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Abstract 

Localisation failure is a mechanical phenomenon that has been observed in a wide variety of 

soils under dry, unsaturated and saturated conditions, which manifests as a distinct volume of 

displacement/strain field that embeds inside a soil bulk and signals the loss of material strength 

under certain boundary conditions. Although advancement has been made to the understanding 

of the localisation failure in soils from both theoretical and numerical perspectives, the current 

applications using a variety of numerical methods are not able to fully characterise the 

evolution of this phenomenon. The framework for the numerical modelling of geomechanical 

problems involving large deformation and localised failure is still not well established. 

Therefore, this work focuses on the development of an advanced computational framework 

that is able to well capture both the onset and post-bifurcation regime of the strain localisation 

and its related failure process for dry and unsaturated soils. In the meantime, this framework 

preserves a very good computational efficiency for allowing capture of any large scale 

engineering problems. In particular, this framework is based on a continuum particle method 

smoothed particle hydrodynamics (SPH) featured with Lagrangian meshfree and nonlocal 

characteristics, which will allow a natural capture of strain localisation process without special 

regularisation technique. In parallel with this, an rigorous constituive framework that captures 

the strain softening process based on the fully coupled unsaturated soil mechanics and the 

elastoplasticity theory has been proposed and implemented in the SPH. 

The primary outcome of this research consists of three main phases: first, a generic approach 

is proposed in SPH to modelling the confining boundary condition on flexible free surfaces. 

This method is demonstrated capable of continuously enforcing confinement while 

automatically tracking the curvature change of free surface boundaries under large deformation 

conditions; second, a rigorous elastoplastic model with strain softening Mohr-Coulomb yield 

surface is implemented into SPH, which is featured with a nonlocal plastic limiter that fully 

regularises the energy dissipation for modelling post-localisation problems. This framework is 

able to capture the material characteristic length effect, which predicts localised shear bands 

without dependency on the variation of numerical resolutions; third, a fully-coupled three-

phase (solid, liquid, air) numerical framework is implemented into SPH for allowing the 

capture of unsaturated soil behaviours. A Mohr-Coulomb model featured with suction 

dependent state parameters is also considered, which enables characterising geomechanical 

problems including water infiltration in the soil bulk, rainfall-induced slope failure etc. The 
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above proposed approaches have been validated with either theoretical solutions or 

experimental results, as well as applied to simulate practical engineering applications. 

Therefore, taking advantage of the above-proposed framework, SPH can now be applied to 

solve an extensive range of geotechnical engineering problems. 
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1.1 Problem background 

In the context of geomechanical engineering, strain localisation is generally described as the 

transition of mechanical states of material from pure resilient to non-resilient deformation 

which concentrates into certain areas within the material bulk (Desrues & Viggiani, 2004). The 

concentrated deformation area could merge and follow certain persistent patterns. Within the 

localised area, the micro-scale material characters such as grain distribution, moisture content 

and fibre evolution undergo highly dynamic kinematics. The elastic energy absorbed from the 

boundary condition is dissipated rapidly in a thermodynamics form within shear bands, 

sometimes manifesting as the fast evaporation and volume expansion of the capillary water 

content (Pinyol et al., 2012). Therefore, it is a highly unstable form of energy transformation, 

which may lead to a rapid loss of material integrity and the capacity for load-bearing. 

Since strain localisation marks the transition from stable to unstable material behaviours, it is 

normally a precursor of geo-hazard events including soil cracking, embankment failure, debris 

flow, landslide and etc. (Figure 1.1) (Gao & Zhao, 2013), which in many cases lead to 

significant financial losses or human casualties. For example, a recent spatiotemporal study of 

the global landslide databases shows that there happened 4,862 landslides events during the 

year of 2004 to 2016, leading to a staggering number of 55,997 fatalities (Froude & Petley, 
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2018). Australia is one of the least affected countries by landslide events, nevertheless still 

witnessed 114 occurrences and 138 casualties during the year of 1842 to 2011 (Leiba, 2013). 

Therefore the comprehension of the mechanism for strain localisation phenomena underpins a 

safe design for civil infrastructures such as retaining wall, soil embankment, earth dam etc. At 

the current stage, this is normally achieved by applying high safety factors in practice which in 

many cases result in designs with unnecessarily high cost-benefit ratios. Therefore, there is a 

significant need for obtaining an understanding of localised deformation from both theoretical 

and experimental point of view.  

The characterisation of the localisation phenomenon in geomaterials can be traced back to 

Coulomb’s study on the stability of retaining wall in the 18th century, where Coulomb 

emphasised the localisation nature of soil during retaining wall failures (Coulomb, 1773). Since 

then, numerous experimental tests have been conducted to reproduce strain localisation in 

geomaterials to acquire a better understanding of its mechanism. For instance, Handin and co-

workers conducted a series of axisymmetric triaxial tests on sedimentary rocks regarding the 

effect of confining stress, pore pressure and temperature of samples. A large range of confining 

pressures up to 300 atmospheres and temperature up to 300-degree Celsius were applied, which 

concluded that rock behaviours become ductile with increasing confinement and the peak 

strength reduces with increasing temperature. All test results showed an initially homogenous 

deformation pattern and then a bifurcation in the strain field around peak strength, followed by 

a localised shear band and loss of cohesion of the material (Handin et al, 1957; 1958; 1963). 

Other tests that focus on the analogous test apparatus demonstrated a similar pattern of material 

damage or loss of integrity due to the localised strain field which eventually lead to fractures 

or faults (Paterson 1958; Wawersik & Fairhurst, 1970; Brace 1972; Evans et al., 1990; Olsson 

1999; Lenoir et al., 2007; Das et al., 2013). Laboratory plane strain biaxial and axisymmetric 

triaxial tests conducted on ductile geomaterials including silt, clay, sand and gravels show 

localised shear bands with much thicker shear zones, while demonstrating a relatively small 

energy dissipation rate compared to rock and a more ductile behaviour (Vardoulakis 1980; 

Desrues et al., 1985; Bésuelle et al., 2000). 
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Figure 1.1: (a) localised shear band in triaxial test on fine sand (Desrues & Andò, 2015); (b) 

localised deformation on the cliff of the Great Ocean Road, Victoria (photo by the author); 

(c) La Conchita landslide in southern California 1995 (photo by R.L. Schuster, U.S. Geology 

Survey). 

Recently, with the advancement in computer techniques for fast processing of high definition 

photos, the complicated nature of microscale structures of geomaterials can be captured and 

analysed on grain-scale levels and a quantitative manner. The most prevailing techniques 

including computed tomography (CT), X-ray computed tomography (X-ray CT) and false 

relief stereophotogrammetry (FRS) have been widely applied to characterise strain localisation 

in soils (Desrues & Viggiani, 2004; Desrues et al., 2007; Higo et al., 2013). These techniques 

are featured as non-intrusive which captures soil internal structures without any physical 

destruction to the sample. In addition, four-dimensional monitoring of the physical and 

mechanical behaviour of soil samples can be constructed (Figure 1.2), which greatly enhanced 

the knowledge for the mechanism of strain localisation phenomenon at scales down to a few 

hundred nanometers (Cnudde & Boone, 2013). This opens a pathway to a potentially full 

comprehension of the triggering factors and evolution laws of strain localisation phenomena. 

However, with the current advancement of CT and FRS methods, the interpretation of the 

scanning results are still highly dependent on the operator of the tests. Therefore, significantly 

dependency of the results on different interpretations can be expected for even the same 
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experimental test (Cnudde & Boone, 2013). Apart from this, limited by the availability and 

scale of the scanning equipment as well as the computer processing capacity, these techniques 

are applied for small scale samples only. For an engineering scale problem, for instance, 

analysis of the stability of a slope, these approaches require resources that exceed the current 

technological advancement. 

 

Figure 1.2: (a) shear band development captured by synchrotron micro-computed 

tomography (SMT); (b) 3D interpretation of particle translation during shear band formation 

(Druckrey et al., 2017). 

On the other hand, theoretical and numerical investigations of strain localisation in 

geomaterials have been widely conducted, which are based on the classical theory of 

bifurcation. The majority of the work is focused on the elastoplastic rate-independent materials 

which feature a weak-discontinuity zone (strain localisation band). For this particular material, 

its behaviour is analysed under a continuously straining boundary condition, during which 

Hadamard first mathematically proved a loss of strong ellipticity of the governing equation 

under the quasi-static analysis (Hadamard, 1903). This is ever since defined as the key 

localisation criterion. Thomas, Hill and Mandel later extended Hadamard’s work and 

established a so-called Thomas-Hill-Mandel shear band model which defines the shear band as 

a thin layer of material bounded by two parallel discontinuity surfaces of the incremental strain 

field (Thomas, 1961; Hill, 1962; Mandel 1966). In this model, the process of strain localisation 

is described as bifurcation of the material bulk from a homogenous deformation to the incipient 

of a shear plane where the majority of the input energy from boundary conditions is dissipated 

(Sulem & Vardoulakis, 2014). Rice and Rudnicki later mathematically studied the condition 

for which a discontinuous strain plane is to appear in a homogenous material bulk and 
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interpreted the condition as the vanish of the so-called acoustic tensor (strain localisation tensor) 

(Rudnicki & Rice, 1975; Rice, 1976). However, the above theoretical framework is based on 

the analysis of a classical continuum. Therefore the fundamental assumption of a homogenous 

material field is violated, which can be mathematically interpreted as the well-known loss of 

positive-definite of the tangent stiffness tensor. Apart from this, there lacks a length scale 

parameter to characterise the size of the localisation zone, which results in a perfectly brittle 

material behaviour manifesting vanishing size of the localised shear zone. Countermeasures 

have been proposed to solve this issue by distinguishing the material inside and outside of the 

localisation zone, for instance, the strong discontinuity model (Simo et al., 1993; Simo & 

Oliver, 1994). This approach captures the discontinuity in the deformation field such as fracture, 

slip line shear band etc. by considering the material inside such highly localised deformation 

zone with a specific constitutive model that is able to maintain well-posedness of the governing 

equation during material softening behaviour (Oliver, 1996). Other countermeasures are 

mainly focused on enriching the current constitutive model by the incorporation of a length 

scale parameter. The representative approaches are: the Cosserat continuum approach 

(Cosserat & Cossera, 1909; De Borst, 1991), the smear crack methods (Oliver, 1989; Oliver te 

al., 1990), non-local constitutive equations (Pijaudier-Cabot & Bažant, 1987), Cosserat 

continuum (De Borst, 1991), gradient plasticity (De Borst et al., 1993), visco-regularised 

constitutive equations (viscoplasticity) (Needleman, 1988) and the double scale approach 

(Nguyen et al., 2014; Le et al., 2018; Wang et al., 2019). 

From a numerical analysis standpoint, the most prevailing method that features with robust 

computational stability and high efficiency is the finite element method. It has been 

incorporated with the above methods and demonstrated success in capturing the onset of strain 

localisation and regularisation of the zero-energy dissipation mode in classical continuum 

analysis of localised failures. The benchmark and representative work during the past four 

decades is highlighted as follows: Oliver and co-workers proposed the so-called strong 

discontinuities approach and applied in the finite element method to model strain-softening 

problems in brittle materials. The approach captures very well the fracture initiation and 

propagation pattern, in the meantime demonstrate the ability to trace multiple fractures in the 

numerical domain as compared with experimental data (Figure 1.3a). However, due to the mesh 

discretisation of the FEM domain, a strong discontinuous surface (ruptures, fragmentation) in 

rock samples cannot be captured (Figure 1.3b). 
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Figure 1.3: (a) slip line for soil slope modelled by the strong discontinuity theory (Liu, 2015); 

(b) FEM prediction of crack propagation in the four-point bending test (Oliver et al., 2002). 

The attempt on improving this issue has led to the adaptive meshing technique proposed in the 

1980s, which enriches and reconstruct the mesh discretisation in FEM domain where extreme 

deformation may lead to convergence issues (Babuvška & Rheinboldt, 1978). When localised 

deformation appears in the FEM domain, the discretisation error in the grid shape function 

starts to develop and soon hinders the successful capture of the shear band evolution. The 

adaptive meshing scheme then initiates to automatically enrich the finite element mesh 

according to the calculated error and construct a near-optimal mesh alignment while resolving 

the error until a prespecified accuracy is achieved (Kelly et al., 1983). This approach has pushed 

forward the FEM calculation of extreme shear deformation based on the conventional method, 

and predicted the fracture opening when combined with a mesh deleting algorithm. However, 

the algorithm to implement this method comes with high complexity and difficulty to interpret 

field variables, and the remeshing process renders a continuously refining mesh size which 

overburdens the computational resources during the numerical test (Zi & Belytschko, 2003). 

Although approaches such as the nodal enriched FEM (X-FEM) and elemental enriched FEM 

(E-FEM) have been proposed to bypass the remeshing process (Chessa et al., 2003; Oliver et 

al., 2006), the inherent limitation of mesh discretisation of the FEM approach still prevents it 

from a full characterisation of the large deformation field which can be very common in 

geomechanics applications.  



Chapter 1 Introduction 

7 

 

Another continuum approach: the material point method (MPM), a hybrid numerical tool that 

combines the mesh discretisation and a set of freely moving Lagrangian particles to represent 

the computational domain has gained much attention recently for modelling localised and large 

deformation problems (Bardenhagen et al., 2000; Sulsky & Schreyer, 2004; Nguyen, 2014; 

Yerro et al., 2015). Different from the FEM, the mesh grid in MPM is fixed in position and 

applied for interpreting the field variables only. The field kinematics such as velocity, stress, 

density etc. are carried by the Lagrangian particles which move freely across the background 

mesh, giving this method the potential to avoid mesh pathologies. However, when the 

computational domain undergoes very large deformation and the Lagrangian particles cross the 

boundaries of the background mesh grid, numerical instability arises. Accordingly, a 

generalised interpolation function is proposed for MPM that occupies an area larger than the 

size of a single cell, which reduces numerical noise for particles to cross cell borders. This is 

known as the generalised interpolation material point (GIMP) approach (Bardenhagen & Kober, 

2004). Recent applications with GIMP has shown its capability of capturing very large 

deformation field while demonstrating reasonable numerical stability and accuracy 

(Sadeghirad et al., 2011; Soga et al., 2015; Yerro et al., 2015; Kiriyama, 2013; Gao et al., 2017). 

Even though with the advancement of GIMP, this approach manifests significant 

computational cost, as it utilises both particle and mesh discretisations to describe the field 

dynamics. Apart from this, boundary conditions such as confining stress that involves largely 

deformed boundary surfaces or three-dimensional space cannot be enforced with a reasonable 

level of accuracy (Steffen et al., 2008). These disadvantages hinder the current GIMP approach 

to be applied in practical engineering applications with large scale domain and relatively 

complicated boundary conditions. 

On the other hand, particle-based approaches that do not resort to any mesh discretisation of 

the computational domain have gained much attention during the past decade in geomechanical 

applications. The representative approaches are the discrete element method (DEM) with 

discontinuum basis and the smoothed particle hydrodynamics (SPH) with continuum basis. 

The advantage of applying the discontinuum DEM approach is on multiple aspects: first, the 

kinematics of the computational domain is based on direct contact of DEM particles, therefore 

the microscale soil properties such as porosity, grain distribution, fibre evolution etc. are very 

well captured. This facilitates the understanding of the triggering and evolving mechanism 

during strain localisation; second, a relatively simple constitutive relation accounting for the 

inter-particle contact model is applied. This bypasses the application of phenological-based 
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constitutive models that have been long denounced for lack of physical significance; third, free-

moving kinematics is allowed in DEM domain without any mesh restraint, which enables this 

approach to well characterise problems involving extreme deformations during strain 

localisation or material fragmentation/rupture. This approach has been widely applied to model 

the shear band and density evolution during biaxial, triaxial and direct shear tests which 

obtained comparable results with the experimental data (Iwashita & Oda, 1998; Kozicki & 

Tejchman, 2009; Marketos & Bolton, 2009; Wang & Gutierrez, 2010; Fu & Dafalias, 2011; 

Wang & Yan, 2013; Cil & Alshibli, 2014). Apart from this, a hierarchical multiscale approach 

that combines the DEM characterisation of soil constitutive response with the classical 

continuum method FEM for predicting laboratory-scale tests has achieved success for well-

capturing the initiation of strain localisation (Guo & Zhao, 2014; Nguyen et al., 2014; Guo & 

Zhao, 2016). Recently, Bui and co-workers proposed an advanced constitutive model featured 

with double scale characterisation for plastic behaviours, which has been incorporated into 

DEM to capture the behaviour of the fatigue damage that occurred in brittle materials (Nguyen 

et al., 2017a; 2017b; Sounthararajah et al., 2017; Nguyen et al., 2019). Constitutive models that 

account for cohesive behaviour and unsaturated soil characters have also been applied in DEM, 

which successfully captures the fracture development in foamed concrete materials and soil 

curling process (Nguyen et al., 2017; 2019; Tran et al., 2019). Despite the above progress, the 

characterisation of micro-scale material properties would require up to tens of millions of DEM 

particles for even a laboratory-scale sample, which brings a significant computational 

overburden. Although a potential parallel computing technique can be implemented to boost 

the numerical efficiency, DEM application for engineering scale problems is not yet a readily 

available option. 

The continuum meshfree method SPH, in contrast with DEM, demonstrates a high 

computational efficiency while allows free particle movement in the computational domain. 

This empowers SPH the capability to capture strain localisation and material failures in an 

effortless manner. The application of SPH for geomechanics problems was pioneered by Bui 

and co-workers, who have proposed a robust SPH framework and conducted simulations of 

slope failure and granular flow that demonstrate the SPH capability for well-capturing extreme 

deformations (Bui et al., 2006; 2007; 2008a; Nguyen et al., 2017). This framework is then 

applied to capture soil-structure interactions to analyse the stability of reinforcement structures 

such as the gravitational retaining wall, bracing strut etc. (Bui et al., 2008b; Verghese et al., 

2013; Nguyen et al., 2013; Bui et al., 2015). The interaction between soil and fluid that is under 
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a fully saturated condition is also considered to predict the static pore water pressure and its 

effect on the stability of slope structures (embankment, dam etc.) (Bui et al., 2007; 2008c; Bui 

& Fukagawa, 2009; Bui & Nguyen, 2017). Recently, an advanced constitutive framework 

featured with a double scale description for material behaviour in bifurcation problem has been 

implemented into the current SPH framework to capture the material damage during tensile 

cracking in ductile, quasi-brittle and brittle materials (Wang et al., 2017a; 2017b; Tran et al., 

2017; Wang et al., 2019). For geomaterials that are subjected to compressive loading failures, 

a constitutive framework featured with viscoplastic Von Mises has also been applied to capture 

the strain localisation and progressive failure process (Zhao et al., 2017a; 2017b). Despite the 

above progress, there is still a significant need to advance the current SPH framework to 

allowing its application for strain localisation characterisations that involve complex boundary 

conditions, multiphase interaction while maintaining numerical objectivity. This includes an 

effective and accurate method to apply boundary conditions that require enforcing stress onto 

a highly deformable boundary surface; a robust elastoplastic constitutive model that is able to 

depict the loss of material integrity during strain-softening process and immune from numerical 

bias which mainly comes from different discretisation schemes of the computational domain; 

a numerical framework that couples multiphase (solid, liquid, air) to be able to capture the 

behaviour of unsaturated soil and its failure process under certain boundary conditions. This 

includes the popular geohazard problems such as a rainfall-induced slope failure and soil 

desiccation cracking due to water evaporation etc. In this work, we are dedicated to achieve 

these goals and propose an advanced computational framework based on the continuum SPH 

approach. 

1.2 Aims and scope of the research 

The broad aim of this research is to develop an advanced SPH computational framework that 

is able to capture the initiation and complete evolution cycle of the strain localisation 

phenomenon in soil until the residual material strength is achieved. Three target milestones are 

defined in order to achieve this broad aim. The first one is to propose a generic boundary 

condition for applying confining boundary conditions on flexible free surfaces. This approach 

would allow automatic enforcement of the confinement while maintaining a high level of 

accuracy and computational efficiency. In parallel with this, a robust constitutive model based 

on an elastoplastic Mohr-Coulomb yield criterion would be first incorporated into the current 

SPH method. This constitutive model is able to capture the plastic flow evolution showing both 
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perfectly plastic and strain softening behaviours. It is also featured with a nonlocal plastic 

operating formulation that preserves the resolution objectiveness, demonstrating consistent 

plastic energy dissipating rate regardless of the choice of numerical discretisation scheme. 

Lastly, a fully coupled three phase numerical framework in SPH is proposed to model the 

behaviour of unsaturated soils under the change of saturation condition and its influence on the 

soil mechanical properties. The proposed model would be validated with the Terzaghi’s 

consolidation theory and applied to capture the water infiltration in soil embankment and 

rainfall-induced slope failure problems. 

The above research milestones can be explicitly identified and listed as follows: 

Objective 1: Develop a generic approach to applying confining boundary condition on flexible 

free surfaces in the SPH domain for large deformation boundary value problems. This approach 

takes advantage of the SPH kernel truncation character to automatically enforce confining 

vectors in an accurate and effective manner. Implementation of this method would enable SPH 

to successfully characterise benchmark soil experiments including plane strain biaxial 

compression test and axisymmetric triaxial tests that are vital for determining basic soil 

parameter such as internal friction angle, apparent cohesion etc. 

Objective 2: Analyse the nonlocal feature of the SPH method and its effect in facilitating 

capturing the localised failure process. This includes incorporating a robust elastoplastic 

constitutive model featured with Mohr-Coulomb yield criterion into the SPH framework. This 

numerical framework characterises soil plastic behaviours featuring both perfectly plastic and 

strain softening responses corresponding to the loss of material integrity during large 

deformation problems. In parallel with this, a nonlocal operating function is implemented for 

achieving a fully regularised energy dissipation rate. This maintains the resolution objectivity 

in SPH domain and shows numerical results that are independent on the choice of discretisation 

schemes. 

Objective 3: Propose a fully coupled multiphase model in SPH to characterise unsaturated soil 

behaviours and simulate failure problems induced by the variation of moisture content in soil. 

This model considers the interaction among solid, liquid and air phases that dominate the 

capillary force state (or suction force) in soil bulk, which alters crucial soil properties including 

internal friction angle and apparent cohesion as water content changes. This proposed 
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numerical framework is validated against Terzaghi’s consolidation theory and then applied to 

capture the water infiltration in soil embankment and the rainfall-induced slope failures. 

1.3 Outline of the thesis 

This thesis has four main sections: the first section contains background information about the 

motivation of this research including Chapter 1 introduction and Chapter 2 literature review; 

The second section focuses on the methodology that is applied in this research. This includes 

a comprehensive layout of the current SPH framework and all relevant formulations (Chapter 

3). In addition, a detailed explanation on the constitutive models that have been implemented 

and corresponding formulations are expanded; The third section contains all research 

contributions and numerical results, for instance, the generic boundary condition for applying 

confining stress is in Chapter 4, the local and nonlocal analysis of the SPH method is in Chapter 

5 and the fully coupled multiphase SPH framework is in Chapter 6; The last section (Chapter 

7) concludes this research and presents outlooks for future work regarding the topic. 

A brief explanation for each chapter is outlined as follows: 

In Chapter 1, a summary of the background and current state of the art is presented regarding 

the analysis of strain localisation in geomaterials. The approaches that have been applied to 

investigate this problem are presented with their key limitations discussed. The discussion 

provides the motivation for the current research. Individual milestones are divided for 

achieving the overall research aim, and the scope of this work is specified at last. 

In Chapter 2, an in-depth review is presented for studies on the mechanisms of strain 

localisation phenomenon in geomaterials. This covers the methodologies of experimental tests, 

theoretical interpretations and numerical simulations. The current research progress regarding 

each methodology is expanded with their bottleneck problems explained. Emphasis has been 

placed on the numerical characterisation of the localisation process, particularly the problems 

that prevent existing approaches from characterising the full evolution of strain localisation. 

The review establishes that, the SPH method, among all current available numerical methods, 

has been demonstrated as a promising approach for achieving the proposed aims of this 

research work. 

Chapter 3 presents a detailed explanation of the current SPH framework that has been applied 

in this work with all relevant formulations listed. The basis of the SPH method is first shown 
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with its approximation for the governing equations for solid mechanism. A leap-frog time 

integration scheme is presented on a step-by-step basis. Then stabilisation techniques which 

are necessary to remove spurious oscillations in the SPH computational domain are 

demonstrated. Next, the conventional ways to apply virtual and ghost particle to enforce free-

slip, non-slip and force vectors boundary conditions are introduced. Then a brief discussion is 

posted for other variants of the classical version of SPH method and relevant applications. In 

parallel with this, the constitutive models that have been implemented to SPH framework in 

this research are presented in detail. This includes an elastic-viscoplastic model featured with 

Von Mises strain softening yield criterion; an elastoplastic model featured with both perfectly 

plastic and strain softening Mohr-Coulomb yield criteria. A generic constitutive framework is 

first presented to allow the implementation of various yield conditions together with the 

treatment for the discontinuous surface gradient in the Mohr-Coulomb model. Benchmark 

validations, including element compression and simple shear tests, are then illustrated with 

comparisons between SPH results and theoretical solutions to demonstrate the robustness of 

the proposed SPH framework. 

In Chapter 4, a generic approach to applying confining boundary conditions to flexible 

boundaries in SPH is proposed and expanded in detail. This approach takes advantage of the 

kernel truncation property that occurs near free surface boundaries in SPH domain to 

automatically account for the confinement on free surfaces. This approach outperforms the 

conventional ways to apply confining stress in terms of its accuracy, stability, efficiency and 

the ability to well-handle large deformation of the free surface. A benchmark test is carried out 

on a circular specimen which demonstrated the superior performance of this approach. It is 

then applied to capture plane strain biaxial and axisymmetric triaxial tests. Comparison among 

results from experiments, SPH, FEM and GIMP shows very good agreement. 

In Chapter 5, the proposed numerical framework is applied to investigate strain localisation 

problems in geomaterials with emphasis made on the inherent nonlocal feature of the SPH 

method. This feature allows the current SPH to well capture the strain localisation process 

without additional regularisation techniques, despite showing resolution dependency issues 

analogous to that observed in FEM. The kernel approximation function is first applied to 

regularise such dependency issue, which shows a good convergence of the plastic energy 

dissipation rate with a fixed kernel domain. However, significant compromises are made 

regarding the numerical stability. Therefore, an additional nonlocal operator is incorporated 
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into the current numerical framework, which demonstrates the ability to fully regularise energy 

dissipation rate with very good stability. This framework is then applied to investigate the 

initiation and evolution of strain localisation in heterogeneous soil samples. The theoretical 

conditions to interpret the incipient point of the localisation are applied namely the acoustic 

tensor condition and the second order work. The obtained results show exact agreement 

between the SPH captured process and the theoretical prediction. 

In Chapter 6, a fully coupled multiphase framework is proposed to characterise the behaviour 

of unsaturated soils with the SPH method. Three phases including solid, liquid and air are 

considered as partitions of the mixture carried by each SPH particle. A generalisation of linear 

momentum and mass conservation conditions together with the effective stress concept forms 

the basis of this framework. The hydraulic constitutive model is selected on a case-to-case basis 

including the well-known Van Genuchten soil water characteristic relation. To allow the 

capillary force to alter soil mechanical behaviours, an elastoplastic model featured with suction 

dependent state parameters is applied to the SPH framework. The proposed approach is first 

validated with Terzaghi’s consolidation theory and the water infiltration test in an embankment, 

then applied to simulate rainfall-induced slope failure problems. 

Lastly, in Chapter 7, the conclusion of the current work is summarised. The main research 

contributions are highlighted and recommendations for future research into the numerical 

simulation of large deformation localisation failures in geomaterials are proposed.
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2.1 Introduction 

In this chapter, a review has been conducted regarding the research efforts on understanding 

the mechanism of the localised failure phenomenon in geomaterials as well as applications of 

existing theories and methods to capture localised kinematics during landslide events. The 

existing approaches on analysing strain localisation from a geomechanics standpoint are 

summarised from the theoretical; experimental and numerical aspects. At the end of this 

chapter, the knowledge gaps are identified together with the corresponding proposals to address 

them in this research work. 

The localisation nature of failures in geomaterials has been long identified following 

Coulomb’s work for analysing the stability of retaining walls (Coulomb, 1773). However, this 

particular phenomenon starts to draw more attention since the 20th century due to the 

advancement in modern building designs and construction technologies that more often involve 

heavier structures and deep excavation foundations. This largely increases the chance for 

weight-bearing materials such as soil and rock to be subjected to loads beyond their elastic 

limit, and thus enter the yield stage, in which the localised shear bands in the material bulk 

occur. In order to better understand the localisation phenomenon, geomechanics theories that 

are based on a continuum assumption of the soil bulk are proposed during the past century 

(Hadamard, 1903; Thomas, 1961; Hill, 1962; Mandel 1966; Rudnicki & Rice, 1975; Rice, 
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1976). In parallel with this, experiments are widely conducted on ductile, quasi-brittle and 

brittle geomaterials to capture the localised failure mode (Handin et al, 1957; Wawersik & 

Fairhurst, 1970; Desrues et al., 1985; Evans et al., 1990; Olsson 1999; Lenoir et al., 2007; Das 

et al., 2013). With the recent advancement of computer-aid tomography (CT) and X-ray, the 

microscale initiation and evolution of shear bands in ductile geomaterials are well captured in 

the laboratory (Desrues & Viggiani, 2004; Desrues et al., 2007; Higo et al., 2013). However, 

experimental characterisations of the localisation phenomenon are still limited in relatively 

small scale tests, which cannot provide direct design parameters or evaluation of safety factors 

for real engineering projects. In addition, there is a lack of prediction nature in experimental 

tests, which reproduces rather than evaluates and predicts field behaviours of soil samples. 

Therefore, numerical tools have been widely applied to compensate for the disadvantages of 

experimental studies in both research and design aspects regarding the localised failure 

problems in geomaterials. In this chapter, the emphasis has been placed on the numerical 

simulations of localised failures in geomaterials in order to demonstrate its key advantages and 

existing challenges. To better expand this topic, the key focuses of this chapter are listed as 

follows: 

 Section 2.2: theoretical interpretation of localised failures 

 Section 2.3: experimental analysis of localised failure in geomaterials 

 Section 2.4: mesh-based numerical approaches to characterise localised failures in 

geomaterials 

 Section 2.5: meshfree numerical approaches to characterise localised failures in 

geomaterials 

 Section 2.6: conclusion 

 

2.2 Theoretical interpretation of localised failures 

The localised failure mode has been understood, from a theoretical standpoint, as a bifurcation 

process. This corresponds to the materials kinematics such as strain field, stress field, density 

etc. from an initially homogeneous state to a bifurcation point from which two distinct areas 

appear simultaneously inside the material bulk. One area demonstrates intensive and 

continuously evolving shear deformation, which often manifests as localised shear bands. The 

rest of the area demonstrates reversible deformation with the stress state largely lying below 
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the material elastic limit. The mathematical description of the bifurcation process in continuum 

mechanics was pioneered by Hadamard who demonstrated the loss of the so-called ellipticity 

of the shape of the partial differential form of the governing equations under quasi-static 

analysis (Hadamard, 1903). This is later regarded as the key criterion to signal the appearance 

of the localised shear band. In the mid-twentieth century, based on the definition of velocity 

waves by Hadamard, Thomas, Hill and Mandel proposed the concept of a discontinuity plane 

in strain rate field and its corresponding stress rate field (not stress itself) to facilitate the 

characterisation of the bifurcation phenomenon, which is known as the Thomas-Hill-Mandel 

shear band model. The proposed concept identifies a jump in strain and stress rate field which 

is bounded by an isolated geometric surface as a form of bifurcation (Thomas, 1961; Hill, 1962; 

Mandel 1966). This concept is corresponding to a weak form of discontinuity, as it only 

assumes a discontinuous area in terms of strain and stress rate rather than the displacement 

itself (strong discontinuity). Therefore, it is more relevant in capturing the localisation and 

material softening process in ductile materials. In order to obtain a more generic description of 

the bifurcation process, Rudnicki and Rice proposed the so-called acoustic tensor concept in 

the mid-1970s (Rudnicki & Rice, 1975; Rice, 1976). Similar to the previous theoretical 

framework, discontinuity in the strain field is conceptualised as a plane that crosses the 

representative volume element (RVE) in the continuum domain (Figure 2.1). Material stiffness 

tensors, 𝐃+and 𝐃−on both sides of the discontinuity plane, are asuumed identical, which lead 

to a simplification from the traction contiuity condition shown as follows. 

(𝐧 ∙ 𝐃+ ∙ 𝐧) ∙ 𝐦 = 0                                                                                                                           (2.1) 

In above, 𝐧 is the normal vector of the plane and 𝐦 is the polarisation vector that controls 

together with 𝐧 the failure mode across the discontinuity plane. The angle between 𝐧 and 𝐦 

ranges from 0 to 90 degrees representing the transition of failure modes from pure tension to 

pure shear. The acoustic tensor in Eq 2.2 (or more often referred to as the localisation tensor) 

is defined from the above equation, with the vanishing of its determinant corresponds to the 

incipient point of bifurcation. 

{
𝐐 = 𝐧 ∙ 𝐃+ ∙ 𝐧

det(𝐐) = 0
                                                                                                                                   (2.2) 
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Figure 2.1: (a) the discontinuity plane in a continuum representative volume element; (b) 

discontinuous strain plane and its norms to control the failure mode (concept based on 

Rudnicki & Rice, 1975). 

 

Although the above theoretical framework covers the initiation condition for the bifurcation 

process, it violates the basic assumption in continuum mechanics about a homogeneous RVE. 

This creates trouble at the incipient of the bifurcation, which leads to the loss of positive 

definiteness of the tangent stiffness tensor in the analysis domain. The inception of the 

discontinuity surface also defines itself with a zero thickness, which brings difficulties for the 

analysis of any further development of the bifurcation process that is supposed to lead to the 

localisation of the strain field with finite size. In order to overcome this issue, the current 

discontinuous plane in strain field is further advanced to the displacement field, implying a 

strong discontinuity corresponding to the complete rupture state of a continuum material 

(Oliver, 1989; Oliver te al., 1990). The constitutive model that is applied to characterise the 

material behaviour inside of such strong discontinuity plane differs from the one for describing 

the other part of the RVE. This approach avoids the interpretation of the discontinuity plane in 

a continuum sense, therefore, maintains a well-posed partial differential form of governing 

equations during a post-bifurcation analysis. 

Despite this progress, both weak and strong form description of the discontinuity in continuum 

RVE above defines zero thickness of the discontinuous plane. As a consequence, the predicted 

post-bifurcation of the material manifests a perfectly brittle behaviour, as the plastic energy 
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dissipates in an infinite rate in such scenario. This is originated from the fact that there lacks a 

characteristic length scale to govern the size of the discontinuous plane in above theories. 

Numerous countermeasures have been proposed to resolve this, which explicitly or implicitly 

incorporates a length scale parameter to enrich the kinematics of the continuum. The 

representative approaches are the smear crack method proposed in the 1990s (Simo et al., 1993; 

Simo & Oliver, 1994). This approach is proposed based on the framework of the strong 

discontinuous method described above. The key feature in the smear crack method is that the 

constitutive model for describing the discontinuity plane is described in a distributional sense 

(Simo et al., 1993). This involves an introduction of an interpolation function that features an 

influence radius to cover a ranged vicinity, which can be regarded as a length parameter to 

regularise the energy dissipation rate for plastic softening process.  

A similar approach that resorts to the application a nonlocal interpolation function is the 

nonlocal damage theory proposed by Pijaudier-Cabot and Bažant (1987). The nonlocal damage 

theory applies a weighted function to interpret the damage variable from an area rather than an 

infinitesimal RVE. However, different from the strong discontinuous approach, the nonlocal 

damage theory can be applied to a weak discontinuous plane to characterise a localisation in 

strain field. The above two methods are introducing the characteristic length parameter in an 

explicit way through the implementation of a distributive function to the constitutive model. 

There are also approaches including the Cosserat continuum theory (Cosserat & Cossera, 1909; 

De Borst, 1991), the gradient plasticity theory (De Borst et al., 1993) and viscoplasticity theory 

(Needleman, 1988) that introduces the length parameter in various implicit manners.  

Recently, a new double scale approach that is developed based on the strong discontinuity 

theory framework has been applied for capturing fractures in ductile, quasi-brittle and brittle 

geomaterials (Nguyen et al., 2014; Tran et al., 2017; Le et al., 2018; Wang et al., 2019). This 

approach is featured with a scale-dependent constitutive description of the strong discontinuity 

surface that is able to capture the size effect in most rock and concrete materials (Figure 2.2a). 

Apart from this, the approach is able to regularise the plastic energy dissipation to maintain a 

converged softening stress path immune from the conventional mesh/resolution bias issues 

(Figure 2.2b) (Le et al., 2018; Wang et al., 2019). 
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Figure 2.2: (a) three-point bending test with different sample size; (b) three-point bending test 

with different discretised resolution (Wang et al., 2019).  

2.3 Experimental analysis of localised failure in geomaterials 

In parallel with the theoretical interpretation of the bifurcation and localisation in plastic 

behaviour of materials, efforts have also been made to capture this process in the laboratory. 

