

Localization of RGB-D Sensors for Robotic and

AR Applications

Nalika Damayanthi Nahinnage Dona

A thesis submitted for the degree of Master at

Monash University in 2019

Electrical and Computer Systems Engineering - ECSE

Copyright notice

© Nalika Dona (2019).

I certify that I have made all reasonable efforts to secure copyright permissions
for third-party content included in this thesis and have not knowingly added
copyright content to my work without the owner's permission.

iii

Abstract

Localization, the problem of estimating the position and orientation of robots

given the sensor readings and map of the environment is a fundamental challenge

in robotics. A precise understanding of the pose in the environment is a crucial

requirement for robots to navigate and operate accordingly. In the past research,

localization problem has been addressed using variety of methods such as

ultrasonic, laser range sensors, beacons, landmark based methods and map-based

approaches. Vision has become more promising sensor technology for localization

in the last three decades due to its ability to provide rich, detailed information.

Monocular camera-based localization has been popular however depth cannot be

observed, and it suffers from scale drift problem. Stereo vision can overcome these

issues, but it again introduces computation complexity when estimating depth

and synchronizing images.

 This research describes a localization approach for indoor robots using low

cost and information rich RGB-D cameras which can provide synchronous RGB

image and depth map of the observed scene. These sensors have been popular in

the recent research despite their limited depth range and filed of view. The

proposed localization approach investigates the usage of multiple RGB-D sensors

to be used as a strategy to localize indoor robots. Swarm of robots getting the

support of a leader or a helper robot in localization and navigation is a common

approach in indoor robotic surveillance applications. This work focuses on such

an approach by localizing moving RGB-D sensors relative to another static RGB-

D sensor in the environment.

iv

The key input for localization is the colour and depth data extracted from the

scenes observed by RGB-D sensors. Feature pointes extracted from the colour

images are used to generate three-dimensional feature correspondences which are

fed into RANSAC pose estimation algorithm. A RANSAC hypothesis

transformation between the cameras is obtained iteratively by minimizing the

SSD error between the two point clouds. Non-linear optimized pose is then

calculated by optimizing the RANSAC estimated pose over all feature

correspondences. The resulted pose of moving RGB-D sensor with respect to the

static RGB-D sensor is exclusively depends on the significance of overlapped

views and the accurate depth information extracted from the sensors.

The performed experiments and analysis of this work demonstrate similar or

improved localization accuracy and enhanced range of operation compared to

another RGB-D to RGB localization method. Effort taken to test the accuracy

of this proposed work by means of popular RGB-D datasets available in the field

also support as a study of its applicability in 6-DoF robot localization. Analysis

shows that the proposed localization approach can be used to reasonably localize

fast moving robots even in reduced feature environments. The same analysis can

be applied to evaluate the suitability of this work in augmented reality

applications. Hence, this research contributes towards robust localization

approaches for robots to collaboratively operate in indoor environments and as a

localization approach for RGB-D sensors to use in AR applications.

v

Declaration

This thesis contains no material which has been accepted for the award of any

other degree or diploma at any university or equivalent institution and that, to

the best of my knowledge and belief, this thesis contains no material previously

published or written by another person, except where due reference is made in

the text of the thesis.

Signature: ...

Print Name: Nalika Damayanthi Nahinnage Dona

Date: 04-12-2019

vi

Acknowledgements

I would like to acknowledge my warmest gratitude to my supervisors, Prof.

Tom Drummond and Dr. Wai Ho Li for their enthusiasm and support throughout

the research. They are inspiring researchers in robotics and computer vision. Their

friendly guidance and expert advice have been invaluable throughout all stages

of the work. I am truly grateful for the extended discussions and valuable

suggestions I received from them to carry out this research work and appreciate

their patience towards the mistakes and delays I made during the process.

I am grateful to Winston Yi, Vincent Lui and Dinesh Gamage for their valuable

discussions and friendship during the development of this work. I am grateful to

all of those with whom I have had the pleasure to work during this research.

Special thanks are due to my husband Rameesha De Silva Weerasingha, for his

continuous support and guidance. I would like to thank my parents, whose love

and guidance are with me in whatever I pursue.

vii

Table of Contents

List of Figures .. x

List of Tables .. xiv

1 Introduction ... 1

1.1 Indoor robot Localization ... 2

1.2 Vision Based Localization ... 5

1.3 Contributions .. 6

1.4 Thesis Overview ... 7

2 Literature Survey ... 9

2.1 RGB-D Sensor Based Research .. 10

2.2 Usage of Multiple RGB-D Sensors ... 14

3 Methodology .. 17

3.1 Pose Estimation .. 18

3.1.1 Feature Extraction and Matching 19

3.1.2 Generating 3D Feature Correspondences 21

3.1.3 Iterative Pose Estimation using RANSAC 26

3.1.4 Estimating Rigid Body Transformation 28

3.1.5 Non-Linear Pose Optimization .. 36

4 Implementation and Experiments ... 38

4.1 Implementation ... 38

4.2 Camera Calibration .. 41

4.3 Experiments .. 43

4.3.1 Data Collection .. 47

4.3.1.1 Experiment-1: Systematic Translation only of
one sensor relative to a stationary sensor 50

viii

4.3.1.2 Experiment-2: Systematic Translation and
Rotation of one sensor relative to a stationary
sensor .. 54

4.3.1.3 Experiment-3: Freehand movement of one
sensor relative to a stationary sensor 60

5 Results and Analysis .. 65

5.1.1 Scenario-1: Systematic Translation only of one sensor
relative to a stationary sensor ... 65

5.1.1.1 Scenario-1 Dense Scene .. 66

5.1.1.2 Scenario-1 Sparse Scene .. 73

5.1.2 Scenario-2: Systematic Translation and Rotation of one
sensor relative to a stationary sensor 81

5.1.2.1 Scenario - 2 Dense Scene .. 81

5.1.2.2 Scenario - 2 Sparse Scene 89

5.1.3 Scenario-3: Freehand movement of one sensor relative
to a stationary sensor .. 97

5.1.3.1 Scenario - 3 Dense Scene .. 98

5.1.3.2 Scenario - 3 Sparse Scene 100

5.1.3.3 Qualitative Comparison with TUM Dataset 102

6 Discussion .. 125

6.1 Systematic Movements ... 125

6.1.1 Scenario-1: Systematic Translation only of one sensor
relative to a stationary sensor ... 125

6.1.2 Scenario-2: Systematic Translation and Rotation of one
sensor relative to a stationary sensor 127

6.2 Freehand Movements ... 128

6.2.1 Scenario-3: Freehand movement of one sensor relative
to a stationary sensor .. 128

6.2.1.1 Qualitative Comparison with TUM Dataset 129

7 Future Work and Conclusions .. 133

ix

7.1 Future Work ... 133

7.2 Conclusions ... 135

8 Appendix A: Microsoft Kinect Sensor (Version 1) 137

9 Bibliography... 142

x

List of Figures

Figure 3.1: The process of estimating relative pose between two RGB-D sensors ... 19

Figure 3.2: Matched ORB feature correspondences are filtered according to relevant
depth information from two different RGB-D sensors ... 21

Figure 3.3: Integrated color and depth images from Kinect 23

Figure 3.4: Given the depth (d) at a pixel point P’(u, v), 3D world coordinates (X, Y,
Z) of the point of interest (P) is calculated using camera intrinsic parameters. 25

Figure 3.5: Three-D point correspondences measured from two coordinate systems.
The transformation between two systems is to be found. .. 28

Figure 3.6: The three-D point-correspondences are used to construct two triads. ... 30

Figure 3.7: The transformation consists of a pure translations and pure rotation. .. 33

Figure 4.1: Sample Images of the Checkerboard used for Kinect camera calibration43

Figure 4.2: Overview of the ACRA System: Visual Localization between a Mobile
Phone Camera and an External RGB-D Sensor .. 45

Figure 4.3: A sample scene in front of the Kinects .. 48

Figure 4.4: Kinects with the outer casing removed. Two wheels made of Perspex are
attached to hold the Kinects on a metal bar ... 49

Figure 4.5: Two Kinects attached to the metal bar using the cut-through slots on the
wheels so that the Kinects can slide along the bar .. 51

Figure 4.6: The color images obtained from two Kinects while they are 0.5m apart.52

Figure 4.7: (a)Starting position of two Kinects (b)One Kinects is moved away from
the static Kinect (c)Kinects are aligned to each other without angular difference 54

Figure 4.8: Experimental setup with the Kinects placed on the turn table. 55

Figure 4.9: Static Kinect is attached to the bottom plane with markers for the angular
displacement. ... 56

Figure 4.10: Rotation and Translation Estimated using the Turn Table 57

Figure 4.11: The Kinect on the top plate is rotated relative to the static Kinect on the
bottom plate ... 58

Figure 4.12: Setup for Experiment-3 .. 61

xi

Figure 5.1: Initial matches of dense scene for Scenario-1 when the Kinects are 30cm,
50cm, 70cm and 90cm apart .. 66

Figure 5.2: Optimized inlier matches of dense scenes for Scenario 1 67

Figure 5.3: Estimated Euclidian Translation Error and Rotation Error for a dense
scene when the sensors are systematically positioned with only a translation of range
from 30 – 150 cm ... 68

Figure 5.4: Change of inlier percentage with respect to translation and angular error
for a dense scene ... 70

Figure 5.5: Inlier matches obtained from ACRA method for Scenario-1 dense scene71

Figure 5.6: Translation and rotation error of estimated pose using proposed localization
approach compared to previous (ACRA) approach for the dense scene in scenario-1 . 72

Figure 5.7: The Inlier percentage of both approaches for ground truth translation up
to 150cm ... 73

Figure 5.8: Initial Matches of Sparse Scenes for Scenario-1 74

Figure 5.9: Filtered Matches of Sparse Scenes for Scenario-1 76

Figure 5.10: Translation and rotation error for dense and sparse scenes for Scenario-1
 ... 77

Figure 5.11: Inlier Percentage for both Dense and Sparse Scenes 78

Figure 5.12: Filtered Matches using ACRA method for Sparse Scene in Scenario-1 79

Figure 5.13: Translation and Rotation Error, Inlier percentage for proposed approach
and ACRA method for sparse scenes in Scenario-1 ... 80

Figure 5.14: Initial Matches of Dense Scene for Scenario-2 82

Figure 5.15: Optimized Matches of Dense Scene for Scenario-2 83

Figure 5.16: Euclidian Translation error and Angular Error for a dense scene when one
sensor is systematically positioned with a translation and rotation 84

Figure 5.17: Rotation about X, Y and Z axes for a dense scene when one sensor is
systematically positioned with a translation and rotation ... 85

Figure 5.18: Inlier percentage for a dense scene when one sensor is systematically
positioned with a translation and rotation .. 85

Figure 5.19: Inlier Matches obtained using ACRA method for Scenario-2 dense scene
data set ... 86

xii

Figure 5.20: Translation and rotation error of estimated pose using proposed
localization approach compared to previous (ACRA) approach for the dense scene in
Scenario-2 ... 87

Figure 5.21: Estimated Angle about X. Y, Z axes for proposed approach and ACRA
method for dense scene .. 88

Figure 5.22: The Inlier Percentage of both approaches for angle between Kinects up
to 40 degrees ... 89

Figure 5.23: Initial matches of sparse scene for Scenario-2 89

Figure 5.24: Optimized matches for sparse scene for Scenario-2 91

Figure 5.25: Translation and rotation error for dense and sparse scenes for Scenario-2
 ... 92

Figure 5.26: Inlier percentage for both dense and sparse scenes for Scenario-2 93

Figure 5.27: Inlier matches obtained using ACRA method for Scenario-2 sparse scene
 ... 94

Figure 5.28: Translation and rotation error of estimated pose using proposed
localization approach compared to previous (ACRA) approach for the sparse scene in
Scenario-2 ... 95

Figure 5.29: Estimated angle about X-, Y-, Z- axes for proposed approach and ACRA
method for Scenario-2 sparse scene .. 96

Figure 5.30: Percentage Inlier matches obtained from both approaches for Scenario-2
sparce scene ... 97

Figure 5.31: Scenario-3 Dense Scene - Freehand movement of Kinect-2 99

Figure 5.32: Scenario-3 Sparse Scene - Freehand movement of Kinect-2 101

Figure 5.33: Shifting the reference frame when number of inliers drops below threshold
 ... 105

Figure 5.34: Estimated Trajectory for fr2/xyz sequence with 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 100 and
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 200 ... 106

Figure 5.35: Histogram plot of number of moving data frames relative to each reference
frame for fr2/xyz sequence with different 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 values .. 107

Figure 5.36: Estimated Trajectory for fr2/xyz sequence with 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 300 .
 ... 108

Figure 5.37: Inliers variation for fr2/xyz sequence with 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 300 109

Figure 5.38: Estimated Trajectory for fr2/desk sequence with different 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡values
 ... 111

xiii

Figure 5.39: Histogram plot of number of moving data frames relative to each reference
frame ... 112

Figure 5.40: Estimated Trajectory for fr2-desk sequence with 𝒕𝒕𝒕𝒕𝒏𝒏𝒖𝒖𝒖𝒖_𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 = 𝟓𝟓𝟓𝟓
 114

Figure 5.41: Variation of Number of inliers along the trajectory when
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 50 ... 115

Figure 5.42: The last section of the trajectory estimated wrt First data frame 116

Figure 5.43: Estimated Trajectory for fr1/xyz sequence with 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 100 and
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 200 ... 117

Figure 5.44: Sample Images from fr1/xyz and fr2/xyz Sequences 119

Figure 5.45: Histogram plot of number of moving data frames relative to each reference
frame for fr1/xyz sequence with different 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 values .. 120

Figure 5.46: Estimated Trajectory for fr1/desk sequence with 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 50 and
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 100 ... 121

Figure 5.47: Frequency of changing the reference frame and the number of Inliers122

Figure 5.48: Sample images analyzed for fr1/desk sequence 124

Figure 8.1: Microsoft Kinect with IR Projector, RGB Camera, IR Camera,
Accelerometer and Microphone array (Illustration by [76]) 137

Figure 8.2: Microsoft Kinect system architecture (The image is taken from [78]) . 139

Figure 8.3: Kinect IR speckle pattern (Image taken from [79]) 140

xiv

List of Tables

Table 4.1: Ground Truth Translations at different Angles 59

Table 5.1: Average number of feature matches for dense and sparse scenes for
Scenario-1 ... 75

Table 5.2: Average Number of Feature Matches for Dense and Sparse Scenes
for Scenario-2 .. 90

Table 8.1: Microsoft Kinect Specifications ... 138

1

1 Introduction

Enhancement in computational resources and the availability of advanced

sensors enable development of versatile robots that can operate in dynamic

environments cooperatively with humans nowadays. Knowledge about the

environment is a critical issue for autonomous mobile robots. Advances in

research and development related to robotics and sensing technologies over the

past few decades have given a great effort to address most of the promising

challenges in developing robot systems those who perceive like human.

For mobile robots, the capability of localizing themselves in the environment is

highly demanded. Robot localization techniques consider a wide variety of

perception models. In recent years odometry sensors such as Global Positioning

Systems (GPS) and Inertial Measurement Units (IMU) have been widely used for

estimating the motion of mobile robots. Optical wheel encoders are basic

odometry sensors and widely used due to their low cost and simplicity. The use

of computer vision for localization has been investigated for several decades. Even

though most researches pay more attention to other sensors such as laser range-

finders and sonar, vision is still an attractive choice of sensors because cameras

are information rich, compact and cheaper. With the availability of information

rich cameras like RGB-D sensors robots are able to perceive further data about

the operating environment which enhances their localization capability. Hence,

this thesis introduces an RGB-D vision based localization method for indoor

mobile robots.

2

1.1 Indoor robot Localization

Localization is identified as the problem of estimating the pose, i.e. the position

and orientation of mobile robots given the sensor readings and the map of the

environment. For mobile robots operate in indoor environments, localization is

the fundamental challenge. The tasks such as object recognition, object tracking,

navigation and motion planning are all based on the robot knowing its position

in the environment. Once the robot identified objects in the environment it is an

essential task for robots to know the position of targets so that it can either reach

them or keep track of them. Hence, a precise understanding of its pose in the

operating environment is more important when the robot has to execute such

commands. Moreover, in SLAM applications robots need to keep track of their

position and orientation in addition to building accurate maps and localizing

themselves in the map simultaneously. Robustness in localization and navigation

task depends on the reliability of acquisition of sensor data.

Two main strategies of localization are relative localization and absolute

localization. Dead-reckoning [1] and inertial navigation techniques [2] are

examples for relative localization strategies that estimates the robot’s current

position based on a previous or fixed position by integrating speed estimations

from the sensors such as accelerometers, gyroscopes, wheel encoders etc. However

dead-reckoning is error-prone with time and distance due to integrated noise and

drift in wheels causing errors when operating in uneven terrain that can

significantly affect the accuracy of the position estimation by cumulating

odometry error.

3

In contrast to dead-reckoning, robots can benefit from absolute localization by

knowing its direct position in the environment. Absolute localization strategies

estimate the robot pose with respect to a global reference frame independent of

time and initial position and hence reduce the accumulated error. Beacons [3] ,

landmark based technologies and popular Global Positioning System (GPS)

technique [4] which based on satellite signals are examples for absolute

localization strategies. The main drawback of landmark based techniques is robot

localization and hence the operating domain solely depends on the landmarks.

Furthermore, GPS based systems give low accuracy if not integrated with other

sensors and not suitable to operate in indoor environments.

Mobile robot localization in indoor environments where GPS technology is not

supported has been addressed by using various other sensors. Enormous research

effort has expended in using range sensors such as ultrasonic [3, 5, 6], laser [7-9]

and RFID [10, 11] to localize and navigate mobile robots. During past few decades

laser range sensors have become one of the most attractive sensors for localization

and map building due to their high accuracy.

Map based localization or model-matching [8, 12, 13] is another absolute

localization strategy that uses prior information or map of the environment to

position the robot using online sensor inputs. Drawbacks of this approach would

be the need of enough sensor information to compare with the map to determine

the position and require large amount of processing power.

Above described absolute and relative position estimation systems could be

used with multi-sensor fusion approaches to come up with more accurate pose

4

estimations. In [14] Tsai uses extended Kalman filtering to localize a mobile robot

by fusing information from a multisensorial dead-reckoning subsystem and

ultrasonic localization subsystem. The multisensorial dead-reckoning system

provides absolute and relative robot heading measurements which then are

combined with ultrasonic time-of-flight (TOF) measurements to update the

vehicle’s position. Another robust localization method is suggested by Goel et al

in [15] by fusing calibrated odometry with gyroscope and GPS data to mitigate

the localization error caused when using absolute and relative localization systems

alone. Fusion of several input measurements such as sonar, laser, odometry were

also used with a priori map to obtain a refined robot position and orientation [14,

16, 17].

5

1.2 Vision Based Localization

Vision has become a more popular and promising sensing technology by

increasing the scope of applications in autonomous robotics domain such as visual

odometry [18], localization [19], autonomous navigation [20, 21], map building

[22], path following and surveillance applications. Compared to other on-board

sensing techniques, vision-based approaches demand attention due to their ability

to provide rich, detailed information about the environment which may not be

possible with combination of other types of sensors. Furthermore, vision sensors

are low cost, light and compact, easily available and have low power consumption

making them very attractive to be used in robot localization.

The suitability of various vision systems including single camera [22, 23], stereo

camera pairs [24, 25], multiple cameras [26, 27] and RGB-D cameras has been

experimented over the past few decades for robot localization and navigation.

The problem with single cameras is it doesn’t provide any information about the

depth, hence multiple images from different viewpoints are required to get the

3D location of features. Stereo pairs on the other hand can provide 3D location

of the observed features however, consecutive image acquisition from stereo pair

and matching the feature is slightly more complicated than single camera. Use of

multiple cameras increase the overall field of view hence robots can enhance their

operating domain. However, one disadvantage of using multiple cameras is their

high computational cost.

Research in vision based localization became more active with the availability

of RGB-D cameras [28, 29] which provide video (RGB) along with per-pixel depth

6

information. These inexpensive depth cameras have made available dense 3D

point clouds, which were previously only available with more expensive sensors

like time-of-flight cameras or 3D laser range finders. In this research we use depth

cameras to localize mobile robots in indoor environments.

1.3 Contributions

Accurate and robust localization is a key factor for robots operating in complex

environments. The research work in this thesis focuses on a different localization

method to use in augmented reality applications and indoor swarm robot

applications such as formation control and surveillance. The proposed localization

approach is based on a pair of information-rich RGB-D sensors where one RGB-

D sensor is localized relative to another RGB-D sensor.

The proposed work aims to localize the two or more sensors while one sensor

is kept static in the environment and the other sensor is moving relative to the

static sensor. This approach is applicable to a swarm of robots operating in indoor

environment while there is an RGB-D camera available in the environment or on

a static helper robot so that the robots can be localized with respect to the fixed

sensor. This method is also applicable in augmented reality applications where a

human user moves an RGB-D device which is then localized using another RGB-

D sensor. It is also useful in controlling formation of a swarm of robots who are

assembled with RGB-D sensors and navigate in indoor environment.

The proposed localization approach is evaluated through a series of experiments

carried out in a laboratory environment using Microsoft Kinect version-1 sensors.

