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Abstract
Development of predictive capability to model physiological damage owing to the bio-

chemical disturbances involved in the secondary insult phase of a traumatic brain injury

constitutes an important step in its prevention and clinical treatment. Initiated by an ac-

cumulation of excess intracellular calcium, secondary insults in the axonal region of the

neuron are associated with a disruption of microtubule assembly due to dysfunction of

tubulin binding tau proteins. We first present a stress history dependent non spatial ki-

netic model to predict the microscale phenomena of secondary insults due to accumula-

tion of excess calcium ions (Ca2+) induced by the macroscale primary injuries. The model

is able to capture the experimentally observed increase and subsequent partial recovery

of intracellular Ca2+ concentration in response to various types of mechanical impulses.

By considering the brain tissue as a solid continuum with the Ca2+ activity occurring at

every material point we spatialise our model. The spatial calcium kinetics model faith-

fully captures the experimental observations concerning the Ca2+ concentration, load rate,

magnitude and duration and most importantly shows that the critical location for primary

injury may not be the most important location as far as secondary injury is concerned.

Finally, we focus on the secondary insult in the axonal region of neuron in the form of

disruption of microtubule assembly due to dysfunction of tubulin binding tau proteins.

Specifically we propose a non-spatial kinetics model to predict phosphorylation of tau

proteins because of calpain enzyme mediated activation of the intracellular kinase which

in turn is caused by excess intracellular calcium ion accumulation catalyzed by external

mechanical stress. We demonstrate the accuracy and validity of our model by comparing

our predictions with the available clinical and experimental observations from literature.

Chapter 2 of the thesis has been published in the journal ”Biomechanics and Modeling

in Mechanobiology”. Chapter 3 and 4 are being prepared for submission in appropriate

journals.
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Chapter 1

Introduction

1.1 Traumatic Brain Injury

Traumatic Brain Injury (TBI) is defined as an impact, penetration or rapid movement of

the brain within the skull that results in an altered mental state (Prins et al., 2013). TBIs

are one of the most commonly occurring injuries to the human brain. In the USA, around

5.3 million people are living with a TBI-related disability, while in the European Union,

the number is approximately 7.7 million (Roozenbeek et al., 2013). TBI can be fatal and

accounts for 30.5% of all injury related deaths in USA (Faul et al., 2010). The availability

of statistics in India is comparatively less. An epidemiological study, during 2007-09, set

in a rural district of Wardha, in Maharashtra, India, with a population of approximately

1.2 million, shows that 1,926 patients were admitted to the district’s neurosurgery service,

diagnosed with TBI. Motor vehicle accidents account for 46.8% of these cases. Out of all

the patients admitted, 58% were diagnosed with mild, 21.5% moderate and 15% severe

cases of TBI. In all, 123 patients either did not survive or endured a persistent vegetative

state (Agrawal et al., 2012). A study performed in the urban setting of Bangalore, noted

at least 1.6 million TBI incidences, of which 200,000 are fatal. Different studies attribute

traffic accidents to cause around 45-–60% of all TBI incidences. 70% of TBIs were

mild, 14% moderate and 16% severe. Of severe TBI 38% were fatal, while only 1.5% of

mild TBI resulted in mortality. More than 50% of the patients discharged after treatment

continued to have post traumatic sequelae and disabilities of varying types and severity

(Gururaj, 2013). A study in Australia and New Zealand, performed over a period of one

year, 2000-01, classified 24.7% of studied TBIs as mild, 18.1% as moderate and 57.2%

1



2 Introduction

as severe. 61.4% of TBIs were caused by motor accidents, 24.9% due to falls, especially

in elderly patients, 8% due to interpersonal violence and 0.8% due to gunshot wounds

(Myburgh et al., 2008).

The cerebral pathophysiology of a TBI is extremely complex due to a large number

of physical and neurochemical changes that are involved (Nilsson et al., 1993; Giza and

Hovda, 2001; Weber, 2012). Any TBI has two main stages, a primary insult, which is

a mechanical damage that occurs at the time of impact, and secondary insults, which

comprise a series of neurochemical responses to the initial insult, often occurring at a

much delayed stage (Werner and Engelhard, 2007). It takes around 2 to 8 minutes for the

neurochemical changes accompanying TBI to set in (Williams et al., 2014). The chemical

reactions which follow have corresponding physiological effects which begin around 30

minutes after the occurrence of the injury. These may continue to occur for days (Gaetz,

2004).

A TBI may occur due to either a sudden acceleration or deceleration of the head, or

due to a high velocity impact, which in turn induces linear and rotational acceleration

on the brain tissue within the skull, resulting in development of high pressure gradients

and mechanical stresses (Meaney and Smith, 2011; Namjoshi et al., 2013). In case of

impact to brain, the rate of application of force determines the extent of injury while the

location of impact, called the coup site and its diametrically opposite location, called the

contre-coup site, are identified as susceptible regions for injury (Smith and Meaney, 2000;

Meaney and Smith, 2011). Such impacts to the head result in focal brain injuries, which

are localized in nature (Smith and Meaney, 2000). Contusions, which occur in the gray

matter nearest to the brain surface, are an example of a focal brain injury (Zink, 2001).

On the other hand, inertial loading which occurs due to sudden acceleration or decelera-

tion, produces diffused brain injuries, which occur in the deeper white matter of the brain

over a relatively larger area. Concussions are a mild form of diffused injuries (Smith and

Meaney, 2000; Zink, 2001). Mild TBIs commonly exhibit a pathological feature called

diffuse axonal injury (DAI), the severity of which has been clinically correlated to the

extent of disability following the injury (Smith and Meaney, 2000; Browne et al., 2011;

Tang-Schomer et al., 2012; Blennow et al., 2016). DAI are commonly characterized by

a damage to the neuronal cytoskeletal structure, which comprises of neurofilament (NF)

proteins and axonal microtubules (MT), resulting in disrupted axonal transport mecha-

nism (Smith and Meaney, 2000; Tang-Schomer et al., 2012; Blennow et al., 2016). The
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NF network contributes to the axon tensile strength (Hill et al., 2016). Post TBI, a re-

duced interfilament spacing is seen in the NF network, termed as NF compaction, due

to its posttransational modifications such as phosphorylation and glycosylation (Siedler

et al., 2014; Hill et al., 2016). MTs are elongated polymers forming a fast transport con-

duit along the length of the axon. They are assembled into a stabilized bundle formation

via a cross linking done by microtubule-associated protein (MAP) tau (Dehmelt and Hal-

pain, 2005; Peter and Mofrad, 2012). A mechanical failure in the microtubules under

a dynamic tensile stretch is observed in-vitro (Tang-Schomer et al., 2010, 2012). It is

hypothesized that a brittle failure of the cross linking tau proteins may result in loss of

the MT bundle integrity (Peter and Mofrad, 2012; Ahmadzadeh et al., 2014, 2015). In

conjunction with such primary damage of mechanical nature, secondary insults involving

a calcium ion (Ca2+) influx mediated modifications of the cytoskeletal proteins post TBI

are also known to debilitate the structural and functional integrity of the axons (Smith and

Meaney, 2000; Siedler et al., 2014; Hill et al., 2016).

1.2 Calcium Kinetics in Neurons

The physiological state and the functions of neurons are governed by the intracellular

calcium ion (Ca2+) concentration (Berridge et al., 2003; Wojda et al., 2008). To offer

increased sensitivity of the functional responses to changes in Ca2+ concentration, the

background concentration of Ca2+ must be maintained at a very low level (Brini et al.,

2014). All the cells, including neurons, can regulate their intracellular Ca2+ concentra-

tion at a stable level through a mechanism called homeostasis. The intracellular Ca2+

concentration is reported to be approximately 1 × 10−4 mM, and is almost four orders

of magnitude lower than the typical extracellular Ca2+ concentration (Kowalewski et al.,

2006; Kilinc, 2008; Gleichmann and Mattson, 2011; Brini et al., 2014). The intracellular

concentration changes due to an influx of Ca2+ ions from outside the cell which may oc-

cur through various channels present in the plasma membrane (PM) as shown in Fig. 1.1.

One of the most prominent among these is the N-methyl-D-aspartate (NMDA) receptor

pathway. The NMDA receptors are conventionally considered as glutamate-gated cation

channels with a high calcium permeability (Blanke and VanDongen, 2009). New evidence

(Maneshi et al., 2017) however suggests that glutamate may not activate the NMDA gat-

ing mechanisms — the stress dependent activation of these channels may be attributed to



Figure 1.1: A schematic of ion transport pathways inside a neuron. Only a few important pathways are shown for representative purpose. The

pathways in black dashed lines (red dotted lines) increase (decrease) the intracellular concentration of Ca2+ ions.
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cytoskeletal coupling or direct stretch activation due to bilayer tension (Kloda et al., 2007;

Maneshi et al., 2017). Irrespective of the activating agents, the activation of NMDA recep-

tors results in the opening of associated Receptor Operated Channels (ROCs) in the cell

membranes allowing the entry of Ca2+ into the cell (Zink, 2001; Weber, 2012). Result-

ing ionic imbalances open other channels especially the Voltage-Gated Calcium Channels

(VGCCs), which further increase influx of the calcium ions (Weber, 2012). Mechanisms

which compensate for the increase in intracellular Ca2+ concentration by expelling the ex-

cess ions from the cytoplasm, involve active pumps present in the PM such as the plasma

membrane Ca2+-ATPases (PMCA), or ion exchanging channels such as the Na2+/Ca2+

exchanger (Kristián and Siesjö, 1998; Berridge et al., 2003; Weber, 2012). Inward or

outward movement of Ca2+ can also happen through pores in PM as shown in Fig. 1.1

(Farkas et al., 2006; Kowalewski et al., 2006; Kilinc, 2008; Williams et al., 2014). Thus

the influx of ions through channels and pores is dynamically balanced by outflux through

the PMCA.

In addition to the transport across the PM, an exchange of ions also occurs between the

cytoplasm and the intracellular organelles like the endoplasmic reticulum (ER) through

channels, pumps and leak through pores (Berridge et al., 2003; Kowalewski et al., 2006;

Wojda et al., 2008; Weber, 2012). The inositol 1,4,5-triphosphate receptors (IP3-R) and

ryanodine receptors (RyR) are examples of channels that move the calcium ions from

inside of the ER to the cytoplasm. Since the Ca2+ concentration is higher inside the ER

than in the cytoplasm, the pores in the ER membrane also transport ions into the cytoplasm

(Baker et al., 2002; Kowalewski et al., 2006). Sarcoplasmic and endoplasmic reticulum

Ca2+ ATPase, or SERCA, is a pump that tries to balance the outflow by pumping ions

back into the ER from the cytoplasm (Berridge et al., 2003; Falcke, 2004; Wojda et al.,

2008; Weber, 2012). There are various other mechanisms that allow the transport of Ca2+

across the plasma membrane including second-messenger-operated channels (SMOCs),

store-operated channels (SOCs) and stretch operated channels (Berridge et al., 2003; Brini

et al., 2014)

1.3 Neurochemical Origin of Secondary Insults

Various components of Ca2+ homeostasis mechanism, as shown in figure 1.1 and their

contributions are drastically affected in a neuron during a TBI Wojda et al. (2008). As a
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first step of secondary insult due to TBI a massive amount of glutamate is released in the

extracellular space (ECS) of the brain following the mechanical damage (Palmer et al.,

1994; Zink, 2001; Weber, 2004). Activation of the NMDA receptors due to presence of

glutamate results in the opening of other channels such as ROCs and VGCCs in the cell

membranes thereby allowing entry of the calcium ions (Ca2+) into the cell (Zink, 2001;

Weber, 2012). In addition, the presence of excess calcium inside the cell results in a loss

of functionality, thus limiting the availability of ATP which is required for the PMCA

and SERCA pumps (Weber, 2012). Consequently the PMCA and SERCA activities are

also reduced, thereby reducing the rate of removal of Ca2+ from the cell. In vitro experi-

ments have examined the effects of external mechanical loads on the neuronal behaviour

(Rzigalinski et al., 1997, 1998; Geddes and Cargill, 2001; Lusardi et al., 2004). These

studies report an immediate elevation of intracellular Ca2+, followed by a gradual recov-

ery. These investigations have attempted to identify the relative importance of various

Ca2+ transport mechanisms, thereby trying to establish the exact mechanical etiology in-

volved in a TBI. Further, an additional mechanism through which local stress may change

the influx of Ca2+ is mechanoporation, wherein presence of stress results in either direct

or indirect increase of PM permeability (Farkas et al., 2006; Kilinc, 2008). These distur-

bances in the homeostatic calcium transport mechanisms result in an over-accumulation

of Ca2+ inside the neurons (reviewed in (Wojda et al., 2008; Weber, 2012; Prins et al.,

2013; Siedler et al., 2014)). High levels of intracellular Ca2+ initiate a multitude of neu-

rochemical reactions which result in production of free radicals, mitochondrial overload

and disruption of essential cellular functions like glucose metabolism (Zink, 2001; Weber,

2012; Prins et al., 2013; Hill et al., 2017). Intracellular Ca2+ also activates various degen-

erative proteases which act on readily available protein substrates throughout the neuron,

compromising its structural and/or functional integrity, leading to fatal downstream ef-

fects.

Calpain is a family of cysteine proteases activated by Ca2+. Of the various known

members of calpain family, calpain-I and calpain-II are ubiquitously present in human

and animal tissues (Goll et al., 2003; Ono and Sorimachi, 2012; Curcio et al., 2016).

Calpain-I, which is more abundant in neurons, typically requires 3 − 50 µM Ca2+ con-

centration for half-maximal activity and hence is also called µ-calpain. Calpain-II, also

called m-calpain, on the other hand, is more expressed in glial cells and has a much higher

half-maximal activity Ca2+ requirement (0.4 − 0.8 mM) (Goll et al., 2003). The Ca2+ re-
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quirement for calpain activation observed through experiments is however much higher

than the physiological intracellular Ca2+ concentration, indicating a reduced in-vivo Ca2+

requirement, the exact reason for which is yet unresolved. It is hypothesised that in re-

sponse to Ca2+ influx, calpain relocates to the cell periphery, where phospholipids present

in the plasma membrane (PM) reduce the Ca2+ requirement for calpain activation (Goll

et al., 2003; Ono and Sorimachi, 2012; Curcio et al., 2016). It is also possible that limited

activation of calpain at the locations of higher Ca2+ concentration is sufficient for down-

stream proteolysis of calpain substrates (Ono and Sorimachi, 2012). Notwithstanding

the origin of calpain activation, intraneuronal breakdown of structurally and functionally

essential proteins mediated by calpain is widely implicated in secondary insult. Calpain-

I is known to cleave αII-spectrin, a well characterized cytoskeletal protein of the PM.

αII-spectrin breakdown products (SBDP) are used as biomarkers of axonal injuries (Goll

et al., 2003; Hill et al., 2016; Kulbe and Hall, 2017). Experimental models of TBI report

that calpain-mediated SBDP are observed as early as 15 minutes post-injury, and may

continue to increase up to 72 hours later (Büki et al., 1999; Pike et al., 2001; Farkas et al.,

2005; Serbest et al., 2007; Hill et al., 2017). Calpain-mediated SBDP usually results

in formation of two breakdown products, αII-BDP 150, and αII-BDP 145 indicating a

sequential degradation (Glantz et al., 2007; Pineda et al., 2007; Chen et al., 2016). Ad-

ditionally degradation of βII-spectrin by calpain has also been reported in vitro, thereby

resulting in variable pathologies depending on the pathway chosen (Glantz et al., 2007;

Kobeissy et al., 2015). While calpain SBDP is hypothesised to coincide with decrease

in membrane permeability (Pike et al., 2000), there is a contention in the literature for

evidence of a causation (Wolf et al., 2001; Gaetz, 2004; Farkas et al., 2006). Other cy-

toskeletal components of the PM such as ankyrin, are also proteolyzed by calpain in vitro

and possibly in vivo (Harada et al., 1997; Reeves et al., 2010).

Within the axonal cytoskeleton, calpain is involved in the destabilization of MT bun-

dles. The MAP tau proteins which stabilize the MTs into an organised bundle can un-

dergo various forms of posttranslational modifications after a TBI, therefore losing their

MT binding capabilities (Baudry and Bi, 2016; Blennow et al., 2016; Corrigan et al.,

2017; Kulbe and Hall, 2017). Among these posttranslational modifications, the phos-

phorylation performed by kinases and dephosphorylation performed by phosphatases are

relevant to tau dysfunction. A delicate balance between tau phosphorylation and dephos-

phorylation is maintained in a normal brain so as to optimise the promotion of MT as-
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(a)

(b)

Figure 1.2: (a) A schematic representation of the structure of tau proteins showing multiple phos-

phorylation sites. (b) Under homeostatic conditions, the tau phosphorylation carried out by kinases

and dephosphorylation carried out by phosphatases balance each other, so as to maintain a constant

tau phosphorylation level in the neuron. When a tauopathy occurs the kinase activity increases,

while that of the phosphatase may reduce, resulting in hyperphosphorylation of tau proteins.
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sembly. Schematic in figure 1.2a shows the structure of the tau protein and the major

phosphorylation sites, along with their locations in the different domains of the protein.

There are several kinases which phosphorylate tau in-vitro as well as in-vivo. These in-

clude glycogen synthase kinase-3β (GSK-3β), cyclin-dependent-like kinase 5 (CDK5),

etc. Some kinases like protein kinase A (PKA) are known to prime the tau proteins for

further phosphorylation by other kinase. A detailed discussion on the action of calpain

on kinase truncation is entailed in Section 4.2. There are several phosphatases which de-

phosphorylate Tau, though protein phosphatase PP2A alone accounts for ∼ 70% of total

phosphatase activity (Liu et al., 2006). A calpain mediated disturbance in the signaling

pathways cause a phosphorylation/dephosphorylation imbalance, by increasing the kinase

activity while simultaneously decreasing the phosphatase activity, resulting in formation

of hyperphosphorylated tau (P-Tau). Figure 1.2b shows a schematic representation of

such an imbalance occurring due to a tauopathy leading to P-tau formation. P-Tau in such

a state is unable to bind to tubulin, thereby losing its ability to promote MT assembly. It

has been observed that P-Tau further disrupts the MT assembly by sequestering normal

tau from it (Alonso et al., 1996). Sequestered P-Tau nucleate the aggregation of more

P-Tau into neurofibrillary tangles (NFT).

NFT are commonly observed in multiple mild TBIs involving concussive or sub con-

cussive impacts sustained over a period of years results in a long term neurodegenerative

tau dysfunction called Chronic Traumatic Encephalopathy (CTE). CTE is most often ob-

served amongst contact sport athletes and military veterans because of a high risk of pur-

poseful, repetitive hits to the head (McKee et al., 2009; Blennow et al., 2016). A similar

tau protein dysfunction, via its hyperphosphorylation, is characteristically observed in a

range of neurodegenerative disorders such as Alzheimers’ disease (AD), frontotemporal

dementia, etc., together categorized as ”tauopathies” (Ferreira and Bigio, 2011; Blennow

et al., 2016; Iqbal et al., 2016; Kulbe and Hall, 2017). Repetitive mild TBI presents a

major risk for development of CTE and similar neurodegenerative tauopathies such as

AD and dementia(Blennow et al., 2016). Tauopathies are characterized by abnormal hy-

perphosphorylation of tau protiens forming NFT aggregates. A human tau protein has

upto 37 phosphorylation sites, though in a normal brain on an average only 2 - 3 moles of

phosphates are present per mole of tau (Köpke et al., 1993; Gong et al., 2005; Liu et al.,

2006; Iqbal et al., 2009). Hyperphosphorylated tau (P-Tau) in an AD affected brain has

3 - 4 fold more phosphates per mole of tau (Ksiezak-Reding et al., 1992; Iqbal et al.,
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2009). The role of tau pathology in TBIs are further evidenced by experiments using

MT stabilising agents such as Paclitaxel. Use of paclitaxel treatment on mice with con-

trolled cortical impact injuries had an improved neurological outcome (Cross et al., 2015).

Another study found short term improvements in neuronal response to administration of

MT stabilising agent taxol in vivo (Adlard et al., 2000). In vitro, axons pre-treated with

taxol prior to stretch injuries have a better survival as compared to untreated axons (Tang-

Schomer et al., 2010). A similar improvement in neurological outcome is seen with use of

MT stabilizing agents such as paclitaxel in several tauopathies like AD (Ballatore et al.,

2016).