The experimental tests have been conducted on a wide range of geomaterials including clay, 

silt, sand, asphalt mixtures, soft rock, hard rock and concrete (Niandou et al., 1997; Bésuelle 

et al., 2000; Masad et al., 2001; Kulasingam et al., 2004; Desrues & Viggiani, 2004; Amann et 

al., 2011). The main focus is to interpret the initiation and evolution of the localisation and 

post-localisation process in a macroscale sense. This includes capturing the stress and strain 

relationship within the sample as the strain field develops from elastic deformation to localised 

deformation and eventually a loss of the material integrity. From the experimental obtained 

stress and strain relationships, the constitutive models that describe the failure mode and 

evolution laws of the localisation phenomenon can be constructed and calibrated. Apart from 

this, a general description of the shear band configuration is also one of the key interests, which 

involves the measurement and track of the evolution of the shear band thickness, inclination 
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angle and quantity of shear bands. Both the material properties and the applied boundary 

conditions can significantly affect the measured results. 

In order to investigate this, Handin and co-workers conducted a series of parametric study on 

the boundary conditions that could affect the initiation and development of the localised failure 

mode. An axisymmetric triaxial apparatus (Figure 2.3) was applied to a range of sedimentary 

rock samples. The effect of confining stress (up to 300 atmospheres), temperature (up to 300 

degree Celsius) and pore pressure (up to 2 kilobars) during the experiments was considered. 

The confining stress showed an influence on the peak stress with higher confinement leading 

to an increase in the peak stress that different samples can reach (Figure 2.4). In addition, the 

ductility is also affected, materials demonstrating brittle behaviour under low confinement and 

ductile behaviour under increased confinement. 

 

Figure 2.3: The axisymmetric triaxial experimental apparatus (Handin et al, 1957). 
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Figure 2.4: Effect of the confining stress on strength, ductility and stress-strain relations of 

the testing materials (left: Blaine Anhydrite; right: “Blair” Dolomite) (Handin et al, 1957). 

The effect of the environment temperature was investigated under both lower and higher 

confining stress. In general, different groups of sedimentary rocks showed a reduction in their 

peak strength with increasing temperature. The ductility of the material shows a reducing trend 

at a higher temperature. The effect of the temperature and confining stress was compared with 

the field observation of sedimentary rocks in natural geology, which confirmed the behaviour 

that was observed in the laboratory with physical reality. Apart from this, an artificially 

increased pore water pressure was applied to the samples demonstrated its effect on reducing 

the peak strength of the samples. Photograph aided analysis was also applied to capture the 

deformation field in the sample which showed clearly a localised trend as the materials reach 

and pass their peak strength. However, there lacks a systematic interpretation of the initiation 

and development process of the localisation band in this work. Since there is not enough 

information exposed at the microscale of the material kinematics, correct track and 

characterisation of the shear band development are not feasible when only macroscale analysis 

is conducted. 
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Although initially applied since the late 1960s, a recent advancement during the past two 

decades of the computer-aided tomography (CT) and X-ray computed tomography (X-ray CT) 

techniques open a new pathway for researchers to investigate the microscale evolution of 

geomaterial structures and kinematics during a localised failure process. These methods are 

featured as non-destructive probing approaches that are able to track the microscale structures 

evolution regarding the inter-grain position, fibre reorientation/elongation etc. (Desrues & 

Viggiani, 2004; Desrues et al., 2007; Higo et al., 2013). The corresponding data can then be 

applied for computer simulations and calibrations to obtain a better understanding of the 

mechanism of the localisation process. The facility to capture a three dimensional CT scan of 

the sample generally involves three main components: the radiation generator, the sample and 

the charged coupled device (CCD) to capture the image (Figure 2.5). 

 

Figure 2.5: A general setup for computer tomography and X-ray scan for geomaterial samples 

(Higo et al., 2013). 

From the illustration, it is clear that layered images are first obtained from the crossectional 

area of the sample, then combined and form the three-dimensional characterisation of the 

sample. With the current high definition technique, detailed stereoscopic description of a 

material grain at a hundred-nanometer level can be well presented (Figure 2.6). However, 

computer tomography or X-ray scan only provide stationary images of the test samples, in 

order to capture the kinematics during the localisation of deformation, techniques such as the 

false relief stereophotogrammetry (FRS), digital image correlation (DIC) and particle 

translation gradient are required (Desrues & Viggiani, 2004; Higo et al., 2013; Druckrey et al., 

2017). In these techniques, the photos that are obtained from a fixed perspective at various time 

points are incorporated to characterise field kinematics such as the evolution of strain field. 

Therefore, the initiation and evolution of localisation bands can be clearly presented in terms 
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of the shear strain development in both dry (Figure 2.6) and unsaturated (Figure 2.7) soil 

samples. In parallel with this, the discrete nature of the microstructure of geomaterials can be 

utilised and reproduced in numerical methods that are based on discontinuum mechanics such 

as the discrete element method (DEM). This feature allows the computer simulations to be 

applied together with CT and X-ray techniques to achieve a better understanding of microscale 

material kinematics as well as easily extending the current application other tests using the 

simulation. 

 

Figure 2.6: (a) the particle translation gradient of the development of shear strain in dry sand; 

(b) three-dimensional characterisation of the synchrotron micro-computed tomography 

(SMT) of particle kinematics (Druckrey et al., 2017). 

 

Figure 2.7: Measuring the water content and air content on a crossectional area of CT scan of 

unsaturated Toyoura sand (Higo et al., 2013). 

Despite the above advantages that the current state of the art in CT and X-ray CT techniques 

bring to the geomechanics research, there also exists significant limitations which must be 
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addressed before more progress can be achieved. The most relevant one is that no standard is 

available to interpret the image information from the above techniques. Therefore, it largely 

depends on the judgement and experience of the operator, which could potentially downgrade 

the objectivity and rigorousness of these approaches (Cnudde & Boone, 2013). Another 

difficulty comes from the availability of the current computational power and scale of scanning 

facility. Only laboratory sized samples can be applied for the current CT and X-ray approaches. 

For field applications involving earth or slope structures, there is no practical approach to apply 

these techniques. Apart from the above two disadvantages, a certain amount of computational 

error and imaging artefacts still exist and influence the accuracy of the obtained results. 

2.4 Mesh-based numerical approaches to characterise localised failures in geomaterials 

The numerical simulation of localised strain field and the corresponding failure process can be 

categorised based on specific methods. There are mainly two ways to characterise the 

computational domain, one is using a mesh discretisation and Gauss points another one is using 

Lagrangian particles to interpret field kinematics and properties. In this section, the most 

commonly applied mesh-based approaches are summarised, highlighting both their advantages 

and limitations. 

2.4.1 The finite element method (FEM) 

Among all relevant approaches that resort to mesh discretisation of the computational domain, 

the finite element method (FEM) is the most widely applied, which features high numerical 

stability and accuracy. It is also the most developed approach with many derivatives proposed 

in the past four decades to facilitate solving bifurcation and localisation problems. When first 

applied to quasi-static localisation problems under rate-independent assumptions in the 1960s, 

FEM demonstrated difficulties in multiple aspects. Among these challenges, three are in 

particular interests of researchers: first, when the FEM domain enters the bifurcation point, the 

boundary value problems become ill-posed. The tangent stiffness tensor that balances the 

relationship between deformation and the corresponding force field loses its positive 

definiteness. Second, the solution of the strain field and load-displacement relation when 

passing the bifurcation point exhibits a pathological dependence on the size of the mesh 

discretisation. The size of the localised strain area is vanishing as the mesh size refines, which 

renders in a mechanical response from a ductile to perfectly brittle behaviour. This is well-

known as the mesh dependency pathology in the classical FEM approach. Apart from this, the 
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nature of mesh discretisation poses certain limitations to the maximum deformation each mesh 

could achieve. This means that in case of predicting the strain localisation and failure process, 

FEM is likely to end up with excessively distorted mesh, and therefore terminates the analysis 

process. This significantly pulls back FEM application on geomechanical applications, since 

most relevant problems in this field involve extreme deformations. 

The first two issues discussed above, in fact, originates from the assumption in the classical 

continuum mechanics, which requires the incorporation of a length scale parameter into the 

constitutive framework. This length parameter or a conceptually equivalent component should 

be applied to govern the plastic energy dissipation, which liberates the energy dissipation 

process from been underpinned by the mesh size. As discussed in section 2.2, approaches that 

have been proposed for this issue can be represented by: the smear crack model (Bažant, & Lin, 

1988; Simo et al., 1993; Simo & Oliver, 1994), the nonlocal damage model (Pijaudier-Cabot 

& Bažant, 1987; Bažant & Jirásek, 2002; Tejchman, 2003; Grassl & Jirásek, 2006; Galavi & 

Schwriger, 2010; Nguyen, 2011; Nguyen et al., 2015; Huang et al., 2018; Mánica et al., 2018), 

the Cosserat continuum method (De Borst, 1991; Khoei & Karimi, 2008; Chang et al., 2014; 

Tang et al., 2017; Rattez et al., 2018), the higher-order gradient plasticity model (De Borst et 

al., 1993; Yang & Misra, 2012; Pardoen et al., 2015), the viscoplastic model (Needleman, 1988; 

Oka et al., 2002; 2011; 2019) and the recently proposed double scale model (Nguyen et al., 

2014; Tran et al., 2017; Le et al., 2018; Wang et al., 2019). Apart from the above approaches, 

a hierarchical multiscale framework that bypasses the continuum constitutive model is also 

applied to solve this issue (Guo & Zhao, 2014; 2016; Nguyen et al., 2014; Zhao, 2017). Despite 

that the methods mentioned above have been reported with certain progress in the past decade 

regarding capturing the localised failure process, three of them namely the nonlocal approach, 

the double scale approach and the hierarchical multiscale model are in particular interest due 

to the significance of their progress. 

The nonlocal approach 

The nonlocal approach that had been applied to characterise the plastic softening during the 

bifurcation process was pioneered by Bažant and co-workers in the 1980s (Pijaudier-Cabot & 

Bažant, 1987). The core idea of this approach is to implement a distributive function to enrich 

the kinematics calculation of the constitutive relation. In the early nonlocal damage theory, the 

distributive function was applied to the variables that govern softening stress path, in order to 

regularise the conventional calculation of these variables at single Guass points to a weighted 
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average manner with their surrounding counterparts. The original idea of the nonlocal damage 

theory has been extended to other methods, for instance, the smeared crack model (Bažant, & 

Lin, 1988; Simo et al., 1993). Later, the Vermeer and Brinkgreve discovered that the 

conventional distributive function in the nonlocal damage theory struggles to achieve a 

converged energy dissipation path. Therefore, a derivative of the original version was proposed 

in such a way that it further applies a linear distributive relation between the local and nonlocal 

counterparts of a specific variable instead of only using the nonlocal calculation (Vermeer & 

Brinkgreve, 1994). This approach was later recognised by researchers including Bažant himself 

as the over-nonlocal method (Di Luzio & Bažant, 2005). Since then, the over-nonlocal model 

has been applied and demonstrates a well-converged plastic energy regularisation in capturing 

bear capacity test (Huang et al. 2018), biaxial tests (Summersgill et al. 2017) and experimental 

results (Mánica et al. 2018) as shown in figure 2.8 below. 

 

Figure 2.8: (a) the contour plot of shear strain predicted by over-nonlocal model; (b) a 

converged plastic energy dissipation path from the biaxial test using over-nonlocal model 

(Mánica et al. 2018). 

The double scale approach 

Another method that is based on the strong discontinuity theory to characterise the localisation 

process namely the double scale model is highlighted here. Originally proposed by Nguyen 

and coworkers (Nguyen et al., 2012; 2014), this approach features several key advantages: first, 

it characterises the localised deformation in continuum mechanics as a bifurcation process 

which aligns with the classical theoretical framework proposed by Rice. It allows this approach 

to rigorously define the configuration and location of the incipient of shear bands (Figure 2.9). 

In the meantime, the various localisation mode involving both tensile and mixed failure 

patterns are well captured (Figure 2.10). Second, the double scale model is featured with a 
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length parameter that is able to capture the scale effect which is widely observed in experiments 

with different size of the sample demonstrating different mechanical responses. In parallel with 

this, the length parameter also regularises the energy dissipation process, which overcomes the 

mesh/resolution bias issue in the classical continuum. Furthermore, this method is able to 

capture the branching of the strong discontinuity plane, which can be challenging for 

conventional approaches. This allows the double scale model to characterise relatively 

complicated failure patterns. 

 

Figure 2.9: The double scale description of the bifurcation and localisation in a continuum 

(Nguyen et al., 2014). 

 

Figure 2.10: The double scale capture of a mixed-mode failure pattern compared with 

experimental results (Nguyen et al., 2014). 

The hierarchical multiscale approach 

The above-highlighted approaches describe the bifurcation process at a macro scale level, 

which may not provide enough information regarding the kinematics at the grain-scale. The 

recent evidence shows that the heterogeneity at the microscale level of sand governs the 

initiation and the subsequent evolution of the localisation area (Darve et al., 2007; Andò et al., 
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2012). Therefore, it is essential for the numerical approach to possess such characteristics. 

Although micromechanical based constitutive models have been applied and demonstrated 

capture well the localisation in deformation (Nemat-Nasser, 2000; Luding, 2004; Chang & 

Hicher, 2005; Yin et al., 2009), they are generally featured with complicated algorithms to 

predefine the constitutive relations which are also on a case-by-case basis (Qian et al., 2013). 

In this part, a hierarchical multiscale framework that combines a continuum description of the 

modelling kinematics field with a discontinuum description of the constitutive relation that is 

based on a microscale prediction from a representative volume element is introduced. The key 

feature of this approach is that instead of resorting to a predefined micromechanical constitutive 

model, it utilises the strain information from macroscale continuum to govern the deformation 

of the microscale RVE which yields a corresponding stress condition. This stress condition is 

then plugged back to the macroscale continuum to continue the analysis. Therefore it is able to 

capture the microscale mechanics of the materials while bypassing the complication in the 

traditional micromechanics algorithms. Figure 2.11 below schematically illustrates the 

framework of this approach. 

 

Figure 2.11: The framework for the hierarchical multiscale FEM-DEM approach (Guo & 

Zhao, 2014). 

Since 2014 this approach has been widely applied to capturing the localisation of deformation 

in granular materials in biaxial tests (Guo & Zhao, 2014; 2016a; Nguyen et al., 2014), 

axisymmetric triaxial tests (Guo & Zhao 2016b). The material fabric effect and anisotropy are 

also considered through application non-spherical particles with various level of grades (Zhao 

& Guo, 2015). Apart from this, a coupled hydraulic effect is also applied to account for the 

behaviour of saturated soils (Guo & Zhao, 2016c). These FEM-based applications characterise 
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well the initiation of the localised failure mode as demonstrated in Figure 2.12, which is later 

facilitated to a framework containing both the hybrid mesh-particle method MPM and DEM to 

capture large deformation problems involving granular flow and bear capacity etc (Liang & 

Zhao, 2019). Despite the above advantages, the hierarchical multiscale framework requires 

much more computational power and time. This is mainly due to two reasons: first, in order 

for the microscale RVE to represent a particular type of granular material, it is recommended 

that each RVE contains a minimum of 400 particles. Since each macroscale computational 

point corresponds to one RVE, this increases the computational requirement by several orders. 

Second, for correctly capturing the stress path history, the deformation of each RVE and the 

contained particles are saved during each test. This adds more pressure to the computational 

resources as it occupies a certain portion of the CPU memory during the entire process of a test. 

To overcome this issue, a paralleled computational framework is recently proposed, which 

utilises multiple CPU cores to conduct the test simultaneously. This has been demonstrated to 

potentially boost the computational efficiency of the multiscale framework significantly as 

illustrated in Figure 2.13 (Argilaga et al., 2018). 

 

Figure 2.12: The localisation process during small deformation range captured by the 

hierarchical multiscale FEM-DEM approach (Guo & Zhao, 2014). 
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Figure 2.13: A comparison of the efficiency between the sequential and parallel access of the 

CPU in the hierarchical multiscale approach (Argilaga et al., 2018). 

Fracture and distortion treatments in FEM 

It has been demonstrated above that the mesh-based numerical approaches are able to well 

capture the initiation of the bifurcation and subsequently the localised strain field in a small 

deformation boundary problem. However, as mentioned above at the beginning of section 2.4.1, 

the third difficulty for the mesh-based approaches to capture large deformation problems is 

underlying in the potential excessive mesh distortion. This is by far the biggest challenge that 

still prevents the mesh-based approaches from advancing further in capturing large deformation 

geomechanical problems. Despite this, there are several countermeasures for improving this 

issue. In here, we will brief on the most widely applied three approaches namely the adaptive 

meshing, the extended finite element method (XFEM) and coupled FEM-DEM. The adaptive 

meshing technique updates the mesh discretisation in the FEM domain when the original mesh 

scheme no longer predicts a converging solution. In such case, the adaptive meshing technique 

reconstructs the discretisation scheme in order to find a certain mesh alignment that obtains a 

converged solution in the FEM domain (Kelly et al., 1983; Pastor et al., 1991). Although this 

approach is able to push further and FEM solution regarding a distortion deformation field, it 

is not solving the root of inability for mesh discretisation to predict large deformation or rupture 

process. In addition, it comes with extra computational cost and complication in the 

implementing algorithm. Therefore, it is not a favourable approach to be applied in the FEM 

solution of geomechanical problems. The extended finite element method, on the other hand, 

bypasses the limitation of the mesh discretisation and apply a unit of partition theory in the 

mesh domain. This allows an open surface to be formed inside FEM meshes while stiff satisfy 
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the continuum assumption in the computational domain (Borja, 2008; Tejchman & Bobiński, 

2012). It has been demonstrated with the capability of capturing the fracture pattern in ductile 

and quasi-brittle materials, and yield comparable results with experimental data for a short 

displacement range after the peak material strength (Sanborn & Prévost, 2011; Liu, 2015). 

However, it is not able to well capture the shear band configuration, as only a fracture plane is 

allowed to represent the localised failure zone. Furthermore, it allows a small deformation to 

be advanced after the peak material strength, therefore the post-localisation process can not be 

captured by this approach. On the other hand, the coupled FEM-DEM approach addresses the 

difficulties faced by the above two methods by coupling the mesh and particle discretisation of 

the computational domain to allow the mesh discretised area to tackle uniformly deformed area 

while the particle discretised area for localised or fracture area (Stránský & Jirásek, 2012; 

Zárate & Oñate, 2015; Zárate et al., 2018). This approach is able to naturally capture the 

fracture zone in the numerical domain as shown in Figure 2.14. However, it faces difficulties 

when capturing a complete collapse process in ductile or granular materials. In addition, the 

extra computational cost from using both mesh and particle discretisation may be unfavored 

for application with fine mesh requirements. 

 

Figure 2.14: (a) numerical scheme of the FEM-DEM volume coupling (Stránský & Jirásek, 

2012); (b) the Brazilian tensile strength test using the coupled FEM-DEM approach (Zárate 

& Oñate, 2015). 
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2.4.2 The material point method (MPM) 

Another numerical approach namely material point method that resorts to both mesh and 

particle discretisation of the computational domain is also highlighted here for its progress on 

capturing the localisation and failure process in geomaterials. Different from the FEM, the 

mesh in MPM is fixed in place as a background grid to facilitate the calculation of field 

functions. The material properties and kinematics are carried by the assembly of Lagrangian 

particles which are allowed to move freely in the computation domain. Although the original 

version of MPM approach was expected to overcome the mesh distortion and complex mesh 

configuration in three-dimensional problems that could happen in FEM domain, another 

serious problem was discovered to significantly compromise the accuracy and reliability of this 

method. The issue was that the background interpolation function based on a Dirac delta form 

provides inadequate smoothness during the process when information is transferred between 

particles and background mesh. This is especially the case when a relatively large deformation 

occurs and particles cross the boundaries of their originally allocated cells. As this happens, 

the information contained by the original cell may not, at all or well communicate with the new 

cell that the particles have crossed in. Therefore, unphysical oscillations happen and the 

constitutive relationship of the particles loses their history path and manifests abrupt values 

(Bardenhagen & Kober, 2004). In order to solve this, a generalised form of the background 

interpolation function is applied in the classical MPM domain which adds an extra order of 

smoothness that passes grid information across their borders. This is known as the generalised 

interpolation material point (GIMP) method (Bardenhagen & Kober, 2004). This approach has 

been thereafter applied to a wide range of geomechanical problems that involves both 

multiphase materials and very large deformation (Sadeghirad et al., 2011; Soga et al., 2015; 

Yerro et al., 2015; Kiriyama, 2013; Gao et al., 2017; Müller & Vargas, 2019). For instance, 

Alonso and co-workers have proposed a multiphase framework to model the behaviour of 

unsaturated soil and applied it to characterise the rainfall-induced slope failure cases (Figure 

2.15). Kiriyama applied the GIMP approach to model the soil behaviour under plane strain 

biaxial, axisymmetric triaxial and true triaxial loading conditions, then the obtained numerical 

results were compared with experimental data which showed very good agreement (Figure 

2.16). 
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Figure 2.15: (a) GIMP modelling of rainfall induced slope failure (Yerro et al., 2015); (b) 

GIMP modelling of rainfall induced slope failure (with comparison with experimental data) 

(Soga et al., 2015). 

Despite the above progress, the GIMP method still exhibits several disadvantages: first, it is 

relatively computational inefficient. This is due to the fact that the MPM approach utilises both 

mesh and particle discretisation to describe the computational domain. Therefore, the 

computational burden is likely doubled. Apart from this, the MPM framework exhibits 

difficulties when enforcing boundary conditions involving confining stress or in a complex 

three-dimensional space, which is likely to compromise the numerical accuracy (Steffen et al., 

2008). Therefore, the performance of the current GIMP approach in problems involving 

boundary condition in complex configuration and multi-dimensional problems still requires 

further improvements. 
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Figure 2.16: GIMP predicted shear band development under axisymmetric triaxial and true 

triaxial boundary conditions (Kiriyama, 2016). 

From the above review regarding the mesh-baed numerical methods in capturing the 

bifurcation and localised failure process in geomaterials, it is clear that although a good 

accuracy and stability can be achieved in the modelling domain, extra computational 

complexity and computational costs are also required. As the geomaterials cover a wide 

spectrum of material properties and geomechanical problems often involve complex loading 

condition as well as extremely deformed problem domain, the mesh-discretised or mesh 

interpolated methods may seem less favourable in such cases. There is a significant need for 

another pathway towards solving the geomechanical problems. In the next section, a set of 

complete meshless approaches are reviewed to show their advantages, in the meantime posing 

the challenges they are facing. 

2.5 Meshfree numerical approaches to characterise localised failures in geomaterials 

In parallel with the mesh-based approaches, the complete meshfree methods have also been 

intensively engaged when applying for geomechanical problems for the past decade. The 

complete meshless feature of these methods gives them the potential of naturally capturing 

extreme deformation field through either a continuum or discotinuum description of the 

computational domain. The representative approaches are the smoothed particle 
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hydrodynamics (SPH) method, the discrete element method (DEM), the element free Galerkin 

(EFG) method and the meshless local Petrov-Galerkin (MLPG) method. Despite these options, 

only the SPH and DEM methods are discussed in this section due to the significance of their 

progress in capturing the localised failures in geomechanical applications. 

2.5.1 The discontinuum discrete element method (DEM) 

The framework of the DEM approach was initially developed by Cundall and Strack in 1979. 

This method is based on a direct characterisation of the inter-particle contact mechanism 

following Newton’s second law of motion. Specifically, the particles are assumed with rigid 

configuration, and overlapping is allowed between particle boundaries. As particles make 

contact and form overlapping area, the corresponding reaction force is calculated based on a 

predefined constitutive relation. This reaction force pushes the pairing particle in the opposite 

direction, therefore maintain the correct kinematics in the computational field. Based on this 

framework, various constitutive models are proposed to capture the DEM contact-displacement 

law which has successfully captured comparable results with experiments for a wide spectrum 

of geomaterials and tests. This includes: capturing the axisymmetric and true triaxial tests on 

dry/unsaturated cohesive and sandy soils (Belheine et al., 2009; Donzé et al., 2009; O’Sullivan, 

2011; Cil & Alshibli, 2014), capturing uniaxial, triaxial and BTS tests on quasi-brittle and 

brittle materials (Wang & Tonon, 2009; Tran et al., 2011; Jiang et al., 2011; Oñate et al., 2015), 

incorporating the anisotropic and fabric effect to capture behaviour of cohesive, sandy and 

quasi-brittle materials (Laniel et al., 2008; Fu & Dafalias, 2011; Mahabadi et al., 2012; Guo & 

Curtis, 2015), the scale effect accounting for size-dependent behaviours in ductile and quasi-

brittle materials (Wang & Gutierrez, 2010; Scholtès et al., 2011), the slope stability and 

toppling analysis in cohesive sandy soil and fractured rocks (Utili & Nova, 2008; Scholtès & 

Donzé, 2012), the curling process in unsaturated soils due to a loss of the moisture content 

(Tran et al., 2019). Recently, an advanced constitutive model featured with a cohesive fracture 

law has been implemented to DEM and applied to characterise the fracture process as well as 

facilitate the design for the fatigue damage in soft rock and cemented materials (Nguyen et al., 

2017a; 2017b; 2019a; 2019b). The proposed numerical framework has obtained results that are 

in very good agreement with the experiments (Figure 2.17). Apart from this, a micromechanical 

investigation into the strength and the corresponding failure criteria of a foamed concrete has 

also been conducted with DEM approach. This work has put insight into the influence of the 
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air-void distribution and pore size on the strength of foamed concrete and its relation to the 

design with such materials (Nguyen et al., 2017; 2019). 

 

Figure 2.17: A DEM approach featured with cohesive fracture law for characterising fracture 

process: (a) the cyclic loading scheme; (b) a comparison between the experimental and 

numerical obtained fracture path (Nguyen et al., 2019a). 

 

Despite the aforementioned impressive progress DEM has made, it is still facing a significant 

challenge: the computational cost. Due to the fact that DEM is a microscale based method, the 

size of DEM particles does not have a distinct difference with the real material grain size. 

Therefore, the number of computational particles required for a laboratory or even an 

engineering-scale problem is prohibitively large. With a currently available computational 

power in most computational laboratories, DEM simulations are often limited to a scaled-down 

or a small experimental sample size. 
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2.5.2 The continuum smoothed particle hydrodynamics (SPH) method 

On the other hand, a continuum-based meshfree approach is much less vulnerable to the 

overburden issue of computational cost, which can be applied to modelling of large scale 

problems such as the complete process of landslides. This is represented by the SPH method, 

which was originally proposed for astrodynamics applications (Gingold & Monaghan, 1977; 

Lucy, 1977). Since then, numerous work has been conducted to improve the algorithm to 

accurately and effectively enforcing essential boundary conditions (Takeda et al., 1994; 

Randles & Libersky, 1996). Furthermore, stabilisation techniques are also proposed for 

eliminating the numerical noise and unphysical particle oscillations to obtain a smooth stress 

profile (Monaghan, 1992; 1994). The application of the SPH in the geomechanical area was 

pioneered by Bui and co-workers (Bui et al., 2008). They have proposed a robust numerical 

framework based on SPH to capture a wide range of geomechanical problems involving 

extreme deformations. This includes: a simulation of granular flow and slope failures, and their 

comparison with experimental results (Bui et al., 2006; 2007; 2008a; Nguyen et al., 2017); 

numerical modelling of soil-structure interaction and stability analysis of gravitational 

retaining wall, bracing strut etc. (Bui et al., 2008b; Verghese et al., 2013; Nguyen et al., 2013; 

Bui et al., 2015); a fully coupled SPH framework to capture saturated soil behaviour and 

analysis of slope failure case under seepage flow (Bui et al., 2007; 2008c; Bui & Fukagawa, 

2009; Bui & Nguyen, 2017); the incorporation of the double scale constitutive model in SPH 

and its application in rock fracture with tensile, shear and mixed failure modes, as well as soil 

desiccation cracking process (Figure 2.18) (Wang et al., 2017a; 2017b; Tran et al., 2017; 2019; 

Wang et al., 2019); SPH prediction of strain localisation with an elastic-viscoplastic model 

(Zhao et al., 2017a). 
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Figure 2.18: (a) the numerical setup for a dessication cracking test on Werribee clay; (b) the 

comparison between the experiment-captured and SPH-predicted evolution of cracks during 

the dessication process (Tran et al., 2019). 

Even though with the promising progress, the current SPH framework is still facing several 

challenges. First, there lacks a generic approach to applying essential boundary conditions 

which involve confining stress on a flexible surface of the computational domain. The existing 

methods in SPH for enforcing confining boundary conditions require a time-consuming 

searching process for identifying the boundary surface and calculation of the corresponding 

normal vectors. When the computational domain undergoes large deformation, the 

identification of the boundary surface could be challenging for a particle-based approach, let 

alone correctly calculating the normal vectors. Apart from the first challenge, the SPH 

simulation still manifests resolution sensitive results despite the nonlocal nature of this 

approach. The material behaviour predicted by the current SPH method demonstrates a more 

brittle behaviour with finer mesh and ductile with coarser mesh analogous to the FEM mesh 

dependent issue. Lastly, the current SPH framework does not account for multiphase soil 

mechanics, which is not able to characterise the important geomechanical problems involving 
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unsaturated conditions. This includes the prediction of rainfall-induced localisation and failure 

process in slope structures, the soil desiccation cracking due to loss of the moisture content, 

the seepage flow analysis in unsaturated soil bulk etc. 

2.6 Conclusion 

In this chapter, the research work regarding the localised failure process in the geomechanical 

field has been reviewed from various aspects. This includes the theoretical interpretation, the 

experimental investigation and numerical simulation of the localised failure mode. An 

emphasis has been made on the current state-of-art numerical approaches for analysing this 

problem, together with their progress and challenges. From this review of the literature, the 

following research gaps have been identified: 

 Geomechanical problems are often featured with extreme deformation field. However, 

the current numerical approaches that resort to mesh discretisation or mesh 

interpolation more or less face inherent mesh-related difficulties when the computation 

domain captures localised failure process that often leads to persistent shear 

deformation or rupture of the material. The countermeasures proposed to improve this 

issue are generally complex in their algorithm and require more computational 

resources. 

 The complete meshless approaches that are on discontinuum basis such as DEM 

captures very well the localisation and failure process in geomaterials. However, the 

micromechanical-based kinematics in these approaches limits the size of their 

computational particles to comparable with a real grain of materials such as sand. This 

requires a significant amount of particles to characterise even a laboratory-scale sample. 

Therefore, the current application of discontinuum numerical approaches are not well 

suitable for large scale geomechanical problems. On the other hand, the continuum 

meshfree method SPH is capable of naturally capture large deformation process for 

numerical samples in a wide spectrum of scale. Despite this feature, the current SPH 

approach faces three key challenges: 

1. There lacks a generic approach to accurately and effectively applying confining 

boundary condition on flexible surfaces in order to allow basic geomechanical 

experiments such as the plane strain biaxial test and triaxial test to be modelled by 

SPH. 
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2. Although featured with nonlocal interpolation process, the current SPH method still 

demonstrates a resolution sensitive behaviour, manifesting as the numerical 

solutions depending on the SPH discretisation scheme and resolution. This is rooted 

in an inadequate understanding of the local and nonlocal feature of SPH method 

and how it governs the energy dissipation in the computational domain. 

3. There lacks a fully coupled multiphase SPH framework to capture the behaviour of 

unsaturated geomaterials. This prevents the SPH method from unleashing its 

meshfree advantage in characterising large deformation problems such as the 

rainfall-induced slope failure, the desiccation crack in soil due to loss of moisture 

content etc. 

To address the above gaps, this research proposes an advanced computational framework based 

on the SPH method for capturing localised failure in laboratory tests and large scale 

applications with dry/unsaturated geomaterials. In this framework, a generic boundary 

condition to applying confining boundary condition on flexible surfaces is first proposed. It is 

followed by an investigation into the local and nonlocal feature of the conventional SPH 

method. An additional nonlocal operator is then proposed in the conventional SPH method to 

facilitate a full regularisation of the energy dissipation path, removing the resolution bias issue. 

Lastly, a fully coupled multiphase framework that contains solid, air and liquid components 

are incorporated into SPH for allowing its characterisation of seepage flow in soil and rainfall-

induced slope failure process. 
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3.1 Introduction 

In the previous chapter, a review regarding the current state-of-art approaches to analysing the 

localised failure and large deformation problems in geomaterials has been provided. From the 

review, it is clear that a complete meshfree approach based on the continuum mechanics 

description of the computational domain fits the current research topic very well. Therefore, in 

this chapter, the smoothed particle hydrodynamics method is introduced in detail, which will 

be the basis numerical method applied in this work.  

This chapter explains the current SPH framework with the following emphasis: the basic 

formulations of SPH including the particle approximation of the computational domain and the 

governing equations of the field; the kernel functions in SPH which dominates the stability of 

the SPH domain. The differences between different kernel functions and the limitations of each 

function are summarised; the numerical techniques that have been applied in SPH to facilitate 

the computational process including the stabilisation factors and the advanced particle pairing 

process; the methods to enforce the essential nonslip and free-slip boundary conditions; the 

time integration schemes in SPH elaborating the leap-frog method. 
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Apart from this, the constitutive models that have been applied in this work to complete the 

stress and strain relationship in the field governing equations are explained in detail. Three 

main types of constitutive models are listed: the rate-dependent Perzyna type viscoplastic 

model featured with evolving Von Mises yield surface; the pressure-dependent elastoplastic 

model featured with non-evolving Mohr-Coulomb yield surface (perfectly plastic model); the 

pressure-dependent elastoplastic model featured with evolving Mohr-Coulomb yield surface 

(strain-softening model). A generic framework is then presented for incorporating these models 

in SPH environment and all relevant formulations are listed. Furthermore, the benchmark tests 

that have been applied to validate the performance of the above models in SPH are also 

elaborated. This includes an element test that is analogous to the FEM analysis and a simple 

shear test, the obtained results are compared with their analytical counterparts showing optimal 

agreements. This provides a solid basis to apply the proposed SPH framework for analysing 

the soil mechanical problems for this research. 

3.2 Fundamental of SPH 

The SPH method was first proposed in the 1970s for solving the kinematics problems in the 

astrodynamics field (Gingold & Monaghan, 1977; Lucy, 1977), and later largely applied to 

fluid dynamics (Morris, 1996; Monaghan, 1996). Starting from 2006, it is intensively applied 

for solving geomechanical problems due to the advancement for improving its numerical 

stability and boundary conditions pioneered by Bui and coworkers (Bui et al., 2006; 2007; 

2008a). More specifically, an artificial viscosity and artificial stress term have been 

implemented in SPH for controlling the unphysical particle oscillation and pairing issue under 

tensile loading. In addition, the nonslip and free-slipe mechanical conditions have been 

enforced on SPH domain with the virtual and ghost particle methods. With this numerical 

framework established, the following work based on SPH has been engaged regarding the soil-

structure interaction (Bui et al., 2008b; Verghese et al., 2013; Nguyen et al., 2013; Bui et al., 

2015), soil-water interaction (Bui et al., 2007; 2008c; Bui & Fukagawa, 2009; Bui & Nguyen, 

2017), slope stability analysis with and without reinforcement (Bui et al., 2008a; Nguyen et al., 

2013; 2017), the desiccation soil cracking (Tran et al., 2017) and static/dynamic rock fracturing 

(Wang et al., 2017a; 2017b; 2019). From the above applications, SPH has been demonstrated 

as a powerful tool for analysing large deformation problems under a wide scale of problem 

domains. In order for a comprehensive understanding of SPH, its basic theory and algorithms 

are presented in the following sections. 
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3.2.1 SPH discretisation scheme 

SPH describes the computational domain as an assembly of Lagrangian particles that follow 

the partition of unity principle. The particles carry information of all field variables and 

properties including the location, velocity, stress, strain, mass, density etc. The field 

information is incorporated and processed through a kernel interpolation process which 

calculates an unknown variable by averaging over its counterparts in the vicinity. The 

averaging is governing by a specific kernel function and the mathematical expression for this 

interpolation in SPH is as follows: 

f(𝐫) = ∫ f(𝐫′)W(𝐫 − 𝐫′, h)d𝐫′

Ω

                                                                                                        (3.1) 

where f(𝐫) is the field variable at location 𝐫, and f(𝐫′) is the same field variable at location 𝐫′ 

which acrosses the entire computational domain. W is the kernel function with smoothed length 

h and Ω represents the interpolation domain, which will be elaborated in the following section. 

In practice, the kernel function is only effective within a certain distance between 𝐫 and 𝐫′, 

therefore the Ω has a limited size. The above formulation 3.1 is written in an integration form, 

which becomes particle summation form when applied to the SPH domain as: 

f(𝐫i) ≈∑
mj

ρj

N

j=1

f(𝐫j)W(𝐫i − 𝐫j, h)                                                                                                      (3.2) 

where mj and ρj are the mass and density carried by particle j and their quotient is the volume 

occupied by the particle. N is the total number of particle included in each kernel interpolation, 

and the approximation mark ≈  indicates a certain but acceptable level of error when 

transferring Equation 3.1 to 3.2. 