The experimental setup ensures that the Kinect sensors observe sufficient visual

7

features in their scenes. The proposed localization approach is analyzed

qualitatively and quantitatively contributing to six datasets extracted based on

three scenarios each obtained separately with visually dense and sparse featured

scenes. The image sequences in each dataset consist of

1. Raw data with color and depth images and accelerometer data
2. Ground truth data obtained with manually estimated 6 Degree of

Freedom (6- DoF) of RGB-D sensors.

In the localization scenario described above the sensors are moved so that they

maintain a scene overlap in their field of views (FOV). Also, the approach

assumes that there are sufficient visual features available in the camera scenes to

maintain the localization.

We contribute by evaluating our proposed localization method comparing with

previously suggested RGB to RGB-D localization approach. The collected

datasets are tested on this previous localization method and a quantitative

analysis is provided afterward. We also contribute by qualitatively investigating

the appropriateness of this approach to be used in 6-DoF localization and AR

applications by evaluating against a publicly available dataset.

1.4 Thesis Overview

In this chapter, some of the concepts for indoor robot localization including

vision-based localization were discussed and the contribution from this work

explained. In the next chapter, a review of the previous work done in the related

research is discussed more technically. This review is not a complete survey of

8

the fields involved but does discuss the key concepts and issues involved in RGB-

D based research.

With the survey as the base, Chapter 3 discusses and elaborates the concepts

used in this research. The methodology of proposed RGB-D based localization

approach is described in five detailed sections including a study of the related

technology used.

 Having described the methodology, the implementation procedure of the

proposed work and the experiments conducted to evaluate the concept are

presented in Chapter 4. The methods used to prove the completed work with

regards to different aspects of its usage are explained in three experimental

scenarios.

With the experiments conducted in Chapter 4, the collected results are

presented with a comprehensive analysis in Chapter 5. Categorizing into three

experimental scenarios, obtained results are compared qualitatively and

quantitatively with a previously done localization approach and a popular RGB-

D dataset.

With the compared results, the success and failures of proposed localization

approach and its relevance in robot localization and augmented reality

applications are explained in Chapter 6. In the final chapter, the future work for

this research is outlined, and the conclusions of the work presented.

9

2 Literature Survey

Vision based localization has been remarkably improved over the past three

decades. Navigating a robot in an indoor cluttered hallway was hardly possible

about 25 years ago but it is not much of a challenge in the recent research.

Monocular camera-based localization [22, 23] and SLAM [30, 31] approaches have

been proposed by number of researchers, however the depth is not observable

from just one camera and the scale of the map and estimated trajectory is

unknown. Due to the scale drift problem, monocular approaches can fail when

pure rotations are performed in exploration.

Conversely, using stereo or RGB-D camera makes it possible to solve the

aforementioned issues with monocular localization. There have been many studies

on localization and visual odometry in indoor static environments using stereo

vision-based approaches. Stereo vision has been used to acquire three-dimensional

vision by simulating human binocular vision on a pair of monocular cameras.

Three dimensional images are captured through disparity images, from which the

depth information can be obtained. In [32] stereo vision is used for localization

and SLAM using a stereo–camera that acquires the position of known landmarks,

in indoor environment. A large scale SLAM system with stereo cameras is

presented in [33], where the scale-drift problem is avoided using a fixed baseline

stereo. In [34], a researcher investigates a visual odometry method for autonomous

ground vehicles based on dense disparity images from stereo cameras. Even

though stereo vision avoids the scale estimation issue it introduces a

computational overhead of depth estimation and image synchronization.

10

2.1 RGB-D Sensor Based Research

In contrast, using RGB-D sensors for extracting depth information has become

popular among robotics and computer vision community. Although the laser

scanners can provide accurate depth data, they have become less popular due to

being high expensive and heavy. The RGB-D cameras on the other hand can

provide both RGB and depth information having benefits of laser and vision

sensing together. Due to their relatively low cost, these sensors have been

extensively popular among robotics research community in the last few years.

Microsoft Kinect [35] is one of the most popular RGB-D sensor developed for

video game purposes. Asus Xtion sensor [36] is a more compact alternative with

lower weight and powered only via USB connection itself.

In the past few years, visual localization and mapping by using RGB-D cameras

has become one of the most active research fields despite their limited depth

precision and field of view provided by RGB-D cameras. Even though the

Simultaneous Localization and Mapping (SLAM) problem has been addressed

broadly using other sensors such as laser, sonar and monocular and stereo cameras,

recently appeared low cost, light weight RGB-D cameras providing dense, high

frequency depth information are taking a great attention towards solving SLAM

problem. Henry et al [28] introduces RGB-D mapping, a framework for using

RGB-D cameras to generate dense 3D models of indoor environments. This

approach aligns two consecutive frames using RGB-D ICP, enhanced ICP

algorithm that takes advantage of the combination of RGB and depth

information.

11

KinectFusion proposed by Newcombe et al [37] is an outstanding recent

approach for real-time dense volumetric reconstruction of complex room-sized

scenes using a single handheld Kinect sensor. This real time parallel tracking and

mapping system running on GPUs provides accurate and robust tracking of the

camera pose by aligning all depth points with the complete scene model and up-

to-date surface representation by fusing all registered data. However, the

proposed system works well only for mapping medium sized rooms and not

suitable for reconstructing large scale models that needs too much memory and

would lead to reconstructions with inevitable drift which would cause

misalignments upon trajectory loop closures. Efficiently performing automatic re-

localization when the tracking has failed in environments with a low number of

3D geometric features is another challenge for KinectFusion.

Kintinuous presented in [38] overcomes KinectFusion’s challenge of limiting the

mapping to medium size room by making the region of space being mapped can

vary dynamically. In KinectFusion, tracking and surface reconstruction is

restricted to the region around the point of initialization of the volumetric

representation of the scene, known as the truncated signed distance function

(TSDF). In contrast, Kintinuous permits the area mapped by the TSDF to move

over time by virtually moving the TSDF with camera pose allowing continuously

augment the reconstructed surface in an incremental fashion as the camera moves.

Kintinuous also present a solution to overcome KinectFusion’s inability to

function in featureless or reduced featured environment by incorporating a feature

based visual odometry system described in [39].

12

Whelan et al describes an extension to Kintinuous in [40], an improved GPU

implemented camera pose tracking method and an analysis of combination of

various RGB-D visual odometry estimation techniques for robust camera tracking.

Additionally, they introduce RGB color integration method into the KinectFusion

reconstruction process. However, neither of Kintinuous [38] nor the extension to

Kintinuous [40] well addresses the issue of dealing with very high camera velocity

or a lack of both visual and depth features.

RGB-D SLAM system presented by Endres et al [41] is one of the recent

popular approaches that can robustly deal with challenging scenarios such as fast

camera motions and feature-poor environments while being fast enough for online

operation. In addition to the system they present a thorough experimental

evaluation on a publicly available benchmark dataset and also provide an open

source implementation of their system for comparison.

Hu et al [42] propose a robust algorithm for SLAM using RGB-D sensors which

builds local maps either using vision only (RGB-BA) or vision and range

depending (RGB-D-BA) on the different scenarios, then a map joining algorithm

is applied to combine all the local maps. By applying the heuristic switching, the

algorithm is able to handle various failure modes associated with RGBD-BA. Due

to the significant deduction in computational cost in map joining strategy, the

proposed algorithm is more applicable to large scale RGB-D SLAM. However,

this approach has some short-comes such as quick loss of feature tracking,

inability to handle the scenes with feature poor planar surfaces etc.

13

RGB-D sensors are significantly applied in odometry and ego-motion

estimation in the past few years. Visual odometry uses camera images to estimate

the distance travelled similar to odometry estimation which uses wheel encoders

on mobile robots to estimate the change in robot position. Visual odometry

enhances a robot’s navigational accuracy whereas the rotary encoder based

odometry suffers from precision problems due to accumulating errors when the

robot slips or slides while operating in non-smooth surfaces.

Sturm et al [43, 44] provide a large dataset containing RGB-D image sequences

and ground-truth camera trajectories obtained from a high accuracy motion

capture system. The dataset has been recorded with a hand-held Kinect camera

and also with a Kinect mounted on a Pioneer 3 robot. This has been a popular

dataset among RGB-D SLAM community as a benchmark for evaluating the

SLAM systems.

Steinbrücker et al [29] introduce an energy-based visual odometry method to

estimate the rigid body motion of a handheld RGB-D camera for a static scene.

In their approach the rigid body motion is represented in terms of its Lie algebra

of the twist which maximizes the photo-consistency of the warped images is found

so that the warped consecutive images exactly match each other. Their method

of visual odometry is validated using the RGB-D dataset by Sturm et al [44] and

proven to be faster and performing better results than Generalized-ICP (GICP)

[45]. Kintinuous system [40] described above also uses a high-performance GPU

implemented version of this energy based visual odometry approach.

14

Handa et al [46] present a collection of hand-held RGB-D camera sequences

within synthetically generated environments as a new benchmark aimed at RGB-

D visual odometry, 3D reconstruction and SLAM systems. This synthetic dataset

not only provides ground truth camera pose information for every frame but also

provides a means of quantitatively evaluating the quality of the final map or

surface reconstruction produced. The realistic trajectories for use in synthesized

sequences are obtained by running the Kintinuous system [40] in a standard real

environment and taking the estimated camera path as ground truth trajectories.

Dryanovski et al [47] introduce a system for visual odometry that does not rely

on frame-to-frame or sliding window techniques. In their approach, the 3D sparse

feature points in the incoming RGB-D images are aligned using ICP [48] against

a global model dataset of 3D features updated through a probabilistic Kalman

Filter framework. This approach takes less computational effort and does not

include any intensive GPU based computations, hence increases the performance

of the overall system. The system is capable of loop closure in room environment

with a sufficient accuracy, however further effort is needed on correcting the

systematic error in the depth image to avoid performance dropping on visual

odometry.

2.2 Usage of Multiple RGB-D Sensors

As far as the research concerned on using multiple RGB-D sensors there is not

much effort on using them for localizing each other. Most of the multiple RGB-

D based research is focused on people tracking, object detection and recognition,

3D object and scene modelling.

15

The system for scanning 3D full human bodies proposed by Tong et al [49] use

multiple Kinects to scan different parts of the human body so that they can be

used to observe the body closely then to obtain high quality data. In order to

save the original data quality without degrading due to interference issue they

maintain non-overlapping regions of the sensor views while scanning human body.

They also use a two stage non-rigid registration of the captured data to address

the challenge of human body being stirred during the scanning process. This

method can deal with non-rigid alignment with loop closure constraints and

complex occlusions. However, there are unnatural bending on the body parts due

to misalignment and complex occlusions. The quality of the reconstructed models

can also be improved further by using super resolution approaches.

The system presented by Alexiadis et al [50, 51] on the other hand reconstructs

full-geometry 3D textured mesh of moving humans in real time using multiple

Kinect sensors. In this approach, separate textured meshes from multiple RGB-

D streams are generated using ICP based alignment and fast zippering algorithm.

Later in [51] they have improved the system by implementing in CUDA to fuse

the information from all the Kinects to produce watertight models in real time.

The surveillance system proposed by Almazan and Jones [52] uses multiple

Kinects in non-overlapping configuration to track people in complex environment.

This approach uses mean-shift algorithm for tracking people where the position

of the search window is determined using Kalman filter.

Most of the RGB-D mapping, SLAM and visual odometry approaches described

above use single moving sensor. There are not many multiple RGB-D SLAM

16

approaches in the research except the work suggested in [53]. The framework for

corporative localization and mapping for autonomous flights proposed by Loianno

et al [53] uses multiple Asus Xtion RGB-D sensors, however the localization task

is achieved by a monocular visual odometry algorithm whereas the depth

information is used to estimate the scale factor associated with the visual

information. The reason for not using multiple RGB-D sensors in aforementioned

research could be their limited field of view and the interference. However,

multiple RGB-D sensors can be employed to achieve certain goals despite having

the interference and limited field of operation. The related literature doesn’t

witness significant effort in collaborative use of multiple RGB-D sensors localized

relative to each other. Most of the multi sensor research focuses on object

recognition, people tracking, 3D object and scene modelling. In this research we

focus on localizing RGB-D sensors relative to another RGB-D sensor to be used

in multi RGB-D applications such as swarm robot surveillance, collaborative

augmented reality applications etc.

17

3 Methodology

According to the research review on using RGB-D sensors described in chapter

2, most of the applications use single moving sensor or multiple static sensors in

tasks such as mapping and SLAM, odometry and egomotion, scanning and 3D

reconstruction of objects, detecting and tracking moving objects etc. Most of

above research focuses on fusing RGB-D datasets using ICP and other approaches.

Using multiple RGB-D sensors in aforementioned research has drawn lack of

attention due to the interference of depth data while using multiple sensors and

the limited range and field of view of the commonly available RGB-D sensors.

The research work presented in this thesis investigates localization of an RGB-

D sensor relative to another RGB-D sensor. Localization of the two sensors is

performed offline based on two scenarios.

1. Systematically moving an RGB-D sensor relative to a static RGB-D sensor
2. Freehand moving an RGB-D sensor relative to a static RGB-D sensor.

The localization approach proposed here is applicable for mobile robotic

applications where there is an RGB-D camera available in the environment or on

a static helper robot, especially in swarm robotic applications such as formation

control and surveillance. The proposed method is also applicable in collaborative

multi use augmented reality applications where a human user moves a hand-held

RGB-D device which is then localized using another RGB-D sensor.

In both scenarios, the cameras are positioned so that they maintain some

overlapping in their FOVs.

18

3.1 Pose Estimation

The problem of localizing an RGB-D sensor with respect to another RGB-D

sensor is addressed by estimating the transformation in 6DoF between the two

sparse 3D point clouds obtained from two sensors by filtering and combining the

feature matches and depth information. Microsoft Kinect sensors provide color

and depth images at 640 x 480 resolution. The pose estimation algorithm assumes

that the images from both Kinects have some overlapping area so that the

extracted features from the color images can be matched against each other. The

feature correspondences extracted from pairs of keyframes are used to generate

sparse 3D point clouds by combining with corresponding color and depth data.

Then the two point-clouds are aligned, and the best transformation is iteratively

estimated using Random Sample Consensus (RANSAC) algorithm. This

transformation is then optimized over all RANSAC inliers hence non-linear

optimized pose is obtained. This pose is taken as the transformation or the pose

of two Kinect sensors relative to each other.

The Figure 3.1 shows the procedure of estimating the relative pose. The

following sub sections describe each step in the diagram in more detail.

19

Figure 3.1: The process of estimating relative pose between two RGB-D sensors

3.1.1 Feature Extraction and Matching

In order to extract visual features from the captured frames, we surveyed on

several feature detection and matching techniques. In our approach, a significant

variation in scale and orientation is expected between the matched keyframes

because the captured frames are not the successive frames of a single camera, but

20

pairs of synchronized frames captured from two different cameras positioned

apart in the environment. Recently researchers have taken effort to introduce

keypoint detectors and descriptors which are faster and robust to scale and

orientation. FAST [54] , SIFT (Scale Invariant Feature Transform) [55], SURF

(Speeded-Up Robust Features) [56], BRIEF (Binary Robust Independent

Elementary Features) [57] and ORB (Oriented FAST and Rotated BRIEF) [58]

are among the popular general purpose keypoint detectors and descriptors.

SIFT features are invariant against scaling, image rotation and robust across

changes in lighting conditions and camera viewpoint, addition of noise and a

range of affine distortion. However, SIFT features are computationally much more

demanding than other feature descriptors and not a good choice for robots that

require real-time operation having limited computational resources. SURF on the

other hand inspired by SIFT but takes a lower computational cost and more

robust against image transformations. BRIEF is a recently developed feature

descriptor which has similar performance as SIFT being robust to lighting, blur

and perspective distortion. The major drawback of BRIEF is the lack of rotational

invariance and being very sensitive to in-plane rotation.

ORB is a combination of FAST keypoint detector and BRIEF feature

descriptor introduced recently by Rublee et al and significantly faster and lower

in terms of computational cost compared to SIFT and SURF. ORB consists of

oriented FAST which is an efficiently-computed orientation component added

over the widely used FAST corner detector. Since FAST does not provide multi-

scale features, ORB applies a scale pyramid of the image and generates FAST

features at every level of the pyramid.

21

We use ORB feature detector and descriptor in our approach because of being

relatively faster, computationally efficient, resistant to noise and robust to

translation and rotation of the features. We compute two sets of keypoints

𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟1 ,𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟2 ∈ 𝐾𝐾𝑟𝑟𝑟𝑟𝑟𝑟 on synchronized pairs of Kinect RGB color frames

(𝑖𝑖𝑘𝑘1 , 𝑖𝑖𝑘𝑘2 ∈ 𝐼𝐼 for 𝑘𝑘 = 1. .𝑁𝑁 where 𝑁𝑁 is the total number of RGB frames) using

ORB keypoint detector implemented in the Open Source Computer Vision

(OpenCV) library [59] . Then we compute a set of ORB feature descriptors

𝐹𝐹𝑘𝑘1,𝐹𝐹𝑘𝑘2 for the color frames and apply a brute-force descriptor matcher with the

Hamming Norm and cross checking the correspondences, which results in a set of

matches 𝑚𝑚𝑖𝑖 ∈ 𝑀𝑀 where 𝑖𝑖 = 1. .𝑁𝑁 and 𝑁𝑁 is the total number of frame to frame

matches.

Figure 3.2 shows two sample RGB color images from our experiments with

matched ORB feature correspondences.

Figure 3.2: Matched ORB feature correspondences are filtered according to
relevant depth information from two different RGB-D sensors

3.1.2 Generating 3D Feature Correspondences

22

The depth measured by Kinect is often degraded by occlusion, limited field of

view, and sensor noise and especially in our application due to multi-sensor

interference. When multiple Kinect cameras are pointing at the same scene, the

projected IR dot patterns are interfered with one another resulting in invalid or

zero depth values at certain pixels on the depth image. This could also happen

due to reflecting surfaces such as mirrors or from light absorbing black surfaces.

Therefore, our approach of localization mostly gives low density point-clouds due

to the effect of multi-Kinect interference. Figure 3.3 shows an integrated color

and depth image from a Kinect sensor with some patches in black where the

corresponding depth value is zero or invalid.

23

Figure 3.3: Integrated color and depth images from Kinect

Given the intrinsic parameters of the color cameras of two Kinects and the

depth values at each pair of 2D feature correspondence, two sets of sparse 3D

point-correspondences are obtained. The ORB feature matches (𝑚𝑚𝑖𝑖) in the color

images are filtered by using respective depth data (𝑑𝑑𝑘𝑘1 ,𝑑𝑑𝑘𝑘2 ∈ 𝐷𝐷 for 𝑘𝑘 = 1. .𝑁𝑁

where 𝑁𝑁 is the total number of depth frames) to obtain the 3D coordinates of

each matched feature point.

According to the geometry of pin-hole camera model, the relationship between

Kinect pixel coordinates (𝑢𝑢, 𝑣𝑣) and camera coordinates (𝑥𝑥,𝑦𝑦) are given by,

24

 �
𝑢𝑢
𝑣𝑣
1
� = �

𝑓𝑓𝑥𝑥 0 𝑢𝑢0
0 𝑓𝑓𝑦𝑦 𝑣𝑣0
0 0 1

� �
𝑥𝑥
𝑦𝑦
1
� (1)

Where 𝑓𝑓𝑥𝑥,𝑓𝑓𝑦𝑦, 𝑢𝑢0, 𝑣𝑣0 are intrinsic camera parameters. Kinects’ color cameras

are calibrated separately to obtain the intrinsic camera parameters and hence the

camera matrix. The calibration method used for Kinect sensors is explained in

Section 4.2.

In the camera matrix, (𝒖𝒖𝒖𝒖,𝒗𝒗𝒗𝒗) is the principal point, the center of the image

plane. According to Figure 3.4, 3D world coordinates 𝑷𝑷𝒊𝒊 (𝒊𝒊 = 𝟏𝟏. .𝑵𝑵 where 𝑵𝑵 is the

total number of matched 3D points in a frame pair) of a feature point can be

taken as (𝑿𝑿,𝒀𝒀,𝒁𝒁) where 𝒁𝒁 is the corresponding depth value given by RGB-D

sensor. If the pixel coordinates of the feature point is (𝒖𝒖,𝒗𝒗) then according to

Equation (1),

𝑥𝑥 = (𝑢𝑢 − 𝑢𝑢0) and 𝑦𝑦 = (𝑣𝑣 − 𝑣𝑣0).

Then the 3D world coordinates (𝑿𝑿,𝒀𝒀,𝒁𝒁) of the feature point can be estimated

as

 𝑋𝑋 = 𝑑𝑑 ∗ (𝑢𝑢 − 𝑢𝑢0) 𝑓𝑓𝑥𝑥⁄ (2)

 𝑌𝑌 = 𝑑𝑑 ∗ (𝑣𝑣 − 𝑣𝑣0) 𝑓𝑓𝑦𝑦⁄ (3)

 𝑍𝑍 = 𝑑𝑑 (4)

25

Where d is the measured depth at pixel (𝑢𝑢, 𝑣𝑣).

Figure 3.4: Given the depth (d) at a pixel point P’(u, v), 3D world coordinates
(X, Y, Z) of the point of interest (P) is calculated using camera intrinsic

parameters.

