)
being the combination of S and θ that jointly maximises the complete-data
log-likelihood or its logarithm, which is given in Equation (1.126),

(Ŝ, θ̂) = arg max
(S,θ)∈({1,...,K}N ,T )

N∑
n=1

log [wSnp(yn|θSn)] . (1.126)

The third criterion considered by Frühwirth-Schnatter and Pyne (2010) was
the difference between Integrated Completed/Classification Likelihood (ICL) of
Biernacki (2000) and the BIC. Biernacki (2000) defined the ICL for a generic
mixture kernel f approximation of y, according to Equation (1.127)

ICL = log p
(
y
∣∣∣f,K, ŵ, θ̂)− g

(K)
f

2
logN, (1.127)

where ŵ and θ̂ are the joint MAP estimate of the weights w and parameters θ,

respectively, and g
(K)
f is the number of free parameters in a model with kernel

type f and K mixture components.

Instead of computing this quantity directly, Frühwirth-Schnatter and Pyne
(2010) used the approximation of McLachlan and Peel (2000, pp. 216) that is
given in Equation (1.128),

ICL− BICK ≈ 2BICK + EN
[
ŵ, θ̂,K

]
, (1.128)

where the second term on the right-hand side is the entropy, which Frühwirth-
Schnatter and Pyne (2010) gave according to Equation (1.129) for the mixture
model,

EN
[
ŵ, θ̂,K

]
= −

N∑
n=1

K∑
k=1

P
[
Sn = k

∣∣∣ynŵ, θ̂,K
]

(1.129)

× log
{
P
[
Sn = k

∣∣∣yn, ŵ, θ̂,K ]} .
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Finally, Frühwirth-Schnatter and Pyne (2010) studied two instances of the
Deviance Information Criterion (DIC) of Spiegelhalter et al. (2002), whose gen-
eral form, in the notation of the current section, is given by Equation (1.130),

DICK = D
(
w̃, θ̃

)
+ 2pD

[
y,∆K , T ,

(
w̃, θ̃

)
(y)
]
. (1.130)

Spiegelhalter et al. (2002) referred to D(w,θ) as the Bayesian deviance and
defined it according to Equation (1.131),

D(w,θ) = −2 log[p(y|w,θ)] + 2 log[g(y)], (1.131)

where g(y) is some “fully-specified” function of the observations, which serves
to standardise the posterior distribution of the weights w ∈∆K and parameters
θ ∈ T , given the observations y. Spiegelhalter et al. (2002) gave the form of pD
stated in Equation (1.132),

pD

[
y,∆K , T ,

(
w̃, θ̃

)
(y)
]

= Eθ|y{−2 log[p(y|w,θ)]}

+ 2 log
{
p
[
y
∣∣∣(w̃, θ̃

)
(y)
]}

, (1.132)

where
(
w̃, θ̃

)
(y) is an appropriately-chosen estimator of the true parameters.

Taking the estimator to be the sample mean, (w,θ), Spiegelhalter et al. (2002)
showed that pD may be expressed according to Equation (1.133),

pD

[
y,∆K , T ,

(
w̃, θ̃

)
(y)
]

= D(w,θ) +D
[
(w,θ)

]
, (1.133)

with D(w,θ) representing the mean of D(w,θ) over (w,θ) ∈
(
∆K , T

)
.

Both instances of the DIC used by Frühwirth-Schnatter and Pyne (2010)
were explicitly derived and evaluated by Celeux et al. (2006) for missing data
problems, using the approach illustrated by Spiegelhalter et al. (2002). The first
of these, which they denoted DIC2,K sets the estimators w̃ and θ̃ of the weights
and parameters, respectively, to be those corresponding to their posterior mode,
as given in Equation (1.134),(

w̃, θ̃
)

(y) = arg max
(w,θ)∈(∆K ,T )

p(w,θ|y). (1.134)

With this choice they derived the form given in Equation (1.135)

DIC2,K = −4Ew,θ

[
log p

(
y
∣∣∣w̃, θ̃)∣∣∣y]+ 2 log p

[
y
∣∣∣w̃, θ̃,y] . (1.135)

Their rationale behind this choice of estimator was that simply using the pos-
terior mean is inappropriate for models with unidentifiability, such as mixture
models, which experience label-switching of the mixture components.

The other version of DIC used by Frühwirth-Schnatter and Pyne (2010) was
one involving complete data, which Celeux et al. (2006) derived using a complete
data estimator of the posterior mean Ew,θ,S (w,θ |y,S ) of the parameters. The
result was the form given by in Equation (1.136),

DIC4,K = −4Ew,θ,S [log p(y,S|w,θ)|y]
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+ 2ES {log p [y,S |Ew,θ (w,θ |y,S ) |y ]} . (1.136)

As pointed out by Frühwirth-Schnatter and Pyne (2010), Celeux et al. (2006)
noted that it is not possible to analytically evaluate the complete data estimator
of the posterior mean in the case of skew finite mixture. However, Celeux et al.
(2006) derived an approximation that adds twice the expected posterior entropy,
as inferred by MC simulation, to DIC2. They gave this approximation according
to Equation (1.137),

DIC4 ≈ DIC2 + 2Ew,θ {EN [p(S|y,w,θ)|y]} . (1.137)

Each of the preceding criteria are suited to different types of applications.
For example, Frühwirth-Schnatter and Pyne (2010) recalled a result of Keribin
(2000), which proved the consistency of BIC under correct model specification
and a sufficiently large number of observations. However, Biernacki (2000)
demonstrated the superior robustness of ICL to model misspecification over
that of BIC, while Banfield and Raftery (1993) introduced AWE as a method
that can account for commonality or differences in features of the components
of the mixture model.

In addition to the information criteria discussed by Frühwirth-Schnatter and
Pyne (2010), two other noteworthy information criteria are Akaike’s information
criterion (AIC) (Akaike, 1987) and the consistent Akaike’s information criterion
(CAIC) (Bozdogan, 1987).

AIC and CAIC are defined according to Equations (1.138) and (1.139), re-
spectively,

AICK = −2 log p
(
y
∣∣∣w̃, θ̃,K )+ 2g(K) (1.138)

CAICK = −2 log p
(
y
∣∣∣w̃, θ̃,K )+ g(K) [(logN) + 1] , (1.139)

where g(K) represents the number of free parameters in a model with K com-
ponents.

Bozdogan (1987) acknowledged that the AIC was an important early ap-
proach to model selection that addressed the trade-off between model accuracy
and model complexity (Occam’s razor). However, he also noted that contem-
porary literature criticised AIC for not being consistent in terms of K as the
number of samples N is increased to infinity. That is, K is not guaranteed to
converge to a (hypothetical) “true” value with N . Therefore, Bozdogan (1987)
proposed CAIC (and a second information criterion, not discussed here) as a
consistent extension of AIC.

1.6 Adaptive Markov Chain Monte Carlo

One solution to the problem of inefficient sampling of the target distribution
is to use adaptive MCMC. In this approach, the proposal distribution may
change with time. Various adaptive schemes have been been proposed but
they can be sorted into two main groups: externally adaptive and internally
adaptive (Atchadé et al., 2011).

As Atchadé et al. (2011) noted, adaptive methods may adapt for only the first
portion of a simulation because the adaptive scheme may not necessarily ensure
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ergodicity of the process. Once the proposal distribution is sufficiently tuned
to the given problem, it is fixed, thereby avoiding issues of ensuring ergodicity
of the process under a non-adaptve proposal distribution during the rest of
the simulation. Otherwise, if the adaptive process is chosen more carefully,
the requirement of ergodicity may be satisified, ensuring that the stationary
distribution is the target or sufficiently close to it if an approximation is used.
When such care is taken, adaptation can continue indefinitely.

If the transition kernel is allowed to change during a simulation, it can home
in on a more efficient one automatically.

1.6.1 The Benefits of Adaptation

The algorithms discussed so far are efficient when the sampling distribution
g is similar to the target but they are not necessarily optimal. The MCMC
practitioner is unlikely to know a priori the optimum proposal distribution of
a particular form that best approximates the target. As such, it is beneficial to
learn it as a simulation progresses.

1.6.2 Types of Adaptation

As just stated, Atchadé et al. (2011) sorted adaptive Markov chain Monte Carlo
methods into two categories, which they called “external” and “internal”.

Under internal adaptation, the parameters of the transition kernel are ad-
justed according to a combination of the histories of the simulated draws and
of the parameters themselves. This includes samplers in which history earlier
than the state immediately preceding the current one is used, thereby breaking
the Markov property.

The purpose of internal adaptation is to find a locally optimum transition
kernel from a particular family of transition kernels. Atchadé et al. (2011) noted
that, although the rate of adaptation may diminish as a simulation progresses,
the total amount by which the transition kernel is modified (under some appro-
priate metric) is allowed to tend towards infinity. This allows a wide variety
of internal adaptation schemes. Due to the breaking of the Markov property,
approaches such as detailed balance (cf. Section 1.2.3) cannot be used to prove
existence of a stationary distribution (cf. Section 1.2.3), so care must be taken
to ensure that the stationary distribution exists and is the target of interest.
Section 1.6.3 reviews some guidelines on how this may be achieved.

Some examples of internal adaptation mentioned by Atchadé et al. (2011)
include the Adaptive Direction sampler of Gilks et al. (1994) (cf. Section 1.6.4),
the Adaptive Proposal sampler of Haario et al. (1999) (cf. Section 1.6.4), the
Adaptive Metropolis sampler of Haario et al. (2001) (cf. Section 1.6.4) and the
Bayesian Adaptive Independence Sampler of Keith et al. (2008) (cf. 1.8).

Under external adaptation, an auxiliary, possibly heuristic, approach is used
to guide sampling. Atchadé et al. (2011) highlighted that three key examples
of this are SA (cf. Section 1.4.2), PT (cf. Section 1.4.3) and EES (cf. Sec-
tion 1.4.3).
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1.6.3 Ensuring the Correct Stationary Distribution

As mentioned in Section 1.3.2, Geman and Geman (1984) proved the ergodicity
of the Gibbs sampler on discrete targets. Tanner and Wong (1987) also proved
convergence to a desired stationary distribution of a Markov chain generated
by a latent variable approach that essentially represents a two-variable Gibbs
sampler on a Euclidean state space, which Chan (1993) further generalised to
arbitrary finite dimensions. In Sections 1.3.1 and 1.3.2, respectively, it was
noted that Roberts and Smith (1994) provided conditions to ensure ergodicity
of both the Metropolis-Hastings sampler and Gibbs sampler, with the target as
their stationary distributions.

Unfortunately, the conditions and proofs provided in those references as-
sumed that the samplers obey the Markov property. That is, given a history of
samples up to time t− 1

x(0), x(1), . . . , x(t−1),

the probability density at x(t), the state at time t, conditional on all of this
history is the same as the probability density at x(t), conditional only on the
state at time t− 1 (Bertsekas and Tsitsiklis, 2002, pp. 314).

p
[
x(t)

∣∣∣x(0), x(1), . . . , x(t−1)
]

= p
[
x(t)

∣∣∣x(t−1)
]
.

As mentioned in the introduction to the current section, there exist sampling
algorithms that adapt their transition kernels using information from more than
just the previous iteration, thereby breaking this property. As such, the condi-
tions of Chan (1993) and Roberts and Smith (1994) do not apply, nor do other
properties of stationary Markov chains, such as detailed balance. Therefore, dif-
ferent approaches are required to guarantee that samples produced come from
the correct stationary distribution.

Atchadé and Rosenthal (2005) and Andrieu and Moulines (2006) indepen-
dently provided sufficient conditions for the consistency of estimators (Defini-
tion 2 of Section 1.2.1) and for the ergodicity (cf. Section 1.2.2) of an adaptive
MCMC process.

In the case of Atchadé and Rosenthal (2005), the authors essentially required
that the convergence in n of the n-step transition kernel, at a given iteration
t, towards the stationary distribution up to that iteration be “uniform-in-time”
and that adaptation of the transition kernel diminish with each successive it-
eration. Atchadé and Rosenthal (2005) stated that their conditions generalised
those used in Haario et al. (1999) and Haario et al. (2001) to prove ergodic-
ity of the Adaptive Proposal (cf. Section 1.6.4) and Adaptive Metropolis (cf.
Section 1.6.4) algorithms, respectively.

Andrieu and Moulines (2006) required two conditions for ergodicity of an
adaptive sampler whose proposal density depends on the entire history of sam-
ples. These were a minorisation condition, equivalent to the existence of a small
set (cf. Section 1.2.2), and a drift condition. This drift condition requires the ex-
istence of a finite measurable function V : X → [1,∞), on a separable state space
X with a countably-generated σ-field B(X ), as well as two constants b ∈ (0,∞)
and λ ∈ [0, 1), such that the integral with respect to V , of the transition kernel
Pθ(x, ·), parameterised by θ, is bounded according to Equation (1.140)∫

X
Pθ(x, dy)V (y) ≤

{
λV (x) if x /∈ C,
b if x ∈ C, (1.140)
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for any θ ∈ S ⊂ T and some C ∈ B(X ), where S is a compact subset of the
parameter space T .

Andrieu and Moulines (2006) noted that b and λ depend on V , C and S.
Other techniques have also been used to prove consistency and ergodicity in

an adaptive MCMC setting. For example, Holden et al. (2009) used a strong
Doeblin condition (cf. Definition 12 of Section 1.2.2) to guarantee convergence
of their adaptive extension of an independent MH algorithm.

Alternatively, some algorithms are designed to simply restrict or even halt
adaptation altogether after a finite time or once sampler performance has reached
some pre-determined threshold. One example of such an algorithm is the Adap-
tive Independent Metropolis-Hastings sampler of Giordani and Kohn (2010),
which initially uses adaptive regime that does not guarantee ergodicity of the
generated Markov chain, followed by a more restrictive one, which does. Sec-
tion 1.6.4 takes an in-depth look at this sampler.

1.6.4 Examples

Three externally adaptive MC algorithms have already been reviewed in this
chapter: PT, PA and EES. This section reviews in detail some of the aforemen-
tioned internally-adaptive sampling schemes.

Adaptive Direction Sampler

An algorithm introduced as an attempt to improve slow convergence of a Gibbs
sampler is the adaptive direction sampler (ADS) of Gilks et al. (1994); Roberts
and Gilks (1994). As its name suggests, this sampler grants more flexibility
in the sampling direction of a Gibbs sampler, by allowing it to change at each
iteration.

ADS updates, at each iteration t, a set of N p-dimensional points,

S(t−1) =
{

x
(t−1)
1 , . . . ,x

(t−1)
N

}
,

where N > p.

It does this by first uniformly selecting one of the points x
(t−1)
c ∈ S(t−1),

which Gilks et al. (1994) referred to as the “current point”. The sampler then
updates this point, relative to its current value, to produce a new point x(t).
This aspect of ADS makes the chain of each {xt}t∈N a random walk (cf. Sec-
tion 1.3.1).

The manner in which x
(t−1)
c is updated to x

(t)
c depends on two distributions,

a multivariate one Dv and a univariate one Du. Both of these distributions

take the set S(t−1)
∖{

x
(t−1)
c

}
as their argument and, according to Gilks et al.

(1994), they are allowed to take any form. These distributions are used to
generate variates v and u, respectively, which are then combined with a real-

valued jumping distance r to provide a jump from x
(t−1)
c to x

(t)
c , according to

(1.141).

x(t)
c = x(t−1)

c + r
[
v + ux(t−1)

c

]
. (1.141)

Gilks et al. (1994) chose the rescaling r so as to ensure that the station-
ary distribution of the process was the intended target. ADS achieves this
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by sampling it from an “adjusted full conditional” distribution of the target

π
{

x
(t−1)
c + r

[
v + ux

(t−1)
c

]∣∣∣x(t−1)
c ,v, u

}
, weighted by an “adjustment factor”

J(r). Roberts and Gilks (1994) showed that this prescription produces the
correct stationary distribution.

The general form of the adjustment factor was given by Gilks et al. (1994)
to be that of Equation (1.142)

J(r) = |1 + ru|p−1
, (1.142)

resulting in the form of the adjusted full conditional distribution given in Equa-
tion (1.143) (Roberts and Gilks, 1994),

π
{
r
∣∣∣x(t−1)
c ,v, u

}
=

π

{
x

(t−1)
c + r ·

[
v + ux

(t−1)
c

]p−1
}

∫
R
π

{
x

(t−1)
c + s ·

[
v + ux

(t−1)
c

]p−1
}
ds.

(1.143)

Note that Equation (1.143) is a univariate density.

By sampling r with an appropriate method, x
(t−1)
c is then updated to x

(t)
c .

ADS is summarised in Algorithm A.18 of Appendix A.

Adaptive Proposal

Haario et al. (1999) introduced a modified random walk Metropolis sampler,
intended to produce a more efficient sampling scheme, by adapting the param-
eters of the proposal distribution. They employed a heuristic approach that
updates the proposal distribution at time t using information from the previous
H iterations x(t−H), . . . ,x(t−1) ∈ Rp. As a result, the chain of samples produced
by this sampler is not Markovian.

Specifically, they chose a normal proposal distribution, centred at the current
sample, with covariance matrix c2pΣ̂

(t),

y ∼ N
[
x(t), c2pΣ̂

(t)
]
,

where cp = 2.38/
√
p is the scaling factor recommended by Gelman et al. (1996)

for a normal proposal distribution and Σ̂(t) is the sample covariance matrix of
the previous H draws, given by Equation (1.144),

Σ̂(t) =
1

H − 1

t−1∑
i=t−H

[
x(i) − x̄(t)

] [
x(i) − x̄(t)

]T
, (1.144)

with corresponding sample mean,

Σ̂(t) =
1

H

t−1∑
i=t−H

x(i).

The acceptance ratio is given by the Metropolis acceptance ratio of the target
density π at the proposed and current samples, respectively, which is restated
in Equation (1.145) for convenience,

α
[
x(t−1),y

]
= min

{
1,

π(y)

π
[
x(t−1)

]} . (1.145)
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The sampler then progresses at each iteration by first following this adaptive
scheme, before performing a Metropolis update of the state. This Adaptive
Proposal Sampler (APS) is summarised in Algorithm A.19 of Appendix A.

Haario et al. (1999) noted that the stationary distribution of the chain of
samples produced by the adaptive proposal sampler is not the same as the
intended target but, nonetheless, they found it to be acceptably close in the
examples to which they applied it.

Adaptive Metropolis

Haario et al. (2001) also developed a modified version of APS. Instead of using
a fixed-length history of the previous draws, their modified sampler uses the
entire history. As such, the chain of samples generated by this sampler is, once
again, not Markovian.

The proposal distribution still is p-variate normal, centred on the most
recently-sampled state x(t−1), so that at time t it is given by Equation (1.146),

g(t)
[
y
∣∣∣x(0), . . . ,x(t−1)

]
= N

{
y
∣∣∣x(t−1),Σ(t)

}
. (1.146)

Σ(t) is a covariance matrix associated with all samples up to but not including
iteration t. It is not the sample covariance matrix but it is related to it, using
the form given by Equation (1.147),

Σ(t) =

{
Σ(0) if t ≤ t0
c2d

[
Σ̂(t−1) + εIp

]
if t > t0

, (1.147)

where cp = 2.38/
√
d is the recommended scaling of Gelman et al. (1996), as

used in Section 1.6.4, t0 is an initial non-adaptive sampling period, 0 < ε� 1 is
a positive constant, which Haario et al. (2001) required to ensure ergodicity, Ip
is the p-dimensional identity matrix and Σ̂(t−1) is the sample covariance matrix

of
{
x(i)
}t−1

i=1
,

Σ̂(t−1) =
1

t− 1

t−1∑
i=0

[
x(i) − x̄(t−1)

] [
x(i) − x̄(t−1)

]T
,

with the usual sample mean up to time t− 1,

x̄(t−1) =
1

t

t−1∑
i=0

x(i).

Σ(0) is an arbitrary positive-definite covariance matrix, selected according
to the target being studied.

For the adaptive portion of the chain (t > t0), Haario et al. (2001) computed
Σ(t) online, by updating it as each new sample is drawn, using (1.148),

Σ(t) =
t− 2

t− 1
Σ(t−1) +

cp
t− 1

{
(t− 1)x̄(t−2)

[
x̄(t−2)

]T
−tx̄(t−1)

[
x̄(t−1)

]T
+ x(t−1)

[
x(t−1)

]T
+ εIp,

}
(1.148)
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where

x̄(t−1) =
t− 2

t− 1
x̄(t−2) +

1

t− 1
x(t−1).

Unlike APS, Haario et al. (2001) demonstrated that their Adaptive Metropo-
lis Samper (AMS) has the target π as its stationary distribution.

This sampler has formed the basis of later approaches, including examples
by Atchadé and Rosenthal (2005) and Roberts and Rosenthal (2009).

Adaptive Independent Metropolis-Hastings

Giordani and Kohn (2010) introduced an approximate MH method called adap-
tive independent Metropolis-Hastings (AIMH), which allows fast sampling using
mixture proposals. Their method is comprised of two adaptive phases, the latter
of which continues until the end of sampling. The first stage does not ensure
ergodicity, as it aims to find a selection of parameters that leads to a high ac-
ceptance rate. Once a sufficiently high acceptance rate has been achieved, the
adaptation schedule is restricted, to ensure the correct form of the stationary
distribution.

In the first phase of their sampler, each candidate new state x′ is proposed
according to Equation (1.149),

q(t)
[
x
∣∣∣λ(t)

]
= ω1g

(0)(x) + (1− ω1) g(t)
[
x
∣∣∣λ(t)

]
, (1.149)

where g(0)(x) is an initial proposal distribution given in Equation (1.150),

g(0)(x) = 0.6φ(0)(x) + 0.4φ̃(0)(x), (1.150)

φ(0) is an appropriately-chosen mixture of normal distributions and φ̃(0) is an-
other mixture that is obtained from φ(0) by scaling its variance-covariance ma-
trices each by a factor of 25.

g(t) is an adaptive density, given by Equation (1.151),

g(t)
[
x
∣∣∣λ(t)

]
= ω′2g̃

(t)
?

[
x
∣∣∣λ̃(t)
?

]
+ (1− ω′2) g

(t)
?

(
x
∣∣∣λ(t)
?

)
. (1.151)

The mixture parameters λ(t) are clear from Equation (1.151), provided the

parameters λ
(t)
? and λ̃

(t)
? are known. Giordani and Kohn (2010) prescribed that

g
(t)
? be a mixture of k normal distriutions, whose parameters λ

(t)
? are generated

using k-harmonic means clustering (cf. Section 1.5.1) and that the parameters

λ̃
(t)
? of another mixture g̃

(t)
? of k normal distributions then be set equal to λ

(t)
?

before scaling its variance-covariance matrices by a factor k > 1.
Giordani and Kohn (2010) required that 0 < ω1, ω2 < 1, and ω1 + ω2 < 1,

and they defined ω′2 according to Equation (1.152),

ω′2 =
ω2

1− ω1
. (1.152)

x′ is then accepted via the standard MH acceptance ratio Equation (1.153),

α
[
x(t−1),x′

]
= min

{
1,
π (x′) q(t)

[
x(t−1)

∣∣λ(t)
]

π
[
x(t−1)

]
q(t)

[
x′
∣∣λ(t)

]} . (1.153)
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The procedure for updating the chain state is summarised in Algorithm A.21
of Appendix A.

The procedure for updating the parameters is summarised in Algorithm A.22,
while AIMH is summarised in Algorithm A.23.

Giordani and Kohn (2010) asserted that AIMH is geometrically ergodic (cf.
Section 1.2.2) provided that a modified version of the necessary and sufficient
conditions of Mengersen and Tweedie (1996) hold. That is, they required that
the ratios of the target density and the successive time-varying components of
the proposal densities to the initial proposal at every point x ∈ X be no greater
than some positive constant K > 0,

π(x)

g0(x)
,
g(t)

[
x
∣∣λ(t)

]
g(0)(x)

≤ K.

They also required that the supremum of the absolute difference between time-
varying proposal components, relative to the fixed component of the proposal
be bounded from above by some positive constant a(t),

sup
x∈X

∣∣∣∣∣g(t)
[
x
∣∣λ(t)

]
− g(t+1)

[
x
∣∣λ(t+1)

]
g(0)(x)

∣∣∣∣∣ ≤ a(t).

1.7 Adaptive Proposals with Multiple Local Max-
ima

Section 1.6.4 reviewed an adaptive MCMC sampler that utilised a mixture of
normal distributions as its proposal. This was just one of a number of such
algorithms that adaptively update parameters of a mixture proposal.

Other more recent methods, involving mixture proposals, include a modifi-
cation of the adaptive Metropolis sampler (cf. Section 1.6.4), introduced by Ji
and Schmidler (2013). Their modified version replaces the proposal distribution
of AMS with a mixture proposal involving normal and point-mass components.

There have also been recent developments that, like the AIMH of Giordani
and Kohn (2010), use clustering to adapt the parameters of a mixture proposal.
One such method is that of Li and Lin (2015), which is an extension of im-
portance sampling (cf. Section 1.1.2), used to solve Bayesian inverse problems.
Unlike MCMC, their sampler is not designed to continue for an arbitrary length
of time. Rather, its goal is to construct a normal mixture approximation of
the posterior distribution of the parameters in a model under study. From this
mixture, the parameters and their variances may be estimated. At each time
step, it uses clustering to update the normal mixture approximation to the pos-
terior, before using polynomial chaos expansions of Wiener (1938) to allow fast
computation of approximate state samples from the model described by the cur-
rent set of parameter samples. It then uses the likelihood of the state samples
to adaptively temper the algorithm for computing importance weights of the
simulated parameters. Once the temperature of the sampler reduces to zero by
this tempering scheme the sampler stops and the most recent parameters and
hyperparameters are used for inference.

Another recent method that combines tempering and clustering to solve
Bayesian inverse problems is that of Feng and Li (2018). Like the AIMH of
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Giordani and Kohn (2010), this algorithm progresses in multiple phases: two
adaptation phases and one non-adaptive one. During the first adaptive phase it
uses a tempering scheme to enable fast exploration of the state space, in order to
find local maxima, using a clustering approach. In the second phase it continues
the same adaptive method intermittently without tempering. Finally, it halts
adaptation entirely after a certain number of steps and continues the sampler
with a fixed proposal, thereby avoiding the issues of proving ergodicity, which
arise in ongoing adaptation (cf. Section 1.6.3).

Another method with a mixture proposal that halts adaptation after some
time is the Fast universal self-tuned sampler within Gibbs (FUSS) of Martino
et al. (2014). It starts with a refined mesh of “support points” that are used
to construct a piecewise uniform distribution on a region of interest to the
MCMC practitioner. Outside these points it uses an appropriate distribution
to approximate the tails. FUSS then cuts down the number of regions until
it arrives at a sufficiently simple and accurate proposal density that it fixes
for the rest of the sampler. For this purpose Martino et al. (2014) provided
three pruning algorithms. The first retains the support points with the most
significant density with respect to the target, the second retains those with
density above some threshold value, and the third retains those whose densities
are sufficiently large compared to those of the other support points, given some
threshold.

A method that takes advantage of modern parallel computing is the Jumping
Adaptive Multimodal Sampler (JAMS) of Pompe et al. (2018). Their method is
a hybrid approach that involves a mechanism to detect local maxima running
alongside a sampling mechanism. During a run, the mechanism to find local
maxima seeks out new local maxima, while the sampling method performs either
a local move or a jump between regions surrounding different local maxima,
followed by a local move within the new region. In a local move it uses a
circular distribution to sample in a given region using an MH sampler, while
a jump move is made using an adaptive jump probability, given the current
parameters associated with the detected local maxima.

JAMS continues adaptation indefinitely, using all post-burn-in samples to
adjust the parameters associated with the detected local maxima as it learns
more about the target.

Pompe et al. (2018) showed that JAMS is a particular instance of a more
general class of adaptive methods that use auxilliary variables, for which they
provided proofs of sufficiency of conditions that guarantee their ergodicity.

Also taking into consideration parallel sampling is the Parallel Metropolis-
Hastings Coupler (PMHC) of Llorente et al. (2019). Their method combines
multiple parallel chains, with each performing standard MH updates indepen-
dently of the other chains. At pre-determined intervals, PMHC then switches
to sampling from a mixture proposal that couples the information of the par-
allel chains. These mixture components are centred on the current states of
each of the parallel chains, using a fixed dispersion in each. PMHC then uses a
Metropolis-within-Gibbs approach, by randomly selecting one population mem-
ber to be updated and using standard MH to update it.

Another MH-like sampler, which does not use a mixture proposal to cap-
ture local structure of the target, but a locally-adaptive one, is the Kameleon
algorithm of Sejdinovic et al. (2014). Their approach uses a normal proposal,
centred on the current state of the Markov chain. The variance-covariance ma-
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trix of this proposal distribution is constructed by first randomly selecting a
subset of the history of the generated Markov chain. It then computes gradi-
ents from the current state to the randomly-selected ones, with respect to some
pre-chosen probability kernel, whose gradients are easily computed. These gra-
dients are then combined to orient the normal proposal distribution in such a
way that local high-acceptance probability moves are favoured.

The result is a sampler that achieves efficient local sampling in a moving
region, without the need to specify the number of components in a mixture
proposal. Such an approach avoids the need to specify a number of components
in some mixture. However, the motivation of the Kameleon algorithm was for
sampling from highly non-linear targets (Sejdinovic et al., 2014), not necessarily
from targets with many well-separated local maxima.

The idea of estimating gradients in the state space using sampler history,
rather than explicit numerical computation, has also been applied by Strath-
mann et al. (2015) to Hamiltonian Monte Carlo (HMC) (Neal, 2011) (introduced
as “Hybrid Monte Carlo” by Duane et al. (1987)), to produce an HMC sampler
that does not require explicitly computing derivatives.

Note that in all of the preceding approaches, the adaptive aspect of the
sampler either adjusts the proposal distribution by adjusting its current form or
uses a clustering algorithm on the samples to create a new one. That is, their
proposal parameters are constructed. An alternative approach to constructing
the parameters is to sample them. A recent framework that employs such an
approach is that of Posterior-Based Proposals (PBPs) of Pooley et al. (2019).

Their method aims to sample parameters and latent variables of a model
from their posterior distribution, given some data. PBPs break down the prob-
lem of sampling from the posterior into one of successively sampling the pa-
rameters and latent variables, based on their dependence structure within the
model in question. The result is sequential sampling from a collection of univari-
ate distributions with standard form, which approximate the true conditional
densities of the parameters and latent variables.

By performing an accept or reject step once after sampling all parameters
and latent variables, PBPs take into account the correlation structure of the
underlying model, thereby improving mixing (Pooley et al., 2019).

Section 1.8 will review another procedure that makes use of sampling to
update its proposal distribution but which does not make reference to the target
distribution in doing so.

1.8 Bayesian Adaptive Independence Sampling

An adaptive technique that is crucial to the current dissertation is the Bayesian
Adaptive Independence Sampler (BAIS) of Keith et al. (2008). This MCMC
method will form the starting point for the algorithm presented in Part II.

1.8.1 Idea

Like AMS and APS, BAIS uses a normal distribution to propose new chain
states. Also like the adaptive proposal sampler it adjusts the parameters of this
normal proposal at each iteration. However, the means by which this adaptation
takes place is very different.
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Keith et al. (2008) cast the problem of inferring these parameters as one in
Bayesian inference, hence the name. They considered not only the samples from
the target but also the proposal parameters as random variables to be inferred.
By running N simultaneous chains, each representing samples from the target,
they used the current states of these chains to infer the posterior distribution of
the proposal parameters. BAIS then samples new proposal parameters directly
from this distribution, which it then uses in the proposal distribution to perform
MH-like sampling of new chain states.

1.8.2 Description

There are two key differences between the MH sampler discussed in Section 1.3.1
with a normal proposal with parameters θ = (µ,Σ) and BAIS. The first is that
there are N simultaneous samples at each iteration

x = (x1, . . . ,xN )

instead of just one. The second is that θ is updated at each iteration, given the
current population of samples.

The sampler alternates between updating the proposal parameters and the
sampling chain states so that the Markov chain generated by it consists of chains
of N p-dimensional sampling chain states, a p-dimensional proposal mean µ and
a p× p proposal variance-covariance matrix Σ,{[

µ(0),Σ(0),x(0)
]
, . . . ,

[
µ(t),Σ(t),x(t)

]
, . . .

}
.

It is this chain that must be ergodic and, naturally, the marginal stationary

distribution over each
{

x
(t)
n

}∞
t=0

must be the target distribution π.

Keith et al. (2008) developed BAIS so that these two requirements are guar-
anteed. In particular, stationarity of π is easily verified using detailed balance
(cf. Section 1.8.3).

Proposal Distribution

As stated previously, BAIS uses a single normal distribution to propose samples,
according to Equation (1.154),

y|µ,Σ ∼ N (·|µ,Σ). (1.154)

A proposed state y is generated from this distribution independently for each
of the N sampling chains.

Prior Model on Proposal Parameters

In order to update the proposal parameters µ,Σ using a Bayesian approach
a prior model is required. Keith et al. (2008) used a conjugate prior on the
parameters. Following Gelman et al. (2004, p. 88), they chose it to be the
uninformative improper Jeffreys prior, given in Equation (1.155),

p(µ,Σ) ∝ |Σ|−(p+1)/2. (1.155)
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Section 3.1.2 will discuss why such a prior is not suitable when the proposal
distribution is a mixture, rather than just a single normal density.

Other prior models are also possible, such as the joint conjugate prior of
both µ and Σ, given by a normal-inverse-Wishart distribution (Gelman et al.,
2004, pp. 87–88), as in Equations (1.156) and (1.157),

Σ ∼ Inv-Wν(0)

{
·
∣∣∣∣[Λ(0)

]−1
}
, (1.156)

µ|Σ ∼ N
[
·
∣∣∣∣µ(0),

Σ

κ(0)

]
, (1.157)

with the prior degrees of freedom ν(0) and the prior scale matrix Λ(0) on Σ,
the prior mean µ(0) and the prior number of observations κ(0) of the scale of Σ
chosen appropriate to the model under study.

The prior given in Equations (1.156) and (1.157) was used by Keith and
Davey (2013) in their random walk extension of BAIS (cf. Section 1.8.5).

Posterior Distribution of the Proposal Parameters

Taking likelihood function to be the proposal distribution given in
Equation (1.154), the posterior distribution of proposal parameters correspond-
ing to the uninformative prior used by Keith et al. (2008) is a product of a nor-
mal distribution on µ and an inverse-Wishart distribution on Σ. Specifically,
the inverse-Wishart distribution on the proposal variance-covariance matrix is
dependent on the number of sampling chains and their current states, (Keith
et al., 2008) (Gelman et al., 2004, pp. 88), as shown in Equation (1.158),

Σ|x ∼ Inv-WN−1(·|S), (1.158)

where S is the sample sum of squared errors,

S =

N∑
n=1

(xn − x̄) (xn − x̄)
T

and x̄ is the sample mean,

x̄ =
1

N

N∑
n=1

xn.

The posterior distribution on the proposal mean µ is a normal distribution with
mean x̄ and variance-covariance matrix Σ/N , as shown in Equation (1.159),

µ|Σ,x ∼ N
(
·
∣∣∣∣x̄, Σ

N

)
. (1.159)

Only states from the iteration immediately preceding the current one are
used to update the proposal parameters, hence the Markov property is pre-
served.
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Acceptance Ratio

Since the proposal distribution changes at each iteration, the proposed sample

y and the current state x
(t−1)
n of sampling chain n are drawn from different

proposal distributions. Hence, the standard MH acceptance ratio is no longer
valid.

Updating each sampling chain n in series, Keith et al. (2008) defined the
current population mean x̄, the proposed population mean x̄y, the current pop-
ulation sum of squared errors S and the proposed population sum of squared
errors Sy according to Equations (1.160), (1.161), (1.162) and (1.163).

x̄ =
1

N

[
n−1∑
i=1

x
(t)
i +

N∑
i=n

x
(t−1)
i

]
, (1.160)

x̄y =
1

N

[
n−1∑
i=1

x
(t)
i + y +

N∑
i=n+1

x
(t−1)
i

]
, (1.161)

S =

n−1∑
i=1

[
x

(t)
i − x̄

] [
x

(t)
i − x̄

]T
+

N∑
i=n

[
x

(t)
i − x̄

] [
x

(t−1)
i − x̄

]T
, (1.162)

Sy =

n−1∑
i=1

[
x

(t)
i − x̄y

] [
x

(t)
i − x̄y

]T
+ (y − x̄y) (y − x̄y)

T

+

N∑
i=n+1

[
x

(t)
i − x̄y

] [
x

(t)
i − x̄y

]T
. (1.163)

Taking into account the parameter update distributions, Keith et al. (2008)
arrived at the acceptance ratio given in (1.164),

α
[
x(t−1)
n ,y

]
= min

{
1,

π(y)

π[x(t−1)]
· Inv-WN−1(Σ|Sy)

Inv-WN−1(Σ|S)

× N (µ|x̄y,Σ)

N (µ|x̄,Σ)

N [x(t−1)|µ,Σ]

N (y|µ,Σ)

}
. (1.164)

Due to the importance of BAIS to the current dissertation, it is summarised
here, in Algorithm 1.1. Note that the redundant minimum on Line 12 of Al-
gorithm 1.1 has been included to highlight that α is an acceptance probability.

1.8.3 Satisfying Detailed Balance

With the modified Metropolis-Hastings acceptance ratio in Equation (1.164),
Keith et al. (2008) implied that BAIS still produces an ergodic Markov chain
that has the target distribution as its stationary distribution. The stationarity
of the target is summarised by Theorem 12, whose result Keith et al. (2008)
noted holds due to detailed balance.
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Algorithm 1.1 BAIS (Keith et al., 2008).

Require:
[
x

(0)
1 , . . . ,x

(0)
N

]
∈ RpN initial chain states.

Ensure: N chains of samples

{[
x

(t)
n

]N
n=1

}∞
t=1

from the target distribution π.

1: for t ∈ Z+ do
2: Set x̄ =

∑N
n=1 x

(t−1)
n

/
N .

3: Set S =
∑N
n=1

[
x

(t−1)
n − x̄

] [
x

(t−1)
n − x̄

]T
.

4: Generate Σ ∼ Inv-WN−1(·|S).
5: Generate µ ∼ N (·|x̄,Σ/N).
6: for Sampling chain n = 1 to n = N do
7: Generate y ∼ N (·|µ,Σ).

8: Set x̄ =
[∑n−1

i=1 x
(t)
i +

∑N
i=n x

(t−1)
i

]/
N .

9: Set S =

n−1∑
i=1

[
x

(t)
i − x̄

] [
x

(t)
i − x̄

]T
+

N∑
i=n

[
x

(t)
i − x̄

] [
x

(t−1)
i − x̄

]T
.