The approximation of the first-order gradient of field variables can be performed by performing 

derivative once for Equation 3.1 and applying divergence theorem, which yields the following 

form: 

∂f(𝐫i)

∂𝐫i
=∑

mj

ρj

N

j=1

f(𝐫j)
∂W(𝐫i − 𝐫j, h)

∂𝐫i
                                                                                               (3.3) 

Then by introducing the following notation: 
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  Wij = W(|𝐫i − 𝐫j|, h)        and        
∂Wij

∂𝐫i
=
∂Wij

∂𝐫i

∂𝐫i
|𝐫i|

                                                                  (3.4) 

The expression of kernel interpolation in SPH can be simplified as follows: 

f(𝐫i) ≈∑
mj

ρj
f(𝐫j)Wij

N

j=1

                                                                                                                       (3.5) 

∂f(𝐫i)

∂𝐫i
≈∑

mj

ρj
f(𝐫j)

∂Wij

∂𝐫i

N

j=1

                                                                                                                 (3.6) 

The above Equation 3.5 and 3.6 consists of the basic interpolation formulation in SPH for 

calculating field variables and their gradients. In some cases, SPH approximation of second or 

even higher-order formulations are required, which applying the conventional approach may 

lead to significant numerical instability (Chen et al., 1999). Therefore, a special treatment is 

required, which will be elaborated for second-order gradient functions for approximating 

unsaturated soil dynamics in Chapter 6. 

3.2.2 Field governing equations 

The deformation of an infinitesimal volume element within a continuum domain can be 

described using two fundamental governing laws, the mass and momentum conservation 

equations which are written as follows: 

Dρ

Dt
= −ρ

∂vα

∂rα
                                                                                                                                       (3.7) 

Dvα

Dt
=
1

ρ

∂σαβ

∂rβ
+ fα                                                                                                                             (3.8) 

where α and β denote x, y and z axes of the Cartesian coordinate system with Einstein’s 

convention applied to the repeated indices; ρ  is the material density, vα  is the velocity 

component; σαβ is the stress tensor component, taken as negative in compression; fα  is the 

acceleration due to external loads such as gravitational force. 

By using the SPH approximation of the gradient of a function, i.e. Equation 3.6, the above 

partial differential governing equations can be discretised as follows: 
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Dρi
Dt

=∑mj(vi
α − vj

α)
∂Wij

∂ri
α

N

j=1

                                                                                                          (3.9) 

Dvi
α

Dt
= ∑mj (

σi
αβ
+ σj

αβ

ρiρj
)
∂Wij

∂ri
β

N

j=1

+ fi
α                                                                                        (3.10) 

where fi
α is the force per unit mass due to gravitation. Finally, to solve the above system of 

governing equations, one needs a constitutive relation to calculate the stress tensor of the soil 

and this will be elaborated in the following section. 

3.2.3  Kernel functions 

The kernel function is one of the keys for SPH calculation, which underpins the weighted 

averaging interpolation process. An SPH kernel function is normally required to satisfy three 

basic conditions (Bui et al., 2008a): the normalisation condition which states that the 

integration of a kernel function over its domain equals unity; the delta function property which 

states that kernel function equals to Dirac delta function when its smoothing length approaches 

zero; the compact support condition which limits the effective influence radius of the kernel to 

a finite value. 

The selection of the kernel function largely governs the stability of the computational domain. 

Each kernel function is able to contain a certain amount of particle during the interpolation 

while maintaining reasonable stability of the computational domain. If fewer particles are 

involved, the kernel interpolation loses its validity. However with more particle, the 

interparticle repulsive forces cannot be well maintained, which lead to the pairing instability in 

SPH domain (it is noted here that the pairing instability, although very similar to the tensile 

instability in SPH, is governed by a different mechanism from the tensile instability) (Dehnen 

& Aly, 2012). Specifically, the kernel functions that are featured with an inflection point (zero 

gradient point at peak of the kernel function) would manifest this issue when including more 

particles than its stability limit (Dehnen & Aly, 2012). Particles located near the inflection point 

would not gain enough repulsive force from the kernel gradient, therefore form pathological 

pairs. Therefore, choosing the appropriate kernel in a specific problem context is vital to 

maintain a stable numerical domain. In this geomechanical applications, the most popular 

kernel would be the cubic spline which has been widely applied and demonstrated with very 

good stability performance. In addition to this kernel, another two namely the Wendland and 
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higher-order core triangle (HOCT) kernel are also introduced here (Read et al., 2010). Starting 

from the cubic spline kernel, it can be expressed as (Monaghan & Lattanzio, 1985): 

W(q, h) = αd ×

{
 
 

 
 1 −

3

2
q2 +

3

4
q3          0 ≤ q < 1

1

4
(2 − q)3                   1 ≤ q < 2

0                                            q ≥ 2

                                                                 (3.11) 

where αd is a normalisation coefficient, which is equal to 10 (7πh2)⁄  and 3 (2πh3)⁄  in two 

and three dimensional space, respectively; q is the ratio between |𝐫 − 𝐫′| and ℎ. The range of 

applicable smoothed length for the cubic spline function that demonstrates a numerically stable 

domain is from 1.2dx to 1.3dx in this research. For using a smoothing length that is larger than 

1.3dx, a kernel that is featured with a wider range of maintaining a positive Fourier transform 

is required in Figure 3.1b (Dehnen & Aly, 2012). In this work the Wendland C2 kernel is 

chosen, which can be expressed as: 

W(q, h) = αd × {
(1 −

q

2
)
4

(2q + 1)          0 ≤ q < 2

0                                            q > 2
                                                             (3.12) 

where αd is a normalisation coefficient, which is equal to 7 (4πh2)⁄  and 21 (16πh3)⁄  in two 

and three dimensional space, respectively; q is the ratio between |𝐫 − 𝐫′| and h.  

From Figure 3.1, it is clear that even though Wendland C2 kernel demonstrates a much wider 

positive Fourier transform range which is a vital indicator for kernel capability of maintaining 

the stability of the computational domain, it still features with an inflection point. This gives a 

larger applicable range of smoothing length of Wendland C2, yet is still potential to manifest 

the pairing instability. In order to completely eliminate any potential pairing pathology, a kernel 

without inflection point such as the HOCT4 is required which can be expressed as follows: 

W(q, h) =
N

h3

{
 
 

 
 
Px + Q                                                                      0 < x ≤ α
(1 − x)nk + A(γ − x)nk + B(β − x)nk              α < x ≤ β
(1 − x)nk + A(γ − x)nk                                        β < x ≤ γ
(1 − x)nk                                                                  γ < x ≤ 1
0                                                                                otherwise

                          (3.13) 
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Figure 3.1: (a) comparison of kernel configuration scaled to a common resolution (top: linear 

plot; bottom: logarithmic plot); (b) Fourier transforms of different kernels (broken lines 

represent negative values) (Dehnen & Aly, 2012). 

In above, nk  is a parameter that determines the order of the kernel, for instance nk = 4 

corresponds to HOCT4 kernel. The coefficients N, A, B, P, Q, α are related to the selection of 

nk. β and γ are free parameters. The detailed parameters for different orders of HOCT kernels 

can be found in Read’s work (2010). Despite the capability of HOCT to avoid any pairing 

instability, it has been found that its application in this work comes with significant extra 

computational cost compared with cubic spline and Wendland, which makes it not favourable 

in our applications for geomechanical problems. 
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3.2.4 Stabilisation techniques 

Artificial viscosity 

It has been observed in SPH domain that whenever a boundary condition is applied or the 

current equilibrium state is altered due to change in the boundary conditions, a shock wave will 

present and generates unphysical particle oscillations (Anderson & Wendt, 1995; Gingold & 

Monaghan, 1982). A proper dissipative term is then required for stabilising the numerical 

domain by damping out the excessive shock waves. In this work, an artificial viscosity term is 

considered in the momentum conservation law in Eq 3.10, which can be rewritten as: 

Dvi
α

Dt
= ∑mj (

σi
αβ
+ σj

αβ

ρiρj
−Πij

αβ
δαβ)

∂Wij

∂ri
β

N

j=1

+ fi
α                                                                     (3.14) 

where Πij
αβ

 is the artificial viscosity term and δαβ  is the Kronecker’s delta function which 

equals unity when α = β and becomes zero when α ≠ β. The Πij
αβ

 component is explicitly 

written as: 

Πij
αβ
= {

−αΠcijϕij + βΠϕ
2

ρij
           𝐯ij ∙ 𝐫ij < 0

0                                             𝐯ij ∙ 𝐫ij ≥ 0

                                                                          (3.15) 

where αΠ and βΠ are parameters controlling the viscosity effect which can be either updated 

based on time and space during the calculation or predefined a fixed value (Bui et al., 2008a). 

The density ρij is an average value between particle i and j, other parameters such as cij, ϕij 

and their determination process has been elaborated in Bui’s work (2008a). 

Viscous damping 

In SPH domain, a sudden change in the boundary condition may lead to significant fluctuation 

in the stress field manifesting as a wave propagates through the numerical domain and rebound 

on a boundary surface. Such stress wave can cause undesirable instability in the computational 

domain especially when a quasi-static condition is required, and incorrect plasticity condition 

for pressure-dependent constitutive models. In order to allow the excessive wave energy to 

dissipate efficiently during the computation, a viscous damping term based on a variation of 

the Rayleigh damping coefficient has been introduced into the SPH method as follows (Bui & 

Fukagawa, 2013): 
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Da
α = −cdv̇d

α                                                                                                                                      (3.16) 

cd = ξ√
E

ρh2
                                                                                                                                       (3.17) 

where v̇d
α is the acceleration of the SPH particles, ξ is a non-dimensional damping coefficient, 

E is Young’s modulus. When applied in SPH, it leads to the following form of the momentum 

conservation equation: 

Dvi
α

Dt
= ∑mj (

σi
αβ
+ σj

αβ

ρiρj
−Πij

αβ
δαβ)

∂Wij

∂ri
β

N

j=1

+ fi
α + Da

α                                                          (3.18) 

This approach has been applied to successfully facilitate obtaining a desired initial stress 

condition in the SPH domain subjected to gravitational load (Bui & Fukagawa, 2013), where 

the effect of the damping coefficient has been studied for stabilising stress wave in a saturated 

soil bulk (Figure 3.2). It is also demonstrated to effectively stabilise the SPH in a way analogous 

to the artificial viscosity term in a granular flow test (Nguyen et al., 2017). 

 

Figure 3.2: The effect of the viscous damping coefficient in stabilising the stress fluctuation 

in a saturated soil bulk with suddenly applied gravitational force (Bui & Fukagawa, 2013). 

Artificial stress 

The fundamental behaviour of SPH particles follow a certain pattern of the physical atoms, 

showing a repulsive effect when the inter-particle distance decreases and attractive effect when 

the inter-particle distance increases. However, when the SPH domain undergoes continuing 

tensile deformation with an increment of particle separations, the particles tend to form clumps 
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in the numerical domain. The necessary condition for such clumping (or namely tensile 

instability) to occur involves a combination of the stress sign (tension/compression) and the 

gradients of the SPH kernel (Swegle et al., 1995). Despite various countermeasures that have 

been proposed in the literature, the artificial stress method first put forward by Monaghan and 

Gray is proofed very effective in removing the tensile instability for both non-cohesive and 

cohesive soils (Monaghan, 2000; Gray et al., 2001; Bui et al., 2008a). The basic idea is to 

introduce a repulsive force in a state of particles under tension to prevent forming clumps. In 

order to implement this approach, the SPH momentum balance in Eq 3.14 should be further 

expanded as: 

Dvi
α

Dt
= ∑mj(

σi
αβ
+ σj

αβ

ρiρj
− Πij

αβ
δαβ + fij

n (Ri
αβ
+ Rj

αβ
))
∂Wij

∂ri
β

N

j=1

+ fi
α                                 (3.19) 

where n  is a state parameter dependent on the problem context, and in geomechanical 

applications it is chosen as 2.55 (Bui et al., 2008a), and fij
n is the repulsive force term which 

can be specified as: 

fij
n =

Wij

W(∆d, h)
                                                                                                                                  (3.20) 

The W(∆d, h) term is a constant with a non-evolving kernel function, therefore the ratio 

describes in the above equation normally exhibits an optimum value depending on the 

smoothing length. The Ri
αβ

 and Rj
αβ

 are the rotation of the local artificial stress tensor to their 

principal values, which are calculated from the stress state subjected to tensile loading. The 

detailed formulations and implementations of artificial stress have been elaborated in previous 

work (Bui et al., 2008a). 

3.2.5 The normalised kernel and its gradient correction in SPH 

The nature of the nonlocal interpolation process determines that the kernel influence area will 

always be truncated when performing the interpolation near a free boundary surface. This is 

due to a lack of field information outside of the SPH domain where kernel interpolation requires 

a full contribution from all area of its supporting domain. This problem presents insufficiently 

evaluated variables along the boundary surface which not only contradicts physical reality but 

creates undesirable boundary effects under certain problem context (Bui et al., 2013). There 
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are mainly two ways to improve the kernel truncation effect including the application of 

boundary particles and the normalisation of kernel. Using boundary particles involves 

generation of extra SPH particles that are located outside of the free boundary surfaces, which 

in the meantime enforces essential boundary conditions. Approaches represented by using the 

so-called virtual particle and ghost particle will be elaborated in the following section. On the 

other hand, the normalisation of kernel is widely applied which features the following form 

with its effect of the correction illustrated in Figure 3.3: 

f(𝐫i) =

∑
mj

ρj
f(𝐫j)Wij

N
j=1

∑
mj

ρj
Wij

N
j=1

                                                                                                                  (3.21) 

Apart from the normalisation of the kernel itself, the gradient of the kernel can also be corrected 

to achieve better accuracy in the SPH domain. In the numerical domain, Equation (3.5) and 

(3.6) can theoretically have second-order accuracy. However, this is not always achieved in 

SPH approximations, especially when particles undergo large deformation or the kernel 

supporting domain is truncated by boundaries. These deficiency problems are often called 

particle inconsistency and have been extensively studied in the past few decades. Different 

correction techniques have been proposed to restore particle consistency, thereby improving 

the accuracy of SPH approximations (Bonet & Lok, 1999; Chen et al. 1999; Liu & Liu, 2006; 

Oger et al. 2007). In this study, since the SPH approximation of the gradient of a function is 

mostly used to discretise the governing equations and to enforce confining boundary conditions, 

the accurate evaluation of the SPH approximation of the kernel gradient is essential. To achieve 

this, the SPH renormalisation technique (Bonet & Lok, 1999; Oger et al. 2007) is adopted, 

which modifies the conventional SPH approximation of function gradient, i.e. Equation (3.6), 

as follows:  

∂f(𝐫i)

∂𝐫i
≈∑

mj

ρj
f(𝐫j)

∂Wij
R

∂𝐫𝐢

N

j=1

                                                                                                              (3.22) 

where ∂Wij
R/ ∂𝐫i = Li ∂Wij/ ∂𝐫i denotes the normalised kernel gradient at particle i and Li is 

the renormalisation matrix, which has the following discretised form: 
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Li =
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Figure 3.3 SPH interpolation of function f = x + y with (a) traditional SPH method; (b) 

corrective SPH method (CSPM); (c) the analytical solution. 
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3.2.6 The particle pair searching process 

During the SPH computation process, particles are connected in order to identify their effective 

influence area and neighbouring counterparts in the kernel interpolation process. The process 

of establishing such connections or particle pairs is called searching which corresponds to a 

significant portion of the overall computational cost. Therefore an effective searching 

algorithm is able to help speed up the numerical simulations. The commonly applied searching 

approaches in SPH include the direct search method, the tree searching method (Hernquist & 

Katz, 1989), the linked list method (Liu & Liu, 2003) and the flink-list method (Bui et al., 

2008a). In these methods, the direct search is the simplest in its algorithm, however, features 

the highest computational cost. The basic idea is to start with one particle, then go through the 

rest of all SPH particles in the computational domain and connect those which effectively 

interact with the concerned particle using pairs. 

In order to improve the efficiency of the searching process, a linked list method was proposed 

which subdivides the computational domain before performing the search (Liu & Liu, 2003). 

The linked list method significantly improves the searching efficiency compared to the direct 

search method by disregarding the search between particles that are far-located. Specifically, 

an orthogonal virtual grid with square mesh and grid length of 2h (two times of smoothing 

length) is first constructed in the computational domain. When searching, only particles that 

are located in the neighbouring cells are considered. Starting from one cell, all its 9 surrounding 

cells are looped for search before moving to the next cell to conduct further searching. This 

process is schematically illustrated in Figure 3.4a. 

Despite the improvement, the linked list method still features redundant process which could 

add unnecessary computational costs. For instance, all neighbouring cells are considered during 

the searching, which involves 9 and 27 cells in 2D and 3D space respectively. In order to further 

improve the searching technique, Bui and co-worker proposed an advanced version of the 

linked list method (namely flink-list method) which only loops through 5 and 14 cells under 

2D and 3D problem domain respectively. The underlying idea is that the first search starts from 

one corner cell in the computational domain, once all its neighbouring cells are looped for 

pairing and the process moves to the next cell, the one-side-located cells are disregarded as 

they have already been searched. The illustration of this process is presented in Figure 3.4b. 

 



Chapter 3 Smoothed particle hydrodynamics and its approximation of soil governing equations 

54 

 

 

Figure 3.4: The scheme of the (a) linked list searching process; (b) flink list searching 

process. 

3.3 Essential boundary conditions in SPH 

Like any other numerical methods, the treatment of boundary conditions in SPH is required to 

facilitate its applications to a wide range of engineering problems. In particular, when an SPH 

particle is close to the boundary, its kernel function is truncated, resulting in inaccurate 

approximations of field variables. To resolve this problem, ghost and virtual boundary particles 

(Takeda et al. 1994), (Randles & Libersky, 1996), (Morris et al. 1997), (Bui et al. 2008a) have 

been introduced to replace solid boundaries. Specific conditions are then enforced through 

these particles to achieve desirable boundary conditions (e.g. non-slip, free-slip or axis-

symmetric conditions). In this part, the conventional approaches to enforce mechanical 

boundaries that are featured with nonslip and free-slip conditions are introduced. 

3.3.1 The virtual particle method 

The virtual particle method is applied for solid boundary lines which generally features flat 

surfaces and aligns in an orthogonal manner in the Cartesian axis. In order to implement this 

method, a few layers of “virtual SPH particles” are created to align with the existing boundary 

surface. The number of layers is determined through the smoothing length, for instance, three 

layers of particles correspond to h=1.2dx (Figure 3.5). The virtual particles are created with the 

same mass, density and interparticle distance with the particles in the SPH domain. At the 

interface that locates at the middle point between the outermost SPH domain particles and the 
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innermost virtual boundary particles, a zero velocity condition is assumed, which enforces the 

non-slip condition. Accordingly, the velocity tensor of the virtual particles are interpolated 

from the domain particle as follows: 

 

Figure 3.5: Illustration of the configuration of the virtual particle method. 

𝐯ab = 𝐯a − 𝐯b = β(𝐯a − 𝐯wall)                                                                                                     (3.24) 

 

where 𝐯ab is the relative velocity between real and virtual particles. The coefficient β features 

a maximum value for excluding unreasonably large velocity interpolation for the virtual 

particles when real particles are too close to the solid boundary as follows: 

β = min (βmax, 1 +
db
da
)                                                                                                                (3.25) 

In this study, the range of βmax = 1.5~2  has been applied for its good performance as 

demonstrated in previous work (Bui et al., 2008a). From the above equations, the velocity 

tensor assigned to the virtual boundary particles is written as: 

𝐯b = (1 − β)𝐯a + β𝐯wall                                                                                                                (3.26) 

Apart from the velocity tensor, it is also necessary to assign stress tensor to the virtual particles 

in order to allow a correct calculation of Eq (3.19). Despite the existing approaches that are 

mostly derived based on the work of Randles and Libersky (1996), we apply in the research, a 

simplified method that based on the assumption of a locally uniform distributed stress profile 
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is applied (Bui et al., 2008a). In this method, the pairs that link real and virtual particles are 

first identified. Then the stress tensors carried by the domain particles are assigned to their 

corresponding virtual counterparts, which is written as: 

𝛔b = 𝛔a       when either a or b is virtual particle                                                                  (3.27) 

The above approach to interpolate stress tensor for the virtual boundary particles has been 

demonstrated with both high computational efficiency and good accuracy (Bui et al., 2008a). 

3.3.2 The ghost particle method 

In order to achieve a free-slip condition on the SPH boundary surface, the ghost particle method 

proposed by Libersky and Petschek (1991) is applied here. The method creates the ghost 

particles based on a mirroring process of the particles in the modelling domain that are located 

within κh distance from the boundary line (κ is a coefficient which is selected as 2.5 in this 

work). Therefore the locations of the ghost particles are at exact mirroring point of the 

domain/real particles. The velocity tensor for the ghost particles representing the direction that 

is perpendicular to the boundary line is assigned with an inverse direction as compared to the 

domain particles for preventing the domain particles from penetrating into the boundary. The 

velocity tensor for the ghost particles that is parallel to the boundary line is set to be equal to 

the counterpart in domain particles. For the stress tensor, the interpolation can be expressed as 

follows: 

σghost
αβ

= {
σreal
αβ
             if α = β 

−σghost
αβ

      if α ≠ β
                                                                                                     (3.28) 

The above approach has been demonstrated to be able to effectively enforce a free-slip 

boundary condition. However, this method is suitable for boundaries featured with straight 

surfaces. Furthermore, when the SPH domain undergoes large deformation which may lead to 

non-uniform interparticle translations, the ghost boundary particles becomes similarly 

disordered and fail to maintain the correct boundary conditions. 

3.3.3 The interpolation particle method 

The above virtual particle and ghost particle approaches are applicable for SPH boundary lines 

that are aligned with the axis of the Cartesian coordinate with elastic deformations. However, 
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for boundary lines that are in an angle with the Cartesian axis, there require other solutions. In 

the work, a simple interpolation process based on the corrective SPH method is introduced for 

interpreting the stress and velocity tensors in the boundary particles (Figure 3.6). First, the 

boundary particles are created in a similar fashion with the virtual particle approach, which 

features the same mass, density and volume of each particle. When interpolating the stress in 

the boundary particles, the following formulation is applied in its general form: 

σboundary
αβ

=

∑
mj

ρj
σreal
αβ

Wij
N
j=1

∑
mj

ρj
Wij

N
j=1

                                                                                                        (3.29) 

where σboundary
αβ

 and σreal
αβ

 are the stress in both boundary and domain particles The velocity 

tensor can be interpolated in a similar fashion as in Eq (2.29) by replacing the stress tensor with 

velocity tensor. However, the direction that is perpendicular to the boundary line should be 

assigned the velocity in an opposite direction compared to the real particle for preventing 

penetration issue. For the direction that is parallel to the boundary line, the velocity tensor in 

boundary particles can be either in the same or opposite direction with the real particles to 

replicate either free-slipe or nonslip condition respectively. 

 

Figure 3.6 Illustration of the interpolation particle method. 
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3.4 The time integration scheme 

The time integration in SPH is the key to correctly enforcing the basic consistency condition 

in the SPH constitutive models as well as updating of other field variables including velocity 

and density. There are mainly three types of time integration categories namely the fully 

explicit, semi-implicit and fully implicit. The advantages of using fully explicit schemes 

include their relatively simple algorithm, the relatively low computational cost etc. However, 

the accuracy of the explicit schemes is bounded by a timestep threshold which should not be 

exceeded. On the other hand, the fully-implicit integration schemes are able to achieve the 

consistency condition in a near-perfect manner with a predefined error allowance. A larger 

timestep increment can be applied for this type of integrations compared to explicit ones, which 

facilitates their computational efficiency even though explicit schemes still feature a lower 

computational cost. In between the explicit and implicit schemes is the semi-implicit algorithm 

also known as the predictor-corrector scheme. This approach is analogous to the fully-implicit 

scheme when predicting the elastic stress increment, however, using a different approach to 

correct the stress back to the yield surface. In this section, we introduce two widely applied 

explicit schemes namely the leap-frog and higher-order Runge-Kutta. 

3.4.1 The leap-frog integration scheme 

The leap-frog integration scheme (LF) is able to maintain a stable computational domain with 

second-order accuracy while occupying a relatively small computer memory (Bui et al., 2008a). 

In order to perform the integration, the following steps are taken. First, before the integration, 

the time rate of stress, velocity and density are calculated based on the SPH approximated 

governing equations. Second, at the first integration step, the stress, velocity and density are 

advanced to a half time step position, while the displacement of particles is advanced to a full 

time step position based on the velocity tensor at the half time step; third, at the beginning of 

the next integration step, the stress, velocity and density are further advanced to a full time step 

position in order to perform the calculation of the time rate of all field variables Then, the stress, 

velocity and density are advanced from the previous half time step position to the next half 

time step position based on their rate obtained at the full time step. This process can be 

mathematically described as: 

ρ
n+

1
2
= ρ

n−
1
2
+ ∆t(ρ̇)n                                                                                                                    (3.30) 
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𝐯
n+

1
2
= 𝐯

n−
1
2
+ ∆t(�̇�)n                                                                                                                    (3.31) 

𝛔
n+

1
2
= 𝛔

n−
1
2
+ ∆t(�̇�)n                                                                                                                   (3.32) 

𝐫n+1 = 𝐫n + ∆t (𝐯n+1
2
)                                                                                                                   (3.33) 

where n represents the nth time step and ∆t is the time increment for each integration step. The 

above process is illustrated in Figure 3.7 to facilitate the explanation.  

 

Figure 3.7: Illustration of the leap-frog integration scheme. 

In order to maintain a reasonable level of accuracy for the consistency condition, the stress 

state for each particle is checked during at both the full time step position and the end of each 

integration step. Any identified tensile cracking or inconsistency between stress state and the 
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yield surface will be corrected accordingly, which will be elaborated in Chater 4. The stability 

of the computational domain is governed by the so-called Courant-Friedrichs-Levy condition 

(Bui et al., 2008a), which defines a maximum applicable ∆t as follows: 

∆t ≤ Ccourant (
h

c
)                                                                                                                             (3.34) 

where c is the sound speed of the modelling material, which is chosen here to yield a very small 

timestep compared to conventional SPH and maintain a minimum fluctuation in the 

computational domain. Ccourant is the Courant number which has a typical value of 0.1~0.2 

in this work. 

3.4.2 The higher-order Runge-Kutta scheme 

The Runge-Kutta method is an explicit-based integration that is able to achieve an accurate 

approximation of the Taylor series expansion by only resorting to the first-order derivatives of 

the field variables. Various terms can be introduced into the Runge-Kutta method to derive its 

higher-order versions which normally feature with higher accuracy. The general form of the 

Runge-Kutta scheme can be mathematically expressed as: 

fn+1 = fn + ϕ(k1, k2…ki)∆t                                                                                                        (3.35) 

where f represents field variables including stress, velocity, density etc. for integration. i is the 

order of the Runge-Kutta scheme, indicating how many k factors are involved in the calculation. 

ϕ is a gradient component for f which is obtained from the procedure described below. In this 

section, we will focus on the most widely applied fourth-order Runge-Kutta method, which 

can be mathematically expressed as: 

fn+1 = fn +
1

6
(k1 + 2k2 + 2k3 + k4)∆t                                                                                    (3.36) 

the four coefficients can be explicitly expressed as below: 

k1 = fn
′                                                                                                                                                 (3.37) 

k2 = f
(n+

1
2
∆t,k1)

′                                                                                                                                  (3.38) 

k3 = f
(n+

1
2
∆t,k2)

′                                                                                                                                  (3.39) 
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k4 = f(n+∆t,k3)
′                                                                                                                                    (3.40) 

in above, k1 is the gradient of f at n step, f
(n+

1

2
∆t,k1)

′  is the gradient of f at n +
1

2
 step calculated 

based on k1  gradient, f
(n+

1

2
∆t,k2)

′  is the gradient of f at n +
1

2
 step calculated based on k2 

gradient, f(n+∆t,k3)
′  is the gradient of f at n + 1 step calculated based on k3 gradient. The whole 

process can be illustrated in Figure 3.8. 

 

Figure 3.8: Illustration of the fourth-order Runge-Kutta integration scheme. 

3.5 The constitutive models 

The above formulations form the basis of the current SPH framework for solving 

geomechanical problems. However, in order to describe the kinematics of the field and 

complete the SPH conservation law of momentum for soil, the stress tensor in Eq (3.10) should 

be defined by a constitutive relationship that links the strain and stress tensors. A proper 

constitutive model for geomaterials would account for several key aspects including captures 

a resilient deformation when the stress states locate below the yield surface; describes a 

nonresilient deformation when the stress states coincide with the yield surface, which is mainly 

under a compressive stress state; captures the pressure-dependent phenomenon that is featured 

by most geomaterials. In this section, a generic framework for implementing constitutive 

models in SPH is presented for allowing the incorporation of various yield surfaces. Three 
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models are introduced in detail, namely the rate-dependent elastic-viscoplastic model with 

evolving Von Mises yield surface (strain-softening); the pressure-dependent elastoplastic 

model with nonevolving Mohr-Coulomb yield surface (perfectly-plastic) and the pressure-

dependent elastoplastic model with evolving Mohr-Coulomb yield surface (strain-softening). 

Benchmark tests are then conducted to validate these models in SPH environment. An element 

test and simple shear tests are applied respectively, with the numerical results compared to the 

analytical solutions.  

3.5.1 A generic framework for SPH elastoplastic constitutive models 

A generic relation between the stress and strain tensor in the SPH computational domain is 

described in this section, including the elastic and plastic parts. The elastic part is described 

with the general Hooke’s law, while the plastic part is defined by the plastic potential and 

multiplier factors. In order to expand the above relation, the total strain tensor is first defined 

as a combination of elastic and plastic parts in their time rate form as: 

ε̇αβ = ε̇e
αβ
+ ε̇p

αβ
                                                                                                                                (3.41) 

where the subscripts e and p stand for elastic and plastic components, respectively. The elastic 

strain rate tensor can be described by generalised Hooke’s law: 

ε̇e
αβ
=
ṡαβ

2G
+
1

9K
σ̇γγδαβ                                                                                                                   (3.42) 

where δαβ is the Kronecker’s delta. ṡαβ is the deviatoric stress rate tensor, which forms the 

total stress with hydrostatic stress as follows: 

σαβ = σγγ + sαβ                                                                                                                               (3.43) 

G and K are the material shear and bulk modulus which can be related to the material Young’s 

modulus and Poisson’s ratio as: 

G =
E

2(1 + ν)
           and           K =

E

3(1 − 2ν)
                                                                          (3.44) 

The plastic strain rate tensor is calculated using the plastic flow rule: 
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ε̇p
αβ
= λ̇

∂g

∂σαβ
                                                                                                                                     (3.45) 

where λ̇ is the time rate of the plastic multiplier; g is the plastic potential function, which 

defines the direction of plastic strain increment on the yield surface. 

By substituting Equation (3.42), (3.45) into Equation (3.41) and rearranging the obtained 

expression, the generalised stress-strain relationship for the elastoplastic material can be 

written as follows: 

σ̇αβ = 2Gėαβ + Kε̇γγδαβ − λ̇ [(K −
2G

3
)
∂g

∂σmn
δmnδαβ + 2G

∂g

∂σαβ
]                                   (3.46) 

where ėαβ = ε̇αβ −
1

3
ε̇γγδαβ is the deviatoric strain rate tensor; K is the elastic bulk modulus; 

m and n are free indexes, which are independent from α and β. 

Next, the general formula of the plastic multiplier for the elastic-perfectly plastic model can be 

derived from the consistency condition, which requires: 

df =
∂f

∂σαβ
dσαβ = 0                                                                                                                        (3.47) 

By substituting Equation (3.46) into Equation (3.47), the general form of the time rate of the 

plastic multiplier for an elastic-perfectly plastic material can be written as: 

λ̇ =
2Gε̇αβ

∂f
∂σαβ

+ (K −
2G
3 ) ε̇

γγ ∂f
∂σαβ

δαβ

2G
∂f

∂σmn
∂g
∂σmn

+ (K −
2G
3 )

∂f
∂σmn

δmn
∂g
∂σmn

δmn
                                                            (3.48) 

In the presence of evolving yield surface (strain or work dependent), the consistency condition 

is modified by considering the derivatives of the strain or work components, which will be 

elaborated in the following section. 

3.5.2 The rate-dependent elastic-viscoplastic model 

In this section, the generic constitutive formulations described above are closed by considering 

a Perzyna type viscoplastic consistency condition (Perzyna, 1966). The Perzyna type 

viscoplastic model is featured with a simple definition of the plastic multiplier, which does not 

resort to the consistency condition. Apart from this, an evolving Von Mises yield surface 
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featuring softening mechanism is applied in Equation (3.48), with shrinkage of the column-

shaped plastic yield surface with the accumulated plastic strain. To expand this model, the 

plastic multiplier, instead of using Eq (3.47), can be explicitly defined as: 

λ̇ =
〈Φ(f)〉

η
                                                                                                                                         (3.49) 

where λ̇ is the rate of the plastic multiplier, η is the viscosity parameter, and Φ is the overstress 

function that depends on the rate-dependent yield surface f. The McCauley bracket 〈∙〉  is 

defined as follows: 

〈Φ(f)〉 = {
Φ(f)        if Φ(f) ≥ 0
0               if Φ(f) < 0

                                                                                                   (3.50) 

The overstress function Φ(f) has the following form: 

Φ(f) = (
f

σo
)
N

                                                                                                                                   (3.51) 

with N ≥ 1 and σo  being the initial yield stress on the Von Mises surface. The overstress 

function should satisfy the following conditions (Simo, 1989): 

{
Φ(f) is continuous in [0,∞)  
Φ(f) is convex in [0,∞)          

Φ(0) = 0                                     

                                                                                                  (3.52) 

In this work, the Von Mises yield condition, which is applicable to purely cohesive materials 

(Sukumaran, et al. 1999), was chosen. The yield function takes the following form: 

f = √J2 − (
σ0

√3
+ Hεvp)                                                                                                                 (3.53) 

where H is the hardening or softening modulus; εvp  is the total viscoplastic strain; J2 is the 

second deviatoric stress invariant; and σ0  is the initial yield stress. The plastic potential 

function in Eq (3.46) is chosen to be identical to f here for maintaining an associated flow rule. 

Element test validation 

A 2D compression test under plane strain conditions is conducted. The geometry and boundary 

conditions of the testing model are shown in Figure 3.9a. Horizontally free-slip boundary 
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conditions are imposed on the top and bottom boundaries; a vertically free-slip boundary 

condition is assumed on the left-side boundary and a group of constant downward loading rates 

has been assigned to the top boundary of the specimen. These boundary conditions are expected 

to produce a homogenous deformation field in the sample and therefore a simple analytical 

solution can be derived. In the SPH simulations, the vertical stress and strain are measured 

from the top boundary and this stress-strain relationship is compared with the analytical 

solution. The material properties used in the simulations are listed in Figure 3.9b. The 

comparison between analytical solutions and SPH simulations for different loading rates is 

shown in Figure 3.10. It demonstrates very good agreement for a variety of loading rates. From 

the loading path, it is clear that the material tends to gain strength as a higher loading rate is 

applied. Despite the application of softening mechanism, the loading path has not shown the 

entering of the softening stage in the sample with a relatively small strain achieved. As the 

loading rates reduces, the loading path demonstrates a converging trend predicting closer yield 

strength and stress path for different loading rates. The results demonstrate a stable and accurate 

prediction of the sample behaviour using SPH method with the incorporated Perzyna type 

elastic-viscoplastic model. 

 

Figure 3.9: (a) numerical setup for the element test; (b) the parameters applied for the SPH 

simulation of the element test. 
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Figure 3.10: The comparison between the SPH obtained stress-strain relationships and the 

analytical solution for a variety of loading rates. 

