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Abstract 

Gram-negative bacteria are a particularly important cause of various infections and severe 

disease, causing a huge burden to public health. The collective term “Gram-negative” covers 

a very wide diversity of bacterial species across four of the six pathogens in the ESKAPE 

listed by the Infectious Diseases Society of America. These highly diverse species have 

evolved a wide range of secretion systems as their weapons to export substrate proteins into 

the surrounding milieu or adjacent target cells. These secreted proteins play vital roles in the 

struggle against stressful environments, and contribute toward bacterial pathogenesis and 

their competitive survival in bacterial populations. Benefiting from the advance in 

computational and experimental techniques, a considerable number of proteins secreted from 

bacteria have been discovered and further analyzed. These substrates of the various secretion 

systems differ significantly in the way they are secreted, their structural features and their 

biochemical properties and functions. Despite these impressive discoveries, there are far 

more unknown substrates yet to be discovered especially considering the avalanche of newly 

sequenced bacterial genomes and plasmids. With the purpose of facilitating statistical 

analysis and computational prediction of various types of substrate, this thesis aimed to 

develop a series of analytical and predictive toolkits based on machine learning with the 

intention to interlink them as an integrative platform and pipeline. Through providing 

seamless operations between laboratory-confirmed substrates, potential substrate prediction 

and their inter-relationship analysis, this streamlined tool suite is expected to provide insights 

into the known substrates and facilitate new substrate discoveries. 

This thesis is organized as follows. Chapter 1 introduces the background of bacterial protein 

secretion systems and their secreted substrates, as well as the basic knowledge and current 

progress of the application of machine learning into substrate prediction. It also describes the 

challenges in analysing and predicting secreted substrates and emphasizes my contributions 

during the PhD study. Chapter 2 presents three methodologies and implemented predictors 

(Bastion3, Bastion4 and Bastion6) for the computational prediction of three well studied 

types of secreted substrates found in Gram-negative bacteria. Chapter 3 presents two 

combinable toolkits (BastionX and BastionHub) as an integrative system for comprehensive 

and systematic annotation, analysis and prediction of various types of secreted proteins. 

Chapter 4 presents two computational toolkits (POSSUM and DIFFUSER) to provide a 

streamlined and automatic feature generating service, so as to facilitate a general 

development of machine learning based predictors. Chapter 5 concludes the whole project 



 
 

iii 
 

and discusses the future direction in developing more comprehensive and intelligent systems 

for use in “diagnosis” of bacterial capabilities in causing disease. 
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CHAPTER 1: Introduction 

1.1 Secreted substrates in Gram-negative bacteria 

Gram-negative bacteria are responsible for many serious infections worldwide, including 

emerging hospital-acquired infections, healthcare-associated infections and neglected tropical 

diseases. Reported by the US Centers for Disease Control and Prevention in a list of bacteria 

urgently requiring for new antibiotics (Solomon & Oliver, 2014) are notable examples 

including Escherichia coli, which causes most urinary tract infections, Pseudomonas 

aeruginosa that causes bloodstream infections and pneumonia; Neisseria gonorrhoeae, 

causative agent of the sexually transmitted disease gonorrhea; and Klebsiella pneumoniae 

which is responsible for several types of healthcare-associated infections including 

bloodstream infections, pneumonia and urinary tract infections. All of these examples are 

evolving to be extremely resistant to antibiotics (Pendleton et al., 2013; Santajit & 

Indrawattana, 2016). Understanding the molecular mechanisms behind Gram-negative 

bacterial infections and therefore finding efficient diagnostics and treatment strategies is 

crucial in preventing humans (as well as animals and plants) from the risk of suffering such 

diseases. 

As one of the virulence “weapons” of Gram-negative bacteria, secretion systems are used to 

secrete diverse substrates into the surrounding environment, eukaryotic host cells, or into 

neighboring bacterial cells (Wandersman, 2013). Bacterial secreted substrates are known to 

be involved in a series of complex macromolecular interactions with host proteins, which in 

turn contributes toward the pathology of bacterial infections (Mattoo et al., 2007; Mukhtar et 

al., 2011; Stavrinides et al., 2008). Identifying these substrates, clarifying their secretion 

pathways and further uncovering their functions will provide insights into Gram-negative 

bacterial infection mechanisms. 

Among the nine distinct secretion systems, the first six major pathways have been best-

studied in Gram-negative bacteria (Costa et al., 2015). These are referred to as the type I to 

type VI secretion systems, abbreviated as T1SS, T2SS, T3SS, T4SS, T5SS and T6SS (Fig. 

1.1). These protein secretion systems are complicated molecular machines, composed of 

multiple protein parts that work together to drive the secretion of their protein substrates 

across the bacterial membranes. The T1SS (Welch et al., 1981), T2SS (d'Enfert et al., 1987), 

T3SS (Galan & Curtiss, 1989), T4SS (Kuldau et al., 1990) and T6SS (Pukatzki et al., 2006) 
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span both the outer membrane (OM) and the inner membrane (IM), and use ATP hydrolysis 

in order to provide the energy for protein secretion. The ATP hydrolysis is catalyzed by 

distinct ATPases in each case. The T1SS is a machine built from four protein subunits, where 

one is a ATPase of the ABC family of proteins (Morgan et al., 2017). The T3SS has a 

ATPase that is structurally similar to the β-catalytic subunit of the F1 ATPase (Burkinshaw & 

Strynadka, 2014), and the T4SS requires ATP hydrolysis but it is not yet clear which subunit 

serves as the ATPase (Ripoll-Rozada et al., 2013), while the T6SS uses the ClpB ATPase to 

drive protein secretion (Barbosa & Lery, 2019; Brodmann et al., 2017). Since they use a two-

step process, both the T2SS and the T5SS depend on the SecA ATPase to drive protein 

secretion across the IM, with the T2SS using an additional ATPase to drive a piston that 

forces the substrate from the periplasm across the OM.  In all cases the substrates are 

exported out across the OM, either directly into the external environment or specifically into 

human (or other) host tissues, or into neighbouring bacteria.  

In something of an exception to the general rule is the T5SS, which sits discretely in the OM, 

uses the potential energy in protein folding to drive secretion of the substrate protein across 

the OM, and consists of six distinct sub-types (T5SSa-T5SSf) based on the characteristics of 

the protein pore in the OM. Some of these T5SS sub-types are generally called 

“autotransporters”, because the secreted substrate and the protein secretion pore are fused in a 

single polypeptide (Fan et al., 2016; Heinz et al., 2016; Henderson et al., 2004; Meuskens et 

al., 2019; Nicolay et al., 2015). All of these pores, of the T5SSa-T5SSf sub-types, are 

assembled in the OM by translocons of the Omp85 family (Heinz & Lithgow, 2014). 

Each of the six main secretion systems has distinct characteristics in their secretion pathways 

and mechanisms (Fig. 1.1), and these characteristics impact on how substrates are selected for 

translocation. T1SS, T3SS, T4SS and T6SS export their substrates across the bacterial 

envelope via a one-step secretion mechanism: a recognition event in the cytoplasm chooses 

which protein substrates will be selected (from among the thousands of proteins present in the 

cytoplasm) to be translocated from the bacterial cytoplasm into the target cells or the 

extracellular milieu. In contrast, T2SS and T5SS export their substrates via a two-step 

secretion mechanism: substrates are first translocated into the periplasmic space in a similar 

fashion to all other periplasmic and cell envelope proteins (via the Sec or Tat systems), and (i) 

the T2SS then selects only one or very few proteins as substrates to be secreted to the 

extracellular milieu (Costa et al., 2015; Hay et al., 2018; Hay et al., 2017), while (ii) the T5SS 

functions simply by having the cell’s Omp85 translocon integrate it into the OM. Since the 
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mechanism of T5SS secretion and the discovery of T5SS proteins is well understood, this 

thesis focuses on the T3SS, T4SS and T6SS, with future expectations of the same informatics 

strategies being applied to the T1SS and T2SS. The question of how those (non-T5SS) 

substrates are targeted and selected from thousands of common proteins for secretion, as well 

as their exact delivery procedure into the host cells or outside environments, is far from being 

completely understood. 

 

Fig 1.1. Summary of six secretion systems in Gram-negative bacteria. Shown coloured blue is the 

machinery of the T1SS, T2SS, T3SS, T4SS and T6SS, which spans both the inner membrane (IM) 

and the outer membrane (OM), and the T5SS which sits only in the OM of Gram-negative bacteria. 

Shown in red are additional components of these protein secretion systems that serve as adaptors to 

direct substrates into host membranes (HM). As detailed in the text, ATPases (yellow) drive protein 

secretion, and shown in green are the additional general “translocons” needed to assist protein 

transport, but which are not per se part of the protein secretion system. 

 

In addition to the diversity of secretion mechanisms, the substrates themselves play different 

roles with distinct functions: type I and type II proteins are usually enzymes, often 

hydrolases, that facilitate access and uptake of nutrients from the environment, while the 

majority of type III, IV and VI substrates are also referred to as "effectors" whose functions 

are thereby implied to be a direct imitator of a host-cell functionality. In contrast, the zinc-

binding protein substrate YezP (Wang et al., 2015), the manganese-binding protein TseM (Si 

et al., 2017), and the iron uptake assistance protein TseF (Lin et al., 2017), are all 
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experimentally validated type VI substrates that are directly secreted into the external 

environment to combat multiple stresses and host immunity, through competitive control of 

ion absorption. 

Due to the diverse nature of substrates, the numbers of experimentally validated substrates 

vary across bacterial species, with respect to different hosts and according to various survival 

strategies (Burstein et al., 2016; Pearson et al., 2015; Zou et al., 2013). With the large 

repertoire of secretion systems available to bacteria, many species are capable of secreting 

dozens of different substrates (Burstein et al., 2009; Burstein et al., 2015; Burstein et al., 

2016; Tobe et al., 2006) through one or more secretion systems (Chen et al., 2011; Dean & 

Kenny, 2009; Folders et al., 2001). Examples include Legionella that can secrete more than 

100 substrate proteins through its T4SS (An et al., 2017; Jeong et al., 2017; Qiu & Luo, 2013; 

Schroeder, 2017) and E. coli where some strains have the capability to secrete various 

proteins through as many as five different secretion systems (T1SS, T2SS, T3SS, T4SS and 

T6SS) (An et al., 2017; Christie, 2016; Dean & Kenny, 2009; Navarro-Garcia et al., 2019; 

Patrick et al., 2010; Schwarz et al., 2012; Slater et al., 2018; Tobe et al., 2006). Accordingly, 

the experimental validation protocols of those substrates completely vary from one type to 

another, and even largely differ within the same secretion type, which makes it particularly 

difficult to predict the identity of new substrates that have different sequence signatures 

compared to known substrates. 

1.2 Characteristics of the various secretion system substrates 

Based on the known substrates and the current knowledge of their biochemical properties and 

secretion mechanisms, bioinformatics has been used to explore the characteristics of their 

protein sequences. The broad aim has been to locate possible residue repeats, patterns and 

motifs, and in turn guide the computational identification of new substrates. 

T1SS mainly secretes substrates that are members of a protein family, termed repeat-in-toxin 

(RTX) proteins (Kanonenberg et al., 2013). RTX proteins usually possess distinctive glycine-

rich repeats (GGxGxDxxx, where x is any amino acid) to specifically bind calcium in their C-

terminus (Welch, 2001). A group of very large toxins, the Multifunctional Autoprocessing 

RTX (MARTX) (Satchell, 2007) represents a division of the RTX family, differing from 

other RTX proteins in terms of some structural elements and rtx gene cluster organization 

(Linhartova et al., 2010). Unlike other RTX proteins, MARTX proteins harbor an 18-residue-

long motif x(V/I)xxGxxNx(V/I)xxGDGxDx in their C-terminus and an N-terminal motif of 
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either 20 residues [GxxG(N/D)(L/I)(T/S)FxGAG(A/G)xNx(L/I)x(RH)] or 19 residues 

[T(K/H)VGDGx(S/T)VAVMxGxAN(I/V)x] (Linhartova et al., 2010). Using previously 

known characteristics and motifs, different methods including pattern search, Hidden Markov 

Model (HMM) search and RPS-BLAST search have been applied to identify new RTX 

proteins from hundreds of Gram-negative bacterial genome sequences (Linhartova et al., 

2010). By way of contrast, the proteins secreted by the T2SS do not show any conserved 

sequence-based motifs, leading to suggestions that there may be “motifs” encoded in 

structural features of the folded proteins destined for secretion (Dalbey & Kuhn, 2012).  

Both type III and IV substrates are directly injected into the host cell cytoplasm by their 

secretion systems. Like the T2SS, there are no obviously identifiable patterns in the 

sequences of the type III and IV substrates. However, deletion analyses of some model 

substrates have suggested a requirement for elements situated at their N-terminus and C-

terminus, respectively (McDermott et al., 2011).  For example, the delivery of these 

substrates into host cells by the Dot/Icm T4SS in Legionella requires a C-terminal 

translocation signal (Nagai et al., 2005). T3SS examples too include intrinsically disordered 

sequence features (Buchko et al., 2010) as well as chaperone-binding domain where 

structural motifs come together as three-dimensional signals (Birtalan et al., 2002; Ernst et 

al., 2018; Lilic et al., 2006), in the first 30/100 amino acids at the N-terminus. As most of the 

key components of the type III secretion system are conserved across species (Pallen et al., 

2005), its targeting mechanisms may also be conserved (McDermott et al., 2011). Two 

overlapping N-terminal domains in type III substrates are thought to be responsible to 

mediate their secretion: (1) Residues from 1 to 25 form a highly variable secretion signal 

(Michiels & Cornelis, 1991), and is sometimes highly tolerant of mutations (Russmann et al., 

2002). (2) Residues from 15 to 30 (or 15 to 100) in many substrates form a chaperone domain 

that enables a cognate chaperone protein to bind them (Lee & Galan, 2004). Removal of 

either domains prevents substrate recognition by the type III secretion system and in turn 

prevents their subsequent secretion (Lloyd et al., 2001; Michiels & Cornelis, 1991; Sory et al., 

1995). By contrast, the secretion signals of type IV substrates remain difficult to clarify, as 

they have two distinct secretion mechanisms, i.e. T4a and T4b (Cascales & Christie, 2003). 

While some T4a substrates in certain species harbor conserved residues (Vergunst et al., 

2005), their mutagenesis doesn’t affect the secretion of these substrates, indicating the 

presence of additional recognition domains (Hohlfeld et al., 2006). This also applies to the 

T4b substrates whose secretion mechanisms are more sophisticated and requires a possible 
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combination of multiple physical and structural features to provide necessary secretion 

signatures (McDermott et al., 2011). 

