

CDQL: A Generic Context Definition and Querying
Language for Internet of Things Applications

Alireza Hassani

Faculty of Information Technology

Monash University

Supervisor

Dr. Chris Ling

Dr. Pari Delir Haghighi

Professor Arkady Zaslavsky

Dr. Prem Prakash Jayaraman

Dissertation submitted for partial fulfillment of the Requirements for the

Degree of

Doctor of Philosophy

May- 2019

Monash University

 II

Copyright notice

	

	

	

	

	

	

	

	

©copyright	
by	

Alireza	Hassani

2019

Declaration

This thesis is an original work of my research and contains no material which has

been accepted for the award of any other degree or diploma at any university or

equivalent institution and that, to the best of my knowledge and belief, this thesis

contains no material previously published or written by another person, except where

due reference is made in the text of the thesis.

Signature:

Print Name: Alireza Hassani

Date: 30/06/2019

 II

To my wife Sahar

Acknowledgements

I would like to take the opportunity to appreciate and acknowledge the people whose

contributions and support realised this dissertation.

First and foremost, I want to thank my supervisors Prof. Arkady Zaslavsky, Dr. Chris

Ling, Dr. Pari Delir Haghighi, and Dr. Prem Jayaraman for their supervision,

friendship, support and advice during my PhD candidature.

Arkady, thank you for believing in me and giving me the opportunity to work under

your supervision. I am thankful for your insights and immense knowledge that

enlighten my path and enabled me to complete this PhD dissertation. Working with you

truly thought me a lot and helped me to grow as a research scientist.

Pari, thank you for all your support and help during my candidature. You have been

more than a supervisor for me. Your continuous academic and spiritual supports and

incredible encouragement accompanied me throughout the years of my candidature. I

would also like to thank you for providing me with the opportunity to join your teaching

team.

Prem, I want to thank you for all your invaluable advice, sharp intellect, and brilliant

ideas. Your bright vision has been of great value for my research and considerably

contributed to the development of the context definition and query language in this

dissertation.

Chris, thank you for your kindness, understanding, and support. Your valuable

feedback helped me a lot during my candidature. I truly appreciate the time you took to

review my dissertation and finalise this work.

I would like to thank Allison Mitchell and Helen Cridland for providing me with

administrative support during my research.

I would express my gratitude to Rob Gray for helping me to proofread my

dissertation.

I would like to thank my fellow PhD student, Alexey Medvedev for his friendship

and fruitful discussions.

Last but not least, I would like to thank my family, especially my beloved wife, my

parents, and my brother for their endless support, patience, encouragement, and love.

 IV

Publications during enrolment

This PhD research has resulted in nine peer-reviewed publications. These publications

include one journal article, and eight international conference papers.

Journal

A. Hassani, A. Medvedev, P.D. Haghighi, S. Ling, A. Zaslavsky, & P. P. Jayaraman,

“Context Definition and Query Language: Conceptual Specification,

Implementation, and Evaluation,” Sensors, 19(6), 1478.

A. Hassani, A. Medvedev, P.D. Haghighi, S. Ling, A. Zaslavsky, & P. P. Jayaraman,

P. “Execution of Context queries in dynamic IoT environments,” IEEE Internet

of Things (IoT) Journal, 2019 [planned].

International Conferences

2019

A. Medvedev, A. Hassani, A. Zaslavsky, P. D. Haghighi, S. Ling, P. P. Jayaraman,

and N. Kolbe, “Benchmarking IoT Context Management Platforms: High-level

Queries Matter,” in GIoTS 2019 - Global Internet of Things Summit,

Proceedings, 2019. [Accepted]

2018

A. Hassani, P. D. Haghighi, P. P. Jayaraman, A. Zaslavsky, and S. Ling, “Querying

IoT Services: A Smart Carpark Recommender Use Case,” in 4th IEEE World

Forum on Internet of Things WF-IoT 2018, 2018.

A. Hassani, A. Medvedev, A. Zaslavsy, P. Delir Haghighi, S. Ling, and M. Indrawan-

Santiago, “Context-as-a-Service Platform: Exchange and Share Context in an

IoT Ecosystem,” in Percom 2018, 2018.

A. Medvedev, A. Hassani, A. Zaslavsky, P. D. Haghighi, S. Ling, M. I. Santiago, P.

P. Jayaraman, and N. Kolbe, “Situation Modelling , Representation , and

Querying in Context-as-a-Service IoT Platform,” in GIoTS 2018 - Global

Internet of Things Summit, Proceedings, 2018.

2017

A. Medvedev, A. Hassani, P. Delir Haghighi, A. Zaslavsky, and P. P. Jayaraman,

“Architecting IoT context storage management for context-as-a-service

platform,” in GIoTS 2017 - Global Internet of Things Summit, Proceedings,

2017.

A. Medvedev, A. Hassani, A. Zaslavsky, P. P. Jayaraman, M. Indrawan-Santiago, P.

D. Haghighi, and S. Ling, “Data ingestion and storage performance of IoT

platforms: Study of OpenIoT,” in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), 2017, vol. 10218 LNCS, pp. 141–157.

2016

A. Hassani, A. Haghighi, P. D. Jayaraman, P. P. Zaslavsky, S. Ling, and A.

Medvedev, “CDQL: A Generic Context Representation and Querying

Approach for Internet of Things Applications,” 14th Int. Conf. Adv. Mob.

Comput. Multimed., 2016.

A. Medvedev, A. Zaslavsky, M. I. Santiago, P. D. Haghighi, and A. Hassani, “Storing

and indexing IoT context for smart city applications,” in Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), 2016, vol. 9870 LNCS, pp. 115–128.

 VI

Abstract
As Internet of Things (IoT) grows at a staggering pace, the need for contextual

intelligence is a fundamental and critical factor for delivering IoT intelligence,

efficiency, effectiveness, performance, and sustainability. Contextual intelligence

enables intelligent interactions between IoT devices such as sensors/actuators, mobile

smart phones, smart vehicles to name a few. Context management platforms (CMP) are

emerging as a promising solution to deliver the contextual intelligence for IoT.

However, a generic solution that allows IoT devices and services to publish, consume,

monitor, and share context is still in its infancy.

In this dissertation, we propose, develop, implement, and evaluate a solution that

enables IoT devices and services to seamlessly publish and query context. The first

component of the solution is two novel languages, namely Context Service Description

Language (CSDL) that facilitates publishing context by providing means to describe

and register the IoT devices and services that produce context (i.e. context services);

and Context Definition and Query Language (CDQL) that allows IoT devices and

applications to query and consume the context data produced by context service. The

second component of this solution includes two novel mechanisms, namely Context

Query Engine (CQE) and Situation Monitoring Engine (SME). CQE is responsible for

parsing incoming queries, generating and orchestrating the query execution plan, and

producing the final query result. CQE has a sub-component called Context Service

Discovery (CSD) which allows dynamic discovery of context services based on

incoming queries. Situation Monitoring Engine (SME) enables the execution of

complex context queries and monitoring context for IoT. SME is designed to support

continuous monitoring of incoming context from IoT devices and services, infer

situations from available context, detect changes in situations and provide notification

of detected changes. The proposed solution facilitates the development of context-

aware IoT applications by providing a generic yet tailorable mechanism to query and

publish context.

We exemplify the usage of CDQL on three different smart city use-cases to highlight

how the proposed solution can be utilised to deliver contextual intelligence to IoT

devices and services. We have implemented and conducted extensive experimental

validation of the proposed solutions. Performance evaluation has demonstrated and

validated the scalability and efficiency of the proposed solution against the current

state-of-the-art in handling and servicing a significantly large number of concurrent

context queries originating from IoT devices and services.

The outcomes of this dissertation have resulted in one journal article and nine

international conference papers. Furthermore, the proposed solution has been integrated

with a pioneering CMP called Context-as-a-Service (CoaaS). The proposed query

language namely, CDQL is currently being considered by ETSI CIM group to be

included as part of their specification for context information exchange in smart cities.

 VIII

List of Abbreviations
CASM Communication and Security manager

CC Context Consumer

CCM Contextual Characteristics Matching

CDL Context Definition Language

CDQL Context Definition and Query Language

CEP Complex Event Processing

CMP Context Management Platform

CoaaS Context as a Service

CoC Cost of Context

CP Context Provider

CQA Context Query Aggregator

CQC Context Query Coordinator

CQE Context Query Engine

CQL Context Query Language

CQP Context Query parser

CR Context Request

CRE Context Reasoning Engine

CS Context Service

CSC Context Similarity Calculator

CSD Context Service Discovery

CSDL Context Service Description Language

CSI Context Service Invoker

CSMS Context Storage Management System

CSR Context Service Repository

CST Context Space Theory

NM Notification Manager

PSM Preliminary Service Matching

SDS Situation Description Statement

SIM Situation Inference Manager

SME Situation Monitoring Engine

QoC Quality of Context

SO Situation Orchestrator

 X

Table of Contents

Chapter 1: Introduction ... 1
1.2 INTRODUCTION ... 1

1.3 MOTIVATING USE CASES ... 4

1.3.1 USE CASE 1: SCHOOL SAFETY ... 4

1.3.2 USE CASE 2: SMART PARKING RECOMMENDER ... 5

1.3.3 USE CASE 3: VEHICLE PRE-CONDITIONING ... 5

1.3.4 SUMMARY OF USE-CASES .. 6

1.4 RESEARCH AIM AND QUESTIONS ... 6

1.5 RESEARCH CONTRIBUTIONS AND IMPACT .. 7

1.6 DISSERTATION STRUCTURE .. 8

Chapter 2: Literature review .. 9
2.1 CONTEXT .. 10

2.1.1 DEFINITIONS OF CONTEXT .. 10

2.1.2 CHARACTERISTICS OF CONTEXT ... 12

2.1.3 DEFINITIONS OF CONTEXT-AWARENESS ... 14

2.1.4 CONTEXT MODELLING AND REPRESENTATION .. 15

2.2 THE INTERNET OF THINGS PARADIGM .. 19

2.2.1 WHAT IS THE INTERNET OF THINGS? .. 20

2.2.2 CHARACTERISTICS OF THE IOT .. 22

2.3 CONTEXT IN IOT .. 24

2.4 CONTEXT MANAGEMENT PLATFORM (CMP) FOR IOT ... 25

2.5 CONTEXT SERVICE REGISTRATION AND DISCOVERY .. 27

2.6 CONTEXT QUERY LANGUAGES ... 28

2.6.1 SQL-BASED ... 29

2.6.2 RDF-BASED ... 32

2.6.3 XML-BASED .. 33

2.6.4 API BASED CONTEXT QUERY / OR JSON BASED ... 34

2.6.5 DISCUSSION .. 35

2.7 SUMMARY ... 37

Chapter 3: Context Definition and Query Language ... 39
3.1 CONTEXT-AS-A-SERVICE DEFINITIONS AND BLUEPRINT ARCHITECTURE 40

3.1.1 CONTEX-AS-A-SERVICE: OVERVIEW AND DEFINITIONS 40

3.1.2 COAAS PLATFORM BLUEPRINT ARCHITECTURE ... 45

3.2 CONTEXT SERVICE DESCRIPTION AND CONTEXT QUERY LANGUAGE 48

3.2.1 CONTEXT MODEL ... 49

3.3 CONTEXT SERVICE DESCRIPTION LANGUAGE (CSDL) .. 52

3.4 CONTEXT DEFINITION AND QUERY LANGUAGE (CDQL) .. 54

3.4.1 CONTEXT QUERY LANGUAGE (CQL) ... 54

3.4.2 CONTEXT DEFINITION LANGUAGE (CDL) .. 67

3.5 SUMMARY ... 82

Chapter 4: Context Query and Situation Monitoring Engines: Design and Implementation 83
4.1 CONTEXT QUERY ENGINE ... 83

4.2 CONTEXT QUERY PARSER AND EXECUTION PLAN S GENERATION 85

4.3 CONTEXT QUERY COORDINATOR .. 92

4.3.1 PULL-BASED CDQL QUERY .. 92

4.3.2 PUSH-BASED CDQL QUERY .. 98

4.4 CONTEXT SERVICE DISCOVERY ... 102

4.4.1 CONTEXT SIMILARITY CALCULATOR (CSC) ... 104

4.4.2 PRELIMINARY SERVICE MATCHING (PSM) .. 106

4.4.3 CONTEXTUAL CHARACTERISTICS MATCHING (CCM) 107

4.4.4 EXAMPLE .. 110

4.5 SITUATION MONITORING ENGINE (SME) ... 116

4.6 IMPLEMENTATION .. 120

4.7 SUMMARY ... 129

Chapter 5: CDQL, CQE and SME: Evaluations ... 131
5.1 CDQL QUERY DEMONSTRATION .. 131

5.1.1 USE CASE 1: SCHOOL SAFETY ... 132

5.1.2 USE CASE 2: SMART PARKING RECOMMENDER ... 133

5.1.3 USE CASE 3: VEHICLE PRECONDITIONING .. 140

5.2 COMPARISON OF CDQL WITH NGSI .. 143

5.3 PERFORMANCE EVALUATION .. 147

5.3.1 EXPERIMENT ENVIRONMENT AND METRICS ... 147

5.3.2 EXPERIMENT 1: CONTEXT QUERY ENGINE - PULL-BASED QUERIES 150

5.3.3 EXPERIMENT 2: SITUATION MONITORING ENGINE ... 154

5.3.4 EVALUATION OF CONTEXT SERVICE DISCOVERY ALGORITHM 158

5.4 SUMMARY ... 161

Chapter 6: Conclusion ... 162
6.1 SUMMARY OF CONTRIBUTIONS ... 162

6.2 LIMITATIONS AND FURTHER RESEARCH ... 165

Glossary………….. ... 167

References……… ... 168

Appendices……… .. 183

 XII

List of Figures
FIGURE 1.1 - SCHOOL SAFETY USE-CASE .. 4

FIGURE 1.2 - DISSERTATION STRUCTURE .. 8

FIGURE 2.1 - STRUCTURE OF CHAPTER 2 .. 9

FIGURE 3.1 - OVERVIEW OF CONTEXT-AS-A-SERVICE PLATFORM IN IOT 41

FIGURE 3.2 - COAAS BLUEPRINT ARCHITECTURE .. 45

FIGURE 3.3 - ENTITY DATA MODEL .. 50

FIGURE 3.4 - STRUCTURE OF CSDL .. 53

FIGURE 3.5 - AN EXAMPLE OF SERVICE DESCRIPTION IN CSDL ... 54

FIGURE 3.6 - CQL PRODUCTION RULE .. 55

FIGURE 3.7 - PREFIX CLAUSE PRODUCTION RULE ... 55

FIGURE 3.8 - SELECT CLAUSE PRODUCTION RULE .. 56

FIGURE 3.9 - DEFINE CLAUSE PRODUCTION RULE ... 57

FIGURE 3.10 - CONDITION CLAUSE PRODUCTION RULE .. 58

FIGURE 3.11 - SORT-BY CLAUSE PRODUCTION RULE .. 59

FIGURE 3.12 - SUBSCRIPTION CLAUSE PRODUCTION RULE .. 62

FIGURE 3.13 - SET CLAUSE PRODUCTION RULE .. 64

FIGURE 3.14 - OUTPUT-CONFIG CLAUSE PRODUCTION RULE ... 66

FIGURE 3.15 - CDL PRODUCTION RULE .. 69

FIGURE 3.16 - CREATE FUNCTION PRODUCTION RULE .. 70

FIGURE 3.17 - API-BASED AGGREGATION FUNCTIONS ... 72

FIGURE 3.18 - CST-SITUATION STATEMENT PRODUCTION RULE .. 76

FIGURE 3.19 - CST-ATTRIBUTE-DEFINITION ... 77

FIGURE 3.20 - HIGH-LEVEL-SITUATION STATEMENT PRODUCTION RULE 79

FIGURE 3.21 - ALLEN’S ALGEBRA GRAPHICAL REPRESENTATION (I STANDS FOR INVERSE) .. 80

FIGURE 3.22 - ISVALID FUNCTION PRODUCTION RULE ... 81

FIGURE 4.1 - CONTEXT QUERY ENGINE ARCHITECTURE .. 84

FIGURE 4.2 - CDQL EXECUTION PLAN GENERATOR .. 87

FIGURE 4.3 - QUERY EXECUTION PLAN GRAPH .. 91

FIGURE 4.4 - PUSH-BASED CDQL EXECUTION WORKFLOW ... 93

FIGURE 4.5 - PUSH-BASED CDQL EXECUTION WORKFLOW ... 99

FIGURE 4.6 - AN EXAMPLE OF SUBSCRIPTION DATA MODEL ... 100

FIGURE 4.7 - CONTEXT SERVICE DISCOVERY ARCHITECTURE ... 103

FIGURE 4.8 - SEMANTIC HIERARCHY EXAMPLE BASED ON SCHEMA.ORG 105

FIGURE 4.9 - CONTEXTUAL CHARACTERISTICS MATCHMAKING ALGORITHM 109

FIGURE 4.10 - VISUALISATION OF EXAMPLE FOR CONTEXT SERVICE DISCOVERY PROCESS . 109

FIGURE 4.11 - SITUATION MONITORING ENGINE .. 116

FIGURE 4.12 - SME WORKFLOW ... 117

FIGURE 4.13 - SITUATION INFERENCE ALGORITHM .. 119

FIGURE 4.14 - ARCHITECTURE OF PROTOTYPE IMPLEMENTATION OF COAAS PLATFORM ... 120

FIGURE 4.15 - AUTHENTICATION AND AUTHORISATION MECHANISM 121

FIGURE 4.16 - COAAS IDE .. 127

FIGURE 4.17 - SITUATION MONITORING INTERFACE .. 127

FIGURE 4.18 - NODE-RED BASED EXAMPLE .. 128

FIGURE 5.1 - SMART PARKING SUGGESTION APPLICATION SCREENSHOT 134

FIGURE 5.2 - POC PARKING APPLICATION SCREENSHOT ... 137

FIGURE 5.3 - EXECUTION AND INTERACTION PROCESS OF SMART PARKING SUGGESTION .. 138

FIGURE 5.4 - PRE-CONDITIONING SCENARIO WORKFLOW ... 140

FIGURE 5.5 - ACTIVATION OF BMW I3 CLIMATE CONTROL SYSTEM 141

FIGURE 5.6 - QUERY RESPONSE TIME VS INPUT RATE ... 153

FIGURE 5.7 - QUERY RESPONSE TIME VS NUMBER OF REGISTERED ENTITIES 154

FIGURE 5.8 - THROUGHPUT VS INPUT RATE .. 156

FIGURE 5.9 - RESOURCE UTILIZATION ... 156

FIGURE 5.10 - PROCESSING TIME VS THROUGHPUT .. 157

FIGURE 5.11 - PROCESSING TIME VS NUMBER OF SUBSCRIPTIONS .. 157

FIGURE 5.12 - CPU UTILISATION VS NUMBER OF SUBSCRIPTIONS .. 158

FIGURE 5.13 - PERFORMANCE OF CSD ... 159

FIGURE 5.14 - PRECISION VS RECALL OF CSD .. 160

 XIV

List of Tables
TABLE 2.1 - IOT DEFINITIONS .. 21

TABLE 2.3 - EVALUATION OF EXISTING CQLS .. 36

TABLE 3.1 - COAAS MAJOR COMPONENTS .. 46

TABLE 3.2 - CONTEXT METADATA .. 51

TABLE 3.3 - CQL BUILT-IN FUNCTIONS ... 67

TABLE 4.1 - RPNCONDITION REFORMULATION STRATEGIES .. 95

TABLE 4.2 - REGISTERED PARKING FACILITIES' CONTEXT SERVICES 111

TABLE 4.3 - RESULT OF PSM ... 112

TABLE 4.4 - ASSIGNED IDS FOR EACH PREDICATE ... 113

TABLE 4.5 - OUTCOME OF CCM FOR THE FIRST CONJUNCTION ... 115

TABLE 4.6 - OUTCOME OF CCM FOR THE SECOND CONJUNCTION IN 115

TABLE 4.7 - COAAS INTERFACE ENDPOINTS ... 122

TABLE 5.1 - CDQL QUERIES FOR PERFORMANCE EVALUATION ... 151

List of Code Blocks
CODE BLOCK 2.1 - A BASIC CONDITION EXPRESSED IN SPARQL .. 32

CODE BLOCK 3.1 - EXAMPLE OF PREFIX CLAUSE ... 56

CODE BLOCK 3.2 - EXAMPLE OF SELECT CLAUSE .. 57

CODE BLOCK 3.3 - EXAMPLE OF DEFINE CLAUSE ... 60

CODE BLOCK 3.4 - EXAMPLE OF A PULL-BASED QUERY ... 61

CODE BLOCK 3.5 - EXAMPLE OF A BASIC PUSH-BASED .. 63

CODE BLOCK 3.6 - EXAMPLE OF USING WHEN CLAUSE IN A CDQL QUERY 63

CODE BLOCK 3.7 - EXAMPLE OF PUSH-BASED QUERY WITH CALLBACK CLAUSE 65

CODE BLOCK 3.8 - EXAMPLE OF QUERYING THE RESULTS OF SUBSCRIPTIONS 65

CODE BLOCK 3.9 - EXAMPLE OF META CLAUSE .. 66

CODE BLOCK 3.10 - EXAMPLE OF CREATE-FUNCTION CLAUSE .. 72

CODE BLOCK 3.11 - EXAMPLE OF CREATING A CUSTOM AGGREGATION FUNCTION USING

JAVASCRIPT ... 73

CODE BLOCK 3.12 - EXAMPLE OF CST-BASED SITUATION FUNCTION DEFINITION 78

CODE BLOCK 3.13 - EXAMPLE OF ISVALID FUNCTION ... 81

CODE BLOCK 4.1 - CDQL FOR FINDING TRAFFIC INCIDENT NEAR A SPECIFIC VEHICLE 86

CODE BLOCK 4.2 - AN EXAMPLE OF PARSED CDQL QUERY ... 89

CODE BLOCK 4.3 - EXTENDED PARKING AND TRAFFIC ELEMENTS QUERY 90

CODE BLOCK 4.4 - CDQL QUERY FOR FINDING VEHICLES DRIVING FASTER THAN 60 KM/H

NEAR A SCHOOL IN MELBOURNE ... 96

CODE BLOCK 4.5 - REFORMULATED WHERE CLAUSE ... 97

CODE BLOCK 4.6 - AN EXAMPLE OF SIDDHI APPLICATION GENERATED BY THE CQC 101

CODE BLOCK 4.7 - CDQL QUERY FOR FINDING AVAILABLE PARKING OPTIONS 110

CODE BLOCK 4.8 - EXAMPLE OF AUTHENTICATION REQUEST .. 122

CODE BLOCK 4.9 - EXAMPLE OF ISSUING CDQL QUERY .. 123

CODE BLOCK 4.10 - EXAMPLE OF SENDING CONTEXT UPDATE .. 124

CODE BLOCK 5.1 - CDQL QUERY FOR SCHOOL SAFETY USE-CASE. 133

CODE BLOCK 5.2 - CDQL QUERY FOR SMART PARKING RECOMMENDER USE-CASE. 135

CODE BLOCK 5.3 -CDQL QUERY FOR VEHICLE PRECONDITIONING USE-CASE. 142

CODE BLOCK 5.4 - NGSI QUERIES FOR SMART PARKING RECOMMENDER USE-CASE. 144

CODE BLOCK 5.5 - NGSI SUBSCRIPTION. .. 145

 1

Chapter 1: Introduction

1.2 INTRODUCTION

Nowadays, the advancements in hardware and software technologies have made it

possible to embed sensing, computation, and communication capabilities in everyday

objects, from a coffee mug to an autonomous car, and turn them into smart connected

devices. These devices can form a worldwide network of interconnected objects, where

each device can collect and distribute enormous amounts of data about its environment.

This network is known as the Internet of Things (IoT). IoT is a fast-evolving trend and

expected overall spending on IoT will reach US $1.3 trillion by 2020 from US $696

billion in 2015 (Meulen, 2017).

Due to the proliferation of smart connected devices (known as IoT devices or IoT

things), which is expected to reach 20 to 30 billion in 2020 (Meulen, 2017), it is possible

to build services that can share rich, useful and relevant information to users about an

entity of interest (e.g. the environment, a car, a building to name a few). These services,

which are referred to as IoT services, enable that development of many applications in

various domains, such as smart cities, smart environment, smart agriculture, and

eHealth.

A key requirement for IoT to be able to deliver the smartness is the ability to extract

context from the data produced by IoT devices. Context as defined by Dey, is “any

information that can be used to characterise the situation of an entity, where an entity

is a person, place, or object that is considered relevant to the interaction between a user

and an application, including the user and applications themselves” (Dey, 2001, p. 5).

The greater benefit is in being able to share this context extracted/reasoned from data

produced by the IoT devices with other IoT applications that can use this context to

support decision making, actuation, analysis etc. For example, consider a smart home

scenario where a smart washing machine is tasked to wash a piece of clothing tagged

with information (e.g. using RFID) regarding fabric care instructions. Using this

information, the smart washing machine can automatically choose the right setting for

washing the clothes. Moreover, this information can be used by a smart tumble dryer

to decide what temperature and Revolution Per Minute (RPM) should be used for

 2

drying the clothes. Assuming the delicate clothing material is not suitable for tumble

drying, without context, the smart dryer will dry the clothes unaware of this fact.

Augmenting IoT application with context that stem from IoT devices will enable the

application (e.g. an application running on the smart dryer) to reason about the data and

arrive at the right decision, in this case, not to tumble dry the delicate clothes.

Such IoT applications that utilise context data and adapt their behaviours

accordingly are known as context-aware IoT applications. Context-awareness enables

intelligent adaptation of IoT applications such that they can perform their tasks in an

efficient, proactive and autonomous manner (Perera, Zaslavsky, Christen, &

Georgakopoulos, 2014). Further, context can have different levels of abstraction.

Context can be low-level information such as a Celsius temperature value of 35 or high-

level context, which is inferred from low-level context such as ‘a fire threat’. High-

level context is also known as ‘situation’. While context-driven intelligence is a

fundamental factor for IoT sustainability, growth, interoperability and acceptance,

IoT’s characteristics, such as scalability, big data, heterogeneity and dynamism, will

make the development of context-aware IoT applications and services a very

challenging task.

In general, three typical approaches exist for the development of context-aware

applications (Li, Eckert, Martinez, & Rubio, 2015). In the first approach, context-aware

applications acquire, process and use their context of interest themselves. In the second

approach, context-aware applications are developed by using some libraries/toolkits

that facilitates obtaining and processing context. In the third approach, the context-

aware applications are developed on the basis of context-aware middleware that enables

context management (i.e. acquire, process, store, and publish). The third approach,

which is referred to as Context Management Platform (CMP), is superior to the first

and second approaches as it can reduce the complexity of developing context-aware

IoT applications (Li et al., 2015).

A fundamental requirement of a context management platform is to be able to

provide support for publishing, querying, monitoring, and sharing contextual

information. Such a platform will manage interaction between sources of context; in

our case context provided and reasoned from IoT devices, and offers contextual

information to context-aware IoT applications. A notable number of CMPs have been

 3

proposed; surveys of which have been published for instance in (Baldauf, Dustdar, &

Rosenberg, 2007; Hong, Suh, & Kim, 2009; Knappmeyer, Kiani, Reetz, Baker, &

Tonjes, 2013; Truong & Dustdar, 2009). However, the existing CMPs suffer from one

common shortcoming, which is the lack of a generic and expressive interface that

allows IoT devices, applications, and services to publish, consume, monitor, and share

context data seamlessly.

In this dissertation, we propose, develop, implement, and evaluate a comprehensive

solution for publishing, querying, monitoring, and sharing context. The proposed

solution will facilitate the development of smarter and context-aware IoT applications.

The proposed solution consists of two specially designed languages, namely Context

Service Description Language (CSDL) that facilitates publishing context by providing

the means to describe and register the IoT devices and services that produce context

(i.e. context services); and Context Definition and Query Language (CDQL) that allows

IoT devices and applications to query, monitor, and consume the context data produced

by IoT devices and services.

Based on the aforementioned languages, we propose, develop, and implement two

engines, namely Context Query Engine (CQE) and Situation Monitoring Engine

(SME), that enable execution of complex context queries and monitoring context in IoT

ecosystem. CQE is mainly responsible for parsing the incoming queries, generating and

orchestrating the query execution plan, and producing the final query result.

Furthermore, CQE has a sub-component called Context Service Discovery (CSD)

which allows dynamic discovery of context services based on incoming queries. The

Situation Monitoring Engine (SME) is designed to support continuous monitoring of

incoming context, infer situations from available context, detect changes in situations

and provide notification of detected changes.

The solution proposed in this dissertation has been integrated and is an underpinning

component of a pioneering CMP called Context-as-a-Service (CoaaS). CoaaS is part of

EU Horizon-2020 project called bIoTope
1
 – Building IoT OPen Innovation Ecosystem

for connected smart objects.

1
 www.biotope-h2020.eu

 4

1.3 MOTIVATING USE CASES

In this section, we present three motivating smart city use cases that highlight the

need for a solution to publish, monitor, and query context in IoT environment.

1.3.1 USE CASE 1: SCHOOL SAFETY

The first use case is called school safety and is depicted in Figure 1.1. Consider

a user John who wants to pick up his daughter, Hannah, from school. On his way to

school, due to unexpected traffic, he realises that he cannot arrive at the school on time.

Realising this, a smart IoT system begins to determine alternatives to achieve the goal

“pick up Hannah”.

Figure 1.1 - School safety use-case

An option could be to request another trusted parent to pick up Hannah from

school on John’s behalf. In order to represent this context request, several factors should

be considered, namely:

• The selected parent(s) for picking up Hannah should be trusted by John;

• The selected parent(s) should have a car with an extra seat for Hanna;

• The selected parent(s) should be close enough to the school;

• The child of the selected parent(s) should finish school at the same time as Hannah;

• The child of the selected parent(s) should be currently at school.

 5

• Additionally, this process needs to be automated, so John’s device can

automatically trigger the same query, “pick up Hannah” whenever he is running

late.

1.3.2 USE CASE 2: SMART PARKING RECOMMENDER

The second use case we consider in this paper focuses on facilitating the

development of a context-aware IoT application that suggests parking facilities to

drivers. Such an application needs to: 1) have access to live data regarding the

availability of different parking facilities owned by different providers (e.g., city

administrators, building owners, and organizations), 2) provide personalised

recommendations to users, considering factors such as user preferences, car

specifications, and related environmental conditions such as weather and 3)

continuously monitor relevant context and notify the driver about any changes in

situations that can affect his/her experience, e.g. notify the driver if the suggested

parking becomes unavailable or another parking place with better conditions (such as

cheaper or closer to the destination) becomes available.

1.3.3 USE CASE 3: VEHICLE PRE-CONDITIONING

The third use case under consideration is a smart connected electric vehicle pre-

conditioning use-case. Pre-conditioning allows the drivers to begin their journey with

a properly heated or cooled cabin. The pre-conditioning use case requires continuous

monitoring of several situations (computed from context of various IoT smart things

and applications) such as the car’s location (provided by the connected car), the driver’s

location, the driver’s calendar (provided by the driver’s smart mobile device), and

weather conditions (obtained from nearby IoT weather stations) to name a few.

Moreover, such a use-case also requires specific reasoning to infer the likelihood of the

driver commencing a journey, e.g. walking past the car is different from walking

towards the car to begin a journey. Finally, based on inferred situations, an actuation

signal to start the pre-conditioning process will be sent to the car’s onboard computer.

 6

1.3.4 SUMMARY OF USE-CASES

Developing context-aware IoT applications for the abovementioned use cases,

which utilise context to provide better services to the end users, is a complicated task.

This complexity is formed by the need to discover heterogeneous sources of context

(silos) that can provide data about the entities of interest for each use case. Moreover,

the raw data produced by these sources will not be of any use unless it is analysed and

interpreted. For example, in order to implement an application for the smart parking

recommender use case, several challenges need to be addressed. First of all, it is

essential to have access to live data regarding the availability of different parking

facilities. The fact that these facilities are owned by different providers (e.g. city

administrators, building owners, and organizations) makes the process of data retrieval

even more complex. Further, to be able to provide personalised suggestions to the users,

it is necessary to consider additional factors, such as user preference, user calendar, car

specifications, and weather condition. Moreover, some of this data needs to be reasoned

before being used. Lastly, the application should be capable of processing streams of

data in order to continuously monitor relevant context to this use case (i.e. the suggested

parking becomes unavailable). Addressing all of these challenges needs a considerable

amount of effort even for an expert team of software developers.

One possible solution for tackling these challenges is to develop a context

management platform that enables applications to publish and consume context about

their entities of interest seamlessly, without requiring manual integration of IoT silos.

However, since all these use cases have different requirements, it is essential for a

context management platform to support an expressive language that makes it possible

to query context according to the needs of a consumer. As a result, utilising such a

platform can free developers from the concern of managing context and allow them to

focus on designing desired application functions and business logic.

1.4 RESEARCH AIM AND QUESTIONS

The aim of this dissertation is to investigate, propose, design, implement and validate

a generic approach to define, represent, monitor, and query context. We have

formulated the following research question to address this aim:

 7

RQ1- How can context be shared, exchanged, monitored, and queried by a feature-

rich query language in IoT environments?

In order to address the research question (RQ1), the following sub-questions need to

be addressed.

• RQ1.1- What formal methods can be used to represent, model and reason about

context?

• RQ1.2- How can context queries and services be defined and represented in formal

language constructs?

• RQ1.3- How can IoT entities (context consumers and providers) communicate to

advertise, monitor, discover and invoke context?

1.5 RESEARCH CONTRIBUTIONS AND IMPACT

This section lists the main contributions and impact of this dissertation to the current

body of knowledge. We have:

• Designed and developed a novel language for describing and registering context

services.

• Designed and developed a novel context query language, which is under review by

ETSI CIM group as complementary to its current proposed draft of NGSI-LD

especially in addressing high-level context- and situation-awareness.

• Designed and developed a mechanism (i.e. Context Query Engine) that allows

execution of complex context queries.

• Designed and developed a service discovery technique that can discover eligible

context services based on the query requirements.

• Designed and developed a situation monitoring engine that supports continuous

monitoring of incoming context, infers situations from available context using a

well-established situation inference method, detects changes in situations and

provide notification of detected changes.

• Implemented a prototype of the proposed solution and validated it by conducting a

comprehensive evaluation, using real-world and synthetic datasets.

 8

1.6 DISSERTATION STRUCTURE

The dissertation is arranged in succession in terms of background, theoretical

contributions, architectural approach, evaluation, and conclusion. It progressively

presents different facets of our proposed context service description and query language

and builds upon these as the basis for developing a context management platform.

Roadmap for the dissertation layout is presented in Figure 1.2. The dissertation

comprises a background chapter (Chapter 2) followed by two theoretical chapters

(Chapters 3 and 4), presenting the research theoretical contributions. Moreover,

Chapter 4 also presents the design and implementation of the proposed solution. The

case-studies and evaluation of the proposed solution are presented in Chapter 5. Lastly,

Chapter 6 concludes the entire dissertation.

Figure 1.2 - Dissertation structure

Fo
un

da
tio

ns
So

lu
tio

n
Ap

pr
oa

ch
Ev

al
ua

tio
n

&

Co
nc

lu
sio

n

Chapter 1
Introduction

Chapter 2
Literature Review

Chapter 3
Context Model and CDQL

Chapter 4
Framework design and Implementation

Chapter 5
Evaluation

Chapter 6
Conclusion

 9

Chapter 2: Literature review

Chapter 1 described the research problem under consideration in this PhD

dissertation. It presented an overview of the structure of this dissertation and described

the research aims and contributions. This chapter presents a review of the relevant

literature on context management and provisioning for the IoT ecosystem and identifies

gaps in the body of knowledge.

We first provide a background on context-aware computing that includes

definitions of context, and context modelling. Then we introduce IoT and briefly

describe and explore the importance of context in IoT. We explain the main challenges

that need to be addressed in order to successfully utilise the context produced by IoT in

context-aware IoT applications. We provide a background on context management and

provisioning platforms (CMP) for IoT with specific focus on their ability to query

contextual information. On this basis, we provide detailed descriptions of current state-

of-the-art context query languages. We identify six main requirements for a context

query language (CQL) that considers the characteristics of context-aware IoT

applications (such as the motivating use-cases presented in Chapter 1). Finally, we

conduct a comparative analysis of current state-of-the-art CQLs based on the identified

requirements. The structure of this chapter is represented in Figure 2.1.

Figure 2.1 - Structure of Chapter 2

IoT
(Section 2.2)

Context
(Section 2.1)

Context in IoT
(Section 2.3)

CMP
(Section 2.4)

CQL
(Section 2.5)

 10

2.1 CONTEXT

2.1.1 DEFINITIONS OF CONTEXT

The term context (from Latin contextus, from con- together + texere to weave.)

is defined in the Oxford dictionary as “The circumstances that form the setting for an

event, statement, or idea, and in terms of which it can be fully understood”. While this

definition is understandable for most people, it is not clear enough to be used as a formal

definition. Therefore, a considerable number of attempts have been made by many

researchers to develop a generic and standard definition for the term context. In this

section, in order to find a formal definition that meet the requirements of this research,

we will look at the existing context definitions used in the literature. These works can

be classified into three main categories: defining context by example, defining context

by synonyms, and defining context by concepts. The latter is a more formal approach

and concentrates on the relationships and structure of contextual information (Kofod-

petersen & Mikalsen, 2005).

Defining Context by Example

In general, this category of context definitions refers to those works that try to

determine context by using examples. In the rest of this section, an overview of some

of the well-known context definitions that fall into this category is provided.

The term context was introduced for the first time by Theimer and Schilit (1994).