10: Set x̄y =
[∑n−1

i=1 x
(t)
i + y +

∑N
i=n+1 x

(t−1)
i

]/
N .

11: Set Sy =

n−1∑
i=1

[
x

(t)
i − x̄y

] [
x

(t)
i − x̄y

]T
+ [y − x̄y] [y − x̄y]

T

+

N∑
i=n+1

[
x

(t)
i − x̄y

] [
x

(t)
i − x̄y

]T
.

12: Set α = min

{
1,
π(y)Inv-WN−1(Σ|Sy)N (µ|x̄y,Σ)N [x(t−1)|µ,Σ]

π[x(t−1)]Inv-WN−1(Σ|S)N (µ|x̄,Σ)N [y|µ,Σ]

}
.

13: Generate u ∼ U(0, 1).
14: if u ≤ α then
15: Set x(t) = y.
16: else
17: Set x(t) = x(t−1).
18: end if
19: end for
20: end for



1.8. BAIS 83

Theorem 12. The augmented target distribution over the chain states x =
(x1, . . . ,xN ) and the proposal distribution parameters θ = (µ,Σ), given by
Equation (1.165),

h(x1, . . . ,xN ,θ) = p(θ|x)

N∏
n=1

π(xn) (1.165)

is stationary with respect to BAIS transitions.

Proof. Keith et al. (2008) considered the BAIS update process in two stages:
a parameter update step; and a sequence of sampling chain update steps. Up-
dating the parameters from θ to θ′ does not change the marginal stationary
distribution of x. Now consider the transition from (x,θ′) to (x′,θ′).

To see that this transition does not affect the stationary distribution of x it
is sufficient to check that it satisfies detailed balance in a similar way as Keith
and Davey (2013) did for their sampler.

That is, when updating sampling chain n, let the current x and updated x′

populations of samples be given by Equations (1.166) and (1.167), respectively,

x =
[
x

(t)
1 ,x

(t)
2 , . . . ,x

(t)
n−1,x

(t−1)
n ,x

(t−1)
n−1 , . . . ,x

(t−1)
N−1 ,x

(t−1)
N

]
, (1.166)

x′ =
[
x

(t)
1 ,x

(t)
2 , . . . ,x

(t)
n−1,x

(t)
n ,x

(t−1)
n−1 , . . . ,x

(t−1)
N−1 ,x

(t−1)
N

]
. (1.167)

Then Equation (1.168) needs to hold,

h (x,θ) p (x′|x,θ) = h (x′,θ) p (x|x′,θ) . (1.168)

Observe that showing the truth of Equation (1.168) is equivalent to showing
that

h (x,θ) p
[
x(t)
n

∣∣∣x,θ] = h (x′,θ) p
[
x(t−1)
n

∣∣∣x′,θ] (1.169)

holds, since a transition between x and x′ only only changes the state of xn,
according to

p(x′|x,θ) = p
[
x(t)
n

∣∣∣x,θ]
p(x|x′,θ) = p

[
x(t−1)
n

∣∣∣x′,θ]
Substituting the appropriate quantities into Equation (1.169) gives

L.H.S. = h (x,θ) p
[
x(t)
n

∣∣∣x,θ]
= p(θ|x)π

[
x(t−1)
n

] n−1∏
i=1

π
[
x(t)
n

] N∏
i=n+1

π
[
x(t−1)
n

]
× p

[
x(t)
n

∣∣∣x,θ]
= p(θ|x)π

[
x(t−1)
n

] n−1∏
i=1

π
[
x(t)
n

] N∏
i=n+1

π
[
x(t−1)
n

]

×N
[
x(t)
n

∣∣∣θ]min

1,
π
[
x

(t)
n

]
π
[
x

(t−1)
n

] p(θ|x′)
p(θ|x)

N
[
x

(t−1)
n

∣∣∣θ]
N
[
x

(t)
n

∣∣∣θ]

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= p(θ|x′)π
[
x(t)
n

] n−1∏
i=1

π
[
x(t)
n

] N∏
i=n+1

π
[
x(t−1)
n

]

×N
[
x(t−1)
n

∣∣∣θ]min

π
[
x

(t−1)
n

]
π
[
x

(t)
n

] p(θ|x)

p(θ|x′)
N
[
x

(t)
n

∣∣∣θ]
N
[
x

(t−1)
n

∣∣∣θ] , 1


= p(θ|x′)π
[
x(t)
n

] n−1∏
i=1

π
[
x(t)
n

] N∏
i=n+1

π
[
x(t−1)
n

]
× p

[
x(t−1)
n

∣∣∣x′,θ]
= h(x′,θ)p

[
x(t−1)
n

∣∣∣x′,θ]
= R.H.S.

Therefore, h(x,θ) is unchanged by sampling chain updates.

Since BAIS is an accept/reject MCMC sampler, whose accepted moves from
state (x,θ) to state (x′,θ) satisfy detailed balance with the augmented target
h(x,θ), by Theorem 11, h(x,θ) is stationary with respect to sampling chain
updates.

1.8.4 Shortcomings and Differences from Other Parallel
Adaptive Methods

While Keith et al. (2008) showed that BAIS is an effective sampler, demonstrat-
ing that it is useful in many situations, it is not a natural option for sampling
from target distributions with many local maxima, such as the rough energy
landscapes seen in spin glass simulations or protein structure prediction (cf.
Section 1.4). The single normal proposal distribution of BAIS only encapsu-
lates the overall mean and variance of the target distribution but ignores local
peaks and troughs. That is it does not capture the local shape of the target
distribution and, hence, cannot approximate a rough target density well, mean-
ing that the issue illustrated in Figure 1.2 will still be exhibited by a BAIS
simulation from a target with multiple local maxima.

The use of parallel sampling chains is not unique to BAIS. For example,
in a non-adaptive setting, Craiu and Meng (2005) used antithetically-coupled
parallel sampling chains in an MCMC sampler to reduce the variance of esti-
mates inferred from the samples. In an adaptive setting, introduced shortly
after BAIS, Craiu et al. (2009) combined two approaches, which they called
“Interchain Adaptation” (INCA) and “Regional Adaptation” (RAPT). INCA
uses N parallel chains, started at different points in the state space, to allow the
exploration of N regions of the state space simultaneously, while RAPT uses a
mixture proposal that enables each region of the state space to be explored in
a tailored fashion.

The method of Craiu et al. (2009) is an alternative approach to addressing
the main problem addressed in Part II of this dissertation: sampling from a
target with many local maxima. However, unlike the approach introduced in
this dissertation or BAIS, the method of Craiu et al. (2009) does not explicitly
exploit the Bayesian relationship between the prior distribution of the proposal
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parameters and the posterior distribution of the proposal parameters, given the
generated chain states.

1.8.5 Bayesian Adaptive Metropolis-Hastings Sampling

BAIS is a special instance of a more general approach, called Bayesian Adaptive
Metropolis-Hastings Sampling (BAMS), due to Keith and Davey (2013). Instead
of using a normal distribution proposal with mean µ and variance-covariance
matrix Σ in an independence sampler, BAMS uses any proposal distribution
p(x|θ), where the vector of proposal parameters θ is dependent on the choice
of proposal distribution.

As in BAIS, these parameters are updated at the start of each iteration from
their posterior distribution given the current states of the N sampling chains.
The hyperparameters Λ(t) of the posterior distribution at iteration t are given by
a deterministic function that computes the summary statistics of the posterior
distribution, given x, as in Equation (1.170),

Λ(t) = Λ
[
x

(t−1)
1 , . . . ,x

(t−1)
N

]
. (1.170)

The proposal parameters are then updated according to Equation (1.171),

θ(t) ∼ p
[
·
∣∣∣x(t−1)

]
= p

[
·
∣∣∣Λ(t)

]
. (1.171)

With θ(t) generated, Keith and Davey (2013) then prescribed that a new
state yn be proposed for each sampling chain n from the proposal distribution,
Equation (1.172).

yn ∼ p
[
·
∣∣∣x(t−1),θ(t)

]
. (1.172)

BAMS then updates each chain state x
(t)
n in sequence to either x

(t−1)
n or yn

through a Metropolis-Hastings accept/reject step. To do so, like BAIS, it re-

quires that the significant statistics Λ
(t)
n of the posterior parameter update dis-

tribution be recalculated for each chain, according to Equation (1.173).

Λ(t)
n = Λ

[
x

(t)
1 , . . . ,x

(t)
n−1,x

(t−1)
n , . . . ,x

(t−1)
N

]
. (1.173)

It similarly requires that alternative significant statistics Λ
(t)
n∗ also be computed

in the same manner as Λ
(t)
n but with x

(t−1)
n replaced with yn, as in Equa-

tion (1.174),

Λ
(t)
n∗ = Λ

[
x

(t)
1 , . . . ,x

(t)
n−1,yn,x

(t−1)
n+1 , . . . ,x

(t−1)
N

]
. (1.174)

The acceptance ratio for sampling chain n is then given by Equation (1.175),

αn

[
x

(t)
1 , . . . ,x

(t)
n−1,y,x

(t−1)
n+1 , . . . ,x

(t−1)
N ,θ(t)

]
(1.175)

= min

1,
π(y)p

[
θ(t)

∣∣∣Λ(t)
n

]
p
[
x

(t−1)
n

∣∣y,θ(t)
]

π
[
x

(t−1)
n

]
p
[
θ(t)

∣∣∣Λ(t)
n∗
]
p
[
y
∣∣∣x(t−1)
n ,θ(t)

]
 .

BAMS is summarised in Algorithm A.24 of Appendix A.
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1.9 Connections to the Current Study

As mentioned in Section 1.8, the sampling framework developed in Part II of
this dissertation will be an extension of BAIS that uses a proposal distribution
that can have multiple local maxima, instead of BAIS’s, which can only have
one. This means that, unlike the other adaptive MCMC algorithms, discussed in
Sections 1.6 and 1.7, it explicitly samples new parameters of its proposal distri-
bution from their posterior distribution, given the current states of a population
of sampling chains. That is, the parameters are inferred theoretically rather than
empirically, representing an alternative paradigm for adaptive MCMC.

This is not to say that the much-used empirical approach is not without
merit. On the contrary, all of the preceding algorithms were shown by their
creators to perform well. However, the approach of Part II seeks to further
develop the foundations put in place by Keith et al. (2008) in their introduction
of BAIS, in order to open up another avenue to adaptation that has, thus far,
been largely ignored.

In terms of the problem of constructing a proposal distribution that can have
multiple local maxima, Part II will not make recourse to any external adaptive
parameters. This sets it apart from the temperature- and energy-based methods
of Section 1.4.3. As such, it will not suffer from the practical difficulty of having
to determine a complex cooling schedule before a simulation is run.

Section 1.5 outlined the merits of approximation by finite mixtures and dis-
cussed best practices in terms of selection of the number of components. Its
details must be kept in mind when working with such distributions and, in par-
ticular, the selection methods for the number of mixture components discussed
in Section 1.5.3 will play a role in Chapter 6.

Finally, the theory reviewed in Section 1.2 will be used to provide a rigorous
justification of the methods developed in this dissertation.

1.9.1 Scientific Contribution of the Current Study

The methods and studies presented in Part II of the current dissertation sup-
plement the adaptive MCMC methods reviewed in Sections 1.6 and 1.7 in the
form of two new MCMC sampling methods. Like the methods reviewed in Sec-
tion 1.7, these methods tackle the problem of sampling from target distributions
with many local maxima, which was discussed in Section 1.4, by incorporating
mixture approximations (cf. Section 1.5) as proposal distributions inside an
adaptive MCMC framework. The novelty in the methods of this dissertation
lies in the extension of the framework put in place by Keith et al. (2008) in
their introduction of BAIS, proposing samples from a mixture proposal. This
dissertation also provides theoretical and practical justification of the study of
these new techniques.



Chapter 2

Applications of Monte
Carlo and Markov Chain
Monte Carlo

This chapter reviews applications of MC and MCMC methods.

The first section of this chapter considers test functions used in the liter-
ature to assess the performance of earlier MCMC and optimisation methods.
These test functions will appear later in this dissertation, where they will be
sampled, in order to test the performance of the samplers that will be introduce
in Chapters 3 and 6.

The second section reviews the regression model studied by Kou et al. (2006),
which will be used to compare the method of Chapter 3 to the EES and to
demonstrate guidelines developed for its implementation.

Finally, the third section reviews spin glass simulation, which is suggested
as a potential application for the new method of Chapter 5. It begins with a
description of what a spin glass is, followed by how they are modelled in the
literature. The section finishes with examples of computational techniques used
to study spin glasses.

2.1 Test Functions

This section reviews several existing test functions from the literature that are
particularly suited to the needs of the current study. Specifically, these functions
all have multiple local maxima, which makes them suitable for testing methods
that are designed to sample from such distributions.

The first portion of the current section reviews a mixture target distribution
to which Kou et al. (2006) applied EES. The second portion then describes a set
of optimisation test functions collected by Storn and Price (1997), which will be
used in Chapter 6 as targets for the comparison of the two methods that will
developed in this current work.

87
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2.1.1 A Mixture Target

Kou et al. (2006) illustrated EES (cf. Section 1.4.3) by sampling from a mixture
target. The distribution that they studied was an example from Liang and Wong
(2001) with the expression

f(x) =

20∑
i=1

2.5

π
exp

{
−50 (x− µi)T

(x− µi)
}
,

where

µ1 =

(
2.18
5.76

)
, µ2 =

(
8.67
9.59

)
, µ3 =

(
4.24
8.48

)
, µ4 =

(
8.41
1.68

)
,

µ5 =

(
3.93
8.82

)
, µ6 =

(
3.25
3.47

)
, µ7 =

(
1.70
0.50

)
, µ8 =

(
4.59
5.60

)
,

µ9 =

(
6.91
5.81

)
, µ10 =

(
6.87
5.40

)
, µ11 =

(
5.41
2.65

)
, µ12 =

(
2.70
7.88

)
,

µ13 =

(
4.98
3.70

)
, µ14 =

(
1.14
2.39

)
, µ15 =

(
8.33
9.50

)
, µ16 =

(
4.93
1.50

)
,

µ17 =

(
1.83
0.09

)
, µ18 =

(
2.26
0.31

)
, µ19 =

(
5.54
6.86

)
, µ20 =

(
1.69
8.11

)
.

In their simulations, Kou et al. (2006) used a minimum energy of 0.2, five
temperatures and an equi-energy jump probability of 0.1. They initialised their
simulation by drawing the initial states from a uniform distribution on the unit
square [0, 1]2 and set the initial MH step size for chain n to 0.25

√
Tn, where Tn is

the temperature associated with the nth energy truncation level in the EES (cf.
Section 1.4.3). After burn-in they ran the sampler for 50000 iterations. This
was repeated 20 times. In total each simulation resulted in 250000 recorded
samples.

This target was chosen for its multiple local maxima. As such, it has the
potential to exhibit the quasi-ergodic problem (cf. Section 1.2.2) if not sampled
carefully. Having also been used to test the EES by Kou et al. (2006), results
were already available for a direct comparison against the method developed in
Chapter 3 of this dissertation.

2.1.2 An Optimisation Test Bed

Functions used for testing optimisation algorithms are particularly interesting
because they are usually designed to exhibit many local extreme points but only
one global one. This makes them challenging to optimise because an inefficient
optimisation strategy may become stuck in any one of these numerous local ex-
tremes; not just the global one. These functions may be converted into densities
by treating them as an energy function inside a Boltzmann distribution or by
restricting their supports. For the same reasons they are difficult to optimise,
they are also difficult to sample.

This section reviews one such class of test functions, collected by Storn
and Price (1997) for demonstrating their differential evolution algorithm for
optimisation. They considered in total 30 different types of test functions, which
they optimised for a range of different values of their respective parameters. Not
all of these functions were appropriate for the needs of the current study, so this
section only discusses those that were converted to probability densities for
sampling in Part II.
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Figure 2.1: Goldstein function on the domain [−4, 4].
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Four functions were selected from test beds 1, 2 and 3 of Storn and Price
(1997), ranging in dimension from one to three. The subscripts on the functions
correspond to those given by Storn and Price (1997).

The first of these test targets was adapted by Storn and Price (1997) from
the De Jong functions (De Jong, 1975) into their first test bed. It was the
univariate Goldstein function, which Storn and Price (1997) initialised on the
interval [−10, 10]. To convert this function into a density, it was restricted to
the smaller domain of [−4, 4] to give the target in Equation (2.1).

p16(x) ∝
{
x6 − 15x4 + 27x2 + 250, if x ∈ [−4, 4]

0, otherwise.
(2.1)

On this restricted domain the resulting density has a maximum at each extreme
(cf. Figure 2.1). Between these two extremes the function decreases rapidly,
with a small double-hump in the middle, as demonstrated in Figure 2.1.

The second modified De Jong function considered corresponds to function 5
of Storn and Price (1997). This function is Shekel’s foxholes, which is a two-
dimensional function with 25 local minima. These minima make the function
suitable for testing a sampler designed to study distributions with multiple local
maxima. To convert this function into a density, its support was restricted to
(x1, x2) ∈ [−40, 40].

The formula for Shekel’s foxholes is stated in Equation (2.2).

p5(x1, x2) ∝



1

0.002 +
∑24
i=0

1

i+ [x1 − a(i mod 5)+1]6

+ (x2 − abi/5c+1)6

,
if x1, x2

∈ [−40, 40]

0, otherwise.

(2.2)

In Equation (2.2) a = (ai)
5
i=1 = (−32,−16, 0, 16, 32), “ mod ” is the modulo

operator and b·c is the floor function.
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Figure 2.2: Filled contour plot of Shekel’s foxholes function on the domain
[−40, 40]2.
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Figure 2.2 sketches Shekel’s foxholes as a filled contour plot. The darker
regions in Figure 2.2 represent regions of lower density.

Finally considered, were the modified versions of Rastrigin’s and Ackley’s
(Ackley, 1987, pp. 13–14) functions in p = 1, p = 2 and p = 3 dimensions.
Their formulae are given by Equations (2.3) and (2.4), respectively,

p13(x) ∝ 10p+

p∑
d=1

[
x2
d − 10 cos(2πxd)

]
, (2.3)

p15(x) ∝ −20 exp

− 1

50

√√√√1

p

p∑
d=1

x2
d

− exp

[
1

d

p∑
d=1

cos (2πxd)

]
+ 20 + exp(1).

(2.4)
These two functions are very similar, with multiple local maxima of varying
height in the same locations.

Figure 2.3 demonstrates the two-dimensional versions of Rastrigin’s and Ack-
eley’s functions.

While “flipping” the preceding targets (so that maxima become minima and
minima become maxima) may have posed a greater sampling challenge, this
would have entailed further changes to their expressions. Since the difficulty
of sampling these targets was not of primary concern in this dissertation, this
modification was not implemented.

Like the target of Section 1.4, these test functions were selected for their
multiple or non-trivial local maxima and because they provide further examples
for testing the developed methods of this dissertation.
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Figure 2.3: Rastrigin’s function in two dimensions on the domain [−2, 2] (left)
and Ackley’s function in two dimensions on the domain [−2, 2] (right).

−2 −1 0 1 2
−2

0

2

x1

x
2

Increasing density →

−2

0

2

−2 −1 0 1 2
x1

x
2

Increasing density →

2.2 Mixture Exponential Regression

The mixture exponential regression problem studied by Kou et al. (2006) was
also considered, as a further comparison against the equi-energy sampler and to
illustrate the guidance given in Part II of this dissertation.

Kou et al. (2006) generated M = 200 data pairs (yi, xi)
M
i=1 ∈ R2 with the

following distributions,

xi ∼ U(0, 2)

yi ∼
{

Exp [exp(β11 + xiβ12)] , if zi = 0

Exp [exp(β21 + xiβ22)] , if zi = 1
,

where zi = 1 with probability α and 0 otherwise, U(a, b) is the uniform distri-
bution on the interval [a, b] and Exp(λ) represents an exponential distribution
with parameter λ.

In this model the parameters of interest are α, β11, β12, β21 and β22.

In order to produce the M data pairs, Kou et al. (2006) set the true values
of these parameters to be α = 0.3, β11 = 1, β12 = 2, β21 = 4 and β22 = 5.

By setting a beta prior on α with shape 1 and scale 1 and a normal prior
with mean 0 and variance σ2 = 100 on each of the βs, Kou et al. (2006) derived
the log-posterior density of the model parameters to be

M∑
i=1

log

{
α

exp(β11 + xiβ12)
exp

[
− yi

exp(β11 + xiβ12)

]
+

α

exp(β21 + xiβ22)
exp

[
− yi
β21 + xiβ22

]}
− 1

2σ2
(β2

11 + β2
12 + β2

21 + β2
22) + log(C),

where C is the normalising constant of the posterior density.
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Figure 2.4: An example of a disordered magnet (left) and a ferromagnet (right).
These examples do not show the orientations of the spins (black circles), only
whether two spins on an edge prefer to be the same (+) or opposite (−).
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They used the equi-energy sampler to simulate drawing from this distri-
bution, using an initial minimum temperature of −1740.8 and eight sampling
chains.

2.3 Spin Glass Simulation

Spin glasses represent an important problem of computational interest in theo-
retical physics. The most common mathematical models used to describe them
have simple descriptions but the resulting probability distributions over their
configuration space have many local minima, providing a challenging task for
MC methods (Fischer and Hertz, 1991, pp. 130–131). Therefore, spin glasses
present an ideal application for algorithms that are designed to sample from
distributions with many local maxima, such as the one introduced in Part II of
the current dissertation.

2.3.1 Background

Spin glasses are disordered magnets, which, on a microscopic scale, have a
“frozen” random arrangement of interactions between the spins of their con-
stituent particles (Fischer and Hertz, 1991, pp. 2). When an interaction is
satisfied, the resulting energy of the system is lower and hence, more preferable,
than when it is not. This random arrangement of spin preferences, demonstrated
in the left-hand lattice of Figure 2.4, contrasts with the aligned preference of
ferromagnets (right-hand lattice of Figure. 2.4) and the anti-aligned preferences
of antiferromagnetic interactions.

Due to the random arrangement of ferromagnetic and antiferromagnetic in-
teractions, local competition between neighbouring spin directions is present.
This competition leads to frustration (Toulouse, 1977), where not all interac-
tions can be simultaneously satisfied. Such frustration is exemplified in simple
terms by a triangle with two ferromagnetic interactions and one antiferromag-
netic one, as depicted in Figure 2.5. Not all of the spin preferences can be
satisfied at once, with at least one of them being unsatisfied. To see this, note
that if a = b = c, then the two + bonds will be satisfied but then a = c, making
the − bond unsatisfied. Similarly, if a = b 6= c then the bonds between a and
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Figure 2.5: An example of spin frustration.
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Figure 2.6: A simplified illustration of a dilute alloy of a paramagnetic solute X
inside a diamagnetic matrix of element Z.
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b and between a and c will be satisfied but the one between b and c will not,
with the same problem arising if b = c 6= a. The complexity induced by frus-
tration leads to questions regarding its effect on the macroscopic properties of
such systems, both from theoretical and experimental perspectives.

Researchers have investigated spin glass behaviour experimentally by testing
a variety of dilute metallic alloys whose microscopic structures involve competing
interactions. Examples of such alloys include paramagnetic manganese atoms
in a copper matrix (e.g. Anderson (1970)), paramagnetic vanadium atoms in
a gold matrix (e.g. Beck (1971)) or ferrormagnetic iron atoms in a gold (e.g.
Cannella and Mydosh (1972)) or aluminium (e.g. Beck (1971)) matrix.

These examples all involve a ferromagnetic or paramagnetic metal solute
X inside a matrix of a purely diamagnetic one Z, as illustrated in Figure 2.6.
While the spins of the electrons of the solute (the para- or ferromagnetic element
in lower quantity) will tend to orient themselves with an externally-applied
magnetic field, the spins of the electrons of the matrix (the diamagnetic metal
of higher quantity) will tend to orient against that same field.

A key property of spin glasses that makes them an interesting subject of
study, is the cusp in their magnetic susceptibility, demonstrated by Cannella
and Mydosh (1972) for iron in gold.

From a theoretical perspective the focus lies in inferring the properties of
spin glass models by averaging them over all possible configurations and random
couplings of a model in question. This requires sampling from the probability
distribution of configurations, which is given by a Boltzmann distribution,

p(s) ∝ exp

[
−h(s)

T

]
, (2.5)

where s is the configuration of spins, the Hamiltonian h(s) is the energy asso-
ciated with configuration s and T is the temperature of the simulation. For a
physical temperature, T should be replaced by kBT , where kB is Boltzmann’s
constant. Since this replacement would only constitute a change of units of T ,
the current work will continue to use T , for ease of exposition.



94 CHAPTER 2. APPLICATIONS OF (MC)MC

The normalising constant Z(T ) of this distribution is known as its partition
function in the statistical mechanics literature and is described at temperature
T by Equation (2.6)

Z(T ) =
∑
s∈S

exp

[
−h(s)

T

]
, (2.6)

where S is the space of all possible spin configurations.

The partition function, from which important thermodynamic properties of
the system of study may be derived (Baxter, 1982, pp. 8), is generally not
readily computed in an exact form (Baxter, 1982, pp. 9). Instead, quantities
that are derived from it must be approximated numerically, using methods such
as MC or MCMC (cf. Section 2.3.4). Researchers are especially interested in
their computation as the temperature is reduced to zero, where, due to the
form of the configurational distribution, any local maxima in the distribution
are amplified, making sampling progressively more difficult.

The rest of this section reviews mathematical models of magnets, starting
with those of ferromagnets. It then progresses onto the most studied models
of spin glasses and their relationships with their real-world counterparts, before
reviewing methods that have been proposed to sample from their configurational
distributions.

2.3.2 Ferromagnetic Models

This section takes a look at three models of interacting spins on a regular lattice.
It begins with a review of the Ising model, which has a simple description, before
discussing two more general models, which have more realistic but more complex
descriptions.

The Ising Model

The Ising model, introduced by Lenz (1920), is a simplified representation of
the spin interactions on a ferromagnetic lattice, in which each spin is oriented
in one of two opposing directions, denoted by +1 and −1. The specific form
of its partition function was derived by Lenz’s student Ising (1925) for the
one-dimensional case in zero magnetic field (described below). The partition
function that he found was continuously differentiable with respect to tempera-
ture T ∈ R+ (cf. Equation 2.8), indicating that the Ising model does not exhibit
a phase transition in one dimension.

What follows is a review of the description of the one- and two-dimensional
Ising models in zero magnetic field, given by Onsager (1944), who derived the
partition function in two dimensions, subsequently deriving an expression for
the temperature Tc at which the predicted phase transition (Peierls, 1936) takes
place.

Onsager (1944) started with a review of the one-dimensional model studied
by Ising (1925), where spins are modelled linearly, as in the lattice on the left-
hand side of Figure 2.7. The circles represent the spins, which each equal ±1,
and the lines between them, the interaction energies of the pairs, which equal
±J . The sign before the coupling constant J depends on the states of the
interacting spins and is positive if they are the same and negative otherwise.
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Figure 2.7: An Ising spin glass in one dimension (left) and in two dimensions
(right). Note that in two dimensions the coupling strength between neighbour-
ing atoms may differ in each of the dimensions.
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The Hamiltonian corresponding to the N -spin instance of this model is given
by Equation (2.7),

h(s) = −J
N∑
n=1

snsn+1, (2.7)

where s = (s1, . . . , sN ) is the vector of spin states. Thus, the partition function
for an N -spin one-dimensional system is given by Equation (2.8),

Z(T ) =
∑

s∈{±1}N
exp

(
−J
T

N−1∑
n=1

snsn+1

)
. (2.8)

The infinite two-dimensional case is illustrated on the right-hand side of
Figure 2.7, with separate coupling constants Jx and Jy in the horizontal and
vertical directions, respectively.

Onsager (1944) provided a detailed derivation of the corresponding partition
function and showed that a phase transition occurs at a critical temperature Tc
satisfying Equation (2.9)

sinh

(
2Jx
Tc

)
sinh

(
2Jy
Tc

)
= 1, (2.9)

where the system transitions from an ordered state above Tc to a disordered one
below it.

This result extends one of Kramers and Wannier (1941), who found the
transition temperature for the case where Jx = Jy = J to be given by Equa-
tion (2.10),

Tc =
0.8814

J
. (2.10)

The Potts Model

A generalisation of the two-dimensional Ising model is the Potts model, due to
Potts (1952), which generalises a more specific model that was introduced by
Ashkin and Teller (1943).

Unlike the Ising model, which only considers two types of spins, namely +
and −, on a regular lattice, the Potts model considers r different spin types,
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Figure 2.8: A single lattice site in a Potts model with five possible spin di-
rections, indicated by vectors. Adjacent spin interact with coupling strength
J = J0 when they are aligned and J = J1 otherwise.
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occurring in equal proportions, on any graph. Potts (1952) represented each
spin type as a vector pointing in one of r directions, equal angles apart, as
illustrated in Figure 2.8. He then defined two different interaction energies, J0

for spins pointing in the same directions and J1 for those pointing in different
ones.

The r = 2 case, with J0 = −J1, is simply the two-dimensional Ising model,
for which Kramers and Wannier (1941) discovered the critical point given at the
end of the previous subsection. The case where r = 4 corresponds to the model
studied by Ashkin and Teller (1943).

Potts (1952) also mentioned a more general model, where he stated that the
interaction between nearest neighbours is “proportional to the scalar product
of the vectors representing them”. That is, the interaction is represented by a
rescaling Jsi ·sj of the dot product between spins i and j, represented, by vectors
si and sj , respectively. This relates to the more specific case described above,
where J0 and J1 are expressed by Equations (2.11) and (2.12), respectively,

J0 = J (2.11)

J1 = Jsi · sj . (2.12)

The limiting case of this more general model as r → ∞ describes a model,
in which spins may point in any direction and where every interaction in the
lattice has a component in each lattice direction.

The Heisenberg and n-Vector Models

The Heisenberg model is a three-dimensional description of a lattice of interact-
ing spins, first introduced by Heisenberg (1928), in which each spin may point
in any direction. As such, a spin is depicted as a unit 3-vector.

For general dimension n Stanley (1968) introduced the n-vector model, which
has the Hamiltonian given in Equation (2.13),

H(s) = −2J
∑
〈i,j〉

si · sj , (2.13)
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where · represents the dot product and si, sj ∈ Rn are the unit-length spin
vectors at lattice sites i and j, respectively. He noted that n = 1 describes the
Ising model and n = 3, the Heisenberg model.

2.3.3 Spin Glass Models

To describe characteristic properties of spin glasses, a number of mathematical
models have been proposed in the literature. The most studied of these, due
to their ease of description and their agreement with experimental results, are
related to the ferromagnetic models of interacting spins reviewed in the previous
section. Unlike those models, which their corresponding authors studied using
a constant interaction J , in spin glass models this interaction is allowed to vary
across neighbouring pairs. The two most commonly studied such descriptions
of the spin glass are the Edwards-Anderson (EA) model and the Sherrington-
Kirkpatrick (SK) model, which involve Ising spin interactions.

This section reviews both of these models.

The Edwards-Anderson Model

Edwards and Anderson (1975) proposed a model of spin glasses, to explain a
cusp in the magnetic susceptibility, discovered by Cannella and Mydosh (1972).
Their model considers a p-dimensional lattice of N spin sites, in which the
interaction between sites i and j, indicated by Jij , is a random variable with
known distribution. The resulting Hamiltonian h(s) of the configuration s, is
then given by Equation (2.14) (Fischer and Hertz, 1991, pp. 19),

h(s) = −1

2

∑
〈i,j〉

Jijsisj , (2.14)

where
∑
〈i,j〉 represents a sum over all interacting lattice sites and s = (s1, . . . , sN )

is a spin configuration.
Edwards and Anderson (1975) assumed the net interaction between all spins

to be zero on any scale, ∑
i,j

Jij = 0.

They considered the relationship between two independent realisations of
the spin configurations, a and b, for the same set of interactions, defining an
order parameter (Stein and Newman, 2013, Sec. 4.8),

qEA =
〈
s

(a)
i s

(b)
i

〉
= lim
N→∞

1

N

N∑
i=1

〈si〉2 ,

where
〈
s

(a)
i s

(b)
i

〉
represents a sample average of s

(a)
i s

(b)
i over all lattice sites i

and all replica pairs a, b, while 〈si〉 represents a sample average of the state of
the ith spin in a lattice with N spin sites.

Edwards and Anderson (1975) proceeded from the argument that for a spin
glass, in the absence of an external magnetic field, qEA = 0 above some crit-
ical temperature Tc, indicating no net macroscopic magnetisation, but below
it qEA 6= 0, indicating a net latent magnetisation. They noted that the group
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of A. T. Fiory observed such a change in experimental investigations (Murnick
et al., 1976), which they attributed to “freezing” of the spin directions.

Using their definition of qEA, its experimentally-observed nature above and
below the transition temperature and the expression of Tc, Edwards and An-
derson (1975) derived a number of thermodynamic properties, including the
existence of a cusp in magnetic susceptibility as observed by Cannella and My-
dosh (1972), and the specific heat of the transition at Tc.

The Sherrington-Kirkpatrick Model

Sherrington and Kirkpatrick (1975) considered a spin glass model consisting of
infinite-range interactions between N Ising spins s = (s1, . . . , sN ) ∈ {±1}N (cf.
Section 2.3.2), with Hamiltonian given by Equation (2.15),

h(s) = −1

2

∑
i 6=j

Jijsisj . (2.15)

In their model Sherrington and Kirkpatrick (1975) specified a Gaussian dis-
tribution over the interactions by Equation (2.16),

p(Jij) =
1√

2πJ2
exp

[
− (Jij − J0)2

2J2

]
. (2.16)

As in the more general model of Edwards and Anderson (1975), Sherrington
and Kirkpatrick (1975) considered multiple configurations or “replicas” with the
same set of couplings. They specified two order parameters, m and q, given by
Equations (2.17) and (2.18), respectively,

m := EJ [〈si〉] , (2.17)

q := EJ
[
〈si〉2

]
, (2.18)

where 〈·〉 represents a configurational average and EJ represents an average over
the sets of couplings.

Studying their model down to the limit of n = 0 replicas and averaging over
all possible sets of couplings, they non-rigorously demonstrated that m and q
are independent of the lattice site i. They further explained the significance
of these two variables, noting that magnetic order results when q 6= 0. When
there is order present, Sherrington and Kirkpatrick (1975) interpreted m = 0 as
indication of the ferromagnetic phase, and m 6= 0 as an indication of the spin
glass phase.

Sherrington and Kirkpatrick (1975) then used the preceding formulation to
describe thermodynamic properties of their model with respect to “intensive”
(scale-independent) variables J̃0 = J0N and J̃ = J

√
N .

2.3.4 Computer Simulation

Glauber Dynamics and Single-Spin-Flip MC

An early computational approach to simulating spin glasses was that of single-
spin-flip dynamics, due to Glauber (1963). This approach is essentially an early
version of Gibbs sampling, which was reviewed in Section 1.3.2.
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Specifically, Glauber (1963) considered a one-dimensional closed loop of N
spins that are either up or down (sn = ±1, n ∈ {1, . . . , N}). His model then
updated each spin n individually, while keeping all others fixed, by consider-
ing the constant probability pn of a sign-change in the spin’s value (due to its
interaction with an external “heat reservoir”), as well as its interactions (“corre-
lations”) with the other spins in the system. The “master” differential equation
of his model is given by Equation (2.19),

d

dt
Pt (s1, . . . , sN ) = −Pt (s1, . . . , sN )

N∑
n=1

pn (sn)

+

N∑
n=1

pn (−sn)Pt (s1, . . . , sn−1,−sn, sn+1, . . . , sN ) . (2.19)

For a sequence of discrete-time spin updates in an Ising model, as considered
in Chapter 5, the flip at lattice site n is effectively a Metropolis move, with
proposal that selects the configuration with all spins the same, except for the
nth. A standard Metropolis accept-reject step (cf. Section 1.3.1) completes
the move, with probability α given by the ratio of densities with respect to the
target (Glauber, 1963), according to Equation (2.20),

α = min

{
1,

exp[−(J/T )sn
∑
i∈V(n) si

exp[(J/T )sn
∑
i∈V(n) si

}
, (2.20)

where J is the interaction strength, sn is the spin being updated and V(n) is
the set of indices of the neighours of site n.

Section 5.2.1 considers a multi-spin updating approach using the main MCMC
method developed in this dissertation, which will be compared to single-spin-flip
in Section 5.3.

The Swendsen-Wang Algorithm

Instead of performing single-spin flips in a Monte Carlo simulation of a system of
interacting spins, Swendsen and Wang (1987) introduced an algorithm to cluster
the spins in a given configuration into Nc distinct clusters. They achieved
this goal on the basis of the existence of satisfied spin preferences between
neighbouring spins.

Swendsen and Wang (1987) described their approach for a (ferromagnetic)
Potts model but noted that it extended to spin glasses in a straightforward
manner. In Chapter 5, where spin glasses will be explored further, the focus
will be on Ising spin glasses, so its algorithm is described here in that context.

The Swendsen and Wang (1987) algorithm considers a Hamiltonian over the
system. For an Ising spin glass this Hamiltonian is given by Equation (2.21),

h(s) = − 1

T

∑
〈i,j〉

Jij (sisj − 1) , (2.21)

where Jij is the coupling energy between spins i and j, based on their respective
states si and sj .

Given a set of couplings J and a configuration s = (s1, . . . , sN ), the algo-
rithm of Swendsen and Wang (1987) proceeds by first randomly assigning bonds
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between neighbouring spins that have a satisfied interaction. The probability of
assigning a bond between satisfied spins i and j is thus given by Equation (2.22),

Pbond(si, sj , Jij) = 1− exp

(
− 1

T
max{Jijsisj , 0}

)
, (2.22)

where T is the temperature.
The result of performing the preceding assignments is a partition of the

lattice into Nc ≤ N disjoint clusters that covers the entire lattice.
Swendsen and Wang (1987) justified their algorithm on the premise of For-

tuin and Kasteleyn (1972), who demonstrated that a Potts (and, hence, Ising)
model may be represented as a percolation model. The unnormalised proba-
bility of a particular clustering is, therefore, given by Equation (2.23) (Fortuin
and Kasteleyn, 1972),

Pclustering(s,J,B) ∝
N∑
i=1

∏
j∈{k:k∈V(i),k>i}

[Pbond(si, sj , Jij)]
Bi,j

× [1− Pbond(si, sj , Jij)]
1−Bi,j , (2.23)

where B = {{Bij}j∈{k:k∈V(i),k>i}}Ni=1 is a set of indicators, such that Bij = 1 if
there is a bond between lattice sites i and j and 0 otherwise. Note that k > i
in the product discounts double-consideration of any interaction.