The mechanisms leading to MT disruption following a primary injury, as discussed

in this section, are shown in a schematic form in figure 1.3. Tau proteins (shown in red)

are schematically shown to bind the microtubule assemblies in an axon. The secondary

insults are shown to be initiated due to imbalances in Ca2+ homeostasis mechanisms,

leading to its over-accumulation. Excess intracellular Ca2+ activates calpain which prote-

olyzes kinases like GSK, and can reduce the activity of phosphatase PP2A. The disturbed

kinase-phosphatase activity balance leads to hyperphosphorylation of tau proteins (shown

in red), which can no longer bind MT assemblies. As shown in the figure 1.3, hyperphos-

phorylated tau oligomerize and aggregate, while the MT assembly disintegrates.

In addition to the secondary pathologies discussed in the preceding paragraphs there

are numerous other pathways that are known to lead to neuronal dysfunction. Imme-

diately after the primary TBI, the mechanical strain in the glial cells such as microglia

and astrocytes results in the synthesis and release of pro-inflammatory cytokines (Weber,

2004). The neurochemical mechanisms for the relationship between mechanical strain

and upregulation of cytokines has not been completely explored till date (Lu et al., 2017).

The roles played by various cytokines have been elaborately discussed by Woodcock and

Morganti-Kossmann (2013). It is hypothesised that the accumulation of immune cells in

response to pro-inflammatory agents such as tumour necrosis factor and interleukins, fur-

ther compounds the brain swelling and decreases the cerebral blood flow. Additionally,

the massive calcium influx into the cytosol following trauma results in the mitochondria

attempting to sequester the excess Ca2+. The mitochondria are however quickly over-

whelmed resulting in mitochondrial pathologies in the form of swellings or membrane

fragmentations (Smith and Meaney, 2000). Such pathologies have been observed in vivo

after TBI (Maxwell et al., 2003; Lifshitz et al., 2004). Ruptures in the mitochondrial
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membranes release apoptotic proteins into the cell (Lifshitz et al., 2004; Hiebert et al.,

2015). Damage to mitochondria also results in the formation of reactive oxygen species

(ROS), such as superoxide and hydroxide radicals, which in turn damage cellular mem-

brane, mitochondrial membrane, and further can cause breaks in the DNA strand (Weber,

2012). Damage to mitochondria additionally results in metabolism changes which is ob-

served in the form of fall in blood oxygenation, extracellular glucose and rise in extracel-

lular glutamate (Lifshitz et al., 2004; Weber, 2012). These pathologies further exacerbate

neuronal necrosis. Severe damage to the neurons can result in a primary axotomy, which

in-vitro is seen to be accompanied by axonal retraction (Gallo, 2004). Axonal retraction

and many similar cytoskeletal dynamics such as neuronal migration, axonal and dendritic

growth, regeneration and synaptic plasticity have in turn been shown to be regulated by

Ca2+ signaling (Zheng and Poo, 2007; Yamada et al., 2008). Mechanical stretch has been

shown to affect the structural arrangement of cytoskeletal members such as actin-myosin

network and also microtubules and neurofilaments (Chetta et al., 2010). A review by

Hemphill et al. (2015) discusses in detail the role of subcellular mechanotransduction in

the neuronal microenvironment during a TBI. While such mechanisms have been sug-

gested to play a salient role on the biomechanical evolution of neuronal pathophysiology,

we consider it to be beyond the scope of the current work.

1.4 Numerical Modelling

Numerical models have been used to study the distribution of stresses and strains through-

out the brain after a TBI. The after-effects of primary insult of TBI at macro-level has been

modeled numerically, using detailed three-dimensional (3D) and two-dimensional (2D) fi-

nite element (FE) based models of brain (reviewed by (Giudice et al., 2018; Madhukar

and Ostoja-Starzewski, 2019)). Some researchers have worked on developing a simpli-

fied model including only the major anatomical features, allowing for a quick assessment

(Anderson, 2000; Pena et al., 2005; Levchakov et al., 2006). The second approach is

development of more detailed 3D model, so as to be able to produce a detailed predic-

tion of local and global response to different loads (Zhang et al., 2001; Mao et al., 2006;

Takhounts et al., 2008). The simpler of these models simulate the overall geometry of the

brain, without concerning themselves with distinguishing the different regions. On the

other hand, the detailed models simulate the geometry and the interactions between the



Figure 1.3: A schematic of pathway leading to rupture in microtubule assembly. Ca2+ accumulation due to Ca2+ homeostasis imbalance leads

to calpain activation which disturbs the kinase - phosphatase (GSK-3β - PP2A) balance resulting in hyperphosphorylation of tau proteins. The

hyperphosphorylated tau proteins thus lose their MT binding abilities, resulting in tau aggregation into NFT, and rupture of MT assembly.

Additionally, calpain mediated spectrin proteolysis and its effect on subsequent increase in intracellular Ca2+ is shown. This pathway is shown

in dotted lines as it is not explicitly modelled by us.
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different anatomical parts of the brain. Efforts have been made to simulate actual impact

through application of realistic linear and angular acceleration as initial conditions for the

FE model of brain, based on the data obtained from experiments on cadaveric and crash

test dummy heads, and live capture through accelerometers fixed on the helmets of foot-

ball players in action (Bandak et al., 2001; Zhang et al., 2001, 2004). The output of finite

element analysis in the form of principal strain, principal stress, shear strain, pressure and

acceleration distribution in the brain is used to correlate with the occurrence of TBIs in

the real world situation, thereby obtaining threshold values of these measures over which

TBIs can be expected (Bandak et al., 2001; Franklyn et al., 2005; Takhounts et al., 2003,

2008).

Accurate modeling of intracellular calcium ion (Ca2+) concentration evolution is valu-

able as it is known to rapidly increase during a Traumatic Brain Injury. The transport of

Ca2+ at the cellular level under homeostatic condition has been simulated in the literature

using non-spatial compartmental model which defines a rate dependence through ordi-

nary differential equations (Baker et al., 2002; Falcke, 2004). Such models are valuable

in predicting the outcomes of hypothetical propositions, and thus designing appropriate

experiments towards understanding relevant phenomena, such as calcium signaling or the

neurochemistry involved in neurodegenerative diseases (Slepchenko et al., 2002). The

compartmental models, in particular, consider that ions are exchanged between three ki-

netically homogeneous compartments, viz. the extracellular space (ECS), the cytoplasm,

and the intracellular organelles such as ER (Kass and Lipton, 1986; Kowalewski et al.,

2006). Some studies assume the concentration in ECS to be unchanging, e.g. Kowalewski

et al. (2006), while in some it is altogether neglected, e.g. Baker et al. (2002). Effects

of external injuries or diseases on the homeostasis have not been widely modeled. Kass

and Lipton (1986) accounted for the effect of anoxia by abruptly changing the parameter

values in their model. Such an approach, however, is unable to account for the severity

of the injury in the model. Kilinc (2008) studied the post TBI Ca2+ evolution due to

mechanoporation by explicitly varying the PM permeability using a traffic based model

to simulate ion transport mechanisms. In the same work, the activation of calpain and its

activity on a general substrate was also simulated.

From a more mechanical perspective, Peter and Mofrad (2012) simulated the collapse

of MT bundles due to mechanical failure of cross linking tau proteins using a discrete

bead-spring model. Ahmadzadeh et al. (2014) modeled the tau protein as a viscoelastic
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spring, enabling a strain rate dependence. This work was then extended by incorporating a

separation of the tau-tau dimers involved in the MT bundle formation (Ahmadzadeh et al.,

2015). Sendek et al. (2014) simulated a random removal of tau proteins and the resulting

MT bundle collapse in a two-dimensional (2D) space by equilibriating through steepest

descent relaxation. Stepanov et al. (2018) developed a probability theory based model

to simulate the multisite phosphorylation and dephosphorylation of tau protein, and con-

cluded that kinase inhibition can prevent site specific tau hyperphosphorylation. Yet there

is no deterministic mathematical link between the occurrence of a TBI and the resulting

axonal rupture. While the work done by Peter and Mofrad (2012) and Ahmadzadeh et al.

(2014) does bridge the gap to an extent, it takes into account only the mechanical failure

of the tau protein links. While acknowledging the relevance of mechanical failure for

severe cases of TBI, often the damage to the tau proteins and hence to MT bundles has

a neurochemical origin. The Ca2+ influx mediated proteolytic damage via cleavage or

phosphorylation of tau can account for the delayed injury seen in the axons, much after

the occurrence of mechanical impact. Further the presence of phosphorylated tau in the

form of filamentous bundles reported in vivo after the occurrence of a TBI, and in CTE

brain samples, indicates an active presence of a neurochemical phenomenon, if not alone,

working in tandem with the biomechanical phenomenon.

1.5 Motivation

Although detailed in terms of geometry and loading, the macro-scale FE models are

purely mechanical in nature and do not consider any effects of the secondary insult. On

the other hand, the effects of external injuries or diseases on the homeostasis of Ca2+

transport have also not been widely modeled. Kass and Lipton (1986) accounted for the

effect of anoxia by abruptly changing the kinetic parameter values in their compartmental

model of Ca2+ transport between neurons and ECS. Such an approach, however, is unable

to account for the severity of the injury in the model. Kilinc (2008) studied the movement

of calcium ions through a neuron during a mechanical trauma by applying a traffic based

model to ion transport mechanisms. There is, however, still no model which incorporates

the quantitative interrelation between the severity and symptoms of injury, a significant

gap which we propose to fill through this work. To do so, we quantify the severity of

the injury in terms of local mechanical stress, while the symptoms of injury are measured
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through the intracellular calcium ion concentration. We hypothesize a definite correlation

between the concentration of calcium ions and applied mechanical impulse load thereby

providing the model with the capability to predict the local intracellular concentration if

the local stresses being experienced are known. We then demonstrate the accuracy of

the model by comparison with experimentally reported Ca2+ concentration evolution for

different external loads (Weber, 2012; Maneshi et al., 2015). We further spatialize this

model by considering the brain tissue as a solid continuum with the Ca2+ activity occur-

ring at every material point. Starting with one-dimensional representation, the brain tissue

geometry is progressively made realistic and under the action of pressure or kinematic im-

pulses, the effect of dimensionality and material behaviour on the correlation between the

stress and concomitant Ca2+ concentration is investigated. The spatial calcium kinetics

model faithfully captures the experimental observations concerning the Ca2+ concentra-

tion, load rate, magnitude and duration and most importantly shows that the critical loca-

tion for primary injury may not be the most important location as far as secondary injury

is concerned. Finally, we build a deterministic link between the occurrence of TBI and

phosphorylation based loss of tau proteins from the MT bundles. This work also follows

our previous non-spatial mathematical model for predicting intracellular Ca2+ in pres-

ence of a local hydrostatic stress due to a TBI. We present the mathematical formulation

to capture the calpain activation, kinase truncation and tau phosphorylation. We estab-

lish a procedure for estimating the involved kinetic parameters, and finally apply realistic

mechanical loads to examine the model behavior.

This report is organized in the following manner. In Chapter 2, we develop a math-

ematical model to create a constitutive relationship between local hydrostatic stress and

intraneuronal calcium ion accumulation. In Chapter 3, we develop a mathematical frame-

work to spatialize our previous model by coupling it with a transient structural FEM

analysis performed on tissue geometries. We study the effects of stress waves and the

influence of the tissue dimensions, and extend the observations to a realistic external 2D

brain geometry for realistic loading conditions in the form of a pressure or kinematic

impulses. In Chapter 4, we model the neuron dysfunction occurring as a result of cal-

cium ion accumulation. We focus our attention on widely occurring mild TBIs, and the

accompanying neurochemical phenomena leading to microtubule ruptures.





Chapter 2

Non-Spatial Calcium Kinetics

2.1 Compartmental Model

To understand the evolution of intracellular Ca2+, we first study the Ca2+ kinetics in ab-

sence of any external loads to homeostatic conditions utilizing a non-spatial compartmen-

tal model. A non-spatial compartmental model renders the spatial distribution of ions

through the cell and extracellular region immaterial (Baker et al., 2002; Falcke, 2004;

Kowalewski et al., 2006; Kilinc, 2008). This simplification helps in circumventing com-

plexities involving the intricate geometries of neurons and ECS. It homogenises the intra-

cellular and extracellular domains offering a simpler and an elegant way to model Ca2+

transport. This assumption simplifies the model to a first degree of approximation without

sacrificing any relevant physical details. However, due to the non-spatial description of

Ca2+ ion transport considered here, our phenomenological model will be unable to cap-

ture the spatial distribution of ions inside the neuron and the extracellular matrix, as well

as the nuances due to the distribution of the pores, pumps and channels in the plasma and

ER membranes.

In our model the PM and ER membranes act as the interface between the compart-

ments. We also include the changes in the extracellular Ca2+ concentration due to in-

teractions with the cell, rather than assuming it to be a constant. The rate of change of

extracellular concentration ce and the intracellular concentration ci with respect to time t

is expressed as (Baker et al., 2002; Falcke, 2004),

17
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dce

dt
= −

[
Jp

pm + Jc
pm

]
and,

dci

dt
= −

dce

dt
+

[
Jp

er + Jc
er
]
,

(2.1)

where Jp
pm and Jp

er are the rate of transport of ions through the pores in the PM and

the ER membranes respectively. Jc
pm is the overall rate of transport of ions through the

channels (e.g. VGCC, NMDA, etc.) and pumps (e.g. PMCA) of the PM and, Jc
er is the

overall rate of transport of ions through the channels (such as IP3R) and pumps (such as

SERCA) of the ER membrane (See Fig. 1.1).

Experimental observations suggest that the Ca2+ transport through the pores is diffu-

sive in nature such that, (Falcke, 2004; Kowalewski et al., 2006; Kilinc, 2008),

Jp
pm = Kpm (ce − ci) and,

Jp
er = Ker (cer − ci) ,

(2.2)

where cer is the Ca2+ concentration inside the ER, and Kpm and Ker are the permeabil-

ities of the PM and ER membranes respectively. The overall Ca2+ transport via pumps

and channels is governed by a Hill type expression given as (Lytton et al., 1992; Sneyd

et al., 1995; Baker et al., 2002; Kowalewski et al., 2006; Kilinc, 2008),

Jc
pm = −Vpm

 cnpm

i

cnpm

i + knpm
pm

 and,

Jc
er = −Ver

(
cner

i

cner
i + kner

er

)
,

(2.3)

where Vpm (Ver) is the maximal overall activity of the PM (ER membrane) pumps and

channels, kpm (ker) is the activation concentration for the PM (ER membrane), and the

exponent npm (ner) is the Hill coefficient representing the number of cooperative calcium

sites required in the PM (ER membrane). We have used the homeostatic values of in-

tracellular and extracellular Ca2+ concentration as 1 × 10−4 mM and 1 mM (Kowalewski

et al., 2006; Kilinc, 2008; Gleichmann and Mattson, 2011; Brini et al., 2014). The values

for the rest of parameters in equations Eqs. (2.1 - 2.3) are listed in Table 2.1. It must

be noted that under a homeostatic condition, the flux terms Jc
pm and Jc

er counter the dif-

fusive leakage of Ca2+ through the pores, Jp
pm and Jp

er, respectively. Hence, compared
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Table 2.1: Value of Parameters

References – (1): Kilinc (2008) (2): Kowalewski et al. (2006)

Parameter Definition Value

c∗i Homeostatic value of intracellular concentration 1.00 × 10−4 mM (1),(2)

c∗e Homeostatic value of extracellular concentration 1.00 mM (1),(2)

cer Ca2+ concentration inside the ER 0.10 mM (1),(2)

Kpm Porosity of the PM 2.94 × 10−6 s−1

Ker Porosity of the ER membrane 3.17 × 10−5 s−1

kpm Activation constant of the PM 2.00 × 10−4 mM (1),(2)

ker Activation constant of the ER membrane 5.00 × 10−4 mM (1),(2)

npm Hill Coefficient of the PM 2.00 (1),(2)

ner Hill Coefficient of the ER membrane 1.00 (1),(2)

χpm Stress dependence parameter for Vpm 2.00 × 103

χer Stress dependence parameter for Ver 4.00 × 103

κ Stress dependence parameter 2 4.50 × 10−5 Pa−1

α Impulse contribution parameter 7.5 × 10−3 s−1

to Eq. (2.2), the coefficients on the right-hand side of Eq. (2.3) are appended with a

negative sign. The coupled differential equations, Eq. (2.1), along with Eqs. (2.2 - 2.3)

can be solved for given initial conditions to obtain the evolution of the intracellular and

extracellular concentrations.

2.2 Linear Stability Analysis

In order to verify that the model is inherently stable under homeostatic conditions, we per-

form a linear stability analysis of the governing equations Eqs. (2.1 - 2.3). Subsequently

we solve the linearized governing equations analytically to obtain the closed form solu-

tion for the evolution of Ca2+ concentration in the extracellular and intracellular region of

the cell. Importantly, such a stability analysis also reveals the intrinsic time scale of the

system of equations, which in turn can be used to predict the time required for the system

to attain stability either in presence or absence of external loads.

For a detailed analysis of the linear stability refer the Section A.1 of the Appendix
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A. The eigenvalues of linearized governing equations are negative, which confirms the

inherent stability of the system of governing equations Eqs. (2.1 - 2.3). Solution of

the linearized governing equations under infinitesimally perturbed non homeostatic initial

conditions reveals the evolution of the intracellular Ca2+ to be of the form:

ci(t) = c∗i + C1e−t/τ̂1 + C2e−t/τ̂2 (2.4)

where τ̂1,2 = 2
(
β ±

√
β2 − γ

)−1
are the inherent time scales of the calcium kinetics

system. In these equations, C1, C2, β and γ are constants dependent on the initial condi-

tions and the kinetic parameters listed in Table 2.1. Their explicit definitions are provided

in the Eq. (A.6) and Eq. (A.12) of the Appendix A. For the numerical value of the param-

eters as listed in Table 2.1, the intrinsic time scale of the system relevant to the physical

mechanism of Ca2+ ion transport, denoted by τ̂1, is found to be 13.62 s.

To verify the stability of the system of governing equations in action, we solve equa-

tions Eqs. (2.1 - 2.3) analytically for different non homeostatic initial perturbations. The

evolution of the normalized intracellular concentration ci/c∗i thus obtained is plotted in

Fig. 2.1. The numerical solution for each perturbation is also plotted in the same figure.

We see that in each case, the intracellular concentration ci settles to its homeostatic value

c∗i , thus confirming the inherent stability of the system of equations. The time taken for

the settling to occur depends on the initial perturbation. The analytical solution reveals

that intracellular concentration takes ∼ 4.6τ̂1 ≈ 63 s to settle to a value one-hundredth

of the initial perturbation, hereafter referred to as the settling time ts. The stability of the

governing equation implies that the model successfully captures the capability of the Ca2+

transport mechanisms to attain or maintain homeostatic conditions.

2.3 Incorporating Mechanical Stress

The local mechanical stress due to an external injury can affect intracellular and extracel-

lular Ca2+ concentrations via several ion transport mechanisms as discussed earlier. In

particular, there are strong experimental evidences to suggest that the NMDA and VGCC

channels are prominent ion transport pathways over mechanoporation, while the outflux

through PMCA and SERCA pumps is reduced (Smith and Meaney, 2000; Farkas et al.,

2006; Kilinc, 2008; Hemphill et al., 2015; Hill et al., 2016).Therefore, we assume that

stress only affects the ion flux through the pumps and channels. Equation (2.3) shows that
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Figure 2.1: Temporal evolution of the intracellular concentration ci(t) normalized by the homeo-

static concentration c∗i under homeostatic (no loading) condition for different values of the initial

intracellular concentration ci(t = 0). The solid lines denote the numerically obtained solution

of the equations Eqs. (2.1-2.3) while the solid symbols indicate the analytical solution of the

corresponding linearized equation (See Appendix A).



22 Non-Spatial Calcium Kinetics

flux through pumps and channels of PM (ER) depends on three parameters, namely Vpm

(Ver), kpm (ker) and npm (ner). While it is plausible that all these parameters are affected

due to a TBI, we hypothesize that the ion transport through PM and ER as a result of a

TBI can be phenomenologically modelled to a first degree of approximation via the lo-

cal stress dependence of Vpm (Ver), the maximum overall activity of channels and pumps.

There is some experimental evidence to justify this hypothesis. It has been reported that

more NMDA channels open up due to the secretion of glutamate after injury, further lead-

ing to an increased flux through other channels. The other parameters kpm (ker)and npm

(ner), are generally empirically obtained from experiments, and there is much less clear

evidence of their stress dependence.

The mechanical loading dependence of the kinetic parameters should: (a) account

for the reversal in ion transport compared to homeostasis, due to TBI, (b) be nonlinear

and convex since there cannot be an infinite increase in the rate of transfer of Ca2+ ions.