3.5.3 The pressure-dependent elastoplastic model with nonevolving Mohr-Coulomb yield 

surface 

The Mohr-Coulomb elastoplastic model is widely used in practice owing to its simplicity in 

specifying the soil constitutive parameters (Abbo & Sloan, 1995; Borja et al., 2003; Ti et al., 

2009). In particular, this model requires five basic soil parameters including elastic modulus, 

Poisson’s ratio, friction angle, dilation angle and cohesion, which can be obtained from basic 

soil experiments such as triaxial or direct shear tests, thus making this model more appealing 

in practical applications. In this section, a robust framework to implement the Mohr-Coulomb 

constitutive model in SPH is elaborated, with details of the algorithm on solving the corner 

singularity issue. Apart from this, the tension crack treatment and stress scaling process are 

also introduced to avoid any inconsistency between the stress state and the yield surface that 

could potentially cause numerical errors with the explicit integration scheme applied in this 

work (collectively termed as stress return algorithm). First, to close Eq (3.46) and (3.48), The 

Mohr-Coulomb yield surface and its plastic potential function can be expressed in the pressure-

dependent form as follows, respectively: 

f = sin ϕ I1 +
1

2
[3(1 − sin ϕ) sin θ + √3(3 + sin ϕ) cos θ]√J2 − 3c cosϕ = 0            (3.54) 
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g = sinψ I1 +
1

2
[3(1 − sin ψ) sin θ + √3(3 + sin ψ) cos θ]√J2 − 3c cosψ                   (3.55) 

where ϕ and ψ are the soil internal friction and dilatant angles, respectively;  I1 = σ
αβδαβ , 

J2 =
1

2
sαβsβα and J3 =

1

3
sαβsβmsmα are the first principal, second and third deviatoric stress 

invariants, respectively; c is soil cohesion; and θ is the Lode angle defined as: 

θ =
1

3
cos−1 (1.5√3

J3

J2
1.5)                                                                                                               (3.56) 

By substituting (3.54) and (3.55) into (3.48), the general form of the plastic multiplier reads: 

λ̇ =
1

H
[3K

∂f

∂I1
ε̇γγ + 2G (

∂f

∂J2
sαβ +

∂f

∂J3
tαβ) ε̇αβ]                                                                     (3.57) 

where H and tαβ are defined as follows: 

H = 9K
∂f

∂I1

∂g

∂I1
+ 4GJ2

∂f

∂J2

∂g

∂J2
+ 6GJ3

∂f

∂J2

∂g

∂J3
+ 6GJ3

∂g

∂J2

∂f

∂J3

+ 2G (sαmsmβsαnsnβ −
4

3
J2
2)
∂f

∂J3

∂g

∂J3
                                                            (3.58) 

tαβ =
∂J3
∂σαβ

= sαmsmβ −
2

3
J2δ

αβ                                                                                                 (3.59) 

In the above equations, the differentiation of the yield function f against the stress invariants 

I1, J2 and J3 are listed below: 

∂f

∂I1
= sin ϕ                                                                                                                                        (3.60) 

∂f

∂J2
=

1

4√J2
[3(1 − sinϕ) sin θ + √3(3 + sin ϕ) cosθ]

+
3√3J3

8J2
2 sin 3θ

[3(1 − sin ϕ) cos θ − √3(3 + sin ϕ) sin θ]                            (3.61) 

∂f

∂J3
= −

√3

4J2 sin 3θ
[3(1 − sin ϕ) cos θ − √3(3 + sin ϕ) sin θ]                                            (3.62) 
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The differentiation of the plastic potential function g with respect to the stress invariants are 

similarly defined by replacing the friction angle ϕ with the dilation angle ψ in Equations (3.60), 

(3.61) and (3.62). Furthermore, to maintain the objectivity of the constitutive model under large 

deformation, the Jaumann stress rate tensor is adopted. The final stress strain relation for Mohr-

Coulomb elastic-perfectly plastic constitutive model can be now expressed as: 

σ̇αβ = σαγω̇βγ + σγβω̇αγ + 2Gėαβ + Kε̇γγδαβ

− λ̇ [3K sinϕ δαβ + 2G (
∂g

∂J2
sαβ +

∂g

∂J3
tαβ)]                                                 (3.63) 

where ε̇αβ and ω̇αβ are the strain and spin rate tensors, which can be related to the gradient of 

the velocity as follows: 

ε̇αβ =
1

2
(
∂vα

∂rβ
+
∂vβ

∂rα
)                                                                                                                     (3.64) 

ω̇αβ =
1

2
(
∂vα

∂rβ
−
∂vβ

∂rα
)                                                                                                                   (3.65) 

It is noted that the above application of the Jaumann rate could lead to non-physical oscillations 

in some applications. However, in the current work, since the entire SPH governing equations 

are solved in an updated Lagrangian frame with a very small time step, the issues associated 

with the Jaumman rate can be significantly reduced (if not noticeable). This has been proven 

in simulations of granular flow with good stability (Bui et al. 2008a; Nguyen et al. 2017). 

Nevertheless, we acknowledge some existing state-of-art stress rates, such as Green-Naghdi 

(Badel et al. 2008), Truesdell (Sultanov & Davydov, 2014), Oldroyd (Bruhns et al. 2005) and 

logarithmic (Xiao et al. 2006), can be also adopted to maintain objective stress rates. 

 

Singularity treatment  and stress return algorithms 

Figure 3.11 shows the Mohr-Coulomb yield surface in the π-plane and a treatment algorithm 

for its corner singularity problem. It can be seen from this figure that the yield and plastic 

potential functions are non-differentiable on the vertices (θ = 0o or 60o), which corresponds to 

the stress state lying either on the tensile or compressive meridian of the Mohr-Coulomb 

potential surface. Many numerical algorithms have been proposed and demonstrated to be 
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effective for treating this singularity problem. Examples of these algorithms are the smoothing 

of Mohr-Coulomb yield surface corners (Chen & Mizuno, 1990), linearisation of the yield 

surface (Larsson & Runesson, 1996), hyperbolic approximation of the sharp corners (Abbo & 

Sloan, 1995), C1 and C2 continuous treatment of the model (Abbo et al. 2011). In this work, 

the approach proposed by Chen and Mizuno (1990) is adapted for implementing the Mohr-

Coulomb model in SPH. This approached is featured with a relatively straightforward 

implementation procedure without compromising accuracy as Mohr-Coulomb and Drucker-

Prager surfaces coincide where the surface gradient is discontinuous. The basic idea of this 

approach is to use the Drucker-Prager yield and potential functions to replace the Mohr-

Coulomb ones when the stress state coincides with the tensile or compressive meridian of the 

Mohr-Coulomb model (Figure 3.11b).  

 

 

Figure 3.11: Illustration of the singularity problem in the Mohr-Coulomb model: (a) Mohr-

Coulomb and Drucker Prager yield surfaces in π-plane; (b) Treatment for the singularity 

problem in the Mohr-Coulomb model. 

 

To facilitate the implementation, the Mohr-Coulomb yield and plastic potential functions can 

be rewritten in the following forms:  

f = αϕI1 + √J2 − kϕ                                                                                                                       (3.66) 

g = αψI1 +√J2 − kψ                                                                                                                      (3.67) 
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where αϕ and kϕ  are calculated by fitting Equations (3.66) and (3.67) to Equations (3.54) 

and (3.55), which leads to the following expression of αϕ and kϕ:  

αϕ =
2 sin ϕ

3(1 − sin ϕ) sin θ + √3(3 + sin ϕ) cos θ
                                                                      (3.68) 

kϕ =
6c cosϕ

3(1 − sinϕ) sin θ + √3(3 + sinϕ) cos θ
                                                                      (3.69) 

The coefficients αψ and kψ in Equation (3.67) are defined in a similar manner by replacing the 

friction angle ϕ with the dilation angle ψ in Equations (3.68) and (3.69).  

By applying the above definitions, the stress-strain relationship and plastic multiplier for corner 

singularity treatment of the Mohr-Coulomb constitutive model can be calculated as follows:  

σ̇αβ = σαγω̇βγ + σγβω̇αγ + 2Gėαβ + Kε̇γγδαβ − λ̇[3Kαψδ
αβ + (G √J2⁄ )sαβ]                 (3.70) 

λ̇ =
3αϕKε̇

γγ + (G √J2⁄ )sαβε̇αβ

9αϕKαψ + G
                                                                                                  (3.71) 

The condition for using the above stress-strain relation depends on the value of the Lode angle. 

In the principal stress space of the Mohr-Coulomb yield surface, the Lode angle falls within 

the range 0 ≤ θ ≤ π 3⁄  . Accordingly, if the Lode angle is equal to either the higher or lower 

bound of this range, the corresponding stress tensor is located on either the tensile or 

compressive meridian, meaning that the singularity problem occurs. This condition is 

expressed by the following equation: 

|
3√3

2

J3

J2
3 2⁄
| < 1                                                                                                                                   (3.72) 

Apart from the corner singularity, another issue in the numerical implementation of the Mohr-

Coulomb model is related to the tension crack problem. It manifests itself as the stress state in 

the soil falling beyond the apex of the yield surface on (−I1, √J2) plane, which is defined by 

the following condition: 

−αϕI1 + kϕ < 0                                                                                                                               (3.73) 



Chapter 3 Smoothed particle hydrodynamics and its approximation of soil governing equations 

71 

 

When the above condition is met, the normal stresses can be adjusted to shift the hydrostatic 

pressure back to the apex of the yield surface in order to correct the tension crack issue: 

σ̃αβ = σαβ −
1

3
(I1 −

kϕ

αϕ
) δαβ                                                                                                       (3.74) 

where σαβ and σ̃αβ are the stress tensors before and after the correction, respectively. 

In addition, due to the accumulation of computational errors during the simulation, the stress 

state of the model could be lying above the yield surface. This problem can be determined by 

the following condition: 

−αϕI1 + kϕ < √J2                                                                                                                           (3.75) 

Equation (3.75) violates the basic assumption in the plasticity theory, which requires the stress 

state to remain on the yield surface during plastic deformation. Thus, whenever 

Equation  (3.75) is satisfied, the stress state is scaled back to the yield surface using the 

following equations: 

σ̃αβ = rsαβ +
1

3
I1δ

αβ                                                                                                                      (3.76) 

r =
−αϕI1 + kϕ

√J2
                                                                                                                               (3.77) 

where r is a scaling factor. This procedure guarantees that the stress state during numerical 

integration is always on the Mohr-Coulomb yield surface. 

simple shear test validation 

In order to validate the proposed numerical framework, an SPH simulation of a simple shear 

test using Mohr-Coulomb elastoplastic constitutive model is conducted in this section, and its 

results are compared with theoretical solutions under plane strain condition (Gotoh, 1986). The 

geometry and boundary conditions of a square-shaped soil specimen of 0.3m length are shown 

in Figure 3.12. An initial particle distance of 0.01m is used, resulting in 900 particles for the 

specimen. Two areas are distinguished within the specimen: a centrally located area of 100mm 

length where SPH particles move freely and a boundary area enclosing the central area where 

a constant velocity field is predefined and maintained during the simulation following Equation 



Chapter 3 Smoothed particle hydrodynamics and its approximation of soil governing equations 

72 

 

(3.78). The application of a predefined constant velocity field to the boundary area (Nonoyama, 

2014) maintains the pure shear condition and is suitable for testing constitutive models in SPH: 

vxi = 0.01yi                                                                                                                                       (3.78) 

where i indicates any particle within the boundary area. Three values of confining stress of 

50 kPa, 75 kPa and 100 kPa are tested to analyse the sample behaviour with its pressure-

dependent yield surface. The soil properties are Young’s modulus E = 20 MPa, Poisson’s ratio 

ν = 0.3 , internal friction angle ϕ = 30° , dilation angle ψ = 0° , cohesion c = 10 kPa  and 

density ρ = 2100kg m3⁄ . 

 

Figure 3.12: Simple shear test for Mohr-Coulomb model benchmark simulation: (a) 

simulation setup and (b) the contour plot of velocity. 

The stress path and shear stress-strain relationships are obtained at the the centre (Figure 3.12a) 

and plotted in Figure 3.13 and 3.14, while the magnitude of the velocity profile in SPH 

simulations is shown in Figure 3.12b. In Figure 3.13 the stress states deviate from their initial 

hydrostatic confined states (150 kPa, 225 kPa and 300 kPa) as the shear starts. The stress path 

is vertical, indicating that the confining stress is correctly maintained during the shear test, and 

the stress state remains on the yield surface, as a verification of the consistency condition being 

respected during loading. For shear stress-strain relations (Figure 3.14), the numerical results 

agree well with theoretical calculations, showing pressure-dependent solutions. The above 

results demonstrate a stable and accurate performance of the Mohr-Coulomb model 

incorporated in SPH and its effective treatment to corner singularity problem. 
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Figure 3.13: Loading path for varying confining stresses in the SPH simple shear test. 

 

Figure 3.14: Shear stress-strain relationships for varying confining stresses in the SPH simple 

shear test. 

3.5.4 The pressure-dependent elastoplastic model with evolving Mohr-Coulomb yield surface 

In the previous section, a robust constitutive model featured with Mohr-Coulomb yield surface 

has been introduced to account for the inelastic geomechanical process demonstrating a 

perfectly plastic material response. However, it is common that the plastic behaviour in 

geomaterials is companied by the loss of material integrity and a softening process. Therefore 

it is necessary to implement a corresponding constitutive model capable of capturing this 

phenomenon. In this section, a Mohr-Coulomb yield surface that is evolving depending on the 
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soil state parameters (e.g. internal friction angle and cohesion) during plastic deformations has 

been incorporated to the aforementioned constitutive framework in a rigorous manner. A 

typical soil behaviour that manifests both the undamaged and fully damaged states is 

reproduced with two sets of parameters consisting of the virgin and residual values of soil 

friction angle and cohesion. The evolution from the undamaged to damaged states is 

characterised by an exponential relationship between the state parameters and the accumulated 

equivalent plastic strain, which can be explicitly expressed as: 

ϕ = ϕres + (ϕpeak − ϕres)e
−ηεp

eq

                                                                                               (3.79) 

c = cres + (cpeak − cres)e
−ηεp

eq

                                                                                                    (3.80) 

where the coefficient η controls the rate for the degradation of the material properties. The εp
eq

 

is the equivalent plastic strain interpreted as the degree of plastic deformation of the numerical 

domain, which is explicitly defined as: 

εp
eq
= √

2

3
ep
αβ
ep
αβ
                                                                                                                              (3.81) 

where ep
αβ

 is the deviatoric plastic strain tensor defined as ep
αβ
= εp

αβ
− εp

αβ
δαβ 3⁄ . By 

considering the definition of plastic strain in Eq (3.45) and the Mohr-Coulomb plastic potential 

function in Eq (3.55), the above expression of the equivalent plastic strain can be explicitly 

expressed as follows: 

ε̇p
eq
= λ̇√

2

3
(
∂g

∂σαβ
∂g

∂σαβ
−
1

3

∂g

∂σmm
∂g

∂σnn
)                                                                                  (3.82) 

In above, the derivative of the plasic potential function is consistent with the of derivative of 

the Mohr-Coulomb yield function as elaborated in the previous section. The time rate of plastic 

multiplier λ̇ is derived by applying the consistency condition and considering the evolution of 

state parameters as follows: 

df =
∂f

∂σαβ
dσαβ +

∂f

∂εp
αβ
dεp

αβ
                                                                                                         (3.83) 
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in above, the differentiation of the yield surface f against the plastic strain corresponds to the 

differentiation of f against the state parameters namely the friction angle and cohesion, which 

can be expressed considering the chain rule as: 

∂f

∂εp
αβ
dεp

αβ
=
∂f

∂ϕ

∂ϕ

∂εp
eq

∂εp
eq

∂εp
αβ
dεp

αβ
+
∂f

∂c

∂c

∂εp
eq

∂εp
eq

∂εp
αβ
dεp

αβ
                                                             (3.84) 

The differentiation of the Mohr-Coulomb yield surface against the state parameters can be 

written by considering Eq (3.54) as: 

∂f

∂ϕ
= cosϕ I1 +

1

2
[−3 cosϕsin θ + √3 cosϕ cosθ]√J2 + 3c sin ϕ                                 (3.85) 

∂f

∂c
= −3 cosϕ                                                                                                                                  (3.86) 

The differentiation of the friction angle and cohesion against the equivalent plastic strain can 

be obtained by considering theire relationship in Eq (3.79) and (3.80), which is explicitly 

written as: 

∂ϕ

∂εp
eq = −η(ϕpeak −ϕres)e

−ηεp
eq

                                                                                                 (3.87) 

∂c

∂εp
eq = −η(cpeak − cres)e

−ηεp
eq

                                                                                                    (3.88) 

Now by considering the consistency condition for a elastoplastic strain hardening/softening 

material in Eq (3.83), the generic form of the time rate of the plastic multiplier can be expressed 

as follows: 

λ̇ =
2Gε̇αβ

∂f
∂σαβ

+ (K −
2
3G) ε̇

γγ ∂f
∂σαβ

δαβ

[(K −
2
3G)

∂f
∂σαβ

∂g
∂σmn

δαβδmn + 2G
∂f
∂σαβ

∂g
∂σαβ

] −
∂f
∂ϕ

∂ϕ

∂εp
eq val −

∂f
∂c

∂c

∂εp
eq val

       (3.89) 

where the coefficient val is straightforwardly derived from Eq (3.82) to (3.88) as: 

val = √
2

3
(
∂g

∂σαβ
∂g

∂σαβ
−
1

3

∂g

∂σmm
∂g

∂σnn
)                                                                                     (3.90) 
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the above formulations complete the framework of the elastoplastic constitutive model with a 

plastic strain dependent yield surface, where the generic form of the stress rate is still obtained 

by applying Eq (3.63). 

The simple shear benchmark for Mohr-Coulomb strain-softening model 

In order to validate the robustness of the proposed Mohr-Coulomb strain-softening model in 

SPH, a simple shear test under plane strain condition is carried out in this section. The setup is 

similar to that applied for the simple shear validation test of the Mohr-Coulomb perfectly 

plastic model described above. In the simulation, a square-shaped specimen is created with a 

0.4m edge length. Two areas are distinguished in the sample namely a boundary area and 

modelling area. The boundary area is assigned with a constant horizontal velocity field during 

the test, with its magnitude smoothly ranging from 0.002m s⁄  to −0.002m s⁄ . This creates a 

shearing stress condition in the specimen. The central modelling area is in a 0.1m edge length, 

which is allowed to deform naturally with any applied boundary condition. The stress condition 

is then measured at the centre of the specimen and outputted to compare with the analytical 

solutions.  

 

Figure 3.15: The shear stress-strain relationship obtained in the SPH simple test with 

elastoplastic strain-softening model and its comparison with the analytical solution. 
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The basic material properties applied are Young’s modulus E = 20 MPa, Poisson’s ratio ν =

0.3, friction angle ϕ = 30°, dilation angle: ψ = 0°, cohesion c = 10 kPa and soil density ρ =

2100kg m3⁄ . Three groups of comparison tests are carried out with confining stress σconf =

50kPa, 75kPa and 100kPa  respectively, and the corresponding analytical solutions are 

calculated and compared with SPH results. The relation between the shear stress and strain are 

first illustrated in Figure 3.15. 

It is clear from above that the material demonstrates a certain range of elastic response to the 

applied boundary condition and reaches their peak shear strength. Then a loss in the material 

strength is shown in the stress path in an exponential manner until reaching an ultimate strength 

state which features a perfectly plastic behaviour. The confining stress level shows its influence 

on the peak materials strength which is well captured by the pressure-dependent Mohr-

Coulomb yield surface. The SPH predicted shear stress-strain path also demonstrates perfect 

agreement with the analytical solutions. In order to further examine the enforcement of the 

consistency condition, the entire loading path is plotted in Figure 3.16. Apart from this, the 

Mohr-Coulomb yield surfaces at both its peak and residual strength are also illustrated, which 

is then compared with the corresponding stress state obtained in the sample in Figure 3.17.  

 

Figure 3.16: The loading path obtained in SPH simple shear test with elastoplastic strain-

softening model. 
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Figure 3.17: The comparison between peak and residual stress state and their corresponding 

Mohr-Coulomb yield surface. 

In Figure 3.16, the stress states departure from their initial confining stage and following the 

deviatoric path heading to the yield surface. During this process, the confining stress is 

maintained exactly as its initial state. As the deviatoric stress in the sample hits the yield 

condition, it coincides and evolves with the yield surface. In Figure 3.16 the plotted yield 

surface corresponds to the one with virgin material strength (peak). In Figure 3.17, the Mohr-

Coulomb yield surface is plotted both in its peak and residual strength states. The 

corresponding deviatoric stress is also illustrated, which shows exact agreement with the 

location of the yield surface. This indicates that the consistency condition has been enforced 

exactly as the theory defines. From the results demonstrated above, it is clear that the proposed 

SPH framework is able to well capture the material strain-softening behaviour featuring very 

large deformation, which proves its capability to be potentially applied to the geomechanics 

problems involving more complex boundary conditions. This will be demonstrated throughout 

the rest of the current work. 

3.6 Conclusion 

In this chapter, some fundamental knowledge of the smoothed particle hydrodynamics method 

applied for geomechanical problems in this research is presented. Specifically, the focus 

revolves the key concept and basic formulations of SPH. The SPH discretisation of the 
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computational domain, the approximation of the momentum and mass conservation laws are 

summarised. The factors that would influence the stability and accuracy of the SPH domain 

including the kernel function, the correction of the kernel and its gradient are discussed briefly. 

Other aspects of the SPH method including the currently applied boundary conditions, the 

stabilisation techniques in SPH, the time integration schemes are also discussed. Furthermore, 

to correctly account for the plastic behaviours of the soil and complete the SPH discretisation 

of the motion governing equation, three constitutive models with various features are 

introduced in detail with their implementation algorithm in SPH. A group of benchmark tests 

are also illustrated to demonstrate the performance of the constitutive models in the proposed 

SPH numerical framework. The information presented in this chapter forms the fundamentals 

of the SPH method that has been applied for the current research work. Its applications and 

advancements regarding the boundary conditions, numerical stability and multiphase soil 

modelling will be explained in the following chapters. 
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4.1 Introduction 

In this chapter, a new approach to applying confining stress to flexible boundaries in the 

smoothed particle hydrodynamics method is developed to facilitate its applications in 

geomechanics. Unlike the conventional SPH methods that impose confining boundary 

conditions by creating extra boundary particles, the proposed approach makes use of kernel 

truncation properties of SPH approximations that occur naturally at free-surface boundaries. 

Therefore it does not require extra boundary particles and, as a consequence, can be utilised to 

apply confining stresses onto any boundary with arbitrary geometry without the need for 

tracking the curvature change during the computation. This enables more complicated 

problems that involve moving confining boundaries, such as confining triaxial tests, to be 

simulated in SPH without difficulties. To further enhance SPH applications in elastoplastic 

computations of geomaterials, a robust numerical procedure to implement Mohr-Coulomb 

plasticity model in SPH is presented for the first time to avoid difficulties associated with 

corner singularities in Mohr-Coulomb model. The proposed approach was first validated 

against 2D finite element (FE) solutions for confining biaxial compression tests to demonstrate 

its predictive capability at small deformation range when FE solutions are still valid. It is then 

further extended to 3D conditions and utilised to simulate triaxial compression experiments. 
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Simulation results predicted by SPH show good agreement with experiments, FE solutions and 

other numerical results available in the literature. This suggests that the proposed approach of 

imposing confining stress boundaries is promising and can handle complex problems that 

involve moving confining boundary conditions. 

4.2 Background of the confined boundary condition in SPH 

The confined boundary condition is commonly used in both experimental and numerical 

investigations of the mechanical behaviour of geomaterials, such as soils, rocks and concretes, 

to replicate the in-situ stress conditions these materials are subjected to in the field (Drescher 

et al. 1990; Tan, 2005). Two categories of mechanical boundary conditions, which are 

velocity/displacement and stress/force, are commonly enforced to a specimen. In the laboratory, 

velocity and stress can be applied to the specimen through moving pistons or pressurised cells 

controlled by a feedback system consisting of a series of sensors and gauges (Alshibli et al. 

2003; Desrues & Viggiani, 2004). In contrast, in numerical modelling, the ways to enforce such 

mechanical boundaries vary among different methods. For instance, in the Finite Element 

Method (FEM), which has been regarded as the standard tool in continuum plasticity 

manifesting high stability and accuracy for applications involved small deformation, the 

boundary conditions can be directly applied to nodes on the surface meshes. In much well-

developed commercial software such as ABAQUS, built in options allow these boundary 

conditions to be enforced in a straightforward manner. However, it is well established that the 

FEM may suffer from mesh pathologies such as mesh distortion and dependency, which 

hinders its applications to large deformation problems commonly encountered in engineering 

practice (Needleman, 1988; De Borst et al. 1993). Although enhancements such as adaptive 

remeshing (Zienkiewicz et al. 1995), updated mesh (Poodt et al. 2003), hybrid Euler-

Lagrangian method (Haber, 1984) and smoothed FEM (SFEM) (Liu et al. 2007) have been 

proposed, mesh-based numerical methods are still vulnerable to very large or discontinuous 

deformation involved in post-failure. On the other hand, mesh-free continuum methods are 

considered alternatives to FEM, for instance, the material point method (MPM) (Sulsky & 

Schreyer, 2004) and Smoothed Particle Hydrodynamics (SPH) (Lucy, 1977; Gingold & 

Monaghan, 1977). In MPM, essential boundaries are enforced by replacing the interpolated 

velocities in the background mesh with predefined boundary values, while stress can be added 

to the surface of the computational domain in a similar way (Chen et al. 2002). However, 

boundaries of the MPM particle assembly have to be aligned with the background mesh in 
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order for the boundary conditions to be implemented. This procedure can become complicated 

and result in significant inaccuracy with highly deformed boundaries or in three-dimensional 

space (Steffen et al. 2008). It is clear that the above issues with FEM and MPM are collectively 

related to mesh discretisation. Consequently, as a truly meshless method, SPH is a good 

alternative to MPM for modelling large deformation problems. SPH was originally proposed 

for astrophysical applications (Lucy, 1977; Gingold & Monaghan, 1977), it has been then 

advanced to numbers of applications in geomechanics such as large deformation and failure of 

geomaterials (Bui et al. 2007a; 2007b; 2008a; Peng et al. 2015; 2016; Zhao et al. 2017; Neto 

& Borja, 2018), slope failures and landslides (Pastor et al. 2009; Bui et al. 2011; 2013a), soil-

structure interaction (Bui et al. 2008b; Bui et al. 2013b; Wang et al. 2014), coupled soil-water 

problems (Bui et al. 2007b; Zhang et al., 2016; Bui & Nguyen, 2017) and most recently the 

scale-dependent rock fracture (Wang et al. 2017; 2018). In SPH, velocity and displacement 

boundary conditions can be enforced through non-slip and free-slip solid boundary conditions 

by using ghost (Randles & Libersky, 1996) and virtual (Monaghan, 1994; Morris et al. 1997; 

Bui et al. 2008a) particles. On the other hand, the stress type boundary condition can be directly 

applied to SPH particles at the desired location where the confining stress is imposed. In such 

an approach, the applied stress should be converted to an equivalent acceleration, which can 

be subsequently added to the motion equation of each particle. The area over which the stress 

is applied and the corresponding particle masses are tracked in this approach. Furthermore, it 

requires the calculation of normal directions on boundary surfaces to apply the stresses 

correctly. Accordingly, a successful implementation of this approach requires: i) tracking of 

particles on the boundaries and ii) calculation of the normal vector and surface area to convert 

stresses to accelerations during the computation. However, these requirements would become 

extremely difficult to be satisfied when the computational domain undergoes large deformation 

and failure. This is because the highly curved boundary surfaces encountered in the large 

deformation of the numerical specimen could hinder the detection of the particles located on 

the surface boundaries, and thus the calculation of their normal vectors. In addition, an accurate 

enforcement of the stress on the computational domain is challenging due to the difficulties in 

determining and tracking the surface area and curvature of the boundaries during the simulation. 

Although methods utilising kernel gradient to derive the normal direction on SPH domain 

surface is proposed to simplify the above process (Monaghan et al. 2003; Pereira et al. 2017), 

there is still a need to accurately calculate surface area of boundary domain over which the 

confining stresses are applied and this still remains a challenging task for SPH when dealing 

with large deformation problems in solid mechanics.  
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To overcome the above issues, in this chapter a generic approach to applying confining stress 

to flexible boundaries is proposed for SPH. In contrast with previous approaches which are 

vulnerable to deformation of the confined boundaries, the current method automatically traces 

curvature change of the computational domain and enforces confining stress without being 

vulnerable to large deformation. In particular, the proposed method takes advantage of the 

kernel truncation near the boundaries of SPH domain. Such truncation in the kernel supporting 

domain would highlight the location of surface boundaries and allow accurate calculations of 

their normal directions as well as surface areas. As such, the proposed confining boundary 

condition outperforms the conventional methods in the following aspects: first, the boundaries 

of the computational domain are automatically located and their curvature change is accounted 

for without explicitly involving any searching process; second, the normal directions along the 

boundaries are automatically determined by the kernel truncation; and finally, the surface 

boundaries over which the confining stress is applied can be automatically determined during 

the computation. The above features can be automatically achieved through kernel 

approximation of the governing equation of the proposed method without explicitly calculate 

the area and normal on boundaries. These features enable the proposed method to perform 

effectively and accurately in enforcing confining pressures onto the computational domain. In 

addition, to further enhance the application of SPH to computational geomechanics, a modern 

elastoplastic model is required. For instance the modified Cam-Clay (Chen & Abousleiman, 

2012), Val-Eekelen (Prunier et al. 2009), Matsuoka-Nakai (Fellin & Ostermann, 2013) and 

Lade-Duncan (Gao et al. 2010) models enable the solution of complicated boundary value 

problems. Other more advanced models that can handle both diffuse and localised failure at 

the constitutive level have also been explored in the SPH framework for modelling fracture 

(Wang et al, 2018), while further developments for applications in geomechanics are underway 

(Nguyen et al. 2016a; 2016b; Nguyen et al. 2017; Le et al. 2018). Despite this fact, the classical 

Mohr-Coulomb model is used here considering its simplicity in practical applications given the 

focus on theoretical work and corresponding algorithms for applying stress boundary 

conditions in SPH. For this, a robust numerical procedure to implement this model in SPH is 

presented for the first time to avoid difficulties associated with its well-known corner 

singularity. The Mohr-Coulomb based constitutive models have been long applied and widely 

recognised in geomechanics to describe soil behaviour (Labuz & Zang, 2012). Despite the 

popularity, this model possesses hexagon-shaped yield surface, which could lead to difficulties 

in modelling large deformation plasticity problems due to a discontinuous surface gradient. In 

this study, such instability is mitigated with a smooth approximation of the sharp corners using 
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the Drucker-Prager yield surface, which features circular shape. The proposed approach is then 

validated against finite element solutions for biaxial and triaxial tests, GIMPM solutions by 

Kiriyama (2013) and triaxial compression experiment (Kiriyama, 2013).  

The rest of this chapter is arranged as follows: The basic SPH concepts and governing equations 

are first presented. This is then followed by the general description of the numerical procedure 

to implement the Mohr-Coulomb elastic-perfectly plastic constitutive model in SPH. Next, the 

generic approach to applying confining boundary conditions in SPH is explained. Finally, the 

verification and application of the proposed framework are carried out to demonstrate the key 

features and potential of the proposed approach. 

4.3 Boundary conditions in SPH to apply confining stress 

Like any other numerical methods, the treatment of boundary conditions in SPH is required to 

facilitate its applications to a wide range of engineering problems. In particular, when an SPH 

particle is close to the boundary, its kernel function is truncated, resulting in inaccurate 

approximations of field variables. To resolve this problem, ghost and virtual boundary particles 

(Takeda et al. 1994), (Randles & Libersky, 1996), (Morris et al. 1997), (Bui et al. 2008a) have 

been introduced to replace solid boundaries. Specific conditions are then enforced through 

these particles to achieve desirable boundary conditions (e.g. non-slip, free-slip or axis-

symmetric conditions). However, the above approaches are not directly applicable to moving 

or flexible boundaries subjected to confining stress and therefore specific treatments are 

required in such cases. 

 

4.3.1 Conventional approach to apply confining stress in SPH 

In engineering applications, confining stress is normally applied to open boundaries such as 

free-surfaces or confining membranes. To replicate this condition in SPH, the common 

procedure consists of three main steps (illustrated in Figure 4.1):  

1. Identify particles on the open boundary where the confining stress is to be applied;  

2. Calculate the normal vector for each particle on the open boundary;  

3. Calculate the surface area at each particle over which the confining stress is applied; 
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The above procedure was, in fact, proposed by Monaghan (2003) in extending SPH to model 

the motion of a rigid solid boundary in water. It was then further developed by Kajtar and 

Monaghan (2010) to model swimming bodies. Recently, this approach has been applied to 

model confining stress in rectangular triaxial tests (Pereira et al. 2017). 

To ensure the confining stress is correctly applied to the boundary, the above procedure has to 

be repeated at every integration step during the computation process, which is computationally 

expensive. Furthermore, when the computational domain undergoes large deformation, the 

normal direction and surface area cannot be accurately calculated, thus failing to maintain 

correct confining stress on the boundary and potentially leading to the termination of the 

computational procedure. As a consequence, basic soil experiments including biaxial and 

triaxial tests involving large deformation cannot always be modelled using this approach in 

SPH. Therefore, developing a new computational procedure is required to properly account for 

the confining stress in SPH modelling of soil plasticity problems. 

 

Figure 4.1: Conventional approach to apply confining stress in SPH (2D left and 3D right). 

 

4.3.2 A new approach to applying confining stress to flexible boundaries in SPH – Theory 

In this section, a generic approach to applying confining stress to flexible boundaries in SPH 

is developed. The proposed approach makes use of kernel truncation properties of SPH 

approximations near boundaries to facilitate the enforcement of confining stress on the 
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boundaries, thereby allowing the extension of current SPH applications to more complex 

engineering problems that require confining stresses (such as biaxial or triaxial soil tests). 

 

 

Figure 4.2: Illustration of the mechanism for the proposed confining boundary condition. 

 

Let us first consider a dry solid body Ω of arbitrary shape subjected to a constant confining 

pressure field σc and is under equilibrium as shown in Figure 4.2. The stress state of any 

infinitesimal volume dV within Ω can be defined as follows: 

σαβ = σ′αβ + σcδ
αβ                                                                                                                           (4.1) 

where σ′αβ is the effective stress component due to the deformation of the solid skeleton and 

σc is the confining pressure acting on dV.  

The motion of the infinitesimal volume dV within Ω can be then described by substituting 

Equation (4.1) into the SPH momentum Equation (3.10), as follows: 

Dvi
α

Dt
= ∑mj (

σ′i
αβ
+ σ′j

αβ

ρiρj
+
σci + σcj

ρiρj
δαβ)

N

j=1

∂Wij
R

∂ri
β
+ fi

α                                                           (4.2) 

The above equation implies that any infinitesimal volume element dV located within Ω is 

subjected to a constant hydrostatic pressure component, which is equal to the constant applied 

confining stress σc. This suggests that the additional term associated with the confining stress 
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in Equation (4.2) plays a role as the confining stress generator to the boundary surface of Ω, 

thereby producing a constant hydrostatic pressure everywhere within Ω. To demonstrate this, 

let us rewrite the term associated with the confining stress in Equation (4.2) in an integral form: 

∑mj (
σci + σcj

ρiρj
 )

N

j=1

∂Wij
R

∂𝐫i
=
1

ρi
∫(σci + σcj)
Π

∂Wij
R

∂𝐫i
dVj                                                                (4.3) 

where dVj  is the volume of particle j or a volume element j, which is located within the 

supporting domain Π of i defined by the kernel function Wij. The right hand-side of Equation 

(4.3) can be further extended as follows: 

1

ρi
∫(σci + σcj)
Π

∂Wij
R

∂𝐫i
dVj =

1

ρi
∫(σcj − σci)
Π

∂Wij
R

∂𝐫i
dVj +

1

ρi
∫(2σci)
Π

∂Wij
R

∂𝐫i
dVj                    (4.4) 

Under the equilibrium condition, the confining pressure is constant everywhere within the 

domain Ω, causing the first term of Equation (4.4) to vanish everywhere in Ω. Next, it will be 

proven that the second term of Equation (4.4) produces the confining stress on the boundary 

surface S. Using the divergence theorem, the second term on the right-hand side of Equation 

(4.4), which is a volume integral, can be converted into a surface integral as follows: 

1

ρi
∫(2σci)
Π

∂Wij
R

∂𝐫i
dVj = −

2σci
ρi

(∫Wij
Rn1⃗⃗⃗⃗ ds

s

)                                                                               (4.5) 

where s is the surface of the kernel supporting domain Π and n1⃗⃗⃗⃗  is unit vector normal to s.  

In SPH, the kernel function W  is always defined to be symmetric and has a compacted 

supporting domain, thus the integral of Wn1⃗⃗⃗⃗  (and thus Wij
Rn1⃗⃗⃗⃗ ) over any closed surface s is zero. 

This suggests that Equation (4.5) vanishes everywhere within Ω if s is a closed surface, or in 

other words, the supporting domain Π is not truncated. However, this is not the case when the 

volume element is located close to or on the surface boundary Ω. For this particular case, let us 

consider the volume element dV′ as shown in Figure 4.2. The application of Equation (4.5) to 

this element leads to the following equation: 

1

ρi
∫(2σci)
Π

∂Wij
R

∂𝐫i
dVj = −

2σci
ρi

(∫ Wij
Rn2⃗⃗⃗⃗ ds

ac

+∫ Wij
Rn3⃗⃗⃗⃗ ds

abc

)                                                 (4.6) 
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where n2⃗⃗⃗⃗  and n3⃗⃗⃗⃗  are the normal vectors on surface sections ac  and abc  (see Figure 4.2), 

respectively. Because abc is a closed surface, the surface integral of the kernel function Wij
Rn3⃗⃗⃗⃗  

over this surface is zero, thus the above equation can be further simplified as below: 

1

ρi
∫(2σci)
Ω

∂Wij
R

∂𝐫i
dVj = −

2σci
ρi

∫ Wij
Rn2⃗⃗⃗⃗ ds

ac

                                                                                  (4.7) 

The above equation integrates stress σc over the surface ac, which results in a force acting on 

the volume element dV′ in the opposite direction to the normal vector n2⃗⃗⃗⃗ . Consequently, when 

this surface integration is performed over the entire surface S of the domain Ω, it forms a 

constant confinement that is proportional to σc onto the surface area of the problem domain. 

