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Abstract 

 

Localization, the problem of estimating the position and orientation of robots 

given the sensor readings and map of the environment is a fundamental challenge 

in robotics. A precise understanding of the pose in the environment is a crucial 

requirement for robots to navigate and operate accordingly. In the past research, 

localization problem has been addressed using variety of methods such as 

ultrasonic, laser range sensors, beacons, landmark based methods and map-based 

approaches. Vision has become more promising sensor technology for localization 

in the last three decades due to its ability to provide rich, detailed information. 

Monocular camera-based localization has been popular however depth cannot be 

observed, and it suffers from scale drift problem. Stereo vision can overcome these 

issues, but it again introduces computation complexity when estimating depth 

and synchronizing images. 

     This research describes a localization approach for indoor robots using low 

cost and information rich RGB-D cameras which can provide synchronous RGB 

image and depth map of the observed scene. These sensors have been popular in 

the recent research despite their limited depth range and filed of view. The 

proposed localization approach investigates the usage of multiple RGB-D sensors 

to be used as a strategy to localize indoor robots. Swarm of robots getting the 

support of a leader or a helper robot in localization and navigation is a common 

approach in indoor robotic surveillance applications. This work focuses on such 

an approach by localizing moving RGB-D sensors relative to another static RGB-

D sensor in the environment.  
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The key input for localization is the colour and depth data extracted from the 

scenes observed by RGB-D sensors. Feature pointes extracted from the colour 

images are used to generate three-dimensional feature correspondences which are 

fed into RANSAC pose estimation algorithm. A RANSAC hypothesis 

transformation between the cameras is obtained iteratively by minimizing the 

SSD error between the two point clouds. Non-linear optimized pose is then 

calculated by optimizing the RANSAC estimated pose over all feature 

correspondences. The resulted pose of moving RGB-D sensor with respect to the 

static RGB-D sensor is exclusively depends on the significance of overlapped 

views and the accurate depth information extracted from the sensors.  

The performed experiments and analysis of this work demonstrate similar or 

improved localization accuracy and enhanced range of operation compared to 

another RGB-D to RGB localization method. Effort taken to test the accuracy 

of this proposed work by means of popular RGB-D datasets available in the field 

also support as a study of its applicability in 6-DoF robot localization. Analysis 

shows that the proposed localization approach can be used to reasonably localize 

fast moving robots even in reduced feature environments. The same analysis can 

be applied to evaluate the suitability of this work in augmented reality 

applications. Hence, this research contributes towards robust localization 

approaches for robots to collaboratively operate in indoor environments and as a 

localization approach for RGB-D sensors to use in AR applications. 
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1 Introduction 

Enhancement in computational resources and the availability of advanced 

sensors enable development of versatile robots that can operate in dynamic 

environments cooperatively with humans nowadays. Knowledge about the 

environment is a critical issue for autonomous mobile robots. Advances in 

research and development related to robotics and sensing technologies over the 

past few decades have given a great effort to address most of the promising 

challenges in developing robot systems those who perceive like human.  

For mobile robots, the capability of localizing themselves in the environment is 

highly demanded. Robot localization techniques consider a wide variety of 

perception models. In recent years odometry sensors such as Global Positioning 

Systems (GPS) and Inertial Measurement Units (IMU) have been widely used for 

estimating the motion of mobile robots. Optical wheel encoders are basic 

odometry sensors and widely used due to their low cost and simplicity. The use 

of computer vision for localization has been investigated for several decades. Even 

though most researches pay more attention to other sensors such as laser range-

finders and sonar, vision is still an attractive choice of sensors because cameras 

are information rich, compact and cheaper. With the availability of information 

rich cameras like RGB-D sensors robots are able to perceive further data about 

the operating environment which enhances their localization capability. Hence, 

this thesis introduces an RGB-D vision based localization method for indoor 

mobile robots.  
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1.1 Indoor robot Localization 

Localization is identified as the problem of estimating the pose, i.e. the position 

and orientation of mobile robots given the sensor readings and the map of the 

environment. For mobile robots operate in indoor environments, localization is 

the fundamental challenge. The tasks such as object recognition, object tracking, 

navigation and motion planning are all based on the robot knowing its position 

in the environment. Once the robot identified objects in the environment it is an 

essential task for robots to know the position of targets so that it can either reach 

them or keep track of them. Hence, a precise understanding of its pose in the 

operating environment is more important when the robot has to execute such 

commands. Moreover, in SLAM applications robots need to keep track of their 

position and orientation in addition to building accurate maps and localizing 

themselves in the map simultaneously. Robustness in localization and navigation 

task depends on the reliability of acquisition of sensor data.  

Two main strategies of localization are relative localization and absolute 

localization. Dead-reckoning [1] and inertial navigation techniques [2] are 

examples for relative localization strategies that estimates the robot’s current 

position based on a previous or fixed position by integrating speed estimations 

from the sensors such as accelerometers, gyroscopes, wheel encoders etc. However 

dead-reckoning is error-prone with time and distance due to integrated noise and 

drift in wheels causing errors when operating in uneven terrain that can 

significantly affect the accuracy of the position estimation by cumulating 

odometry error. 
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In contrast to dead-reckoning, robots can benefit from absolute localization by 

knowing its direct position in the environment. Absolute localization strategies 

estimate the robot pose with respect to a global reference frame independent of 

time and initial position and hence reduce the accumulated error. Beacons [3] , 

landmark based technologies and popular Global Positioning System (GPS) 

technique [4] which based on satellite signals are examples for absolute 

localization strategies. The main drawback of landmark based techniques is robot 

localization and hence the operating domain solely depends on the landmarks. 

Furthermore, GPS based systems give low accuracy if not integrated with other 

sensors and not suitable to operate in indoor environments.  

Mobile robot localization in indoor environments where GPS technology is not 

supported has been addressed by using various other sensors. Enormous research 

effort has expended in using range sensors such as ultrasonic [3, 5, 6], laser [7-9] 

and RFID [10, 11] to localize and navigate mobile robots. During past few decades 

laser range sensors have become one of the most attractive sensors for localization 

and map building due to their high accuracy. 

Map based localization or model-matching [8, 12, 13] is another absolute 

localization strategy that uses prior information or map of the environment to 

position the robot using online sensor inputs. Drawbacks of this approach would 

be the need of enough sensor information to compare with the map to determine 

the position and require large amount of processing power.  

Above described absolute and relative position estimation systems could be 

used with multi-sensor fusion approaches to come up with more accurate pose 
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estimations. In [14] Tsai uses extended Kalman filtering to localize a mobile robot 

by fusing information from a multisensorial dead-reckoning subsystem and 

ultrasonic localization subsystem. The multisensorial dead-reckoning system 

provides absolute and relative robot heading measurements which then are 

combined with ultrasonic time-of-flight (TOF) measurements to update the 

vehicle’s position. Another robust localization method is suggested by Goel et al 

in [15] by fusing calibrated odometry with gyroscope and GPS data to mitigate 

the localization error caused when using absolute and relative localization systems 

alone. Fusion of several input measurements such as sonar, laser, odometry were 

also used with a priori map to obtain a refined robot position and orientation [14, 

16, 17].  
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1.2 Vision Based Localization 

Vision has become a more popular and promising sensing technology by 

increasing the scope of applications in autonomous robotics domain such as visual 

odometry [18], localization [19], autonomous navigation [20, 21], map building 

[22], path following and surveillance applications.  Compared to other on-board 

sensing techniques, vision-based approaches demand attention due to their ability 

to provide rich, detailed information about the environment which may not be 

possible with combination of other types of sensors. Furthermore, vision sensors 

are low cost, light and compact, easily available and have low power consumption 

making them very attractive to be used in robot localization. 

The suitability of various vision systems including single camera [22, 23], stereo 

camera pairs [24, 25], multiple cameras [26, 27] and RGB-D cameras has been 

experimented over the past few decades for robot localization and navigation. 

The problem with single cameras is it doesn’t provide any information about the 

depth, hence multiple images from different viewpoints are required to get the 

3D location of features. Stereo pairs on the other hand can provide 3D location 

of the observed features however, consecutive image acquisition from stereo pair 

and matching the feature is slightly more complicated than single camera. Use of 

multiple cameras increase the overall field of view hence robots can enhance their 

operating domain. However, one disadvantage of using multiple cameras is their 

high computational cost.  

Research in vision based localization became more active with the availability 

of RGB-D cameras [28, 29] which provide video (RGB) along with per-pixel depth 
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information. These inexpensive depth cameras have made available dense 3D 

point clouds, which were previously only available with more expensive sensors 

like time-of-flight cameras or 3D laser range finders. In this research we use depth 

cameras to localize mobile robots in indoor environments.  

1.3 Contributions 

Accurate and robust localization is a key factor for robots operating in complex 

environments. The research work in this thesis focuses on a different localization 

method to use in augmented reality applications and indoor swarm robot 

applications such as formation control and surveillance. The proposed localization 

approach is based on a pair of information-rich RGB-D sensors where one RGB-

D sensor is localized relative to another RGB-D sensor.  

The proposed work aims to localize the two or more sensors while one sensor 

is kept static in the environment and the other sensor is moving relative to the 

static sensor. This approach is applicable to a swarm of robots operating in indoor 

environment while there is an RGB-D camera available in the environment or on 

a static helper robot so that the robots can be localized with respect to the fixed 

sensor. This method is also applicable in augmented reality applications where a 

human user moves an RGB-D device which is then localized using another RGB-

D sensor. It is also useful in controlling formation of a swarm of robots who are 

assembled with RGB-D sensors and navigate in indoor environment.    

The proposed localization approach is evaluated through a series of experiments 

carried out in a laboratory environment using Microsoft Kinect version-1 sensors. 

The experimental setup ensures that the Kinect sensors observe sufficient visual 
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features in their scenes. The proposed localization approach is analyzed 

qualitatively and quantitatively contributing to six datasets extracted based on 

three scenarios each obtained separately with visually dense and sparse featured 

scenes. The image sequences in each dataset consist of  

1. Raw data with color and depth images and accelerometer data 
2. Ground truth data obtained with manually estimated 6 Degree of 

Freedom (6- DoF) of RGB-D sensors.  

In the localization scenario described above the sensors are moved so that they 

maintain a scene overlap in their field of views (FOV). Also, the approach 

assumes that there are sufficient visual features available in the camera scenes to 

maintain the localization.  

We contribute by evaluating our proposed localization method comparing with 

previously suggested RGB to RGB-D localization approach. The collected 

datasets are tested on this previous localization method and a quantitative 

analysis is provided afterward. We also contribute by qualitatively investigating 

the appropriateness of this approach to be used in 6-DoF localization and AR 

applications by evaluating against a publicly available dataset.  

1.4 Thesis Overview 

In this chapter, some of the concepts for indoor robot localization including 

vision-based localization were discussed and the contribution from this work 

explained. In the next chapter, a review of the previous work done in the related 

research is discussed more technically. This review is not a complete survey of 
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the fields involved but does discuss the key concepts and issues involved in RGB-

D based research.  

With the survey as the base, Chapter 3 discusses and elaborates the concepts 

used in this research. The methodology of proposed RGB-D based localization 

approach is described in five detailed sections including a study of the related 

technology used. 

 Having described the methodology, the implementation procedure of the 

proposed work and the experiments conducted to evaluate the concept are 

presented in Chapter 4. The methods used to prove the completed work with 

regards to different aspects of its usage are explained in three experimental 

scenarios.  

With the experiments conducted in Chapter 4, the collected results are 

presented with a comprehensive analysis in Chapter 5. Categorizing into three 

experimental scenarios, obtained results are compared qualitatively and 

quantitatively with a previously done localization approach and a popular RGB-

D dataset.  

With the compared results, the success and failures of proposed localization 

approach and its relevance in robot localization and augmented reality 

applications are explained in Chapter 6. In the final chapter, the future work for 

this research is outlined, and the conclusions of the work presented. 
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2 Literature Survey 

Vision based localization has been remarkably improved over the past three 

decades. Navigating a robot in an indoor cluttered hallway was hardly possible 

about 25 years ago but it is not much of a challenge in the recent research. 

Monocular camera-based localization [22, 23] and SLAM [30, 31] approaches have 

been proposed by number of researchers, however the depth is not observable 

from just one camera and the scale of the map and estimated trajectory is 

unknown. Due to the scale drift problem, monocular approaches can fail when 

pure rotations are performed in exploration.  

Conversely, using stereo or RGB-D camera makes it possible to solve the 

aforementioned issues with monocular localization. There have been many studies 

on localization and visual odometry in indoor static environments using stereo 

vision-based approaches. Stereo vision has been used to acquire three-dimensional 

vision by simulating human binocular vision on a pair of monocular cameras. 

Three dimensional images are captured through disparity images, from which the 

depth information can be obtained. In [32] stereo vision is used for localization 

and SLAM using a stereo–camera that acquires the position of known landmarks, 

in indoor environment. A large scale SLAM system with stereo cameras is 

presented in [33], where the scale-drift problem is avoided using a fixed baseline 

stereo. In [34], a researcher investigates a visual odometry method for autonomous 

ground vehicles based on dense disparity images from stereo cameras. Even 

though stereo vision avoids the scale estimation issue it introduces a 

computational overhead of depth estimation and image synchronization. 
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2.1 RGB-D Sensor Based Research 

In contrast, using RGB-D sensors for extracting depth information has become 

popular among robotics and computer vision community. Although the laser 

scanners can provide accurate depth data, they have become less popular due to 

being high expensive and heavy. The RGB-D cameras on the other hand can 

provide both RGB and depth information having benefits of laser and vision 

sensing together. Due to their relatively low cost, these sensors have been 

extensively popular among robotics research community in the last few years. 

Microsoft Kinect [35] is one of the most popular RGB-D sensor developed for 

video game purposes. Asus Xtion sensor [36] is a more compact alternative with 

lower weight and powered only via USB connection itself.  

In the past few years, visual localization and mapping by using RGB-D cameras 

has become one of the most active research fields despite their limited depth 

precision and field of view provided by RGB-D cameras. Even though the 

Simultaneous Localization and Mapping (SLAM) problem has been addressed 

broadly using other sensors such as laser, sonar and monocular and stereo cameras, 

recently appeared low cost, light weight RGB-D cameras providing dense, high 

frequency depth information are taking a great attention towards solving SLAM 

problem. Henry et al [28] introduces RGB-D mapping, a framework for using 

RGB-D cameras to generate dense 3D models of indoor environments. This 

approach aligns two consecutive frames using RGB-D ICP, enhanced ICP 

algorithm that takes advantage of the combination of RGB and depth 

information. 
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KinectFusion proposed by Newcombe et al [37] is an outstanding recent 

approach for real-time dense volumetric reconstruction of complex room-sized 

scenes using a single handheld Kinect sensor. This real time parallel tracking and 

mapping system running on GPUs provides accurate and robust tracking of the 

camera pose by aligning all depth points with the complete scene model and up-

to-date surface representation by fusing all registered data. However, the 

proposed system works well only for mapping medium sized rooms and not 

suitable for reconstructing large scale models that needs too much memory and 

would lead to reconstructions with inevitable drift which would cause 

misalignments upon trajectory loop closures. Efficiently performing automatic re-

localization when the tracking has failed in environments with a low number of 

3D geometric features is another challenge for KinectFusion. 

Kintinuous presented in [38] overcomes KinectFusion’s challenge of limiting the 

mapping to medium size room by making the region of space being mapped can 

vary dynamically. In KinectFusion, tracking and surface reconstruction is 

restricted to the region around the point of initialization of the volumetric 

representation of the scene, known as the truncated signed distance function 

(TSDF). In contrast, Kintinuous permits the area mapped by the TSDF to move 

over time by virtually moving the TSDF with camera pose allowing continuously 

augment the reconstructed surface in an incremental fashion as the camera moves. 

Kintinuous also present a solution to overcome KinectFusion’s inability to 

function in featureless or reduced featured environment by incorporating a feature 

based visual odometry system described in [39].  
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Whelan et al describes an extension to Kintinuous in [40], an improved GPU 

implemented camera pose tracking method and an analysis of combination of 

various RGB-D visual odometry estimation techniques for robust camera tracking. 

Additionally, they introduce RGB color integration method into the KinectFusion 

reconstruction process. However, neither of Kintinuous [38] nor the extension to 

Kintinuous [40] well addresses the issue of dealing with very high camera velocity 

or a lack of both visual and depth features. 

RGB-D SLAM system presented by Endres et al [41] is one of the recent 

popular approaches that can robustly deal with challenging scenarios such as fast 

camera motions and feature-poor environments while being fast enough for online 

operation. In addition to the system they present a thorough experimental 

evaluation on a publicly available benchmark dataset and also provide an open 

source implementation of their system for comparison. 