They define context as ‘where you are, who you are with, and what resources are

nearby’. In this definition, location is considered as the core element of the context.

However, Theimer and Schilit (1994) partially include contextual information about

nearby people and objects in their definition as well. Abowd and Mynatt (2000) also

proposed a similar definition and identified the five W’s (Who, What, Where, When,

Why) as the minimum information that is necessary to understand context.

These definitions that define context by example are hard to use. The main

shortcoming of this type of context definition is their inability to determine whether a

potential new type of information is context or not. For example, none of the previous

definitions helps decide whether a user’s preferences or interests are context

information or not.

 11

Defining Context by Synonyms

Another sub-class of context definition describes context by simply providing

synonyms for context, referring to context as the environment or situation (Brown,

Bovey, & Chen, 1997; Franklin & Flachsbart, 1998; Hull, Neaves, & Bedford-Roberts,

1997; Rodden, Cheverst, Davies, & Dix, 1998; Ryan, Pascoe, & Morse, 1999; Ward,

Jones, & Hopper, 1997).

Brown et al. (1997) defined context as location, identity of nearby people, and

time of day. Ryan et al. (1999) reported on a fieldwork where they viewed context as

location, environment, identity, and time. Franklin and Flaschbart (1998) saw it as the

situation of the user. Ward et al. (1997) viewed context as the state of the application’s

surroundings and Rodden et al. (1998) defined it as the application’s setting. Hull et al.

(1997) included the entire environment by defining context to be aspects of the current

situation. These definitions are clearly more general than enumerations, but this

generality is also a limitation. These definitions provide little guidance to analyse the

constituent elements of context, much less identify them. Furthermore, these definitions

are also inadequate to identify new context (Dey, 2001).

Defining Context by Concepts

Some other researchers try to formally define context. Schmidt et al. (1999)

defined context as “knowledge about the user’s and IT device’s state, including

surroundings, situation, and to a less extent, location” (p. 90). Another formal definition

is provided by Chen and Kotz (2000). They defined context as “set of environmental

states and settings that either determines an application’s behaviour or in which an

application event occurs and is interesting to the user.” (G. Chen & Kotz, 2000, p. 3)

Dey (2001) defines context as “any information that can be used to characterize

the situation of an entity. An entity is a person, place, or object that is considered

relevant to the interaction between a user and an application, including the user and

applications themselves” (Dey, 2001, p. 5). We adopt this definition and define context

as follows:

 12

Definition 2.1 (Context). Context is the information that can be used to characterise

the state of an entity. Entities are persons, locations, or objects that affects the behaviour

of an application.

2.1.2 CHARACTERISTICS OF CONTEXT

Context information has a set of unique characteristics that makes it different

from raw data. In this section, we review the existing characteristics defined for the

context information in the literature.

Henricksen, Indulska, and Rakotonirainy (2002) considered four characteristics

for context information which are listed below:

• “Context Information Exhibits a Range of Temporal Characteristics.” Contextual

information can be classified into two groups, static context and dynamic context.

The static context is referred to context information that is invariant, such as date

of birth of a person. However, since pervasive systems are typically characterised

by frequent changes, most of the context information falls into the second category,

dynamic context. The change frequency of dynamic context information does not

follow a fixed pattern. For instance, the occupation of a person typically remains

unchanged for years, while a person’s location and activity often change from one

minute to the next.

• “Context Information is Imperfect.” Contextual information might be incorrect

(reflecting the wrong state of the world), inconsistent (containing contradictory

information), or incomplete (missing some aspects of the context).

• “Context has Many Alternative Representations.” In other words, different

applications are interested in different aspects of the same contextual value based

on their requirements. For example, a location sensor may supply raw coordinates,

whereas one application might be interested in the identity of the building, and the

other application might be interested in the identity of the suburb. Therefore, a

context model must support multiple representations of the same context in

different forms and at different levels of abstraction, and must also be able to

capture the relationships that exist between alternative representations.

• “Context Information is Highly Interrelated.”

 13

Another important aspect of context information is Quality of Context (QoC). As

Henricksen et al. (2002) discussed, context information is imperfect. Krause and

Hochstatter (2005) stated some of the main reasons for unreliable or error-prone context

information:

• Unavailability of required context information (or context sources).

• Out-dated context information which is no longer reflecting the correct state of the

world.

• Inaccurate and malfunctioning sensors due to physical constraints.

• Possible issues in the inference and reasoning mechanism.

• Existence of malicious external context sources which can provide wrong context

that is not real.

Due to these reasons, QoC plays a vital role in context-aware systems. Buchholz,

Küpper, and Schiffers (2003) present a set of parameters to determine QoC. These

parameters are precision, probability of correctness, trust-worthiness, resolution and

up-to-dateness. They also proposed a formal definition for QoC:

“Quality of Context (QoC) is any information that describes the quality of information

that is used as context information. Thus, QoC refers to information and not to the

process nor the hardware component that possibly provide the information.” (Buchholz

et al., 2003, p. 5).

Some other researchers also provide their own definitions of QoC and identify a

set of parameters to determine the quality of context (Manzoor, Truong, & Dustdar,

2008; Sheikh, Wegdam, & Van Sinderen, 2007). Since analysing all of these works is

out of scope for this dissertation, we only provide the key QoC parameters discussed in

these papers and their definitions.

• Precision describes how exactly the provided context information mirrors reality

(Buchholz et al., 2003).

• Probability of correctness is defined as the probability that an instance of context

accurately represents the corresponding real world situation, as assessed by the

context source, at the time it was determined (Sheikh et al., 2007).

 14

• Trust-worthiness describes how likely it is that the provided information is correct

(Buchholz et al., 2003).

• Resolution denotes the granularity of information (Buchholz et al., 2003).

• Up-to-datedness/freshness describes the age of context information (Buchholz et

al., 2003). This parameter can be used to identify the degree of rationalism to use a

context object for a specific application at a given time (Manzoor et al., 2008).

• Temporal resolution determines the period to which a single instance of context

information is applicable (Sheikh et al., 2007).

The last important aspect of context we want to mention in this section is Cost of

Context (CoC). CoC can be defined as the cost for acquiring the context information.

This does not necessarily need to be monetary but can also be interpreted as for example

power consumption of the sensors for acquiring the information. Villalonga et al.

(2009) define Cost of Context (CoC) as a parameter associated to the context that

indicates the resource consumption used to measure or calculate the piece of context

information.” (Villalonga, Roggen, Lombriser, Zappi, & Tröster, 2009).

2.1.3 DEFINITIONS OF CONTEXT-AWARENESS

As we mentioned earlier, the term “context-aware” was introduced for the first

time by Theimer and Schilit (1994). Based on their definition, a software is context-

aware if it “adapts according to the location of the user, the collection of the nearby

people, hosts, and accessible devices, as well as to changes to such things over time.”

(Theimer & Schilit, 1994, p. 22). Later, a similar definition was stated by Ryan et al.

(1999).

Abowd et al. (1999) showed that those definitions are too specific to be used as

yardsticks to identify whether a given application is context-aware or not. Therefore, to

solve this problem, Abowd et al. (1999) provide their definition of context-awareness

as follows: “A system is context-aware if it uses context to provide relevant information

and/or services to the user, where relevancy depends on the user’s task.” (Abowd et al.,

1999).

 15

Later, Chen, Finin, and Joshi (2004) defined context-awareness as “a computer

system’s ability to provide relevant services and information to users based on their

situational conditions.” (p. 1) .

The last two definitions, proposed by Abowd et al. (1999) and Chen et al. (2004),

focus on the provisioning of information and/or services to the user. However, some

other researchers have another point of view and proposed a more general definition

for context-awareness. For instance, in the work done by Razzaque, Dobson and Nixon

(2005), context-awareness is defined as “a term from computer science, which is used

for devices that have information about the circumstances under which they operate

and can react accordingly” (p. 2).

Becker and Nicklas (2004) state that “an application is context-aware if it adapts

its behaviour depending on the context” (p. 2). Baldauf et al. (2007) introduced a new

aspect of context-aware systems (i.e. self-adaptiveness) and defined it as a system that

is “able to adapt their operations to the current context without explicit user intervention

and thus aim at increasing usability and effectiveness by taking environmental context

into account.” (p. 263). Similarly, Huebscher and McCann (2004) defined context-

awareness as “the ability of an application to adapt itself to the context of its user(s).”

(p. 111). Both definitions mentioned above highlight the context of the user.

In our opinion, both – the context of the user of the application and the context of

the application itself – are important. The following definition will be used in this

dissertation:

Definition 2.2 (Context-Awareness). An application is context-aware, if it

adapts its behaviour to the context of itself, its users, or its surrounding environment.

2.1.4 CONTEXT MODELLING AND REPRESENTATION

The main motivation behind this research work is to enable IoT entities (e.g.

machines and smart devices) to share and exchange their context with each other. To

achieve this goal (context sharing and interoperability between different context-aware

applications), it is essential to have a uniform and machine understandable

representation scheme for context information. Otherwise, it is not possible for different

systems to communicate with each other without a common understanding among

 16

them. We refer to this common understanding as a Context Model. It is essential to

have a sophisticated context model. In this section, we first provide a definition for

context modelling and then review the most relevant context modelling approaches.

Knappmeyer et al. (2013) defined context modelling as “the process of designing

a model of real world entities, their properties, state of their environment and situations

that can be used as a reference for acquiring, interpreting and reasoning contextual

information”. We accept this definition to be used in this research work.

Strang and Linnhoff-Popien (2004) and Bettini et al (2010) surveyed the most

popular context modelling techniques. Strang and Linnhoff-Popien (2004) identify a

set of generic requirements for context modelling. They claim the modelling approach

should:

• Be able to cope with high dynamics and distributed processing and composition.

• Allow for partial validation independent of complex interrelationships.

• Enable rich expressiveness and formalism for a shared understanding.

• Indicate richness and quality of information (QoI).

• Not assume completeness and unambiguousness.

• Be applicable to existing infrastructures and frameworks.

Context modelling techniques can be categorised into six different classes,

namely key-value models, mark-up scheme models, graphical models, object oriented

models, logic-based models and ontology based models (Baldauf et al., 2007). More

recently, Ikram, Baker, Knappmeyer, Reetz, and Tonjesy (2011) introduced a new class

of context modelling, chemistry inspired models. In the rest of this section, a brief

overview and pros and cons of each of these modelling approaches is presented.

Key-value

Key-value approach is the simplest form of context modelling. In this approach,

contextual information is modelled as key-value pairs and is represented in different

formats (e.g. text files, and binary files). This approach is only applicable when we are

dealing with small amounts of data. However, in more complex systems, key-value

modelling is not a good option since it is not scalable and cannot handle complex data

structures. Moreover, this technique lacks the ability to model hierarchical structures or

 17

relationships. Therefore, it cannot efficiently extract the modelled information. Another

disadvantage of key-value modelling is its inability to attach meta information.

Mark-up Scheme Modelling

Mark-up Scheme Modelling uses hierarchical data structure consisting of mark-

up tags with attributes and content to model and represent contextual information. This

technique has some advantages over key-value modelling. The first advantage is that it

allows efficient data retrieval (Perera et al., 2014). Further, it supports validation and

range checking. Most of the works done in this category use the most well-establish

mark-up language, XML (Extensible Markup Language) which provides sophisticated

validation tools. However, the concept of mark-up languages is not limited only to

XML. Any language or mechanism (e.g. JSON) that supports tag-based storage allows

mark-up scheme modelling.

Mark-up scheme modelling suffers from two major drawbacks. Firstly, this

modelling technique does not support expressive capabilities which allow reasoning.

Further, due to the lack of design specifications, context modelling, context retrieval,

context interoperability, and context re-usability over different mark-up schemes can

be difficult.

Examples include the User Agent Profile and the Composite

Capabilities/Preference Profile (CC/PP) (Klyne et al., 2004), which are based on XML

and standardised by the World Wide Web Consortium (W3C). The Context Meta

Language (ContextML) (Knappmeyer, Kiani, Frà, Moltchanov, & Baker, 2010) is

another mark-up based scheme that represents not only context information but also

context metadata as well.

Graphical models

Graphical models (e.g. based on the Unified Modelling Language) allow for a

pictorial description of a context model (Sheng & Benatallah, 2005) and for deriving

an Entity-Relationship model as required in relational databases. Graphical context

models are readable by both machines and humans. Further, it is a great tool for

identifying relations between model components.

 18

An extension is proposed by Henricksen and Indulska (2004), introducing

Object-Role Modelling (ORM). This approach also has a number of disadvantages,

namely complex querying, and poor support of interoperability due to the existence of

different implementation.

Object-Oriented Models

Object oriented concepts are used to model data using class hierarchies and

relationships. Object oriented paradigm promotes encapsulation and reusability.

Further, object-oriented models offer powerful capabilities of inheritance. As most of

the high-level programming languages support object-oriented concepts, modelling can

be integrated into context-aware systems easily. Access of contextual information is

provided by well-defined interfaces (Hofer et al., 2002). Therefore, object-based

modelling is suitable to be used as internal, non-shared, code based, run-time context

modelling, manipulation, and storage mechanism. However, it does not provide inbuilt

reasoning capabilities. Validation of object-oriented designs is also difficult due to the

lack of standards and specifications.

Logic Based Models

Logic Based Models offer a high degree of formalism and typically comprise

facts, expressions and rules. The first logic based context modelling approach has been

introduced by McCarthy (1986), which introduced context as abstract mathematical

entities in artificial intelligence.

Logic Based Models enable formal inference, e.g. by means of general

probabilistic logic, description logic, functional logic or first-order predicate logic.

Rules are primarily used to express policies, constraints, and preferences. It provides

much more expressive richness compared to the other models discussed previously.

Therefore, reasoning is possible up to a certain level. The specific structures and

languages that can be used to model context using rules are varied.

The main shortcoming of the Logic Based context modelling is lack of

standardisation that reduces the re-usability and applicability of this approach.

Furthermore, highly sophisticated and interactive graphical techniques can be

employed to develop logic based or rule-based representations. As a result, even non-

 19

technical users can add rules and logic to the systems during run time. Logic based

modelling allows new high-level context information to be extracted using low- level

context. Therefore, it has the capability to enhance other context modelling techniques

by acting as a supplement.

Ontology Models

Ontological modelling refers to an abstract conceptual vision of the world. The

relations within could also be described by object-oriented methods. However, an

ontology is commonly described by using languages standardised by the W3C in the

context of the semantic web. Most relevant are the Resource Description Framework

Schema (RDF-S) (Brickley & Guha, 2004) and the Web Ontology Language

(OWL) (Deborah L. McGuinness, 2004).

Korpipää and Mäntyjärvi (2003) enumerate the following goals for designing a

context ontology: simplicity, flexibility, extensibility, generality and expressiveness.

Many researchers have come to the conclusion that ontologies are theoretically the best

way to represent and model context due to their extendibility and unambiguousness

(Baldauf et al., 2007; Wang, Da Qing Zhang, Tao Gu, & Pung, 2004). However, there

may be certain drawbacks as ontology engineering is a challenging and interminable

matter. With the size of the ontology, querying and processing the information

embedded within becomes slow, in particular if performed on resource constrained

mobile devices. The context model can be arranged in layers to cushion this effect.

Wang et al. (2004) propose ontology modularization, i.e. a generic upper ontology on

top and domain specific ontologies below. Fully featured ontological representations

tend to decrease the inference performance and are not suitable for highly dynamic

systems. If resource constrained mobile devices are envisaged as the main source and

consumer of context, an appropriate alternative must be chosen. Another argument for

not applying ontological representation is its limited support for modelling uncertain

and unavailable data.

2.2 THE INTERNET OF THINGS PARADIGM

 In the previous section, we formally defined context and context-awareness. We

also described the main characteristics of context and reviewed the existing context

modelling approaches.

 20

In this dissertation we are focusing on context-awareness in the IoT ecosystem.

Hence, it is essential to define what is IoT and explain its main properties. As a result,

in this section, we will focus on providing a basic overview of the IoT paradigm. In the

remainder of this section, we first formally define the IoT paradigm and provide some

preliminary knowledge about it. Then, we identify the main aspects of IoT and explain

them briefly.

2.2.1 WHAT IS THE INTERNET OF THINGS?

Internet of Things (IoT) is a paradigm that considers pervasive presence of a

variety of things or objects around us (e.g. smart wearable devices, mobile phones,

smart home appliances, sensors, Radio Frequency Identification (RFID) tags, actuators,

etc.) that can communicate with each other through unique addressing schemes to reach

common goals (Atzori, Iera, & Morabito, 2010). The ultimate goal of the IoT paradigm

is to build a world where everything around us is interconnected through the Internet

and interact with each other automatically without human intervention (Le-Phuoc,

Polleres, Hauswirth, Tummarello, & Morbidoni, 2009). In other words, IoT envisions

a world where our surrounding objects are aware of “what we like, what we want, and

what we need” and automatically take action according to our needs (Dohr, Modre-

Osprian, Drobics, Hayn, & Schreier, 2010).

The concept of IoT was first coined by Kevin Ashton in a presentation in 1998.

He has mentioned “The Internet of Things has the potential to change the world, just as

the Internet did. Maybe even more so.” Later in 2001, the MIT Auto-ID centre

introduced their vision on IoT (Brock, 2001). Subsequently, the International

Telecommunication Union (ITU) published a report (i.e. ITU Internet report) in 2005

that formally defined IoT (Union, 2005).

In recent years, IoT has become more relevant to the practical world (Patel &

Patel, 2016) due to the proliferation of mobile devices, embedded and ubiquitous

communication, cloud computing and data analytics. Nowadays, thanks to the

availability of low-cost sensors, processors, and wireless networks, it is possible to turn

any physical object, from a coffee mug to an autonomous car into an IoT device.

However, the research into IoT is still in its infancy. As a result, there are no standard

definitions for IoT.

 21

Table 2.1 presents some of the existing definitions found in the literature. Among

these definitions, we adopted the last definition provided by Vermesan et al. (2011) as

it provides a broader vision for IoT.

Table 2.1 - IoT definitions

Authors DEFINITION

(Tan & Wang, 2010,

p. 376)

“Things have identities and virtual personalities operating

in smart spaces using intelligent interfaces to connect and

communicate within social, environment, and user

contexts.”

(Bassi & Horn, 2008,

p. 4)

“The semantic origin of the expression is composed by two

words and concepts: Internet and Thing, where Internet can

be defined as the world-wide network of interconnected

computer networks, based on a standard communication

protocol, the Internet suite (TCP/IP), while Thing is an

object not precisely identifiable Therefore, semantically,

Internet of Things means a world-wide network of

interconnected objects uniquely addressable, based on

standard communication protocols.”

(Davies, 2015, p. 1) “The Internet of Things (IoT) refers to a distributed network

connecting physical objects that are capable of sensing or

acting on their environment and able to communicate with

each other, other machines or computers. The data these

devices report can be collected and analysed in order to

reveal insights and suggest actions that will produce cost

savings, increase efficiency or improve products and

services.”

(Vermesan et al.,

2011)

“The Internet of Things allows people and things to be

connected Anytime, Anyplace, with Anything and Anyone,

ideally using Any path/network and Any service.”

 22

2.2.2 CHARACTERISTICS OF THE IOT

In this section we will briefly discuss the main characteristics of the IoT paradigm

that is obtained from the current state-of-the-art (Miorandi, Sicari, De Pellegrini, &

Chlamtac, 2012; Perera et al., 2014). IoT has several unique characteristics. However,

in this section, we only focus on seven IoT characteristics which are relevant to the

research problem under consideration in this dissertation. These characteristics are

connectivity, heterogeneity, interoperability, real-time consideration, scalability,

dynamicity, and security and privacy. A short description of each of these

characteristics are provided below:

• Connectivity: Connectivity refers to the ability to transmit and receive data and has

two main aspects: network accessibility and compatibility. Network accessibility

means IoT things should have access to a global network (i.e. the Internet).

Compatibility refers to the fact that the data produced by an IoT thing should be

consumable by another IoT thing (Patel & Patel, 2016).

• Heterogeneity: The IoT contains a large number of heterogeneous devices that

interact with each other autonomously. These devices have different hardware

platforms, different operating systems, and different networking technologies.

Moreover, the IoT devices have different capabilities that can affect the way they

interact. Some devices may have very limited capabilities, for example an IoT

device might have very limited storage capacity with no processing capability. On

the other hand, some IoT devices can have a large memory and strong processing

unit that is capable of performing various processes such as data mining and context

reasoning.

• Interoperability: Interoperability is defined by IEEE as “the ability of two or more

systems or components to exchange information and to use the information that has

been exchanged” (IEEE, 1990). In the realm of IoT, interoperability can be seen

from different perspectives such as (i) device interoperability, (ii) networking

interoperability, (iii) syntactic interoperability, (iv) semantic interoperability, and

(v) platform interoperability (Noura, Atiquzzaman, & Gaedke, 2019).

Interoperability plays an integral role in enabling seamless interaction of IoT

devices.

 23

• Real-time consideration: An IoT platform should be able to deal with billions of

parallel requests coming from IoT devices simultaneous in (near) real-time. Hence,

it is essential for an IoT platform to offer real time data processing and analytic

capabilities.

• Scalability: The number of IoT devices connected to the Internet is predicted to

reach 50-100 billion by 2020 (Sundmaeker, Guillemin, Friess, & Woelfflé, 2010).

On top of this, due to the advancement in sensing, computation, and networking

technology, the IoT devices are becoming more sophisticated and will be able to

collect and share more information. As a result, the number of interactions that

needs to be handled by IoT also increase significantly. Therefore, IoT solutions

should have a scalable design to be able to deal with the billions of parallel

interactions.

• Dynamicity: Due to the volatile nature of IoT environments, the state of IoT

devices can frequently change, for example, the state of an IoT device might vary

from the connected state to the disconnected state or vice versa (Youn, 2018).

Therefore, the number of IoT devices can change dynamically as a new IoT device

might become available or an existing one can disappear. Therefore, the number of

IoT devices can change dynamically as a new IoT device might become available,

or an existing one can disappear. On top of that, the context of IoT devices can

change as well. One typical example is changes in the location of mobile IoT

devices such as smart-phones, smart vehicle, and wearable devices.

• Security and Privacy: IoT collects and produces an enormous amount of sensitive

information about us and our environment. As a result, this information should be

kept private and secure. Moreover, the IoT devices can be used by hackers to launch

Distributed Denial of Service (DDoS) attacks. In a DDoS attack, a hacker enslaves

several IoT devices into an arrangement (i.e. botnet) and sends a huge number of

parallel requests to a server. This attack disrupts the normal behaviour of the server

and makes it inaccessible for end users. Therefore, IoT must have a scalable and

comprehensive security mechanism that protects the endpoints, the networks, and

the data moving across.

 24

These characteristics are all essential and should be taken into account when developing

solutions for IoT during all the stages from design, implementation and assessment.

2.3 CONTEXT IN IOT

Context-awareness has become a hot trend in the last decade, especially in the

realm of the Internet of Things (IoT). As IoT evolves, the need for accessing contextual

information in real time is becoming a crucial factor for the improvement of IoT

services. Since the early 1990’s, a large body of research has been conducted on

context/context-awareness in pervasive computing to enable intelligent adaptation of

applications allowing them to perform their tasks in an efficient, proactive and

autonomous manner (Perera et al., 2014), according to the context of its users or other

involved entities.

IoT things, which include sensors, mobile devices, connected cars, smart meters

and other smart devices, are rich sources of data that is fundamental for reasoning about

context of users, applications, and environment. In most cases, IoT-based smart

services and applications are responsible for converting raw data coming from IoT data

sources to higher-level context. However, most of these applications and services are

designed to provide context within closed loop systems (silos). They do not provide

standard mechanisms or approaches to discover, share and distribute context across

multiple IoT applications and services, especially when these services are developed

and operated by different organisations/vendors. In other words, if context generated

by one IoT device is required by another IoT application, current systems lack the

capability to share this context without manual integration. A key factor that will

underpin the success of future IoT applications and services, in order to provide greater

benefits to customers, is the ability of applications and devices (machines) to exchange

context seamlessly.

To overcome this problem and ease the development of context-aware

applications, which use the maximum capacity of IoT paradigm (augmenting it with

context-awareness), the developer should be able to acquire contextual data from

external context providers independently from the underlying structure of context

providers. Therefore, it is essential to provide an easy and standard approach to define,

advertise, discover/acquire, store, and query context. A promising solution to address

the aforementioned problem is to build a middleware platform that manages interaction

 25

with sources of context and offers contextual information to context-aware

applications. As a result, in the next section, we will review the current state of the art

in this area.

2.4 CONTEXT MANAGEMENT PLATFORM (CMP) FOR IOT

The management and provisioning of context information are essential elements

for realising context-aware services and applications in the realm of IoT. A notable

number of context management platforms (CMP) have been presented; surveys of

which have been published for instance in (Baldauf et al., 2007; Hong et al., 2009;

Knappmeyer et al., 2013; Truong & Dustdar, 2009). In this section, we first review the

main aspects and functionalities of a CMP. Then, a brief overview of some of the most

recognised CMPs is presented.

Knappmeyer et al. (2013) subdivide the major functionalities of context

management platforms into six classes, which are below:

• Sensor Data Acquisition. This function is responsible for fetching raw context

related data from multiple sources. In the context-aware system, it is essential that

the system can support a variety of heterogeneous context sources. Based on the

computational capability of context sources, pre-processing and data cleaning

might be executed locally (on the context source) or externally as part of the CMPs

functionality.

• Context Storage. This function refers to the mechanism of persisting contextual

information in the platform. Two crucial aspects of context storage systems are

caching and storing historical context. Caching improves the performance of CMPs

in answering incoming queries by omitting the process of fetching repeated context.

Moreover, a CMP should be capable of storing and indexing historical context.

Historical context can be utilised by CMPs to produce valuable insights about IoT

entities. For example, the historical data can be used to learn the habits of IoT

entities and predict their future states.

• Context Service registration and Discovery. A CMP should provide a mechanism

that allows sources of context (i.e. IoT devices and services) to describe and register

their offered contextual information. Moreover, it is vital for a CMP to be able to

search and find the matching sources of context for an incoming query.

 26

• Privacy, Security & Access Control. This feature is considered as a vital function

in CMPs as they might expose sensitive information about IoT devices and their

owners to unauthorised third-parties. As a result, it is essential for a CMP to has a

sophisticated authentication and authorisation mechanism to guarantee the privacy

and security of users contextual information.

• Context Processing & Reasoning. Sources of context (e.g. sensors) mostly offer

raw sensory data to CMPs. Hence, a CMP is required to perform some pre-

processing to infer context information from raw sensory data. Moreover, in many

use-cases, it is essential to infer high-level context/situation from multiple existing

low-level context. Therefore, a CMP should be capable of performing different

context inference and situation reasoning techniques such as feature extraction,

description logic, rule-based reasoning or probabilistic inference.

• Context Querying (Context Diffusion & Distribution). The ultimate objective of

a CMP is to facilitate the development of context-aware applications. Each context-

aware application has unique contextual requirements. As a result, a CMP should

provide a generic approach that allows context-aware applications to request for

contextual data based on their unique requirements. This approach should define a

comprehensive and tailorable query language that allows context-aware

applications to query for the context of their entities of interest. Moreover, it should

support different communication’s mode, namely push-based queries and pull-

based queries. Push-based queries refer to event-driven asynchronous queries (i.e.

publish/subscribe) that allows context-aware applications to subscribe for changes

in the context of their entities of interest and get notified about context changes.

Pull-based queries refer to synchronous on-demand queries.

Existing context management platforms can be classified in three main

generations. The earliest generation, such as the Active Badge System (Want, Hopper,

Falcão, & Gibbons, 1992) only focused on utilising location data. The second

generation includes systems such as Context Toolkit (Dey, 2001), SOCAM (Gu, Pung,

& Zhang, 2005), and Cobra (H. L. Chen, 2004). These platforms tried to achieve a

higher level of generality, supporting more varieties of context. However, these

platforms suffer from a number of common constraints that makes them inefficient to

be used in real world context-aware systems. These constraints include lack of fault

tolerance and scalability, poor interoperability support and naïve reasoning just to name

 27

a few, which lead to low market penetration of these platforms. The effort of the

research community to address these limitations lead to the development of third

generation context management platforms, such as CA4IoT (Perera, Zaslavsky,

Christen, & Georgakopoulos, 2012) and CAMPUS (Wei & Chan, 2013). While they

successfully addressed some of the mentioned limitations, they failed to evolve to an

industry standard level.

We believe the main shortcoming of these CMPs is the lack of a comprehensive

and flexible context query language (CQL) that allows context-aware applications to

repurpose existing contextual data based on their specific requirements.

2.5 CONTEXT SERVICE REGISTRATION AND DISCOVERY

As mentioned in the previous section, one of the main functions of a CMP is

context service registration and discovery. A similar concept was raised and studied in

the realm of Semantic Web Service (SWS) (McIlraith, San, & Zeng, 2001) to add

automation and dynamics to traditional web services. SWS aims at providing formal

descriptions of requests and web services that can be exploited to automate several tasks

in the web service usage process, including dynamic discovery of services.

During the last two decades, a large body of research has been conducted on

definition and composition of semantic service in the domain of Semantic Web Service

(SWS). These efforts led to the development of several web service description

languages, such as Semantic Markup for Web Services (OWL-S) (W3C, 2004), Web

Service Modelling Ontology (WSMO) (Domingue, Roman, & Stollberg, 2005), and

Semantic Annotation for WSDL and XML Schema (SAWSDL) (Kopecký, Vitvar,

Bournez, & Farrell, 2007).

Most of the abovementioned languages to some extent allow specifying services

in terms of their signature (i.e., inputs and outputs of the service), behavioural

specification (i.e., preconditions and effects), and the non-functional properties (NFPs).

However, all of these languages suffer from the same limitation that makes them

insufficient to describe IoT services and their context-related aspects. To overcome

these shortcomings, a number of different approaches have been proposed (Fujii &

Suda, 2009; Guinard, Trifa, Karnouskos, Spiess, & Savio, 2010; Hossain, Parra, Atrey,

 28

& El Saddik, 2009). However, they do not fully support different types and aspects of

context and lack an expressive language to represent them.

In our research, we adopted OWL-S as the basis of our context service description

model by taking advantage of its flexibility and dynamicity in service

composition. OWL-S is the most dominant approach compared to similar approaches,

such as WSMO, SAWSDL, and WSDL-S (Ngan, Kir, & Kanagasabai, 2010). OWL-S

is more mature in many aspects such as the definition of the process model and the

grounding of services (Polleres et al., 2005). These reasons made us chose OWL-S as

the most appropriate ontology for describing IoT context services.

2.6 CONTEXT QUERY LANGUAGES

In this section, we will review the existing context query languages. Query

languages are pivotal for querying context and determining the way queries are

expressed and what information needs to be obtained. There are a variety of query

languages that have been employed in CMPs to allow context-aware IoT applications

retrieve contextual information. Some CMPs have used existing query languages (e.g.

SQL and SPARQL) to access information or extended them such that they are tailored

to context query needs. On the other hand, other CMPs have introduced a specially

designed language for querying context .

CQLs can be categorized into five subclasses: SQL-based, RDF-based, XML-

based, API-based and Graph-based CQLs. In the work done by Haghighi et al. (Delir

Haghighi, Zaslavsky, & Krishnaswamy, 2006), an evaluation of different CQLs is

presented. They compared different CQLs and demonstrated that SQL-based, XML-

based, RDF-based, and API-based CQLs are more effective and powerful compared to

the other subclasses.

Therefore, in the rest of this section, we provide a critical review and comparison

of well-known existing context query languages that fall into these four subclasses of

context query languages. Furthermore, in order to accurately identify to what extent

existing CQLs can support the needed requirements for a CMP, we try to illustrate the

applicability of each approach by considering the smart parking recommender use-case

described in Section 1.2.

 29

This use-case focus on developing a context-aware mobile application that uses

the contextual information produced by IoT devices and services to suggest parking to

smart vehicles. The main function of this application is to find the best available car

parks based on the vehicle specification (i.e. width and height of the vehicle) and

driver’s profile (i.e. preferred price). Moreover, the application should reason about the

weather conditions near available parking options to find if the weather is good for

walking or not. If the weather conditions are not suitable for walking, it should suggest

a parking facility that is less than 500 meters to the destination. Otherwise, the walking

distance can be up to 1km. On top of this, after the driver selected a parking facility,

the application should continuously monitor relevant context and notify the driver about

any changes in situations that can affect the driver experience, i.e. if the parking facility

is not available anymore.

2.6.1 SQL-BASED

SQL is the most well-known declarative query language which is designed for

accessing data from relational databases. However, directly utilising SQL as a CMP

context query language is not possible as context data has its own characteristics that

are different from relational database data. Compared to traditional database data,

context data has its own special characteristics. According to Haghighi et al. (2006),

context:

• Can be dynamic or static.

• Can be continuous data streams.

• Can be temporal, erroneous, ambiguous, unavailable or incomplete.

• Can be spatial.

• Can be unstructured.

• Can be a situation that is derived and reasoned from other context.

 30

Considering the aforementioned scenario, it is not possible to implement a query

for such a sophisticated use case by only using native SQL. For instance, SQL cannot

be used to express queries for monitoring context of IoT entities as it does not support

continuous queries over data streams. Moreover, since SQL is a generic query

language, it does not satisfy the specific requirements needed in a CMP such as defining

situations and high-level context. Besides, SQL does not deal with semantic annotations

and does not incorporate the concept of ontologies used for establishing a common

understanding of the context information. Therefore, some researchers extend

traditional SQL by adding optional instructions to support querying context data.

Henricksen and Indulska (2004) developed a context management system on top

of the Context Modelling Language (CML). CML is a powerful modelling approach

for describing information’s type, their classification, and quality of context. In their

proposed system, a simple API is designed for accessing the context information. The

context management framework for CML (Henricksen & Indulska, 2004) is based on

the Object Relational Mapping (ORM) concept and maps its models to relational data

schemes. Therefore, SQL can be used to retrieve contextual information. In other

words, context queries are internally mapped to SQL (McFadden, Henricksen, &

Indulska, 2004). While SQL supports some of the required functionalities, it cannot be

used for context retrieval due to several weaknesses as stated before. For instance, when

extracting context from multiple tables, queries become complex since a number of

joins might be necessary. Furthermore, the programming API of CML does not address

the retrieval of context information with heterogeneous representations. Lastly, this

approach does not fully support complex reasoning and aggregation functions.

Another SQL-based query language that uses a relational database is presented

by Feng (Feng, 2010). They designed a query language for an ambient intelligent

environment, which utilises contextual data to identify data retrieval conditions in a

relational database. Since this approach is based on the relational database, it suffers

from similar drawbacks identified for CML. In general, works that use native SQL for

context retrieval are not suitable for context data management since they are limited to

relational databases.

Riva et al. (2006) proposed a SQL-based CQL to provide contextual information

for mobile applications, which is called Contory. They proposed context query

 31

language consists of three fundamentals clauses, namely SELECT, FROM, and Where.

The SELECT clause identifies the type of the required context item (e.g. location, light,

temperature, and activity). FROM clause specifies type and characteristics of the

sources from which desired context data should be collected. Lastly, the WHERE

clause filters context values according to specific requirements on their associated

context metadata. Furthermore, they defined four more attributes to provide a better

filtering functionality. The first attribute is ‘freshness’ which identifies how recent the

context data must be. The other three attributes (i.e. DURATION, EVERY, and

EVENT) are responsible for supporting event-based and continues/periodic queries.

The main shortcoming of Contory that makes it inappropriate to be used as the

main interface of a CMP is its simplified data model, which does not have a mechanism

to indicate the entity of interest in a query. For example, while it allows querying

temperature, it does not support querying temperature of a specific oven. Furthermore,

another shortcoming of this approach is the lack of supporting context processing

operations. On top of these, Contory is not interoperable with different external

infrastructures and sensor devices. Last but not least, this language does not support

querying multiple sources of context simultaneously (in one query).

Schreiber and Camplani (2012) proposed a framework to configure and manage

pervasive systems, called PerLa. PerLa also adopts the database metaphor and uses an

SQL-like query language for context retrieval.

PerLa queries support both data acquisition and context retrieval by providing

three types of queries: Low Level Queries (LLQ), which describe the behaviour of

nodes, and determine the data selection criteria, the sampling frequency and the

computation to be performed on sampled data; High Level Queries (HLQ), which

determine the high-level elaboration involving data streams coming from multiple

nodes, and Actuation Queries (AQ), which can modify devices’ parameters. Similar to

Contory, the main shortcoming of PerLa is lack of support for expressing and

distinguish the entity of interest in a query. Furthermore, PerLa does not support

domain-based standards and has a very limited support for processing context data.

The most recent work in the area of SQL-based CQL is presented in (P. Chen,

Sen, Pung, & Wong, 2014). Chen et al. (2014) proposed a new SQL-based CQL that

 32

supports both pull-based and push-based queries. This work introduces some useful

ideas and concepts. Their work supports continuous queries with compound conditions

for accessing contextual information from various context entities. Furthermore, they

claim that their work also supports contextual functions, however, they did not mention

how this contextual function can be represented.

2.6.2 RDF-BASED

As it is demonstrated by Haghighi et al. (2006), another powerful type of CQLs

is RDF-based. The most well-established RDF query language is SPARQL. SPARQL

has been used in many IoT platforms, such as OpenIoT (Soldatos et al., 2015), for

querying contextual information. SPARQL (Prud’hommeaux & Seaborne, 2008) is a

W3C standard proposal for an RDF query language whose syntax is inspired by SQL.

It incorporates semantic concepts and ontologies into a SQL-inspired query language.