Therefore, when applying Equation (4.2) to enforce confining stress, σc only takes effect on 

the free surface while automatically vanishing inside the domain. This suggests that the 

confining stress in SPH can be enforced through Equation (4.2) by assigning a constant 

pressure value, equal to the confining stress, to every SPH particle within the computational 

domain. This method provides a new pathway to effectively enforce a confining stress 

boundary condition in SPH without searching for particles located on or close to free-surfaces 

or open boundaries. Accordingly, for any problem under a constant confining stress, the 

following SPH motion equation can be applied with a constant confining pressure assigned to 

every SPH particle: 

Dvi
α

Dt
= ∑mj (

σi
αβ
+ σj

αβ

ρiρj
+ Cij

αβ)

N

j=1

∂Wij
R

∂ri
β
+∑
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ρiρj
(σci + σcj)

∂Wij
R

∂ri
α

N

j=1

+ fi
α                           (4.8) 

 

4.3.3 Verification of the proposed confining stress approach in SPH 

In this section, an SPH benchmark test with a circularly shaped specimen subjected to a 

constant confining stress is carried out to verify the stability and accuracy of the proposed 

method to apply stress boundary condition in SPH. Figure 4.3 shows the outline of the model 

setup for numerical tests. The test is conducted with a 10 kPa confining stress and a linear 

elastic constitutive model is assumed in the numerical simulation for simplicity. The material 

properties are E = 20 MPa  and ν = 0.3, while the initial inter-particle distance was set to 

1 mm. The sample has a radius of 50 mm, which is discretised using a fan shaped particle 
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configuration resulting in a total of 1951 SPH particles as shown in Figure 4.3. Such fan shaped 

layout creates a smooth boundary surface compared to orthogonal particle layout, which can 

smear out numerical noise during simulation due to the zig-zag shape of the boundary. The 

confining stress is achieved by applying an initial hydrostatic pressure of σc = 10 kPa to every 

SPH particle together with the use of Equation (4.8) to describe the motion of SPH particles. 

Two numerical tests with and without an initial stress condition are conducted. In the former 

case, an initial stress condition that is equivalent to the applied confining stress of 10 kPa is 

assigned to every particle within the computational domain, and this can be achieved by setting 

σxx = σyy = σzz = 10kPa and σxy = 0kPa to every SPH particle. On the other hand, all initial 

stress components are set to zero in the latter case to simulate the sample without an initial 

stress condition. Confining stress is enforced in both cases.  

 

Figure 4.3: Model setup for numerical test: (a) Geometry of the problem; (b) Radial particle 

layout in SPH simulation. 

In addition, viscous damping is required in SPH to stabilise the potentially excessive stress 

wave propagation due to the sudden application of the confining stress vectors on the 

computational domain without an initial stress condition. This viscous damping can be 

incorporated in the SPH motion equation following the approach proposed by (Bui & 

Fukagawa, 2013) as follows: 

fi
α = fi

α − ξ√
E

ρh2
vi
α                                                                                                                           (4.9) 

where fi
α  is the acceleration of particle i  due to internal stress and external force; ξ  is a 

dimensionless damping coefficient chosen to be 0.1 (Bui & Fukagawa, 2013), (Nguyen et al. 

2017). 
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Figure 4.4: SPH simulation of confined compression test: (a) without imposing initial stress 

condition and (b) with imposing initial stress condition. 

 

Figure 4.4 shows the SPH simulation results for the case of 10 kPa confining pressure applied 

to the circular specimen using Equation (4.8). It can be seen that the proposed method can 

correctly produce the confining stress direction and its magnitude acting on the numerical 

specimen without any extra effort required to search for particles on the boundary and imposing 

the confining stress to these particles. The plots of confining stress vectors indicate that all 

stress components produced by the additional confining stress term in Equation (4.8) vanish 

within the numerical specimen except those on the boundary where the SPH kernel is truncated. 

The truncation of the SPH kernel approximation on the boundary produces stress vectors 

normal to it and directing toward the centre of the circular specimen, suggesting that the 

proposed method presented in the previous section is correct. By comparing the results between 

two cases, with and without imposing an initial confining stress of 10kPa to the specimen, it 

shows that the latter case reaches an equilibrium after several hundreds of cycles of numerical 

iterations with the aid of the viscous damping force, while the former case achieves an 

equilibrium immediately. Both cases result in the same initial confining stress of 10kPa across 

the numerical specimen, suggesting that the additional confining stress term in Equation (4.8) 

can produce the confining stress that is of the same order of magnitude as with the initially 

imposed initial confining stress of 10kPa to the numerical specimen. These good agreements 



Chapter 4 A generic approach to modelling flexible confined boundary conditions in SPH and its 

application 

91 

 

also imply that the viscous damping has no influence on the simulation results, but improves 

the stability of the numerical solutions. 

The above numerical test indicates that the proposed method or Equation (4.8) can exactly 

produce the desirable confining stress to a computation domain by simply applying an initially 

uniform hydrostatic pressure to all SPH particles within the computational domain. No 

additional effort is required to search for particles on the confinement boundary and then 

impose the desirable confining stress to these particles. The proposed method can 

instantaneously achieve a desirable confining stress if a hydrostatic stress condition that is 

equivalent to the applied confining stress is imposed to all particles in the numerical specimen. 

Nevertheless, strictly speaking, the above numerical observation is only applicable for small 

deformation cases. In situations where large deformations occur, the relative movement of 

particles may affect the accuracy of the method. Therefore, further improvements are required 

to ensure stability and accuracy of the proposed method and these will be explained in the next 

section. 

4.3.4 Treatment of confining boundary condition for large deformations 

When the material undergoes large deformations, SPH particles representing the computation 

domain no longer maintain their initial relative positions and can become highly disordered, 

which may hinder the application of the proposed confining stress approach. In particular, 

Equation (4.5) may become non-zero for those SPH particles undergoing very large 

deformation even though their supporting domain is still located within Ω (i.e. theoretically 

remains a closed surface), causing an imbalance of confining forces acting on those SPH 

particles within the computational domain. One straightforward way to mitigate this issue in 

SPH applications involving very large soil deformation is to apply Equation (4.8) to only SPH 

particles which are located on or close to the boundary of Ω. The empirical condition to specify 

these SPH particles, which is optimised by trial and error, can be written as follows: 

fi = {
≤ 0.55     in     2D
≤ 0.70     in     3D

                                                                                                                  (4.10) 

where fi is an index value for a given SPH particle within the computational domain and it is 

calculated as follows: 
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fi =∑
mj

ρj
Wij

N

j=1

                                                                                                                                  (4.11) 

with N being the total number of SPH particles located within the supporting domain of particle 

i and j representing these neighbouring particles.  

On the other hand, for those SPH particles located within Ω where their supporting domain 

remains a closed surface, the second term in the right-hand side of Equation (4.8) vanishes and 

Equation (4.8) reduces to the standard SPH formulation for elasto-plastic materials: 

Dvi
α

Dt
= ∑mj (
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+ σj

αβ

ρiρj
+ Cij

αβ)

N

j=1

∂Wij
R

∂ri
β
+ gi

α                                                                           (4.12) 

The above procedure guarantees that the confining stress vectors only take effect on the 

confinement boundary during the simulation and this is consistent with FEM and experimental 

results. It is worth emphasising here that, although an extra computational effort is required to 

identify SPH particles located on or close to the confinement boundaries (or free-surface 

boundaries), the current approach does not require the calculation of normal vectors and surface 

areas for particles over which the confining stress is applied. This will significantly reduce the 

overall computational effort required to apply the confining stress in SPH compared to the 

conventional approach as discussed in the preceding section.  

In addition, owing to the fact that the smoothing length of SPH particles is kept constant in the 

current work, the interpolated value of the confining stress from Equation (4.5), or the second 

term on the right-hand side of Equation (4.8), may reduce when the particle separation 

increases. This may result in the reduction of the magnitude of the confining stress vectors and 

thus a loss of the required level of confinement on the modelling domain. One way to mitigate 

this issue is to update the smoothing length of SPH particles during the simulation (Benz, 1990), 

(Liu & Liu, 2004). Alternatively, the following simple approach can be applied to maintain the 

confining stress during the simulation. In particular, the second term on the right-hand side of 

Equation (4.8) is updated during the simulation using the following equation: 

∑
mj

ρiρj
(σci + σcj)

∂Wij
R

∂𝐫i

N

j=1

=∑
mj

ρiρj
(σci + σcj)

∂Wij
R

∂𝐫i

N

j=1

∗ (
l0

ln
)                                                (4.13) 
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where n represents the nth time step; l0 and ln are the second term on the right-hand side of 

Equation (4.8) at the initial and nth time step, respectively, and can be expressed as follows: 

ln = {∑
mj

ρiρj
(σci + σcj)(

∂Wij
R

∂𝐫i
)

N

j=1

}

n

                                                                                          (4.14) 

 

4.4 Numerical applications 

In this section, the above proposed generic confining boundary condition in SPH is applied to 

capture the basic geomechanical experiments on soils. This includes a biaxial confined test 

under the plane strain condition and an axisymmetric triaxial test with cylinderic samples. Both 

tests have been conducted under various boundary conditions and a ranged level of 

confinements. The SPH obtained results are compared to the experimental data regarding the 

axial stress strain relations, as well as those from FEM and GIMP. Very good agreement is 

observed among results from different approaches, while SPH demonstrates its advantage of 

naturally capturing the large deformation plastic behaviours and kinematics inside the sample. 

Furthermore, an examination on the loading path of the triaxial test is conducted to validate the 

treatment algorithm (Chapter 3) for the corner singularity issue featured by the Mohr-Coulomb 

constitutive model, which proves that the discontinuous surface gradient issue has been well 

treated. This will be elaborated in this section. 

 

4.4.1 SPH simulation for the biaxial test 

Plane-strain biaxial tests are simulated in this section to further verify the proposed confining 

boundary condition and the Mohr-Coulomb elasto-plastic constitutive model in SPH. The 

obtained numerical results are then compared with those derived from the classical finite 

element method (ABAQUS) as well as the Generalised Interpolation Material Point Method 

(GIMPM) (Kiriyama, 2013) with elastoplastic Mohr-Coulomb model. The initial geometry 

setting and boundary conditions for the biaxial test are shown in Figure 4.5. The numerical 

sample has a rectangular shape with an initial dimension of 100 mm height and 50 mm width 

(Figure 4.5a). In the simulation, the numerical sample is first isotropically loaded to a pre-
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defined confining stress level (Figure 4.5b). The confining stress on the two side boundaries is 

then kept unchanged during the simulation, while the motions of top and bottom boundaries 

are controlled for axial loading. In this test, the motion along the bottom boundary is restrained 

in all directions, while that in the vertical direction of the top boundary is subjected to a constant 

downward velocity of 10mm s⁄ . The horizontal motion along the top boundary is controlled 

to replicate the free-cap boundary (i.e. freely moved) and fixed-cap boundary (i.e. restrained) 

conditions, which are commonly reported in experiments. The material properties are 

summarised in Table 4.1 along with their predefined confining stress levels. 

In SPH simulations, the above numerical sample is created using 1250 particles, which are 

arranged in a square lattice with an initial lattice size of 2 mm and an initial smoothing length 

of 2.4 mm (Figure 4.5c). In addition, 5 extra layers of SPH particles are created at both the top 

and bottom boundary areas to enforce boundary conditions. The fixed boundary or constant 

velocity boundary in SPH can be readily achieved by restricting particle position update or 

restricting particle velocity update, while the confining stress is enforced through the proposed 

confining boundary approach described in the preceding section. All other parameters for SPH 

simulations are selected following the suggestion by Bui et al. (2008a), except that the sound 

speed for the artificial viscosity is computed following the work of Bui et al. (2011). In FEM, 

to provide a quantitative comparison with SPH, an initial mesh size of 2 mm is also adopted 

(Figure 4.5b). However, different from SPH that requires extra particles to impose the 

displacement controlled boundary condition, the boundary conditions in FEM can be 

straightforwardly achieved by directly applying pre-defined values to nodes located on 

boundary surfaces of the computational domain. These boundary conditions are applied to the 

numerical sample through the built-in options in ABAQUS. It is also noted here that a built-in 

option Nlgeom, which proceeds non-linear deformation in computational domain, is activated 

to avoid ill-posed boundary values for all FEM simulations. 

Table 4.1: Model parameters for the biaxial tests. 

Test 

No 

Confining 

stress 

(kPa) 

Shear modulus 

(kPa) 
Density 

Cohesion 

(kPa) 

Friction 

angle 

(deg) 

Dilatant 

angle 

(deg) 

1 50 6401 
1.53 8.5 30.5 0 

2 100 8514 
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Figure 4.5: Initial setting geometry and boundary conditions used in simulations: (a) Initial 

geometry for the biaxial test; (b) FEM mesh discretisation; (c) SPH particle discretisation; (d) 

Confining stress vectors generated by Equation (4.13). 

Biaxial test with fixed-cap boundary 

The development of deviatoric strain in SPH biaxial tests and their quantitative comparisons 

with FEM results are illustrated in Figure 4.6 with a horizontally restricted top boundary 

condition. The sample responses are tested with confining stresses of 50 kPa and 100 kPa, 

respectively, and the deviatoric strain is calculated as εdev = (
1

2
𝛜: 𝛜)

1 2⁄

, where 𝛜  is the 

deviatoric strain tensor. From the results, SPH yields a very similar prediction of strain 

localisation pattern compared to the classical FEM solution, which demonstrates a good 

stability of current SPH framework when simulating soil plasticity problems. During the SPH 

test with 50 kPa confinement (Figure 4.6a), a uniform distribution of the accumulated 

deviatoric strain is observed in the sample at an early stage of loading. When the stress state 

reaches the yield surface and the strain field bifurcates, a symmetric cross-shaped localisation 

of strain field forms within the sample, which is observed at 0.9% axial deformation. As the 

deformation proceeds, deformation accumulates within the shear band and facilitates the 

localisation process. At 1.2% axial strain, the originally symmetric cross-shaped shear bands 

start to develop in a non-symmetric manner, in which one branch of the cross shaped shear 

band develops more than the other. The developments of these two shear bands alternate and 

eventually leads to a strain localisation area with clear X-shaped shear bands at 15% axial strain. 

Similar process is also observed in the SPH test with 100 kPa confining stress (Figure 4.6c), 

which predicts more symmetric X-shaped shear bands. On the other hand, in the FEM tests 

(Figure 4.6b and 4.6d), an initially smeared deviatoric strain field is also observed. At the 

bifurcation stress state, a symmetric localisation pattern is also observed. Since the non-linear 
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geometry deformation is considered in FEM (with Nlgeom), the elements within the shear 

localisation zone rapidly distort as the strain field becomes more localised. When 15% axial 

deformation is reached, a cross-shaped shear band forms and generally maintains its symmetry. 

The shear band inclination angle (θ) in both SPH and FEM is measured close to 50° with 

respect to the horizontal direction, which is close to the empirical relation θ =
π

4
+

ϕ

4
+

ψ

4
 

proposed by Arthur et al. (1977). This result suggests that the current SPH framework could 

produce similar results to that of FEM at small deformation range, while outperforming the 

conventional FEM method when analysing large deformation soil plasticity problems. 

 

Figure 4.6: Total deviatoric strain plot for biaxial tests with horizontally fixed cap: (a) SPH 

with 50 kPa confinement; (b) FEM (with Nlgeom) with 50 kPa confinement; (c) SPH with 

100 kPa confinement; (d) FEM (with Nlgeom) with 100 kPa confinement. 

Biaxial test with free-cap boundary 

The evolution of deviatoric strain in both SPH and FEM are compared for the free-cap 

boundary, and illustrated in Figure 4.7. When the lower confinement is applied (50 kPa), an 

initial elastic soil response leads to a uniform strain field across the sample. As the stress state 

is close to the peak point at 1.0% axial deformation (Figure 4.7a), the deviatoric strain field 

localises, manifesting as cross-shaped shear bands centred in the sample. At 1.2% axial 

deformation, the free-cap boundary triggers the strain field to localise into one branch of the 

cross-shaped shear bands. This leads to a continuous localisation of the deviatoric strain in a 

single inclined shear band while unloading takes place in the other previously localised areas. 

When the sample reaches 15% axial deformation (Figure 4.7a), a clear inclined shear band is 
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observed with significant shear deformation accumulated within this area. A similar 

development is also observed in the SPH sample with 100 kPa confining stress as demonstrated 

in Figure 4.7c. For the FEM comparison test (Figure 4.7b), a uniform strain field is also 

observed during the elastic stage of deformation. When the stress state approaches its peak at 

1.1% axial deformation, the free-cap boundary instantly triggers the deviatoric strain field to 

concentrate along the diagonal direction of the meshes. The deviatoric strain continues to 

localise in this area to form a single inclined shear band while the rest of the sample undergoes 

elastic behaviour. This localisation band gains its width as deformation grows and maintain its 

location as the sample achieves 15% axial deformationThe FEM predicted a similar shear band 

angle to that of SPH and these results are consistent with the empirical relation proposed by 

Arthur et al. (1977) as illustrated in Figure 4.7. From the above comparisons, the SPH method 

demonstrates its capability in modelling problems involving extreme soil deformation thanks 

to its mesh-free nature. 

 

Figure 4.7: Total deviatoric strain plot for biaxial tests with horizontally free cap: (a) SPH 

with 50 kPa confinement; (b) FEM (with Nlgeom) with 50 kPa confinement; (c) SPH with 

100 kPa confinement; (d) FEM (with Nlgeom) with 100 kPa confinement. 

Stress-strain relations in the biaxial tests 

A comparison of axial stress-strain history among SPH, FEM (ABAQUS) and GIMPM 

(Kiriyama, 2013) methods with fixed and free-cap boundaries is depicted in Figure 4.8. For 

fixed cap condition, all models predict an elastic soil response when the sample axial 

deformation is less than 1%, yet SPH and GIMPM yield an almost identical elastic modulus 

while FEM shows small variation. When the stress states in soil approach the peak point, non-



Chapter 4 A generic approach to modelling flexible confined boundary conditions in SPH and its 

application 

98 

 

linearity becomes dominant as the increment of stress along with strain reduces and quickly 

demonstrates a perfectly plastic behaviour in all simulations. A peak stress value of around 125 

kPa is predicted by all three methods at this point. These results suggest that SPH could yield 

similar results to that of FEM and GIMPM and is capable of solving boundary value problems 

that are consistent with the underlying elastic-perfectly plastic constitutive model. The good 

agreement among three numerical methods is also observed in the numerical samples with free-

cap boundaries. In particular, both SPH and GIMPM again predict an identical elastic modulus, 

while FEM shows small variation. The SPH results manifest the perfectly plastic behaviour up 

to 3% axial deformation for 50 kPa confinement and 7% axial deformation for 100 kPa 

confinement, and then show steady and continuous global softening due to structural failure 

triggered by the free-cap boundary. A similar pattern is observed in GIMPM results with the 

perfect plasticity continues up to 2.5% (50 kPa confinement) and 2% (100 kPa confinement) 

axial strain and then following by softening responses, while FEM depicts an instantaneous 

softening behaviour after the peak stress point. With free-cap boundary, all models predict their 

residual stresses around 75% of the peak value as axial strain continues to 15%.  

 

Figure 4.8: Axial stress versus strain of biaxial test from different numerical methods for (a) 

50 kPa confining pressure with horizontally fixed top; (b) 100 kPa confining pressure with 

horizontally fixed top; (c) 50 kPa confining pressure with horizontally free top; (d) 100 kPa 

confining pressure with horizontally free top. 
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Analysis of the effect of the numerical resolution in the biaxial test 

An analysis of varying spatial discretisations in both SPH and FEM is further carried out to 

verify the reliability of the proposed SPH approach. In particular, the fixed-cap biaxial test 

under 50 kPa confining stress is repeated with three initial interparticle distances (or mesh sizes 

in FEM) of dx=2mm, dx=3mm and dx=4mm. Figure 4.9 shows a comparison between SPH 

and FEM for the three lattice sizes. At 2% axial strain, both SPH and FEM predict a rather 

similar shear banding patterns as shown in Figures 4.9a & 4.9b. The strain localisation 

configurations are comparable between SPH and FEM for the resolutions of  dx=2mm and 

dx=4mm, which are evidenced by the symmetric X-shaped shear band configuration observed 

in both samples. Nevetherless, the sample with dx=3mm shows a non-symmetric X-shaped 

shear configuration in the FEM solution, while SPH shows competing mechanisms between 

the symmetric and non-symmetric shear bands. The non-symmetric results can be attributed to 

the influence of spatial discretisations (i.e. mesh discretisations in FEM) as no weak zones were 

defined in the numerical samples to trigger localised deformation. However, owing to the SPH 

nature of particle approximations and probably the perfectly plastic MC model used in this 

study, its solutions seem to mitigate the influence of spatial discretisations. This explains why 

the SPH results of dx=3 mm show competing mechanism between symmetric and non-

symmetric ones. Nevertheless, both methods predict the same shear band orientation, which is 

about 50o to the horizontal direction. As the axial deformation reaches 15%, the localisation of 

deformation continues to develop, leading to thickening of shear bands. The SPH results show 

comparable symmetric X-shape shear bands among three numerical samples (Figure 4.9c), 

thanks to the particle approximation in SPH. In contrast, the final shear band configurations 

predicted by FEM are rather different among three numerical samples, both in terms of their 

symmetry and location (Figure 4.9d), and this can be attributed to the influence of both mesh 

discretisations and distortions. The comparison of axial stress-strain relations between SPH 

and FEM for the three tests are shown in Figure 4.10. Both SPH and FEM predict nearly 

identical stress-strain curves for different spatial discretisations (or meshes in FEM) and the 

results are comparable between two methods. This similarity can be attributed to the perfectly 

plastic model adopted in the current simulations, which enforce the stress to stay on its yield 

loci during the plastic deformation. 
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Figure 4.9: Total deviatoric strain plot for different domain resolutions (2mm, 3mm, 4mm): 

(a) 2% axial strain in SPH; (b) 2% axial strain in FEM; (c) 15% axial strain in SPH; (d) 15% 

axial strain in FEM. 

 

Figure 4.10: Axial stress-strain relations among varying resolutions: (a) SPH predictions; (b) 

FEM predictions. 

The above results demonstrate that the SPH method can produce comparable results to those 

of the classical mesh-based FEM for small deformation and GIMPM for large deformation. 

The proposed confining boundary condition for SPH has been shown to be stable and is able 

to maintain the prescribed confining stress at very large deformation. The extension of this 

approach to three-dimensional applications and its predictive capability will be examined in 

the next section. 

4.4.2 SPH simulation of the triaxial test 

The proposed SPH framework has been compared with FEM and GIMPM solutions for plane 

strain soil plasticity problems and very good agreements among three numerical approaches 
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have been achieved. In this section, the SPH framework is further extended to the three-

dimensional application by conducting simulations of triaxial tests and numerical results are 

compared with triaxial experimental data reported by Kiriyama (2013), the FEM solution and 

GIMP solution. The performance of the proposed confining boundary condition is also 

examined under three-dimensional condition. The geometry and boundary conditions of this 

test are shown in Figure 4.11 together with both the SPH and FEM (ABAQUS) discretisation 

of the numerical sample. The cylindrical specimen has a dimension of 25 mm in radius and 

100 mm in height. Fan-shaped particle lattice (mesh discretisation) is utilised to discretise the 

numerical sample with the aim to create a symmetric particle configuration in both cross-

sectional and axial directions, thus minimising heterogeneous effects associated with the 

orthogonal particle (mesh) discretisation. A total number of 28140 SPH particles are used to 

create the numerical sample with an initial inter-particle distance of 2 mm. The loading platens 

are represented by five extra layers of particles created at top and bottom of the soil domain. 

Fixed-cap and free-cap boundary conditions are imposed at the top loading platen, while the 

bottom one remains fully fixed during the computation. The triaxial loading test is started by 

applying a constant downward speed of 10mm s⁄  to the top loading platen. Soil properties are 

taken from Kiriyama (2013) and other numerical parameters are set similar to those utilised in 

the biaxial tests, which are all listed in Table 4.1. 

 

Figure 4.11: Triaxial test numerical setup in SPH: (a) Geometry and boundary condition; (b) 

SPH discretisation of the sample; (c) FEM (ABAQUS) discretisation of the sample. 

 



Chapter 4 A generic approach to modelling flexible confined boundary conditions in SPH and its 

application 

102 

 

Deviatoric strain evolution in SPH results 

The evolutions of localised strain field with fixed-cap triaxial tests under 50 kPa and 100 kPa 

confining stresses are illustrated in Figure 4.12. The shear bands are observed in both 

perspective and cross-sectional views. In the test with 50 kPa confining stress (Figures 4.12a 

and 4.12c), the strain field is distributed across the sample at an early stage of elastic 

deformation. Immediately after the stress passes its peak point at 5% axial strain, the deviatoric 

strain field localises into symmetric X-shaped shear bands. As the axial deformation continues, 

the localisation of deformation becomes more apparent. Upon 15% axial strain, cross-shaped 

shear bands are observed, while multiple non-symmetric bands are formed at the centre of the 

soil cylinder (Figure 4.12c). The shear band evolution at 100 kPa confining stress is analogous 

to that at 50 kPa confining stress. However, once symmetric shear bands are formed inside the 

soil sample, their configuration and location are maintained during the plastic deformation. As 

15% axial strain is achieved, shear bands demonstrate an increase in width while its symmetry, 

to some extent, is maintained (Figure 4.12b and 4.12d).  

 

Figure 4.12: Total deviatoric strain in SPH triaxial tests with fixed cap condition: (a) 50 kPa 

confining stress; (b) 100 kPa confining stress; (c) cross-sectional plot of 50 kPa confining 

stress; (d) cross-sectional plot of 100 kPa confining stress. 
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For the test with free-cap boundary condition under 50 kPa confinement, the shear band 

development is shown in Figures 4.13a and 16c for 5% and 15% axial deformations, 

respectively. At 5% axial deformation, the free-cap boundary triggers multiple crossed and 

inclined shear bands. As deformation continues, the free-cap boundary facilitates a fast 

accumulation of shear deformation, and the shear bands start to localise into one branch with 

the outside zone undergoes unloading. Upon 15% axial deformation, a single inclined 

localisation band remains in the sample. For the test with 100 kPa confinement, the sample 

undergoes a similar process yet the shear deformation is more concentrated, manifesting a 

single shear band with smaller thickness compared to that of the 50 kPa confinement case. As 

for the shear band angle, tests with both fixed and free top boundaries predict the same inclining 

shear band angle of 50° as shown in Figure 4.12and 4.13. This result is consistent with the 

experimental observation reported by Kiriyama (2013). 

 

Figure 4.13: Total deviatoric strain in SPH triaxial tests with free cap condition: (a) 50 kPa 

confining stress; (b) 100 kPa confining stress; (c) cross-sectional plot with 50 kPa confining 

stress; (d) cross-sectional plot with 100 kPa confining stress. 
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Deviatoric strain evolution in FEM results 

The same axisymmetric test has been conducted with the conventional mesh-based approach 

FEM for comparison with the SPH obtained results. The deviatoric strain plot is shown in 

Figure 4.14 below. From the plot, it is clear that the FEM is able to capture a certain degree of 

localised deformation in the sample for all confining stress levels and boundary condition 

setups. However, the tests with fixed-cap condition show a more smeared distribution of the 

deviatoric strain field at both 5% and 15% axial strain, while the tests with free-cap condition 

demonstrate more localised deformation field especially at 15% axial strain. This can be 

attributed to the fact that the computational meshes tend to maintain their hexahedron shapes 

for not compromising the well-posedness of the governing equations. Therefore, despite certain 

concentration of the strain field, the meshes in samples for both fixed-cap and free-cap tests 

are not deformed as much as the inter-particle relocations observed in the SPH results in Figure 

4.12 and 4.13.  

 

Figure 4.14: Total deviatoric strain in FEM simulated triaxial test: (a) with 50 kPa confining 

stress and fixed-top boundary condition; (b) with 50 kPa confining stress and free-top 

boundary condition; (c) with 100 kPa confining stress and fixed-top boundary condition; (d) 

with 100 kPa confining stress and free-top boundary condition. 

 



Chapter 4 A generic approach to modelling flexible confined boundary conditions in SPH and its 

application 

105 

 

Apart from this, the shaped function for some extremely deformed meshes shown in Figure 

4.14b and 414d have already lose their validity as the Gauss points inside them are no longer 

at their initial relative positions which their theoretical solutions are based on. These 

predictions for the extreme deformation only occurs when the Nlgoem option in ABAQUS is 

ticked, otherwise the simulation would have stopped before reaching such deformation stage. 

Stress-strain relationships in the triaxial tests 

Figure 4.15 shows a comparison of axial stress-strain relationships obtained by three numerical 

methods (SPH, FEM and GIMPM) and experiments. For the simulations with fixed-cap 

boundary under both 50 kPa and 100 kPa confinements, the stress-strain curves exhibit an 

overall linear elastic-perfectly plastic behaviour and these results agree well with the 

experimental data. All simulations yield constant vertical stresses at around 120 kPa and 220 

kPa for the low and higher confinement cases, respectively, and these results are again in good 

agreement with the experimental data reported by Kiriyama (2013).  

 

Figure 4.15: Axial stress versus axial strain of triaxial test from different numerical methods 

for: (a) 50 kPa confining pressure with the horizontally fixed top; (b) 100 kPa confining 

pressure with the horizontally fixed top; (c) 50 kPa confining pressure with the horizontally 

free top; (d) 100 kPa confining pressure with the horizontally free top. 
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For the cases with free-cap boundary, as the stress state passes the peak point, SPH and GIMPM 

demonstrate a short period of perfectly plastic behaviour. For example, at 50 kPa confinement, 

the perfect plasticity continues up to 7.9% and 3.6% axial deformation in SPH and GIMPM 

results, respectively. This is then followed by a persistent softening curve predicted by both 

methods. FEM yields persistent softening immediately after the peak stress. However, the 

experimental data demonstrates perfectly plastic curve until 15% axial strain. The possible 

explanation for this phenomenon is due to the fact that the strictly free-cap boundary condition 

is hardly achieved in the laboratory. Accordingly, the perfectly plastic behaviour in soil 

maintains up to 15% axial deformation. In contrast, the free-cap condition is easily achieved in 

the numerical simulations, which facilitates shear localisation and leads to the structural failure 

thus softening behaviour in the sample. 

 

Examination of the triaxial loading path 

Finally, to further demonstrate the effectiveness of the proposed confining boundary condition 

in maintaining the correct loading condition and its effectiveness of treating the corner 

singularities in the Mohr-Coulomb model, the local loading path of a particle located at the 

centre of the sample and the global loading path measured from the sample boundaries are 

plotted in Figure 4.16, on both meridian and deviatoric planes. Both loading paths start from 

point O, corresponding to the initial condition, where the sample is under hydrostatic pressure 

of 50kPa. As the axial load on the top surface starts increasing, the local loading path at the 

measuring point develops linearly until reaching point A and the sample is relatively 

homogeneous evidenced in the coincidence of local and global loading paths. At this stage, the 

deviatoric plastic strain is zero everywhere inside the sample. The slope of the local loading 

path OA measured in Figure 4.16a is 1 √3⁄ , which coincides with the global triaxial loading 

path imposed on the sample shown as the black dashed line. As the local loading path goes past 

point A, some particles inside the sample enter their plastic state (evidenced by the 

development of deviatoric plastic strain at point B in Figure 4.16a). This leads to a slightly 

nonlinear section of the local loading path between point A and point C on the meridian plane. 

However, the global loading path measured at the boundaries continuously shows a linear 

behaviour, indicating that the triaxial loading condition over the entire sample is well 

maintained through the proposed boundary condition. This is also evidenced by the straight 

loading paths (both local and global) that evolve exactly towards the triaxial compressive 
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meridian in the deviatoric plane (Figure 4.16b). Beyond the initial yield at point C, the local 

stress just stays on the yield envelope and moves from C to D in Figure 4.16a while still lying 

at the corner of the Mohr-Coulomb yield surface in Figure 4.16b. This confirms that the 

consistency condition is well satisfied at the measuring point and the triaxial loading path 

imposed on the sample is well maintained by the proposed confining boundary condition, even 

during the post yielding process. It is also noted that the loading path CD in Figure 4.16b 

corresponds to the triaxial compressive meridian on the Mohr-Coulomb yield surface, where 

the corner singularity issue arises. However, no numerical instability is observed in our 

simulations, suggesting that the proposed algorithm is effective in treating the corner 

singularity of the Mohr-Coulomb model, which maintains a valid flow rule during material 

plastic deformation. 

The above numerical results verify that the proposed confining SPH boundary works well in 

both two- and three-dimensional conditions. The method is highly stable and is able to maintain 

the confining stress on highly non-linear curvature confining boundaries caused by excessively 

large soil deformation. Although a constant confinement scenario is considered for above tests, 

the proposed boundary method works equivalently for evolving confinement and can be 

applied, in general, for any SPH problems involving confinement. The Mohr-Coulomb 

perfectly plastic model when incorporated in SPH show comparable results to those of FEM 

for small deformation, GIMPM for large deformation and experiment. This demonstrates the 

capability of SPH in handling general soil plasticity problems, while outperforming the 

traditional FEM based methods in applications involved large deformation and failure. There 

still remains questions on the dependency of the solutions on SPH discretisation. The current 

results in the biaxial and triaxial tests show less dependence of numerical results on the domain 

discretisation, particularly in terms of load-displacement curves. This is not a true evidence to 

demonstrate mesh-independency of SPH given a perfectly plastic model was used. The fixed 

yield surface may regularise the energy dissipation during plastic deformation and lead to 

plausible mesh-independency of the method. To have further insights into this problem, a 

softening constitutive model is required. This is beyond the scope of the current paper and a 

subject of our ongoing investigations. 
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Figure 4.16: Global loading path and a local one of a particle located at the centre of the 

sample under 50 kPa confinement: (a) meridian plane; (b) deviatoric plane. 

 

4.5 Conclusion 

In this chapter, a generic method is proposed to effectively enforce flexible confining boundary 

conditions in SPH. The method makes use of its kernel truncation feature along free edges of 

SPH domain to automatically locate and trace curvature change of the boundary surfaces. The 

confining stress and its normal vectors are subsequently the natural outcomes of SPH 

approximations of the kernel gradient of confining stress for those SPH particles located on or 

close to the confining boundaries. This method has demonstrated its capability to effectively 

enforce a constant confining stress on to flexible boundaries, though in principle it works 

equivalently for evolving confinement. In parallel with this, a robust numerical procedure for 

implementation of the Mohr-Coulomb elastoplastic model in SPH, which avoids numerical 

difficulties associated with the well-known singularities that occur at the corners of the Mohr-

Coulomb surface, is presented for the first time. The proposed numerical framework was first 

verified with theoretical solutions under simple shear condition. It was then used to simulate 

biaxial and triaxial tests with varying model parameters and numerical results were compared 

with those from the mesh-based method (FEM), advanced hybrid particle-mesh method 

(GIMPM) and experimental data available in the literature. Very good agreements between 

SPH and other counterparts were achieved, suggesting that the proposed confining boundary 

condition full-fills the need of SPH for general geotechnical applications that involved flexible 

and moving confining boundaries. The good agreement between SPH and experiment also 
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suggests that, once a suitable constitutive model is selected and properly implemented in SPH, 

the method can be used to predict complex problems involved large deformation and failure. 

For this purpose, more advanced constitutive models capable of capturing realistic soil 

behaviour should be implemented and tested with the SPH method. These are beyond the scope 

of this chapter and will be left for future works. 
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5.1 Introduction 

In the classical continuum mechanics analysis of strain bifurcation/localisation in solid 

materials, the field kinematics is carried by representative volumes that are infinitesimally 

small. It fails to capture a micro-scale characteristic length effect in materials and predicts a 

physically meaningless discontinuous strain zone with vanishing size. A wide range of 

countermeasures is proposed to enrich either the continuum or the constitutive model with a 

predefined length scale parameter, which includes the application of higher-order gradient 

functions, nonlocal operator and continuum with rotational DOF etc. However, these 

enrichments come with additional complexity and computational cost, which may not achieve 

a full characterisation of the strain localisation process. On the other hand, the smoothed 

particle hydrodynamics (SPH) method introduced by Lucy, Gingold and Monaghan in 1977 is 

embedded with a nonlocal interpolation process, which is able to capture the strain 

bifurcation/localisation without extra regularisation (Bui et al. 2008; Vignjevic et al. 2014; 

Zhao et al. 2018). However, the length parameter in the SPH method has not been explicitly 

related to the material inherent characteristic scale, thus not allowing SPH to capture the scale 

effect that has been observed in many materials. Furthermore, the pathological mesh-
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dependency issue (resolution bias) in the finite element method is also observed in SPH, which 

implies that a clear definition of length parameter in SPH is still missing. Therefore, in this 

study, we further investigate the inherent SPH length parameter (the kernel radius) to 

investigate its impact on SPH performance as a nonlocal numerical method. In the proposed 

computational framework, a rigorous Mohr-Coulomb strain-softening model is implemented 

to characterise the strain-softening and localisation process. It is discovered that the SPH kernel 

radius can be related to a particular material scale and improve the resolution bias issue. 

However, due to its key role in maintaining the numerical stability of the SPH domain and 

particle dynamics, it cannot be applied as a generic length scale parameter to capture a wide 

spectrum of material scales. Therefore, a nonlocal plastic limiter is further implemented into 

the constitutive model to regularise the plastic energy dissipation. The results show that such 

plastic limiter co-works with the inherent SPH kernel function, and is able to capture any 

material length scale and completely regularise plastic energy dissipation immune from 

resolution bias. As a result, the proposed SPH framework is proven to be a very promising tool 

in the analysis of strain localisation phenomena and progressive failure problems with very 

large deformation. 

5.2 Problem background 

The numerical study of the progressive failure and strain localisation in geomaterials with 

conventional mesh-based methods such as FEA has been facing ill-posedness of boundary 

value problems when bifurcation starts to form in the computational domain and develops into 

a finite area of plastic strains (shear bands). This is due to the lack of an internal length scale 

in the conventional FEA methods, which makes the numerical solution solely dependent on the 

discretised mesh size and leading to a zero energy dissipation mode as the mesh is refined. 