Likewise, a sparse set of point-wise 3D correspondences 𝑃𝑃𝑘𝑘1,𝑃𝑃𝑘𝑘2 ∈ 𝑃𝑃 between

two Kinect frames are determined using image coordinates and the measured

depth of the filtered feature matches.

26

3.1.3 Iterative Pose Estimation using RANSAC

Given two sets of 3D point correspondences, Random Sample Consensus

(RANSAC) [60] is a well-known approach to estimate the best transformation

and the set of inliers which has been extensively used by the researchers in

registering 3D point clouds [39, 41]. RANSAC is one of the best ways to fit a

model to experimental data and this algorithm works well even when the data is

noisy. When estimating the best transformation out of given 3D point pairs, it

iteratively finds the transformation by considering random three point pairs,

which is the minimal number from which a rigid transformation in 𝑆𝑆𝑆𝑆(3) can be

obtained.

The data extracted from Kinect frames tend to be noisy and hence finding the

precise transformation that aligns all the point-correspondences is a challenging

task. Therefore, the aim is to find the best estimation that aligns a maximum

number of point correspondences within a given Euclidean distance threshold.

RANSAC is used to find this best estimation iteratively for a given number of

iterations. In our approach, the rigid body transformation of two sets of 3D point

correspondences is found using the method described in Section 3.2.4. For each

pair of Kinect frames ((𝑖𝑖𝑘𝑘1 + 𝑑𝑑𝑘𝑘1), (𝑖𝑖𝑘𝑘2 + 𝑑𝑑𝑘𝑘2)) the matched 3D feature

correspondences (𝑃𝑃𝑘𝑘1,𝑃𝑃𝑘𝑘2) are fed into RANSAC algorithm in which the

transformation 𝑇𝑇𝑖𝑖 = [𝑅𝑅𝑖𝑖, 𝑡𝑡𝑖𝑖] (where 𝑖𝑖 = 1. .𝑁𝑁) is found using randomly selected 𝑠𝑠

point pairs for a given number of iterations 𝑁𝑁. In each iteration, the resultant

transformation is used to re-project the remaining 3D feature correspondences

and calculate the re-projection error 𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠 , i.e. Sum of Squared Differences (SSD)

27

error based on the Euclidian distances between each re-projected point 𝑃𝑃𝑘𝑘1𝑡𝑡 =

 𝑇𝑇𝑖𝑖 𝑃𝑃𝑘𝑘1 and the original point 𝑃𝑃𝑘𝑘2. The SSD error for the 𝑛𝑛𝑡𝑡ℎ point is found as,

 𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠,𝑛𝑛 = � �(𝑃𝑃𝑘𝑘1𝑡𝑡)𝑛𝑛,𝑎𝑎 − (𝑃𝑃𝑘𝑘2)𝑛𝑛,𝑎𝑎�
2

𝑎𝑎=𝑥𝑥,𝑦𝑦,𝑧𝑧

 (5)

For each transformation hypothesis 𝑇𝑇𝑖𝑖 , a 3D point pair is considered to be an

inlier match if 𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠 for that point is below the given threshold 𝑡𝑡. For each inlier

we estimate a consensus score 𝐶𝐶𝑖𝑖 so that,

 𝐶𝐶𝑖𝑖 = � � 1 −
𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠,𝑛𝑛

𝑡𝑡
�

𝑛𝑛_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

 (6)

After computing 𝑁𝑁 transformation hypothesis, the transformation 𝑇𝑇𝑖𝑖 that

maximize the re-projection consensus score 𝐶𝐶𝑖𝑖 is chosen as the best rigid body

transformation hypothesis. The subset with the maximum number of inlier

feature points are also recorded.

In our algorithm, RANSAC is used to find the best hypothesis and its consensus

set of inlier matches in 500 iterations so that the re-projection error lies within

3cm. The estimated rigid body transformation is optimized by re-estimating over

all the RANSAC inlier matches which is then repeatedly refined using all 3D

point correspondences.

28

3.1.4 Estimating Rigid Body Transformation

The 6DOF transformation between the coordinate frames of two Kinects can

be thought of as a rigid-body motion and can be expressed as a rotation and a

translation (𝑅𝑅𝑘𝑘, 𝑡𝑡𝑘𝑘) where 𝑅𝑅𝑘𝑘 ∈ 𝑆𝑆𝑆𝑆(3) and 𝑡𝑡𝑘𝑘 ∈ ℝ3.

Figure 3.5: Three-D point correspondences measured from two coordinate
systems. The transformation between two systems is to be found.

The transformation of Kinect2’s coordinate frame relative to Kinect1’s

coordinate frame (𝑀𝑀𝐾𝐾2𝐾𝐾1) can be written as,

 𝑀𝑀𝐾𝐾2𝐾𝐾1 = � 𝑅𝑅 𝑡𝑡
000 1� (7)

where 𝑅𝑅 ∈ 𝑆𝑆𝑆𝑆(3) and 𝑡𝑡 ∈ ℝ3

29

We use the method explained by Horn [61] to find the translation and rotation

of the keypoint sets from Kinect-1 frame to Kinect-2 frame.

The six degrees of freedom (6DOF) or in other words the freedom of movement

of a Kinect sensor in three dimensional space comes with the degrees of freedom

of its translation and rotation. The translation has three degrees of freedom i.e.

the translation in three perpendicular axes X, Y, Z. The rotation provides another

three DOFs as yaw, pitch, and roll as the rotation about these three axes. Given

a large set of three-D point-correspondences from two Kinects, a subset of three

point-correspondences which provides nine constraints would be sufficient to

recover the six parameters in translation and rotation of the rigid body

transformation.

Consider three pairs of point-correspondences 𝑃𝑃1,𝑃𝑃2,𝑃𝑃3 from Kinect-1 and

𝑄𝑄1,𝑄𝑄2,𝑄𝑄3 from Kinect-2 as shown in Figure 3.6. For these three non-collinear

point pairs, the rotation R can be solved by constructing two triads. Let the two

triads in two coordinate systems to be 𝑉𝑉1,𝑉𝑉2,𝑉𝑉3 and 𝑉𝑉1′,𝑉𝑉2′,𝑉𝑉3′ respectively.

30

Figure 3.6: The three-D point-correspondences are used to construct two triads.

When constructing the triad using three points 𝑃𝑃1,𝑃𝑃2,𝑃𝑃3 in Kinect-1 frame,

let the origin of the triad to be at the first point 𝑃𝑃1. The vector 𝑉𝑉1 is taken along

the line 𝑃𝑃1𝑃𝑃2 so that,

 𝑉𝑉1 = 𝑃𝑃2 − 𝑃𝑃1 (8)

Then the unit vector along 𝑉𝑉1 will be,

 𝑣𝑣1� =
𝑉𝑉1
‖𝑉𝑉1‖

 (9)

𝑉𝑉2 is taken perpendicular to 𝑉𝑉1 and the vector 𝑃𝑃1𝑃𝑃3 so that,

31

 𝑉𝑉2 = 𝑣𝑣1� ^ (𝑃𝑃3 − 𝑃𝑃1) (10)

The notation ^ denotes the cross product between two vectors to get the

perpendicular vector.

Then the unit vector along 𝑉𝑉2 is,

 𝑣𝑣2� =
𝑉𝑉2
‖𝑉𝑉2‖

 (11)

To complete the triad, 𝑉𝑉3 is taken as orthogonal to both 𝑉𝑉1 and 𝑉𝑉2 axes such

that the orientation satisfies the right-hand rule. So,

 𝑣𝑣3� = 𝑣𝑣1� ^ 𝑣𝑣2� (12)

This procedure is repeated for corresponding three points in Kinect-2

coordinate frame to obtain the second triad. If the unit vectors along the axes of

two triads are 𝑣𝑣1� , 𝑣𝑣2� , 𝑣𝑣3� and 𝑣𝑣1′� , 𝑣𝑣2′� , 𝑣𝑣3′� then the rotation that aligns these two

triads is also the rotation that corresponds to Kinect-1 and Kinect-2 coordinate

frames. In other words, the rotation of two Kinect’s coordinate frames takes 𝑣𝑣1�

into 𝑣𝑣1′� , 𝑣𝑣2� into 𝑣𝑣2′� and 𝑣𝑣3� into 𝑣𝑣3′� . Now the below 𝑀𝑀1 and 𝑀𝑀2 are formed by

above unit column vectors.

 𝑀𝑀1 = �
⋮ ⋮ ⋮
𝑣𝑣1� 𝑣𝑣2� 𝑣𝑣3�
⋮ ⋮ ⋮

� (13)

32

 𝑀𝑀2 = �
⋮ ⋮ ⋮
𝑣𝑣1′� 𝑣𝑣2′� 𝑣𝑣3′
⋮ ⋮ ⋮

� (14)

The product 𝑀𝑀1
𝑇𝑇 𝑉𝑉 gives the components of a given vector 𝑉𝑉 in Kinect-1 frame

along the axes of Triad-1. Then the mapping of this onto Kinect-2 coordinate

frame is given as,

 𝑉𝑉′ = 𝑀𝑀2 𝑀𝑀1
𝑇𝑇 𝑉𝑉 (15)

Therefore, the rotation 𝑅𝑅 is found so that,

 𝑅𝑅 = 𝑀𝑀2 𝑀𝑀1
𝑇𝑇 (16)

Matrices 𝑀𝑀1 and 𝑀𝑀2 belong to orthonormal (orthogonal) matrices since each of

their columns is a unit vector and the columns are orthogonal. The matrix

product of two orthonormal matrices is another orthonormal matrix. In addition,

the inverse (or the transpose) of an orthonormal matrix is an orthonormal matrix.

Therefore, the solved rotation 𝑅𝑅 is also an orthonormal matrix that belongs to

the orthogonal group.

http://mathworld.wolfram.com/MatrixProduct.html
http://mathworld.wolfram.com/MatrixProduct.html

33

Figure 3.7: The transformation consists of a pure translations and pure rotation.

Consider three-D coordinates of point-correspondences 𝑃𝑃1,𝑃𝑃2,𝑃𝑃3 from Kinect-

1 and Q1, Q2, Q3 from Kinect-2 in homogeneous form as [𝑋𝑋1,𝑌𝑌1,𝑍𝑍1,1]𝑇𝑇

[𝑋𝑋2,𝑌𝑌2,𝑍𝑍2,1]𝑇𝑇 [𝑋𝑋3,𝑌𝑌3,𝑍𝑍3,1]𝑇𝑇 and [𝑋𝑋1′,𝑌𝑌1′,𝑍𝑍1′, 1]𝑇𝑇 [𝑋𝑋2′,𝑌𝑌2′,𝑍𝑍2′, 1]𝑇𝑇

[𝑋𝑋3′,𝑌𝑌3′,𝑍𝑍3′, 1]𝑇𝑇 as shown in Figure 3.7.

According to Figure 3.7, the combined transformation can be expressed as a

combination of two pure translations (𝑇𝑇1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇2) and a pure rotation 𝑅𝑅 about

the origin of Kinect-1 coordinate frame. The combined transformation 𝐸𝐸𝐾𝐾1𝐾𝐾2 is

the transformation of 3D points-set 1 (from Kinect-1) relative to 3D points-set 2

34

(from Kinect-2). According to Figure 3.7, the combined transformation 𝐸𝐸𝐾𝐾1𝐾𝐾2

with two translations and the rotation can be expressed as,

 𝐸𝐸𝐾𝐾1𝐾𝐾2 = � 𝐼𝐼 𝑇𝑇2
000 1 � �

𝑅𝑅 0
000 1� �

𝐼𝐼 𝑇𝑇1
000 1 � (17)

If pure translation of point P1 at the origin of Kinect-1 frame is T1, then

 𝑇𝑇1 = − �
𝑋𝑋1
𝑌𝑌1
𝑍𝑍1
� (18)

and the pure translation of point Q1 is T2, then

 𝑇𝑇2 = �
𝑋𝑋1′
𝑌𝑌1′
𝑍𝑍1′

� (19)

Because of the noise in 3D point data, the two triangles represented by two

sets of 3D points may not be isomorphic. As such, considering a single point in

determining translation would be more error prone, hence when finding the

translation, the attention was paid for using the centroid of three points such

that;

 𝑇𝑇1 = −�
(𝑋𝑋1 + 𝑋𝑋2 + 𝑋𝑋3) 3⁄
(𝑌𝑌1 + 𝑌𝑌2 + 𝑌𝑌3) 3⁄
(𝑍𝑍1 + 𝑍𝑍2 + 𝑍𝑍3) 3⁄

� (20)

35

 𝑇𝑇2 = �
(𝑋𝑋1′ + 𝑋𝑋2′ + 𝑋𝑋3′) 3⁄
(𝑌𝑌1′ + 𝑌𝑌2′ + 𝑌𝑌3′) 3⁄
(𝑍𝑍1′ + 𝑍𝑍2′ + 𝑍𝑍3′) 3⁄

� (21)

Therefore, the translation is estimated so that,

 𝑇𝑇 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_2 − 𝑅𝑅 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_1 (22)

Therefore, by using the estimated values 𝑇𝑇1 , 𝑇𝑇2 and 𝑅𝑅 the combined

transformation 𝐸𝐸𝐾𝐾1𝐾𝐾2 is determined according to Equation (17).

Considering homogeneous coordinates, if 𝑃𝑃1 = [𝑋𝑋1,𝑌𝑌1,𝑍𝑍1,1]𝑇𝑇is a three-D point

in Kinect1’s coordinate frame and 𝑄𝑄1 = [𝑋𝑋1′,𝑌𝑌1′,𝑍𝑍1′, 1]𝑇𝑇 is the corresponding

three-D point in Kinect2’s coordinate frame,

 𝐸𝐸𝐾𝐾1𝐾𝐾2 𝑃𝑃1 = 𝑄𝑄1 (23)

𝐸𝐸𝐾𝐾1𝐾𝐾2 is the inverse of the transformation of Kinect 2’s coordinate frame

relative to Kinect 1’s coordinate frame, i.e.

 𝐸𝐸𝐾𝐾1𝐾𝐾2 = 𝑀𝑀𝐾𝐾2𝐾𝐾1
−1 (24)

Therefore, combining with Equation (23), above Equation (24) can be re-

written as,

36

 𝑀𝑀𝐾𝐾2𝐾𝐾1 𝑄𝑄1 = 𝑃𝑃1 (25)

Therefore once 𝐸𝐸𝐾𝐾1𝐾𝐾2 is estimated, finding the camera transformation matrix

𝑀𝑀𝐾𝐾2𝐾𝐾1 is straight forward.

As described in Section 3.1.3, an approximate estimation of the pose and a set

of inlier three-D point-correspondences are obtained iteratively by using

RANSAC algorithm. The obtained estimation is fed into non-linear optimization

algorithm to obtain a refined pose over all the inliers.

3.1.5 Non-Linear Pose Optimization

We optimize the RANSAC estimated 6DOF transformation over all the feature
correspondences using Newton iteration method.

If the RANSAC estimated pose is 𝐸𝐸, then for a single point correspondence (𝑃𝑃1
and 𝑄𝑄1 as above) the error 𝑒𝑒 is,

 𝑒𝑒 = 𝐸𝐸𝑃𝑃1 − 𝑄𝑄1 (26)

Where 𝑄𝑄1 is a measurement vector and 𝐸𝐸 is a parameter vector. Therefore, in
this optimizing technique we obtain the Jacobian 𝐽𝐽 using the derivative of the
error 𝑒𝑒 with respect to six parameters of 𝐸𝐸 , i.e. ∝𝑖𝑖 (∝1−3 = Translation
parameters and ∝4−6 = Rotation parameters) so that,

 𝐸𝐸𝑡𝑡+1 = 𝑒𝑒∑ ∝𝑖𝑖6
𝑖𝑖=1 𝐺𝐺𝑖𝑖 𝐸𝐸𝑡𝑡 (27)

Therefore,

37

𝜕𝜕𝜕𝜕
𝜕𝜕 ∝

=
𝜕𝜕𝜕𝜕

𝜕𝜕(𝐸𝐸𝑃𝑃1)

𝜕𝜕(𝐸𝐸𝑃𝑃1)
𝜕𝜕 ∝

 (28)

𝜕𝜕𝜕𝜕
𝜕𝜕(𝐸𝐸𝑃𝑃1)

 can be simplified as 3x3 identity matrix.

𝜕𝜕(𝐸𝐸𝑃𝑃1)
𝜕𝜕∝

 becomes 𝐺𝐺𝑖𝑖(𝐸𝐸𝑃𝑃1) where 𝐺𝐺𝑖𝑖 is 𝑆𝑆𝑆𝑆(3) Generators.[62]

Therefore, 𝜕𝜕𝜕𝜕
𝜕𝜕∝

 or the Jacobian 𝐽𝐽 is found as,

𝜕𝜕𝜕𝜕
𝜕𝜕 ∝

= 𝐼𝐼 𝐺𝐺𝑖𝑖 (𝐸𝐸𝑃𝑃1) (29)

According to six 𝑆𝑆𝑆𝑆(3) Generators as given below,

𝐺𝐺1 = �

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

� 𝐺𝐺2 = �

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

� 𝐺𝐺3 = �

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

�

𝐺𝐺4 = �

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

� 𝐺𝐺5 = �

0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

� 𝐺𝐺6 = �

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

�

The Jacobian is derived as,

 𝐽𝐽 =
𝜕𝜕𝜕𝜕
𝜕𝜕 ∝

= �
1 0 0 0 𝐸𝐸𝑃𝑃1[2] −𝐸𝐸𝑃𝑃1[1]
0 1 0 −𝐸𝐸𝑃𝑃1[2] 0 𝐸𝐸𝑃𝑃1[0]
0 0 1 𝐸𝐸𝑃𝑃1[1] −𝐸𝐸𝑃𝑃1[0] 0

� (30)

38

4 Implementation and Experiments

This chapter discusses how we implemented the proposed localization approach

and provides a detailed description about the experiments conducted to evaluate

the accuracy of our method.

4.1 Implementation

We implemented the pose estimation and pose optimization algorithms using

C++ programming language using Microsoft Visual Studio 2012 Version 11.0

IDE. Our localization algorithm can be depicted in pseudo code as below.

39

 Algorithm 1 Iterative Pose Estimation using RANSAC and Non-Linear
Optimization

Input: RGB-D Frame of Kinect-1 (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1), RGB-D Frame of Kinect-2
(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2), 𝑡𝑡 (error threshold), 𝑀𝑀𝑀𝑀𝑀𝑀_𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
Output: 6DOF Pose of Kinect-2 with respect to Kinect-1
𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟1 ← Compute ORB Keypoints for 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1
𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟2 ← Compute ORB Keypoints for 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2
𝐹𝐹𝑘𝑘1 ← Compute ORB Feature Descriptor for 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1
𝐹𝐹𝑘𝑘2 ← Compute ORB Feature Descriptor for 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2
𝑚𝑚𝑖𝑖 ← apply a brute-force descriptor matcher with the Hamming Norm to 𝐹𝐹𝑘𝑘1
and 𝐹𝐹𝑘𝑘2
Filter ORB feature matches (𝑚𝑚𝑖𝑖) according to depth data from 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1and
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2
𝑃𝑃𝑘𝑘1,𝑃𝑃𝑘𝑘2 ← Using intrinsic camera parameters, obtain 𝑁𝑁 sparse 3D feature
correspondences

RANSAC:
Input: 𝑃𝑃𝑘𝑘1,𝑃𝑃𝑘𝑘2
Output: 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ← 6DOF Pose of Kinect-2 with respect to Kinect-1

Repeat

Randomly select 3 feature correspondences
𝑇𝑇𝑖𝑖 = [𝑅𝑅𝑖𝑖, 𝑡𝑡𝑖𝑖] ← Obtain 6DOF pose using 3 feature correspondences

For 𝒊𝒊 ← 𝟏𝟏 𝒕𝒕𝒕𝒕 𝑵𝑵 𝒅𝒅𝒅𝒅

 𝑃𝑃𝑘𝑘1𝑡𝑡 = 𝑇𝑇𝑖𝑖 𝑃𝑃𝑘𝑘1 ← Reproject feature correspondences
𝑒𝑒𝑠𝑠𝑠𝑠𝑑𝑑 ← Calculate sum of Squared Differences (SSD) error

 If 𝒆𝒆𝒔𝒔𝒔𝒔𝒔𝒔 < 𝒕𝒕 then
 Increase 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 by (1 − 𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠

𝑡𝑡
)

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + + ← Add 𝑃𝑃𝑘𝑘1and 𝑃𝑃𝑘𝑘2 to inlier feature
correspondences

If 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝒔𝒔𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 > 𝑩𝑩𝑩𝑩𝒔𝒔𝒕𝒕 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝒓𝒓𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 then
 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑟𝑟𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑖𝑖
 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑒𝑒𝑒𝑒 ← Filter out the best matches

Until (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 > 𝑀𝑀𝑀𝑀𝑀𝑀_𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼)

40

NON-LINEAR OPTIMIZATION:
Input: 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ,𝑃𝑃𝑘𝑘1,𝑃𝑃𝑘𝑘2 , 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, 𝑡𝑡
Output: 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ← 6DOF Pose of Kinect-2 with respect to Kinect-1,
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝐸𝐸𝑡𝑡 = 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
For 𝒌𝒌 ← 𝟏𝟏 𝒕𝒕𝒕𝒕 𝟏𝟏𝟏𝟏 𝒅𝒅𝒅𝒅
 For 𝒋𝒋 ← 𝟏𝟏 𝒕𝒕𝒕𝒕 𝟏𝟏𝟏𝟏 𝒅𝒅𝒅𝒅
 For 𝒊𝒊 ← 𝟏𝟏 𝒕𝒕𝒕𝒕 𝒏𝒏𝒏𝒏𝒏𝒏_𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝒅𝒅𝒅𝒅
 Find the Jacobian, 𝑱𝑱
 Add a single measurement

Compute weighted least squares

Compute 𝑚𝑚𝑚𝑚 ← Compute the weighted least squares set of
parameter values by processing all the measurements
𝐸𝐸𝑡𝑡+1 = exp−𝑚𝑚𝑚𝑚 𝐸𝐸𝑡𝑡 ← Get non-linear optimized pose (𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)

For 𝒊𝒊 ← 𝟏𝟏 𝒕𝒕𝒕𝒕 𝑵𝑵 𝒅𝒅𝒅𝒅
𝑃𝑃𝑘𝑘1𝑡𝑡 = 𝐸𝐸𝑡𝑡+1 𝑃𝑃𝑘𝑘1 ← Re-project feature correspondences
𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠 ← Calculate SSD error using 𝑃𝑃𝑘𝑘1𝑡𝑡 and 𝑃𝑃𝑘𝑘2
If 𝒆𝒆𝒔𝒔𝒔𝒔𝒔𝒔 < 𝒕𝒕 then

 Increase 𝑪𝑪𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 by (𝟏𝟏 − 𝒆𝒆𝒔𝒔𝒔𝒔𝒔𝒔
𝒕𝒕

)
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + + (Add 𝑃𝑃𝑘𝑘1 and 𝑃𝑃𝑘𝑘2 into consensus set)

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← Obtain new homogeneous inliers set

and feed into (k+1)th iteration

Return 𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 , 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

41

The initial part of the algorithm i.e. computing key-points, ORB feature

descriptors, applying brute-force descriptor matcher with the Hamming Norm

and cross checking the correspondences were performed using ORB

implementation available in the OpenCV library [59].