Furthermore, experiments also indicate that the ion transport depends not only the instan-

taneous local stress, but also on its time history, as the intracellular concentration after an

impulse loading is reported to stabilize at a much higher value than the homeostatic con-

centration. Considering these requirements, we model the dependence of the coefficients

Vpm and Ver on the mechanical loading using an exponentially decreasing convex function

as follows,

Vpm

Vpm0
=

[
−χpm +

(
1 + χpm

)
e−κ ŝ

]
,

Ver

Ver0
=

[
−χer + (1 + χer) e−κ ŝ

]
,

(2.5)

where χ and κ are constant parameters for the PM and ER membranes, and Vpm0 and

Ver0 are the homeostatic values of the coefficients Vpm and Ver. Also, ŝ is the measure

of mechanical loading which comprises the instantaneous local stress and a time history

dependent component such that,

ŝ = σh + α

∫ t

0
σh(t̄)dt̄, (2.6)

where σh is the local hydrostatic pressure and α is a constant parameter representative

of the viscosity in the neuron.

A similar linear stability analysis as done in section 2.2, can be performed to examine

the stability of the system under a non-zero constant mechanical loading (refer Appendix
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Figure 2.2: Temporal evolution of intracellular Ca2+ concentration, ci, normalized by the home-

ostatic intracellular concentration, c∗i , for a constant value of stress measure, ŝ. Coloured circles

show the analytical solutions.

B). The linearized equations can be solved in closed form thus incorporating the effects

of mechanical loading within the analytical framework (see Appendix B). The governing

equations for this case also have identical eigenvalues as in the homeostatic case (refer

Appendix B), confirming the stability of the system for smaller loads. Thus, for small

loads the intrinsic time scale τ̂1 also remains unchanged (see Appendix B).

2.4 Results and Discussion

2.4.1 Constant Mechanical Loading

We first begin with a hypothetical scenario where a constant mechanical loading ŝ is being

applied to the cells. Considering equation (2.6) this corresponds to two scenarios, (a) a

neuron with a viscous parameter α = 0 (no history dependence), experiencing a constant
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hydrostatic stress, or (b) the loading state of a neuron under an impulse loading, long

after the impulse has been removed. While case (a) may be hypothetical, the case (b) is

commonly observed as most often a TBI occurs due to an external impact, similar to a

short duration impulse (Faul et al., 2010). In line with the magnitude of pressures applied

in experiments reported in literature (Geddes-Klein et al., 2006; Maneshi et al., 2015),

we assume the post-impulse mechanical loading parameter ŝ to have a value ranging be-

tween 0.5 to 4 Pa. The numerically obtained evolution of the intracellular concentration

is plotted in Fig. 2.2. Further we also show the analytical solution for each case. As

expected due to linearization, for small loads and times the comparison fares well, while

error increases for large loads and times. It is observed that the presence of stress in the

system clearly induces an increase in the intracellular concentration. For each value of

stress measure, there is a fixed concentration value cres at which the intracellular concen-

tration will settle. It is further observed that higher the loading measure, i.e. more severe

the injury, higher will be the cres and the time taken to settle at cres.

2.4.2 Impulse Loads

A TBI generally occurs due to high magnitude impacts over a very short duration, such as

in a fall, an automobile accident, or sports related incidents (Faul et al., 2010). To mimic

such an impact sudden short duration impulses are applied in experiments (LaPlaca et al.,

1997; Geddes and Cargill, 2001; Lusardi et al., 2004; Geddes-Klein et al., 2006; Maneshi

et al., 2015). Thus, in accordance with the literature on experimental studies of TBI,

we considered impulse loads in the range of 10 to 50 kPa acting over a duration of 5

to 50 ms as an external stimulus. Figure 2.3 shows the numerically obtained evolution

of the intracellular concentration when our model is subjected to impulses of different

magnitudes (σ∗) and durations (t∗). Although we are assured of the accuracy of numerical

solution by comparison with analytical solution, we do not plot the latter in this figure for

clarity. A typical impulse profile is shown in the inset, where a load of magnitude σ∗

is applied instantaneously at t = 0, and maintained for duration t = t∗, after which it

is removed. In all cases, the evolution of Ca2+ concentration can be divided into two

regimes: (1) 0 ≤ t ≤ t∗, before the load is removed, and (2) t > t∗, after the load is

removed. In the first regime (0 ≤ t ≤ t∗), when the applied load is constant for a very short

period of time ( ∼ 10 ms), an immediate increase in the intracellular Ca2+ concentration

is observed. The intracellular concentration rises very rapidly to a peak value (cpeak
i ).
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(a) (b)

Figure 2.3: Evolution of the intracellular concentration ci due to an impulse load of magnitude σ∗

applied at time t = 0 for a duration t∗ (shown in the inset) when (a) the duration of impulse was

fixed at t∗ = 10 ms, and (b) the magnitude of impulse load was fixed at σ∗ = 30 kPa. The intra-

cellular concentration ci is normalized with respect to the homeostatic intracellular concentration

c∗i .

Upon removal of the load (t > t∗), the intracellular concentration reduces gradually and

settles to a residual value cres
i , which is greater than the homeostatic concentration c∗i .

The settling time, ts = 4.6τ̂1, found in section 2.2 persists even for the impulse loading

case and now indicates the time required for ci to reduce to one hundredth of cpeak
i . As is

evident from Fig. 2.3, our model is able to capture a gradual but not total recovery of the

Ca2+ concentration in the cell upon removal of load, in agreement with the experiments

reported in the literature (LaPlaca et al., 1997; Geddes and Cargill, 2001; Lusardi et al.,

2004; Geddes-Klein et al., 2006; Maneshi et al., 2015). The non-zero value of the residual

concentration indicates the presence of a permanent damage after the removal of the load.

However, as seen from Fig. 2.3, for low magnitudes or smaller duration of impulse loads,

the residual concentration is close to the homeostatic concentration, indicating that the

lasting damage only occurs in case of severe injuries. This behaviour is also in agreement

with experimental observations reported in literature (Geddes and Cargill, 2001; Maneshi

et al., 2015).

Next, we compare the evolution of the intracellular concentration in presence of im-

pulse loads as predicted by our model with the calcium evolution observed experimentally.

Additionally, such an exercise gives us a method to calibrate the kinetic parameters χpm,
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χer and κ in Eq. (2.5). Figure 2.4 shows the range (highest and lowest) of intracellular

Ca2+ concentration in a human brian tissue sample experimentally measured by Maneshi

et al. (2015) for a single impulse shown in the inset. By comparing our numerical results

for the same impulse with the observed concentration evolution, we can obtain a range

of values for the kinetic parameters, χpm, χer and κ. The values of the kinetic parameters

corresponding to the numerical solution when compared with the lowest concentration

evolution, as plotted in Fig. 2.4 are listed in Table 2.1. It should be noted that all the

simulations reported henceforth use these calibrated values for the kinetic parameters.

Figure 2.5 compares the model predictions with the observations of Geddes-Klein et al.

(2006) where a single impulse shown in the inset of the figure is applied. As seen in

Fig. 2.5, before the impulse load is applied, the model prediction of ci/c∗i = 1, is higher

compared to the experiments due to the different homeostatic concentration (0.034 µM)

used by Geddes-Klein et al. (2006) as compared to the value (0.1 µM) used here. How-

ever, we normalize both the experimental readings and the model output with respect to

the homeostatic concentration of 0.1 µM assumed in this work. Post impulse, the model

result (Fig. 2.5) is qualitatively same but underpredicts the concentration compared to

the experiment by Geddes-Klein et al. (2006). This is most likely due to the different

loading conditions and associated experimental uncertainties, as compared to the work of

Maneshi et al. (2015), which were used to calibrate the kinetic parameters of the model.

For completeness, Fig. 2.5 also shows the analytical solution obtained by solving Eq.

(B.3) for the same initial and loading conditions.

It can be observed from Figs. 2.3-2.5 that in the presence of local mechanical stress

induced by an injury, the residual (cres
i ) and peak (cres

i ) intracellular Ca2+ concentrations

are much higher than the homeostatic value. The deviation of the Ca2+ concentration

from the homeostatic value leads to a cascade of events which can eventually lead to the

death of the neuron (Gaetz, 2004; Werner and Engelhard, 2007; Prins et al., 2013). Hence,

in this model, the secondary damage caused due to injury is represented in terms of the

residual and peak Ca2+ concentration inside the cell. Figures 2.6a and 2.6b show the vari-

ation of the peak intracellular concentration, cpeak
i , as a function of the magnitude, σ∗, or

the duration, t∗, of the impulse. Figure 2.6a also shows the experimental measurements of

Maneshi et al. (2015) and we see that the model compares well. We further observe that

cpeak
i initially rises with the increase in the magnitude of σ∗, but eventually stabilizes in

agreement with the experiments. On the other hand from figure 2.6b, the model predicts
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Figure 2.4: Calibrating the kinetic parameters, χpm, χer, and κ by comparing the model predic-

tions with the experimentally measured intracellular Ca2+ for a single impulse load shown in the

inset (Maneshi et al., 2015). The analytical results for the linearised system under same loading

conditions is plotted as black dots.
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Figure 2.5: A comparison of the evolution of the intracellular concentration ci normalised with

respect to the homeostatic intracellular concentration c∗i predicted by the model with experimen-

tal observations of Geddes-Klein et al. (2006) for single impulse load shown in the inset. The

analytical results for the linearised system under same loading conditions is plotted as black dots.
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Figure 2.6: The variation of peak intracellular Ca2+ concentration, cpeak
i , normalized with respect

to the homeostatic intracellular concentration, c∗i , with the severity of the injury, quantified in

terms of the magnitude, σ∗, and duration, t∗, of a single impulse load, plotted in (a) and (b)

respectively. Subfigure (a) also shows the experimental results reported by Maneshi et al. (2015),

for a comparison with the model predictions. For (a) the duration of the impulse load t∗ is kept

constant at 10 ms, while for (b) the magnitude of the impulse is kept constant at 30 kPa.

that within the experimental time frame, the peak concentration rises monotonically with

the duration of impulse, t∗, an observation which does not agree with the experiments of

Maneshi et al. (2015), where for impulses of constant magnitudes the peak Ca2+ concen-

tration begins to stabilize as durations exceed 1000 ms. In vitro, the stabilization may

occur due to cell death (Gaetz, 2004; Werner and Engelhard, 2007; Prins et al., 2013), a

feature not explicitly simulated in our phenomenological model. Thus we are unable to

predict the stabilization of the peak concentration within the experimental time frame.

Another important loading parameter which decides the severity of injury is the load-

ing rate. Experiments have shown that faster loading can result in a more severe damage

(Maneshi et al., 2015). Our model takes the loading rate into consideration through the

dependence of stress measure ŝ (Equation (2.6)) on the loading history. For the same

duration and same maximum value of impulse, the values of ŝ are higher for a faster load-

ing. As shown in Fig. 2.7, our model clearly predicts that a higher loading rate results in a

higher peak and residual concentration of Ca2+ in qualitative agreement with experiments

(Maneshi et al., 2015).
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Figure 2.7: Temporal evolution of the normalized intracellular calcium concentration ci/c∗i for

impulses of magnitude σ∗ = 20 kPa, total duration t∗ = 10 ms with a gradual loading. The

different loading rate is expressed in terms of the different time taken for impulse magnitude to

reach its maximum value σ∗, tr. The inset shows schematic of such impulses.
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Figure 2.8: Temporal evolution of the normalized intracellular calcium concentration ci/c∗i for

repeated impulses of magnitude σ∗ = 10 kPa, duration t∗ = 10 ms each, applied with a time

interval ti = 50 s between them. The red dotted lines indicate the times at which the impulses act.

The inset shows a schematic of such an impulse train.

2.4.3 Repeated Impulses

It is expected that in comparison to a single impulse, repeated impulses of the same mag-

nitude and duration will have much more dire consequences. Experiments have reported

that the rise in concentration after repeated impulses is much higher than that for a single

pulse of the same duration and have attributed it to the viscoelastic/plastic behavior of

the cell with regards to activation of the calcium ions (Maneshi et al., 2015). In a similar

manner, we applied a repeated impulse loading (schematic shown in the inset of Fig. 2.8)

comprising of a series of five impulses, each of magnitude σ∗ = 10 kPa and duration of

t∗ = 10 ms with a time interval of ti = 50 s between them. Figure 2.8 shows the outcome

where the times at which impulses are applied are denoted with red vertical lines. After

the first impulse, the intracellular concentration begins to reduce to the residual value.

However, before it can settle the second impulse acts, so that the concentration shows a

second peak at a magnitude higher than the first peak. This continues to occur for each

subsequent impulse. Each peak is progressively higher than the previous, thus captur-

ing the viscoelastic/plastic behavior reported by experiments (Maneshi et al., 2015). For
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completeness, in FIg. 2.8, we also plot the analytical solution of the linearized governing

equations. As expected, the error due to linearization builds up as the impulses progress,

although all the key features are captured.

If the impulses are applied close to each other, the injury is expected to be more severe

(Maneshi et al., 2015). If the impulses are farther from each other, it can be expected

that the cell gets some time to heal i.e. regain its homeostatic concentration c∗i before

the next impulse arrives. Extending this idea, if the impulses are sufficiently away from

each other, the intracellular concentration would be as relaxed as possible before the next

impulse comes in. Thus beyond a certain limit, increasing the time interval ti between

the pulses should not have any appreciable effect on the intracellular concentration. In

order to verify these observations through our model, a number of impulse trains, each

with a time interval varying between 0.1 to 100 s, are given as an external mechanical

stimulus. For four such impulses, the temporal evolution of the normalized intracellular

concentration is plotted in FIg. 2.9a. The model successfully predicts that short interval

pulse trains result in a much higher peak intracellular Ca2+ concentration compared to

the long interval pulse trains and hence a likelihood of greater injury to the cell. Further,

Fig. 2.9b plots the variation of the normalized peak intracellular concentration with the

time interval between the impulses normalized with respect to the intrinsic time scale τ̂1.

Figure 2.9b also shows that for interval between impulse greater than the settling time,

ti > ts(∼ 4.6τ̂1), there is no significant change in the peak intracellular concentration.

For the impulse train with σ∗ = 10 kPa and t∗ = 10 ms, for a sufficiently large interval

between the impulses, the peak concentration stabilizes to ∼ 2.5 × 10−4 mM as shown in

Fig. 2.9b.

It is worth noting from figure 2.9a that irrespective of the time interval between the

impulses, the residual concentration does not change as long as the number, magnitude,

and duration of impulses comprising the train remain same. The same observations are

also obtained from the analytical solution of the linearized governing equations Eq (B.3).

This indicates that the residual concentration is a cumulative result of the impulses com-

prising the impulse train, and is independent of when those impulses actually occurred.

However, this does not mean that injury itself is a cumulative phenomenon, since the peak

concentration, which determines the extent of the secondary injury is dependent on the

time interval between the impulses (Fig. 2.9b). So far, no experiment has yet reported a

relationship between the residual concentration and the time interval between impulses.
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Figure 2.9: The effect of varying the time interval between impulses, ti. (a) Temporal evolution

of normalised intracellular concentration ci/c∗i for four different impulse trains comprising of 5

impulses, each of magnitude σ∗ = 10 kPa and duration t∗ = 10 ms, while the time interval ti
between the impulses is varied. (b)The variation of normalized peak intracellular concentration

cpeak
i /c∗i as a function of the time interval between impulses, ti, in the impulse train. Each impulse

train comprises of 5 impulses, each of magnitude σ∗ = 10 kPa and duration t∗ = 10 ms.

Thus we would like to propose that further experiments could be designed to test the

observation shown in Fig. 2.8.

2.5 Conclusion

In this chapter we have developed a simplified phenomenological model for the evolution

of intracellular Ca2+ concentration, thereby predicting the damage to neurons due to ex-

ternal impacts such as in a TBI. We use the kinetics of Ca2+ ion transport mechanisms

(Kass and Lipton, 1986; Baker et al., 2002; Falcke, 2004; Kowalewski et al., 2006; Kil-

inc, 2008) to describe the rate of change of intracellular and extracellular concentrations.

We have incorporated the effect of mechanical loading during TBI through stress history

dependent kinetic parameters governing the flux of pumps and channels in the plasma and

ER membranes. The next step in development of our model would involve introducing a

spatial dimension. This could be done either at neuron level, where the local stress as well

as the chemical kinetics becomes dependent on the distribution of pores and channels in

the membrane, or at the tissue level, where due to large difference between length scales

of neuron and a tissue, non-spatial chemical kinetics could be combined with the spa-
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tial distribution of local stresses. We believe that latter approach will provide interesting

insights into the change of Ca2+ kinetics due to external injuries.



Chapter 3

Applying a Continuum Treatment

3.1 Continuum Framework Based Spatialization

2D and 3D continuum based FE models of human brain have long been used to sim-

ulate TBIs numerically and predict the locations susceptible to high principal stresses

and strains (Bandak et al., 2001; Zhang et al., 2001; Takhounts et al., 2003; Pena et al.,

2005). Although detailed in terms of geometry and loading, the macro-scale FE models

are purely mechanical in nature and do not consider any effects of the secondary insult. In

the work presented in this chapter, our older non-spatial calcium kinetics model dealing

with the effect of mechanical stress upon the Ca2+ transportation in a neuron is spatial-

ized by considering the brain tissue as a solid continuum with the Ca2+ activity occurring

at every material point. In our spatial model, it is assumed that Ca2+ kinetics acts inde-

pendently at every material point of the tissue and is influenced only by the local absolute

hydrostatic stress. The accumulation of Ca2+ in neuron is simulated through the equations

Eqs. (2.1-2.3) governing the transport of Ca2+ across the plasma and ER membrane as

shown in the Fig. 1.1. Kinetic parameters governing the calcium flux through the chan-

nels and pumps is dependent on the local stress through equations Eqs. (2.5-2.6). The

spatial dimension is introduced in the model by treating the tissue as a solid continuum

satisfying the equation of motion given as (Jog, 2015),

ρ
∂2u j

∂t2 =
∂σi j

∂xi
+ ρb j (3.1)

where, σi j is the i jth component of the symmetric Cauchy stress tensor, u j and b j are

the jth component of deformation and body force per unit mass respectively and ρ is the

35
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density. The indices i and j in Eq.(2.3) takes values of 1, . . . , N where N is the dimension

of the domain representing the tissue. Under the assumption of small deformation, the

measure of deformation is characterized through strain εi j defined as,

εi j =
1
2

(
∂ui

∂x j
+
∂u j

∂xi

)
. (3.2)

Out of the many available constitutive models for the brain tissue in the literature

(Miller and Chinzei, 1997; Galford and McElhaney, 1970; Mendis et al., 1995; Prange

and Margulies, 2002; Rashid et al., 2013), the linear viscoelastic model is the most widely

used, and is the model we follow in our study (Galford and McElhaney, 1970; Shuck

and Advani, 1972; Kang et al., 1997; Donnelly and Medige, 1997). The stresses and

strains are decomposed into deviatoric and hydrostatic parts and related to each other as

(Christensen, 1982),

σdev
i j (xi, t) =

∫ t

0
2G(t − t̃)

∂εdev
i j (xi, t̃)

∂t̃
dt̃, and

σh(xi, t) = 3Kεh(xi, t),

(3.3)

where, σdev
i j (εdev

i j ) and σh (εh) indicate respectively the deviatoric and the hydrostatic

components of the Cauchy stress (strain). The hydrostatic response expressed through

Eq.(3.3) is assumed to be elastic and governed by the time-independent bulk modulus

K while the deviatoric stress is linearly related to deviatoric strain rate through time-

dependent shear modulus G(t), as noted in Eq.(3.3). In the present work, the viscoelastic

nature of the tissue is simulated through standard linear solid model (SLSM) which leads

to the functional form of G(t) as (Christensen, 1982),

G(t) = G∞ + G1e−t/τ (3.4)

where, G∞ is the long term shear modulus, and G1 is the shear modulus correspond-

ing to the relaxation time τ. Equations (3.1-3.4) in conjunction with variety of loading

scenarios and boundary conditions over various geometries of the brain tissue are solved

either analytically or numerically using commercial finite element method (FEM) soft-

ware COMSOL Multiphysics. The hydrostatic stress evolution at any point of interest is

then used to solve Eqs. (2.1-2.3,2.5,2.6) in MATLAB to obtain the time dependent in-

tracellular concentration evolution ci(t) at the point. In the further sections, the coupled
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Table 3.1: Material Properties of Brain Tissue (Shuck and Advani, 1972; Anderson, 2000)

Parameter Value

G∞ 16.70 kPa

G1 32.30 kPa

K 1.13 MPa

τ 6.89 ms

ρ 1040.00 kg/m3

model will be applied to different loading scenarios starting with simple 1D models grad-

uating to a realistic 2D brain geometry. The values of the material properties occurring in

Eqs. (3.1-3.4) are listed in Table 3.1, and used henceforth.