Type VI substrates are either exported into the surrounding environment to promote nutrient 

uptake and survival (Lin et al., 2017; Si et al., 2017; Wang et al., 2015), or directly injected 

into eukaryotic host cells or competing bacterial cells (Cianfanelli et al., 2016; Durand et al., 

2014; Russell et al., 2014). To date, no commonly agreed upon domains or motifs have been 

observed across type VI substrates, but there are some sequence characteristics that have been 

implicated in structurally or functionally similar substrates. For example, some VgrG and 

Hcp proteins belonging to type VI substrates often harbor a conserved C-terminal domain 

(Cianfanelli et al., 2016; Jamet & Nassif, 2015; Ma et al., 2017a; Pukatzki et al., 2009), 

leading to speculation that a protein may be a type VI substrate if it is appended with an 

additional C-terminal extension region (Lien & Lai, 2017). Type VI substrates also possess 

domains or motifs related to their biochemical or biological activity: examples being from a 

group of phospholipase substrates with a conserved motif GxSxG, HxKxxxxD (Russell et al., 

2013) or GxSxG (Flaugnatti et al., 2016). Other domains or motifs in type VI substrates 

responsible for their secretion include Rhs/YD repeats (Koskiniemi et al., 2013; Ma et al., 

2017b; Murdoch et al., 2011; Whitney et al., 2014), PAAR motifs (Ma et al., 2014; Rigard et 

al., 2016; Whitney et al., 2014), TTR motifs (Flaugnatti et al., 2016; Shneider et al., 2013) 

and MIX motifs (Salomon, 2016; Salomon et al., 2014; Salomon et al., 2015).  

These observed patterns, domains and motifs have been used to identify new substrates, and 

each of them has accordingly succeeded in identifying at least one other substrates that was 

then experimentally validated. However, these bioinformatics analyses are highly limited to, 

and dependent on, the existing knowledge of biochemical features and transport mechanisms 

of the substrates. They differ case by case in terms of the type, bacterial species or functions 

of the substrates. In addition, some experimentally determined motifs designate protein 

families and/or protein function, so that they are not exclusively related with secreted 

substrates. As such, these conserved motifs will potentially lead to a high false positive 

retrieval result. Identifying proteins that are similar in sequence provides no real benefit to 

determining the extent of variation in substrates – it introduces a bias instead where there is a 

stronger proportion of such proteins. 
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1.3 Machine learning in biological sequence-based prediction 

With the advances in high-throughput sequencing technologies, there has been a rapid 

increase in the discovery and accumulation of biological sequences. To deal with the rapid 

growth of these datasets and interpreting such big data, machine learning algorithms have 

been increasingly applied to (i) gain insights into complex biological systems and (ii) 

elucidate the mechanisms of diseases, therefore providing an indispensable and integral 

‘ingredient’ of cutting-edge, cross-disciplinary biological and biomedical research (Camacho 

et al., 2018; Larranaga et al., 2006; Libbrecht & Noble, 2015). Machine learning describes a 

set of computational approaches “trained” on a given dataset to learn the relationships 

between the samples and is thus capable of mining patterns that could be used to predict new 

samples. Machine learning algorithms accept features in the format of matrix or vectors, 

which in the case of biological sequences can be sequence patterns that are meaningful in 

their own right, or higher-order patterns reflective of protein structural features. Formulating 

the sequence- based prediction as a classification problem (e.g. classifying proteins into 

secreted substrates versus none secreted substrates in this thesis), the following major stages 

are generally involved when applying machine learning techniques: dataset collection and 

curation, sample representation, model construction, model validation and service 

development (Fig. 1.2). 

1.3.1 Dataset collection and curation 

To develop a machine-learning predictor to address a specific task, the first step is to 

construct a reliable benchmark dataset that can represent the diversity of the data to the best 

extent possible. In most cases, the benchmark dataset will consist of a training dataset and an 

independent test dataset. The training dataset is used for model training, while the 

independent test dataset is used for validating the trained model and assessing its prediction 

performance on unseen data samples. Ideally, a subset or a few case study samples, which are 

regarded as the most representative or recently experimentally validated samples with no 

overlap with those in the training dataset should be collected and used to further assess the 

quality and performance of the developed predictor. 
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Fig 1.2. Illustration of a common workflow of application of machine learning techniques in sequence 

based modelling and analysis. 

 

After an extensive and thorough search and collection from public databases and literature, 

one can obtain an initial dataset. A subsequent step is to remove the sequence homology of 

the dataset by clustering all sequences at a given threshold of sequence identity. This is done 

in order to remove sequence redundancy and avoid biased model training that might 
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otherwise be introduced (Chou, 2011). Removing sequence redundancy using a lower 

threshold will generally lead to more rigorous benchmark datasets and result in more reliable 

and less over-fitted models (Chou, 2011). Experimentally validated substrates are typically 

ones that are highly homologous because they are the most obvious choices to test for wet lab 

scientists. However, as the numbers of experimentally validated biological samples are often 

not very large, the selection of a sequence identity threshold should be exercised with 

caution, such that an appropriate trade-off between the sequence homology of the dataset and 

its size is achieved. Several software tools, including CD-HIT (Huang et al., 2010) and 

UCLUST (Edgar, 2010), can be used to cluster and remove the sequence homology of a 

dataset. 

1.3.2 Sample representation 

Usually, machine-learning algorithms are not applied to raw biological sequence data as input 

but instead work with features that are provided in the form of vectors (Chou, 2011). As such, 

effectively representing a biological sequence (also known as feature encoding) is key to the 

success of constructing accurate predictors (Chou, 2011; Wang et al., 2019b; Zhang et al., 

2018). Existing feature extraction methods can be categorized into five major groups, 

including sequence-based features, physicochemical property-based features, position-

specific scoring matrix (PSSM) profile-based features, predicted structural features and other 

profile-based features. Sequence-based features are primarily based on the statistical 

information pertinent to the frequency or compositions of sequence elements within the 

biological sequences. Physicochemical property-based features are primarily associated with 

the descriptions and the encoding of physicochemical properties of biological sequences. 

PSSM profile-based features are specific for protein sequences and are derived from PSSM 

profiles (generated by performing PSI-BLAST search against a reference genome dataset) 

through different types of matrix transformations (Wang et al., 2017). Predicted structural 

features are extracted based on predicted outputs, primarily generated by third-party software 

packages that take protein and RNA sequences as input. Other types of profile-based features 

are generally extracted based on various types of sequence-derived profiles generated by 

other toolkits. These profiles, to name a few, are sequence conservation score (Glaser et al., 

2005), enriched gene ontology terms (Chou & Cai, 2004), and protein functional domains 

(Chou & Cai, 2004). 
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The original features extracted from biological sequence data are often high-dimensional and 

contain potentially redundant information. This will introduce noise, slow down or bias the 

model training process, and typically result in reduced model performance (Awada et al., 

2012; Saeys et al., 2007). Accordingly, feature selection techniques play an important role on 

3-fold objectives (Guyon & Elisseeff, 2002): by enabling faster model construction, 

improving the prediction performance and generalization of the models (Bermingham et al., 

2015), and providing more simplified modes for easier interpretation (James et al., 2013). 

Commonly used feature selection methods include the Gain ratio based on information theory 

(Shannon, 1948), the Minimum Redundancy Maximum Relevance (mRMR) (Peng et al., 

2005) based on mutual information, and the Correlation Feature Selection (CFS) based on the 

correlate relationship of features (Hall, 1999). 

1.3.3 Model construction 

Once features are extracted and further selected, machine learning algorithms can be applied 

to train and construct models. Currently, a wide range of machine learning algorithms have 

been successfully developed and applied in the fields of bioinformatics and computational 

biology (Angermueller et al., 2016; Larranaga et al., 2006; Min et al., 2017). These ranges 

from classical machine learning methods, such as support vector machine (SVM) (Cortes & 

Vapnik, 1995), Naïve Bayesian (NB) (Friedman et al., 1997), Bayesian networks (BNs) 

(Jensen, 1996), random forest (RF) (Breiman, 2001), K-nearest neighbor (KNN), logistic 

regression (LR) (Freedman, 2009), Gradient Boosting Decision Tree (GBDT) (Friedman, 

2001; Friedman, 2001), extreme gradient boosting (XGBoost) (Chen & Guestrin, 2016) and 

Light Gradient Boosting Machine (LightGBM) (Ke et al., 2017), to emerging deep learning 

algorithms, such as convolutional neural network (CNN) (Krizhevsky et al., 2017), recurrent 

neural network (RNN) (Giles et al., 1994), long short term memory network (LSTM) 

(Hochreiter & Schmidhuber, 1997), generative adversarial network (GAN) (I et al., 2014), 

reinforcement learning (Bartlett, 2002) and bidirectional encoder representations from 

transformers (BERT) (Devlin et al., 2018). 

Usually, different features represent different characteristics of biological sequences, and can 

capture distinct sequence patterns from various perspectives, which therefore differ in their 

data distributions (Chen & Jeong, 2009). Incorporating such knowledge could further 

improve the prediction performance, as compared to models that have been trained using a 

single feature only (An et al., 2018; Chen & Jeong, 2009; Zou. et al., 2013). However, 
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compared to the models trained by simply combining these features, the ensemble learning 

strategies have been demonstrated to significantly improve the model performance (Chen et 

al., 2017; Chen & Jeong, 2009; Wan et al., 2017; Zhang et al., 2018; Zou et al., 2015). 

Commonly used ensemble learning strategies when integrating multiple single models 

include simple voting (Burstein et al., 2009; Sen et al., 2019; Zou et al., 2013), 

weighted/unweighted averaging (Zhang et al., 2018; Zhang et al., 2019), and stacking (Garg 

& Gupta, 2008; Wolpert, 1992; Xiong et al., 2018). 

1.3.4 Model performance assessment 

Upon construction of a model, its performance should be assessed objectively and rigorously. 

To this end, benchmarking experiments should be properly undertaken, including (1) k-fold 

cross-validation (CV) test (typical values for k are 5 or 10); (2) leave-one-out CV test 

(LOOCV), and (3) independent test. k-fold CV randomly partitions the benchmark data set 

into k equal-sized subsets, and repeats the tests five times. For each CV test, one subset is 

selected as the testing data, while the four remaining subsets are used to train the classifier. In 

this way, k-fold CV uses each subset once for testing and k times for training. The k results 

generated from these tests are further averaged as the overall performance of the model. 

LOOCV can be regarded as a special case of the k-fold CV with k=n, where n is the size of 

the benchmark data set. Similarly, LOOCV selects one sample out as the testing data, and use 

the remaining samples to trained the classifier. Accordingly, this process will be repeated n 

times, and the results will be then averaged as the overall performance of the model. 

Independent test further assesses a model using the independent dataset separately, without 

any overlap with the model's training data. The independent test represents a seperate and 

rigorous performance validation conducted based on the independent dataset that is usually 

collected independently and curated without any overlap with the training dataset (Larranaga 

et al., 2006). 

To comprehensively and quantitatively assess a model’s performance to solve a binary 

classification problem, a number of metrics are commonly used in the field of computational 

biology and bioinformatics, including Precision (PRE), Sensitivity (SN), Specificity (SP), 

Accuracy (ACC), F-value and Matthew’s correlation coefficient (MCC) (Matthews, 1975). 

These metrics are defined as: 

!"# = %!
%! + '! , 0 ≤ +, ≤ 1 
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where TP, TN, FP and FN represent the numbers of true positives, true negatives, false 

positives and false negatives, respectively. Additionally, in binary classification, the receiver 

operating characteristic (ROC) curve (Fawcett, 2006), a graphical plot of the true positive 

rate (TPR) versus the false positive rate (FPR) at various threshold values, are commonly 

used to visualize a model's diagnostic ability as its predictive threshold varies. The area under 

the curve (AUC) value of a ROC plot can then be calculated to quantify the model's 

predictive performance. 

1.3.5 Public service development 

After a model is constructed and evaluated, it is common to implement it in form of a web 

server, web service API or standalone toolkit to provide public access to its interested users. 

A user-friendly and easy-to-use web server can facilitate the process of using predictive 

models without going through complicated algorithmic details. A web service API can be 

helpful for command line users that wish to automatically retrieve results through scripts. 

However, as the increasing scale and complexity of biological sequence data often 

necessitates high throughput demands, distributed server design should be taken into 

consideration when constructing these servers. Alternatively, a standalone toolkit could 

largely reduce the web server's load, by allowing local execution on user's individual 

computing facilities. Both web service API (application program interface) and command 

line based standalone toolkit enables users to integrate a developed predictor into their own 

downstream or pipeline. 

1.4 Progress and challenges in machine learning based secreted substrate 

analysis and prediction 

1.4.1 Progress in secreted substrate predictors 
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In light of the biological significance of bacterial substrates, a considerable number of 

computational approaches have been developed to predict different types of substrates (An et 

al., 2018; McDermott et al., 2011; Zeng & Zou, 2017). Since machine learning was first 

applied in type III substrate prediction (Arnold et al., 2009; Samudrala et al., 2009), many 

such methods have been developed to accurately predict type I (Luo et al., 2015), type III 

(Arnold et al., 2009; Dong et al., 2015; Dong et al., 2013; Goldberg et al., 2016; Löwer & 

Schneider, 2009; Samudrala et al., 2009; Tay et al., 2010; Wang et al., 2011; Wang et al., 

2013a; Wang et al., 2013b; Xue et al., 2018; Yang et al., 2010; Yang et al., 2013), type IV 

(Burstein et al., 2009; Hong et al., 2019; Wang et al., 2014; Xiong et al., 2018; Zou et al., 

2013) and type VI substrates (Sen et al., 2019). Chapter 2 presents three recent studies on 

type III, IV and VI secretion system substrate identification. As these substrate predictors 

have been widely used to assist follow-up experimental validation or further included into 

other toolkits or integrative toolkits (Dong et al., 2015; Eichinger et al., 2016; Jehl et al., 

2011), their capability and practicality could be further expanded to comprehensively predict 

each type of substrates within a uniform toolbox. Towards this target, (Dhroso et al., 2018) 

developed a toolkit to discover substrates across various secretion systems, but mixed all 

substrates together from the analysis. As a result, they could identify substrates without 

annotation of their exact type, which largely reduces its practical usability for biologists. 

Technically, most existing methods select a certain machine learning algorithm as a base to 

train predictive model with some features, e.g. support vector machine (SVM) (Dhroso et al., 

2018; Dong et al., 2013; Samudrala et al., 2009; Sato et al., 2011; Wang et al., 2011; Wang et 

al., 2013b; Yang et al., 2010; Zou et al., 2013), Naive Bayes (NB) (Tay et al., 2010), random 

forest (RF) (Luo et al., 2015; Yang et al., 2013), Markov Model (MM) (Wang et al., 2013a), 

and Convolutional Neural Network (CNN) (Hong et al., 2019; Xue et al., 2018). To further 

improve the prediction accuracy, some approaches utilize a combination of multiple machine 

learning algorithms: (Löwer & Schneider, 2009) adopted both ANN and SVM for model 

training, and (Dong et al., 2015; Goldberg et al., 2016) combined a BLAST-based predictor 

and SVM-based classifier in type III substrate recognition,  (Burstein et al., 2009; Xiong et 

al., 2018) trained and integrated multiple machine learning algorithms for more accurate 

identification of type IV substrates, and (Sen et al., 2019) trained and integrated multiple 

machine learning algorithms, including MLP, SVM, KNN, NB and RF, for identification of 

type VI substrates. 
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As the number of feature extraction methods and machine learning algorithms increased, 

many ensemble strategies were applied to obtain more powerful and stable models through 

exploring how to effectively take advantage of multiple features in combination with various 

machine learning algorithms. For example, for the type IV substrate prediction (Hong et al., 

2019; Zou et al., 2013), the authors trained different models using a certain machine learning 

algorithm with distinct features, and integrated them by using the majority vote strategy. As 

an alternative, (Burstein et al., 2009) combined seven types of features, trained four models 

based on SVM, MLP, NB and BN, and finally integrated them as an ensemble model via the 

majority vote strategy. (Xiong et al., 2018) characterized type IV substrates by a single 

feature, based on which eight preliminary models were trained and then integrated using a 

stacking strategy. (Sen et al., 2019) combined nine features, and trained five individual 

models based on five machine learning algorithms, then further integrated these models as the 

final model based on the voting strategy to predict type VI secreted substrates. 