In order to obtain 3D world coordinates of the matched feature points, the

intrinsic camera parameters were used. We calibrated Kinect cameras using

Camera Calibration Toolbox for Matlab [63] as described below in Section 4.2.

The obtained 3D point correspondences were fed into RANSAC algorithm to

iterate over 500 times to estimate approximate transformation matrix considering

an error threshold of 3cm between the re-projected and measured points.

When implementing our localization approach, we used Tom’s Object-oriented

Numeric Library (TooN) [64], a C++ numeric library designed to operate

efficiently on matrices. We used TooN integrated with libCVD [65] which is a

high-performance C++ library for computer vision and image processing.

4.2 Camera Calibration

Camera calibration is the process of estimating intrinsic and/or extrinsic

parameters of a camera. Intrinsic camera parameters describe camera’s internal

characteristics such as focal length, image center, skew, distortion etc. Extrinsic

parameters describe camera’s position and orientation in the world. Camera

parameters are used in estimating 3D world structure of a scene, applying

corrections for lens distortion, determining location of the camera in the scene

etc. These tasks are commonly applied in 3D computer vision [66], robotics, 3-D

scene reconstruction [50] etc.

42

 The input for camera calibration is 3D world points and their corresponding

2D image points. The most popular method to obtain these point correspondences

is to use multiple images of a calibration pattern such as a chessboard or a

checkerboard. We used Camera Calibration Toolbox for Matlab [63], a MATLAB

implemented tool to obtain intrinsic and extrinsic parameters of cameras when

given a set of images of a calibration pattern. We captured the images of a

rectangular checkerboard pattern and fed into the Toolbox. After the four

extreme corners of each checkerboard pattern are defined, the tool extracts the

grid corners giving an option to re-extract if the user is unsatisfied with the

distortion. After corner extraction, we used the tool to run main camera

calibration procedure which is done in two steps. The first step computes a closed

form solution for the calibration parameters ignoring any lens distortion. The

second step runs non-linear optimization which minimizes the total re-projection

error over all the calibration parameters. Then the grids were re-projected on

the original images based on calculated intrinsic and extrinsic parameters. This

process of computing grid corners, computing camera parameters and re-

projection on original images were done several times until the re-projection error

becomes minimum and converges to a certain value. The following Figure 4.1

shows a few sample images of the checkerboard captured using a Kinect sensor

for calibration process.

43

Figure 4.1: Sample Images of the Checkerboard used for Kinect camera
calibration

4.3 Experiments

The proposed localization approach for multiple RGB-D sensors was analyzed

and evaluated using different laboratory experiments. During all our experiments,

Microsoft Kinect version1 [35] sensors were used to capture color images and

depth data. The proposed localization approach was evaluated offline based on

several sets of data collected from Kinect RGB-D sensors. One of the purposes of

collecting these datasets was to investigate how the translation and rotational

difference between the Kinects affect the estimated pose and how robustly our

algorithm responds to these variations. These facts were investigated by capturing

data using two Kinects while one sensor is moving with a translation and rotation

relative to the other.

44

The experiments also help to examine how suitable our localization approach

when used in swarm robot systems where the robots move relative to a stationary

RGB-D sensor or to a static helper robot with and RGB-D sensor. The pose of

one Kinect relative to the other was estimated using our proposed localization

approach and evaluated against the ground truth measurements in each of the

experiment scenarios.

To test the robustness of our localization algorithm against different scene

conditions such as feature rich and feature less, two types of scenes as dense and

sparse were considered while collecting data. This section explains these scenarios

in more detail and how the experiments for data collection were carried out.

We compare this proposed localization approach with our previous RGB to

RGB-D localization approach [67] that we presented in Australasian Conference

in Robotics and Automation (ACRA) held in 2011. The purpose of this system is

to estimate the pose of a mobile robot in an external stationary Kinect’s

coordinate frame. In this previous approach, the 6DoF pose of the smart phone

robot is estimated by matching the appearance-based feature correspondences

between the mobile phone camera and the Kinect. An overview of this robot

localization process is illustrated in Figure 4.2.

45

Figure 4.2: Overview of the ACRA System: Visual Localization between a Mobile

Phone Camera and an External RGB-D Sensor

The process begins by detecting salient features and building feature descriptors

in greyscale images from both the Kinect and smartphone cameras. FAST [54]

features are computed from the greyscale images in both the Kinect-CPU server

and the robot while the features are detected across a pyramid, 5-layers in the

server and 2-layers on the robot. For each FAST corner, a HIPS [68] feature

descriptor is calculated. The feature locations and descriptors built on the mobile

phone are sent to a Kinect CPU server via a WiFi link. Sparse features are sent

over the wireless ink to reduce the amount of transmitted data. For each feature,

a 32-byte descriptor and 8 bytes of coordinates are sent. The server performs

robust feature matching to provide a set of correspondences between 2D points

from the robot camera and 3D points from the Kinect. The Lie algebra of rigid

body motions is used to linearize the displacement of these salient features and

to calculate a pose estimation from correspondences. This way, the robot is

localized in 3D space from the Kinects perspective and the location is projected

onto the ground plane to obtain the robots 2D position.

46

In the analysis of our proposed approach, we use this previous work to compare

the accuracy of our new method. One of the reasons to use this previous work as

a baseline is the methodology being very similar hence provides a good

comparison of the results. Both these methods are trying to localize a moving

robot/sensor in external RGB-D sensor’s coordinate frame however, our approach

uses RGB-D data from the moving element which introduces some interference

to the scenario but enhancing the information with depth data while ACRA

method provides interference-free 2D feature correspondences and locations from

the moving element. Since both methods are trying to investigate a suitable

localization approach for mobile robots to operate in stationary sensor’s

framework using different feature detection and matching (FAST, HIPS versus

Oriented-BRIEF) and pose estimation algorithms the analysis of the results from

two methods will give a good estimation of which method is more eligible.

Our previous approach (ACRA) uses a CPU server to process data (RGB-D)

from the attached stationary Kinect and the data (feature descriptors) send by

the smart phone over a wireless link. Therefore, when running our data sets in

ACRA system, we applied the data set captured from two Kinects in each of the

scenarios in place of the frames from Kinect and smart phone. When integrating

our data set in the ACRA localization approach we used the following method.

1. The ACRA algorithm captures color and depth images directly from the
attached Kinect sensor. Instead we forced the algorithm to obtain the saved
depth and color frames from the stationary Kinect (Kinect-1) in our data
set.

47

2. Instead of transferring feature locations and descriptors from the smart
phone over the wireless link, we integrated the algorithm running on smart
phone into the Kinect server application so that the whole system runs in
one place eliminating the requirement of wireless link. Then the application
was modified to retrieve the saved color images of the moving Kinect
representing the color images from the smart phone.

Then the ACRA system was run for the data sets obtained for some of the

scenarios and the analysis of results is given in Chapter 5.

4.3.1 Data Collection

We evaluate our proposed localization approach for RGB-D sensors based on

offline data. Therefore, effort was taken to collect six different datasets for

different scenarios as described below. For every positioning of Kinects described

in below scenarios, two data sets were captured considering a dense and a sparse

scene. The images captured for sparse scene has relatively lower number of feature

matches however, to make the scene sparser when running the algorithm, we

occluded a part of the view seen by one camera. This technique is explained using

the images in Section 5.1.1.2. Our approach is based on key-point matches of both

camera views; hence we assume that the RGB-D sensors on the robots or in the

environment are pointing in a direction so that they share a part of their field of

views. Therefore, the color and depth images are captured so that they observe

an overlapped scene in both camera views. Figure 4.3 shows a sample scene in

front of the Kinects in laboratory environment.

48

Figure 4.3: A sample scene in front of the Kinects

We used Microsoft Kinect for Windows SDK [69] version 1.8 to interface

multiple Kinects on a single Windows 7 PC. The APIs available through Natural

User Interface (NUI) were used to initialize the sensor array and obtain

synchronous color and depth data at 640 x 480 resolution from two Kinects

connected to the same PC.

In each of the three experiments described below, the captured six data sets

consist of the following.

I. Raw data: RGB image, depth image, accelerometer readings
II. Ground Truth: Manually measured 6 Degree of Freedom (x, y, z, 3 axis

rotations) pose measurements of RGBD sensors

49

To improve accuracy of the measurements, we removed the outer casing of the

Kinects and used only the inner structure in our experiments as shown in Figure

4.4. Also, two wheels made of Perspex was attached to the Kinects so that they

become easy to slide along the metal bar during the experiments.

Figure 4.4: Kinects with the outer casing removed. Two wheels made of Perspex
are attached to hold the Kinects on a metal bar

50

4.3.1.1 Experiment-1: Systematic Translation only of one sensor

relative to a stationary sensor

The first experiment investigates impact of proposed localization approach on

RGB-D sensors those are moving only with a translation relative to a static sensor.

Data was collected using two Kinect sensors while one Kinect was rigidly fixed,

and the other Kinect was systematically placed at different locations so that they

only maintain an offset in translation. In the experiment setup, a rigid long metal

bar was used to guide the moving sensor so that there is no rotational difference

between the two sensors. The bar was marked with distance measurements

relative to the stationary sensor to easily obtain the ground truth measurements

while capturing Kinect data at different locations. The scene at which the Kinects

were facing was assumed to be static during the time of capturing data. Figure

4.5 shows the experimental setup used to collect data in the research lab.

51

Figure 4.5: Two Kinects attached to the metal bar using the cut-through slots on
the wheels so that the Kinects can slide along the bar

The Figure 4.6 shows sample scenes observed by two Kinects while they are

placed at a certain displacement in translation.

52

For this experiment, capturing Kinect data was started when the Kinects were

30cm away from each other and repeatedly captured at locations with 10cm

increments while moving the second Kinect away from the static Kinect as shown

in Figure 4.7. This way, the ground truth measurements were easily recorded for

each Kinect position. Instead of a single data frame, we captured 10 data frames

from both Kinects at each position so that the average pose can be estimated

over 10 frame pairs. The maximum allowed translation between two Kinects were

1.5m for the dense scene and 1.7m for the sparse scene which are limited by the

number and the quality of features available in overlapping area.

Figure 4.6: The color images obtained from two Kinects while they are 0.5m
apart.

53

54

Figure 4.7: (a)Starting position of two Kinects (b)One Kinects is moved away
from the static Kinect (c)Kinects are aligned to each other without angular

difference

4.3.1.2 Experiment-2: Systematic Translation and Rotation of one

sensor relative to a stationary sensor

The purpose of this experiment was to examine the effect of the proposed work

on RGB-D sensors those are moving with a rotation and translation relative to a

static sensor. The experiment is applicable to a scenario of moving an RGB-D

sensor along X- and Z-axes while rotating about Y-axis with respect to a static

RGB-D sensor. In this experiment, data was collected by systematically moving

one Kinect sensor while maintaining a certain translation and rotation relative to

a static Kinect sensor. We used a turn table to obtain accurate ground truth

translation and rotation while moving the Kinect sensor. The Figure 4.8 shows

the experimental setup with the turn table used in data collection.

55

Figure 4.8: Experimental setup with the Kinects placed on the turn table.

The static Kinect was rigidly attached on to the bottom plane of the turn table

which is not turning. Since the top layer is easily rotatable, we attached the

second Kinect on to the top layer. This way we achieved the translational and

rotational difference between the two Kinects without moving the Kinects

themselves but using the turn table. This technique avoided any misalignments

and human errors occur when moving the Kinects manually which affect the

accuracy of ground truth information.

Figure 4.9 shows how the Kinect sensors are attached to the top and bottom

layers of the turn table.

56

Figure 4.9: Static Kinect is attached to the bottom plane with markers for the
angular displacement.

The top plate was rotated 5 degrees at each step while capturing the Kinect

data. Markers were placed along the bottom plate circumference at the arc lengths

correspond to 5 degrees. The center of the wheels attached to the top plate was

taken as the reference when measuring the corresponding distance along the plate

circumference. Because the distance between the two plates is always a fixed

value, the ground truth translation along 𝑌𝑌 axis is not varying between the two

Kinects. The gap between two plates were 12.5 cm, hence the ground truth

translation along 𝑌𝑌 axis is always limited to this value. The following Figure 4.10

shows how we obtained corresponding ground truth translation along 𝑋𝑋 and 𝑍𝑍

axis when the turn table is rotated at an angle of 𝜃𝜃.

57

Figure 4.10: Rotation and Translation Estimated using the Turn Table

When the top plate is rotated 𝜃𝜃 degrees with respect to the fixed Kinect, then

the corresponding translation along 𝑋𝑋 and 𝑍𝑍 axes are L sin 𝜃𝜃 and (L – L cos 𝜃𝜃)

respectively where L is the distance from the center of turn table to the camera

center. In our experiments, we maintained a distance of 0.6m between the centers

of the turn table and Kinect color camera.

The Figure 4.11 shows when the two Kinects are placed with a translation and

rotation. Similar to Experiment-1: Systematic Translation only of one sensor

relative to a stationary sensor, 10 data frames were captured at each 5 degrees

angular offsets.

58

Figure 4.11: The Kinect on the top plate is rotated relative to the static Kinect
on the bottom plate

The following Table 4.1 shows the obtained ground truth values corresponding

to each measurement step for this experiment.

Angle

in

Degrees

(𝜽𝜽)

Distance in

meters from

camera center

to turn table

center

(L)

Translation

along X Axis

in meters

(L sin 𝜽𝜽)

Translation

along Y Axis

in meters

(Fixed)

Translation

along Z Axis

in meters

(L – L cos

𝜽𝜽)

5 0.6 0.052293 0.125 0.002283

10 0.6 0.104189 0.125 0.009115

15 0.6 0.155291 0.125 0.020445

20 0.6 0.205212 0.125 0.036184

59

25 0.6 0.253571 0.125 0.056215

30 0.6 0.300000 0.125 0.080385

35 0.6 0.344146 0.125 0.108509

40 0.6 0.385673 0.125 0.140373

45 0.6 0.424264 0.125 0.175736

50 0.6 0.459627 0.125 0.214327

Table 4.1: Ground Truth Translations at different Angles

When the top plate is rotated 𝜃𝜃 degrees with respect to the fixed Kinect, the

moved Kinect only rotates about 𝑌𝑌 axis and the ground truth rotation between

two Kinects about 𝑋𝑋 and 𝑍𝑍 axes are zero. The ground truth rotation matrix when

the two Kinects are rotated at 𝜃𝜃 angle about 𝑌𝑌 axis at each step is derived using

the general rotation matrix corresponding to Euler angles ∅, 𝜃𝜃, 𝜑𝜑 about 𝑋𝑋, 𝑌𝑌 and

𝑍𝑍 axes respectively.

𝑅𝑅

= �
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 cosφ 𝑠𝑠𝑠𝑠𝑠𝑠∅ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑐𝑐𝑐𝑐𝑐𝑐∅ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠∅ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑐𝑐𝑐𝑐𝑐𝑐∅ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑖𝑖𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐∅ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑠𝑠𝑠𝑠𝑠𝑠∅ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐∅ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠
−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠∅ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐∅ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

(31)

When the rotation about 𝑋𝑋 and 𝑍𝑍 axes are zero i.e. ∅ = 0, 𝜑𝜑 = 0 then the

ground truth rotation matrix, 𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔 can be derived as below.

 𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔 = �
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 0 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

0 1 0
−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 0 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

� (32)

60

4.3.1.3 Experiment-3: Freehand movement of one sensor relative to a

stationary sensor

With freehand moving experiments of an RGB-D sensor relative to a static

similar sensor, we investigate the suitability of proposed approach in 6-DOF

localization applications. The experiment described here, and the obtained results

given in Section 5.1.3 helps to evaluate the eligibility of suggested work in

localizing indoor robots, UAVs, drones or 6-DOF localization of hand-held RGB-

D sensors which are useful in Augmented Reality (AR) applications.

In this experiment, data was captured while one Kinect was moving freely with

6DOF transformation relative to a fixed Kinect in the environment. Therefore,

both relative translation and rotation of Kinects changed during the data capture.

However, obtaining ground truth trajectory of moving Kinect was a challenging

task in this experiment. Therefore, the Kinect was moved in known

patterns/trajectory and returned to the same starting position. As an example,

the front rectangular surface of a box placed in front of the scene was assumed

to be a trajectory of the Kinect. The relative rotation between the Kinects were

assumed to be fixed during this experiment, i.e. the Kinect was moved so that

there is no rotational difference between the Kinects. The following Figure 4.12

shows a diagram of the experimental setup.

However, this experiment is prone to significant human errors because there

can be drifts and slight rotations while manually moving the Kinect along the

edges of the box. Eventhough the ground truth is assumed to be a perfect

61

rectangle with sharp edges, the Kinect’s true trajectory could be slightly different.

We have given the estimated trajectory of this experiment in Section 5.1.3.

Figure 4.12: Setup for Experiment-3

Precise ground truth information is important for qualitative and quantitative

analysis of this experiment data due to being highly inclined to human errors.

Therefore, the attention was drawn towards evaluating this experiment scenario

with publicly available RGB-D datasets. In the recent research, there are only a

few efforts taken to produce or experiment with multiple Kinects. RGB-D People

dataset [70] was captured to evaluate people detection and tracking algorithms

for robotics and interactive systems. The data was collected synchronously in an

indoor environment using three combined static Kinects with a joint field of view.

Human fall detection dataset [71] was captured by Bogdan et al using two static

Kinects in an indoor room to detect and recognize human falls when integrated

with corresponding accelerometer data. Big BIRD dataset [72] collected by the

researchers in University of California Berkeley and the dataset collected by

62

Susanto et al [73] address object detection and recognition using multiple Kinects

to accelerate the developments in computer vision and robotic perception. Even

though these datasets are captured by multiple Kinect sensors their application

on Experiment 4.3.1.3 is unfitting due to the Kinects being mostly static.

On the other hand, there are several publicly available single Kinect RGB-D

benchmark data sets to evaluate visual odometry and SLAM systems. As

discussed in Chapter 0, ICL-NUIM dataset introduced in [46] is being used to

evaluate RGB-D visual odometry, 3D reconstruction and SLAM algorithms. The

dataset consists of handheld RGB-D camera sequences within synthetically

generated office room and a living room where the latter consists of associated

3D polygonal model in addition to trajectory data which allows evaluation of the

accuracy of the final reconstruction.

In this analysis we use the TUM Benchmark dataset, for evaluating RGB-D

SLAM systems published by Sturm et al [43]. The dataset consists of image

sequences from a single Kinect with highly accurate and time-synchronized

ground truth camera poses generated using a motion capture system. This

benchmark dataset can also be used to evaluate visual odometry systems on RGB-

D data. The dataset consists of 39 sequences recorded using a hand-held Kinect

in two different environments. The first sets of trajectories are recorded in a

typical office environment, “fr1” with around 6m x 6m area. The second set of

trajectories are recorded in a large industrial hall, “fr2” with about 10m x 12m in

size. The average, camera speed of considered fr1 datasets are faster than fr2

datasets. This can be clearly shown in the color images of fr1 datasets having

significant motion blur.