3.2 Results and Discussion

3.2.1 Analytical Solution

A simplified 1D bar problem forms the basis for understanding the correlation between

the geometry and viscoelastic nature of the tissue, load characteristic like magnitude,

duration and resulting stress and Ca2+ concentration. We begin with a simplest possible

case of a viscoelastic bar of length ‘L’ as shown in Fig. 3.1 subjected to a fixed boundary

condition at one end (ux(0, t) = 0) while a constant pressure is applied at the other end

(σx(L, t) = σ∗(t) = σ∗, t > 0). Applying Eqs. (3.1-3.4), the closed form expression for

the evolution of stress σx(ξ, s) in the Laplace domain is analytically obtained as (refer

Appendix C for derivation),

Figure 3.1: Tissue modelled as 1D viscoelastic bar of length L and thickness L/100, constrained

at end x = 0, and subjected to a load σ∗(t) at the other end. The viscoelastic behaviour of the bar

is represented through Eqs.(3.3-3.4) and Table 3.1.



38 Applying a Continuum Treatment

σ̄x(ξ, s)
σ∗

=
1
s

+
4
π

∞∑
n=1

[
(−1)n

(2n − 1)
×

s(s + ψ)

s3 + ψs2 +
(2n−1)2π2

4M2 s +
(2n−1)2π2

4M2 ψ(1 − ψ)

× cos
{ (2n − 1)πξ

2M

}]
(3.5)

where, ξ is the non dimensionalized space co-ordinate, M is the ratio of the length L

of the bar to the material length scale Lm = η/
√
ρE0, ψ = E1/E0 is a material constant,

and E1, E0 and E∞ are the constants occurring in the modified SLS relaxation law, E(t) =

E∞ + E1e−E1t/η (Eq.(C.1)), which can be derived from Eq.(3.4). The values of the material

properties occurring in Eqs.(3.1-3.4) are listed in Table 3.1, and used henceforth. For the

material constants, listed in Table 3.1, we note that the material length scale Lm = 53.904

mm. In terms of material length scale Lm, the bounding box of a typical human brain

is approximately 3.5Lm × 2.5Lm × 2LmC. (Duvernoy, 1999). Thus a typical length scale

representative of the human brain tissue can be taken as 50 mm and is the value adopted

as the tissue length in the 1D and 2D models discussed below, unless otherwise specified.

Under the action of constant load at the free end of 1D bar (Fig. 3.1), using Laplace

inversion of Eq.(3.5), Fig. 3.2a-c show the evolution of stress normalised with respect

to the applied load, at the fixed end (ξ = 0) for varying length L = {5, 50, 100} mm (M

= {0.093, 0.928, 1.856}) of the bar. The solution clearly brings out the combined effect

of bar inertia and viscoelastic effect. As opposed to a quasi-static case, the stress state is

inhomogeneous in space and time owing to the multiple interaction between the original

stress wave and waves generated due to reflections at the boundaries. The viscoelastic ma-

terial behavior additionally induces damping and over a sufficiently long time, the stress

settles to the solution corresponding to the quasi-static condition and represented through

the first term in the R.H.S of Eq. (3.5). As the length L of the bar decreases ( i.e. as M

decreases), the time taken for the waves to reach the fixed end decreases. Consequently

shorter the bar, higher will be the frequency of stress oscillations. However in each case,

the time taken to attain steady quasi-static solution is almost same as it depends on the

time scale embedded in the viscoelastic law rather than the bar dimensions. It is expected

that these conclusions will persist even if the load pattern is varied, as will be seen in the

next section where a more realistic rectangular impulse load is applied. Thus an important

takeaway here is that in a mechanically loaded tissue, since the mechanical stress varies
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Figure 3.2: The stress evolution with time normalised with respect to applied load σ∗ based on

Eq.(3.5) at the fixed end (x = 0) of a tissue modelled as 1D viscoelastic bar (Fig. 3.1) of length (a)

L = 5 mm, (b) L = 50 mm, and (c) L = 100 mm under application of a constant load σ(t) = σ∗ at

the other end.
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temporally and spatially in turn modifying the intracellular Ca2+ concentration, a contin-

uum spatial model for the intracellular Ca2+ kinetics is an important step to identify the

critical locations for a secondary injury.

3.2.2 Uniaxial Pressure Impulse – Geometry Effects

A TBI generally occurs due to high magnitude impacts over a very short duration, such as

in a fall, an automobile accident, or sports related incidents (Faul et al., 2010). To mimic

such an impact, sudden short duration impulses are applied in experiments (LaPlaca et al.,

1997; Geddes and Cargill, 2001; Lusardi et al., 2004; Geddes-Klein et al., 2006; Maneshi

et al., 2015). In order to assess the effect of transient loading, 1D bars of length L =

{5, 50, 100} mm are subjected to a rectangular impulse of magnitude 30 kPa and dura-

tion 10 ms. For a rectangular impulse case, deriving a closed form solution analogous

to Eq.(3.5) is extremely tedious due to case-specific Laplace inversion process. Hence,

Eqs.(3.1-3.4) for different loading and boundary conditions are solved numerically over

the tissue geometry using a commercial finite element method (FEM) software COMSOL

Multiphysics. To approximate the 1D behaviour in COMSOL, we maintain the bar width

as L/100 for all 1D simulations henceforth. Additionally, the large gradients of a rect-

angular impulse are smoothed over a very short duration of time tsmth = 1 ms to avoid

very high loading rates and associated numerical instabilities. To allow for this numerical

smoothing, the body remains at rest for a short duration of time t0 = 5 ms before the

impulse acts. The simulations are run till a solution time of 500 ms to make sure that all

the transient stress disturbances are entirely captured. For 1D bar, we use a mapped mesh

consisting of linear quadrilateral plane stress elements with element size of ≈ 1 mm. An

unconditionally stable implicit ‘generalized α’ time integration scheme is used to avoid

numerical damping of the impulse waves. To obtain a spatially smooth solution, the time

stepping is restricted such that tstep ≤ 0.8 ∗ xmin
ele /vp, where xmin

ele is the smallest element

size in the mesh and vp =
√

E0/ρ = 11.8 m/s (E0 is defined in Eq.(C.3)) is the elastic

pressure wave speed. Following the SLS viscoelastic material properties listed in Table

3.1 we use a maximum time step of 0.05 ms. To obtain the intracellular Ca2+ evolution at

any point, the hydrostatic stress σh from the FEM solution is used in the calcium kinetics

model represented through Eqs.(2.1-2.3,2.5,2.6) and solved in MATLAB. The calcium

kinetics model is run till both the intracellular and extracellular calcium concentrations

settle to a constant value at all points on the bar, which occurs at approximately 200 s.
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Table 3.2: The peak local hydrostatic stress (σpeak
h ) and peak intracellular Ca2+ concentration

(cpeak
i ) in tissue modelled as 1D viscoelastic bars (Fig. 3.1) of different lengths L, under an ap-

plication of impulse loads of magnitude σ∗(t) = 30 kPa when t0 < t < t0 + ti, 0 otherwise, for

different impulse durations ti.

ti

(ms)

L = 5 mm L = 50 mm L = 100 mm

σ
peak
h

(kPa)

cpeak
i

(×10−4 mM)

σ
peak
h

(kPa)

cpeak
i

(×10−4 mM)

σ
peak
h

(kPa)

cpeak
i

(×10−4 mM)

10 19.62 3.13 17.82 7.04 16.16 5.27

30 19.62 8.52 17.82 9.64 17.36 9.96

50 19.62 13.24 17.82 13.43 17.36 13.95

This is approximately 3 times the settling time ts analytically obtained for the homeostatic

calcium kinetics model in the previous chapter, Section 2.2. It must be noted the solution

of the calcium kinetics model takes at most 0.5 s for our machine as compared to the

simulation time of ≈ 2500 s for the FEA solver, implying calcium kinetics solution is a

computationally inexpensive addition to the FEM analysis.

Figures 3.3a, c and e show the evolution of hydrostatic stress at x = {0, L/2, and L}

for bars of length L = {5, 50, 100} mm respectively, under the action of impulse load of

magnitude 30 kPa applied for a duration of 10 ms. For completeness, the evolution of lon-

gitudinal strains in the corresponding bars are plotted in Fig. 3.3b, d and f. Similar to the

analytical results for constant load shown in Figs. 3.2a-c, as the length of the rod reduces,

the frequency of oscillations of stress increases. In the case of 5 mm long bar, within the

duration of impulse, the stress completes multiple oscillations. The calculated stress for

the impulse loading is then used to compute the Ca2+ evolution at the fixed end of the bar.

Table 3.2 compares the peak hydrostatic stress and peak Ca2+ concentration for the three

bar lengths {5, 10, 100} mm under the application of impulses of magnitude 30 kPa and

duration 10 ms, 30 ms and 50 ms. We observe that as the length of the bar increases, the

peak hydrostatic stress reduces. Similar observation can be noted through Fig. 3.3 also.

But a comparison of the peak Ca2+ concentration reveals that it is least in the shortest

bar where the peak hydrostatic stress is found to be the highest. Thus the first important

result of this chapter is that the location of maximum stress and maximum peak concen-

tration need not be the same. Hence the critical location of the primary insult predicted

by FE based models through various criterion like maximum principal strain, principal
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Figure 3.3: The numerically obtained evolution of hydrostatic stress σh is plotted at the fixed end

(x = 0) and the mid point (x = L/2) of the bar of length (a) L = 5 mm, (c) L = 50 mm, and (e)

L = 100 mm, for a rectangular impulse load σ∗(t) = 30 kPa when 5 ms < t < 15 ms, 0 otherwise.

The hydrostatic stress at x = L shown using the solid line with square markers is equivalent to the

applied impulse scaled by a factor of 1/3. The corresponding longitudinal strain εxx is plotted the

bars of length (b) L = 5 mm, (d) L = 50 mm, and (f) L = 100 mm
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Figure 3.4: The evolution of (a) local hydrostatic stress σh and (b) intracellular Ca2+ concen-

tration ci at the fixed end (x = 0), the mid point (x = L/2) and the free end (x = L) of a tissue

modelled as 1D viscoelastic bar (Fig. 3.1) of length L = 50 mm, under application of an impulse

load σ∗(t) = 30 kPa when 5 ms < t < 15 ms, 0 otherwise. The hydrostatic stress at x = L shown

using the solid line with square markers is equivalent to the applied impulse scaled by a factor of

1/3.

stress, shear stress or pressure (Anderson, 2000; Bandak et al., 2001; Zhang et al., 2001;

Levchakov et al., 2006; Mao et al., 2006; Takhounts et al., 2008) is not necessarily the

location of importance as far as damage due to secondary insult is concerned. We further

see from Table 3.2 that as the duration of impulse increases, the peak hydrostatic stress re-

mains same, but the peak Ca2+ concentration increases. This observation emphasizes the

significance of the duration of the elevated stresses in addition to the magnitude of stress

in the context of damage due to secondary injury, a factor not considered significant in

prediction of primary injury by earlier FEM based models.

3.2.3 Uniaxial Pressure Impulse – Impulse Effects

In order to delve further into the effects of spatialization we study the variation in the con-

centration at different points on the 1D bar upon application of impulse loads. Figure 3.4

shows the evolution of hydrostatic stress and concentration corresponding to the free end

of the bar of length L = 50 mm being subjected to an impulse of magnitude 30 kPa applied

for a duration of 10 ms and then suddenly removed. Figure 3.4a shows the evolution of the

hydrostatic stress with respect to time at three locations, viz. x = 0, x = L/2, and x = L,

on the bar. The intracellular Ca2+ concentration is also evaluated at these points, and it’s
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evolution is plotted in Fig. 3.4b. The local intracellular Ca2+ concentration at any point

initially rises very rapidly to a peak value, cpeak
i . Once the local stress has almost reduced

to zero, we observe a slow decay in the intracellular Ca2+ concentration until it settles to a

residual value cres
i , which is greater than the homeostatic concentration, c∗i . Although the

qualitative predictions of the spatial model proposed here look similar to the non spatial

model predictions in the previous chapter, Section 2.4.2, we note that the results are sig-

nificantly different. We see that application of hydrostatic stress at any single point would

result in a rectangular impulse shaped stress evolution, similar to the stress evolution at

x = L, in Fig. 3.4a, which would only produce a peak concentration of 1.773 × 10−4 mM,

as shown in Fig. 3.4b. However, in our new spatial model of Ca2+ kinetics, the transfer

of force through the geometry of the tissue, via a propagating longitudinal stress wave,

is taken into account, thus resulting in a much higher intracellular Ca2+ concentration

(≈ 7 × 10−4 mM). The propagated and reflected stress waves interfere and result in a

hydrostatic stress evolution akin to the application of repeated impulse loading in a non

spatial calcium kinetics model as discussed in Section 2.4.3. Further, from Fig. 3.4, it can

be seen that the more constrained region of the tissue will experience a higher mechanical

stress as compared to the other regions for the same applied external load, and is thus

more susceptible to not only primary, but also secondary injuries due to the higher Ca2+

accumulation. But this correspondence between the location of maximum stress and con-

centration is not always followed as seen earlier from Table 3.1, where the length of the

bar was varied. Thus we would like to reiterate that depending upon the geometric details

of the tissue, applied load magnitude and duration, the highest Ca2+ accumulation, and

hence the secondary damage, may not always be seen at the exact locations where highest

peak pressure is observed. For a more realistic depiction of the human brain, it is possible

that at a location, a smaller peak pressure may be observed, but it may be sustained for

a longer duration. While such a region may not be susceptible to a primary injury, our

model predicts that such a region may still be critical due to the occurrence of secondary

damage involving calcium kinetics.

Next we study the effect of the magnitude and duration of the applied impulse on

the intracellular Ca2+ concentration evolution. In accordance with the literature on ex-

perimental studies of TBI, we vary the magnitudes of rectangular impulse loads over a

range of 10 to 60 kPa acting over a duration of 5 to 200 ms as an external stimulus at the

free end of the bar (Geddes and Cargill, 2001; Geddes-Klein et al., 2006; Maneshi et al.,
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Figure 3.5: The evolution of peak cpeak
i and residual cres

i Ca2+ concentration at different locations

along the length of the bar if only the magnitude σ∗ ((a) and (b) respectively) or the duration ti ((c)

and (d) respectively) of a rectangular impulse load σ∗(t) = σ∗ when t0 < t < t0 + ti, 0 otherwise,

applied at the free end of tissue modelled as 1D viscoelastic bar (Fig. 3.1) of length L = 50 mm

are varied. In the former case ((a) and (b)), the duration ti = 10 ms is kept constant, while in the

latter case ((c) and (d)), the magnitude σ∗ = 10 kPa is kept constant.
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Figure 3.6: Two ramped impulses where the area under the ramped portion of the impulse shown

as the shaded region is kept constant, in order to keep the severity of impulse mathematically

defined as
∫
σdt, constant. After the ramping portion, the impulses are held at a uniform value for

a time ti and then instantaneously brought to zero.

2015). It is expected that for a more severe external load, involving an impulse of either

a higher magnitude or duration, a more severe secondary damage would be observed. We

compare the peak and residual Ca2+ concentrations for different impulses, where either

the magnitude of impulse is kept constant while the duration of impulse is varied, or vice

versa. The variation of the peak and residual Ca2+ concentration with respect to the vari-

ation in the impulse magnitude from 10 to 60 kPa, while the impulse duration is kept a

constant at 10 ms, is plotted in Fig. 3.5a and 3.5b respectively. Similarly, in Fig. 3.5c

and 3.5d, we plot the variation of the peak and residual Ca2+ concentrations respectively,

when the magnitude of the impulse is kept constant at 10 kPa, while the impulse duration

is varied in the range of 5 to 20 ms. As expected, it is observed that as either the impulse

magnitude or duration increases, the peak as well as the residual Ca2+ concentrations also

monotonically increase. Experiments by Maneshi et al. (2015) indicate a similar pattern,

which is observed to stabilize to a constant value for larger magnitudes or durations of the

applied impulse. In vitro such stabilization may be due to the cell deaths at higher Ca2+

concentrations (Gaetz, 2004; Werner and Engelhard, 2007; Prins et al., 2013), a feature

that we have not explicitly simulated in our phenomenological model.

Experiments by Cullen and LaPlaca (2006); Elkin and Morrison III (2007); Maneshi
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Figure 3.7: The variation of peak cpeak
i and residual cres

i Ca2+ concentration at different locations

along the length of the bar as a function of the duration of the ramping (tramp) of the ramped im-

pulse having same severity of impulse (see Fig. 3.6) applied at the free end of the 1D viscoelastic

bar of length L (Fig. 3.1) mimicking a tissue.

et al. (2015) indicate that the application of higher loading rates results in a greater chance

of cell death. As discussed in Section 2.4.2, the calcium kinetics model takes the loading

rate into consideration through the dependence of stress measure, ŝ, on the local hydro-

static stress history via Eq. (2.6). We apply ramped impulse loads increasing the load rate

(slope of the σ − t line in Fig. 3.6), while keeping the ‘impulse’ (mathematically given

as
∫
σdt, or the area under the stress-time curve shown as the shaded region in Fig. 3.6)

during the ramped portion a constant. Following the ramped portion, the load is main-

tained constant for a specified time ti, and then it suddenly ends as shown in Fig. 3.6.

As shown in Fig. 3.7, it is observed that as the time during the ramped portion, tramp, is

increased or as the loading rate of the applied impulse is deceased, both the peak and the

residual Ca2+ concentrations reduce. Thus our model ensures that the secondary dam-

age predicted is dependent on the rate of the applied pressure load, following the trends

observed experimentally.

3.2.4 Equibiaxial Pressure Impulse

Several experiments have been conducted where an equibiaxial pressure loading is applied

on brain tissue samples (Geddes and Cargill, 2001; Morrison III et al., 2003; Geddes-

Klein et al., 2006; Cullen and LaPlaca, 2006). In line with these experiments, we apply
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equibiaxial pressure impulse on a square tissue geometry. We apply roller boundary con-

dition on two adjacent sides of the geometry, while on the other adjacent faces equal

pressure impulses are applied as shown in the insets in Figs. 3.8a, 3.8c, and 3.8e. The lo-

cal hydrostatic stress and the local intracellular Ca2+ evolution that we obtain in response

to an impulse of magnitude 30 kPa suddenly dropped to zero after a duration 10 ms, are

plotted in Fig. 3.8. The results are qualitatively the same as our 1D model predictions.

It is observed that if an impulse of same magnitude and duration is applied in a uniaxial

and equibiaxial fashion, both the stress as well as the intracellular Ca2+ concentration

are higher for the equibiaxial loading as seen through comparison of Fig. 3.4b and Fig.

3.8b. This result agrees with the experimental observations by Geddes-Klein et al. (2006)

where higher peak Ca2+ was observed for a biaxial stretch. Further, we have observed

that the trends exhibited by the peak (cpeak
i ) and residual (cres

i ) Ca2+ concentration with

respect to change in impulse magnitude, duration, and the loading rate observed for the

one dimensional uniaxial case, as discussed in section 3.2.3, are followed for the biaxial

loading as well. These results are not shown for the sake of brevity. Lastly we would like

to report that a maximum peak strain of approximately 0.3 is observed in the simulations

of biaxial pressure impulse.

A much more significant observation is made when the length of the sample in the

simulation is varied as shown in Fig. 3.8. As in the 1D case discussed in section 3.2.3,

when the length of the geometry is reduced, the frequencies of the stress waves increase

as shown in Figs. 3.8a, 3.8c, and 3.8e. In the case of a 2D geometry, the normally

propagating longitudinal stress waves are coupled with each other through the Poisson’s

effect in the material. Further, the interactions between these waves give rise to transient

shear waves. The presence of shear waves in a purely compressive biaxial loading might

be counterintuitive, but their presence can be understood by appreciating that the shear

waves are transient in nature, and will disappear even if the external biaxial compressive

loads are not removed. Presence of shear waves is not contingent on the viscoelastic na-

ture of tissue and are in fact observed even if the material is assumed to be linear elastic.