Therefore the conventional FEA methods are characterised as “local” for it does not possess 

such internal length scale. Numerous countermeasures such as including rate dependency, 

using higher-order gradient functions, applying micropolar Cosserat continuum, using adaptive 

re-meshing and including nonlocal formulations have been proposed in the literature, among 

which the algorithm of applying the nonlocal formulation is readily implementable in our SPH 

framework and will be the focus of this work.  

The nonlocal formulation derives field variables or gradients through a weighted average 

process over the neighbouring area of the location under consideration. Since only a finite 

influence area of the weighting function is considered, it introduces a length scale into the 
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computational domain, specifically its influence radius. Therefore the plastic energy evolution 

is directly linked to this length scale parameter and its dissipation is regularised to avoid the 

dependency on mesh refinements. The application of the nonlocal formulation into the 

continuum analysis of plastic softening process was pioneered by Bažant and co-workers 

during 1980s, and later advanced and evolved by many (Pijaudier-Cabot & Benallal, 1993; 

Vermeer & Brinkgreve, 1994; Tvergaard & Needleman, 1995; Jirásek, 1998; Borino et al. 2003; 

Engelen et al. 2003; Desmorat et al. 2007; Galavi & Schweiger, 2010; Giry et al. 2011; 

Summersgill et al. 2017; Huang et al. 2018; Mánica et al. 2018). Among the above work, 

Vermeer and Brinkgreve proposed a linear combination of local and nonlocal variables to 

further improve the regularisation capacity of the nonlocal formulation (Vermeer & Brinkgreve, 

1994; Planas et al. 1996; Strömberg & Ristinmaa, 1996). This is later systematically reviewed 

and characterised as “over-nonlocal” model by Di Luzio and Bažant (2005) who proved the 

achievement of a complete regularisation of plastic softening with this over-nonlocal model. 

Although numerous attempts with mesh-based methods have shown effective regularisation of 

plastic energy dissipation and mesh-independent results using the above technique, the current 

analysis is limited to small deformation stage. The excessive mesh distortion happened under 

very large deformation prevents the complete progressive failure process to be characterised, 

which limits its application from a full prediction of the failure process in geomechanics 

problems. Therefore, there exists a significant need for the nonlocal framework to be 

implemented into a complete meshless numerical method for large deformation geomechanics 

applications.  

On the other hand, the smoothed particle hydrodynamics (SPH) method has been known as a 

meshfree continuum approach, which has the potential to overcome the above problems. In this 

work, the inherent nonlocal feature of SPH is carefully investigated regarding its numerical 

stability, efficiency and accuracy aspects. Since the SPH interpolation of state variables 

requires kernel weighting process, it introduces the kernel influence radius as a length scale 

parameter into the numerical domain. This feature allows SPH to naturally capture the 

bifurcation process without extra regularisation techniques. However, in order to preserve a 

stable dynamics of the computational domain, the kernel influence radius is coupled with a 

fixed linear relation with the size of numerical discretisation. It limits the number of particles 

that each kernel is able to contain. Therefore, numerical predictions of localised shear bands 

with traditional SPH manifest a resolution-dependent solution, analogous to the FEM mesh 

dependent pathology. This can be straightforwardly addressed by decoupling the kernel 
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influence radius with the numerical discretisation size. As demonstrated later in section 5.5.1, 

SPH domain with a fixed kernel radius manifests a regularised energy dissipation path with 

resolution-independent shear band predictions and stress-strain relations. Nevertheless, a 

significant compromisation of numerical stability is also observed due to such decoupling. This 

implies a potential need for additional nonlocal operators in the current SPH framework. 

Therefore, a nonlocal plastic limiter is further incorporated to regularise the accumulated 

deviator plastic strain in the constitutive model, which controls the evolution of the yield 

surface. As suggested by Di Luzio and Bažant (2005), a linear combination of the local and 

nonlocal variables is applied in the plastic limiter to completely regularise the energy 

dissipation. This is validated by the SPH modelled drained biaxial tests, which demonstrate a 

converged stress path among a wide range of resolution spectrum with a specific characteristic 

length. It is also demonstrated that the plastic energy dissipation rate is linearly related to the 

characteristic length of the nonlocal plastic limiter, which suggests a potential link between the 

characteristic length and material internal length scale. It is noted that the implementation of 

the plastic limiter demonstrates a reasonable computational efficiency while preserves very 

good stability that has been observed in traditional SPH (Bui et al. 2008; Wang et al. 2018; 

Zhao et al. 2019).  

To further facilitate capturing the strain localisation which is often accompanied with loss of 

material integrity, a robust elastoplastic strain softening constitutive model featured with Mohr-

Coulomb yield surface is incorporated into the current SPH framework for the first time. In 

this model, the reduction of the material strength is controlled by an exponential relation 

between the state parameters (e.g. soil friction angle and cohesion) and the accumulated plastic 

strain deviator. This relation is featured with two groups of state parameters including virgin 

and residual values which correspond to the undamaged and fully damaged soil states. The 

proposed constitutive model is first validated against analytical solutions in a plane strain 

simple shear test and then brought to the drain biaxial tests. Numerical analysis shows that the 

proposed approach is able to well capture the complete failure and energy relaxation process 

in geomaterials while preserving a specific energy dissipation rate regardless of the resolution 

of the computational domain. 

The rest of this chapter is arranged as follows: first, the basic SPH components including its 

particle approximation form and kernel function are discussed. Then, the elastoplastic Mohr-

Coulomb strain-softening model is expanded with key formulations. This is followed by the 
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nonlocal formulation and its algorithm in the current SPH framework. Then, three groups of 

drained biaxial tests featured with a wide resolution spectrum on analysing the nonlocal 

characteristic of SPH method are conducted. Lastly, the proposed numerical framework is 

applied for the capture of shear band development in a sandy soil featured with heterogeneity 

state parameters. 

5.3 Local and nonlocal character for strain localisation in continuum mechanics 

The classic continuum mechanics simplifies the problem domain as a uniform assembly of 

infinitesimal volumes which are interacting upon direct contact. When the domain is subjected 

to elastic boundary value problems, each infinitesimal volume has a linearly evolving strain 

tensor following the general Hooke’s law. However, in the presence of strain bifurcation and 

localisation, the strain field diverges, with concentrated and uniform area coexist in the same 

domain. The classical continuum theory predicts the concentrated strain field with an 

infinitesimal width (if not zero), which evolves under direct contact of infinitesimal volumes 

located on both of its sides. This contradicts experimental facts that a localised strain area (shear 

band) is of finite width. Therefore, the hypothesis that infinitesimal volumes only interact upon 

direct contact with their neighbouring counterparts is no longer rigorous in this context. In fact, 

experiments show that microstructures of geomaterials such as grain, fracture and fibre are 

interdependent during global deformation at a certain scale which is characterised as a material 

length scale parameter. Therefore, in the numerical study, a characteristic length scale is 

required to govern the volume size in which the microstructures manifest significant 

interdependency. Such a concept has been introduced in numerous theories, for instance, the 

peridynamics theory (Silling 2000), nonlocal damage theory (Pijaudier-Cabot & Bažant, 1987), 

micropolar Cosserat continuum (De Borst 1991), among which the nonlocal theory, due to its 

simplicity, has gained much interest recently (Galavi & Schweiger, 2010; Giry et al. 2011; 

Summersgill et al. 2017; Huang et al. 2018; Mánica et al. 2018). 

5.3.1 Bifurcation in the classical continuum 

In order to mathematically expand the above theory, the kinematics in the classical continuum 

mechanics is first regulated to follow the momentum and mass conservation laws written in 

their derivative form as: 
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Dρ

Dt
= −ρ

∂𝐯

∂𝐫
                                                                                                                                         (5.1) 

D𝐯

Dt
=
1

ρ

∂𝛔

∂𝐫
+ 𝐟                                                                                                                                     (5.2) 

where ρ is the material density, 𝐯 is the velocity tensor; 𝛔 is the stress tensor taken negative in 

compression; 𝐟 is the bulk force tensor due to external loads such as gravity. 

When the continuum domain Ω is subjected to a continuous strain field with small deformation, 

the stress tensor in above momentum Equation (5.2) can be linked with the strain tensor through: 

𝛔 = 𝐃e𝛆                                                                                                                                                (5.3) 

where 𝛔 and 𝛆 are total stress and strain tensor, 𝐃e is the elastic tangent stiffness tensor. As the 

domain continues to deform, a discontinuous strain-jump starts to appear at the incipient loss 

of strain continuity, which is commonly known as the bifurcation/localisation process. As 

illustrated in Figure 5.1, any infinitesimal volume (𝐱i) adjacent to this discontinuous surface S 

is subjected to traction and displacement continuity. 

 

Figure 5.1: The general concept of a weak strain discontinuity (strain 

bifurcation/localisation). 

In above, the normal vector 𝐧 defines the direction of the traction continuity with a predefined 

primary direction. 𝐦 is the polarization vector which has an angle with 𝐧 from 0 to 90 degrees, 

controlling the failure mechanism from tensile to shear. 𝐃+ and 𝐃− are the tangent stiffness 

tensors when approached from different sides of the discontinuous surface S. It is commonly 

accepted that the incipient loss of strain continuity can be distinguished by the following 

equation evolving from the traction continuity condition (Jirásek, 2007): 
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(𝐧 ∙ 𝐃+ ∙ 𝐧) ∙ 𝐦ė = 𝐧 ∙ (𝐃− −𝐃+): �̇�−                                                                                          (5.4) 

where ė is a non-negative scalar denoting the magnitude of the strain jump in surface S, and 

�̇�− is the strain tensor approached from the opposite side of 𝐧. With the assumption of a strictly 

isotropic and homogeneous material property (𝐃+ = 𝐃−), the right-hand side of Equation (5.4) 

vanishes, which limits the validity of the above Equation (5.4) to: 

(𝐧 ∙ 𝐃+ ∙ 𝐧) ∙ 𝐦 = 0                                                                                                                           (5.5) 

which is commonly accepted as the condition to signal the onset of strain 

bifurcation/localisation. The parentheses on the left-hand side of Equation (5.5) contain the so-

called localisation or acoustic tensor 𝐐 = 𝐧 ∙ 𝐃+ ∙ 𝐧 . Therefore, the above equation is 

equivalent to: 

det(𝐐) = 0                                                                                                                                           (5.6) 

when Equation (5.5) is satisfied anywhere in the continuum, the acoustic tensor Q becomes 

singular and 𝐦 is of zero eigenvalues. This corresponds to a loss of ellipticity of the governing 

differential equation under static analysis. The boundary value problems become rootless and 

the energy dissipation vanishes with an infinitesimal width of the discontinuous strain surface 

S. This issue can be attributed to the fact that there is a lack of a characteristic length in the 

classical continuum mechanics, which only allows a local interaction among infinitesimal 

volumes upon direct contact.  

5.3.2 Nonlocal regularisation of the classical continuum 

In order to overcome this difficulty, an integral type of strong nonlocality can be introduced to 

enrich the microscale description of the classical continuum (Pijaudier-Cabot & Bažant, 1987). 

Distinguished from directly solving kinematics equations at each infinitesimal representative 

volume in the classical continuum, the nonlocal theory emphasises a weighted averaging 

process of the representative volume over its neighbouring counterparts. This is mathematically 

expressed as: 

f(̅𝐫) = ∫f(𝐫′)W∞(‖𝐫 − 𝐫
′‖)d𝐫′

V

                                                                                                     (5.7) 
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where f(̅𝐫) represents a nonlocal kinematics term/field variable at location r; f(𝐫′) is its local 

counterpart at surrounding location 𝐫′  within the integral domain V; W∞  is the weighting 

function solely dependent on the distance ‖𝐫 − 𝐫′‖ between 𝐫 and 𝐫′. As the ∞ sign indicates, 

W∞ is reaching the entire problem domain with its influence rapidly attenuates as ‖𝐫 − 𝐫′‖ 

increases. This is particularly time-demanding from a computational point of view. Therefore 

in practice, W∞  is truncated to only include the most relevant computational points while 

neglecting the far-located ones such that: 

W(‖𝐫 − 𝐫′‖) = {
W∞(‖𝐫 − 𝐫

′‖),            if ‖𝐫 − 𝐫′‖ ≤ R

0,                                    if ‖𝐫 − 𝐫′‖ > R
                                                            (5.8) 

where R is a scalar value defining the radius of the effective influence area of W. In the 

presence of a constant field variable, the integral of W should satisfy: 

∫W(‖𝐫 − 𝐫′‖)
V

d𝐫′ = 1                                                                                                                     (5.9) 

which maintains the objectivity of the computational domain. Therefore, when the radius of W 

approaches zero, it becomes the Dirac delta function and returns to the local analysis as in the 

classical continuum. 

The gradient function can be approximated in a similar fashion by replacing field function with 

its gradient form in Equation (5.7) as: 

∇f(̅𝐫) = ∫∇f(𝐫′)W(‖𝐫 − 𝐫′‖)d𝐫′

Ω

                                                                                               (5.10) 

By applying the divergence theorem, Equation (5.10) consists of a flux term with closed surface 

circulating 𝐫, and a source term regarding the gradient of the weighting function. The flux term 

becomes zero in a closed surface, while the source term can be written as: 

∇f(̅𝐫) = −∫ f(𝐫′)∇W(‖𝐫 − 𝐫′‖)d𝐫′

Ω

                                                                                           (5.11) 

For any continuum domain with free-surface boundary, Equation (5.7) exhibits deficiency issue 

due to a truncation of W(‖𝐫 − 𝐫′‖) at the vicinity of the boundary. Therefore a corrective form 

of Equation (5.7) is practically preferred: 
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f(̅𝐫) =
∫ f(𝐫′)W∞(‖𝐫 − 𝐫

′‖)d𝐫′
V

∫ W∞(‖𝐫 − 𝐫′‖)d𝐫′V

                                                                                                  (5.12) 

Nonlocal approximation of gradient function in Equation (5.11) also manifests boundary 

deficiency issue which can be regularised in a similar fashion as it in Equation (5.12). the 

detailed formulations have been elaborated in Chapter 3. 

Now the continuity and motion Equation (5.1) and (5.2) can be readily approximated by 

Equation (5.11) to obtain their nonlocal form. Before that, the governing Equation (5.1) and 

(5.2) are expressed in a more generic form to account for a vanished gradient of any constant 

field as follows: 

Dρ

Dt
= − [

∂(ρ𝐯)

∂𝐫
− 𝐯

∂ρ

∂𝐫
]                                                                                                                  (5.13) 

D𝐯

Dt
=
∂

∂𝐫
(
𝛔

ρ
) +

𝛔

ρ2
∂ρ

∂𝐫
+ 𝐟                                                                                                               (5.14) 

The nonlocal operator can then be used to approximate the above formulations to derive the 

commonly applied form of the nonlocal continuity and motion equations as: 

∇ρ̅ =
Dρ

Dt
= ∫ρ(𝐯 − 𝐯′)∇W(‖𝐫 − 𝐫′‖)d𝐫′

V

                                                                                (5.15) 

∇�̅� =
D𝐯

Dt
= ∫ (

𝛔

ρ
+
𝛔′

ρ′
)∇W(‖𝐫 − 𝐫′‖)d𝐫′

V

+ 𝐟                                                                        (5.16) 

The above formulations can be readily applied to the discretised computational domain for the 

integral type numerical methods such as Smoothed Particle Hydrodynamics (SPH) and 

reproduced kernel particle method (RKPM) (Bui et al. 2008a; Liu et al. 1995). Therefore these 

numerical methods can be regarded, more or less, as naturally possessing nonlocal features, 

and the effective influence radius of the weighting function W is the embedded characteristic 

length that governs energy dissipation rate in the existence of a discontinuous strain field, 

which will be demonstrated in the next part. 
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5.4 The nonlocal character of the SPH method 

Since the SPH method is of key interest in this work, we shall now focus on its discretisation 

of the continuum domain with the inherent nonlocal feature. When the field variables and their 

gradient terms are approximated by SPH discretisation, a weighted average process is applied 

which can be written as follow: 

f(𝐫) = ∫ f(𝐫′)W(𝐫 − 𝐫′, h)d𝐫′

Ω

                                                                                                     (5.17) 

∂f(𝐫)

∂𝐫
= ∫ f(𝐫′)

∂W(𝐫 − 𝐫′, h)

∂𝐫′
d𝐫′

Ω

                                                                                              (5.18) 

Where f(𝐫i) is the SPH approximation of the continuum field tensors. W(𝐫 − 𝐫′, h) is the SPH 

kernel function determined by a location tensor 𝐫 − 𝐫′ and a smoothing length h which defines 

the influence radius of the kernel. In numerical analysis, the above equations are formulated as 

particle summations as: 

f(𝐫i) ≈∑
mj

ρj

N

j=1

f(𝐫j)W(𝐫i − 𝐫j, h)                                                                                                   (5.19) 

∂f(𝐫i)

∂𝐫i
=∑

mj

ρj

N

j=1

f(𝐫j)
∂W(𝐫i − 𝐫j, h)

∂𝐫i
                                                                                             (5.20) 

where N  is the total number of neighbouring particles j that are located within the kernel 

influence radius of particle i . mj ρj⁄  is the mass density ratio of particle j representing its 

occupied spatial volume. Now by introducing the following notations: 

  Wij = W(|𝐫i − 𝐫j|, h)        and        
∂Wij

∂𝐫i
=
∂Wij

∂𝐫i

∂𝐫i
|𝐫i|

                                                               (5.21) 

the most common expressions for the SPH approximation of field variables and gradient terms 

can be written as: 

f(𝐫i) ≈∑
mj

ρj
f(𝐫j)Wij

N

j=1

                                                                                                                    (5.22) 
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∂f(𝐫i)

∂𝐫i
≈∑

mj

ρj
f(𝐫j)

∂Wij

∂𝐫i

N

j=1

                                                                                                               (5.23) 

The above SPH formulations are, in nature, the same as the nonlocal operator that has been 

introduced in Equation (5.7) and (5.10). This shows that the SPH method is characterised with 

inherent nonlocality, which is potentially capable to capture the microscale material length 

effect. Accordingly, the continuity and motion Equation (5.1) and (5.2) can be discretised in 

the SPH particle summation as follow: 

Dρi
Dt

=∑mj(vi
α − vj

α)
∂Wij

∂ri
α

N

j=1

                                                                                                         (5.24) 

Dvi
α

Dt
= ∑mj (

σi
αβ
+ σj

αβ

ρiρj
+ Cij

αβ)

N

j=1

∂Wij

∂ri
β
+ fi

α                                                                            (5.25) 

the above SPH approximation of the mass and momentum governing equations for soil are 

similar to the particle approximation form of the ones described in Equation (5.15) and (5.16). 

By using the same weighted averaging functions (kernel functions), Equation (5.24) and (5.25) 

become exact particle approximation of the general nonlocal integration functions in the 

continuum mechanics environment. Therefore, it is clear that the SPH method is featured with 

nonlocal characteristic, which is able to naturally capture the bifurcation in the problem without 

applying special treatments that have been proposed in the FEM. Despite this fact, it has been 

demonstrated in the later section that the traditional SPH prediction of the plastic softening 

process in soil domain manifests a dependency on the selection of particle resolution 

(analogous to the mesh dependency issue in FEM). The reason for this phenomenon is due to 

the fact that the numerical resolution of the SPH method is linked to the size of the kernel 

supporting domain which has been acted as a characteristic length scale in the SPH domain. 

This means that whenever the resolution is changed, the nonlocal kernel function also changes 

its influence radius in order to maintain the numerical stability of the computational domain. 

Therefore SPH interpretation of the field kinematics is altered with different selections of the 

discretised resolution, demonstrating a dependency of its predictions of the stress path. 

To overcome this issue, two approaches have been applied in this work with their performance 

compared. The first one is to conduct the SPH kernel interpolation with a fixed-size supporting 
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domain which is independent from the selection of the numerical resolution. This approach can 

be straightforwardly implemented to the relation between the numerical resolution and the size 

of the kernel smoothing length described below: 

hsml = ξdx                                                                                                                                        (5.26) 

where hsml is the kernel smoothing length and dx is the initial inter-particle distance (the 

numerical resolution) in the SPH domain when uniformly discretised. Coefficient ξ is normally 

predefined and kept in constant value (typically around 1.25) during the numerical simulation. 

In the first approach, hsml is defined as a characteristic length parameter which features 

constant value in a particular problem context, and the coefficient ξ is calculated accordingly. 

As the kernel interpolation is applied throughout SPH, this approach guarantees a consistent 

prediction of the field kinematics including the material behaviour during both elastic and 

plastic stage. In order to validate this concept, a numerical simulation of a biaxial test is 

conducted in the following section with different discretised resolution and a fixed size of the 

kernel supporting domain. The obtained results show an optimum agreement among various 

discretisation resolutions. However, Equation (5.26) underlies the stability of the 

computational domain. This approach is limited to a small range of material length parameter 

and selection of the numerical resolution. Apart from this, as the numerical domain enters large 

deformation stage, particle pairing issue (described in Chapter 3) becomes more violent and 

compromises the numerical stability.  

In the second approach, an additional nonlocal operating function is incorporated into the 

current SPH framework to regularise the energy dissipation process as the material reaches the 

plastic stage. This facilitates the numerical simulation to achieve a converging stress path for 

the post-peak section of the stress-strain relation in the sample. The nonlocal operating function 

is defined similarly as the SPH kernel which features an effective influence radius and 

interpolates the unknow field variables by weighted averaging over their neighbouring 

counterparts. The nonlocal operator for interpolating field variable f(𝐫) is implemented in its 

normalised form as described in Equation (5.12), and a bilinear function is applied in this work 

which is illustrated in Figure 5.2 and written as: 

α(‖𝐫 − 𝐫′‖) = {
exp (−

‖𝐫 − 𝐫′‖

lc
) ,           if ‖𝐫 − 𝐫′‖ ≤ Rc

0,                                           if ‖𝐫 − 𝐫′‖ > Rc

                                                 (5.27) 
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Figure 5.2: Illustration of the bilinear nonlocal function and its effective supporting domain 

(Huang et al., 2018). 

in Equation (5.27), lc is the material characteristic length parameter. Rc is the influence radius 

of the bilinear weighting function, which is related to lc as Rc = 6lc for omitting the minor 

contribution from far-located particles and improving the overall computational efficiency. 

In this work, the field variable regularised by the above nonlocal operator is the total equivalent 

plastic strain. The definition and corresponding formulations of the total equivalent plastic 

strain have been elaborated in Chapter 3, referring to Equation (3.81) and (3.82). As suggested 

in the literature, a linear relation that combines the original and nonlocal counterparts of the 

total equivalent plastic strain is further applied to facilitate a full energy regularisation in SPH 

as (Vermeer & Brinkgreve, 1994; Di Luzio & Bažant, 2005): 

ε̂p
eq
= ξ ε̅p

eq
+ (1 − ξ) εp

eq
                                                                                                               (5.28) 

where ξ is a scalar ranged from zero to a certain positive value. As suggested by Vermeer and 

Bažant (Vermeer & Brinkgreve, 1994; Bažant & Jirásek, 2002), ξ = 2  gives the best-

converged solution, which is also applied throughout our model. The term ε̂p
eq

 in Equation 

(5.28) is eventually applied in Equation (3.79) and (3.80) to control the evolution of the Mohr-

Coulomb yield surface which can be explicitly written as: 

ϕ = ϕres + (ϕpeak − ϕres)e
−ηε̂p

eq

                                                                                               (5.29) 

c = cres + (cpeak − cres)e
−ηε̂p

eq

                                                                                                    (5.30) 

The above nonlocal operator, as demonstrated in later sections, is able to remove the resolution 

dependency in the SPH domain by maintaining an objective material length scale while 
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preserving a very good numerical stability and reasonable computational efficiency compared 

to the first approach as presented above. 

5.5 Numerical simulations 

In order to further investigate the local and nonlocal features that SPH method demonstrates, 

numerical simulations of biaxial tests are conducted in this section. A wide spectrum of particle 

resolutions of the computational domain has been considered for three groups of biaxial tests 

with: first, the traditional SPH; second, the application of a fixed kernel supporting domain in 

SPH; third, the application of a nonlocal operating formulation in SPH. As demonstrated with 

superior performance, the SPH framework with the nonlocal operator is then applied to analyse 

the initiation and development of the bifurcation and localisation of the strain field in the 

numerical domain considering the heterogeneity in soil materials. The evolution of the second-

order work and the acoustic tensor are tracked to identify the initiation condition for a 

bifurcation process, which is also compared with the deviatoric strain plot in the sample. 

5.5.1 Regularised SPH for shear band prediction in biaxial test 

In this part, three groups of biaxial tests are conducted for demonstrating the energy 

regularisation in SPH methods. The comparison is made among: the conventional SPH method 

without considering any regularisation; the conventional SPH with energy regularisation 

through its embedded kernel; the SPH incorporated with a nonlocal operator. A rectangular-

shaped specimen, containing sandy material, is applied here with the height of 0.12m and width 

0.08m modelled under plane strain condition (Figure 5.3a). Five different initial inter-particle 

distances (resolutions) are selected here to conduct the tests as dx = 2mm, dx = 3mm, dx =

4mm, dx = 5mm and dx = 6mm. This corresponds to SPH domains with 2800, 1350, 800, 

544 and 390 particles (including the boundary particles) respectively. The bottom of the 

specimen is fixed in place, while a velocity field with constant 1mm sec⁄  downwards and 

0mm sec⁄  horizontal components are prescribed to the top boundary replicating a non-slip 

condition. The material properties and other numerical parameters are listed in Table 5.1. 

In Figure 5.3b, a scheme which utilises an extra layer of dummy particles that help to 

interpolate state variables at an exact location within the sample is illustrated. The dummy 

particles are created at a prescribed location in the computational domain and only used when 

interpolating kinematics states such as stress, strain etc. This technique allows the measurement 
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of all field kinematic/mechanical variables that are carried by SPH particles at a prescribed 

location without being affected by the variation of numerical resolution. The detailed 

formulations are similar to those presented in Chapter 3.4.3, therefore they will not be repeated 

here. 

Table 5.1: The material and model parameter for the biaxial compression test. 

Young’s modulus E 10 MPa 

Poisson’s ratio ν 0.2 

Peak friction angle ϕpeak 25 

Residual friction angle ϕres 15° 

Dilatant angle ψ 0° 

Soil density ρ 2000kg m3⁄  

Softening parameter η 8 

Confining stress σc 50 kPa 

 

 

Figure 5.3: (a) the biaxial compression test setup; (b) illustration of measuring SPH field 

variables with interpolation particles. 

Traditional SPH method 

The traditional SPH method is applied here to predict the above biaxial tests. The obtained 

relationships between the deviatoric stress (σy − σx) and the axial strain εy  are plotted in 

Figure 5.4 for all numerical resolutions. As illustrated in the plot, all samples start from an 

equivalent condition with uniform confining stress of 50 kPa, as the boundary condition 

continuously imposes, the sample responses with an elastic behaviour until it reaches the peak 
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strength at around 0.75% axial strain. The plastic yield surface is reached by the stress state, 

and plastic strain tensors start to develop. Accordingly, the friction angle is reduced according 

to Equation (5.29) and the sample demonstrates a softening behaviour as the increasing axial 

strain is companied by reducing deviatoric stress component. This softening process continues 

until the material reaches its ultimate or residual strength as listed in Table 5.1. As it is 

elaborated in the preceding sections for the theoretical background of the potential resolution 

dependency in the traditional SPH, the results illustrated in Figure 5.4 certainly validate this 

concept as the material softening behaviour is significantly governing by the selection of the 

numerical resolution. A finer discretisation scheme leads to a more brittle material response 

with a faster plastic energy dissipation rate (curve corresponds to dx=2mm), while a coarser 

discretisation scheme demonstrates ductile and slower energy dissipation rate. Apart from this, 

it is noted here that the difference between the predicted elastic stiffness among the various 

resolutions is also partially attributed to the resolution dependency issue in the traditional SPH. 

This can be explained by the results in the later section where a fixed SPH kernel domain is 

used, which shows an exact prediction of the elastic stiffness with various numerical 

resolutions. Similarly the results in Figure 5.12 show an exact prediction of the elastic stiffness 

of the material as the same resolution of dx = 2mm is applied. This also demonstrates that a 

different numerical resolution could potentially influence the measurement of the elastic 

stiffness in a traditional SPH domain. 

 

Figure 5.4: The deviatoric stress versus axial strain plot from traditional SPH prediction of 

biaxial tests under various discretised resolutions. 
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Figure 5.5: The contour of the deviatoric strain field from traditional SPH prediction of 

biaxial tests under various discretised resolutions. 

Figure 5.5 shows the contour of the deviatoric (shear) strain field in the SPH domains when 

the materials just pass their peak strength. The plot clearly shows a dependency of the thickness 

of the area with intensive development of the shear strain (shear band) on the domain resolution. 

The finer resolution shows thinner shear bands while the coarser resolution shows thicker shear 

bands. As the resolution refines, the symmetry of the shear bands alters, showing more 

concentration in one shear band than the other (Figure 5.5). All shear bands in different samples 

feature a similar number of particles along their width, or specifically around three particles. 

This is closely related to the size of the kernel supporting domain with an effective radius of 

2 × hsml, which governs the number of particles that are directly interacting in each kernel 

interpolation. The effective horizontal crossectional area in the sample also differs as the 

margin along sample edges becomes larger as the resolution increases. On the other hand, the 

inclination angle of the shear bands does not seem to be significantly influenced, with all results 

demonstrating an angle around 47 degrees. 

SPH with fixed kernel domain 

As the nonlocal feature in SPH is governed by the kernel function, its influence radius controls 

the energy evolution in the sample. Therefore, the above resolution-dependent pathology can 

be straightforwardly addressed through decoupling the relation between kernel influence radius 

and numerical discretisation size. A fixed kernel influence radius can be applied for all tests 

with various numerical resolutions, where the energy dissipation rates are consistent. In this 

section, a kernel influence radius of 5 mm is considered. Three resolutions are selected namely: 

dx = 2mm, dx = 3mm and dx = 4mm. Accordingly, the coefficient in Equation (5.26) is 

calculated for each case and the corresponding smoothing length can be written as: hsml =
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2.5dx, hsml = 1.667dx and hsml = 1.25dx. The obtained deviatoric stress and axial strain 

relationships and the contour plot for the deviatoric strain field are shown in Figure 5.6 and 5.7. 

 

Figure 5.6: The deviatoric stress versus axial strain plot from biaxial tests under various 

discretised resolutions predicted by SPH with a fixed kernel domain. 

 

Figure 5.7: The contour of the deviatoric strain field from biaxial tests under various 

discretised resolutions predicted by SPH with a fixed kernel domain. 

In Figure 5.6, the material responses to boundary conditions demonstrated by the deviatoric 

stress and axial strain relationship are nearly identical during the elastic range among tests with 

various resolutions. As to the post-peak behaviour, the samples demonstrate a very close plastic 

energy dissipation rate within 0.1% axial strain after the peak stress point. Then the stress path 

starts to deviate among different resolutions. Figure 5.7 shows a near-identical width and 
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inclination angle of the shear bands in various samples. The shear bands in fine resolution 

samples include more particles in their cross-sectional area, and coarse resolutions samples 

show fewer particles in the shear bands crossectional area. The above results demonstrate that 

a fixed kernel influence domain in SPH is able to totally regularise the energy dissipation before 

a certain deformation is reached. Therefore, the smoothing length (hsml) can potentially 

perform as a characteristic length for the numerical domain. However, as the deformation 

continues during the tests, numerical instability and particle pairing issue start to develop in 

the SPH domain, and the curves in Figure 5.6 deviate from each other from 0.9% axial strain. 

The mechanism of this phenomenon has been explained in preceding sections, which is rooted 

in SPH kernels with second-order continuity. Apart from this, the attempt to apply either a finer 

resolution such as dx = 1mm or a coarser resolution dx = 5mm in this work would lead to a 

significant compromisation of the numerical stability, compromising the validity of the 

captured strain localisation. This is due to the fact that the SPH kernel is only able to maintain 

reasonable computational stability for including a certain number of particles in its 

interpolation process. Including either more or fewer particles that are outside of this stable 

range in the SPH kernel would lead to unsatisfactory numerical performance. Therefore, as a 

conclusion, the inherent kernel function in SPH can be decoupled with the numerical 

discretisation to facilitate regularising energy dissipation during plastic deformation. However, 

this approach is only applicable for a limited range of particles that the SPH kernel is able to 

contain and under small deformation condition for achieving an acceptable level of numerical 

stability. Therefore, it cannot be applied as a generic approach to regularise the plastic energy 

dissipation in traditional SPH domain for a wide range of geomechanical problems. In the next 

section, the application of a nonlocal operating function in SPH is introduced to further address 

this issue. 

SPH with a nonlocal operator 

As demonstrated above, a fixed kernel influence radius is able to regularise the energy 

dissipation in SPH domain as the peak stress is reached and maintain an objective prediction 

of the stress path for a short period (0.1% after peak stress). When the material softening 

continues, the energy dissipation diverges and the domain fails to maintain an objective energy 

dissipation path. To overcome this, in the current section, a nonlocal operator is incorporated 

into the strain-softening constitutive model in SPH to regulate the evolution of the equivalent 

plastic strain as described in Equation (5.12) and (5.28). This operator is calculated based on 

the bilinear function in Equation (5.27) featured with a distinct supporting domain as compared 
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to the SPH kernel. Therefore, a separate searching and pairing process is conducted to identify 

particle relations for the nonlocal operator function. The biaxial tests conducted in this section 

have the same setup as in preceding sections. Two different characteristic lengths in the bilinear 

function namely lc = 3mm  and lc = 5mm  are first applied in the biaxial tests. The 

corresponding relations between deviatoric stress and axial strain are illustrated in Figure 5.8 

and 5.9 below. 

 

Figure 5.8: The deviatoric stress versus axial strain plot from biaxial tests under various 

discretised resolutions predicted by SPH with a nonlocal operator and lc = 3mm. 

 

Figure 5.9: The deviatoric stress versus axial strain plot from biaxial tests under various 

discretised resolutions predicted by SPH with a nonlocal operator and lc = 5mm. 

In both Figure 5.8 and 5.9, the samples start from an equivalent state under 50 kPa confining 

stress. As the deviatoric load is applied, the samples respond with elastic behaviour until the 
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peak shear stress of 78 kPa is reached at 0.8 axial strain. The peak stress is then followed by a 

reduction in material strength shown as the softening of the deviatoric stress. In these tests, 

SPH samples with various resolutions demonstrate very good agreement in predicting the 

plastic energy dissipation rate until the residual material strength is reached. The deviatoric 

stress versus axial strain curve among different numerical resolutions follow a very similar path 

for lc = 3mm  and lc = 5mm  respectively. For tests with lc = 3mm , the plastic energy 

dissipation rate is faster, shown as a more rapid softening process and reduction of the material 

strength. On the other hand, tests with lc = 5mm feature a slower energy dissipation rate with 

a more ductile material response. During the material softening process, the SPH domains 

maintain very good stability shown as smooth softening curves (Figure 5.8 and 5.9) as the 

traditional hsml=1.25dx relation is applied for the kernel interpolation. Therefore, the nonlocal 

operator function demonstrates its advantage in both regularising the energy dissipation rate 

and facilitate maintaining very good computational stability. Apart from the stress path 

presented above, the shear strain contour is also illustrated in Figure 5.10 and 5.11 below. 

 

Figure 5.10: The contour of the deviatoric strain field from biaxial tests under various 

discretised resolutions predicted by SPH with a nonlocal operator and lc = 3mm. 

 

Figure 5.11: The contour of the deviatoric strain field from biaxial tests under various 

discretised resolutions predicted by SPH with a nonlocal operator and lc = 5mm. 

The deviatoric strain field in Figure 5.10 and 5.11 shows a concentration pattern with the X-

shaped bands, which demonstrates very similar thickness among the various resolutions 



Chapter 5 A study of local and nonlocal features of SPH and its application to modelling strain 

localisation in geomaterials 

131 

 

applied. The results indicate a well-regularised plastic strain evolution, showing the good 

capability of the applied nonlocal operator. The predicted shear bands above have larger width 

compared with those obtained from SPH with a fixed kernel domain, which is due to the distinct 

supporting domain between the bilinear function and SPH kernels. The width of the shear bands 

is closely related to Rc in Equation (5.27) as it defines an effective interaction between particles 

for the nonlocal operator. The biaxial tests with lc = 5mm  predict thicker shear bands 

compared to those in test with lc = 3mm, which is understandable as lc controls the size of the 

supporting domain of the nonlocal function. The effect of the characteristic length parameter 

lc and its influence on the prediction of the shear bands are discussed in the next section. Apart 

from this, the inclination angles of the shear bands maintain a consistent value of 47° for each 

test group with different resolutions, as well as among tests with different lc values. 

The influence of the selection of lc on the predicted shear band configuration and shear stress 

versus axial strain relationships are examined in this section. The same biaxial setup has been 

applied considering a numerical discretisation size of dx = 2mm, which corresponds to 2800 

SPH particles. Five different lc values are selected including: lc = 0.5mm, lc = 1mm, lc =

2mm, lc = 3mm and lc = 5mm. The deviatoric stress versus axial strain curves are first 

illustrated in Figure 5.12. 

 

Figure 5.12: The deviatoric stress versus axial strain plot from biaxial tests under various 

length scale parameter lc. 