63

In our analysis we use several fr2 data sequences from the categories “Testing

and Debugging” and “Handheld SLAM”. Because the dataset consists of image

sequences captured from a single Kinect, we use the first data point in the dataset

as from the fixed Kinect and the remaining data as from the moving Kinect. We

used “xyz” data sequences captured by moving the camera approximately along

X-, Y- and Z- axis with little rotational components. Analyzing our algorithm on

this dataset will prove its accuracy when moving 6-DOF. The analysis in Section

5.1.3 will also show the quality of estimated trajectory when using the Hand-held

SLAM fr2/desk dataset. In fr2/desk sequence the images are taken in a static

office environment consisting two tables with various accessories including

keyboard, monitor, books etc. The ground truth trajectory for this dataset is

about 18m long with average translational velocity of 0.193m/s and average

angular velocity 6.338deg/s. Since fr2 sequences have been captured relatively

slower consists of images with less motion blur, the evaluation of proposed

approach against these sequences demonstrate the best-case scenario.

To evaluate against worst case scenario, we use several fr1 data sequences from

the same categories. Camera motion in fr1/xyz sequence is similar to fr2/xyz

sequence but with a different environment. For this sequence, the Kinect was

pointed at a typical desk in an office environment. This sequence contains only

translatory motions along the principal axes of the Kinect, while the orientation

was kept (mostly) fixed. On the other hand, fr1/desk sequence contains several

sweeps over four desks in a typical office environment. In our analysis we use

these two sequences from fr1. The average translational speed of the camera in

fr1/desk sequence is about 0.413m/s while the angular velocity is around 23.327

64

deg/s which is very faster compared to 0.193m/s and 6.338 deg/s in fr2/desk

sequence. Compared to fr2 sequences we analyzed, fr1 sequences are relatively

fast and consists of images with motion blur, hence these sequences are used to

demonstrate the usage of proposed work in worst case scenario.

When evaluating against these data sequences, we assume a particular Kinect

frame as the reference frame obtained from the static Kinect. The pose of sub

sequence frames is estimated relative to this reference frame. Since our algorithm

is very much dependent on the number of good feature matches extracted in the

overlapping views, it is vital to have a reasonable overlapping area between the

two Kinect frames being matched. However, data collected from a moving hand-

held Kinect might not always satisfy this requirement. Referring to RGB images

of most of these benchmark sequences, there are many image pairs with no

common views at all. Therefore, considering only the first Kinect frame as the

reference is not suitable in this analysis. Due to this reason, when evaluating our

algorithm on TUM data sequences we reinitiate the Kinect-1 reference frame at

a certain point along the trajectory. This way we avoid losing feature matches in

both Kinect views. This strategy is explained in the Proof of Concept section in

more details.

65

5 Results and Analysis

The proposed localization approach was evaluated in two ways, using the

acquired data in laboratory environment and also using publicly available

datasets. The data collection was conducted as explained in Section 4.3.1. For all

the scenarios described in this section we investigated the behavior of the

proposed work against ground truth data obtained at each of the experiments.

Evaluation using collected datasets is twofold. We evaluate the proposed

approach using collected data and we use the same data set on the previous

ACRA work [67] described in Section 4.3 to compare the accuracy.

The implemented proposed work was run offline on collected different data sets

for each scenario. The same datasets collected for Scenario-1 and Scenario-2 also

used to evaluate against ACRA method. When analyzed on ACRA system, the

stationary Kinect data was used as the single Kinect used in ACRA method and

the color images from moving Kinect was used in place of the RGB color images

provided by the smart phone. The following sections provide a detailed analysis

of the three scenarios with the results obtained from all the experiments to

evaluate its accuracy and robustness to apply in realistic applications.

5.1.1 Scenario-1: Systematic Translation only of one sensor

relative to a stationary sensor

In this scenario, we analyzed the datasets collected for both dense and sparse

scenes. The Kinects were initially placed with 30cm displacement and then the

translational distance was increased by 10cm at each step until there is no overlap

66

between their FOVs. The sensors start to observe a scene with a displacement

>= 30cm in 𝑋𝑋 direction and zero displacement in 𝑌𝑌 and 𝑍𝑍 directions.

5.1.1.1 Scenario-1 Dense Scene

In our experiments, we used dense and sparse scenes where dense scene

consisted of relatively higher number of feature matches than the sparse scene.

The following Figure 5.1 shows some sample dense scene image pairs captured

from both Kinects together with matched ORB feature correspondences. In each

image pair, the images from the stationary Kinect is shown on the right-hand

side. These four image pairs are randomly picked from each ten frame pairs

captured when the Kinects are 30cm, 50cm, 70cm and 90cm apart.

Figure 5.1: Initial matches of dense scene for Scenario-1 when the Kinects are
30cm, 50cm, 70cm and 90cm apart

67

These matches are then filtered by RANSAC algorithm and non-linear

optimization algorithm described above and the following Figure 5.2 shows the

remaining final inlier matches for above frames after optimizing.

Figure 5.2: Optimized inlier matches of dense scenes for Scenario 1

From top-left, top-right, bottom-left, bottom-right order the frame pairs
are correspondent to Kinects being apart 30cm, 50cm, 70cm and 90cm
respectively

For each frame pair, we calculate the Euclidian translation error between the

ground truth translation vector 𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔 and optimized translation vector 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 as

below.

 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = ���𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔[𝑖𝑖] − 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜[𝑖𝑖]�
2

3

𝑖𝑖=1

 (33)

When calculating rotational error, we consider the ground truth rotation as,

𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔 = 𝐼𝐼 because the Kinects are placed only with a difference in translation. The

68

angular error is calculated by taking the norm of the vector form of difference

matrix between optimized rotation, 𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔 . Therefore, the optimized

rotation simply becomes the difference rotation between the ground truth rotation

and the optimized rotation. The vector form of this difference rotation is the

vector of Euler angles along x, y, and z axes. Then rotational error, 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is

estimated taking the norm of difference vector.

 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑙𝑙2𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (𝑣𝑣𝑣𝑣𝑣𝑣(𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑇𝑇 ∗ 𝐼𝐼)) (34)

 Comparison against Ground Truth

The error in translation and rotation compared to ground truth measurements

for the frame pairs captured for dense scene is shown in the below graphs. The

horizontal axis represents the ground truth distance between the Kinects ranging

from 0.3m – 1.5m. The error value represented by each point is calculated as a

mean error by matching 10 frame pairs.

Figure 5.3: Estimated Euclidian Translation Error and Rotation Error for a
dense scene when the sensors are systematically positioned with only a

translation of range from 30 – 150 cm

0

10

20

30

40

50

20 40 60 80 100 120 140 160

SS
D

Tr
an

sla
tio

n
Er

ro
r (

cm
)

Ground Truth - Translation (cm)

0

4

8

12

16

20 40 60 80 100 120 140 160

An
gu

la
r E

rr
or

 (D
eg

re
es

)

Ground Truth - Translation (cm)

69

The translation error is lies almost within 10cm and angular error lies within

40 until the Kinects are 1.4m apart. However, when they are apart more than

1.4m the error increases highly due to the fewer number of available feature

matches between the frames. Therefore, above data shows 96.5% average

translational accuracy and 98% per centimeter average rotational accuracy over

1.4m span.

The following Figure 5.4 shows the variation of percentage inlier feature

matches with the translation and rotation for the dense scene. Inlier percentage

was calculated as,

 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 % = �
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒
� 𝑋𝑋 100% (35)

70

Figure 5.4: Change of inlier percentage with respect to translation and angular
error for a dense scene

The inlier percentage remains above 80% except when Kinects are more than

1.4m away, however the accuracy of the estimated pose after this point severely

depends on the availability of number of good inliers.

 Comparison against ACRA Work

As described above in Section 4.3, we used this data set to run on our previous

localization approach submitted to ACRA. The following figures show the inlier

matches for the same frame pairs shown above but running on ACRA system. In

each frame pair, the left image shows the moving Kinect image while the right

image is considered to be the stationary Kinect.

-8

2

12

22

32

42

52

0

20

40

60

80

100

20 30 40 50 60 70 80 90 100 110 120 130 140 150 Tr
an

sla
tio

n
Er

ro
r(

cm
) a

nd
 A

ng
ul

ar

Er
ro

r (
De

gr
ee

s)

In
lie

r P
er

ce
nt

ag
e

Ground Truth - Translation (cm)

Inlier Percentage Translation Error(cm) Angular Error(degrees)

71

Figure 5.5: Inlier matches obtained from ACRA method for Scenario-1 dense
scene

From top-left, top-right, bottom-left, bottom-right order the frame pairs
are correspondent to Kinects being apart 30cm, 50cm, 70cm and 90cm
respectively.

The following graphs show the comparison of Euclidian translation error and

rotation error for both approaches relative to ground truth values.

72

Figure 5.6: Translation and rotation error of estimated pose using proposed
localization approach compared to previous (ACRA) approach for the dense scene

in scenario-1

According to the results, even though the ACRA localization approach gives

slightly accurate results, it is not robust as our new approach for the translations

longer than 1m. The ACRA approach fails to work for data obtained by placing

Kinects more than 1.1m apart. The proposed approach works well for translations

up to 1.4m with an average Euclidian error of 3.5cm. Therefore, above data shows

97.4% average translation accuracy with our method and 96.1% accuracy with

ACRA method for 1.1m span. The corresponding per centimeter rotational

accuracy is 98.2% from this method and 98.8% from ACRA method. The

proposed approach enhances the translational operating range by 27% over

ACRA method.

The following graph shows the inlier percentage of both approaches for the

translation up to 1.5m.

0

10

20

30

40

50

20 40 60 80 100 120 140Eu
cl

id
ia

n
Tr

an
sla

tio
n

Er
ro

r (
cm

)

Ground Truth - Translation (cm)

 Translation Error Translation Error-ACRA

0

4

8

12

16

20 40 60 80 100 120 140

An
gu

la
r E

rr
or

 (D
eg

re
es

)

Ground Truth - Translation (cm)

Angular Error Angular Error-ACRA

73

Figure 5.7: The Inlier percentage of both approaches for ground truth translation
up to 150cm

The proposed approach filters higher number of feature matches as inliers while

the ACRA approach performs by filtering almost half of the inliers than that.

However, when the Kinects are more than 1m apart, the ACRA work fails to

respond even if the percentage of inliers drops only by 20%.

5.1.1.2 Scenario-1 Sparse Scene

In order to test the robustness of our approach against the number of feature

matches between the Kinect images, we considered the same scenario with

reduced feature environment. We captured data for the sparse scene which has

10% less number of feature matches than the dense scene. In order to make the

scene sparser, we covered a part of the scene by removing the depth data while

running the proposed approach. As an example, the following Figure 5.8 shows

the initial matches between the frame pairs when the Kinects are at 30cm, 50cm,

70cm and 90cm apart.

0

20

40

60

80

100

20 30 40 50 60 70 80 90 100 110 120 130 140 150In
lie

r P
er

ce
nt

ag
e

%

Ground Truth - Translation (cm)

Inlier Percentage Inlier Percentage-ACRA

74

As seen in the images, a part in the right-hand side image is occluded by

removing depth data which gives no feature correspondences for that part of the

image pair. This technique allowed to make the scene sparser by removing the

feature matches. The following table shows the average number of feature

matches in our dense dataset and sparse dataset for the Scenario-1. This average

was estimated considering 10 frame pairs at each ground truth location.

Ground Truth

Distance Between

Kinects (cm)

Average Number of

Feature Matches in the

Dense Data Set

Average Number of

Feature Matches in the

Sparse Data Set

30 373.9 209.4

40 298.2 154.4

50 272.5 130.6

60 275.1 113.4

Figure 5.8: Initial Matches of Sparse Scenes for Scenario-1

From top-left, top-right, bottom-left, bottom-right order the frame pairs
are correspondent to Kinects being apart 30cm, 50cm, 70cm and 90cm
respectively.

75

70 220.2 91

80 186.4 85.9

90 176.1 73.2

100 152.9 69.2

110 127.4 58.1

120 82.1 57.3

130 44.6 48.9

140 26.1 42.5

150 13.4 24.2

Table 5.1: Average number of feature matches for dense and sparse scenes

for Scenario-1

The following images in Figure 5.9 show the filtered inlier feature matches for

the above same sparse featured frame pairs to obtain the optimized pose. When

comparing two figures, it can be clearly seen that outlier matches presented in

Figure 5.8 has been removed in Figure 5.9.

76

Figure 5.9: Filtered Matches of Sparse Scenes for Scenario-1

From top-left, top-right, bottom-left, bottom-right order the frame pairs
are correspondent to Kinects being apart 30cm, 50cm, 70cm and 90cm
respectively.

 Comparison against Ground Truth

The following graphs show the estimated translation and rotation errors

compared to ground truth values and compared to the corresponding dense scene

results.

77

Figure 5.10: Translation and rotation error for dense and sparse scenes for
Scenario-1

Above results demonstrate that our approach works well with the sparse scenes

giving very similar or even better results compared to dense scenes. The

localization accuracy up to 1.5m translation is very small having less than 3cm

average error. Above data shows average translational accuracy of 96.7% and

per centimeter average rotational accuracy of 98% over 1.5m span. Hence, it

proves that our approach is robust against the number of inliers and does not

dramatically affect the accuracy of the estimated pose. The inlier percentage of

0

15

30

45

60

75

90

105

120

135

20 40 60 80 100 120 140 160

Tr
an

sla
tio

n
Er

ro
r (

cm
)

Ground Truth - Translation (cm)

0

10

20

30

40

50

20 40 60 80 100 120 140 160

An
gu

la
r E

rr
or

 (D
eg

re
es

)

Ground Truth - Translation (cm)

0
20
40
60
80

100
120

20 40 60 80 100 120 140 160

Tr
an

sla
tio

n
Er

ro
r (

cm
)

Ground Truth - Translation (cm)

Dense Sparse

0
5

10
15
20
25
30
35
40
45
50

20 40 60 80 100 120 140 160

An
gu

la
r E

rr
or

 (D
eg

re
es

)

Ground Truth - Translation (cm)

Dense Sparse

78

both dense and sparse scenes for the above experiment is given in Figure 5.11

below.

Figure 5.11: Inlier Percentage for both Dense and Sparse Scenes

Acording to the graph, the inlier percentage has dropped from 90% to 25% for

the sparse scene while it is not much changed for the dense scene. However our

algorithm has performed well for the sparse scene even if the inlier percentage has

intensely dropped.

 Comparison against ACRA Work

We used the same set of sparse scene data for scenario-1 to run on ACRA

localization approach. The following images in Figure 5.12 show the inlier feature

matches obtained by ACRA algorithm for the same set of image pairs shown

above.

0

20

40

60

80

100

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

In
lie

r P
er

ce
nt

ag
e

%

Ground Truth - Translation (cm)

Dense Sparse

79

Figure 5.12: Filtered Matches using ACRA method for Sparse Scene in Scenario-1

From top-left, top-right, bottom-left, bottom-right order the frame pairs
are correspondent to Kinects being apart 30cm, 50cm, 70cm and 90cm
respectively.

The following graphs show how the ACRA method responded to the sparse

scene in Scenario-1. The graphs below show the comparison of translation and

rotational errors for the same sparse scene using both approaches. Also, the

bottom graph shows the variation of inlier percentage for both approaches.

80

Figure 5.13: Translation and Rotation Error, Inlier percentage for proposed
approach and ACRA method for sparse scenes in Scenario-1

According to these results, similar to the dense scene, the ACRA algorithm

could perform only up to 1.1m to estimate the pose for the sparse scene. The

proposed method produces 95.5% average translational accuracy while the ACRA

method provides 98% corresponding accuracy for 1.1m span. Per centimeter

average rotational accuracy achieved with our method is 97.8% while it is 98%

with ACRA method for 1.1m span. However, in the sparse scenario our method

enhances the operating range by 36%. The bottom graph shows that inlier

percentage lies below 30% throughout the estimation.

0

2

4

6

8

10

20 30 40 50 60 70 80 90 100 110 120 130 140 150

Eu
cl

id
ia

n
Tr

an
sla

tio
n

Er
ro

r (
cm

)

Ground Truth - Translation (cm)

 Translation Error Translation Error-ACRA

0

0.5

1

1.5

2

2.5

3

20 30 40 50 60 70 80 90 100 110 120 130 140 150

An
gu

la
r E

rr
or

 (D
eg

re
es

)

Ground Truth - Translation (cm)

Angular Error Angular Error-ACRA

0

20

40

60

80

100

20 30 40 50 60 70 80 90 100 110 120 130 140 150In
lie

r P
er

ce
nt

ag
e

%

Ground Truth - Translation (cm)

Inlier Percentage Inlier Percentage-ACRA

81

5.1.2 Scenario-2: Systematic Translation and Rotation of one

sensor relative to a stationary sensor

In this scenario, the Kinects were placed on a turn table initially with only a

ground truth translation of 0.125m along 𝑌𝑌- axis. Then, one Kinect was rotated

in steps of 5 degrees angle and ten frame pairs were captured at each step for

both dense and sparse scenes. The corresponding translation in 𝑋𝑋 and 𝑍𝑍 axes are

given in Table 4.1. The ground truth rotation matrix 𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔 at each step was

determined as explained in Section 4.3.1.2.

5.1.2.1 Scenario - 2 Dense Scene

The following Figure 5.14 shows some sample dense scene image pairs captured

from both Kinects with the matched ORB feature correspondences for this

scenario. In each image pair, the images from the stationary Kinect is shown on

the right-hand side. These four image pairs are randomly picked from each ten

frame pairs captured when the Kinects are rotated at 5-, 15-, 25- and 35-degrees

angles.

82

Figure 5.14: Initial Matches of Dense Scene for Scenario-2

From top-left, top-right, bottom-left, bottom-right order the frame pairs
are correspondent to Kinects being rotated with 5-, 15-, 25- and 35-
degrees angles respectively.

There is a significant drop of the number of feature matches observed within a

rotation of 30 degrees. The following pictures show the filtered matches for above

frames to obtain the optimized pose.

83

Figure 5.15: Optimized Matches of Dense Scene for Scenario-2

From top-left, top-right, bottom-left, bottom-right order the frame pairs
are correspondent to Kinects being rotated with 5-, 15-, 25- and 35-
degrees angles respectively.

 Comparison against Ground Truth

The translation error, 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 and rotation error, 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 calculated between the

estimated pose and the ground truth pose is shown in the following graphs. These

errors were calculated as the same way as described in above Section 5.1.1.1 and

these are plotted against the corresponding ground truth values.

84

Figure 5.16: Euclidian Translation error and Angular Error for a dense scene
when one sensor is systematically positioned with a translation and rotation

Above data shows that the average rotational accuracy for 400 rotation is 91.3%

while the corresponding translational accuracy is around 81%. Compared to

translation error between ground truth translation from 30-40cm for the dense

scene in Scenario-1, there is a significant increase of 97% in the expected error for

an equivalent translation predicted from these results. However, the rotation error

is considerably less in this scenario. The following graph shows the estimated

rotation about 𝑋𝑋−,𝑌𝑌 −and 𝑍𝑍 − axes. According to the plot, the rotation about

𝑌𝑌 − axis is almost linear against the ground truth while the rotation about 𝑋𝑋 and

𝑍𝑍 is very small and negligible compared to 𝑌𝑌- axis rotation.

0

3

6

9

12

15

10 14 18 22 26 30 34 38 42

Tr
an

sla
tio

n
Er

ro
r (

cm
)

Ground Truth - Translation (cm)

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35 40

An
gu

la
r E

rr
or

 (D
eg

re
es

)

Ground Truth - Angle (Degrees)

85

Figure 5.17: Rotation about X, Y and Z axes for a dense scene when one sensor is
systematically positioned with a translation and rotation

The following Figure 5.18 shows the variation of percentage inlier feature

matches for this experiment. Inlier percentage was calculated as explained in

Section 5.1.1.1.

Figure 5.18: Inlier percentage for a dense scene when one sensor is systematically
positioned with a translation and rotation

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40Es
tim

at
ed

 R
ot

at
io

n
(D

eg
re

es
)

Ground Truth Rotation (Degrees)

Rotation about X, Y and Z axes X Y Z

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40

In
lie

r P
er

ce
nt

ag
e(

%
)

Ground Truth Rotation (Degrees)

Inlier Percentage Inlier percentage (%)

86

 Comparison against ACRA Work

We used the same data set on ACRA system for Scenario-2. The inlier matches

filtered by this RGB-D to RGB localization approach is shown in the below

Figure 5.19. In each frame pair, the left image is the moving Kinect image while

the right image is considered to be the still Kinect.

Figure 5.19: Inlier Matches obtained using ACRA method for Scenario-2 dense
scene data set

From top-left, top-right, bottom-left, bottom-right order the frame pairs
are correspondent to Kinects being rotated with 5-, 15-, 25- and 35-
degrees angles respectively.

The translation and rotation error for both approaches compared to

corresponding ground truth values are shown in the below graphs.

87

Figure 5.20: Translation and rotation error of estimated pose using proposed
localization approach compared to previous (ACRA) approach for the dense

scene in Scenario-2

According to above graphs the ACRA approach performs similar to the

proposed approach, however it fails to estimate the pose when the Kinects are

angled more than 25 degrees. Above data shows that our method ensures 93.3%

average rotational accuracy over 250 span while ACRA method provides 94.8%

accuracy. The corresponding average translational accuracy from our method is

87.5% while it is 89.8% from ACRA method. However, in this dense scene

experiment our method increases the operating range by 60%.