SPARQL facilitates querying concepts of an entity, but it is not intended to be used for

querying complex data constructs with several levels of nesting (Reichle et al., 2008),

which is commonly used in context-aware IoT applications. To clarify, consider the

basic SPARQL condition presented in Code block 2.1. This example presents an

equality expression, which can be used to find all the parking facilities that have a

parking space with fast charging points. In this example, the parking facility is defined

based on mobivoc semantic vocabulary.

Code block 2.1 - A basic condition expressed in SPARQL

{

?parkingFacility a mv:ParkingFacility;

 mv:parkingSpace ?parkingSpace .

?parkingSpace mv:charger ?charger .

?charger mv:isFastChargeCapable ?isFastCharger .

}

FILTER (?isFastCharger = ‘true’)

 33

As it is shown in the code block above, five lines of code with several variables

are required to express this basic condition in SPARQL. As a result, queries easily

become quite long and complicated which increases developers’ cognitive load.

However, the same condition can be easily represented with only one line of code:

parkingFacility.parkingSpace.charger.isFastCharger = ‘true’. Another drawback of

SPARQL is its lack of support for defining custom aggregation functions. Furthermore,

SPARQL does not provide a mechanism to define and query high-level context (i.e.,

situation). While it is possible to assume that context consumers can implement custom

aggregation and situation reasoning functions as an additional layer of software, it

contradicts with one of the main motivations behind developing a CMP which is

providing a fast and easy way to query context and hide the complexity of low-level

programming.

The MUSIC CQL proposed by Reichle et al. (2008) is another well-known RDF-

based CQL. Their work has a good support for querying contextual information.

However, since MUSIC CQL can only represent context request from a single entity,

it cannot express complex context queries (e.g., the query for the school safety

scenario).

SOCAM (Service-oriented Context-Aware Middleware) framework (Gu et al.,

2005) also provide a RDF-based CQL (based on OWL) for context retrieval. This

language is capable of providing contextual data about context entities and the

relationships among them by using ontology technology. However, the main

shortcoming of this work is its restriction on supporting complex queries.

2.6.3 XML-BASED

The other category of context query languages that we review in this section is

XML-based CQLs.

A simple XML-based context description and query language was developed in

the MobiLife project (Floreen et al., 2005). This CQL provides a good set of simple

relational operators and also string-based operators. There are some operators to

combine simple filters to more complex ones as well. A query can be expressed with

regard to a value of a parameter, the timestamp of a parameter and on associated meta-

data, as for example the accuracy or the confidence of a parameter (probability of

 34

context information to be correct). There is also support for including the position of a

parameter in an array of context elements, which allows the selection of a specific

parameter in the array. The concept of placeholders is also supported. However, there

is lack of aggregation functions and the need for ontologies and semantic reasoning is

not sufficiently addressed. Furthermore, another important limitation is that the

application must know beforehand the provider of the context information and then

query the provider. Thus, support for specifying queries involving sub-queries for

different context providers is not provided.

Another work that uses XML-based language for querying context is the Nexus

architecture (Bauer, Becker, & Rothermel, 2002; Hönle, Käppeler, Nicklas, Schwarz,

& Grossmann, 2005). Nexus is an open platform that facilitates developing location-

aware applications and enables integration of and interaction between the applications.

The Nexus platform is based on a common augmented world model that is described

by AWML (Augmented World Modelling Language) and can be queried using AWQL

(Augmented World Querying Language). The augmented world model represents the

world as data objects with attributes and all the objects produced by a context provider

belong to an Augmented Area. Context providers register their Augmented Areas and

their object types with the Area Service Register that will assist the system with queries.

An extension to AWML has integrated metadata into the model to facilitate resource

finding, context selection, context quality and data processing (Hönle et al., 2005).

Some of the strengths of AWQL queries are their support for generalization and

aggregation rules, nearest neighbour queries and spatial relationships (Grossmann et

al., 2005). Other advantage of AWQL queries is that they can be mapped into SQL

queries using multiple joins. Despite expressiveness of XML, this language does not

provide sufficient flexibility to support complex queries and expression of different

aspects of context.

2.6.4 API BASED CONTEXT QUERY / OR JSON BASED

Another significant context query language is NGSI language (“NSGIv2 API

Walkthrough - Fiware-Orion,” n.d.). NGSI is the main interface of FIWARE project

(“FIWARE,” n.d.), which is one of the most advanced CMPs in terms of consistent

development and market penetration. Further, NGSI was recently used as a base for the

development of an ETSI NGSI-LD standard for context information management

 35

(“ETSI - ETSI ISG CIM group releases first specification for context exchange in smart

cities,” n.d.; Sophia Antipolis, 2017). However, the NGSI language (“NSGIv2 API

Walkthrough - Fiware-Orion,” n.d.), suffers from a number of drawbacks. NGSI

supports only one entity per query, which limits the expressivity, flexibility, and query

performance, and it also adds network overhead. Moreover, NGSI has limited support

for situation reasoning and monitoring. To address this, FIWARE has integrated the

Esper Complex Event Processing (CEP) engine (“Esper,” n.d.), which uses Esper EPL

(“Esper,” n.d.) to represent monitored situations. However, NGSI and Esper EPL are

two disjoint technologies, and this increases the development and maintenance efforts.

Such an approach also adds conceptual complexities as Esper EPL is a more generic

technology and is not designed to support IoT context-aware environments.

2.6.5 DISCUSSION

This section presents a qualitative evaluation of existing context query languages.

Based on the existing works and other aforementioned considerations, we have

identified six requirements for a context query language.

1. Support for complex context queries concerning various context entities and

constraints;

2. Support for interoperability. In other words, provide a context model that can be

converted into different data models as required;

3. Support for both pull-based and push-based queries;

4. Support for aggregating and reasoning functions to query both low level and infer

high-level context;

5. Support for continuous and situation/event-based queries;

6. Support for different aspects of context such as imperfectness, QoC, and CoC;

Table 2.2 reports a summary of the comparative evaluation of current CQLs with

respect to these requirements.

 36

Table 2.2 - Evaluation of Existing CQLs

Title CQL Type
Requirements

#1 #2 #3 #4 #5 #6

Contory (Riva & Di Flora, 2006) SQL-based ✖ ✖ ✔ ✖ ✖ ✔

CML (Henricksen & Indulska, 2004) SQL-based ↘ ✖ ✖ ↘ ↘ ✔

PerLa (Schreiber & Camplani, 2012) SQL-based ↗ ✖ ✔ ↘ ↗ ↘

SPARQL (Prud’hommeaux &

Seaborne, 2008)

RDF-based ✔ ↗ ✖ ✖ ✖ ✖

MUSIC-CQL (Reichle et al., 2008) RDF-based ✖ ✔ ✔ ↗ ↗ ↗

SOCAM (Gu et al., 2005) RDF-based ✖ ✔ ✔ ↘ ↗ ↘

Nexus (Bauer et al., 2002) XML-based ↗ ↘ ✔ ✖ ✔ ✔

MobiLife (Floreen et al., 2005) XML-based ↘ ✔ ✔ ↘ ✖ ↗

ContextML (Knappmeyer et al.,

2010)

XML-based ↗ ✔ ✔ ↘ ✖ ↗

NGSI-9/10 (P. Chen et al., 2014) API-based ✖ ↗ ✔ ↘ ✔ ↗

✔ full support; ↗ partially supported; ↘ limited support ✖ not supported;

In our view, meeting all of these requirements is essential for a CQL. For

example, as it is illustrated in Table 2.3, more than half of the existing CQLs (six out

of ten) only support context queries concerning a single entity. However, in real-life

scenarios (e.g. school safety scenario), the contextual information is coming from

different context sources (e.g. a smart bus, a smart car, mobile devices, a school server,

and a smart gate). Therefore, those CQLs that does not fully support this criterion are

not a good candidate for our objective.

 37

Furthermore, another important aspect which needs to be addressed properly in

designing a CQL is supporting interoperability. More precisely, without a common

understanding (i.e. context model), smart entities (context providers and consumers)

cannot communicate and exchange context with each other. Therefore, it is vital for a

CQL to provide a mechanism to query for context data presented in heterogeneous

formats. As depicted in Table 2.3, only ContextML (Knappmeyer et al., 2010) and

SPARQL support both criteria 1 and 2. However, both of these CQLs fail to meet

requirements 4 (i.e. 4. support for aggregating and reasoning functions) and 5 (i.e.

support for continuous and situation/event-based queries). It can be seen that none of

the existing CQLs fulfils all the requirements, whereas most of the approaches failed to

meet the first two requirements. Moreover, to the best of our knowledge, none of these

languages are known outside the research community and are not used in real

environments. Furthermore, none of these languages have become a widely adopted

standard, while such a standard is fundamental nowadays (Sophia Antipolis, 2017).

2.7 SUMMARY

In this chapter we presented the state of the art in three areas of research

concerning context in IoT. We started with providing an exhaustive background of

context and context-awareness. In this section, we first reviewed the formal definitions

for context and context-awareness. We then discussed the main characteristics of

context and reviewed existing context modelling approaches.

Afterwards, we briefly described the IoT paradigm and discussed its main

characteristics. Further, we argued about the correlation between context and IoT and

explained the context’s lifecycle in IoT ecosystem.

The second part of the chapter introduced context management platforms and

discussed the state of the art in this area of research by reviewing the existing CMPs.

The discussions reveal the one of the main drawbacks of CMPs, which is the lack of a

comprehensive context query language. As a result, we focused on this topic, and

reviewed existing context query languages. Moreover, we identified six main

requirements for a CQL for IoT ecosystem, which had been used for qualitative

evaluation of the presented context querying approaches. We evaluate strengths and

weaknesses of specific CQL and examine the limitations of each language. Resulting

 38

from our evaluation, we identify a theoretical gap which currently exists in querying

context.

 39

Chapter 3: Context Definition and Query
Language

The rapid development and penetration of the Internet of Things (IoT) into daily

life leads to an enormous increase in the number of IoT-based smart services and

devices. These IoT devices and services, which include sensors, mobile devices,

connected cars, smart meters and other smart devices, produce rich, useful and relevant

context data about the state of various physical (e.g. a car, a carpark, a building) and

conceptual (e.g. a meeting, an accident, a traffic jam) entities. In this dissertation, all

these sources that can generate contextual information are abstracted as context

services. The context data produced by context services can be shared and consumed

by IoT applications that may reuse and repurpose it. Such a paradigm will enable the

realisation of IoT vision, i.e. smart devices and objects to become active participants in

business, and social life by autonomously interacting among themselves and exchange

information about the entities they monitor.

However, managing and utilising the large volume of data generated by various

context services is a challenging task. Most of the context services (in the current IoT

ecosystems) are designed to work within closed loop systems (silos). They do not

provide standard mechanisms or approaches to discover, share and distribute context

across multiple IoT applications, especially when the services are developed and

operated by different organisations/vendors. In other words, if a context service owned

and managed by a service provider is required by an external IoT application (owned

by another service provider), current systems lack the capability to easily share the

context produced by heterogeneous context services with the context-aware IoT

application, without manual integration. Therefore, to underpin the success of future

IoT applications that can provide greater benefits to customers, it is essential to find an

efficient solution which allows applications and IoT devices (machines) to advertise,

query, discover, combine and consume context seamlessly.

As discussed in the preceding chapter, a unified, reliable and flexible approach

for advertising, querying and discovering context services that incorporates high-level

context is still an open research problem. As a result, the current chapter addresses this

 40

open issue by introducing a novel context management platform (CMP) called Context-

as-a-Service (CoaaS), which is enhanced with a generic yet tailorable mechanism to

query and publish context.

This chapter consists of two main parts. The first part presents the vision of

CoaaS, its blueprint architecture, and the fundamental concepts and definitions, which

will be frequently accessed in the rest of this dissertation. The second part is dedicated

to introducing the CoaaS pioneering mechanism for publishing and querying context.

To achieve this goal, two novel languages have been designed and implemented,

namely Context Service Description Language (CSDL) that is used to describe and

register context services (i.e. publish context), and Context Definition and Query

Language (CDQL) that allows IoT devices and applications to query and consume the

data produced by context services.

3.1 CONTEXT-AS-A-SERVICE OVERVIEW, DEFINITIONS, AND

BLUEPRINT ARCHITECTURE

This section describes the overview of CoaaS platform and its role in the IoT

ecosystem. Furthermore, the formal definitions for the underlying concepts of CoaaS

will be presented in this section. Lastly, we present the blueprint architecture of CoaaS

platform and briefly explain its main components.

3.1.1 CONTEX-AS-A-SERVICE: OVERVIEW AND DEFINITIONS

In this section we introduce the fundamentals and definitions of context-as-a-

service (CoaaS) platform in IoT. CoaaS is a context management platform, which has

been designed to facilitate the development of context-aware IoT applications by

providing a generic yet tailorable mechanism to query and publish context. In other

words, CoaaS enables applications to provide and consume context about their entities

of interest seamlessly, without requiring manual integration of IoT silos.

As mentioned earlier, context is the information that can be used to characterise

the situation of an entity (Dey, 2001). Entities can be persons, locations, or objects

which are considered to be relevant for the behaviour of an application. An entity can

be characterised by a set of parameters, known as context attributes.

 41

Definition 3.1 (Entity and Context Attribute). In context-aware systems, an

entity (denoted by E) accounts for a physical or virtual object (such as a person, a car,

an electronic device, or an event) that can be associated with one or more context

attributes (denoted by "#, which can be any type of data that characterises this entity.

For example, a ‘car’ entity can have a location, speed, fuel level, the number of

available seats, model, and manufacturer as its context attributes.

The big picture view of Context-as-a-Service platform in the IoT ecosystem is

represented in Figure 3.1, which consists of three layers of Context Consumers, Context

Providers, and the context management platform (CMP).

Figure 3.1 - Overview of Context-as-a-Service platform in IoT

 42

The top layer is a collection of context-aware IoT applications in various domains

that require contextual information in order to perform their task. These applications

are interested in collecting contextual information about a particular entity with specific

characteristics. They are defined as context consumers.

Definition 3.2 (Context Consumer). Context Consumer (CC) refers to any

device or system that queries and receives context about one or several entities.

The bottom layer, in Figure 3.1 shows the sources of context, which consists of

sensors, smart connected devices, and systems that can produce context about entities.

They are the context providers.

Definition 3.3 (Context Provider). Context Provider (CP) refers to any device,

application or system that provides context or data that can be used to infer context

about one or several entities.

In our system, we distinguish between different classes of CPs based on the type

of context they produce. At the most basic level, a context provider can be a standalone

sensor that is connected to the Internet and is capable of transmitting raw sensory data

about a particular attribute of an entity. For example, a temperature sensor connected

to a Wi-Fi microchip such as ESP8266 (“Espressif Systems - Wi-Fi and Bluetooth

chipsets and solutions,” n.d.) can act as a CP. However, CPs can be more sophisticated

and provide either low-level or high-level context about characteristics of several IoT

entities. For example, IoT gateways and middleware, sensor networks, or even a mobile

application can play the role of a CP and supply context. Lastly, some web-based

services such as Google Maps APIs, or weather forecast APIs can also act as context

providers as they can produce useful information.

As a result, based on the CPs’ type, each context provider can have one or more

services, which produce context about an entity. We refer to these services as Context

Services.

Definition 3.4 (Context Service). A Context Service (denoted by cs&,&	∈	ℕ)

provides contextual information about a particular entity. Context service can be

represented as a triple: 〈E, CA, P〉 where E denotes the related entity, CA is a set of

 43

provided context attributes, and Predicates (denoted by 0) form a composite logical

expression defined over CA.

For example, a smart garage (which is a context provider) can provide a context

service to deliver values of context attributes such as cost, available facilities, and time

limit (contextual information) about available car parks (entity) in a specific location.

Further, the working hours of this garage are from 8 am to 8 pm during weekdays, and

10 am to 10 pm on weekends (complex context attribute). This context service

description can be represented as:

"12:	〈42, 562, 02〉

where:

⎩
⎪⎪
⎨

⎪⎪
⎧

42: "#;<#;=
562: {cost, location, available	facilities, number	of	available	parking	spots, working	hours}

02:
RS"#TUSV = XS"6	 ∧

(([S;=UV\]S^;1	_`T[``V	8: 00	#Vc	20: 00	 ∧ [``=c#e1) ∨
([S;=UV\]S^;1	_`T[``V	10: 00	#Vc	22: 00	 ∧ [``=`Vc1))

On the basis of the presented definition for context services, we have designed a

high-level language for describing context services, which will be described in Section

3.3.

The middle layer of Figure 3.1 shows the actual CoaaS platform, which enables

global standardisation and interworking among context providers and consumers.

 CoaaS can interact with CPs in two ways, either by fetching context on-demand

or through receiving context/data streams. In the first case, the CPs must have registered

the description of their services first by sending a context service registration (CSR)

request. Then, CoaaS can retrieve data about IoT entities by sending requests to

corresponding providers on-demand. As mentioned above, CoaaS can also process

streams of context updates, which CPs are sending to the platform. Context updates

contain updates of the entities’ states and are processed by CoaaS to monitor situations.

The blueprint architecture of CoaaS platform is presented in Section 3.1.2.

 44

On the other hand, context consumers can retrieve context information from the

middleware by issuing context queries (CQ).

Definition 3.5 (Context Query). Context query is a request for contextual

information (either context attributes or high-level context inferred from context

attributes) from one or many entities.

For example, a smart vehicle can issue a context query to retrieve the cost,

location, and number of available spaces (contextual information) of the best parking

facilities (entity of interest) near the driver’s meeting location based on his/her

preferences. This query contains three main entities, namely parking facility, smart

vehicle, and driver.

Each context query can be split into several sub-requests, where the final result

of the query will be computed based on the contextual information retrieved from the

results of these sub-requests by aggregating the results or using the results to infer a

higher-level context.

Definition 3.6 (Context Request). A context request (denoted by cri,i∈	ℕ)

represents a request for contextual information about a particular entity. Context request

can be represented as a triple: 〈E, CA, P〉 where E denotes the entity of interest, CA is a

set of requested context attributes, and P is a set of predicates, which are defined over

CA using logical expressions.

Based on Definitions 3.5 and 3.6, we have designed a novel context query

language that supports complex context queries concerning various entities. This

language will be presented in Section 3.4.

The aforementioned context query for finding car parks can be broken down into

three context requests, one for each entity. The first request is issued to retrieve context

about the driver, the second request is issued to identify the smart vehicle, and the last

context request is issued to retrieve information about available parking. These context

requests are represented as below:

";2:	〈<`;1SV, {j``TUV\, <#;=UV\	<;`k`;`V"`1}, {c;Ul`;	Uc = 101}〉

";m:	〈"#;, {RS"#TUSV, [UcTℎ, ℎ`U\ℎT, R`V\Tℎ}, {opq = 202}〉

 45

";r :	〈
<#;=UV\	k#"URUTe, {RS"#TUSV, "S1T, ##l#UR#_R`	1<ST1},

{cU1T#V"`	(j``TUV\. RS"#TUSV, <#;=UV\. RS"#TUSV) < 500}
〉

After defining the underlying concepts in this section, we present in the next

section the blueprint architecture of CoaaS platform and introduce its main components

to illustrate how CoaaS platform works.

3.1.2 COAAS PLATFORM BLUEPRINT ARCHITECTURE

This section presents the blueprint architecture of CoaaS platform and discusses

its main components. As mentioned in Section 2.4, CMPs have six major

functionalities, namely (i) sensor data acquisition, (ii) context storage, (iii) context

lookup and discovery, (iv) privacy, security and access control, (v) context processing

and reasoning, and (vi) context diffusion and distribution. Aligned with these

functionalities, we designed the blueprint architecture of CoaaS platform accordingly,

which can be seen in Figure 3.2.

Figure 3.2 - CoaaS Blueprint Architecture

As this figure shows, the CoaaS platform has five main components:

Communication and Security Manager, Context Query Engine (CQE), Situation

Monitoring Engine (SME), Context Storage Management System (CSMS), and

 46

Context Reasoning Engine (CRE). Table 3.1 provides a mapping between the CoaaS

components and the aforementioned CMP functionalities. In the rest of this section, a

brief description of each of these main enabling components is presented.

Table 3.1 - CoaaS major components

Component Responsibilities

Communication and Security Manager (iv) Privacy, security and access control

Context Query Engine (i) Sensor data acquisition

(iii) Context service registration and

discovery

(vi) Context querying (Context diffusion

and distribution)

Situation Monitoring Engine (i) Sensor data acquisition

(v) Context processing and reasoning

Context Storage Management System (i) Sensor data acquisition

(ii) Context Storage

(iii) Context service registration and

discovery

Context Reasoning Engine (v) Context processing and reasoning

The Communication Manager is responsible for the initial handling of all

incoming and outgoing messages, namely context services registration (CSR), context

queries (CQ), context updates (CU), and context responses. This module acts as a proxy

and distributes all the incoming messages from CPs and CCs to the corresponding

components. To guarantee the privacy and security of CoaaS, this component is linked

to the Security Manager. The Security Manager module firstly checks the validity of

 47

incoming messages and authenticates requests. Moreover, the Security Manager checks

whether the context consumer has access to the requested context service or not

(authorization). Lastly, it is also responsible for monitoring all the incoming messages

to identify any suspicious patterns, such as distributed denial-of-service (DDoS)

attacks.

Context Query Engine (CQE) is mainly responsible for parsing the incoming

queries, generating and orchestrating the query execution plan, and producing the final

query result. Furthermore, this component also takes care of fetching required data from

context providers on demand. This component will be discussed in more detail in

Chapter 4 (See Section 4.1).

Situation Monitoring Engine (SME) is designed to support the continuous

monitoring of incoming context, infer situations from available context, detect changes

in situations and provide notification of detected changes. This component monitors the

real-time context of the IoT entities and reason about their situations. It also initiates

the actuation procedure by notifying context consumers when their situation of interest

is detected. The architecture and workflow of this component will be presented in

Chapter 4 (See Section 4.5).

Context Storage Management System (CSMS), which is described in detail in

(Medvedev, Indrawan-Santiago, et al., 2017), has two main objectives. First of all, it

stores descriptions of context services and facilitates service discovery. Secondly, it

caches contextual information to ensure reasonable query response time and deals with

problems like network latencies and potential unavailability of context sources.

The main task of the Context Reasoning Engine (CRE) is to infer situations

from raw sensory data or existing primitive low-level context. It is a common need in

many context-aware IoT applications to query about the situation of a context entity or

trigger a query when a specific situation is detected. A situation can be seen as a high-

level context that is inferred from multiple low-level context (Delir Haghighi,

Krishnaswamy, Zaslavsky, & Gaber, 2008).

So far in this chapter, we have provided an overview of CoaaS platform and

presented its blueprint architecture. Moreover, we have identified the main components

of CoaaS and explained their roles. However, in this dissertation, we will only focus on

 48

two components of CoaaS platform, namely CQE and SME, that deal with context

monitoring, discovery and querying. These components will be discussed in detail in

Chapter 4.

In the remainder of this chapter, we will focus on the main aim of this dissertation,

which is designing formal language constructs for describing and querying context

services. Aligned with characteristics of the IoT ecosystem, requirements of context-

aware IoT applications, and the architecture of CoaaS platform, we have designed two

high-level languages, one for representing context services and one for modelling

context queries. The details of each language will be presented in the next section.

3.2 CONTEXT SERVICE DESCRIPTION AND CONTEXT QUERY

LANGUAGE

As the standardisation efforts for IoT are fast progressing, efforts in standardising

context management platforms led by the European Telecommunications Standards

Institute (ETSI) are gaining more attention from both academic and industrial research

organisations. These standardisation endeavours will enable intelligent interactions

between ‘things’, where things could be devices, software components, web-services,

or sensing/actuating systems. Therefore, having a generic approach to describe and

query context is crucial for the success of IoT applications. In this section, we focus on

addressing such an approach by proposing two specially designed high-level languages

to enable IoT things to exchange, reuse and share context between each other.

The first proposed language is designed for describing context services and called

Context Service Description Language (CSDL). CSDL is an abstract service

description language, which allows context providers to describe and register their

services.

The second language called Context Definition and Query Language (CDQL),

which provides a generic and flexible approach to defining, representing, inferring,

monitoring, and querying context. CDQL consists of two main parts, namely: Context

Query Language (CQL), which is a powerful and flexible query language to express

contextual information requirements without considering the details of the underlying

data structures; and Context Definition Language (CDL), which is designed to describe

situations and high-level context. An important feature of the proposed query language

 49

is its ability to query entities in IoT environments based on their situation in a fully

dynamic manner where, users can define situations and context entities as part of the

query.

In the rest of this section, we will first introduce our context model. The context

model and the corresponding data descriptions provide the foundation for all other

components of our work. Then, we will present CSDL and CDQL in detail in the

following sections.

3.2.1 CONTEXT MODEL

The main objective of this dissertation is to enable heterogeneous IoT entities to

share and exchange context. For example, consider an entity that wants to know about

the level of light at night on a certain bike path. To answer this query, first, we need to

find those entities (e.g. humans carrying mobile devices, fixed sensors etc. that are part

of an IoT application for environmental monitoring) located in that area. Then, we need

to filter the retrieved list based on the entity’s context, e.g. in case of a smartphone, its

owner activity (context) to determine relevance, the smart device capabilities such as

equipped with a light sensor etc. As the first step towards supporting such a scenario,

there is a need to capture and model different types of contextual information and the

corresponding characteristics and capabilities using a generic and standard approach,

known as context model.

In order to design a generic context model for IoT environment, several

challenges are needed to be considered and addressed. First, context information is

distributed on an arbitrary number of devices; these devices are unreliable and can

appear and disappear. On top of this, IoT ecosystems consists of heterogeneous devices

providing different sets of context artefacts in different representations and under

different names. Furthermore, the context model should take the general characteristics

of context data into account, like ambiguity, impreciseness or incompleteness (see

Section 2.2.2). Based on these considerations, we list three key requirements in

designing context model in the IoT ecosystem:

(1) The context model should provide a common vocabulary to achieve

interoperability between heterogeneous context services and consumer;

 50

(2) The context model should support the integration of domain-specific

vocabularies and ontologies.

(3) The context model should define and capture the different aspects of context,

e.g., cost, quality, accuracy, and freshness of context;

By considering these requirements, we have designed a context model that

consists of two layers: a cross-domain layer and a domain-specific layer. The cross-

domain layer provides a common structure and vocabulary to achieve interoperability

between heterogeneous CPs and CCs. Further, the cross-domain layer can be extended

by various application-specific ontologies, which is referred to as domain-specific

layer. The domain-specific layer introduces the particular entity types required for a

particular domain.

Figure 3.3 - Entity Data Model

Figure 3.3 represents the structure of the cross-domain layer. The centre of

gravity in the proposed model is the notion of context entity. As defined above, each

context entity represents the state of a physical (e.g., a sensor or a person) or logical

object (e.g., an event, a traffic accident). In the proposed context model, JSON-LD is

used to provide representations for context entities and associate them with semantics

defined by the domain-specific ontologies.

In our context model, context entities are uniquely represented by the

combination of two attributes, namely @id and entity @type. The @id assign a unique

identifier (i.e. URI) to each entity in order to distinguish it from any other entity. This

ID can be used by CPs and CCs to easily interact with a specific entity.

 51

Entity types are intended to describe the type of thing represented by the entity.

Each entity type corresponds to a semantic class of entities, which is defined in the

domain-specific layer. For example, a context entity with id ‘parkingFacility-101’

could have the type ParkingFacility (i.e. http://schema.mobivoc.org/ParkingFacility),

which is defined by the MobiVoc (Brümmer & Weilandt, 2018) domain-specific

ontology.

Further, as mentioned earlier in this chapter, each context entity can have several

context attributes. In our proposed model, attributes have an attribute name, an attribute

type, an attribute value. The attribute name describes what kind of property the attribute

value represents for the entity, for example the available number of parking spaces in a

parking facility. The attribute type represents the value type of the attribute value. The

attribute value finally contains the actual data, and an optional metadata describing the

properties of the attribute value.

Metadata provides important information about the actual context information,

which facilitates the management of context data. Each metadata consists of a key-

value pair, where the key represents the role of the metadata and the value contains the

actual value of metadata. In our model, we have considered ten main metadata for

context attributes, which are presented in Table 3.2.

Table 3.2 - Context metadata

Name Description

Accuracy “Describes how exactly the provided context information mirrors

reality” (Buchholz et al., 2003, p. 5).

Precision “Denotes the probability that a piece of context information is

correct” (Buchholz et al., 2003, p. 6).

Trust-

worthiness

“Describes how likely it is that the provided information is

correct” (Buchholz et al., 2003, p. 6).

 52

Resolution “Denotes the granularity of information” (Buchholz et al., 2003,

p. 6).

Freshness “Indicates the time that elapses between the determination of

context information and its delivery to a requester” (Sheikh,

Wegdam, & van Sinderen, 2008).

Cost of context Indicates the cost associated with accessing and processing

context information.

Observation

timestamp

Indicates the exact time the context value is sensed. In the case of

high-level context, which is inferred from several low-level

contexts, the observation timestamp of the oldest involved context

will be considered.

Expire

timestamp

Indicates the exact timestamp when the context data is no longer

valid.

Average

update interval

Indicates how frequently a context data will be updated.

Service

endpoint URI

Represents the endpoint of a context service that can be invoked

in order to fetch the context data.

3.3 CONTEXT SERVICE DESCRIPTION LANGUAGE (CSDL)

In this Section, we describe our proposed Context Service Description Language

(CSDL) (Hassani, Haghighi, Jayaraman, Zaslavsky, & Ling, 2018). CSDL is a JSON-

LD-based language that enables developers of context services to describe their

services in terms of semantic signature and contextual behavioural specification; where

the semantic signature defines the service name, number and types of its parameters,

and the type of its output, and the contextual behavioural presents the context of the

entities provided by the service.

Further, CSDL allows developers to describe their services using a standard

language. CSDL enables the fast development of IoT applications that can discover and

consume context services owned and operated by different individuals and

 53

organisations. For describing the semantics of context services, we adopted Web

Ontology Language for Services (OWL-S) (W3C, 2004) which is a W3C

recommendation, as the basis of CSDL. OWL-S is an ontology language, which is

developed based on the Web Ontology Language (OWL) to enable automatic

discovery, invocation, and composition of web services. However, as OWL-S was

initially designed for describing web services and does not support the semantic

description of context, we extended the OWL-S by adding the context description of

the entities associated with context services.

Figure 3.4 - Structure of CSDL

As shown in Figure 3.4, CSDL consists of three main components: (i) Service

Profile, (ii) Service Grounding, and (iii) Service Model. Service Model gives a detailed

description of a service signature, namely its input and output, and identifies the

semantic vocabularies that are supported by the given service. Service Grounding

provides details on how to interact with a service. This component identifies which type

of communication needs to be used to call the service (e.g., HTTP get, XMPP, Google

Cloud Messaging). Further, based on the type of communication, it will provide other

required information to make the service invocation possible (e.g., URI in the case of

Entity

Service Profile

Service

Service Model Service
Grounding

Context attributes

Type

Contextual
characteristics

InteractWwith
has

describedBy

presents

su
pp
or
ts

pr
es
en
ts

de
sc
ri
be
dB
y

 54

HTTP get). Lastly, Service Profile is used to make service advertising and discovery

possible. This component indicates the type of the entity that a service interacts with.

Further, it defines the context-aware behaviour of the service. Figure 3.5 shows an

example of a service description in CSDL. This context service provides information

about parking facilities located in Monash University.

Figure 3.5 - An example of service description in CSDL

3.4 CONTEXT DEFINITION AND QUERY LANGUAGE (CDQL)

To fulfil all the discussed requirements for querying and sharing context (as

discussed in section 1.2 and 2.4) between entities in the IoT environment, we propose

a novel query language called CDQL. As mentioned earlier, CDQL consists of two

main parts, Context Query Language (CQL) and Context Definition Language (CDL)

that will be described in the rest of this section.

3.4.1 CONTEXT QUERY LANGUAGE (CQL)

In this section we will present the conceptual model and syntax of our proposed

Context Query Language (CQL). Figure 3.6 presents the production rule and highlights

the core elements of this language.

(a) CSDL (b) Linked
entity

 55

Figure 3.6 - CQL production rule

As the figure shows, CQL has three mandatory clauses, which are PREFIX,

SELECT, and DEFINE; and two optional clauses, namely SUBSCRIPTION and SET.

In the rest of this section, the details of each of these elements will be discussed. We

will use an example to explain the syntax of CQL. The example under consideration

expresses a query to find parking facilities with certain characteristics near a specific

location.

A CQL query starts with a prefix clause. The prefix clause is responsible for

identifying the semantic vocabularies that are used in a query to facilitate

interoperability (Requirement 2). Using semantic vocabularies provides an easy and

unambiguous way for a CQL developer to present their context queries. Further, it helps

CMPs to understand the information requested in a query and provide richer results.

Figure 3.7 - PREFIX clause production rule

As it is illustrated in Figure 1.1, a prefix clause consists of two parts, a prefix id

and a URI, which are separated by a colon. The prefix id assigns an identifier to a

semantic vocabulary that will be used when it is needed to refer to it, and the URI refers

to a semantic vocabulary. A CQL query can contain several semantic vocabularies

separated by a comma. The following code block represents an example of PREFIX

clause for the aforementioned parking query.

CQL ::= PREFIX SELECT WHEN? DEFINE SET?

PREFIX ::= 'prefix' PREFIX_ID ':' URI (',' 'prefix'

PREFIX_ID ':' URI)*

 56

Code block 3.1 - Example of PREFIX clause

The second mandatory clause of CQL is SELECT. This clause determines the

query response structure. As shown in Figure 3.8 - , each context query can return a set

of values as the query result, where each value can be represented as either a

CONTEXT-ATTRIBUTE or a FUNCTION-CALL.

A CONTEXT-ATTRIBUTE represents a feature of an entity. This element

consists of two parts: CONTEXT-ENTITY-ID and IDENTIFIER. The CONTEXT-

ENTITY-ID identifies the entity which the context attributes will be queried from. The

value for this element can be any of the entities known to the IoT ecosystem. We

provide a mechanism to define such entities through the DEFINE clause, which is

explained later in this section. The IDENTIFIER determines the type of context we are

interested in, such as temperature, noise level, or any other type. Furthermore, it is

possible to retrieve all the available attributes of an entity by using an asterisk (*)

wildcard.

Figure 3.8 - SELECT clause production rule

The second possible element in the SELECT clause is a FUNCTION-CALL. This

element allows querying high-level context, which is one of the requirements

(Requirement 4) of a context query language. In CQL, reasoning and aggregation

prefix mv:http://mobivoc.org,

prefix schema:http://schema.org

SELECT ::= 'select' '(' (CONTEXT-ATTRIBUTE |

CONTEXT-ENTITY | FUNCTION-CALL) ('as' IDENTIFIER)? (

',' (CONTEXT-ATTRIBUTE | CONTEXT-ENTITY | FUNCTION-

CALL) ('as' IDENTIFIER)?)* ')

 57

techniques are encapsulated as functions, referred to as CONTEXT-FUNCTION. A

detailed explanation of CONTEXT-FUNCTIONs is provided in the next section.

CONTEXT-FUNCTIONs can be easily integrated into a query using the FUNCTION-

CALL statement. The FUNCTION-CALL has four components: PACKAGE-TITLE,

FUNCTION-NAME, ARGUMENT, and IDENTIFIER. A PACKAGE-TITLE is an

optional element that will only be used when the user wants to access a function defined

inside a package. In this case, it is required to identify the namespace that the function

belongs to. On the other hand, a FUNCTION-NAME is a mandatory module and

determines the context function that needs to be applied to a set of arguments. The

function’s argument can be a CONTEXT-ATTRIBUTE, a CONTEXT-ENTITY, or a

FUNCTION-CALL. Code block 3.2 represents an example of a PREFIX clause for the

parking query. The first argument in this example is targetCarpark.*, which represents

all the available attributes of an entity with ‘id’ equals to targetCarpark. The second

argument is a FUNCTION-CALL that is used to calculate the walking distance between

the selected car parks and the driver’s destination.

Code block 3.2 - Example of SELECT clause

Figure 3.9 - DEFINE clause production rule

select (targetCarpark.*, distance(targetCarpark,

destinationLocation.geo , ’walking’))

DEFINE ::= 'define' 'entity' CONTEXT-ENTITY-ID 'is

from' Prefix_ID ':' Entity_title ('where' CONDITION

)? SORT-BY? (',' 'entity' CONTEXT-ENTITY-ID 'is from'

Prefix_ID ':' Entity_title ('where' CONDITION)?

SORT-BY?)*

 58

The last mandatory element of CQL is the DEFINE clause, which is represented

in Figure 3.9. This clause allows querying contextual information from multiple entities

(Requirement 1) by identifying the entities (one or several) that are involved in a query.

In CQL, each entity is represented using four elements, CONTEXT-ENTITY-ID,

ENTITY-TYPE, CONDITION, and SORT-BY.

The CONTEXT-ENTITY-ID assigns a name to an entity, which will be used

when referring to the entity (e.g. in the SELECT clause).

The ENTITY-TYPE defines the type of an entity (e.g. car, parking facility, or a

smart home) and consists of two parts, the PREFIX-ID that refers to a semantic

vocabulary defined in PREFIX section, and a title, which represents the exact entity.

Figure 3.10 - Condition clause production rule

The CONDITION clause provides a guideline on how to filter out unwanted

context entities from a large number of available entities. The CONDITION allows

CONDITION ::= (CONTEXT-VALUE | CONTEXT-ATTRIBUTE |

FUNCTION-CALL) (Comparison-Operator | Logical-

Operator) (CONTEXT-VALUE | CONTEXT-ATTRIBUTE |

FUNCTION-CALL)?

 | (CONDITION ('and' | 'or') | 'not')

CONDITION

 | '(' CONDITION ')'

 59

representing compound predicates that consist of several constraints connected by

logical operators (AND/OR). These constraints define characteristics of the entity of

interest. A constraint can be applied either to low-level context (CONTEXT-

ATTRIBUTE), high-level context (FUNCTION-CALL), meta-data about context (e.g.

freshness), or a simple value represented as a string or number. Furthermore, it is

possible to combine multiple conditions into a compound condition by using the AND

and OR operators. Figure 3.10 shows the production rule of the CONDITION clause.