Recent work (An et al., 2018; Zeng & Zou, 2017) provide comprehensive surveys and deep 

performance evaluation of currently available methods and tools for the prediction of three 

major types of substrate proteins, namely type III, IV and VI substrates. These efforts reveal 

that the current methods for substrate prediction differ significantly from one another in terms 

of machine learning algorithms, dataset collection and curation, feature extraction and 

selection, prediction performance, availability via designated web servers and/or stand-alone 

software, and applicability. Based on these observations, (An et al., 2018) further proposed 

and built new ensemble models by simply integrating the existing substrate predictors for 

type III and IV substrate prediction, which outperformed all reviewed predictors based on the 

benchmark test and in specific test cases, indicating the necessity to and providing new 

insights into developing more powerful predictors. 

1.4.2 Progress in secreted substrate knowledgebases 

As substrate data collection and curation are often time-consuming and require specific 

biological knowledge, it is beneficial to gather various types of experimentally validated 

substrates for statistical analyses and new substrate discovery. Considerable efforts have been 

made to collect various types of secreted substrates with detailed attribute information, 

providing analytic functions that would assist users in systematic analysis, and integrating 

predictive toolkits for new substrate discovery (Zeng & Zou, 2017). These efforts greatly 
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facilitate known substrate analysis in terms of their functions, secretion system dependence 

and bacterial species, and at the same time allow for a better prediction of secreted substrates. 

T3SEdb (Tay et al., 2010), T3DB (Wang et al., 2012) and BEAN2.0 (Dong et al., 2015) 

collected and annotated type III substrate proteins, but each approach differed in the numbers 

and functional modules. SecReT4 (Bi et al., 2013) and SecReT6 (Li et al., 2015) presented 

and annotated type VI and IV substrate proteins, respectively. SecretEPDB (An et al., 2017) 

further integrated previous known datasets and manually collected additional substrates to 

build a more universal resource for type III, IV and VI substrate proteins. EffectiveDB 

(Eichinger et al., 2016; Jehl et al., 2011) provided a very large number of predicted type III, 

IV and VI substrate proteins across multiple bacterial species, picking up experimentally 

validated substrates but without means for browsing them or investigating their detailed 

information.  

Beyond providing data annotation and basic functions to investigate known secreted 

substrates, these toolkits offer various advanced functions to facilitate potential substrate 

prediction. Specifically, to provide type III substrate protein prediction, T3SEdb employs a 

selectable NaiveBayes or BayesNet model, T3DB integrates BPBAac (Wang et al., 2011), 

T3SEpre and a Markov model, and BEAN 2.0 integrates an updated model based on BEAN 

(Dong et al., 2013). Lastly, EffectiveDB integrates EffectiveT3 (Arnold et al., 2009) and 

T4SEpre (Wang et al., 2014), and includes the algorithms EffectiveCCBD and EffectiveELD 

for type III or IV substrate prediction. 

1.4.3 Progress in feature generating toolkits 

To successfully construct machine learning based predictors for accurate secreted substrate 

screening, it is crucial to extract representative features from the raw protein sequences, as to 

encode their underlying relationships. Effective feature extraction directly contributes to a 

successful machine learning based predictor, but usually involves complicated mathematical 

formulae and expert programming skills. To quicken the development and improve the 

performance of sequence based predictors, many computational efforts have been made to 

generate features that serve as inputs of machine-learning models (Cao et al., 2013; Li et al., 

2006; Liu et al., 2015a; Liu et al., 2015b; Liu et al., 2016; Liu, 2017a; Liu et al., 2017b; Rao 

et al., 2011; Xiao et al., 2015; Zhang et al., 2017). 
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These feature generators target different types of sequences, including protein, DNA and 

RNA sequences, extract different aspects of features, and are distributed in different formats, 

such as online and standalone toolkits. Among them, Propy (Cao et al., 2013), protr/ProtrWeb 

(Xiao et al., 2015) and PROFEAT (Li et al., 2006; Rao et al., 2011; Zhang et al., 2017) 

extract various features from protein sequences considering sequence information and 

physiochemical information. repDNA (Liu et al., 2015a) and repRNA (Liu et al., 2016) 

generate various modes of feature vectors based on DNA and RNA sequences respectively, 

while Pse-in-One (Liu et al., 2015b) integrates these features together to provide a universal 

service for feature generation based on protein, DNA and RNA sequences. By additionally 

integrating model construction and assessment, BioSeq-Analysis (Liu, 2017a) provides a 

pipeline for users to automatically analyze protein, DNA and RNA sequences. 

1.4.4 Challenges in analyzing and predicting secreted substrates 

The number of experimentally validated substrates makes it possible to computationally 

analyze both known substrates and known non-substrates to predict new substrates. As 

substrates with new characteristics are discovered, these existing computational methods and 

tools reveal certain drawbacks and limitations. The increasing diversity of substrates calls for 

more powerful, heterogeneous and informative machine learning features to capture as many 

characteristics as possible from currently known substrates. Different features often have 

different data distributions, and their patterns could be mined and learned with different 

efficiency by alternative machine learning algorithms. A future direction is to intelligently 

integrate multiple machine learning algorithms with a wide array of feature encoding 

methods, especially considering the number of new efficient and powerful machine learning 

algorithms and feature encoding methods grows over time. 

From a functionality point of view, existing substrate predictors can only predict substrates of 

one specific secretion system, which limits the practical usage in common scenarios. One 

group (Dhroso et al., 2018) attempted to discover all substrates from the various secretion 

systems, but the output was not very meaningful considering that it did not clarify which 

secretion system an identified was predicted to be secreted by. Existing substrate 

knowledgebases usually target one or a few types of substrates and offer limited options for 

users to analyze known substrates and predict potential substrates. Without a universal 

platform to integrate substrates and associated analytic and predictive tools, it is expected to 

be a cumbersome task if users have to investigate or compare known substrates across 
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secretion systems, or specify the closest relationship among certain known substrates for a 

given protein candidate. The latter case represents a common demand: as predictive models 

can only recognize a potential substrate, further locating its potential homologs and 

functional analogs from comparisons to known substrates could inspire users to infer possible 

structural and functional attributes, and guide design of the following experimental validation 

protocols. Deeply understanding users' needs and fully imagining their usage scenarios can 

create new tools to provide practical and seamless service for future substrate analysis and 

prediction. 

Existing substrate predictors have been often presented in the form of web servers, which is 

being challenged by the rapid accumulation of protein data. Due to the limited computing 

power, existing predictors allow a small number of sequences per submission, which 

significantly slows down the substrate prediction procedure. To enable a predictor to process 

genome-scale sequence data, which is common in practical use, distributed computing 

technologies promise to provide a solution for the development of more efficient and 

powerful frameworks. Providing standalone toolkits could be considered as another 

complementary solution to reduce the computing load of central servers by allowing users to 

execute the prediction tasks locally at their own computing facilities. This additionally 

benefits users, as standalone toolkits could be further integrated into their pipeline for 

automatic downstream analysis and modelling. 

1.5 Research contributions 

The overall target of my PhD project was to conduct a comprehensive analysis and prediction 

of bacterial secretion system substrates based on machine learning, and therefore construct a 

uniformed platform to systemically analyze known substrates, predict potential substrates and 

recognize their mutual relationship. Accordingly, contributions during my PhD candidature 

are summarized in Fig. 1.3. 
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Fig 1.3. Summary of the work done during my PhD study. First-authored publications are marked in 
yellow ( Wang et al., 2017; Wang et al., 2018; Wang et al., 2019a; Wang et al., 2019b), co-first or 
corresponding author publications in blue (Zhang et al., 2018; Zhang et al., 2019), and other co-
authored papers in pink (Grinter et al., 2018; Song et al., 2017; Zhao et al., 2019). 

 

1.5.1 Computational identification of single types of secreted substrates in Gram-negative 

bacteria 

Computational prediction provides for a preliminary screening of potential substrates, which 

narrows down the work load for following experimental validation. However, it remains a big 

challenge to accurately predict these substrates, as there are no observable signals or patterns 

existing in their protein sequences. Towards more accurate substrate prediction, we have 

conducted comprehensive bioinformatics analyses on three well-studied types of substrates 

(III, IV and VI), systematically investigated previous computational methods on their 
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performance, and finally proposed new machine learning based methods with demonstrated 

improved performance. To achieve this, our efforts cover main and key stages during 

machine learning model construction, including: (1) comprehensively exploring and 

comparing a wide range of features across various aspects of sequence-based features, 

physiochemical features, structure based features and evolutionary information based features; 

(2) exploiting multiple classical and new machine learning methods, such as SVM, NB, RF, 

KNN, LR, and LightGBM; and (3) further integrating those features with machine learning 

algorithms through investigating various ensemble strategies. Three state-of-the-art toolkits, 

i.e. Bastion3 (Wang et al., 2019a), Bastion4 (Wang et al., 2019b) and Bastion6 (Wang et al., 

2018), have been developed with user-friendly web interfaces to provide public service for 

accurate and robust prediction of type III, IV and VI secreted substrates, respectively. The 

conducted analysis, proposed methodologies, together with developed toolkits, are expected 

to enhance researchers’ understanding on substrates in Gram-negative bacteria, facilitate later 

experimental validation, and further inspire toolkit development in or beyond substrate 

prediction. 

1.5.2 Integrative system for identification and annotation of secreted substrates in Gram-

negative bacteria 

Beyond predictors that could predict a certain type of substrate, an integrative system was 

constructed to systematically analyze and predict various types of substrates. Development of 

this system consisted of a two-stage process, resulting in BastionX and BastionHub. 

BastionX has been developed to comprehensively predict each type of substrates. This is an 

integrative toolkit suite that includes an online server utilizing a distributed framework and a 

standalone toolkit.  BastionX’s distributed framework enables high-throughput prediction by 

a 10-fold improvement in terms of prediction efficiency, while its standalone toolkit allows 

local sequence analysis and seamless integration into a user’s own pipeline for downstream 

analysis. Together these characteristics contribute to the practical annotation of genome-scale 

protein sequences with their possible substrate types, and therefore provide the landscape of 

substrate distributions within bacterial genomes. BastionX was then integrated into a 

universal platform - BastionHub - to annotate, analyze and predict various types of secreted 

substrates in Gram-negative bacteria. By providing a range of functional analytic modules, 

and interconnecting them as an interactive system, BastionHub offers a one-stop service on 

known substrate investigation, potential substrate prediction, and relationship analysis 

between known and potential substrates. 
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1.5.3 Computational toolkits to facilitate development of machine learning based predictors 

As a key and indispensable step in machine learning-based analysis and modelling, feature 

extraction is inundated with mathematical derivation and formulation, and is therefore time-

consuming and complicated. Aiming at speeding up the development and improving the 

performance of machine learning models, two contributions have been made to facilitate 

automatic feature generating. A specialized toolkit POSSUM has been developed to enable 

users to generate a broad spectrum of PSSM-based features based on protein sequences. 

POSSUM implements a wide range of such algorithms existing in previous literature, 

provides an easy-to-use interface including both web server and standalone toolkit, and offers 

necessary functionality and flexibility for users to customize their features of interest. 

DIFFUSER, in the format of web server and standalone toolkit, was further developed to 

extend POSSUM to generate a broader spectrum of heterogeneous features from biological 

sequences, including DNA, RNA and protein sequences. The online server of DIFFUSER 

was designed and implemented within a distributed architecture, and thus achieved a 10-fold 

improvement in computational throughput. Representing the most comprehensive feature 

generator, DIFFUSER provides an all-in-one service to generate a great variety of 

heterogeneous features from biological sequence data in a high-throughput manner. Both 

POSSUM and DIFFUSER have been well demonstrated in practical applications, and 

therefore contribute to accelerate machine leaning based analysis and modelling to a wider 

scientific community. 

In summary, a series of computational programmes have been made in my PhD study to 

facilitate comprehensive and systematic annotation, analysis and prediction of substrates 

secreted by Gram-negative bacteria. Additional contributions to streamlined and automatic 

feature generation have expedited the development of substrate predictors, which can further 

contribute to the acceleration of general machine learning-based research. 

All bioinformatics resources and tools generated during this PhD project have been 

implemented and made publicly available at Monash University through the collaboration 

with the Monash e-Research Centre. These resources will facilitate bacterial substrate 

discoveries, biochemical property identification, structure or function inference and 

experimental validation, as well as machine learning based modelling and analysis in 

biomedicine and bioinformatics research (Fig. 1.4). 
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Fig 1.4. Impact of two representative toolkits developed in this PhD study. (A) As the first available 

type VI secreted substrate predictor, Bastion6 has attracted more than 16000 visits from more than 40 

countries and regions; (B) As the only specialized PSSM profile-based feature generator, POSSUM 

has attracted more than 30000 visits from more than 55 countries and regions, and obtained 293 

downloads of its standalone toolkit. 
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CHAPTER 2: Computational prediction of single types of 

secreted substrates in Gram-negative bacteria 

Bacterial secreted substrates adapt quickly to different hosts and survival strategies during 

evolution. Biologically, all of the substrates of a given protein secretion system are 

recognized by the system, meaning that there must be conserved features that can be read by 

the secretion system for it to choose its substrates. However, it is now clear that substrate 

proteins show low similarity in terms of primary structure i.e. sequence: without highly 

conserved patterns and motifs encoded in simple sequence. Whatever features are being read 

by the secretion machines, it is encoded in higher order structural elements such as secondary 

structure and/or tertiary structure information. Machine learning provides a universal 

framework and practical solution to predict various substrates from such “features”, in a high-

throughput and cost-effective manner. How secretion systems select their substrates for 

secretion remains unknown, but it is likely that they too use a complicated and combined 

strategy to recognize their substrates for translocation.  

The aim of this chapter of work was to extract as much information as possible from protein 

sequences of the substrates in the form of different features to feed into different machine 

learning algorithms, to closely simulate the substrate selection by each secretion system. By 

exploring various ensemble strategies to integrate these features and combine a wide range of 

machine learning algorithms, I sought to uncover the hidden characteristics within the 

substrate sequences. Taking full use of the strengths and merits of the different features along 

with the power of machine learning algorithms, I can develop more accurate and robust 

substrate predictors. 