All tests initially yield the same elastic stiffness as the same numerical resolution is applied 

here. As the loading continues, the test samples reach their peak strength of 75 kPa at 0.75% 
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axial strain and enter the softening stage thereafter. The length parameter lc demonstrates a 

significant influence on predicting the plastic energy dissipation rate. Small lc  shows fast 

dissipation and strength softening which corresponds to a brittle material behaviour, while 

larger lc values show a slow energy dissipation and ductile material behaviour. This indicates 

that the length parameter lc can be regarded in the numerical simulations as a characteristic 

length scale which could represent a certain range of material properties under specified 

boundary conditions. The lc parameter can be calibrated to represent a particular material that 

is featured with a certain plastic energy dissipation rate. Therefore, this proposed SPH 

framework provides a basis for potentially linking the material characteristic scale to the 

numerical length parameter and allowing a physically meaningful numerical result to be 

predicted. Apart from this, the contour plot for the deviatoric strain is illustrated in Figure 5.13 

for demonstrating the effect of various lc values applied. 

 

Figure 5.13: The contour of the deviatoric strain field from biaxial tests under various length 

scale parameter lc. 

Figure 5.13 illustrates the contour of the shear strain field in the SPH samples with various lc 

values. It is clear that the lc value dominates the width of the predicted shear bands. A smaller 

value of lc corresponds to a thinner shear band width which leads to a more brittle material 

response. When increasing the lc value, the numerical results of deviatoric strain field show a 

wider shear band thickness with a more ductile material response. This is consistent with the 

obtained relation between the deviatoric stress and the axial strain as demonstrated in Figure 

5.12. Apart from this, it has been reported in the literature that the selection of lc should not be 

smaller than the minimum size of the discretisation mesh when a FEM simulation is conducted, 

which will not be able to capture the shear band formation and development (Mánica et al., 

2018). Nevertheless, is has been demonstrated in Figure 5.13 that with a SPH discretisation of 

dx = 2mm, the nonlocal operator can still capture the entire localisation of the deviatoric strain 

field even with a lc value as small as 0.5mm. This can be attributed to the inherent nonlocal 
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feature of SPH as it facilitates a natural prediction of the bifurcation and localisation 

phenomenon in the numerical domain. The above results demonstrate the advantage of 

applying SPH method to predict the localisation and large deformation plasticity problem in 

soils, which is advanced by applying a nonlocal operator showing very well-regularised plastic 

energy dissipation path. In the next section, the strain localisation condition and the evolution 

of shear bands are analysed using the above proposed SPH computational framework. 

5.5.2 SPH modelling of the localised deformation in soil 

In order to further investigate the evolution of the strain field in SPH domain under the plastic 

deformation and capture the localised shear bands, the proposed SPH framework is applied to 

simulate a group of biaxial tests in this section. The biaxial test setup is similar to the one 

applied in section 5.5.1. A loose sandy material is considered for the tests which are subjected 

to a confining pressure of 50 kPa. To account for the heterogeneity nature of sand, a randomly 

distributed porosity (through applying randomness to Young’s modulus) and strength 

parameters are considered. The random parameter is generated using a bell-shaped Weibull 

distribution function. The key parameters that describe the mean value and skewness of the 

Weibull function are  c1 and c2 as shown in Equation (5.31). The corresponding random state 

variable is calculated in Equation (5.32): 

ζ =
c1
c2
(
rd
c2
)
c1−1

exp [− (
rd
c2
)
c1

]                                                                                                    (5.31) 

Var = Var(1 − c3ζ)                                                                                                                         (5.32) 

where ζ is the Weibull parameter, 0 < rd < 1 is a pseudorandom number generated by Fortran 

built-in function “random_number”, Var is any state variable that features heterogeneity and 

c3 controls the degree of randomness. In this work, Var consists of both Young’s modulus E 

and the effective friction angle ϕ. An illustration is shown in Figure 5.14 to show the plot of 

the random field in a biaxial test sample. 
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Figure 5.14: The heterogeneity in the (a) material bulk modulus and friction (b) angle 

generated by applying a Weibull distributive function. 

In parallel with this, the incipient point of the bifurcation, and therefore the localisation of the 

deviatoric strain has been captured as well as interpreted based on two theories namely the 

strain localisation tensor (acoustic tensor) and the second-order work. Both of these approaches 

have been theoretically proposed for indicating a necessary condition for strain localisation to 

occur (Nicot et al., 2007; Nguyen et al., 2016). The acoustic tensor defines the incipient point 

of a bifurcation as the determinant of the tensor becomes zero or negative (in elastoplasticity 

theory) (Nguyen et al., 2016). The second-order work signals the bifurcation as a process of 

the vanishing of the total second-order work both globally in the sample and locally where the 

localisation occurs. In order to implement these two conditions in the SPH method, the acoustic 

tensor can be written similar to that in Equation (5.3) as in Equation (5.33) and the condition 

for the onset of the bifurcation point is expressed for an elastoplastic material as in Equation 

(5.34): 

𝐐 = 𝐧𝐃ep𝐧                                                                                                                                        (5.33) 

det(𝐐) ≤ 0                                                                                                                                        (5.34) 

In Equation (5.33), 𝐧 is the normal vector along the discontinuous strain surface. 𝐃ep is the 

elastoplastic tangent stiffness matrix that coincides with the elastic stiffness matrix for elastic 

material behaviours. The normal vector 𝐧 can be written for three-dimensional space as: 

𝐧 =

[
 
 
 
 
 
 
nx 0 0
0 ny 0

0 0 nz
ny nx 0

0 nz ny
nz 0 nx]

 
 
 
 
 
 

                                                                                                                           (5.35) 
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In this application, the 𝐧  vector is calculated in the plane strain condition. Therefore, its 

expression for the plane is simplified from Equation (5.35) as follows: 

𝐧 =

[
 
 
 
nx 0
0 ny
0 0
ny nx]

 
 
 

                                                                                                                                    (5.36) 

The components nx, ny and nz can be explicitly expressed following the work of Nguyen et al  

(2016) as: 

[

nx
ny
nz
] = [

sin ϕ ∙ cos θ
sinϕ ∙ sin θ
cosϕ

]                                                                                                                     (5.37) 

where the angles are defined in the spherical coordinate system. ϕ is the zenith angle that 

extends from z-axis and has the range 0 ≤ ϕ ≤ π. θ is the azimuthal angle from x-axis in the 

xy-plane with the range 0 ≤ θ ≤ 2π. In a plane strain condition, the angle ϕ = 90°. Therefore, 

to identify the potential plane of the weak discontinuity (shear band), the angle θ is searched 

over its range of 2π in the computational process to check if the elastoplastic tangent stiffness 

matrix satisfies Equation (5.33). 

To close the formulation of the acoustic tensor, the elastoplastic tangent stiffness matrix 𝐃ep 

can be explicitly defined as: 

𝐃ep = 𝐃e −
𝐃e

∂f
∂σ ⊗

∂g
∂σ𝐃

e

∂f
∂σ
𝐃e
∂g
∂σ
− H

                                                                                                         (5.38) 

where 𝐃e is the elastic tangent stiffness matrix, and Equation (5.38) becomes 𝐃ep = 𝐃e when 

the computational domain demonstrates elastic behaviour. H  above corresponds to the 

hardening/softening derivatives which can be explicitly expressed in this work as: 

H =
∂f

∂ϕ

∂ϕ

∂εp
eq val +

∂f

∂c

∂c

∂εp
eq val                                                                                                      (5.39) 

This equation is, in fact, similar to the second half of the denominator of the plastic multiplier 

of the general elastoplastic softening model as described in Equation (3.89). 
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Now the parameters applied for each test sample in the groups of the parametric study are listed 

in Table 5.2. The evolutions of the deviatoric strain in the sample are first illustrated for random 

parameter c3 = 0.1 and c3 = 0.3 in Figure 5.15 and 5.16 respectively. The corresponding 

evolution of the acoustic tensor for each test is plotted in Figure 5.17 and 5.18. 

 

Figure 5.15: The contour plot for the deviatoric strain in SPH predicted biaxial test on sandy 

material with c3 = 0.1 randomness. 

 

Figure 5.16: The contour plot for the deviatoric strain in SPH predicted biaxial test on sandy 

material with c3 = 0.3 randomness. 

 

Figure 5.17: The plot for the evolution of the acoustic tensor in SPH predicted biaxial test on 

sandy material with c3 = 0.1 randomness. 
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Figure 5.18: The plot for the evolution of the acoustic tensor in SPH predicted biaxial test on 

sandy material with c3 = 0.3 randomness. 

As shown in Figure 5.15 and 5.16, the deviatoric strain starts to show a localised pattern over 

the sample at the pre-peak point, which corresponds to the deviatoric stress state before its peak 

value. Depending on the degree of the randomness, the deviatoric strain localisation is less 

spread in the sample with c3 = 0.1, while showing a more smeared distribution when c3 = 0.3 

is applied. As the axial load continues, the distributive pattern of the deviatoric strain 

localisation starts to converge, with some area demonstrating unloading and vanishing of the 

localised strain and other areas with a X-shaped configuration for the continuously localising 

shear bands. Once the post-peak state for the deviatoric stress state is reached, a clear 

localisation of the deviatoric strain field is observed for both results in Figure 5.15 and 5.16. It 

shows a non-symmetric configuration compared to the ones demonstrated for a homogenous 

material in Figure 5.10, which is due to the inclusion of the material heterogeneity. In parallel 

with this, the evolution of the acoustic tensor which indicates the incipient point of the 

localisation is also tracked for both tests with c3 = 0.1 and c3 = 0.3. The illustrations are 

presented in Figure 5.17 and 5.18. The determinant of the acoustic tensor det(𝐐) initially 

shows a positive value across the sample. As the pre-peak point is approached as the axial load 

continues, the det(𝐐)become negative for particles that are corresponding to the localised 

deviatoric strain as shown in Figure 5.15 and 5.16. This agrees well with the theoretical 

interpretation of the onset of the bifurcation in Equation (5.34). At the peak deviatoric stress 

state, the negative value of the det(𝐐) becomes smeared in the sample indicating a potential 

development of the shear band, which is similar to the localised deviatoric strain field. When 

the stress state in the samples enter the post-peak range, the negative values of det(𝐐) 

coincides with the observed shear bands as shown in Figure 5.15 and 5.16, which demonstrates 

a localised pattern. The above process is also captured by the second-order work evolution in 

the sample, shown in Figure 5.19 and 5.20 below. 
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Figure 5.19: The SPH predicted biaxial test on sandy material with c3 = 0.1 randomness: (a) 

the deviatoric stress versus axial strain plot; (b) the evolution of the second-order work with 

axial strain. 
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Figure 5.20: The SPH predicted biaxial test on sandy material with c3 = 0.3 randomness: (a) 

the deviatoric stress versus axial strain plot; (b) the evolution of the second-order work with 

axial strain. 

In Figure 5.19a and 5.20a, the peak shear stress is significantly influenced by the degree of 

randomness with much lower peak stress when larger randomness (c3 = 0.3) is applied. Apart 

from this, the sample with c3 = 0.3 enters the global plastic stage earlier than its counterpart 

with c3 = 0.1, which agrees with the more smeared shear strain localisation pattern in Figure 
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5.16. As the material passes its peak stress, the test with c3 = 0.1  demonstrates a faster 

softening process due to a more localised strain pattern, while test with c3 = 0.3  has not 

entered its softening stage in the same range of axial strain. In order to further show the 

evolution of the stress state and its correspondence with the second-order work, three points 

have been selected and marked both on the stress path and the evolution of the second-order 

work plots as illustrated. The first point marks the first appearance of the negative determinant 

of the acoustic tensor, which is at the end of the elastic part of the stress paths in Figure 5.19a 

and 5.20a. It also signals the change of the second-order work from maintaining a stable state 

to a fast-vanishing stage. The second point corresponds to a fast-vanishing of the second-order 

work as shown in Figure 5.19b and 5.20b. In the stress path, this point marks the transition 

from elastic material behaviour to the material peak stress. Then, the material peak stress is 

achieved at the third point which corresponds to a negative value on the second-order work 

path as it just passes the zero point. The above results demonstrate the same process as what 

the second-order theory predicts during a bifurcation process, which also agrees well with the 

results of other tests that capture the bifurcation process as reported in the literature (Darve et 

al., 2007; Nicot et al., 2007). 

5.6 Conclusion 

In this chapter, a comprehensive study of the local and nonlocal features of the SPH method is 

conducted in the classical continuum mechanics background to analyse bifurcation and strain 

localisation problems. The generalised form of the nonlocality that has been incorporated into 

the classical continuum framework is first presented, which is then compared with the 

traditional SPH approximation of the soil governing equations. The comparison shows 

similarities between SPH and the nonlocal functions that demonstrates an inherent nonlocal 

character of SPH method. This feature is then further explored regarding the kernel 

interpolation function that governs the energy dissipation rate in the computational domain. 

The nonlocal kernel function demonstrates its capability to fully regularise the energy 

dissipation and correct the resolution dependency issue in the traditional SPH method when 

the kernel supporting domain is fixed. However, this approach features potential numerical 

instability and computational overburden as SPH kernel is closely related to the numerical 

stability during the interpolation. Therefore, a nonlocal operator is further incorporated into the 

SPH method. The proposed framework shows its capability to well regularise the energy 

dissipation and avoid any resolution dependency issue in a series of biaxial parametric studies. 
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In parallel with this, a Mohr-Coulomb elastoplastic strain-softening model is applied in this 

study to capture the strain localisation process. Two criteria, namely the acoustic tensor and 

second-order work, are used to check the incipient point of the bifurcation and subsequently 

the localisation in strain field. The obtained results in section 5.5.2 show a good agreement 

with the localisation theory. This demonstrates the capability of the proposed SPH framework 

to capture the bifurcation point and post-localisation process, indicating its potential to be 

applied to solve engineering problems with large plastic deformation such as the slope failure. 

This particular work will be demonstrated in the next chapter. 
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6.1 Introduction 

In the previous chapters, it has been demonstrated that the proposed SPH computational 

framework is a powerful tool for capturing localised failure with large deformation under a 

range of mechanical boundary conditions. To further facilitate solving problems involving 

unsaturated soils, a fully coupled three-phase numerical framework is incorporated into the 

SPH method and the details are presented in this chapter. The kinematics of solid, liquid and 

air phases are taken into consideration with the corresponding conservation of the linear 

momentum and mass balance conditions in the governing equations. The effect of the change 

of the suction force on the mechanical behaviours of the soil domain is also taken into account 

through evolving state parameters in the Mohr-Coulomb model. Therefore, the reduction of the 

soil strength that has been observed during the rainfall-induced soils failures can be captured 

by the proposed numerical framework. To validate the multiphase SPH method, an infiltration 

test in soil column is first carried out with its result compared to the Terzaghi’s theoretical 

solution. Then the water infiltration process in an embankment is modelled and compared to 

the experimental data. Lastly, two fullscale rainfall-induced failure tests are conducted on 

slopes containing sandy clay and Masa sand. For the Masa sand slope, the obtained results are 
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further validated against the experiment, which demonstrates a very good agreement in 

predicting the slope run-off distance. 

6.2 Problem background 

The unsaturated soil condition refers to the coexistence of multiphase in the soil bulk, which 

mainly includes solid, liquid and air. It is the most commonly existed soil form in the natural 

geology (Fredlund & Rahardjo, 1993). Due to the existence of air component, soil properties 

including the shear strength, ductility and expansivity are significantly altered compared to the 

fully saturated and the dry soil conditions. Despite much work for understanding this particular 

soil condition, it was only until Fredlund and Rahardjo’s systematic summary that a theoretical 

framework for unsaturated soil mechanics was established (Fredlund & Rahardjo, 1993). In 

parallel, numerous computational analysis has been conducted to facilitate understanding the 

unsaturated soil behaviours. The classical meshed based method is the most prevailing 

approach, represented by FEM. The work regarding FEM prediction of unsaturated soil 

behaviour mainly focuses on the development of the hydraulic constitutive models 

(Narasimhan & Witherspoon, 1978; Khalili et al., 2008; Sheng et al., 2008; Sheng 2011; Zhang 

& Ikariya, 2011; Sun & Sun, 2012). The coupling of the hydro-mechanical effect is described 

through elastoplasticity, elasto-viscoplasticity and critical state plasticity (Russell & Khalili, 

2006; Sun et al., 2007; Oka et al., 2019). Attempts are also made in capturing the deformation 

of the soil bulk for biaxial test and rainfall-induced slope failures (Oka et al., 1995; 2002; 2011; 

2019; Zhang & Ikariya, 2011; Cascini et al., 2013; Song & Borja, 2014). However, due to the 

limitations of the mesh discretisation, the prediction of any large deformation process can not 

be achieved by FEM. Another popular approach for modelling the unsaturated soil is the 

discrete element method, which has been applied for calibrating the hydraulic constitutive 

model during the soil collapse process (Liu & Sun, 2002; Liu et al., 2003; Jiang et al., 2004; 

Chalak et al., 2017). The DEM describes the capillary force at the micromechanical level by 

introducing an inter-particle force that mimics the suction effect among unsaturated soil 

particles. Therefore, it yields very good agreement with the experimental predicted stress path 

during the soil plastic behaviours as well as the hysteresis effect (Liu & Sun, 2002). The shear 

strength of the soil and the influence of the water content on altering soil strength is also 

captured by a capillary water contact model in DEM (Jiang et al., 2004). However, due to the 

computational-expensive nature of DEM, the current investigations of the unsaturated soil 

behaviour focus at microscale level and in a qualitative manner. A full-scale prediction of the 
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soil large deformation process is not yet available for DEM applications. In parallel with the 

above two methods, the generalised interpolation material point method (GIMP) has gained 

much attention recently for capturing large plastic deformation in unsaturated soils (Yerro et 

al., 2015; 2016; Bandara & Soga, 2015; Bandara et al., 2016). In the GIMP, three phases of the 

unsaturated soil including solid, liquid and air are carried by Lagrangian particles following 

the continuum mechanics assumption of the numerical domain. Therefore, a large deformation 

process is achievable. It has been demonstrated that the rainfall-induced slope failure problems 

in unsaturated soil with a full run-off process can be well-captured (Yerro et al., 2016; Bandara 

et al., 2016). Despite the above progress, it has been summarised in Chapter 2 that the GIMP 

approach still faces difficulties in problems involving confining boundary conditions and 

irregular-shape numerical domains. 

Therefore in this research work, to facilitate numerical modelling of unsaturated soils with 

large deformation predictions, a fully coupled multiphase framework is implemented into the 

Lagrangian meshfree SPH method. In the proposed method, the three phases including solid, 

liquid and air of the unsaturated soil are carried by each SPH particle. The generalised mass 

conservation condition is applied for all phases. The conservation of the linear momentum is 

also considered, which is combined with the mass conservation to govern the kinematics of 

SPH particles to describe unsaturated soil behaviour. The soil-water characteristic relationship 

is governed by the classic van Genuchten model, which may vary under different problem 

conditions. The proposed numerical approach is first validated in an infiltration test against 

Terzaghi’s theoretical solution. It is then applied to simulate a water infiltration test in a soil 

embankment and the obtained results are compared to the experimental data. Lastly, the 

rainfall-induced slope failure process is simulated and compared to the experimental results, 

which demonstrate the capability of the proposed numerical framework in capturing the large 

deformation process in unsaturated soils. 

6.3 The coupled multiphase framework for unsaturated soils in SPH 

6.3.1 The basic concept in an unsaturated soil 

The mixture of unsaturated soil can be idealised to contain three components: the solid skeleton 

of the soil, the liquid and air, where the liquid and air components fill the voids in the soil 

domain. The liquid component can contain both the fluid and dissolved air, while the air 

component can be a mixture of dry air and evaporated liquid (Figure 6.1). However, for the 
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sake of simplicity, the mass exchange between liquid and air components is neglected in this 

study. In accordance with this concept, the total volume of an unsaturated soil domain can be 

expressed as: 

Vtotal = Vs + Vl + Va                                                                                                                          (6.1) 

The volume of each component can  be related to the total volume by considering their volume 

fraction as: 

Vc = ncVtotal                                                                                                                                        (6.2) 

where Vc is the volume for each component and nc is the volume fractions for each component. 

Now consider the definition of porosity n and degree of saturation Sr, the volume fraction for 

each component can be explicitly written as: 

ns = 1 − n                                                                                                                                            (6.3) 

nl = nSr                                                                                                                                                (6.4) 

na = n(1 − Sr)                                                                                                                                    (6.5) 

The density (or mass) of the unsaturated soil mixture can be written in a similar manner by 

considering the above equations as: 

ρtotal = (1 − n)ρs + nSrρl + n(1 − Sr)ρa                                                                                   (6.6) 

where ρs, ρl and ρa are the density for solid, liquid and air components.  

In order to further describe the kinematics of the soil domain, the total stress tensor should be 

defined, which is a sum of solid, liquid and air stress as follows: 

𝛔 = 𝛔s + 𝛔l + 𝛔a                                                                                                                                (6.7) 

By considering the volume fraction for each component, the partial stress tensor can be 

expressed as: 

𝛔s = 𝛔′ − (1 − n)𝐩F𝛅                                                                                                                       (6.8) 

𝛔l = −nSrp
l𝛅                                                                                                                                      (6.9) 
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𝛔a = −n(1 − Sr)p
a𝛅                                                                                                                       (6.10) 

where pl and pa are pressures of liquid and air, which will be used to derive the governing 

equations in later sections. 𝛅 is the Kronecker’s delta and 𝐩F accounts for the stress from liquid 

and air which can be written as: 

𝐩F = Srp
l + (1 − Sr)p

a                                                                                                                  (6.11) 

The total stress tensor can be further written in a combination of 𝐩F and the Bishop’s effective 

stress (skeleton stress) tensor as: 

𝛔′ = 𝛔 + 𝐩F𝛅                                                                                                                                    (6.12) 

where 𝛔′ is the effective stress tensor. 

 

Figure 6.1: The framework for the unsaturated soil components. 

6.3.2 Basic assumptions for the SPH unsaturated soil framework 

Due to the complex nature of the unsaturated soil, it is necessary to impose certain 

simplifications and assumptions before a numerical analysis can be performed. In the proposed 

SPH unsaturated soil framework, the following assumptions are considered: 

1. No mass exchange between solid and air components 

2. The solid grains are incompressible 

3. The soil is isothermal 

4. Diffusive terms in liquid and air are neglected 
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With the above assumptions, the general mass and momentum balance for the soil domain can 

be now derived. 

6.3.3 The general mass balance 

The mass balance for a three-three phase (air, liquid, solid) porous media can be expressed in 

the following general form: 

∑[
∂

∂t
(
mc

V
) + ∇𝐣c]

c

= 0                                                                                                                 (6.13) 

In above, mc  is the mass for each component. The fraction between the mass of each 

component and the corresponding volume is the density for each component. jc is the sum of a 

diffusive and advective flux written as: 

𝐣c = 𝐢𝑐 + (
mc

V
)𝐯𝑐                                                                                                                              (6.14) 

In above, the diffusive flux represents the diffusion of liquid in air and air in liquid, which can 

be depicted through the Fick’s law (Fick, 1855) as follows: 

𝐢c = −ρc𝐃c𝐈∇ωc                                                                                                                               (6.15) 

where 𝐃c is a dispersion tensor. In Equation (6.14), if we consider no mass exchange between 

air and liquid phase for simplification, the diffusive term 𝐢𝑐  is ignored, and the general mass 

balance for the three components can be simplified to: 

dρ̅c
dt

+ ∇(ρ̅c�̇�
c) = 0                                                                                                                          (6.16) 

where ρ̅c  is the density for solid, liquid and air phases. �̇�c  is the velocity tensor for each 

component. Now consider the definition of porosity and degree of saturation, the density for 

all three phases can be explicitly expressed as: 

ρ̅s = (1 − n)ρs                                                                                                                                  (6.17) 

ρ̅l = nSrρl                                                                                                                                          (6.18) 

ρ̅a = n(1 − Sr)ρa                                                                                                                             (6.19) 
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Substitute Equation (6.17) to (6.19) into the mass balance equation (6.16) we can obtain the 

general form of mass balance for an unsaturated soil as: 

(1 − n)
∂ρs
∂t

+ ρs
∂(1 − n)

∂t
+ ρs∇[(1− n)�̇�s] + (1 − n)�̇�s∇ρs = 0                                    (6.20) 

nSr
∂ρl
∂t
+ ρl

∂(nSr)

∂t
+ ρl∇[(nSr)�̇�l] + nSr�̇�l∇ρl = 0                                                              (6.21) 

then multiply Equation (6.20) with Sr ρl ρs⁄  we can obtain: 

Sr(1 − n)
ρl
ρs

∂ρs
∂t

+ Srρl
∂(1 − n)

∂t
+ Srρl(1 − n)∇�̇�s + Sr

ρl
ρs
(1 − n)�̇�s∇ρs = 0             (6.22) 

Adding the above Equation (6.21) and (6.22), considering that the spatial gradients of porosity 

and saturation are sufficiently small, we can obtain: 

Srρl [
∂(1 − n)

∂t
+
∂n

∂t
] + ρl∇[nSr(�̇�l − �̇�s)] + Srρl∇�̇�s + nSr (

∂ρl
∂t
+ �̇�l∇ρl) + nρl

∂Sr
∂t

 

+Sr(1 − n)
ρl
ρs
(
∂ρs
∂t

+ �̇�s∇ρs) = 0                                                                                              (6.23) 

Further considering the material derivative as: 

∂ρl
∂t
+ �̇�l∇ρl = ρ̇l                                                                                                                               (6.24) 

and recalling the assumption that the soil particles are incompressible, the last term in Equation 

(6.23) vanishes. Divide the Equation (6.23) by ρl, we can have: 

∇[nSr(�̇�l − �̇�s)] + Sr∇�̇�s + nSr
ρ̇l
ρl
+ nṠr = 0                                                                           (6.25) 

The liquid density rate over liquid density in the above equation can be transformed according 

to the elastic relation between the volumetric strain and pressure as follow (Higo et al., 2010): 

ρ̇l
ρl
= −

V̇l
Vl
= −tr�̇�l =

ρ̇l
Kl
                                                                                                                  (6.26) 
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where ρl = −Kltr𝛆l, and Kl is the volumetric elastic coefficient for water, which is a constant 

under isothermal condition. Incorporate Equation (6.26) into (6.25), the mass balance equation 

for the liquid component can be expressed as: 

∇[nSr(�̇�l − �̇�s)] + Sr∇�̇�s + nSr
ρ̇l
Kl
+ nṠr = 0                                                                          (6.27) 

Similarly, the mass balance equation for air component can be derived following the process 

from Equation (6.16) to (6.25), which gives the final form as: 

∇[n(1 − Sr)(�̇�a − �̇�s)] + (1 − Sr)∇�̇�s + n(1 − Sr)
ρ̇a
ρa
− nṠr = 0                                      (6.28) 

Lastly, by incorporating Equation (6.17) into (6.16), the mass balance for solid phase is 

expressed as: 

ṅ = (1 − n)∇�̇�s                                                                                                                                (6.29) 

6.3.4 The linear momentum balance 

The general form of the linear momentum conservation law can be expressed for the solid, 

liquid and air phases respectively as follows (Oka et al., 2011): 

ρ̅s�̈�s − n(1 − Sr)
ρag

κa
�̇�a − nSr

γw
κl
�̇�l = ∇𝛔s + ρ̅s𝐛                                                               (6.30) 

ρ̅l�̈�l + nSr
γw
κl
�̇�l = ∇𝛔l + ρ̅l𝐛                                                                                                       (6.31) 

ρ̅a�̈�a + n(1 − Sr)
ρag

κa
�̇�a = ∇𝛔a + ρ̅a𝐛                                                                                      (6.32) 

where the relative velocity vectors for liquid and air are defined as: 

�̇�l = nSr(�̇�l − �̇�s)                                                                                                                           (6.33) 

�̇�a = n(1 − Sr)(�̇�a − �̇�s)                                                                                                              (6.34) 

Incorporate Equation (6.33) into (6.31) and Equation (6.34) into (6.32), and neglect the 

acceleration difference �̈�l ≅ 0 and �̈�a ≅ 0 as well as the spatial gradient of saturation and 

porosity. The average relative velocity tensors can be derived and shown as follows: 
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�̇�l = −
κl
γw
(∇pl + ρl�̈�s − ρl𝐛)                                                                                                      (6.35) 

�̇�a = −
κa
ρag

(∇pa + ρa�̈�s − ρa𝐛)                                                                                                 (6.36) 

Now the motion equation for the unsaturated soil domain can be expressed by adding Equation 

(6.30), (6.31) and (6.32) as: 

ρtotal�̈�s + nSrρl(�̈�l − �̈�s) + n(1 − Sr)ρa(�̈�a − �̈�s) = ∇𝛔 + ρtotal𝐛                                   (6.37) 

As the acceleration differences �̈�l − �̈�s  and �̈�a − �̈�s  are negligible compared to the solid 

acceleration tensor �̈�s, therefore the above equation can be simplified to: 

ρtotal�̈�s = ∇𝝈 + ρtotal𝐛                                                                                                                  (6.38) 

Equation (6.38) is the general form of the momentum conservation for the unsaturated soil 

mixture. 

6.3.5 Continuity conditions for liquid and air 

Recall the mass conservation for liquid and air in Equation (6.27) and (6.28), and relate them 

with the relative velocity tensors in Equation (6.35) and (6.36), the continuity equations for 

liquid and air are expressed as follows: 

∇ [−
κl
γw
(∇pl + ρl�̈�s − ρl𝐛)] + Sr∇�̇�s + nSr

ṗl
Kl
+ nṠr = 0                                                    (6.39) 

∇ [−
κa
ρag

(∇pa + ρa�̈�s − ρa𝐛)] + (1 − Sr)∇�̇�s + n(1 − Sr)
ρ̇a
ρa
− nṠr = 0                        (6.40) 

With an assumption of an ideal gas in the isothermal condition in Equation (6.41) (Oka et al., 

2019), the continuity equation for the gas phase can be further expressed as: 

ρ̇a
ρa
=
ṗa
pa
                                                                                                                                              (6.41) 

∇ [−
κa
ρag

(∇pa + ρa�̈�s − ρa𝐛)] + (1 − Sr)∇�̇�s + n(1 − Sr)
ṗa
pa
− nṠr = 0                        (6.42) 
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Equation (6.39) and (6.42) are the continuity condition for liquid and air components, which 

are applied to calculate the time rate for liquid and air pressures. 

6.3.6 Transformation of the continuity conditions for liquid and air 

In order to solve the above continuity Equation (6.39) and (6.42) in an explicit way, the 

kinematic variables: �̈�s, ṗl and ṗa should be solved independently. Therefore, the continuity 

of liquid and air should be transformed in order to relate each unknown variable with known 

values. First, the gradient operator in Equation (6.39) and (6.42) should be expanded as follows: 

∇ [−
κl
γw
(∇pl + ρl�̈�s − ρl𝐛)]

= −
1

γw
[ρl�̈�s∇κl + ρlκl∇�̈�s + ∇κl∇pl + κl∇

2pl − ρl𝐛∇κl]                         (6.43) 

∇ [−
κa
ρag

(∇pa + ρa�̈�s − ρa𝐛)]

= −
1

ρag
[ρa�̈�s∇κa + ρaκa∇�̈�s + ∇κa∇pa + κa∇

2pa − ρa𝐛∇κa]                (6.44) 

The rate of saturation can be derived from the hydraulic constitutive model which will be 

elaborated in the next section, and Ṡr has the form: 

Ṡr =
∂Sr
∂ps

ṗa −
∂Sr
∂ps

ṗl                                                                                                                       (6.45) 

where ps = pa − pl is the suction due to capillary force. 

To make further mathematical transformations of the above equations, the following notations 

are made for the sake of maintaining simplicity: 

A = ∇ [−
κl
γw
(∇pl + ρl�̈�s − ρl𝐛)] + Sr∇�̇�s                                                                                (6.46) 

B = ∇ [−
κa
ρag

(∇pa + ρa�̈�s − ρa𝐛)] + (1 − Sr)∇�̇�s                                                                 (6.47) 

C =
∂Sr
∂ps

= −m(Srmax − Srmin)[1 + (αps)
n′]

−(m+1)
n′(αps)

(n′−1)α                                   (6.48) 
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where C is derived based on the van Genuchten soil water characteristic model which will be 

presented in section 6.3.7. 

From the above notation, the continuity equations for liquid and air in Equation (6.39) and 

(6.42) can be simplified to: 

A + Cnṗa − Cnṗl +
nSr
Kl
ṗl = 0                                                                                                     (6.49) 

B − Cnṗa + Cnṗl +
n(1 − Sr)

pa
ṗa = 0                                                                                         (6.50) 

Now the liquid pressure rate can be expressed from above two equations as: 

ṗl =
A + Cnṗa

Cn −
nSr
Kl

                                                                                                                                  (6.51) 

Substitute Equation (6.51) into (6.50), we can obtain: 

B − Cnṗa +
CnA

Cn −
nSr
Kl

+
CCnn

Cn −
nSr
Kl

ṗa +
n(1 − Sr)

pa
ṗa = 0                                                     (6.52) 

Rearrange the above equation and now the rate of air pressure can be expressed as: 

ṗa =

B +
CA

C −
Sr
Kl

[Cn −
CCn

C −
Sr
Kl

−
n(1 − Sr)

pa
]

                                                                                                 (6.53) 

Now, substituting the above formulation into Equation (6.51), the rate for the liquid pressure 

can be expressed as: 
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ṗl =

A + Cn

B +
CA

C −
Sr
Kl

[Cn −
CCn

C −
Sr
Kl

−
n(1 − Sr)

pa
]

 

Cn −
nSr
Kl

                                                                                  (6.54) 

The above Equation (6.53) and (6.54) can now be applied together with the motion equation 

for the porous mixture in Equation (6.38) to solve the field kinematic variables for unsaturated 

soil. 

6.3.7 The hydraulic constitutive relations 

Due to the existence of air and liquid pressures, the suction force is created due to the capillary 

effect. Generally, an unsaturated soil with lower saturation corresponds to a higher suction 

force due to the increase of the water surface tension that bonds soil particles. The relationship 

between the degree of saturation (water content) and the suction force can be mathematically 

described by a soil-water characteristic curve. In the current study, the classical van Genuchten 

model is adopted to describe this relationship as: 

Sr − Srmin
Srmax − Srmin

= [1 + (αps)
n′]

−m
                                                                                               (6.55) 

where Srmin and Srmax are minimum and maximum saturation parameters which are selected 

based on certain problem context. α, m and n′  are state variables, where m = 1 −
1

n′
. The 

above relationship, when directly applied for low permeability clays, may lead to numerical 

instability due to large inverse values of the permeability. Therefore, an updated permeability 

for both liquid and air components can be expressed as follows to minimise potential numerical 

instabilities (Oka et al., 2019): 

κl = κl
s(Sre)

a [1 − (1 − Sre
1 m⁄ )

n′

]                                                                                               (6.56) 

κa = κa
s(1 − Sre)

b [1 − (1 − Sre
1 m⁄ )

n′

]                                                                                      (6.57) 
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where a and b are material parameters, Sre is the effective saturation which can be expressed 

based on Equation (6.55) as: 

Sre =
Sr − Srmin

Srmax − Srmin
                                                                                                                        (6.58) 

κl
s and κa

s  represent the saturated permeability of liquid and dry permeability of air, expressed 

in terms of void ratio as: 

κl
s = κl

s0exp[(e − e0) Ck⁄ ]                                                                                                             (6.59) 

κa
s = κa

s0exp[(e − e0) Ck⁄ ]                                                                                                             (6.60) 

where κl
s0 and κa

s0 are initial values of permeabilities at the initial void ratio e0, while Ck is a 

material parameter. 

In order for the above framework to be implemented in the SPH method, the particle 

approximation form of the key components in the above mass and momentum conservation 

laws are presented in the next section. 

