1	
2	Supporting Information (SI)
3	
4	Structural studies of thyroid peroxidase show the monomer interacting with
5	autoantibodies in thyroid autoimmune disease
6	
7	Daniel E. Williams, Sarah N. Le, David E. Hoke, Peter G. Chandler, Monika Gora, Marlena
8	Godlewska, J. Paul Banga and Ashley M. Buckle
9	

Figure S1 - Purification of the TPO construct ΔproTPOe-GCN4 (A) A chromatogram from a Superdex
 S200 16/60 column, showing ΔproTPOe-GCN4 eluting as a single major peak at 71.7mL, consistent
 with a 110 kDa protein. No other major large species appears to be present. (B) Reducing SDS-PAGE
 analysis of purified ΔproTPOe-GCN4 shows a major band at ~110 kDa.

1	MRALAVLSVT	LVMACTEAFF	PFISRGKELL	WGKPEESRVS	SVLEESKRLV
51	DTAMYATMQR	NLKKRGILSP	AQLLSFSKLP	EPTSGVIARA	AEIMETSIQA
101	MKRKVNLKTQ	QSQHPTDALS	EDLLSIIANM	SGCLPYMLPP	KCPNTCLANK
151	YRPITGACNN	RDHPR WGASN	TALARWLPPV	YEDGFSQPRG	WNPGFLYNGF
201	PLPPVR EVTR	HVIQVSNEVV	TDDDRYSDLL	MAWGQYIDHD	IAFTPQSTSK
251	AAFGGGADCQ	MTCENQNPCF	PIQLPEEAR P	AAGTACLPFY	R SSAACGTGD
301	QGALFGNLST	ANPR QQMNGL	TSFLDASTVY	GSSPALER QL	RNW TSAEGLL
351	R VHARLRDSG	RAYLPFVPPR	APAACAPEPG	IPGETRGPCF	LAGDGRASEV
401	PSLTALHTLW	LR EHNR LAAA	LKALNAHWSA	DAVYQEARKV	VGALHQIITL
451	RDYIPR ilgp	EAFQQYVGPY	EGYDSTANPT	VSNVFSTAAF	RFGHATIHPL
501	VRRLDASFQE	HPDLPGLWLH	QAFFSPWTLL	RGGGLDPLIR	gllar paklq
551	VQDQLMNEEL	TERLFVLSNS	STLDLASINL	QRGRDHGLPG	YNEWREFCGL
601	PRLETPADLS	TAIASRSVAD	KILDLYKHPD	NIDVWLGGLA	ENFLPR AR TG
651	PLFACLIGKQ	MKAL RDGDWF	WWENSHVFTD	AQRRELEKHS	LSRVICDNTG
701	LTRVPMDAFQ	VGK FPEDFES	CDSITGMNLE	AWR ETFPQDD	KCGFPESVEN
751	GDFVHCEESG	RRVLVYSCRH	gyelqgr eql	TCTQEGWDFQ	pplck dvnec
801	ADGAHPPCHA	SAR CRNTK GG	FQCLCADPYE	LGDDGR TCVD	SGRLPRRMKQ
0 5 1					

Figure S2 – Mass spectrometry analysis of ΔproTPOe-GCN4. Sequence coverage was reported as 70%
 with a protein score of 19294, making ΔproTPOe-GCN4 the most abundant species in the sample. Full
 length TPOe-GCN4 is in black lettering, with detected peptides highlighted in red. Note that residues
 1 through 108 comprise the signal peptide and propeptide that are not incorporated into full length
 ΔproTPOe-GCN4, though are included here to demonstrate their successful non-inclusion in our
 construct.