As we transition from Figs. 3.8a,b to 3.8c,d to 3.8e,f, it is observed that smaller the size

of the square shaped tissue, greater is the overlap between curves for stress and concen-

tration evaluated at different locations. Thus with the reduction of tissue dimensions, the

spatial relevance of the model vanishes and the present model converges towards the non-

spatial calcium kinetics model discussed in the previous chapter. A similar observation
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Figure 3.8: The local hydrostatic stress σh and the intracellular Ca2+ concentration ci evolution

with time t at different locations along a 2D square tissue of varying edge length, under the appli-

cation of an equi-biaxal impulse load σ∗(t) = 30 kPa when 5 ms < t < 15 ms, 0 otherwise. The

square tissue obeys the viscoelastic material response represented through Eqs.(2.5-2.6) and Table

3.1. The hydrostatic stress at x = y = L shown in (a,c and e) using the solid line with circular

markers is equivalent to the applied impulse scaled by a factor of 2/3.
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can be readily made from the expression of stress distribution in a 1D bar under a constant

uniaxial pressure (Eq.(3.5)) whereby as the bar becomes shorter (M → 0), the stress dis-

tribution and consequently the Ca2+ becomes independent of the spatial coordinate ξ. As

the tissue length decreases, before a sufficient inertial delay or viscoelastic decay can oc-

cur, the stress waves will reflect from the opposite end of the bar. The longitudinal stress

wave travels with velocity vp = 11.8 m/s (Section 3.2.2), while the viscoelastic decay oc-

curs at a time scale τ = 6.897 ms (Table 3.1). The length L of the bar will be short enough

to be inconsequential if the wave can travel through it and reflect back to the original point

in a time ≤ 0.1 × τ = 0.6897 ms, during which a negligible viscoelastic decay will occur.

Thus, the longest bar in which the wave can reflect back without enough dissipation is

(
√

E0/ρ) × 0.1τ/2 = 4 mm. Indeed, our simulations reveal that for tissues shorter than 4

mm in dimension the overlap between the hydrostatic stress evolution at various points is

highly pronounced. In other words, we propose that the Ca2+ concentration predictions of

the non-spatial model will match with the predictions of the spatialized model as long as

the length of the tissue being modelled is less than or equal to (
√

E0/ρ) × 0.1τ/2 = 4 mm

(Table 3.1).

This observation assures us that calibration of the kinetic parameters listed in Table

2.1, which was performed in Section 2.4.2 by comparing the the non-spatial model re-

sults with the experimental observations of Maneshi et al. (2015) and Geddes-Klein et al.

(2006), is still held valid for the spatial calcium kinetics model. Further, this observation

suggests that in an experiment if the characteristic dimension of the specimen of the tis-

sue is longer than 4 mm, the local pressure at any point will deviate appreciably from the

externally applied pressure. Thus a true hydrostatic stress condition, with zero shear, is

not maintained. Therefore the Ca2+ accumulation will vary at different points on the spec-

imen. To avoid unwanted error due to transient stress waves and to maintain a uniform

Ca2+ accumulation throughout, it is proposed that the specimen dimension in experiments

should not exceed 4 mm.

3.2.5 Kinematic loading

TBIs can be caused by not only external forces, but also sudden vigorous motion of

the head-neck complex commonly occuring during sport incidences and blast induced

shock. (Margulies and Thibault, 1992; Zink, 2001; Gaetz, 2004; Werner and Engelhard,

2007). In such situations, the whole of the head undergoes rotational and/or translational
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Figure 3.9: Kinematic translational and rotational impulses corresponding to the loading param-

eters for data set 2 listed in Table 3.3 are applied on a tissue modelled as a 1D viscoelastic bar of

length L = 50 mm and width L/100, as shown in the schematic (a), resulting in the evolution of

the (b) local hydrostatic stress, and (c) the intracellular Ca2+ concentration which are plotted at 4

different locations along the length of the bar.



Table 3.3: Kinematic loading conditions obtained from the experimental observations of Nusholtz et al. (1984), used for the 1D and the 2D

simulations of tissue. The peak hydrostatic stress (σpeak
h ) and the peak Ca2+ intracellular concentration (cpeak

i ) obtained from simulations are

listed along with the experimentally observed peak pressures and physiological injuries.

umax ωmax αmax amax t i σpeak
h

cpeak
i Observed

Injury
(m/s) (rad/s) (rad/s2) (m/s2) (ms) (kPa) ×10−4 (mM)

Cadaver Impact 1D 2D Expt 1D 2D

1 7 28 7250 1900 10 26.25 33.85 12, 51 8.89 7.01

Subarachnoid

hematoma,

Frontal lobe

hemorrhage

2 7.5 20 8000 1800 12 27.98 33.77 38,42 9.37 7.47

Subarachnoid

hematoma,

Parietal lobe

hemorrhage

3 4.5 30 3900 420 25 12.14 10.87 11,12 3.37 3.14

Frontal and

Parietal

subarachoid

hemorrhage

4 3.8 30 7500 1350 12 21.06 21.06 25 3.92 3.92 No injury
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acceleration-deceleration and the resulting injury is usually diffused in nature as opposed

to the focal injuries due to localized impact (Smith and Meaney, 2000; Rowson et al.,

2012). It has often been proposed that kinematic parameters such as rotational acceler-

ation during vigorous head motion may act as a basis for primary insults during a TBI

(Ommaya and Gennarelli, 1974; Margulies and Thibault, 1992; Gaetz, 2004). Such iner-

tial injuries can be simulated by applying rotational and/or translational acceleration all

along the geometry through the body force per unit mass term b = alin +acen +acor +aeul in

Eq.(3.1), where linear acceleration alin = dv
dt , centripetal acceleration acen = ω × (ω × rp),

Coriolis acceleration acor = 2ω × ∂u
∂t , and Euler acceleration aeul = dω

dt × rp. Here rp is the

position vector of the point of interest, and the kinematic inputs v(t) and ω(t) are input

linear and angular velocity impulse functions as shown in Fig. 3.9a.

Nusholtz et al. (1984) have conducted experiments on Rhesus head and a human ca-

daver subjected to external impact and recorded the maximum linear and angular accel-

eration, velocities and observed injuries as noted for few cases in Table 3.3. We adopt

this information as kinematic loading input and solve the equation of motion (Eq.(3.1))

along with the constitutive response (Eqs.(3.3-3.4)) and thereupon the calcium kinetics

model (Eqs.(2.1-2.6)) to investigate the effect of tissue geometry and dimension on the

Ca2+ evolution and further attempt to correlate with the observed injury in experiments.

The linear velocity (v(t)) and angular velocity (ω(t)) are applied as ramp input to achieve

the maximum values as listed in columns 2 and 3 of Table 3.3 respectively. The duration

of ramping is selected such that the linear and angular accelerations attain the maximum

values as listed in columns 4 and 5 of Table 3.3 respectively. Post ramping, the impulse

is maintained for time ti given in column 6, Table 3.3 followed by sudden drop to zero

(see Fig. 3.9a). Note that the kinetic parameters and material constants mentioned in Ta-

bles 2.1 and 3.1 are persisted for the calculations in this section. Analogous to pressure-

loading dealt in Section 3.2.2, we start with 1D tissue of length 50 mm (width is kept

at 0.5 mm to ensure a 1D behaviour) constrained by roller support along two edges as

shown in Fig. 3.9a and subject it to kinematic loading based on values taken from Table

3.3. Fig. 3.9b and Fig. 3.9c show the evolution of hydrostatic stress, and Ca2+ concen-

tration corresponding to the kinematic loading represented by data set 2 from Table 3.3.

Similar exercise is carried out for a 2D square tissue of side 50 mm where two adjacent

edges are constrained by roller support and subjected to kinematic loading from Table

3.3. Based on the results of 1D and 2D simulations, the peak values of hydrostatic stress
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σ
peak
h and Ca2+ concentration cpeak

i are extracted and appended in Table 3.3. The Table

3.3 also lists the experimentally observed peak pressure as reported by Nusholtz et al.

(1984). In some of the experimental cadaver impacts, a bimodal pressure evolution (with

two peaks) was observed in the cadaver brains, and for such cases both the maxima val-

ues are listed. A comparison of the numerically observed peak pressures with the peak

hydrostatic stress observed in experiments reveals that inspite of the simplification of ge-

ometry, constraint assumptions, the simulation results are significantly comparable with

experiments. Amongst the 1D and 2D calculations, the latter seems to show a marginally

better comparison with respect to the experimental observations. A comparison of the

peak Ca2+ concentrations with the experimentally observed injuries reported in the last

column of Table 3.3 (Nusholtz et al., 1984) does not reveal any significant correlation.

However, subarachnoidal hematomas are noted to occur only in the case when the peak

Ca2+ concentrations are higher. In the 1D and 2D simulations with the kinematic loading,

a maximum peak principal strain of approximately 0.4 were observed.

3.2.6 2D Brain Geometry

In this section, we apply the spatial calcium kinetics model to a realistic 2D geometry of

the brain tissue. Duvernoy (1999) photographed a series of 2 mm thick coronal sections

of a 188 mm long specimen of the right cerebral hemisphere. As a geometric input for the

simulation, we considered the section along the central coronal plane, i.e. 94 mm from

the front end, as shown in Fig. 3.10a (Duvernoy, 1999). The points along the outline

of the cerebral hemisphere were extracted via WebPlotDigitizer and a smooth curve was

interpolated through these points and mirrored along the central sagittal plane to obtain

the contour for both the hemispheres (Rohatgi, 2018). The outline is also offset by a max-

imum thickness of 4 mm to obtain a geometry for the meninges surrounding the upper

portion of the cerebrum (See Fig. 3.10b). The meninges comprise of the falx cerebri, the

Pia-Arachnoid Complex and the dura mater and its material behaviour is assumed to be a

linear elastic material with Young’s Modulus 31.5 kPa, Poisson’s Ratio 0.45, and density

1130 kg/m3 (Takhounts et al., 2008). Fig. 3.10b shows a representative mesh of the 2D

brain tissue used for analysis. We have clearly labelled the cerebrum and the meninges

in the geometry. Without compromising the mesh quality, we found that 1588 triangular

plane stress elements are enough to faithfully capture the geometry. Due to narrow ge-

ometries involved in the meninge domain, having a maximum thickness of 4 mm and a
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Figure 3.10: (a) A scanned central coronal section of a 188 mm long specimen of the right cerebral

hemisphere of a human brain, reproduced from the study of Duvernoy (1999). The red dots in

(a) indicate the data points which are used to create a 2D geometry shown in (b). The outer

boundary of the cerebrum is offset by a minimum distance of 4 mm to obtain the outer domain

comprising the meninges. The outer surface of the meninges is constrained by roller supports and

the whole section is subjected to kinematic loading corresponding to the various kinematic loading

parameters 4 listed in table 3.3. Subfigure (b) also shows the representative FE mesh comprising of

3 noded triangular plane stress elements, enclosed within the bounding box, dimensions of which

are discussed in section 3.2.1. Five points of interest (A, B, ... E) are identified where the evolution

of the damage parameters is studied.
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minimum thickness of 1 mm, the elements are restricted to a minimum edge length of

0.08 mm. Such a measure ensures a proper mesh refinement while minimizing the com-

putational time. An element growth rate of up to 1.3 is allowed to minimize the number

of elements. Due to the use of finer elements for meshing, as shown in Fig. 3.10b, to

maintain the accuracy of the solution we have reduced the maximum time step to a value

of 0.01 ms. Additionally, as we do not expect as sharp gradients in the pressure evolution

for a kinematic loading, as in an impulse loading, we change the time-integration scheme

to an unconditionally stable implicit BDF (Backward Difference Formula) scheme, which

is faster than the generalised α scheme used earlier, at the cost of introducing some nu-

merical damping. As shown in the Fig. 3.10b, kinematic loading comprising of the trans-

lational and rotational velocities from Table 3.3 is applied on the geometry in a manner

analogous to the previous sub-section. We assume that the rigid skull enclosing the brain

will restrict any normal displacement, but allow a frictionless sliding at the outer layer

of the meninges. Hence, we apply a sliding boundary condition throughout the outer

boundary, implemented as n · u = 0, where n is the outward normal vector at any point

on the boundary. The kinematic loading parameters are the same as in case 4 listed in

Table 3.3. Under these loading and boundary conditions, the equation of motion Eq.(3.1),

along with the constitutive law, Eq. (3.3) is solved in COMSOL, and coupled with the

calcium kinetics equations Eqs. (2.1-2.3,2.5,2.6). Since the intracellular Ca2+ evolution

is of significance only in the cerebrum, the calcium kinetics equations are not solved for

the meninges domain.

Based on the results of simulation, we identify 5 points of interest which are labelled

as A, B, C, D and E in Fig. 3.10b. A is the point at which the peak intracellular Ca2+

concentration, cpeak
i , reaches the maximum value in the entire domain. At point B, cpeak

i

is minimum. It is observed that the locations of maximum and minimum residual in-

tracellular Ca2+ concentrations, cres
i , coincide with that of cpeak

i . Points C and D are the

locations where the peak local pressure attains the maximum and minimum magnitudes

respectively. We have taken an additional point E, which lies in the meninges domain,

where we observe the pressure evolution, but the calcium kinetics is not solved for. The

local pressure evolution and the intracellular Ca2+ concentration evolution at these points

are plotted in Fig. 3.11a and 3.11b respectively. We find that for the translational and

rotational velocity values adopted from Table 3.3, the contribution of the former to the re-

sulting stress is much higher than the latter. Hence the results wouldn’t be affected much,
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Figure 3.11: The evolution of (a) hydrostatic stress σh and (b) intracellular Ca2+ concentration

ci at the five identified points of points of interest labeled in Fig. 3.10b, under the application of

kinematic loading corresponding to the loading parameters for data set 4 listed in table 4.1. Due

to being located in the meninges, the Ca2+ evolution is not evaluated at point E.
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even if only the translational velocity was used.

Reinforcing the discussion in Section 3.2.3, we again observe that the location of

maximum peak pressure (point C) does not correspond to the location of maximum in-

tracellular Ca2+ concentration (point A). In this case we note that the Ca2+ concentration

evolution at the point C, the pressure reaches a magnitude of 21.3 kPa, while at point A,

a peak pressure of 19.73 kPa is reached. This may indicate that point C is more critical

for damage. However a higher intracellular concentration is attained at point A, indicat-

ing it to be the more probable location of secondary damage. For the point E, we note

that the peak pressure reached is higher than at point A inside the cerebrum, but the Ca2+

concentration is irrelevant as it is located in the meninges.

3.3 Conclusion

In this chapter, we extended the calcium kinetics model by introducing a spatial dimen-

sion. We introduced the spatial dependence of the local hydrostatic stress which is evalu-

ated by performing a transient FEM analysis on the geometry of a human brain. The non

spatial calcium kinetics model is then coupled with the FEM stress results to reveal the

local intracellular Ca2+ concentration evolution with respect to time, at any point of inter-

est throughout the geometry. The coupled spatialised calcium kinetics model is found to

be advantageous over purely FEM based mechanistic models as well as purely chemical

kinetics based non-spatial model presented in Chapter 2.

The spatial Ca2+ kinetics model is consistent with the results of the non-spatial model,

and therefore, like our previous model, reproduces qualitatively the key experimental ob-

servations (LaPlaca et al., 1997; Geddes and Cargill, 2001; Geddes-Klein et al., 2006;

Maneshi et al., 2015). As in the case of non-spatial mode, upon action of an external load

the typical profile of the intracellular Ca2+ concentration shows an initial rapid increase.

Upon removal of load, the concentration gradually settles to a residual value cres
i which is

higher than the homeostatic concentration. For a severe injury, i.e. for a higher magni-

tude or duration of the impulse load, the peak and the residual concentrations are higher.

Therefore, a severe injury results in a severe secondary damage.

From the results presented in this chapter we also infer that peak kinematic or pressure

measures obtained using purely mechanistic FE models may not be the precise predictors

for location of secondary injuries. Unlike these, our model takes into account not only the
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peak pressure values, but more significantly, the duration for which these peak pressures

act. We have been able to blend both these mechanical parameters to acquire the intra-

cellular Ca2+ concentration, which is directly responsible for the occurrence of secondary

damage in the brain tissue. We believe that thus obtained intracellular Ca2+ concentration

is a more definitive indicator of secondary injuries. We further assert that this signifi-

cant parameter is obtained at a virtually insignificant computational cost over the FEM

analysis.



Chapter 4

Stress Dependent Tau Phosphorylation

4.1 Calpain-I Activation

As discussed in the section 1.3, excessive Ca2+ accumulation in the neurons has been

implicated in the activation of calpain enzyme. Of the two forms of calpain ubiquitously

expressed in a human neuron, calpain-I has a much lower Ca2+ requirement for its activa-

tion as compared to calpain-II, and is hence more severely implicated in the downstream

proteolysis of essential proteins during tauopathies (Ferreira and Bigio, 2011; Jin et al.,

2015; Kurbatskaya et al., 2016). Following this observation, we explicitly base our model

on activation of calpain-I only. Assuming a single step reaction for calpain activation by

accumulated Ca2+, we can write the corresponding mass action kinetics as,

d[CalA]
dt

= k f cn
i [Calp] − kr[CalA] (4.1)

where, k f and kr are the forward and reverse rate constants respectively, n is the Hill’s

constant corresponding to number of Ca2+ ions binding on a single molecule of calpain, ci

is the instantaneous intracellular Ca2+ concentration, while [Calp] and [CalA] denote the

concentrations of calpain and activated calpain respectively. Conserving the total amount

of calpain molecules in the system, we can express the rate of calpain activation as,

d[CalA]
dt

= k f [Calp]0

{
cn

i −
[CalA]
[Calp]0

(
cn

i + Kn
1/2

)}
(4.2)

where, [Calp]0 is the initial calpain concentration, and K1/2 is the Ca2+ concentration

required for half maximal calpain activation, defined in terms of the forward and reverse

61
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rate constants as, K1/2 = (kr/k f )1/n. The procedure to estimate k f , K1/2 and [Calp]0 will

be discussed in the section 4.4.

A calpain molecule comprises of a large catalytic subunit, consisting of four domains

(dI-dIV) and a small regulatory subunit with two domains (dV,dVI). Domains IV and VI

form the C terminal of their respective subunits, and contain five EF-hand motifs each,

which provide multiple sites for Ca2+ to bind cooperatively (Dutt et al., 2000; Khorchid

and Ikura, 2002; Suzuki et al., 2004; Ono and Sorimachi, 2012). Additionally, the do-

main II of the large subunit, the cysteine protease core domain (CysPc), itself contains

two highly cooperative binding sites for Ca2+ (Moldoveanu et al., 2002; Khorchid and

Ikura, 2002; Moldoveanu et al., 2004; Suzuki et al., 2004; Ono and Sorimachi, 2012). A

multistep process has been hypothesised for calpain activation by Ca2+. As a first step

Ca2+ binding at, at least three of the five, EF sites of dIV and dVI creates subtle con-

formational changes leading to opening of the circular arrangement of the domains via

removal of helical anchor between dI and dVI, and the dissociation of the small subunit

from the large subunit. These changes release the tension in the protease core, allow-

ing Ca2+ binding to occur in dII (Moldoveanu et al., 2002; Khorchid and Ikura, 2002;

Moldoveanu et al., 2004; Suzuki et al., 2004). This mechanism indicates that atleast 6

binding sites are operational with a high degree of co-operativity during the calpain acti-

vation process. Although calpain activation is a multistep process, the lack of observation

of intermediary species indicates a much lower time scale involved in the binding process

compared the time scale involved in the proteolytic activity of the activated calpain. This

justifies our simplification of the complex multistep process into a single step reaction

given by equations (4.1 - 4.2).

Given k f , K1/2, [Calp]0, the calpain kinetics equation (4.2) solved simultaneously with

the calcium kinetics equations (2.1-2.3,2.5) allows us to predict the calpain activation

following the application of an external hydrostatic stress.

4.2 Calpain Mediated Kinase Truncation

Activated calpain-I can mediate tau hyperphosphorylation via several pathways most im-

plicated of which are the increased activities of CDK5 and GSK-3β kinases. Although

CDK5 activity may increase in response to calpain activation, in vivo evidence for CDK5

being responsible for tau hyperphosphorylation in an AD affected brain is lacking (Patrick
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et al., 1999; Kusakawa et al., 2000; Lee et al., 2000; Nath et al., 2000; Engmann and

Giese, 2011; Kimura et al., 2014). On the other hand, the GSK-3β truncation correlates

with tau hyperphosphorylation in an AD affected brain (Jin et al., 2015; Baudry and Bi,

2016; Kurbatskaya et al., 2016). Similarly in a human TBI, the injury severity is found

to correlate with increased activity of GSK-3β (Yang et al., 2017; Kulbe and Hall, 2017).