Hu et al [42] propose a robust algorithm for SLAM using RGB-D sensors which 

builds local maps either using vision only (RGB-BA) or vision and range 

depending (RGB-D-BA) on the different scenarios, then a map joining algorithm 

is applied to combine all the local maps. By applying the heuristic switching, the 

algorithm is able to handle various failure modes associated with RGBD-BA. Due 

to the significant deduction in computational cost in map joining strategy, the 

proposed algorithm is more applicable to large scale RGB-D SLAM.  However, 

this approach has some short-comes such as quick loss of feature tracking, 

inability to handle the scenes with feature poor planar surfaces etc. 
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RGB-D sensors are significantly applied in odometry and ego-motion 

estimation in the past few years. Visual odometry uses camera images to estimate 

the distance travelled similar to odometry estimation which uses wheel encoders 

on mobile robots to estimate the change in robot position. Visual odometry 

enhances a robot’s navigational accuracy whereas the rotary encoder based 

odometry suffers from precision problems due to accumulating errors when the 

robot slips or slides while operating in non-smooth surfaces.  

Sturm et al [43, 44] provide a large dataset containing RGB-D image sequences 

and ground-truth camera trajectories obtained from a high accuracy motion 

capture system. The dataset has been recorded with a hand-held Kinect camera 

and also with a Kinect mounted on a Pioneer 3 robot. This has been a popular 

dataset among RGB-D SLAM community as a benchmark for evaluating the 

SLAM systems.   

Steinbrücker et al [29] introduce an energy-based visual odometry method to 

estimate the rigid body motion of a handheld RGB-D camera for a static scene. 

In their approach the rigid body motion is represented in terms of its Lie algebra 

of the twist which maximizes the photo-consistency of the warped images is found 

so that the warped consecutive images exactly match each other. Their method 

of visual odometry is validated using the RGB-D dataset by Sturm et al [44] and 

proven to be faster and performing better results than Generalized-ICP (GICP) 

[45]. Kintinuous system [40] described above also uses a high-performance GPU 

implemented version of this energy based visual odometry approach. 
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Handa et al [46] present a collection of hand-held RGB-D camera sequences 

within synthetically generated environments as a new benchmark aimed at RGB-

D visual odometry, 3D reconstruction and SLAM systems. This synthetic dataset 

not only provides ground truth camera pose information for every frame but also 

provides a means of quantitatively evaluating the quality of the final map or 

surface reconstruction produced. The realistic trajectories for use in synthesized 

sequences are obtained by running the Kintinuous system [40] in a standard real 

environment and taking the estimated camera path as ground truth trajectories. 

Dryanovski et al [47] introduce a system for visual odometry that does not rely 

on frame-to-frame or sliding window techniques. In their approach, the 3D sparse 

feature points in the incoming RGB-D images are aligned using ICP [48] against 

a global model dataset of 3D features updated through a probabilistic Kalman 

Filter framework. This approach takes less computational effort and does not 

include any intensive GPU based computations, hence increases the performance 

of the overall system. The system is capable of loop closure in room environment 

with a sufficient accuracy, however further effort is needed on correcting the 

systematic error in the depth image to avoid performance dropping on visual 

odometry. 

2.2 Usage of Multiple RGB-D Sensors 

As far as the research concerned on using multiple RGB-D sensors there is not 

much effort on using them for localizing each other. Most of the multiple RGB-

D based research is focused on people tracking, object detection and recognition, 

3D object and scene modelling. 
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The system for scanning 3D full human bodies proposed by Tong et al [49] use 

multiple Kinects to scan different parts of the human body so that they can be 

used to observe the body closely then to obtain high quality data. In order to 

save the original data quality without degrading due to interference issue they 

maintain non-overlapping regions of the sensor views while scanning human body. 

They also use a two stage non-rigid registration of the captured data to address 

the challenge of human body being stirred during the scanning process.  This 

method can deal with non-rigid alignment with loop closure constraints and 

complex occlusions. However, there are unnatural bending on the body parts due 

to misalignment and complex occlusions. The quality of the reconstructed models 

can also be improved further by using super resolution approaches. 

The system presented by Alexiadis et al [50, 51] on the other hand reconstructs 

full-geometry 3D textured mesh of moving humans in real time using multiple 

Kinect sensors. In this approach, separate textured meshes from multiple RGB-

D streams are generated using ICP based alignment and fast zippering algorithm.  

Later in [51] they have improved the system by implementing in CUDA to fuse 

the information from all the Kinects to produce watertight models in real time. 

The surveillance system proposed by Almazan and Jones [52] uses multiple 

Kinects in non-overlapping configuration to track people in complex environment. 

This approach uses mean-shift algorithm for tracking people where the position 

of the search window is determined using Kalman filter. 

Most of the RGB-D mapping, SLAM and visual odometry approaches described 

above use single moving sensor. There are not many multiple RGB-D SLAM 
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approaches in the research except the work suggested in [53]. The framework for 

corporative localization and mapping for autonomous flights proposed by Loianno 

et al [53] uses multiple Asus Xtion RGB-D sensors, however the localization task 

is achieved by a monocular visual odometry algorithm whereas the depth 

information is used to estimate the scale factor associated with the visual 

information. The reason for not using multiple RGB-D sensors in aforementioned 

research could be their limited field of view and the interference. However, 

multiple RGB-D sensors can be employed to achieve certain goals despite having 

the interference and limited field of operation. The related literature doesn’t 

witness significant effort in collaborative use of multiple RGB-D sensors localized 

relative to each other. Most of the multi sensor research focuses on object 

recognition, people tracking, 3D object and scene modelling. In this research we 

focus on localizing RGB-D sensors relative to another RGB-D sensor to be used 

in multi RGB-D applications such as swarm robot surveillance, collaborative 

augmented reality applications etc.  
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3 Methodology 

According to the research review on using RGB-D sensors described in chapter 

2, most of the applications use single moving sensor or multiple static sensors in 

tasks such as mapping and SLAM, odometry and egomotion, scanning and 3D 

reconstruction of objects, detecting and tracking moving objects etc. Most of 

above research focuses on fusing RGB-D datasets using ICP and other approaches. 

Using multiple RGB-D sensors in aforementioned research has drawn lack of 

attention due to the interference of depth data while using multiple sensors and 

the limited range and field of view of the commonly available RGB-D sensors.  

The research work presented in this thesis investigates localization of an RGB-

D sensor relative to another RGB-D sensor. Localization of the two sensors is 

performed offline based on two scenarios.  

1. Systematically moving an RGB-D sensor relative to a static RGB-D sensor 
2. Freehand moving an RGB-D sensor relative to a static RGB-D sensor. 

The localization approach proposed here is applicable for mobile robotic 

applications where there is an RGB-D camera available in the environment or on 

a static helper robot, especially in swarm robotic applications such as formation 

control and surveillance. The proposed method is also applicable in collaborative 

multi use augmented reality applications where a human user moves a hand-held 

RGB-D device which is then localized using another RGB-D sensor.  

In both scenarios, the cameras are positioned so that they maintain some 

overlapping in their FOVs. 
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3.1 Pose Estimation 

The problem of localizing an RGB-D sensor with respect to another RGB-D 

sensor is addressed by estimating the transformation in 6DoF between the two 

sparse 3D point clouds obtained from two sensors by filtering and combining the 

feature matches and depth information. Microsoft Kinect sensors provide color 

and depth images at 640 x 480 resolution. The pose estimation algorithm assumes 

that the images from both Kinects have some overlapping area so that the 

extracted features from the color images can be matched against each other. The 

feature correspondences extracted from pairs of keyframes are used to generate 

sparse 3D point clouds by combining with corresponding color and depth data. 

Then the two point-clouds are aligned, and the best transformation is iteratively 

estimated using Random Sample Consensus (RANSAC) algorithm. This 

transformation is then optimized over all RANSAC inliers hence non-linear 

optimized pose is obtained. This pose is taken as the transformation or the pose 

of two Kinect sensors relative to each other.   

The  Figure 3.1 shows the procedure of estimating the relative pose. The 

following sub sections describe each step in the diagram in more detail. 
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Figure 3.1: The process of estimating relative pose between two RGB-D sensors 

 

3.1.1 Feature Extraction and Matching 

In order to extract visual features from the captured frames, we surveyed on 

several feature detection and matching techniques. In our approach, a significant 

variation in scale and orientation is expected between the matched keyframes 

because the captured frames are not the successive frames of a single camera, but 
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pairs of synchronized frames captured from two different cameras positioned 

apart in the environment. Recently researchers have taken effort to introduce 

keypoint detectors and descriptors which are faster and robust to scale and 

orientation. FAST [54] , SIFT (Scale Invariant Feature Transform) [55], SURF 

(Speeded-Up Robust Features) [56], BRIEF (Binary Robust Independent 

Elementary Features) [57] and ORB (Oriented FAST and Rotated BRIEF) [58] 

are among the popular general purpose keypoint detectors and descriptors.  

SIFT features are invariant against scaling, image rotation and robust across 

changes in lighting conditions and camera viewpoint, addition of noise and a 

range of affine distortion. However, SIFT features are computationally much more 

demanding than other feature descriptors and not a good choice for robots that 

require real-time operation having limited computational resources. SURF on the 

other hand inspired by SIFT but takes a lower computational cost and more 

robust against image transformations. BRIEF is a recently developed feature 

descriptor which has similar performance as SIFT being robust to lighting, blur 

and perspective distortion. The major drawback of BRIEF is the lack of rotational 

invariance and being very sensitive to in-plane rotation. 

ORB is a combination of FAST keypoint detector and BRIEF feature 

descriptor introduced recently by Rublee et al and significantly faster and lower 

in terms of computational cost compared to SIFT and SURF. ORB consists of 

oriented FAST which is an efficiently-computed orientation component added 

over the widely used FAST corner detector. Since FAST does not provide multi-

scale features, ORB applies a scale pyramid of the image and generates FAST 

features at every level of the pyramid.  
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We use ORB feature detector and descriptor in our approach because of being 

relatively faster, computationally efficient, resistant to noise and robust to 

translation and rotation of the features. We compute two sets of keypoints 

𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟1 ,𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟2  ∈  𝐾𝐾𝑟𝑟𝑟𝑟𝑟𝑟  on synchronized pairs of Kinect RGB color frames 

(𝑖𝑖𝑘𝑘1 , 𝑖𝑖𝑘𝑘2  ∈ 𝐼𝐼 for 𝑘𝑘 = 1. .𝑁𝑁 where 𝑁𝑁 is the total number of RGB frames) using 

ORB keypoint detector implemented in the Open Source Computer Vision 

(OpenCV) library [59] . Then we compute a set of ORB feature descriptors 

𝐹𝐹𝑘𝑘1,𝐹𝐹𝑘𝑘2 for the color frames and apply a brute-force descriptor matcher with the 

Hamming Norm and cross checking the correspondences, which results in a set of 

matches 𝑚𝑚𝑖𝑖 ∈ 𝑀𝑀 where 𝑖𝑖 = 1. .𝑁𝑁 and 𝑁𝑁 is the total number of frame to frame 

matches. 

Figure 3.2 shows two sample RGB color images from our experiments with 

matched ORB feature correspondences.  

 

Figure 3.2: Matched ORB feature correspondences are filtered according to 
relevant depth information from two different RGB-D sensors 

3.1.2 Generating 3D Feature Correspondences 
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The depth measured by Kinect is often degraded by occlusion, limited field of 

view, and sensor noise and especially in our application due to multi-sensor 

interference. When multiple Kinect cameras are pointing at the same scene, the 

projected IR dot patterns are interfered with one another resulting in invalid or 

zero depth values at certain pixels on the depth image. This could also happen 

due to reflecting surfaces such as mirrors or from light absorbing black surfaces. 

Therefore, our approach of localization mostly gives low density point-clouds due 

to the effect of multi-Kinect interference. Figure 3.3 shows an integrated color 

and depth image from a Kinect sensor with some patches in black where the 

corresponding depth value is zero or invalid.  
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Figure 3.3: Integrated color and depth images from Kinect 

Given the intrinsic parameters of the color cameras of two Kinects and the 

depth values at each pair of 2D feature correspondence, two sets of sparse 3D 

point-correspondences are obtained. The ORB feature matches (𝑚𝑚𝑖𝑖) in the color 

images are filtered by using respective depth data (𝑑𝑑𝑘𝑘1 ,𝑑𝑑𝑘𝑘2  ∈ 𝐷𝐷 for 𝑘𝑘 = 1. .𝑁𝑁 

where 𝑁𝑁 is the total number of depth frames) to obtain the 3D coordinates of 

each matched feature point. 

According to the geometry of pin-hole camera model, the relationship between 

Kinect pixel coordinates (𝑢𝑢, 𝑣𝑣) and camera coordinates (𝑥𝑥,𝑦𝑦) are given by, 



 

24 

 

 �
𝑢𝑢
𝑣𝑣
1
� = �

𝑓𝑓𝑥𝑥 0 𝑢𝑢0
0 𝑓𝑓𝑦𝑦 𝑣𝑣0
0 0 1

�  �
𝑥𝑥
𝑦𝑦
1
� (1) 

Where 𝑓𝑓𝑥𝑥,𝑓𝑓𝑦𝑦, 𝑢𝑢0, 𝑣𝑣0  are intrinsic camera parameters. Kinects’ color cameras 

are calibrated separately to obtain the intrinsic camera parameters and hence the 

camera matrix. The calibration method used for Kinect sensors is explained in 

Section 4.2.  

In the camera matrix, (𝒖𝒖𝒖𝒖,𝒗𝒗𝒗𝒗) is the principal point, the center of the image 

plane. According to Figure 3.4, 3D world coordinates 𝑷𝑷𝒊𝒊 (𝒊𝒊 = 𝟏𝟏. .𝑵𝑵 where 𝑵𝑵 is the 

total number of matched 3D points in a frame pair) of a feature point can be 

taken as (𝑿𝑿,𝒀𝒀,𝒁𝒁) where 𝒁𝒁 is the corresponding depth value given by RGB-D 

sensor. If the pixel coordinates of the feature point is (𝒖𝒖,𝒗𝒗) then according to 

Equation (1), 

𝑥𝑥 =  (𝑢𝑢 − 𝑢𝑢0) and 𝑦𝑦 =  (𝑣𝑣 − 𝑣𝑣0). 

Then the 3D world coordinates (𝑿𝑿,𝒀𝒀,𝒁𝒁) of the feature point can be estimated 

as 

 𝑋𝑋 = 𝑑𝑑 ∗ (𝑢𝑢 − 𝑢𝑢0)  𝑓𝑓𝑥𝑥⁄  (2) 

 𝑌𝑌 = 𝑑𝑑 ∗ (𝑣𝑣 − 𝑣𝑣0)  𝑓𝑓𝑦𝑦⁄  (3) 

 𝑍𝑍 = 𝑑𝑑 (4) 
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Where d is the measured depth at pixel (𝑢𝑢, 𝑣𝑣). 

 

 

Figure 3.4: Given the depth (d) at a pixel point P’(u, v), 3D world coordinates 
(X, Y, Z) of the point of interest (P) is calculated using camera intrinsic 

parameters. 

Likewise, a sparse set of point-wise 3D correspondences 𝑃𝑃𝑘𝑘1,𝑃𝑃𝑘𝑘2  ∈ 𝑃𝑃 between 

two Kinect frames are determined using image coordinates and the measured 

depth of the filtered feature matches. 
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3.1.3 Iterative Pose Estimation using RANSAC 

Given two sets of 3D point correspondences, Random Sample Consensus 

(RANSAC) [60] is a well-known approach to estimate the best transformation 

and the set of inliers which has been extensively used by the researchers in 

registering 3D point clouds [39, 41]. RANSAC is one of the best ways to fit a 

model to experimental data and this algorithm works well even when the data is 

noisy. When estimating the best transformation out of given 3D point pairs, it 

iteratively finds the transformation by considering random three point pairs, 

which is the minimal number from which a rigid transformation in 𝑆𝑆𝑆𝑆(3) can be 

obtained.  

The data extracted from Kinect frames tend to be noisy and hence finding the 

precise transformation that aligns all the point-correspondences is a challenging 

task. Therefore, the aim is to find the best estimation that aligns a maximum 

number of point correspondences within a given Euclidean distance threshold. 