Please note self-referencing is used in this figure to represent compound conditions.

Figure 3.11 - SORT-BY clause production rule

Lastly, the SORT-BY clause is used to sort the retrieved entities in ascending or

descending order. The syntax of this clause is presented in Figure 3.11. As this figure

shows, this clause allows users to sort the result of each context request based on one

or more values, where values can be either a CONTEXT-ATTRIBUTE, a FUNCTION-

CALL, or an ARITHMETIC-EXPRESSION.

An example of DEFINE clause based on the parking query is shown in the Code

block 3.4. This example consists of two entities, “destinationLocation” that identifies

the destination location of the driver and “targetCarpark” that represents parking

facilities with specific characteristics based on user preferences. As this example

shows, attributes of one entity can be used in the definition of another entity.

SORT-BY ::= 'sort by' (CONTEXT-ATTRIBUTE | FUNCTION-

CALL | ARITHMETIC-EXPRESSION) (',' (CONTEXT-

ATTRIBUTE | FUNCTION-CALL | ARITHMETIC-EXPRESSION))*

('asc' | 'desc')?

 60

Code block 3.3 - Example of DEFINE clause

So far, we introduced all the mandatory clauses of CQL. Using these clauses, a

context consumer can issue complex context queries concerning various context

entities and constraints, which will be executed only once immediately after the query

has been issued. We refer to these type of queries as pull-based queries. Code block 3.4

presents the full example of a pull-based query, which will be issued to retrieve all the

available parking with specific characteristics close to a specific location.

define

entity destinationLocation is from schema:place

where

destinationLocation.address = "Monash University

Clayton Campus, 40 Exhibition Walk, Clayton VIC 3800",

entity targetCarpark is from mv:ParkingGarage

where

distance(targetCarpark, destinationLocation.geo ,

"walking") < {"@type":"shema:QuantitativeValue",

"value": 500, "unitCode":"m"}

and

targetCarpark.chargingPoint.charger.powerInkW > 10

and

targetCarpark.chargingPoint.charger.threePhasedCurrentA

vailable = true

and

targetCarpark.chargingPoint.charger.plug.plugType

containsAny ["EUDomesticPlug", "CHAdeMO", "ShukoPlug"]

sort by

distance(targetCarpark, destinationLocation.geo,

“walking")

 61

Code block 3.4 - Example of a pull-based query

As mentioned earlier, a common requirement in many context-aware IoT

applications is to monitor IoT entities, discover situation changes, and adjust to them

automatically. Therefore, we introduced the SUBSCRIPTION clause to address this

requirement (Requirement 5). The SUBSCRIPTION clause supports the representation

of periodic (e.g. check the temperature of a room every 10 minutes) and event/situation-

based (e.g. when the temperature is more than 10 °C) context queries. Using this clause,

a context consumer can receive periodic updates about the real-time state of an entity

or subscribe to a specific situation. The result of the query will be sent back to the

consumer asynchronously when the defined situation is detected. We refer to such

queries as PUSH-based queries. In CDQL, to represent situations, we designed a

specific syntax that supports rule-based reasoning, uncertainty handling, temporal

prefix mv:http://mobivoc.org , prefix

schema:http://schema.org

select (targetCarpark.*, distance(targetCarpark,

destinationLocation.geo , ’walking’))

define

entity destinationLocation is from schema:place where

destinationLocation.address = "Monash University

Clayton Campus, 40 Exhibition Walk, Clayton VIC 3800",

entity targetCarpark is from mv:ParkingGarage where

distance(targetCarpark, destinationLocation.geo ,

"walking")< {"@type":"shema:QuantitativeValue",

"value": 500, "unitCode":"m"}

and targetCarpark.chargingPoint.charger.powerInkW > 10

and

targetCarpark.chargingPoint.charger.threePhasedCurrentA

vailable = true

and targetCarpark.chargingPoint.charger.plug.plugType

containsAny ["EUDomesticPlug", "CHAdeMO", "ShukoPlug"]

sort by distance(targetCarpark, destinationLocation.geo

, "walking")

 62

relations, and windowing functionality. The syntax will be explained in the next

section.

Figure 3.12 - SUBSCRIPTION clause production rule

The syntax of the SUBSCRIPTION clause is depicted in Figure 3.12. As this

figure shows, the SUBSCRIPTION clause consists of either a WHEN or EVERY

statement. Furthermore, it has an optional statement that is called UNTIL.

The EVERY statement is designed to represent periodic queries by identifying

the sampling interval for a context query. This statement starts with the ‘every’ keyword

followed by a string which represents the sampling interval. To represent sampling

intervals (i.e. duration) in CQL, we adopted ISO 8601 standard that provides a standard

way to specify the amount of intervening time in a time interval in the format

P[n]Y[n]M[n]DT[n]H[n]M[n]S[n]MS. In this format, [n] is replaced by the value for

each of the date and time elements that follow the [n]. The capital letters P, Y, M, W,

D, T, H, M, S and MS are designators for each of the date and time elements. For

example, "P1Y2M6DT8H7M15S20MS" represents a duration of "one year, two

months, six days, eight hours, seven minutes, fifteen seconds, and twenty milliseconds".

Date and time elements including their designator may be omitted if their value is zero.

Lower order elements may also be omitted for reduced precision. An example of a basic

push-based query with an EVERY statement is provided in the following code snippet.

By issuing this query, the subscribed context consumer will receive updates (i.e. every

five minutes) about the temperature of a specific location.

SUBSCRIPTION ::= ('when' HIGH-LEVEL-SITUATION |

'every' duration) ('until' date '/'? (date |

duration | number 'occurrences'))?

 63

Code block 3.5 - Example of a basic push-based

The WHEN statement is the enabling element for situation-based queries. This

statement starts with the ‘when’ keyword followed by a situation definition, which is

expressed in a HIGH-LEVEL-SITUATION statement. Using this element, an IoT

application can define and monitor their situations of interest. The HIGH-LEVEL-

SITUATION statement is fully discussed in the next section. The following query is an

example of a CQL query with a WHEN clause. This query expresses a request for

monitoring a specific parking spot that a car is driving to and suggests alternative car

parks as soon as the situation “isFull” for the given carpark becomes true.

Code block 3.6 - Example of using WHEN clause in a CDQL query

prefix schema:http://schema.org

select (destinationLocation.weather.airTemperature)

every pT5M

define

entity destinationLocation is from schema:place where

destinationLocation.address = "Monash University

Clayton Campus, 40 Exhibition Walk, Clayton VIC 3800"

prefix mv:http://schema.mobivoc.org

select (targetCarpark.*)

when isFull(selectedParking, car, event) > 0.80

define

entity selectedParking is from mv:ParkingFacility

where

selectedParking.id = ‘parking 1’,

entity destinationLocation is from schema:place

where

destinationLocation.address = "Monash University

Clayton Campus, 40 Exhibition Walk, Clayton VIC 3800",

entity targetCarpark is from mv:ParkingGarage where

…

 64

Lastly, the UNTIL statement indicates the timespan of the context retrieval by

defining queries’ lifetime. As Figure 3.12 shows, the UNTIL statement provides three

options to determine the query lifetime: the first option is to provide a DateTime struct

to indicate the expiry date and time of a query, the second option is to provide the

duration of subscription, and the last option is to provide the number of occurrences of

query executions before it becomes deactivated. Furthermore, this statement can

express the activation date and time of a subscription. In CQL, the DateTime struct is

based on ISO 8061 standard and represented as “yyyy-mm-ddThh:mm:ss[.mmm]” (e.g.

"2019-06-15T08:28:38").

Figure 3.13 - SET clause production rule

The last clause of CQL is the SET clause, which is illustrated in Figure 3.13. This

clause consists of three elements, namely CALLBACK, META, and OUTPUT.

The CALLBACK clause identifies how the result of queries should be sent back

to the context consumers. This clause describes the callback method (e.g. HTTP Post)

and other required fields (e.g. Callback URL and headers). Further, this clause provides

a mechanism to define the body of the message that will be sent back to the subscribed

context consumer. As it is shown in Figure 3.13, the value for the ‘body’ attribute is a

string, which can represent any custom messages in any format (e.g. JSON, XML, plain

text, or others). Moreover, it is possible to include any of the retrieved contextual

information in the body string by using the ‘$’ prefix, i.e. "$CONTEXT-

SET ::= 'set' ('callback' ':' '{' 'method' ':'

METHOD ',' 'body' ':' string | 'meta' ':' '{' (META-

DATA-KEY ':' CONTEXT-VALUE)+ | 'output' ':' '{'

OUTPUT-CONFIG) '}'

 65

ATTRIBUTE". If the ‘body’ attribute is not provided, all the entities and attributes

defined in the select clause will be used as the message’s body. An example of using

the CALLBACK clause is provided in Code block 3.7.

Code block 3.7 - Example of push-based query with CALLBACK clause

The CALLBACK clause can be used for both push-based and pull-based queries.

In the case of pull-based queries, it will allow context consumers to issue non-blocking

queries and receive the result as soon as the execution of a query is finished. Regarding

push-based queries, when the callback clause is presented, the result of the query will

be pushed back into the subscribed entity as soon as the related situation is detected.

When the callback is not provided, the result of the query will be temporarily stored,

and the context consumer can pull the data by issuing a query similar to the following

code snippet, which indicates the subscription id.

Code block 3.8 - Example of querying the results of subscriptions

prefix schema:http://schema.org

select (events.*) when

timeDifference(events.startDate,currentTime("Australia

/Melbourne")) -

distance(car.geo,events.geo,"DRIVING").duration <

{"value":"30","unit":"minutes"}

define entity events is from schema:event where

events.attendee.email="biotope2018.au@gmail.com",

entity car is from schema:Vehicle where

car.vehicleIdentificationNumber = "9d791e4d-8181",

set callback : {"method":"post",

url":"http://138.194.106.20","headers":{"ContentType":

"application/json" }}

prefix coaas:http://coaas.csiro.au/schema

select (subs.*)

define

entity subs is from coaas:subscription where subs.id =

‘subscription1’

 66

The META clause enables another essential requirement for a context query

language, which is expressing different aspects of context, such as imperfectness,

uncertainty, QoC, and CoC (Requirement 6). In other words, this clause allows users

to set the minimum acceptable (or default) value for each metadata. For example, the

following code block indicates that the minimum acceptable freshness for each context

attribute is 100ms and the total cost of query should be less than 50 cents.

Code block 3.9 - Example of META clause

Lastly, CQL allows developers of context query to define their preferred structure

of output through the OUTPUT clause. The production rule of the OUTPUT clause is

depicted in Figure 3.14. As it is shown in this figure, the output clause consists of two

main elements, a STRUCTURE that identifies the output data structure (e.g. XML,

JSON, or ODF), and a vocabulary that specifies which semantic vocabulary should be

used for each context-entity.

Figure 3.14 - OUTPUT-CONFIG clause production rule

In order to express the grammar of CQL, we used Extended Backus–Naur Form

(Wirth, 1996)(EBNF). The full grammar of CQL is represented in Appendix A.

Set meta : {

 “freshness” : “T100ms”,

 “cost” : {“value”:0.50,”unit”:”aud”}

 }

OUTPUT-CONFIG ::= 'structure' ':' STRUCTURE (','

'vocabulary' ':' '{' CONTEXT-ENTITY-ID ':' PREFIX_ID

':' Entity_title (',' CONTEXT-ENTITY-ID ':' PREFIX_ID

':' Entity_title)* '}')?

 67

3.4.2 CONTEXT DEFINITION LANGUAGE (CDL)

As mentioned earlier, the reasoning and aggregation functionalities are supported

in CQL through the notion of function. CDQL offers a rich set of built-in context-

functions that can be easily integrated into context queries through a FUNCTION-

CALL. Some of the most important CQL built-in functions are presented in Table 3.3.

Table 3.3 - CQL built-in functions

Function Title Details

Max(argument, [window
2
]) Returns the maximum value of a given

argument. If the window is provided, the value

will be calculated during the provided window.

Min(argument, [window]) Returns the minimum value of a given

argument. If the window is provided, the value

will be calculated during the provided window.

Sum(argument, [window]) Returns the total sum of a given argument. If the

window is provided, the value will be calculated

during the provided window.

Average(argument, [window]) Returns the average of a given argument. If the

window is provided, the value will be calculated

during the provided window.

SD(Ca, [window]) Returns the standard deviation of a given

argument during the provided window.

Count(argument, [window]) Returns the number of times the value of a

given argument has been updated. If the

window is provided, the value will be calculated

during the provided window.

Increased(argument, window) Returns true when the value of a given attribute

increased during the provided window.

2 Window identifies a limited subset of context attributes which the function will be applied to. Refer
to Section 3.4.2.2 for more details.

 68

Decreased(argument, window) Returns true when the value of a given attribute

decreased during the provided window.

isValid(argument, window) Returns true when the value of a given attribute

is unchanged during the provided window.

change(argument, [value],[

window])

Returns true when the value of a given attributes

changes. If the value is provided, returns true

only if the value of the given attribute changes

to the provided value. In all the other cases

returns False.

If the window is provided, the value will be

calculated during the provided window.

Distance(origin,

destination,[transport_type])

Returns a JSON result which contains the

Euclidean distance between the origin and

destination. If the transport_type is provided,

returns the travel distance and time for a given

origin and destination, based on the

recommended route between start and end

points considering the travel mode. The

following travel modes are supported: driving,

walking, bicycling, and transit.

Intersect(Geo-shape*, Geo-

shape*)

Allows you to compare two geospatial types to

see if they intersect or overlap each other.

SpatioTemporalIntersect(Route*,

Route*)

Returns true if the provided routes have an

intersection considering both location and time.

Within(Geo-shape*, Geo-

shape*)

Returns true if the first geo-shape is inside the

second Geo-shape.

* All the Geo-shapes can be represented either by GeoJSON format or Well-known text

markup language.

 69

While built-in functions are sufficient for most common use cases, we believe it

is mandatory for a CQL to support the definition of custom functions (Requirement 5),

as these functions are usually application dependent and predefining a comprehensive

list of them is not possible. As a result, we introduce the CREATE-FUNCTION clause

in CDL to define aggregation and reasoning functions dynamically as part of the CDQL

language.

Figure 3.15 - CDL production rule

Figure 3.15 shows the CDL production rule. As depicted in this figure, CDL

allows context query developers to create and remove CONTEXT-FUNCTIONS.

Further, it has three statements to create, alter, and drop packages. In general, packages

in CDL are designed to organise functions and prevent function name collisions. Since

the syntax of most statements in CDL are quite self-explanatory, except for CREATE-

FUNCTION. Hence, in the rest of this section, we will focus on explaining the details

of the CREATE-FUNCTION statement.

CDL ::= CREATE-FUNCTION

 | 'create' 'package' PACKAGE-NAME

 | 'alter' 'package' PACKAGE-NAME 'set' 'title'

PACKAGE-TITLE

 | 'drop' 'function' (PACKAGE-TITLE '::')?

FUNCTION-NAME

 70

Figure 3.16 - Create function production rule

Figure 3.16 highlights the syntax of the CREATE-FUNCTION statement. As this

figure shows, the CREATE-FUNCTION statement starts with a PREFIX clause, which

identifies the semantic vocabularies used in the definition of the function’s parameters.

It is followed by the ‘create function’ keyword and the FUNCTION-NAME construct

that assigns a title to a context function and makes it accessible via this title.

The next keyword in the CREATE-FUNCTION statement is ‘is on’, which

together with the PARAMETER-DEFINITION construct specifies the input

parameters of a context function. This construct supports the definition of two types of

parameters, which are CONTEXT-ENTITY and data type. The supported data types in

CDL are Number, Date, Time, DateTime, String, Array, and Object. Further, the

PARAMETER-DEFINITION construct assigns an id to each parameter using the ‘as’

keyword. In the FUNCTION-CALL statement, these parameters can be a CONTEXT-

ENTITY, a CONTEXT-ATTRIBUTE, a FUNCTION-CALL, a literal value, or an

CREATE-FUNCTION ::= PREFIX 'create function'

FUNCTION-NAME 'is on'

(Prefix_ID ':' Entity_title | Data_Type) 'as'

Identifier

(',' (Prefix_ID ':' Entity_title | Data_Type)

'as' Identifier)*

(SITUATION-FUNCTION | AGGREGATION-FUNCTION)

('set package' PACKAGE-TITLE)?

 71

expression, for example, it could be the arithmetic expression like '5*8' or

'parking.priceSpecification.price * meeting.duration' where ’parking' and 'meeting' are

context entities.

After defining the signature of a function, the body of context function is

constructed using either the SITUATION-FUNCTION construct or the

AGGREGATION-FUNCTION construct. The details and syntax of these constructs is

discussed in the rest of this section.

The last construct in the CREATE-FUNCTION statement is SET-PACKAGE.

SET-PACKAGE is an optional construct and allows specifying the package to contain

the function. If SET-PACKAGE is omitted, the context function will be placed into a

default package, which has no name.

3.4.2.1 Aggregation Function

As mentioned earlier, aggregation functions are usually application dependent,

and it is not feasible to define all possible functions for all domains in advance. As a

result, CDQL supports definition of custom aggregation functions. In CDL, aggregation

functions can be expressed in two different approaches.

The first approach is to provide aggregation functions through Restful API calls.

This approach allows CDQL developers to register custom RESTful methods and use

them in their context queries. The syntax of API-based aggregation functions construct

can be divided into two sections. The first section of this construct expresses the

endpoint of a Restful method by indicating the method type (i.e. get or post), the

protocol (i.e. http or https), host address, and port number (if required). The second

section, which consists of path parameters and query parameters, specifies the method

of interest and its parameters. The production rule of the API-based function is

presented in Figure 3.17. As this figure shows, functions can have several paths and

query parameters, where each of them might be either a literal or one of the parameters

defined in the PARAMETER-DEFINITION section. To distinguish parameters from

literal, parameters are indicated by the dollar sign and curly braces (${car.speed}).

 72

Figure 3.17 - API-based aggregation functions

It is worth mentioning that if a method of an API-based aggregation function is

set to ‘post’, all the parameters defined in the PARAMETER-DEFINITION section

will be sent to the provided URI as a JSON object.

The following example shows a CREATE-FUNCTION statement that registers

one of the Google maps’ APIs. This API takes up to 100 GPS points collected along a

route and returns a similar set of data with the points snapped to the most likely roads

the vehicle was travelling along.

Code block 3.10 - Example of CREATE-FUNCTION clause

API-AGGREGATION-FUNCTION ::= ('post' | 'get') (

'http' | 'https') '://' host (':' port)? ('/' (

normal_path | path_param))? ('?' (normal_query |

query_param))?

create function snap2Roads

is on

string as path,

Boolean as interpolate

get

https://roads.googleapis.com/v1/snapToRoads?path=${path

}&interpolate=${interpolate}

set package google

 73

The two main advantages of defining custom aggregation function as APIs are

high reusability and ease of development. However, this approach might lead to a

performance issue during query execution, especially when the volume of data that

needs to be passed to the third-party APIs becomes large. Hence, to mitigate the

performance issue in this type of use-cases, we introduced the second approach of

defining custom aggregation functions. In this approach, CDQL developers can

implement their custom aggregation functions using a scripting language, such as

JavaScript or Python. This approach potentially has better performance compared to

the first approach since the script will be executed locally (in the CMP) and there will

be no communication overhead. The code snippet below shows the implementation of

the VARIANCE aggregation functions using the JavaScript language.

Code block 3.11 - Example of creating a custom aggregation function using

JavaScript

create function variance

is on

array as values

{

 var squared_Diff = 0;

 var total = 0;

 for(var i = 0; i < values.length; i++) {

 total += values[i];

 }

 var mean = total / values.length;

 for(var i = 0; i < values.length; i++)

 {

 var deviation = values[i] - mean;

 squared_Diff += deviation * deviation;

 }

 var variance = squared_Diff/(values.length);

 return variance;

} set package math

 74

3.4.2.2 Situation Function

In this section, we illustrate how SITUATION-FUNCTIONs are represented in

CDL. First, we describe the situation model that serves as a basis for the definition of

situations in CDL. Then, we explain the syntax of SITUATION-FUNCTION

statement.

In CDQL, the situation representation and modelling are based on the Context

Spaces Theory (CST) model (Padovitz, Loke, & Zaslavsky, 2004) with some

modifications and extensions to tailor our requirements.

The central notion in CST is the concept of situations. The CST model represents

situations as geometrical objects in multidimensional space (Padovitz et al., 2004).

Such a geometrical object is called a situation space. A situation space is a tuple of

regions of attribute values related to a situation. Each region is a set of accepted values

for an attribute based on a predefined predicate. For example, consider a situation

labelled as ‘Good for Walking’ which indicates that the walking path from a suggested

carpark location to the driver’s destination is good for walking or not. This situation

space can be characterised using several context attributes such as temperature, rain

intensity, snow intensity, time of the day, the safety of the area, health status of a driver,

age, etc. Further, the acceptable regions of values for each context attribute should be

defined, e.g., the lower and upper bounds of temperature.

In addition to basic concepts and techniques for situation modelling and

reasoning, the CST model provides heuristics developed specifically for addressing

context-awareness under uncertainty. These heuristics are integrated into reasoning

techniques to compute the confidence level of the occurrence of a situation (Padovitz,

Loke, Zaslavsky, Burg, & Bartolini, 2005). One of the main heuristics of the CST

model is considering individual significance (weight) of each attribute. Weights are

values from 0 to 1 assigned to every context attribute, and they represent the importance

of each attribute in a situation, with a total sum of one per situation. In a simplified

version of the example, only considering temperature, rain intensity, and safety of the

area, the values 0.1, 0.3, and 0.6 can be assigned to these attributes respectively.

 75

Moreover, CST assigns a contribution value to each region that indicates its level

of participation in the occurrence of the situation. Back to our previous example, the

regions and their confidence for the temperature attribute could include:

5SVT;U_^TUSVwxyz = 	

⎩
⎪
⎨

⎪
⎧
0.05																													X`11	Tℎ#V(−)55
0.6																	}`T[``V	(−)55	#Vc	65
1																								}`T[``V	65	#Vc	265
0.6																			}`T[``V	265	#Vc	365
0.05																															�S;`	Tℎ#V	365

Based on the discussion above, in CST, the confidence in the occurrence of a

whole situation is defined as:

Confidence = ∑ [Å ∗ 	5Å
É
ÅÑ2

Where wi represents the weight of a particular context attribute and Ci stands for

the contribution of the range to which the value of attribute ‘i’ belongs to.

Another way to represent situations is to combine several already inferred

situations. However, the sequence of occurrences of such situations might play a role

in situation inference. For example, a situation ‘S’ can be considered to be happening

if the situation ‘A’ happens before the situation ‘B’, but not if ‘B’ happens before ‘A’.

This type of dependence is called ‘temporal relation’, and it is essential to include this

feature in the situation description model. Since this feature is not directly supported in

CST, we adopt Allen’s interval algebra (Allen, 2013; Mavrommatis, Artikis,

Skarlatidis, & Paliouras, 2016) to enable the representation of such relations.

Furthermore, a situation can be defined as a generalisation of similar events over

a certain period of time. In other words, situation A can be described as: “Situation A

is happening if a particular sensor reading was in the range between X and Y during

the last 30 minutes”. In this example, the “during the last 30 minutes” is an implicit

usage of a common technique for data stream processing - a sliding window. A window

can be defined as “a mechanism for adjusting flexible bounds on the unbounded stream

in order to fetch a finite, yet ever-changing set of tuple”(Patroumpas & Sellis, 2006).

 76

Similar to the temporal relationships, the windowing is not supported in CST.

Therefore, in order to support this functionality, we integrated four types of windows

into the situation description model, namely (i) sliding window, (ii) tumbling window,

(iii) hopping window, and (iv) eviction window. Until now, we covered the core

concepts that form the foundation of situation description in CDL. In the rest of this

section, we will present the syntax of Situation Description Statement (SDS). SDS

provides two statements for describing situations, namely the CST-SITUATION

statement and the HIGH-LEVEL-SITUATION statement.

The CST-SITUATION statement is based on Context Spaces Theory (CST) and

describes situations in terms of their related context attributes combined with

acceptable regions of values for each attribute.

Figure 3.18 shows the syntax of CST-based situation description. As illustrated

in the figure, a CST-SITUATION statement can have several situations, where each

situation starts by assigning a name to it. In the next part, all the involved CONTEXT-

ATTRIBUTEs and their corresponding values, which define the characteristics of the

situation, should be listed.

Figure 3.18 - CST-SITUATION statement production rule

CST-SITUATION ::= SITUATION-NAME ':' '{' CONTEXT-

ATTRIBUTE ':' CST-ATTRIBUTE-DEFINITION (',' CONTEXT-

ATTRIBUTE ':' CST-ATTRIBUTE-DEFINITION)* '}' (','

SITUATION-NAME ':' '{' CONTEXT-ATTRIBUTE ':' CST-

ATTRIBUTE-DEFINITION (',' CONTEXT-ATTRIBUTE ':' CST-

ATTRIBUTE-DEFINITION)* '}')*

 77

The value of CONTEXT-ATTRIBUTEs is represented by the CST-

ATTRIBUTE-DEFINITION construct that can be seen in Figure

Figure 3.193.19. This construct has two elements, ‘ranges’ and ‘weight’. The

‘ranges’ defines the acceptable regions for an attribute by indicating the exact range,

and the value of ‘belief’ that indicates the level of participation of an attribute in the

occurrence of a situation, when its value is within the indicated range. The ‘weight’

construct identifies the importance of an attribute in a situation by providing a numeric

value between 0 and 1.

CST-ATTRIBUTE-DEFINITION ::= '{' 'ranges' ':' '[' '{'

'value' ':' ('[' | '(') number ';' number (')' | ']'

) ',' 'belief' ':' number '}' (',' '{' 'value' ':' (

'[' | '(') number ';' number (')' | ']') ','

'belief' ':' number '}')* ']' ',' 'weight' ':' number

'}' '}'

 78

Figure 3.19 - CST-ATTRIBUTE-DEFINITION

The code snippet in Code block 3.12 shows an example of a situation function

definition in CDL. This example expresses the aforementioned goodForWalking

situation.

CST-ATTRIBUTE-DEFINITION ::= '{' 'ranges' ':' '[' '{'

'value' ':' ('[' | '(') number ';' number (')' | ']'

) ',' 'belief' ':' number '}' (',' '{' 'value' ':' (

'[' | '(') number ';' number (')' | ']') ','

'belief' ':' number '}')* ']' ',' 'weight' ':' number

'}' '}'

 79

Code block 3.12 - Example of CST-based situation function definition

As mentioned earlier, the CST model does not support expressing situations that

contain temporal relationships or window functions. Therefore, to express this kind of

situations, we introduced the HIGH-LEVEL-SITUATION statement. This statement

supports description of higher-level situations by describing the correlation of

situations via temporal relationships and logical operators.

prefix schema:http://schema.org

create function weatherSituation is on

schema:weather as r1 {

 "goodForWalking" : {

 r1.airTemperature : {

 ranges : [

 { value:(0;6], belief : 20 } ,

 { value:(6;13], belief : 50 },

 { value:(13;28], belief : 100 } ,

 { value:(28;38], belief : 20 }

],

 weight : 10

 } ,

 r1.windSpeed : {

 ranges : [

 { value:(0;8], belief : 100 } ,

 { value:(8;20], belief : 50 },

 { value:(30;40], belief : 10 }

] ,

 weight : 5

 }

 }

}

 80

Figure 3.20 - HIGH-LEVEL-SITUATION statement production rule

The production rule of this statement is presented in Figure 3.20. As shown in the

figure, the syntax of the HIGH-LEVEL-SITUATION statement is very similar to the

CONDITION clause, with the only difference that the former allows connecting two

high-level-situations with temporal relationships operators. In CDL, we adopted seven

operators from Allen’s interval algebra, namely Before, Meets, Overlaps, Starts,

During, Finishes, and Equals. The graphical representation of temporal relations

between events is presented in Figure 3.21.

HIGH-LEVEL-SITUATION ::= (CONTEXT-VALUE | CONTEXT-

ATTRIBUTE | FUNCTION-CALL) (Comparison-Operator |

Logical-Operator)

(CONTEXT-VALUE | CONTEXT-ATTRIBUTE | FUNCTION-CALL)?

|(HIGH-LEVEL-SITUATION (Logical-Operator |

Allens-Algerbar-OP) | 'not') HIGH-LEVEL-

SITUATION

 | '(' HIGH-LEVEL-SITUATION ')'

 81

Figure 3.21 - Allen’s algebra graphical representation (i stands for inverse)

Another concept that was mentioned earlier in this section is windowing. To

enable a query to express the validity of a situation over time, we introduced a new

built-in function – ‘isValid’. This function accepts a situation and a period of time as

its inputs and returns the average confidence of occurrence of the given situation over

a defined period. It enables both the possibility to access historical trajectory of the

situation, and, also, a sliding, hopping, tumbling and eviction window functionality.

The formal representation of using the ‘isValid’ operator is presented in Figure 3.22.

 82

Figure 3.22 - isValid function production rule

An example of using the ‘isValid’ operator for a real situation’s description is

shown in Code block 3.13 line 5. This SDS describes a situation when a period of

parking exceeds the allowed maximum duration.

Code block 3.13 - Example of isValid function

Further, as shown in Table 3.3, CDQL is enhanced with a rich set of statistical

functions that can be used to improve the expressiveness of the situation description of

the language. These functions accept a context attribute and a window as its input and

return statistical information as the output.

IS-VALID ::= 'isValid' '(' HIGH-LEVEL-SITUATION ',' ((

'tumblingWindow' | 'slidingWindow') '(' |

'hoppingWindow' '(' duration ',') duration ')' ')'

prefix mv:schema.mobivoc.org

create function parkingTimeEnded is on

mv:parking as p1,

mv:car as c1

isValid(charIsParked(c1,p1),slidingWindow(p1.maxDurati

on))= true

 83

3.5 SUMMARY

In this chapter, we tackled the fundamental challenges in designing context

management platforms, which is the need for a generic, flexible, and easy to use

approach for publishing and querying context. To achieve this goal, we presented

Context Service Description Language (CSDL) and Context Definition and Query

Language (CDQL), which are used to describe the information provided by context

providers and required by context consumers respectively.

The CSDL is an abstract service description language and supports the definition

of context services in terms of their semantic signature, service characteristics, and

contextual behaviour specification. Using this language, context providers can describe

the semantics and structure of their context services and register them in CoaaS.

The CDQL aims to define and represent context entities and context requests for

IoT applications, services, and systems. CDQL consists of two main parts namely:

Context Query Language (CQL), which is a powerful and flexible query language to

express contextual information requirements without considering the details of the

underlying data structure, and Context Definition Language (CDL), which facilitates

the description of high-level context and situations. CQL supports both pull- and push-

based queries. One of the main features of this language is its ability to support and

represent contextual functions, namely situation (high-level context) and aggregation

functions, using CDL facility.

The CSDL and CDQL are key components of CoaaS that facilitate sharing

context among heterogeneous IoT entities, namely context providers and context

consumers.

On top of that, in this chapter, we presented the blueprint architecture of CoaaS

platform, identified its major components, and briefly explained them. In the next

chapter, we will focus on two of these components, Context Query Engine (CQE) and

Situation Monitoring Engine (SME), and will show how they utilise CDQL and CSDL

to allow context consumers to query and monitor the context published by context

providers.

 84

Chapter 4: Context Query and Situation
Monitoring Engines: Design and
Implementation

In In the preceding chapter, we presented the overview architecture of CoaaS

platform, introduced its main components, and discussed their responsibilities.

Furthermore, we proposed a novel mechanism for publishing and querying context,

accomplished by two specially designed high-level languages, namely Contest Service

Description Language (CSDL) and Context Definition and Query Language (CDQL).

Using these languages, context consumers can query the information offered by the

context providers.

In this chapter, to demonstrate how CoaaS utilises CSDL and CDQL, we will

focus on two enabling components of CoaaS platform that directly interact with the

proposed context service description and context query language to enable context

sharing in IoT ecosystem. These components are Context Query Engine (CQE), which

parse the incoming CDQL queries and manage their execution, and Situation

Monitoring Engine (SME), which enables continuous monitoring of IoT entities’

situations.

Moreover, after introducing the aforementioned components and providing

details about their underlying sub-components and algorithms, as a proof of concept,

we will present a prototype implementation of CoaaS platform and will explain its

general infrastructure and execution environment.

4.1 CONTEXT QUERY ENGINE

The architecture of Context Query Engine (CQE) is illustrated in Figure 4.1. As

mentioned earlier, this module is mainly responsible for parsing the incoming queries,

generating query execution plan, orchestrating the execution of queries, and producing

the final query result. Furthermore, CQE also takes care of fetching required data from

context providers on demand.

 85

As shown in Figure 4.1, within CQE there are five main components, namely (i)

Context Query parser (CQP), (ii) Context Query Coordinator (CQC), (iii) Context

Service Discovery (CSD), (iv) Context Service Invoker (CSI), and (v) Context Query

Aggregator (CQA). A detailed description of each of these components will be

presented in the remainder of this section.

Figure 4.1 - Context Query Engine Architecture

When a query is issued to CoaaS, after passing the security checks, it will be sent

to the Context Query Parser (CQP) by Communication and Security Manager. The CQP

has three main responsibilities, namely parse the incoming queries, break them into

several sub-queries (i.e. context requests), and determine the query’s execution plan.

The details of generating the execution plan for CDQL queries are discussed in Section

4.2.

Then, the parsed query plus the execution plan will be sent to the Context Query

Coordinator (CQC). The CQC plays an orchestration role in the engine. This module is

responsible for managing and monitoring the whole execution procedure of a context

query. We will describe the details and workflow of these components in Section 4.3.

In the next step, context requests will be pushed into the Context Service

Discovery (CSD) module. This module is in charge of finding the most appropriate

Context Storage Management System Context Reasoning Engine

Context Query Coordinator

Context
Query
Parser

Context
Service

Discovery

Context
Service
Invoker

Context
Query

Aggregator

Communication and Security Manager

 86

context service for an incoming request. The workflow of this component consists of

two parts. First, it finds context services that match the requirements of a context

request. Then, based on the discovered services, it returns a sorted set of the best

available context services that can satisfy the requirements of a request, considering

different metrics such as Cost of Service, and Quality of Service. The underlying

concepts of CSD are discussed in Section 4.4.

After selecting the best eligible context provider (i.e. context service) for each

context request, the request will be passed to the Context Service Invoker (CSI). This

component is responsible for fetching context from the corresponding context provider

to retrieve the required contextual information and pass the retrieved information to the

Context Query Aggregator (CQA). Finally, the CQA combines the results of all the

context requests and generates the final result of the query. The retrieved context may

also be processed by the Context Reasoning Engine (CRE) to produce high-level

context.

4.2 CONTEXT QUERY PARSER AND EXECUTION PLAN S

GENERATION

As stated before, CDQL supports complex context queries concerning various

entities where the information about each entity might be provided by a different

context service. In other words, CDQL queries are capable of expressing request for

contextual information related to one or several entities. Furthermore, entities used in a

query can be dependent, which means the information retrieved from one entity might

be used in the query definition of another entity.

For example, consider the CDQL query shown in Code block 4.1. This query

consists of three context entities, namely vehicleA, trafficElements, and

targetCarparks, and presents a request to find all the traffic incidents that might affect

vehicleA and also available parking options near its destination.

 87

Code block 4.1 - CDQL for finding traffic incident near a specific vehicle

As this query shows, the definition of both trafficElements and targetCarparks

are dependent on vehicleA, as their WHERE clauses have a reference to one of

vehicleA’s attributes, i.e. vehicleA.itinerary and vehicleA.destination respectively.

Consequently, before querying the registered context providers about traffic incidents

and parking facilities, it is necessary to send a request to vehicleA for fetching its

planned route (i.e. itinerary) and destination.

On the other hand, each CDQL query might have some entities that can be queried

simultaneously, which leads to reducing the overall query execution time. For example,

in the query above, after retrieving the required context about vehicleA, both traffic

incidents and parking facilities can be queried at the same time.

Based on the concepts discussed above, we have designed and developed an

algorithm to generate execution plans for CDQL queries. The execution plan generation

can be remodelled as a graph traversal problem, by converting CDQL queries to a

directed graph, where each node represents one entity, and each edge between two

nodes represents the relationship (dependency) among those entities. As a result, the

execution plan can be generated by finding a path that visits all the nodes in the graph

starting from a node with no dependencies (zero inbound degree).

prefix datex:http://vocab.datext.org,

mv:http://schema.mobivoc.org

select (trafficElements.*, targetCarpark.*)

define

entity vehicleA is from datex:vehicle where

vehicleA.vehicleRegistrationPlateIdentifier = “1hm3ea”,

entity trafficElements is from datex:TrafficElement

where spatioTemporalIntersect(trafficElements.geo,

vehicleA.itinerary, 200) = true,

entity targetCarparks is from mv:ParkingGarage where

distance(targetCarparks, vehicleA.destination.geo ,

"walking")< {"@type":"shema:QuantitativeValue",

"value": 500, "unitCode":"m"}

 88

The algorithm for the proposed execution plan generator is presented in Figure

4.2. This algorithm accepts a CDQL query in String format and generates an execution

plan that specifies the order of retrieving contextual information about the entities

defined in the query.