This chapter presents three predictors that have been developed within a multi-layer 

framework to enable an accurate and streamlined prediction of three well studied types of 

substrates, including type III, IV and VI secreted substrates. Note that the more general term 

of secretion ‘substrate’ is used throughout the thesis, while the three published articles 

specifically refer to ‘effectors’, a common term for type III, IV and VI substrates. The three 

pieces of work are distributed into three subsections in chronological order as they were 

undertaken during my PhD candidature: Section 2.1 describes the Bastion4 predictor for the 

prediction of type IV secreted substrate proteins after systematic analysis of their 

characteristics based on multiple machine learning approaches. Section 2.2 describes the first 
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type VI substrate predictor Bastion6, and Section 2.3 describes the Bastion3 predictor for the 

prediction of type III secreted substrates, based on a two-layer ensemble strategy.  
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2.1 
Systematic analysis and prediction of type IV 
secreted effector proteins by machine learning 
approaches 

 
The supplementary information for this manuscript is listed in Appendix 1. 
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André Leier is currently an Assistant Professor in the Department of Genetics and the Informatics Institute, University of Alabama at Birmingham (UAB)
School of Medicine, USA. He is also an associate scientist in the UAB Comprehensive Cancer Center. He received his PhD in Computer Science (Dr rer. nat.),
University of Dortmund, Germany. He conducted postdoctoral research at Memorial University of Newfoundland, Canada, the University of Queensland,
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Abstract
In the course of infecting their hosts, pathogenic bacteria secrete numerous effectors, namely, bacterial proteins that
pervert host cell biology. Many Gram-negative bacteria, including context-dependent human pathogens, use a type IV
secretion system (T4SS) to translocate effectors directly into the cytosol of host cells. Various type IV secreted effectors
(T4SEs) have been experimentally validated to play crucial roles in virulence by manipulating host cell gene expression and
other processes. Consequently, the identification of novel effector proteins is an important step in increasing our under-
standing of host–pathogen interactions and bacterial pathogenesis. Here, we train and compare six machine learning
models, namely, Naı̈ve Bayes (NB), K-nearest neighbor (KNN), logistic regression (LR), random forest (RF), support vector
machines (SVMs) and multilayer perceptron (MLP), for the identification of T4SEs using 10 types of selected features and
5-fold cross-validation. Our study shows that: (1) including different but complementary features generally enhance the
predictive performance of T4SEs; (2) ensemble models, obtained by integrating individual single-feature models, exhibit
a significantly improved predictive performance and (3) the ‘majority voting strategy’ led to a more stable and accurate
classification performance when applied to predicting an ensemble learning model with distinct single features. We further
developed a new method to effectively predict T4SEs, Bastion4 (Bacterial secretion effector predictor for T4SS), and we show
our ensemble classifier clearly outperforms two recent prediction tools. In summary, we developed a state-of-the-art T4SE
predictor by conducting a comprehensive performance evaluation of different machine learning algorithms along with a
detailed analysis of single- and multi-feature selections.

Key words: type IV secreted effector; bioinformatics; sequence analysis; comprehensive performance evaluation; machine
learning; feature analysis

Introduction
Pathogenic bacteria are microorganisms that cause infections.
During this process, bacteria invade a host organism where
they multiply, producing and secreting effector proteins. Such
effector proteins fulfill a range of functions critical for the viru-
lence of the pathogen, that is the degree of damage that the bac-
terium causes to the host. In most cases, effector proteins are
directly injected into host cells via dedicated secretion systems,
enabling them to modulate or manipulate a wide range of cellu-
lar processes, including actin dynamics (e.g. Beps secreted by
Bartonella spp.) [1–3], phagocytosis (e.g. various effectors of
Yersinia and Salmonella enterica) [4, 5], endocytic trafficking (e.g.
effectors of Legionella pneumophila) [6–8], apoptosis (e.g. Shigella
effectors IpgD and OspG) [9, 10], immune response (YopJ from
Yersinia enterocolitica) [4, 11] and secretion (e.g. Escherichia coli ef-
fector EspG) [12].

Currently, Gram-negative bacterial secretion systems are
classified into six types (I-VI) [13]. Among them, type III and
type IV secretion systems (T3SS and T4SS, respectively) and
their associated effectors (T3SEs and T4SEs, respectively) have
been widely studied, as they are critical for virulence of various
human pathogens. For example, S. enterica, Yersinia pestis and
Pseudomonas syringae use type III secretion systems [14], while
Brucella spp., Bartonella spp., Helicobacter pylori and L. pneumophila
use T4SSs [15]. Despite their clinical significance, a fundamental
biological question remains: How does a given secretion system
recognize a given effector protein as a substrate, which it must
bind and secrete? These secretion systems are highly selective
nanomachines, and do not inadvertently secrete non-effector
proteins. Clearly, some element or elements of effector protein
sequence and/or structure must dictate recognition by the cog-
nate secretion system, but there is an outstanding need for an
integrative understanding what these recognition elements are
and how they determine substrate protein secretion. While
specific wet-lab experimental studies can answer underlying
questions for individual effector proteins, bioinformatics-based
tools are needed to address the matter more efficiently and
comprehensively.

Recently, machine learning algorithms were introduced to
predict T4SEs [16–18]. For instance, Burstein et al. [16] developed
a machine learning model for differentiating T4SEs from non-
effectors in L. pneumophila. Their model used seven types of
features including ‘taxonomic distribution among bacteria and
metazoa’, ‘sequence similarity to known effectors’ and ‘hom-
ology to known eukaryotic proteins’, which the authors con-
cluded from their analysis were the three best representative
features [16]. To examine the classification performance of
different algorithms, they used support vector machine (SVM),
multilayer perceptron (MLP), Naı̈ve Bayes (NB), Bayesian net-
works (BNs) and a Voting Algorithm, the latter of which was
based on the former four classifiers. The study successfully
predicted and experimentally verified 40 novel T4SEs from
Legionella. In another recent work, Zou et al. [17] developed an
SVM-based classifier called T4EffPred using four distinct feature
types, including amino acid composition (AAC) and position-
specific scoring matrix (PSSM), as well as feature combinations.
T4EffPred could distinguish IVA and IVB effectors, which are the
two main subtypes of T4SEs [17]; it has also been successfully
applied to perform genome-wide predictions of effectors in
the bacterium Bartonella henselae, where !50 putative T4SEs
were found. In a third study, Wang et al. [18] presented a T4SE
inter-species cross-prediction tool based on C-terminal
features, such as AACs, motifs, secondary structures (SSs) and
solvent accessibility (SA). The tool comprises three computa-
tional models that were trained using SVM-based machine
learning (T4SEpre_psAac, trained using position-specific,
sequence-based AACs; T4SEpre_bpbAac, trained using AACs
based on bi-profile Bayes feature extraction combined with
SVM; T4SEpre_Joint, trained using position-specific AACs, SSs
and SA). When applied to the genome of H. pylori, 25 candidate
T4SEs were identified by the authors. Also based on C-terminal
Signals, Zou et al. [19] analyzed the performance of C-terminal
sequence features such as AAC and position-specific amino
acid composition (PSAac). They used multiple machine learning
algorithms to train models of T4SEs with a majority vote strat-
egy. Based on their findings, an SVM predictor of type IV-B
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effectors trained with PSAac and AAC was developed and vali-
dated through a genome-scale prediction in Coxiella burnetii. Our
previous work [20] comprehensively reviewed the currently
available bioinformatics approaches for T4SE prediction, and
offered an assessment of these approaches in terms of software
utilities and prediction performance. A recent review from Zeng
et al. [21] further discussed and highlighted some potential im-
provements of the prediction performance after benchmarking
the available identification tools of secreted effector proteins in
bacteria. The schematic figures in such article give a bird’s-eye
view of computational toolkits in the field of secreted effector
predictions.

While previous work has demonstrated that machine
learning approaches can successfully predict effector proteins,
the features or combinations of features that are most appropri-
ate for efficient T4SE prediction have not been systematically
assessed. Here, we used 10 types of features and 6 different
machine learning algorithms to train predictors with 390 T4SS
effectors and 1112 non-effectors. We first compared the 10 types
of features with their combinations on multiple performance
assessments and found that, while combinations of features in
a single model do not yield statistically significant improve-
ments, the ensemble of multiple individual models trained with
different single features significantly improved the overall per-
formance. Our direct comparison of six representative models,
namely, NB, K-nearest neighbor (KNN), logistic regression (LR),
random forest (RF), SVM and MLP, shows that RF and SVM out-
performed all others in terms of predictive and computational
performance. In addition, the ensemble model that integrated
all six machine learning methods further improved the predic-
tion performance. With this valuable knowledge, we developed
Bastion4, an online T4SE predictor that operates as an ensemble
classifier based on six machine learning models, each of which
consists of individual models trained with various types of
selected features. Our subsequent analysis presented here
shows that Bastion4 outperforms T4Effpred and T4SEpred based
on independent tests. Bastion4 is available at http://bastion4.
erc.monash.edu/.

Materials and methods
The Bastion4 methodology development (Figure 1) involved five
major stages: Data set Curation, Feature Extraction, Feature
Selection, Model Training and Validation and Prediction. Each
of these major stages is described in the following sections.

Data sets collection

The input data set consisted of two parts: the training data set
and the independent data set. We constructed the training data
set by extracting known T4SEs from independent data sets
described in the literature. Specifically, 347 T4SE sequences
were extracted from the T4SEpre data set constructed by Wang
et al. [18]. The pathogen B. henselae has two subtypes of T4SS
(IVA and IVB), and 340 effectors including 30 IVA proteins and
310 IVB proteins were acquired from Zou et al. [17]. Finally, we
added 120 proteins identified by Burstein et al. [16]. For the nega-
tive training set, we chose the entire set of 1132 non-effectors in
Zou et al. [17]. After forming the preliminary data set, CD-HIT
[22] was used to remove highly homologous sequences (defined
as having 60% sequence identity) to reduce sequence redun-
dancy, which may otherwise lead to a potential bias in
the trained models. The final training data set contained 390
positive and 1112 negative sequences.

To evaluate the model performance in comparison with
existing T4SE prediction tools, we generated an independent
data set containing both positive and negative samples. For the
former, 43 positive samples were acquired from the UniProt
Database [23] and Meyer et al. [24], while for the latter, we used
150 samples from the data set of Vibrio parahaemolyticus
serotype O3: K6 (strain RIMD 2210633) [25]. After removal of
duplicate samples, which appear in our training set and the
data sets used by the existing T4SE predictors, we obtained
a final independent data set made up of 30 positive and 150
negative samples.

Feature extraction

The variety of features used in this work can be categorized into
three main types: local sequence encoding, global sequence
encoding and structural descriptor encoding. Extracted from the
type-specific information available for any given protein, each
feature is represented by a number of encoding vectors.

Local sequence encoding
Feature associated with local sequence encoding refers to dis-
tinguishable patterns in the protein sequence.

(1) Amino acid composition
AAC is represented as a 20-dimensional feature vector, in which
each element characterizes the frequency of an amino acid type
in the whole protein sequence [26].

Each element in this feature vector was calculated according
to the following formula:

vi ¼
ci

lenðseqÞ ; i ¼ 1; . . . ; 20;

where ci is the number of occurrences of amino acid i in the
whole protein sequence, and lenðseqÞ is the length of the se-
quence. Finally, vi represents the i-th element in the feature
vector, which indicates the frequency of the amino acid i in the
protein sequence.

(2) Dipeptide composition
A protein’s dipeptide composition (DPC) is encoded in a 400-di-
mensional feature vector {fp1; fp2; . . . ; fp400}, which represents
the frequencies of all 400 possible amino acid pairs in the pro-
tein sequence. Each element fpi is obtained using the following
formula:

fpk ¼
pi

len seqð Þ $ 1
; i ¼ 1; 2; . . . ; 400;

where pi denotes the number of occurrences of the i-th amino
acid pair [17], and len seqð Þ $ 1 refers to the total number of di-
peptides in the whole sequence.

(3) Composition of k-spaced amino acid pairs
As a widely used feature type in sequence analysis [27, 28], the
composition of k-spaced amino acid pairs (CKSAAPs) is in effect
a generalization of the DPC. Two amino acids form a k-spaced
amino acid pair if they have k amino acids in-between them. In
this sense, amino acid pairs in the DPC can be viewed as 0-
spaced amino acid pairs in the CKSAAP. For CKSAAP, all pairs
with space % k are considered. Thus, CKSAAP outputs a
400& ðkþ 1Þ-dimensional feature vector for a given protein
sequence. We use k¼ 5, and, consequently, a 2400-dimensional
vector is constructed.
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(4) Property composition
The property composition (PPT) [29] maps amino acids to three
distinct amino acid alphabets, namely, the classical amino acid
alphabet, the amino acid property alphabet and the hydropho-
bic/hydrophilic alphabet. Each amino acid corresponds to a cer-
tain property class. When an amino acid fits to multiple property
classes, it was categorized into the most specific (smallest) class.
For each property class, di- and tripeptides were measured in
terms of frequency. Moreover, only the features that occur more
than one time in both positive and negative data sets were se-
lected to avoid over-fitting. Consequently, a 72-dimensional fea-
ture vector is formed for each protein sequence.

Global sequence encoding
PSSMs have proved beneficial for incorporating evolutionary in-
formation in machine learning methods [17, 30–35]. Here, we
generated PSSM profiles by running PSI-BLAST against the
nonredundant database of NCBI with parameters j ¼ 3 and
h ¼ 0:001. There are two types of methods for exploiting pat-
terns from PSSM profiles, which are explained below.

(5) PSSM profiles with auto covariance transformation
A PSSM is a L" 20 matrix, where L is the length of the corres-
ponding protein sequence. The (i, j)-th element of the matrix de-
notes the probability of amino acid j to appear at the i-th

position of the protein sequence. The PSSM encoding converts
the PSSM profile into a 20" 20 matrix by summing up all rows
of the same amino acid residue [34], thereby forming a 400-di-
mensional vector as part of the input for model training.

Based on the original L" 20 matrix, the PSSM_AC encoding
uses the auto covariance (AC) transformation to further meas-
ure the correlation between two properties [17, 36] by using the
following formula:

AC j; lgð Þ ¼
XL%lg

i¼1

Si;j % !Sj
! "

Siþlg;j % !Sj
! "

= L% lgð Þ;

where j refers to one of the 20 amino acids, L denotes the length
of the whole protein sequence, Si;j denotes the PSSM score of
amino acid j at position i and !Sj is the average score for amino
acid j along the whole sequence:

!Sj ¼
XL

i¼1

Si;j=L:

Consequently, the number of AC components amounts
to 20" LG, where lg runs from 1; 2; . . . ; LG, with LG < L. Here,
we set LG ¼ 10 as previously used in Zou et al. [17], yielding a
200-dimensional feature vector.

Figure 1. Overview of the proposed methodology for predicting T4SEs. First, a large number of protein sequences are collected, forming the input data set. Then, 10
types of features are extracted that characterize those proteins in different ways. Using the mRMR/Gain Ratio technique, a subset of features is selected to optimize the
following model training. Next, the performance of trained models is evaluated by a 5-fold cross-validation test and an independent test. Finally, by applying a voting
mechanism to various models, an ensemble classifier is formed, which separates the input into putative effectors and non-effectors.
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(6) Smoothed PSSM encoding
A transformation of the standard PSSM profile, the Smoothed
PSSM (PSSM_SMTH) encoding, has been previously used to
predict RNA-binding sites of proteins [37] and drug-binding resi-
dues [38]. Assuming the size of a smoothing window is w and vi

represents the ith row vector of the PSSM, each row vector of
the PSSM_SMTH can be constructed by summation of the
current row vector and the following w! 1 row vectors (Figure
2):

vsmoothed i
¼ vi þ $ $ $ þ viþ w!1ð Þ:

For this method, we use values of w ranging from 1 to 10.
Therefore, 10 PSSM_SMTH profiles are obtained. For each
PSSM_SMTH profile, rows corresponding to the first 50 amino
acids starting from the protein’s N-terminus are considered to
form a vector with dimension 50 ' 20¼ 1000. As a result, a
10 000-dimensional vector is constructed.