RANSAC is used to find this best estimation iteratively for a given number of 

iterations. In our approach, the rigid body transformation of two sets of 3D point 

correspondences is found using the method described in Section 3.2.4. For each 

pair of Kinect frames ((𝑖𝑖𝑘𝑘1 +  𝑑𝑑𝑘𝑘1 ), ( 𝑖𝑖𝑘𝑘2 +  𝑑𝑑𝑘𝑘2 ))  the matched 3D feature 

correspondences ( 𝑃𝑃𝑘𝑘1,𝑃𝑃𝑘𝑘2 ) are fed into RANSAC algorithm in which the 

transformation 𝑇𝑇𝑖𝑖 =  [𝑅𝑅𝑖𝑖, 𝑡𝑡𝑖𝑖] (where 𝑖𝑖 = 1. .𝑁𝑁) is found using randomly selected 𝑠𝑠 

point pairs for a given number of iterations 𝑁𝑁. In each iteration, the resultant 

transformation is used to re-project the remaining 3D feature correspondences 

and calculate the re-projection error 𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠 , i.e. Sum of Squared Differences (SSD) 
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error based on the Euclidian distances between each re-projected point 𝑃𝑃𝑘𝑘1𝑡𝑡  =

 𝑇𝑇𝑖𝑖 𝑃𝑃𝑘𝑘1 and the original point 𝑃𝑃𝑘𝑘2. The SSD error for the 𝑛𝑛𝑡𝑡ℎ point is found as, 

 𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠,𝑛𝑛 =  � �(𝑃𝑃𝑘𝑘1𝑡𝑡 )𝑛𝑛,𝑎𝑎 − (𝑃𝑃𝑘𝑘2)𝑛𝑛,𝑎𝑎�
2

𝑎𝑎=𝑥𝑥,𝑦𝑦,𝑧𝑧

 (5) 

For each transformation hypothesis 𝑇𝑇𝑖𝑖 , a 3D point pair is considered to be an 

inlier match if 𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠 for that point is below the given threshold 𝑡𝑡. For each inlier 

we estimate a consensus score 𝐶𝐶𝑖𝑖 so that, 

 𝐶𝐶𝑖𝑖 = � � 1 −  
𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠,𝑛𝑛

𝑡𝑡
�

𝑛𝑛_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

 (6) 

After computing 𝑁𝑁  transformation hypothesis, the transformation 𝑇𝑇𝑖𝑖  that 

maximize the re-projection consensus score 𝐶𝐶𝑖𝑖  is chosen as the best rigid body 

transformation hypothesis.  The subset with the maximum number of inlier 

feature points are also recorded.  

In our algorithm, RANSAC is used to find the best hypothesis and its consensus 

set of inlier matches in 500 iterations so that the re-projection error lies within 

3cm. The estimated rigid body transformation is optimized by re-estimating over 

all the RANSAC inlier matches which is then repeatedly refined using all 3D 

point correspondences. 
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3.1.4 Estimating Rigid Body Transformation 

The 6DOF transformation between the coordinate frames of two Kinects can 

be thought of as a rigid-body motion and can be expressed as a rotation and a 

translation (𝑅𝑅𝑘𝑘, 𝑡𝑡𝑘𝑘) where 𝑅𝑅𝑘𝑘 ∈ 𝑆𝑆𝑆𝑆(3) and 𝑡𝑡𝑘𝑘 ∈ ℝ3.  

 

Figure 3.5: Three-D point correspondences measured from two coordinate 
systems.  The transformation between two systems is to be found. 

The transformation of Kinect2’s coordinate frame relative to Kinect1’s 

coordinate frame (𝑀𝑀𝐾𝐾2𝐾𝐾1) can be written as, 

 𝑀𝑀𝐾𝐾2𝐾𝐾1 = � 𝑅𝑅 𝑡𝑡
000 1� (7) 

where 𝑅𝑅 ∈ 𝑆𝑆𝑆𝑆(3) and 𝑡𝑡 ∈ ℝ3 
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We use the method explained by Horn [61] to find the translation and rotation 

of the keypoint sets from Kinect-1 frame to Kinect-2 frame.  

The six degrees of freedom (6DOF) or in other words the freedom of movement 

of a Kinect sensor in three dimensional space comes with the degrees of freedom 

of its translation and rotation. The translation has three degrees of freedom i.e. 

the translation in three perpendicular axes X, Y, Z. The rotation provides another 

three DOFs as yaw, pitch, and roll as the rotation about these three axes. Given 

a large set of three-D point-correspondences from two Kinects, a subset of three 

point-correspondences which provides nine constraints would be sufficient to 

recover the six parameters in translation and rotation of the rigid body 

transformation. 

Consider three pairs of point-correspondences 𝑃𝑃1,𝑃𝑃2,𝑃𝑃3  from Kinect-1 and 

𝑄𝑄1,𝑄𝑄2,𝑄𝑄3  from Kinect-2 as shown in Figure 3.6. For these three non-collinear 

point pairs, the rotation R can be solved by constructing two triads. Let the two 

triads in two coordinate systems to be 𝑉𝑉1,𝑉𝑉2,𝑉𝑉3 and 𝑉𝑉1′,𝑉𝑉2′,𝑉𝑉3′ respectively.  
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Figure 3.6: The three-D point-correspondences are used to construct two triads. 

When constructing the triad using three points 𝑃𝑃1,𝑃𝑃2,𝑃𝑃3 in Kinect-1 frame, 

let the origin of the triad to be at the first point 𝑃𝑃1. The vector 𝑉𝑉1 is taken along 

the line 𝑃𝑃1𝑃𝑃2 so that, 

 𝑉𝑉1 = 𝑃𝑃2 − 𝑃𝑃1 (8) 

Then the unit vector along 𝑉𝑉1 will be, 

 𝑣𝑣1� =
𝑉𝑉1
‖𝑉𝑉1‖

 (9) 

𝑉𝑉2 is taken perpendicular to 𝑉𝑉1 and the vector 𝑃𝑃1𝑃𝑃3 so that,  
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 𝑉𝑉2 =  𝑣𝑣1�   ^ (𝑃𝑃3 − 𝑃𝑃1) (10) 

The notation ^ denotes the cross product between two vectors to get the 

perpendicular vector. 

Then the unit vector along 𝑉𝑉2 is, 

 𝑣𝑣2� =
𝑉𝑉2
‖𝑉𝑉2‖

 (11) 

To complete the triad, 𝑉𝑉3 is taken as orthogonal to both 𝑉𝑉1 and 𝑉𝑉2 axes such 

that the orientation satisfies the right-hand rule. So, 

 𝑣𝑣3� =  𝑣𝑣1�  ^ 𝑣𝑣2� (12) 

This procedure is repeated for corresponding three points in Kinect-2 

coordinate frame to obtain the second triad. If the unit vectors along the axes of 

two triads are 𝑣𝑣1� , 𝑣𝑣2� , 𝑣𝑣3�  and 𝑣𝑣1′� , 𝑣𝑣2′� , 𝑣𝑣3′�  then the rotation that aligns these two 

triads is also the rotation that corresponds to Kinect-1 and Kinect-2 coordinate 

frames. In other words, the rotation of two Kinect’s coordinate frames takes 𝑣𝑣1� 

into 𝑣𝑣1′�  , 𝑣𝑣2� into 𝑣𝑣2′�  and 𝑣𝑣3� into 𝑣𝑣3′� . Now the below 𝑀𝑀1 and 𝑀𝑀2 are formed by 

above unit column vectors. 

 𝑀𝑀1 =  �
⋮ ⋮ ⋮
𝑣𝑣1� 𝑣𝑣2� 𝑣𝑣3�
⋮ ⋮ ⋮

� (13) 
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 𝑀𝑀2 =  �
⋮ ⋮ ⋮
𝑣𝑣1′� 𝑣𝑣2′� 𝑣𝑣3′
⋮ ⋮ ⋮

� (14) 

The product 𝑀𝑀1
𝑇𝑇 𝑉𝑉 gives the components of a given vector 𝑉𝑉 in Kinect-1 frame 

along the axes of Triad-1. Then the mapping of this onto Kinect-2 coordinate 

frame is given as, 

 𝑉𝑉′ = 𝑀𝑀2 𝑀𝑀1
𝑇𝑇 𝑉𝑉 (15) 

Therefore, the rotation 𝑅𝑅 is found so that, 

 𝑅𝑅 = 𝑀𝑀2 𝑀𝑀1
𝑇𝑇 (16) 

Matrices 𝑀𝑀1 and 𝑀𝑀2 belong to orthonormal (orthogonal) matrices since each of 

their columns is a unit vector and the columns are orthogonal. The matrix 

product of two orthonormal matrices is another orthonormal matrix. In addition, 

the inverse (or the transpose) of an orthonormal matrix is an orthonormal matrix. 

Therefore, the solved rotation 𝑅𝑅 is also an orthonormal matrix that belongs to 

the orthogonal group.  

 

http://mathworld.wolfram.com/MatrixProduct.html
http://mathworld.wolfram.com/MatrixProduct.html
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Figure 3.7: The transformation consists of a pure translations and pure rotation. 

Consider three-D coordinates of point-correspondences 𝑃𝑃1,𝑃𝑃2,𝑃𝑃3  from Kinect-

1 and Q1, Q2, Q3  from Kinect-2 in homogeneous form as [𝑋𝑋1,𝑌𝑌1,𝑍𝑍1,1]𝑇𝑇 

[𝑋𝑋2,𝑌𝑌2,𝑍𝑍2,1]𝑇𝑇  [𝑋𝑋3,𝑌𝑌3,𝑍𝑍3,1]𝑇𝑇 and [𝑋𝑋1′,𝑌𝑌1′,𝑍𝑍1′, 1]𝑇𝑇  [𝑋𝑋2′,𝑌𝑌2′,𝑍𝑍2′, 1]𝑇𝑇 

[𝑋𝑋3′,𝑌𝑌3′,𝑍𝑍3′, 1]𝑇𝑇 as shown in Figure 3.7.  

According to Figure 3.7, the combined transformation can be expressed as a 

combination of two pure translations (𝑇𝑇1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇2) and a pure rotation 𝑅𝑅 about 

the origin of Kinect-1 coordinate frame. The combined transformation 𝐸𝐸𝐾𝐾1𝐾𝐾2  is 

the transformation of 3D points-set 1 (from Kinect-1) relative to 3D points-set 2 
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(from Kinect-2). According to Figure 3.7, the combined transformation 𝐸𝐸𝐾𝐾1𝐾𝐾2 

with two translations and the rotation can be expressed as, 

 𝐸𝐸𝐾𝐾1𝐾𝐾2 = � 𝐼𝐼 𝑇𝑇2
000 1 � �

𝑅𝑅 0
000 1� �

𝐼𝐼 𝑇𝑇1
000 1 � (17) 

If pure translation of point P1 at the origin of Kinect-1 frame is T1, then 

 𝑇𝑇1 =  − �
𝑋𝑋1
𝑌𝑌1
𝑍𝑍1
� (18) 

and the pure translation of point Q1 is T2, then 

 𝑇𝑇2 =  �
𝑋𝑋1′
𝑌𝑌1′
𝑍𝑍1′

� (19) 

Because of the noise in 3D point data, the two triangles represented by two 

sets of 3D points may not be isomorphic. As such, considering a single point in 

determining translation would be more error prone, hence when finding the 

translation, the attention was paid for using the centroid of three points such 

that; 

 𝑇𝑇1 =  −�
(𝑋𝑋1 + 𝑋𝑋2 + 𝑋𝑋3) 3⁄
(𝑌𝑌1 + 𝑌𝑌2 + 𝑌𝑌3) 3⁄
(𝑍𝑍1 + 𝑍𝑍2 + 𝑍𝑍3) 3⁄

� (20) 
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 𝑇𝑇2 =  �
(𝑋𝑋1′ + 𝑋𝑋2′ + 𝑋𝑋3′) 3⁄
(𝑌𝑌1′ + 𝑌𝑌2′ + 𝑌𝑌3′) 3⁄
(𝑍𝑍1′ + 𝑍𝑍2′ + 𝑍𝑍3′) 3⁄

� (21) 

Therefore, the translation is estimated so that, 

 𝑇𝑇 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_2 − 𝑅𝑅 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_1 (22) 

Therefore, by using the estimated values 𝑇𝑇1 , 𝑇𝑇2  and 𝑅𝑅  the combined 

transformation 𝐸𝐸𝐾𝐾1𝐾𝐾2 is determined according to Equation (17).  

Considering homogeneous coordinates, if 𝑃𝑃1 = [𝑋𝑋1,𝑌𝑌1,𝑍𝑍1,1]𝑇𝑇is a three-D point 

in Kinect1’s coordinate frame and 𝑄𝑄1 =  [𝑋𝑋1′,𝑌𝑌1′,𝑍𝑍1′, 1]𝑇𝑇 is the corresponding 

three-D point in Kinect2’s coordinate frame, 

 𝐸𝐸𝐾𝐾1𝐾𝐾2 𝑃𝑃1 = 𝑄𝑄1 (23) 

𝐸𝐸𝐾𝐾1𝐾𝐾2 is the inverse of the transformation of Kinect 2’s coordinate frame 

relative to Kinect 1’s coordinate frame, i.e.  

 𝐸𝐸𝐾𝐾1𝐾𝐾2 = 𝑀𝑀𝐾𝐾2𝐾𝐾1
−1  (24) 

Therefore, combining with Equation (23), above Equation (24) can be re-

written as, 
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 𝑀𝑀𝐾𝐾2𝐾𝐾1 𝑄𝑄1 =  𝑃𝑃1 (25) 

Therefore once 𝐸𝐸𝐾𝐾1𝐾𝐾2  is estimated, finding the camera transformation matrix  

𝑀𝑀𝐾𝐾2𝐾𝐾1 is straight forward. 

As described in Section 3.1.3, an approximate estimation of the pose and a set 

of inlier three-D point-correspondences are obtained iteratively by using 

RANSAC algorithm. The obtained estimation is fed into non-linear optimization 

algorithm to obtain a refined pose over all the inliers.  

3.1.5 Non-Linear Pose Optimization 

We optimize the RANSAC estimated 6DOF transformation over all the feature 
correspondences using Newton iteration method.  

If the RANSAC estimated pose is 𝐸𝐸, then for a single point correspondence (𝑃𝑃1 
and 𝑄𝑄1 as above) the error 𝑒𝑒 is, 

 𝑒𝑒 = 𝐸𝐸𝑃𝑃1 − 𝑄𝑄1 (26) 

Where 𝑄𝑄1 is a measurement vector and 𝐸𝐸 is a parameter vector. Therefore, in 
this optimizing technique we obtain the Jacobian 𝐽𝐽 using the derivative of the 
error 𝑒𝑒  with respect to six parameters of 𝐸𝐸 , i.e. ∝𝑖𝑖  (∝1−3  = Translation 
parameters and ∝4−6 = Rotation parameters) so that, 

 𝐸𝐸𝑡𝑡+1 =  𝑒𝑒∑ ∝𝑖𝑖6
𝑖𝑖=1  𝐺𝐺𝑖𝑖  𝐸𝐸𝑡𝑡 (27) 

Therefore, 
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𝜕𝜕𝜕𝜕
𝜕𝜕 ∝

=  
𝜕𝜕𝜕𝜕

𝜕𝜕(𝐸𝐸𝑃𝑃1)
 
𝜕𝜕(𝐸𝐸𝑃𝑃1)
𝜕𝜕 ∝

 (28) 

𝜕𝜕𝜕𝜕
𝜕𝜕(𝐸𝐸𝑃𝑃1)

  can be simplified as 3x3 identity matrix. 

𝜕𝜕(𝐸𝐸𝑃𝑃1)
𝜕𝜕∝

  becomes  𝐺𝐺𝑖𝑖(𝐸𝐸𝑃𝑃1) where 𝐺𝐺𝑖𝑖 is 𝑆𝑆𝑆𝑆(3) Generators.[62] 

Therefore, 𝜕𝜕𝜕𝜕
𝜕𝜕∝

 or the Jacobian 𝐽𝐽 is found as,  

 
𝜕𝜕𝜕𝜕
𝜕𝜕 ∝

= 𝐼𝐼 𝐺𝐺𝑖𝑖  (𝐸𝐸𝑃𝑃1) (29) 

According to six 𝑆𝑆𝑆𝑆(3) Generators as given below, 

𝐺𝐺1 =  �

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

� 𝐺𝐺2 =  �

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

� 𝐺𝐺3 =  �

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

� 

𝐺𝐺4 =  �

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

� 𝐺𝐺5 =  �

0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

� 𝐺𝐺6 =  �

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

� 

 

The Jacobian is derived as, 

 𝐽𝐽 =  
𝜕𝜕𝜕𝜕
𝜕𝜕 ∝

=  �
1 0 0 0 𝐸𝐸𝑃𝑃1[2] −𝐸𝐸𝑃𝑃1[1]
0 1 0 −𝐸𝐸𝑃𝑃1[2] 0 𝐸𝐸𝑃𝑃1[0]
0 0 1 𝐸𝐸𝑃𝑃1[1] −𝐸𝐸𝑃𝑃1[0] 0

�  (30) 
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4 Implementation and Experiments 

This chapter discusses how we implemented the proposed localization approach 

and provides a detailed description about the experiments conducted to evaluate 

the accuracy of our method. 