In the case of a p-dimensional Ising model, Fortuin and Kasteleyn (1972) gave
a simple formula for the partition function, which is restated in Equation (2.24),

Z =
∑

B∈{0,1}pN
q
∑

B(1− q)pN−
∑

B2Nc(B), (2.24)

where
∑

B represents the total number of bonds, Nc(B) is the number of clus-
ters induced by bonds B and q = 1 − exp [−J/T ] is the common probability
of a bond between neighbouring spins of the same orientation. This probabil-
ity is not common between lattice sites in a spin glass, which complicates the
computation of the partition function.

Algorithm A.25 of Appendix A summarises the clustering algorithm of Swend-
sen and Wang (1987).

In their introduction of replica MC, Swendsen and Wang (1986) suggested
not using a Hamiltonian over interacting spins when using a cluster-updating
approach, but one over neighbouring clusters, in the form of a cluster Hamil-
tonian. The same approach applies to the Swendsen-Wang cluster model, in
which case, the cluster Hamiltonian is given by Equation (2.25),

Hcl = − 1

T

∑
〈c,d〉

Kcd (2.25)

where the effective coupling Kcd is equal to the sum of all interactions between
clusters c and d.

Formally, for a spin glass, let Ci be the cluster to which lattice site i is
assigned and set Ic(Ci) = 1 if lattice site i is in cluster c and 0 otherwise. Then
Kcd is defined according to Equation (2.26),

Kcd =
∑
i∈N

∑
j∈{k∈V(i):k>i}

JijsisjIc(Ci)Id(Cj). (2.26)
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Since all spin preferences inside a single cluster are satisfied, there are only
two possible sets of orientations, which differ by total spin reversal. Call these
two sets ac and a′c, where ac = −a′c.

To use the Swendsen-Wang algorithm inside a Metropolis sampler is analo-
gous to the type of single-spin-flip approach discussed at the end of the previous
subsection, but instead of updating one spin at a time, it updates one cluster
at a time. In this case, a flip is proposed of the spin at each lattice site within
the cluster. The probability of accepting this flip is then computed in much the
same manner as the probability of a spin flip. That is, cluster c is updated in a
Metropolis move, with the proposed configuration always being the same as the
current one but with the cth cluster flipped. It is then accepted with a standard
Metropolis acceptance ratio.

Section 5.2.2 will introduce the foundations for an alternative approach to
Swendsen-Wang cluster-updating, which may be used to propose new states in
the main MCMC sampler introduced in this dissertation.
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Part II

BAIS with Latent variables
(BAIS+L)

This part of the dissertation introduces and discusses a novel ap-
proach to sampling from distributions with many local maxima:
the Bayesian Adaptive Independence Sampler with Latent variables
(BAIS+L). This sampler extends the Bayesian Adaptive Indepen-
dence Sampler of Keith et al. (2008), by utilising a more flexible
proposal distribution, in the form of a mixture of normals.

Chapter 3 begins with a detailed development of the new sampler,
including a discussion of an approximation that makes the sampler
possible. It outlines the quantities necessary for its implementa-
tion and which are used to define its algorithm. Chapter 3 also
provides sufficient conditions for uniform ergodicity, with proofs of
their sufficiency. Considerations of how these sufficient conditions
may be enforced are presented, along with a study of their effec-
tivenss. Chapter 3 concludes with some conjectured properties of
BAIS+L.

Chapter 4 compares BAIS+L to the equi-energy sampler of Kou
et al. (2006). It does so by using BAIS+L to sample the same tar-
gets in Euclidean state space that were studied by Kou et al. (2006).
This chapter explores the relative efficiency of BAIS+L, as well as
its accuracy, compared to those of the equi-energy sampler. In par-
ticular, it considers how the number of sampling chains and mixture
components in the proposal distribution affect performance. From
the results of these runs, guidelines are then developed for how to
implement BAIS+L in practice. These guidelines are demonstrated
when sampling from the mixture exponential application studied by
Kou et al. (2006).

Chapter 5 initiates a study of how BAIS+L may be used to study
spin glasses. It discusses two potential approaches, before applying
the simpler of the two to a two-dimensional spin glass. The results
of this chapter highlight pitfalls with BAIS+L and suggest potential
solutions and alternative avenues for future study.

Finally, Chapter 6 introduces an exact version of BAIS+L, called
EBAIS+L. This approach is justified by a theorem of Besag et al.
(1995), which was reviewed in Section 1.2.3. The new method is
compared to BAIS+L and used to highlight the efficiency gained in
using the approximate approach of BAIS+L in place of the exact
one offered by EBAIS+L.
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Chapter 3

BAIS+L Development

This chapter provides the details of the Bayesian Adaptive Indepenence Sampler
with Latent variables (BAIS+L). It starts with a description of its motivation,
with reference to the issues discussed in earlier chapters, especially with respect
to targets with many local maxima. It then outlines specific details of BAIS+L’s
design, including its proposal distribution and acceptance ratio. Finally, it
combines these design details and summarises them as an algorithm.

After highlighting the novelty of BAIS+L in Section 3.2, Section 3.3 is de-
voted to considerations of the ergodicity of BAIS+L, in the form of sufficient
conditions for uniform ergodicity. Proofs of their sufficiency are then provided,
before a discussion of how they may be implemented in practice. This discus-
sion is supplemented by some numerical simulations, which are used to provide
practical guidance.

3.1 Motivation and Description

BAIS does not completely solve the problem of approximating a target distri-
bution with many local maxima, which was illustrated in Figure 1.2, as its pro-
posal distribution contains only one one (local) maximum. Therefore, the goal
of the current study is to combine the flexibility of an adaptive approach with a
mixture proposal distribution, which can approximate a continuous density to
an arbitrary precision, given enough mixture components (Frühwirth-Schnatter
and Pyne, 2010).

3.1.1 Extension of BAIS

This section introduces a novel approach to adaptive MCMC, which extends
BAIS (cf. Section 1.8) by replacing its single normal proposal distribution with
a mixture of K normal distributions. That is, a proposed state y is sampled
from Equation (3.1),

y ∼
K∑
k=1

dkN (· |µk,Σk ) . (3.1)

This new proposal distribution has the following parameters for each com-
ponent k ∈ {1, . . . ,K}: a mixture proportion dk; a mean µk; and a covariance
matrix Σk.
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For each sampling chain, the state-space is augmented with a latent variable
zn, indicating a component of the proposal; hence the “+L” in the name of
the sampler. This is the same idea that was used by Frühwirth-Schnatter and
Pyne (2010) to indicate component allocations of samples from skew-normal
and skew-t distributions.

When updating sampling chain n ∈ {1, . . . , N}, a proposed component mem-
bership w is first drawn from a categorical distribution, based on the component
weights, before proposing a chain state y from the corresponding normal distri-
bution component,

w ∼ Categorical (· |d1, . . . , dK ) ,

y|w ∼ N (· |µw,Σw ) .

This process is repeated in parallel for each of the N sampling chains.
Once a new membership and state have been proposed for a sampling chain

n it is accepted or rejected via a Metropolis-Hastings-like acceptance step. The
details of this step will be outlined later, in Section 3.1.4. Before doing so, how-
ever, a closer look must be taken at the proposal parameter update procedure.

3.1.2 The Prior Model of the Proposal Parameters

Following BAIS, BAIS+L casts the selection of new proposal parameters as a
problem in Bayesian inference. Given a current collection of sampling chain
states (x1, . . . ,xN ) and component memberships (z1, . . . , zN ) the goal is to
determine a new set of component weights, means and covariance matrices
(d1,µ1,Σ1, . . . , dK ,µK ,ΣK).

Assuming conjugate priors on the proposal parameters, the prior distribution
of the component weights d = (d1, . . . , dK), is given by Equation (3.2),

d ∼ Dirichlet
[
·
∣∣∣α(0)

1 , . . . , α
(0)
K

]
, (3.2)

where α
(0)
k is the prior (unnormalised) weight of component k.

The non-informative Jeffrey’s prior used by Keith et al. (2008) in their de-
velopment of BAIS was deemed inappropriate for a mixture proposal, as it can
only capture the overall variance of the target distribution. Furthermore, non-
informative nature of the prior distribution on the mean of a component limits
its flexibility, since it does not allow any distinction between the prior posi-
tions of each component. Therefore, following Gelman et al. (2004, pp. 87–88),
the prior distributions of the variance-covariance matrix Σk and the mean µk
of component k of the proposal distribution are given by Equations (3.3) and
(3.4), respectively,

Σk ∼ Inv-W
ν
(0)
k

[
·
∣∣∣Λ(0)

k

]
(3.3)

µk ∼ N
[
·
∣∣∣∣∣µ(0)
k ,

Σ
(0)
k

κ
(0)
k

]
, (3.4)

In Equations (3.4) and (3.3), κ
(0)
k is the prior number of observations of the scale

of Σk, µ
(0)
k is the prior mean vector of a component k, and Λ

(0)
k and ν

(0)
k are
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the prior scale matrix and prior degrees of freedom, respectively, of Σk (Gelman

et al., 2004, pp. 87). Therefore, ν
(0)
k , κ

(0)
k , λ

(0)
k , µ

(0)
k and Σ

(0)
k must be specified

by the user for each k ∈ {1, . . . , k}.
For ease of computer coding and simulation, these hyperparameters were

chosen to be equal for each component in the current study. This choice limited
the types of targets that could be studied effectively. The effect of such a choice
is explored in the application to spin glass simulation in Chapter 5. With more
careful coding, this limitation may be overcome, allowing BAIS+L to be applied
to a larger number of target distributions.

3.1.3 The Posterior Model of the Proposal Parameters

The choice of prior distribution given in Section 3.1.2 results in the posterior
model described by Equations (3.5), (3.6) and (3.7) for the vector of all com-
ponent weights, and the variance-covariance matrix and mean of component k,
respectively (Gelman et al., 2004, pp. 87):

d|x, z ∼ Dirichlet
[
·
∣∣∣o1 + α

(0)
1 , . . . , oK + α

(0)
K

]
, (3.5)

Σk|x, z ∼ Inv-W
ν
(0)
k +ok

(·|Λk), (3.6)

µk|Σk,x, z ∼ N
[
·
∣∣∣∣∣ κ

(0)
k

κ
(0)
k + ok

µ
(0)
k +

ok

κ
(0)
k + ok

x̄k,
Σk

κ
(0)
k + ok

]
. (3.7)

In the preceding equations, ok is the number of sampling chains currently
associated with component k, x̄k is the sample mean of the states associated
with component k and Λk incorporates the sample sum of squared errors of the
states associated with component k, as expressed by Equations (3.8), (3.9) and
(3.10),

ok =

N∑
n=1

Ik(zn), (3.8)

x̄k =
1

ok

N∑
n=1

Ik(zn)xn, (3.9)

Λk = Λ
(0)
k +

κ
(0)
k ok

κ
(0)
k + ok

[
x̄k − µ(0)

k

] [
x̄k − µ(0)

k

]T
+

N∑
n=1

Ik(zn)(xn − x̄k)(xn − x̄k)T. (3.10)

Here Ia(b) is the identity function, which is equal to 1 when a = b and 0
otherwise.

3.1.4 Acceptance Ratio

Construction of the BAIS+L acceptance ratio follows the same approach as
in BAIS, where the parameter update distribution is incorporated into the
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Metropolis-Hastings acceptance ratio for the nth sampling chain, as in Equa-
tion (3.11),

αθ [(xn, zn), (y, w)] = min

{
1,

π(y)

π(xn)

p(xn, zn|θ)

p(y, w|θ)

p(θ, z∗|x∗)
p(θ, z|x)

}
. (3.11)

Here x = (x1, . . . ,xN ) is the vector of current states, z = (z1, . . . , zN ) is the
vector of current component memberships, and x∗ and z∗ are the same as x and
z, respectively, except that the nth element has been swapped with its proposed
value (y and w, respectively). θ = (d,µ,Σ) ∈ T represents the vector of
proposal parameters, where the parameter vector θ = (d,µ,Σ), which consists
of the component weights d = (d1, . . . , dK), component means µ = (µ1, . . . ,µK)
and component variance-covariance matrices Σ = (Σ1, . . . ,ΣK), takes values in
the parameter space T = [0, 1]K × RpK × [Mp×p(R)]K , where Mp×p(R) is the
space of p×p symmetric positive-definite variance-covariance matrices with real
entries and p is the dimension of the state space X .

A straightforward application of Bayes’ Theorem p(A|B) = p(A)p(B|A)/p(B)
with A = (θ, z) and B = x gives p(θ, z|x) = p(θ)p(x, z|θ)/p(x). Substituting
this into Equation (3.11) gives Equation (3.12),

αθ [(xn, zn), (y, w)] = min

{
1,

π(y)

π(xn)

p(x)

p(x∗)
p(xn, zn|θ)

p(y, w|θ)

p(θ)

p(θ)

p(x∗, z∗|θ)

p(x, z|θ)

}
.

(3.12)
Cancelling like factors in the numerator and denominator, produces the expres-
sion for the acceptance probability for sampling chain n given in Equation (3.13)

αθ (xn,y) = min

{
1,

π(y)

π(xn)

p(xn|x−n)

p(y|x−n)

}
, (3.13)

where x−n is x without the element corresponding to sampling chain n.
Unfortunately, p(xn|x−n) and p(y|x−n) are computationally infeasible. This

is due to the fact that each xn is updated using all sampling chain states and
latent allocations at the previous iteration, while these densities ignore the con-
ditioning on the previous state of sampling chain in question. However, note
that,

p(xn|x−n) =

∫
T
p(xn,θ|x−n)dθ

=

∫
T
p(xn|θ,x−n)p(θ|x−n)dθ.

=

∫
T
p(xn|θ)p(θ|x−n)dθ,

where the last line takes note of the fact that p(xn|θ,x−n) = p(xn|θ), by design.
As the number of sampling chains increases it is anticipated that p(θ|x−n)

will approach a Dirac delta function, which motivates the use of the approxi-
mation given in Equation (3.14),

p(xn|x−n) ≈ p(xn|θ) =

K∑
k=1

dkN (xn|µk,Σk). (3.14)

A similar approach is used to take care of p(y|x−n).
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This gives the approximate acceptance ratio in Equation (3.15),

αθ(xn,y) ≈ min

{
1,
π(y)

∑K
k=1 dkN (xn|µk,Σk)

π(xn)
∑K
n=1 dkN (y|µk,Σk)

}
. (3.15)

There is no direct dependence in Equation (3.15) on the states or member-
ships of sampling chains other than the one of interest. This allows all sampling
chains to be updated in parallel, unlike in BAIS, which required sequential up-
dates. However, as the acceptance ratio is an approximation, the stationary
distribution of the sampler (if there is one) will only be an approximation to
the true target.

BAIS+L with a normal mixture proposal is summarized in Algorithm 3.1.

3.2 The Novelty of BAIS+L

Unlike the MC methods that utilise adaptive proposal distributions with possi-
bly multiple local maxima, which were discussed in Section 1.7, BAIS+L does
not refine the parameters of the proposal distribution relative to their current
values, or use a clustering approach to generate new values. Instead, the novelty
of BAIS+L lies in its extension of the Bayesian proposal parameter estimation
of BAIS to mixture proposals. Through this extension, BAIS+L differs from
other adaptive techniques that use proposal distributions with multiple local
maxima, in that is samples its new proposal parameters directly from (an ap-
proximation to) their posterior model, given the current population of sampling
chain states.

Similarly to Pooley et al. (2019), BAIS+L uses stochastic sampling to gen-
erate latent variables in its approach. However, the proposal distribution is not
derived from the target. Instead, it is of a fixed form, with its own parameters,
which are updated from their own posterior distribution, given the current pop-
ulation of samples from the target. While a proposal distribution constructed
by the method of Pooley et al. (2019) is tailored to a specific target, making
it more suitable than a general proposal, it also requires that such a proposal
be tractable, so that it may be computed before sampling takes place. How-
ever, while the proposal distribution used by BAIS+L is not specifically tailored
to any one target, it is more general, meaning it can cover a larger variety of
target distributions with relatively minimal effort on the part of the MCMC
practitioner.

While BAIS+L does have the obvious drawback of sampling from an ap-
proximation to the target, due to the difficulties introduced by the necessary
use of latent variables, its novelty merits its development and investigation. In
particular, the explicit Bayesian relationship between the samples at one itera-
tion and the form of the posterior distribution at the next, explores a natural
updating paradigm that does not require the additional complexity usually seen
in practice.

3.3 Ensuring Ergodicity

While conditions have been given by Pompe et al. (2018) for the ergodicity of
an adaptive MCMC sampler that utilises an auxilliary or latent variable, it is
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Algorithm 3.1 BAIS+L with a normal mixture proposal.

Require:
1. K ∈ Z+ proposal components.

2. Initial chain states
[
x

(0)
n

]N
n=1

and their allocations
[
z

(0)
n

]K
k=1

.

3. Prior scales Λ
(0)
k and degrees of freedom ν

(0)
k of the distributions on

Σk, k ∈ {1, . . . ,K}.
4. Prior means µ

(0)
k , k ∈ {1, . . . ,K}.

5. Prior numbers of observations κ
(0)
k of the scales of Σk, k ∈ {1, . . . ,K}.

6. Prior component weights α(0) =
[
α

(0)
k

]K
k=1

.

Ensure: N chains of samples

{[
x

(t)
n

]N
n=1

}∞
t=1

from an approximation to the

target distribution π.

1: for Iteration t ∈ Z+ do
2: for Component k = 1 to k = K, in parallel do

3: Set ok =
∑N
n=1 Ik

[
z

(t−1)
n

]
.

4: Set x̄k =
∑N
n=1 Ik

[
z

(t−1)
n

]
x

(t−1)
n

/
ok.

5: Set Λk = Λ
(0)
k +

κ
(0)
k ok

κ
(0)
k + ok

[
x̄k − µ(0)

k

] [
x̄k − µ(0)

k

]T
+

N∑
n=1

Ik

[
z(t−1)
n

∣∣∣ (xn − x̄k)(xn − x̄k)T
]
.

6: end for
7: Generate d ∼ Dirichlet

[
·
∣∣∣o1 + α

(0)
1 , . . . , oK + α

(0)
K

]
.

8: for Component k = 1 to k = K, in parallel do
9: Generate Σk ∼ Inv-W

ν
(0)
k +ok

(·|Λk).

10: Generate µk ∼ N
[
·
∣∣∣∣∣ κ

(0)
k

κ
(0)
k + ok

µ
(0)
k +

ok

κ
(0)
k + ok

x̄k,
Σk

κ
(0)
k + ok

]
11: end for
12: for Sampling chain n = 1 to n = N , in parallel do
13: Generate w ∼ Categorical (· |d1, . . . , dK ).
14: Generate y ∼ N (· |µw,Σw ).

15: Set α = min

{
1,
π(y)

∑K
k=1 dkN (xn|µk,Σk)

π(xn)
∑K
n=1 dkN (y|µk,Σk)

}
.

16: Generate u ∼ U(0, 1).
17: if u ≤ α then
18: Set x(t) = y and z(t) = w.
19: else
20: Set x(t) = x(t−1) and z(t) = z(t−1).
21: end if
22: end for
23: end for
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not clear that BAIS+L satisfies them.”, which I added to the paper based on
this chapter.

Given that BAIS+L uses an approximation in its acceptance ratio, detailed
balance cannot be used to prove the existence of a stationary distribution. How-
ever, this section provides two sets of conditions that guarantee that the overall
process of BAIS+L is ergodic. In fact, these two sets of conditions guarantee
uniform ergodicity, enabling the provision of upper bounds on the convergence
rate to stationarity.

Section 3.3.1 summarises these conditions, which are then proven, in Sec-
tion 3.3.2, to be sufficient for uniform ergodicity.

3.3.1 Sufficient Conditions to Ensure Uniform Ergodicity

Ergodicity of the process induced by BAIS+L may not hold in general, so suf-
ficient conditions, under which it does hold, must first be found. This section
considers two such sets of sufficient conditions.

Both conditions involve the same parameter space T . Recall the parameters
θ = (d,µ,Σ) of the normal mixture version of BAIS+L, where

• d = (d1, . . . , dK) is the K-vector of mixture proportions,

• µ = (µ1, . . . ,µK) is the K-vector of p-dimensional component means,

• Σ = (Σ1, . . . ,ΣK) is the K-vector of p × p-dimensional strictly positive-
definite symmetric component variance-covariance matrices.

Note that each scalar quantity in θ is real-valued and that the parameter
space T is trivially isomorphic to a proper subset of RD, where D is given by
Equation (3.16),

D = K − 1 +Kp+
Kp(p+ 1)

2
. (3.16)

The following additional conditions are imposed on T in both cases in which
ergodicity is proven

Assumption 1 (Common conditions). The following conditions hold:

1. For each k ∈ {1, . . . ,K} mixture proportion k is strictly positive,

0 < dk < 1

and all proportions add to 1,

K∑
k=1

dk = 1.

2. For each k ∈ {1, . . . ,K} component variance-covariance matrix Σk has
positive determinant,

0 < det(Σk) <∞.

3. T is compact in RD.

4. T has non-zero Lebesgue measure in RD.
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5. The two-step proposal distribution p(x, z|θ) is continuous in its parameters
θ.

The purpose of the fourth condition is to ensure that the prior and posterior
distributions for the parameters have finite densities in RD. The third assump-
tion, that T is compact in RD, strengthens the first and second assumptions,
by ensuring that the infimum and supremum of each dk are finite and strictly
positive. It also ensures that each variance-covariance matrix Σk and each mean
µk has a determinant and magnitude, respectively, that is bounded above and
below by finite and strictly positive constants.

Recall that the state space for a single sampling chain is X = Rp, so the
sampling space for all N chains is XN ∼= RNp. Similarly take the N -tuple of Z
to define the latent variable space to be ZN = {1, . . . ,K}N .

Before discussing the sufficient conditions for uniform ergodicity in detail,
an important property of X ×Z and T needs to be highlighted. This property
is summarised by Lemma 1.

Lemma 1. The BAIS+L parameter space T and the Cartesian product X ×Z
of the state space X and latent variable space Z are Polish spaces.

Proof. First note that X is trivially homeomorphic to RpN , which is a sepa-
rable completely metrisable space with the Euclidean metric, for any pN ∈ N
(Kechris, 1995, pp. 13). That is, it is Polish (Kechris, 1995, pp. 13). Since
separability and topological completeness/complete metrisability are topologi-
cal invariants (Steen and Seebach, 1978, pp. 8, 37), they are preserved under
homeomorphism (Steen and Seebach, 1978, pp. 8). Hence, X is also Polish.

Now, Z is finite and, hence, compact (Kechris, 1995, pp. 18), when endowed
with the taxi-cab metric (Tao, 2006, pp. 392). It then follows, from the defi-
nition of compactness, that it is also complete with this metric (Tao, 2006, pp.
413). The finiteness of Z further means that it is a countable dense subset of
itself, making it separable (Steen and Seebach, 1978, pp. 7). Therefore, Z is
Polish.

Being the finite product of two Polish spaces, X ×Z is, therefore, also Polish
(Kechris, 1995, pp. 13).

Now consider the parameter space T . By assumption, it is compact in RD,
hence, it is closed (Tao, 2006, pp. 413). Being a closed subspace of a Polish
space, it is, therefore, also Polish (Kechris, 1995, pp. 13).

The foundations are now in place to state the two cases under which uniform
ergodicity is guaranteed.

Case One

Assumption 2 (Finite positive densities). The target density π(x) and prior
density on the proposal parameters p(θ) are finite and strictly positive on the
state space Rp and parameters space T , respectively. That is

0 < π(x) <∞, x ∈ Rp

and

0 < p(θ) <∞, θ ∈ T .
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Additionally, the support of p(θ) only contains parameter values θ for which the
corresponding proposal density of the chain states p(x|θ) is bounded below by
some constant multiple β ∈ R+ of the target density π,

p(θ) > 0 =⇒ p(x|θ) ≥ βπ(x), β > 0,∀x ∈ X .

Note that p(θ) is a density with respect to Lebesgue measure on RD, which
can only be finite under the assumption that T has non-zero Lebesgue measure.

Case Two

Assumption 3. There exists a finite, positive density h(x, z) such that,

1

ζ
h(x, z) ≤ p(x, z|θ) ≤ ζh(x, z),

1

ζ
h(x) ≤ π(x) ≤ ζh(x),

for all θ in the support of p(θ), x in the support of π(x) and z in {1, . . . ,K},
where ζ ∈ R+ and

h(x) =

K∑
k=1

h(x, z = k).

3.3.2 Proofs of Uniform Ergodicity

Case One

Theorem 13 (Uniform Ergodicity under Assumption 2). With the conditions
given in Assumption 2 the Markov chain

{
Θ(t),X(t)

}∞
t=1

of random variables
representing the parameters and states produced by the N -chain BAIS+L algo-
rithm is uniformly ergodic.

The proof of Theorem 13 will make use of the following lemmas.

Lemma 2 (Finite and Positive Proposal under Assumption 2). By Condition 2
of Assumption 2 the proposal density p(θ|x, z) is finite and strictly positive for
all (x, z,θ) ∈ XN ×ZN × T .

Proof. By Bayes’ Theorem

p(θ|x, z) =
p(θ)p(x, z|θ)

p(x, z)
. (3.17)

It is therefore sufficient to show that each density on the right-hand side of
Equation (3.17) is finite and strictly positive for all (x, z,θ) ∈ XN ×ZN ×T . It
immediately follows from Assumption 2 that p(θ) is finite and strictly positive.
Recall, also, that the combined proposal density of states and latent variables
is a weighted sum of normal densities

p(x, z|θ) =

N∑
n=1

dznN (xn|µzn ,Σzn). (3.18)

Assumption 2 restricts the space of variance-covariance matrices to include only
those for which 0 < det(Σk) < ∞ for each k ∈ {1, . . . ,K}. Therefore the
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normal density for each n ∈ {1, . . . , N} in (3.18) is restricted to its respective
finitely-bounded range (

0,
1√

2πdet(Σzk)

]
.

Combining this fact with the assumption that 0 < dk < 1 for each k ∈
{1, . . . ,K}, it is clear that p(x, z|θ) is the product of a finite number of strictly
positive and finite values and is, therefore, itself strictly positive and finite.

Note that p(x, z|θ) is a continuous function of θ for fixed (x, z). Hence, by
the Extreme Value Theorem and the assumed compactness of T , there exists
0 < M < ∞ such that 1/M < p(x, z|θ) < M for all θ ∈ T (Abbott, 2001, pp.
115). Multiplying this inequality by p(θ) and invoking the assumption that T
has non-zero Lebesgue measure, to integrate over T , gives 1/M < p(x, z) < M .

Therefore all densities on the right-hand side of (3.17) are finite and strictly
positive and, hence, so is p(θ|x, z).

The result given by Lemma 3, as well as its proof, may be considered to
be obvious to most readers. Indeed, possibly due to a combination of this
“obviousness”, as well as its specialised nature, the author of this dissertation
was unable to find a version of Lemma 3 or its proof in the literature. Therefore,
a formal version is presented as follows.

Lemma 3. Consider an arbitrary topological (state) space X , with Borel σ-
algebra B(X ), and two transition functions µ1(x,A) and µ2(x,A) defined on
X . Let ν1 and ν2 be two more transition functions on X , obtained by combining
µ1 and µ2, according to Equations (3.19) and (3.20), respectively,

ν1(x,A) =

∫
X
µ2(y,A)µ1(x, dy) (3.19)

ν2(x,A) =

∫
X
µ1(y,A)µ2(x, dy). (3.20)

Then the Markov chain induced by ν1 is uniformly ergodic if and only if the
one induced by ν2 is.

Proof. Assuming that ν1 induces a uniformly ergodic Markov chain, by Theo-
rem 1 (cf. Section 1.2.2) the whole of X is small with respect to ν1, with there
being some non-trivial measure φ on X , bounding the m-step ν1-transition from
below, for some m ∈ Z+, according to Equation (3.21),

νm1 (x,A) ≥ φ(A),∀x ∈ X ,∀A ∈ B(X ). (3.21)

Consider the (m+ 1)-step ν2-transition, which can expressed by combining
Equations (3.19) and (3.20), according to Equation (3.22),

νm+1
2 (x,A) =

∫
X

∫
X
µ1(z,A)νm1 (y, dz)µ2(x, dy). (3.22)

Substituting in the assumption of the uniform ergodicity induced by ν1, leads
to a lower-bounding measure ψ that depends only on A,

νm+1
2 (x,A) ≥

∫
X

∫
X
µ1(z,A)φ(dz)µ2(x, dy) =

∫
X
µ1(z,A)φ(dz) =: ψ(A).
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Consider ψ(X ) and note that µ1(x,X ) = 1 for all x ∈ X , by definition. Then
observe that ψ is non-trivial, since it assigns the same measure to all of X that
φ assigns to it, as demonstrated in Equation (3.23),

ψ(X ) =

∫
X
µ1(z,X )φ(dz) =

∫
X
φ(dz) = φ(X ) (3.23)

Invoking Theorem 1 once again, leads to the deduction that the Markov
chain induced by ν2 is uniformly ergodic.

Swapping the roles of ν1 and ν2 in the preceding argument, proves the con-
verse claim.

The argument now returns to the proof of Theorem 13, which is motivated
in part by the proof of Mengersen and Tweedie (1996) for the uniform ergodicity
of independence samplers.

Proof of Theorem 13. To begin note that Algorithm 3.1 updates the chain states,
latent memberships and proposal parameters in three steps. It first updates the
proposal parameters, followed by the latent variables and finally, the states. For
this proof, however, the order is permuted, performing the latent membership
updates first, followed by the chain states and lastly, the proposal parameters.
If the order of Algorithm 3.1 starting at

[
θ(0),x(0), z(0)

]
produces the sequence{[

θ(0),x(0), z(0)
]
,
[
θ(1),x(0), z(0)

]
,
[
θ(1),x(0), z(1)

]
,
[
θ(1),x(1), z(1)

]
, . . .

}
,

then the permuted algorithm, starting at
[
θ(1),x(0), z(0)

]
produces the sequence{[

θ(1),x(0), z(0)
]
,
[
θ(1),x(0), z(1)

]
,
[
θ(1),x(1), z(1)

]
,
[
θ(2),x(1), z(1)

]
, . . .

}
.

Dropping the very first element of the first sequence (i.e.
[
θ(0),x(0), z(0)

]
) leaves

exactly the second sequence. Therefore, if this sequence is uniformly ergodic,
then by Lemma 3 so is the one produced by Algorithm 3.1. Since the latter
approach “swaps” the parameter update step and the latent memberships/chain
states update step, it shall be referred to as swapped BAIS+L.

Let P[(x, z,θ), S] denote the probability of a swapped BAIS+L transition
from (x, z,θ) ∈ XN ×ZN ×T into a set S ∈ B(XN ×ZN ×T ) in the Borel σ-
algebra of XN×ZN×T . By Theorem 1, it is sufficient to show that XN×ZN×T
is small. Recall that by “small” Mengersen and Tweedie (1996) meant that for
all sets S ∈ B(XN × ZN × T ) in the Borel σ-algebra of XN × ZN × T , there
exists a common δ > 0 and common probability measure ν over XN ×ZN ×T ,
whose product bounds P [(x, z,θ), S] from below (cf. Section 1.2.2). That is,
that

P [(x, z,θ), S] ≥ δν(S), ∀S ∈ B(XN ×ZN × T ).

First note that a transition into S can take place in one of two ways. Either
all proposed moves are into S and they are all accepted or at least one of
the proposed moves is rejected but the result is nonetheless in S. Denote the
probability of the first case as PA[(x, z,θ), S] and the probability of the second
as PR[(x, z,θ), S]. Then

P [(x, z,θ), S] = PA [(x, z,θ), S] + PR [(x, z,θ), S] ≥ PA [(x, z,θ), S] .
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By the design of swapped BAIS+L the density associated with PA[(x, z,θ), S]
is given by Equation (3.24),

p(x′, z′,θ′|x, z,θ) = p(θ′|x′, z′)
N∏
n=1

p(x′n, z
′
n|θ)αθ(xn,x

′
n)

= p(θ′|x′, z′)
N∏
n=1

p(z′n|x′n,θ)p(x′n|θ)αθ(xn,x
′
n), (3.24)

where αθ(x,y) is the BAIS+L acceptance probability.

By Assumption 2, p(x|θ) ≥ βπ(x) so the product of the last two factors
inside the product is bounded below according to Equation (3.25),

p(x′n|θ)αθ(xn,x
′
n) = min

{
p(x′n|θ), π(x′n)

p(xn|θ)

π(xn)

}
≥ βπ(x′n), (3.25)

for each n ∈ {1, . . . , N}.
Substituting Equation (3.25) into Equation (3.24) and taking the infimum

over θ gives Equation (3.26),

p(x′, z′,θ′|x, z,θ) ≥ p(θ′|x′, z′) inf
θ∈T

[
N∏
n=1

p(z′n|x′n,θ)

]
βN

N∏
n=1

π(x′n). (3.26)

By Lemma 2

0 < p(θ|x, z) <∞

and by Assumption 2

0 < βπ(x) <∞.

Note also that

p(z|x,θ) =
p(x, z|θ)

p(x|θ)
(3.27)

Since the right-hand side (3.27) consists of the ratio of finite and strictly positive
functions of θ, the left-hand side is also finite and strictly positive for all θ.
Furthermore, as T is compact, by the Extreme Value Theorem its minimum is
attained. That is

0 < min
θ∈T

[
N∏
n=1

p(z′n|x′n,θ)

]
<∞.

Therefore, all factors on the right-hand side of Equation (3.26) are finite
and strictly positive. Furthermore, as the right-hand side of Equation (3.26) is
bounded above by p(x′, z′,θ′|x, z,θ), which is integrable over XN × ZN × T ,
it too is integrable over XN × ZN × T . Note also that, as it is bounded above
by a probability density, the integral of the right-hand side of Equation (3.26)
is no greater than 1. Let δ be this integral.

Integrating both sides of (3.26) over any set S ∈ B(XN × ZN × T ) in the
Borel σ-algebra of XN ×ZN × T produces the inequality

PA [(x, z,θ), S] ≥ δν(S),
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where ν is the measure with probability density

1

δ
βNp(θ′|x′, z′) min

θ∈T
[p(z′n|x′n,θ)]

N∏
n=1

π(x′n),

as required.
Therefore, the Markov chain generated by BAIS+L with swapped transitions

is uniformly ergodic.
It then follows, by Lemma 3, that the Markov chain generated by BAIS+L

(without swapped) steps is uniformly ergodic.

Case Two

Theorem 14 (Uniform Ergodicity under Assumption 3). Under Assumption 3
the Markov chain

{
Θ(t),X(t),Z(t)

}∞
t=1

of random variables representing the pa-
rameters, states and latent variables, produced by the N -chain BAIS+L sampler
is uniformly ergodic.

Before proving Theorem 14, a lower bound on the acceptance ratio is needed.
This lower bound is given in Lemma 4.

Lemma 4 (Lower Bound on Acceptance Ratio by Assumption 3). The accep-
tance ratio of BAIS+L with the conditions listed in Assumption 3 is bounded
below by a strictly positive constant.

Proof. Consider the first condition in Assumption 3. Taking the sum over all
possible values of the latent variable gives a relationship that depends only on
the chain state,

1

ζ
h(xn) ≤ p(xn|θ) ≤ ζh(xn).

This produces a bound on the second argument of the BAIS+L acceptance
ratio (cf. Equation (3.15)) according to Equation (3.28),

π(y)

π(xn)
· p(xn|θ)

p(y|θ)
≥

1
ζh(y)

ζh(xn)
·

1
ζh(xn)

ζh(y)
=

1

ζ4
(3.28)

as required.

Theorem 14 may now be proven.

Proof of Theorem 14. The argument to show that BAIS+L is uniformly ergodic
under the given conditions follows the same idea as in Theorem 13, by showing
that the whole space in which each (θ,x, z) lies is small.

As in the proof of Theorem 13, only the case in which all proposals are
accepted PA[(θ,x, z), S] needs to be considered in order to obtain a lower bound
on P[(θ,x, z), S].

Let Sθ,x ⊂ S be the projection of S onto T ×XN and let Sz
θ,x be the lower-

dimensional subspace of S containing the possible values of z|θ,x, as defined in
Equations (3.29) and (3.30),

Sθ,x := {(θ,x) : (θ,x, z) ∈ S for some z ∈ {1, . . . ,K}N}, (3.29)

Sz
θ,x := {z : (θ,x, z) ∈ S}. (3.30)
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Unlike in the proof of Theorem 13, BAIS+L is considered to consist of param-
eter updates followed by chain updates. Thus, the joint density of θ′,x′, z′|θ,x, z
may be factored according to Equation (3.31),

p(θ′,x′, z′|x, z,θ) = p (θ′|x, z)

N∏
n=1

p (x′n, z
′
n|θ′)α (x′n|xn,θ′) . (3.31)

Since all proposed states are accepted, π(xn) > 0 and π(x′n) > 0 for all n ∈
{1, . . . , N}, so the acceptance ratio may be replaced with the bound provided in
Lemma 4. Integrating over Sθ,x and summing over Sz

θ,x gives the lower bound
of Equation (3.32),

PA[(θ,x, z), S] ≥ 1

ζ4N

∫
Sθ,x

p(θ′|x, z) (3.32)

×
∑

z′∈Sz
θ,x

[
N∏
n=1

p(x′n, z
′
n|θ′)

]
d(θ′,x′).

Now only one remaining factor depends on the current point, namely p(θ′|x, z).
First use Bayes’ Theorem to rearrange it, as in Equation (3.33)

p(θ′|x, z) =
p(θ′)

∏N
n=1 p(xn, zn|θ′)
p(x, z)

≥ p(θ′)ζ−N
∏N
n=1 h(xn, zn)

p(x, z)
. (3.33)

Multiplying p(θ′) by the expressions in the first condition of Assumption 3
for all sampling chains gives the inequality presented in Equation (3.34),

p(θ)

N∏
n=1

1

ζ
h(xn, zn) ≤ p(θ)

N∏
n=1

p(xn, zn|θ) ≤ p(θ)

N∏
n=1

ζh(xn, zn), (3.34)

which, after integrating over θ, gives the inequality of Equation (3.35),

1

ζN

N∏
n=1

h(xn, zn) ≤ p(x, z) ≤ ζN
N∏
n=1

h(xn, zn). (3.35)

Using this result in Equation (3.33), a bound is obtained, which does not
depend on the current states or latent variables of the sampling chains,

p(θ′|x, z) ≥ p(θ′)ζ−N
∏N
n=1 h(xn, zn)

ζN
∏N
n=1 h(xn, zn)

=
p(θ′)
ζ2N

.