To extract the PSSM_AC encoding and the 10 PSSM_SMTH
encodings, we used the POSSUM server, which is a bioinformatics

toolkit for generating numerical sequence feature descriptors
based on PSSM profiles [39].

Structural descriptor encoding
Protein structural information has been widely used to improve
the prediction performance in a number of bioinformatics appli-
cations [40–45], but has not been comprehensively analyzed for
the prediction of T4SEs. In our machine learning framework
described here, we extract SS, SA and natively disordered region
information for T4SE sequences and use them as features for
model training.

(7) Predicted SS
Protein SS is a widely used attribute in bioinformatics pre-
dictors. As the SS is known for only a relatively small number of
proteins, we instead predicted protein SSs from amino acid se-
quences using SSpro [46]. Specifically, for each residue of
the query sequence, SSpro predicts one of three types of SS:
alpha-helix, beta-strand or coil. Here, we represent these types
of predicted SS by using a 3-bit encoding and encode the first 50

Figure 2. Example of a PSSM_SMTH profile using a smoothing window of size 7. The PSSM profile shows the evolutionary information extracted from the PSSM file,
which is generated by PSI-BLAST. When the size of the smoothed window is set to 7, the values of the 7th row in the PSSM_SMTH profile are equal to the sum of the
corresponding values from the 7th row to the 13th row of the PSSM file.
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residues of the queried sequence, thereby forming a vector of
length 3! 50¼ 150.

(8) Predicted SA
SA is another important feature for prediction. The SSpro program
can be used to predict SA from protein sequence data. For each
residue in a sequence SSpro predicts, it being in one of the two pos-
sible states ‘exposed’ or ‘buried’. Therefore, we use a 2-bit encoding
to represent predicted SA and encode the first 50 residues of the
queried sequence, forming a vector of length 2! 50¼ 100.

(9) Predicted natively disordered region
Disordered (DISO) protein regions lack fixed tertiary structure,
being either fully or partially unfolded [47]. Contrary to initial
concerns that these regions were functionally ‘useless’, recent
studies indicate that such regions are commonly involved in
many biological functions [47]. Here, we predict the native dis-
order information using DISOPRED2 [48], which provides a quan-
titative real-valued score ranging from 0 to 1, which represents
the probability of a residue being disordered. For this structural
descriptor, we used seven different sizes of smoothing windows
as previously suggested [49] (w ¼ 1; 7; 11; 21; 27; 31; 41) to
encode the first 50 residues of the queried sequence, resulting in
a feature vector of length 7! 50¼ 350.

Feature normalization

After feature extraction, we found that some features have val-
ues ranging between 0 and 0.01, while others have values rang-
ing from 1 to 1000. However, features that can frequently
assume larger numeric values are also more likely to have a
larger impact on the prediction as compared with features with
ranges of smaller numeric values. Thus, to improve the predic-
tion accuracy and avoid having a particular feature dominating
the prediction because of it assuming larger numerical values,
we normalize values of different features so that all values fall
into the same numeric interval [50].

Here, we use the following formula to normalize all feature
values to the numeric interval [0, 1]:

x
0 ¼ x# xmin

xmax # xmin
;

where x; xmin; xmax denote the original value, the minimum val-
ue and the maximum value in the feature vector, respectively,
and x0 denotes the output value of x after scaling. If the numbers
in a feature vector are equal to each other, i.e. xmax # xmin ¼ 0,
we assign the value 0.

Feature selection

Feature selection plays an important role in machine learning.
Biological data sets are usually characterized by a large number
of initial features, making it a formidable task to deal with
oversized feature sets; some of the typical problems include
slow algorithm speed and a low predictor performance.
Thus, the objective of feature selection is 3-fold: improving the
prediction performance of the predictors, providing faster and
more cost-effective predictors and providing a better under-
standing of the underlying process that generated the data [51].

Gain ratio
The gain ratio algorithm is a powerful method based on infor-
mation theory [52]. In this binary classification problem, we as-
sume the probability of a positive sample to be P and the

probability of a negative sample to be 1# P. The entropy of the
classification can be denoted as:

H Cð Þ ¼ #Plog2 P # 1# Pð Þlog2 1# Pð Þ;

where C denotes the positive class label. The conditional entropy
of the feature Fj can be calculated as follows:

H CjFj
! "

¼
Xm

j¼1

PF¼Fj HðCjF ¼ FjÞ;

where m denotes the total number of features. Therefore, we
can express the formula of gain ratio as:

GR Fj
! "
¼

H Cð Þ #H CjFj
! "

HðCÞ
:

mRMR
The mRMR algorithm is based on mutual information [53]. It was
originally proposed by Peng et al. [53] and can be downloaded from
http://penglab.janelia.org/proj/mRMR/. The mRMR algorithm has
been widely used in a number of feature-selection tasks in many
research areas [54–59], including protease cleavage sites predic-
tion, acetylation site prediction and other posttranslational
modification site predictions.

Model training

Naive Bayes
NB is a commonly used statistical classifier that is generally
adopted to calculate the conditional probability without assum-
ing any dependence between features. It has been successfully
applied in many disciplines of science, and performs consist-
ently well even when considering relatively few attributes [60].
NB operates based on the Bayes’ theorem:

p CjF1; F2; . . . ; Fnð Þ ¼ p Cð Þ
p F1; F2; . . . ; Fnð Þ

Yn

i¼1

p FijCð Þ;

where C represents the binary class variable, and F denotes the
input feature vector of the classifier.

K-nearest neighbor
KNN is a simple but powerful classification method, which
predicts a new candidate by evaluating the distance functions
to k nearest known neighbors. It has been successfully used in
many bioinformatics endeavors such as the prediction of
protein function [61], protein subcellular localization [62] and
membrane protein architecture [63]. According to the KNN
algorithm, a new instance is classified by a majority vote of its
top KNNs. The instance is then assigned to the most common
class among the top KNNs.

The choice of parameter k is important, and has a direct ef-
fect in the performance and outcome of a KNN classifier. In this
work, k was optimized so as to minimize the classification error
for values k ¼ 1; 2; . . . max f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
featureNum
p

; featureNum=2g
j k

,
where featureNum is the number of features used during model
training.

Logistic regression
As a widely used algorithm [64, 65], LR results from a linear
regression using the following equation:
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p yð Þ ¼ 1
1þ e% b0þb1xð Þ ;

where pðyÞ refers to the expected probability of dependent
variables, and b0; b1 are constants.

As the values of LR range from 0 to 1, it is a useful technique
for handling classification problems, especially in situations
where only the probability of occurrence of the response is
concerned.

Random forest
The RF algorithm is a classification algorithm developed by Leo
Breiman [66] using an ensemble of classification trees. It has
been widely used and implemented as the RF package in R [67].
RF is one of the most powerful algorithms in machine learning
[68]. In RF, two key parameters are the number of the trees, M,
and the number of features selected randomly, mtry.

Here, we selected M ¼ 1000, and optimized the param-
eter mtry over the set of integers between 1 and
max f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
featureNum
p

; featureNum=2g
j k

to minimize the classi-
fication error. Here, featureNum is the total number of features.

Support vector machine
SVM is a powerful machine learning algorithm and is com-
monly used to deal with binary classification problems. SVM
has been widely applied to solve many classification and regres-
sion problems in bioinformatics and computational biology [17,
18, 26, 27] and, particularly, SVM with a Gaussian radial basis
kernel is widely used for nonlinear classification problems.
There are two parameters that affect the performance of the
nonlinear SVM model: Cost (C), which controls the cost of mis-
classification during data training, and Gamma ðcÞ, which is the
free parameter of the Gaussian radial basis function.

In this study, we adopt the radial basis kernel for SVM model
training by using the e1071 package [69] in R language. We use
the grid search method to identify the optimal parameters C
2 2%6; 2%5; . . . 1; . . . ;25; 26"

and c 2 2%6; 2%5; . . . 1; . . . ; 25; 26"
.

Accordingly, our number of grid points is 13& 13¼ 169. Based on
the training data, the SVM is optimized by finding the optimal
values for C and c that minimize the classification error by
performing 10-fold cross-validation.

Neural networks
A neural network is a nonlinear statistical classifier that is able
to detect complex relationships between dependent and inde-
pendent variables [70]. One type of neural network is called
MLP. An MLP is characterized by multiple layers, that is there
can be one or more nonlinear layers (hidden layers) between
the input and the output layers. An increase in the number of
hidden layers facilitates neural network models to solve
increasingly nonlinear problems.

Using RSNNS [71], an R implementation of SNNS [72], we
train an MLP classifier with two hidden layers. The numbers of
nodes in the first and second hidden layers are set to 64 and 32,
respectively, while the maximum number of iterations to learn
is set to 1000.

Randomized 5-fold cross-validation test

Cross-validation is a common method for estimating the per-
formance of a classification model. In this study, the benchmark
data set is randomly partitioned into five equal-sized subsets,
and tests are repeated five times. For each cross-validation
test, one subset is used as testing data, while the remaining

four subsets form the training set are used to train the classifier.
Hence, each subset is used once for testing and four times
for training. The five numerical results obtained from these
tests are averaged to obtain a single value that represents the
performance of the classification model.

Independent test

In this study, we compare the performance of our models with
three previously published classifiers: T4Effpred [17] and
two variant models of T4SEpred (i.e. T4SEpred_bpbAac and
T4SEpred_psAac) [18]. As noted earlier, we constructed an inde-
pendent test data set, which is completely different from the
training data sets of these three models. Performance compari-
son is conducted on this independent data set.

Performance assessment

Six performance measures, namely, Sensitivity (SN), Specificity
(SP), Precision (PRE), Accuracy (ACC), F-value and Matthew’s
correlation coefficient (MCC) [73], are used to evaluate the
overall predictive performance of classification models. These
measures are defined as:

SN ¼ TP
TPþ FN

SP ¼ TN
TNþ FP

PRE ¼ TP
TPþ FP

ACC ¼ TPþ TN
TPþ FPþ TNþ FN

F% score ¼ 2& TP
2TPþ FPþ FN

MCC ¼ TP& TNð Þ % ðFN& FPÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FNÞ & ðTNþ FPÞ & ðTPþ FPÞ & ðTNþ FNÞ

p ;

where TP; TN; FP and FN represent the numbers of true positives,
true negatives, false positives and false negatives, respectively.

Additionally, the receiver operating characteristic (ROC)
curve, which is a plot of the true-positive rate versus the false-
positive rate, is depicted to visually measure the comprehensive
performance of different classifiers. The area under the curve
(AUC) is also provided in each of the ROC plots, to quantify the
respective performance.

Results and discussion
Sequence analysis

We analyzed the amino acid occurrences (including those over-
represented and underrepresented) on each position of T4SS ef-
fectors. We examined the first 50 N-terminal and 50 C-terminal
positions of sequences of T4SEs [18, 20], non-effectors and
control proteins with the pLogo program [74], and studied the
differences among the three groups of proteins with respect to
their amino acid preferences (Figure 3).

For the N-terminus, remarkable consensus was found in
T4SE sequences, while amino acid residues tended to be more
disordered in non-T4SE and control sequences. Specifically, the
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N-terminal sequences of T4SEs showed a significant overrepre-
sentation of lysine and asparagine residues, with glycine and
alanine largely absent. Likewise, the C-terminal sequences
showed an enrichment for glutamate residues at positions
35–42 for the T4SEs (i.e. in residues located at !16 to !8 posi-
tions relative to the C-terminus). There was no significant motif
pattern in the C-terminal sequences of non-T4SEs or the control
sequences. Such characteristic features distinguish T4SEs from
non-effectors, and are useful for explaining protein features
that might be captured in machine learning models. Previous
work on several specific T4SEs has shown that the C-terminal
segment of the proteins incorporates at least part of the signal
for engagement by the T4SS [75].

As shown in Table 1, L. pneumophila has 291 T4SEs, thereby
accounting for the largest proportion (74.6%) of T4SEs. To ad-
dress whether this biases the outcomes of putative signal
sequence motifs, we analyzed sequences from L. pneumophila
and C. burnetii, respectively (Figure 4). The enrichment of
glutamate (‘E’) residues is clear in sequences from L. pneumo-
phila. While sequences from C. burnetii commonly have glutamic
residues, these have a much reduced preference. Biologically,
this could indicate two distinct targeting signals, with the one
composed of glutamic residues being the predominant form in

species, such as L. pneumophila, but with this glutamic acid-rich
signal used by fewer of the T4SEs in species like C. burnetii.
Computationally, this finding reveals that there is no common
motif in T4SS effectors across multiple species, which further
supports the need to look at many features to develop globally
effective machine learning models.

Performance evaluation using randomized 5-fold cross-
validation tests

For each of the 10 feature encodings, all six classifiers were
trained and validated to predict T4SEs based on a randomized
5-fold cross-validation test. As negative samples, 390 protein se-
quences were randomly selected from the non-type IV effector
data set, to generate a balanced training data set with a 1:1 ratio
of positive to negative samples. All experiments were repeated
five times. The results are documented in Table 2, Figures 5 and
6, and discussed below.

Performance evaluation of various classifiers
For most of the feature encodings, RF and SVM predictors
clearly outperformed the other classifiers in terms of ACC,
F-score and MCC (Table 2, Figures 5 and 6). This observation is

Figure 3. Position-specific amino acid sequence profiles of T4SEs and non-effectors for N- and C-terminal 50 positions. Images were generated by pLogo. The vertical
axis denotes the log-odds binomial probability, while the horizontal one represents the N-terminal position number. The red horizontal bars on the images denote the
statistical significant thresholds (P¼ 0.05) following a Bonferroni correction. (A), (B) and (C) illustrate sequence logo representations for T4SEs, non-effectors and control
effectors (i.e. cytoplasmic proteins), respectively.
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consistent with and supports the conclusion drawn by
Fernández-Delgado et al. [68], who found that RF and SVM are
most likely the best classifiers among all compared 17 machine
learning algorithms based on 112 different data sets. Among
all the classifiers corresponding to various feature encoding
methods, RF classifiers achieved the highest F-score (0.905) and
MCC (0.811) when PSSM was used for training.

To make a fair performance comparison of a variety of
different classifiers, the trade-off between SN and SP was taken
into consideration. The difference between SN and SP for RF mod-
els, in most cases, is lower than for other models. This implies
that the RF classifier provides a better trade-off between SN and
SP, and achieves a more comprehensive and stable performance
on the prediction of T4SEs. As an ensemble classifier, RF can even
fit training data that suffers heavily from noisy, high-dimensional
and highly correlated features without over-fitting [76].

To evaluate the computational efficiency of various classi-
fiers, we compared the computational time for each classifier,
using 200-dimensional PSSM features (selected by GainRatio)
for model training. The total computational time for each
classifier included parameter tuning time (Tuning time) and
randomized 5-fold cross-validation time (CV time). As can be
seen in Figure 7A, SVM and MLP were most time-consuming
among all methods in terms of the total computational process,
which consists of parameter tuning and model training.
Parameter tuning for SVM was computationally costliest
(Figure 7C), highlighting difficulties associated with optimizing
parameters for SVM models. In contrast, training MLP model
(without performing parameter optimization in advance, which
is another extremely complex task)-associated cross-valid-
ations are most time-consuming. Finally, when compared with
SVM, RF achieved a better trade-off with remarkably less tuning
time and only slightly longer CV time (Figure 7B and C).