4.1 Implementation 

We implemented the pose estimation and pose optimization algorithms using 

C++ programming language using Microsoft Visual Studio 2012 Version 11.0 

IDE. Our localization algorithm can be depicted in pseudo code as below.  
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 Algorithm 1 Iterative Pose Estimation using RANSAC and Non-Linear 
Optimization 

 
Input: RGB-D Frame of Kinect-1 (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1 ), RGB-D Frame of Kinect-2 
(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2), 𝑡𝑡 (error threshold), 𝑀𝑀𝑀𝑀𝑀𝑀_𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 
Output: 6DOF Pose of Kinect-2 with respect to Kinect-1 
𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟1 ← Compute ORB Keypoints for 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1 
𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟2 ← Compute ORB Keypoints for 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2 
𝐹𝐹𝑘𝑘1 ← Compute ORB Feature Descriptor for 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1 
𝐹𝐹𝑘𝑘2 ← Compute ORB Feature Descriptor for 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2 
𝑚𝑚𝑖𝑖 ←  apply a brute-force descriptor matcher with the Hamming Norm to 𝐹𝐹𝑘𝑘1 
and 𝐹𝐹𝑘𝑘2 
Filter ORB feature matches (𝑚𝑚𝑖𝑖) according to depth data from 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1and 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2 
𝑃𝑃𝑘𝑘1,𝑃𝑃𝑘𝑘2  ← Using intrinsic camera parameters, obtain 𝑁𝑁  sparse 3D feature 
correspondences 
 
RANSAC:  
Input: 𝑃𝑃𝑘𝑘1,𝑃𝑃𝑘𝑘2  
Output: 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  ← 6DOF Pose of Kinect-2 with respect to Kinect-1 
 
Repeat 

Randomly select 3 feature correspondences 
𝑇𝑇𝑖𝑖 =  [𝑅𝑅𝑖𝑖, 𝑡𝑡𝑖𝑖]  ← Obtain 6DOF pose using 3 feature correspondences 

 
For 𝒊𝒊 ← 𝟏𝟏 𝒕𝒕𝒕𝒕 𝑵𝑵 𝒅𝒅𝒅𝒅 

 𝑃𝑃𝑘𝑘1𝑡𝑡  =  𝑇𝑇𝑖𝑖  𝑃𝑃𝑘𝑘1  ← Reproject feature correspondences 
𝑒𝑒𝑠𝑠𝑠𝑠𝑑𝑑  ← Calculate sum of Squared Differences (SSD) error 

 If 𝒆𝒆𝒔𝒔𝒔𝒔𝒔𝒔  < 𝒕𝒕 then 
          Increase 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 by (1 − 𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠

𝑡𝑡
) 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + +  ← Add 𝑃𝑃𝑘𝑘1and 𝑃𝑃𝑘𝑘2 to inlier feature 
correspondences  

  
If 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝒔𝒔𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺  > 𝑩𝑩𝑩𝑩𝒔𝒔𝒕𝒕 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝒓𝒓𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 then 
  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑟𝑟𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  

  𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑖𝑖 
 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑒𝑒𝑒𝑒 ← Filter out the best matches 

 
Until (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 >  𝑀𝑀𝑀𝑀𝑀𝑀_𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) 
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NON-LINEAR OPTIMIZATION:  
Input: 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ,𝑃𝑃𝑘𝑘1,𝑃𝑃𝑘𝑘2 , 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, 𝑡𝑡 
Output: 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  ←  6DOF Pose of Kinect-2 with respect to Kinect-1, 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 
 
𝐸𝐸𝑡𝑡 = 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 
For 𝒌𝒌 ← 𝟏𝟏 𝒕𝒕𝒕𝒕 𝟏𝟏𝟏𝟏 𝒅𝒅𝒅𝒅 
 For 𝒋𝒋 ← 𝟏𝟏 𝒕𝒕𝒕𝒕 𝟏𝟏𝟏𝟏 𝒅𝒅𝒅𝒅 
  For 𝒊𝒊 ← 𝟏𝟏 𝒕𝒕𝒕𝒕 𝒏𝒏𝒏𝒏𝒏𝒏_𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝒅𝒅𝒅𝒅 
   Find the Jacobian, 𝑱𝑱 
   Add a single measurement 

Compute weighted least squares 
 

Compute 𝑚𝑚𝑚𝑚 ←  Compute the weighted least squares set of 
parameter values by processing all the measurements 
𝐸𝐸𝑡𝑡+1 = exp−𝑚𝑚𝑚𝑚 𝐸𝐸𝑡𝑡 ← Get non-linear optimized pose (𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) 

 
 

For 𝒊𝒊 ← 𝟏𝟏 𝒕𝒕𝒕𝒕 𝑵𝑵 𝒅𝒅𝒅𝒅 
𝑃𝑃𝑘𝑘1𝑡𝑡  =  𝐸𝐸𝑡𝑡+1 𝑃𝑃𝑘𝑘1  ← Re-project feature correspondences 
𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠  ← Calculate SSD error using 𝑃𝑃𝑘𝑘1𝑡𝑡  and 𝑃𝑃𝑘𝑘2  
If 𝒆𝒆𝒔𝒔𝒔𝒔𝒔𝒔  < 𝒕𝒕 then 

           Increase 𝑪𝑪𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 by (𝟏𝟏 − 𝒆𝒆𝒔𝒔𝒔𝒔𝒔𝒔
𝒕𝒕

) 
          𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + + (Add 𝑃𝑃𝑘𝑘1 and 𝑃𝑃𝑘𝑘2 into consensus set) 

 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  ← Obtain new homogeneous inliers set 

and feed into (k+1)th iteration 
 

Return 𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 , 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 
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The initial part of the algorithm i.e. computing key-points, ORB feature 

descriptors, applying brute-force descriptor matcher with the Hamming Norm 

and cross checking the correspondences were performed using ORB 

implementation available in the OpenCV library [59].  

In order to obtain 3D world coordinates of the matched feature points, the 

intrinsic camera parameters were used. We calibrated Kinect cameras using 

Camera Calibration Toolbox for Matlab [63] as described below in Section 4.2. 

The obtained 3D point correspondences were fed into RANSAC algorithm to 

iterate over 500 times to estimate approximate transformation matrix considering 

an error threshold of 3cm between the re-projected and measured points. 

When implementing our localization approach, we used Tom’s Object-oriented 

Numeric Library (TooN) [64], a C++ numeric library designed to operate 

efficiently on matrices. We used TooN integrated with libCVD [65] which is a 

high-performance C++ library for computer vision and image processing.  

4.2 Camera Calibration 

Camera calibration is the process of estimating intrinsic and/or extrinsic 

parameters of a camera. Intrinsic camera parameters describe camera’s internal 

characteristics such as focal length, image center, skew, distortion etc. Extrinsic 

parameters describe camera’s position and orientation in the world. Camera 

parameters are used in estimating 3D world structure of a scene, applying 

corrections for lens distortion, determining location of the camera in the scene 

etc. These tasks are commonly applied in 3D computer vision [66], robotics, 3-D 

scene reconstruction [50] etc. 
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 The input for camera calibration is 3D world points and their corresponding 

2D image points. The most popular method to obtain these point correspondences 

is to use multiple images of a calibration pattern such as a chessboard or a 

checkerboard. We used Camera Calibration Toolbox for Matlab [63], a MATLAB 

implemented tool to obtain intrinsic and extrinsic parameters of cameras when 

given a set of images of a calibration pattern. We captured the images of a 

rectangular checkerboard pattern and fed into the Toolbox. After the four 

extreme corners of each checkerboard pattern are defined, the tool extracts the 

grid corners giving an option to re-extract if the user is unsatisfied with the 

distortion. After corner extraction, we used the tool to run main camera 

calibration procedure which is done in two steps. The first step computes a closed 

form solution for the calibration parameters ignoring any lens distortion. The 

second step runs non-linear optimization which minimizes the total re-projection 

error over all the calibration parameters.  Then the grids were re-projected on 

the original images based on calculated intrinsic and extrinsic parameters. This 

process of computing grid corners, computing camera parameters and re-

projection on original images were done several times until the re-projection error 

becomes minimum and converges to a certain value. The following Figure 4.1 

shows a few sample images of the checkerboard captured using a Kinect sensor 

for calibration process. 
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Figure 4.1: Sample Images of the Checkerboard used for Kinect camera 
calibration 

4.3 Experiments 

The proposed localization approach for multiple RGB-D sensors was analyzed 

and evaluated using different laboratory experiments. During all our experiments, 

Microsoft Kinect version1 [35] sensors were used to capture color images and 

depth data. The proposed localization approach was evaluated offline based on 

several sets of data collected from Kinect RGB-D sensors. One of the purposes of 

collecting these datasets was to investigate how the translation and rotational 

difference between the Kinects affect the estimated pose and how robustly our 

algorithm responds to these variations. These facts were investigated by capturing 

data using two Kinects while one sensor is moving with a translation and rotation 

relative to the other. 
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The experiments also help to examine how suitable our localization approach 

when used in swarm robot systems where the robots move relative to a stationary 

RGB-D sensor or to a static helper robot with and RGB-D sensor. The pose of 

one Kinect relative to the other was estimated using our proposed localization 

approach and evaluated against the ground truth measurements in each of the 

experiment scenarios.  

To test the robustness of our localization algorithm against different scene 

conditions such as feature rich and feature less, two types of scenes as dense and 

sparse were considered while collecting data. This section explains these scenarios 

in more detail and how the experiments for data collection were carried out.  

We compare this proposed localization approach with our previous RGB to 

RGB-D localization approach [67] that we presented in Australasian Conference 

in Robotics and Automation (ACRA) held in 2011. The purpose of this system is 

to estimate the pose of a mobile robot in an external stationary Kinect’s 

coordinate frame. In this previous approach, the 6DoF pose of the smart phone 

robot is estimated by matching the appearance-based feature correspondences 

between the mobile phone camera and the Kinect. An overview of this robot 

localization process is illustrated in Figure 4.2. 
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Figure 4.2: Overview of the ACRA System: Visual Localization between a Mobile 

Phone Camera and an External RGB-D Sensor 

The process begins by detecting salient features and building feature descriptors 

in greyscale images from both the Kinect and smartphone cameras. FAST [54] 

features are computed from the greyscale images in both the Kinect-CPU server 

and the robot while the features are detected across a pyramid, 5-layers in the 

server and 2-layers on the robot. For each FAST corner, a HIPS [68] feature 

descriptor is calculated. The feature locations and descriptors built on the mobile 

phone are sent to a Kinect CPU server via a WiFi link. Sparse features are sent 

over the wireless ink to reduce the amount of transmitted data. For each feature, 

a 32-byte descriptor and 8 bytes of coordinates are sent. The server performs 

robust feature matching to provide a set of correspondences between 2D points 

from the robot camera and 3D points from the Kinect. The Lie algebra of rigid 

body motions is used to linearize the displacement of these salient features and 

to calculate a pose estimation from correspondences. This way, the robot is 

localized in 3D space from the Kinects perspective and the location is projected 

onto the ground plane to obtain the robots 2D position. 
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In the analysis of our proposed approach, we use this previous work to compare 

the accuracy of our new method. One of the reasons to use this previous work as 

a baseline is the methodology being very similar hence provides a good 

comparison of the results. Both these methods are trying to localize a moving 

robot/sensor in external RGB-D sensor’s coordinate frame however, our approach 

uses RGB-D data from the moving element which introduces some interference 

to the scenario but enhancing the information with depth data while ACRA 

method provides interference-free 2D feature correspondences and locations from 

the moving element. Since both methods are trying to investigate a suitable 

localization approach for mobile robots to operate in stationary sensor’s 

framework using different feature detection and matching (FAST, HIPS versus 

Oriented-BRIEF) and pose estimation algorithms the analysis of the results from 

two methods will give a good estimation of which method is more eligible.  

Our previous approach (ACRA) uses a CPU server to process data (RGB-D) 

from the attached stationary Kinect and the data (feature descriptors) send by 

the smart phone over a wireless link. Therefore, when running our data sets in 

ACRA system, we applied the data set captured from two Kinects in each of the 

scenarios in place of the frames from Kinect and smart phone. When integrating 

our data set in the ACRA localization approach we used the following method. 

1. The ACRA algorithm captures color and depth images directly from the 
attached Kinect sensor. Instead we forced the algorithm to obtain the saved 
depth and color frames from the stationary Kinect (Kinect-1) in our data 
set.   
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2. Instead of transferring feature locations and descriptors from the smart 
phone over the wireless link, we integrated the algorithm running on smart 
phone into the Kinect server application so that the whole system runs in 
one place eliminating the requirement of wireless link. Then the application 
was modified to retrieve the saved color images of the moving Kinect 
representing the color images from the smart phone. 

Then the ACRA system was run for the data sets obtained for some of the 

scenarios and the analysis of results is given in Chapter 5.  

4.3.1 Data Collection 

We evaluate our proposed localization approach for RGB-D sensors based on 

offline data. Therefore, effort was taken to collect six different datasets for 

different scenarios as described below. For every positioning of Kinects described 

in below scenarios, two data sets were captured considering a dense and a sparse 

scene. The images captured for sparse scene has relatively lower number of feature 

matches however, to make the scene sparser when running the algorithm, we 

occluded a part of the view seen by one camera. This technique is explained using 

the images in Section 5.1.1.2. Our approach is based on key-point matches of both 

camera views; hence we assume that the RGB-D sensors on the robots or in the 

environment are pointing in a direction so that they share a part of their field of 

views. Therefore, the color and depth images are captured so that they observe 

an overlapped scene in both camera views. Figure 4.3 shows a sample scene in 

front of the Kinects in laboratory environment.  
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Figure 4.3: A sample scene in front of the Kinects 

We used Microsoft Kinect for Windows SDK [69] version 1.8 to interface 

multiple Kinects on a single Windows 7 PC. The APIs available through Natural 

User Interface (NUI) were used to initialize the sensor array and obtain 

synchronous color and depth data at 640 x 480 resolution from two Kinects 

connected to the same PC. 

In each of the three experiments described below, the captured six data sets 

consist of the following. 

I. Raw data: RGB image, depth image, accelerometer readings 
II. Ground Truth: Manually measured 6 Degree of Freedom (x, y, z, 3 axis 

rotations) pose measurements of RGBD sensors 
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To improve accuracy of the measurements, we removed the outer casing of the 

Kinects and used only the inner structure in our experiments as shown in Figure 

4.4. Also, two wheels made of Perspex was attached to the Kinects so that they 

become easy to slide along the metal bar during the experiments. 

 

Figure 4.4: Kinects with the outer casing removed. Two wheels made of Perspex 
are attached to hold the Kinects on a metal bar 
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4.3.1.1 Experiment-1: Systematic Translation only of one sensor 

relative to a stationary sensor 

The first experiment investigates impact of proposed localization approach on 

RGB-D sensors those are moving only with a translation relative to a static sensor. 

Data was collected using two Kinect sensors while one Kinect was rigidly fixed, 

and the other Kinect was systematically placed at different locations so that they 

only maintain an offset in translation.  In the experiment setup, a rigid long metal 

bar was used to guide the moving sensor so that there is no rotational difference 

between the two sensors. The bar was marked with distance measurements 

relative to the stationary sensor to easily obtain the ground truth measurements 

while capturing Kinect data at different locations. The scene at which the Kinects 

were facing was assumed to be static during the time of capturing data. Figure 

4.5 shows the experimental setup used to collect data in the research lab.   
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Figure 4.5: Two Kinects attached to the metal bar using the cut-through slots on 
the wheels so that the Kinects can slide along the bar 

The Figure 4.6 shows sample scenes observed by two Kinects while they are 

placed at a certain displacement in translation. 
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For this experiment, capturing Kinect data was started when the Kinects were 

30cm away from each other and repeatedly captured at locations with 10cm 

increments while moving the second Kinect away from the static Kinect as shown 

in Figure 4.7. This way, the ground truth measurements were easily recorded for 

each Kinect position. Instead of a single data frame, we captured 10 data frames 

from both Kinects at each position so that the average pose can be estimated 

over 10 frame pairs. The maximum allowed translation between two Kinects were 

1.5m for the dense scene and 1.7m for the sparse scene which are limited by the 

number and the quality of features available in overlapping area.  

  

 

Figure 4.6: The color images obtained from two Kinects while they are 0.5m 
apart. 
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Figure 4.7: (a)Starting position of two Kinects (b)One Kinects is moved away 
from the static Kinect (c)Kinects are aligned to each other without angular 

difference 

4.3.1.2 Experiment-2: Systematic Translation and Rotation of one 

sensor relative to a stationary sensor 

The purpose of this experiment was to examine the effect of the proposed work 

on RGB-D sensors those are moving with a rotation and translation relative to a 

static sensor. The experiment is applicable to a scenario of moving an RGB-D 

sensor along X- and Z-axes while rotating about Y-axis with respect to a static 

RGB-D sensor. In this experiment, data was collected by systematically moving 

one Kinect sensor while maintaining a certain translation and rotation relative to 

a static Kinect sensor. We used a turn table to obtain accurate ground truth 

translation and rotation while moving the Kinect sensor. The Figure 4.8 shows 

the experimental setup with the turn table used in data collection. 
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Figure 4.8: Experimental setup with the Kinects placed on the turn table. 

The static Kinect was rigidly attached on to the bottom plane of the turn table 

which is not turning. Since the top layer is easily rotatable, we attached the 

second Kinect on to the top layer. This way we achieved the translational and 

rotational difference between the two Kinects without moving the Kinects 

themselves but using the turn table. This technique avoided any misalignments 

and human errors occur when moving the Kinects manually which affect the 

accuracy of ground truth information.  

Figure 4.9 shows how the Kinect sensors are attached to the top and bottom 

layers of the turn table. 
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Figure 4.9: Static Kinect is attached to the bottom plane with markers for the 
angular displacement. 