Replacing the factor p(θ′|x, z) with this bound in the expression for
P[(θ,x, z), S] and taking the factor of 1/ζ2N outside the integral gives Equa-
tion (3.36),

P[(θ,x, z), S] ≥ 1

ζ6N

∫
Sθ,x

p(θ′)
∑

z′∈Sz
θ,x

[
N∏
n=1

p(x′n, z
′
n|θ′)

]
d(θ′,x′). (3.36)

Define the probability measure ν according to Equation (3.37),

ν(S) :=

∫
Sθ,x

p(θ′)
∑

z′∈Sz
θ,x

[
N∏
n=1

p(x′n, z
′
n|θ′)

]
d(θ′,x′) (3.37)
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Then

P[(θ,x, z), S] ≥ 1

ζ6N
ν(S),

demonstrating that the entire state space is small.

3.3.3 Promoting Adaptation of the Proposal Distribution

The conditions to ensure ergodicity that were common to both assumptions
just discussed, required that the mixture weight of each component of the pro-
posal distribution be bounded below by a strictly positive number η. However,
the design of BAIS+L does not explicitly prohibit the case that none of the
recorded samples come from a given component. That is, the situation given
by Equation (3.38) is still possible for some k ∈ {1, . . . ,K},

zn 6= k,∀n ∈ {1, . . . , N}. (3.38)

The first problem with such a situation arises when sampling new component
weights. While the Dirichlet posterior used to generate them guarantees that
each component will be given a weight on the interval (0, 1), provided the prior
scales α0 of the components are strictly positive, in practice this may not be
sufficient. Since BAIS+L only uses the samples and latent allocations from a
single iteration of the algorithm, it is reasonable to require that there be at least
one sample from the population at that iteration belonging to each component
of the proposal distribution. This means that, as a general rule in a simulation
with N sampling chains, no component should ever have a weight less than 1/N .
The effect of such a requirement is that every component is, on average, given
the opportunity to be updated at each iteration of the sampler.

A second problem with the situation of Equation (3.38) arises because
BAIS+L updates the proposal distribution parameters of an individual com-
ponent using the samples that originated from it in the current population. If
there are no such samples, then the posterior densities of Σk and µk given in
Equations (3.6) and (3.7) reduce to Equations (3.39) and (3.39),

Σk|x, z ∼ Inv-W
ν
(0)
k +ok

(Λk), (3.39)

µk|x, z ∼ N
[

κ
(0)
k

κ
(0)
k + ok

µ
(0)
k +

ok

κ
(0)
k + ok

x̄k,
Σk

κ
(0)
k + ok

]
.

Therefore, an empty component will be updated only using prior information,
making the method sensitive to any assumptions made about the problem to
which BAIS+L is applied.

The following two subsections describe two attempts to guarantee that the
component weights are bounded below by a positive constant. Their effective-
ness and practical implications are then assessed in Section 3.3.4.

Forcing a Minimum Component Weight

The first approach to ensure that component weights remain strictly positive
throughout a simulation is to explicitly set a minimum weight dmin. To do so,
split each component weight into two parts: one fixed part, equal to dmin/K; and
a variable second part, which is updated based on the current latent allocations.
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Then implement a fixed number of iterations of a Gibbs sampler to update the
variable part.

The precise procedure involved begins by initialising each component k ∈
{1, . . . ,K} to have equal weight of d′k = 1/K. At each pass of the sampler the
method first counts the number of allocations to each component, excluding
some counts at random. This random exclusion accounts for the forced mini-
mum weight, which requires that an expected number of dminN allocations be
ignored at each iteration. To prevent less-represented components from being
disproportionately penalised, the individual probability of ignoring a count for
component k needs to be proportional to its weight dk. However, this is the
value that is to be updated, hence a Gibbs sampler is used to infer it. The

explicit probability P(k)
ignore of ignoring the count of a sampling chain allocated

to component k is given by Equation (3.40),

P(k)
ignore =

dmin

Kdk
. (3.40)

Therefore, the combined weight of a component is given by Equation (3.41),

dk =
dmin

K
+ d′k(1− dmin). (3.41)

d is updated following the preceding prescription until some stopping crite-
rion is met, such as a sufficient number of sweeps of the Gibbs sampler or once
the change ‖d̄(t+1) − d̄(t)‖ in the running average d̄(t) =

∑t
i=1 d(i)/t, from one

sweep t of the Gibbs sampler to the next, drops below a given threshold change
∆t.

The procedure to enforce a minimum component weight is summarised by
Algorithm 3.2.

In theory, any value of dmin greater than zero will ensure that the condi-
tions for uniform ergodicity are met. However, while guaranteeing that each
component will be available to propose new states throughout a simulation, the
method of the current chapter does not guarantee that samples from every com-
ponent will be represented in the final population. This is because the method
only addresses the proposal distribution and not the acceptance ratio, meaning
that proposed states may still be rejected. As such, the mean and variance-
covariance matrix of an unrepresented component will still have to be updated
using only prior information.

The result of some components only being updated infrequently is that the
sampler may converge slowly. Therefore, care must be taken in the choice
of dmin. A sensible minimum value for dmin is one that results in at least
two proposed states being drawn from each component at each iteration. If
at least two unique proposed states from a component are accepted then the
component will have enough information to be adapted, thereby not relying
only on potentially imprecise prior information.

The next subsection discusses an approach that guarantees a minimum num-
ber of sampling chains allocated to each component, thereby forcing each com-
ponent to explore the state space.

Fixing the Component Memberships of Some Sampling Chains

An alternative approach to setting a minimum component weight is to fix the
component memberships of a fixed number of sampling chains. This approach
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Algorithm 3.2 Algorithm to enforce a minimum component weight.

Require:
1. At least one of:

(a) A sufficient number of iterations Id to ensure convergence has been
achieved.

(b) A threshold change ∆t in the running average in d̄.

2. A vector of prior concentrations α(0) =
[
α

(0)
1 , . . . , α

(0)
K

]
.

Ensure: A vector of new component weights d = (d1, . . . , dK).

1: Set d = (d′1, . . . , d
′
K) = (1/K).

2: Set i = 1.
3: Set ∆ =∞.
4: Set d̄ = 0.
5: while i ≤ Id and ∆ > ∆t do
6: Set a = (a1, . . . , aK) = α(0).
7: Set d̄old = d̄.
8: for n ∈ {1, . . . , N} do
9: Generate u ∼ U(0, 1).

10: Set P(k)
ignore =

dmin

Kdk
.

11: if u > P(k)
ignore then

12: Set ak = a+ 1.
13: end if
14: end for
15: Generate d′ ∼ Dirichlet(a).
16: for k ∈ {1, . . . ,K} do

17: Set dk =
dmin

K
+ d′k(1− dmin).

18: end for
19: Set ∆ = ‖d̄− dold‖.
20: Set i = i+ 1.
21: end while
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artificially inflates the weights of components corresponding to smaller local
maxima of the target, thereby giving them more opportunity to adapt to a lo-
cal maximum of the target than they would have had with their lower weights.
However, these artificially inflated weights introduce a problem when making
inference about the target distribution. Fortunately, it is solved by simply dis-
carding the chains with fixed allocations and only using the variable allocation
chains for inference. Therefore, a balance needs to be struck between guaran-
teeing reliable results and the extra computational burden entailed in keeping
some latent allocations fixed.

To implement a fixed portion of memberships is more straightforward than
the minimum component weight method of the previous subsection. Firstly, the
first portion of dminN fixed allocations needs to be set only once, according to
Equation (3.42),

zn =

⌊
nK

dminN

⌋
, (3.42)

where n ∈ {1, . . . , dminN}. The remainder of the chains are then initialised uni-
formly and updated at each iteration following the standard BAIS+L prescrip-
tion of Section 3.1. To update the mixture proportions d, only the allocations of
the variable membership chains are used as input to the posterior distribution
of Section 3.1.3.

It is obvious that the sampling chains drawn from a fixed component have
a different proposal distribution from those with variable allocations; namely,
they are drawn from a single component. Therefore, they must use a different
acceptance ratio that only considers the involved component. Explicitly, the
acceptance ratio of the nth fixed chain is given by Equation (3.43),

α(xn,yn) =
π(yn)

π(xn)
· N (xn |µzn ,Σzn )

N (yn |µzn ,Σzn )
. (3.43)

On one hand, the fixed membership method of the current subsection never
updates component means and variance-covariance matrices only using prior
information, unlike the method of the previous subsection, which may occasion-
ally do so. On the other hand, unlike the method of the previous subsection,
it does not explicitly guarantee a non-zero probability that a proposal will be
drawn from each component of the proposal distribution. The effect of these
criteria is that all components will start on an equal footing and no part of the
parameter space will be overlooked a priori. These properties, coupled with
the guaranteed adaptation of each component at each iteration using sampled
points, will result in a proposal distribution with local maxima that better ap-
proximate those of the target. As such, if a component empties out then it will
be more likely due to it being insignificant than from being poorly positioned
in the state space.

Of course, the approach only accelerates the adaptation of the mean and
variance-covariance matrix. It is possible that any improvement in the speed of
adaptation may still be insufficient to overcome potential emptying of compo-
nents if the number of fixed allocation chains is insufficient.

Both the methods of the previous and current subsections have their own
advantages and disadvantages. Therefore, Section 3.3.4 explores the effective-
ness of combinations of the two methods for various choices of their operating
parameters.
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3.3.4 Assessing the Effectiveness of Promoting Adapta-
tion

This section implements the methods of Section 3.3.3 on a target distribution
with four local maxima. The goal is to provide preliminary guidance on how
to select both the minimum component weight dmin and the number of fixed-
allocation sampling chains Nfixed.

Methodology

To study the effect of different combinations of dmin and Nfixed, BAIS+L was
employed on a four-component mixture of bivariate normal distributions with
density given by Equation (3.44),

π(x) =

4∑
k=1

1

4
N
(

x

∣∣∣∣[ (−1)k4
−4 +

⌊
k
3

⌋] , [1 0
0 1

])
. (3.44)

Ten independent simulations were run for each combination of

dmin ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}

and
Nfixed ∈ {0, 8, 16, 24, 32, 40}.

Each simulation used eight components in the proposal distribution (twice
as many as there were local maxima in the target) and 160 sampling chains, to
provide, on average 20 sampling chains per component.

The prior distribution was chosen by considering the true form of the target.
To make the prior form of each component overdispersed, Σ(0) was set to 1.2I2,
where I2 is the two-dimensional identity matrix. The prior mean µ(0) was set
to (0, 0)T, the mean of the target. Finally, to make the entire prior distribution
overdisperse, κ(0) was set to 0.046875 for each component. The chosen value
represents the ratio of the variance of a single component in the target’s mixture
to that of the entire target.

With these settings, the 360 independent simulations were run for 3000 it-
erations each, initialising each dimension of each sampling chain from N (µ =
0, σ = 6). A further 360 simulations with a different initialisation scheme were
also run. In these simulations the initial states of the sampling chains were gen-
erated uniformly on the square (0, 6)×(0, 6). The reason for this different choice
of initialisation was to investigate the effect of ignoring all but one component
of the target.

To ensure that convergence could not be ruled out, Gelman and Rubin’s
diagnostic was applied to the sampler output using the gelman.plot function
from the coda library (Plummer et al., 2006) of the statistical computing package
R (R Core Team, 2015), employing a PSRF threshold of 1.01.

In all simulations for which dmin > 0, Id was taken to be 10 and ∆t to be
0.01.

Results and Discussion

Gelman and Rubin’s diagnostic indicated that all 720 simulations maintained a
PSRF below 1.01 for the last halves of their runs. This number was deemed to
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Figure 3.1: Examples of simulation output from the four-component mixture.
The left plot shows the shape of the contours of the inferred stationary distri-
bution from a successful run with dmin = 0 and Nfixed = 0, while the right plot
shows an example of a failed run, with dmin = 0 and Nfixed = 40, which missed
a component.
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be sufficiently low in order to assume convergence had been met. Therefore, all
simulations are considered in the following discussion.

With the overdispersed initial chain states from N (0, 6) it was found that
there was no discernible difference between the various combinations of dmin

and Nfixed. However, this was not the case for the simulations initialised on the
(0, 6)× (0, 6) square. Of all combinations of dmin and Nfixed, it was found that
Nfixed = 0 was the only setting that consistently reproduced the correct form of
the target distribution, with four, clearly-separated regions of significant mass,
centred at the true locations of the target components and with the true scales
(see Figure 3.1 for examples). This result shows that, for this particular target,
incorporating fixed-allocation sampling chains hindered the sampler’s ability to
detect all local maxima. Furthermore, all runs for Nfixed = 0 with any choice of
dmin converged rapidly to an acceptance rate of around 0.8 (within 100 iterations
in each case).

One possible reason for the simulations with Nfixed > 0 resulting in non-
detection of some local maxima is that they force the component locations and
scales to adapt at each iteration. Such action may be beneficial when compo-
nents of the proposal distribution explore the state-space slowly (for example,
due to irregularly-shaped or very well-separated local maxima in the target),
thereby preventing the component from emptying before it has had a chance
to converge to a region encompassing a true local maximum of the target. The
observations of this section indicate that the local maxima of the target studied
were not sufficiently-spaced to necessitate a method to accelerate the finding of
local maxima. By using fixed-allocation sampling chains to force each compo-
nent of the proposal distribution to focus on a particular part of the state space,
BAIS+L was discouraged from further exploration once a component of the pro-
posal distribution had found a local maximum, even if that local maximum was
the same as one identified by another component.
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Considering the requirement that each component weight be bounded be-
low by a positive constant, it is recommended that every simulation run with
BAIS+L set a non-zero dmin. As the observations indicated, even though the
convergence diagnostic used did not detect non-convergence of any of the sim-
ulation runs that were employed, it was not guaranteed that Nfixed > 0 would
result in detection of all the local maxima of the target. Therefore, it is advised
against using extra sampling chains with fixed allocations unless the acceptance
rate of a simulation with dmin converges to an unsuitably low value. One such
situation that may lead to a low acceptance rate is when the target has heavy
tails, in which the probability of proposing a state in a low density region of the
target is significant.

While a heavy-tailed target was not considered in these simulations, it is
theoretically possible that such a situation may lead to sampled points within
the tails that do not move. This is because such extreme points are more likely
with a heavy-tailed target. The proposal distribution used does not use heavy
tails, so once all local maxima of the target have been detected the proposal
density in the tails of the target will be lower than the target density. Recall
the standard MH acceptance ratio α,

α(x, y) =
π(y)

π(x)
· g(x)

g(y)
.

It is evident that a high ratio of target density at a proposed state y to that
at the current state x is lower than the ratio of the proposal density at the
proposed state to that at the current one. The result is that the acceptance
ratio will be very low, resulting in the state becoming stuck at the state in the
tail of the target.

Furthermore, the states stuck in the tail inflate the variance-covariance ma-
trix of the component to which they have been assigned, thereby lowering the
proposal density of significant states within the region of the target that the
proposal component represents. This, in turn, causes low density states to be
more likely to be proposed than they would otherwise be, again resulting in a
low acceptance ratio and, hence, a low acceptance rate.

With a fixed number of sampling chains in a component, it is encouraged
to be updated more often, increasing the speed at which it explores the state
space. This property means that the sampler should find and approximate the
region about a true local maximum of the target sooner, although such a claim
needs to be verified by finding a suitable target distribution for testing.

An alternative to using a fixed minimum number of sampling chains in each
component is to use a heavy-tailed kernel, such as a Student’s t-distribution.
Part I has already reviewed the use of such a kernel in the mixture proposal
methods introduced by Frühwirth-Schnatter and Pyne (2010) and Pompe et al.
(2018), suggesting Student’s t-distributions as a useful kernel to consider in
future work.

3.4 Conjectured Properties of BAIS+L

The design of BAIS+L poses a number of important questions regarding the
ergodicity and convergence properties of its resulting Markov chain. It has
already been proven in Section 3.3 that BAIS+L is uniformly ergodic under
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two given sets of conditions. However, it is not immediately obvious that the
stationary distribution is equal to the designed target. Indeed, as noted in
Section 3.1.4, the approximate acceptance ratio used in Equation (3.15) results
in the stationary distribution being different from the target when BAIS+L is
implemented with a finite number of sampling chains.

Recall that this approximation replaces p(·|x−n) with p(·|θ). The depen-
dence structure of these two densities is different, with the former depending
only on the population of sampling chain states excluding the current one being
updated, and the latter depending on all of them. This difference in dependence
motivates the following hypothesised properties of BAIS+L, the most important
of which, is given by Conjecture 1.

Conjecture 1. Let π be the target density and let πN be the invariant measure
of a Markov chain

{
Θ(t),X(t),Z(t)

}∞
t=1

produced using an N -sampling chain
implementation of BAIS+L to sample from π. Then, as N is increased, πN
converges weakly to π. That is,

lim
N→∞

∫
f(x)dπN (x) =

∫
f(x)dπ(x)

for any bounded and continuous function f .

Intuition suggests that a possible avenue towards the truth of Conjecture 1
is if the limiting density (with respect to N) of the proposal parameters is con-
centrated on just one value θ∞ ∈ T . This belief is summarised in Conjecture 2.

Conjecture 2. The marginal distribution p(θ) of the BAIS+L proposal pa-
rameters θ ∈ T approaches a point mass on some θ∞ ∈ T as the number of
sampling chains N is increased.

If Conjecture 2 is true, then a natural consequence is that, in the limit of an
infinite number of sampling chains, p(·|θ = θ∞) will be time-invariant. With
the conditions outlined in Section 3.3.1, Theorems 13 and 14 guarantee that the
Markov chain

{
Θ(t),X(t),Z(t)

}∞
t=1

of parameters, states and latent variables
is uniformly ergodic. So, for BAIS+L with an infinite number of sampling
chains, given enough time, p(θ) will converge. This hypothesis is summarised
by Conjecture 3.

Conjecture 3. The parameter vector θ of BAIS+L with an infinite number of
sampling chains, will converge to a constant θ∞. That is, the BAIS+L process
with N =∞ exhibits diminishing adaptation.

A result of Conjecture 3 is that the sampling chains will decouple with time,
resulting in some maximum acceptance rate for a given number K of mixture
components. Intuition dictates that, in order for this acceptance rate to be 1,
a sufficient condition is that K = ∞. Furthermore, as a BAIS+L simulation
with an infinite number of sampling chains progresses, it will increasingly re-
semble a collection of simultaneous independent MH samplers, each of which
will, therefore, converge to the target distribution.

The preceding conjectures provide important theoretical focus for future
work, and Chapter 4 explores some of them empirically.



Chapter 4

Comparing BAIS+L to the
Equi-Energy Sampler

This chapter compares BAIS+L to the Equi-Energy sampler (EES) of Kou et al.
(2006). By applying BAIS+L to three of the continuous state space targets that
Kou et al. (2006) used to study the performance of EES, it is demonstrated that
BAIS+L is a viable alternative that is able to efficiently sample from a target
distribution supported on a non-denumerable state space, without the need
for an energy ladder. By doing so, it uses all sampling chains for inference,
without modification, avoiding waste of high-temperature samples or the extra
computational effort required to transform them. It also allows all post-burn-
in samples to be used for inference of the target directly. This chapter also
discusses some of the pitfalls associated with BAIS+L and suggests avenues for
further research in order to address them.

4.1 Simulation from a Mixture Target

This section compares BAIS+L to EES by simulating from the mixture target
of Liang and Wong (2001), which was used by Kou et al. (2006) to evaluate
EES. For convenience, the probability density function of this target is restated
in Equation (4.1),

f(x) =

20∑
i=1

wi
2πσ2

i

exp

[
− 1

2σ2
i

(x− µi)T
(x− µi)

]
, (4.1)
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where x = (x1, x2)T and

µ1 =

(
2.18
5.76

)
, µ2 =

(
8.67
9.59

)
, µ3 =

(
4.24
8.48

)
, µ4 =

(
8.41
1.68

)
,

µ5 =

(
3.93
8.82

)
, µ6 =

(
3.25
3.47

)
, µ7 =

(
1.70
0.50

)
, µ8 =

(
4.59
5.60

)
,

µ9 =

(
6.91
5.81

)
, µ10 =

(
6.87
5.40

)
, µ11 =

(
5.41
2.65

)
, µ12 =

(
2.70
7.88

)
,

µ13 =

(
4.98
3.70

)
, µ14 =

(
1.14
2.39

)
, µ15 =

(
8.33
9.50

)
, µ16 =

(
4.93
1.50

)
,

µ17 =

(
1.83
0.09

)
, µ18 =

(
2.26
0.31

)
, µ19 =

(
5.54
6.86

)
, µ20 =

(
1.69
8.11

)
.

For a direct comparison to EES, BAIS+L was applied the same two cases
studied by Kou et al. (2006). In the first of these cases each mixture component
i in the target has the same weight wi = 0.05 and variance σ2

i = 0.1. In the
second case the weight is inversely proportional to the distance between the
component mean and (5, 5)T,

wi ∝
∥∥∥∥µi − (5

5

)∥∥∥∥−1

, (4.2)

and the variance in each dimension is directly proportional to it,

σ2
i =

1

20

∥∥∥∥µi − (5
5

)∥∥∥∥ . (4.3)

In Equations (4.2) and (4.3) ‖ · ‖ represents the Euclidean norm.

4.1.1 Methodology

The comparison considered five different values of the number of mixture com-
ponents K in the proposal distribution: K = 20, K = 30, K = 40, K = 50 and
K = 60. The number of sampling chains N was also varied for each number
of mixture components. In the simulations, BAIS+L was run with N = 1000,
N = 1500 and N = 2000. Each parameter setting was repeated, for a total
of 20 independent simulations, each with 1000 iterations. As Section 4.1.2 will
show, this number of iterations was sufficient as all simulations used for inference
converged within 500 iterations.

Finally, to ensure that the conditions for ergodicity discussed in Chapter
3, were met, a minimum component weight of dmin = 0.1 was enforced by
following the prescription given in Section 3.3.3, with Id = 10 and ∆t = 0.01
(cf. Section 3.3.3 for the definitions of Id and ∆t).

Selecting the Parameters of the Prior Distribution

As the proposal parameter update process is Bayesian by design, a prior model
must first be specified on the proposal parameters. The development of BAIS+L,
in Chapter 3, gave the general form of the prior distribution on Euclidean state-
spaces, whose hyperparameters α(0), ν(0), κ(0), µ(0) and Σ(0) were chosen as
follows for the mixture target.

In practice, it is not expected that the weights or numbers of components
will be known beforehand, so the prior parameter of the weight distribution α(0)

was set to the vector of 1s of length K.
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In the mixture target of Liang and Wong (2001), the shape of the target
distribution is known a priori, as is the fact that the centres of all 20 of its
mixture components lie within the 10 × 10 square [0, 10] × [0, 10]. However,
following Kou et al. (2006), a challenge was posed for the sampler, by setting

µ
(0)
k = (0, 0)T for each component k. This choice also considerably simplified

the computer code used to implement BAIS+L compared to that for a non-zero
prior mean.

Pilot runs implemented 60 components in the proposal distribution and 2000

sampling chains. Initially, an arbitrary selection of ν
(0)
k = 3, κ

(0)
k = 1 and

Σ
(0)
k = I2 (the two-dimensional identity matrix) was used for each component

k. The choice of a diagonal matrix for Σ
(0)
k with the same value Σ(0) in each

diagonal position simplified the computer code used to implement the sampler.

For the equal weight and variance case, pilot runs indicated that these prior
parameter settings were inappropriate, leading to inconsistent acceptance rates
over multiple replications of the same simulation with the same input parame-
ters. The sampler also did not detect all components of the target distribution
in every run, thereby exhibiting the quasi-ergodic problem (cf. Section 1.2.2).
This observation indicated that the prior distributions on the proposal param-
eters did not place sufficient mass near all of the target’s component centres to
explore them effectively.

Given enough time, however, even with this näıve choice of proposal param-
eters it is expected that the generated Markov chain will eventually converge to
the target distribution. The validity of this claim is supported by the fact that
some independent runs found more local maxima than others and by the proofs
of ergodicity provided in Section 3.3. Nevertheless, these observations highlight
why it is a bad idea to use a näıve choice of hyperparameters, even with an
adaptive mixture proposal, as in the case of BAIS+L.

To make it easier for the sampler to find all local maxima of the target, κ(0)

was lowered, thereby making the distribution of a component mean, given a
variance-covariance matrix, more disperse. The scale of the distribution on the

variance-covariance matrices Σk was also adjusted, by setting Σ
(0)
k to a smaller

multiple of the two-dimensional identity matrix I2 than 1. The specific values

settled on were Σ
(0)
k = 0.1I2 and κ

(0)
k = 0.001, which resulted in the sampler

consistently having a high acceptance rate of at least 0.6 and finding all local
maxima of the target in almost all runs. Therefore, these values were fixed for
all subsequent simulations.

Note that for this target it was known a priori that all of the target’s mixture
component centres were in the square [0, 10]2 and that each had a true variance
of 0.1 in each dimension, as specified by Kou et al. (2006). This prior knowledge

is reflected in the choices of Σ
(0)
k and κ

(0)
k . By both reducing the diagonal

elements of Σ
(0)
k to the true variance and reducing κ

(0)
k so that the diagonal

elements of Σ
(0)
k /κ

(0)
k were each equal to 100 (the square of the edge length

of the [0, 10]2 square) a higher, more repeatable acceptance rate was achieved,
while nearly always finding all local maxima. On one hand, reducing the size of
each diagonal element of Σ(0) from 1 to 0.1 allowed a more faithful reflection of
the true variance of an individual mixture component of the target, reducing the
chances of the target’s local maxima becoming conflated. On the other hand,

reducing κ
(0)
k from 1 (with Σ

(0)
k = I2) to 0.001 (with Σ

(0)
k = 0.1I2) increased
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the size of the search area of the state space to one that better represented the
true variance of the target distribution.

Ideally one will use prior information about the variance of the target to
guide the choice of the hyperparameters. In practice, however, when neither
the number nor the locations of the target’s local maxima, nor the variances in
their corresponding regions are known, some experimentation may be required
in order to find suitable values. In such cases it is suggested that the practi-
tioner record the acceptance rates and sampling chain allocations of several short
runs with different values of the hyperparameters. One approach to using the
acceptance rates of short pilot runs will be discussed in detail in Section 4.1.2.

In the pilot simulations, it was found that the acceptance rate of successful
runs (those in which all of the target’s mixture components were detected)
settled rapidly to an approximately constant value, usually within 100 iterations.
Therefore, it appears reasonable to use short pilot runs to aid in hyperparameter
selection. Future work, however, should seek to develop a more systematic and
robust methodology for hyperparameter selection.

In the unequal weight and variance case, pilot runs with 60 proposal com-
ponents and 2000 sampling chains demonstrated that the same choice of hyper-
parameters as the unequal weight and variance case consistently produced the
correct stationary distribution with a sufficiently high acceptance rate.

For neither target was it deemed necessary to adjust ν
(0)
k or α(0) for any

component k. A constant α
(0)
k = 1, and ν

(0)
k = d+1 = 3 were easy to implement

and did not require careful consideration of the shape of the target.

Therefore, in all long simulations, the prior parameters were set according

to α
(0)
k = 1, ν

(0)
k = 3, κ

(0)
k = 0.001 µ

(0)
k = (0, 0)T and Σ

(0)
k = 0.1I2 for each

component k of the proposal distribution.

Assessing Efficiency

For each full-length simulation, the run time was measured using the time built-
in command from version 4.3 of bash (The Free Software Foundation, 2014).
A simulation’s run time was taken to be the total processor time used in its
execution, given by the sum of the user and sys times reported by time.

In order to assess convergence, Gelman and Rubin’s convergence diagnos-
tic (Gelman and Rubin, 1992) (cf. Section 1.2.5) was applied to the simulation
output, using the gelman.plot function from R’s (R Core Team, 2015) coda li-
brary (Plummer et al., 2006) with the settings confidence = 0.95, transform
= FALSE, autoburnin = FALSE and multivariate = FALSE, on the N sam-
pling chains. With these settings the gelman.plot function computed the di-
agnostic using all samples up to iteration 51 + 19m, for m ∈ N.

While Gelman and Rubin’s convergence diagnostic assumes that the sam-
pling chains are independent, which is not the case for BAIS+L, if BAIS+L is
implemented with a large-enough number of sampling chains, then the sampling
chains are approximately independent. Hence, the required independence was
assumed to hold approximately. As the number of sampling chains increases,
the variance of the marginal distribution of θ is reduced. A fixed value of θ
must produce independent chains because it has no dependence on them. If the
distribution of θ approaches a point mass, as conjectured, then the sampling
chains should approach independence (cf. Section 3.4). The larger number of
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sampling chains also results in the distributions of the sample statistics and,
hence, the distribution of the family of posterior distributions of the proposal
parameters, being more concentrated due to greater precision inherent in the
larger sample. Furthermore, the sampling chain states within a single iteration
are updated independently of one another, given the proposal parameters.

For each simulation, the convergence time τ was inferred to be the earliest
iteration after which the maximum 97.5% confidence PSRF (cf. Section 1.2.5)
remained below 1.01 for the remainder of the simulation. An estimate of the
mean convergence time τ̂ was then computed using the sample mean of the
convergence times of the simulations, as well as the maximum encountered 97.5%
PSRF over the 20 simulations at each parameter setting.

To compute the variance of the estimated mean convergence time, it was first
necessary to overestimate the variance of the value computed for a single run to
be one quarter of the square of the length of the time interval by the end of which
it converged. That is, if a simulation converged in the first 51 iterations then
the variance of its observed convergence time was 512/4 iterations and 192/4
if it converged in any of the subsequent intervals. This variance corresponds
to the conservative assumption that the variance of an individual estimate is
maximal on the interval and is obtained by Popoviciu’s Inequality (Popoviciu,
1935),

Var[τ̂ (r)] ≤ (b− a)2

4
,

where the variance is denoted by Var[τ̂ (r)] and τ̂ ∈ [a, b].
The overall variance of the estimated mean convergence time τ̂ was then

given by Equation (4.4),

Var(τ̂) =
1

R

R∑
r=1

{
1

R− 1

[
τ̂ (r) − τ̂

]2
+ Var

[
τ̂ (r)

]}
, (4.4)

In Equation (4.4) the first term inside the sum represents the normalised squared
deviation of the rth run’s convergence time estimate from the estimated mean
τ̂ over all R = 20 runs and the second term represents the variance of the rth
estimate.

To determine the effective number of samples of each reported statistic gen-
erated by BAIS+L, the effectiveSize function in R’s coda package, with its
default settings, was applied to the samples from the last half of each simulation
run. Like Gelman and Rubin’s diagnostic, this function also assumes that the
sampling chains are independent. However, the same reasoning that was used to
justify the use of this diagnostic also justifies the use of the effectiveSize func-
tion. The computed values were used to correct the variances of the reported
statistics in Section 4.1.2.

Since Kou et al. (2006) reported the autocorrelations of the lowest-temperat-
ure chain that they simulated, the integrated autocorrelation time (IAT, cf.
Section 1.2.5) of each coordinate of each sampling chain was computed. A
minimum estimate of the effective proportion of samples was then estimated as
the reciprocal of the maximum IAT computed. For each parameter setting, the
mean effective proportion over the 20 repeated simulations was estimated as the
overall estimate p̂eff for that parameter setting.

To compute the variance of the minimum effective proportion for each simu-
lation it was assumed that the effective number of samples followed a binomial
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distribution. This gave the variance of the estimator of the effective proportion
by a normal approximation to a binomial distribution (Bertsekas and Tsitsiklis,
2002, pp. 114), as given in Equation (4.5),

Var(p̂eff) =
2p̂eff(1− p̂eff)

T
. (4.5)

Here T represents the total number of iterations in a single simulation and the
factor of 2 takes into account that only half of the iterations were used for
inference.

For comparison, the effective number of samples produced by EES was also
estimated, by referring to the correlograms depicted in Figures 3(c) and 4(a)
of Kou et al. (2006). To extract the autocorrelation at each time-lag from
their plots, they were passed through the online WebPlotDigitizer tool of
Rohatgi (2011). In order to avoid under-reporting the effective numbers of
samples produced by EES, a conservative approach was adopted when reading
the autocorrelations from the plots of Kou et al. (2006). That is, the top of the
column at each time-lag was taken to occur at the lowest possible correlation
value that could reasonably be considered to be height of the column. The
result is that the true effective number of samples from their results should be
no more than the derived values that are reported in the figures of this chapter.
Once the correlations of the samples of X1 and X2 obtained by Kou et al. (2006)
using EES had been estimated, their corresponding IAT were then computed.
Recall the expression for the IAT, which is restated in Equation (4.6),

IAT =
1

2
+

∞∑
t=1

Corrt(x) ≈ 1

2
+

Tmax∑
t=1

Corrt(x), (4.6)

In Equation (4.6), Tmax = 100 is the maximum lag considered by Kou et al.
(2006) and Corrt(x) is the normalised lag-t autocorrelation of time series x, as
read directly from Figures 3(c) and 4(a) of Kou et al. (2006).

Finally, the reciprocal of twice this number was taken, to infer the estimated
proportion of effective samples produced by Kou et al. (2006).

The last mixing statistic that was considered was the acceptance rate. In
each simulation there was only one acceptance rate per iteration. From each of
these time series, its IAT in the second half of the run was computed using the
IAT function from R’s LaplacesDemon package (Statisticat, 2017). Its mean and
standard deviation were also computed over the same portion of the chain. The
overall mean acceptance rate was again estimated by the sample mean of the
acceptance rates â over the 20 simulations, giving an estimation error according
to Equation (4.7),

Var(â) =
1

R

R∑
r=1

{
1

R− 1

[
â(r) − â

]2
+

4IAT
[
a(r)

]
T

Var
[
â(r)

]}
, (4.7)

where â(r) is its estimate for the rth simulation, R = 20, is the number of
repeated simulations, IAT[a(r)] is the integrated autocorrelation time of the ac-
ceptance rate time series of the rth simulation and T is the number of iterations.
As in Equation (4.4), the first term inside the sum of Equation (4.7) represents
the contribution of the squared deviation of acceptance rate â(r) of the rth run
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from the mean estimated acceptance rate â, and the second term represents the
variance of the mean acceptance rate of the rth run. The second term also takes
into account the number of iterations used to compute the mean acceptance rate,
namely T/2, where T = 1000 iterations, as well as any autocorrelation in the
time series, by the factor of 2IAT.

Assessing Accuracy of Simulated Output

Before assessing the inferential power of BAIS+L, the stationary distribution of
each simulation output was first checked in order to determine if it had converged
to the correct form. This was achieved by first visually inspecting the scatter
plots of the samples. In order to objectively quantify the number Ncorrect of
simulations that had converged to stationary distributions that resembled the
target, the kmeans function from R was applied to the last half of the samples
of each simulation. By this time all reported simulations no longer failed the
employed convergence diagnostic. When calling the function, the known means
of the target’s mixture components were provided as clustering centres. The
number of simulations, for which the kmeans function assigned at least one
sample to each cluster, was then counted. Variances of the counts were obtained
by a normal approximation to a binomial distribution (Bertsekas and Tsitsiklis,
2002, pp. 114), according to Equation (4.8),

Var[Ncorrect] = 20Ncorrect(1−Ncorrect). (4.8)

To assess the inferential power of BAIS+L, estimates of the same statis-
tics reported by Kou et al. (2006) were computed. These quantities were the
marginal first central moments in each dimension E[X1] and E[X2], the marginal
second central moments in each dimension E[X2

1 ] and E[X2
2 ], the mean expo-

nential functions E[exp(−10X1)] and E[exp(−10X2)], and the tail probabilities
p1 and p2. Kou et al. (2006) gave these tail probabilities according to Equa-
tions (4.9) and (4.10),

p1 = P[X1 > 8.41, X2 < 1.68,
√

(X1 − 8.41)2 + (X2 − 1.68)2 > 4σ] (4.9)

p2 = P(X2
1 +X2

2 > 175). (4.10)

The preceding expectations were estimated by their respective sample av-
erages x1, x2, x2

1, x2
2, exp(−10x1) and exp(−10x2). The estimates of the tail

probabilities p1 and p2 were computed using the proportions of samples that
satisfied the respective criteria in Equations (4.9) and (4.10). The error bars in
the figures reported in Section 4.1.2 correspond to the standard deviations of
these estimators. That is, their general form is given by Equation (4.11),

Var(ȳ) =
1

R

R∑
r=1

{
1

R− 1

[
ȳ(r) − ȳ

]2
+

1

N
(r)
eff,y[N

(r)
eff,y − 1]

×
N∑
n=1

T∑
t=T/2+1

[
y(r,n,t) − ȳ(r)

]2 (4.11)

where R is the number of simulations that detected all of the target’s mixture
components, N is the number of sampling chains, T is the number of iterations,
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N
(r)
eff,y is the effective number of samples of y in the second half of the rth

simulation, the superscripts (r) and (r, n, t) are the index and the tth iterate of
the nth sampling chain, respectively, of the rth simulation, and y is one of x1,
x2, x2

1, x2
2, exp(−10x1) or exp(−10x2).

As in Equation (4.7), the first term inside the outer sum is the contribu-
tion of the deviation of the rth run’s estimate of the statistic from the overall
mean, while the second term is the contribution of the variance of the rth run’s
estimate. Just like in Equation (4.7) dependence between the samples from a
single run was accounted for by rescaling each individual variance by its effec-
tive number of samples. Since the reported estimate is the mean of the sample
mean, it was also divided through by this number.

p1 and p2 were estimated by their sample probabilities p̂1 and p̂2, respec-
tively. The normal approximation of a binomial random variable was again
used to estimate the variances of these estimators, giving an overall variance
according to Equation (4.12),

Var(p̂) =
1

R

R∑
r=1

{
1

R− 1

[
p̂(r) − p̂

]2
+
p̂(r)

[
1− p̂(r)

]
N

(r)
eff,p

}
, (4.12)

where the superscript (r) again represents the index of the rth simulation, p̂ is

one of p̂1 or p̂2 and N
(r)
eff,p is the effective number of samples used to compute p̂(r).

As in Equation (4.11), the first term inside the summation is the contribution
of the squared deviation of a single estimate from the overall estimate, while the
second term is once again the variance of the rth estimate. The second term
reflects the use of the approximation in estimating the variance of the mean
estimated tail probability from a single run.