The following graphs show the comparison of rotation about 𝑋𝑋−,𝑌𝑌 −and 𝑍𝑍 −

axes for both approaches.

0

3

6

9

12

15

10 14 18 22 26 30 34 38 42

Tr
an

sla
tio

n
Er

ro
r (

cm
)

Ground Truth - Translation (cm)

Translation Error Translation Error-ACRA

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35 40

An
gu

la
r E

rr
or

 (D
eg

re
es

)

Ground Truth - Angle (Degrees)

Angular Error Angular Error-ACRA

88

Figure 5.21: Estimated Angle about X. Y, Z axes for proposed approach and
ACRA method for dense scene

Estimated rotation about Y axis is almost same for both approaches up to 25

degrees, while estimated rotation about 𝑋𝑋 −and 𝑍𝑍 − axes is different by each

approach. However, the proposed approach gives 87%, 93.5% and 93% accuracy

of angles about 𝑋𝑋,𝑌𝑌and 𝑍𝑍 axes respectively when the Kinects are even at 40

degrees angle.

The percentage inlier matches for both approaches is shown in the following

graph. Considering the angular difference from 0 to 40 degrees, the inlier

percentage of the proposed approach varies only by 14% while in ACRA approach,

the inlier percentage varies by 38%.

0

1

2

3

4

5

6

0 10 20 30 40

Es
tim

at
ed

 R
ot

at
io

n
(D

eg
re

es
)

Ground Truth Rotation
about Y (Degrees)

Rotation about X axis
Angle-ACRA Angle

0
5

10
15
20
25
30
35
40
45

0 10 20 30 40

Es
tim

at
ed

 R
ot

at
io

n
(D

eg
re

es
)

Ground Truth Rotation
(Degrees)

Rotation about Y axis
Angle-ACRA Angle

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40

Es
tim

at
ed

 R
ot

at
io

n
(D

eg
re

es
)

Ground Truth Rotation
about Y (Degrees)

Rotation about Z axis
Angle-ACRA Angle

89

Figure 5.22: The Inlier Percentage of both approaches for angle between Kinects
up to 40 degrees

5.1.2.2 Scenario - 2 Sparse Scene

The matched ORB features for the image pairs captured for sparse scene for

Scenario-2 is shown below. As in the dense scene, the below image pairs are

randomly picked from each ten frame pairs captured when the Kinects are rotated

at 5-, 15-, 25- and 35- degrees angles.

Figure 5.23: Initial matches of sparse scene for Scenario-2

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40

In
lie

r P
er

ce
nt

ag
e(

%
)

Ground Truth Rotation (Degrees)

Inlier Percentage Inlier percentage Inlier percentage-ACRA

90

From top-left, top-right, bottom-left, bottom-right order the frame pairs
are correspondent to Kinects being rotated with 5-, 15-, 25- and 35-
degrees angles respectively.

To make the scene sparser, we have systematically created occlusions as shown

in the right-hand side images. This way, we could reduce the number of initial

feature matches significantly compared to dense scene for the same scenario. The

following table shows the average number of initial feature matches for both dense

and sparse scenes for Scenario-2.

Ground Truth
Angle about Y

axis between the
Kinects (degrees)

Average Number of
Feature Matches in the

Dense Data Set

Average Number of
Feature Matches in the

Sparse Data Set

0 666.7 425.7
5 531.7 338.5
10 311.2 254.2
15 187.8 182.9
20 150.9 122.7
25 137.9 119.5
30 115 110.3
35 96.7 119.6
40 25.8 46.2
45 51.1

Table 5.2: Average Number of Feature Matches for Dense and Sparse Scenes

for Scenario-2

91

The filtered inliers for above four image pairs are shown in the following figure.

Figure 5.24: Optimized matches for sparse scene for Scenario-2

From top-left, top-right, bottom-left, bottom-right order the frame pairs
are correspondent to Kinects being rotated with 5-, 15-, 25- and 35-
degrees angles respectively.

 Comparison against Ground Truth

The following Figure 5.25 shows the comparison of translation and rotation

errors of sparse and dense scenes for Scenario-2.

92

According to graphs, the translation and rotation errors of sparse scene seem

irregular and varying drastically above and below the corresponding dense scene

values. Above data shows that the average rotational accuracy of 87% over 450

span and the corresponding average translational accuracy of 83%.

The following Figure 5.26 shows the comparison of inlier percentage for both

dense and sparse scenes.

Figure 5.25: Translation and rotation error for dense and sparse scenes for
Scenario-2

0

2

4

6

8

10

12

14

10 15 20 25 30 35 40 45 50

Eu
cl

id
ia

n
Tr

an
sla

tio
n

Er
ro

r (
cm

)

Ground Truth - Translation (cm)

Translation Error Dense Sparse

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 35 40 45

An
gu

la
r E

rr
or

 (D
eg

re
es

)

Ground Truth - Angle (Degrees)

Rotational Error Dense Sparse

93

Figure 5.26: Inlier percentage for both dense and sparse scenes for Scenario-2

In average, the sparse scenes have about 5% less inliers chosen from the initial

feature matches.

 Comparison against ACRA Work

Similar to Scenario-1, we used the same set of sparse scene data from Scenario-

2 to run on ACRA localization approach. The following images show the inlier

feature matches obtained by ACRA algorithm for the same set of image pairs

shown above.

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45

In
lie

r P
er

ce
nt

ag
e

(%
)

Ground Truth Rotation (Degrees)

Inlier Percentage Dense Sparse

94

Figure 5.27: Inlier matches obtained using ACRA method for Scenario-2 sparse
scene

From top-left, top-right, bottom-left, bottom-right order the frame pairs
are correspondent to Kinects being rotated with 5-, 15-, 25- and 35-
degrees angles respectively.

The following graphs show how ACRA method responded to the sparse scene

in Scenario-2. The graphs show the comparison of translation and rotation errors

for the same sparse scene using both approaches.

95

Figure 5.28: Translation and rotation error of estimated pose using proposed
localization approach compared to previous (ACRA) approach for the sparse

scene in Scenario-2

According to above graphs ACRA approach fails to estimate the pose when the

Kinects are rotated more than 25 degrees. Above data shows that average

rotational accuracy achieved by our method is 89% while it lies at 87.8% by

ACRA method. Corresponding average translational accuracy achieved by our

method is 85.6% while it is 85% from ACRA method. Therefore, in this sparse

scene experiment, our method has performed better than ACRA method while it

enhances the operating range by 80%. The following graphs show the comparison

of rotation about 𝑋𝑋−,𝑌𝑌 −and 𝑍𝑍 − axes for both approaches.

0

2

4

6

8

10

12

14

10 14 18 22 26 30 34 38 42

Tr
an

sla
tio

n
Er

ro
r (

cm
)

Ground Truth - Translation (cm)

Translation Error Translation Error-ACRA

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 35 40 45

An
gu

la
r E

rr
or

 (D
eg

re
es

)

Ground Truth - Angle (Degrees)

Angular Error Angular Error-ACRA

96

Figure 5.29: Estimated angle about X-, Y-, Z- axes for proposed approach and
ACRA method for Scenario-2 sparse scene

 Estimated rotation about Y axis is almost same for both approaches up to 25

degrees, while the estimated rotation about 𝑋𝑋and 𝑍𝑍 axes are different by each

approach. However, the proposed approach gives 95%, 85% and 97% accuracy of

angles about 𝑋𝑋−,𝑌𝑌 −and 𝑍𝑍 − axes respectively when the Kinects are even at 35

degrees angle.

The percentage inlier matches for both approaches is shown in the following

graph. Considering the angular difference from 0 to 40 degrees, the inlier

percentage of the proposed approach varies only in 10% while in ACRA approach

the inlier percentage varies in 33%.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40

Es
tim

at
ed

 R
ot

at
io

n
ab

ou
t X

 a
xi

s i
n

De
gr

ee
s

Ground Truth Rotation
(about Y axis)

Rotation about X axis
Angle-ACRA Angle

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40
Es

tim
at

ed
 R

ot
at

io
n

in
 d

eg
re

es
Ground Truth Rotation

(Degrees)

Rotation about Y axis
Angle-ACRA Angle

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40

Es
tim

at
ed

 R
ot

at
io

n
ab

ou
t Z

 a
xi

s i
n

De
gr

ee
s

Ground Truth Rotation
(about Y axis)

Rotation about Z axis
Angle-ACRA Angle

97

Figure 5.30: Percentage Inlier matches obtained from both approaches for
Scenario-2 sparce scene

5.1.3 Scenario-3: Freehand movement of one sensor relative to a

stationary sensor

This scenario is more suitable to evaluate the appropriateness of proposed work

in AR applications where a human user moves an RGB-D device by hand which

is then localized using another RGB-D sensor. Also, it can be used in swarm

robotics applications such as formation control and surveillance where UAVs or

drones with RGB-D sensors try to localize in 6-DOF relative to another helper

robot carrying an RGB-D sensor.

The most challenging task while proving the concept in this scenario was to

obtain accurate ground truth poses of the free-hand moving RGB-D sensor. With

the experiments conducted in the laboratory environment, it was difficult to

0
10
20
30
40
50
60
70
80
90

0 5 10 15 20 25 30 35 40 45

In
lie

r P
er

ce
nt

ag
e(

%
)

Ground Truth Rotation (Degrees)

Inlier Percentage Inlier percentage Inlier percentage-ACRA

98

record precise ground truth information with the available limited resources.

Therefore, the investigation of proposed work in localizing a moving RGB-D

sensor becomes twofold. One method is to examine the proposed approach on the

data collected in laboratory environment with less accurate ground truth

information. The other method is to evaluate using publicly available dataset

with precise ground truth information. In this section we demonstrate the

accuracy of the proposed work using these two methods.

As explained in Section 4.3.1.3, in the first method we collected data frames

from Kinects considering dense and sparse scenes while keeping Kinect-1 stable

and freehand moving Kinect-2 on known trajectories. The following two sub

sections present the results obtained from these experiments.

5.1.3.1 Scenario - 3 Dense Scene

Similar to Scenario 1 and 2, the experiment was conducted for both dense and

sparse scenes. The experimental results of moving Kinect-2 along the perimeter

of a rectangular shape on X-Y plane in front of the dense scene is shown in Figure

5.31.

99

Figure 5.31: Scenario-3 Dense Scene - Freehand movement of Kinect-2

The figure shows the ideal ground truth trajectory and estimated
trajectory for the dense scene in different view planes. The starting and
end point is (-0.3, 0, 0). The total ground truth trajectory length is 1.42m
while rms-translation error is 0.116m and rms-rotational error is 0.0088
radians. Average velocity of ground truth trajectory is around 0.01m/s.

From Figure 5.31, the Z- and Y-error are minimum which lies within 3cm,

hence providing above 85% accuracy in Y direction. However, as explained in

Section 4.3.1.3, there can be significant human errors while trying to move the

Kinect along ideal ground truth trajectory. Also, the experiment was conducted

by a single person, so there were considerable delays between data collection start

and Kinect-2 movement start. Likewise, at the end of the experiment the delays

100

happened between stop moving Kinect-2 to end of data collection. This can be

seen in X-Y and X-Z sub-plots having a thick cloud of points at the starting

position (-0.3, 0, 0). These factors were not considered while estimating the

average speed of ground truth trajectory. The speed measurement here gives an

understanding of how fast a robot can move relative to the stationary sensor.

Average speed was estimated by taking the trajectory length and the overall

experiment time. Therefore, delays at the start and the end could cause the speed

calculation hence this calculated speed is only an approximation.

5.1.3.2 Scenario - 3 Sparse Scene

The experimental results of the estimated trajectory when moving Kinect-2

along the perimeter of a rectangle on X-Y plane in front of the sparse scene is

shown in the below Figure 5.32.

101

Figure 5.32: Scenario-3 Sparse Scene - Freehand movement of Kinect-2

The figure shows the ideal ground truth trajectory and estimated
trajectory for the sparse scene in different view planes. The starting and
end point is (-0.3, 0, 0). The total ground truth trajectory length is 1.82m
while rms-translation error is 0.189m and rms-rotational error is 0.0122
radians. Average velocity of ground truth trajectory is around 0.01m/s.

The ground truth trajectory for sparse scene is longer than the dense scene

trajectory, moving Kinect-2 more towards (-X) axis. However, the translation

error along Z axis still lies within 3.5cm. There is a significant increase in

translation error along X-axis compared to dense scene when Kinect-2 was moved

far away from Kinect-1. The same human errors explained in dense scene

102

experiment of this scenario also applies to this sparse scene experiment and above

results could be affected by these errors.

5.1.3.3 Qualitative Comparison with TUM Dataset

Since the ground truth information for above dense and sparse scene approaches

are prone to human errors, we use TUM Benchmark dataset [43] to qualitatively

evaluate the accuracy of our proposed approach. This benchmark contains

multiple real datasets captured with an RGB-D camera. Every dataset

accompanies an accurate ground truth trajectory obtained with an external

motion capture system which we were unable to acquire in the previous

laboratory experiment methods. The purpose of evaluating against such a dataset

is to examine the robustness of the proposed approach in practical applications

such as 6-DOF localization of robots and AR applications. However, data

collected from a single Kinect may not entirely simulate the real environment for

Scenario-3 in which one Kinect moves relative to a stable Kinect. Since there are

no such multiple Kinect datasets available in the recent research, this is one

option we could consider evaluating our approach.

We use dataset sequences from “Testing and Debugging” and “Handheld

SLAM” categories to test on our algorithm. These datasets consist of color and

depth images captured from a single moving Kinect. The approach in Scenario-3

is to estimate the pose of a moving Kinect relative to a stationary Kinect.

Therefore, when using TUM dataset sequences for Scenario-3, we consider

estimating the pose of each successive Kinect frame relative to the first Kinect

frame in the sequence. However, most of these TUM dataset sequences have

103

lengthier trajectories and sudden camera motions which makes it challenging to

estimate pose in this way due to the reason that a significant overlap is required

between the two keyframes being matched. When the Kinect is moved or turned

too far away from the first reference view, the proposed algorithm fails due to

lack of inlier matches. Therefore, one solution to address this issue in real world

scenario would be to relocate the reference Kinect to a known pose so that it

enhances the overlapped view with the moving Kinect. With the benchmark

dataset, this can be achieved by shifting the reference frame to a further point

along the trajectory to have a good number of inliers.

In this evaluation, we consider two methods to decide on which data frame to

be shifted as the new reference frame. One method is to shift the reference frame

based on the number of inlier-matches. When the number of inlier matches drop

below a certain threshold (𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) the reference frame is being shifted/replaced

by the currently moving frame. This threshold value is guessed based on the

average number of inliers which varies for different sequences.

As the second method we consider running the dataset by shifting the reference

frame after every fixed number of frames (𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓). With this approach, the

algorithm might still fail or misbehave based on the number of inliers. The quality

of the results depends on the nature of the trajectory, i.e. the angular and

translational difference between the frames, the speed of moving Kinect etc. We

run each sequence given below based on these two different methods.

104

 Comparison against Freiburg2 xyz

For our first evaluation we use fr2/xyz sequence from Freiburg2 dataset. This

sequence has simple motions of a hand-held Kinect roughly along X-, Y-, Z-axes.

The movement along three axes remains approximately within 0 - 1.5m and the

speed of moving Kinect is relatively slow compared to fr1/xyz sequences. The

slow camera motion basically ensures that there is (almost) no motion blur and

rolling shutter effects in the data. Hence the results of this sequence show the

behavior of our approach in the best-case. We shifted the Kinect reference frame

every time when the inlier number of matches drop below 200 (i.e 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =

200). The following figures show an example situation where the reference frame

has shifted when the number of inliers reduces.

105

Figure 5.33: Shifting the reference frame when number of inliers drops below
threshold

When the number of inliers drop below threshold, the moving image on
top-right becomes the new reference frame as shown on bottom-left.

The following Figure 5.34 shows the estimated trajectory for the sequence

fr2/xyz at different view angles. The estimated trajectory for the same data

sequence when evaluated by shifting the reference frame with 𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 100 is

shown in the following figures overlaid with the trajectory estimated with

𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 200.

106

Figure 5.34: Estimated Trajectory for fr2/xyz sequence with 𝒕𝒕𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 = 𝟏𝟏𝟏𝟏𝟏𝟏 and
𝒕𝒕𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 = 𝟐𝟐𝟐𝟐𝟐𝟐

Ground truth trajectory length=7.029m, Average translational
velocity=0.058m/s, Average angular velocity = 1.716deg/s, Trajectory
dimensions: 1.30m x 0.96m x 0.72m.

The trajectory when 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 100 seems very much aligned with ground truth

trajectory while 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 200 trajectory shows some misalignment in the last

section. The following Figure 5.35 shows the frequency of changing the reference

frame along the trajectory and the number of moving data frames relative to each

reference frame.

107

Figure 5.35: Histogram plot of number of moving data frames relative to each
reference frame for fr2/xyz sequence with different 𝒕𝒕𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 values

There are a smaller number of histograms in above plot for 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 100

analysis compared to 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 200 case due to changing the reference frame

only a few times. The number of inliers never drop below 100 for the second half

of the trajectory in 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 100 case. But it is different with 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 200

situation where the reference frame changed many times in the second half.

The estimated trajectory when the same data sequence is run by shifting the

reference frame after every 300th frame (𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 300) is shown in the

following figure.

108

Figure 5.36: Estimated Trajectory for fr2/xyz sequence with 𝒕𝒕𝒕𝒕𝒏𝒏𝒏𝒏𝒏𝒏_𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 = 𝟑𝟑𝟑𝟑𝟑𝟑

The estimated trajectory has the similar ground truth trajectory shape but

have shifted off significantly. The following figure shows the number of inliers

variation along the trajectory for above analysis.

109

Figure 5.37: Inliers variation for fr2/xyz sequence with 𝒕𝒕𝒕𝒕𝒏𝒏𝒏𝒏𝒏𝒏_𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 = 𝟑𝟑𝟑𝟑𝟑𝟑

It can be seen that the inliers have dropped significantly before the reference

frames 300, 600, 1200 and 1500. The incorrect pose estimated with these few

inliers might cause the offset in the predicted trajectory.

From above figures it can be seen that 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 method is more stable than

𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 method. The reason for the instability of the latter approach is that

in fr2/xyz sequence the Kinect changes the direction of motion frequently and

there is more possibility of not having the current reference frame and the moving

frame overlapped in many times. Also, a significant drift can be observed in the

estimated trajectory due to accumulating the error in estimated relative pose.

110

 Comparison against Freiburg2 desk

For the second evaluation, we use fr2/desk sequence where the images are

recorded in a typical office environment with two desks, a computer monitor,

keyboard, phone, chairs, etc. The Kinect is moved around the two tables so that

the loop is closed. This sequence consists of relatively long trajectory

approximately around 18m. The movement of Kinect along Z-axis is less

significant compared to movement along X- and Y-axes. Even though the speed

of Kinect is slow, there is a significant translation along X- and Y- axes. Due to

this nature of the data sequence, reference frame needs to be shifted more

frequently than that of in fr2/xyz sequence. The number of inlier feature matches

also tend to drop drastically along the trajectory. Therefore, for this sequence we

considered to evaluate against 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 100, 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 50 and 𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =

50.

The following Figure 5.38 shows the estimated trajectory for fr2/desk sequence

for 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 100 and 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 50 on the same plot.

111

Figure 5.38: Estimated Trajectory for fr2/desk sequence with different
𝒕𝒕𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊values

112

Ground truth trajectory length=18.880m, Average translational
velocity=0.193m/s, Average angular velocity = 6.338deg/s, Trajectory
dimensions: 3.90m x 4.13m x 0.57m.

The following figure shows the frequency of changing the reference frame along

the trajectory and the number of moving data frames relative to each reference

frame.

Figure 5.39: Histogram plot of number of moving data frames relative to each
reference frame

From above graph it can be seen that the reference frame has frequently

changed between the frames (~600-700) and (~1900-2100) for 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 100 case.

The red histograms being mostly taller than the blue histograms proves that the

reference frame has changed less frequently in 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 50 experiment than

𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 100 experiment.

113

We ran our algorithm on the same data sequence by shifting the reference frame

after every 50th frame, i.e. 𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 50 and the estimated trajectory is shown

in the below Figure 5.40.

114

Figure 5.40: Estimated Trajectory for fr2-desk sequence with 𝒕𝒕𝒕𝒕𝒏𝒏𝒏𝒏𝒏𝒏_𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 = 𝟓𝟓𝟓𝟓

115

The variation of the number of inlier matches along the trajectory is show in
the below graph.

Figure 5.41: Variation of Number of inliers along the trajectory when
𝒕𝒕𝒕𝒕𝒏𝒏𝒏𝒏𝒏𝒏_𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 = 𝟓𝟓𝟓𝟓

From above figure it can be seen that the number of inliers reduces drastically

along the trajectory even after the reference frame is shifted every 50th frame.

Compared to above Figure 5.40 X-Y Plane trajectory, there is a significant drift

in the trajectory at around 650th frame and this drift accumulates along the

trajectory. The reason for this can be the number of inliers being approximately

zero around this frame number according to Figure 5.41.