The top plate was rotated 5 degrees at each step while capturing the Kinect 

data. Markers were placed along the bottom plate circumference at the arc lengths 

correspond to 5 degrees. The center of the wheels attached to the top plate was 

taken as the reference when measuring the corresponding distance along the plate 

circumference. Because the distance between the two plates is always a fixed 

value, the ground truth translation along 𝑌𝑌 axis is not varying between the two 

Kinects. The gap between two plates were 12.5 cm, hence the ground truth 

translation along 𝑌𝑌 axis is always limited to this value. The following Figure 4.10 

shows how we obtained corresponding ground truth translation along 𝑋𝑋 and 𝑍𝑍 

axis when the turn table is rotated at an angle of 𝜃𝜃. 
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Figure 4.10: Rotation and Translation Estimated using the Turn Table 

When the top plate is rotated 𝜃𝜃 degrees with respect to the fixed Kinect, then 

the corresponding translation along 𝑋𝑋 and 𝑍𝑍 axes are L sin 𝜃𝜃 and (L – L cos 𝜃𝜃) 

respectively where L is the distance from the center of turn table to the camera 

center. In our experiments, we maintained a distance of 0.6m between the centers 

of the turn table and Kinect color camera. 

The Figure 4.11 shows when the two Kinects are placed with a translation and 

rotation. Similar to Experiment-1: Systematic Translation only of one sensor 

relative to a stationary sensor, 10 data frames were captured at each 5 degrees 

angular offsets.  
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Figure 4.11: The Kinect on the top plate is rotated relative to the static Kinect 
on the bottom plate 

The following Table 4.1 shows the obtained ground truth values corresponding 

to each measurement step for this experiment. 

Angle 

in 

Degrees  

(𝜽𝜽) 

Distance in 

meters from 

camera center 

to turn table 

center 

(L) 

Translation 

along X Axis 

in meters 

(L sin 𝜽𝜽) 

Translation 

along Y Axis 

in meters 

(Fixed) 

Translation 

along Z Axis 

in meters 

(L – L cos 

𝜽𝜽) 

5 0.6 0.052293 0.125 0.002283 

10 0.6 0.104189 0.125 0.009115 

15 0.6 0.155291 0.125 0.020445 

20 0.6 0.205212 0.125 0.036184 
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25 0.6 0.253571 0.125 0.056215 

30 0.6 0.300000 0.125 0.080385 

35 0.6 0.344146 0.125 0.108509 

40 0.6 0.385673 0.125 0.140373 

45 0.6 0.424264 0.125 0.175736 

50 0.6 0.459627 0.125 0.214327 

Table 4.1: Ground Truth Translations at different Angles 

When the top plate is rotated 𝜃𝜃 degrees with respect to the fixed Kinect, the 

moved Kinect only rotates about  𝑌𝑌 axis and the ground truth rotation between 

two Kinects about 𝑋𝑋 and 𝑍𝑍 axes are zero. The ground truth rotation matrix when 

the two Kinects are rotated at 𝜃𝜃 angle about 𝑌𝑌 axis at each step is derived using 

the general rotation matrix corresponding to Euler angles ∅, 𝜃𝜃, 𝜑𝜑 about 𝑋𝑋, 𝑌𝑌 and 

𝑍𝑍 axes respectively. 

 

𝑅𝑅

= �
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 cosφ 𝑠𝑠𝑠𝑠𝑠𝑠∅ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑐𝑐𝑐𝑐𝑐𝑐∅ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠∅ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑐𝑐𝑐𝑐𝑐𝑐∅ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑖𝑖𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐∅ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑠𝑠𝑠𝑠𝑠𝑠∅ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐∅ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠
−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠∅ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐∅ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 
(31) 

 

When the rotation about 𝑋𝑋 and 𝑍𝑍 axes are zero i.e. ∅ = 0, 𝜑𝜑 = 0 then the 

ground truth rotation matrix, 𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔 can be derived as below. 

 𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔 = �
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  0 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

0 1 0
−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 0 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

� (32) 
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4.3.1.3 Experiment-3: Freehand movement of one sensor relative to a 

stationary sensor 

With freehand moving experiments of an RGB-D sensor relative to a static 

similar sensor, we investigate the suitability of proposed approach in 6-DOF 

localization applications. The experiment described here, and the obtained results 

given in Section 5.1.3 helps to evaluate the eligibility of suggested work in 

localizing indoor robots, UAVs, drones or 6-DOF localization of hand-held RGB-

D sensors which are useful in Augmented Reality (AR) applications. 

In this experiment, data was captured while one Kinect was moving freely with 

6DOF transformation relative to a fixed Kinect in the environment. Therefore, 

both relative translation and rotation of Kinects changed during the data capture. 

However, obtaining ground truth trajectory of moving Kinect was a challenging 

task in this experiment. Therefore, the Kinect was moved in known 

patterns/trajectory and returned to the same starting position. As an example, 

the front rectangular surface of a box placed in front of the scene was assumed 

to be a trajectory of the Kinect. The relative rotation between the Kinects were 

assumed to be fixed during this experiment, i.e. the Kinect was moved so that 

there is no rotational difference between the Kinects. The following Figure 4.12 

shows a diagram of the experimental setup.  

However, this experiment is prone to significant human errors because there 

can be drifts and slight rotations while manually moving the Kinect along the 

edges of the box. Eventhough the ground truth is assumed to be a perfect 
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rectangle with sharp edges, the Kinect’s true trajectory could be slightly different. 

We have given the estimated trajectory of this experiment in Section 5.1.3.  

 

Figure 4.12: Setup for Experiment-3 

Precise ground truth information is important for qualitative and quantitative 

analysis of this experiment data due to being highly inclined to human errors. 

Therefore, the attention was drawn towards evaluating this experiment scenario 

with publicly available RGB-D datasets. In the recent research, there are only a 

few efforts taken to produce or experiment with multiple Kinects. RGB-D People 

dataset [70] was captured to evaluate people detection and tracking algorithms 

for robotics and interactive systems. The data was collected synchronously in an 

indoor environment using three combined static Kinects with a joint field of view. 

Human fall detection dataset [71] was captured by Bogdan et al using two static 

Kinects in an indoor room to detect and recognize human falls when integrated 

with corresponding accelerometer data. Big BIRD dataset [72] collected by the 

researchers in University of California Berkeley and the dataset collected by 
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Susanto et al [73] address object detection and recognition using multiple Kinects 

to accelerate the developments in computer vision and robotic perception. Even 

though these datasets are captured by multiple Kinect sensors their application 

on Experiment 4.3.1.3 is unfitting due to the Kinects being mostly static. 

On the other hand, there are several publicly available single Kinect RGB-D 

benchmark data sets to evaluate visual odometry and SLAM systems. As 

discussed in Chapter 0, ICL-NUIM dataset introduced in [46] is being used to 

evaluate RGB-D visual odometry, 3D reconstruction and SLAM algorithms. The 

dataset consists of handheld RGB-D camera sequences within synthetically 

generated office room and a living room where the latter consists of associated 

3D polygonal model in addition to trajectory data which allows evaluation of the 

accuracy of the final reconstruction. 

In this analysis we use the TUM Benchmark dataset, for evaluating RGB-D 

SLAM systems published by Sturm et al [43]. The dataset consists of image 

sequences from a single Kinect with highly accurate and time-synchronized 

ground truth camera poses generated using a motion capture system. This 

benchmark dataset can also be used to evaluate visual odometry systems on RGB-

D data. The dataset consists of 39 sequences recorded using a hand-held Kinect 

in two different environments. The first sets of trajectories are recorded in a 

typical office environment, “fr1” with around 6m x 6m area. The second set of 

trajectories are recorded in a large industrial hall, “fr2” with about 10m x 12m in 

size. The average, camera speed of considered fr1 datasets are faster than fr2 

datasets. This can be clearly shown in the color images of fr1 datasets having 

significant motion blur.  
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In our analysis we use several fr2 data sequences from the categories “Testing 

and Debugging” and “Handheld SLAM”. Because the dataset consists of image 

sequences captured from a single Kinect, we use the first data point in the dataset 

as from the fixed Kinect and the remaining data as from the moving Kinect. We 

used “xyz” data sequences captured by moving the camera approximately along 

X-, Y- and Z- axis with little rotational components. Analyzing our algorithm on 

this dataset will prove its accuracy when moving 6-DOF. The analysis in Section 

5.1.3 will also show the quality of estimated trajectory when using the Hand-held 

SLAM fr2/desk dataset. In fr2/desk sequence the images are taken in a static 

office environment consisting two tables with various accessories including 

keyboard, monitor, books etc. The ground truth trajectory for this dataset is 

about 18m long with average translational velocity of 0.193m/s and average 

angular velocity 6.338deg/s. Since fr2 sequences have been captured relatively 

slower consists of images with less motion blur, the evaluation of proposed 

approach against these sequences demonstrate the best-case scenario. 

To evaluate against worst case scenario, we use several fr1 data sequences from 

the same categories. Camera motion in fr1/xyz sequence is similar to fr2/xyz 

sequence but with a different environment. For this sequence, the Kinect was 

pointed at a typical desk in an office environment. This sequence contains only 

translatory motions along the principal axes of the Kinect, while the orientation 

was kept (mostly) fixed. On the other hand, fr1/desk sequence contains several 

sweeps over four desks in a typical office environment. In our analysis we use 

these two sequences from fr1. The average translational speed of the camera in 

fr1/desk sequence is about 0.413m/s while the angular velocity is around 23.327 
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deg/s which is very faster compared to 0.193m/s and 6.338 deg/s in fr2/desk 

sequence. Compared to fr2 sequences we analyzed, fr1 sequences are relatively 

fast and consists of images with motion blur, hence these sequences are used to 

demonstrate the usage of proposed work in worst case scenario. 

When evaluating against these data sequences, we assume a particular Kinect 

frame as the reference frame obtained from the static Kinect. The pose of sub 

sequence frames is estimated relative to this reference frame. Since our algorithm 

is very much dependent on the number of good feature matches extracted in the 

overlapping views, it is vital to have a reasonable overlapping area between the 

two Kinect frames being matched. However, data collected from a moving hand-

held Kinect might not always satisfy this requirement. Referring to RGB images 

of most of these benchmark sequences, there are many image pairs with no 

common views at all. Therefore, considering only the first Kinect frame as the 

reference is not suitable in this analysis. Due to this reason, when evaluating our 

algorithm on TUM data sequences we reinitiate the Kinect-1 reference frame at 

a certain point along the trajectory. This way we avoid losing feature matches in 

both Kinect views. This strategy is explained in the Proof of Concept section in 

more details. 
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5 Results and Analysis 

The proposed localization approach was evaluated in two ways, using the 

acquired data in laboratory environment and also using publicly available 

datasets. The data collection was conducted as explained in Section 4.3.1. For all 

the scenarios described in this section we investigated the behavior of the 

proposed work against ground truth data obtained at each of the experiments. 

Evaluation using collected datasets is twofold. We evaluate the proposed 

approach using collected data and we use the same data set on the previous 

ACRA work [67] described in Section 4.3 to compare the accuracy.  

The implemented proposed work was run offline on collected different data sets 

for each scenario. The same datasets collected for Scenario-1 and Scenario-2 also 

used to evaluate against ACRA method. When analyzed on ACRA system, the 

stationary Kinect data was used as the single Kinect used in ACRA method and 

the color images from moving Kinect was used in place of the RGB color images 

provided by the smart phone. The following sections provide a detailed analysis 

of the three scenarios with the results obtained from all the experiments to 

evaluate its accuracy and robustness to apply in realistic applications. 

5.1.1 Scenario-1: Systematic Translation only of one sensor 

relative to a stationary sensor 

In this scenario, we analyzed the datasets collected for both dense and sparse 

scenes. The Kinects were initially placed with 30cm displacement and then the 

translational distance was increased by 10cm at each step until there is no overlap  
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between their FOVs. The sensors start to observe a scene with a displacement 

>= 30cm in 𝑋𝑋 direction and zero displacement in 𝑌𝑌 and 𝑍𝑍 directions. 

5.1.1.1 Scenario-1 Dense Scene 

In our experiments, we used dense and sparse scenes where dense scene 

consisted of relatively higher number of feature matches than the sparse scene. 

The following Figure 5.1 shows some sample dense scene image pairs captured 

from both Kinects together with matched ORB feature correspondences. In each 

image pair, the images from the stationary Kinect is shown on the right-hand 

side. These four image pairs are randomly picked from each ten frame pairs 

captured when the Kinects are 30cm, 50cm, 70cm and 90cm apart. 

  

 

Figure 5.1: Initial matches of dense scene for Scenario-1 when the Kinects are 
30cm, 50cm, 70cm and 90cm apart 
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These matches are then filtered by RANSAC algorithm and non-linear 

optimization algorithm described above and the following Figure 5.2 shows the 

remaining final inlier matches for above frames after optimizing.  

 

Figure 5.2: Optimized inlier matches of dense scenes for Scenario 1  

From top-left, top-right, bottom-left, bottom-right order the frame pairs 
are correspondent to Kinects being apart 30cm, 50cm, 70cm and 90cm 
respectively 

 

For each frame pair, we calculate the Euclidian translation error between the 

ground truth translation vector 𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔  and optimized translation vector 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 as 

below. 

 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  ���𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔[𝑖𝑖] − 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜[𝑖𝑖]�
2

3

𝑖𝑖=1

 (33) 

When calculating rotational error, we consider the ground truth rotation as, 

𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔 = 𝐼𝐼 because the Kinects are placed only with a difference in translation. The 
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angular error is calculated by taking the norm of the vector form of difference 

matrix between optimized rotation, 𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜  and 𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔 . Therefore, the optimized 

rotation simply becomes the difference rotation between the ground truth rotation 

and the optimized rotation. The vector form of this difference rotation is the 

vector of Euler angles along x, y, and z axes. Then rotational error, 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is 

estimated taking the norm of difference vector. 

 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑙𝑙2𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (𝑣𝑣𝑣𝑣𝑣𝑣(𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑇𝑇 ∗ 𝐼𝐼)) (34) 

 Comparison against Ground Truth 

The error in translation and rotation compared to ground truth measurements 

for the frame pairs captured for dense scene is shown in the below graphs. The 

horizontal axis represents the ground truth distance between the Kinects ranging 

from 0.3m – 1.5m. The error value represented by each point is calculated as a 

mean error by matching 10 frame pairs.  

 

Figure 5.3: Estimated Euclidian Translation Error and Rotation Error for a 
dense scene when the sensors are systematically positioned with only a 

translation of range from 30 – 150 cm 
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The translation error is lies almost within 10cm and angular error lies within 

40 until the Kinects are 1.4m apart. However, when they are apart more than 

1.4m the error increases highly due to the fewer number of available feature 

matches between the frames. Therefore, above data shows 96.5% average 

translational accuracy and 98% per centimeter average rotational accuracy over 

1.4m span. 

The following Figure 5.4 shows the variation of percentage inlier feature 

matches with the translation and rotation for the dense scene. Inlier percentage 

was calculated as, 

 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 % = �
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒
�  𝑋𝑋 100% (35) 
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Figure 5.4: Change of inlier percentage with respect to translation and angular 
error for a dense scene 

The inlier percentage remains above 80% except when Kinects are more than 

1.4m away, however the accuracy of the estimated pose after this point severely 

depends on the availability of number of good inliers. 

 Comparison against ACRA Work 

As described above in Section 4.3, we used this data set to run on our previous 

localization approach submitted to ACRA. The following figures show the inlier 

matches for the same frame pairs shown above but running on ACRA system. In 

each frame pair, the left image shows the moving Kinect image while the right 

image is considered to be the stationary Kinect. 
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Figure 5.5: Inlier matches obtained from ACRA method for Scenario-1 dense 
scene 

From top-left, top-right, bottom-left, bottom-right order the frame pairs 
are correspondent to Kinects being apart 30cm, 50cm, 70cm and 90cm 
respectively. 

The following graphs show the comparison of Euclidian translation error and 

rotation error for both approaches relative to ground truth values. 
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Figure 5.6: Translation and rotation error of estimated pose using proposed 
localization approach compared to previous (ACRA) approach for the dense scene 

in scenario-1 

According to the results, even though the ACRA localization approach gives 

slightly accurate results, it is not robust as our new approach for the translations 

longer than 1m. The ACRA approach fails to work for data obtained by placing 

Kinects more than 1.1m apart. The proposed approach works well for translations 

up to 1.4m with an average Euclidian error of 3.5cm. Therefore, above data shows 

97.4% average translation accuracy with our method and 96.1% accuracy with 

ACRA method for 1.1m span. The corresponding per centimeter rotational 

accuracy is 98.2% from this method and 98.8% from ACRA method. The 

proposed approach enhances the translational operating range by 27% over 

ACRA method. 

The following graph shows the inlier percentage of both approaches for the 

translation up to 1.5m. 
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Figure 5.7: The Inlier percentage of both approaches for ground truth translation 
up to 150cm 

The proposed approach filters higher number of feature matches as inliers while 

the ACRA approach performs by filtering almost half of the inliers than that. 

However, when the Kinects are more than 1m apart, the ACRA work fails to 

respond even if the percentage of inliers drops only by 20%. 