As the first step towards producing the execution plan, the incoming CDQL query

will be parsed into an object model containing several attributes, namely queryType,

nameSpaces, select, and define. The queryType identifies the type of the incoming

query, which can be either pull-based or push-based. The nameSpaces element contains

all the semantic vocabularies defined in the PREFIX clause. The select denotes the

structure of the query’s output and includes the entities, attributes, and functions that

are defined by the SELECT clause of the incoming query. Lastly, the define element is

an array of context entities described in the DEFINE clause of the incoming query.

Figure 4.2 - CDQL Execution Plan Generator

 89

Each context entity itself is represented by five elements:

• entityID denotes the unique name assigned to the entity.

• type represents the semantic category/ontology classes the entity belongs to.

• dependency captures the dependency with the other context entities that are

referenced in the definition of this entity

• RPNCondition is the Reverse Polish Notation (RPN) representation of the

WHERE clause. RPN is a well-known method for the expression notification in a

postfix manner, instead of using the usual infix notation.

• contextAttributes consists of an array of context attributes that are used in the

CDQL query in the SELECT, WHEN, or WHERE clauses.

Code block 4.2 shows the JSON representation of the parsed CDQL object for the

query presented in Code block 4.1.

After generation of the parsed CDQL object, the initialization step of Algorithm

4.1 (Figure 4.2) creates an empty hashmap for storing the execution plan

(executionPlan), and an empty set to keep track of visited context entities (i.e.

visitedNodes). Then, the algorithm iterates over all the context entities in the define

element to find those context entities that have no dependency (0 inbound degree). The

retrieved entities in this step will be marked as visited, removed from the define element

and will be added to the executionPlan, where the execution order is 1.

As the next step, the algorithm iterates through the remaining entities in the define

element and tries to find those entities that their dependency is a subset of the

visitedNodes. Then, similar to the previous step, the found entities will be removed

from the define element, labelled as visited, and will be added in the next execution

order of the executionPlan. This step will be repeated several times until either all the

nodes in the define elements are visited (until the define element becomes empty) or

cannot visit a new entity in an iteration. Finally, the algorithm checks if all the entities

in the define element are visited. If not, it means the execution plan for the incoming

query cannot be generated due to a cycle in the dependency graph. Otherwise, the

algorithm returns the generated execution plan.

 90

Code block 4.2 - An Example of Parsed CDQL Query

{
 "warnings": {},
 "errors": {},
 "queryType": "PULL_BASED",
 "nameSpaces": {
 "mv": "http://schema.mobivoc.org",
 "datext": "http://vocab.datext.org"
 },
 "select": {
 "selectAttrs": {
 "trafficElements": […],
 "targetCarparks": […]
 },
 "define": [{
 "entityID": "vehicleA",
 "type": {
 "type": "Vehicle",
 "vocabURI": "http://vocab.datext.org/Vehicle"
 },
 "dependency": {},
 "RPNCondition": […],
 "contextAttributes": ["*","geo", "itinerary"]
 },
 {
 "entityID": "targetCarparks",
 "type": {
 "type": "ParkingGarage",
 "vocabURI": "http://schema.mobivoc.org"
 },
 "dependency": {
 "vehicleA": ["geo"]
 },
 "RPNCondition": […],
 "contextAttributes": ["*"]
 },
 {
 "entityID": "trafficElements",
 "type": {
 "type": "TrafficElements ",
 "vocabURI": "http://vocab.datext.org/TrafficElements "
 },
 "dependency": {
 "vehicleA": ["itinerary"]
 },
 "RPNCondition": […],
 "contextAttributes": ["*","geo"]
 }
] }

 91

Code block 4.3 - Extended parking and traffic elements query

To illustrate the procedure of generating an execution plan, consider the context

query shown in Code block 4.3, which is an extended version of the query discussed

earlier in this section in Code block 4.1. This query consists of four entities: vehicleA,

weatherCondition, trafficElements, and targetCarparks.

prefix datex:http://vocab.datext.org,

mv:http://schema.mobivoc.org, schema:http://schema.org

select (trafficElements.*, targetCarpark.*,

weatherCondition.*)

define

entity vehicleA is from datex:Vehicle where

vehicleA.vehicleRegistrationPlateIdentifier = “1hm3ea”,

entity weatherCondition is from schema:Weather where

weatherCondition.location = vehicleA.destination,

entity trafficElements is from datex:TrafficElement

where

spatioTemporalIntersect(trafficElements.geo,

vehicleA.itinerary, 200) = true,

entity targetCarparks is from mv:ParkingFacility where

(goodForWalking(weatherCondition) > 0.7 and

distance(targetCarparks, vehicleA.destination,

"walking")< {"@type":"shema:QuantitativeValue",

"value": 500, "unitCode":"m"}) or

(goodForWalking(weatherCondition) <= 0.7 and

distance(targetCarparks, vehicleA.destination,

"walking")< {"@type":"shema:QuantitativeValue",

"value": 1000, "unitCode":"m"})

 92

Figure 4.3 - Query Execution Plan Graph

Figure 4.3 shows the directed graph generated based on this query. As depicted

in this graph, the inbound degree of entity vehicleA is 0. Therefore, this entity should

be retrieved in the first step. In the next step, when the required information (i.e.

destination and itinerary) regarding vehicleA is fetched, the context request related to

weatherCondition can be issued. In the same manner, in parallel with the previous step,

the request for trafficElements can be executed. Lastly, when the required contextual

information related to weatherCondition is fetched, a context request will be generated

to find the best available car parks. Therefore, the order of context requests execution

(execution plan) for this query can be written as shown below:

Execution order 1: vehicleA

Execution order 2: weatherCondition

trafficElements

Execution order 3: targetCarparks

Execution order 0 Execution order 1 Execution order 2

datex:TrafficElements

da
te

x:
Ve

hi
cl

e

schema:Weather

m
v:ParkingFacility

destination

temperature
destination

itinerary

 93

4.3 CONTEXT QUERY COORDINATOR

In the previous section, we presented our proposed algorithm for generating

execution plan for CDQL queries. Furthermore, we showed the structure of the parsed

query object and described its main elements. As the next step towards executing

CDQL queries, in this section, we will describe the workflow of Context Query

Coordinator (CQC) module. As discussed in Section 4.1, CQC is responsible for

managing the whole execution lifecycle of CDQL queries, including both pull-based

and push-based queries.

As mentioned in Chapter 3, CDQL supports querying contextual information using

two approaches: the pull-based approach and the push-based approach. In the remainder

of this section, we will discuss how CQC handles pull-based queries in Subsection

4.3.1. Then, in Subsection 4.3.2, the workflow of managing push-based queries will be

described in detail.

4.3.1 PULL-BASED CDQL QUERY

In this section, we will present the workflow of executing pull-based queries,

which are executed synchronously. A synchronous query is a query that maintains

control over the process of the application that issues the query for the query’s lifetime.

In other words, when a context consumer issues a pull-based query, it has to wait for

the entire round trip, from when the query is first sent to the CoaaS until the results are

retrieved and returned to the context consumer.

The complete workflow of executing pull-based queries is illustrated as flow of

events in a sequence diagram in Figure 4.4. When CQE receives a CDQL query, the

query will be sent to CQP, which parses the raw query and generates the execution plan.

Then, the CQP passes the parsed query object plus the execution plan to CQC. As

described in Section 4.2, each execution plan consists of several execution orders that

specify the correct sequence of retrieving the context entities defined in a CDQL query.

Moreover, each execution order itself has one or several independent entities, which

means they can be queried simultaneously.

Therefore, to execute an incoming context query, CQC iterates over the generated

execution plan in ascending order, from the execution order 1 to the last execution

 94

order. Following this, for each entity in the current execution order, CQC starts a new

thread that forms and issues a context request to fetch the required context of the entity.

As defined in Definition 3.6, context requests are represented as a triple: 〈E, CA, P〉

where E denotes the type of entity of interest (i.e. entityType in the parsed query object),

CA is a set of requested context attributes (i.e. contextAttributes in the parsed query

object), and P is a set of predicates, which are defined over CA using logical

expressions (i.e. RPNCondition in the parsed query object). Execution of context

requests has four main steps, as outlined below:

Figure 4.4 - Push-based CDQL execution workflow

Step 1: The generated context requests will be initially sent to Context Storage

Management System (CSMS). CSMS searches the repository of registered entities by

 95

converting the incoming context requests to the underlying data storage language.

Subsequently, a list of matching context entities (i.e. context responses) will be sent

back to the CQC, which can have zero or more entities, depending on the ability of

CSMS to find compliant entities.

Step 2: If the returned list is non-empty, the CQC checks the validity of the context

responses by inspecting the expiry timestamps of their context attributes. If any of the

attributes were expired, CQC issues a request to Context Service Invoker (CSI) to re-

fetch the value of the expired context attribute from the corresponding context provider.

Step 3: On the other hand, if CSMS cannot find any context entity that matches the

characteristics of the requested entity, CQC issues a context discovery request to CSD.

Then, CSD tries to find and select the most eligible context services that match the

requirements of the incoming context request. Details of how CSD discovers and

selects matching context services is provided in Section 4.4. Then, CQC fetches the

context of the entities of interest through the CSI module.

Step 4: In the final step of handling context requests, CQC re-evaluates the

RPNCondition of those retrieved entities that their context attributes have been updated

in Step 2. Moreover, if the RPNCondition contains any situation or aggregation

function that cannot be evaluated in the previous steps, CQC re-evaluates them.

After successfully obtaining the needed context for each request in the first

execution order, CQC stores the result and starts the next iteration, by incrementing the

execution order by one. However, before starting the next iteration, it is required to

update the RPNCondition of those entities that are dependent on at least one of the

entities that are retrieved in the current execution order. Consequently, CQC traverses

the context entities in the next execution orders and updates their RPNCondition by

replacing the dependant context attributes according to their actual values that are

fetched in the current iteration. During the process of updating the RPNConditions,

there might be a case that more than one context entity is retrieved for a given context

request, which is referred to in the WHERE clause of another entity. In this situation, if

it is required, CQC reformulates the RPNCondition. Based on how the dependent

attribute is used in the WHERE clause, five different reformulation strategies might be

considered by CQC. Table 4.1 shows the reformulation strategies.

 96

Table 4.1 - RPNCondition reformulation strategies

Usage Type Strategy Example

Original condition Reformulated condition

In a condition using set
operators (e.g.
containsAny,
containsAll)

No changes required. e1.a1 containsAll e2.a1 e1.a1 containsAll [1,2,3,4]

In an equality condition The equality operator will be replaced by containsAny. e1.a1 = e2.a1 e1.a1 containsAny [1,2,3,4]

In an inequality
condition

The inequality will be broken down into several

inequality conditions (one for each instance of

dependent entity) that are connected with OR operator.

e1.a1 < e2.a1 (e1.a1 < 1 or

e1.a1 < 2 or

e1.a1 < 3 or

e1.a1 < 4)

Inside a function call The function call will be broken down into several

function calls (one for each instance of dependent

entity) that are connected with OR operator.

F1 (e1.a1 , e2. a1) < 12 (F1 (e1.a1, 1) = true or

F1 (e1.a1, 2) = true or

F1 (e1.a1, 3) = true or

F1 (e1.a1, 4) = true)

Inside an entityMatch
operator

For each instance of dependent entity, one entityMatch

statement will be generated. The OR operator will be

used to connect these statements.

entityMatch(e1.a1 = e2.a1 and e1.a2 <

e2.a2)

((e1.a1 = 1 and e1.a2 < 10) or

((e1.a1 = 2 and e1.a2 < 8) or

((e1.a1 = 3 and e1.a2 < 4) or

((e1.a1 = 4 and e1.a2 < 6))

*assume the context response for e2 contains the following entities: [{a1:1, a2:10},{a1:2, a2:8},{a1:3, a2:4},{a1:4, a2:6}]

 97

Finally, when all the context entities presented in the execution plan are retrieved,

the fetched context will be passed to the Context Query Aggregator (CQA). CQA

generates the final output of the incoming CDQL query based on its SELECT clause.

To further clarify the execution procedure of pull-based queries, consider the

example query presented in Code block 4.4. This query is designed to find the vehicles

that are driving faster than 60 km/h at a distance less than 500 meters from a school in

one of Melbourne’s suburbs.

Code block 4.4 - CDQL query for finding vehicles driving faster than 60 km/h near a

school in Melbourne

The code block shows that this query has two entities, schools and vehicles, where

the vehicles entity has a dependency on entity schools. Therefore, the execution plan of

the query has two execution orders:

Execution order 1: schools

Execution order 2: vehicles

Prefix schema:http://schema.org

select (vehicles.VIN)

define entity schools is from schema:School where

schools.address= {

 "@type": "PostalAddress", "addressCountry":

"Australia",

 "addressLocality": "Melbourne", "addressRegion":

"VIC",

 "postalCode": "3145"},

entity vehicles is from schema:Vehicle where

vehicles.speed > {"@type":"shema:QuantitativeValue",

"value": 40, "unitCode":"kmh"} and

distance(vehicles.geo, schools.geo, "driving")<

{"@type":"shema:QuantitativeValue", "value": 500,

"unitCode":"m"})

 98

Based on the above execution plan, CQC issues a context request to CSMS to

find all the schools within the specified area.

!"#$%&&'#:	〈+!ℎ-./: 0!ℎ112, {/55"-++, 6-1}, {+!ℎ112+. /55"-++ = {… }}〉

Then, CSMS queries the repository of the registered entities to find the matching

schools. For this query, assume 3 schools are registered inside the identified region.

Therefore, CSMS sends a context response back to CQC, which contains the address

and geocoordinate of 3 schools that matches the aforementioned condition. Then, for

each of these entities, CQC validates the expiry timestamp of the corresponding context

attributes. However, as both address and geocoordinate for an entity like a school are

considered as static values, we assume all the retrieved context attributes are valid.

Since the entity schools is the only entity in the first execution order, CQC starts

the next execution order. However, as mentioned earlier, it is required to update the

RPNCondition of the entity vehicles by replacing the schools.geo by its actual value.

For the given example, as more than one entity has been found for schools entity, CQC

reformulates the WHERE clause of entity vehicles. The reformulated query can be seen

in Code block 4.5.

Code block 4.5 - Reformulated WHERE clause

entity vehicles is from schema:Vehicle where

vehicles.speed > {"@type":"shema:QuantitativeValue",

"value": 40, "unitCode":"kmh"} and (

distance(vehicles.geo, [-37.876584, 145.053531],

"driving")< {"@type":"shema:QuantitativeValue",

"value": 500, "unitCode":"m"}) or

distance(vehicles.geo, -37.873959, 145.057103],

"driving")< {"@type":"shema:QuantitativeValue",

"value": 500, "unitCode":"m"}) or

distance(vehicles.geo, [-37.877200, 145.047115],

"driving")< {"@type":"shema:QuantitativeValue",

"value": 500, "unitCode":"m"})

)

 99

In the next step, CQC forms a context request based on the updated

RPNCondition in order to find the vehicles that are over-speeding near one of the three

schools found in the previous iteration.

!"<=>?@A=B	:	〈+!ℎ-./: Vehicle, {IJK, 6-1, +L--5}, {M-ℎN!2-+. 5N+O/P!- < ⋯}〉

This time we assume CSMS returns 10 vehicles that each of them meets the above

conditions (i.e. near the school and over-speeding). Then, for each vehicle, CQC checks

the expiry date of their required attributes, namely Vehicle Identification Number

(VIN), geocoordinate, and speed. As both speed and geocoordinate for a mobile entity

like a vehicle have high update frequency, there is a considerable chance of having

outdated values. As a result, CSI sends a request to corresponding vehicles to fetch the

real-time values of the expired context attributes. Then, finally, CQC re-evaluates the

RPNCondition based on the updated context attributes and returns the VIN of over-

speeding cars back to the corresponding context consumer.

4.3.2 PUSH-BASED CDQL QUERY

In this section, we will explain the workflow of Context Query Coordinator (CQC)

for processing the second type of CDQL queries, which are referred to as push-based

queries. In the case of push-based queries, the CQC is responsible for creating and

registering new subscriptions based on the incoming CDQL queries.

The workflow of the execution of push-based CDQL queries is presented in Figure

4.5 as event sequences in a sequence diagram. As shown in the figure, the subscription

procedure starts when the CQC receives a new push-based CDQL query (i.e. a CDQL

query with WHEN clause) from a context consumer. In the first step, the query will be

sent to Context Query Parser (CQP), which parses the query and sends the outcome to

the CQC.

 100

Figure 4.5 - Push-based CDQL execution workflow

The CQC will then generate a subscription. Here, it will convert the parsed query to

an internal representation, which is called a subscription data model. This model has

four main parts:

• Callback stores the required information about the context consumer’s endpoint

and will be used for sending the result of the query.

• Parsed Query stores an executable version of the issued query. The reason for

storing the executable version of the query is to speed up the pre-processing

procedure by avoiding the need to parse a full query each time a context update is

received by the platform.

• Related Entities contains the information about all the entities and their attributes

that needs to be monitored. This information is organised in an indexed structure

and is used for pre-filtering the subscriptions.

 101

• Situation is the Reverse Polish Notation (RPN) representation of the WHEN

clause.

Besides these four elements, each subscription document has a unique ID. An

example of the subscription data model is shown in Figure 4.6.

Figure 4.6 - An example of subscription data model

In the next step, the Query Coordinator checks if the WHEN clause contains any of

the following processing functions: windowing (e.g., during the last five minutes),

temporal relation (e.g., after, before, etc.), or trend detection (i.e., increase, decrease,

stable). This class of functionality is commonly realised in the Complex Event

Processing (CEP) software. Consequently, to support these types of functions, we have

adopted an existing CEP engine.

 102

If such tasks exist, Query Coordinator generates a query in the corresponding Event

Processing Language (EPL) and issues it to the CEP engine. For example, consider a

WHEN clause, which contains the following trend function to monitor the decrease in

the number of parking spots :

decrease(parking.availableSpots,{“value”:10,”unit”:”minutes”})

In the current implementation of CoaaS platform, we are using Siddhi CEP

framework (Suhothayan et al., 2011). An example of a generated EPL query (i.e. Siddhi

application) for trend detection (decreasing the number of parking spots during the last

10 minutes) is presented in Code block 4.6.

Code block 4.6 - An example of Siddhi application generated by the CQC

Another type of PUSH-based queries is the periodic query. This type of query is used

by context consumers to receive regular updates about the situation of an entity. In such

a case, the Query Coordinator schedules a task with a fixed interval to update the context

consumer of situation changes during a specified period.

In the final step of the execution of push-based queries in Figure 4.5, the generated

subscription will be passed to the Context Storage Management System (CSMS), which

will store it for persistence. Moreover, the ID of the registered subscription will be sent

back to the corresponding context consumer. Context consumers can monitor the

detected situations of a registered subscription by providing this ID. On top of that, using

the subscription ID, context consumers are able to deactivate or delete their registered

subscription.

 103

4.4 CONTEXT SERVICE DISCOVERY

As mentioned earlier, Context Service Discovery (CSD) is responsible for

discovering the context services that can provide the requested information and hence

satisfy the incoming CDQL queries. In the remainder of this section, we will describe

the context service discovery problem followed by our proposed solution.

To formulate the context service discovery problem, consider a platform with 'n'

registered context services and a given context request. The set of context services is

denoted by CSR (context service repository) and the given context request is denoted

by !". As shown in Definition 3.6, a context request is represented as a triple: 〈E, CA, P〉

where E denotes the entity of interest, CA is a set of requested context attributes, and P

is a set of predicates, which are defined over CA using logical expressions.

The goal of the context service discovery is to find all the services that best match

!". Therefore, the problem of context service discovery can be modelled with the

following function:

(Eq. 4.1) !"	 → {!+X, … , !+'}

such that:

{!+X, … , !+'} 	⊆ CSR

∀	!+[∈ {!+X, … , !+'} ∶ $̂_ ⊆ $̂#` 	∧ 	bc$_ ⊆ bc$#` ∧ 	d$_ 	⊆ d$#`

In order to solve the stated problem, we have designed a two-level approach, which

is capable of discovering the most eligible services for a given context request. Figure

4.7 illustrates the overview architecture of the proposed solution. The figure shows that

the CSD consists of three modules, (i) Preliminary Service Matching (PSM), (ii)

Contextual Characteristics Matching (CCM), and (iii) Context Similarity Calculator

(CSC).

 104

Figure 4.7 - Context Service Discovery architecture

When CSD receives a context request, the incoming request first goes to Preliminary

Service Matching (PSM). PSM is responsible for searching through the context service

repository to find those context services that their offered entity matches the incoming

request. Then, the outcome of PSM, which is referred to as candidate set, will be sent

to Contextual Characteristics Matching (CCM). CCM checks each context service

inside the candidate state and verifies if it satisfies the characteristics of the incoming

context request. Furthermore, CCM assigns a satisfiability level to each context service,

which will be used to sort the matched services and choose the service that have the

highest probability to serve the incoming request best.

Lastly, Context Similarity Calculator (CSC) is a tool that is designed to calculate the

similarity between two context attributes. This tool is being used by both PSM and

CCM. PSM uses it to compare the type of the requested entity (i.e. $̂_) to offered

entity’s type (i.e. $̂#). Moreover, CSC is used by CCM in order to compare how well

two predicates, i.e. the one belonging to the context request and the other belonging to

the context service, match. A detailed description of these modules is provided in the

remainder of this section.

Preliminary Service
Matching

Contextual Characteristics
Matching

Context
Similarity
Calculator

Context
Request

C
ontext Service D

iscovery

Candidate
Set

Context Service
Repository

lo
ok

up

Matched
CSs

 105

4.4.1 CONTEXT SIMILARITY CALCULATOR (CSC)

In order to compute the similarity of a common context attribute (ca) between a

given context request (cr) and a context service (cs) (-. 6. !/$_. OeL- = 	 !/$#. OeL- =

f-.L-"/Og"-), we define five different similarity functions. These functions accept

two expressions defined on a context attribute with the same type as arguments and

compute how closely a context service expression matches the corresponding attribute

in the context request.

Boolean Similarity: Boolean Similarity is the most basic similarity function and is

used to compare equality expressions that are defined on top of string-based context

attributes (e.g. !/$_ = "cij"). It compares two context values and returns a Boolean

value (either 0 or 1). The similarity is computed as:

(Eq. 4.2) 0N.N2/"NOe(!/$_, !/$#) = m
1	No	M(!/$_) = M(!/$#)	
0	No	M(!/$_)	! = M(!/$#)

where M(!/)	represents the value of the context attribute !/.

Continues Similarity function: If the type of the context attribute is numeric or

ordinal, the similarity between !/@r and !/@B is computed as below:

(Eq. 4.3)

0N.N2/"NOe(!/@r, !/@B) =s
tuvwxvyz{|},xvyz{|~�ÄtÅÇ(#ÉÅ_Éz{|},#ÉÅ_Éz{|~)
tÅÇwxvyz{|},xvyz{|~�Ätuv(#ÉÅ_Éz{|},#ÉÅ_Éz{|~)

										No	!/@r ∩ !/@B ≠ ∅

0																																																																																					No	!/@r ∩ !/@B = ∅

where -P5 represents the higher bound value of !/, and +O/"O represents the lower

bound value of !/.

To clarify, consider a given query that needs to find a carpark between 8:00 to 18:00

in a particular location. At the same time, assume there is a carpark service that provides

information about a garage located in the requested area where its working hours are

from 7:00 to 17:30. For this example, the similarity between the queried request time

and carpark’s working hours can be computed as below:

áNP(18,17.5) − á/å(7,8)
18 − 7

=
9.5
11

= 			0.86

 106

Semantic Similarity function: If a context attribute refers to a semantic concept based

on a hierarchical ontology; we introduce a semantic similarity function that uses a depth

variable. The depth function returns the number of edges on the path from the given

node to the root node (Zhang, Tang, Hong, Li, & Wei, 2006). èb(!/@r, !/@B)	denotes

the lowest common concept node of both !/@B	and !/@r. The similarity is calculated as

follows:

(Eq. 4.4) 0N.N2/"NOe(!/$_, !/$#) =
yxêÉ%wëí($Åzì,$Åzî)�

yxêÉ%($Åzì)

One of the main usages of the semantic similarity function is in entity type matching

(explained in Section 4.4.2) when it is needed to check whether the type of the requested

entity matches the type of the entity offered by the service or not. For example, consider

a query designed to find a cheap ‘hotel’ in the city of Melbourne. However, while there

is no context service related to a hotel that can satisfy the conditions of this query, i.e.

cost and location, there is a service that offers ‘bed and breakfast’, which has a

significant similarity with the query criteria. By considering the semantic hierarchy

presented in Figure 4.8 (generated based on schema.org hierarchy), the similarity

between ‘Hotel’ and ‘BedAndBreakfast’ can be computed as:

5-LOℎ(è156NP6ïg+NP-++)
5-LOℎ(ñ1O-2)

	=
3
4
= 0.75

Figure 4.8 - Semantic hierarchy example based on schema.org

 107

Set Similarity function: If the context attribute’s value is a set/vector, the similarity

is computed as follows:

(Eq. 4.5)

SN.N2/"NOe(!/$_, !/$#	, 1L$_) = ô

v($Åzì∩$Åzî)
v($Åzì)

																						1L$_ = !1PO/NP+c22

m0						!/$_ ∩ !/$# = ∅
1						!/$_ ∩ !/$# ≠ ∅					1L$_ = !1PO/NP+cPe		

where P(!/) is the number of elements in the set !/ and 1L$_ denotes the type of

operation used in the definition of the corresponding context request’s expression.

Geo-based Similarity function: If the context is a geocoordinate or a geo-shape, the

similarity is computed as:

(Eq. 4.6)	

0N.N2/"NOe(!/$_, !/$#) = 	ö
1																																																																				!/$_ ∩ !/$# ≠ ∅
5N+O/P!-(!-PO"-(!/$_), !-PO"-(!/$#))

"/5Ng+(!/$#) + "/5Ng+(!/$_)
!/$_ ∩ !/$# = ∅

where !-PO-"(!/) denotes the centre of the smallest bounding circle that contains !/,

"/5Ng+(!/) denotes the radius of the smallest bounding circle, and 5N+O/P!-	function

calculates the euclidean distance between two coordinates.

Following this section we will explain how these similarity functions will be

employed in the procedure of context service discovery.

4.4.2 PRELIMINARY SERVICE MATCHING (PSM)

The first phase of the proposed solution for addressing the services discovery

problem is Preliminary Service Matching. In this phase, context services and context

requests are coarsely checked. To pass this phase, the following conditions must hold:

1. Entity matching: The requested entity type is a) identical to the entity type

offered by a context service or b) is a generalization of the offered entity type

(@̂r ⊆ $̂#`).

 108

2. Context attribute matching: The requested context attributes are a) the

same as the attributes offered by a context service, or b) a generalization of

the offered attributes. (bc@r ⊆ bc$#`).

Applying these two constraints limits the solution space of the service discovery

problem by restricting the number of context services that are eligible for serving a

given request. We call the set of eligible services Candidate Set; which will be passed

to the Contextual Characteristics Matching phase for further checking.

4.4.3 CONTEXTUAL CHARACTERISTICS MATCHING (CCM)

The second and last phase of the service discovery process is to go through the

services’ Candidate Set and check whether the characteristics of a given service

request(cr) matches any of the services in this Set (csû 	 ∈	Candidate Set) (P	@r 	⊆ P	@Bü).

The P	@Bü of a service csû and the P	@r of a context request cr match if and only if the

conjunction of both constraints is satisfiable.

(Eq. 4.7) d$_ ∧ d$#` ⊢ +/ON+oN/°2-

d is a set of predicates combined with logic operators to define the contextual

characteristics of a context entity. Therefore, Eq. 4.7 can be rewritten as equation Eq.

4.74.8.

(Eq. 4.8) L"-5N!/O-$_¢ 		
∧
∨
	L"-5N!/O-$_§

∧
∨
	 . . .		∧

∨
	L"-5N!/O-$_•

∧

L"-5N!/O-$#`X 		
∧
∨
	L"-5N!/O-$#`¶ 	

∧
∨
	. . .		

∧
∨
	L"-5N!/O-$#`ß

where ., P	 ∈ 	ℕ	and each predicate can be represented as below:

!/u	1L		!M

Where:

• 1L ∈ {=,<,>, 	 ≤, 	 ≥, 	 ≠, 	 ∈, 	 ∋}

 109

• !M ∈ {	Kg.°-", 	0O"NP6, 	0-O, !/[, 	O"g-/o/2+-}

Further, by applying logical equivalence laws, such as the double negative

elimination, De Morgan's laws, and the distributive law, we can transform Eq. 4.8 to

disjunctive normal form (DNF). A logical formula is considered to be in DNF if and

only if it is a disjunction (sequence of ORs) consisting of one or more disjuncts, each

of which is a conjunction (AND) of one or more predicates.

(Eq. 4.9) !1PÆgP!ON1PX ∨ !1PÆgP!ON1P¶ ∨ …∨ !1PÆgP!ON1PØ

where each conjunction is a set of predicates combined with logical AND as illustrated

below:

!1PÆgP!ON1P = 	L"-5N!/O-X 	∧ …∧ L"-5N!/O-∞

w.r.t

∀	L"-5N!/O-± ∈ {L"-5N!/O-X, … , L"-5N!/O-Ø},

 	L"-5N!/O-± 	∈ ≤L"-5N!/O-$_¢, … , L"-5N!/O-$_•≥ 				∨

L"-5N!/O-± 	∈ ¥L"-5N!/O-$#`X, … , L"-5N!/O-$#`ßµ

We can state that Eq. 4.7 is satisfiable if at least one of the !1PÆgP!ON1P+ in Eq. 4.9

is satisfiable.

Based on the discussed concepts, we developed an algorithm that gets d@r ∧ d$#` as

its input and computes the level of satisfiability. This algorithm first converts d@r ∧ d$#`

to its DFN form. Then, for each conjunction, it returns two floating point values

between 0 and 1. The first value denotes the satisfiability level of a context service for

the given context request and the second value shows the confidence of the calculated

satisfiability value. The characteristics checking algorithm is presented in the Figure

4.9.

 110

Figure 4.9 - Contextual Characteristics Matchmaking Algorithm

Figure 4.10 - visualisation of example for context service discovery process

CS1 CS2CS3

CQ

 111

4.4.4 EXAMPLE

This section illustrates the CSD process by an example, which is visualised in

Figure 4.10. In this example, a smart vehicle issues a context query to CoaaS in order

to find available parking options near a specific location. This query is shown in Code

block 4.7.

Code block 4.7 - CDQL query for finding available parking options

Moreover, as the figure shows, we assume three context services that can serve the

aforementioned query are registered in the CoaaS platform. The specifications of these

context services are provided in Table 4.2.

prefix mv:http://schema.mobivoc.org

select (targetCarpark.*)

define

entity targetCarparks is from mv:ParkingFacility where

(

(distance(targetCarparks.geo, [-

37.9133542,145.1336933], "walking")<

{"@type":"shema:QuantitativeValue", "value": 500,

"unitCode":"m"}) and targetCarparks.price <

{"@type":"shema:QuantitativeValue", "value": 5,

"unitCode":"aud"}) or

(distance(targetCarparks.geo, [-

37.9133542,145.1336933], "walking")<

{"@type":"shema:QuantitativeValue", "value": 1500,

"unitCode":"m"}) and targetCarparks.price <

{"@type":"shema:QuantitativeValue", "value": 2,

"unitCode":"aud"})

)

 and targetCarparks.facilities containsAll

["ChargingPoint", "PayStation"] and

(targetCarparks.hasCapacity > 10 and

targetCarparks.hasCapacity.freshness < 200)

 112

Table 4.2 - Registered parking facilities' context services

Name Type CA P

∂∑∏ ParkingFacility [geo, price,

totalCapacity,

hasCapacity,

features]

geo = [-37.907677, 145.130736] and

price = 4 aud/h and features =

[PayStation, ChargingPoint] and

hasCapacity.freshness < 120s

∂∑π ParkingGrage [geo,

totalCapacity,

hasCapacity,

features]

geo = [-37.908000, 145.129821] and

features = [PayStation] and

hasCapacity.freshness < 240s

∂∑∫ ParkingLot [geo,

totalCapacity]

geo = [-37.914600, 145.137009] and

totalCapa\city = 124

As described earlier, in the first step towards discovering the context services for

an incoming context request, the Preliminary Service Matching (PSM) compares the

type of the requested context entity with the type of the entities offered by the registered

context services to check either they are matching or not. To do so, PSM uses the

semantic context similarity function (Eq. 4.4) to compute the similarity of the offered

and the requested entity’s type (mv:ParkingFacility).

Then, in the next step, PSM verifies if the available context services can provide

the information about the context attributes requested by the incoming !". In order to

perform this task, PSM computes the similarity of the bc@r with bc@B using the set

similarity function (Eq. 4.5). The result of this phase of CSD process is shown in Table

4.3.

In this example, we assume the minimum similarity threshold for satisfying the

preliminary service matching phase is set to 0.90. As a result, only !+X and !+¶ can

satisfy the first phase of CSD. Therefore, these two context services will be passed to

Contextual Characterises Matching (CCM) as the candidate set.

candidate	set = {!+X, !+¶}

 113

Table 4.3 - Result of PSM

CS Step 1 of PSM: Entity

matching

Step 2 of PSM: Context attribute

matching

Average

similarity

∂∑∏ 5-LOℎ(L/"øNP6¿/!N2NOe)
5-LOℎ(d/"øNP6¿/!N2NOe)

=
9
9

P([geo, price, hasCapacity, facilities])
P([geo, price, hasCapacity, facilities])

= 1

1 + 1
2

= 1

∂∑π 5-LOℎ(L/"øNP6¿/!N2NOe)
5-LOℎ(d/"øNP6…"/6-)

=
9
10

P([geo, hasCapacity, facilities])
P([geo, price, hasCapacity, facilities])

= 1

1 + 0.9
2

= 0.95

∂∑∫ 5-LOℎ(L/"øNP6¿/!N2NOe)
5-LOℎ(d/"øNP6è1O)

=
9
10

P([geo, totalCapacity])
P([geo, price, hasCapacity, facilities])

=
2
4

0.9 + 0.5
2

= 0.7

In the next step, CCM iterates over the candidate set, and for each context service

it performs the Contextual Characteristics Matchmaking algorithm to verify if the

predicates of the incoming request (i.e. d$_) matches the predicates of any of the context

services (d$#) in the candidate set. The following expressions show the predicates of the

incoming context request and two context services in the candidate set. In order to

simplify the representation of these predicates, we have assigned an ID to each

predicate in these expressions, which can be seen in Table 4.4.

d$_ = 	 ((L!"X 		∧ 	L
!"
¶) 	∨ 	(L

!"
 		∧ 	L

!"
À)) 	∧ 		L

!"
Ã 	∧ (L

!"
Õ 		∧ 	L

!"
Œ)

d$#¢ = 	 L!+11 		∧ 	L
!+1

2 	∧ 	L
!+1

3 		∧ 	L
!+1

4

d$#§ = 	 L!+21 		∧ 	L
!+2

2 	∧ 	L
!+2

3 		∧ 	L
!+2

4

As described in Section 4.4.3, in the initial step, CCM combines the predicates of

the incoming context request with the predicates of the context services in the candidate

set using an and operator. Furthermore, it converts the generated expression to its

disjunctive normal form. In this example, for the first context service in the candidate

set, the outcome of this step is:

 114

jK¿wd$_ 	∧ 	d$#¢	� = (L!"X 		∧ 	L
!"
¶ 	∧ 		L

!"
Ã 	∧ 	L

!"
Õ 		∧ 	L

!"
Œ 	∧ 	L

!+1
1 		∧ 	L

!+1
2 	∧

	L!+13 		∧ 	L
!+1

4) 	∨ (L!" 		∧ 	L
!"
À 	∧ 		L

!"
Ã 	∧ 	L

!"
Õ 		∧ 	L

!"
Œ 	∧ 	L

!+1
1 		∧ 	L

!+1
2 	∧ 	L

!+1
3 		∧

	L!+14)

Table 4.4 - Assigned ids for each predicate

Predicate ID Predicate

œ∂–∏(geo) distance(targetCarparks.geo, [-

37.9133542,145.1336933], "walking")<

{"@type":"shema:QuantitativeValue", "value":

500, "unitCode":"m"})

œ∂–π(price) targetCarparks.price <

{"@type":"shema:QuantitativeValue", "value": 5,

"unitCode":"aud"})

œ∂–∫(geo) distance(targetCarparks.geo), [-

37.9133542,145.1336933], "walking")<

{"@type":"shema:QuantitativeValue", "value":

1500, "unitCode":"m"}

œ∂–—(price) targetCarparks.price <

{"@type":"shema:QuantitativeValue", "value": 2,

"unitCode":"aud"})

œ∂–“(facilities) targetCarparks.facilities containsAll

["ChargingPoint", "PayStation"]

œ∂–”(‘’÷◊’ÿ’Ÿ⁄€‹) targetCarparks.hasCapacity > 10

œ∂–›(hasCapacity.freshness) targetCarparks.hasCapacity.freshness < 200s

œ∂∑∏∏(geo) geo = [-37.907677, 145.130736]

œ∂∑∏π(price) price = 4 aud/h

 115

œ∂∑∏∫(features) features = [PayStation, ChargingPoint]

œ∂∑∏—(hasCapacity.freshness) hasCapacity.freshness < 200s

œ∂∑π∏(geo) geo = [-37.908000, 145.129821]

œ∂∑ππ(price) price = 6 aud/h

œ∂∑π∫(features) features = [PayStation]

œ∂∑π—(hasCapacity.freshness) hasCapacity.freshness < 240s

Then, CCM computes the satisfiability level of each conjunction in the DNF

expression separately. In order to achieve this goal, for each conjunction, CCM

compares the predicates that are defined on the same context attribute by using the CSC

module. Table 4.5 and Table 4.6 show the outcome of CCM for conjunction 1 and 2

respectively.