Unlike x1, x2, x2
1, x2

2, exp(−10x1) and exp(−10x2), the effective numbers
of samples of p1 and p2 were not computed following the prescription of Sec-
tion 4.1.1. Instead,the effective numbers of samples of√

(x1 − 8.41)2 + (x2 − 1.68)2

and
x2

1 + x2
2

were computed, and the effective number of p1 and p2 determined, according to
Equations (4.13) and (4.14), respectively,

Neff,p1 = min
[
TR,Neff,x1 , Neff,x2 , Neff,

√
(x1−8.41)2+(x2−1.68)2

]
, (4.13)

Neff,p2 = min
[
TR,Neff,x2

1+x2
2

]
. (4.14)

The reason for using this different approach for computing the effective num-
bers of samples of the tail probabilities stems from their expressions in Equa-
tions (4.9) and (4.10). That is, each equation involves tests for truth that involve
combinations of the following quantities,

X1, X2, (X1 − 8.41)2 + (x2 − 1.68)2, X2
1 +X2

2 .

As such, there can only be as many tests as there are samples of each quantity.
To be conservative, the effective number of samplers was chosen to be the lowest
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Figure 4.1: Contour plots of the run times of the mixture target with equal
weights and variances (left) and unequal weights and variances (right). The
numbers on the contours indicate the run time, in seconds.
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effective number of any of the quantities used to infer a tail probability, as
demonstrated in Equations (4.13) and (4.14). The inclusion of TR inside the
minimum function indicates a conservative approach of excluding the possibility
of superefficient sampling, following the practice of Gelman et al. (2004, pp.
298–299). That is, it was assumed that the effective number of samples did not
exceed the true number of samples.

4.1.2 Results and Discussion

Convergence and Mixing

Figure 4.1 presents the mean run times, in seconds, of the equal and unequal
weight and variance cases. The plot on the left represents the equal weight
and variance case, while the one on the right represents the unequal weight and
variance case. In both cases the standard deviation of the run times for any
combination of N and K was less than 0.7.

The run time increased with both the number of mixture components in the
proposal distribution and with the number of sampling chains (cf. Figure 4.2).
This result is not to be confused with the convergence time (in iterations), which
actually decreased with the number of sampling chains.

All test simulations of the equal weight and variance target passed the chosen
convergence test within 500 iterations, with the PSRF not exceeding 1.004707
in the second half of any of the simulations. This was less than half of the
time allotted to them. In the case of unequal weights and variances, however,
some of the 20-component simulations did not pass the convergence test within
the 1000 iterations, while all of the simulations with more components passed
it within the first 500 iterations. Therefore, the mean convergence time of the
20-component simulations reported in Figure 4.3 is an underestimate of the true
mean convergence time for that number of components, since only the converged
simulations were used to compute it. This result indicates that it is important to
overfit the proposal distribution with more components than there are clusters
or components in the target.

In all reported figures of the current chapter, either the number K of com-
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Figure 4.2: Mean convergence times of the mixture target simulations with
equal weights and variances, according to the Gelman and Rubin convergence
diagnostic with a threshold potential scale reduction factor of 1.01.
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ponents in the proposal distribution or the number N of sampling chains are
indicated. In some cases, more than one choice of N or K is indicated on the
same plot, in order to highlight the qualitatively different observed trends in
the reported statistic at different settings.

Figure 4.2 illustrates the variation of the estimated convergence time τ̂ with
respect to the number of sampling chains for the equal weight and variance case
at a PSRF threshold of 1.01. With respect to the number of sampling chains,
it was observed that for any of the choices of K, the results were qualitatively
the same. The left plot in Figure 4.2 illustrates this trend with the results for
60 components, where a clear downward trend is observed in the convergence
time with the number of sampling chains.

The right plot in Figure 4.2 shows that as the number of components in the
proposal distribution increased so too did the convergence time. However, as
N was increased the rate of increase in the convergence time with respect to K
appeared to slow down, as indicated by the smaller gradient for 2000 sampling
chains than with 1000.

Figure 4.3 illustrates the variation of the estimated convergence time τ̂ with
respect to the number of sampling chains for the unequal weight and variance
case at a PSRF threshold of 1.01.

Unlike the equal weight and variance case, with a smaller number of compo-
nents in the proposal distribution, as the number of sampling chains is increased
the convergence time increases, as indicated by the blue circles. However, with
a larger number of components, there is once again a downward trend with re-
spect to the number of sampling chains, just as in the equal weight and variance
case. This result suggests that for this target, more components are required in
the proposal distribution for greater sampling efficiency.

The right-hand plot of Figure 4.3 again shows a difference in behaviour from
the equal weight and variance case. This time, as the number of components
in the proposal distribution is increased, there appears to be a downward trend
in convergence time and its rate appears to increase in magnitude with the
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Figure 4.3: Mean convergence times of the mixture target simulations with
unequal weights and variances, according to the Gelman and Rubin convergence
diagnostic with a threshold potential scale reduction factor of 1.01. Note that
the mean convergence time of the 20-component simulations is an underestimate
of its true value, since not all 20-component simulations with 1500 or 2000
sampling chains converged.
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number of sampling chains. Interestingly, at 60 components, the 2000 sampling
chain simulations appear to converge faster than the 1000 sampling chain ones,
suggesting a possible crossover point at this setting, although, this conjecture
needs to be tested further with larger numbers of components in the proposal
distribution. If such a crossover point does exist then it may be possible that
the trends evident in Figure 4.2 may emerge for larger K.

One possible reason for faster convergence, when there is a sufficient num-
ber of proposal distribution components, is that the larger number of sam-
pling chains provides more information and, hence, greater precision in inferred
statistics. This greater precision, in turn, leads to lower sampling variability.
However, as evidenced by the unequal weight and variance results, this extra
precision has the opposite effect when the number of proposal distribution com-
ponents is not sufficient. It may also have an unfavourable impact on parameter
inferences, a matter that will be discussed in Section 4.1.1. However, the in-
creasing trend suggests that the larger number of sampling chains also results in
greater accuracy and, therefore, faster convergence of the proposal distribution
to its limiting case.

Note that in the unequal weight and variance case, each target component
has a greater variance, making the regions between them more dense than in
the equal weight and variance case. This has the effect of making the task of
finding the target’s components less difficult, as will be seen in Section 4.1.2.
However, while the components of the equal weight and variance case are sim-
ilar in weight and variance, in the unequal weight and variance case they are
quite different. It appeared that, for the same number of mixture components in
the proposal distribution, the unequal weight and variance case took longer to
converge than the equal weight and variance one. A possible cause for this dif-
ference is that the smaller variance of individual target components in the equal
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Figure 4.4: Mean acceptance rate of the mixture target simulations, with equal
weights and variances, for 60 components in the proposal distribution (left) and
2000 sampling chains (right).
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Figure 4.5: Mean acceptance rate of the mixture target simulations, with un-
equal weights and variances, for 60 components in the proposal distribution
(left) and 2000 sampling chains (right).
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weight and variance case makes them more clearly-defined, which increases the
sampling precision of a given component’s parameter inferences. Furthermore,
the assumption of equal weights and variances in the choice of hyperparameters
is better suited to the equal weight and variance target.

Figures 4.4 and 4.5 illustrate the acceptance rates for the equal weight and
variance and the unequal weight and variance cases, respectively.

Both cases appear to suggest an increase in acceptance rate with the number
of sampling chains. This result supports the conjecture that the approximation
of the proposal distribution to the target improves as more chains are incorpo-
rated into the proposal distribution because a closer approximation results in a
higher acceptance ratio.

As the number of mixture components in the proposal distribution is in-
creased, an opposite trend is observed, with a decreasing acceptance rate. One
possible reason for this result is that there are fewer chains on average used to
infer new parameters of each proposal component, thereby leading to greater
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Figure 4.6: Effective proportion of samples from the mixture target simulations,
with equal weights and variances, for 60 components in the proposal distribution
(left) and 2000 sampling chains (right).
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uncertainties in the parameters and a greater chance for the approximation to
be sub-optimal.

Figures 4.6 and 4.7 illustrate the minimum ratio of the effective number
of samples to the simulated number for the equal weight and variance and
the unequal weight and variance cases, respectively. The trends are the same
as those observed for the acceptance rates but less pronounced, with greater
uncertainty in individual measurements and a more gradual gradient. This
result is to be expected, since an improvement in the approximation between
proposal and target leads to the proposed states more closely resembling i.i.d.
samples from the target. As such, between-sample correlations are reduced,
increasing the effective number of samples. With respect to the number of
sampling chains, the increasing trend is more obvious but with respect to the
number of proposal components, it is only noticeable in the unequal weight and
variance case. Nevertheless, the results of both the acceptance rate and effective
proportion of samples highlight that there is a possible efficiency penalty when
using more mixture components, even before considering that more computer
time is inherently required to update more components.

In comparison to the effective proportion of samples estimated for EES from
Figures 3(c) and 4(a) of Kou et al. (2006), all effective proportions of samples
resulting from the use of BAIS+L were higher, with the proportions from Kou
et al. (2006) being smaller than the vertical axis minima reported here. Specif-
ically, using the approach outlined in Section 4.1.1, the effective proportions
of samples generated by Kou et al. (2006), using the EES, were inferred to be
in the ranges 0.02–0.03 and 0.04–0.05 for the equal weight and variance and
the unequal weight and variance cases, respectively. It should be noted that
using the minimum integrated autocorrelation time over each dimension of the
target tended to result in a much lower inference of the effective proportion of
samples than that inferred using R’s effectiveSize function. This possibly
explains why the effective proportion achieved using BAIS+L was only around
one third, even though the acceptance rate was consistently much higher.

The comparatively higher proportion of effective samples of BAIS+L is to
be expected, given the within-iteration independence between sampling chains.
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Figure 4.7: Effective proportion of samples from the mixture target simula-
tions, with unequal weights and variances, for 60 components in the proposal
distribution (left) and 2000 sampling chains (right).
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Contrast this property of BAIS+L with that of EES, which uses all samples
collected post burn-in throughout a simulation. It should still be noted, however,
that the effective proportion of samples is still only about one third. This
means that the samples overall are still not truly independent, indicating that
there is still temporal dependence between iterations, resulting in significant
autocorrelation. The effect of this autocorrelation leads to the sampling chains
still being coupled with one another, thereby increasing their overall correlation.

The closer that the steady state approximation of the proposal distribution
is to the stationary distribution of the Markov chain induced by the sampler,
the higher the acceptance rate will be. Future research will consider this matter
theoretically, including answering the question of whether a unique limiting pro-
posal distribution exists and, if so, how to guarantee and accelerate convergence
towards it.

Accuracy of Simulated Output

When reviewing the empirical distributions of the generated samples, it was ob-
served that not all simulations inferred stationary distributions with the correct
shapes, with some components of the target missing. Since these particular sim-
ulations did not detect all components, they had clearly not converged, despite
them not failing the convergence test. This result demonstrates why relying
only on a single convergence diagnostic (Gelman and Rubin’s in this case) is
not enough to satisfy the MCMC practitioner that a BAIS+L simulation has
converged, at least for small numbers of components in the proposal distribu-
tion (cf. Table 4.1). Of course, in the current study, it was possible to compare
against the true form of the target, which effectively constituted a second diag-
nostic.

Table 4.1 counts the number of simulations for each parameter setting that
found all target components in the equal weight and variance case. It is seen
that as the number of components in the proposal distribution is increased,
the chances of BAIS+L detecting all target components increases, suggesting
that having sufficiently more proposal components than there are components
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Table 4.1: The number of simulations that passed the stationary distribution
check for each combination of the number of sampling chains N and number
of components K in the proposal distribution. The table on the left represents
the equal weight and variance simulations and the one on the right, the unequal
weight and variance simulations. Note that some 20-component simulations did
not converge in the allotted time, as indicated by an asterisk (*) next to the
count.

N
1000 1500 2000

K

20 3 0 0
30 18 19 9
40 20 20 20
50 20 20 20
60 20 20 20

N
1000 1500 2000

K

20 20 17∗ 16∗

30 20 20 20
40 20 20 20
50 20 20 20
60 20 20 20

or clusters in the target distribution prevents an excessive number of them from
being prematurely emptied. This result highlights the importance of having
a sampler that can fit a mixture proposal, such as BAIS+L, as it allows the
MCMC practitioner to deliberately overfit the proposal model, making it easier
to find all clusters or components of the target and, hence, all local maxima.

Table 4.1 also suggests that with an insufficient number of components in
the proposal distribution, increasing the number of sampling chains produces
the opposite effect, reducing the chances of finding all clusters or local maxima
of the target.

Thus, the first preliminary guideline suggested by these results, is to run
pilot simulations with as large a number of proposal components as possible.

Due to the inherent increase in the computational burden with an increased
number of components, this approach is only recommended for short pilot runs.
To determine the number of components required for longer simulations, the
MCMC practitioner should assess a histogram of the component counts (cf.
Section 4.2) at select iterations to determine if it converges to one on a smaller
number of components. If the histogram does not clearly demonstrate that some
components of the proposal distribution are receiving much less weight than
others, then it may be necessary to increase the number of components used in
further pilot runs. Additionally, the time series of the acceptance rate must also
have converged before making any inference. This approach is demonstrated in
the application to mixture exponential regression in Section 4.2.

Provided that a sufficiently high steady-state acceptance rate is achieved in
a pilot run and the histogram of component counts appears to have converged,
the MCMC practitioner may apply information criteria, such as those discussed
in Section 1.5.3, to the output of pilot runs. Alternatively, they may simply
count the number of components from the stationary histogram of component
proportions. If the resulting number of components suggested by the criteria
are much less than the number used in a pilot run then it may be possible to
reduce the number in subsequent runs. Of course, how much the number may
be reduced is still a question that requires further study, as Table 4.1 shows
that too much of a reduction introduces the risk of the sampler exhibiting the
quasi-ergodic problem, due to insufficient overfitting.
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Figure 4.8: Inferred value of the first moment of the equal weight and variance
target in the first dimension, for 60 components in the proposal distribution
(left) and 2000 sampling chains (right). In each plot, the dotted line represents
the true value and the far-right indicates the value inferred by Kou et al. (2006)
using EES. Similar results were obtained in the second dimension and for the
second moments in each dimension.
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Once the simulations that detected all components of the target had been
identified, the same statistics as reported by Kou et al. (2006) were computed.
All figures derived from the equal weight and variance mixture target present the
results for 60 proposal components on the left and for 2000 sampling chains on
the right. These two settings were chosen for exposition because they represent
the largest number of proposal components and the largest number of sampling
chains, respectively, considered in the current study. Furthermore, these choices
follow the preliminary guidance obtained from the findings in Table 4.1 and from
Conjecture 1 of Chapter 3. Since not all 20- and 30-component simulations
detected all components of the target, inferences made from them were not
considered.

The statistic presented in Figure 4.8 is the first central moment in the first
dimension X1. Its results are encouraging. Despite the fact that BAIS+L
uses an approximate acceptance ratio, and hence generates samples from an
approximation to the true target, the inferred first moment is comparable to
that inferred by Kou et al. (2006) using EES. The relatively small uncertainties
of BAIS+L compared to those of EES are attributed to the substantially larger
number of samples generated using it, due to the larger numbers of sampling
chains and iterations considered in the current study.

E(X2), E(X2
1 ) and E(X2

2 ) produced qualitatively similar results (not shown).

The results for E [exp(−10X1)] (Figure 4.9) and E [exp(−10X2)] (Figure 4.10)
also highlight the success of BAIS+L at sampling the target, provided it has
converged to the true stationary distribution. In the first dimension, however,
BAIS+L consistently underestimated the true values, possibly illustrating the
approximate nature of the stationary distribution. Finally, Figures 4.11 and
4.12 present the tail probabilities p1 and p2.

It is observed, once more, that the estimates of the tail probabilities p1 and
p2 are comparable to those inferred by Kou et al. (2006) using EES. However,
unlike the first two moments and the exponential quantities, the uncertainties of
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Figure 4.9: Inferred values of E [exp (−10X1)] of the equal weight and variance
target, for 60 components in the proposal distribution (left) and 2000 sampling
chains (right). In each plot, the dotted line represents the true value and the
far-right indicates the value inferred by Kou et al. (2006) using EES.
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Figure 4.10: Inferred values of E [exp (−10X2)] of the equal weight and variance
target, for 60 components in the proposal distribution (left) and 2000 sampling
chains (right). In each plot, the dotted line represents the true value and the
far-right indicates the value inferred by Kou et al. (2006) using EES.
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Figure 4.11: Inferred value of p1 of the equal weight and variance target, for 60
components in the proposal distribution (left) and 2000 sampling chains (right).
In each plot, the dotted line represents the true value and the far-right indicates
the value inferred by Kou et al. (2006) using EES.
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Figure 4.12: Inferred value of p2 of the equal weight and variance target, for 60
components in the proposal distribution (left) and 2000 sampling chains (right).
In each plot, the dotted line represents the true value and the far-right indicates
the value inferred by Kou et al. (2006) using EES.
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Figure 4.13: Inferred value of the first moment of the unequal weight and vari-
ance target in the second dimension. In each plot, the dotted line represents
the true value and the far-right indicates the value inferred by Kou et al. (2006)
using EES.
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the estimated tail probabilities are larger than those of the estimates produced
by Kou et al. (2006). This lower precision is in spite of the fact that the current
study involved longer runs, suggesting that the approximation that results from
using BAIS+L suffers most in the tails of the target distribution, at least for the
mixture target with equal weights and variances. This poor performance in the
tails of the target may be attributed to the use of a common prior on each of
the components. It also highlights a limitation of the normal mixture proposal,
which implicitly assumes that the target density has a tail decay that is at
least as fast the tail decay of the component used to propose a new state. The
relationship between the tails of the target and the components of the proposal
distribution is an important one. Therefore, future work should consider it more
closely.

The estimated first and second moments inferred using BAIS+L in the un-
equal weight and variance case were also of the same order of magnitude as
those inferred by Kou et al. (2006) using EES, although not as accurate.

An important difference from the equal weight and variance results is the
demonstration of the improvement of BAIS+L’s approximation as the number
of sampling chains is increased. This improvement is evident in Figure 4.13,
where, for either 30 or 60 mixture components in the proposal distribution the
estimates of the first moment in the second dimension approaches the true value
from above. This result supports Conjecture 1, further motivating a rigorous
theoretical treatment of its claim that in the limit of an infinite number of
sampling chains the stationary distribution sampled by BAIS+L is exact.

The first moment in the first dimension, as well as the second moments in
either dimension, (all not shown) were qualitatively the same as those for the
equal weight and variance case.

The preceding results demonstrate that the approximate inferences made
from a BAIS+L simulation can differ somewhat from true values but, at least
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for the mixture target studied here, this deviation from the truth is at least par-
tially offset by the efficiency of the sampler, as reported in Section 4.1.2. They
also demonstrate that the approximate sampling nature becomes less relevant
as the number of sampling chains is increased, provided there are sufficiently
many components in the proposal distribution to guarantee that all components,
clusters or local maxima of the target are found.

Guidance

From the preceding results it is suggested that N and K initially be chosen
to be as large as practically possible, given the computing resources available.
These large choices are not suitable for long runs and should only be used for

selection of the parameters of the prior distribution. That is, for selecting α
(0)
k ,

ν
(0)
k , κ

(0)
k , Σ

(0)
k and µ

(0)
k in the case of the mixture target.

In particular, it is suggested that the MCMC practitioner simulate short
pilot runs with the large choices of N and K and by adjusting the hyperpa-

rameters κ
(0)
k and Σ

(0)
k of each component k, so as to achieve a sufficiently high

acceptance rate. Such adjustments may be based on any prior information avail-
able regarding the overall variance of the target or, failing this, running a few

pilot runs with different combinations of κ
(0)
k and Σ

(0)
k .

Since the ratio of κ
(0)
k to Σ

(0)
k approximates the prior ratio of the variance

of a region about a single local maximum, to the overall variance of the target

distribution, one may start by fixing Σ
(0)
k to be reasonably disperse and then

reducing κ
(0)
k until the acceptance rate time series produced ends in a plateau

greater than the minimum observed acceptance rate (see Figure 4.14, which
illustrates the acceptance rate of one of the 60-component 2000-sampling chain
simulations).

To adjust Σ
(0)
k , one may use the height of the plateau as a guide. A sug-

gestion is to progressively decrease Σ
(0)
k from a suitably large initial value until

the height of the plateau in the acceptance rate does not increase any further.

At the same time κ
(0)
k must be adjusted in order to maintain the overall prior

variance at a constant level. The reasoning behind this suggestion is that, once
the prior on the mean considers a large-enough portion of the parameter space
to cover all local maxima, reducing the variance of a single component should
theoretically reduce the proposal rate of low-weight samples under the target.
The example studied in Section 4.2 considers this approach.

As suggested in Section 4.1.2, it is also possible to visually inspect histograms
of the latent allocations of all samples from a simulation resulting in a plateau
and counting the largest number of significant components. As a general guide-
line, any parameter setting that consistently results in the maximal number of
significant components should be satisfactory for long runs. Although to make
such a determination will require repeated simulations, as seen in Section 4.1.2.
This should not be a problem if the number of components used is significantly
larger than the number suggested as significant by the histogram.

Of course, this experimental approach is not ideal, as it can potentially
involve a substantial amount of preliminary work. One possible pathway to
reduce this extra effort is to use an automated scheme that takes into account the
acceptance rate as a statistic for updating the hyperparameters in an adaptive
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Figure 4.14: An example of a plateau in the acceptance rate time series of a
BAIS+L simulation from the mixture target of Liang and Wong (2001) with
60 components in the proposal distribution and 2000 sampling chains. Observe
that the acceptance rate quickly reached a plateau of a high value. While
the acceptance rate appeared to have increased later in the simulation, the
consistently high acceptance rate over a long time period indicated a suitable
choice of simulation parameters.
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prior distribution. It will be interesting to consider such an approach in future
work.

Unfortunately, automating the choice of the number of proposal components
is not as clear. As observed, overfitting the proposal distribution appeared to
result in a greater chance of finding all components of the target and, hence,
all local maxima. However, increasing the number of components resulted in
a lower acceptance rate. A larger number of components also requires more
computational effort, as there are inherently more parameters that need to be
updated. Therefore, it is recommended that the number of components be
chosen larger than the prior believed number of clusters or local maxima in
the target, as indicated by the preliminary runs, but not prohibitively so, given
computing resources available to the MCMC practitioner. A precise method for
determining a sufficient number is a matter that is left for future investigations.

Alternatively, one could incorporate the number of mixture components into
the vector of parameters to be inferred and use a reversible jump (Green, 1995)
or generalized Gibbs sampler (Keith et al., 2004) approach to update them. Care
must be taken, however, to avoid underestimating the number of components,
given the problems associated with convergence of the 20- and 30-component
simulations identified in Table 4.1. This is also an avenue for future work, which
would make BAIS+L more automatic.
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4.2 An Application to Mixture Exponential Re-
gression

In this section, BAIS+L is applied to the mixture exponential regression problem
studied by Kou et al. (2006) using the guidance developed in its application
to the mixture target of Liang and Wong (2001). The section begins with a
restatement of the regression model before proceeding to a discussion of some
pilot runs, which are used to determine the numbers of sampling chains and
mixture components, as well as the prior parameters of the proposal distribution.
The sampler is then implemented on the target using the results of the pilot
runs.

4.2.1 The Problem

Recall the mixture exponential regression problem (cf. Section 2.2) studied by
Kou et al. (2006) (cf. Section 1.4.3), where one has a collection of M values

y = (ym)
M
m=1 sampled according to Equation (4.15).

ym ∼
{

Exp [exp (β11 + β12xm)] with probability α

Exp [exp (β21 + β22xm)] with probability 1− α. , (4.15)

where Exp(λ) represents an exponential distribution with parameter λ.
As in Kou et al. (2006), the goal was to infer the model parameters α, β11,

β12, β21 and β22, given known values of (ym)
M
m=1 and (xm)

M
m=1.

In order to do so, the procedure of Kou et al. (2006) was followed, by first
generating 400 variable pairs (ym, xm). That is, α was set to 0.3, β1 to (1, 2)T, β2

to (4, 5)T and each of the 400 xm values was sampled from a uniform distribution
on the interval (0, 2),

xm2 ∼ U(0, 2).

With these parameters, y = (y1, . . . , y400) were sampled from the same distri-
bution as in Kou et al. (2006), which is restated in Equation (4.16),

ym ∼ exp
(
βT
δmxm

)
. (4.16)

Here δm is latent variable with distribution

δm − 1 ∼ Bernoulli (α) .

Each δm was sampled before the corresponding ym, giving the raw data
that were used to perform the regression. These raw data are provided in
Appendix B.

Unlike Kou et al. (2006), 400 (ym, xm) pairs were generated, as multiple
independent sets of only 200 pairs resulted in inconsistent estimates of α, β11,
β12, β21 and β22. With 400 pairs this problem was not observed.

4.2.2 Methodology

Following the guidance that was suggested in Section 4.1.2, pilot runs were
initially simulated, using proposal distributions with a large value of K.
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Since any possible distribution of the mixing parameter α in the regression
problem is supported on the bounded interval [0, 1], while the other regression
parameters are not, a normal mixture proposal over all five regression param-
eters is not a suitable choice. However, for convenience and to investigate its
performance in such a situation, the study was continued with this proposal
distribution.

In order to determine the hyperparameters κ
(0)
k = κ(0) and Σ

(0)
k = Σ(0)I2

(where I2 is the two-dimensional identity matrix), 1000 sampling chains were
simulated, with 10 components in the proposal distribution, making sure to also
record the latent allocations for the determination of the number of components
in the target.

As with the mixture example, the prior proposal means were set to µ
(0)
k =

(0, 0)T for convenience and ν
(0)
k = p + 1 = 6 for each component k. The same

value of dmin = 0.1 used for the mixture target was also implemented for this
regression problem, by following the prescription of Section 3.3.3 with Id = 10.

Five short 200 iteration simulations were run, each with 10 mixture compo-
nents in the proposal and Σ(0) fixed at 1, while κ(0) was varied in
{1, 0.1, 0.01, 0.001, 0.0001} for each component k. In these short runs it was
found that the acceptance rate time series of the smallest four of these choices of
κ(0) exhibited the plateau that was discussed in Section 4.1.2. Therefore, ratios
of κ(0)/Σ(0) in {0.1, 0.01, 0.001, 0.0001} and values of Σ(0) in
{10, 1, 0.1, 0.01, 0.001} were investigated, in order to determine a suitable Σ(0).
Each simulation was again run with 200 iterations, 1000 sampling chains and
10 components.

The resulting 20 short runs produced plateaus in the acceptance rate that
were consistently around 0.75 for Σ(0) ∈ {0.1, 0.01, 0.001} and
κ(0)

/
Σ(0) ∈ {0.01, 0.001, 0.001}, so the largest of each of these was selected.

That is, Σ(0) was set to 0.1 and κ(0) = 0.001 in the longer simulations. In addi-
tion, the number of proposal components, from which samples were generated,
always quickly reduced to two or three, indicating that 10 mixture components
in the proposal distribution were sufficient. Figure 4.15 illustrates the steady
component proportions after 75% of the short simulation with Σ(0) = 0.1 and
κ(0) = 0.001 was complete. It demonstrates that two of the ten components
retained all weight, indicating that no more than ten components were required
in the proposal distribution.

The choice of the number of iterations was made by visually inspecting
the time series of the corresponding acceptance rate, which appeared to have
converged before 100 iterations. The burn-in period was chosen to be more
than twice this number, selecting a value of 500 iterations, with a further 500
iterations for inference.

Thus, to investigate the robustness of the chosen hyperparameters, 20 in-
dependent simulations from the regression target were run, each with 1000
sampling chains, 1000 iterations and 10 mixture components in the proposal
distribution.

To make sure that convergence had been achieved within this time, the
maximum PSRF of the five regression parameters in the last half of the run
was computed using the gelman.diag function from R’s coda library, with the
settings confidence = 0.95, transform = FALSE, autoburnin = FALSE and
multivariate = FALSE.
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Figure 4.15: The proportion of samples originating from each component of the
proposal distribution in the last 25% of the short Σ(0) = 0.1, κ(0) = 0.001 run.
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From the 20 simulations, the number that produced a maximal number
of local maxima was counted by a visual inspection of the resulting marginal
posterior densities of α, β11, β12, β21 and β22. The mean of the minimum
effective number of samples was computed as the sample mean over the 20
simulations of the reciprocal of twice the maximum IAT observed in the last
500 iterations over all dimensions and sampling chains in each simulation, as
reported by the IAT function from R’s LaplacesDemon package (Statisticat,
2017). The results report the mean values of all simulations whose stationary
distributions exhibited the maximum number of local maxima. The variance
of this effective proportion was again estimated by assuming that the effective
number of samples followed a binomial distribution.

To estimate the effective proportion of samples produced by Kou et al. (2006)
using the equi-energy sampler, Figure 7(d) of Kou et al. (2006) was loaded into
the WebPlotDigitizer of Rohatgi (2011) to extract their autocorrelations at
the reported lags. The lags were then combined with Equation (4.6), just as
was done for the mixture target, and the reciprocal of the result was taken, to
give the effective proportion of samples.

4.2.3 Results and Discussion

By observing the 20 full length runs, it was observed that all of them produced
two local maxima in each marginal stationary distribution, in agreement with
the results of Kou et al. (2006). The maximum PSRF encountered in the last
500 iterations of these 20 simulations was no more than 1.002694, which was
deemed to be low enough to assume that they had all converged. They also
produced a mean minimum ratio of the effective number of samples to the true
number of samples of around 0.171 with a standard deviation of approximately
0.012. This proportion was greater than the approximately 0.03 inferred from
Figure 7(d) of Kou et al. (2006) for EES.
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Figure 4.16 reports the posterior densities of α, β11 and β12 from one of
the successful runs, along with vertical lines, representing the true values. The
density estimates for β21 or β22 are not shown here, as they were very similar
to β11 and β12, respectively, as expected and as noted by Kou et al. (2006).

Qualitatively, the marginal distributions of the runs performed in the current
study runs were the same as those inferred by Kou et al. (2006) but with the
local maxima slightly shifted.

In the case of α, its marginal posterior distribution either overestimates
(lower α local maximum) or underestimates (upper α local maximum) the mix-
ture parameter.

Similarly, the local maxima of the marginal posterior distribution of β11 and
β12 are not centred on the true values. These discrepancies may either be due
to the approximate nature of the BAIS+L acceptance ratio or the simulated the
400 input data pairs, which were different from those used by Kou et al. (2006).

These results indicate that the particular choice of parameter settings used
to implement the sampler on the input data can approximately find the correct
stationary distribution with greater efficiency than the equi-energy sampler.
However, as with the mixture target, there was some waste in the need to use
extra components in the proposal distribution to ensure that both local maxima
of the posterior distribution were found.

4.3 Conclusion

The preceding examples have shown that the normal mixture proposal version of
BAIS+L can efficiently sample from difficult target distributions supported on
Rp, with the efficiency increasing as the number of sampling chains is increased.
However, as seen in the application to the mixture target, there is still a risk of
the sampler becoming stuck and not sampling all components or clusters of the
target and, therefore, missing local maxima.

The results of simulating from the mixture target of Kou et al. (2006) demon-
strated that increasing the number of mixture components in the proposal dis-
tribution can increase the chances of finding all clusters, components or local
maxima in the target distribution, although this change comes at the expense
of extra computational cost to update the extra components. It also leads to
a lower acceptance rate, as evidenced by the results of the unequal weight and
variance case.

The results also demonstrated that, for the simulation settings studied, the
inferred statistics of the mixture target were comparable to those inferred by
Kou et al. (2006) using EES. The results of the first moment in the unequal
weight and variance case also suggest that the stationary distribution sampled
by BAIS+L improves with the number of sampling chains, in support of Con-
jecture 1. Of course, such a claim needs to be proven rigorously, which is
anticipated in future work.

In the current work, the parameters of the prior distribution on the proposal
parameters were chosen on the basis of sampling efficiency. Future studies will
investigate their choice further, with a focus not only on sampling efficiency but
their effect on the resulting stationary distribution of the samples. In particular,
given the fact that most of the 20-component mixture target runs did not detect
all target components, the issue of premature emptying of mixture components
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Figure 4.16: Histograms of the marginal posterior densities of α (top), β11

(middle) and β12 (bottom) of the mixture exponential regression problem as
inferred using BAIS+L. The dashed vertical lines represent the true values of
the parameters, taking into account the non-identifiability of the problem.
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needs to be investigated in future work. One possibility is to enforce a minimum
number of sampling chains to be allocated to each component.

The efficiency of BAIS+L was also promising when it detected all compo-
nents of the target. However, the results, having effective proportions of samples
of less than 1, indicated that there was considerable autocorrelation between
samples at different iterations. This is another point that will be interesting
to investigate in future work, in hopes of further increasing the efficiency of
BAIS+L.

As noted in the results of Section 4.1.2, the future work should also con-
sider what effect the chosen kernel in the mixture proposal has on BAIS+L’s
performance in the tails of a target distribution.

Finally, while the study of this chapter has provided some guidance on the
selection of hyperparameters when the number and location of local maxima,
or the scales of their corresponding components or clusters, are unknown, it
should be stressed that it is not necessarily optimal. Indeed, it does not even
guarantee that all local maxima will be found. The detection of local maxima
is an important and non-trivial task, so it is recommended that future studies
also consider systematic approaches to hyperparameter selection.

As stated in Section 4.1.2, one possibility is that of adaptively updating the
prior information using suitable performance criteria and proposal distributions
of previous iterations of the sampler. With this approach, the effects of an in-
correct prior distribution could be mitigated, leading to a better approximation
of the target and better mixing. Also suggested was the inclusion of the number
of components in the parameter update procedure, which, when combined with
the aforementioned adaptive updating of prior information, will automate the
implementation of BAIS+L.

In conclusion, while BAIS+L is not without its limitations, it appears to
have a competitive performance to EES, justifying further exploration of its
properties and potential applications.
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Chapter 5

Tailoring BAIS+L to Spin
Glass Simulation

As discussed in Section 2.3, spin glasses are an interesting problem in condensed
matter physics due to their complex energy distributions, which are challenging
to sample from using standard MC or MCMC approaches. This chapter demon-
strates a possible avenue for incorporating BAIS+L into spin glass simulations
and highlights some hurdles that still need to be overcome.

The first portion of this chapter is devoted to describing two approaches to
using BAIS+L as the MH component in a spin glass sampler, such as PT or PA.
It starts by restating the target distribution for an Ising spin glass simulation
and the choices of BAIS+L proposal distributions. It then outlines the two
potential proposal mechanisms for new configurations, before describing prior
knowledge of their parameters and identifying their posterior distributions.

The second portion of this chapter is devoted to a numerical study of one
of these proposal distributions, to assess its viability and to compare it to to
the more traditional single-spin-flip MH approach discussed in Section 2.3.4.
The opportunity is taken to study the effectiveness of using BAIS+L to sample
from some two-dimensional lattices and its relative efficiency is compared to
single-spin-flip Metropolis.

The results discussed in this chapter illustrate some of the pitfalls in imple-
menting BAIS+L, for which possible remedies are suggested for study in future
work.

5.1 Motivation and Goals

As discussed in Section 1.4.3, a common tool for studying spin glasses is PT
with replica exchange. Section 1.4.3 also discussed that Wang et al. (2015)
demonstrated the comparable performance of PA for the study of spin glasses,
proposing it as a competitive alternative to PT. At the time of this writing,
neither method has been able to be used to definitively determine the low-
temperature behaviour of the Edwards-Anderson spin glass with Ising spins.
Both PT and PA also require some assumptions to be made before simulation,
such as a cooling schedule and the interval between attempted replica exchanges

155
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(cf. Section 1.4.3). Neither of these quantities can be chosen easily a priori but
both affect the performance of their respective algorithms.

To implement either approach, an MH algorithm may be used to propose
new configurations. As discussed in Chapter 2, two alternative ways to use
MH are to successively propose to flip single spins or clusters of spins before
accepting or rejecting the resulting proposed configurations. It is these two
approaches that this chapter seeks to extend using BAIS+L.

While more components give greater flexibility to the proposal distribution,
the results of Chapter 4 showed that the number of sampling chains (referred to
as “replicas” in condensed matter physics simulations) must be considered, as it
must be sufficiently larger than the number of proposal components for efficiency
of sampling, both in terms of convergence rate and in terms of mixing rate.
Additionally, the more sampling chains that are used in a BAIS+L simulation,
the better the approximation of the resulting stationary distribution to the
target, given a sufficient number of proposal distribution components to ensure
that all local maxima of the target distribution are detected.

5.2 Sampling Approaches

This section identifies and discusses two proposal distributions for implementing
BAIS+L as the MH method for simulating an Ising spin glass and it discusses
the associated posterior distributions of the proposal parameters, given samples
of spin configurations.

5.2.1 Multiple Spin Updating with BAIS+L

The first approach considered involves a modification of the single-spin-flip
Metropolis method (cf. Section 2.3.4). BAIS+L offers two avenues for mod-
ifying this procedure, which may be applied together or individually.

The first and most obvious of these avenues uses BAIS+L to adapt the spin-
up probability at each lattice site. When only one spin is updated at a time,
there are only two possible results after the update: the current configuration;
or the current configuration with the spin in question flipped. While single-spin-
flip always uses the second of these configurations as the proposed configuration,
BAIS+L assigns a probability to each configuration under the proposal distri-
bution, with the probabilities not necessarily being equal. It is this probability
that is updated using BAIS+L’s posterior update mechanism (see below).

The second avenue offered by BAIS+L extends single-spin-flip to multiple-
spin-flip. This approach requires an appropriate proposal distribution to inves-
tigate the Ising spin glass using BAIS+L. An obvious choice, which is adopted
herein, is a mixture of independent binary choices of an up spin at each of the
lattice sites, where the probability of this choice depends on each site of each
component. For each sampling chain n ∈ {1, . . . , N}, a component zn is first
proposed from a categorical distribution,

zn|d ∼ Categorical(d),

where d = (d1, . . . , dK) is the vector of mixture weights.
A proposed spin state is then drawn independently for each vertex i ∈

{1, . . . , Lp} of the p-dimensional lattice of side length L, given zn, according



5.2. SAMPLING APPROACHES 157

to Equation (5.1),

1

2

[
s(i)
n + 1

]∣∣∣∣ zn, q(i)
zn ∼ Bernoulli

[
q(i)
zn

]
, (5.1)

where q
(i)
k is the probability of an up spin at lattice site i under component k

of the proposal.