Upon exposure to calcium, GSK-3β in human brain extracts is cleaved via a calpain me-

diation (Goñi-Oliver et al., 2007, 2009; Ma et al., 2012; Jin et al., 2015). Ample evidence

is available in literature to implicate calpain in the GSK-3β truncation (Goñi-Oliver et al.,

2007, 2009, 2011; Feng et al., 2013; Jin et al., 2015; Baudry and Bi, 2016). Goñi-Oliver

et al. (2007, 2009) performed a quantitative kinetic assay of the N-terminated GSK-3β

cleavage product, ∆N-GSK-3β, and reported that its generation is a two step process - the

first step generating the larger (40 kDa) fragment F1, and the second step a smaller (30

kDa) fragment F2. Accordingly, we model the two step GSK-3β truncation process by

writing the chemical reactions as,

CalA + GSK-3β
kG

1
−−−⇀↽−−−

kG
−1

F1

CalA + F1

kG
2
−−−⇀↽−−−

kG
−2

F2

where kG
1 (kG

−1) and kG
2 (kG

−2) are the forward (reverse) reaction constants for the for-

mation of truncation products F1 and F2 respectively. The rate equations for GSK-3β, F1

and F2 based on the above chemical reactions are,

dXG

dt
= −kG

1 [CalA]XG + kG
−1XF1

dXF1

dt
= kG

1 [CalA]XG −
{
kG
−1 + kG

2 [CalA]
}
XF1 + kG

−2XF2

dXF2

dt
= kG

2 [CalA]XF1 − kG
−2XF2

(4.3)

where, χG = [GSK-3β]/G0, χF1 = [F1]/G0 and χF2 = [F2]/G0 respectively repre-

sent the relative fractions of the instantaneous concentrations of full length GSK-3β, and

its fragments F1 and F2 with respect to G0, the initial concentration of GSK-3β. Equa-

tion (4.3) predicts the time dependent generation of the N-truncated GSK-3β fragments

(∆N-GSK-3β) if the time dependent concentration of activated calpain is known. Reports

suggest that GSK-3β in human brain extracts can be cleaved at N-terminal and/or at the

C-terminal upon exposure to calcium (Goñi-Oliver et al., 2007; Ma et al., 2012; Jin et al.,
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2015). Analogous to ∆N-GSK-3β, the truncation products ∆C-GSK-3β, and ∆N/∆C-

GSK-3β too show an increased activity and significantly contribute in tau phosphoryla-

tion. But our model (equations (4.3)) is solely based on ∆N-GSK-3β fragmentation due

to lack of availability of kinetic data on generation of ∆C-GSK-3β, and ∆N/∆C-GSK-3β

fragments.

4.3 Tau Phosphorylation/Dephosphorylation

Tau proteins have around 30 phosphorylable sites, of which about 10 sites are known to

be hyperphosphorylated in vivo by GSK-3β (Gong et al., 2005; Liu et al., 2006; Jin et al.,

2015; Stepanov et al., 2018). In the post-mortem AD brain NFT P-tau aggregates, in all

only 5-9 moles of phosphate per mole of P-tau are seen (Ksiezak-Reding et al., 1992;

Köpke et al., 1993; Iqbal et al., 2009), suggesting that not all of the available sites may

be phosphorylated. In other words, of 210 possible combinations of tau phosphorylation

states, around 200 possible states are usually seen in an AD affected brain. These observa-

tions indicate a massively combinatorial nature of the phosphorylation/dephosphorylation

phenomena which an explicit and deterministic model will most likely be inadequate to

capture. Indeed, rule based approaches like agent based modeling have been used in lit-

erature to simulate such biological interactions, primarily at the scale of few tau proteins.

For instance, Stepanov et al. (2018) developed a probablistic model for tau phosphoryla-

tion/dephosphorylation assuming mutual independence at the sites of interest. However

extrapolation of these stochastic models to the scale of MT bundle is not straightforward.

A single 4 µm long MT bundle in an axon can have 10-100 MTs arranged with a tau

protein spacing of ∼ 20 nm (Peter and Mofrad, 2012; Ahmadzadeh et al., 2014) leading

to a total of around 10000 tau proteins. Instead of a probabilistic study of such a huge

sample space, we propose a simplified averaged model by making an additional assump-

tion that the phosphorylation at each distinct site of tau protein follows the same average

kinetics. We assert that a numerically averaged kinetics over all the phosphorylation sites

can be found experimentally despite the known site specific kinetics for both phosphory-

lation and dephosphorylation (Liu et al., 2005, 2006; Jin et al., 2015). Thus, instead of

observing how many tau proteins are being phosphorylated, we study the phosphoryla-

tion/dephosphorylation occurring at any individual site, and compute the average number

of sites of tau which are being phosphorylated/dephosphorylated. We do so by consider-
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ing the phosphorylation at any single site of tau by full length GSK-3β, initial and final

truncation products F1 and F2 through the following reactions respectively,

GSK-3β + P
kτf
−−−→ P,

F1 + P
kτf
−−−→ P,

F2 + P
kτt
−−−→ P,

In these reactions, as well as elsewhere in the article, ‘P’ and ‘P’ denote an unphos-

phorylated (vacant) and phosphorylated (occupied) site respectively. The symbols above

the arrow indicates the reaction rate for each of the reaction. The reaction rate constant

for the first two reactions is assumed to be same for the lack of enough data and to limit

the number of parameters in the model. The final truncated kinase product F2 has a higher

phosphorylation activity towards tau as compared to the full length kinase.

If S and N signify the total number of sites and average number of occupied sites

per tau protein and [tau]0 corresponds to the total concentration of all tau protein whether

phosphorylated or not, then the total number of phosphorylated NP and unphosphorylated

NP sites in the system per unit volume are,

NP = N · [tau]0, NP = (S − N) · [tau]0 (4.4)

Based on the phosphorylation reactions and equation (4.4), rate of increase in the

average number of occupied sites is,

(
dN
dt

)
+

= kτf G0

XG + XF1 +
kτt
kτf
XF2

 (S − N) (4.5)

where G0 is the initial concentration of GSK-3β kinase in the system.

The dephosphorylation phenomena of tau proteins by phosphatases like PP2A have

been experimentally observed to follow a Micheles Menten kinetics with a Hill’s coeffi-

cient of 1 (Liu et al., 2005) given as,

dNP

dt
= −

VmaxNP

Km + NP
(4.6)

where Vmax is the maximal rate of phosphorylation and Km is the average site occu-

pancy at which a half maximal phosphorylation rate is attained. Using equation (4.4),

equation (4.6) can be rewritten to obtain the rate of decrease in average number of occu-

pied sites as,
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(
dN
dt

)
−

= −
VdeN

Kde +N
(4.7)

where, Vde = Vmax/[tau]0 and Kde = Km/[tau]0. The overall rate at which the average

number of occupied sites per tau protein changes due to the combined action of phospho-

rylation by GSK-3β and its truncated products (equation 4.5) as well as dephosphorylation

by PP2A (equation 4.7), is,

dN
dt

= kτf G0

XG + XF1 +
kτt
kτf
XF2

 (S − N) −
VdeN

Kde +N
(4.8)

Through the set of equations (2.1-2.5, 4.2, 4.3, 4.8) we have built a mathematical

framework that allows us to predict the local intracellular Ca2+ evolution, the resulting

calpain activation, GSK-3β truncation and tau phosphorylation behaviour, if the evolution

of local hydrostatic stress at any point of interest is known.

4.4 Estimation of parameters

Equation (4.2) governing the calcium mediated calpain activation demands the knowledge

of parameters n, K1/2 and k f . The reasoning behind the selection of values listed in Table

4.1 is as follows: Out of the two kinds of calpain, Calpain-II is reported to bind Ca2+

with a Hill’s coeffiecient of 5 (Dutt et al., 2000). As discussed in the section “Calpain
Activation”, Calpain-I is known to possess at least 6 Ca2+ binding sites with a very high

degree of cooperativity. In fact, a Hill’s coefficient of 1.8 has been reported for the non

EF hand site of Calpain-I towards Ca2+ (Moldoveanu et al., 2002, 2004). Based on these

observations and qualitative similarity in functioning and structures of Calpain-I and II,

we assume a common value of n = 5 as Hill’s coefficient for binding Ca2+.

The autolysis of calpain-I occurring in parallel to its activation, and additional pres-

ence of phospholipids reduce the in vivo requirement of Ca2+ for half maximal calpain

activity (K1/2) below the observed in vitro value. Hence based on the reported range of

0.6-2 µM (Cong et al., 1989; Andrea et al., 1996), we assume Ca2+ requirement for half

maximal activation to be 1.5 µM. Equation (4.2) reveals the time constant τcalp for cal-

pain activation to be, 1
/ {

k f

(
cn

i,hom + Kn
1/2

)}
. Since calpain mediated breakdown products

from different protein substrates are seen within 2-10 minutes of calcium infusion (An-

drea et al., 1996; Zhao et al., 1998; Büki et al., 1999; Czogalla and Sikorski, 2005) τcalp is



Table 4.1: Value of Parameters

Parameter Definition Value

Calpain

Activation

K1/2 ci for half maximal activation 1.5µM

n Hill Coefficient 5

k f Forward Rate Constant for activation 4.3896 × 10−4µM−5s−1

[Calp]0 Homeostatic Calpain concentration 0.1µM

GSK-3β

Truncation

kG
1 Forward rate constant for truncation step 1 3.312µM−1s−1

kG
−1 Reverse rate constant for truncation step 1 0.0086s−1

kG
2 Forward rate constant for truncation step 2 1.121µM−1s−1

kG
−2 Reverse rate constant for truncation step 2 0.0035s−1

Tau

Phosphorylation/

Dephosphorylation

kτf
Reaction Rate for Tau Phosphorylation

by full length [GSK-3β]0
kτf G0

= 9.6282 × 10−5s−1
G0 Homeostatic concentration of GSK-3β

kτt
Reaction Rate for Tau Phosphorylation

by truncated product F2
kτt /k

τ
f = 29.292

Vde Maximal tau dephosphorylation rate 3.2615 × 10−3s−1

Km
Total tau concentration for half maximal

dephosphorylation
11.6µM

[tau]0 Total tau concentration in neuron 4.36µM

S Number of sites on each tau protein 10
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assumed to be 5 minutes leading to the forward rate constant k f = 4.3896×10−4 µM−5s−1.

The values used for the kinetic constants involved in calpain activation are listed in Table

4.1.

An experimental time evolution of calpain activation from a kinetic assay study would

be ideal to validate the model. In absence of any such data in literature, to the best of

our knowledge, the correctness of the kinetic parameters chosen for calpain activation in

Eq. (4.2) is assessed through two checks. Firstly, Eq. (4.2) yields the fraction of calpain

activated under homeostatic condition as cn
i,hom

/ {
cn

i,hom + Kn
1/2

}
∼ 10−6, which concurs with

the inactivity exhibited by calpain under an undisturbed homeostatic condition (Andrea

et al., 1996; Ono and Sorimachi, 2012). The second check involves the time span of the

presence of activated calpain and its peak value due to loading incurred during TBI. In

conformation with the repeated impulse loads of millisecond duration felt by brain during

TBI (Maneshi et al., 2015; Nusholtz et al., 1984), we consider an idealized load of 5

repeated stress impulses, each of magnitude 10 kPa and duration of 10 ms and a resting

period of 50 ms between each successive impulse (see the inset of Fig. 4.1a) as input to

our model. Fig. 4.1a shows the evolution of intracellular Ca2+ (shown using red colored

solid line) and the time course of calpain activation (shown using blue colored dashed

line) based on the solution of the calcium kinetics (Equations 2.1-2.3,2.5) along with the

calpain activation kinetics (Equation (4.2)) for the parameters listed in Table 2.1 and Table

4.1. As seen in Fig. 4.1a, calpain-I activity is significant only for ∼ 20-30 minutes after the

application of load, in agreement with the experimental observations of notable increase

in the activation of calpain-I and formation of calpain specific proteolysis products within

15 minutes (Kampfl et al., 1996; Büki et al., 1999) and 30 minutes (Büki et al., 1999;

Serbest et al., 2007) of injury respectively. Considering homeostatic calpain concentration

[Calp]0 as 0.1 µM (Kilinc, 2008; Palecek et al., 1999), the peak value of activated calpain

[CalA] noted from Fig. 4.1a is approximately 1.7 nM which falls within the range 1-20 nM

generally adopted as calpain concentration in the experiments involving in vivo calpain

activities (Frangié et al., 2006; Goñi-Oliver et al., 2007; Jin et al., 2015).

The kinetic parameters involved in the GSK-3β truncation model (Equation (4.3)) are

obtained by benchmarking the model prediction against the experimental data of Goñi-

Oliver et al. (2007) who studied the N-terminal truncation of GSK-3β by calpain and

reported the relative concentrations of the full length (GSK-3β) and the truncated prod-

ucts (Fragment 1, Fragment 2) with respect to the time allowed for calpain treatment.
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The experiments made use of 0.2 units/ml (∼13.4 nM1)) of calpain in presence of 5 mM

CaCl2 to achieve an immediate and total activation of calpain allowing us to circumvent

the evolution of calpain activation and assume that activated calpain concentration stays

constant throughout the process. The correctness of the finalized parameters listed in Ta-

ble 4.1 can be gauged through the excellent comparison between the model prediction

and experiments of Goñi-Oliver et al. (2007) as displayed in Figure 4.1b.

The kinetic parameter kτf G0 in equation (4.5) associated with GSK mediated tau phos-

phorylation is decided based on the experiment of Liu et al. (2006) which report the time

dependent increase in tau phosphorylation levels of PKA prephosphorylated tau upon

subsequent phosphorylation by untruncated GSK. The in vivo increase in susceptibility

of tau to GSK mediated phosphorylation in the presence of PKA (Wang et al., 1998; Liu

et al., 2004) is captured tacitly through the term kτf G0 in our model. For its value listed

in Table 4.1, the comparison between the prediction based on equation (4.5) and experi-

mental data of Liu et al. (2006) is shown in Fig. 4.1c. The parameter kτt /k
τ
f in equation

(4.5) is calibrated by employing the work of Jin et al. (2015), where the phosphorylation

of individual tau sites by GSK-3β and its truncated products. As our model and equation

(4.5) assumes same average kinetics to hold at all sites, we extrapolate the site-specific

result of Jin et al. (2015) for the site Ser-199 to hold good in an average sense and repre-

sent overall tau protein phosphorylation. We are aware of the approximation but persist

with it owing to lack of additional experiments to obtain a suitable average kinetics. Ser-

199 in particular is chosen as it is always found to be phosphorylated by GSK-3β and its

truncation products, as well as dephosphorylated by PP2A (Liu et al., 2004; Jin et al.,

2015; Liu et al., 2005). Following Jin et al. (2015), 2 nM activated calpain is allowed to

truncate GSK for 10 minutes through GSK truncation kinetics equation (4.3). The resul-

tant concentration of GSK-3β and its truncation products are fed as input to equation (4.5)

and the parameter kτt /k
τ
f is sought to ensure a good match between the model result and

observations of Jin et al. (2015). The comparison can be seen in Fig. 4.1d and the corre-

sponding value of kτt /k
τ
f is noted in Table 4.1. It may be noted that in this procedure the

in vivo homeostatic concentration of GSK-3β (G0) is a parameter not readily available,

hence we have combined kτf G0 as a single parameter. It should also be pointed out that we

are using the in vitro kinetics to calibrate the in vivo kinetics parameters. However, the

use of recombinant GSK obtained from lyzed HEK-293FT cells in the experiments, with

1Based on specific activity of calpain used by Goñi-Oliver et al. (2007) (Merck, catalogue# 208718)
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concentrations within physiological range allow us to do so as a first approximation.

The correctness of parameters associated with Equation (4.5) is checked against an-

other set of studies by Jin et al. (2015) where the GSK-3β truncation by 1nM calpain-I is

allowed to proceed for different times and the subsequent kinase activity is recorded. The

same study is carried in silico using equations (4.3) and (4.5) of our model and parameters

listed in Table 4.1 to generate the time variation of relative kinase activity between the full

length kinase, and its truncation products. The result predicted by model and plotted in

Fig. 4.1e is qualitatively similar to the result of Jin et al. (2015) and succeeds in captur-

ing the increase in the kinase activity post truncation. However the experiments predict

that the relative activity doubles in ∼30 min (Jin et al., 2015) while our model predicts

that it will triple in ∼20 min. The quantitative dissimilarity can be attributed to the fact

that the model calibration made use of the work of Goñi-Oliver et al. (2007) based on

N-truncation of GSK-3β while the work of Jin et al. (2015) which forms the basis of Fig.

4.1e is based on C-terminal truncation of GSK-3β.

The parameters Vde and Kde in Equation (4.7) associated with tau dephosphorylation

via phosphates like PP2A are extracted through the in silico simulation of experiments of

Liu et al. (2005). The parameter Km is chosen equal to 34.8 based on the result of Liu

et al. (2005) where in-vitro half maximal PP2A mediated dephsphorylation of tau proteins

containing 3 occupied sites occurs at a tau concentration of 11.6 µM. The parameter

Vde is calibrated by matching the prediction of Equation (4.7) with the kinetic assay of

percentage tau dephosphorylation at Ser-199 with time, as reported by Liu et al. (2005).

The comparison is shown in Fig. 4.1f and the corresponding value of Vde is mentioned

in Table 4.1. Following the experiment by Liu et al. (2005), [τ0] = 4.36µM (Table 4.1)

is adopted during the calibration procedure which is quite reasonable as it falls within

the physiological range 2-10µM (Liu et al., 2005; Iqbal et al., 2009). We would like to

reiterate the usage of site specific experimental data for calibration of site independent

model, assuming the average phosphorylation kinetics at all the sites. Lastly, we would

like to point out that the parameter estimation carried out in this section is specific to

the currently available experimental results against which calibration or validation was

carried out. In order to validate the parameter estimation procedure, the sensitivity of the

model to the parameters is carried out in Appendix D.
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Figure 4.1: The parameters involved in equations (4.2,4.3 and 4.8) are estimated by calibrating the

model to experiments reported in literature. (a) The time dependent evolution of normalized Ca2+

concentration (ci/ci,hom) in red solid line, and fraction of calpain activated ([CalA]/[Calp]0) in

blue dashed line, when a repeated stress impulse as shown in the inset is applied. (b) Comparison

of the evolution of relative fractions of GSK-3β and its truncation products F1 and F2 using the

calibrated values of kinetic parameters (noted in Table 4.1) in Equation (4.3) with the experimental

observations of Goñi-Oliver et al. (2007) denoted by markers. (c) Comparison of the evolution

of GSK-3β mediated phosphorylation of PKA prephosphorylated tau predicted by equation (4.5)

using the calibrated value of kτf G0 (noted in Table 4.1) with the values reported by Liu et al. (2006).

(d) Comparison of the extent of phosphorylation by full length and truncated GSK-3β predicted

via equation (4.5) using the calibrated value kτt /k
τ
f (noted in Table 4.1) with the experimental

values reported by Jin et al. (2015). (e) Relative increase in the GSK-3β phosphorylation activity

towards tau based on Equations (4.3) and (4.5) after the truncation of in-silico incubation with

1nM calpain-I at various times (f) Comparison of the temporal decay of tau dephosphorylation by

PP2A computed through equation (4.7) using the calibrated values of parameters Vde,Kde (noted

in Table 4.1) with the corresponding experimental result of Liu et al. (2005).

4.5 Results And Discussion

4.5.1 Homeostatic Behavior

In our discussion on the linear stability of the non spatial calcium kinetics model (Section

2.2) we have established that in absence of any external mechanical stress, the calcium

kinetics model (Eqs. (2.1-2.3)) is inherently stable, such that there is no net Ca2+ trans-

port across either the PM or ER membranes. Therefore no Ca2+ accumulation occurs in

absence of any external mechanical stress, and homeostasis is maintained. The calpain

kinetics parameters have also been estimated so as to permit a negligible calpain activa-

tion unless Ca2+ accumulation occurs. As discussed in Section 4.4, under a homeostatic

Ca2+ concentration, the fraction of calpain activated is only ∼ 10−6. Following a neg-

ligible calpain activation, equation (4.3) and the associated GSK-3β truncation kinetics

parameters listed in table 4.1 ensure that a negligible fraction (∼ 10−9) of GSK-3β is trun-

cated, allowing it to remain as a full length kinase. Under homeostatic conditions there is

some phosphorylation of tau which allows it to promote MT assembly (Iqbal et al., 2009).

Post mortem analysis on a normal human brain reveals an average phosphorylation levels
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of 2-3 moles of phosphate per mole of tau (Köpke et al., 1993; Gong et al., 2005; Liu

et al., 2006; Iqbal et al., 2009). The activities of kinase and phosphatases are balanced

in vivo to maintain the homeostatic phosphorylation levels, according to which the phos-

phorylation/dephosphorylation kinetics model (equation (4.8), implies dN/dt = 0. The

average number of occupied sites per mole of total tau at homeostasisNh is thus obtained

as the root of the following quadratic equation in terms of kinetic parameters governing

tau phosphorylation and dephosphorylation,

N2
h +

 Vde

kτf G0
+ Kde − S

Nh − KdeS = 0. (4.9)

Substituting the parameter values listed in table 4.1 in equation (4.9), the computed

phsophorylation levelNh = 2.33 is well within the range of 2-3 mol phosphates per mole

of tau observed in human brain (Köpke et al., 1993; Gong et al., 2005; Liu et al., 2006;

Iqbal et al., 2009). The reasonable value of Nh vindicates the calibration procedure and

appropriateness of parameter values.