6.3.8 SPH approximation of the governing equations 

In order for Equation (6.38), (6.39) and (6.42) to be solved in the SPH environment, the 

constituents of these equations are written in SPH discretisation in this section. Starting from 

Equation (6.39), the gradient components are written particle approximation form as: 

∇κl
i =∑

mj

ρj
(κl

j
− κl

i)∇Wij

N

j=1

                                                                                                           (6.61) 

∇pl
i =∑

mj

ρj
(pl

j
− pl

i)∇Wij

N

j=1

                                                                                                           (6.62) 

∇�̈�s
i =∑

mj

ρj
(�̈�s

j
− �̈�s

i )∇Wij

N

j=1

                                                                                                        (6.63) 

∇�̇�s
i =∑

mj

ρj
(�̇�s

j
− �̇�s

i )∇Wij

N

j=1

                                                                                                        (6.64) 
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For approximating the second-order gradient in Equation (6.39) and (6.42), the Taylor 

expansion is applied during the derivation by ignoring higher-order terms, which yields the 

following form (Morris et al., 1997; Chen et al., 1999; Cleary & Monaghan, 1999): 

κl
i∇2pl

i =∑4
mj

ρj

κl
iκl
j

κl
i + κ

l

j
(pl

i − pl
j
)
xij

|xij|
2 ∇Wij

N

j=1

                                                                         (6.65) 

The air counterparts of the above approximations for the liquid component in Equation (6.61) 

to (6.65) are expressed just by replacing l with a, therefore it is not necessary to repeat the 

formulations here. Considering the above SPH formulations, the liquid and air continuity 

equations can be explicitly written in their SPH particle approximation form as: 
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The momentum balance of the soil mixture in Equation (6.38) can be now expressed as: 
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6.3.9 A suction dependent soil constitutive relation 

In order to capture the effect of the change of saturation on the soil mechanical behaviour, 

which is widely observed in unsaturated soils involving problems such as rainfall-induced 

slope failures, a suction dependent Mohr-Coulomb softening model is highlighted in this 

section. In the elastoplastic Mohr-Coulomb strain-softening model introduced in Chapter 3, the 

state parameters ϕ′ and c′ are defined based on effective stress in the dry soil. However, to 

consider the effect of suction in unsaturated soil condition, another set of state parameters that 

evolve depending on the saturation state of the soil are introduced. We start by defining the 

friction angle and cohesion as a combination of an effective part and suction dependent part as 

follows: 

ϕ = ϕ′ +ϕs                                                                                                                                      (6.69) 

c = c′ + cs                                                                                                                                         (6.70) 

where ϕ′ and c′ are the effective friction angle and cohesion that are evolving according to the 

total deviatoric plastic strain. ϕs and cs are the friction angle and cohesion that are evolving 

with the state of saturation, or equivalently the suction ps. ϕs and cs can be defined as follows 

(Yerro et al., 2016): 

ϕs = A
′ (

ps
patm

)                                                                                                                                (6.71) 

cs = cmax [1 − e
−B′(

ps
patm

)
]                                                                                                            (6.72) 

in above, the patm is the atmospheric pressure. A′ and B′ are coefficients controlling the rate 

of the variation of the friction angle and cohesion. cmax  is a maximum cohesion value that 

suction force can bring up. 
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Since the total friction angle and cohesion are applied in the Mohr-Coulomb model, the 

consistency condition should be derived for both the effective and suction dependent parts of 

the state parameters. Therefore, the consistency condition is expressed as: 

ḟ =
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σ̇′,αβ +

∂f

∂ϕ

∂ϕ

∂ϕ′
∂ϕ′

∂εp
eq ε̇p

eq
+
∂f

∂c

∂c

∂c′
∂c′

∂εp
eq ε̇p

eq
+
∂f

∂ϕ

∂ϕ

∂ϕs

∂ϕs
∂ps
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Recall the general stress-strain relationship for an elastoplastic material presented in Equation 

(3.46) as: 

σ̇′,αβ = 2Gėαβ + Kε̇γγδαβ − λ̇ [(K −
2G

3
)

∂g

∂σ′,mn
δmnδαβ + 2G

∂g
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]                              (6.74) 

Incorporate Equation (6.74) into the consistency condition in Equation (6.73), and apply ėαβ =

ε̇αβ − (1 3⁄ )ε̇γγδαβ we can obtain the plastic multiplier for an unsaturated Mohr-Coulomb soil 

with suction dependent state variables as: 
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                                                                                                                                                              (6.75) 

Where val can be defined in terms of effective stress in a similar form as Equation (3.90) as: 

val = √
2

3
(
∂g

∂σ′,αβ
∂g

∂σ′,αβ
−
1

3

∂g

∂σ′,mn
∂g

∂σ′,mn
)                                                                              (6.76) 

6.4 Numerical validations 

The proposed SPH framework for modelling unsaturated soil behaviours is validated in this 

section. The proposed approach is first applied for a water infiltration test in a soil column. The 

obtained results are compared to Terzaghi’s theoretical solutions. A water infiltration test is 

then conducted on an embankment. The numerical simulations are compared with the results 
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obtained in the experiment. To further capture plastic deformations in unsaturated soils with 

large deformation, a rainfall-induced slope failure on a sandy clay embankment is performed 

with the proposed method. Lastly, a full-scale slope failure experiment on Masa sand is 

reproduced with SPH, and the obtained results are compared to the experimental data. 

6.4.1 Water infiltration test in a soil column 

The behaviour for a two-phase saturated soil can be validated against the Terzaghi’s 

consolidation theory. However, for a three-phase system, the hydraulic conductivity and soil 

saturation are nonlinear depending on specific liquid pressure states, therefore analytical 

solutions are not straightforwardly available as indicated in the literature (Yerro, 2015). To 

overcome this issue and recover the description of water flow in unsaturated media with the 

Richards equation, assumptions including vertical liquid flow, non-compressible soil grain, 

constant permeability, constant total stress state etc. are necessary (Yerro, 2015). The soil-

water characteristic curve is further simplified with the following linear relation: 

Sr = 1 − as(pa − pl)                                                                                                                       (6.77) 

where as is a constant. With the above conditions, the analytical expression for vertical water 

flow in 1D space can be expressed as: 

∂pl
∂t

= ci
∂2pl
∂z2

                                                                                                                                    (6.78) 

Where z is the distance along the infiltration direction, and the coefficient ci can be related to 

soil hydraulic properties as: 

ci =
κl

nγwas
                                                                                                                                        (6.79) 

Equation (6.78) above has a similar form as the Terzaghi’s theoretical solution for the 

dissipation of excess pore water pressure in 1D space, which is written as: 

∂pl
∂t

= cv
∂2pl
∂z2

                                                                                                                                    (6.80) 
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where cv is the consolidation coefficient. Therefore, the theoretical solution for Equation (6.78) 

bears the same form as that for (6.80) which can be written as (Terzaghi et al., 1996) (Figure 

6.3): 

pl = ∑
2pl
M
(sin

Mz

d
)exp(−M2Tv)

m=∞

m=0

                                                                                          (6.81) 

To conduct the test, a 1m long soil column is created in the SPH domain. An initial negative 

pore water pressure of 0.5 MPa is assigned to the sample to represent an unsaturated condition. 

The bottom and side boundaries of the column are assumed impermeable, while the top 

boundary is permeable. At the beginning of the test, a zero negative pore pressure is assigned 

to the top boundary to enforce a 100% saturated condition. The full saturation is then 

propagated along the column until reaching the bottom boundary. The suction is measured at 

different locations along the soil column and the obtained values are compared to the 

Terzaghi’s solution. The simulation set up is illustrated in Figure 6.2, and the parameters are 

summarized in Table 6.1. 

 

Figure 6.2: The simulation setup for the water infiltration into an unsaturated soil column: (a) 

the boundary conditions; (b) SPH sample. 
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Figure 6.3: Terzaghi’s theoretical solution for a 1D water infiltration process in a vertical soil 

column. 

 

Table 6.1: The numerical parameters for the water infiltration to a soil column. 

Young’s modulus E 1 MPa 

Poisson’s ratio ν 0.3 

Initial porosity n 0.3 

Soil density ρ 2000kg m3⁄  

Liquid permeability κl 5 × 10−7 

Liquid bulk modulus Kl 80 MPa 

SWCC parameter as 10−3 kPa−1 

 

The water infiltration process predicted by the proposed SPH approach is illustrated in Figure 

6.4 and the comparison between the measured suction and Terzaghi’s solution is presented in 

Figure 6.5. During the infiltration process, the water travels vertically in the soil column with 

a smooth and parallel wetting front as shown in Figure 6.4. The SPH approximation of the pore 

pressure automatically satisfies the uniform pressure gradient without showing boundary 

deficiency effect, which could be attributed to the kernel gradient correction applied in the 

proposed method. The wetting front is advanced until the bottom boundary when the entire 

sample is submerged. For the measured suction in Figure 6.5, a very good agreement between 

the SPH results and the theoretical solution has been achieved for a range of time factors from 
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Tv = 0.01 to Tv = 1.5. This covers the entire infiltration process, showing a good prediction 

capability of the proposed approach. However, a minor disagreement has been observed for 

Tv = 0.2 and Tv = 0.7, with SPH results slightly lagging behind the theoretical suction. This 

could be attributed to the artificial viscosity term that applied to stabilise the computational 

domain, which creates additional viscosity to the fluid phase.  

The above results have demonstrated a good capability for the proposed SPH approach to 

capture the seepage flow in the unsaturated soil domain. In order to further validate the method, 

a two-dimensional water infiltration process is simulated in a soil embankment. The obtained 

results and its comparison with the experimental data are presented in the next section. 

 

Figure 6.4: SPH predicted evolution of the suction in the soil column. 

 

Figure 6.5: Comparison between SPH predicted and Terzaghi’s theoretical solution for the 

suction evolution during the infiltration. 
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6.4.2 Water infiltration in a soil embankment 

In this section, SPH simulations of a water infiltration experiment in Shirasu sand has been 

conducted. The test is performed on a sample with 1.8m length, 1.4m width and 0.8m depth 

and 45° side slope (Figure 6.6a). The sample has an initial water content of 38% with affusion 

applied on top of the embankment. The embankment surface is assumed permeable, while the 

bottom and side of the sample are impermeable (Figure 6.6b). The pore water pressure is 

measured at 15 different locations in the sample during the test, with the sensors shown in 

Figure 6.6c. The soil domina is considered to have elastic deformation only during the 

infiltration process. The initial inter-particle distance in the SPH domain is 2cm, which gives a 

total of 1980 particles representing the embankment. As the simulation starts, the affusion is 

applied to the top layer of SPH particles on the horizontal upper surface of the embankment 

body to initiate the infiltration process. 

 

Figure 6.6: The experimental and numerical setup for the water infiltration test: (a) the 

experimental configuration (Kitamura et al., 2007); (b) the numerical test setup; (c) the 

location of pore water measure devices (Kitamura et al., 2007). 

In order to capture the soil-water characteristic relation in this experiment, instead of the van 

Genuchten model, a simple model proposed by Zhang and Ikariya that captures the hydraulic 

hysteresis effect is applied here (2011). In this model, only the wetting process is considered 

in this study, with the following relationship describes the SWCC: 

Sr = Srmax −
2

π
(Srmax − Srmin)tan

−1[(ec2ps − 1) ec2sw⁄ ]                                                    (6.82) 
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or equivalently: 

ps =
1

c2
ln [1 + ec2sw tan (

π

2

Srmax − Sr
Srmax − Srmin

)]                                                                           (6.83) 

where c2 , sw  are parameters corresponding to the wetting process, which are selected 

according to the specific problem context. In the suction ps, the pore air pressure is assumed 

as zero for simplicity in this test. The soil properties, SWCC parameters are summarised in 

Table 6.2. The liquid and air permeabilities are calibrated for this experiment (Xiong et al., 

2014) shown in Figure 6.7, which can be expressed in the following relationships: 

κl = 3 × 10
−8(e10.038Sr)                                                                                                                (6.84) 

κa = 0.1226(e
−9.814Sr)                                                                                                                  (6.85) 

 

 

Figure 6.7: Relationship between liquid and air permeability with the degree of saturation. 

 

Table 6.2: The soil properties and model parameters for the infiltration test on soil 

embankment. 

Young’s modulus E 2 MPa 

Poisson’s ratio ν 0.2 

Initial porosity n 0.61 
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Soil density ρ 2450kg m3⁄  

SWCC parameter c2 0.2 

SWCC parameter sw 0.15 

Maximum saturation Srmax 0.9 

Minimum saturation Srmin 0.28 

Liquid bulk modulus Kl 2.15 GPa 

 

The contour plots for the SPH predicted evolution of the degree of saturation and suction in the 

soil embankment are illustrated in Figure 6.8 and 6.9. The migration of the water is represented 

by the higher degree of saturation (70%) initiated on the top of the embankment. This 

corresponds to a small suction force of 2 kPa compared to the original 8 kPa in the domain. As 

a high-pressure potential difference is created by the hydraulic boundary, the saturated travels 

from top to the bottom of the sample, showing a wetting front that changes the Sr gradually 

from 38% to 70%. The reduce in suction has a similar propagation front with the wetting front. 

During the infiltration process, the thickness of the wetting from increases, which leads to a 

slower change of the suction from 8 kPa to 2kPa. This is different from the experimental results, 

which could be attributed to the SWCC model parameters. 

 

Figure 6.8: The contour plot for the SPH predicted evolution of the degree of saturation in the 

soil embankment. 
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Figure 6.9: The contour plot for the SPH predicted evolution of the suction in the soil 

embankment. 

To further quantitatively validate the SPH predicted infiltration process, the predicted negative 

pore water pressure (PWP) is compared with the experimentally measured ones for all 15 

locations in the soil domain. The results are presented in Figure 6.10. For measuring point 1 to 

5, the SPH method captures very well the initial and residual negative PWP compared to the 

experiment. The wetting process is also well captured showing a similar range for the negative 

PWP to change from -8 kPa to -2 kPa. The SPH results demonstrate a decrease in the rate for 

the wetting to propagate as the water travels into the soil bulk, shown as an increased thickness 

of the wetting front in Figure 6.8. For measuring point 6 to 10, the initial and residual negative 

PWP is well-captured by SPH results. The wetting process is slower compared to those in point 

1 to 5 due to the fact that when water travels to the current locations, the increment in the 

wetting front thickness starts to show a more significant impact on the wetting rate as shown 

in Figure 6.10b. As to the measuring point 11 to 15, SPH captures both the initial and residual 

negative PWP in point 13, 14 and 15. However, due to the significant widening of the wetting 

front at point 11 and 12, the predicted negative PWP curves are not reaching the residual state 

during the test time. It is noted that the dramatic decrease in the experimentally measured 

negative PWP is due to the water infilling the opening voids during collapse of the embankment, 

which is not considered during the SPH simulation. Apart from this, the difference between the 

SPH predicted wetting rate and the experiment can be attributed to the fast infiltration in sandy 

materials in the experiment. For a better numerical prediction of this process, a more advanced 

hydraulic constitutive model may be required. 
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Figure 6.10: The comparison between the SPH predicted and experimental measured negative 

PWP evolution: (a) measuring point 1 to 5; (b) measuring point 6 to 10; (c) measuring point 

11 to 15. 
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The proposed SPH approach shows its capability to well capture the water infiltration in a soil 

embankment, which yields comparable results with the experimental data. To further describe 

the large deformation process for unsaturated soil, the rainfall-induced slope failure cases are 

tests in the following sections. 

 

6.4.3 The rainfall-induced slope failure on a soil embankment 

In order to show the capability for the proposed SPH approach in capturing large deformation 

process in unsaturated soils, a simple rainfall-induced slope failure test is conducted in this 

section. The test is conducted on a full-scale slope with 32m length, 12m height at the slope 

top and 5m height at the slope toe (Figure 6.11). The slope is made of sandy clay with an initial 

negative PWP of -800 kPa which corresponds to a degree of saturation of 76%. A rainfall effect 

is continuously applied imposed on the open surface of the slope to trigger the failure process 

as shown in Figure 6.11, which increases the saturation to 99% with negative PWP of -1 kPa. 

The water retention curve that relates the suction and the degree of saturation is described by 

the van Genuchten model. When the problem domain is discretised by the SPH particles, the 

rainfall boundary condition is reproduced by assigning a lower negative PWP of -1 kPa to the 

particles that are the nearest to the open surface of the slope. To further account for the localised 

failure in the embankment, the soil strength parameters are defined as suction-dependent, 

which features the relation as described in Equation (6.71) and (6.72). According to these 

relations, the increasing saturation (decreasing of suction) would incur a reduction in the 

suction dependent soil strength parameters (ϕs and cs), which leads to slope failure. In the 

meantime, the effective friction angle and cohesion (ϕ′ and c′) are kept constant. A schematic 

illustration for the evolution of the Mohr-Coulomb yield surface and the suction dependent soil 

strength parameters are illustrated in Figure 6.12. It shows that at the same deviatoric plane, 

the size of the Mohr-Coulomb hexagon shrinks with a decrease in the suction. When the yield 

surface becomes small enough, the current stress state in the soil embankment would 

demonstrate plastic deformation and therefore the collapse of the slope. All soil properties and 

numerical parameters have been summarised in Table 6.3. 
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Figure 6.11: The simulation setup for the rainfall-induced slope failure in a soil embankment. 

 

 

Figure 6.12: (a) The evolution of the Mohr-Coulomb yield surface in a deviatoric plane with 

the suction dependent soil strength parameters ϕs and cs; (b) evolution of the ϕs with 

suction; (c) evolution of the cs with suction. 

 

Table 6.3: The soil properties and model parameters for the rainfall-induced slope failure in 

a sandy clay embankment. 

Young’s modulus E 200 MPa 



Chapter 6 A fully coupled multiphase framework in SPH for modelling the large deformation failure of 

the unsaturated soil 

169 

 

Poisson’s ratio ν 0.33 

Intial porosity n 0.35 

Soil density ρ 2700kg m3⁄  

Effective friction angle ϕ′ 20° 

Suction dependent parameters A′ 1 × 10−4 

Suction dependent parameters B′ 7 × 10−4 

Maximum suction cohesion cmax 15 kPa 

Effective cohesion c′ 10 Pa 

SWCC parameter α 0.01496 

SWCC parameter n 1.2 

Maximum saturation Srmax 1 

Minimum saturation Srmin 0 

Liquid bulk modulus Kl 2.15 GPa 

Atmospheric pressure patm 101 kPa 

Liquid permeability κl 5 × 10−6m s⁄  

Air permeability κa 1 × 10−3m s⁄  

 

The obtained contour plot for the evolution of the suction in the soil domain is first plotted in 

Figure 6.13. The infiltration starts from the surface of the embankment, and the high degree of 

saturation quickly propagates through the zone for the potential slipe line of the slope (about 

1.2 hours). This would start to destabilise the slope. The water infiltration continues to travel, 

which first saturates the toe of the embankment (about 2.5 hours). The water then flows both 

from top-to-bottom and right-to-left towards the bottom left corner due to a longer seepage 

distance in this region. This process brings a full saturation of the rainfall into the embankment 

(about 24.5 hours). As the plastic strain starts to develop along the slip surface in the slope, the 

suction shows a slightly higher value inside of the strain localisation zone. This indicates a 

slight decrease of water content in the shear band under extensive shearing deformations. As 

the failure finishes and the slope deformation approaches its maximum runoff distance, the 

suction in the shear band tends to reduce and become similar to the rest part of the embankment. 
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Figure 6.13: the evolution of the suction in the sandy clay embankment in the SPH test. 

The evolutions of the shear strain and the total displacement during the embankment failure 

are further investigated with their contour plots in Figure 6.14 and 6.15. The slope is initially 

in equilibrium and stable condition as the pre-existed suction in the embankment provides 

enough strength for the soil. As the rainfall infiltration proceeds, the reduction in suction 

renders a reduction in total friction angle and cohesion. Therefore the balance between the soil 

strength and the gravitational force is no longer maintained. A localised pattern for the shear 

strain along a circular-shaped slipe surface becomes visible soon as the water travels through 

the soil slope (Figure 6.14). Since the failure condition has been triggered, the embankment 

demonstrates a continuous development in the localisation of the shear strain along the slip 

surface. The soil particles that are located above this slip surface maintain their relative location 

and slide towards the slope toe (Figure 6.15). The maximum total displacement of 2.5 meters 

has been predicted in the slope when the failure process is nearly finished, which corresponds 

to a maximum deviatoric strain of 1.2 in the shear band. This result has demonstrated that the 

proposed SPH approach is able to well-capture the failure problems in unsaturated soils 

involving large plastic deformations. However, quantitative calibrations are not considered in 

this test, therefore, to further validate the accuracy of the proposed method, a full-scale rainfall-

induced slope failure test is conducted in the next section and compared with experimental 

results. 
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Figure 6.14: The evolution of the deviatoric strain in the embankment during the rainfall-

induced failure. 

 

 

Figure 6.15: The evolution of the total displacement field in the embankment during the 

rainfall-induced failure. 

 

6.4.4 The rainfall-induced failure in a full-scale slope experiment 

A full-scale rainfall-induced slope failure experiment is conducted for the unsaturated Masa 

sand and the obtained results have been reported in the work of Danjo et al. (2012). In this 

section, the proposed SPH approach has been applied for simulating this experiment and the 

numerically predicted final slope configuration after failure as well as the negative PWP 

evolutions are compared to the experimental results. The soil slope is in 5 meters height and 

7.87 meters long, which has a non-regular shape analogous to the infinite slope as shown in 

Figure 6.16a. The slope is supported by a non-deformable frame at the bottom with an 
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inclination angle of 40°. Therefore, only the deformation for the 1-meter thick soil on top of 

this frame is considered in this experiment. The green line located under the slope is 

impermeable, while the red line at the toe of the slope is drainage layer with full permeability.  

An artificial rainfall is produced inside the experiment site with an intensity of 

15~200 mm hour⁄ .  The rainfall effect is uniformly applied through a water-saturated 

membrane which covers the open surface of the slope. The characteristic relationship between 

the suction and the degree of saturation is described by the van Genuchten model. Before 

applying the rainfall, the slope soil is subjected to a moderate water content of 9.5% which 

corresponds to roughly a negative PWP of -2.5 kPa. As the water travels through the slope, a 

residual negative PWP of -0.75 kPa is achieved through a soil bulk. In the experiment, the 

negative PWP is measured at six locations along the middle and bottom sections in the slope 

as shown in Figure 6.16b. Apart from this, the experiment measured slope configuration before 

and after the failure process is illustrated in Figure 6.17, which is compared with the 

numerically obtained results in this section. To account for the loss of the material strength 

during rainfall, the elastoplastic Mohr-Coulomb model with suction dependent state parameters 

similar to the one in section 6.4.3 is applied. The evolution of the friction angle and cohesion 

are described by Equation (6.71) and (6.72). The parameters applied for the soil and the 

hydraulic constitutive model are summarised in Table 6.4. 

 

 

Figure 6.16: the rainfall-induced slope failure test on Masa sand: (a) the experimental 

configuration (Danjo et al., 2012); (b) locations of the measuring points for the negative 

PWP(Danjo et al., 2012). 
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Figure 6.17: the slope configuration before and after the failure process: (a) the experiment 

measured configuration (Danjo et al., 2012); (b) the calibrated configuration; (c) the site 

photo for the slope during the failure process (Danjo et al., 2012). 

Table 6.4: The soil properties and model parameters for the rainfall-induced failure in a full-

scale slope experiment in Masa sand. 

Young’s modulus E 5 MPa 

Poisson’s ratio ν 0.2 

Initial porosity n 0.382 

Soil density ρ 1773kg m3⁄  

Effective friction angle ϕ′ 30° 

Suction dependent parameters A′ 2 × 102 

Suction dependent parameters B′ 2 × 101 

Maximum suction cohesion cmax 5 kPa 

Effective cohesion c′ 10 Pa 

SWCC parameter α 0.0015 

SWCC parameter n 1.6 

Maximum saturation Srmax 0.9 

Minimum saturation Srmin 0 
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Liquid bulk modulus Kl 2.15 GPa 

Atmospheric pressure patm 101 kPa 

Liquid permeability κl 3 × 10−4m s⁄  

Air permeability κa 1 × 10−4m s⁄  

 

The evolution of the negative PWP contour is first plotted in Figure 6.18 and the comparison 

between SPH predicted results with the experiment measured ones in Figure 6.19. The SPH 

soil domain for measuring the propagation of the negative PWP is considered elastic only as 

this process is relatively fast compared to the initiation of the slope failure. The grey part of the 

SPH domain represents the non-deformable supporting frame, which calculates the state 

variables using the interpolation technique presented in Chapter 3.3.3. At the beginning of the 

test, a uniform negative PWP of -2.5 kPa exists in the slope with the infiltration boundary 

condition applied to the slope surface. The horizontal top section of the slope is covered with 

an impermeable membrane, therefore not infiltrated by the rainfall (Figure 6.18). As the rainfall 

is applied to the boundary, the negative PWP is decreased at the measuring points and reaches 

the residual value of -0.75 kPa in about 3 hours time. The wetting rate in the SPH results is 

slower compared to the experiment, which is shown as the thicker wetting front in Figure 6.18 

and the smaller increasing rate for the negative PWP in Figure 6.19. This phenomenon has been 

discussed in section 6.4.1, which is potentially due to the hydraulic constitutive model used in 

this study. As the water travel through the slope body, the decrease in suction reduces the soil 

strength and mobilises the slope. This initiates the slope failure process with significant 

development of the deviatoric strain in a failure circle and continuous translation of the soil on 

the slope surface, which is demonstrated as follows. 

To further investigate the slope failure process, the evolution of the shear strain and total 

displacement contours are plotted in Figure 6.20 and 6.21 below. Since the water starts 

infiltrating from the slope surface, the soil near the open surface is first mobilised. The failure 

circle is developed in a relatively shallow depth in the slope. The shear strain is fast 

accumulating within this area and the localisation band forms (Figure 6.20). This an important 

characteristic to capture in the test. Since the problem domain is analogous to an infinite slope 

which generally has a slip circle that is adjacent to the bottom of the slope, a failure without 

water infiltration process would manifest shear band development near the bottom boundary. 

However, due to the rainfall effect which infiltrates the slope from its open surface and 
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mobilises the unsaturated soil, the slip circle is developed similar to a normal slope with a 

relatively shallow depth in this test. 

 

Figure 6.18: the contour of the evolution of the negative PWP in the infinite slope. 

 

 

Figure 6.19: the comparison between the SPH predicted result and the experimental data for 

the evolution of the negative PWP in (a) middle section; (b) bottom section. 
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Figure 6.20: The evolution of the deviatoric strain contour in the slope. 

 

 

Figure 6.21: The evolution of the total displacement contour in the slope and the comparison 

between the SPH and experiment results for both initial and final slope configurations. 

As the failure continues, the soil bulk above the slip surface slides towards the slope toe and 

detaches from the undeformed part at the top of the slope. The soil below the slip surface also 

slides to the bottom of the slope at a much slower rate as the infiltration has significantly 

reduced its strength. At the slope toe, a total runoff distance of roughly 1.2 meters is captured, 

which matches the experimental result very well. The final slope configuration of the SPH 
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prediction is compared to the experiment measured one in Figure 6.21, showing nearly exact 

match of the slope surface after the failure. Both the circular slip surface at the top of the slope 

initiated at the beginning of the test and the total runoff of soil at the bottom of the slope are 

very well predicted. The above results have demonstrated the capability of the proposed 

numerical framework to capture very large deformation problems in unsaturated soils under 

relatively complex boundary conditions with a stable, accurate and time-efficient performance. 

6.5 conclusion 

In this chapter, a fully coupled multiphase (solid, liquid and air) framework has been 

implemented in the SPH method for modelling the behaviour of the unsaturated soil. The 

detailed formulations in this framework and their SPH approximation forms are presented. The 

mathematical description of the multiphase soil kinematics is derived based on the general 

mass and linear momentum conservation laws. A few key assumptions are made to simplify 

this framework, which includes the incompressible soil grain, the non-exchange mass between 

all phases and the isothermal condition in the unsaturated soil. To account for the relationship 

between the hydraulic state variables such as the suction and degree of saturation, the van 

Genuchten SWCC is considered. The proposed method is first validated with an infiltration 

test in a 1m long soil column. The measured evolution of the suction is compared to Terzaghi’s 

theoretical solution at different locations in the sample, which shows very good agreement. 

Then a seepage flow test is conducted on an elastic slope structure. In this test, a simple SWCC 

is applied instead of the van Genuchten model, which has been calibrated to better match the 

soil-water characteristic relationship. The evolution of the negative PWP against time is output 

and compared to the experiment measured results, which shows well-agreed results. To further 

examine the performance of the method in large deformation problems, two slope failure tests 

are conducted. The first test is for a normal slope with sandy clay soil and the second test is for 

an infinite slope with Masa sand. The slope failure process in both tests is triggered by rainfall 

effect applied on the open surface of the slope. In both tests, the SPH captures the initiation 

and development of the shear strain localisation along the slip surface, which achieves large 

deformation at the end of the failure. In the second test, the numerical prediction of the negative 

PWP evolution and the final configuration of the slope are compared to the experimental 

measurement. Very good agreement has been observed for both results, which further validates 

the accuracy of this method. Therefore, it can be concluded that the proposed multiphase SPH 

framework performs very well in capturing the unsaturated soil behaviours. It is able to model 
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practical geomechanical problems that involve very large plastic deformation and relatively 

complex hydraulic boundary conditions in an accurate and stable manner. 
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7.1 Conclusion 

In this research, the existing SPH method applied in the computational geomechanics has been 

much advanced to facilitate its modelling of the localised failure in dry and unsaturated soils 

with large plastic deformations. The proposed numerical framework extends the SPH 

application to a wide range of soil mechanics problems that could involve confining flexible 

boundaries such as biaxial and triaxial tests showing a localised failure mode with both dry and 

unsaturated soils. Apart from this, the plastic behaviours of large scale soil structures, for 

instance, the rainfall-induced slope failures can also be well-captured. During the development, 

some fundamental characteristics of the SPH method are also investigated in detail, which 

facilitates the improvement on treating existing numerical pathologies such as the resolution 

bias which is observed in almost all types of numerical methods. The main conclusions 

regarding this research work can be drawn from three aspects in the following sections. 

7.1.1 A generic approach to applying confining boundary condition in SPH 

A new approach to applying confining stress to flexible boundaries in the SPH method is first 

proposed. Unlike the conventional SPH methods that impose confining boundary conditions 

by creating extra boundary particles, the proposed approach takes advantage of the SPH kernel 
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truncation that occurs naturally at free-surface boundaries. This allows this approach to 

automatically enforce the confining condition on arbitrary-shaped free-surface boundaries and 

tacking the curvature change during the computation. Therefore, complicated geomechanics 

problems that involve moving confining boundaries such as confining triaxial tests with large 

plastic deformations can be simulated without difficulties. In parallel with this, an elastoplastic 

constitutive model with Mohr-Coulomb yield criterion is implemented to the numerical 

framework for allowing the accurate description for the fundamental soil mechanics. Both 2D 

and 3D validations including plane strain biaxial and axisymmetric tests are conducted using 

this approach, which shows very good agreements with both the analytical solutions and the 

experimental data. To further highlight the significance of this method, the key contributions 

are listed as follows: 

 The proposed method is not an upgraded version of any existing methods to enforce 

confining boundary conditions in SPH. Instead, it is a novel approach to solve the 

difficulties in SPH applications of confining boundaries showing very high accuracy, 

stability and efficiency. 

 

The proposed computational method incorporates a generic framework of the classical 

Mohr-Coulomb elastoplastic model into SPH for the first time, which is able to capture 

a wide range of geomechanics phenomena.  

 

 SPH validations on plane strain biaxial and axisymmetric triaxial tests have produced 

stable and accurate numerical results that are comparable with the classical mesh-based 

method FEM before excessive mesh distortion is observed in FEM domain. The 

numerical predictions also match well with the experimental results. 

7.1.2 A study for the local and nonlocal characteristic for SPH 

In this part, the characteristic of the SPH nonlocal interpolation process has been investigated 

in detail. The importance of this characteristic is emphasized as for allowing SPH to naturally 

capture the bifurcation and localisation process in the classical continuum domain, which is 

not achievable for FEM without regularisation techniques. Accordingly, the effect for the 

nonlocal interpolation to control the energy dissipation during the localisation process is 

studied through three comparison biaxial tests. This includes using the traditional SPH method; 

SPH with fixed-radius kernel function and SPH method with a nonlocal operating function. In 
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parallel with this, a generic elastoplastic constitutive model with Mohr-Coulomb strain-

softening yield surface is implemented in SPH to account for the post-localisation behaviour 

of the soil. 

In the biaxial tests, the variation of the energy dissipation rate during the post localisation 

process is accounted for through applying different numerical resolutions (different particle 

numbers). When using the traditional SPH, the initiation and evolution of the localisation 

process are well captured, however, showing distinct predictions for the shear band thickness 

and plastic energy dissipation path (through the deviatoric stress versus axial strain plot). This 

result indicates that although SPH naturally possesses a nonlocal length parameter (the kernel 

smoothing length), the resolution bias pathology is still observed in the traditional SPH domain. 

The reason behind the above issue has been demonstrated due to the coupling between the 

kernel smoothing length and the numerical resolution, which means different SPH resolutions 

feature different kernel smoothing length.  

To overcome this issue, the kernel smoothing length is decoupled with the numerical resolution 

in the second group of biaxial tests and assigned a fixed value. The obtained results show very 

good control over the plastic energy dissipation rate with the same shear band thickness and 

converged post-localisation stress path predicted for samples with different numerical 

resolutions. However, the above decoupling would lead to significant numerical instability and 

inaccuracy in problems with large deformation and high stress levels due to the second-order 

continuity of the SPH kernel. 

Therefore, to solve this problem, an additional nonlocal operating function with bilinear shape 

is further implemented into SPH without the above decoupling process. The obtained biaxial 

test results show very good regularisation of the plastic energy dissipation rate, as well as 

preserving very good stability and accuracy in the computational domain. Applying this SPH 

framework with the nonlocal operating function and elastoplastic Mohr-Coulomb softening 

model, the strain localisation in biaxial tests is investigated for soils with heterogeneous 

properties. The initiation of the strain localisation is determined by the acoustic tensor and 

second-order work conditions, which show exact agreement between the SPH results with the 

theoretical interpretation. 
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7.1.3 A fully coupled multiphase framework in SPH for modelling unsaturated soil behaviour 

The current SPH applications in the computational geomechanics are available for dry and 

saturated soils only. To allow characterising the unsaturated soil behaviours, a fully coupled 

multiphase framework has been proposed and implemented in the above SPH approach. The 

kinematics of the solid, liquid and air phases are derived based on the general mass and linear 

momentum balance laws. The state variables that are solved to describe the kinematics for the 

unsaturated soil mixture are liquid pressure, air pressure and velocity of soil grains. In parallel 

with this, an elastoplastic Mohr-Coulomb model with both effective and suction-dependent 

state parameters (friction angle and cohesion) is implemented in SPH. This allows accounting 

for the change of soil strength due to the variation of the soil water content, which is observed 

during events such as the rainfall-induced slope failures. 

The above SPH framework is first validated with an infiltration test in a soil column. The 

dispersion of the water can be described by Terzaghi’s consolidation theory. Therefore, the 

SPH measured evolution of the suction at different locations in the soil column is compared to 

the analytical solution. The numerical predictions agree quite well with the theory, which 

suggests that the proposed multiphase framework is able to correctly and accurately capture 

the diverging of the liquid in a porous media. The travelling of the liquid in a Shirasu sand 

embankment is then modelled to compare with the experimental results. The soil-water 

characteristic curve is described by a simple hydraulic model with hysteresis effect. The change 

of the negative pore-water pressure at fifteen locations are output and compared to the 

measured data. SPH predicts comparable evolution curves of the pore pressure during the 2-

hour test as compared to the experiment. The above results demonstrate the capability of the 

proposed multiphase framework to capture the liquid diffusion process accurately with 

different hydraulic models. 

The effect of the change of water content on the soil strength is then considered with the 

proposed elastoplastic model to capture the full-scale rainfall-induced slope failure problems. 

The increase in water content renders a reduction in suction-dependent friction angle and 

cohesion, while the effective strength parameters are considered constant. As the water flux 

travels through the slopes, soil strength reduction triggers the failure process and the intensive 

shear strain is well captured in the slipe circle. Comparable result for negative pore water 

pressure evolution in a Masa sand slope is obtained between the numerical prediction and the 

experiment data. The final configuration and runoff distance at the end of the failure are very 
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well predicted by the multiphase SPH approach when compared to the experimental 

measurements. This indicates that the proposed method is able to not only well capture the 

liquid travelling process in unsaturated soils, but also accurately reproduce the process of full-

scale rainfall-induced slope failure events. This has established a solid basis for this numerical 

framework to be applied for a wide range of geomechanical problems and engineering projects. 

7.2 Future work 

An advanced computation approach has been established based on the Lagrangian meshfree 

SPH method in this research to capture the localisation failure process in both dry and 

unsaturated soils. The proposed approach has been proofed with very good stability and high 

accuracy in solving geomechanical problems involving large deformation fields. Applying this 

approach, a wide range of soil boundary value problems can now be solved by SPH. However, 

to acquire a better understanding of the microscale mechanics of the soil as well as account for 

a wider spectrum of material characteristic behaviours, the following work is recommended 

for future research: 

7.2.1 A micromechanics-based soil constitutive model 

The elastoplastic Mohr-Coulomb model applied in this research captures well some general 

soil behaviours. However, its fundamental theory is based on phenomenological calibration 

with experiments at the macroscale. The micromechanics characteristic that governs basic soil 

kinematics such as the critical state behaviour is not considered. Therefore, a more advanced 

constitutive model that is based on the micromechanics theory of soil is preferred. Apart from 

this, to predict the strain localization in a more physically meaningful manner, a rigorous 

definition for the thickness and orientation of the shear band that is linked with the material 

characteristic scale parameters should be further incorporated.  

7.2.2 An advanced hydraulic constitutive model for the unsaturated soil 

In this research, the proposed multiphase SPH framework uses simplified classical models (van 

Genuchten) to account for the soil-water characteristic curves. Some of the more complicated, 

however, fundamental unsaturated soil behaviours such as the hysteresis during drying and 

wetting process are not considered. To address this issue, more advanced hydraulic constitutive 

models are preferred. The drying, wetting and scanning curves should be specifically defined 
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for modelling a particular type of unsaturated soil. Apart from this, the transition between fully 

saturated and unsaturated soil conditions should be further improved to allow a natural capture 

this process. Therefore, both unsaturated liquid transition and saturated seepage flows can be 

modelled using the same numerical framework. 

7.2.3 A high-performance computing framework 

The current computational process of the SPH program applied in this research resort to a single 

CPU during each calculation. With problem domains that consist of hundreds of thousands or 

even millions of particles, the corresponding computational time would be prohibitively high. 

Therefore, a parallel computing framework which accesses multiple computer processors at 

the same time would greatly increase the current computational efficiency. It is acknowledged 

that such framework has been already incorporated in the SPH method with other research 

applications, which is currently under tests. Therefore, it will be readily available in the short 

future. 
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