1	MRALAVLSVT	LVMACTEAFF	PFISRGKELL	WGKPEESRVS	SVLEESKRLV
51	DTAMYATMQR	NLKKRGILSP	AQLLSFSKLP	EPTSGVIARA	AEIMETSIQA
101	MKRKVNLKTQ	QSQHPTDALS	EDLLSIIANM	SGCLPYMLPP	KCPNTCLANK
151	YRPITGACNN	RDHPRWGASN	TALARWLPPV	YEDGFSQPRG	WNPGFLYNGF
201	PLPPVR EVTR	HVIQVSNEVV	TDDDRYSDLL	MAWGQYIDHD	IAFTPQSTSK
251	AAFGGGADCQ	MTCENQNPCF	PIQLPEEAR p	AAGTACLPFY	R SSAACGTGD
301	QGALFGNLST	ANPR QQMNGL	TSFLDASTVY	gsspaler qL	RNWTSAEGLL
351	RVHARLRDSG	RAYLPFVPPR	APAACAPEPG	IPGETRGPCF	LAGDGRASEV
401	PSLTALHTLW	LR EHNRLAAA	LK ALNAHWSA	DAVYQEARKV	VGALHQIITL
451	R DYIPR ilgp	EAFQQYVGPY	EGYDSTANPT	VSNVFSTAAF	RFGHATIHPL
501	VRRLDASFQE	HPDLPGLWLH	QAFFSPWTLL	RGGGLDPLIR	GLLARPAK <mark>LQ</mark>
551	VQDQLMNEEL	TERLFVLSNS	STLDLASINL	QR GR DHGLPG	YNEWREFCGL
601	PRLETPADLS	TAIASRSVAD	KILDLYKHPD	NIDVWLGGLA	ENFLPR AR TG
651	PLFACLIGKQ	MKALR dgdwf	WWENSHVFTD	AQRRELEKHS	LSRVICDNTG
701	LTRVPMDAFQ	VGK FPEDFES	CDSITGMNLE	AWRETFPQDD	KCGFPESVEN
751	GDFVHCEESG	RRVLVYSCRH	gyelqgr eql	TCTQEGWDFQ	PPLCK DVNEC
801	ADGAHPPCHA	SAR CRNTK GG	FQCLCADPYE	LGDDGR TCVD	SGRLPRRMKQ
851	LEDKVEELLS	KNYHLENEVA	RLKKLVGERG	TGSHHHHHHH	Н

30 Figure S3 – Mass spectrometry analysis of suspected degraded Δ proTPOe-GCN4 fragment. Sequence 31 coverage was reported as 63% with a protein score of 8710, making a degraded form of Δ proTPOe-32 GCN4 the most abundant species in the sample. Full length Δ proTPOe-GCN4 is in black lettering, with 33 detected peptides highlighted in red. Note that residues 1 through 108 comprise the signal peptide 34 and propeptide that are not incorporated into full length Δ proTPOe-GCN4, though are included here 35 to demonstrate their successful non-inclusion in our construct. 36

- 37
- 38
- 00
- 39
- 40

Figure S4 – Bio-layer interferometry (BLI) sensorgram data of ΔproTPOe-8His binding to Fab.
Sensorgram curves according to a TR1.9 Fab concentration range of between 0 and 500 nM.
ΔproTPOe-8His is immobilised on the biosensor surface. The data has been normalised against a blank
run of buffer (1x PBS, pH 7.4). Vertical line at 450 s represents the end of the association phase. Dotted
lines in black represent the fit calculated using a 1:1 binding model with global fitting within the BLItz
Pro software. R2 values for the calculated fit were reported as 0.97. K_D was calculated as 20 nM.

Figure S5 – Snapshots from the trans ΔproTPOe MD trajectory show TPO changing conformation from extended to more compact structure. Snapshots from the trans ΔproTPOe MD trajectory as presented in Figure 6. (A) Representation of the starting model from Le and co-workers 1, as well as *trans* ΔproTPOe after 200, 300 and 400 ns of simulation. (B) Structural superpositions of the above snapshots with the starting trans ΔproTPOe model in red. Orange indicates *trans* ΔproTPOe after 100 ns of simulation, yellow after 200 ns, green after 300 ns and blue after 400 ns.

В

62 Figure S6 - IDRs in context of the MD simulations with starting structures. (A) TPO models 63 (simulation starting structures) with IDRs highlighted. (B) Representative structures taken from the 64 MD simulations for each of the *trans, cis* and *extended* forms of the Δ proTPOe monomer, as in Figure 65 7. IDR-A residues are highlighted by red spheres, and IDR-B residues by blue spheres. The MPO-like

- 66 domain, CCP-like domain and EGF-like domain are coloured in forest green, light teal and marine blue
- 67 respectively (as in Figure 1).
- 68
- 69 **Table S1** Published residues involved in IDRs of TPO

Antibody	Number of		
Involved	Reported Epitopes	Epitopes	Study
IDR-A			
T13	4	H353-Y363, P377-R386, K713-S720, Y766- Q775	2-6
ICA1	1	H353-Y363	2,3
TR1.9	2	K713, K713-S720	2,4,7
126TO10	3	R225, R646, D707	8,9
126TP1	3	R225, R646, D707	8,9
126TP7	1	R225	9
IDR-B			
126TP5	5	D620, D624, K627, D630, F597-E604	8-10
126TP14	5	D620, D624, K627, D630, F597-E604	8-10
131TP7	1	К627	9
SP1.4	1	F597-E604	10
TR1.8	1	T611-V618	10
WR1.7	1	F597-E604	10

- 70 The epitopes that have been identified as making up the immunodominant regions (IDRs) of TPO,
- 71 named IDR-A and IDR-B.