Performance evaluation of various feature encoding schemes
Among all feature encoding schemes, the most powerful one is
PSSM (Table 2), achieving the highest AUC values for five of six
classifiers when compared with other feature encodings (Figure
6). The local sequence encoding and global sequence encoding
(except for PSSM) achieved similar performances, while the
structural descriptor encoding showed a poor performance
(Figure 6). CKSAAP performed worse than DPC for most
classifiers (Table 2 and Figure 6): a possible explanation is that
DPC might recognize the most valuable patterns in protein
sequences, while CKSAAP may introduce redundant and noisy
information that reduce the performance of T4SE prediction.

We explored the contribution of all features and three distinct-
ive groups of them (AAC group, PSSM group and structure group)
in two ways: feature ensemble and feature combination. For
feature ensemble, we trained single-feature models and then
integrated these as an ensemble model. For feature combination,
features were first combined into a vector to train a model.

As shown, for each machine learning method, models
trained based on all features and the three distinctive groups
using feature ensemble (Figure 6 and Table 2) outperformed
those trained using feature combination (Supplementary Figure
S1 and Supplementary Table S1). When compared with single
feature-based models, feature ensemble models achieved more
stable performance across various machine learning methods
(Figure 6 and Table 2).

Performance evaluation of feature selection methods
To remove redundant features and properly characterize fea-
ture importance, we conducted feature selection experiments
(Figure 8). For different feature encodings, models trained using
GainRatio-selected features (such as the top 50, 100, 150, 200,
250, 300 and 350 features) generally resulted in a comparable or,
in some cases, better performance compared with models
trained using all original features (Figure 8A). This finding indi-
cates that the most discriminative features from the original set
could be extracted to form a subset that preserved the original
semantics of the variables. Owing to the removal of noisy fea-
tures, a selected feature set is also likely to be better modeled
and interpreted by machine learning methods [77]. It is also
advantageous to use selected feature sets, which can help
significantly reduce the computational time during model train-
ing. This is especially so for feature encodings with a large num-
ber of features (such as PSSM_SMTH). By using the mRMR
feature selection, we obtained similar results as with GainRatio
(Figure 8B). It is noteworthy that mRMR failed to recognize an
informative feature set for PSSM_SMTH encoding, leading to a
decreased performance after feature selection as compared
with the full original feature set. A side-by-side performance
comparison of GainRatio and mRMR revealed that, overall,
GainRatio achieved a more stable performance (Figure 8C).

Performance comparison of models trained using
individual feature types versus feature combinations

Although previous studies have used a combination of features
to train prediction models [17, 18, 28], our experiments indicate
that simply combining features did not help in further enhanc-
ing the model performance. Classifiers trained with different
combinations of feature types did not show improved perform-
ances, compared with the model trained using PSSM feature
encoding only (Figure 9). There are possible reasons for this. As
the PSSM features dominate others for T4SE prediction [17] (also
refer to Figure 6, Table 2), the performance of a feature

Table 1. The components of various species in T4SEs

Species Number

Agrobacterium rhizogenes 4
Agrobacterium tumefaciens str. C58 2
Agrobacterium tumefaciens 4
Anaplasma marginale str. St. Maries 3
Anaplasma phagocytophilum HZ 2
Bartonella grahamii as4aup 1
Bartonella henselae str. Houston-1 5
Bordetella pertussis Tohama I 4
Brucella melitensis biovar Abortus 2308 6
Brucella melitensis bv. 1 str. 16M 2
Coxiella burnetii CbuG_Q212 1
Coxiella burnetii CbuK_Q154 3
Coxiella burnetii Dugway 5J108-111 7
Coxiella burnetii RSA 331 15
Coxiella burnetii RSA 493 34
Ehrlichia chaffeensis str. Arkansas 1
Helicobacter pylori 26695 1
Legionella pneumophila subsp. pneumophila

str. Philadelphia 1
35

Ochrobactrum anthropi ATCC 49188 1
Legionella pneumophila subsp. pneumophila

(strain Philadelphia 1/ATCC 33152/DSM
7513)

256

Unknown 3
Total 390

The top two species with the largest numbers of known T4SEs are highlighted
in bold.
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combination model could largely depend on the proportion of
PSSM features among the combined features. Other features,
when directly combined with the PSSM features, may not con-
tribute to the performance improvement and/or could even re-
sult in a decreased performance.

These observations support training single-feature models
and subsequently assembling them into ensemble models,
instead of merging all features into a vector to train a model.

A majority voting strategy based on ensemble learning
models further improves the prediction performance

We first assessed the performance of various classifiers (single-
feature encoding-based models and ensemble models) using RF
by performing independent tests. All experiments were conducted
five times. Each time, 30 negative randomly chosen samples were
used to form the balanced independent data set along with the
positive samples. The performance results are shown in Table 3
and Figure 10. The predictive performance of models trained by
single-feature encodings showed a highly consistent trend with
respect to the performance evaluation based on 5-fold cross-

validation, further confirming the effectiveness of local and global
sequence encodings (Table 3 and Figure 10).

Ensemble models based on selections of single-feature-
encoding models were assessed in combination with majority
voting, to determine whether this could further improve the
predictive performance. Table 3 reports only on a few represen-
tative ensemble models selected after comprehensively
examining the behaviors of all possible combinations of single-
feature models. Several important conclusions were drawn
from these results. First, ensemble models achieved a better
and more robust performance as compared with single
encoding-based models. In particular, the majority voting
scheme {1, 3, 5, 6, 8, 10} achieved the overall best performance,
with a maximum accuracy of 95.7%, an F-score of 0.959 and
an MCC value of 0.918 (Table 3). Second, combinations of
similar-feature-group encoding-based models did not lead to
visible performance improvement. This has been observed
in the case of ensemble classifiers {1, 2, 3} (AAC feature group),
{5, 6, 7} (PSSM feature group) and {8, 9, 10} (structural feature
group). On the other hand, ensembles of models that were
trained on different feature groups resulted in clear

Figure 4. Position-specific amino acid sequence profiles of L. pneumophila effectors and C. burnetii effectors for both N- and C-terminal 50 positions.

10 | Wang et al.

Downloaded from https://academic.oup.com/bib/advance-article-abstract/doi/10.1093/bib/bbx164/4665693
by Monash University Library user
on 01 February 2018



 
 

46 
 

 

 

Table 2. The performance of various classifiers based on the 5-fold cross-validation tests

Feature Method PRE SN SP F-score ACC MCC

AAC RF 0.836 6 0.009 0.825 6 0.005 0.839 6 0.012 0.829 6 0.006 0.831 6 0.007 0.663 6 0.014
SVM 0.856 6 0.007 0.845 6 0.011 0.859 6 0.009 0.849 6 0.007 0.851 6 0.007 0.703 6 0.014
LR 0.816 6 0.006 0.834 6 0.005 0.813 6 0.007 0.824 6 0.003 0.823 6 0.004 0.647 6 0.009
NB 0.792 6 0.005 0.837 6 0.004 0.782 6 0.005 0.813 6 0.004 0.809 6 0.003 0.619 6 0.007
KNN 0.827 6 0.005 0.838 6 0.009 0.826 6 0.006 0.831 6 0.005 0.831 6 0.003 0.664 6 0.008
MLP 0.864 6 0.010 0.727 6 0.008 0.886 6 0.011 0.788 6 0.007 0.805 6 0.007 0.620 6 0.013

PPT RF 0.816 6 0.006 0.816 6 0.014 0.817 6 0.005 0.815 6 0.010 0.816 6 0.008 0.633 6 0.017
SVM 0.818 6 0.009 0.828 6 0.007 0.817 6 0.011 0.822 6 0.005 0.822 6 0.005 0.645 6 0.010
LR 0.803 6 0.007 0.788 6 0.003 0.808 6 0.008 0.794 6 0.004 0.797 6 0.004 0.596 6 0.008
NB 0.715 6 0.006 0.348 6 0.003 0.860 6 0.004 0.464 6 0.004 0.603 6 0.002 0.243 6 0.007
KNN 0.808 6 0.008 0.745 6 0.008 0.824 6 0.008 0.773 6 0.010 0.783 6 0.009 0.570 6 0.016
MLP 0.843 6 0.016 0.689 6 0.035 0.872 6 0.019 0.755 6 0.020 0.779 6 0.014 0.571 6 0.027

DPC RF 0.811 6 0.015 0.810 6 0.006 0.812 6 0.017 0.809 6 0.010 0.810 6 0.011 0.621 6 0.023
SVM 0.837 6 0.007 0.805 6 0.010 0.844 6 0.010 0.819 6 0.005 0.823 6 0.004 0.648 6 0.007
LR 0.812 6 0.003 0.839 6 0.005 0.806 6 0.002 0.824 6 0.003 0.822 6 0.002 0.645 6 0.005
NB 0.793 6 0.002 0.840 6 0.003 0.782 6 0.004 0.815 6 0.002 0.811 6 0.003 0.623 6 0.006
KNN 0.797 6 0.004 0.820 6 0.006 0.793 6 0.003 0.807 6 0.005 0.806 6 0.003 0.612 6 0.006
MLP 0.813 6 0.015 0.681 6 0.012 0.843 6 0.014 0.739 6 0.013 0.761 6 0.012 0.531 6 0.023

CKSAAP RF 0.840 6 0.004 0.813 6 0.009 0.846 6 0.005 0.825 6 0.003 0.829 6 0.002 0.659 6 0.006
SVM 0.877 6 0.005 0.726 6 0.009 0.900 6 0.006 0.793 6 0.004 0.812 6 0.002 0.635 6 0.005
LR 0.737 6 0.009 0.742 6 0.012 0.736 6 0.012 0.738 6 0.009 0.738 6 0.009 0.477 6 0.018
NB 0.819 6 0.003 0.831 6 0.004 0.817 6 0.004 0.824 6 0.003 0.823 6 0.003 0.648 6 0.006
KNN 0.763 6 0.008 0.860 6 0.007 0.732 6 0.010 0.808 6 0.006 0.796 6 0.006 0.598 6 0.011
MLP 0.831 6 0.008 0.733 6 0.006 0.852 6 0.007 0.779 6 0.005 0.792 6 0.005 0.589 6 0.010

PSSM RF 0.909 6 0.004 0.900 6 0.005 0.911 6 0.003 0.904 6 0.004 0.905 6 0.003 0.811 6 0.007
SVM 0.933 6 0.001 0.861 6 0.008 0.939 6 0.003 0.895 6 0.004 0.900 6 0.003 0.803 6 0.006
LR 0.808 6 0.007 0.851 6 0.016 0.797 6 0.011 0.828 6 0.008 0.824 6 0.006 0.649 6 0.012
NB 0.888 6 0.004 0.887 6 0.003 0.889 6 0.003 0.887 6 0.004 0.888 6 0.003 0.776 6 0.006
KNN 0.899 6 0.003 0.911 6 0.003 0.898 6 0.003 0.904 6 0.003 0.904 6 0.003 0.809 6 0.005
MLP 0.935 6 0.013 0.859 6 0.010 0.943 6 0.010 0.895 6 0.009 0.902 6 0.008 0.806 6 0.016

PSSM_AC RF 0.906 6 0.006 0.771 6 0.009 0.921 6 0.005 0.832 6 0.007 0.846 6 0.006 0.699 6 0.012
SVM 0.897 6 0.012 0.765 6 0.022 0.914 6 0.012 0.825 6 0.015 0.839 6 0.012 0.686 6 0.022
LR 0.720 6 0.011 0.757 6 0.012 0.705 6 0.015 0.736 6 0.008 0.730 6 0.008 0.463 6 0.017
NB 0.610 6 0.001 0.867 6 0.003 0.447 6 0.003 0.715 6 0.002 0.656 6 0.002 0.346 6 0.006
KNN 0.833 6 0.004 0.816 6 0.004 0.836 6 0.004 0.823 6 0.002 0.825 6 0.002 0.652 6 0.006
MLP 0.896 6 0.021 0.690 6 0.009 0.921 6 0.018 0.777 6 0.007 0.805 6 0.007 0.628 6 0.018

PSSM_SMTH RF 0.859 6 0.006 0.825 6 0.007 0.865 6 0.006 0.840 6 0.005 0.844 6 0.005 0.691 6 0.011
SVM 0.873 6 0.007 0.790 6 0.014 0.886 6 0.004 0.828 6 0.010 0.837 6 0.008 0.679 6 0.017
LR 0.733 6 0.017 0.734 6 0.014 0.730 6 0.026 0.732 6 0.008 0.732 6 0.011 0.466 6 0.020
NB 0.658 6 0.003 0.870 6 0.002 0.548 6 0.006 0.748 6 0.001 0.708 6 0.002 0.441 6 0.006
KNN 0.804 6 0.004 0.784 6 0.005 0.809 6 0.007 0.793 6 0.003 0.796 6 0.005 0.594 6 0.010
MLP 0.886 6 0.016 0.756 6 0.022 0.909 6 0.013 0.815 6 0.018 0.835 6 0.016 0.675 6 0.030

DISO RF 0.714 6 0.011 0.733 6 0.015 0.708 6 0.011 0.722 6 0.012 0.719 6 0.011 0.441 6 0.022
SVM 0.736 6 0.016 0.726 6 0.020 0.739 6 0.020 0.728 6 0.015 0.732 6 0.014 0.466 6 0.027
LR 0.604 6 0.008 0.607 6 0.018 0.602 6 0.020 0.603 6 0.009 0.603 6 0.007 0.209 6 0.016
NB 0.631 6 0.026 0.657 6 0.033 0.625 6 0.009 0.637 6 0.033 0.640 6 0.016 0.283 6 0.037
KNN 0.695 6 0.005 0.746 6 0.008 0.674 6 0.010 0.718 6 0.004 0.709 6 0.004 0.422 6 0.006
MLP 0.733 6 0.016 0.570 6 0.032 0.791 6 0.016 0.639 6 0.022 0.680 6 0.014 0.371 6 0.028

SA RF 0.611 6 0.005 0.642 6 0.010 0.590 6 0.005 0.623 6 0.008 0.613 6 0.006 0.232 6 0.013
SVM 0.604 6 0.010 0.606 6 0.022 0.600 6 0.022 0.601 6 0.013 0.600 6 0.010 0.206 6 0.018
LR 0.585 6 0.014 0.591 6 0.015 0.581 6 0.016 0.585 6 0.012 0.583 6 0.012 0.172 6 0.026
NB 0.543 6 0.006 0.911 6 0.011 0.207 6 0.007 0.672 6 0.006 0.560 6 0.007 0.179 6 0.015
KNN 0.633 6 0.014 0.498 6 0.007 0.711 6 0.019 0.555 6 0.008 0.603 6 0.010 0.214 6 0.020
MLP 0.576 6 0.019 0.449 6 0.036 0.671 6 0.017 0.502 6 0.030 0.560 6 0.014 0.123 6 0.032

SS RF 0.560 6 0.022 0.535 6 0.030 0.579 6 0.016 0.544 6 0.025 0.555 6 0.022 0.115 6 0.046
SVM 0.562 6 0.021 0.463 6 0.043 0.634 6 0.023 0.492 6 0.034 0.540 6 0.021 0.102 6 0.037
LR 0.536 6 0.017 0.542 6 0.022 0.531 6 0.018 0.537 6 0.019 0.536 6 0.018 0.073 6 0.037
NB 0.543 6 0.007 0.673 6 0.018 0.432 6 0.010 0.597 6 0.012 0.555 6 0.007 0.111 6 0.015
KNN 0.530 6 0.017 0.493 6 0.018 0.564 6 0.020 0.505 6 0.017 0.524 6 0.016 0.057 6 0.032
MLP 0.535 6 0.024 0.361 6 0.029 0.688 6 0.032 0.428 6 0.025 0.525 6 0.018 0.052 6 0.037

Group 1 RF 0.835 6 0.004 0.825 6 0.003 0.838 6 0.005 0.829 6 0.002 0.831 6 0.003 0.663 6 0.006
SVM 0.850 6 0.008 0.833 6 0.004 0.854 6 0.010 0.840 6 0.004 0.842 6 0.005 0.687 6 0.011

(continued)
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performance improvements, e.g. ensemble classifiers {1, 2, 3, 4,
5, 6, 7}, {1, 2, 3, 4, 8, 9, 10}, {5, 6, 7, 8, 9, 10} and {1–10}. This is in
agreement with the result in [17] by exploring the vote of vari-
ous feature-based models (including two sequence-based mod-
els and two PSSM-based models). The ensemble classifier {1, 2,
3, 4, 5, 6, 7, 8} is an excellent example portraying the advantages
of ensemble learning. Comparing it with the ensemble classifier
{1, 2, 3, 4, 5, 6, 7} showed that the DISO feature-based model still
contributes to an improved performance of the ensemble classi-
fier, while it only gives a moderate performance when used as a
single-feature model.