The overall proposal distribution is, thus, given by Equation (5.2),

p(sn|d, {qk}Kk=1) =

K∑
k=1

dk

Lp∏
i=1

[
q

(i)
k

] [s(i)n +1]/2 [
1− q(i)

k

]1− [s(i)n +1]/2

. (5.2)

It is clear that if the proposal distribution has as many components as there
are possible configurations in the state space (K = 2L

p

) and if all spins are
updated at once, then there exists a choice of proposal distribution that is equal
to the target. This is true because each component can correspond to exactly
one configuration by being a vector of only 1 and 0 probabilities of up spins,
thereby making exactly one configuration possible under each component. The
mixture proportions d will then (approximately) correspond to the probabilities
of the configurations under the true target.

Of course, such a scheme is infeasible in practice, due to the sheer size of the
configuration space, so in practice the number of components in the proposal
distribution will always be less than the number of possible configurations of
the spin glass.

An alternative to updating all spins at once is to update just m of them (but
still more than just the one offered by single-spin-flip). This approach reduces
the support of the proposal distribution to 2m different configurations. Unlike
the Swendsen-Wang Algorithm, the form of multiple-spin-flip outlined above
does not look for clusters of satisfied interactions. To apply such an approach
will require a component membership for each block of simultaneously-updated
spins for each replica, since an accept/reject step will be attempted for each
block being updated. This approach, however, would introduce a random walk
aspect to sampling, which is not in the spirit of the current work.

While it has been chosen to construct the proposal distribution of a mul-
tiple spin updating approach in such a manner, no claim is made that it is
the optimum prescription. It is, however, conceptually easy to understand and
implement, making it a natural candidate for investigation.

Prior Distribution of Proposal Parameters

In order to update the spin up probabilities at each iteration, an independent
Beta(αk, βk) prior is assumed on each of them in each component k. The prior
shape parameters αk and βk of the distribution are unknown, so, in the current
study, they were both assumed to be equal to 1 for each component k. This
represents a uniform distribution (Gelman et al., 2004, pp. 581), reflecting
the lack of prior knowledge about the spin up probabilities, as indicated by
Equation (5.3) for the kth component,

q
(i)
k ∼ Beta(1, 1) = U(0, 1). (5.3)
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In the case of the mixture weights d, the same prior distribution that was
used in the normal mixture proposal case was also adopted. That is, they were
assumed to have a Dirichlet distribution with common prior concentration of 1
on each component, as given by Equation (5.4),

d ∼ Dirichlet(1K), (5.4)

where 1K is the K-dimensional vector of 1s.

Posterior Distribution of Proposal Parameters

As in the normal mixture proposal case, the posterior distribution of the mixture
weights is again the Dirichlet distribution of Equation (5.5),

d|s, z = d|z ∼ Dirichlet(1K + o), (5.5)

where o = (o1, . . . , oK) is the vector of component counts.
To obtain the posterior distribution of the spin-up probabilities, apply Bayes’

Theorem to obtain

p
[
q

(i)
k

∣∣∣ s, z] ∝ p [q(i)
k

] ∏
n∈Ik

p
[
s(i)
n

∣∣∣zn = k, q
(i)
k

]
where Ik ⊆ {1, . . . , N} is the set of all sampling chain/replica indices for which
zn = k. This further simplifies as follows.

p
[
q

(i)
k

∣∣∣ s, z] = Beta
[
q

(i)
k

∣∣∣αk, βk] ∏
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Bernoulli
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2
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where s̄
(i)
k is the average spin at the ith lattice site in component k.

This gives

q
(i)
k

∣∣∣ s, z ∼ Beta
{
αk +

ok
2

[
s̄

(i)
k + 1

]
, βk +
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2

[
1− s̄(i)

k

]}
.
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5.2.2 Cluster Updating with BAIS+L

Another approach that could provide an independence-sampling alternative to
the Swendsen-Wang algorithm, is to use an adaptive proposal that allows mul-
tiple clusters of spins to be updated simultaneously.

The idea introduced here is to propose new configurations from a histogram
constructed in a different manner from Section 5.2.1. This histogram is built
up using a clustering approach, and places most mass on a subset of M ≤ 2L

p

configurations of the configuration space. The parameter vector of this his-
togram consists of bonds Bk ∈ {0, 1}pL

p

, where k ∈ {1, . . . ,K} and K is the
fixed number of BAIS+L proposal distribution components, L is the lattice side
length and p is the dimension of the lattice. Each Bk partitions the canonical
lattice into Ck uniquely-determined clusters, each of whose spin preferences are
perfectly satisfied by one of exactly two possible cluster configurations. These

cluster configurations U
(c)
k and V

(c)
k (c ∈ {1, . . . , Ck}) differ by total spin re-

versal and have probability of proposal p
(c)
k and q

(c)
k , respectively, given their

component k has been selected. Let D
(c)
k be the dimension (i.e. the number of

lattice sites) in cluster c of component k. Then the cluster has in total 2D
(c)
k

possible configurations, exactly two of which perfectly satisfy the interactions.
The probability of any other frustrated cluster configuration is given a nominal

probability r
(c)
k , such that p

(c)
k + q

(c)
k +

[
2D

(c)
k − 2

]
rk = 1. This ensures that the

probability of a transition to any configuration is bounded below by a strictly
positive value at each iteration.

Let ψ
(c)
k (s) be the natural projection of configuration s onto its subvector

containing only those spins in cluster c of component k. Then the probability

of ψ
(c)
k (s), under component k of the proposal distribution, is given by Equa-

tion (5.6),

P
[
ψ

(c)
k (s)

∣∣∣Bk

]
=


p

(c)
k if ψ

(c)
k (s) = U

(c)
k ,

q
(c)
k if ψ

(c)
k (s) = V

(c)
k ,

r
(c)
k otherwise.

=
[
p

(c)
k

]I
U

(c)
k

[
ψ

(c)
k (s)

] [
q

(c)
k

]I
V

(c)
k

[
ψ

(c)
k (s)

]

×
[
r

(c)
k

]1−I
U

(c)
k

[
ψ

(c)
k (s)

]
−I

U
(c)
k

[
ψ

(c)
k (s)

]
, (5.6)

where IA(B) = 1 if A = B and 0 otherwise.
Therefore, the proposal distribution is given by Equation (5.7),

P

[
s

∣∣∣∣∣
{
dk,Bk,

{
p

(c)
k , q

(c)
k , r

(c)
k

}Ck

c=1

}K
k=1

]
=

K∑
k=1

dk

Ck∏
c=1

P
[
ψ

(c)
k (s)

∣∣∣Bk

]
. (5.7)

Just as with the normal mixture proposal of Chapter 3, updating of a con-
figuration begins with proposing a component k of the proposal distribution to

use for sampling. The proposal distribution then proposes which of the 2Dk
(c)

configurations each cluster takes, independently of all other clusters.
When no bonds are added, which is entirely possible under the preceding

scheme, the method resembles the multi-spin updating of Section 5.2.1.
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With such a proposal mechanism in place, the question arises of how to

specify the bonds Bk and the cluster state probabilities p
(c)
k , q

(c)
k and r

(c)
k . Their

derivation is discussed in the following two subsections.

Prior Distribution of Proposal Parameters

Before deriving the posterior distribution of the proposal parameters the prior
knowledge of their distributions must first be outlined. To do so, first factor the
prior distribution according to the dependence between the variables.

As in the normal mixture proposal case studied up to this point, the vector
of mixture proportions d = (d1, . . . , dK) is assumed to be a priori independent
of all other proposal parameters. Since they have no dependence on any of
the other parameters, they are assumed to have the same prior form as in the
normal mixture proposal cases studied earlier. That is, they have a Dirichlet
prior distribution, with equal concentration of α on each component.

pJ

(
{dk,Bk}Kk=1

)
∝ Dirichlet

(
{dk}Kk=1

∣∣∣ {α(0)
k

}K
k=1

)
.

To keep things simple, consider the vector of bonds to be built up by a simple
raster scan, which randomly place bonds between neighbouring spins. Starting
at the lowest index spin, this approach iterates through each spin and each of
its neighbouring lattice sites of higher index value, first determining if including
a bond will introduce frustration to the spin’s cluster or not. The probability of
there being a bond Bk at index i in component k, given the addition of a new

bond does not introduce frustration, is b
(i)
k . Otherwise, the probability of such

a bond is zero, as given by Equation (5.8),

P (Bk) =

pLp∏
i=1

P
(
B

(i)
k

∣∣∣ {B(j)
k

}i−1

j=1

)
(5.8)

=

pLp∏
i=1

[
b
(i)
k

]g[B(i)
k

∣∣∣∣{B(j)
k

}i−1

j=1

]
0

1−g
[
B

(i)
k

∣∣∣∣{B(j)
k

}i−1

j=1

]
,

where g

[
B

(i)
k

∣∣∣∣{B(j)
k

}i−1

j=1

]
is 1 if the presence of a bond at edge i of the lattice

introduces frustration and 0 otherwise. Here the convention 00 = 1 is adopted.

Each b
(i)
k is considered a priori i.i.d. Beta(1, 1). After each spin pair has been

considered, the result is a collection of C ≤ Lp clusters of spins, completely
determined by the bonds.

The probability vector
[
p

(c)
k , q

(c)
k , r

(c)
k

]
is assumed a priori

Dirichlet
[
δ

(c)
k , η

(c)
k , ζ

(c)
k

]
.

Posterior Distribution of Proposal Parameters

Since the weights are a priori the same as in the normal mixture and multi-spin
cases, and they are independent of the other proposal parameters, their joint
posterior density is once again a Dirichlet distribution,

d
∣∣∣{zn,Sn}Nn=1 ∼ Dirichlet

[
o + α(0)

]
,
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where o = (o1, . . . , oK) is the vector of observed counts of each component of
the proposal distribution and zn ∈ {1, . . . ,K} is the component membership of
replica n.

The method to determine bonds Bk and cluster configuration probabilities

p
(c)
k , q

(c)
k and r

(c)
k is more complex.

P
(
Bk,pk,qk, rk

∣∣{zn,Sn}Nn=1

)
∝ P

(
{Sn}Nn=1

∣∣ {zn}Nn=1Bk,pk,qk, rk
)
P(pk,qk, rk|Bk)P(Bk)

∝
∏
n∈Ik

Ck∏
c=1

P(c)
k (Sn)

[
p

(c)
k

]δ(c)k −1 [
q

(c)
k

]η(c)k −1 [
r

(c)
k

]ξ(c)k −1

×
pLp∏
i=1

P
[
B

(i)
k

∣∣∣∣{B(j)
k

}i−1

j=1

]

=
∏
n∈Ik

Ck∏
c=1

[
p

(c)
k

]δ(c)k −1 [
q

(c)
k

]η(c)k −1 [
r

(c)
k

]ξ(c)k −1

×
[
p

(c)
k

]I
U

(c)
k

[
ψ

(c)
k (Sn)

] [
q

(c)
k

]I
V

(c)
k

[
ψ

(c)
k (Sn)

]

×
[
r

(c)
k

]1−I
U

(c)
k

[
ψ

(c)
k (Sn)

]
−I

U
(c)
k

[
ψ

(c)
k (Sn)

]

×
pLp∏
i=1

[
b
(i)
k

]g[B(i)
k

∣∣∣∣{B(j)
k

}i−1

j=1

]
0

1−g
[
B

(i)
k

∣∣∣∣{B(j)
k

}i−1

j=1

]
.

Let N
(c)
k (U) be the number of occurrences of U

(c)
k , let N

(c)
k (V) be the num-

ber of occurrences of V
(c)
k and let N

(c)
k (∅) be ok −N (c)

k (U)−N (c)
k (V). By this

preceding design, each cluster will have the property that all of the bonds be-
tween its member spins can be simultaneously satisfied by one of exactly two
possible states Uc and Vc, differing by total spin reversal. Then the posterior
distribution is given as Equation (5.9),

P
(
Bk,pk,qk, rk

∣∣{zn,Sn}Nn=1

)
=
∏
n∈Ik

Ck∏
c=1

[
p

(c)
k

]δ(c)k +N
(c)
k (U)−1 [

q
(c)
k

]η(c)k +N
(c)
k (V)−1 [

r
(c)
k

]ξ(c)k +N
(c)
k (∅)−1

×
pLp∏
i=1

[
b
(i)
k

]g[B(i)
k

∣∣∣∣{B(j)
k

}i−1

j=1

]
0

1−g
[
B

(i)
k

∣∣∣∣{B(j)
k

}i−1

j=1

]
. (5.9)

Therefore,
[
p

(c)
k , q

(c)
k , r

(c)
k

]
is Dirichlet with parameter,[

δ
(c)
k +N

(c)
k (U), η

(c)
k +N

(c)
k (V), ξ

(c)
k +N

(c)
k (∅)

]
.

However, the question still remains of how to update the bonds B
(i)
k using

information obtained from the replica configurations {Sn}Nn=1. Tailoring g to
determine frustration based on a set of random couplings J that is dual to the
fixed couplings J of the disorder sample is a possibility. Given the already much
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more complicated forms of the equations for this approach, however, exploration
of the form of g and its consequences on the posterior distribution of the bonds
is left for future work.

5.3 Investigating Multiple Spin Updating with
BAIS+L

This section implements the design for the Ising spin glass described in Sec-
tion 5.2.1. The results provided in the current section initiate the study of
the viability of BAIS+L as a new tool for studying spin glasses, by considering
its efficiency and the quality of the simulated targets, compared to traditional
single-spin-flip dynamics. More importantly, it addresses the shortcomings of
the approach taken to implementing BAIS+L thus far, while identifying aspects
of the sampler that require further attention.

As this is an initial study of a new method for investigating a very diffi-
cult problem, no attempt is made in the current work to answer any questions
regarding the physics of spin glasses.

5.3.1 Aims

The primary goal of the current chapter is to qualitatively explore the efficiency
and effectiveness of BAIS+L when applied to a single disorder sample, without
the assistance of a metaheuristic, such at PT. It is intended that the results
of the current chapter identify problem areas with the approach outlined in
Section 5.2.1, in the hopes of guiding future modification of the method.

To explore the efficiency of the sampler, the shape of the acceptance rate
time series was considered. As highlighted in Chapter 4, a successful BAIS+L
simulation results in a high-value plateau in the acceptance rate time series.
By varying the number of proposal components, the acceptance rate time series
were monitored, to see if such a plateau was formed.

Since BAIS+L is an approximate technique, the stationary distribution will
be an approximation of the true target. Therefore, empirical histograms of the
configurations were also considered for a comparison to their known true values.

Finally, the results from the BAIS+L simulations were compared to those of
a corresponding single-spin flip MCMC approach.

Given the results of Chapter 4, which suggested that the limiting distribution
of BAIS+L approaches the target distribution as N → ∞, the effect of N on
sampler performance was not studied. Instead, N was kept fixed at a value of
1000.

5.3.2 Methodology

To understand the potential role of BAIS+L in spin glass simulation, five in-
dependent disorder samples (cf. Section 2.3) were simulated on a 3 × 3 lattice
(which has 23×3 = 512 possible configurations) at an inverse temperature of
β = 1.8 for T = 1000 iterations with N = 1000 replicas. For each simulation
BAIS+L was run with K = 20, 40, 60, 80 and 100 components in the proposal
distribution.
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The single-spin-flip Metropolis method reviewed in Section 2.3.4 was also
applied to the same set of disorder samples, for comparison, also with N =
1000 simultaneous replicas. Note that in this case, the replicas were completely
independent of each other. For both samplers, the proportion of accepted moves
at each iteration was recorded.

In the case of single-spin-flip Metropolis, one iteration was considered to be
one complete sweep through all lattice sites, with the acceptance rate taken to
be the average number of accepted moves over all sites in all replicas.

Since a spin glass has support on a discrete set of configurations, not Rp,
it was not deemed appropriate to use Gelman and Rubin’s diagnostic to assess
convergence of their simulations. Hence, to satisfy that convergence had been
achieved, the acceptance rate time series was inspected visually. For a given
simulation, once the time series appeared approximately constant, convergence
was assumed.

The run times of the simulations using the two samplers were also recorded.
As in the simulations of Chapter 4, this was achieved using the built-in time

command from version 4.3 of bash (The Free Software Foundation, 2014), with a
simulation’s total run time given by the sum of the user and sys times reported
by it.

5.3.3 Results and Discussion

The first results considered were the stationary distributions of the configura-
tions inferred by both BAIS+L and single-spin-flip using the samples in the last
half of their runs. Figure 5.1 demonstrates the inferred distributions for one
of the disorder samples, where top plot illustrates the histogram inferred using
single-spin-flip, the middle one represents the histogram inferred using BAIS+L
and the bottom plot illustrates the true histogram.

Observe that both samplers successfully identified the most significant con-
figurations under this choice of couplings, with their histograms having similar
shapes to the true one. This result demonstrates that both samplers have similar
inferential power, at least for the small disorder samples studied.

The acceptance rate, however, highlights the difference in performance of
the two approaches. Visual inspection of its time series for each simulation
performed with BAIS+L illustrated that none of them exhibited the plateau
described in Chapter 4. Instead, all demonstrated a downward trend towards a
minimum acceptance rate, similar to the traditional single-spin-flip simulations.
Figure 5.2 shows one example of the observations for the same disorder sample.
The left plot represents traditional single-spin-flip sampling, while the right
represents BAIS+L.

Notice that both samplers appear to have a very low acceptance rate, with
the rate for traditional single-spin-flip being higher than that for BAIS+L.

Such poor performance of BAIS+L is disappointing but not surprising, since
the support of its proposal distribution is much larger than that of single-spin-
flip (512 versus 1 in the example studied), leading to an increased chance of
proposing insignificant configurations. Furthermore, while there are multiple
chances for a configuration to change at each iteration in a single-spin-flip sam-
pler, there is only one in BAIS+L with the proposal distribution used in the
current study. This results in slower mixing through the configuration space
with BAIS+L.
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Figure 5.1: The histograms over indexed configurations from one of the disorder
samples. The top plot illustrates the histogram inferred using single-spin-flip,
the middle one represents the histogram inferred using BAIS+L and the bottom
plot illustrates the true histogram.
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Figure 5.2: A typical set of acceptance rate time series for one of the spin-
glass disorder samples. The left plot displays the acceptance rate time series for
single-spin-flip and the right one displays the one for BAIS+L. Note that neither
exhibits the plateau that was identified in Chapter 4 as a sign of a well-tuned
BAIS+L simulation, indicating that the näıvely chosen hyperparameters used
in the simulation were not appropriate for the spin glass simulated.

0 500 1,000

0

0.1

0.2

Iteration

A
cc

ep
ta

n
ce

R
a
te

0 500 1,000

0

0.1

0.2

Iteration

In addition to the lower acceptance rate, the computational complexity of
BAIS+L, over that of single-spin-flip, was evident in the run time results. The
mean run time of single-spin-flip was around 4.456 seconds, with an estimated
standard deviation of 0.1149274 over the five disorder samples, while the fastest
mean run time for BAIS+L was around 12.511 seconds, with a standard devi-
ation of approximately 0.276 seconds. This minimum corresponded to the case
with 20 mixture components in the proposal distribution. Figure 5.3 summarises
the run time results.

Furthermore, the single-spin-flip approach runs all replicas independently of
each other, while BAIS+L does not. Hence, estimates produced using single-
spin-flip are at least as precise as those produced using BAIS+L, due to lower
correlation. Even so, BAIS+L is, by design, more flexible, due its various tun-
able parameters, and the studied proposal distribution is only one of many
possibilities.

As stated in Section 5.3.2, it was not expected that such a näıve choice of
proposal distribution would be effective. Note that a key property of BAIS+L is
the implicit clustering provided by having multiple components in the proposal
distribution. For the normal mixture proposal introduced in Chapter 3 clusters
may be defined by the distance of their constituent members from the centre
of the component. For the multi-spin-flip proposal distribution studied in this
chapter there was no analogue. The relative density at the component’s mean
and another configuration in the configuration space of the spin glass therefore,
is not determined by the distance between them. In fact, as demonstrated
by Figure 5.1, unless a component is degenerate on a single configuration, it
is entirely possible that neighbouring configurations will have vastly different
densities under the target.

However, there is still tremendous scope for further improvement. While
there is no clear guidance to select the hyperparameters (the prior shapes of
the beta distributions on the up-spin probabilities) as there was for the nor-
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Figure 5.3: A comparison of the mean spin glass simulation run times of BAIS+L
(blue dots) to that of the single-spin-flip approach (sold line). The standard
deviations of the sample means for BAIS+L were similar to that of single-spin-
flip (± one standard deviation illustrated by the dashed lines) and, therefore,
smaller than the size of the dots. Notice the stark contrast in the time to com-
plete a simulation, demonstrating the much greater computational complexity
of BAIS+L.
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mal mixture proposal studied in Chapter 4, further study into the automated
approach mentioned there may help to alleviate such a burden on the MCMC
practitioner.

5.3.4 Conclusion

The results presented in this chapter demonstrate that a näıve choice of fixed
hyperparameters in a multi-spin-flip approach with BAIS+L is currently not
viable for practical use. However, a possible avenue for alleviating such a prob-
lem has been identified in Chapter 4. This approach involved adaptation of the
hyperparameters, given performance of the sampler at earlier iterations. Devel-
opment of such an approach has the potential to overcome the problem with
identifying suitable hyperparameters, which was identified in Section 5.2.1.

Furthermore, two other approaches to using BAIS+L in spin glass simula-
tion in have been outlined in the current chapter. One of these approaches
involved updating the spins in blocks (cf. the end of Section 5.2.1). As stated
there, this approach will require multiple accept/reject steps within each iter-
ation of each replica, much like traditional spin-flip. To accommodate this, a
component membership will be required for each block of spins of each replica
and the up-spin probabilities of spins not being updated will have to be ignored
when computing proposal probabilities. Additionally, this approach would be a
random walk, rather than an indepenence sampler.

The second approach considered in Section 5.2 was an alternative to the
Swendsen-Wang algorithm. This approach was not explored numerically in
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the current work, due to its incomplete formulation and much greater level of
complexity, compared to the multiple spin update approach. However, given the
faster mixing of Swendsen-Wang compared to single-spin-flip (cf. Section 2.3.4),
it is worthwhile to consider if the technical aspects of a clustering approach of
the configuration space may be overcome to produce a method that takes into
account the dependence between adjacent spin sites.

As mentioned in Section 5.3.3, it is desirable that BAIS+L’s proposal dis-
tribution impose an implicit clustering, as it did in Chapters 3 and 4 with a
normal mixture proposal. Note that this clustering is of the configuration space
and not of the lattice, as it is in the case of Swendsen-Wang. While the current
study did not provide a proposal distribution with this important property for
spin glass simulations, future work should consider how such clustering may be
achieved.

Finally, the theoretical results of Chapter 3 were developed for BAIS+L
with a normal mixture proposal distribution. As the spin glass application of
the current chapter used a different proposal distribution, the negative results
for spin glasses may indicate that BAIS+L is better suited to sampling Rd-
valued random variables than it is to discrete-valued ones. Future work should
study this issue more closely.

Therefore, despite the underwhelming performance of BAIS+L observed in
the current chapter, the potential for further improvement inherent in the flex-
ibility that it provides means that there is still hope for it in the world of spin
glass simulation.
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Chapter 6

An Exact Approach

This chapter is joint work with Christian Robert of Paris Dauphine University
and the University of Warwick. It considers a sampling method of a similar
nature to BAIS+L that does not resort to sampling from an approximation to
the target distribution. This new approach is named Exact Bayesian Adaptive
Independence Sampling with Latent variables (EBAIS+L). The new sampler re-
quires more computational effort than BAIS+L for the same number of samples
but has the advantage of sampling exactly from the target. This extra compu-
tational effort leads to a tradeoff between quality of the simulated output and
efficiency of the sampler. Furthermore, the sampling chains must be updated
sequentially. This is in contrast to BAIS+L, which has the ability to update the
sampling chains in parallel once the proposal distribution has been updated.

To explore this tradeoff, the performance of EBAIS+L is compared to that
of BAIS+L by applying both samplers to a selection of target distributions
from the optimisation test beds of Storn and Price (1997). As the results of the
current chapter will demonstrate, the results of this comparison suggest that in
the limit of an infinite number of sampling chains, the stationary distribution
of the process induced by BAIS+L converges to the target and, hence, the
stationary distribution induced by EBAIS+L. They also illustrate the greater
efficiency of BAIS+L, suggesting it as a preferable approach when exactness of
the target is not paramount.

Nevertheless, the construction of the exact sampler developed in this chapter
is an important step towards an efficient exact sampler for target distributions
with many local maxima.

This chapter begins with a description of the theoretical basis of the key
modification to BAIS+L in Section 6.1, along with the description of EBAIS+L
in Section 6.1.1. Section 6.2 explores the differences in performance of EBAIS+L
and BAIS+L both in terms of efficiency and accuracy of simulated output. The
section concludes with a discussion of the consequences of these results and
provides suggestions for future work.

169
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6.1 Going from an Approximate Approach to an
Exact One

Recall from Chapter 3 that BAIS+L approximates the density of the state of
sampling chain n under the target distribution, given those of all other sampling
chains, according to the approximation restated in Equation (6.1),

p(xn|x−n) ≈ p(xn|θ). (6.1)

This approximation was introduced in BAIS+L’s acceptance ratio, as a ratio
of the densities of the current and proposed states of chain n, as in Equation (6.2)

p(xn|x−n)

p(y|x−n)
≈ p(xn|θ)

p(y|θ)
. (6.2)

To provide an exact sampler, this approximation must be avoided and, instead,
the left-hand side of Equation (6.1) must be used exactly.

Consider the modification of BAIS+L’s proposal mechanism so that its pa-
rameter vector θ is updated before each sampling chain update, resulting in
an individual parameter vector θn for updating each sampling chain n. Fur-
thermore, do not make θn dependent on the sampling chain n currently being
updated, but only on the remaining N − 1 sampling chains. Then, to update
sampling chain n, while holding all the others fixed, corresponds to a single
iteration of a standard MH algorithm, with acceptance ratio given by Equa-
tion (6.3)

α(xn,y) = min

{
1,
π(y)p(xn|θn)

π(x)p(yn|θn)

}
. (6.3)

Recall from Section 1.2.3 of Chapter 1 that Besag et al. (1995) showed in their
first appendix that under such a scheme, if the update mechanism for a par-
ticular sampling chain n satisfies detailed balance for any random choice of θ
(provided that it depends only on x−n), then the mixture over all θ also satisfies
detailed balance with the original target as its stationary distribution.

In fact, Besag et al. (1995) explicitly gave the example of a random MH up-
date as one such method to which their result applies. This result follows directly
from the fact that MH sampling satisfies detailed balance (cf. Section 1.3.1).

Since the preceding modification of BAIS+L’s update mechanism for a single
sampling chain is just an MH update, it immediately follows that it satisfies
detailed balance with the original target as its stationary distribution.

Thus, if the proposal parameters of BAIS+L for each chain are updated
sequentially while keeping all other chains fixed, instead of all at once before
making MH moves, then the standard MH acceptance ratio may be used and
the stationary distribution will be exactly equal to the target.

6.1.1 Exact BAIS+L (EBAIS+L)

The assertion of Besag et al. (1995) that was invoked in the preceding section
only requires that the transition kernels used to update each sampling chain
preserve detailed balance. By sampling the proposal parameters {θn}Nn=1 con-
ditionally on x−n and z−n but not the state xn or the latent allocation zn being
updated, a sampler may still exploit the result of Besag et al. (1995).
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Therefore, this section proposes a modified version of BAIS+L that takes
advantage of this result. Following on from the theoretical basis discussed in
Section 6.1, the modified approach, which shall be called the Exact Bayesian
Adaptive Independence Sampler with Latent variables (EBAIS+L) requires sam-
pling new proposal parameters for each sampling chain, given all other sampling
chain states and latent allocations.

When updating sampling chain n, the proposed vectors of chain states x∗

and latent allocations z∗ are the same as the current vectors of chain states x
and latent allocations z, respectively, except in the nth entry.

Denote the proposed state of the nth sampling chain by y and the proposed
latent allocation of the nth sampling chain by w. For each sampling chain n
and mixture component k, the sampler requires the observed counts ok of the
component, the component mean x̄k and a term Λk containing the component
sum of squares, all excluding sampling chain n. These summary statistics are
given by Equations (6.4), (6.5) and (6.6), respectively,

ok =

n−1∑
i=1

Ik

[
z

(t)
i

]
+

N∑
i=n+1

Ik

[
z

(t−1)
i

]
, (6.4)

x̄k =
1

ok

[
n−1∑
i=1

Ik

[
z

(t)
i

]
x

(t)
i +

N∑
i=n+1

Ik

[
z

(t−1)
i

]
x

(t−1)
i

]
, (6.5)

Λk = Λ
(0)
k +

κ
(0)
k ok

κ
(0)
k + ok

[
x̄k − µ(0)

k

] [
x̄k − µ(0)

k

]T
+

n−1∑
i=1

Ik

[
z

(t)
i

]
(xi − x̄k) (xi − x̄k)

T
.

+

N∑
i=n+1

Ik

[
z

(t−1)
i

]
(xi − x̄k) (xi − x̄k)

T
, (6.6)

where, just as in Chapter 3, κ
(0)
k is the prior number of observations of the scale

of Σk, µ
(0)
k is the prior mean vector of a component k, and Λ

(0)
k is the prior

scale matrix of Σk (Gelman et al., 2004, pp. 87). Note that, by the sequential
nature of EBAIS+L, the states and allocations of the n−1 sampling chains that
have been updated are those at time step t, while the N −n sampling chains of
higher index are those from the previous iteration t− 1.

Given these statistics, the distributions used to update the parameters are
the same as in BAIS+L. For convenience, they are restated below,

(d1, . . . , dK)|x, z ∼ Dirichlet
[
·
∣∣∣o1 + α

(0)
1 , . . . , oK + α

(0)
K

]
,

Σk|x, z ∼ Inv-W
ν
(0)
k +ok

(·|Λk);

µk|Σk,x, z ∼ N
[
·
∣∣∣∣∣ κ

(0)
k

κ
(0)
k + ok

µ
(0)
k +

ok

κ
(0)
k + ok

x̄k,
Σk

κ
(0)
k + ok

]
,

where ν
(0)
k is prior degrees of freedom of Σk (Gelman et al., 2004, pp. 87) and

α
(0)
k is the prior (unnormalised) weight of component k.
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Note that, given the forms of ok, x̄k and Λk given in Equations (6.4), (6.5)
and (6.6), respectively, these posterior update distributions have a different
dependence on the current states of the sampling chains. As stated at the start of
the current section, the parameters must be sampled for each chain individually,
dependent on all chains other than the one being updated. This key difference
increases the computational effort required by EBAIS+L over BAIS+L, making
the sampler of order n(n − 1), compared to order n for BAIS+L. However,
using a dynamic updating approach for the sample statistics, it is possible to
reduce the computational effort required by EBAIS+L back down to an order
of n, with only marginal extra effort over BAIS+L required, due to the extra
updating of proposal parameters for each sampling chain. Such an approach
would compute the statistics ok, x̄k and Λk “on-line”, computing each in full at
the start of a simulation using all relevant initial samples, then updating them
as each sampling chain is updated.

While EBAIS+L is inherently more computationally expensive than
BAIS+L, the fact that its output has the correct stationary distribution moti-
vates a comparison of it to BAIS+L, a matter that will be addressed in Sec-
tion 6.2.

Algorithm 6.1 summarises the procedure for implementing EBAIS+L.

6.2 Comparing EBAIS+L to BAIS+L

Having identified an exact modification of BAIS+L, the focus of this chapter
now turns to comparing its performance to the approximate sampler, BAIS+L.
As the following comparison will show, despite its approximate nature, the
performance of BAIS+L is only slightly worse than that of EBAIS+L, while
being more efficient.

6.2.1 Methodology

To compare EBAIS+L and BAIS+L, both samplers were applied to a selection
of targets from the test beds of Storn and Price (1997), with the same settings.
Since the purpose of these targets was to test optimisation algorithms, Storn
and Price (1997) used them in the context of finding their global minima. The
needs of the current chapter were somewhat different, as the goal was to test
algorithms for sampling from probability distributions. To this end the selected
test functions were modified into probability distributions that were suitable for
sampling.

In order to do so, their supports were first restricted to suitable domains.
In this manner they were guaranteed to have finite total mass. The specific
domain of each target distribution is given with its description in the following
subsection.

Target Distributions

Both EBAIS+L and BAIS+L were run on a selection of one-, two- and three-
dimensional targets from the test-beds of Storn and Price (1997). The specific
functions chosen were Shekel’s foxholes (a two-dimensional target), one-, two-
and three-dimensional Rastrigin’s and Ackley’s functions, and Goldstein’s func-
tion (a one-dimensional target). These targets were chosen for their multiple
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Algorithm 6.1 EBAIS+L: An exact Bayesian Adaptive Mixture Independence
Sampler.

Require:
1. K ∈ Z+ proposal components.

2. Initial chain states
[
x

(0)
n

]N
n=1

and their allocations
[
z

(0)
n

]N
n=1

.

3. Prior scales Λ
(0)
k and degrees of freedom ν

(0)
k of the distributions on

Σk, k ∈ {1, . . . ,K}.
4. Prior means µ

(0)
k , k ∈ {1, . . . ,K}.

5. Prior numbers of observations κ
(0)
k of the scales of Σk, k ∈ {1, . . . ,K}.

6. Prior component weights α(0) =
[
α

(0)
k

]K
k=1

.

Ensure: N chains of samples
{[

x(t)
]N
n=1

}∞
t=1

from the target distribution π.

1: for Iteration t ∈ Z+ do
2: for Chain n = 1 to n = N do
3: for Mixture component k = 1 to k = K do

4: Set ok =
∑n−1
i=1 Ik

[
z

(t)
i

]
+
∑N
i=n+1 Ik

[
z

(t−1)
i

]
.

5: Set x̄k =
{∑n−1

i=1 Ik

[
z

(t)
i

]
x

(t)
i +

∑N
i=n+1 Ik

[
z

(t−1)
i

]
x

(t−1)
i

}/
ok.

6: Set Λk = Λ
(0)
k +

κ
(0)
k ok

κ
(0)
k + ok

[
x̄k − µ(0)

k

] [
x̄k − µ(0)

k

]T
+

n−1∑
i=1

Ik

[
z

(t)
i

]
(xi − x̄k) (xi − x̄k)

T
.

+

N∑
i=n+1

Ik

[
z

(t−1)
i

]
(xi − x̄k) (xi − x̄k)

T
.

7: Generate Σk ∼ Inv-W
ν
(0)
k +ok

(·|Λk).

8: Generate µk ∼ N
[
·
∣∣∣∣∣ κ

(0)
k

κ
(0)
k + ok

µ
(0)
k +

ok

κ
(0)
k + ok

x̄k,
Σk

κ
(0)
k + ok

]
.

9: end for
10: Generate (d1, . . . , dK) ∼ Dirichlet

[
·
∣∣∣o1 + α

(0)
1 , . . . , oK + α

(0)
K

]
.

11: Generate w ∼ Categorical(·|d1, . . . , dK).
12: Generate y ∼ N (·|µw,Σw).

13: Set α = min

{
1,
π(y)p(xn|d,µ,Σ)

π(xn)p(y|d,µ,Σ)

}
.

14: Generate u ∼ U(0, 1).
15: if u ≤ α then
16: Set x

(t)
n = y.

17: Set z
(t)
n = w.

18: else
19: Set x

(t)
n = x

(t−1)
n .

20: Set z
(t)
n = z

(t−1)
n .

21: end if
22: end for
23: end for
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or non-trivial local maxima, which make them suitable for a comparison of
samplers with mixture proposal distributions.

As noted in Section 6.2.1, the target functions were converted into densities
by restricting their domains and normalising them. Outside a target’s domain,
the density was set to zero, to ensure that the total mass was finite.

Since the version of Shekel’s foxholes used had a fixed number of 25 foxholes,
the domain was restricted to a suitable region that included all of them. This
region was {(x, y) : x, y ∈ [−40, 40]}.

For Rastrigin’s and Ackley’s functions, the same domains were chosen, due
to the similarity between the two targets. In one dimension the domain was
restricted to {x : x ∈ [−4, 4]}, in two dimensions it was restricted to {(x, y) :
x, y ∈ [−2, 2]} and in three dimensions it was restricted to {(x, y, z) : x, y, z ∈
[−1, 1]}. These choices resulted in targets with 8, 16 and 8 local maxima,
respectively.

Finally, Goldstein’s function was restricted to [−4, 4], to give its two local
maxima comparable density to that at the end-points of the considered support.

As each of the preceding functions is non-negative on its chosen domain, as
noted by Storn and Price (1997), no further adjustments beyond the domain
restrictions and normalisations were required. In fact, even the normalisation
constant was not necessary, as it cancels out in all calculations.

Selecting Simulation Parameters

Having defined the target densities, the number of components in the proposal
distribution for each target was chosen, by following the considerations sug-
gested in Section 4.1.2 of Chapter 4. Once again, common hyperparameters

α
(0)
k = α(0), Σ

(0)
k = σ(0)Ip, µ

(0)
k = µ(0), κ

(0)
k = κ(0) and ν

(0)
k = ν(0) were used for

convenience and ease of implementation. Here, Ip represents the p-dimensional
identity matrix.

Starting with the initial parameter setting of α(0) = σ(0) = 1 and ν(0) =
p + 1, where p is the dimension of the target, one pilot run of each target
density was simulated, with K = 100 components in the proposal distribu-
tion, N = 2000 sampling chains and T = 100 iterations for each choice of
κ(0) ∈ {10, 1, 0.1, 0.01, 0.001}. As in Chapter 4, the prior component means
were centred at the origin µ(0) = (0, 0)T.

The acceptance rate time series of the results of the various choices of κ(0)

were inspected, to determine which exhibited a plateau, as discussed in Sec-
tion 4.1.2. Once the choices of κ(0) that produced the required result were
identified, further pilot runs were simulated, with the identified values of κ(0)

as the ratio κ(0)/σ(0). One pilot run was simulated for each such choice of κ(0)

and σ(0) ∈ {10, 1, 0.1, 0.01, 0.001}.
Once all pilot runs were complete, the smallest κ(0) and σ(0) that resulted in

the maximum observed plateau for both EBAIS+L and BAIS+L were selected.
After settling on choices of κ(0) and Σ(0) for each target distribution (cf.

Table 6.1), the multmixmodel.sel function from the mixtools package of Be-
naglia et al. (2009) was applied to the latent allocations of the last half of
the samples from each sampler. This function takes as input a collection of
multinomial samples (in the case of EBAIS+L or BAIS+L, the vector at each
iteration of latent allocations) and reports the corresponding Akaike, Bayesian
and consistent Akaike information criteria, as well as the integrated completed
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Table 6.1: Simulation parameter settings for each target in the comparison of
EBAIS+L to BAIS+L. p is the dimension of the target, a is the maximum of the
absolute value in any axis direction of the support, K is the number of mixture
components in the proposal and N is the number of sampling chains.