Finally, for each conjunction, CCM computes two numbers between 0 and 1. The

first value, which is an arithmetic average of the computed similarities, shows the

overall satisfiability of each conjunction. In this example, the satisfiability level for

conjunction one and two are 0.93 and 0.83 respectably.

The second value shows the confidence of the calculated satisfiability level and is

calculated by dividing the number of predicates in the context request that has a

matching predicate in the context service. For both conjunctions of this example, the

confidence value is equal to 0.8, as 4 out of 5 predicates in the context request has a

matching predicate in the context service.

 116

Table 4.5 - outcome of CCM for the first conjunction in !"#$%&	() 	∧ 	%&	(+,	-

Context Request Predicate Context Service Predicate Similarly function Computed Similarity

./01(geo) 2(+,3(geo) Geo-based Similarity 500
680

≈ 0.73

./0<(price) 2(+,=(price) Continues Similarity 5 − 0
5 − 0

= 1

./0A(facilities) 2(+,B(features) Set Similarity 2
2
= 1

./0D(FGHIGJGKLMN) ∅ NA ∅

./0Q(hasCapacity.freshness) 2(+,R(hasCapacity.freshness) Continues Similarity 200 − 0
200 − 0

= 1

Table 4.6 - outcome of CCM for the second conjunction in !"#$%&	() 	∧ 	%&	(+,	-

Context Request Predicate Context Service Predicate Similarly function Computed Similarity

./0S(geo) 2(+,3(geo) Geo-based Similarity 1

./0T(price) 2(+,=(price) Continues Similarity 2 − 0
6 − 0

≈ 0.33

./0A(facilities) 2(+,B(features) Set Similarity 2
2
= 1

./0D(FGHIGJGKLMN) ∅ NA ∅

./0Q(hasCapacity.freshness) 2(+,R(hasCapacity.freshness) Continues Similarity 200 − 0
200 − 0

= 1

117

4.5 SITUATION MONITORING ENGINE (SME)

The Situation Monitoring Engine (SME) is responsible for monitoring incoming

contexts, detecting situations, and notifying context consumers about situations of their

interest or performing the actuation process. In this section, we describe the architecture

and workflow of this module.

Figure 4.11 - Situation Monitoring Engine

Figure 4.11 shows the architecture of the SME. This engine monitors the real-time

context of the IoT entities, which are used in at least one registered subscription for

situation query. Moreover, SME initiates the actuation procedure by notifying context

consumers when their situation of interest is detected.

SME has three main components: Situation Orchestrator (SO), Situation Inference

Manager (SIM), and Notification Manager (NM). Situation Orchestrator (SO) is mainly

responsible for retrieving all the related subscriptions to an incoming context update. It

Situation Orchestrator

Complex Event Processor

Context Query EngineContext Storage M
anagem

ent System Notification Manager

Situation Inference Manager

Context
Consumers

Context
Consumers

Context
Consumers

Context
Consumers

Context
Consumers

Context
Consumers

Context
Consumers

Context
Providers

Situation Monitoring Engine

Context Reasoning Engine

 118

also fetches the related contextual attributes, which are needed to process the retrieved

subscriptions. Situation Inference Manager (SIM) is responsible for processing the

retrieved subscriptions and making the decision to inform the corresponding context

consumers or not. Lastly, Notification Manager (NM) is responsible for pushing

notifications to subscribed Context Consumers (CC).

Figure 4.12 - SME workflow

The workflow of SME is illustrated as a flow of events in a sequence diagram in

Figure 4.12. SME receives updates about the state of IoT entities in the form of messages

from Context Providers (CP). Each message is related to one specific entity and contains

real-time values of context that describes the current state of the entity. All the incoming

messages are placed in a queue. The SO reads from this queue and processes the

incoming messages accordingly. In the first step, SO sends a request, containing the

received message to Context Storage Management System (CSMS) in order to retrieve

the subscriptions that potentially can be triggered by the incoming message. To achieve

119

that, CSMS issues a query to the underlying data storage system, which checks the

Related Entities part of the registered subscriptions. The matching subscriptions will be

sent back to the SO for further processing. CSMS also updates the state of the related

entity based on the incoming message. Then, SO starts processing each of the retrieved

subscriptions in parallel.

SO is also responsible for fetching all the required contextual information for

evaluating subscriptions. As mentioned earlier, CDQL allows situations to be defined

based on the context of several IoT entities. However, the incoming context update only

includes partial information about the situation of one entity. Therefore, to process

subscriptions, it might be required to fetch the additional contextual information.

Consequently, the SO executes the parsed query through Context Query Engine (CQE),

which is a part of the subscription, to get all the required information for processing the

subscribed situation query. After acquiring all the required contextual information, SO

will pass the incoming context update, the result of the executed query, and the retrieved

subscription to the Situation Inference Manager (SIM).

The SIM processes the received information and produces a Boolean output, which

states whether the situation is detected or not. To do so, SIM evaluates the satisfiability

of the subscription’s WHEN clause. The WHEN clause contains one or several

conditions connected with logical operators. Therefore, to assess the occurrence of the

situation, it is needed to validate all the conditions one by one. These conditions can be

classified into three types, basic conditions, CEP-based conditions, and CST-based

conditions. Basic conditions only contain an individual context (e.g. room.temp < 10)

or a built-in function (e.g. “distance”). In this case, SIM retrieves the value of the context

or executes the built-in function and evaluates the condition.

The CEP-based conditions use one of the CEP functions (i.e., trend, windowing,

temporal relation). In this case, SIM prepares the arguments of the CEP function and

passes them to the CEP engine. For example, consider the following CEP function:

“decrease(distance(driver,car), 5mins)”. In this case, SIM calculates the distance

between the driver and the car and passes the value to the CEP engine. Then, the CEP

engine will notify the SIM if the value has decreased during the last five minutes or not.

 120

The last type of condition is CST-based. This type is used to handle uncertainty by

performing probabilistic reasoning (Padovitz et al., 2004), (Medvedev et al., 2018). This

type of reasoning is encapsulated as functions in CDQL. We refer to this type of

functions as s-Function. When a condition contains an s-Function, in the first step, SIM

prepares the arguments. Then, it will send a request to Context Reasoning Engine (CRE)

by passing the parameters and the function definition.

For example, consider a condition that contains the aforementioned goodForWalking

s-Function. In order to validate this s-Function, SIM will retrieve the context about the

related entities (i.e. Weather and Location) and send it to the CRE together with the

goodForWalking definition, which was introduced in Code block 3.11.

Figure 4.13 - Situation Inference Algorithm

After evaluating all the conditions, SIM will assess the validity of the whole WHEN

clause. The algorithm of situation inference process is depicted in Figure 4.13. Finally,

if the situation is detected, a notification will be sent to the context consumer by the

Notification Manager(NM) module using the provided callback method. If the callback

method is not provided, the result of the query will be saved in CSMS, and the consumer

can pull the result later using the subscription identifier. Moreover, the detected situation

will be passed to the SME as a new context update. The reason behind this is that every

121

detected situation can be viewed as an incoming high-level context information, which

can potentially trigger another subscription.

4.6 IMPLEMENTATION

Based on the presented reference architecture of Context-as-a-Service platform in

Section 3.1.2, and the concepts presented in the previous sections of the current chapter,

we have implemented a prototype of CoaaS platform. Figure 4.14 presents the

architecture of the implemented context management platform.

Figure 4.14 - Architecture of prototype implementation of CoaaS platform

As described in Section 3.1.2, CoaaS platform consists of five main components: (i)

Communication and Security Manager (CASM), (ii) Context Query Engine (CQE), (iii)

Situation Monitoring Engine (SME), (iv) Context Storage Management System

Context Query Engine (Section 4.1)

Communication and Security Manager

Context Query
Parser (Section

4.2)

Context Query Coordinator (Section 4.3)

Context Service
Invoker

Context Query
Aggregator

Context Service Discovery (Section 4.4)

Preliminary Service Matching
(Section 4.4.2)

Contextual Characteristics Matching
(Section 4.4.3)

Context
Similarity
Calculator

(Section 4.4.1) SME (Section 4.5)

Situation
Orchestrator

CEP

Notification Manager

Situation Inference
Manager

CRE

CSMS

Context Entity
Repository

Context Service
Repository

Subscription
Repository

ECSTRA

C
SD

L

Context ProviderContext ProviderContext ProviderContext Provider

Context ProviderContext ProviderContext ProviderContext Consumer

C
D

Q
L

C
ontext

C
SD

L

C
on

te
xtC

R

C
on

te
xt

up

da
te

Users
Repository

 122

(CSMS), and (v) Context Reasoning Engine (CRE). In the current implementation,

which has around 1.3 million lines of code, we have developed CoaaS as an Enterprise

application using Java Enterprise Edition 7 (Java EE 7) framework. In this regard, each

of the abovementioned components is implemented as a separate Java EE component.

Therefore, the implemented prototype of CoaaS platform is extensible by simply

replacing its components with either newly developed parts or by integrating already

existing ones. The rest of this section briefly presents the description of the

implementation of each of these components.

The Communication and Security Manager (CASM) is implemented as a RESTful

web service using Jersey 2.8 framework3. CASM provides an interface that supports the

proposed languages presented in Chapter 3, namely Context Service Description

Language (CSDL) and Context Definition and Query language (CDQL). Using this

interface, clients can perform several operations, such as querying contextual

information, registering context services, updating context information, and subscribing

to certain situations about their entities of interest.

Moreover, this component is enhanced with a token-based authentication and

authorisation mechanism, which is implemented through JSON Web Token (JWT)4.

JWT is an open standard that defines a compact and self-contained way for securely

transmitting information (Jones, Bradley, & Sakimura, 2015). The diagram depicted in

Figure 4.15 shows how the implemented authentication and authorisation mechanism

works.

Figure 4.15 - Authentication and authorisation mechanism

3 https://jersey.github.io/
4 https://jwt.io/

Communication and Security
ManagerContext Consumer/Provider

(1) Post username and password to /rest/cm/token

(2) JWT

(3) Request + JWT

123

In the first step, clients acquire an authorisation token by sending an authentication

request that contains the client’s username and password to the CASM via the URL

“/rest/cm/token”. Then, based on the provided credentials, CASM authenticates the user

by using Java Authentication and Authorization Service5 (JAAS). If the client is

successfully authenticated, a JSON Web Token (JWT) will be returned. Code block 4.8

shows how JWT can be acquired.

Code block 4.8 - Example of authentication request

Using the acquired token, clients can securely invoke CoaaS APIs. In this regard,

they should provide the JWT in the ‘Authorisation’ header of the HTTP request using

the ‘Bearer’ schema. Then, CASM checks for a valid JWT in the ‘Authorisation’ header,

and if it is present, the client will be allowed to access protected resources.

The CoaaS platform has four main Restful APIs that are presented in Table 4.7. To

enable secure communication between clients and CoaaS, all these APIs are only

accessible via HTTPS protocol.

Table 4.7 - CoaaS interface endpoints

Address/method Short description Accepts

/rest/cm/token

(POST)

Authentication API Username and Password

/rest/cm/query

(POST)

CDQL query API • CDQL query

o CQL

§ Pull-based

query

5 https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html

curl -X POST \

 https://localhost:8080/CoaaSMono-web/rest/cm/token \

 -H 'Content-Type: application/x-www-form-urlencoded'

\

 -d 'username={username}&password={password}'

 124

§ Push-based

Query

o CDL

/rest/cm/register/

(POST)

Context Service

registration API

CSDL Service description

/rest/cm/event (POST)

Context update API Context update

The main API for context consumers is the CDQL query interface, which is

accessible via the URL ‘/rest/cm/token’. This interface accepts a CDQL query as input

and based on the type of the provided query, it returns either contextual information (in

the case of pull-based queries), a subscription ID (in the case of push-based queries), or

status of the executed query (in the case of push-based query CDL queries). The code

snippet provided in Code block 4.9 shows how this interface can be invoked.

Code block 4.9 - Example of issuing CDQL query

As explained in Section 3.1.1, CoaaS can interact with context providers (CP) in two

ways, either by fetching context on-demand or through receiving context/data streams.

In the first case, the CPs must have registered the description of their services by sending

a context service registration request. In order to do this, they need to describe their

context service using CSDL language and send the service description as a body of an

HTTP POST request to the CoaaS service registration API (i.e. /rest/cm/register/). After

successfully registering a context service, CoaaS can retrieve data about the registered

service’s IoT entities by sending requests to the corresponding provider on-demand.

curl -X POST \

 http://locahost:8080/CommunicationManager/rest/api/cm

\

 -H 'authorization: Bearer {auth_token}' \

 -d ‘{CDQL_QUERY}'

125

Code block 4.10 - Example of sending context update

As mentioned above, CoaaS can also process streams of context updates, which CPs

are sending to the platform. Context updates contain updates of the entities’ states and

are processed by CoaaS to monitor situations. Therefore, CoaaS has an API that allows

CPs to send context updates to the CoaaS platform. As explained in Section 4.5, these

updates are percolated through the registered PUSH-based queries, enabling the

situation awareness. Moreover, these updates are cached in the CoaaS storage (i.e.

CSMS), mainly for the purpose of using these data to serve pull-based queries. The code

snippet provided in Code block 4.10 shows how the context update API can be invoked.

curl -X POST \

http://localhost:8080/CommunicationManager/rest/api/cm/

event \

 -H 'authorization: Bearer {token}' \

 -H 'content-type: application/json' \

 -d '{"@id":"parking.mpnash.edu/entities/p1",

 "timestamp":1520575780,

 "exitRate":"high",

 "capacity" : {

 "@Type" : "RealTimeCapacity",

 "Monash:Blue" : {

 "date" : 1520575780,

 "maximumValue" : 400,

 "currentValue" : 229

 },

 "Monash:Red" : {

 "date" : 1520575780,

 "maximumValue" : 3400,

 "currentValue" : 342

 }}}'

 126

The Context Query Engine (CQE) has been implemented as an Enterprise Java

Bean (EJB), based on the provided architecture in Section 4.1 and the concepts and the

algorithms presented in preceding sections. To parse the incoming queries, a query

parser is developed by using Antlr 4.66. ANTLR (ANother Tool for Language

Recognition) is a parser generator for reading and processing structured text. This

framework accepts a formal grammar (written in an EBNF like format) as input and

generates a parser for that language. The generated parser can automatically build parse

trees, which are data structures representing how a grammar matches the input. ANTLR

also automatically generates tree walkers that can be used to visit the nodes of those

trees to execute application-specific code. The CDQL grammar for the generation of

ANTLR parser is provided in Appendix B.

The Situation Monitoring Engine (SME) has also been developed as an EJB. As

SME should be able to process millions of messages, we have implemented a distributed

message queue using Apache Kafka7 framework. When a context provider sends a

context update message, that message would be entered in the message queue. Then, the

Situation Orchestrator (SO), which has been implemented as a stateless Message Driven

Bean (MDB)8, reads and processes the incoming messages. To improve the performance

of SME, we have configured SO in such a way that it can process several context updates

in parallel. As mentioned in Section 4.5, in order to process incoming context updates,

we have integrated an existing Complex Event Processing Engine (CEP) in SME, called

Siddhi. Siddhi CEP is a lightweight CEP engine that can run as an embedded Java library

and process incoming context update to detect patterns and sequences.

To implement the Context Reasoning Engine (CRE), we have adopted an existing

context-awareness and situation-awareness framework called ECSTRA (Boytsov &

Zaslavsky, 2011). ECSTRA builds on the basis of context spaces theory (Padovitz et al.,

2004). This framework provides a comprehensive solution to reason about the context

from the level of sensor data to the high level situation. In order to integrate ECSTRA

in CoaaS, we have implemented another EJB that uses a java implementation of

6 https://www.antlr.org/
7 https://kafka.apache.org/
8 https://docs.oracle.com/javaee/6/tutorial/doc/gipko.html

127

ECSTRA framework. Using this EJB, other components can use the ECSTRA

framework to reason about context data.

The Context Storage and Management System (CSMS) has been implemented

based on the architecture presented by Medvedev et al. (2017). In the current

implementation, CSMS has four repositories, namely context entity repository, context

service repository, subscription repository, and user repository. The first three

repositories, which are used to store context data, have been implemented using

MongoDB9. On the other hand, the user repository that contains clients’ profile,

including their credentials, is implemented as a relational database using PostgreSQL10.

Moreover, CSMS has an interface, which is also implemented as an EJB, that allows

other components to access and store data in the aforementioned repositories.

Furthermore, to ease the development of context queries and service definitions, a

specialised web-based IDE has been developed. The main features of the IDE are: (i)

CDQL syntax highlighting, (ii) auto-completion of CDQL keywords and terms coming

from integrated semantic vocabularies and standards, (iii) visualising the execution plan

of parsed query, (iv) showing errors, warnings, and recommendations to CDQL

developers, and (v) managing authorization tokens. A screen dump of the CoaaS IDE is

presented in Figure 4.16.

On top of that, as it can be seen in Figure 4.17, we have implemented a web-based

user interface that allows context consumers to view and manage their subscribed push-

based queries.

9 https://www.mongodb.com/
10 https://www.postgresql.org/

 128

Figure 4.16 - CoaaS IDE

Figure 4.17 - Situation Monitoring Interface

129

We have also integrated the current prototype of CoaaS platform in Node-red11 for

visualisation purposes. Node-red is a well-known flow-based programming tool for the

IoT. It allows wiring together hardware devices, APIs and online services by providing

a browser-based editor.

We developed four new custom nodes and added them to node-red. These nodes are

‘CoaaS’, ‘context service’, ‘context query’, and ‘car’ entity, which is a specific type of

context consumer. By using these nodes, it is possible to generate a flow to register

context service and execute context queries. Figure 4.18 shows a sample workflow

developed to demonstrate the car-park use-case as well as the visualisation of the query

outcome.

11 https://nodered.org/

 130

Figure 4.18 - Node-red based example

The current implementation of CoaaS platform is available as a Docker12 image and

can be downloaded from the following link: https://hub.docker.com/r/ahas36/coaas.

Moreover, to further ease the deployment of CoaaS platform, we have created a

docker-compose file that sets up all the required development environment for CoaaS

platform and automated its installation and configuration. The docker-file is available

online at https://github.com/ahas36/Context-as-a-Service.

4.7 SUMMARY

In this chapter, we have proposed, designed, and implemented a mechanism for

the execution of complex context query. This mechanism, which is an integral part of

Context-as-a-Service platform, consists of two engines, namely Context Query Engine

(CQE) and Situation Monitoring Engine (SME).

The Context Query Engine (CQE) is mainly responsible for parsing the incoming

queries, generating and orchestrating the query execution plan, and producing the final

query result. Furthermore, CQE is also in charge of finding the most appropriate context

service for an incoming request. To achieve this goal, we have designed a Context

Service Discovery (CSD) method. CSD’s workflow consists of two parts. First, it finds

context services that match the requirements of a context request. Then, based on the

discovered services, it returns a sorted set of the best available context services that can

satisfy the requirements of a request.

The Situation Monitoring Engine (SME) is designed to support continuous

monitoring of incoming context, to infer situations from available context, to detect

changes in situations and to provide notification of detected changes. This component

monitors the real-time context of the IoT entities and reasons about their situations. It

also initiates the actuation procedure by notifying context consumers when their

situation of interest is detected.

Moreover, as a proof of concept, a prototype of CoaaS platform has been

implemented. This prototype has a scalable, fault-tolerant microservices-based design,

12 https://www.docker.com/

131

making it ideal for cloud deployment. To this regard, each of the CoaaS components

are implemented as a Java EE component.

 132

Chapter 5: CDQL, CQE and SME:
Evaluations

In Chapter 3 we have proposed and discussed two novel languages that enable IoT

devices and services to publish and query context seamlessly. Moreover, in Chapter 4

we have proposed, designed, and implemented two mechanisms to execute complex

context query and monitor the situation of context entities. This chapter evaluates our

proposed approaches and related algorithms. We use the prototype of CoaaS platform

developed in Chapter 4 to conduct our experiments.

In this chapter, we first demonstrate the feasibility and applicability of Context

Definition and Query Language (CDQL) by presenting exemplary queries for each of

the use cases discussed in Section 1.2. Furthermore, for two of the use cases (i.e. smart

parking recommender and vehicle preconditioning), we have implemented a proof of

concept application to show how CDQL queries can be utilised to develop context-

aware IoT applications.

We have also conducted multiple experiments based on real-world and synthetic

datasets to evaluate the ability of the proposed solution, namely Context Query Engine

(CQE) and Situation Monitoring Engine (SME), to handle the load in large-scale IoT

environments.

5.1 CDQL QUERY DEMONSTRATION

In this section, we demonstrate how CDQL facilitates querying context for the use

cases described in Section 1.2, which are school safety, smart parking recommender,

and vehicle preconditioning. We illustrate how CDQL can be used to represent and

describe the context entities, their relationships, and context queries to fulfil the

requirements we identified in Section 2.6.5.

133

5.1.1 USE CASE 1: SCHOOL SAFETY

As described in Chapter 3, CDQL is capable of representing complex context

queries concerning several entities. Furthermore, it also supports definition and

querying of high-level context. To illustrate these functionalities, we will use the school

safety use case, where John is late and looking for a trusted parent to pick up her

daughter, Hannah, from school. We start this query by defining the involved entities.

As this query is designed to be executed by John’s device, we first define John by using

his unique user ID. Then, by applying the parenthood relationship, the entity that

represents Hannah in this query can be identified. In the same manner, by using a

membership relationship, we can use entity Hannah to define Hannah’s school. As we

define the entity that represents Hannah’s school, other school students can also be

defined as well.

The two remaining entities for this query are car and parent. For representing cars,

we need to add two constraints: one on the available number of seats in the selected car,

and whether the car is close enough to the school or not. Then, as a final step, the parent

entity can be defined by using the ownership relationship that indicates the selected

persons who have a car with an empty seat near Hannah’s school, the parenthood

relationship to show that the selected person is the parent of one of Hannah’s fellow

students, and the friendship relationship to indicate that selected parent is trusted by

John. Code block 5.1 shows the complete CDQL query for this use case.

This example clearly illustrates the power of CDQL to express very complex

queries that need to acquire contextual information from several heterogeneous entities.

Two other important aspects for such a context query that access sensitive personal

information are privacy and security. In Section 4.6, we briefly explained how the

current implementation of CoaaS handles authentication and authorization. As these

aspects are mostly handled by the underlying platform, not the language itself, they are

hence not described in detail here.

 134

Code block 5.1 - CDQL query for school safety use-case.

5.1.2 USE CASE 2: SMART PARKING RECOMMENDER

The second use case that we present in this chapter focuses on the development of

a smart parking recommender application that utilises context to suggest the best

available parking. To implement such an application, several challenges need to be

addressed. First of all, it is essential to have access to live data regarding the availability

of different parking facilities. The fact that these facilities are owned by different

providers (e.g., city administrators, building owners, and organisations) makes the

process of data retrieval even more complicated. Further, to be able to provide

personalised suggestions to users, we need to consider additional factors, such as user

prefix schema:http://schema.org

select(parents.*)

define

entity john is from schema:person where john.id=

”john.id"

entity hannah is from schema:person where hannah.parent

contains john,

entity school is from schema:ElementarySchool where

school.member contains hannah,

entity otherStudents is from schema:person where

otherStudents.memberOf contains school and

distance(otherStudents.location, school.location) <

{"value":100,"unit":"m"},

entity car is from schema:Car where

distance(car.location, school.location, "driving") <

{"value":500,"unit":"m"} and car.vehicleSeatingCapacity

> 0 ,

entity parents is from schema:person where

parents.children containsAny otherStudents and

parents.knows contains john and isDriving(parents) >

0.90 and parents.owns containsAny car

135

preferences, car specifications, and weather conditions. In addition, some of the data

need to be inferred before being used. Addressing all these challenges needs a

considerable amount of effort, even for an expert team of software developers.

However, with the help of the CDQL language, all the above-mentioned context

can be retrieved by issuing a CDQL query. To prove our claim, we developed an

Android mobile application, which automatically provides suggestions about available

parking spaces to drivers using real data. To achieve this goal, we composed a

parameterised push-based CDQL query that will be triggered when the consumer’s car

gets close to the user’s destination. This query takes into account different contextual

attributes such as weather conditions, walking distance, required parking facilities, and

cost. As depicted in Figure 5.1, this application also provides an interface for users to

enter their parking-related preferences in the application.

 136

Figure 5.1 - Smart parking suggestion application screenshot

Code block 5.2 depicts an example of this query.

Code block 5.2 - CDQL query for smart parking recommender use-case.

This query is filled with preferences of a sample user as shown below:

• Required facility : Charging Point

prefix mv:http://schema.mobivoc.org ,

schema:http://schema.org

select (targetCarparks.*) when

distance(consumerCar.location,targetLocation)<{"value":

1,"unit":"km"}

define entity targetLocation is from schema:place where

targetLocation.address = "Wellington Rd, Clayton VIC

3800",

entity consumerCar is from schema:car where

consumerCar.vin="KNADN512MG6649868" ,

entity targetWeather is from schema:Weather where

targetWeather.location=targetLocation ,

entity targetCarparks is from mv:carpark where ((

distance(targetCarparks.location,targetLocation,"walkin

g") < {"value":1500,"unit":"m"} and targetCarparks.cost

< 5 and goodForWalking(targetWeather)>= 0.7) or

(distance(targetCarparks.location,targetLocation,"walki

ng") < {"value":500,"unit":"m"} and

targetCarparks.cost < 10 and

goodForWalking(targetWeather) < 0.7)) and

targetCarparks.facilities contains "charging point"

and targetCarparks.minHeight > consumerCar.height and

targetCarparks.minWidth > consumerCar.width and

isAvailable(targetCarparks.availability,{"start_time":"

11:30", "end_time":"16:50"})

137

• Parking time-frame : 11:30 to 16:50

• In case of good weather condition

o Maximum walking distance : 1.5 km

o Maximum cost: $5

• Otherwise

o Maximum walking distance : 0.5 km

o Maximum cost: $10

We registered four different context services in the Context-as-a-Service (CoaaS)

platform based on the requirements of the scenario under consideration. The context

services were:

• Monash Parking API: Monash has 10 different parking facilities in Clayton

campus which are equipped with occupancy sensors. Further, Monash University

has a web API that offers real-time vacancy information of its parking facilities. We

registered this API in CoaaS as the main parking context provider.

• VIN checker API: In order to retrieve the specifications of the consumer car, we

registered a context service that accepts Vehicle Identity Number (VIN) as input

and provides the make and model of the car as output. It also provides car

specifications such as height and width.

• Google Location API: Another context provider that is used in this scenario is

Google Location API. This API has been used for reverse geocoding purposes to

convert address to coordinates.

• Weather API: In order to fetch information about the weather conditions, we also

registered a weather API that accepts location coordinates as its inputs and provides

the weather conditions as output.

The application is also connected via Bluetooth to an OBD II device that reads the

sensory data (e.g. VIN, speed, and fuel level) coming from the car’s Controller Area

 138

Network (CAN) bus. Then, the application takes this information, puts it in the query,

and posts the CDQL query to CoaaS.

Figure 5.2 shows the screenshots of the developed application on two different

days with different weather conditions. In Figure 5.2(a), the application has suggested

a more expensive parking with a shorter walking distance because of the bad weather

conditions. On the other hand, in Figure 5.2(b), the application has suggested a parking

space that was cheaper but further away because it was a sunny day.

Figure 5.2 - PoC parking application screenshot

Figure 5.3 illustrates the data flow of how CoaaS handles such a scenario. There

are a number of different execution processes that can occur in CoaaS. However, here,

we focus only on explaining the scenario where a user submits a push-based query and

CoaaS provides the relevant data to the user.

139

Figure 5.3 - Execution and interaction process of smart parking suggestion

use-case

• Step 1: A mobile device sends the aforementioned push-based query to the CoaaS.

Communication and Security Manager (CASM) receives the query and redirects it

to the Context Query Engine (CQE) after the security check.

• Step 2: CQE parses the query, breaks the query into four context-requests,

generates the execution plan, and sends the results to the Context Query

Coordinator (CQC).

• Step 3: Since the incoming CDQL is a push-based query, the CQC registers the

query and its triggering event (i.e. distance (consumerCar.location, target-Location)

< 1km) in the subscription repository.

• Step 4: The mobile device keeps sending its location update to the CoaaS, which

will be redirected into the Situation Monitoring Engine (SME).

• Step 5: SME analyses the incoming context updates with the help of Context

Reasoning Engine (CRE), and checks whether any event/situation that triggers a

query is detected or not.

Situation
Monitoring

Engine

Com
m

unication
and

SecurityM
anager

 140

• Step 6: When the car is getting close to Monash University, SME detects that the

distance to the target is less than the predefined threshold (i.e. 1 km) and sends the

corresponding query to the Context Query Coordinator (CQC).

• Step 7: CQC sends 4 context requests based on the query execution plan to the

Context Service Discovery (CSD) module.

• Step 8: CSD receives the context-requests, finds the context services (providers)

that can answer each context-request by looking up the Context Services

Description Repository (CSDR). If more than one service is found for each request,

it selects the best service based on Quality of Context (QoC) and Cost of Context

(CoC).

• Step 9: CSD forwards the selected context services to the Context Service Invoker

(CSI).

• Step 10: CSI sends the requests for contextual information to the selected providers.

It is worth mentioning that if the required contextual information is already cached

by the Context Storage Management System (CSMS), the service invoker will ask

the CSMS for the required information instead of the actual context provider.

• Step 11: Context providers send the requested context to CoaaS, which will be

forwarded to the Context Query Aggregator (CQA).

• Step 12: CQA produces the final query result by accumulating the incoming context

from the providers. Further, it will use the Context Reasoning Engine (CRE) when

it is needed to infer high-level context. For example, in this scenario, the reasoning

engine will be called to infer if the weather condition is suitable for walking or not.

• Step 13: The result of the query will be pushed to the context-consumer.

141

5.1.3 USE CASE 3: VEHICLE PRECONDITIONING

The last use case in this section is vehicle preconditioning and shows how CDQL

can be used to issue an actuation signal to turn on the car’s air conditioning system.

This use case is conducted in a real environment using a BMW i3 car.

Figure 5.4 shows the workflow of the experiment. The life cycle of this test is

started by the car, which issues a PUSH-based CDQL query to CoaaS. This query,

which is shown in Code block 5.3, represents a complex situation that contains several

entities such as the driver, car, parking location and weather. Other factors are also

covered and expressed in the query by considering the following questions:

Figure 5.4 - Pre-conditioning scenario workflow

• Is there an upcoming meeting where the driver is likely to use the vehicle?

• Is the driver within walking distance from the car? Is the driver walking towards

the car?

• Is the distance between the driver and the car less than the distance between the

driver and the meeting location?

• Is the distance between the driver and the meeting location not within walking

distance?

Car CoaaS External	CPs

Loop

CDQL

Events

Preconditioning	
Notification

CDQL Query

 142

• Is the temperature lower or higher than a certain threshold, hence is pre-

conditioning necessary?

• Is the vehicle connected to a charging point? Is the battery level sufficient for both

pre-conditioning and driving to the next destination?

When CoaaS receives this query, it starts to monitor all the incoming events from

external context providers that contain relevant contextual information about any of the

entities mentioned above. Further, it evaluates the occurrence of the situation defined

in the query and notifies the car when the situation is detected.

To test the use case, we created a meeting event in the driver’s Google calendar,

where the meeting location satisfied the mentioned criteria. We also developed a

smartphone application that sends context updates containing the driver’s current

location to CoaaS. CoaaS was able to detect these changes in real time and send the

corresponding situation notification (actuation) to the context consumer (BMW

backend server) to start the car’s climate control system as the driver started to walk

towards the car. When CoaaS activated the climate control system during our test, the

moment was captured by a camera and is shown in Figure 5.5

Figure 5.5 - Activation of BMW i3 climate control system

143

Code block 5.3 -CDQL query for vehicle preconditioning use-case.

prefix schema:http://schema.org

select (events.*,eventLocation.*,driver.*,car.*,temp.*)

when

timeDifference(events.startDate,currentTime("Australia/

Melbourne")) -

distance(car.geo,events.geo,"DRIVING").duration <

{"value":"30","unit":"minutes"}

and distance(car.geo,driver.geo,"WALKING").distance <

{"value":"500","unit":"meter"}

and distance (eventLocation,driver.geo,"WALKING").

distance > distance(car.geo,driver.geo,"WALKING")

and decrease (distance(driver.geo,car.geo).distance,

{"value":"2","unit":"minutes"}) and

(temp.airTemperature < 20 or temp.airTemperature > 25)

define entity events is from schema:event where

events.attendee.email="biotope2018.au@gmail.com",

entity eventLocation is from schema:Place where

eventLocation.address = events.location.address,

entity driver is from schema:Person where

driver.driverID = "biotope",

entity car is from schema:Vehicle where

car.vehicleIdentificationNumber = "9d791e4d-8181",

entity temp is from schema:weather where

temp.location.latitude = car.geo.latitude

and temp.location.longitude = car.geo.longitude

set callback : {"method":"post" , "body":"<omienvelope

xmlns=\"http://www.opengroup.org/xsd/omi/1.0/\"

version=\"1.0\" ttl=\"0\"><write msgformat=\"odf\">

<msg><objects....","url":"http://138.194.106.20/","head

ers":{"ContentType":"text/xml" }}

 144

In the three use cases described in this section, we have demonstrated how complex

use cases from different smart city applications can be implemented by issuing only

one CDQL query. Moreover, we have shown how heterogeneous context services can

be easily integrated into the CoaaS platform. While implementing each of the

abovementioned use cases from scratch requires a considerable amount of time and

effort from the developers, using the proposed query language significantly reduces the

complexity of the task. Developers only need to issue one CDQL query for querying

and monitoring context of several IoT entities and detecting complex situations.

5.2 COMPARISON OF CDQL WITH NGSI

As mentioned in Chapter 2, the most sophisticated existing context query language

is NGSI (Open Mobile Alliance, 2012). Therefore, to illustrate the advantages of the

proposed context query language, we compare CDQL with NGSI. To do so, we will

first discuss how smart parking recommender use case and vehicle preconditioning use

case can be implemented using NGSI language. We will then compare the

implementation of these use cases in NGSI with CDQL and will discuss the outcome.

In the previous section, we showed how the required contextual information for

parking recommender use case can be expressed with a single CDQL query. However,

it is not possible to implement this use case with one NGSI query as NGSI is not

expressive enough for such a complex scenario.

Code block 5.4 presents the pseudo-code for the of Use Case 2 using NGSI. As

mentioned previously, NGSI only supports querying one entity type per request. As a

result, in order to implement this use case that involves several entities, four context

queries are required to be implemented and issued.

Moreover, NGSI does not support context reasoning and custom aggregation

functions. Therefore, it is not possible to integrate such functions (i.e., goodForWalking

and isAvailable) in NGSI queries and it is the responsibility of the developer of such

an application to implement these functions. In addition, NGSI does not support ‘OR’

operator. Hence, if such an operation is needed, developers should implement several

versions of a query and use ‘if’ statement to decide which one should be issued.

145

Code block 5.4 - NGSI queries for smart parking recommender use-case.

//Q1: Get information about the car

localhost:1026/v2/entities?type=Car&q=vin==KNADN512MG66

49868&attrs=width,height,length

//Q2: Get geo-coordinates by address

localhost:1026/v2/entities?type=place&q=address==Rio&q=

" Wellington Rd, Clayton VIC 3800"&attrs=latitude,

longitude

//Parse the Q2 result …

//Q3: Get the weather information

localhost:1026/v2/entities?type=weather&georel=near;max

Distance:100&geometry=point&coords=-37.81, 144.95

&limit=1&orderBy=geo:distance&attrs=airTemperature

//Parse result of Q3 and Reason about good for walking situation ….

//Parse the result of Q1 …

//Q4: Get the parking information

if(goodForWalking >=0.7){

localhost:1026/v2/entities?type=ParkingGarage&

q=vehicleWidthLimitInM >=1500&q=cost<5&q=

facilities == charging

point&q=vehicleHeightLimitInM>=

4600&q=vehicleLengthLimitInM>=1300georel=near;

maxDistance:2000&geometry=point&coords=-37.81,

144.95

}else{

localhost:1026/v2/entities?type=ParkingGarage&q=ve

hicleWidthLimitInM

>=500&q=&q=vehicleHeightLimitInM>=

4600&q=vehicleLengthLimitInM>=1300georel=near;

maxDistance:500&geometry=point&coords=-37.81,

144.95}

// iterate over the list of retrieved parking facilities and compute if they are

available or not …

 146

Another use case that we discussed in the previous section is vehicle

preconditioning (Use Case 3). Implementing this use case requires monitoring the

context of several entities (e.g., driver, car, and weather) and reason about if the

precondition should be initiated or not. While NGSI allows monitoring changes in

context information, its subscription model is not sophisticated enough for this use case.

Firstly, NGSI subscription model only supports monitoring context of a single entity

type per subscription. Secondly, NGSI does not support situation inference and window

functions.

Therefore, it is not possible to fully implement Use Case 3 using only NGSI

without having these capabilities on the consumer’s side. Code block 5.5 is an example

of NGSI query for subscribing to receive notification when the distance between driver

and a specific location is less than 500 meters.

Code block 5.5 - NGSI subscription.