For each of machine learning methods (i.e. SVM, KNN, NB,
LR and MLP), we trained an ensemble model by integrating eight
top single-feature-based models (i.e. AAC, PPT, DPC, CKSAAP,
PSSM, PSSM_AC, PSSM_SMTH and DISO). By further integrating
ensemble models with the majority vote scheme, we studied
the prediction performance of these single machine learning-
based models and their ensemble models using the independ-
ent test. As shown in Table 4, the RF- and SVM-based models
outperformed other method-based models, while the ensemble
model of these two models ({a, b}) further improved the predic-
tion performance. The ensemble model integrating all six
method-based models ({a, b, c, d, e, f}) achieved the best
performance in terms of F-value, ACC and MCC, consistent with
the observations reported in [19]. Based on these findings, we
constructed Bastion4 with a default setting: all six machine learn-
ing methods were integrated, and for each of them the eight top
single-feature-based models were generated for assembling.

Performance evaluation of specific training data sets

To investigate whether the diversity of positive samples affects
the performance of the predictors, we trained another two
predictors using a part of the training data set. In more detail,
from the positive samples in the training data set, 291 Legionella
samples were chosen to construct a new balanced independent
data set together with randomly selected negative samples from
V. parahaemolyticus serotype O3: K6. The remaining 99 positive
samples and an equal number of negative samples from the
original training set were used to form a new training data set.
Based on this new data set, we used eight feature types (i.e. AAC,
PPT, DPC, CKSAAP, PSSM, PSSM_AC, PSSM_SMTH and DISO) to
train individual models and aggregated their outputs to form an
ensemble model for each of the six machine learning methods.

Table 2. Continued

Feature Method PRE SN SP F-score ACC MCC

LR 0.828 6 0.009 0.829 6 0.017 0.829 6 0.011 0.827 6 0.010 0.828 6 0.009 0.658 6 0.018
NB 0.831 6 0.001 0.820 6 0.004 0.835 6 0.003 0.824 6 0.002 0.826 6 0.003 0.654 6 0.005
KNN 0.805 6 0.002 0.849 6 0.004 0.796 6 0.003 0.825 6 0.002 0.821 6 0.001 0.645 6 0.003
MLP 0.882 6 0.005 0.743 6 0.017 0.902 6 0.007 0.805 6 0.009 0.821 6 0.007 0.652 6 0.013

Group 2 RF 0.930 6 0.003 0.865 6 0.004 0.935 6 0.003 0.895 6 0.003 0.899 6 0.003 0.802 6 0.006
SVM 0.938 6 0.003 0.856 6 0.012 0.945 6 0.003 0.895 6 0.007 0.900 6 0.005 0.804 6 0.010
LR 0.827 6 0.012 0.852 6 0.009 0.822 6 0.013 0.838 6 0.007 0.836 6 0.006 0.674 6 0.012
NB 0.679 6 0.003 0.881 6 0.002 0.584 6 0.006 0.765 6 0.001 0.731 6 0.002 0.487 6 0.006
KNN 0.905 6 0.006 0.894 6 0.004 0.907 6 0.007 0.899 6 0.005 0.900 6 0.004 0.800 6 0.008
MLP 0.964 6 0.007 0.789 6 0.052 0.972 6 0.007 0.864 6 0.033 0.879 6 0.026 0.775 6 0.044

Group 3 RF 0.730 6 0.012 0.737 6 0.014 0.728 6 0.015 0.731 6 0.011 0.730 6 0.010 0.465 6 0.019
SVM 0.742 6 0.011 0.736 6 0.017 0.744 6 0.014 0.737 6 0.013 0.738 6 0.012 0.481 6 0.020
LR 0.622 6 0.006 0.629 6 0.017 0.617 6 0.009 0.623 6 0.010 0.621 6 0.007 0.246 6 0.016
NB 0.582 6 0.010 0.829 6 0.016 0.393 6 0.014 0.679 6 0.010 0.611 6 0.010 0.250 6 0.028
KNN 0.718 6 0.006 0.703 6 0.009 0.725 6 0.010 0.708 6 0.006 0.712 6 0.006 0.427 6 0.011
MLP 0.684 6 0.009 0.445 6 0.021 0.794 6 0.014 0.536 6 0.015 0.619 6 0.007 0.255 6 0.014

All features RF 0.912 6 0.005 0.860 6 0.006 0.919 6 0.004 0.885 6 0.005 0.889 6 0.005 0.779 6 0.008
SVM 0.931 6 0.004 0.864 6 0.009 0.937 6 0.003 0.896 6 0.007 0.900 6 0.006 0.803 6 0.010
LR 0.887 6 0.006 0.873 6 0.010 0.890 6 0.006 0.878 6 0.007 0.880 6 0.006 0.762 6 0.012
NB 0.809 6 0.005 0.885 6 0.003 0.792 6 0.007 0.844 6 0.002 0.838 6 0.003 0.680 6 0.007
KNN 0.900 6 0.006 0.887 6 0.006 0.904 6 0.006 0.893 6 0.003 0.894 6 0.002 0.790 6 0.005
MLP 0.943 6 0.009 0.715 6 0.039 0.956 6 0.007 0.806 6 0.027 0.833 6 0.017 0.692 6 0.026

Note: The values were expressed as mean 6 standard error. Except for AAC (20 D) and PPT (72 D), all the feature vectors were 200-dimensional, and their selection was
performed using GainRatio. Group 1 denotes the AAC group (AAC, DPC, CKSAAP and PPT); Group 2 denotes the PSSM group (PSSM, PSSM_AC and PSSM_SMTH); Group 3
denotes the structure group (SA, SS and DISO), while all features include all the 10 feature types and are used as a whole group. For each group, individual models were
trained with the corresponding group and then integrated as an ensemble model using the majority vote scheme. For each performance measure, the best perform-
ance value across different machine learning methods within a feature group is highlighted in bold for clarification. These highlights also apply to Tables 3, 4 and 6.

Figure 5. Prediction performance of different machine learning models trained
with various feature encodings in terms of MCC on the 5-fold cross-validation test.
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We further integrated all these single method-based models
with the majority vote scheme to construct a new predictor
(labeled ‘Predictor_without_Legionella’). The new independent
data set (containing all 291 Legionella samples as positives)
was used to analyze the predictive performance. We applied
the same procedures to construct a predictor (labeled
‘Predictor_without_Coxiella’) and analyzed its performance on
the new independent data set (containing all 60 Coxiella samples
as positives). In addition, eight single models trained using the

full training data set were assembled as a reference predictor
(labelled ‘Predictor_with_Full_Dataset’). The overall performance
of the three predictors was assessed based on their respective
independent test data sets and is listed in Table 5.

The Predictor_with_Full_Dataset outperformed the Predictor
_without_Coxiella and the Predictor_without_Legionella in terms
of F-value, ACC and MCC (Table 5). These results indicate that
the increase of samples diversity can improve the performance
of predictors. Owing to limited training data, the Predictor_

Figure 6. ROC curves of RF, SVM, NB, KNN, LR and MLP predictors of T4SEs with different feature encodings. Group 1 denotes the AAC group (AAC, DPC, CKSAAP and
PPT); Group 2 denotes the PSSM group (PSSM, PSSM_AC and PSSM_SMTH); Group 3 denotes the structure group (SA, SS and DISO), while all features include all the 10
feature types and are used as a whole group. For each group, individual models were trained with the corresponding group and then integrated as an ensemble model
using the majority vote scheme.
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without_Legionella failed to achieve a competitive performance.
Note that the high SN value of the Predictor_without_Coxiella
suggests that it is well able to identify the Coxiella T4SEs even
without using such data set for model training. This hints at an
underlying similarity between Legionella, Coxiella and other
T4SEs. Here, we used an unsupervised learning approach to in-
vestigate the potential similarity further. We encoded all T4SEs
using PSSM encoding, partitioned them into three groups using
the k-means clustering algorithm [78] and then performed
dimension-reduction using t-SNE [79] to map to the 2D space for
better visualization (Figure 11A). From Figure 11B–D, we can see
that each of the identified three clusters is a mixture of
Legionella, Coxiella and other T4SEs. This supports the idea that,
because of their similarity, these types of T4SEs are not separ-
able. The observation that Legionella samples dominate all three
clusters can be attributed to their abundance in the original
three classes of positive samples (Figure 11E).

While there are similarities between Legionella’s, Coxiella’s and
other T4SEs, it is noteworthy that the performance of Predictor_
without_Legionella was less than that of the Predictor_without_
Coxiella. To explore why this is so, we used Clustal Omega [80] to
do multiple sequence alignment on the T4SE data set. Based on
the alignment results, a phylogenetic tree of T4SS effectors was
generated (Supplementary Figure S2) using iTOL [81]. From inspec-
tion of Supplementary Figure S2, we found that T4SEs in Legionella,
Coxiella and other species were often mixed, while some T4SEs in
Legionella clustered alone (marked in light green). This finding
indicated that some T4SEs in Legionella differ from those in other
species, shedding light on why Predictor_without_Legionella could
not distinguish some of T4SEs in Legionella species.

Performance comparison with existing tools

There are currently two tools [17, 18] available for T4SE predic-
tion. Three classifiers (T4SEpred_bpbAac, T4SEpred_psAac and
T4SEpre_Joint) were implemented in Wang et al. [18], while a se-
cond tool (T4Effpred) with multiple options was developed in
Zou et al. [17]. Accordingly, we compared their performance on
the independent test data set (Table 6).

All options of T4Effpred were explored but, for the sake of
brevity, Table 6 only presents the best-performing model from
among different T4Effpred variant models [17]: an ensemble
model based on a 3-in-4 voting scheme. For the same reason,
only the results of T4SEpred_bpbAac and T4SEpred_psAac are
listed in Table 6. In Bastion4, default settings were used to con-
struct the predictor. As can be seen from Table 6, Bastion4
achieved an overall accuracy of 95.3% with an F-value of 0.954
and an MCC of 0.907. This is the best performance among all
compared predictors. T4Effpred achieved the second-best per-
formance, also using an ensemble classifier based on multiple
feature encodings. Moreover, we observed that both
T4SEpred_bpbAac and T4SEpred_psAac performed poorly on
the independent test data set.

The poorer performance of T4SEpred_bpbAac and T4SEpred_
psAac is intriguing, especially considering important features of
T4SE proteins that might be biologically important. The imple-
mentation of the two predictors did not extract features from
the PSSM profiles, which are regarded as the primary features
[18], and these have proved to be powerful for T4SE prediction
both in our current work and in the work by Zou et al. [17].
Coupled with this, in T4SEpred_bpbAac and T4Sepred_psAac,
only the 50 C-terminal amino acids, rather than whole protein
sequences, were used to extract features [18]. As also shown in
this study, pronounced sequence signals are present at the C-
terminus of L. pneumophila effectors, but are not universal and
diagnostic of all T4Ses. Our results presented here demonstrate
that the complete sequences contain important information
that is relevant for accurate T4SE prediction and, presumably,
for their recognition by the T4SS.

Genome-wide prediction of T4SEs in Klebsiella
pneumoniae

Klebsiella pneumoniae is emerging as a devastating pathogen of
humans [82]. The T4SS of this pathogen has only been recently
noted [83, 84], and effector proteins and T4SEs have not been
identified to our knowledge. We took this opportunity to predict
T4SEs with Bastion4 using our default settings, and to identify
these on physical genome maps of three clinically relevant

Figure 7. (A) Computational time of various classifiers when using the PSSM feature for training (after applying feature selection to form a 200-dimensional vector using
GainRatio). Parameter tuning time and CV time are counted into the overall computational time for the classifiers. For classifiers without parameter optimization (LR,
NB and MLP), the tuning time is 0. (B) and (C) represent the proportions of parameter tuning time and CV time of RF and SVM, respectively.
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Figure 8. Feature selection by using GainRatio and mRMR methods. The error bars indicate the SDs of MCC values over five different randomized 5-fold cross-validation
tests. (A) Performance of various feature encodings with different numbers of top features selected by GainRatio; (B) performance of various feature encodings with
different numbers of top features selected by mRMR; (C) side-by-side performance comparison of various feature encodings with different numbers of top features
selected by GainRatio versus mRMR.

Type IV secreted effector prediction | 15

Downloaded from https://academic.oup.com/bib/advance-article-abstract/doi/10.1093/bib/bbx164/4665693
by Monash University Library user
on 01 February 2018



 
 

51 
 

 

 

strains: K. penumoniae AJ218, B5055 and MGH 78578. Studies with
other bacteria have identified the physical location of genomic
regions encoding T4SEs [85–87], and the genes encoding certain
T4SEs were found to be clustered within specific genomic
regions with an observed bias in GþC content, leading to mod-
els, whereby T4SE genes are acquired by lateral gene transfer
between different bacterial species [16, 88, 89].

Circular maps [90] of extant genome sequence data were gen-
erated (Figure 12) to graphically depict the relationships between
genome properties and the distribution of predicted effectors in
these genomes [91]. The GþC content of the tentative T4SEs in
each of the three genomes is significantly lower than expected
from the overall GþC contents (Table 7), all with significant
P-values according to the Welch’s t-test. The Venn diagram in
Figure 12D illustrates the distributions of both predicted strain-
specific and common effectors across these three bacterial gen-
omes. While they share some common effectors (four common

effectors shared across the three strains), AJ218, B5055 and MGH
78578 had 42, 33 and 33 strain-specific effectors possibly because
of relatively recent horizontal gene transfer events [89]. This is
consistent with our knowledge that genes encoding effector pro-
teins are often shared via lateral gene transfer from other species.
In the K. penumoniae B5055 genome, there is a cluster of predicted
T4SEs genes that sit spatially in the nearby genes encoding the
components of the T4SS nanomachine. Taken together, the
genome-wide predictions of T4SEs provide a basis to explore
their genome-level distributions, and to build a compendium of
novel putative T4SEs that can be characterized by genetic and
biochemical experiments.