5.1.1.2 Scenario-1 Sparse Scene 

In order to test the robustness of our approach against the number of feature 

matches between the Kinect images, we considered the same scenario with 

reduced feature environment. We captured data for the sparse scene which has 

10% less number of feature matches than the dense scene. In order to make the 

scene sparser, we covered a part of the scene by removing the depth data while 

running the proposed approach. As an example, the following Figure 5.8 shows 

the initial matches between the frame pairs when the Kinects are at 30cm, 50cm, 

70cm and 90cm apart. 
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As seen in the images, a part in the right-hand side image is occluded by 

removing depth data which gives no feature correspondences for that part of the 

image pair. This technique allowed to make the scene sparser by removing the 

feature matches. The following table shows the average number of feature 

matches in our dense dataset and sparse dataset for the Scenario-1. This average 

was estimated considering 10 frame pairs at each ground truth location. 

Ground Truth 

Distance Between 

Kinects (cm) 

Average Number of 

Feature Matches in the 

Dense Data Set 

Average Number of 

Feature Matches in the 

Sparse Data Set 

30 373.9 209.4 

40 298.2 154.4 

50 272.5 130.6 

60 275.1 113.4 

 

Figure 5.8: Initial Matches of Sparse Scenes for Scenario-1 

From top-left, top-right, bottom-left, bottom-right order the frame pairs 
are correspondent to Kinects being apart 30cm, 50cm, 70cm and 90cm 
respectively.  



 

75 

 

70 220.2 91 

80 186.4 85.9 

90 176.1 73.2 

100 152.9 69.2 

110 127.4 58.1 

120 82.1 57.3 

130 44.6 48.9 

140 26.1 42.5 

150 13.4 24.2 

 

Table 5.1: Average number of feature matches for dense and sparse scenes 

for Scenario-1 

The following images in Figure 5.9 show the filtered inlier feature matches for 

the above same sparse featured frame pairs to obtain the optimized pose. When 

comparing two figures, it can be clearly seen that outlier matches presented in 

Figure 5.8 has been removed in Figure 5.9. 
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Figure 5.9: Filtered Matches of Sparse Scenes for Scenario-1  

From top-left, top-right, bottom-left, bottom-right order the frame pairs 
are correspondent to Kinects being apart 30cm, 50cm, 70cm and 90cm 
respectively. 

 

 Comparison against Ground Truth 

The following graphs show the estimated translation and rotation errors 

compared to ground truth values and compared to the corresponding dense scene 

results. 
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Figure 5.10: Translation and rotation error for dense and sparse scenes for 
Scenario-1 

Above results demonstrate that our approach works well with the sparse scenes 

giving very similar or even better results compared to dense scenes. The 

localization accuracy up to 1.5m translation is very small having less than 3cm 

average error.  Above data shows average translational accuracy of 96.7% and 

per centimeter average rotational accuracy of 98% over 1.5m span. Hence, it 

proves that our approach is robust against the number of inliers and does not 

dramatically affect the accuracy of the estimated pose. The inlier percentage of 
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both dense and sparse scenes for the above experiment is given in Figure 5.11 

below.  

 

Figure 5.11: Inlier Percentage for both Dense and Sparse Scenes 

Acording to the graph, the inlier percentage has dropped from 90% to 25% for 

the sparse scene while it is not much changed for the dense scene. However our 

algorithm has performed well for the sparse scene even if the inlier percentage has 

intensely dropped. 

 Comparison against ACRA Work 

We used the same set of sparse scene data for scenario-1 to run on ACRA 

localization approach. The following images in Figure 5.12 show the inlier feature 

matches obtained by ACRA algorithm for the same set of image pairs shown 

above.  

0

20

40

60

80

100

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

In
lie

r P
er

ce
nt

ag
e 

%

Ground Truth - Translation (cm)

Dense Sparse



 

79 

 

 

Figure 5.12: Filtered Matches using ACRA method for Sparse Scene in Scenario-1 

From top-left, top-right, bottom-left, bottom-right order the frame pairs 
are correspondent to Kinects being apart 30cm, 50cm, 70cm and 90cm 
respectively. 

The following graphs show how the ACRA method responded to the sparse 

scene in Scenario-1. The graphs below show the comparison of translation and 

rotational errors for the same sparse scene using both approaches. Also, the 

bottom graph shows the variation of inlier percentage for both approaches. 
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Figure 5.13: Translation and Rotation Error, Inlier percentage for proposed 
approach and ACRA method for sparse scenes in Scenario-1 

According to these results, similar to the dense scene, the ACRA algorithm 

could perform only up to 1.1m to estimate the pose for the sparse scene. The 

proposed method produces 95.5% average translational accuracy while the ACRA 

method provides 98% corresponding accuracy for 1.1m span. Per centimeter 

average rotational accuracy achieved with our method is 97.8% while it is 98% 

with ACRA method for 1.1m span. However, in the sparse scenario our method 

enhances the operating range by 36%. The bottom graph shows that inlier 

percentage lies below 30% throughout the estimation. 
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5.1.2 Scenario-2: Systematic Translation and Rotation of one 

sensor relative to a stationary sensor 

In this scenario, the Kinects were placed on a turn table initially with only a 

ground truth translation of 0.125m along 𝑌𝑌- axis. Then, one Kinect was rotated 

in steps of 5 degrees angle and ten frame pairs were captured at each step for 

both dense and sparse scenes. The corresponding translation in 𝑋𝑋 and 𝑍𝑍 axes are 

given in Table 4.1. The ground truth rotation matrix 𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔 at each step was 

determined as explained in Section 4.3.1.2.  

5.1.2.1 Scenario - 2 Dense Scene 

The following Figure 5.14 shows some sample dense scene image pairs captured 

from both Kinects with the matched ORB feature correspondences for this 

scenario. In each image pair, the images from the stationary Kinect is shown on 

the right-hand side. These four image pairs are randomly picked from each ten 

frame pairs captured when the Kinects are rotated at 5-, 15-, 25- and 35-degrees 

angles. 
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Figure 5.14: Initial Matches of Dense Scene for Scenario-2  

From top-left, top-right, bottom-left, bottom-right order the frame pairs 
are correspondent to Kinects being rotated with 5-, 15-, 25- and 35-
degrees angles respectively. 

There is a significant drop of the number of feature matches observed within a 

rotation of 30 degrees. The following pictures show the filtered matches for above 

frames to obtain the optimized pose. 
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Figure 5.15: Optimized Matches of Dense Scene for Scenario-2  

From top-left, top-right, bottom-left, bottom-right order the frame pairs 
are correspondent to Kinects being rotated with 5-, 15-, 25- and 35-
degrees angles respectively. 

 

 Comparison against Ground Truth 

The translation error, 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 and rotation error, 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 calculated between the 

estimated pose and the ground truth pose is shown in the following graphs. These 

errors were calculated as the same way as described in above Section 5.1.1.1 and 

these are plotted against the corresponding ground truth values. 
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Figure 5.16: Euclidian Translation error and Angular Error for a dense scene 
when one sensor is systematically positioned with a translation and rotation 

Above data shows that the average rotational accuracy for 400 rotation is 91.3% 

while the corresponding translational accuracy is around 81%. Compared to 

translation error between ground truth translation from 30-40cm for the dense 

scene in Scenario-1, there is a significant increase of 97% in the expected error for 

an equivalent translation predicted from these results. However, the rotation error 

is considerably less in this scenario. The following graph shows the estimated 

rotation about 𝑋𝑋−,𝑌𝑌 −and 𝑍𝑍 − axes. According to the plot, the rotation about 

𝑌𝑌 − axis is almost linear against the ground truth while the rotation about 𝑋𝑋 and 

𝑍𝑍 is very small and negligible compared to 𝑌𝑌- axis rotation.  
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Figure 5.17: Rotation about X, Y and Z axes for a dense scene when one sensor is 
systematically positioned with a translation and rotation 

The following Figure 5.18 shows the variation of percentage inlier feature 

matches for this experiment. Inlier percentage was calculated as explained in 

Section 5.1.1.1.  

 

Figure 5.18: Inlier percentage for a dense scene when one sensor is systematically 
positioned with a translation and rotation 
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 Comparison against ACRA Work 

We used the same data set on ACRA system for Scenario-2. The inlier matches 

filtered by this RGB-D to RGB localization approach is shown in the below 

Figure 5.19. In each frame pair, the left image is the moving Kinect image while 

the right image is considered to be the still Kinect. 

 

Figure 5.19: Inlier Matches obtained using ACRA method for Scenario-2 dense 
scene data set 

From top-left, top-right, bottom-left, bottom-right order the frame pairs 
are correspondent to Kinects being rotated with 5-, 15-, 25- and 35-
degrees angles respectively. 

The translation and rotation error for both approaches compared to 

corresponding ground truth values are shown in the below graphs. 
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Figure 5.20: Translation and rotation error of estimated pose using proposed 
localization approach compared to previous (ACRA) approach for the dense 

scene in Scenario-2 

According to above graphs the ACRA approach performs similar to the 

proposed approach, however it fails to estimate the pose when the Kinects are 

angled more than 25 degrees. Above data shows that our method ensures 93.3% 

average rotational accuracy over 250 span while ACRA method provides 94.8% 

accuracy. The corresponding average translational accuracy from our method is 

87.5% while it is 89.8% from ACRA method. However, in this dense scene 

experiment our method increases the operating range by 60%. 

The following graphs show the comparison of rotation about 𝑋𝑋−,𝑌𝑌 −and 𝑍𝑍 − 

axes for both approaches.  
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Figure 5.21: Estimated Angle about X. Y, Z axes for proposed approach and 
ACRA method for dense scene 

Estimated rotation about Y axis is almost same for both approaches up to 25 

degrees, while estimated rotation about 𝑋𝑋 −and 𝑍𝑍 − axes is different by each 

approach. However, the proposed approach gives 87%, 93.5% and 93% accuracy 

of angles about 𝑋𝑋,𝑌𝑌and 𝑍𝑍 axes respectively when the Kinects are even at 40 

degrees angle. 

The percentage inlier matches for both approaches is shown in the following 

graph. Considering the angular difference from 0 to 40 degrees, the inlier 

percentage of the proposed approach varies only by 14% while in ACRA approach, 

the inlier percentage varies by 38%.  
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Figure 5.22: The Inlier Percentage of both approaches for angle between Kinects 
up to 40 degrees 

5.1.2.2 Scenario - 2 Sparse Scene 

The matched ORB features for the image pairs captured for sparse scene for 

Scenario-2 is shown below. As in the dense scene, the below image pairs are 

randomly picked from each ten frame pairs captured when the Kinects are rotated 

at 5-, 15-, 25- and 35- degrees angles. 

 

Figure 5.23: Initial matches of sparse scene for Scenario-2  

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40

In
lie

r P
er

ce
nt

ag
e(

%
)

Ground Truth Rotation (Degrees)

Inlier Percentage Inlier percentage Inlier percentage-ACRA



 

90 

 

From top-left, top-right, bottom-left, bottom-right order the frame pairs 
are correspondent to Kinects being rotated with 5-, 15-, 25- and 35-
degrees angles respectively. 

To make the scene sparser, we have systematically created occlusions as shown 

in the right-hand side images. This way, we could reduce the number of initial 

feature matches significantly compared to dense scene for the same scenario. The 

following table shows the average number of initial feature matches for both dense 

and sparse scenes for Scenario-2. 

Ground Truth 
Angle about Y 

axis between the 
Kinects (degrees) 

Average Number of 
Feature Matches in the 

Dense Data Set 

Average Number of 
Feature Matches in the 

Sparse Data Set 

0 666.7 425.7 
5 531.7 338.5 
10 311.2 254.2 
15 187.8 182.9 
20 150.9 122.7 
25 137.9 119.5 
30 115 110.3 
35 96.7 119.6 
40 25.8 46.2 
45  51.1 

Table 5.2:  Average Number of Feature Matches for Dense and Sparse Scenes 

for Scenario-2 
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The filtered inliers for above four image pairs are shown in the following figure.  

 

Figure 5.24: Optimized matches for sparse scene for Scenario-2  

From top-left, top-right, bottom-left, bottom-right order the frame pairs 
are correspondent to Kinects being rotated with 5-, 15-, 25- and 35-
degrees angles respectively. 

 

 Comparison against Ground Truth 

The following Figure 5.25 shows the comparison of translation and rotation 

errors of sparse and dense scenes for Scenario-2. 
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According to graphs, the translation and rotation errors of sparse scene seem 

irregular and varying drastically above and below the corresponding dense scene 

values. Above data shows that the average rotational accuracy of 87% over 450 

span and the corresponding average translational accuracy of 83%. 

The following Figure 5.26 shows the comparison of inlier percentage for both 

dense and sparse scenes. 

 

Figure 5.25: Translation and rotation error for dense and sparse scenes for 
Scenario-2 
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Figure 5.26: Inlier percentage for both dense and sparse scenes for Scenario-2 

In average, the sparse scenes have about 5% less inliers chosen from the initial 

feature matches.  

 Comparison against ACRA Work 

Similar to Scenario-1, we used the same set of sparse scene data from Scenario-

2 to run on ACRA localization approach. The following images show the inlier 

feature matches obtained by ACRA algorithm for the same set of image pairs 

shown above.  
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Figure 5.27: Inlier matches obtained using ACRA method for Scenario-2 sparse 
scene  

From top-left, top-right, bottom-left, bottom-right order the frame pairs 
are correspondent to Kinects being rotated with 5-, 15-, 25- and 35-
degrees angles respectively. 

The following graphs show how ACRA method responded to the sparse scene 

in Scenario-2. The graphs show the comparison of translation and rotation errors 

for the same sparse scene using both approaches.  
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Figure 5.28: Translation and rotation error of estimated pose using proposed 
localization approach compared to previous (ACRA) approach for the sparse 

scene in Scenario-2 

According to above graphs ACRA approach fails to estimate the pose when the 

Kinects are rotated more than 25 degrees. Above data shows that average 

rotational accuracy achieved by our method is 89% while it lies at 87.8% by 

ACRA method. Corresponding average translational accuracy achieved by our 

method is 85.6% while it is 85% from ACRA method. Therefore, in this sparse 

scene experiment, our method has performed better than ACRA method while it 

enhances the operating range by 80%. The following graphs show the comparison 

of rotation about 𝑋𝑋−,𝑌𝑌 −and 𝑍𝑍 − axes for both approaches. 
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Figure 5.29: Estimated angle about X-, Y-, Z- axes for proposed approach and 
ACRA method for Scenario-2 sparse scene  

 Estimated rotation about Y axis is almost same for both approaches up to 25 

degrees, while the estimated rotation about 𝑋𝑋and 𝑍𝑍 axes are different by each 

approach. However, the proposed approach gives 95%, 85% and 97% accuracy of 

angles about 𝑋𝑋−,𝑌𝑌 −and 𝑍𝑍 − axes respectively when the Kinects are even at 35 

degrees angle. 

The percentage inlier matches for both approaches is shown in the following 

graph. Considering the angular difference from 0 to 40 degrees, the inlier 

percentage of the proposed approach varies only in 10% while in ACRA approach 

the inlier percentage varies in 33%.  
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Figure 5.30: Percentage Inlier matches obtained from both approaches for 
Scenario-2 sparce scene 

 

5.1.3 Scenario-3: Freehand movement of one sensor relative to a 

stationary sensor 

This scenario is more suitable to evaluate the appropriateness of proposed work 

in AR applications where a human user moves an RGB-D device by hand which 

is then localized using another RGB-D sensor. Also, it can be used in swarm 

robotics applications such as formation control and surveillance where UAVs or 

drones with RGB-D sensors try to localize in 6-DOF relative to another helper 

robot carrying an RGB-D sensor.  

The most challenging task while proving the concept in this scenario was to 

obtain accurate ground truth poses of the free-hand moving RGB-D sensor. With 

the experiments conducted in the laboratory environment, it was difficult to 
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record precise ground truth information with the available limited resources. 

Therefore, the investigation of proposed work in localizing a moving RGB-D 

sensor becomes twofold. One method is to examine the proposed approach on the 

data collected in laboratory environment with less accurate ground truth 

information. The other method is to evaluate using publicly available dataset 

with precise ground truth information. In this section we demonstrate the 

accuracy of the proposed work using these two methods. 

As explained in Section 4.3.1.3, in the first method we collected data frames 

from Kinects considering dense and sparse scenes while keeping Kinect-1 stable 

and freehand moving Kinect-2 on known trajectories. The following two sub 

sections present the results obtained from these experiments. 

5.1.3.1 Scenario - 3 Dense Scene 

Similar to Scenario 1 and 2, the experiment was conducted for both dense and 

sparse scenes. The experimental results of moving Kinect-2 along the perimeter 

of a rectangular shape on X-Y plane in front of the dense scene is shown in Figure 

5.31. 
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Figure 5.31: Scenario-3 Dense Scene - Freehand movement of Kinect-2 

The figure shows the ideal ground truth trajectory and estimated 
trajectory for the dense scene in different view planes. The starting and 
end point is (-0.3, 0, 0). The total ground truth trajectory length is 1.42m 
while rms-translation error is 0.116m and rms-rotational error is 0.0088 
radians. Average velocity of ground truth trajectory is around 0.01m/s.  