{

 "description": "Notify when driver near specific

location",

 "subject": {

 "entities": [{"id": ".*","type": "person"}],

 "condition": {

 "expression": {

 "q": " driverID== biotope"

 "georel": "near;maxDistance:500",

 "geometry": "point", "coords":"-37.81,144.95"}

 }},

 "notification": {

 "http": {

 "url":

"http://fiware:3000/subscription/preconditioning "

 },

 "attrsFormat" : "keyValues"

 }

}

147

As illustrated in these use cases, the main advantage of CDQL over NGSI is the

support for expressing multiple entities in one query. Due to this fact, several NGSI

queries might be required to implement a use case that can be expressed with only one

CDQL query. For example, in Use Case 2, the consumer will perform four NGSI

queries, requiring extra time and network bandwidth for data transfer and processing.

Moreover, having more queries makes the implementation and maintenance of context-

aware IoT applications more complex.

Furthermore, the lack of support in NGSI to query more than one entity type in a

request may lead to increase in several other unavoidable drawbacks, namely (i)

difficulty to avoid retrieving data which is intermediate and may not be really needed

in the final result, (ii) difficulty to protect intermediate data from unwarranted access,

and (iii) difficulty to avoid network delays.

CDQL not only addresses the above shortcomings, it also has several other benefits

compared to NGSI. For example, it is possible to integrate query optimisation to

improve the overall performance of the system.

Apart from the number of supported entities, CDQL provides several other

functionalities that are essential for a CMP and not supported in NGSI, such as the

support of aggregation functions, window functions, situation inference functions, and

temporal relations, just to name a few.

Based on the discussion above, we can make a claim that CDQL can provide

significant benefit for CMP platforms compared to NGSI.

 148

5.3 PERFORMANCE EVALUATION

This section describes the performance evaluation of the proposed Context Query

Engine (CQE) and Situation Monitoring Engine (SME) that provide support for

publishing and querying context through the use of CSDL and CDQL.

We will first describe the metrics and experimental environment of our evaluation

in Section 5.3.1. Then, based on the provided metrics, we will present two sets of

experiments to evaluate the performance of the proposed CQE and SME during the

execution of CDQL queries. Section 5.3.2 presents the first set of experiments, which

focuses on the execution of pull-based CDQL queries to demonstrate the performance

of the CQE. The second set of experiments, which is provided in Section 5.3.3, focuses

on evaluating the SME through the execution of push-based queries. Lastly, Section

5.3.4 presents another set of experiments for the evaluation of the proposed Context

Service Discovery (CSD) approach.

5.3.1 EXPERIMENT ENVIRONMENT AND METRICS

In order to evaluate the proposed solution, we used the current implementation of

the CoaaS platform, which was described in detail in Section 4.6. During all the

conducted experiments, the CoaaS platform was running as a web application on Payara

Server 5.182 where the maximum JVM heap size and maximum thread pool size are

16 GB and 500 threads respectively. The Payara Server is hosted on a virtual machine

located in the CSIRO Melbourne Cloud and running Debian GNU/Linux 8 (Jessie).

The VM is running on an eight-core Intel(R) Xeon(R) CPU E5- 4640 0 @ 2.40 GHz

instance with 64 GB RAM.

For our experiments, we used real parking data provided by the Melbourne city

portal (“On-street parking data - City of Melbourne,” n.d.). This dataset contains

information from in-ground car parking bay sensors deployed in the Melbourne Central

Business district. Update frequency of the dataset is two minutes, and the number of

parking spaces is 2767. Since we also wanted to test the scalability of CoaaS, we

developed a script, which simulated more parking spots based on the aforementioned

dataset.

149

We also developed a context provider simulator, which imitates the behaviour of

IoT entities (i.e., driver location, car park status). Context updates are randomly

generated in a way that each update has a 30% chance of triggering a subscription.

For all the experiments in this section, we used JMeter 4 to simulate and issue

CDQL queries. We deployed the JMeter 4 in the same network where the CoaaS

instance was running to minimise the network delay since we are only interested in

measuring the performance of the CoaaS.

To measure the performance of the proposed solution, an evaluation framework is

required. In recent years, several academic papers in the area of IoT platforms

evaluation were published (da Cruz, Rodrigues, Sangaiah, Al-Muhtadi, & Korotaev,

2018; Medvedev, Hassani, et al., 2017; Pereira, Cardoso, Aguiar, & Morla, 2018;

Salhofer & Joanneum, 2018; Williams, Aggour, Interrante, McHugh, & Pool, 2015).

The TPC group also proposed a benchmarking framework for the evaluation of IoT

Gateway Systems (“TPCx-IoT,” n.d.). These works are mainly focused on measuring

the performance of IoT platforms in terms of ingestion and not paying enough attention

to data retrieval performance. There are only a few works (“TPCx-IoT,” n.d.; Williams

et al., 2015) that took data retrieval performance into account. However, in our opinion,

the metrics used in these works are too basic and could not feature the actual

performance of IoT platforms. Consequently, in the rest of this section we will discuss

the main metrics that need to be considered in order to measure the data retrieval related

aspects of CMPs.

During the development of the CoaaS platform our team was closely collaborating

with academic and industrial partners involved in the bIoTope project (“bIoTope

Project,” n.d.). As a result, we have determined the typical workflows and main

requirements for the integration of a CMP with real-world smart city use cases.

Consequently, we identified three main factors that can affect query execution

performance. These factors are: (i) the number of registered entities in the platform, (ii)

the number of parallel queries, and (iii) the complexity of incoming queries.

The first factor we take into account is the number of registered entities in the

platform. This factor affects the query performance in two main ways: (i) the amount

 150

of data returned as a result potentially increases, and (ii) scanning and processing large

volumes of data is time consuming.

The second important factor is the number of parallel queries getting executed. As

this number increases, race condition can occur due to limited available resources,

which may lead to performance degradation.

The last factor we consider is the complexity of a query. Measuring this factor is

more complicated compared to other factors, as it is a multidimensional metric and

depends on a number of features.

The first feature that influences the complexity of a query is the number of defined

entities. As mentioned earlier, each context query can contain several entities, where

each defined entity represents a group of real-world entities (i.e. one or several) with

specific characteristics. Further, the query execution plan generator will construct a

context request for each entity defined in a query. Consequently, the number of defined

entities in a query has a high impact on the query execution time as it indicates the

number of nodes that needs to be traversed in the query graph. Therefore, this feature

plays a vital role in determining the complexity of a query.

As mentioned in Chapter 3, each defined entity in CDQL is represented by several

constraints connected with logical operators (i.e. and/or); where each constraint itself

consists of two operands connected with an operator (e.g. ’=’, ‘<’ , ‘>’ , ‘containsAny’,

etc). In CDQL, operands can be a literal (e.g. string or number), context attribute (e.g.

car.speed), or a function. Functions can be categorised into four main groups, namely

(i) geospatial functions, (ii) situation functions, (iii) windowing functions, (iv)

aggregation and computational functions.

By considering the above description, the other influencing features in defining

complexity of context queries are (i) the number of constraints, (ii) the ratio of ‘ANDs’

to ‘ORs’, (iii) the number of functions, and (iv) the type of functions.

In the rest of this section, we will design several experiments based on the factors

discussed in this section to measure the performance of CoaaS data retrieval.

151

5.3.2 EXPERIMENT 1: CONTEXT QUERY ENGINE - PULL-BASED

QUERIES

This experiment focuses on the performance evaluation of PULL-based queries

that illustrate how well the CQE works. As results of the experiment are dependent on

the infrastructure, especially on the application server, we conducted an initial test to

find the maximum number of requests that our application server can handle. We found

that in the current setup it is possible to serve a maximum of 570 HTTP POST requests

per second.

At first, we studied the impact of query load to show how CQE performed when

the number of concurrent queries increased. To this end, we gradually increased the

query load (query per second) from 40 to 550 and measured the query response time. It

is worth mentioning that during this experiment the number of registered parking spaces

was equal to 2,767. Moreover, to take the impact of the complexity of queries into

account, we repeated this experiment using four queries with an increasing level of

complexity. These queries are shown in Table 5.1.

The first query (Q1) represented a search for a car park by providing its ID. The

second query (Q2) was a location-based query, which searched for available parking

spots near a specific coordinate. In the third query (Q3), we extended the previous query

by taking the car specification (i.e. width, length, and height) into account, which

required adding an entity representing the car in the query. In the last query (Q4), we

added a situation reasoning function to the previous query. This function added the

walking conditions between the destination and the car park into the scope.

 152

Table 5.1 - CDQL queries for performance evaluation

ID Description Query String

Q1 Query by ID prefix mv:http://schema.mobivoc.org select (targetCarpark.*) define entity

targetCarpark is from mv:ParkingGarage where targetCarpark.parking_id=

"parking1"

Q2 Location and

isOccupied

prefix mv:http://schema.mobivoc.org , prefix schema:http://schema.org select

(targetCarpark.*) define entity targetCarpark is from mv:ParkingGarage where

distance(targetCarpark.geo,"-37.80303441012997","144.96765439598772",

"WALKING") < 50 and targetCarpark.isOccupied="http://schema.org/False"

Q3 3 entities with

join (Car spec,

Location, and

Parking) +

isOccupied

prefix mv:http://schema.mobivoc.org , prefix schema:http://schema.org select

(targetCarpark.*) define entity targetLocation is from schema:Place where

targetLocation.address="55 Pelham St, Carlton VIC 3053, Australia",entity

targetCarpark is from mv:ParkingGarage where

distance(targetCarpark.geo,targetLocation.latitude,targetLocation.longitude,

"WALKING") < 20 and targetCarpark.vehicleLengthLimitInM > car.length,entity car

is from schema:car where car.manufacturer="kia" and car.model="rio" and

car.vehicleModelDate=2015 "

153

Q4 4 entities with

join (Car spec,

Location, and

Parking ,

weather) +

situation

inference

(goodForWalk

ing)

prefix mv:http://schema.mobivoc.org , prefix schema:http://schema.org select

(targetCarpark.*,situWeather(targetWeather).goodForWalking) define entity

targetLocation is from schema:Place where targetLocation.address="55 Pelham St,

Carlton VIC 3053, Australia",entity car is from schema:car where

car.manufacturer="kia" and car.model="rio" and car.vehicleModelDate=2015,entity

targetWeather is from schema:weather where targetWeather.location.latitude =

targetLocation.latitude and targetWeather.location.longitude =

targetLocation.longitude , entity targetCarpark is from mv:ParkingGarage where

targetCarpark.vehicleLengthLimitInM > car.length and

(distance(targetCarpark.geo,targetLocation.latitude,targetLocation.longitude,"W

ALKING") < 100 or

(distance(targetCarpark.geo,targetLocation.latitude,targetLocation.longitude,

"WALKING") < 3000) and situWeather(targetWeather).goodForWalking > 70)

 154

Results of the experiment are presented in Figure 5.6. The result shows the

processing time of a query grows linearly with the increase in query load. The increase

in query complexity increases the steepness of the graph. However, it can be seen that

even for the most complex query (Q4) while the incoming query load was 550

query/sec, the response time is close to one second. This response time is within the

acceptable range for most of IoT applications.

Figure 5.6 - Query response time vs input rate

Next, we designed another experiment to study the impact of the number of

registered entities (i.e. parking spaces) on query execution time. In this experiment, we

varied the number of registered parking spaces from 1000 to 40,000. The query load

was equal to 100 query/sec. Similar to the previous experiment, we ran this experiment

four times according to the queries above. Results of the experiment are presented in

Figure 5.7.

0

200

400

600

800

1000

1200

1400

40 140 240 340 440

Av
er

ag
e

Re
sp

on
se

 T
im

e

Query per Second (Q/S)
Q1 Q2 Q3 Q4

0.00

10.00

20.00

30.00

40.00

50.00

60.00

40 80 120 160 200 240 280 320 360 400 440 480 520

CP
U

(%
)

Query per Second (Q/S)
Q1 Q2 Q3 Q4

155

Figure 5.7 - Query response time vs number of registered entities

As shown in the bar chart, the response time of Q1 remained unchanged while the

query load increased. The reason is this query searches for only one unique indexed

attribute. However, in the case of other queries, we observed a linear growth of

processing time. These queries are geolocation-based, and the number of entities can

directly affect the search space. Interestingly, we observed Q3, which had more

attributes than Q2, and had a lower response time. The reason for this effect is short-

circuiting. Short-circuiting means the second argument of a logical expression is

evaluated only if the result of the first argument is insufficient to determine the value

of the expression.

5.3.3 EXPERIMENT 2: SITUATION MONITORING ENGINE - PUSH-

BASED QUERIES

In this experiment, we focus on the evaluation of the push-based queries by

conducting two sub-experiments to show how the CoaaS platform, in particular the

proposed Situation Monitoring Engine (SME), deals with the increase in the number of

context updates and the number of subscriptions. In both experiments, we used the

preconditioning push-based query, which was presented in Code block 5.3.

The first experiment shows the impact of the number of incoming context updates

on the execution time of push-based queries. To reveal the results, we used the

following metrics: input rate, throughput, processing time, CPU usage and memory

consumption.

0

100

200

300

400

500

Q1 Q2 Q3 Q4

Qu
er

y R
es

po
ns

e
Ti

m
e

(m
s)

1000 5000 10000 20000 40000

 156

The input rate denotes the number of incoming context updates per second.

!"#$%	'(%) =
+$,-).	/0	1"2/,1"3	4/"%)5%	6#7(%)8

9:;< − 9>?@A?

The throughput depicts the number of context updates which were fully processed

by the platform.

9ℎ./$3ℎ#$% =
+$,-).	/0	C./2)88)7	4/"%)5%	6#7(%)8

9:;< − 9>?@A?

Processing time represents the time, which is needed to process a context update

from the time it reached the situation framework (9D;) until the moment it gets fully

processed (9EF?).

9GHIJKLLMNO = 9EF?	 − 9D;

During the experiment, we were increasing the input rate from 200 updates per

second to 5000 updates per second, while keeping the number of subscriptions equal to

10. The result of this experiment is depicted in figures 5.8–5.12.

Figure 5.8 shows the impact of increasing the input rate on throughput. As the

graph shows, while the input rate increases from 200 to 1000, the throughput grows

linearly with almost direct ratio from 196 updates/sec to 878 updates/s. From that

moment until the end of the experiment, the throughput remains on the same level as

the CPU utilisation (Figure 5.9) reaches its maximum. During this period, as the input

rate becomes higher than the throughput, the messages are queued.

157

Figure 5.8 - Throughput vs Input rate

Figure 5.9 - Resource utilization

To demonstrate the effect of throughput on the processing time of an update, we

plotted Figure 5.10. This graph shows a gradual linear growth of the processing time

from 40ms to slightly more than 67ms until the throughput reaches 780 updates per

second, which is the CPU saturation point. Then, updates start queueing and the

processing time dramatically increases.

0

1

2

3

4

5

6

7

8

9

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Th
ro

ug
hp

ut
(1

00
 m

es
sa

ge
/se

c)

Input Rate (k message/sec)

0

1

1

2

2

3

3

4

4

5

5

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5
M

em
or

y
U

sa
ge

 (G
B)

CP
U

 %

Input Rate (k message/sec)

CPU Utilization Memory Usage

 158

Figure 5.10 - Processing time vs throughput

The second experiment analyses how the number of subscriptions affects the

context update processing time. We varied the number of subscriptions from 500 to

7000 while the input rate was equal to 100 updates per second. The result of this

experiment is presented in Figure 5.11 and Figure 5.12. As it can be seen, the processing

time increases gradually from 84ms to 1239ms, while the number of subscriptions

increases from 500 to 5500. After that point, as the CPU utilisation reaches its

maximum, the processing time increases dramatically.

Figure 5.11 - Processing time vs number of subscriptions

0

20

40

60

80

100

120

140

160

180 280 380 480 580 680 780 880

Pr
oc

es
sin

g
Ti

m
e

(m
s)

Throughput (message/sec)

0

5000

10000

15000

20000

25000

30000

35000

0 1 2 3 4 5 6 7 8

Po
rc

es
sin

g
Ti

m
e

(m
s)

Number of Subscriptions (x 1000)

159

Figure 5.12 - CPU utilisation vs number of subscriptions

In both sets of experiments, we demonstrated how the CoaaS platform could handle

increasing load with high performance. We observed a drop in performance when the

incoming load became too high. The result of our analysis shows and demonstrates that

the drop in performance was caused by the resource limitation as we conducted our

study with one server instance. However, all the components used in the system design

were stateless and could be easily scaled out to several instances to provide near real-

time performance for IoT scale applications.

5.3.4 EVALUATION OF CONTEXT SERVICE DISCOVERY ALGORITHM

In order to evaluate the proposed Context Service Discovery (CSD) approach

presented in Section 4.4, we have considered two aspects of performance and

correctness. The performance metric that we consider here is how fast the CSD can

respond to incoming context requests. On the other hand, the correctness metric

measures the accuracy and the validity of car park recommendations.

To evaluate the performance of the proposed approach, 1000 context services were

generated randomly. As we stated, each context service consists of three main

components, namely Entity (E), Context Attributes (CA), and Predicates (P). In this

regard, we extracted 50 different entities from schema.org semantic vocabulary and

allocated them to context services randomly to generate the entity type and context

attributes of each service. Further, in order to generate the predicates, 10 attributes from

each entity were randomly selected. For each attribute, based on its type, we generated

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8

CP
U

 (%
)

Number of Subscriptions (x 1000)

 160

a predicate (i.e. equality or inequality) and later connected these predicates by logic

operators (i.e. ‘and’ / ‘or’), where the ratio of conjunctions to disjunctions equals 1:3.

For the evaluation, we distinguished three different scenarios: best, average and

worst-case scenarios. Every test was performed with 5 to 50 predicates with a step size

of 5. Furthermore, every test was repeated 20 times to provide a certain statistical

persistence. The three different scenarios differ in the way the predicates are composed.

According to our context service contextual characteristics matchmaking algorithm, a

best-case scenario happens when only ‘AND’ is used to connect predicates in the

logical expression. In contrast, the worst-case scenario occurs when only ‘OR’ is used

to connect predicates. To create an average case scenario, a trade-off between best and

worst-case scenario has to be found. An average scenario can be simulated by choosing

a combination of ‘AND’ and ‘OR’ to connect the predicates. The chosen trade-off

between ‘AND’ and ‘OR’ is a 1:3 ratio.

The chart presented in Figure 5.13 shows the result of the conducted experiments.

As it was expected, increasing the number of predicates leads to higher execution time

in all scenarios. However, with a reasonable number of predicates (25) the execution

time of a query is kept under 1 second.

Figure 5.13 - Performance of CSD

0

500

1000

1500

2000

5 10 15 20 25 30 35 40 45 50

M
ea

n
ex

ec
ut

io
n

tim
e

(m
s)

Number of Predicates

AND AND OR OR

161

In the case of correctness evaluation, we use standard metrics applied to information

retrieval systems. More precisely, we used precision/recall metrics, where precision

indicates how accurate the retrieved context services match a given context request, and

recall is the proportion of a correctly matched context services to all the available

services that can actually serve a given context request. In this experiment, we

generated a test set of different context service descriptions and context requests.

Further, to evaluate the precision recall of the matchmaking technique we generated a

graded relevance set, which uses a 3-graded scale: full match, partial match, and no

match.

As explained in Section 4.5, the output of the service discovery algorithm is a

floating number that indicates how well a service satisfies a given context request.

Finally, we executed the queries with various satisfiability level thresholds and

compared the results with graded relevance set to calculate the precision and recall.

Figure 5.14 represents the dependence of the recall and the precision on the

satisfiability level. As illustrated, increasing the threshold of the satisfiability level

leads to a decrease of the recall level and to an increase of the precision of

matchmaking. We set the default threshold to 0.7 level; however, this level can be

overridden as part of a context query.

Figure 5.14 - Precision vs Recall of CSD

0

0.25

0.5

0.75

1

0.2 0.35 0.5 0.65 0.8 0.95

Va
lu

e
of

 R
ec

al
l/P

re
ci

sio
n

Satisfiability level

recall precision

 162

5.4 SUMMARY

In this chapter, in order to demonstrate the fulfilment of the different requirements

and the feasibility of the proposed context publishing and querying approach, we have

conducted a comprehensive evaluation, which consists of three parts.

In the first part of the evaluation, we validated the main functionalities of the

proposed approach based on real-world scenarios. More precisely, we have integrated

several context services (based on existing works) in the CoaaS platform and then

designed and executed various context queries to demonstrate the capability of the

proposed solution to represent a wide range of complex context queries, such as pull-

based queries, push-based queries, and queries concerning various context entities and

constraints.

The demonstration clearly shows how the proposed solution can be utilised to ease

the development of a wide range of context-aware IoT applications. Moreover, it shows

that CDQL can satisfy all the six requirements we have identified for a context query

language in Chapter 2.

Moreover, to demonstrate the advantages of the proposed context query language

compared to existing CQLs in the literature, we conducted a comparative evaluation.

In this evaluation, we compared CDQL with NGSI, which is the most sophisticated

existing context query language in existence.

Besides highlighting the practical usability of the proposed concepts, we also have

conducted a set of experiments to illustrate the performance of the CoaaS platform, in

particular Context Query Engine and Situation Monitoring Engine, by executing the

context queries under different circumstances. We have designed a set of context

queries as benchmarks and executed them by varying the experimental setting (e.g.

number of context providers, and number of concurrent queries) and compare the

results based on different evaluation metrics (e.g. execution time, CPU usage, and

memory usage). These experiments showed the proposed solution can be utilised for

large-scale IoT applications with decent performance.

Finally, we performed a systematic evaluation of the proposed Context Service

Discovery (CSD) approach to prove its correctness and performance.

163

Chapter 6: Conclusion

This chapter concludes the dissertation by summarising the research contributions

and providing a discussion on future work.

6.1 SUMMARY OF CONTRIBUTIONS

The Internet of Things (IoT) envisions an ecosystem in which everyday objects

(e.g., refrigerator, air conditioner, smartphones, and cars) are enhanced with sensing,

computation, and communication capabilities. These ‘smart’ devices (i.e. IoT devices)

can sense and collect an enormous amount of data about their surroundings, which is

known as context, and share it with each other via the Internet. Utilising the context

data produced by IoT devices, it is possible to enhance a wide range of applications in

a way that they adapt their behaviour according to the context of their related entities,

including themselves. Such applications are known as context-aware applications.

While context-driven intelligence is a fundamental factor for IoT sustainability,

growth, interoperability and acceptance, IoT’s characteristics, such as scalability, big

data, heterogeneity and dynamism, will make the development of context-aware

applications and services a very challenging task. To address these challenges and

facilitates the development of context-aware IoT applications, in this dissertation, we

proposed and evaluated a comprehensive solution for publishing, querying, monitoring,

and sharing context.

The proposed solution consists of four main components, which are (i) Context

Service Description Language (CSDL), (ii) Context Definition and Query Language

(CDQL), (iii) Context Query Engine (CQE), and (iv) Situation Monitoring Engine

(SME). The first two components, namely CSDL and CDQL, are two specially

designed high-level languages that provide a novel mechanism for publishing and

querying context. The other two components, which are CQE and SME, are two novel

mechanisms that enable the execution of complex context queries in IoT environment

and continuous monitoring of changes in context of IoT entities respectively.

 164

Context Service Description Language (CSDL) is a JSON-LD-based language.

This language enables developers of context services to describe their services in terms

of semantic signature and contextual behavioural specification; where the semantic

signature defines the service name, number and types of its parameters, and the type of

its output, and the contextual behavioural presents the context of IoT entities provided

by the service. CSDL enables IoT applications to discover and consume context

services owned and operated by different individuals and organisations.

Context Definition and Query Language (CDQL) provides a generic and flexible

approach to defining, representing, inferring, monitoring, and querying context. CDQL

consists of two main parts, namely: Context Definition Language (CDL), which is

designed to describe situations and high-level context; and Context Query Language

(CQL), which is a powerful and flexible query language, to express contextual

information requirements without considering the details of the underlying data

structures. An important feature of the proposed query language is its ability to query

entities in IoT environments based on their situation in a fully dynamic manner where

users can define situations and context entities as part of the query.

Context Query Engine (CQE) is mainly responsible for parsing incoming context

queries, generating and orchestrating the query execution plan, and producing the final

context query result. Furthermore, CQE is also in charge of finding the most appropriate

context services for incoming requests. To achieve this goal, we have designed a

Context Service Discovery (CSD) approach. CSD’s workflow consists of two parts.

First, it finds context services that match the requirements of a context request. Then,

based on the discovered services, it returns a sorted set of the best available context

services that can satisfy the requirements of a request considering different metrics such

as Cost of Service and Quality of Service.

The Situation Monitoring Engine (SME) is designed to support continuous

monitoring of incoming context, inferring situations from available context, detecting

changes in such inferred situations and providing notification of detected changes. This

component monitors in real-time contextual changes of IoT entities. It also initiates the

actuation procedure by notifying context consumers when their situation of interest is

detected.

165

The proposed solution in this dissertation has been integrated in a context

management platform called Context-as-a-Service (CoaaS), which is part of EU

Horizon-2020 project (“Software - bIoTope Project,” n.d.). CoaaS enables IoT devices

to provide context and IoT application to consume context seamlessly. We present a

blueprint architecture of CoaaS platform and demonstrate its functionalities through a

proof of concept implementation. The blueprint architecture follows a scalable and

fault-tolerant design.

To demonstrate the feasibility of the proposed approaches in developing context-

aware IoT applications that can seamless share context, we developed 3 application

demonstrators based on real-world scenarios. These include school safety scenario,

context-aware parking suggestions application, and a connected car pre-conditioning

application. These application demonstrators validate the proposed approaches’ ability

to represent a wide range of complex context queries, execute pull-based and push-

based queries (supporting various needs to IoT applications), query high-level context

and situation, and complex queries that include several context entities and constraints.

To demonstrate the advantages of the proposed context query language compared

to the existing CQLs, we have conducted a qualitative evaluation. In this evaluation,

we compared CDQL with NGSI. We demonstrated that in order to implement the use

case of smart parking five NGSI queries plus some additional coding on the application

side were required. Whereas, the same scenario was implemented using a single CDQL

query. Moreover, we demonstrated that NGSI is not capable of implementing use cases

that need to monitor the change in the context of multiple IoT entities.

To assess the performance and scalability of the proposed solution in execution

of context queries under different scenarios, we have conducted three sets of

experiments. In the first set of experiments, we have evaluated the performance of

Context Query Engine (CQE) in the execution of pull-based CDQL queries. In this

regard, we have studied the impact of the query load on query execution performance

by increasing the load from 40 to 550 query per second. The result showed the average

query execution time grows linearly, from 91ms to 842ms, with the increase in the

query load.

 166

In the second set of experiments, we have evaluated the execution of push-based

queries. This set of experiments demonstrated how the CoaaS platform, in particular

the proposed Situation Monitoring Engine (SME), deals with the increase in the number

of context updates and the number of subscriptions. The outcome of this experiment

showed a single instance of CoaaS platform can handle 780 context updates per second

without any degradation in the performance of the system where the average processing

time for each context update is around 67ms. We have also varied the number of

subscriptions from 500 to 7000, while the input rate was equal to 100 updates per

second. The result of this experiment showed that the processing time increases

gradually (i.e. from 84ms to 1239ms) with the increase in the number of subscription

(i.e. 500 to 5500) until the point CPU utilisation reaches its maximum.

In the third set of experiments, we have evaluated the proposed Context Service

Discovery (CSD) approach. This set of experiments showed that for 1000 registered

context services, with a reasonable number of predicates (25), the execution time of the

CSD is under 1 second. These experiments demonstrate and validate the ability of the

proposed solution to be utilised for large-scale IoT application development.

6.2 LIMITATIONS AND FURTHER RESEARCH

Despite the significant contributions of this work towards operationalising context-

awareness in IoT ecosystem especially with the focus on context diffusion and

distribution, there are still several open issues in this domain that require further

investigation. Some of the most interesting problems that deserve attention in further

studies are listed below.

• Advanced context storage and management system: In order to achieve a higher

throughput of the system, it is essential to have an advanced context storage system

that can store and retrieve context data efficiently. An important aspect related to

context storage management system that needs to be addressed is developing a

proactive caching mechanism that is able to cache contextual data dynamically.

• Automatic Annotation of Context Provider/Service: An essential aspect of IoT

is utilising the data produced by IoT devices. In this regard a CMP platform should

be capable of understanding and contextualising such data in order to use it

effectively. However, the metadata required to make sense of this data is mostly

167

inaccurate, incomplete, and in many situations, only human interpretable. To

address this challenge, it is required to investigate and design a mechanism that can

classify, annotate and semantically enrich IoT data-streams/services.

• Privacy, Security, and Access control: In this dissertation, we have briefly

discussed the topics of security, privacy, and access control. However, considering

the importance of these topics, a CMP should be enhanced with an advanced

authentication and authorisation mechanism that ensures the privacy and the

security of the users’ data. Moreover, there is a need for an access control

mechanism that is capable of sharing context data only to selected context

consumers.

• Context Prediction: Another important aspect of context processing that has not

been discussed in this dissertation is context prediction. Context predication is

referred to the process of exploiting expected future context of IoT entities based

on the historical context. A CMP that supports context predication offers∂∂ distinct

advantages to the context consumers, which enables a range of new use-cases.

Hence, it is important to investigate, design, and implement a generic mechanism

that allows context consumers predict the future context of IoT entities.

• Auto-Scaling Strategy: In this dissertation, we have conducted all the experiments

on a single instance of CoaaS platform. However, in production environments,

context management platforms are needed to be scaled-out to deal with the massive

number of requests generated by the billions of IoT devices. To address this

challenge, it is required to investigate and design an auto-scaling strategy for CMPs

that automatic scale-out or scale-in based on the scale of incoming requests.

 168

Glossary

Context is any information that can be used to characterise the state of an entity.

Entities are persons, locations, or objects that affects the behaviour of an application.

Context-Awareness refers to a system that adapts its behaviour to the context of itself,

its users, or its surrounding environment.

Context as a Service is a context management framework which is responsible for

providing a comprehensive method to allow a smart entity, namely context service

consumers, to consume a context service provided by another entity that is a context

service provider.

Context Entity/Attribute In context-aware systems, an entity (denoted by EQ)

accounts for a physical or virtual object (such as a person, car, electronic device, event)

that can be associated with one or more context attributes (denoted by caM), which can

be any type of data that characterises this entity.

Context Provider Context Provider (CP) refers to any device or system that can

provide context or data that can be used to infer context about one or several entities.

Context Consumer (CC) refers to any device or system that query and receive context

about one or several entities.

Context Service provides contextual information about a particular entity. Context

service can be represented as a triple: 〈E, CAs, Ps	〉 where E denotes the related entity,

CAs is a set of provided context attributes, and Predicates (denoted by C8) form a set

of logical expressions defined over CAs.

Context Query is a request for contextual information (either context attributes or

high-level context inferred from context attributes) extracted from one or many entities.

Context Request represents a request for contextual information about a particular

entity. Context request can be represented as a triple: 〈E, CAs, Ps〉 where E denotes the

entity of interest, CAs is a set of requested context attributes, and Ps is a set of

predicates, which are defined over CAs using logical expressions.

169

References

Abowd, G. D., Dey, A. K., Brown, P. J., Davies, N., Smith, M., & Steggles, P. (1999).

Towards a better understanding of context and context-awareness. In

Proceedings of the First International Symposium on Handheld and Ubiquitous

Computing (HUC ’99) (pp. 304–307). https://doi.org/10.1007/3-540-48157-5_29

Abowd, G. D., & Mynatt, E. D. (2000). Charting past, present, and future research in

ubiquitous computing. ACM Trans. Comput.-Hum. Interact., 7(1), 29–58.

https://doi.org/10.1145/344949.344988

Allen, J. F. (2013). Maintaining Knowledge about Temporal Intervals. In Readings in

Qualitative Reasoning About Physical Systems. https://doi.org/10.1016/B978-1-

4832-1447-4.50033-X

Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey.

Computer Networks, 54(15), 2787–2805.

Baldauf, M., Dustdar, S., & Rosenberg, F. (2007). A survey on context-aware

systems. International Journal of Ad Hoc and Ubiquitous Computing, 2(4), 263.

https://doi.org/10.1504/IJAHUC.2007.014070

Bassi, A., & Horn, G. (2008). Internet of Things in 2020: A Roadmap for the Future.

European Commission: Information Society and Media, 22, 97–114.

Bauer, M., Becker, C., & Rothermel, K. (2002). Location Models from the

Perspective of Context-Aware Applications and Mobile Ad Hoc Networks.

Personal and Ubiquitous Computing, 6(5), 322–328.

https://doi.org/10.1007/s007790200036

Becker, C., & Nicklas, D. (2004). Where do spatial context-models end and where do

ontologies start? A proposal of a combined approach. Proceedings of the First

International Workshop on Advanced Context Modelling, Reasoning and

Management in Conjunction with UbiComp 2004, 48–53. Retrieved from

http://www2.informatik.uni-stuttgart.de/cgi-

bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2004-38&engl=

 170

Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A.,

& Riboni, D. (2010). A survey of context modelling and reasoning techniques.

Pervasive and Mobile Computing, 6(2), 161–180.

https://doi.org/10.1016/j.pmcj.2009.06.002

bIoTope Project. (n.d.). Retrieved May 27, 2019, from https://biotope-project.eu/

Boytsov, A., & Zaslavsky, A. (2011). ECSTRA - Distributed context reasoning

framework for pervasive computing systems. In Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics). https://doi.org/10.1007/978-3-642-22875-9_1

Brickley, D., & Guha, R. V. (2004). RDF Vocabulary Description Language 1.0:

RDF Schema. W3C, (February), 1–15. https://doi.org/10.1002/9780470773581

Brock, D. L. (2001). The Electronic Product Code (EPC). A Naming Scheme for

Physical Objects (white paper). Auto-ID Center.

Brown, P. J., Bovey, J. D., & Chen, X. (1997). Context-aware applications: From the

laboratory to the marketplace. IEEE Personal Communications, 4(5), 58–64.

https://doi.org/10.1109/98.626984

Brümmer, M., & Weilandt, A. (2018). MobiVoc: Open Mobility Vocabulary.

Retrieved April 8, 2019, from http://schema.mobivoc.org/

Buchholz, T., Küpper, A., & Schiffers, M. (2003). Quality of Context: What It Is And

Why We Need It. Proceedings of the Workshop of the HP OpenView University

Association, 1–14. https://doi.org/10.1.1.147.565

Chen, G., & Kotz, D. (2000). A Survey of Context-Aware Mobile Computing

Research. Technical Report TR2000-381 (Vol. 3755).

https://doi.org/10.1.1.140.3131

171

Chen, H., Finin, T., & Joshi, A. (2004). A context broker for building smart meeting

rooms. Proceedings of the AAAI Symposium on Knowledge Representation and

Ontology for Autonomous Systems Symposium, 2004 AAAI Spring Symposium,

53–60. Retrieved from http://www.aaai.org/Papers/Symposia/Spring/2004/SS-

04-04/SS04-04-008.pdf

Chen, H. L. (2004). COBRA : An Intelligent Broker Architecture for Pervasive

Context-Aware Systems. Interfaces, 54(November), 129.

https://doi.org/10.1.1.4.4259

Chen, P., Sen, S., Pung, H. K., & Wong, W. C. (2014). A SQL-based Context Query

Language for Context-aware Systems. In IMMM 2014 : The Fourth International

Conference on Advances in Information Mining and Management (pp. 96–102).

da Cruz, M. A. A., Rodrigues, J. J. P. C., Sangaiah, A. K., Al-Muhtadi, J., &

Korotaev, V. (2018). Performance evaluation of IoT middleware. Journal of

Network and Computer Applications. https://doi.org/10.1016/j.jnca.2018.02.013

Davies, R. (2015). Industry 4.0. Digitalisation for productivity and growth. European

Parliamentary Research Service (Vol. 10).

Deborah L. McGuinness, F. van H. (2004). Owl web ontology language overview.

W3C Recommendation 10.2004-03, 2004(February), 1–12.

https://doi.org/10.1145/1295289.1295290

Delir Haghighi, P., Krishnaswamy, S., Zaslavsky, A., & Gaber, M. M. (2008).

Reasoning about context in uncertain pervasive computing environments.

Lecture Notes in Computer Science (Including Subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 5279 LNCS, 112–

125. https://doi.org/10.1007/978-3-540-88793-5-9

Dey, A. K. (2001). Understanding and using context. Personal and Ubiquitous

Computing, 5(1), 4–7. https://doi.org/10.1007/s007790170019

 172

Dohr, A., Modre-Osprian, R., Drobics, M., Hayn, D., & Schreier, G. (2010). The

internet of things for ambient assisted living. In ITNG2010 - 7th International

Conference on Information Technology: New Generations.

https://doi.org/10.1109/ITNG.2010.104

Domingue, J., Roman, D., & Stollberg, M. (2005). Web Service Modeling Ontology

(WSMO): an ontology for Semantic Web Services. Architecture, 776–784.

Retrieved from

http://www.w3.org/2005/04/FSWS/Submissions/1/wsmo_position_paper.html

Esper. (n.d.).

Espressif Systems - Wi-Fi and Bluetooth chipsets and solutions. (n.d.). Retrieved

March 7, 2019, from https://www.espressif.com/

ETSI - ETSI ISG CIM group releases first specification for context exchange in smart

cities. (n.d.). Retrieved February 18, 2019, from

https://www.etsi.org/newsroom/news/1300-2018-04-news-etsi-isg-cim-group-

releases-first-specification-for-context-exchange-in-smart-cities

Feng, L. (2010). Supporting context-aware database querying in an Ambient

Intelligent environment. 2010 3rd IEEE International Conference on Ubi-Media

Computing, U-Media 2010, 161–166.

https://doi.org/10.1109/UMEDIA.2010.5544479

FIWARE. (n.d.).