Since fr2/desk sequence has images captured when the Kinect is moved around

two tables so that the loop is closed, this gives us opportunity to test the

robustness of proposed approach in a different way. When the trajectory closes

the loop, it comes to a point where the images are overlapped with the first data

frame of the sequence. This is equivalent to a scenario where the second camera

suddenly comes to a point so that it shares some view with the still Kinect. So

116

far in our analysis we considered the situations where the second Kinect always

moves away from the first Kinect. However, with this new analysis we could test

the robustness of our approach in the opposite way.

The following figures show the last part of the trajectory which was estimated

when there is a reasonable overlap between the moving data frames and the first

data frame.

Figure 5.42: The last section of the trajectory estimated wrt First data frame

A zoomed-out view is shown on the top-left sub-plot and it can be seen that

the error in estimated trajectory is minimal. When the same part of the trajectory

is compared with the previously analyzed 𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 50 trajectory, a large

117

error can be observed, due to error accumulation over the loop. Having a minimal

error in this scenario, we prove the robustness of our approach when the second

Kinect moves towards the static Kinect.

 Comparison against Freiburg1 xyz

To investigate the behavior of the proposed work in the worst-case scenario,

we used fr1/xyz and fr1/desk sequences to analyze the performance. The following

figure shows the estimated trajectory for fr1/xyz in the two situations where the

reference frame is changed when number of inliers reduced less than 100 and 200.

Figure 5.43: Estimated Trajectory for fr1/xyz sequence with 𝒕𝒕𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 = 𝟏𝟏𝟏𝟏𝟏𝟏 and
𝒕𝒕𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 = 𝟐𝟐𝟐𝟐𝟐𝟐

118

Ground truth trajectory length=7.112m, Average translational
velocity=0.244m/s, Average angular velocity = 8.920deg/s, Trajectory
dimensions: 0.46m x 0.70m x 0.44m.

Above plots in Figure 5.43 shows the estimated trajectory in the worst-case

scenario because the camera has moved very fast compared to other two data

sequences analyzed before. According to the sample images shown in the following

figure, it can be clearly seen that there is a significant difference in the images

due to motion blur. This may cause the large errors observed in the estimated

trajectory. However, the trajectory when the inlier threshold is 200 seems slightly

improved and slightly closer to ground truth trajectory when seen from X-Y, Y-

Z and X-Z plane plots.

119

Figure 5.44: Sample Images from fr1/xyz and fr2/xyz Sequences

Top row: fr1/xyz sequence images with motion blur due to fast camera
movements. Bottom row: Images from fr2/xyz and the images are fairly
clear.

The histogram plot of where the reference frame has changed along the trajectory

is shown in the below figure. Compared to the same plot for fr2/xyz and

considering the number total data frames in two sequences, we can observe a

significant growth in changing the reference frame. While the number of data

frames is about 78% less in this sequence compared to fr2/xyz, there is a frequency

120

increment of three times per every 100 frames in the reference frame change for

𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 100 and six times increment when 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 200 case.

Figure 5.45: Histogram plot of number of moving data frames relative to each
reference frame for fr1/xyz sequence with different 𝒕𝒕𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 values

 Comparison against Freiburg1 desk

To study the behavior of proposed work further in worst-case scenario, we

compared the accuracy against fr1/desk sequence, which is nearly two times faster

in translational velocity and three times faster in angular velocity compared to

121

fr1/xyz sequence. The resulted trajectory is shown in the below figure for

𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 50 and 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 100 analysis.

Figure 5.46: Estimated Trajectory for fr1/desk sequence with 𝒕𝒕𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 = 𝟓𝟓𝟓𝟓 and
𝒕𝒕𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 = 𝟏𝟏𝟏𝟏𝟏𝟏

Ground truth trajectory length=9.263m, Average translational
velocity=0.413m/s, Average angular velocity = 23.327deg/s, Trajectory
dimensions: 2.42m x 1.34m x 0.66m.

122

Even with the worst-case scenario, the results seem still acceptable. When

𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 100 case is considered, the drift in estimated trajectory is relatively

higher along Y axis while it is very minimal along X- and Z- axes. From above

plots, the Y-error lies within about 40cm for 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 100 case while it is twice

higher for 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 50 scenario. The X- and Z- axes error for 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 50

trajectory is also considerably larger.

These large errors in 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 50 trajectory can be because the number of

inlier features drastically reduces from frame to frame and the average number of

inliers are less than 150 in most cases as shown in Figure 5.47.

Figure 5.47: Frequency of changing the reference frame and the number of Inliers

Frequency of changing the reference frame is given for both 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
50 and 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 100 cases. The map of the number of inliers are

123

overlaid on the same plot. Please note that the number of inliers scaled
down by 10.

However, it can be seen that there is substantial amount of motion blur and

rolling shutter effect occurred in the color images due to fast camera movements

as shown in Figure 5.48. Due to image distortions when the camera moves quickly,

the estimated pose could be severely affected. Hence, we can observe the

significant drift in the trajectory.

124

Figure 5.48: Sample images analyzed for fr1/desk sequence

125

6 Discussion

The experiments described in the previous chapter laid out the success and

failures of the proposed work. This chapter discusses and evaluates the results of

each experiment methodically.

6.1 Systematic Movements

The purpose of analyzing the proposed approach with systematic movements

as explained in Scenario-1 and 2 is to investigate the behavior in the best-case.

Scenario-1 and 2 are considered as the best-case scenarios because no camera

motion considered in these experiments and the data was collected when the

Kinects are moved to a certain position and when they are stationary. On the

other hand, Scenario-3 presents freehand movement of Kinects hence can be

considered the worst-case compared to Scenario-1 and 2. These experiments help

to identify how far the Kinects can slide away without a rotation and up to how

far away they are able to maintain a reasonable accuracy in the pose if rotated

about Y-axis and translated along X-and Z-axes. These scenarios can be applied

when 3-DoF localizing mobile robots in indoor environments whose translation is

constrained along X- and Z- axes while able to rotate only about Y-axis.

6.1.1 Scenario-1: Systematic Translation only of one sensor

relative to a stationary sensor

Our experiments show that a robot can slide along X axis with respect to a

stable Kinect or a helper robot up to 1.5m. However, this distance depends on

126

the scene they observe and how rich the features extracted from the scene.

According to our sparse scene experiment, a robot can move 1.5m with a

reasonable accuracy of localization but with the dense scene it is restricted to

1.4m. One reason for this difference would be some low-quality features with

incorrect depth values get removed while occluding the scene for sparse scenario

which resulted in more accurate pose estimation. We prove that this method

performs better than our ACRA method in Scenario-1 experiments by being able

to maintain an accurate localization for even longer distances.

If a helper robot is used as the reference for localization, some sort of

coordination between two robots can be employed to move the second robot

further away along the trajectory. If they coordinate to move the helper robot to

a closer position so that their share of FoVs increase, then the second robot can

explore further areas in the environment. It is important to relocate the helper

robot to an accurate position, otherwise this may affect the global localization

accuracy. If a swarm of robots are to be localized and a large area to be explored,

then instead of a single helper robot relocates every time, the reference role can

be switched among the robots so that a part of the swarm can navigate so that

they share their FoVs. Nevertheless, our experiments for translation provide only

a systematic analysis and not tested on robots in real scenario. The localization

accuracy for such scenarios may be affected by image blur, rolling shutter effects

and even by robot’s odometry errors. The accumulated error could affect the

global localization of robots.

127

6.1.2 Scenario-2: Systematic Translation and Rotation of one

sensor relative to a stationary sensor

Experiment for Scenario-2 allows us to further analyze the performance of our

approach taking the rotation into consideration. The turn table experiment

proves the accuracy of our method if implemented on mobile robots. The

experiment is equivalent to localizing a mobile robot who is freely moving on the

floor with translations and rotations. In our experiment, there is a vertical gap

between the cameras, and this can be assumed a fixed gap between the two robots.

The results show that our method can perform well with the rotations up to 450

between the Kinects with only 30 average rotation error. However, the translation

error is significantly high for both dense and sparse scene experiments. In terms

of rotation between the Kinects, our method shows significant improvement over

ACRA method which could only support angles up to 250. Incorporating depth

information in the proposed method helped with the localization improvement.

Another reason for our method to succeed over ACRA method would be the

ability to extract good keypoints even the images are being rotated significantly.

Because we used oriented FAST corner detector and BRIEF feature descriptor

by having ORB in our implementation, the algorithm could maintain localization

with larger rotations as well.

Scenario-2 experiment considers a scenario with more rotation than translation,

but the localization accuracy is still acceptable. When consider the angular errors,

the rotation error about Y-axis is negligible for the dense scene and even for

sparse scenes the error is minimal for rotations up to 250. The percentage accuracy

of Y-axis rotation is around 93.5% and 85% for dense and sparse scenes. Y- axis

128

rotation is important in our analysis because, it is the only rotation that a mobile

robot can perform. If the robots are used in these experiments to localize each

other, the results could affect with motion blur as explained before.

The results prove that our approach can be used in 3-DoF localization of mobile

robots. However, the experiments are systematically analyzed offline and not

tested on robots moving in real scenarios which can be more challenging.

Nevertheless, the ground truth information obtained for both scenarios might not

be the precise values and there could be human errors in estimating the ground

truth.

6.2 Freehand Movements

The freehand moving experiments are useful to analyze the impact of our

approach in 6-DoF localization of robots including UAVs. Pose estimation

conducted for dense and sparse scene laboratory experiments provide a qualitative

analysis of the data.

6.2.1 Scenario-3: Freehand movement of one sensor relative to a

stationary sensor

The localization accuracy towards Y direction is kept above 85% and there is

minimal error in X- and Z- directions for dense and sparse scenes compared to

ground truth trajectory. However, the accuracy of estimated trajectory is very

much prone to human errors because the obtained error values are relative to

ideal ground truth trajectory which was not possible to achieve in these

experiments. When moving the Kinect, there could be considerable amount of

129

drift-off from the ideal trajectory which are not accounted in the final trajectory.

In both experiments, the Kinects could maintain the localization without losing

shared field of view because the trajectory was relatively short compared to

previous scenarios. Also, the average speed of moving the Kinect is very slow, but

there were significant delays at the start and end points which are not accounted

for speed calculation. However, an analysis with the Kinect speed of 1-2cm/s

would not be an adequate measure for the robots who operate in 6-DoF. Further

experiments with precise ground truth measurements could help to analyze such

scenarios.

6.2.1.1 Qualitative Comparison with TUM Dataset

 On the other hand, the qualitative analysis against TUM Benchmark

dataset is suitable for more practical scenarios. Since the dataset comes with

precise ground truth information this evaluation is more advance than above

analysis. Not only that the evaluation against this benchmark sequences provides

more thorough evidencing of the robustness of our approach because the data

sequences are fairly challenging hence demonstrate more practical usage of our

work. The only drawback of this dataset is, being captured using a single Kinect

which would have been a more appropriate dataset if comes with sequences

captured with two or more Kinects. Since the work proposed here is based on

using multiple Kinects, our results might negatively affect with other factors when

using single Kinect data such as the reference frame not being updated real time

with the change of environmental lighting condition etc.

130

 The analysis against TUM benchmark is considered to be a more genuine

evaluation of our method in the usage of AR applications and robot localization.

We present a fair evaluation of our approach against single RGB-D odometry.

The proposed work here is suitable to use on localization of robots either on 6-

DoF or 3-DoF. TUM benchmark analysis supports our evaluation for using on 6-

DoF robot localization which can then be used to predict the analysis against 3-

DoF localization. Evaluation based on the number of inliers is proven to produce

better results than using a fixed number of frames. Based on the pre-predicted

nature of the trajectory, a suitable method can apply as the metric for helper

robot relocation. When comparing the results analyzed for fr2/xyz and fr2/desk

sequences based on the number of frames, fr2/xyz sequence produced better

results even with 300 frames offset than fr2/desk which could barely survive the

localization even with 50 frames offset. Therefore, when implemented on robot

localization and navigation applications it is useful to choose the best metric so

that the frequency of helper robot relocation is minimum. Making this choice is

easier if the expected trajectory is not random and possible to guess beforehand.

According to fr2/xyz analysis, applications where the surveilling robot navigates

closer to the helper robot with minor rotations, can relocate the helper robot

based on a fixed number of frames or can use a lower inlier threshold as the

metric. This way surveillance process can be speedup by reducing the delay in

frequently relocating the helper robot.

With the results from fr2/desk sequence we prove that our method can be

applied on robots navigate in long trajectories when they use a suitable inlier

threshold to coordinate between themselves. The results show that the shape of

131

estimated trajectory is very much accurate in shape except the accumulated drift

in the localization. When the moving robot follows a long trajectory navigating

further away from the helper robot, the number of inliers is a more suitable

measure to decide on when to relocate the helper robot. This is because the

occurrence of localization failure is uncertain, and it entirely depends on

environmental features and the speed of the moving robot. However, this can

result in more frequent relocations leading to delays in the overall navigation.

Through fr2/desk sequence analysis, we also simulate a situation that a moving

robot suddenly comes to a point where it can share the view with a stable helper

robot. We prove that our method can perform well in these situations as well.

Referring to the analysis in worst-case scenario according to results from

fr1/xyz and fr1/desk sequences, our algorithm could still maintain the trajectory

shape up to an acceptable accuracy, except the significant localization offset from

ground truth trajectory. We suggest using the number of inliers as a measure to

decide on relocating the moving robot or to pass on the reference role to another

robot in a swarm because the relocation based on a fixed number of frames could

affect more negatively in worst-case scenario.

The errors in the results could be affected by the interference of depth images

and not having a dense depth map. As a result of this a significant number of

good feature matches could be lost during 3D point cloud estimation due to

having zero depth. Therefore, the accuracy of estimated pose depends on the

accuracy available depth values at remaining features. However, combining both

132

depth map and point features in is a good approach we implemented in this work

rather than using either of them alone.

None of the above described analysis are conducted on real robotic platforms

which could be more demanding. We always considered static environments in

our experiments and the proposed work is not being tested for dynamic real-world

environments. The scenes used for our experiments are rich in features hence our

work has not been tested against environments with featureless planar surfaces

which are common in most indoor environments. Therefore, more real-world

experiments and analysis need to be conducted to address these scenarios.

133

7 Future Work and Conclusions

In this section we discuss about suggestions and further developments to be

added into the proposed work in terms of improving the accuracy, efficiency and

robustness. Later we summarize the conclusions made by this work.

7.1 Future Work

The proposed RGB-D localization approach is implemented and tested

systematically but needs further investigation and development before it could be

a real practical tool. The analysis presented in this thesis is not sufficient to

investigate the behavior of proposed work in challenging real-world applications.

Therefore, as the next step, an implementation on robotic platforms would help

to understand the behavior of proposed work. This localization approach can be

implemented and used more efficiently on holonomic robots because they can

easily maintain their FoVs while navigating apart from each other. All the

experiments presented in this research are based on analyzing offline data hence

the evaluation is lack of real-time experiments. Implementing this approach on a

swam consisted of two or three robots employing in a surveillance application

would be helpful to evaluate the real-time performance. This way a quantitative

analysis of the proposed work can be conducted.

To examine the usage of proposed work in augmented reality applications, a

simple AR application can be implemented. An example scenario would be, two

users holding two RGB-D sensors pointing at the same scene, while the second

user can see in his or her camera RGB image the direction or location where the

134

first user is pointing at. This can be done by showing the location where the 3D

ray from first user’s crosshair in the middle of his image appears in second user’s

RGB image. Implementing such scenarios would help to investigate and improve

the accuracy and efficiency of proposed work by testing on further pose

optimization methods.

The system can be improved to endure worst-case application scenarios such

as 6-Dof localization of fast-moving UAVs and uncontrolled hand-held RGB-D

sensor movements in AR applications. In order to survive such worst-case

scenarios, the system can be improved by integrating with other methods of

localization such as fusing with IMU sensor information.

135

7.2 Conclusions

The work presented here introduces a novel localization approach for RGB-D

sensors to use in indoor robotic and AR applications. The proposed localization

approach estimates the pose of a moving or static RGB-D sensor with respect to

a fixed RGB-D sensor in the environment as long as they share a part of their

fields of view. We evaluated the proposed localization approach qualitatively and

quantitatively by conducting systematic experiments and comparing with our

previous localization methods. We also analyzed the behavior of our approach

when used with publicly available RGB-D benchmark datasets.

We investigated the accuracy of estimated pose when the moving RGB-D

sensor is moved with translations and rotations relative to the stationary RGB-

D sensor in feature rich and feature less environments. The results prove that our

approach can be used to localize a moving RGB-D sensor up to 1.5m away from

the fixed sensor with an average translational accuracy of 96.7% and average per

centimeter rotational accuracy of 98%. When the sensors are moving together

with a rotation component, our method could achieve average rotational accuracy

of above 87% over 450 angle. The corresponding translational accuracy was 83%.

The comparison of this work with our previous localization approach (ACRA)

produced better-quality results due to incorporating depth data and the use of

more robust corner detectors and feature descriptors. The results of analysis

against ACRA method evidenced that the new method can maintain the accurate

localization while enhancing the operating range. The results verified that this

method enhances the translation domain by 36% and rotational domain by 80%

136

over ACRA method. The average translational and rotational accuracy of our

method over ACRA method remains almost similar most of the time giving

slightly higher accuracy.

We showed our approach can be used in AR applications and localizing robots

operate in 6-DoF. Even though our freehand moving experiments does not provide

enough evidence, the analysis against public dataset proves the robustness of our

approach to be used in such applications. When used on robots our method

requires the helper robot to be relocated or moved closer to maintain the

localization accuracy. The analysis shows that our method works fairly well with

short trajectories and a reasonable accuracy can be maintained over the long

trajectories. We showed that a threshold number of inliers is a good indicator for

helper robot relocation during navigating on long trajectories. In our analysis we

verified that our method works well on the trajectories with up to 0.2m/s

translational speed and up to 7deg/s angular speed. We also prove that our

method can still work without failing on the trajectories up to 0.4m/s

translational speed and 23deg/s angular speed. However, the resulted trajectory

was significantly affected by the accumulated error of estimated pose.

Incorporating information from sensors such as IMU would help improving the

accuracy of estimated pose over long trajectories.

 This work presented a detailed analysis of the proposed RGB-D localization

approach targeting to use on AR and multi-robotic applications. However, to be

used on such applications, it requires some more experiments conducted in real-

time on robotic platforms.

137

8 Appendix A: Microsoft Kinect Sensor (Version 1)

Microsoft Kinect sensors are primarily used in the gaming industry as a Natural

User Interface (NUI) for Microsoft X-Box 360 gaming platform to capture 3D

perception of humans’ motions. Kinect sensor has also become a widely used 3D

measuring device in indoor robotics [74, 75], object recognition, 3D mapping [28,

37], SLAM [42-44] and 3D reconstruction [50, 51] due to its low cost, reliability

and the speed of measurement.

Figure 8.1: Microsoft Kinect with IR Projector, RGB Camera, IR Camera,
Accelerometer and Microphone array (Illustration by [76])

Microsoft Kinect provides the color-depth (RGB-D) data having benefits of

laser and vision sensing together. The Kinect sensor features a regular monovision

RGB camera and a depth sensor, consisted of an infrared (IR) projector and an

IR camera pair. This IR camera and the projector are used as a stereo pair which

138

helps each other to see depth by using infrared vision by triangulating infrared

laser points in 3D space.

The Kinect also has an array of four microphones that allows the players to

use voice control with noise cancellation when used in gaming. The accelerometer

is used for inclination and tilt sensing and for image stabilization while the

motorized base is used to rotate the Kinect to track players in gaming.

The technical specifications of Microsoft Kinect version 1 as in [74] and [77] are

as below.

Table 8.1: Microsoft Kinect Specifications

Horizontal field of view 57 0

Vertical field of view 43 0

Frame rate (Depth and color stream) 30 frames per second

Default resolution, depth stream VGA (640 x 480)

Default resolution, color stream VGA (640 x 480)

Depth sensor range 1.2m - 3.5m

Physical tilt range ± 27 degrees

Audio format 16-kHz, 16-bit mono pulse code

modulation (PCM)

139

The Microsoft Kinect also has its own System-On-Chip (SoC) special purpose

processor made by Primesense which processes the captured images by color and

depth cameras. The Kinect system architecture is shown in the below Figure 8.2.

Figure 8.2: Microsoft Kinect system architecture (The image is taken from [78])

Kinect’s IR projector sends out a light and dark speckle pattern as shown in

below Figure 8.3. The IR camera then captures the projected pattern and for each

pixel in IR image, depth is calculated by comparing the local pattern at that pixel

with a previously captured memorized pattern from the projector at the same

pixel with a selected window. The disparity is taken as the offset from the known

depth in pixels and it is refined further with sub pixel accuracy. With the

memorized depth and disparity, triangulation is used to estimate the depth at

each pixel as given in [79]. These depth data are then correlated to a calibrated

RGB camera to obtain RGB image with depth associated at each pixel.

140

However, being a consumer RGB-D sensor, there are limiting factors of Kinect

sensor compared to other mapping specialized sensors. One of those limiting

factors is having a smaller field of view compared to other 3D mapping sensors

hence limit their usage in mapping. Moreover, the consumer RGB-D sensors for

NUI applications are designed in a way that the user always stay within a certain

depth range which avoids the chance of inaccuracies of estimated depth

information when the user moves away from the accepted range. This is not a

crucial factor in gaming however, the range of accurate depth data is an important

factor when using these sensors in mapping. Hence the accuracy of depth data

being deteriorated when the objects in the scene move further away from the

sensor is a significant limiting factor for consumer RGB-D sensors as Kinects

when using in 3D mapping applications.