Target p a K N κ(0) Σ(0)

Shekel’s foxholes 2 40 26 520 780 1040 1 10

Rastrigin
1 4 32 640 960 1280 0.001

0.1

2 2 30 600 900 1200

0.01
3 1 28 560 840 1120

Ackley
1 4 27 540 810 1080
2 2 31 620 930 1240
3 1 26 520 780 1040

Goldstein 1 4 32 640 960 1280 0.1 0.001

likelihood and log-likelihood (cf. Section 1.5.3). It also reports a “winning”
number of components for each computed criterion, indicating the inferred op-
timum number.

The multmixmodel.sel function was run on the latent allocations in the last
50 iterations, by which time all acceptance rates had converged, as evidenced by
an approximately constant acceptance rate time series from this time. This was
done with the optional comps argument of the function set to each value from 1
to K. The reason for running the function with the K different comps values was
due to the fact that with too many components to test the multimixmodel.sel

function may fail with an error. By testing each possible value of K the function
was given more opportunity to succeed. Once the function failed for the first
time or all comps values up to 100 had been simulated, the analysis of the
number of components was determined to be complete.

The log-likelihood tended to exaggerate the number of components more
than the other statistics did, consistently reporting the “winning” number of
components to be greater than those reported by the other criteria. Knowing
the true forms of the target distributions, such numbers of components were
considered to be excessive. Therefore, the largest reported number from the
remaining statistics was used as the required number of components. Finally,
the number of sampling chains was set to 20, 30 and 40 times the chosen fixed
number of mixture components for longer simulations.

By the preceding approach, the parameter settings listed in Table 6.1 were
determined. These settings were employed for both EBAIS+L and BAIS+L.

Finally, a dmin = 0.1 was enforced, following the prescription given in Sec-
tion 3.3.3, with Id = 10 and ∆t = 0.01.

Observed Quantities

To compare the sampling efficiency of the two samplers, their mean convergence
times, their mean acceptance rates and their mean effective proportions of sam-
ples were computed. To compute these quantities, the approach of Chapter 4
was followed.

For the mean convergence time this means that for each of the ten inde-
pendent simulations from the same target, with the same number of sampling
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chains, the PSRF was computed at iterations 51 + 19m for m ∈ N and the con-
vergence time reported as the earliest of these iterations from which the 97.5%
PSRF remained below 1.01. Maximal variance of each estimate was assumed,
depending on the width of the time interval to which it corresponded. That is,
if the convergence time of a simulation was 51 then the reported variance was
512/4, otherwise it was 192/4, as in Chapter 4. The convergence times of the ten
independent repeated simulations were combined to give the mean convergence
times and their corresponding overall variances.

Computation of the acceptance rate was more straightforward, simply be-
ing the number of accepted proposed states at each iteration, divided by the
number of sampling chains. The result was a single chain of 1000 acceptance
rate estimates for each simulation. The mean and standard deviation of the ac-
ceptance rate of a single simulation were estimated as the geometric mean and
standard deviation over the last half of the samples, respectively. To account
for the autocorrelation between the acceptance rates at successive iterations,
their effective number of samples were computed as the reciprocal of twice the
integrated autocorrelation time of the last half of the acceptance rate estimates.
These estimates were used to rescale the standard deviations accordingly.

Finally, to compute the effective number of samples, the effectiveSize

function from R’s MASS library was applied to each dimension of the last half of
the samples from a simulation. The effective proportion of samples was then
given by dividing the result by the total number of samples, and its variance
was estimated using the standard variance approximation of a binomial random
variable used in Chapter 4.

To compare the accuracy of inference, the inferred values of the means of the
first four central moments in each dimension for each sampler were compared to
their true values. The true marginal moments were numerically approximated
using the adaptIntegrate function from R’s cubature (Narasimhan et al., 2018)
package.

Näıve kernel density estimates from the simulated output were also com-
puted for the one-dimensional and two-dimensional targets. R’s (R Core Team,
2015) built-in density function was used to generate one-dimensional kernel
density estimates, while the kde2d function from R’s MASS library (Venables
and Ripley, 2002) was used to generate two-dimensional kernel density esti-
mates. Each function was called with its default settings. For all targets, the
last half of samples from a simulation were used for inference. For each target
with each number of sampling chains, the individual kernel density estimates
were combined to give a mean kernel density estimate and the corresponding
standard deviation at each state.

6.2.2 Results

Sampling Efficiency

The simulations demonstrated that BAIS+L typically converged faster than
EBAIS+L in terms of the number of iterations. However, this was not a hard-
and-fast rule. Figure 6.1 presents the mean observed convergence times of two
of the simulated targets for each number of sampling chains simulated, using
both EBAIS+L and BAIS+L. The horizontal axis in each case indicates the
number of sampling chains, while the vertical axis reports the convergence time
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Figure 6.1: The mean convergence times for the one- and three-dimensional
Rastrigin function. The blue circles represent the convergence times obtained
using EBAIS+L, while the red squares represent those obtained using BAIS+L.
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in iterations.
The left plot of Figure 6.1 represents the convergence times of the one-

dimensional Rastrigin function, for which EBAIS+L converged slightly faster
than BAIS+L, while the right plot represents the convergence times of the three-
dimensional Rastrigin function, whose Markov chain converged slightly faster
using BAIS+L. The situation observed for the three-dimensional Rastrigin was
the most commonly-observed in the simulations of this chapter, with BAIS+L
converging slightly faster with respect to the number of iterations. This result
suggests that the sacrifice in exactness of the stationary distribution associated
with BAIS+L is slightly offset by faster sampling. Even though this increased
efficiency of BAIS+L with respect to the convergence time is not very large,
recall that BAIS+L has a lower computational burden than EBAIS+L, since it
only updates proposal parameters once per iteration, unlike EBAIS+L, which
does so N times per iteration.

Regardless of the sampler or the target, the convergence time always de-
creased with the number of sampling chains for both samplers. This result is
consistent with that observed in the comparison of BAIS+L to the equi-energy
sampler in Chapter 4. Since EBAIS+L also exhibits the same trend, it is con-
jectured that, as in the case of BAIS+L, the reduction in sampling variance
obtained with the use of more sampling chains leads to faster convergence of
the proposal distribution.

However, as the number of sampling chains was increased, the typical case,
exemplified by the three-dimensional Rastrigin function results in Figure 6.1,
also suggested that the convergence times of the two samplers converge. Such
a result is not surprising, as it agrees with the Conjecture 1, which postulated
that as the number of sampling chains is increased, the stationary distribution
approaches the target. In other words, BAIS+L becomes exact.

The acceptance rate results further highlight the greater efficiency of BAIS+L
over that of EBAIS+L. Figure 6.2 once again shows that BAIS+L demonstrates
slightly better mixing, as evidenced by its acceptance rate being greater than
that of EBAIS+L in most cases studied. As with the convergence times, the
acceptance rates of the two samplers converge, lending further support to the
conjecture that the two samplers are the same in the limit of an infinite number
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Figure 6.2: The mean acceptance for the one-dimensional Rastrigin target. The
blue circles represent the acceptance rates obtained using EBAIS+L, while the
red squares represent those obtained using BAIS+L.
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of sampling chains. With respect to the acceptance rate, BAIS+L was always
at least as efficient as EBAIS+L for the same hyperparameter settings.

Figure 6.3 illustrates the effective proportions of samples in each case studied.
The results are similar to those for the acceptance rates, with BAIS+L being
consistently more efficient than EBAIS+L but converging in efficiency with an
increasing number of sampling chains.

Finally, consider the run times of the two samplers. Figure 6.4 presents a
typical result observed in the simulations of this chapter, illustrated by those
for the three-dimensional Rastrigin function. The first observation to note is
that the run time of EBAIS+L was substantially longer than that of BAIS+L.
Furthermore, the run time increases more rapidly with the number of sampling
chains than it does in the case of BAIS+L. Such a result is to be expected,
since EBAIS+L updates the parameters of its proposal distribution each time
it updates a sampling chain’s state, while BAIS+L only updates them once per
iteration. However, the reported difference in run times should be considered to
be a soft upper bound, given that the code used to implement EBAIS+L in the
simulations of this chapter computed the sample mean and covariance matrix
from scratch each time it updated the proposal parameters. By writing the
computer code for the algorithm more carefully, in order to update the statistics
dynamically, as discussed in Section 6.1.1, considerable speed improvements are
possible.

Nevertheless, even with such changes, the run time of BAIS+L cannot the-
oretically exceed that of EBAIS+L, so long as the procedure to update the
mixture proportions (cf. Section 3.3.3) uses a fixed number of iterations. Fur-
thermore, as already noted, the design of EBAIS+L presented in this chapter
does not lend itself to parallel updates of sampling chain states, while the design
of BAIS+L does.



6.2. EBAIS+L VERSUS BAIS+L 179

Figure 6.3: The mean effective proportion of samples for the two-dimensional
Rastrigin function. The blue circles represent the effective proportions obtained
using EBAIS+L, while the red squares represent those obtained using BAIS+L.
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Figure 6.4: Run times of the three-dimensional Rastrigin function using
EBAIS+L (blue circles) and BAIS+L (red squares).
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Figure 6.5: The first marginal central moment of the first dimension of the
three-dimensional Rastrigin function. The blue circles represent the inferences
obtained using EBAIS+L, while the red squares represent those obtained using
BAIS+L.
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Figure 6.5 illustrates the first marginal central moment of the first dimension of
the three-dimensional Rastrigin function. There appears to be little difference
between the performance of EBAIS+L (blue circles) and BAIS+L (red squares)
for any number of sampling chains, with both samplers producing comparable
estimates of odd the moments of the target of interest. Since all target distri-
butions studied were symmetric about the origin in each dimension, the true
values of the odd central moments were zero, as indicated by the horizontal
dashed line in each plot.

The second and fourth marginal central moments, however, demonstrated
a stark contrast between EBAIS+L and BAIS+L. Figure 6.6 demonstrates the
second moment in the first dimension of the three-dimensional Rastrigin func-
tion. The results illustrate the typical relationship that was observed, namely,
that EBAIS+L produces better inferences of the even moments of the target
than does BAIS+L. This is to be expected, since EBAIS+L is designed to
sample exactly from the target, while BAIS+L only samples from an approxi-
mation to it. However, as was observed in the convergence and mixing results,
the moments inferred by the two samplers appear to converge as the number
of sampling chains is increased, which further supports the main conjecture of
Chapter 3: that as the number of sampling chains is increased, the limiting
distribution of BAIS+L converges towards the target and, hence, the limiting
distribution of EBAIS+L.

Finally, the kernel density estimates of the one- and two-dimensional targets
(not shown) were considered. The inferred estimates generated by the two
samplers were qualitatively the same for each target and successfully produced
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Figure 6.6: The second marginal central moment of the first dimension of the
three-dimensional Rastrigin function. The blue circles represent the inferences
obtained using EBAIS+L, while the red squares represent those obtained using
BAIS+L.
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shapes that were similar to the true forms of the densities (cf. Section 2.1
of Chapter 2). The variability in the estimates, in the form of the standard
deviation of the density at each estimated state, were also of the same order of
magnitude for both samplers.
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6.2.3 Discussion

From the preceding results it is evident that, for the target distributions sim-
ulated in this study, BAIS+L is more efficient than the exact approach of
EBAIS+L, while still producing comparable output, despite its approximate
nature.

The convergence time and mixing results suggest the following conjecture.

Conjecture 4 (Convergence of BAIS+L and EBAIS+L). As the number of
sampling chains N increases, the convergence times of BAIS+L and EBAIS+L
with respect to the number of iterations performed, converge for the same target.
Furthermore, the two samplers have the same stationary distribution, effective
number of samples and acceptance rate in the limit as N →∞.

However, it should be noted that BAIS+L’s computational effort is much
lower than that of EBAIS+L. This is evident because EBAIS+L requires that
the proposal parameters be updated each time a sampling chain is updated,
whereas BAIS+L only needs to perform proposal parameter updates once per
iteration. It is also possible to directly perform BAIS+L sampling chain updates
in parallel, while those in EBAIS+L, by design, must be performed sequentially.

Regarding the quality of the output it was also observed that, as the number
of sampling chains was increased, the differences between the estimates of the
first four moments in each axis direction, for each of the targets simulated, ap-
peared to decrease. In terms of the first and third marginal central moments in
each dimension for each target, both EBAIS+L and BAIS+L were indistinguish-
able, at least for the targets simulated in this study. It is possible that results
may differ when sampling from target distributions that are not symmetric and
this should be checked in future work. Furthermore, the qualitative output of
the kernel density estimates was the same for both samplers, resembling their
true forms.

One clear advantage of EBAIS+L over BAIS+L that was demonstrated by
the results of the current chapter, was the estimation of the second and fourth
marginal central moments. Unlike the first and third moments, EBAIS+L pro-
duced more accurate estimates. This greater success may be attributed to the
exact nature of EBAIS+L, as opposed to the approximate one of BAIS+L.
However, as the number of sampling chains was increased, BAIS+L’s inferences
tended towards the true estimates. This result supports the conjecture that
as the number of sampling chains increases the stationary distributions of the
samples generated by the two samplers converge.

These results highlight that BAIS+L is a viable method for simulating from
distributions with multiple or non-trivial local maxima, using a mixture pro-
posal. They also identify it as a method to decouple sampling chains within an
iteration, while keeping approximation errors arbitrarily small, given a sufficient
number of sampling chains.

Further work will consider the theoretical link between EBAIS+L and
BAIS+L. In particular, it should ascertain the validity of the overarching con-
jecture put forth in this study: that the two samplers are identical in the limit
of an infinite number of sampling chains.
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This study has presented a new approach (BAIS+L) to adaptive MCMC that
makes use of the posterior dependence of the parameters in the proposal dis-
tribution of an MH sampler on the samples generated. The new approach is
flexible, using a mixture of normal distributions as its proposal distribution,
allowing it to approximate a wide variety of targets to arbitrary accuracy.

While the stationary distribution of the samples generated by BAIS+L is
only an approximation to the target, the results of Chapter 4 are encouraging.
By having comparable performance to the equi-energy sampler, in terms of
mixing, BAIS+L demonstrates that it has promise as a tool for the MCMC
practitioner to use for sampling from targets on non-denumerable state spaces.
The approximate nature of the stationary distribution is evident in the results,
however, they support Conjecture 1, suggesting that as the number of sampling
chains increases, the stationary distribution approaches the intended target.

Additionally, by increasing the number of components in the proposal distri-
bution, the results of Chapter 4 demonstrated that BAIS+L had more success
in finding the local maxima of the target. Given the primary motivation of
developing a method for sampling from target distributions with many local
maxima, this result is an illustration of the importance of being able to adjust
the number of components in the proposal distribution. While there are other
adaptive samplers that use mixture proposals (cf. Section 1.7), the method of
adaptation provided by BAIS+L appears to be unique for such a problem.

Further supporting the role of BAIS+L are the theoretical results of Sec-
tion 3.3. By design, the ergodicity of BAIS+L cannot be guaranteed by the
same theory behind other adaptive samplers. However, easy-to-verify condi-
tions, which do ensure ergodicity, have been provided in the course of this
study and they have been proven to be sufficient. In particular, the provided
conditions provide uniform ergodicity, ensuring geometric convergence to the
stationary distribution. Some guidance has also been provided in Section 3.3.3
on how to enforce these conditions.

In Chapter 5 two possible proposal distributions for BAIS+L simulations of
spin glasses were suggested. Each approach offers a mechanism that is tailored
to spin glass simulation, since a normal mixture proposal is not suitable in such a
situation. The details one of these proposal mechanisms, a clustering approach,
were beyond the scope of the current study. The other mechanism, however,
was tractable, eliciting a posterior distribution of a standard form.

Computer simulation with this tractable approach demonstrated results that
contrasted the promising ones of Chapter 4, highlighting some shortcomings of
of BAIS+L. In particular, it was noted that BAIS+L with a common prior on
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the parameters of each proposal component, had difficulty in providing efficient
sampling from a spin glass model. This difficulty was evidenced by the accep-
tance rate time series reducing to a minimum rate. It was posited that for such
a problem to be overcome, it may be necessary to select the hyperparameters of
the parameter model on an individual basis. However, it was not obvious how
this may be done before the start of a simulation.

Chapter 6 introduced an exact version of BAIS+L, which was called
EBAIS+L. By taking advantage of a theoretical result of Besag et al. (1995), it
was possible able to modify BAIS+L to guarantee a stationary distributionthat
was equal to the intended target. Computer simulations from a collection of tar-
gets illustrated the improvement in inferences from the stationary distribution
over those produced using the approximate BAIS+L algorithm. This exact-
ness, however, came at the cost of greater computational expense, as the exact
approach requires more function evaluations. Furthermore, unlike BAIS+L,
EBAIS+L must update sampling chains in sequence. Nevertheless, EBAIS+L
provides an important step towards practical Bayesian independence sampling
with a proposal distribution that can have multiple local maxima.

Future Directions

The current study has identified a number of open problems regarding BAIS+L,
both from theoretical and practical perspectives. The most important of these
is the unknown nature of the stationary distribution in the limit of an infinite
number of sampling chains. It was posited in Conjecture 1 that this limiting
stationary distribution is equal to the target. While the empirical results ob-
tained in this study appear to suggest that this is the case, it is important to
know the truth of this conjecture concretely.

Section 3.4 also provided two other conjectures with implications on the
mixing rate of BAIS+L. These were in relation to possible diminishing adapta-
tion of the proposal parameters with time and the consequential decoupling of
an infinite number of sampling chains. While the empirical results for a finite
number of sampling chains in Chapter 4 lent support to these claims, a more
theoretical study will also be required. Thus, future work should look to de-
termine sufficient and necessary conditions, if any, to ensure the truth of these
conjectures, as well as bounds on the rates of convergence of the parameters.

Future work should also consider more closely, the effect that the chosen
kernel in the mixture proposal has on sampling performance, both for BAIS+L
and EBAIS+L. As noted in Chapter 4, particular focus should be placed on
understanding the effect on sampling performance in the tails of the target
distribution

Chapter 5 highlighted that the need for a tailored proposal distribution can
be difficult to satisfy in practice. As such, future work should study the roles
of different prior distributions in a variety of applications. In particular, in the
case of spin glasses, an automated approach to selecting hyperparameters may
be necessary for any practical application of BAIS+L, due to the need for their
careful tailoring to the couplings, as well as the need to do so for large numbers
of disorder samples. A possible avenue for such automation may come in the
case of an adaptive prior distribution on the proposal parameters.

For example, the instantaneous acceptance rate at a given iteration or seg-
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ment of the generated Markov chain may be used to guide adaptation of the
prior. Alternatively, the prior from one iteration could be set to the posterior
of the one preceding it. A combination of these two approaches is also worth
considering, where the prior parameters are “shifted” towards the posterior pa-
rameters according to acceptance rate.

Section 5 also introduced an attempt at a cluster proposal for spin glasses.
In the current study there was insufficient time to explore the details of the
prior and posterior distributions of the proposal parameters of such an ap-
proach. However, future work should look into these more carefully, as such a
proposal distribution would take into account the correlations between neigh-
bouring spins, unlike the multi-spin flip approach that was simulated.

Chapter 6 presented an exact version of BAIS+L. Even though it was compu-
tationally more expensive than the approximate version of BAIS+L, its accuracy
motivates future study into methods to make such a method more parallel.

Finally, a possible use of BAIS+L or EBAIS+L could be in inferring the pa-
rameters of a normal mixture approximation to a given target. While this point
was not studied in this dissertation, it will be natural to consider it in future
work. Given that both BAIS+L and EBAIS+L adapt a proposal distribution
in the form of a normal mixture, if a high steady state acceptance rate can be
achieved in a simulation, analysis of the resulting chains of parameters produced
by BAIS+L may be able to suggest a good approximation to the target in terms
of this standard mixture. Such a scenario will be particularly useful in the case
of high-dimensional targets, as a mixture approximation will be more efficient
to use than the large collection of samples that would otherwise be needed to
capture the shape of the target.
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O. Cappé, A. Guillin, J. M. Marin, and C. P. Robert. Population Monte Carlo.
Journal of Computational and Graphical Statistics, 13(4):907–929, 2004.

G. Celeux, F. Forbes, C. P. Robert, and D. M. Titterington. Deviance infor-
mation criteria for missing data models. Bayesian Analysis, 1(4):651–674,
2006.



BIBLIOGRAPHY 189

K. S. Chan. Asymptotic behaviour of the Gibbs sampler. Journal of the Amer-
ican Statistical Association, 88(421):320–326, 1993.

S. Chib and E. Greenberg. Understanding the Metropolis-Hastings algorithm.
The American Statistician, 49(4):327–335, 1995.

N. Chopin. A sequential particle filter method for static models. Biometrika,
89(3):539–551, 2002.
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Appendix A

Algorithms Cited from the
Literature

In all algorithms outlined in this appendix, π represents the target density or
target/objective function, with support X .

A.1 MC Algorithms

Algorithm A.1 A rejection sampler (Gelman et al., 2004, pp. 284-285)

Require:
1. Proposal density g : X → R+, such that:

(a)
∫
X g(x)dx <∞;

(b) g(x) ≥ π(x) for all x ∈ X ;

(c) π(x) g(x) ≤M ∈ R,∀x ∈ X .

2. Desired number of samples N ∈ N,
Ensure: N samples from the target density π.

1: Set n = 0.
2: while n < N do
3: Generate proposal y ∼ g.
4: Generate u ∼ U(·|0, 1).
5: if u · g(y) < π(y) then
6: Set x(n) = y.
7: Set n = n+ 1.
8: end if
9: end while
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Algorithm A.2 Sequential Importance (Re)Sampling (Doucet et al., 2000)

Require:
1. A fixed population size N .

2. A likelihood function π
[
y(t)

∣∣x(t)
]

at time t.

3. Transition density π
[
·
∣∣∣{x(i)

}t
i=1

]
at time t.

4. An importance sampling density g
[
x(t)

∣∣∣{x(i)
}t−1

i=1
,
{
y(i)
}t
i=1

]
.

5. A threshold effective number of samples Nthresh per time step.
Ensure:

A time series of populations and importance weights

[{
x

(t)
n , w

(t)
n

}N
n=1

]∞
t=1

.

1: for Iteration t ∈ Z+ do
2: for Sample n ∈ {1, . . . , N} do

3: Generate x′n
(t) ∼ g

[
·
∣∣∣∣{x

(i)
n

}t−1

i=1
,
{
y(i)
}t
i=1

]
.

4: Set w
(t)
n =

w
(t−1)
n p

[
y(t)

∣∣∣x′n(t)
]
p
[
x′n

(t)
∣∣∣x(t)
k−1

]
g

[
x′n

(t)

∣∣∣∣{x
(i)
n

}t−1

i=1
,
{

y
(i)
n

}t
i=1

] .

5: end for
6: for Sample n ∈ {1, . . . , N} do

7: Set w̃
(t)
n = w

(t)
n

/∑N
i=1 w

(t)
i .

8: end for

9: Set N̂
(t)
eff = N

/{∑N
n=1

[
w̃

(t)
n

]2}
.

10: if N
(t)
eff ≥ Nthresh then

11: for Variable n ∈ {1, . . . , N} do

12: Set x(t) = x′(t).
13: end for
14: else
15: for Variable n ∈ {1, . . . , N} do

16: Generate i ∼ Categorical
[
·
∣∣∣w̃(t)

1 , . . . , w̃
(t)
N

]
.

17: Set x
(t)
n = x′i

(t)
.

18: Set w
(t)
n = 1/N .

19: end for
20: end if
21: end for
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Algorithm A.3 Population Monte Carlo (Cappé et al., 2004)

Require:
1. Population size N .

2. An initial collection of K importance functions
{
g

(0)
1 , . . . , g

(0)
K

}
.

3. Initial importance function selection probabilities
{
p

(0)
1 , . . . , p

(0)
K

}
.

Ensure:

A time series of populations and importance weights

[{
x

(t)
n , w

(t)
n

}N
n=1

]∞
t=1

.

1: for Iteration t ∈ Z+ do
2: for Population member n ∈ {1, . . . , N} do

3: Generate z ∼ Categorical
[
·
∣∣∣p(t)

1 , . . . , p
(t)
K

]
4: Generate x

(t)
n ∼ g(t)

z .

5: Set w
(t)
n = π

[
x

(t)
n

]/{
g

(t)
z

[
x

(t)
n

]}
.

6: end for

7: Update
{
g

(t+1)
k

}K
k=1

and
{
p

(t+1)
k

}K
k=1

.

8: Normalise
{
w

(t)
1 , . . . , w

(t)
N

}
.

9: Resample the population (cf. lines 15–19 of Algorithm A.2).
10: end for

Algorithm A.4 Sequential Monte Carlo (Liu and Chen, 1998).

Require:

1. An initial collection of N samples and their weights
{
x

(0)
n , w

(0)
n

}N
n=1

.

2. Threshold squared coefficient of variation c2thresh.

3. Maximum resampling interval k.
Ensure:[{

x
(t)
n , w

(t)
n

}N
n=1

]∞
t=1

satisfying Eπ(t)

[
f (t)(x)

]
≈∑N

n=1 w
(t)
n f

[
x

(t)
n

]
.

1: for Iteration t ∈ Z+ do

2: Set
[
c
(t)
v

]2
= Var

[{
w

(t)
n

}N
n=1

]/{
E
[{
w

(t)
n

}N
n=1

]}2

.

3: if
[
c
(t)
v

]2
≥ c2thresh or t mod k = 0 then

4: Resample the population (cf. lines 15–19 of Algorithm A.2).
5: else

6: Generate x
(t)
n ∼ g(t)

[
·
∣∣∣∣{x(i)

n

}t−1

i=1

]
.

7: Set u
(t)
n =

π(t)
[
{x(t)

n }ti=1

]
π(t−1)

[{
x
(i)
n

}t−1

i=1

]
g(t)

[
x
(t)
n

∣∣∣∣{x(i)
n

}t−1

i=1

] .

8: Set w
(t)
n = u

(t)
n w

(t−1)
n .

9: end if
10: end for
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A.2 MCMC Algorithms

Algorithm A.5 The Metropolis-Hastings Sampler (Metropolis et al., 1953)

Require:
1. Proposal density g,

2. Initial state x(0).
Ensure: A chain of samples

[
x(t)
]T
t=1

with stationary distribution π.

1: for t ∈ N do
2: Generate y ∼ g.

3: Set α
[
x(t−1), y

]
= min

{
1,
π(y)g(x|y, θ)
π(x)g(y|x, θ)

}
.

4: Generate u ∼ U(·|0, 1).
5: if u ≤ α

[
x(t−1), y

]
then

6: Set x(t) = y.
7: else
8: Set x(t) = x(t−1).
9: end if

10: end for

Algorithm A.6 The Gibbs Sampler (Glauber, 1963; Geman and Geman, 1984)

Require:
1. A partition S = ∪Nn=1Sn of the state space indices {1, . . . , p}, with
N ≤ p.

2. A conditional distribution π
[
{xj}j∈Sn

∣∣∣{xj}j∈S\Sn
, θn

]
for each n ∈

{1, . . . , N}.

3. An initial state x(0) =
{
x

(0)
i

}p
i=1

.

Ensure: A chain of samples
[
x(t)

]T
t=1

with stationary distribution π.

1: for Iteration t ∈ Z+ do
2: Select a permutation E of the subvector indices {1, . . . , N}.
3: for n ∈ E do
4: Sample {xj}j∈Sn

from π
(
·
∣∣∣{xj}j∈S\Sn

)
.

5: end for
6: end for
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A.3 Temperature-Based Algorithms

Algorithm A.7 Simulated Annealing (Kirkpatrick et al., 1983; Černý, 1985)

Require:
1. A function β(T ) decreasing monotonically with a sufficiently slow rate.

2. A stochastic optimsation method.

3. A number of steps N(T ) of optimisation to perform at temperature T .
Ensure: The global minimum xmin of π.

1: Set T =∞.
2: Randomly initialise xmin.
3: while T > 1 do
4: Update xmin via N(T ) optimisation steps on πT (x) = exp [−π(x)/T ].
5: Set T = β(T ).
6: end while

Algorithm A.8 Parallel Tempering (Geyer, 1991)/Exchange Monte Carlo
(Hukushima and Nemoto, 1996).

Require:
1. A Monte Carlo method.

2. A temperature ladder T1 < · · · < Tn < · · · < TN .

Ensure: Sampling chains
{[
x

(t)
n

]∞
t=1

}N
n=1

, with stationary distributions

{exp [−π(x)/Tn]}Nn=1.

1: for Iteration t ∈ Z+ do
2: for n = 1 to n = N do
3: Generate x

(t)
n using the Monte Carlo method on target

exp [−π(x)/Tn].
4: end for
5: Randomly select two replicas n,m ∈ {1, . . . , N}.
6: Set pswap(n,m) = min

{
1,
πn (xm)πm (xn)

πn (xn)πm (xm)

}
.

7: Generate u ∼ U(·|0, 1).
8: if u ≤ pswap(n,m) then

9: Swap states x
(t)
n and x

(t)
m .

10: end if
11: end for
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Algorithm A.9 Population Annealing (Hukushima and Iba, 2003)

Require:
1. A standard MCMC approach.

2. A function f(x), whose average with respect to density exp[−βπ(x)] is
sought at various inverse temperatures β.

3. An annealing schedule of T increasing inverse temperatures
β1 > β2 > · · · > βT .

4. N ∈ N replicas (parallel sampling chains).

5. An initial population
{
x

(0)
n

}N
n=1

.

6. Initial weights w
(0)
1 = · · · = w

(0)
N = 0.

7. A resampling interval M ∈ N.

Ensure: An average
{
〈f〉βt

}T
t=1

at each βt.

1: for Temperature index t = 1 to t = T do
2: for Replica n = 1 to n = N do

3: Set w
(t)
n = w

(i−1)
n exp

{
− (βt − βt−1)π

[
x

(t)
n

]}
.

4: end for
5: for Replica n = 1 to n = N do

6: Set p
(t)
n = w

(t)
n

/∑N
m=1 w

(t)
m .

7: end for
8: if t mod M = 0 then
9: for Replica n = 1 to n = N do

10: Generate m ∼ Categorical
[
·
∣∣∣p(t)

1 , . . . , p
(t)
N

]
.

11: Set x′n = x
(t)
m .

12: end for
13: Set

[
x

(t)
1 , . . . , x

(t)
N

]
= (x′n, . . . , x

′
N ).

14: Set w
(t)
1 = · · · = w

(t)
N = 1.

15: end if
16: for Replica n = 1 to n = N do

17: Update x
(t)
n using the chosen MCMC approach.

18: end for
19: end for
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Algorithm A.10 The Equi-Energy Sampler (Kou et al., 2006)

Require:
1. A standard MCMC method.

2. B ∈ N burn-in iterations.

3. R ∈ N energy ring-initialisation iterations.

4. Energy truncation levels H0 ≤ infx h(x) < · · · < HN < HN+1 =∞.

5. Corresponding temperatures 1 = T0 < · · · < TN < TN+1 =∞.

6. Initial sampling chain states
{
x

(0)
n

}N
n=1

.

7. Initially empty empirical energy rings

[{
D̂

(k)
n

}N
n=1

]N
k=1

.

8. An equi-energy jump probability pee ∈ (0, 1).

Ensure: Sampling chains
[
x

(t)
0

]∞
t=1

, . . . ,
[
x

(t)
N

]∞
t=1

with stationary distributions

π0(x) = exp [−max {h(x), H0}] , . . . , πN (x) = exp

[
−max

{
h(x)

TN
, HN

}]
,

respectively.

1: for Iteration t ∈ Z+ do
2: for Energy truncation level n = N to n = 1 do
3: if t > (N − n)(B +R) then

4: Set i = k such that x
(t−1)
n ∈ [Hk, Hk+1).

5: if n = N or D̂
(n+1)
i = ∅ then

6: Set u = 0.
7: else
8: Generate u ∼ U(·|0, 1).
9: end if

10: if u ≥ pee then

11: Perform a standard MCMC update from πn to obtain x
(t)
n .

12: else
13: Generate y ∼ U

[
·
∣∣∣D̂(n+1)

i

]
.

14: Set α = min

1,
πn(y)πn+1

[
x

(t−1)
n

]
πn

[
x

(t−1)
n

]
πn+1(y)

.

15: Generate u ∼ U(·|0, 1).
16: if u < α then
17: Set x

(t)
n = y.

18: else
19: Set x

(t)
n = x

(t−1)
n .

20: end if
21: end if
22: if t > (N − n)(B +R) +B then

23: Set i = k such that x
(t)
n ∈ [Hk, Hk+1).

24: Set D̂
(n)
i = D̂

(n)
i ∪ {x(t)

n }.
25: end if
26: else
27: Perform a standard MCMC update from πn to obtain x

(t)
n .

28: end if
29: end for
30: end for
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A.4 Mixture Approximation Algorithms

Algorithm A.11 Expectation maximisation (Dempster et al., 1977).

Require:
1. K ∈ Z+ mixture components.

2. Observed p-dimensional data y = (y1, . . . ,yN ).

3. An initial set of parameters θ(0) at iteration t = 0.

4. A suitable metric m(·, ·) and threshold change εthresh.

5. A suitable maximisation method.
Ensure: A set of parameters θ that (locally) maximises π(y, z|θ).

1: while m[θ(t), θ(t+1)] > ∆thresh do
2: Set z′ = E[z|y,θ].
3: Set θ(t+1) = arg maxθ∈T log π

[
y, z′|θ(t)

]
.

4: Set t = t+ 1.
5: end while

Algorithm A.12 Lloyd’s k-means algorithm (Lloyd, 1982)

Require:
1. Input data y1, . . . ,yN ∈ X .

2. An initial partition
{
B

(0)
k

}K
k=1

of X at iteration t = 0.

3. A suitable metric m(·, ·) and threshold change ∆thresh.

4. Initial maximum observed change m(0) =∞.
Ensure: A final partition {Bk}Kk=1 of X that locally minimises

∑K
k=1 I (Bk,qk),

the sum of the moment of inertia of each Bk about its final centre qk.

1: while m(t) > εthresh for any i ∈ {1, . . . ,K} do
2: Set t = t+ 1.
3: for Region k = 1 to k = K do

4: Set qk =
∫
Bk

ydF (y)
/∫
X dF (y).

5: end for
6: for Data point n = 1 to n = N do
7: Assign yn to region Bi such that i = arg mink∈{1,...,K}m (yn,qk)
8: end for
9: Set m(t) = maxk∈{1,...,K}m

[
q

(t)
k ,q

(t−1)
k

]
.

10: end while
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Algorithm A.13 k-Harmonic Means Clustering (Zhang et al., 1999; Zhang,
2000)

Require:
1. Input data y1, . . . ,yN ∈ X .

2. Initial cluster centres q
(0)
1 , . . . ,q

(0)
K ∈ X at iteration t = 0.

3. A suitable metric m(·, ·) and threshold change ∆thresh.

4. Perf(0) =∞ and ∆Perf =∞.
Ensure: Final cluster centres q1, . . . ,qK ∈ X that locally minimise∑N

n=1K
/∑K

k=1 [m (yn,qk)]
−1

.

1: while ∆Perf > ∆thresh do
2: Set t = t+ 1.
3: for Data point n = 1 to n = N do

4: Set d
(min)
n = mink∈{1,...,K}

{
m
[
yn,q

(t−1)
k

]}
.

5: for Cluster k = 1 to k = K do

6: Set b
(n)
k =

[
d

(min)
n

]p−2 {
d

(min)
n

/
m
[
yn,q

(t−1)
k

]}p+2

(∑K
k=1

{
d

(min)
n

/
m
[
yn,q

(t−1)
k

]}p)2 .

7: end for
8: Set bk =

∑N
n=1 b

(n)
k .

9: for Data point n = 1 to n = N do

10: Set p
(n)
k = b

(k)
k

/
bk.

11: end for
12: for Cluster k = 1 to k = K do
13: Set q

(t)
k =

∑N
n=1 p

(n)
k yn.

14: end for
15: end for

16: Set Perf(t) =
∑N
n=1K

/∑
k=1

{
m
[
yn,q

(t)
k

]}−1

17: Set ∆Perf =
∣∣∣Perf(t−1) − Perf(t)

∣∣∣.
18: end while
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Algorithm A.14 Adaptive mixture refinement for normal kernel density esti-
mation with a common variance-covariance matrix (West, 1993).

Require:
1. An initial p-variate normal mixture approximation

g(0)

[
x

∣∣∣∣{w(0)
k , µ

(0)
k

}K(0)

k=1
,Σ(0)

]
=

∑K(0)

k=1 w
(0)
k N

[
x
∣∣∣µ(0)
k ,Σ(0)

]
to

π(x) at refinement t = 0.

2. Function N(t), the required number of samples from refinement t.

3. A threshold entropy relative to uniformity Hthresh > 0.

4. Initial entropy relative to uniformity H(0) = −∞.
Ensure:

A refined p-variate normal mixture approximation g
[
x
∣∣∣{wk, µk}Kk=1 ,Σ

]
=∑K

k=1 wkN (x|µk,Σ) to π(x).

1: while
∣∣H(t)

∣∣ > Hthresh do
2: Set t = t+ 1.
3: Set K(t) = N(t).
4: for k = 1 to k = K(t) do

5: Generate xk ∼ g(t−1)

[
·
∣∣∣∣{wk, µ(t−1)

k ,Σ
(t−1)
k

}K(t−1)

k=1

]
.

6: end for

7: Set Z =
∑K(t)

k=1 π (xk)/ g(t−1)

[
xk

∣∣∣∣{w(t−1)
l , µ

(t−1)
l ,Σ

(t−1)
l

}K(t−1)

l=1

]
.

8: for k = 1 to k = K(t) do

9: Set w
(t)
k =

π (xk)

Z · g(t−1)

[
xk

∣∣∣∣{w(t−1)
l , µ

(t−1)
l ,Σ

(t−1)
l

}K(t−1)

l=1

] .

10: end for
11: Set x̄ =

∑K(t)

k=1 w
(t)
k xk.

12: Set h =

[
4

K(t)(1 + 2p)

]1/(1+4p)

.

13: Set Σ(t) = h2
∑K(t)

k=1 w
(t)
k (xk − x̄) (xk − x̄)

T
.

14: for k = 1 to k = Kt do
15: Set µ

(t)
k = x

(t)
k

√
1− h2 + x̄(t)

(
1−
√

1− h2
)
.

16: end for

17: Set H(t) = −∑K(t)

k=1

logw
(t)
k

logK(t)
.

18: end while
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Algorithm A.15 Bayesian estimation of the parameters of a skew-normal mix-
ture distribution (Frühwirth-Schnatter and Pyne, 2010).