Floreen, P., Przybilski, M., Nurmi, P., Koolwaaij, J., Tarlano, a, Wagner, M., … Lau,

S. (2005). Towards a Context Management Framework for MobiLife.

Management, 120–131. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.1335&rep=re

p1&type=pdf

Franklin, D., & Flachsbart, J. (1998). All Gadget and No Representation Makes Jack a

Dull Environment Sensing. In Proceedings of AAAI 1998 Spring Symposium on

Intelligent Environments (SprSym’98) (pp. 155–160).

173

Fujii, K., & Suda, T. (2009). Semantics-based context-aware dynamic service

composition. ACM Transactions on Autonomous and Adaptive Systems, 4(2), 1–

31. https://doi.org/10.1145/1516533.1516536

Grossmann, M., Bauer, M., Hönle, N., Käppeler, U. P., Nicklas, D., & Schwarz, T.

(2005). Efficiently managing context information for large-scale scenarios. In

Proceedings - Third IEEE International Conference on Pervasive Computing

and Communications, PerCom 2005 (Vol. 2005, pp. 331–340).

https://doi.org/10.1109/PERCOM.2005.17

Gu, T., Pung, H. K., & Zhang, D. Q. (2005). A service-oriented middleware for

building context-aware services. Journal of Network and Computer Applications,

28(1), 1–18. https://doi.org/10.1016/j.jnca.2004.06.002

Guinard, D., Trifa, V., Karnouskos, S., Spiess, P., & Savio, D. (2010). Interacting

with the SOA-based internet of things: Discovery, query, selection, and on-

demand provisioning of web services. IEEE Transactions on Services

Computing, 3(3), 223–235. https://doi.org/10.1109/TSC.2010.3

Haghighi, P. D. D., Zaslavsky, a., & Krishnaswamy, S. (2006). An Evaluation of

Query Languages for Context-Aware Computing. Database and Expert Systems

Applications, 2006. DEXA ’06. 17th International Workshop On, 455–462.

https://doi.org/10.1109/DEXA.2006.25

Haghighi, P. D., Zaslavsky, A., & Krishnaswamy, S. (2006). An Evaluation of Query

Languages for Context-Aware Computing. Database and Expert Systems

Applications, 2006. DEXA ’06. 17th International Workshop On, 455–462.

https://doi.org/10.1109/DEXA.2006.25

Hassani, A., Haghighi, P. D., Jayaraman, P. P., Zaslavsky, A., & Ling, S. (2018).

Querying IoT Services: A Smart Carpark Recommender Use Case. In 4th IEEE

World Forum on Internet of Things WF-IoT 2018.

 174

Henricksen, K., & Indulska, J. (2004). A software engineering framework for context-

aware pervasive computing. 2nd IEEE International Conference on Pervasive

Computing and Communications (PerCom 2004), 77–86.

https://doi.org/10.1109/PERCOM.2004.1276847

Henricksen, K., Indulska, J., & Rakotonirainy, A. (2002). Modeling Context

Information in Pervasive Computing Systems. Pervasive, 2414, 167–180.

Hofer, T., Schwinger, W., Pichler, M., Leonhartsberger, G., Altmann, J., Hagenberg,

A.-, … Kepler, J. (2002). Context-Awareness on Mobile Devices - the Hydrogen

Approach, 43(7236).

Hong, J. yi, Suh, E. ho, & Kim, S. J. (2009). Context-aware systems: A literature

review and classification. Expert Systems with Applications, 36(4), 8509–8522.

https://doi.org/10.1016/j.eswa.2008.10.071

Hönle, N., Käppeler, U.-P., Nicklas, D., Schwarz, T., & Grossmann, M. (2005).

Benefits of Integrating Meta Data into a Context Model. Third IEEE

International Conference on Pervasive Computing and Communications

Workshops, 25–29. https://doi.org/10.1109/PERCOMW.2005.20

Hossain, M. A., Parra, J., Atrey, P. K., & El Saddik, A. (2009). A framework for

human-centered provisioning of ambient media services. Multimedia Tools and

Applications, 44(3), 407–431. https://doi.org/10.1007/s11042-009-0285-9

Huebscher, M. C., & McCann, J. A. (2004). Adaptive middleware for context-aware

applications in smart-homes. Proceedings of the 2nd Workshop on Middleware

for Pervasive and Ad-Hoc Computing -, 111–116.

https://doi.org/10.1145/1028509.1028511

Hull, R., Neaves, P., & Bedford-Roberts, J. (1997). Towards situated computing.

Digest of Papers. First International Symposium on Wearable Computers, 146–

153. https://doi.org/10.1109/ISWC.1997.629931

IEEE. (1990). IEEE Standard Glossary of Software Engineering Terminology. report

IEEE Std 610.12- 1990. https://doi.org/10.1109/IEEESTD.1990.101064

175

Ikram, A., Baker, N., Knappmeyer, M., Reetz, E. S., & Tonjesy, R. (2011). An

artificial chemistry based framework for personal and social context aware smart

spaces. 2011 7th International Wireless Communications and Mobile Computing

Conference, 2009–2014. https://doi.org/10.1109/IWCMC.2011.5982843

Jones, M., Bradley, J., & Sakimura, N. (2015). Rfc 7519: Json web token (jwt). Date

of Retrieval, 5, 2017.

Klyne, G., Reynolds, F., Woodrow, C., Ohto, H., Hjelm, J., Butler, M. H., & Tran, L.

(2004). Composite Capability/Preference Profiles (CC/PP): Structure and

Vocabularies 1.0. W3C Recommendation, (April), 1–56.

https://doi.org/http://www.w3.org/TR/CCPP-struct-vocab/

Knappmeyer, M., Kiani, S. L., Frà, C., Moltchanov, B., & Baker, N. (2010).

ContextML: A light-weight context representation and context management

schema. In ISWPC 2010 - IEEE 5th International Symposium on Wireless

Pervasive Computing 2010 (pp. 367–372).

https://doi.org/10.1109/ISWPC.2010.5483753

Knappmeyer, M., Kiani, S. L., Reetz, E. S., Baker, N., & Tonjes, R. (2013). Survey of

context provisioning middleware. IEEE Communications Surveys and Tutorials,

15(3), 1492–1519. https://doi.org/10.1109/SURV.2013.010413.00207

Kofod-petersen, A., & Mikalsen, M. (2005). Context : Representation and Reasoning

Environment. Communication, 19(3), 479–498.

https://doi.org/10.3166/ria.19.479-498

Kopecký, J., Vitvar, T., Bournez, C., & Farrell, J. (2007). SAWSDL: Semantic

annotations for WSDL and XML schema. IEEE Internet Computing, 11(6), 60–

67. https://doi.org/10.1109/MIC.2007.134

Korpipää, P., & Mäntyjärvi, J. (2003). An ontology for mobile device sensor-based

context awareness. Modeling and Using Context, 451–458.

https://doi.org/10.1007/3-540-44958-2_37

 176

Krause, M., & Hochstatter, I. (2005). Challenges in modelling and using quality of

context (QoC). Lecture Notes in Computer Science (Including Subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3744

LNCS, 324–333. https://doi.org/10.1007/11569510_31

Le-Phuoc, D., Polleres, A., Hauswirth, M., Tummarello, G., & Morbidoni, C. (2009).

Rapid prototyping of semantic mash-ups through semantic web pipes.

https://doi.org/10.1145/1526709.1526788

Li, X., Eckert, M., Martinez, J. F., & Rubio, G. (2015). Context aware middleware

architectures: Survey and challenges. Sensors (Switzerland), 15(8), 20570–

20607. https://doi.org/10.3390/s150820570

M. Razzaque, S. Dobson, & P. Nixon. (2005). Categorisation and modelling of

quality in context information. Workshop on AI and Autonomic Communications.

Manzoor, A., Truong, H. L., & Dustdar, S. (2008). On the evaluation of quality of

context. In Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 5279

LNCS, pp. 140–153). https://doi.org/10.1007/978-3-540-88793-5-11

Mavrommatis, A., Artikis, A., Skarlatidis, A., & Paliouras, G. (2016). A distributed

event calculus for event recognition. In CEUR Workshop Proceedings.

Mccarthy, J. (1986). NOTES ON FORMALIZING CONTEXT *. In 5th National

Conference on AI.

McFadden, T., Henricksen, K., & Indulska, J. (2004). Automating Context-aware

Application Development. Procs. of the 1st Int’l Workshop on Advanced Context

Modelling, Reasoning and Management (UbiComp), 90–95.

https://doi.org/10.1.1.1.9810

McIlraith, S. A., San, T. C., & Zeng, H. (2001). Semantic Web services. IEEE

Intelligent Systems, 16, 46–53. https://doi.org/10.1109/5254.920599

177

Medvedev, A., Hassani, A., Zaslavsky, A., Haghighi, P. D., Ling, S., Santiago, M. I.,

… Kolbe, N. (2018). Situation Modelling , Representation , and Querying in

Context-as-a-Service IoT Platform. In GIoTS 2018 - Global Internet of Things

Summit, Proceedings.

Medvedev, A., Hassani, A., Zaslavsky, A., Jayaraman, P. P., Indrawan-Santiago, M.,

Haghighi, P. D., & Ling, S. (2017). Data ingestion and storage performance of

IoT platforms: Study of OpenIoT. In Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics) (Vol. 10218 LNCS, pp. 141–157). https://doi.org/10.1007/978-

3-319-56877-5_9

Medvedev, A., Indrawan-Santiago, M., Delir Haghighi, P., Hassani, A., Zaslavsky,

A., & Jayaraman, P. P. (2017). Architecting IoT context storage management for

context-as-a-service platform. In GIoTS 2017 - Global Internet of Things

Summit, Proceedings. https://doi.org/10.1109/GIOTS.2017.8016228

Meulen, R. van der. (2017). Gartner says 8.4 billion connected “Things” will be in use

in 2017 up 31 percent from 2016. Gartner. Letzte Aktualisierung, 7, 2017.

Miorandi, D., Sicari, S., De Pellegrini, F., & Chlamtac, I. (2012). Internet of things:

Vision, applications and research challenges. Ad Hoc Networks, 10(7), 1497–

1516. https://doi.org/10.1016/j.adhoc.2012.02.016

Ngan, L. D., Kir, M., & Kanagasabai, R. (2010). Review of Semantic Web Service

Discovery Methods. 2010 6th World Congress on Services, 176–177.

https://doi.org/10.1109/SERVICES.2010.85

Noura, M., Atiquzzaman, M., & Gaedke, M. (2019). Interoperability in Internet of

Things: Taxonomies and Open Challenges. Mobile Networks and Applications,

24(3), 796–809. https://doi.org/10.1007/s11036-018-1089-9

NSGIv2 API Walkthrough - Fiware-Orion. (n.d.).

On-street parking data - City of Melbourne. (n.d.). Retrieved December 2, 2018, from

https://www.melbourne.vic.gov.au/about-council/governance-transparency/open-

data/Pages/on-street-parking-data.aspx

 178

Open Mobile Alliance. (2012). NGSI Context Management. Retrieved from

http://www.openmobilealliance.org/release/NGSI/V1_0-20120529-A/OMA-TS-

NGSI_Context_Management-V1_0-20120529-A.pdf

Padovitz, A., Loke, S. W., & Zaslavsky, A. (2004). Towards a theory of context

spaces. In Proceedings - Second IEEE Annual Conference on Pervasive

Computing and Communications, Workshops, PerCom (pp. 38–42).

https://doi.org/10.1109/PERCOMW.2004.1276902

Padovitz, A., Loke, S. W., Zaslavsky, A., Burg, B., & Bartolini, C. (2005). An

approach to data fusion for context awareness. In International and

Interdisciplinary Conference on Modeling and Using Context (pp. 353–367).

https://doi.org/10.1.1.60.6380

Patel, K., & Patel, S. M. (2016). Internet of Things-IOT: definition, characteristics,

architecture, enabling technologies, application & future challenges.

International Journal of Engineering Science and Computing.

https://doi.org/10.4010/2016.1482

Patroumpas, K., & Sellis, T. (2006). Window specification over data streams. Current

Trends in Database Technology–EDBT …, 445–464.

https://doi.org/10.1007/b97859

Pereira, C., Cardoso, J., Aguiar, A., & Morla, R. (2018). Benchmarking Pub/Sub IoT

middleware platforms for smart services. Journal of Reliable Intelligent

Environments, 4(1), 25–37. https://doi.org/10.1007/s40860-018-0056-3

Perera, C., Zaslavsky, A., Christen, P., & Georgakopoulos, D. (2012). CA4IOT:

Context awareness for Internet of Things. In Proceedings - 2012 IEEE Int. Conf.

on Green Computing and Communications, GreenCom 2012, Conf. on Internet

of Things, iThings 2012 and Conf. on Cyber, Physical and Social Computing,

CPSCom 2012 (pp. 775–782). https://doi.org/10.1109/GreenCom.2012.128

179

Perera, C., Zaslavsky, A., Christen, P., & Georgakopoulos, D. (2014). Context aware

computing for the internet of things: A survey. IEEE Communications Surveys

and Tutorials, 16(1), 414–454.

https://doi.org/10.1109/SURV.2013.042313.00197

Polleres, A., Ruben, L., Lausen, H., Roman, D., Bruijn, J. De, & Fensel, D. (2005). A

conceptual comparison between WSMO and OWL-S. WSMO Working Group

Working Draft. https://doi.org/10.1007/b100919

Prud’hommeaux, E., & Seaborne, A. (2008). SPARQL Query Language for RDF.

W3C Recommendation, 2009(January), 1–106. https://doi.org/citeulike-article-

id:2620569

Reichle, R., Wagner, M., Khan, M. U., Geihs, K., Valla, M., Fra, C., …

Papadopoulos, G. a. (2008). A Context Query Language for Pervasive

Computing Environments. 2008 Sixth Annual IEEE International Conference on

Pervasive Computing and Communications (PerCom), 434–440.

https://doi.org/10.1109/PERCOM.2008.29

Riva, O., & Di Flora, C. (2006). Contory: A smart phone middleware supporting

multiple context provisioning strategies. In Proceedings - International

Conference on Distributed Computing Systems.

https://doi.org/10.1109/ICDCSW.2006.33

Rodden, T., Cheverst, K., Davies, N., & Dix, A. (1998). Exploiting context in HCI

design for mobile systems. Workshop on Human Computer Interaction with

Mobile Devices, 21–22. https://doi.org/10.1.1.57.1279

Ryan, N., Pascoe, J., & Morse, D. (1999). Enhanced Reality Fieldwork: the Context

Aware Archaeological Assistant. Archaeology in the Age of the Internet. CAA97.

Computer Applications and Quantitative Methods in Archaeology. Proceedings

of the 25th Anniversary Conference, University of Birmingham, April 1997 (BAR

International Series 750), 269–274.

 180

Salhofer, P., & Joanneum, F. H. (2018). Evaluating the FIWARE Platform: A Case-

Study on Implementing Smart Application with FIWARE. In Proceedings of the

51st Hawaii International Conference on System Sciences (pp. 5797–5805).

Schmidt, A., Aidoo, K. A., Takaluoma, A., Tuomela, U., Van Laerhoven, K., & Van

De Velde, W. (1999). Advanced interaction in context. In Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics) (Vol. 1707, pp. 89–101).

https://doi.org/10.1007/3-540-48157-5_10

Schreiber, F., & Camplani, R. (2012). Perla: A language and middleware architecture

for data management and integration in pervasive information systems. Software

…, 38(2), 478–496. https://doi.org/10.1109/TSE.2011.25

Sheikh, K., Wegdam, M., & van Sinderen, M. (2008). Quality-of-context and its use

for protecting privacy in context aware systems. Journal of Software.

https://doi.org/10.4304/jsw.3.3.83-93

Sheikh, K., Wegdam, M., & Van Sinderen, M. (2007). Middleware support for quality

of context in pervasive context-aware systems. In Proceedings - Fifth Annual

IEEE International Conference on Pervasive Computing and Communications

Workshops, PerCom Workshops 2007 (pp. 461–466).

https://doi.org/10.1109/PERCOMW.2007.81

Sheng, Q. Z., & Benatallah, B. (2005). ContextUML: A UML-based modeling

language for model-driven development of context-aware Web services. In 4th

Annual International Conference on Mobile Business, ICMB 2005 (pp. 206–

212). https://doi.org/10.1109/ICMB.2005.33

Software - bIoTope Project. (n.d.). Retrieved June 12, 2019, from https://biotope-

project.eu/software

181

Soldatos, J., Kefalakis, N., Hauswirth, M., Serrano, M., Calbimonte, J. P., Riahi, M.,

… Herzog, R. (2015). OpenIoT: Open source internet-of-things in the cloud. In

Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 9001, pp. 13–

25). https://doi.org/10.1007/978-3-319-16546-2_3

Sophia Antipolis. (2017). ETSI launches new group on Context Information

Management for smart city interoperability. Retrieved December 2, 2018, from

https://www.etsi.org/news-events/news/1152-2017-01-news-etsi-launches-new-

group-on-context-information-management-for-smart-city-interoperability

Strang, T., & Linnhoff-Popien, C. (2004). A Context Modeling Survey. Graphical

Models, Workshop o, 1–8. https://doi.org/10.1.1.2.2060

Suhothayan, S., Gajasinghe, K., Loku Narangoda, I., Chaturanga, S., Perera, S.,

Nanayakkara, V., & Narangoda, I. (2011). Siddhi: a second look at complex

event processing architectures. Proceedings of the 2011 ACM Workshop on

Gateway Computing Environments - GCE ’11.

https://doi.org/10.1145/2110486.2110493

Sundmaeker, H., Guillemin, P., Friess, P., & Woelfflé, S. (2010). Vision and

challenges for realising the Internet of Things. Cluster of European Research

Projects on the Internet of Things, European Commision, 3(3), 34–36.

Tan, L., & Wang, N. (2010). Future Internet: The Internet of Things. In ICACTE 2010

- 2010 3rd International Conference on Advanced Computer Theory and

Engineering, Proceedings. https://doi.org/10.1109/ICACTE.2010.5579543

Theimer, M. M., & Schilit, B. N. (1994). Disseminating Active Map Information to

Mobile Hosts. IEEE Network, 8(5), 22–32. https://doi.org/10.1109/65.313011

TPCx-IoT. (n.d.). Retrieved December 10, 2018, from http://www.tpc.org/tpcx-iot/

 182

Truong, H.-L., & Dustdar, S. (2009). A survey on context-aware web service systems.

International Journal of Web Information Systems, 5(1), 5–31.

https://doi.org/10.1108/17440080910947295

Union, I. T. (2005). ITU Internet Reports 2005: The Internet of Things.

Communications Engineer. https://doi.org/10.1049/ce:20060603

Vermesan, O., Friess, P., Guillemin, P., Gusmeroli, S., Sundmaeker, H., Bassi, A., …

others. (2011). Internet of things strategic research roadmap. Internet of Things-

Global Technological and Societal Trends, 1(2011), 9–52.

Villalonga, C., Roggen, D., Lombriser, C., Zappi, P., & Tr??ster, G. (2009). Bringing

quality of context into wearable human activity recognition systems. In Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics) (Vol. 5786 LNCS, pp. 164–

173). https://doi.org/10.1007/978-3-642-04559-2_15

W3C. (2004). OWL-S: Semantic markup for web services. W3C Member …,

(November), 1–29. Retrieved from http://www.ai.sri.com/daml/services/owl-

s/1.2/overview/

Wang, X. H., Da Qing Zhang, Tao Gu, & Pung, H. K. (2004). Ontology based context

modeling and reasoning using OWL. IEEE Annual Conference on Pervasive

Computing and Communications Workshops, 2004. Proceedings of the Second,

18–22. https://doi.org/10.1109/PERCOMW.2004.1276898

Want, R., Hopper, A., Falcão, V., & Gibbons, J. (1992). The active badge location

system. ACM Transactions on Information Systems, 10(1), 91–102.

https://doi.org/10.1145/128756.128759

Ward, A., Jones, A., & Hopper, A. (1997). A new location technique for the active

office. IEEE Personal Communications, 4(5), 42–47.

Wei, E. J. Y., & Chan, A. T. S. (2013). CAMPUS: A middleware for automated

context-aware adaptation decision making at run time. Pervasive and Mobile

Computing, 9(1), 35–56. https://doi.org/10.1016/j.pmcj.2011.10.002

183

Williams, J. W., Aggour, K. S., Interrante, J., McHugh, J., & Pool, E. (2015).

Bridging high velocity and high volume industrial big data through distributed

in-memory storage & analytics. In Proceedings - 2014 IEEE International

Conference on Big Data, IEEE Big Data 2014.

https://doi.org/10.1109/BigData.2014.7004325

Wirth, N. (1996). Extended Backus-Naur Form (EBNF). ISO/IEC, 14977, 2996.

Youn, J. (2018). Communication Scheme to Construct Self-Organization IoT

Network in Heterogeneous IoT Environments. International Journal of Control

and Automation, 11(4), 155–164.

Zhang, K., Tang, J., Hong, M., Li, J., & Wei, W. (2006). Weighted ontology-based

search exploiting semantic similarity. Lecture Notes in Computer Science

(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 3841 LNCS, 498–510. https://doi.org/10.1007/11610113_44

 184

Appendices

Appendix A. CQL EBNF

CDQL ::= DML_STATEMENT

 | DDL_STATMENT

DML_STATEMENT ::= PREFIX SELECT WHEN? DEFINE SET?

PREFIX ::= 'prefix' PREFIX_ID ':' URI (',' 'prefix'

PREFIX_ID ':' URI)*

SELECT ::= 'select' '(' (CONTEXT-ATTRIBUTE | CONTEXT-

ENTITY | FUNCTION-CALL) ('as' IDENTIFIER)? (',' (

CONTEXT-ATTRIBUTE | CONTEXT-ENTITY | FUNCTION-CALL) (

'as' IDENTIFIER)?)* ')'

CONTEXT-ATTRIBUTE

 ::= CONTEXT-ENTITY-ID ('.' IDENTIFIER)+

FUNCTION-CALL

 ::= (PACKAGE-TITLE '::')? FUNCTION-NAME '(' (

CONTEXT-ATTRIBUTE | CONTEXT-ENTITY-ID | FUNCTION-CALL) (

',' (CONTEXT-ATTRIBUTE | CONTEXT-ENTITY-ID | FUNCTION-

CALL))* ')' ('.' IDENTIFIER)*

185

DEFINE ::= 'define' 'entity' CONTEXT-ENTITY-ID 'is

from' Prefix_ID ':' Entity_title ('where' CONDITION)?

SORT-BY? (',' 'entity' CONTEXT-ENTITY-ID 'is from'

Prefix_ID ':' Entity_title ('where' CONDITION)? SORT-

BY?)*

CONDITION

 ::= (CONTEXT-VALUE | CONTEXT-ATTRIBUTE |

FUNCTION-CALL) (Comparison-Operator | Logical-Operator

) (CONTEXT-VALUE | CONTEXT-ATTRIBUTE | FUNCTION-CALL)?

 | (CONDITION ('and' | 'or') | 'not')

CONDITION

 | '(' CONDITION ')'

SORT-BY ::= 'sort by' (CONTEXT-ATTRIBUTE | FUNCTION-CALL

| ARITHMETIC-EXPRESSION) (',' (CONTEXT-ATTRIBUTE |

FUNCTION-CALL | ARITHMETIC-EXPRESSION))* ('asc' |

'desc')?

WHEN ::= ('when' HIGH-LEVEL-SITUATION | 'every'

duration) ('until' (date '/' ?) (date | duration |

number 'occurrences'))?

duration ::= 'P' (digit+ 'Y')? (digit+ 'M')? (digit+

'D')? ('T' (digit+ 'H')? (digit+ 'M')? (digitd+

'S')?)?

 186

SET ::= 'set' ('callback' ':' '{' 'method' ':'

METHOD ',' 'body' ':' string | 'meta' ':' '{' META-DATA-

KEY ':' CONTEXT-VALUE (',' META-DATA-KEY ':' CONTEXT-

VALUE)* | 'output' ':' '{' OUTPUT-CONFIG) '}'

OUTPUT-CONFIG

 ::= 'structure' ':' STRUCTURE (','

'vocabulary' ':' '{' CONTEXT-ENTITY-ID ':' PREFIX_ID ':'

Entity_title (',' CONTEXT-ENTITY-ID ':' PREFIX_ID ':'

Entity_title)* '}')?

DDL_STATMENT

 ::= CREATE-FUNCTION

 | 'create' 'package' PACKAGE-NAME

 | 'alter' 'package' PACKAGE-NAME 'set' 'title'

PACKAGE-TITLE

 | 'drop' 'function' (PACKAGE-TITLE '::')?

FUNCTION-NAME

CREATE-FUNCTION

 ::= PREFIX 'create function' FUNCTION-NAME 'is

on' (Prefix_ID ':' Entity_title | Data_Type) 'as'

Identifier (',' (Prefix_ID ':' Entity_title | Data_Type

) 'as' Identifier)* (SITUATION-FUNCTION | AGGREGATION-

FUNCTION) ('set package' PACKAGE-TITLE)?

187

AGGREGATION-FUNCTION

 ::= ('post' | 'get') ('http' | 'https')

'://' host (':' port)? ('/' (normal_path | path_param

))? ('?' (normal_query | query_param))?

SITUATION-FUNCTION

 ::= CST-SITUATION

 | HIGH-LEVEL-SITUATION

CST-SITUATION

 ::= SITUATION-NAME ':' '{' CONTEXT-ATTRIBUTE ':'

CST-ATTRIBUTE-DEFINITION (',' CONTEXT-ATTRIBUTE ':' CST-

ATTRIBUTE-DEFINITION)* '}' (',' SITUATION-NAME ':' '{'

CONTEXT-ATTRIBUTE ':' CST-ATTRIBUTE-DEFINITION (','

CONTEXT-ATTRIBUTE ':' CST-ATTRIBUTE-DEFINITION)* '}')*

CST-ATTRIBUTE-DEFINITION

 ::= '{' 'ranges' ':' '[' '{' 'value' ':' ('[' |

'(') number ';' number (')' | ']') ',' 'belief' ':'

number '}' (',' '{' 'value' ':' ('[' | '(') number ';'

number (')' | ']') ',' 'belief' ':' number '}')* ']'

',' 'weight' ':' number '}' '}'

HIGH-LEVEL-SITUATION

 188

 ::= (CONTEXT-VALUE | CONTEXT-ATTRIBUTE |

FUNCTION-CALL) (Comparison-Operator | Logical-Operator

) (CONTEXT-VALUE | CONTEXT-ATTRIBUTE | FUNCTION-CALL)?

 | (HIGH-LEVEL-SITUATION (Logical-Operator |

Allens-Algerbar-OP) | 'not') HIGH-LEVEL-SITUATION

 | '(' HIGH-LEVEL-SITUATION ')'

189

Appendix B. CQL ANTLR Grammar

**
 * @Generated
 */
grammar Cdql;

rule_Cdql : rule_Prefixs? (rule_ddl_statement |
rule_dml_statement) ;

rule_ddl_statement : rule_create_function |
rule_create_package |
 rule_alter_function | rule_alter_package|
 rule_drop_function | rule_drop_package |
;

rule_dml_statement : rule_query;

rule_query : (rule_Pull | ruel_Push rule_When
rule_repeat?) rule_Define rule_Set_Config?
rule_Set_Callback?;

rule_create_function : CREATE (rule_sFunction |
rule_aFunction) rule_set_package?;

rule_set_package : SET PACKAGE rule_package_title;

rule_create_package : CREATE PACKAGE rule_package_title;

rule_alter_package : ALTER PACKAGE rule_package_title SET
TITLE rule_package_title;

rule_alter_function : 'tbd';

rule_drop_package: DROP PACKAGE rule_package_title;

rule_drop_function: DROP FUNCTION rule_function_id;

rule_package_title: ID;

rule_Set_Config : SET (rule_Output_Config);

rule_Set_Callback : SET (rule_Callback_Config);

rule_Output_Config : OUTPUT COLON obj;

rule_Callback_Config : CALLBACK COLON obj;

 190

rule_Prefixs : rule_Prefix (COMMA rule_Prefix)*;

rule_Prefix : PREFIX ID COLON rule_url;

rule_Pull : PULL rule_Select;

rule_Select : LPAREN (rule_select_Attribute |
rule_select_FunctionCall) (COMMA (rule_select_Attribute |
rule_select_FunctionCall))* RPAREN;

rule_select_Attribute : rule_Attribute | rule_EntityTitle
DOT ASTERISK;

rule_select_FunctionCall : rule_FunctionCall;

rule_Attribute : rule_EntityTitle (DOT
rule_AttributeTitle)*;

rule_EntityTitle : ID;

rule_AttributeTitle : ATTRIBUTEID;

rule_FunctionCall : rule_call_FunctionTitle LPAREN
rule_call_Operand (COMMA rule_call_Operand)* RPAREN
rule_function_call_method_chaining ;

rule_function_call_method_chaining : (DOT ID)*;

rule_call_FunctionTitle : rule_FunctionTitle;

rule_call_Operand : rule_Operand | rule_Name_Operand;

rule_Name_Operand : ID COLON rule_Operand;

rule_FunctionTitle : ID (DOT ID)?;

rule_Operand : rule_EntityTitle | rule_Attribute |
rule_FunctionCall | rule_ContextValue;

rule_ContextValue : NUMBER | STRING | json;

rule_When: WHEN rule_Start;

rule_repeat : (EVERY NUMBER UNIT_OF_TIME) (UNTIL
rule_Occurrence)? | (UNTIL rule_Occurrence);

rule_Start : rule_Condition | rule_Date_Time_When;

191

rule_Date_Time_When : 'time' COLON rule_Date_Time;

rule_Occurrence : NUMBER UNIT_OF_TIME | NUMBER
OCCURRENCES | rule_Date_Time | LIFETIME;

rule_Date_Time : rule_Date rule_Time?;

rule_Date : NUMBER FSLASH NUMBER FSLASH NUMBER;

rule_Time : NUMBER COLON NUMBER (COLON NUMBER)?
TIME_ZONE?;

rule_Condition : rule_Constraint | rule_Condition
rule_expr_op rule_Condition | LPAREN rule_Condition
RPAREN | NOT rule_Condition;

rule_expr_op : AND | XOR | OR | NOT;

rule_Constraint : rule_left_element
rule_relational_op_func rule_right_element |
rule_target_element rule_between_op rule_left_element AND
rule_right_element | rule_target_element
rule_is_or_is_not NULL;

rule_left_element : rule_Operand;

rule_right_element : rule_Operand;

rule_target_element : rule_Operand;

rule_relational_op_func : rule_relational_op | OP LPAREN
rule_relational_op COMMA NUMBER RPAREN;

rule_relational_op: EQ | LTH | NOT_EQ | GTH | LET | GET |
CONTAINS_ANY | CONTAINS_ALL;

rule_between_op : BETWEEN | OP LPAREN BETWEEN COMMA
NUMBER RPAREN;

rule_is_or_is_not : IS | IS NOT;

ruel_Push: PUSH rule_Select ;

rule_callback : rule_http_calback | rule_fcm_calback;

rule_http_calback : METHOD EQ HTTPPOST URL EQ
rule_callback_url;

rule_fcm_calback : METHOD EQ FCM (rule_fcm_topic |

 192

rule_fcm_token);

rule_fcm_topic: TOPIC EQ STRING;

rule_fcm_token: TOKEN EQ STRING;

rule_callback_url : rule_url;

rule_Define : DEFINE rule_Define_Context_Entity (COMMA
rule_Define_Context_Function)?;

rule_Define_Context_Entity: rule_context_entity (COMMA
rule_context_entity)*;

rule_context_entity : ENTITY rule_entity_id IS_FROM
rule_entity_type (WHERE rule_Condition)?;

rule_entity_type : (ID COLON)? ID (DOT ID)?;

rule_Define_Context_Function : rule_context_function
(COMMA rule_context_function)*;

rule_context_function : rule_aFunction | rule_sFunction;

rule_aFunction : 'aFunction' rule_function_id rule_url;

rule_sFunction : 'sFunction' rule_function_id rule_is_on
(cst_situation_def_rule);

rule_is_on : 'is on' rule_is_on_entity (COMMA
rule_is_on_entity)* ;

rule_is_on_entity : rule_entity_type AS ID;

cst_situation_def_rule : '{' rule_single_situatuin (COMMA
rule_single_situatuin)* '}';

rule_single_situatuin : STRING COLON '{'
rule_situation_pair (COMMA rule_situation_pair)* '}';

rule_situation_pair : rule_situation_attributes ':' '{'
situation_pair_values '}';

rule_situation_attributes : rule_situation_attribute_name
| '[' rule_situation_attribute_name (COMMA
rule_situation_attribute_name)+ ']';

rule_situation_attribute_name : ID (DOT ID)*;

193

situation_pair_values : (situation_range_values COMMA
situation_weight) | (situation_weight COMMA
situation_range_values);

situation_weight : 'weight' COLON NUMBER;

situation_range_values: 'ranges' COLON '['
situation_pair_values_item (COMMA
situation_pair_values_item)* ']';

situation_pair_values_item : '{' ((rule_situation_belief
COMMA rule_situation_value) | (rule_situation_value COMMA
rule_situation_belief)) '}';

rule_situation_belief: 'belief' COLON NUMBER;

rule_situation_value : 'value' COLON (rule_region_value
| rule_discrete_value | discrete_value);

rule_discrete_value : '[' discrete_value (COLON
discrete_value)* ']';

discrete_value : json;

rule_region_value : region_value_inclusive |
region_value_left_inclusive |
region_value_right_inclusive | region_value_exclusive;

region_value_inclusive: '[' region_value_value ']';

region_value_left_inclusive: '[' region_value_value ')';

region_value_right_inclusive: '(' region_value_value ']';

region_value_exclusive: '(' region_value_value ')';

region_value_value: NUMBER ';' NUMBER ;

rule_entity_id : ID;

rule_function_id : ID;

rule_url
 : authority '://' host (':' port)? ('/' path)? ('?'
search)?
 ;

authority
 : ID

 194

 ;

host : hostname| hostnumber;

hostname : ID ('.' ID)*;

hostnumber : INT '.' INT '.' INT '.' INT;

search : searchparameter ('&' searchparameter)*;

searchparameter : ID ('=' (ID |INT | HEX))?;

port
 : INT
 ;

path
 : (normal_path | path_param) ('/' (normal_path |
path_param))*
 ;

normal_path : ID;

path_param : '{' ID '}';

TITLE : 'title';

PACKAGE: 'package';

FUNCTION : 'function';

CREATE : 'create';

SET : 'set';

ALTER : 'alter';

DROP : 'drop';

DEFINE : 'define';

CONTEXT_ENTITY : 'context entity';

IS_FROM : 'is from';

WHERE : 'where';

WHEN : 'when';

195

DATE : 'date';

LIFETIME : 'lifetime';

BETWEEN : 'between';

IS : 'is';

PULL : 'pull';

ENTITY : 'entity';

AS : 'as';

EVERY : 'every';

UNTIL : 'until';

LPAREN : '(';

COMMA : ',';

RPAREN : ')';

DOT : '.';

NOT : '~' | '!' | 'not';

AND : 'and' | '&&' ;

OR : 'or' | '||';

XOR : 'xor';

IN : 'in';

CONTAINS_ANY : 'containsAny';

CONTAINS_ALL : 'containsAll';

NULL : 'null';

EQ : '=';

LTH : '<';

GTH : '>' ;

 196

LET : '<=';

GET : '>=';

NOT_EQ : '!=';

PUSH : 'push';

INTO : 'into';

PREFIX : 'prefix';

HTTPPOST: 'http/post';

POST : 'post';

METHOD : 'method';

URL: 'url';

FCM : 'fcm';

TOPIC : 'topic';

TOKEN : 'token';

TYPE : 'type';

COLON : ':';

ASTERISK : '*';

UNIT_OF_TIME : 'h' |'s' |'ms' | 'd' | 'm' | 'ns';

OCCURRENCES : 'occurrences';

FSLASH: '/';

OP : '$op';

OUTPUT : 'output';

CALLBACK : 'callback';

TIME_ZONE : 'UT'
 | 'GMT'
 | 'EST'

197

 | 'EDT'
 | 'CST'
 | 'CDT'
 | 'MST'
 | 'MDT'
 | 'PST'
 | 'PDT'
 | (('+' | '-') NUMBER);

json
 : value
 ;

obj
 : '{' pair (',' pair)* '}'
 | '{' '}'
 ;

pair
 : STRING ':' value
 ;

array
 : '[' value (',' value)*? ']'
 | '[' ']'
 ;

value
 : STRING
 | NUMBER
 | obj
 | array
 | 'true'
 | 'false'
 | 'null'
 ;

STRING
 : '"' (ESC | ~ ["\\])* '"';

ID : ('a'..'z' | 'A'..'Z' | '_') ('a'..'z' | 'A'..'Z' |
'_' | '0'..'9')* ;

ATTRIBUTEID : '@'? ('a'..'z' | 'A'..'Z' | '_') ('a'..'z'
| 'A'..'Z' | '_' | '0'..'9')* ;

 198

fragment ESC
 : '\\' (["\\/bfnrt] | UNICODE)
 ;

 fragment UNICODE
 : 'u' HEX HEX HEX HEX
 ;
 fragment HEX
 : [0-9a-fA-F]
 ;

COMMENT : ('/*' .* '*/' | '//' ~('\r' | '\n')*) -> skip
;

WS: (' '|'\r'|'\t'|'\u000C'|'\n') -> skip ;

NUMBER
 : '-'? INT '.' [0-9] + EXP? | '-'? INT EXP | '-'? INT
 ;

fragment INT
 : '0' | [1-9] [0-9]*
 ;

 fragment EXP
 : [Ee] [+\-]? INT
 ;