73

75 Table S2 – Melting point data of ΔproTPOe-8His in different buffer conditions

Buffer	рН	T m (°C)
50 mM HEPES, 250 mM NaCl	8.0	52.3
5 0mM HEPES, 250 mM NaCl	7.0	55.2
50 mM Sodium Phosphate, 250 mM NaCl	6.0	54.7
50 mM Sodium Acetate, 250 mM NaCl	5.5	53.9
50 mM Glycine, 250 mM NaCl	4.0	53.6

79 Table S3 – Theoretical and calculated Stokes Radii (Rs) of TPO

Reference Dataset	Equation	Stokes Radius (Å)	
		Monomer I	Dimer
Globular Folded Proteins	Rs = (4.75)N0.29	32.52	39.75
Denatured Unfolded Proteins	Rs = (2.21)N0.57	96.93	143.89
Analytical SEC of TPO with no TM domain		51.31	
AUC of ΔproTPOe-GCN4		75.7	91.4
AUC of ΔproTPOe-8His		64.9	77.1
AUC of ΔproTPOe-GCN4 with TR1.9		52.7	66.4
AUC of ΔproTPOe-8His with TR1.9		57.4	N/A

81 AUC, analytical ultracentrifugation; SEC, size exclusion chromatography; TM, transmembrane domain.

95 Table S4 – Model Fit Percentages

Model	Percentage of Molecules within the EM Map
Trans Monomer	73
Cis Monomer	72
Trans Dimer	54
Cis Dimer	59
Trans Monomer with Fab	53
Cis Monomer with Fab	55
Curled Monomer with Fab	58
Curled Monomer with scFv format of TR1.9	73
Trans Monomer with Fab sequentially fit*	68
Cis Monomer with Fab sequentially fit*	70
Trans Dimer with Fab	33
Cis Dimer with Fab	37

96

97 Fit percentages of various TPO models within the electron microscopy (EM) map. Asterisks (*)
98 indicates configurations where TR 1.9 Fab was fitted into the available space in the envelope without
99 regard to its epitope's location, rather than in a realistic orientation in which the complementarity
100 determining regions (CDR) face the published epitope of K713-S720.
101
102
103
104
105
106
107

108 References

- 1091.Le SN, Porebski BT, McCoey J, et al. Modelling of Thyroid Peroxidase Reveals Insights into Its110Enzyme Function and Autoantigenicity. *PloS one*. 2015;10(12):e0142615.
- Bresson D, Cerutti M, Devauchelle G, et al. Localization of the discontinuous
 immunodominant region recognized by human anti-thyroperoxidase autoantibodies in
 autoimmune thyroid diseases. *The Journal of biological chemistry*. 2003;278(11):9560-9569.
- 1143.Rebuffat SA, Bresson D, Nguyen B, Peraldi-Roux S. The key residues in the immunodominant115region 353-363 of human thyroid peroxidase were identified. International immunology.1162006;18(7):1091-1099.
- Bresson D, Pugniere M, Roquet F, et al. Directed mutagenesis in region 713-720 of human thyroperoxidase assigns 713KFPED717 residues as being involved in the B domain of the discontinuous immunodominant region recognized by human autoantibodies. *The Journal of biological chemistry*. 2004;279(37):39058-39067.
- Williams DE, Le SN, Godlewska M, Hoke DE, Buckle AM. Thyroid Peroxidase as an
 Autoantigen in Hashimoto's Disease: Structure, Function, and Antigenicity. *Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme*.
 2018;50(12):908-921.
- 1256.Estienne V, Duthoit C, Blanchin S, et al. Analysis of a conformational B cell epitope of human126thyroid peroxidase: identification of a tyrosine residue at a strategic location for127immunodominance. International immunology. 2002;14(4):359-366.
- 1287.Guo J, Yan XM, McLachlan SM, Rapoport B. Search for the autoantibody immunodominant129region on thyroid peroxidase: epitopic footprinting with a human monoclonal autoantibody130locates a facet on the native antigen containing a highly conformational epitope. Journal of131immunology (Baltimore, Md : 1950). 2001;166(2):1327-1333.
- B. Dubska M, Banga JP, Plochocka D, et al. Structural insights into autoreactive determinants in
 thyroid peroxidase composed of discontinuous and multiple key contact amino acid residues
 contributing to epitopes recognized by patients' autoantibodies. *Endocrinology.*2006;147(12):5995-6003.
- 1369.Gora M, Gardas A, Watson PF, et al. Key residues contributing to dominant conformational137autoantigenic epitopes on thyroid peroxidase identified by mutagenesis. Biochemical and138biophysical research communications. 2004;320(3):795-801.
- 139 10. Bresson D, Rebuffat SA, Nguyen B, Banga JP, Gardas A, Peraldi-Roux S. New Insights into the
 140 Conformational Dominant Epitopes on Thyroid Peroxidase Recognized by Human
 141 Autoantibodies. *Endocrinology*. 2005;146(6):2834-2844.
- 142