Require:
1. Input data y = (y1, . . . ,yN ) ∈ RNp.
2. K ∈ Z+ mixture components.

3. At iteration t = 0:

(a) Initial latent allocations S(0) =
[
S

(0)
1 , . . . , S

(0)
N

]
∈ {1, . . . ,K}N .

(b) Initial random effects z(0) =
[
z

(0)
1 , . . . , z

(0)
N

]
∈ [0,∞)N .

4. A marginal component weight posterior distribution pSNM (d |S, z,y ).

5. A marginal component posterior distribution pSNM (ξ,Σ,ψ |S, z,y ).

Ensure: A Markov chain
[
d(t), ξ(t),Ω(t),α(t)

]T
t=0

of inferred parameters of a
skew-normal kernel density estimate of y.

1: for Iteration t ∈ Z+. do
Generate d(t) ∼ pSNM

[
·
∣∣S(t−1), z(t−1),y

]
.

2: Generate ξ(t),Σ(t),ψ(t) ∼ pSNM
[
·
∣∣z(t−1),S(t−1),y

]
.

3: for Component k = 1 to k = K do

4: Set Ω
(t)
k = Σ

(t)
k +ψ

(t)
k

[
ψ

(t)
k

]T
.

5: Set W =

√
Diag

[
Ω

(t)
k

]
.

6: Set α
(t)
k =

1√
1−

[
ψ

(t)
k

]T [
Ω

(t)
k

]−1

ψ
(t)
k

W
[
Ω

(t)
k

]−1

ψ
(t)
k .

7: end for
8: Generate S(t), z(t) ∼ pSNM

[
·
∣∣ξ(t),ψ(t),Σ(t),d(t),y

]
.

9: end for
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Algorithm A.16 Bayesian estimation of the parameters of a skew-t mixture
distribution (Frühwirth-Schnatter and Pyne, 2010).

Require:
1. Input data y = (y1, . . . ,yN ) ∈ RNp.
2. K ∈ Z+ mixture components.

3. At iteration t = 0:

(a) Initial latent allocations S(0) =
[
S

(0)
1 , . . . , S

(0)
N

]
∈ {1, . . . ,K}N .

(b) Initial random effects:

i. z(0) =
[
z

(0)
1 , . . . , z

(0)
N

]
∈ [0,∞)N .

ii. b(0) =
[
b
(0)
1 , . . . , b

(0)
N

]
∈ (0,∞)N .

4. A marginal component weight posterior distribution
pSTM (d |S, z,b,y ).

5. A marginal component posterior distribution
pSTM (ξ,Σ,ψ |S, z,b,y ).

6. A suitable MCMC method for updating ν and b.

Ensure: A Markov chain
[
d(t), ξ(t),Ω(t),α(t)ν(t)

]T
t=0

of inferred parameters of
a skew-t kernel density estimate of y.

1: for Iteration t ∈ Z+. do
Generate d(t) ∼ pSTM

[
·
∣∣S(t−1), z(t−1),b(t−1),y

]
.

2: Generate ξ(t),Σ(t),ψ(t) ∼ pSTM
[
·
∣∣z(t−1),S(t−1),b(t−1),y

]
.

3: for Component k = 1 to k = K do

4: Set Ω
(t)
k = Σ

(t)
k +ψ

(t)
k

[
ψ

(t)
k

]T
.

5: Set W =

√
Diag

[
Ω

(t)
k

]
.

6: Set α
(t)
k =

1√
1−

[
ψ

(t)
k

]T [
Ω

(t)
k

]−1

ψ
(t)
k

W
[
Ω

(t)
k

]−1

ψ
(t)
k .

7: end for
8: Generate S(t), z(t) ∼ pSTM

[
·
∣∣ξ(t),ψ(t),Σ(t),d(t),b(t−1),y

]
.

9: Generate ν(t),b(t) using MCMC.
10: end for
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Algorithm A.17 A method to collapse the number of mixture components in a
mixture of normal distributions from N to M with common variance-covariance
matrix (West, 1993).

Require:

1. Initial approximation, g(0)(x) =
∑N
k=1 w

(0)
k N

[
x
∣∣∣µ(0)
k ,Σ

]
,.

2. Final number of mixture components M < N .
Ensure: Collapsed approximation,

g(N−M)(x) =

M∑
k=1

w
(N−M)
k N

[
x
∣∣∣µ(N−M)
k ,Σ

]
.

1: for t = 1 to t = N −M do

2: Sort
{[
w

(t−1)
k , µ

(t−1)
k

]}(N−t+1)

k=1
in ascending order of w

(N−t)
k .

3: for k = 2 to k = N − t+ 1 do

4: Set ∆k =
∥∥∥µ(t−1)

1 − µ(t−1)
k

∥∥∥.

5: end for
6: Set i = arg mink∈{1,...,N−t+1} (∆k).

7: Set w
(t)
1 = w

(t−1)
1 + w

(t−1)
i .

8: Set µ
(t)
1 =

[
w

(t−1)
1 µ

(t−1)
1 + w

(t−1)
i µ

(t−1)
i

]/
w

(t)
1 .

9: for k = 2 to k = i− 1 do

10: Set
[
w

(t)
k , µ

(t)
k

]
=
[
w

(t−1)
k , µ

(t−1)
k

]
..

11: end for
12: for k = i+ 1 to k = N − t do

13: Set
[
w

(t)
k , µ

(t)
k

]
=
[
w

(t−1)
k+1 , µ

(t−1)
k+1

]
.

14: end for
15: end for
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A.5 Adaptive MCMC Algorithms

Algorithm A.18 The Adaptive Direction Sampler (Gilks et al., 1994; Roberts
and Gilks, 1994).

Require:

1. An initial set of points S(0) =
{

x
(0)
n

}N
n=1
⊂ Rp at iteration t = 0, with

N > p.

2. A vector-valued distribution Dv(v|S).

3. A scalar-valued distribution Du(u|S).

4. A method for sampling r.
Ensure: Sets of samples

{
S(t)

}∞
t=1

from the target distribution π.

1: for Iteration t ∈ Z+ do
2: Generate x

(t)
c ∼ U

[
·
∣∣S(t−1)

]
.

3: Generate u ∼ Du

[
·
∣∣S(t−1)

]
.

4: Generate v ∼ Dv

[
·
∣∣S(t−1)

]
.

5: Set J(r) =

π

{
x

(t−1)
c + r ·

[
v + ux

(t−1)
c

]p−1
}
|1 + ru|p−1

∫
R π

{
x

(t−1)
c + s ·

[
v + ux

(t−1)
c

]p−1
}
|1 + ru|p−1

ds

.

6: Generate r ∼ J(·).
7: Set S(t) = S(t−1) ∪

{
x

(t−1)
c + r

[
ux

(t−1)
c + v

]}∖{
x

(t−1)
c

}
.

8: end for
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Algorithm A.19 Adaptive Proposal Sampler (Haario et al., 1999).

Require:
1. Memory parameter H ∈ Z+.

2. Initial state x(0) ∈ Rp.
3. cp = 2.38/

√
p.

4. Starting proposal density g(0)(x).
Ensure: A chain of samples

{
x(t)

}∞
t=0

from an approximation to the target π.

1: for Iteration t ∈ Z+ do
2: if t < H then
3: Generate y ∼ g(0).
4: else

5: Set x̄ =
1

H

∑t−1
i=t−H x(i).

6: Set Σ̂ =
1

H − 1

∑t−1
i=t−H

[
x(i) − x̄

] [
x(i) − x̄

]T
.

7: Generate y ∼ N
[
·
∣∣∣x(t−1), c2pΣ̂

(t)
]
.

8: end if

9: Set α = min

{
1,

π(y)

π
[
x(t−1)

]}.

10: Generate u ∼ U(·|0, 1).
11: if u ≤ α then
12: Set x(t) = y.
13: else
14: Set x(t) = x(t−1).
15: end if
16: end for
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Algorithm A.20 Adaptive Metropolis Sampler (Haario et al., 2001).

Require:
1. Memory parameter H ∈ Z+.

2. Initial sample length t0 ∈ Z+.

3. cp = 2.38/
√
p.

4. Starting variance-covariance matrix Σ(0).
Ensure: A chain of samples

{
x(t)

}∞
t=0

, with stationary distribution equal to
the target π.

1: for Iteration t ∈ Z+ do
2: if t < t0 then
3: Generate y ∼ N

[
·
∣∣x(t−1), c2pΣ

(0)
]
.

4: else
5: if t = t0 then

6: Set x̄(t−1) =
1

t

∑t−1
i=0 x(i).

7: Set Σ(t−1) =
1

t− 1

∑t−1
i=0

[
x(i) − x̄

] [
x(i) − x̄

]T
+ εIp.

8: else

9: Set x̄(t−1) =
t− 2

t− 1
x(t−2) +

1

t− 1
x(t−1).

10: Set Σ(t−1) =
t− 2

t− 1
Σ(t−2) +

cp
t− 1

{
(t− 1)x(t−2) +

[
x(t−2)

]T
−tx̄(t−1)

[
x̄(t−1)

]T
+ x(t−1)

[
x(t−1)

]T
+ εIp

} .

11: end if
12: Generate y ∼ N

[
·
∣∣x(t−1), c2pΣ

(t−1)
]
.

13: end if

14: Set α = min

{
1,

π(y)

π
[
x(t−1)

]}.

15: Generate u ∼ U(·|0, 1).
16: if u ≤ α then
17: Set x(t) = y.
18: else
19: Set x(t) = x(t−1).
20: end if
21: end for
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Algorithm A.21 AIMH state update procedure (Giordani and Kohn, 2010).

Require:
1. Latest Markov chain state x(t−1).

2. Current proposal density q(t)
[
·
∣∣λ(t)

]
with parameters λ(t).

3. Number of accepted proposed moves Naccepted.

4. A sequence of acceptance ratios
{
α(i)

}t−1

i=1
.

5. A window M in which to compute the αmin.
Ensure:

1. An updated Markov chain state x(t) with acceptance ratio α(t).

2. An minimum acceptance rate αmin.

3. An updated number of accepted moves Naccepted.

1: Generate x′ ∼ q(t)
[
·
∣∣λ(t)

]
2: Set α(t) = min

[
1,
π (x′) qt

[
x(t−1)

∣∣λ(t)
]

π
(
x(t−1)

)
qt
[
x′
∣∣λ(t)

]} .
3: Generate u ∼ U(·|0, 1).
4: if u < α(t) then
5: Set x(t) = x′.
6: Set Naccepted = Naccepted + 1.
7: else
8: Set x(t) = x(t−1).
9: end if

10: Set αmin = minti=M+1 α
(i).

Algorithm A.22 AIMH proposal adaptation procedure (Giordani and Kohn,
2010).

Require:

1. A chain of samples
{
x(i)
}t−1

i=1
.

2. ω1, ω2 ∈ (0, 1).

3. ω′2 = ω2/ (1− ω1).

4. k ∈ R+.
Ensure:

A new proposal distribution q(t)
[
·
∣∣λ(t)

]
, with parameters λ(t) and updated

g̃
(t)
?

[
·
∣∣∣λ̃(t)
?

]
and g

(t)
?

[
·
∣∣∣λ(t)
?

]
1: Construct g

(t)
?

[
·
∣∣∣λ(t)
?

]
via Algorithm A.13 with inputs

{
x(i)
}t−1

i=1
.

2: Set g̃
(t)
?

[
·
∣∣∣λ̃(t)
?

]
= g

(t)
?

[
·
∣∣∣λ(t)
?

]
.

3: Multiply the variance-covariance matrices of g̃
(t)
?

[
·
∣∣∣λ̃(t)
?

]
by k.

4: Set g
[
·
∣∣λ(t)

]
= ω′2g̃

(t)
?

[
·
∣∣∣λ̃(t)
?

]
+ (1− ω′2) g

(t)
?

[
·
∣∣∣λ(t)
?

]
, where λ(t) =[

˜λ(t)
?,λ

(t)
?

]
.

5: Set q(t)
[
·
∣∣λ(t)

]
= ω1g

(0)(·) + (1− ω1) g
[
·
∣∣λ(t)

]
.
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Algorithm A.23 Adaptive independent Metropolis-Hastings (Giordani and
Kohn, 2010).

Require:
Inputs:

1. Dimension p ∈ Z+ of the state space.

2. A threshold minimum acceptance rate αthresh.

3. An initial mixture of normal distributions φ(0)(x).

4. A set of update times T ⊂ N.

5. A window size M ∈ N for determining αmin.

6. A window size L ∈ N for determining ᾱ.

Intialisations:

1. An initially empty set N ? of times n such that Naccepted = 5p.

2. Minimum acceptance rate αmin = 0 in the last M iterations.

3. The number of accepted propsed states Naccepted = 0.

4. An initial state x(0).

Ensure: A sequence of samples
{
x(t)

}∞
t=t(0)+1

, from the target distribution π.

1: while Naccepted ≤ 5p do
2: Generate x(t), α(t), αmin and Naccepted via Algorithm A.21.
3: if Naccepted = 5d then
4: Set N ? = N ? ∪ {t}.
5: end if
6: Set t = t+ 1.
7: end while
8: while αmin ≤ αthresh do
9: Set ᾱ =

∑t−1
j=t−L α

(j).
10: if ᾱ < αthresh then
11: Construct g

(t)
? , g̃

(t)
? and q(t) via Algorithm A.22.

12: else
13: if {t− t?|t? ∈ N ?} ∩ T 6= ∅ then

14: Construct g
(t)
? , g̃

(t)
? and q(t) via Algorithm A.22.

15: else
16: Set g

(t)
? = g

(t−1)
? , g̃

(t)
? = g̃

(t−1)
? and q(t) = q(t−1).

17: end if
18: end if
19: Generate x(t), α(t), αmin and Naccepted via Algorithm A.21.
20: Set t = t+ 1.
21: end while
22: Set φ(0) = g?t .
23: Set t(0) = t.
24: for Iteration t ∈ {t(0) + 1, . . .} do
25: if {t− t?|t? ∈ N ?} ∩ T 6= ∅ then
26: Construct g?t , g̃?t and qt via Algorithm A.22.
27: else
28: Set g

(t)
? = g

(t−1)
? , g̃

(t)
? = g̃

(t−1)
? and q(t) = q(t−1).

29: end if
30: Generate x(t), α(t), αmin and Naccepted via Algorithm A.21.
31: end for
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Algorithm A.24 The Bayesian Adaptive Metropolis-Hastings Sampler (Keith
and Davey, 2013).

Require:

1.
[
x

(0)
1 , . . . ,x

(0)
N

]
initial chain states.

2. Prior (hyper)parameters on θ.

Ensure: N chains of samples

{[
x

(t)
n

]N
n=1

}∞
t=1

from the target distribution π.

1: for Iterations t ∈ Z+ do
2: Set λ(t) = Λ(t)

[
x

(t−1)
1 , . . . ,x

(t)
N

]
.

3: Generate θ(t) ∼ p
[
·
∣∣λ(t)

]
.

4: for Sampling chain n = 1 to n = N do
5: Generate y ∼ p

[
y
∣∣θ(t)

]
.

6: Set λ
(t)
n = Λ

[
x

(t)
1 , . . . ,x

(t)
n−1,y,x

(t−1)
n+1 , . . . ,x

(t−1)
N

]
.

7: Set λ
(t)
n∗ = Λ

[
x

(t)
1 , . . . ,x

(t)
n−1,x

(t−1)
n , . . . ,x

(t−1)
N

]
.

8: Set α = min

1,
π(y)p

[
θ(t)

∣∣∣λ(t)
n

]
p
[
x

(t−1)
n

∣∣y,θ(t)
]

π
[
x

(t−1)
n

]
p
[
θ(t)

∣∣∣λ(t)
n∗
]
p
[
y
∣∣∣x(t−1)
n ,θ(t)

]
.

9: Generate u ∼ U(·|0, 1).
10: if u < α then
11: Set x

(t)
n = y.

12: else
13: Set x

(t)
n = x

(t−1)
n .

14: end if
15: end for
16: end for
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A.6 Cluster Construction with the Swendsen-
Wang Algorithm

Algorithm A.25 The Swendsen-Wang algorithm (Swendsen and Wang, 1987)
for clustering a p-dimensional Ising spin glass configuration.

Require:
Input:

1. Spins s = (s1, . . . , sN ).

2. Neighbourhood system V = (V1, . . . ,VN ).

3. A set of interactions J = {Jij}〈i,j〉 between neighbouring spins.

Initialisation: B = {Bij}〈i,j〉 = {0}pN so that C = (1, . . . , N).
Ensure:

Bond indicators B = {Bi,j}〈i,j〉, defining cluster memberships C.

1: for i ∈ {1, . . . , N} do
2: for j ∈ {k : k ∈ Vi, k > i} do
3: if Jijsisj > 0 then
4: Set q = 1− exp (− Jijsisj)/ (kBT ).
5: Generate Bi,j ∼ Bernoulli(·|q).
6: if Bij = 1 then
7: Set a = max{Ci, Cj} and b = min{Ci, Cj}.
8: for k ∈ {1, . . . , N} do
9: if Ck = a then

10: Set Ck = b.
11: end if
12: end for
13: end if
14: end if
15: end for
16: end for



Appendix B

Mixture Exponential
Regression Problem Input

In the regression problem of Section 4.2 the observed values y that were used
as input, correct to seven significant digits, were as follow:

1.309695e+01 2.430403e+03 3.261820e+03 8.636133e+05

4.466468e+00 1.783633e+04 3.534417e+00 5.663570e+02

1.863636e+00 2.036670e+03 2.202005e+02 2.196023e+04

1.575938e+01 7.928759e+01 5.939511e+03 1.143254e+01

5.394978e+00 2.401060e+03 2.699985e-01 3.190646e+00

5.627336e+04 1.638039e+01 5.576615e+01 5.560532e+03

6.985903e+03 1.150495e+01 1.978150e+02 1.777180e+02

2.289263e+05 1.201811e+01 1.028756e+02 1.761554e+03

8.231389e+04 2.293974e+06 1.041309e+03 5.940492e+00

8.427673e+00 2.580721e+02 1.014598e+04 1.329592e+03

3.671473e+02 1.752186e+00 6.615758e+05 2.961039e+03

8.065092e+03 2.436018e-02 2.083174e+02 2.268002e+04

6.682670e+04 1.314722e+04 6.712476e+04 1.889883e+02

7.711255e+03 8.109527e+00 4.662443e+02 3.429431e+02

3.677644e+01 5.264001e+05 1.247478e+02 4.836799e+01

3.491766e+01 1.626983e+04 2.923627e+02 1.832941e+02

8.834408e+01 7.045200e+05 3.112785e+01 3.272776e+03

7.195403e-01 2.418156e+02 3.306138e+00 4.401473e+00

2.318599e+03 2.572656e+04 7.118442e+01 2.246056e+00

5.210043e+02 1.629595e+02 1.019343e+02 5.487202e+00

1.138948e+02 1.514166e+01 1.003909e+01 1.360367e+03

1.747951e+03 1.377623e+02 1.648420e+06 3.393363e+02

1.272573e+01 8.224176e+00 2.879227e+01 1.714025e+04

1.280992e+04 1.824786e+03 2.855519e+05 2.790759e+04

3.484368e+01 8.519555e+04 2.049992e+02 3.894594e+00

1.617570e+04 5.543943e+04 1.059379e+06 6.198323e+01

3.340858e+05 5.570985e+02 9.234789e+05 1.220240e+03

2.446172e+04 7.467221e+00 3.930216e+00 1.421162e+00

3.746826e+03 5.782438e+02 1.046059e+04 4.162258e+04

4.771656e+05 2.196029e+04 4.031599e+02 3.428644e+01
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1.882675e+01 1.946660e+03 8.803912e+03 1.087874e+02

8.448045e+02 2.391888e+00 7.558763e+02 1.346730e+02

4.366036e+05 7.948315e+03 5.153367e+05 4.974714e+04

7.953697e+02 2.495861e+05 1.881587e+02 2.606366e+02

6.288317e+01 1.338802e+05 2.826253e+01 2.477176e+02

1.806823e+05 2.135105e+04 4.022419e+04 2.183532e+06

6.125438e+00 1.396249e+02 1.264899e+04 5.240692e+00

1.647360e+01 4.715093e+01 4.623986e+01 2.393887e+03

1.212787e+02 5.113745e+03 5.810376e+00 1.120209e+02

1.306330e+01 2.190876e+04 6.618099e+02 8.189750e+01

4.413947e+01 4.704494e+03 1.977910e+06 1.898604e+01

1.130834e+02 4.276533e+05 3.606661e+03 5.481049e-01

9.466520e+03 7.979420e+04 1.638326e+05 3.221927e+04

1.327496e+03 4.983853e+00 5.519293e+05 1.876600e+01

4.046702e+04 2.376706e+06 3.676653e+02 1.163504e+06

3.410882e+03 2.967235e+04 3.481601e+05 1.606226e+05

8.046160e+01 1.297738e+02 5.980117e+00 2.284021e+05

1.057213e+02 6.907671e+02 9.683374e+03 2.101644e+00

9.366247e+03 4.109384e+01 1.673926e+05 1.788600e+04

3.075062e+05 1.121331e+03 4.294920e+03 1.258334e+03

2.342612e+01 1.047765e+02 9.819695e+02 1.076927e+03

8.634533e+04 6.390336e+02 1.491184e+05 9.380673e+01

7.637153e+00 1.506699e+04 2.800772e+02 1.055455e+04

1.290842e+04 3.998335e+01 6.483727e-01 3.036478e+05

8.225693e+02 1.431223e+02 1.250452e+01 3.893653e+03

1.876683e+04 4.964429e+02 1.654412e+02 1.034352e+05

1.233947e+05 1.520483e+03 1.074897e+04 1.471570e+06

2.414916e+05 3.808724e+03 1.503548e+04 1.163588e+03

6.837756e+01 6.258433e+00 1.665615e+02 1.348234e-01

1.876768e+01 5.264255e-01 6.679798e+02 8.072140e+02

3.304782e+00 1.281836e+02 2.368619e+02 9.768329e+04

1.670545e+02 1.039789e+01 6.545500e+03 8.897026e+05

1.224279e+05 6.990040e+00 1.010711e+02 1.013965e+01

4.119015e+00 1.062029e+01 5.917336e-01 8.370067e+00

2.479491e+04 6.772381e+04 9.665392e+01 1.958898e+00

3.434272e+02 7.040295e+03 4.781945e-01 7.395474e+02

2.013038e+02 8.271867e+03 9.101481e+00 9.082867e+04

1.898944e+00 3.194818e+04 1.082143e+01 5.846976e+01

1.554920e+02 9.331065e+05 1.045058e+05 4.133161e+04

1.117507e+02 1.786820e+01 7.710025e+05 2.757262e+05

5.879076e+03 1.754910e+04 7.967753e+04 8.063295e+04

5.800033e+00 1.787956e+03 2.148065e+03 2.271796e+05

1.284442e+03 1.750606e+01 4.095971e+01 3.105797e+00

9.597183e+01 1.356230e+03 5.158868e+04 9.068979e+03

1.923235e+01 5.072705e-01 1.387087e+01 1.782607e+02

2.070364e+00 6.151354e+05 2.414718e+05 3.145502e+00

7.506777e+05 6.969670e-01 4.985317e+02 5.378461e+04

2.957133e+03 3.186271e+00 1.400688e+02 5.024794e+02

1.457920e+05 8.629873e+05 4.354370e+01 2.830182e+01

3.155764e+02 8.598545e+00 4.935226e+04 1.806819e+01
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1.959658e-01 4.174515e+02 2.659207e+05 9.547887e-01

1.604120e+00 2.075590e+02 3.436319e+00 1.689408e+05

2.074020e+04 3.776455e-01 2.725563e+00 1.452425e+02

6.357766e+03 1.130789e+05 4.476076e+00 3.073362e+03

1.074718e+01 2.705436e+02 7.570952e+04 2.273017e+02

6.630173e+01 2.986500e+00 1.020707e+02 2.376728e+01

2.774824e+04 9.605961e+04 3.970495e-01 4.756449e+00

9.047262e+01 7.643596e+02 4.113923e+00 3.380439e+02

2.970017e+02 1.162728e+03 1.212458e+01 1.287260e+05

3.136945e+04 1.240221e+01 3.528691e+01 1.947034e+05

5.950225e-01 2.129701e+06 1.584225e+00 2.639975e+05

8.917655e+00 1.162448e+04 2.457841e+00 1.121008e+01

5.818474e+04 4.946833e+00 2.712526e+02 8.320717e+04

3.127835e+02 3.029134e+01 8.093477e+01 5.598414e+01

9.390663e+02 1.270376e+05 4.842376e+03 7.233237e+00

1.066001e+03 3.546362e+03 5.415684e+05 2.297747e+02

1.400082e+02 1.033153e+02 4.678024e+04 1.116145e+01

8.521717e-02 2.132548e+05 9.078590e+04 5.790456e+01

1.093798e+04 2.693704e-01 3.723260e+01 6.601221e+01

2.648793e+01 1.775369e+01 6.986070e+03 3.193565e+01.

Their corresponing latent (unobserved) values x correct to seven significant
digits were as follow:

1.183279e+00 7.063289e-01 5.572729e-01 1.847644e+00

4.842465e-01 9.674903e-01 6.041547e-01 2.427018e-01

5.339486e-01 6.755581e-01 4.359557e-01 1.252928e+00

7.493157e-01 1.283949e+00 1.271734e+00 1.894422e+00

1.034190e+00 5.977923e-01 8.226407e-01 5.077067e-01

1.500050e+00 1.814558e+00 2.127299e-01 7.911112e-01

7.398109e-01 7.555346e-01 4.030051e-01 3.070758e-01

1.398898e+00 1.040671e+00 1.193303e+00 8.879474e-01

1.745913e+00 1.950694e+00 7.480085e-01 1.643915e-01

1.126803e+00 2.011553e-02 9.334818e-01 5.362698e-01

3.001054e-01 5.658700e-01 1.986912e+00 1.238711e+00

1.049267e+00 8.883633e-01 7.762932e-01 1.578918e+00

1.438837e+00 1.401298e+00 1.514456e+00 7.865142e-01

1.021908e+00 6.631864e-03 5.064745e-01 4.719198e-01

1.500679e+00 1.594011e+00 1.945227e+00 3.267102e-02

1.584952e+00 1.376371e+00 5.398773e-01 8.347476e-02

1.552227e+00 1.769840e+00 1.350062e+00 7.548920e-01

4.080396e-01 4.369013e-01 7.955499e-01 9.138431e-01

8.247154e-01 8.575388e-01 1.846759e+00 9.368524e-02

1.053832e+00 1.768903e+00 3.546512e-01 2.510973e-01

2.343288e-01 1.690454e+00 1.174051e+00 5.330493e-01

6.350967e-01 5.559316e-02 1.891560e+00 5.651522e-01

1.026171e+00 6.704944e-01 1.038220e+00 1.106045e+00

1.459507e+00 6.056217e-01 1.734877e+00 1.290805e+00

8.718794e-01 1.552105e+00 5.442994e-01 8.899186e-02

1.081007e+00 1.670615e+00 1.956950e+00 1.317440e+00
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1.749935e+00 2.803846e-01 1.792210e+00 6.745791e-01

1.254635e+00 1.258702e+00 1.182321e+00 1.850413e-01

6.488455e-01 4.110827e-01 9.429366e-01 1.179654e+00

1.765331e+00 1.232111e+00 5.747337e-01 1.248281e+00

1.236667e+00 6.884453e-01 1.643346e+00 3.742142e-01

1.146840e+00 4.171371e-01 7.330420e-01 1.482293e+00

1.559391e+00 1.235545e+00 1.556788e+00 1.631821e+00

3.121651e-01 1.459336e+00 3.129281e-01 5.491643e-01

7.976565e-01 1.354997e+00 1.088123e+00 8.863363e-01

1.649361e+00 1.229257e+00 1.564800e+00 1.985521e+00

1.250383e+00 7.622465e-01 1.031708e+00 6.313445e-01

1.203367e+00 1.783298e+00 4.672972e-01 1.416113e+00

1.848364e-01 6.382608e-01 6.797533e-02 4.833610e-01

8.572407e-02 1.266112e+00 3.698662e-01 1.932963e+00

4.367800e-01 8.941453e-01 1.848557e+00 6.037706e-02

1.318960e+00 1.990214e+00 9.386180e-01 1.672826e-01

1.255175e+00 1.440133e+00 1.828552e+00 1.232431e+00

8.856720e-01 7.137044e-01 1.833695e+00 1.345260e+00

1.435773e+00 1.970544e+00 4.550083e-01 1.954827e+00

7.910121e-01 1.044417e+00 1.723977e+00 1.636058e+00

3.660204e-01 4.030060e-01 1.282524e-01 1.633734e+00

4.196217e-01 4.951000e-01 1.294143e+00 5.544250e-01

1.309111e+00 1.667265e+00 1.781329e+00 1.234252e+00

1.766088e+00 6.483188e-01 9.596187e-01 8.379648e-01

1.972003e-02 8.840636e-01 6.652484e-01 5.614228e-01

1.449564e+00 5.481608e-01 1.499815e+00 1.244253e+00

8.449669e-03 1.493301e+00 3.526368e-01 1.554060e+00

1.235453e+00 9.796261e-01 6.257859e-02 1.501333e+00

8.056792e-01 1.515978e+00 1.781849e-01 9.470601e-01

1.202642e+00 2.627015e-01 6.497742e-01 1.771650e+00

1.724223e+00 1.013484e+00 1.373881e+00 1.930476e+00

1.733526e+00 8.833436e-01 9.035335e-01 8.468161e-01

6.342685e-03 1.813374e+00 1.671994e-02 6.663802e-01

7.717088e-01 3.520431e-01 4.781021e-01 4.065687e-01

3.643943e-01 1.681211e-02 2.364361e-01 1.535121e+00

1.966055e+00 1.170762e+00 1.083014e+00 1.875634e+00

1.577076e+00 1.284431e+00 1.499933e-01 1.251650e+00

3.760718e-01 1.233759e+00 1.810087e+00 1.249024e-01

1.261512e+00 1.339458e+00 1.146307e-01 4.141503e-02

1.894986e+00 1.002473e+00 3.417562e-01 7.981337e-01

6.207835e-01 1.014935e+00 1.100933e-01 1.781919e+00

8.528163e-01 1.351870e+00 3.463492e-01 7.896148e-01

1.285843e-01 1.780147e+00 1.698661e+00 1.479199e+00

1.863689e-01 1.196588e+00 1.919738e+00 1.592548e+00

1.060199e+00 1.321985e+00 1.526239e+00 1.531177e+00

6.182777e-01 8.593112e-01 7.898212e-01 1.527050e+00

3.641918e-01 1.613947e+00 1.104901e+00 1.568205e+00

3.125636e-01 5.078201e-01 1.461427e+00 1.570438e+00

1.243880e+00 7.199732e-01 7.034500e-01 3.721815e-01

7.407499e-01 1.656155e+00 1.822577e+00 9.002644e-01



225

1.806887e+00 2.399173e-01 5.798938e-01 1.603864e+00

6.989678e-01 3.537466e-01 3.329830e-01 7.264919e-01

1.540945e+00 1.860542e+00 2.179914e-01 6.072022e-01

6.310540e-01 8.343633e-02 1.576427e+00 4.193881e-02

2.733764e-01 7.212725e-01 1.554530e+00 1.624780e-01

4.653029e-01 1.944103e+00 1.182821e+00 1.358879e+00

1.183844e+00 4.876243e-01 3.103066e-01 4.008332e-01

1.112542e+00 1.433611e+00 1.002702e-01 7.718897e-01

8.997379e-01 1.709486e+00 1.379576e+00 1.939741e-01

9.718234e-01 1.308087e+00 2.971388e-01 6.734621e-01

1.335416e+00 1.356139e+00 2.545512e-01 2.254865e-01

2.895672e-01 5.075779e-01 6.374817e-01 1.868822e+00

1.883868e-01 6.566476e-01 7.603758e-01 1.447013e+00

1.256409e+00 2.197442e-01 1.062166e+00 1.623020e+00

3.527968e-01 1.977544e+00 1.468192e-01 1.860550e+00

1.166641e-01 1.745027e+00 2.465556e-01 1.762890e+00

1.762381e+00 8.716148e-01 1.910947e-01 1.932613e+00

5.218806e-01 8.463956e-01 4.040361e-01 1.044441e+00

1.577305e+00 1.266178e+00 1.010783e+00 2.638285e-01

4.919128e-01 6.737844e-01 1.649955e+00 1.244180e+00

1.243774e+00 7.676159e-01 1.126205e+00 8.619492e-01

3.120778e-01 1.906963e+00 1.584317e+00 9.164582e-01

1.042249e+00 1.183101e+00 7.939883e-01 1.783723e+00

1.257055e-01 8.055362e-01 1.003036e+00 1.007698e+00
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Appendix C

Spin Glass Disorder Sample
Couplings

The coupling strengths of the disorder samples used in the spin glass application
of Chapter 5, correct to seven significant figures were as follow. Consecutively-
index couplings follow each other along the same row. That is, the general form
is given by the following table.

J12 J14 J23 J25

J31 J36 J45 J47

J56 J58 J64 J69

J78 J71 J89 J82

J97 J93

Disorder sample 1:

4.2155540e-01 1.2453571e+00 3.8312985e-02 4.3871379e-01

-2.4332057e-01 3.8961054e-01 4.4355056e-01 1.6047072e+00

1.0809477e+00 -8.4039664e-01 1.5413163e+00 -3.7327924e-01

-1.6615210e-01 -2.9253610e-01 3.5758813e-01 1.1476499e-01

5.3943735e-01 -1.8404330e-01

Disorder sample 2:

-7.1155727e-01 1.4977837e+00 -8.0870904e-02 -9.5194020e-01

-7.8408021e-01 4.6868541e-01 -6.4632994e-02 3.4509499e-01

1.0390932e+00 -9.3261663e-01 1.2319192e+00 7.2252520e-01

-9.1574694e-01 8.7309051e-01 1.1123359e+00 -1.4063241e+00

-5.4482539e-01 -1.0126993e-01

227
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Disorder sample 3:

1.1419116e+00 -3.4788024e-01 -1.0856426e+00 1.7216597e-01

1.3457303e+00 -8.9511705e-01 -1.5523596e-01 -7.6548778e-01

-4.3363387e-01 1.2644001e+00 9.9238509e-01 1.3995357e+00

8.9541058e-01 -2.8997490e-01 -1.4878131e+00 -8.2927815e-01

6.6655481e-01 -1.1491685e+00

Disorder sample 4:

-8.5795509e-01 -5.0879455e-01 9.6207049e-01 -9.6302296e-01

1.2352635e+00 9.2447556e-01 2.1996264e-01 2.3396314e-01

-1.4437830e-01 7.0278832e-01 -4.9573368e-01 -1.5564514e+00

-1.2753092e+00 1.8175945e+00 -1.3287557e+00 3.1516281e-01

-1.7187183e+00 -1.2746759e+00

Disorder sample 5:

-9.9066336e-01 1.2335162e-01 -3.7065410e-01 -1.0702369e+00

3.5338792e-01 -6.3331869e-01 -1.6036592e-01 -1.2397522e+00

2.8336535e+00 1.0581820e+00 1.4963147e+00 1.4017751e+00

-4.5049878e-01 1.0497276e+00 1.7453192e+00 -1.8507570e+00

-9.2245706e-02 -1.5901527e+00


	Introduction
	I Literature Review
	Monte Carlo and Markov Chain Monte Carlo Theory
	Monte Carlo Methods
	Foundations
	Notable Examples

	Markov Chain Theory
	Using Markov Chains for Inference
	Ergodicity
	Detailed Balance
	Rates of Convergence to the Stationary Distribution
	Assessing Convergence and Mixing

	Markov Chain Monte Carlo
	Metropolis-Hastings Sampling
	Gibbs Sampling

	Targeting Distributions with Multiple Local Maxima
	The Problem
	An Important Metaheuristic
	Methods that Use Multiple Temperatures

	Approximating Distributions by Finite Mixtures
	Estimating Mixture Parameters by Clustering
	Sampling-Based Approaches
	Selecting the Number of Mixture Components

	Adaptive Markov Chain Monte Carlo
	The Benefits of Adaptation
	Types of Adaptation
	Ensuring the Correct Stationary Distribution
	Examples

	Adaptive Proposals with Multiple Local Maxima
	Bayesian Adaptive Independence Sampling (BAIS)
	Idea
	Description
	Satisfying Detailed Balance
	Shortcomings and Differences from Other Parallel Adaptive Methods
	Bayesian Adaptive Metropolis-Hastings Sampling (BAMS)

	Connections to the Current Study
	Scientific Contribution of the Current Study


	Applications of Monte Carlo and Markov Chain Monte Carlo
	Test Functions
	A Mixture Target
	An Optimisation Test Bed

	Mixture Exponential Regression
	Spin Glass Simulation
	Background
	Ferromagnetic Models
	Spin Glass Models
	Computer Simulation



	II BAIS with Latent variables (BAIS+L)
	BAIS+L Development
	Motivation and Description
	Extension of BAIS
	The Prior Model of the Proposal Parameters
	The Posterior Model of the Proposal Parameters
	Acceptance Ratio

	The Novelty of BAIS+L
	Ensuring Ergodicity
	Sufficient Conditions to Ensure Uniform Ergodicity
	Proofs of Uniform Ergodicity
	Promoting Adaptation of the Proposal Distribution
	Assessing the Effectiveness of Promoting Adaptation

	Conjectured Properties of BAIS+L

	Comparing BAIS+L to the Equi-Energy Sampler
	Simulation from a Mixture Target
	Methodology
	Results and Discussion

	Mixture Exponential Regression
	The Problem
	Methodology
	Results and Discussion

	Conclusion

	Tailoring BAIS+L to Spin Glass Simulation
	Motivation and Goals
	Sampling Approaches
	Multiple Spin Updating with BAIS+L
	Cluster Updating with BAIS+L

	Investigating Multiple Spin Updating with BAIS+L
	Aims
	Methodology
	Results and Discussion
	Conclusion


	An Exact Approach
	Going from an Approximate Approach to an Exact One
	Exact BAIS+L (EBAIS+L)

	Comparing EBAIS+L to BAIS+L
	Methodology
	Results
	Discussion



	Closing Remarks
	Bibliography
	Appendices
	Algorithms Cited from the Literature
	MC Algorithms
	MCMC Algorithms
	Temperature-Based Algorithms
	Mixture Approximation Algorithms
	Adaptive MCMC Algorithms
	Cluster Construction with the Swendsen-Wang Algorithm

	Mixture Exponential Regression Problem Input
	Spin Glass Disorder Sample Couplings