Figure 8.3: Kinect IR speckle pattern (Image taken from [79])

141

There are several open source software packages available to interface Kinect

sensor for robotic applications in different platforms. OpenKinect LibFreenect [80]

supports the Kinect with Linux, OS X and Windows. Later on, Microsoft officially

released Microsoft Kinect Software Development Kit (Kinect SDK) using Visual

Studio 2010 express as their own software package. Kinect SDK enables

developers to create applications using Kinect sensor technology on computers

running Windows operating system.

In the experiments explained in this thesis, we used Microsoft Kinect for

Windows SDK [69] version 1.8 to interface multiple Kinects on a single PC

running Windows 7 platform.

142

9 Bibliography

[1] Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, "A Stable
Tracking Control Method for an Autonomous Mobile Robot," in IEEE
International Conference on Robotics and Automation,, Cincinnati, OH,
USA, 1990, pp. 384-389.

[2] B. Barshan and H. F. Durrant-Whyte, "Inertial Navigation Systems for
Mobile Robots," IEEE Transactions on Robotics and Automation, vol. 11,
pp. 328-342, June 1995 1995.

[3] J. J. Leonard and H. F. Durrant-Whyte, "Mobile Robot Localization by
Tracking Geometric Beacons," IEEE Transactions on Robotics and
Automation, vol. 7, pp. 376-382, June 1991.

[4] S. Panzieri, F. Pascucci, and G. Ulivi, "An Outdoor Navigation System
Using GPS and Inertial Platform," IEEE/ASME Transactions on
Mechatronics, vol. 7, pp. 134-142, June 2002.

[5] M. DrumHeller, "Mobile Robot Localization Using Sonar," IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-9,
pp. 325-332, March 1987.

[6] L. Kleeman, "Ultrasonic Autonomous Robot Localisation System," in
IEEE/RSJ International Workshop on Intelligent Robots and Systems '
(IROS '89) 'The Autonomous Mobile Robots and Its Applications,
Tsukuba, Japan, 1989, pp. 212-219.

[7] L. Zhang and B. K. Ghosh, "Line Segment Based Map Building and
Localization Using 2D Laser Rangefinder," in 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and Automation.
Symposia Proceedings (Cat. No.00CH37065), San Francisco, CA, 2000.

[8] U. Larsson, J. Forsberg, and A. Wernersson, "Mobile Robot Localization:
Integrating Measurements From a Time-of-Flight Laser," IEEE
Transactions on Industrial Electronics, vol. 43, pp. 422-431, June 1996.

143

[9] J. A. Castellanos, J. M. M. Montiel, J. Neira, and J. D. Tardos, "The
SPmap: A Probabilistic Framework for Simultaneous Localization and
Map Building," IEEE Transactions on Robotics and Automation, vol. 15,
pp. 948-952, Oct 1999.

[10] P. Sunhong and S. Hashimoto, "Autonomous Mobile Robot Navigation
Using Passive RFID in Indoor Environment," IEEE Transactions on
Industrial Electronics, vol. 56, pp. 2366-2373, 2009.

[11] B.-S. Choi, J.-W. Lee, J.-J. Lee, and K.-T. Park, "A Hierarchical
Algorithm for Indoor Mobile Robot Localization Using RFID Sensor
Fusion," IEEE Transactions on Industrial Electronics, vol. 58, pp. 2226-
2235, 2011.

[12] M. Betke and L. Gurvits, "Mobile Robot Localization using Landmarks,"
in IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS'94), Munich, Germany, 1994, pp. 135-142

[13] A. M. Sabatini and O. D. Benedetto, "Towards a Robust Methodology for
Mobile Robot Localisation Using Sonar," in IEEE International Conference
on Robotics and Automation, San Diego, CA, USA, 1994, pp. 3142-3147.

[14] C.-C. Tsai, "A Localization System of a Mobile Robot by Fusing Dead-
Reckoning and Ultrasonic Measurements," in IEEE Instrumentation and
Measurement Technology Conference. Where Instrumentation is Going
(Cat. No.98CH36222), St. Paul, MN, USA, 1998, pp. 144-149.

[15] Puneet Goel, Stergios I. Roumeliotis, and G. S. Sukhatme, "Robust
Localization Using Relative and Absolute Position Estimates," in
International Conference on Intelligent Robots and Systems, 1999.

[16] J. Horn and G. Schmidt, "Continuous Localization for Long-Range Indoor
Navigation of Mobile Robots," in Proceedings of 1995 IEEE International
Conference on Robotics and Automation, Nagoya, Japan, 1995, pp. 387-
394.

[17] A. Curran and K. J. Kyriakopoulos, "Sensor-Based Self-Localization for
Wheeled Mobile Robots," in IEEE International Conference on Robotics
and Automation, Atlanta, GA, USA, 1993, pp. 8-13.

144

[18] D. Nister, O. Naroditsky, and J. Bergen, "Visual Odometry," in IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition, CVPR, Washington, DC, USA, 2004.

[19] T. Sattler, B. Leibe, and L. Kobbelt, "Fast Image-Based Localization using
Direct 2D-to-3D Matching," in International Conference on Computer
Vision, Barcelona, 2011, pp. 667-674.

[20] M. Blösch, S. Weiss, D. Scaramuzza, and R. Siegwart, "Vision Based MAV
Navigation in Unknown and Unstructured Environments," in IEEE
International Conference on Robotics and Automation, Anchorage, AK,
2010, pp. 21-28.

[21] I. Ohya, A. Kosaka, and A. Kak, "Vision-Based Navigation by a Mobile
Robot with Obstacle Avoidance Using Single-Camera Vision and
Ultrasonic Sensing," IEEE Transactions on Robotics and Automation, vol.
14, pp. 969-978, Dec 1998.

[22] A. J Davison, "Real-Time Simultaneous Localisation and Mapping with a
Single Camera," in International Conference on Computer Vision, Nice,
France, 2003, pp. 1403-1410.

[23] Seokju Lee, Girma S Tewolde, Jongil Lim, and J. Kwon, "Vision Based
Localization for Multiple Mobile Robots Using Low-cost Vision Sensor,"
presented at the 2015 IEEE International Conference on
Electro/Information Technology (EIT), Dekalb, IL, USA, 2015.

[24] Andrew J Davison and D. W. Murray, "Simultaneous Localization and
Map-Building Using Active Vision," IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 24, 2002.

[25] W. B. Jiirgen Wolft, Hans Burkhardtt "Robust Vision-based Localization
for Mobile Robots using an Image Retrieval System Based on Invarient
Features," in International Conference on Robotics B Automation
Washington, DC, 2002.

[26] S. L. Christian Forster, Laurent Kneip, Davide Scaramuzza,
"Collaborative Monocular SLAM with Multiple Micro Aerial Vehicles,"

145

presented at the IEEE/RSJ International Conference on Intelligent Robots
and Systems, Tokyo, Japan, 2013.

[27] Z. Z. Yi Feng , Jizhong Xiao, "Heterogeneous Multi-Robot Localization in
Unknown 3D Space," presented at the IEEE/RSJ International Conference
on Intelligent Robots and Systems, Beijing, China, 2006.

[28] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, "RGB-D mapping:
Using Kinect-style depth cameras for dense 3D modeling of indoor
environments," The International Journal of Robotics Research, vol. 31,
pp. 647-663, 2012.

[29] F. Steinbrücker, J. Sturm, and D. Cremers, "Real-Time Visual Odometry
from Dense RGB-D Images," in IEEE International Conference on
Computer Vision Workshops (ICCV Workshops), Barcelona, 2011, pp.
719-722.

[30] S. B. W. Ian Mahon, Oscar Pizarro, Matthew Johnson-Roberson,
"Efficient View-Based SLAM Using Visual Loop Closures," IEEE
Transactions on Robotics vol. 24, pp. 1002 - 1014, 2008.

[31] N. Karlsson, E. di Bernardo, J. Ostrowski, L. Goncalves, P. Pirjanian, and
M. E. Munich, "The vSLAM Algorithm for Robust Localization and
Mapping," in IEEE International Conference on Robotics and Automation,
Barcelona, Spain, 2015.

[32] J. V. Miro, W. Zhou, and G. Dissanayake, "Towards Vision Based
Navigation in Large Indoor Environments," in IEEE/RSJ International
Conference on Intelligent Robots and Systems, Beijing, 2006, pp. 2096-
2102.

[33] J. Engel, J. Stückler, and D. Cremers, "Large-Scale Direct SLAM with
Stereo Cameras," in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Hamburg, 2015, pp. 1935-1942.

[34] A. Howard, "Real-Time Stereo Visual Odometry for Autonomous Ground
Vehicles," in IEEE/RSJ International Conference on Intelligent Robots
and Systems, Nice,, 2008, pp. 3946-3952.

146

[35] Microsoft. (2010). Microsoft Kinect. Available:
http://www.xbox.com/kinect

[36] Asus. (2018). Asus Xtion PRO. Available: https://www.asus.com/3D-
Sensor/Xtion_PRO/

[37] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneau, D. Kim, A. J. Davison,
et al., "KinectFusion: Real-Time Dense Surface Mapping and Tracking,"
in 10th IEEE International Symposium on Mixed and Augmented Reality,
Basel, 2011, pp. 127-136.

[38] T. Whelan, J. McDonald, M. Kaess, M. Fallon, H. Johannsson, and J.
Leonard, "Kintinuous: Spatially Extended KinectFusion," in RSS
Workshop on RGB-D: Advanced Reasoning with Depth Cameras, Sydney,
Australia, 2012.

[39] A. S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Maturana, D. Fox,
et al., "Visual Odometry and Mapping for Autonomous Flight Using an
RGB-D Camera," in International Symposium on Robotics Research
(ISRR), Flagstaff, Arizona, USA, 2011.

[40] T. Whelan, H. Johannsson, M. Kaess, J. J. Leonard, and J. McDonald,
"Robust Real-Time Visual Odometry for Dense RGB-D Mapping," in
IEEE International Conference on Robotics and Automation, Karlsruhe,
2013, pp. 5724-5731.

[41] F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard, "3-D Mapping
With an RGB-D Camera," IEEE Transactions on Robotics, vol. 30, pp.
177-187, 2014.

[42] G. Hu, S. Huang, L. Zhao, A. Alempijevic, and G. Dissanayake, "A robust
RGB-D SLAM algorithm," in IEEE/RSJ International Conference on
Intelligent Robots and Systems, Vilamoura, 2012, pp. 1714-1719.

[43] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, "A
Benchmark for the Evaluation of RGB-D SLAM Systems," in IEEE/RSJ
International Conference on Intelligent Robots and Systems, Vilamoura,
2012, pp. 573-580.

http://www.xbox.com/kinect
http://www.asus.com/3D-Sensor/Xtion_PRO/
http://www.asus.com/3D-Sensor/Xtion_PRO/

147

[44] J. Sturm, S. Magnenat, N. Engelhard, F. Pomerleau, F. Colas, W. Burgard,
et al., "Towards a benchmark for RGB-D SLAM evaluation," in RGB-D
Workshop on Advanced Reasoning with Depth Cameras at Robotics:
Science and Systems Conf. (RSS), Los Angeles, USA, 2011.

[45] A. Segal, D. Haehnel, and S. Thrun, "Generalized-ICP," in Robotics:
Science and Systems, Seattle, WA, USA, 2009.

[46] A. Handa, T. Whelan, J. McDonald, and A. J. Davison, "A Benchmark
for RGB-D Visual Odometry, 3D Reconstruction and SLAM," in IEEE
International Conference on Robotics and Automation (ICRA), Hong
Kong, 2014, pp. 1524-1531.

[47] I. Dryanovski, R. G. Valenti, and J. Xiao, "Fast Visual Odometry and
Mapping from RGB-D Data," in IEEE International Conference on
Robotics and Automation, Karlsruhe, 2013, pp. 2305-2310.

[48] Z. Zhang, "Iterative Point Matching for Registration of Free-Form Curves
and Surfaces," International Journal of Computer Vision, vol. 13, pp. 119
- 152, Oct 1994.

[49] J. Tong, J. Zhou, L. Liu, Z. Pan, and H. Yan, "Scanning 3D Full Human
Bodies Using Kinects," IEEE Transactions on Visualization and Computer
Graphics, vol. 18, pp. 643-650, April 2012.

[50] D. S. Alexiadis, D. Zarpalas, and P. Daras, "Real-Time, Full 3-D
Reconstruction of Moving Foreground Objects From Multiple Consumer
Depth Cameras," IEEE Transactions on Multimedia, vol. 15, pp. 339-358,
2013.

[51] D. S. Alexiadis, D. Zarpalas, and P. Daras, "Real-time, realistic full-body
3D reconstruction and texture mapping from multiple Kinects," in IVMSP
2013, Seoul, 2013, pp. 1-4.

[52] E. J. Almazan and G. A. Jones, "Tracking People across Multiple Non-
Overlapping RGB-D Sensors," presented at the 2013 IEEE Conference on
Computer Vision and Pattern Recognition Workshops, 2013.

[53] G. Loianno, J. Thomas, and V. Kumar, "Cooperative Localization and
Mapping of MAVs using RGB-D Sensors," in IEEE International

148

Conference on Robotics and Automation (ICRA), Seattle, WA. USA, 2015,
pp. 4021-4028.

[54] E. Rosten and T. Drummond, "Machine learning for high-speed corner
detection," in 9th European Conference on Computer Vision, ECCV 2006,,
Graz, Austria, May 2006.

[55] D. G. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints,"
International Journal of Computer Vision, vol. 60, pp. 91-110, 2004.

[56] H. Bay, T. Tuytelaars, and L. V. Gool, "SURF: Speeded Up Robust
Features," Computer Vision and Image Understanding, vol. 110, pp. 346-
359, June 2008.

[57] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, "BRIEF: Binary Robust
Independent Elementary Features," in European Conference on Computer
Vision (ECCV), 2010.

[58] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, "ORB: an efficient
alternative to SIFT or SURF," in International Conference on Computer
Vision, Barcelona, 2011.

[59] G. Bradski. (2000). The OpenCV Library. Available:
http://www.drdobbs.com/open-source/the-opencv-library/184404319

[60] M. A. Fischler and R. C. Bolles, "Random Sample Consensus: A Paradigm
for Model Fitting with Applications to Image Analysis and Automated
Cartography," Communications of the ACM, 1981.

[61] B. K. P. Horn, "Closed-form solution of absolute orientation using unit
quaternions," vol. 4, pp. 629-642, 1987.

[62] Tom Drummond and R. Cipolla, "Real-Time Tracking of Multiple
Articulated Structures in Multiple Views," presented at the European
Conference on Computer Vision, 2000.

[63] J.-Y. Bouguet. (2015). Camera Calibration Toolbox for Matlab. Available:
http://www.vision.caltech.edu/bouguetj/calib_doc/

http://www.drdobbs.com/open-source/the-opencv-library/184404319
http://www.vision.caltech.edu/bouguetj/calib_doc/

149

[64] E. Rosten. (2018). TooN: Tom's Object-oriented numerics library.
Available: https://www.edwardrosten.com/cvd/toon.html

[65] E. Rosten. (2017). libCVD - computer vision library. Available:
https://www.edwardrosten.com/cvd/index.html

[66] G. Loianno, V. Lippiello, and B. Siciliano, "Fast Localization and 3D
Mapping using an RGB-D Sensor," in 16th International Conference on
Advanced Robotics (ICAR), Montevideo, 2013.

[67] W. Yii, N. Damayanthi, T. Drummond, and W. H. Li, "Visual Localisation
of a Robot with an external RGBD Sensor," in Australasian Conference in
Robotics and Automation (ACRA), Melbourne, 2011.

[68] S. Taylor and T. Drummond, "Multiple Target Localisation at over 100
FPS," presented at the Procedings of the British Machine Vision
Conference 2009, 2009.

[69] Microsoft. (2018). Kinect for Windows SDK v1.8. Available:
https://www.microsoft.com/en-us/download/details.aspx?id=40278

[70] M. Luber, L. Spinello, and K. O. Arras, "People Tracking in RGB-D Data
With On-line Boosted Target Models," in IEEE/RSJ International
Conference on Intelligent Robots and Systems, San Francisco, CA, 2011.

[71] B. Kwolek and M. Kepski, "Human fall detection on embedded platform
using depth maps and wireless accelerometer," Computer Methods and
Programs in Biomedicine, vol. 117, pp. 489-501, 2014.

[72] A. Singh, J. Sha, K. S. Narayan, T. Achim, and P. Abbeel, "BigBIRD: A
Large-Scale 3D Database of Object Instances," in 2014 IEEE International
Conference on Robotics and Automation (ICRA), Hong Kong, 2014.

[73] W. Susanto, M. Rohrbach, and B. Schiele, "3D Object Detection with
Multiple Kinects," in Computer Vision - ECCV 2012. Workshops and
Demonstrations, Berlin, Heidelberg, 2012, pp. 93-102.

[74] R. A. El-laithy, J. Huang, and M. Yeh, "Study on the Use of Microsoft
Kinect for Robotics Applications," in IEEE/ION Position, Location and
Navigation Symposium, Myrtle Beach, SC, 2012, pp. 1280-1288.

http://www.edwardrosten.com/cvd/toon.html
http://www.edwardrosten.com/cvd/index.html
http://www.microsoft.com/en-us/download/details.aspx?id=40278

150

[75] W. Garage. (2015). Willow Garage: Turtlebot. Available:
http://www.willowgarage.com/turtlebot

[76] O. Lopes, T. Martins, V. Carvalho, D. Matos, F. Soares, and J. Machado,
"Ergonomics and Usability in the Development of a Portable Virtual
Gaming Device Applied in Physiotherapy," Transactions of FAMENA, vol.
40, pp. 95-106, 2016.

[77] K. Litomisky, "Consumer RGB-D Cameras and their Applications," 2012.

[78] IFIXIT. (2010). Xbox 360 Kinect Teardown. Available:
https://www.ifixit.com/Teardown/Microsoft-Kinect-Teardown/4066/1

[79] K. Konolige and P. Mihelich, "Technical description of Kinect calibration,"
2012.

[80] OpenKinect. (2012). OpenKinect. Available:
https://openkinect.org/wiki/Main_Page

http://www.willowgarage.com/turtlebot
http://www.ifixit.com/Teardown/Microsoft-Kinect-Teardown/4066/1

	List of Figures
	List of Tables
	1 Introduction
	1.1 Indoor robot Localization
	1.2 Vision Based Localization
	1.3 Contributions
	1.4 Thesis Overview

	2 Literature Survey
	2.1 RGB-D Sensor Based Research
	2.2 Usage of Multiple RGB-D Sensors

	3 Methodology
	3.1 Pose Estimation
	3.1.1 Feature Extraction and Matching
	3.1.2 Generating 3D Feature Correspondences
	3.1.3 Iterative Pose Estimation using RANSAC
	3.1.4 Estimating Rigid Body Transformation
	3.1.5 Non-Linear Pose Optimization

	4 Implementation and Experiments
	4.1 Implementation
	4.2 Camera Calibration
	4.3 Experiments
	4.3.1 Data Collection
	4.3.1.1 Experiment-1: Systematic Translation only of one sensor relative to a stationary sensor
	4.3.1.2 Experiment-2: Systematic Translation and Rotation of one sensor relative to a stationary sensor
	4.3.1.3 Experiment-3: Freehand movement of one sensor relative to a stationary sensor

	5 Results and Analysis
	5.1.1 Scenario-1: Systematic Translation only of one sensor relative to a stationary sensor
	5.1.1.1 Scenario-1 Dense Scene
	 Comparison against Ground Truth
	 Comparison against ACRA Work

	5.1.1.2 Scenario-1 Sparse Scene
	 Comparison against Ground Truth
	 Comparison against ACRA Work

	5.1.2 Scenario-2: Systematic Translation and Rotation of one sensor relative to a stationary sensor
	5.1.2.1 Scenario - 2 Dense Scene
	 Comparison against Ground Truth
	 Comparison against ACRA Work

	5.1.2.2 Scenario - 2 Sparse Scene
	 Comparison against Ground Truth
	 Comparison against ACRA Work

	5.1.3 Scenario-3: Freehand movement of one sensor relative to a stationary sensor
	5.1.3.1 Scenario - 3 Dense Scene
	5.1.3.2 Scenario - 3 Sparse Scene
	5.1.3.3 Qualitative Comparison with TUM Dataset
	 Comparison against Freiburg2 xyz
	 Comparison against Freiburg2 desk
	 Comparison against Freiburg1 xyz
	 Comparison against Freiburg1 desk

	6 Discussion
	6.1 Systematic Movements
	6.1.1 Scenario-1: Systematic Translation only of one sensor relative to a stationary sensor
	6.1.2 Scenario-2: Systematic Translation and Rotation of one sensor relative to a stationary sensor

	6.2 Freehand Movements
	6.2.1 Scenario-3: Freehand movement of one sensor relative to a stationary sensor
	6.2.1.1 Qualitative Comparison with TUM Dataset

	7 Future Work and Conclusions
	7.1 Future Work
	7.2 Conclusions

	8 Appendix A: Microsoft Kinect Sensor (Version 1)
	9 Bibliography