In absence of any external mechanical loads, the model response is summarized as

follows,

- homeostatic intracellular Ca2+ concentration is maintained,

- negligible calpain activation occurs,

- GSK-3β exists in its full length form without getting truncated.

- The tau phosphorylation is maintained at a homeostatic level ofNh = 2.33 molP/mol

total tau.

The next section analyzes the response of our model to an external load.

4.5.2 Behavior Under Mechanical Loading

Following a TBI, different parts of the human brain experience a series of stress/strain

impulses of varying magnitudes and duration until they dissipate due to the viscous na-

ture of the brain tissue. For the purpose of experiments on brain tissue samples, such

loads have been idealised in the form of single or repeated rectangular pressure impulses

(Geddes and Cargill, 2001; Geddes-Klein et al., 2006; Maneshi et al., 2015). Due to the
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(a) (b)

Figure 4.2: The time evolution of (a) GSK-3β kinase truncation by activated calpain, and (b)

tau phosphorylation levels, upon application of a repleated impusle comprising of 5 rectangular

impulses each of magnitude 10 kPa, and duration of 10 ms, as shown in the inset of Fig 4.1a.

smallness of the experimental samples, the state of stress is almost homogeneous and the

spatial dimension is inconsequential. Hence as shown in Chapter 3, a non spatial model

is sufficient to capture the neurochemical kinetics observed in tissue level experiments.

Consequently as a first step, we consider an idealized mechanical load comprising of 5

repeated rectangular pressure impulses, with each impulse of magnitude 10 kPa, dura-

tion 10 ms, and a resting period of 50 ms between each successive impulse, as shown

in the inset of Fig. 4.1a to be the input hydrostatic stress σh for non-spatial version

of our model. We numerically solved equations (Eqs. 2.1-2.3,2.5, 4.2, 4.3, and 4.8) for

time dependent changes in Ca2+ concentration, calpain activation, GSK-3β truncation and

tau phosphorylation/dephosphorylation adopting the parameters listed in tables 2.1 - 4.1.

The resultant intracellular Ca2+ evolution and the time dependent activation of calpain-I

are shown using solid and dotted lines respectively in Fig. 4.1a. The intracellular Ca2+

concentration is seen to increase to approximately 11 times the homeostatic value imme-

diately after the action of the pressure impulses. The increased Ca2+ results in a calpain

activation albeit with a small delay, permitting a peak activated calpain fraction of 0.0167

([CalA]peak = 1.67×10−3µM) approximately 2 minutes after the application of mechanical

load as shown in Fig. 4.1a. The increased calpain activation is sustained up to ∼ 30 min

after the load application. Activated calpain in turn leads to truncation of GSK-3β kinase

progressively into fragments F1 and F2. Figure 4.2a shows the evolution of relative frac-
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Table 4.2: Value of kinematic parameters for the applied impulse (Nusholtz et al., 1984)

Case No.
Peak Linear

Velocity (m/s)

Peak Angular

Velocity (rad/s)

Peak Linear

Acceleration (m/s2)

Peak Angular

Acceleration (rad/s2)

Impulse time

(ms)

1 4.5 30 420 3900 25

2 7 28 1900 7250 10

3 3.8 30 1350 7500 12

tions of full length kinase and its truncation products F1 and F2 with time. In early stage

the fraction of truncated products increases with time due to ready availability of activated

calpain. However once the activated calpain becomes limited, the formation of truncation

products can no longer be sustained and the full length kinase stays untruncated. It can be

noted that the GSK-3β truncation follows a similar time scale as calpain activation. This

is expected due to the similar time scales in the experimental observations of Goñi-Oliver

et al. (2007) which as noted earlier is the basis for the parameters deciding the time scale

in the GSK-3β truncation equation (4.3). It is possible that in the case of a C-terminal

truncation not dealt here the time scale may differ. The fragmented kinase available in the

short time span interacts with tau proteins resulting in a higher level of phosphorylation

as shown in Fig. 4.2b. It can be seen that the average number of occupied sites per mole

of total tau (N) increases from its homeostatic value (Nh = 2.33) to a peak value Npeak.

With the progression of time, as the availability of the more active truncation products

decreases, the dephosphorylation effects of PP2A phosphatase dominates and reduces N

back to Nh. This restoration occurs slowely and higher levels of phosphorylated tau sites

are seen till ∼200 min (3.5 hours) after the applied pressure load. Thus we note that

the time scale of tau phosphorylation/dephosphorylation is much higher as compared to

the time scales of calpain activation and kinase truncation, a fact also ascertained by the

experimental observations of Liu et al. (2005, 2006); Jin et al. (2015).

In order to introduce spatial dependence in the present work, analogous to our discus-

sion in section 3.2.6, we assume that the neurochemical kinetics equation are applicable

at every material point of a continuum. Depending upon the temporal variation of hy-

drostatic stress at any material point, the Ca2+, calpain, GSK-3β truncation and tau phos-

phorylation would proceed according to equations (Eqs. 2.1-2.3,2.5, 4.2, 4.3, and 4.8).

A spatial model allows us to assess the effect of inhomogeneous stress distribution while

accounting for realistic loading, geometry and material response on the secondary dam-
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Table 4.3: Calpain Activation and Tau phosphorylation for the points experiencing maximum,

minimum and intermediate hydrostatic stress for the three loading cases shown in Table 4.2

Case No.
Point of

interest
cpeak

i /ci,hom
[CalA]peak

(nM)

N peak

(mol P/mol tau)

1

1Max 11.7781 2.215 3.2870

1Int 12.2314 2.853 3.7153

1Min 1.4057 1.582×10−4 2.3345

2

2Max 12.6977 4.092 4.5590

2Int 6.4205 0.047 2.3351

2Min 1.17688 1.144×10−4 2.3345

3

3Max 10.7455 1.191 2.6693

3Int 7.4364 0.112 2.3379

3Min 1.2136 1.46×10−4 2.3345

age. To test our present model, we have taken recourse to the experiments of Nusholtz

et al. (1984), where kinematic response of human brain was recorded. We have simulated

the experiment by creating a 2D finite element method (FEM) based structural model

of a human brain with linear viscoelastic properties, on which we applied the kinematic

load in the form of translation and/or rotational acceleration/deceleration (See section

3.2.6 for more details). In table 4.2 we have listed the translational/rotational accelera-

tion/velocities and their time durations as observed by Nusholtz et al. (1984) for three of

the kinematic loading conditions. For each loading case we obtain the hydrostatic stress

evolution throughout the brain geometry using FEM (see section 3.2.6). In each of the

loading case, we identify three locations of interest where the peak stress is maximum,

minimum and intermediary. They are denoted as Max, Min and Int respectively. For each

of the 9 stress evolution cases, we use our current model to predict the extent of calpain

activation and tau phosphorylation. Table 4.3 shows the peak calcium concentration, peak

activated calpain concentration and the peak value of N (Npeak) for each case at the three

locations.
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It can be observed from the values listed in table 4.3 that the peak levels of tau phos-

phorylation are higher if the peak Ca2+ concentration
(
cpeak

i

)
reaches a higher value. How-

ever, the relationship between cpeak
i andNpeak is not linear. For cpeak

i comparable to homeo-

static value ci,hom, the peak tau phosphorylation levelsNpeak does not deviate significantly

from the homeostatic value Nh = 2.33 as seen from the ’Min’ location in each of the

case. On the other hand at locations faraway from homeostatis e.g. ’Max’ location in

each case, the tau phopshorylation levels see major increase as compared to Nh. Table

4.3 indicates that an intracellular Ca2+ accumulation even upto ∼8 times the homeostatic

Ca2+ levels, does not increase the tau phosphorylation level much over their homeostatic

value (Nh = 2.3345). However once the intracellular Ca2+ reaches ∼ 10 times the home-

ostatic levels, the increase in tau phosphorylation levels are appreciable, and continue to

rise faster as the Ca2+ accumulation increases. The variable sensitivity exhibited byNh to

the extent of deviation of Ca2+ concentration from homeostatic value provides an interest-

ing insight into the toxicity of accumulated intracellular Ca2+ i.e. a limited increase in the

Ca2+ concentration should not be threatening as it may not directly result in an increased

tau phosphorylation. These observations clearly point to the fact that intracellular Ca2+

accumulation is not always the best indicator of the extent of secondary injury involving

damage to the MT bundles in an axon, instead tau phosphorylation levels should also be

monitored. However, it must be cautioned that other observed secondary injuries such

as mitochondrial damage mediated cytotoxicity and cleavage of essential proteins are not

solely dependent upon the tau phosphorylation levels and hence not within the purview of

the current model. An investigation into the intermediate step responsible for the variable

sensitivity discussed here is carried out in the Appendix D. A second observation that we

can make from the tau phosphorylation levels listed in table 4.3 is that for the loading

cases dealt in here, the highest value of Npeak is less than observed in vivo phosphoryla-

tion levels post fatal tauopathies (Iqbal et al., 2009; Ksiezak-Reding et al., 1992). Thus,

a single mild TBI may not be sufficient to cause a pathologically significant increase in

tau phosphorylation. This is consistent with the clinical findings that risks of long lasting

neurological dysfunctions are significantly higher only for repetitive mild TBIs occuring

over the years resulting in CTE and similar neurodegenerative tauopathies (McKee et al.,

2009; Blennow et al., 2016).
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Figure 4.3: The effect of reducing the activity of PP2A on the evolution of tau phosphorylation

levels. The loading case used here is CASE 1Int from table 4.3. The reduction in the activity

of PP2A phosphatase is simulated in our model via decrease in Vde value by 10, 20 and 30% as

compared to its calibrated value noted in table 4.1.

4.5.3 Effects of PP2A Dephosphorylation

From Fig. 4.2b we observe that although the tau phosphorylation levels exceed Nh after

the incidence of mechanical loading, eventually after a finite time it returns to the home-

ostatic state. The recovery to homeostatis occurs due to dephosphorylation activity of

phosphatase PP2A (equation (4.7)). In reality, a reduced PP2A activity due to increased

presence of inhibitors has been reported in post AD human brain (Iqbal et al., 2009) and

brains of patients afflicted with severe TBI (Yang et al., 2017). However owing to lack

of precise knowledge of mechanisms leading to the reduction of PP2A activities after a

TBI prevents us from including its effects in our mathematical model. However the con-

sequence of reduced PP2A activity can be phenomenologically simulated by artificially

reducing the kinetic parameter Vmax and consequently Vde = Vmax/[tau]0 in our model

(equations (4.6-4.7)) which signifies the maximal activity of the phosphatases towards

phosphorylated tau. As a representative example, for this simulation we chose the load-
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ing case 1 listed in table 4.2, and further select the point where the peak stresses are in

an intermediate range (CASE 1Int in table 4.3). We repeat our previous simulation with a

reduction of the parameter Vde by 10%, 20% and 30% with respect to its values listed in

table 4.1. Figure 4.3 shows the effect of reduction of Vde on the temporal variation of tau

phosphorylation as compared to the baseline result shown through solid line (0% curve).

Although the qualitative nature of the curve remains the same but the reduced PP2A ac-

tivity simulated via reduced value of the parameter Vde prevents the tau phosphorylation

level (N) to restore to its homeostatic value (Nh) even after a sufficiently long time. Figure

4.3 also shows that more the Vde deviation from its calibrated value (Table 4.1), the more

is the residual tau phosphorylation level and so also the peakN value. The residual phos-

phorylation level of tau may be treated as an indicator of the irreversible phosphorylation

of some tau protiens. Any future TBIs will only lead to higher tau hyperphosphorylation

levels, as is seen in neurodegenerative taupathies like CTE (McKee et al., 2009; Blennow

et al., 2016). Once the mechanisms governing the reduction in PP2A activities are iden-

tified, more rigorous mathematical model can replace the artificial reduction model being

used here.

4.5.4 A Speculative Interpretation for Future Scope

Our model predicts the level of phosphorylationN defined as the average number of phos-

phorylated sites per tau protein upon the action of external mechanical load incurred dur-

ing incidences like TBIs. Physiologically the effects of tau phosphorylation are seen in the

form of reduced affinity of hyperphosphorylated tau towards the MT bundles, thereby dis-

rupting the MT assembly, leading to formation of axonal varicosities (Smith and Meaney,

2000; Tang-Schomer et al., 2012; Blennow et al., 2016). The intensity of physiologically

observed secondary injuries might be quantified in terms of the number of hyperphospho-

rylated tau proteins. As pointed earlier, the present work sidesteps the stochastic nature

of the tau phosphorylation process and offers an average prediction. A means to rectify

this limitation is through an assumed probability distribution of the phosphorylation level

amongst all the tau proteins, such that the mean of the probability distribution corresponds

toN , the average occupancy per tau protein as predicted by our model at any time. Given

a probability density function PDF (Nx) over the randomly distributed phosphorylation

levels Nx, we can calculate the fraction of tau proteins hyperphosphorylated by introduc-

ing a threshold value of N , such that tau proteins with phosphorylation levels above this
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threshold value, say Nth, are considered to be hyperphosphorylated. Amongst the many

possible forms for the probability distribution function (PDF), the one that is selected

should be in sync with the problem at hand. As a first approximation, we choose the

widely applied PDF log-normal distribution which is skewed, usually used in situations

involving low mean values, large variances, non-negative value of the random variable

(Limpert et al., 2001). The estimation of the variance of the PDF may be feasible using

experimental measurement of the phosphorylation levels of in-vitro brain tissue speci-

mens undergoing a simulated injury.

For a log-normal PDF,

PDF(Nx) =
1

Nxv
√

2π
e−

(log(Nx)−m)2

2×v2 (4.10)

the fraction of hyperphosphorylated tau proteins are given as,

[P-tau]
[tau]0

=

∫ ∞

Nth

{
1

Nxv
√

2π
e−

(log(Nx)−m)2

2×v2

}
dNx (4.11)

where, m and v are parameters of the probability distribution governing its median

and skewness respectively. We consider a log normal PDF with mean at N = 3 and

assume for the sake of calculations v = log(1.5) = 0.4, a value typically observed in

a variety of medical and epidemiological observations (Limpert et al., 2001). Further

we decide that hyperphosphorylation of tau occurs over a threshold level Nth = 6 mol

P/ mol tau, based on the lower limit of phosphorylation levels observed in AD P-tau

(Köpke et al., 1993; Iqbal et al., 2009). Through equation (4.11), we predict that when

the phosphorylation levels reach peak value ∼ 7% tau would be hyperphosphorylated.

The reduction in MT assembly stability post tau removal due to hyperphosphorylation has

been previously studied, though without a motivation for the number of tau proteins being

removed (Sendek et al., 2014). A mathematical framework, motivated by our speculative

discussions in this section, permits the prediction of the number of hyperphosphorylated

tau proteins, thus bridging an important gap. It goes without saying that experimentally

supported parameter values and PDF would yield a better prediction of the fraction of

hyperphosphorylated tau.
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4.6 Conclusion

We have developed a kinetics based non-spatial model to predict the extent of secondary

insult following a TBI. While the primary insult after the occurrence of a TBI, can result

in a significant mechanical stress in the brain tissue, the physiological effects which char-

acterize a TBI are typically an outcome of biochemical disturbances involved in the sec-

ondary insult phase. Initiated by an accumulation of excess intracellular Ca2+, secondary

insults in the axonal region of the neuron are associated with disruption of MT assembly

due to dysfunction of tubulin binding tau proteins. Apart from the mechanical failure in

the dimeric binding of tau proteins caused due to high stretch rates (Ahmadzadeh et al.,

2015), MT dissassembly can also occur due to the multiple posttranslational modifica-

tions of tau proteins. In the current work, we have focussed on one such posttranslational

modification, the hyperphosphorylation of tau protein which apart from CTE resulting

from repetitive occurrence of mild or severe TBI is also common to many other neuro-

generative tauopathies like AD, frontotemporal dementia.

We believe our model provides a firm mathematical framework with a rich scope for

further development. Either due to simplifying assumptions or due to lack of experimen-

tal data, the current model has a few limitations that could form the basis of any future

work in this direction. Calpain mediated breakdown of other proteins such as spectrin

could be incorporated in the model. The PM permeability is known to be altered due

to spectrin breakdown. By carefully integrating an experimental evidence based func-

tional dependence of membrane permeability on spectrin breakdown, the model can be

enabled to capture a biphasic calcium accumulation leading to a sustained calpain medi-

ated tau damage. Although we have incorporated the effect of reduction in the PP2A ac-

tivity through parameter modification, an experimental investigation into the mechanism

of PP2A inhibition after TBI is required to enhance the fidelity of the model. Finally,

to predict the extent of tau phosphorylation, we calculate the average number of occu-

pied sites per tau proteins, considering all tau proteins whether phosphorylated or not.

Establishing a relationship between this term and the number of tau proteins actually be-

ing phosphorylated will allow a better prediction of tau hyperphosphorylation. Since the

neurochemical changes captured in the current model for TBI are common to many other

neurodegenerative diseases, we believe that similar kinetic models could prove useful in

simulating such diseases.





Chapter 5

Summary and Future Plans

5.1 Summary

In this work we have focussed on the mechanisms of damage involved in a neurological

tissue following a TBI, and their prediction via the development of a mathematical model

which captures not just the mechanical insult but also some of its neurochemical conse-

quences. We begin by proposing a non spatial phenomenological model which captures

the intracellular Ca2+ accumulation in a neuron in presence of an external hydrostatic

pressure impulse. To the best of our knowledge, this work is the first effort to incorporate

the mechanical effects of TBI into the calcium kinetics in a neuron. We have shown that

in the absence of external mechanical loads, the model is stable to any disturbance in the

intracellular concentration from the homeostatic value and regains its homeostatic state

in a short span of time. Furthermore when subjected to isolated and repeated impulse

loads in a manner reported by in vitro test on cells like neurons and astrocytes, the model

successfully captures the effect of magnitude and duration of the impulse on the intra-

cellular Ca2+ concentration observed experimentally (LaPlaca et al., 1997; Geddes and

Cargill, 2001; Geddes-Klein et al., 2006; Maneshi et al., 2015). The predictions of the

mathematical model are qualitatively consistent with the key features of the experimental

observations, as follows:

• When subjected to an impulse loading, the typical profile of the intracellular con-

centration shows an initial rapid increase followed by a gradual fall to a non home-

ostatic residual value over a period of settling time ts.

83
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• For a severe injury, i.e. for a higher magnitude or duration of the impulse, ts is

higher.

• Increasing the severity of the external impulse through either its magnitude, dura-

tion or loading rate, increases both the peak cpeak
i as well as the residual cres

i con-

centrations.

• Repeated impulse is more harmful than a single impulse load since both the peak

as well as the residual concentration increases with the number of loading cycles.

• The smaller the time interval between the loading cycles, higher is the peak intra-

cellular concentration. However, increasing the time interval, ti beyond ts, has no

effect on the peak intracellular concentration.

Next we extend the non-spatial calcium kinetics model by introducing a spatial di-

mension. We do this by coupling the non spatial model to the FEM based mechanistic

models and assuming that the calcium kinetics at any location is influenced only by the

local hydrostatic stress in that region alone. The resulting spatial model combines the ad-

vantages of both the calcium kinetics model as well as the FEM based mechanistic models

into a single mathematical framework which can now be used to predict both primary as

well as the secondary injuries. The coupled spatialised calcium kinetics model presents

the following advantages over the older non spatial model:

• Firstly, a TBI occurs due to either an external force or an inertial force due to sudden

acceleration/deceleration. The new model provides a systematic pathway to determine

the intracellular Ca2+ accumulation based on either of these external stimuli parameters

rather than an internal parameter like local hydrostatic stress.

• The spatial model reveals the intracellular Ca2+ concentration distribution throughout

the brain, rather than one localised hypothetical point.

• Finally, the new model provides a means to incorporate the constitutive properties of

the brain in our analysis, thus taking into consideration the transient peaks in the local

stress due to transient pressure waves in the brain.

The results of the coupled spatialised calcium kinetics model allow us to arrive at the

following conclusions:
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• Although the calcium evolution obtained is qualitatively similar to the results for the

non spatial case, incorporating the dynamic effects of the constitutive properties result

in a much higher calcium accumulation.