From Figure 5.31, the Z- and Y-error are minimum which lies within 3cm, 

hence providing above 85% accuracy in Y direction. However, as explained in 

Section 4.3.1.3, there can be significant human errors while trying to move the 

Kinect along ideal ground truth trajectory. Also, the experiment was conducted 

by a single person, so there were considerable delays between data collection start 

and Kinect-2 movement start. Likewise, at the end of the experiment the delays 
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happened between stop moving Kinect-2 to end of data collection. This can be 

seen in X-Y and X-Z sub-plots having a thick cloud of points at the starting 

position (-0.3, 0, 0). These factors were not considered while estimating the 

average speed of ground truth trajectory. The speed measurement here gives an 

understanding of how fast a robot can move relative to the stationary sensor. 

Average speed was estimated by taking the trajectory length and the overall 

experiment time. Therefore, delays at the start and the end could cause the speed 

calculation hence this calculated speed is only an approximation.  

5.1.3.2 Scenario - 3 Sparse Scene 

The experimental results of the estimated trajectory when moving Kinect-2 

along the perimeter of a rectangle on X-Y plane in front of the sparse scene is 

shown in the below Figure 5.32. 
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Figure 5.32: Scenario-3 Sparse Scene - Freehand movement of Kinect-2 

The figure shows the ideal ground truth trajectory and estimated 
trajectory for the sparse scene in different view planes. The starting and 
end point is (-0.3, 0, 0). The total ground truth trajectory length is 1.82m 
while rms-translation error is 0.189m and rms-rotational error is 0.0122 
radians. Average velocity of ground truth trajectory is around 0.01m/s. 

The ground truth trajectory for sparse scene is longer than the dense scene 

trajectory, moving Kinect-2 more towards (-X) axis. However, the translation 

error along Z axis still lies within 3.5cm. There is a significant increase in 

translation error along X-axis compared to dense scene when Kinect-2 was moved 

far away from Kinect-1. The same human errors explained in dense scene 
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experiment of this scenario also applies to this sparse scene experiment and above 

results could be affected by these errors. 

5.1.3.3 Qualitative Comparison with TUM Dataset 

Since the ground truth information for above dense and sparse scene approaches 

are prone to human errors, we use TUM Benchmark dataset [43] to qualitatively 

evaluate the accuracy of our proposed approach. This benchmark contains 

multiple real datasets captured with an RGB-D camera. Every dataset 

accompanies an accurate ground truth trajectory obtained with an external 

motion capture system which we were unable to acquire in the previous 

laboratory experiment methods. The purpose of evaluating against such a dataset 

is to examine the robustness of the proposed approach in practical applications 

such as 6-DOF localization of robots and AR applications.  However, data 

collected from a single Kinect may not entirely simulate the real environment for 

Scenario-3 in which one Kinect moves relative to a stable Kinect. Since there are 

no such multiple Kinect datasets available in the recent research, this is one 

option we could consider evaluating our approach. 

We use dataset sequences from “Testing and Debugging” and “Handheld 

SLAM” categories to test on our algorithm. These datasets consist of color and 

depth images captured from a single moving Kinect. The approach in Scenario-3 

is to estimate the pose of a moving Kinect relative to a stationary Kinect. 

Therefore, when using TUM dataset sequences for Scenario-3, we consider 

estimating the pose of each successive Kinect frame relative to the first Kinect 

frame in the sequence. However, most of these TUM dataset sequences have 
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lengthier trajectories and sudden camera motions which makes it challenging to 

estimate pose in this way due to the reason that a significant overlap is required 

between the two keyframes being matched. When the Kinect is moved or turned 

too far away from the first reference view, the proposed algorithm fails due to 

lack of inlier matches. Therefore, one solution to address this issue in real world 

scenario would be to relocate the reference Kinect to a known pose so that it 

enhances the overlapped view with the moving Kinect. With the benchmark 

dataset, this can be achieved by shifting the reference frame to a further point 

along the trajectory to have a good number of inliers.  

In this evaluation, we consider two methods to decide on which data frame to 

be shifted as the new reference frame. One method is to shift the reference frame 

based on the number of inlier-matches. When the number of inlier matches drop 

below a certain threshold (𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) the reference frame is being shifted/replaced 

by the currently moving frame. This threshold value is guessed based on the 

average number of inliers which varies for different sequences.  

As the second method we consider running the dataset by shifting the reference 

frame after every fixed number of frames (𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓). With this approach, the 

algorithm might still fail or misbehave based on the number of inliers. The quality 

of the results depends on the nature of the trajectory, i.e. the angular and 

translational difference between the frames, the speed of moving Kinect etc.  We 

run each sequence given below based on these two different methods. 
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 Comparison against Freiburg2 xyz 

For our first evaluation we use fr2/xyz sequence from Freiburg2 dataset. This 

sequence has simple motions of a hand-held Kinect roughly along X-, Y-, Z-axes. 

The movement along three axes remains approximately within 0 - 1.5m and the 

speed of moving Kinect is relatively slow compared to fr1/xyz sequences. The 

slow camera motion basically ensures that there is (almost) no motion blur and 

rolling shutter effects in the data. Hence the results of this sequence show the 

behavior of our approach in the best-case. We shifted the Kinect reference frame 

every time when the inlier number of matches drop below 200 (i.e  𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =

200). The following figures show an example situation where the reference frame 

has shifted when the number of inliers reduces.  
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Figure 5.33: Shifting the reference frame when number of inliers drops below 
threshold 

When the number of inliers drop below threshold, the moving image on 
top-right becomes the new reference frame as shown on bottom-left.  

The following Figure 5.34 shows the estimated trajectory for the sequence 

fr2/xyz at different view angles. The estimated trajectory for the same data 

sequence when evaluated by shifting the reference frame with 𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 100 is 

shown in the following figures overlaid with the trajectory estimated with  

𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 200. 
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Figure 5.34: Estimated Trajectory for fr2/xyz sequence with 𝒕𝒕𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 = 𝟏𝟏𝟏𝟏𝟏𝟏 and 
𝒕𝒕𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 = 𝟐𝟐𝟐𝟐𝟐𝟐 

Ground truth trajectory length=7.029m, Average translational 
velocity=0.058m/s, Average angular velocity = 1.716deg/s, Trajectory 
dimensions: 1.30m x 0.96m x 0.72m. 

The trajectory when 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 100 seems very much aligned with ground truth 

trajectory while 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 200 trajectory shows some misalignment in the last 

section. The following Figure 5.35 shows the frequency of changing the reference 

frame along the trajectory and the number of moving data frames relative to each 

reference frame. 
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Figure 5.35: Histogram plot of number of moving data frames relative to each 
reference frame for fr2/xyz sequence with different 𝒕𝒕𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 values 

There are a smaller number of histograms in above plot for 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 100 

analysis compared to 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 200 case due to changing the reference frame 

only a few times. The number of inliers never drop below 100 for the second half 

of the trajectory in 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 100 case. But it is different with 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 200 

situation where the reference frame changed many times in the second half. 

The estimated trajectory when the same data sequence is run by shifting the 

reference frame after every 300th frame (𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 300) is shown in the 

following figure.  
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Figure 5.36: Estimated Trajectory for fr2/xyz sequence with 𝒕𝒕𝒕𝒕𝒏𝒏𝒏𝒏𝒏𝒏_𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 = 𝟑𝟑𝟑𝟑𝟑𝟑 

The estimated trajectory has the similar ground truth trajectory shape but 

have shifted off significantly. The following figure shows the number of inliers 

variation along the trajectory for above analysis. 
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Figure 5.37: Inliers variation for fr2/xyz sequence with 𝒕𝒕𝒕𝒕𝒏𝒏𝒏𝒏𝒏𝒏_𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 = 𝟑𝟑𝟑𝟑𝟑𝟑 

It can be seen that the inliers have dropped significantly before the reference 

frames 300, 600, 1200 and 1500. The incorrect pose estimated with these few 

inliers might cause the offset in the predicted trajectory.  

From above figures it can be seen that 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 method is more stable than  

𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 method. The reason for the instability of the latter approach is that 

in fr2/xyz sequence the Kinect changes the direction of motion frequently and 

there is more possibility of not having the current reference frame and the moving 

frame overlapped in many times. Also, a significant drift can be observed in the 

estimated trajectory due to accumulating the error in estimated relative pose. 
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 Comparison against Freiburg2 desk  

For the second evaluation, we use fr2/desk sequence where the images are 

recorded in a typical office environment with two desks, a computer monitor, 

keyboard, phone, chairs, etc. The Kinect is moved around the two tables so that 

the loop is closed. This sequence consists of relatively long trajectory 

approximately around 18m. The movement of Kinect along Z-axis is less 

significant compared to movement along X- and Y-axes. Even though the speed 

of Kinect is slow, there is a significant translation along X- and Y- axes. Due to 

this nature of the data sequence, reference frame needs to be shifted more 

frequently than that of in fr2/xyz sequence. The number of inlier feature matches 

also tend to drop drastically along the trajectory. Therefore, for this sequence we 

considered to evaluate against 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 100, 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 50  and 𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =

50.  

The following Figure 5.38 shows the estimated trajectory for fr2/desk sequence 

for 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 100 and 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 50 on the same plot.  
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Figure 5.38: Estimated Trajectory for fr2/desk sequence with different 
𝒕𝒕𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊values 
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Ground truth trajectory length=18.880m, Average translational 
velocity=0.193m/s, Average angular velocity = 6.338deg/s, Trajectory 
dimensions: 3.90m x 4.13m x 0.57m. 

 

The following figure shows the frequency of changing the reference frame along 

the trajectory and the number of moving data frames relative to each reference 

frame. 

 

Figure 5.39: Histogram plot of number of moving data frames relative to each 
reference frame 

From above graph it can be seen that the reference frame has frequently 

changed between the frames (~600-700) and (~1900-2100) for 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 100 case. 

The red histograms being mostly taller than the blue histograms proves that the 

reference frame has changed less frequently in 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 50 experiment than 

𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 100 experiment. 
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We ran our algorithm on the same data sequence by shifting the reference frame 

after every 50th frame, i.e. 𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 50 and the estimated trajectory is shown 

in the below Figure 5.40. 
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Figure 5.40: Estimated Trajectory for fr2-desk sequence with 𝒕𝒕𝒕𝒕𝒏𝒏𝒏𝒏𝒏𝒏_𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 = 𝟓𝟓𝟓𝟓 
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The variation of the number of inlier matches along the trajectory is show in 
the below graph. 

 

Figure 5.41: Variation of Number of inliers along the trajectory when 
𝒕𝒕𝒕𝒕𝒏𝒏𝒏𝒏𝒏𝒏_𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 = 𝟓𝟓𝟓𝟓 

 

From above figure it can be seen that the number of inliers reduces drastically 

along the trajectory even after the reference frame is shifted every 50th frame. 

Compared to above Figure 5.40 X-Y Plane trajectory, there is a significant drift 

in the trajectory at around 650th frame and this drift accumulates along the 

trajectory. The reason for this can be the number of inliers being approximately 

zero around this frame number according to Figure 5.41. 

Since fr2/desk sequence has images captured when the Kinect is moved around 

two tables so that the loop is closed, this gives us opportunity to test the 

robustness of proposed approach in a different way. When the trajectory closes 

the loop, it comes to a point where the images are overlapped with the first data 

frame of the sequence. This is equivalent to a scenario where the second camera 

suddenly comes to a point so that it shares some view with the still Kinect. So 
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far in our analysis we considered the situations where the second Kinect always 

moves away from the first Kinect. However, with this new analysis we could test 

the robustness of our approach in the opposite way.  

The following figures show the last part of the trajectory which was estimated 

when there is a reasonable overlap between the moving data frames and the first 

data frame. 

 

Figure 5.42: The last section of the trajectory estimated wrt First data frame 

A zoomed-out view is shown on the top-left sub-plot and it can be seen that 

the error in estimated trajectory is minimal. When the same part of the trajectory 

is compared with the previously analyzed 𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 50 trajectory, a large 
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error can be observed, due to error accumulation over the loop. Having a minimal 

error in this scenario, we prove the robustness of our approach when the second 

Kinect moves towards the static Kinect. 

 Comparison against Freiburg1 xyz 

To investigate the behavior of the proposed work in the worst-case scenario, 

we used fr1/xyz and fr1/desk sequences to analyze the performance. The following 

figure shows the estimated trajectory for fr1/xyz in the two situations where the 

reference frame is changed when number of inliers reduced less than 100 and 200.  

 

Figure 5.43: Estimated Trajectory for fr1/xyz sequence with 𝒕𝒕𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 = 𝟏𝟏𝟏𝟏𝟏𝟏 and 
𝒕𝒕𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 = 𝟐𝟐𝟐𝟐𝟐𝟐 
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Ground truth trajectory length=7.112m, Average translational 
velocity=0.244m/s, Average angular velocity = 8.920deg/s, Trajectory 
dimensions: 0.46m x 0.70m x 0.44m. 

Above plots in Figure 5.43 shows the estimated trajectory in the worst-case 

scenario because the camera has moved very fast compared to other two data 

sequences analyzed before. According to the sample images shown in the following 

figure, it can be clearly seen that there is a significant difference in the images 

due to motion blur. This may cause the large errors observed in the estimated 

trajectory. However, the trajectory when the inlier threshold is 200 seems slightly 

improved and slightly closer to ground truth trajectory when seen from X-Y, Y-

Z and X-Z plane plots.  
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Figure 5.44: Sample Images from fr1/xyz and fr2/xyz Sequences 

Top row: fr1/xyz sequence images with motion blur due to fast camera 
movements. Bottom row: Images from fr2/xyz and the images are fairly 
clear.   

 

The histogram plot of where the reference frame has changed along the trajectory 

is shown in the below figure. Compared to the same plot for fr2/xyz and 

considering the number total data frames in two sequences, we can observe a 

significant growth in changing the reference frame. While the number of data 

frames is about 78% less in this sequence compared to fr2/xyz, there is a frequency 
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increment of three times per every 100 frames in the reference frame change for 

𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 100 and six times increment when 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 200 case. 

 

Figure 5.45: Histogram plot of number of moving data frames relative to each 
reference frame for fr1/xyz sequence with different 𝒕𝒕𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 values 

 

 Comparison against Freiburg1 desk  

To study the behavior of proposed work further in worst-case scenario, we 

compared the accuracy against fr1/desk sequence, which is nearly two times faster 

in translational velocity and three times faster in angular velocity compared to 
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fr1/xyz sequence. The resulted trajectory is shown in the below figure for 

𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 50 and 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 100 analysis.  

 

Figure 5.46: Estimated Trajectory for fr1/desk sequence with 𝒕𝒕𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 = 𝟓𝟓𝟓𝟓 and 
𝒕𝒕𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 = 𝟏𝟏𝟏𝟏𝟏𝟏 

Ground truth trajectory length=9.263m, Average translational 
velocity=0.413m/s, Average angular velocity = 23.327deg/s, Trajectory 
dimensions: 2.42m x 1.34m x 0.66m. 
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Even with the worst-case scenario, the results seem still acceptable. When 

𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 100  case is considered, the drift in estimated trajectory is relatively 

higher along Y axis while it is very minimal along X- and Z- axes. From above 

plots, the Y-error lies within about 40cm for 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 100 case while it is twice 

higher for 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 50 scenario. The X- and Z- axes error for 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 50 

trajectory is also considerably larger. 

These large errors in 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 50 trajectory can be because the number of 

inlier features drastically reduces from frame to frame and the average number of 

inliers are less than 150 in most cases as shown in Figure 5.47.  

 

Figure 5.47: Frequency of changing the reference frame and the number of Inliers 

Frequency of changing the reference frame is given for both 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
50  and 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 100  cases. The map of the number of inliers are 
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overlaid on the same plot. Please note that the number of inliers scaled 
down by 10. 

 

However, it can be seen that there is substantial amount of motion blur and 

rolling shutter effect occurred in the color images due to fast camera movements 

as shown in Figure 5.48. Due to image distortions when the camera moves quickly, 

the estimated pose could be severely affected. Hence, we can observe the 

significant drift in the trajectory. 
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Figure 5.48: Sample images analyzed for fr1/desk sequence 
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6 Discussion 

The experiments described in the previous chapter laid out the success and 

failures of the proposed work. This chapter discusses and evaluates the results of 

each experiment methodically.  

6.1 Systematic Movements 

The purpose of analyzing the proposed approach with systematic movements 

as explained in Scenario-1 and 2 is to investigate the behavior in the best-case. 

Scenario-1 and 2 are considered as the best-case scenarios because no camera 

motion considered in these experiments and the data was collected when the 

Kinects are moved to a certain position and when they are stationary. On the 

other hand, Scenario-3 presents freehand movement of Kinects hence can be 

considered the worst-case compared to Scenario-1 and 2.  These experiments help 

to identify how far the Kinects can slide away without a rotation and up to how 

far away they are able to maintain a reasonable accuracy in the pose if rotated 

about Y-axis and translated along X-and Z-axes. These scenarios can be applied 

when 3-DoF localizing mobile robots in indoor environments whose translation is 

constrained along X- and Z- axes while able to rotate only about Y-axis.   