• As the geometry being analyzed becomes shorter, the results of the spatial calcium

kinetics model tends to the non-spatial model solutions. We observe for the 2D case that

as the dimensions of the geometry become smaller than 4 mm, the spatial variations in

the local pressure as well as the intracellular Ca2+ concentration, become insignificant.

• We therefore suggest that when performing experiments, in order to avoid discrepan-

cies between the applied load and local stress state due to transient stress waves, the

specimen length should be smaller than 4 mm.

• Parameters obtained from purely mechanistic FEM based models may not precisely

predict the locations of secondary injuries as they are unable to take into the account

the durations for which peak values of these parameters last.

• At an insignificant computational cost our model blends both the peak values as the

durations of these parameters to predict the intracellular calcium accumulation, which

is therefore a more definitive as well as direct indicator of secondary injuries.

• Application of the model to a realistic 2D brain geometry gives a further evidence as

to difference in location of peak pressures and expected critical locations of secondary

injury. Given a threshold for tolerable intracellular Ca2+ concentration, our model can

predict the exact regions where secondary injuries occur.

We believe that our coupled model can be a very useful tool for medical practition-

ers. Primary injuries occur usually immediately but secondary injuries are highly de-

layed, thereby theoretically permitting a time interval for positive therapeutic interven-

tions which can potentially save lives. Our model presents the potential to act as an

assistive tool for decision making during this period.

Following the development of the mathematical model at a cell level and its further

extension to tissue level, we now focus our attention on trying to capture the intricacies of

the secondary injuries at an intraneuronal level. Secondary injuries can involve a plethora

of physiologies of which diffused axonal injuries, involving a slow degradation of the

neurons via tau pathologies, are most common. Single such injuries might be tolerable
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and recoverable, but multiple repetitions can result in lasting neurodegenerative disorders.

We create a mathematical model to estimate the extent of calpain enzyme activation due

to the intracellular Ca2+ accumulation. We assume calpain activation to be a single step

reaction involving a cooperative binding of Ca2+ at 6 active sites. N-terminal truncation of

GSK-3β kinase by activated calpain is then simulated in accordance with the experiments

in the literature. Finally, we model the activity of kinase and its truncation products

on tau protein, allowing us to determine the number of tau sites being phosphorylated.

Additionally, we provided a probability distribution based methodology to translate our

results into a quantitative value of hyperphosphorylated tau. The predictions of our model

match well with the key features of experimental and clinical observations:

• In the absence of any external load, a state of homeostasis is maintained, such that

no calpain is activated, no kinase is truncated, and tau phosphorylation levels stay

at their homeostatic value, Nh = 2.33 mol P/mol total tau.

• The predicted in vivo activated calpain concentrations fall within the range of acti-

vated calpain used in vitro.

• The increase in GSK-3β activity towards tau due to calpain mediated truncation is

seen to be qualitatively similar to the experimental reports.

• Our model predicts that a Ca2+ accumulation up to ∼8 times the homeostatic value

should not directly result in increased tau phosphorylation. However, as more and

more Ca2+ is accumulated levels of tau phosphorylation become increasingly sen-

sitive to it.

• Reduced PP2A phosphatase activity after TBI will result in unrecoverable tau phos-

phorylation levels, which makes successive TBI progressively more dangerous, as

is clinically observed.

• A single mild TBI may not result in enough phosphorylation to observe any physio-

logical symtomps. However, repeated incidences will result in an appreciable level

of unrecoverable tau phosphorylation.

We have thus developed a comprehensive mathematical model to simulate the intra-

neuronal calcium accumulation, its distribution throughout the brain geometry and the
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resulting neuronal degradation due to the involved tau pathologies. The numerical model

has provided numerous insights into the multiple mechanisms of post TBI damage in the

neurons. TBIs have been called a silent epidemic because the mental changes in behavo-

rial and perceptual impairments, especially in case of mild forms of TBI, are very gradual

and not readily apparent. With our model we hope to provide a definitive mathematical

tool to predict such gradual non mechanistic damages in response to a mild TBI.

5.2 Future Scope

We propose that there is scope for development in this model towards making it more

realistic. In our model we have assumed that the calcium kinetics parameters in the all the

regions of the cerebrum are spatially homogeneous. This may not be the case in reality,

and experiments can be performed on small samples (< 4 mm) of different anatomical

parts of the brain, so as to calibrate the non-spatial calcium kinetics model parameters

for each part of the brain. The calibration procedure, as described in section 2.4.2, can

be used to obtain the value of the kinetic parameters specific to those parts of the brain.

Finally, the spatial calcium kinetics model can be made much more accurate by coupling

it with a more detailed 3D FEM analysis, like the ones performed by Zhang et al. (2001);

Levchakov et al. (2006); Mao et al. (2006); Takhounts et al. (2008), and other similar

studies. The linear viscoelastic constitutive law for brain tissue adopted in the current

work can also be improved by incorporating geometric non-linearities for accurate esti-

mates of stress and strain. Such a comprehensive mathematical tool for predicting both

primary and secondary injuries after the occurrence of a TBI will be very useful in the

hands of doctors, especially considering the fact that the effects of TBI manifest long after

the actual occurrence of the injury.

On an intracellular level we are able to now mathematically model the intraneuronal

calcium accumulation due to external mechanical impacts on the brain tissue. We are

modelling the calcium ion induced microtubule degradation as the medium of predicting

damage in the neuron. Other neurochemical pathways involving damage of intracellu-

lar organelles and plasma membrane proteins also play an important role in conjunction

with the microtubule dysfunction and can be simulated based on appropriate experimental

evidences.
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Appendix A

System Under Homeostasis

A.1 Linear Stability

In an undisturbed state (i.e. at homeostasis),

ce = c∗e; ci = c∗i , (A.1)

dce

dt

(c∗e ,c∗i )
=

dci

dt

(c∗e ,c∗i )
= 0. (A.2)

Substituting equations Eqs. (A.1-A.2) in Eq. (2.1), we obtain the following identity

between the kinetic parameters,

Kpm
(
c∗e − c∗i

)
= Vpm0

 c∗
npm

i

c∗
npm

i + knpm
pm

 ,
Ker

(
c∗e − c∗i

)
= Ver0

{
c∗

ner

i

c∗ner

i + kner
er

}
.

(A.3)

In order to linearize the governing equations Eqs. (2.1-2.3), it is assumed that the

extracellular (ce) and intracellular (ci) concentrations are slightly perturbed from their

homeostatic values, such that,

ce = c∗e + εe, and

ci = c∗i + εi,
(A.4)

where, εe and εi are the infinitesimal perturbations in the extracellular and the intra-

cellular concentrations respectively.
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Substituting Eq. (A.4), into equations Eqs. (2.1-2.3), applying Taylor series expansion

to all the expressions involving the perturbed concentrations and retaining up to linear

terms, and utilizing Eq. (A.3), the linearized equations are as follows,

dεe

dt
= −Aεe + Bεi,

dεi

dt
= Aεe − (B + C)εi,

(A.5)

where, A, B and C are constants such that,

A = Kpm,

B = Kpm + Vpm

 knpm
pm npmc∗

npm−1

i(
c∗

npm

i + knpm
pm

)2

 , and

C = Ker + Ver

 kner
er nerc∗

ner−1

i(
c∗ner

i + kner
er

)2

 .
(A.6)

We obtain the eigenvalues of the linearized governing equation, Eq. (A.5), to be,

λ1 =
1
2

(
−A − B − C −

√
−4AC + (A + B + C)2

)
, and

λ2 =
1
2

(
−A − B − C +

√
−4AC + (A + B + C)2

)
.

(A.7)

Simplifying in terms of the constants,

λ1,2 =
1
2

(
−β ∓

√
β2 − γ

)
(A.8)

where, β = A + B + C, and γ = −4AC. Substituting the parameter values given in

Table 2.1, we get the eigenvalues as λ1 = −0.0734, and λ2 = −1.057 × 10−6. Since both

the eigenvalues of the linearized governing equation are negative, we are assured that the

system of equations is stable under small perturbations at homeostasis.

A.2 Initial Value Problem

We solve the linearized governing equation (A.5) using the initial conditions,
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ce

c∗i

t=0
= 1 × 104, and

ci

c∗i

t=0
= I

(A.9)

We obtain the evolution of the intracellular concentration normalized with respect to

the homeostatic intracellular concentration, c∗i , as,

ci(t)
c∗i

= 1 +
(I − 1)√

−4AC + (A + B + C)2{ (
−A + B + C +

√
−4AC + (A + B + C)2

)
eλ1t(

+A − B − C +

√
−4AC + (A + B + C)2

)
eλ2t

}
.

(A.10)

The solution presented in equation (A.9) offers two intrinsic time scales for the system,

τ̂1 = −
1
λ1

= 2
(
β +

√
β2 − γ

)−1
= 13.62 s, and

τ̂2 = −
1
λ2

= 2
(
β −

√
β2 − γ

)−1
= 9.5 × 105 s.

(A.11)

Of these two time scales, τ̂1 is more reasonable as it lies within the time frame when

the neurochemical changes due to secondary injuries in a TBI begin to set in. Substituting

the values of A, B, C, λ1 and λ2, using equations (A.6,A.8), we obtain the following

expressions for the normalized extracellular and intracellular concentrations,

ce(t)
c∗i

= 1000 + 0.6406(I − 1)
{
e−1.0566×10−6t − e−0.07343t

}
, and

ci(t)
c∗i

= 1 + (I − 1)
{
0.999974e−0.07343t + 0.000026e−1.0566×10−6t

}
.

(A.12)





Appendix B

System Under Presence of External
Loads

Similar to previous section, the process of linearization is carried out when the kinetic pa-

rameters are not constants, but rather a function of the stress measure, ŝ, through equation

(2.5). In order to simulate a small deviation from homeostasis (σh = 0, ŝ = 0, ce = c∗e, and

ci = c∗i ), in addition to the perturbation to the intracellular and extracellular concentrations

as done through equation (A.4), the hydrostatic stress and the stress measure are assumed

as,

σh = δσh, and

ŝ = δŝ.
(B.1)

According to equation (2.6),ŝand σh are already linear with respect to each other and

therefore,

δŝ = δσh + α

∫ t

0
δσh(t)dt. (B.2)

Using the Taylor series, the terms involving εe, εi and δs, in equations (2.1-2.3,2.5) are

expanded up to linear terms and in conjunction with equation (A.3) leads to,

dεe

dt
= −Aεe + Bεi − T1δŝ,

dεi

dt
= Aεe − (B + C)εi + (T1 + T2)δŝ,

(B.3)

95



96 System Under Presence of External Loads

where, A, B and C are defined in equation (A.6), and T1 and T2 are given as,

T1 = Vpm0

 c∗
npm

i

c∗
npm

i + knpm
er

 κ (1 + χpm

)
= 2.6471 × 10−7, and

T2 = Ver0

{
c∗

ner

i

c∗ner

i + kner
er

}
κ (1 + χer) = 5.6957 × 10−7.

(B.4)

Looking at the linearized governing equation (B.3), we can see that the eigenvalues

have remained unchanged comparing to the homeostatic system of equations. This also

implies that the intrinsic time scale of the system of equations stays the same.

The solution of the equation (B.3), subjected to homeostatic initial conditions, ce = c∗e,

and ci = c∗i ; and a constant hydrostatic loading condition of σh = δσh, is analytically quite

cumbersome. Hence, the solution is evaluated using Wolfram Mathematica 11.0.

For solving the linearized equation (B.3) for an impulse loading scenario, we assume

an impulse to be a superimposition of two constant loads, while additionally accounting

for the stress history. The solutions obtained through this notebook for different impulse

loads are directly used in the main article. Analytical solution for a series of impulses can

be obtained by further extending the idea of superimposition of constant loads.



Appendix C

Analytical Solution for 1D Uniaxial
Constant Load

Consider a viscoelastic bar of length L as shown in Fig. C.1, one end of which is fixed,

while at the other end a constant stress of magnitude σ∗(t) = σ∗ is applied. The Standard

Linear Solid viscoelastic relaxation law in terms of the elastic modulus for a uniaxial case

can be written as,

E(t) = E∞ + E1e−E1t/η, (C.1)

where the material constants E∞, E1, and η are defined as,

E∞ =
9G∞K

3K + G∞
, E1 =

27G1K2

(3K + G∞)(3K + G∞ + G1)
, and

η =
9K − E∞

9K − E∞ − E1
× E1τ

(C.2)

Figure C.1: Tissue modelled as 1D viscoelastic bar of length L and thickness L/100, constrained

at end x = 0, and subjected to a load σ∗(t) at the other end. The viscoelastic behaviour of the bar

is represented through Eqs.(3.3-3.4) and Table 3.1.
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where, G∞ and G1 are the shear modulus corresponding to the long time and relaxation

time, τ. K denotes the bulk modulus. For the ease of calculations, we normalize the

variables as follows,

T =
E0t
η
, ξ =

√
ρE0

η
x = M

x
L
, Σ =

σ

σ∗
,

U =

√
ρE0

η
u = M

u
L
, and ε =

E0ε

σ∗
=

E0

σ∗
∂U

∂ξ

(C.3)

where T , ξ, Σ, U, ε are the non-dimensionalized time t, space co-ordinate x, stress

σ, displacement u and strain ε respectively and E0 = E∞ + E1. The factors η/E0 and

η/
√
ρE0 used to normalize time and length respectively, represent the characteristic time

and length offered by the material model. The space co-ordinate and displacement scaled

by the length of the bar are related to their dimensionless counterparts ξ and U through

non-dimensional parameter M = L
√
ρE0/η. M compares the length of the bar to the

material characteristic length.

Using Eq. (3.1-3.4, and C.3), the normalized equation of motion in the x-direction,

the constitutive law, the relaxation law and the boundary conditions can be expressed as

follows,

Equation of Motion:
∂Σ

∂ξ
=

E0

σ∗
×
∂2U

∂T 2 , (C.4)

Constitutive Law: Σ(T ) =

ηT /E0∫
0

E(T − T̃ )ε̇(T̃ )dT , (C.5)

Relaxation Law: E(T ) = 1 − ψ + ψe−ψT , (C.6)

Boundary Conditions: U(0,T ) = 0, and Σ(M,T ) = 1 (C.7)

where, ψ = E1/E0. The wave equation given by Eq. (C.4) in conjunction with

Eqs.(C.5 - C.7) can be solved analytically using Laplace transforms. In the transformed

domain, the Eqs.(C.4 - C.7) can be rewritten as,
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∂2Ū

∂ξ2 =
s

Ē(s)
Ū, (C.8)

Σ̄ = sĒ(s)ε̄, (C.9)

Ē(s) =
s + ψ − ψ2

s(s + ψ)
, (C.10)

Ū(0, s) = 0, and Σ̄(M, s) = 1/s. (C.11)

Following the procedure given by Christensen (1982), the general solution of Eqs.(C.8-

C.11) can expressed as,

Ū(ξ, s) =

∞∑
n=1

C̄n(s)Un(ξ) + V̄(ξ, s), (C.12)

where,Un(ξ) = sin[(2n − 1)πξ/2M] is the nth eigenvalue in the solution for an equiv-

alent elastic bar, and V̄(ξ, s) = (σ∗ξ)/(s2Ē(s)E0) is the quasi-static solution for the vis-

coelastic bar. The coefficients C̄n(s) are obtained by substituting the expression of Ū(ξ, s)

given in Eq.(C.12) into the governing equation in Eq.(C.8), and invoking the orthogonality

of the elastic eigenvaluesUn(ξ). Combining the displacement solution with the constitu-

tive law in Eq.(C.9) and the relaxation law in Eq.(C.10), we obtain the stress distribution

over the length of the bar in Laplace domain as,

Σ̄(ξ, s) =
1
s

+
4
π

∞∑
n=1

[
(−1)n

(2n − 1)
×

s(s + ψ)

s3 + ψs2 +
(2n−1)2π2

4M2 s +
(2n−1)2π2

4M2 ψ(1 − ψ)

× cos
{ (2n − 1)πξ

2M

}]
(C.13)

Although an analytical inversion cannot be derived in a generalised fashion, by elect-

ing a specific value for M, substituting for ψ according to the material properties, and

choosing to truncate the convergent infinite series after a finite number of terms enables

us to invert the expression in the RHS of Eq.(C.13). We perform this operation in MAPLE

for the values of M discussed in section 3.2.1, thus obtaining the stress evolution with

time, plotted in Fig. 3.2 a, b and c.





Appendix D

Parametric Analysis

In this section, we study the sensitivity of the tau phosphorylation levels on each of the

parameters we have estimated in section 4.4. For all the parameters except K1/2 we note

that the model is not very sensitive to modest changes in the system parameters. At even

a 30% change in the parameter values, we may observe at most a 13% change in system

output. Since we have fit the parameters to experimental observations, it is possible that

a different set of experiments may reveal slightly different results depending on the pro-

cedures followed, or the tissue samples used. A low sensitivity of the output towards the

fitted parameters is advantageous as it allows for conditional variations in the experiment.

Figure D.1 also shows the variation in the phosphorylation levels when the parameter

K1/2 is varied by ±30%. We see that the system output is very highly sensitive towards

this parameter. Physically K1/2 is the intracellular Ca2+ concentration required for half

maximal calpain activation. As discussed in section 4.4, the exact value of this parameter

is not well established in literature. The best estimates predict the value to be in the range

of 0.6 - 2 µM (Cong et al., 1989; Andrea et al., 1996), which allows for a variation of

∼ 50%. Our sensitivity analysis suggests that the parameter needs to be further fine tuned

by experimental investigations. However, this is easier said than done because of the

complicated transport and reaction mechanisms which govern the reduced half maximal

Ca2+ concentration in vivo.

In section 4.5.2 we discussed the predictions of the coupled chemical-mechanical

model under application of varied kinematic loadings. Three cases of realistic kinematic

loads as reported by Nusholtz et al. (1984) were simulated and the corresponding sec-

ondary insults at three different points were observed as listed in table 4.3. As per the
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Figure D.1: Variation in the tau phosphorylation levels N as each of the parameter is varied by

±30%.

discussion in section 4.5.2, we saw that a limited increase in the intracellular Ca2+ con-

centration does not directly result in increased tau phosphorylation. It is only once the

intracellular Ca2+ concentration becomes up to 10 times its homeostatic value that an ap-

preciable increase in tau phosphorylation is seen. In order to explain the increase in tau

phosphorylation sensitivity with increasing Ca2+ accumulation, we plot evolution of cal-

cium accumulation, calpain activation, GSK-3β fragmentation and tau phosphorylation

for each of the loading cases in figure D.2. This allows us to identify the single inter-

mediate step which is responsible for the increased senstivity. We observe that the plots

in figures D.2b - D.2d are quite similar qualitatively. The scaling of the x-axis in these

figures gives us an idea of the different time scales involved at each of these steps. The

qualitative similarity between these plots indicates that these steps are not the ones re-

sponsible for the increasing sensitivity of the tau phosphorylation with increasing Ca2+

accumulation.

On the other hand if we compare the plots in figures D.2a and D.2b we immediately

see that as the peak Ca2+ concentration increase, the increase in peak calpain activation is

increasingly more pronounced. For the cases 3Int and 2Int, while calcium accumulation
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Figure D.2: For each of the kinematic loading cases at the three selected points of interests as

listed in table 4.3, we plot the evolution of (a) Normalised intracellular Ca2+ concentration, (b)

concentration of activated calpain, (c) relative fraction of the GSK fragment F2, and (d) average

tau phosphorylation levels.
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Figure D.3: Variation in the peak Ca2+ levels cpeak
i as each of the parameter is varied by ±30%.

is notable, the calpain activation is extremely low. On the other hand the calcium accumu-

lation for the case of 2Max is just more than 1Int, but the calpain activation in the former

case is much higher. This comparison indicates the increasing senstivity is an artefact of

the calpain activation step, which is then inherited by the following steps. Such increase

in sensitivity of calpain activation with increasing calcium accumulation can be attributed

to the high degree of cooperativity of Ca2+ towards the binding sites on calpain. As dis-

cussed in section 4.4, the Hill coefficient for Ca2+ binding to calpain has been observed to

be ∼ 5. Mathematically, the Hill’s coefficient contributes as an exponent in the equation

governing the calpain activation. Therefore, at higher values of Ca2+ concentration even

a small change can result in noticeable increase in calpain activation.

A parametric analysis for the stress dependent calcium kinetic is also performed to

study the sensitivity of cpeak
i on the parameters χPM, χER and κ, via equation 2.5. Fig-

ure D.3 shows the results of the sensitivity analysis. Ca2+ accumulation is observed to

be moderately sensitive to changes in the parameters χPM, χER and κ. It is therefore of

essence that these parameters be calibrated carefully with specially designed experiments.
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