6.1.1 Scenario-1: Systematic Translation only of one sensor 

relative to a stationary sensor 

Our experiments show that a robot can slide along X axis with respect to a 

stable Kinect or a helper robot up to 1.5m. However, this distance depends on 
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the scene they observe and how rich the features extracted from the scene. 

According to our sparse scene experiment, a robot can move 1.5m with a 

reasonable accuracy of localization but with the dense scene it is restricted to 

1.4m. One reason for this difference would be some low-quality features with 

incorrect depth values get removed while occluding the scene for sparse scenario 

which resulted in more accurate pose estimation. We prove that this method 

performs better than our ACRA method in Scenario-1 experiments by being able 

to maintain an accurate localization for even longer distances.  

If a helper robot is used as the reference for localization, some sort of 

coordination between two robots can be employed to move the second robot 

further away along the trajectory. If they coordinate to move the helper robot to 

a closer position so that their share of FoVs increase, then the second robot can 

explore further areas in the environment. It is important to relocate the helper 

robot to an accurate position, otherwise this may affect the global localization 

accuracy. If a swarm of robots are to be localized and a large area to be explored, 

then instead of a single helper robot relocates every time, the reference role can 

be switched among the robots so that a part of the swarm can navigate so that 

they share their FoVs. Nevertheless, our experiments for translation provide only 

a systematic analysis and not tested on robots in real scenario. The localization 

accuracy for such scenarios may be affected by image blur, rolling shutter effects 

and even by robot’s odometry errors. The accumulated error could affect the 

global localization of robots. 
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6.1.2 Scenario-2: Systematic Translation and Rotation of one 

sensor relative to a stationary sensor 

Experiment for Scenario-2 allows us to further analyze the performance of our 

approach taking the rotation into consideration. The turn table experiment 

proves the accuracy of our method if implemented on mobile robots. The 

experiment is equivalent to localizing a mobile robot who is freely moving on the 

floor with translations and rotations. In our experiment, there is a vertical gap 

between the cameras, and this can be assumed a fixed gap between the two robots. 

The results show that our method can perform well with the rotations up to 450 

between the Kinects with only 30 average rotation error. However, the translation 

error is significantly high for both dense and sparse scene experiments. In terms 

of rotation between the Kinects, our method shows significant improvement over 

ACRA method which could only support angles up to 250. Incorporating depth 

information in the proposed method helped with the localization improvement. 

Another reason for our method to succeed over ACRA method would be the 

ability to extract good keypoints even the images are being rotated significantly.  

Because we used oriented FAST corner detector and BRIEF feature descriptor 

by having ORB in our implementation, the algorithm could maintain localization 

with larger rotations as well.   

Scenario-2 experiment considers a scenario with more rotation than translation, 

but the localization accuracy is still acceptable. When consider the angular errors, 

the rotation error about Y-axis is negligible for the dense scene and even for 

sparse scenes the error is minimal for rotations up to 250. The percentage accuracy 

of Y-axis rotation is around 93.5% and 85% for dense and sparse scenes. Y- axis 
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rotation is important in our analysis because, it is the only rotation that a mobile 

robot can perform. If the robots are used in these experiments to localize each 

other, the results could affect with motion blur as explained before. 

The results prove that our approach can be used in 3-DoF localization of mobile 

robots. However, the experiments are systematically analyzed offline and not 

tested on robots moving in real scenarios which can be more challenging. 

Nevertheless, the ground truth information obtained for both scenarios might not 

be the precise values and there could be human errors in estimating the ground 

truth.  

6.2 Freehand Movements 

The freehand moving experiments are useful to analyze the impact of our 

approach in 6-DoF localization of robots including UAVs. Pose estimation 

conducted for dense and sparse scene laboratory experiments provide a qualitative 

analysis of the data.  

6.2.1 Scenario-3: Freehand movement of one sensor relative to a 

stationary sensor 

The localization accuracy towards Y direction is kept above 85% and there is 

minimal error in X- and Z- directions for dense and sparse scenes compared to 

ground truth trajectory. However, the accuracy of estimated trajectory is very 

much prone to human errors because the obtained error values are relative to 

ideal ground truth trajectory which was not possible to achieve in these 

experiments. When moving the Kinect, there could be considerable amount of 
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drift-off from the ideal trajectory which are not accounted in the final trajectory. 

In both experiments, the Kinects could maintain the localization without losing 

shared field of view because the trajectory was relatively short compared to 

previous scenarios. Also, the average speed of moving the Kinect is very slow, but 

there were significant delays at the start and end points which are not accounted 

for speed calculation. However, an analysis with the Kinect speed of 1-2cm/s 

would not be an adequate measure for the robots who operate in 6-DoF. Further 

experiments with precise ground truth measurements could help to analyze such 

scenarios.   

6.2.1.1 Qualitative Comparison with TUM Dataset 

     On the other hand, the qualitative analysis against TUM Benchmark 

dataset is suitable for more practical scenarios. Since the dataset comes with 

precise ground truth information this evaluation is more advance than above 

analysis. Not only that the evaluation against this benchmark sequences provides 

more thorough evidencing of the robustness of our approach because the data 

sequences are fairly challenging hence demonstrate more practical usage of our 

work. The only drawback of this dataset is, being captured using a single Kinect 

which would have been a more appropriate dataset if comes with sequences 

captured with two or more Kinects. Since the work proposed here is based on 

using multiple Kinects, our results might negatively affect with other factors when 

using single Kinect data such as the reference frame not being updated real time 

with the change of environmental lighting condition etc.  
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    The analysis against TUM benchmark is considered to be a more genuine 

evaluation of our method in the usage of AR applications and robot localization. 

We present a fair evaluation of our approach against single RGB-D odometry. 

The proposed work here is suitable to use on localization of robots either on 6-

DoF or 3-DoF. TUM benchmark analysis supports our evaluation for using on 6-

DoF robot localization which can then be used to predict the analysis against 3-

DoF localization.  Evaluation based on the number of inliers is proven to produce 

better results than using a fixed number of frames. Based on the pre-predicted 

nature of the trajectory, a suitable method can apply as the metric for helper 

robot relocation. When comparing the results analyzed for fr2/xyz and fr2/desk 

sequences based on the number of frames, fr2/xyz sequence produced better 

results even with 300 frames offset than fr2/desk which could barely survive the 

localization even with 50 frames offset. Therefore, when implemented on robot 

localization and navigation applications it is useful to choose the best metric so 

that the frequency of helper robot relocation is minimum. Making this choice is 

easier if the expected trajectory is not random and possible to guess beforehand. 

According to fr2/xyz analysis, applications where the surveilling robot navigates 

closer to the helper robot with minor rotations, can relocate the helper robot 

based on a fixed number of frames or can use a lower inlier threshold as the 

metric. This way surveillance process can be speedup by reducing the delay in 

frequently relocating the helper robot. 

With the results from fr2/desk sequence we prove that our method can be 

applied on robots navigate in long trajectories when they use a suitable inlier 

threshold to coordinate between themselves. The results show that the shape of 



 

131 

 

estimated trajectory is very much accurate in shape except the accumulated drift 

in the localization. When the moving robot follows a long trajectory navigating 

further away from the helper robot, the number of inliers is a more suitable 

measure to decide on when to relocate the helper robot. This is because the 

occurrence of localization failure is uncertain, and it entirely depends on 

environmental features and the speed of the moving robot. However, this can 

result in more frequent relocations leading to delays in the overall navigation.  

Through fr2/desk sequence analysis, we also simulate a situation that a moving 

robot suddenly comes to a point where it can share the view with a stable helper 

robot. We prove that our method can perform well in these situations as well. 

Referring to the analysis in worst-case scenario according to results from 

fr1/xyz and fr1/desk sequences, our algorithm could still maintain the trajectory 

shape up to an acceptable accuracy, except the significant localization offset from 

ground truth trajectory. We suggest using the number of inliers as a measure to 

decide on relocating the moving robot or to pass on the reference role to another 

robot in a swarm because the relocation based on a fixed number of frames could 

affect more negatively in worst-case scenario.  

The errors in the results could be affected by the interference of depth images 

and not having a dense depth map. As a result of this a significant number of 

good feature matches could be lost during 3D point cloud estimation due to 

having zero depth. Therefore, the accuracy of estimated pose depends on the 

accuracy available depth values at remaining features. However, combining both 
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depth map and point features in is a good approach we implemented in this work 

rather than using either of them alone. 

None of the above described analysis are conducted on real robotic platforms 

which could be more demanding. We always considered static environments in 

our experiments and the proposed work is not being tested for dynamic real-world 

environments. The scenes used for our experiments are rich in features hence our 

work has not been tested against environments with featureless planar surfaces 

which are common in most indoor environments. Therefore, more real-world 

experiments and analysis need to be conducted to address these scenarios.  
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7 Future Work and Conclusions 

In this section we discuss about suggestions and further developments to be 

added into the proposed work in terms of improving the accuracy, efficiency and 

robustness. Later we summarize the conclusions made by this work.  

7.1 Future Work 

The proposed RGB-D localization approach is implemented and tested 

systematically but needs further investigation and development before it could be 

a real practical tool. The analysis presented in this thesis is not sufficient to 

investigate the behavior of proposed work in challenging real-world applications. 

Therefore, as the next step, an implementation on robotic platforms would help 

to understand the behavior of proposed work. This localization approach can be 

implemented and used more efficiently on holonomic robots because they can 

easily maintain their FoVs while navigating apart from each other. All the 

experiments presented in this research are based on analyzing offline data hence 

the evaluation is lack of real-time experiments. Implementing this approach on a 

swam consisted of two or three robots employing in a surveillance application 

would be helpful to evaluate the real-time performance. This way a quantitative 

analysis of the proposed work can be conducted.  

To examine the usage of proposed work in augmented reality applications, a 

simple AR application can be implemented. An example scenario would be, two 

users holding two RGB-D sensors pointing at the same scene, while the second 

user can see in his or her camera RGB image the direction or location where the 
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first user is pointing at. This can be done by showing the location where the 3D 

ray from first user’s crosshair in the middle of his image appears in second user’s 

RGB image. Implementing such scenarios would help to investigate and improve 

the accuracy and efficiency of proposed work by testing on further pose 

optimization methods.  

The system can be improved to endure worst-case application scenarios such 

as 6-Dof localization of fast-moving UAVs and uncontrolled hand-held RGB-D 

sensor movements in AR applications. In order to survive such worst-case 

scenarios, the system can be improved by integrating with other methods of 

localization such as fusing with IMU sensor information.    
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7.2 Conclusions 

The work presented here introduces a novel localization approach for RGB-D 

sensors to use in indoor robotic and AR applications. The proposed localization 

approach estimates the pose of a moving or static RGB-D sensor with respect to 

a fixed RGB-D sensor in the environment as long as they share a part of their 

fields of view. We evaluated the proposed localization approach qualitatively and 

quantitatively by conducting systematic experiments and comparing with our 

previous localization methods. We also analyzed the behavior of our approach 

when used with publicly available RGB-D benchmark datasets. 

We investigated the accuracy of estimated pose when the moving RGB-D 

sensor is moved with translations and rotations relative to the stationary RGB-

D sensor in feature rich and feature less environments. The results prove that our 

approach can be used to localize a moving RGB-D sensor up to 1.5m away from 

the fixed sensor with an average translational accuracy of 96.7% and average per 

centimeter rotational accuracy of 98%. When the sensors are moving together 

with a rotation component, our method could achieve average rotational accuracy 

of above 87% over 450 angle. The corresponding translational accuracy was 83%.  

The comparison of this work with our previous localization approach (ACRA) 

produced better-quality results due to incorporating depth data and the use of 

more robust corner detectors and feature descriptors. The results of analysis 

against ACRA method evidenced that the new method can maintain the accurate 

localization while enhancing the operating range. The results verified that this 

method enhances the translation domain by 36% and rotational domain by 80% 
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over ACRA method. The average translational and rotational accuracy of our 

method over ACRA method remains almost similar most of the time giving 

slightly higher accuracy.  

We showed our approach can be used in AR applications and localizing robots 

operate in 6-DoF. Even though our freehand moving experiments does not provide 

enough evidence, the analysis against public dataset proves the robustness of our 

approach to be used in such applications. When used on robots our method 

requires the helper robot to be relocated or moved closer to maintain the 

localization accuracy. The analysis shows that our method works fairly well with 

short trajectories and a reasonable accuracy can be maintained over the long 

trajectories. We showed that a threshold number of inliers is a good indicator for 

helper robot relocation during navigating on long trajectories. In our analysis we 

verified that our method works well on the trajectories with up to 0.2m/s 

translational speed and up to 7deg/s angular speed. We also prove that our 

method can still work without failing on the trajectories up to 0.4m/s 

translational speed and 23deg/s angular speed. However, the resulted trajectory 

was significantly affected by the accumulated error of estimated pose. 

Incorporating information from sensors such as IMU would help improving the 

accuracy of estimated pose over long trajectories.  

  This work presented a detailed analysis of the proposed RGB-D localization 

approach targeting to use on AR and multi-robotic applications. However, to be 

used on such applications, it requires some more experiments conducted in real-

time on robotic platforms.   
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8 Appendix A: Microsoft Kinect Sensor (Version 1) 

Microsoft Kinect sensors are primarily used in the gaming industry as a Natural 

User Interface (NUI) for Microsoft X-Box 360 gaming platform to capture 3D 

perception of humans’ motions. Kinect sensor has also become a widely used 3D 

measuring device in indoor robotics [74, 75], object recognition, 3D mapping [28, 

37], SLAM [42-44] and 3D reconstruction [50, 51] due to its low cost, reliability 

and the speed of measurement. 

 

Figure 8.1: Microsoft Kinect with IR Projector, RGB Camera, IR Camera, 
Accelerometer and Microphone array (Illustration by [76]) 

Microsoft Kinect provides the color-depth (RGB-D) data having benefits of 

laser and vision sensing together. The Kinect sensor features a regular monovision 

RGB camera and a depth sensor, consisted of an infrared (IR) projector and an 

IR camera pair. This IR camera and the projector are used as a stereo pair which 
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helps each other to see depth by using infrared vision by triangulating infrared 

laser points in 3D space.  

The Kinect also has an array of four microphones that allows the players to 

use voice control with noise cancellation when used in gaming. The accelerometer 

is used for inclination and tilt sensing and for image stabilization while the 

motorized base is used to rotate the Kinect to track players in gaming. 

The technical specifications of Microsoft Kinect version 1 as in [74] and [77] are 

as below. 

 

 

Table 8.1:  Microsoft Kinect Specifications 

Horizontal field of view 57 0  

Vertical field of view 43 0 

Frame rate (Depth and color stream) 30 frames per second 

Default resolution, depth stream VGA (640 x 480) 

Default resolution, color stream VGA (640 x 480) 

Depth sensor range 1.2m - 3.5m 

Physical tilt range ± 27 degrees 

Audio format 16-kHz, 16-bit mono pulse code 

modulation (PCM) 
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The Microsoft Kinect also has its own System-On-Chip (SoC) special purpose 

processor made by Primesense which processes the captured images by color and 

depth cameras. The Kinect system architecture is shown in the below Figure 8.2. 

 

Figure 8.2: Microsoft Kinect system architecture (The image is taken from [78]) 

Kinect’s IR projector sends out a light and dark speckle pattern as shown in 

below Figure 8.3. The IR camera then captures the projected pattern and for each 

pixel in IR image, depth is calculated by comparing the local pattern at that pixel 

with a previously captured memorized pattern from the projector at the same 

pixel with a selected window. The disparity is taken as the offset from the known 

depth in pixels and it is refined further with sub pixel accuracy. With the 

memorized depth and disparity, triangulation is used to estimate the depth at 

each pixel as given in [79]. These depth data are then correlated to a calibrated 

RGB camera to obtain RGB image with depth associated at each pixel. 
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However, being a consumer RGB-D sensor, there are limiting factors of Kinect 

sensor compared to other mapping specialized sensors. One of those limiting 

factors is having a smaller field of view compared to other 3D mapping sensors 

hence limit their usage in mapping. Moreover, the consumer RGB-D sensors for 

NUI applications are designed in a way that the user always stay within a certain 

depth range which avoids the chance of inaccuracies of estimated depth 

information when the user moves away from the accepted range. This is not a 

crucial factor in gaming however, the range of accurate depth data is an important 

factor when using these sensors in mapping. Hence the accuracy of depth data 

being deteriorated when the objects in the scene move further away from the 

sensor is a significant limiting factor for consumer RGB-D sensors as Kinects 

when using in 3D mapping applications.  

 

Figure 8.3: Kinect IR speckle pattern (Image taken from [79]) 
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There are several open source software packages available to interface Kinect 

sensor for robotic applications in different platforms. OpenKinect LibFreenect [80] 

supports the Kinect with Linux, OS X and Windows. Later on, Microsoft officially 

released Microsoft Kinect Software Development Kit (Kinect SDK) using Visual 

Studio 2010 express as their own software package. Kinect SDK enables 

developers to create applications using Kinect sensor technology on computers 

running Windows operating system.  

In the experiments explained in this thesis, we used Microsoft Kinect for 

Windows SDK [69] version 1.8 to interface multiple Kinects on a single PC 

running Windows 7 platform. 
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