Availability of online Web servers

As an implementation of the methodology presented here, we de-
veloped Bastion4, an online Web server for characterizing protein

Figure 9. Performance comparison of models trained using single features versus combined features, based on 5-fold cross-validation using the training data set.
Combine1 denotes the composition of PSSM and PSSM_AC; Combine2 denotes the composition of PSSM, PSSM_AC and AAC; Combine3 denotes the composition of
PSSM, PSSM_AC, AAC and DPC.

Table 3. The performance of various classifiers based on the independent tests

Modela Votingb PRE SN SP F-value ACC MCC

1. AAC – 0.826 6 0.044 1.000 6 0.000 0.787 6 0.069 0.904 6 0.027 0.893 6 0.035 0.806 6 0.057
2. PPT – 0.787 6 0.057 0.967 6 0.000 0.733 6 0.091 0.867 6 0.035 0.850 6 0.046 0.721 6 0.077
3. DPC – 0.791 6 0.039 0.900 6 0.000 0.760 6 0.055 0.842 6 0.022 0.830 6 0.027 0.667 6 0.050
4. CKSAAP – 0.839 6 0.014 0.933 6 0.000 0.820 6 0.018 0.883 6 0.008 0.877 6 0.009 0.758 6 0.017
5. PSSM – 0.821 6 0.033 1.000 6 0.000 0.780 6 0.051 0.901 6 0.020 0.890 6 0.025 0.800 6 0.042
6. PSSM_AC – 0.882 6 0.049 0.833 6 0.000 0.887 6 0.051 0.857 6 0.023 0.860 6 0.025 0.722 6 0.053
7. PSSM_SMTH – 0.811 6 0.080 0.800 6 0.000 0.807 6 0.095 0.804 6 0.039 0.803 6 0.048 0.609 6 0.097
8. DISO – 0.778 6 0.061 0.800 6 0.000 0.767 6 0.082 0.788 6 0.032 0.783 6 0.041 0.568 6 0.080
9. SA – 0.645 6 0.059 0.667 6 0.000 0.627 6 0.095 0.655 6 0.030 0.647 6 0.048 0.294 6 0.095
10. SS – 0.665 6 0.065 0.700 6 0.000 0.640 6 0.092 0.681 6 0.032 0.670 6 0.046 0.342 6 0.093
{1, 2, 3, 4} 3-in-4 0.854 6 0.025 0.967 6 0.000 0.833 6 0.033 0.906 6 0.014 0.900 6 0.017 0.807 6 0.030
{5, 6, 7} 2-in-3 0.880 6 0.048 0.867 6 0.000 0.880 6 0.051 0.873 6 0.023 0.873 6 0.025 0.748 6 0.052
{8, 9, 10} 2-in-3 0.788 6 0.092 0.800 6 0.000 0.773 6 0.123 0.792 6 0.047 0.787 6 0.062 0.576 6 0.121
{1, 2, 3, 4, 5, 6, 7} 4-in-7 0.854 6 0.030 0.967 6 0.000 0.833 6 0.041 0.907 6 0.017 0.900 6 0.020 0.808 6 0.036
{1, 2, 3, 4, 8, 9, 10} 4-in-7 0.850 6 0.045 0.967 6 0.000 0.827 6 0.060 0.904 6 0.025 0.897 6 0.030 0.802 6 0.054
{5, 6, 7, 8, 9, 10} 4-in-6 0.903 6 0.058 0.900 6 0.000 0.900 6 0.067 0.901 6 0.029 0.900 6 0.033 0.801 6 0.066
{1, 2, 3, 4, 5, 6, 7, 8} 5-in-8 0.918 6 0.025 0.967 6 0.000 0.913 6 0.030 0.942 6 0.014 0.940 6 0.015 0.882 6 0.028
{1-10} 6-in-10 0.908 6 0.045 0.967 6 0.000 0.900 6 0.053 0.936 6 0.024 0.933 6 0.026 0.869 6 0.050
{1, 3, 5, 6, 8, 10} 4-in-6 0.922 6 0.042 1.000 6 0.000 0.913 6 0.051 0.959 6 0.023 0.957 6 0.025 0.918 6 0.046

Note: aEach term in this column refers to a single encoding-based model or an ensemble model of different single encoding-based models (e.g. 1. AAC means the model
trained with AAC encoding features, while {5, 6, 7} stands for the ensemble model of number 5, 6 and 7 classifiers).
bThe majority voting scheme was used for voting in ensemble models.
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sequences of interest. Bastion4 is freely accessible at http://bas
tion4.erc.monash.edu/. The Bastion4 Web server was programmed
using the Perl CGI and J2EE framework, and configured on the
cloud computing facility provided by the Monash University
e-Research Centre. Users can submit multiple protein sequences
in raw or FASTA format to the online Web server. The computa-
tional time of the Bastion4 server to process a submitted sequence
depends not only on the length of the submitted sequence but
also considerably on the choice of the selected models.

Conclusion

Identifying effector proteins is necessary to understand host–
pathogen interactions and bacterial pathogenesis. Here, we have
systematically assessed the use and performance of different pro-
tein sequence and protein structure-related features and their
combinations along with various machine learning approaches
for T4SE prediction. Our main findings are (1) of the six machine
learning classifiers (NB, KNN, LR, RF, SVM and MLP), RF and SVM

Figure 10. The ROC curve of both single encoding-based models and ensemble models based on the independent test.

Table 4. The performance of various machine learning methods based on the independent tests

Methoda Votingb PRE SN SP F-value ACC MCC

a. RF – 0.918 6 0.025 0.967 6 0.000 0.913 6 0.030 0.942 6 0.014 0.940 6 0.015 0.882 6 0.028
b. SVM – 0.940 6 0.014 0.933 6 0.000 0.940 6 0.015 0.936 6 0.007 0.937 6 0.007 0.873 6 0.015
c. KNN – 0.880 6 0.055 1.000 6 0.000 0.860 6 0.072 0.935 6 0.031 0.930 6 0.036 0.870 6 0.064
d. NB – 0.834 6 0.033 0.933 6 0.000 0.813 6 0.045 0.881 6 0.019 0.873 6 0.022 0.753 6 0.041
e. LR – 0.875 6 0.056 1.000 6 0.000 0.853 6 0.069 0.932 6 0.031 0.927 6 0.035 0.864 6 0.063
f. MLP – 0.906 6 0.004 0.960 6 0.043 0.900 6 0.000 0.932 6 0.023 0.930 6 0.022 0.862 6 0.046
{a, b} 2-in-2 0.966 6 0.024 0.933 6 0.000 0.967 6 0.024 0.949 6 0.011 0.950 6 0.012 0.901 6 0.024
{a, b, c} 2-in-3 0.918 6 0.025 0.967 6 0.000 0.913 6 0.030 0.942 6 0.014 0.940 6 0.015 0.882 6 0.028
{a, b, c, d} 3-in-4 0.918 6 0.025 0.967 6 0.000 0.913 6 0.030 0.942 6 0.014 0.940 6 0.015 0.882 6 0.028
{a, b, c, d, e} 3-in-5 0.907 6 0.028 0.967 6 0.000 0.900 6 0.033 0.936 6 0.015 0.933 6 0.017 0.869 6 0.031
{a, b, c, d, e, f} 4-in-6 0.942 6 0.025 0.967 6 0.000 0.940 6 0.028 0.954 6 0.013 0.953 6 0.014 0.907 6 0.027

Note: aEach term in this column refers to a single method-based model or an ensemble model that integrates different single method-based models (e.g. ‘a. RF’ means
the model is trained based on the RF method, while ‘{a, b, c}’ stands for the ensemble model that integrates a, b and c models).
bThe majority voting scheme is used for voting in ensemble models.

Table 5. Performance comparison between Predictor_without_Coxiella, Predictor_without_Legionella and Predictor_with_Full_Dataset based on
the independent test

Classifier PRE SN SP F-value ACC MCC

Predictor_with_Full_Dataset 0.942 0.967 0.940 0.954 0.953 0.907
Predictor_without_Coxiella 1.000 0.733 1.000 0.846 0.867 0.761
Predictor_without_Legionella 0.841 0.691 0.869 0.758 0.780 0.569
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performed best according to the performance measures ACC, F-
value and MCC based on 5-fold cross-validation, while RF
achieved a good trade-off between the predictive performance
and computational time; (2) of the 10 different features, PSSM
achieved the highest performance values for all classifiers,
emphasizing the importance of global sequence encoding with
PSSMs; (3) ensemble models performed better than single-feature-
based models; (4) when applied to the predictions of an ensemble
model, the diversity in the selected features resulted in a more
stable and accurate classification performance. These findings led
to the development of Bastion4, a tool that reflects the state of the
art in effector prediction for T4SEs. Together with the compendium

of predicted tentative T4SEs of the three bacterial genomes, we
anticipate Bastion4 to be extensively used for T4SE prediction and,
in conjunction with comparative genomics of bacterial pathogens,
to improve our understanding of host–pathogen interactions.

Key Points

• In this work, we systematically train and compare six
commonly used machine learning models for accurate
and efficient identification of T4SEs using 10 different
types of selected features.

• Our study shows that (1) including different but com-
plementary features generally enhance the predictive
performance of T4SEs; (2) ensemble models obtained by
integrating individual single-feature models exhibit a
significantly improved predictive performance. The ma-
jority voting strategy enables the ensemble models to
achieve the most stable and accurate classification
performance.

• We propose and built a new ensemble model, Bastion4,
to further improve the performance in predicting effector
proteins of the T4SS. Independent tests demonstrate that
the ensemble models outperform all current predictors of
types IV secretion systems. We make Bastion4 publicly
accessible at http://bastion4.erc.monash.edu/.

• Genome-wide prediction of T4SEs provides important
insights into the distribution of T4SEs in three bacterial
pathogens. We provide a valuable compendium of
novel T4SEs that can be further validated by genetic
and biochemical experiments.

Figure 11. (A) Representation of the positive samples from Coxiella, Legionella and other T4SEs. The representation of each sample (which constituted a 400-dimensional
space generated by the PSSM encoding scheme) was reduced to two dimensions by using t-SNE. Samples were clustered into three groups using K-means algorithm,
and these three clusters were indicated by colors. (B–D) Detailed components of the three clusters. Each cluster contains samples from all three T4SE classes, namely,
Coxiella, Legionella and others. (E) Detailed numbers and proportions of original three classes of samples.

Table 6. Performance comparison between our ensemble classifier and other existing predictors based on the independent test

Classifier PRE SN SP F-value ACC MCC
Bastion4 0.942 6 0.025 0.967 6 0.000 0.940 6 0.028 0.954 6 0.013 0.953 6 0.014 0.907 6 0.027
T4Effpred 0.940 6 0.020 0.833 6 0.000 0.947 6 0.018 0.883 6 0.009 0.890 6 0.009 0.785 6 0.020
T4SEpred_bpbAac 0.959 6 0.060 0.433 6 0.000 0.980 6 0.030 0.597 6 0.012 0.707 6 0.015 0.495 6 0.046
T4SEpred_psAac 0.983 6 0.037 0.367 6 0.000 0.993 6 0.015 0.534 6 0.006 0.680 6 0.007 0.462 6 0.026

Table 7. Statistical analysis of the GþC contents between the puta-
tive T4SEs and non-T4SEs in the K. pneumoniae strain AJ218, B5055
and MGH 78578 genomes

Strain type Mean of GþC content (%) P-value by
Welch’s t-test

Putative T4SEs Non-T4SEs

AJ218 43.33 57.73 3.755e-16
B5055 44.99 57.55 3.51e-11
MGH 78578 45.45 57.99 4.314e-10

Note: For each species, the GþC content (%) of each sequence of putative T4SEs
was calculated to form a percentage set. Similarly, the GþC content (% of each
non-T4SE sequence was calculated to form another percentage set. Note that
the percentage set of non-T4SE sequences was significantly larger than that of
the putative T4SEs percentage set. Based on the two sets, the mean values of the
GþC content (%) of both putative T4SEs and non-T4SEs were calculated. The
Welch’s t-test was performed and P-value calculated to assess the statistical
significance.
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Abstract

Motivation: Many Gram-negative bacteria use type VI secretion systems (T6SS) to export effector
proteins into adjacent target cells. These secreted effectors (T6SEs) play vital roles in the competi-
tive survival in bacterial populations, as well as pathogenesis of bacteria. Although various compu-
tational analyses have been previously applied to identify effectors secreted by certain bacterial
species, there is no universal method available to accurately predict T6SS effector proteins from
the growing tide of bacterial genome sequence data.
Results: We extracted a wide range of features from T6SE protein sequences and comprehensively
analyzed the prediction performance of these features through unsupervised and supervised learn-
ing. By integrating these features, we subsequently developed a two-layer SVM-based ensemble
model with fine-grain optimized parameters, to identify potential T6SEs. We further validated the
predictive model using an independent dataset, which showed that the proposed model achieved
an impressive performance in terms of ACC (0.943), F-value (0.946), MCC (0.892) and AUC (0.976).
To demonstrate applicability, we employed this method to correctly identify two very recently
validated T6SE proteins, which represent challenging prediction targets because they significantly
differed from previously known T6SEs in terms of their sequence similarity and cellular function.
Furthermore, a genome-wide prediction across 12 bacterial species, involving in total 54 212 pro-
tein sequences, was carried out to distinguish 94 putative T6SE candidates. We envisage both this
information and our publicly accessible web server will facilitate future discoveries of novel T6SEs.
Availability and implementation: http://bastion6.erc.monash.edu/
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1 Introduction

Gram-negative bacteria secrete proteins for a variety of cell survival

purposes, and recently a sophisticated nanomachine called the type

VI secretion system (T6SS) has been shown to function in delivering

effector proteins (termed T6SEs) into neighboring cells that may be

either eukaryotic or prokaryotic (Ho et al., 2014; Mougous, 2006;

Vettiger and Basler, 2016). In this way, the T6SS can be employed

for host cell subversion and pathogenesis, and also to eliminate bac-

terial competitors. Multiple gene clusters have been discovered that

encode components of the T6SS machinery, and are widespread

among Gram-negative bacteria (Boyer et al., 2009). Each T6SS has

multiple conserved mechanisms for recruiting its associated effectors

for secretion. In each case, effector recruitment involves direct or in-

direct association with the hemolysin co-regulated protein (Hcp)

and valine-glycine repeat G (VrgG) or proline-alanine-alanine-

arginine (PAAR) proteins of the T6SS, which are expelled together

during the translocation events (Cianfanelli et al., 2016).

Experimental methods for the discovery of T6SEs have primarily

been discovery-driven, knowledge/hypothesis-based methodologies:

specific analysis of T6SS-associated genes, proteomics-based methods

and screens of mutant libraries (Lien and Lai, 2017). In addition,

sequence-based analyses have been developed for predicting potential

effector candidates from genome sequence. For instance, variant

members of the VgrG and Hcp protein families with additional C-ter-

minal domains are promising T6SE candidates (Cianfanelli et al.,

2016; Jamet and Nassif, 2015; Ma et al., 2017a; Pukatzki et al.,

2009) with some characterized as T6SEs (Blondel et al., 2009; Brooks

et al., 2013; Dong et al., 2013; Flaugnatti et al., 2016; Ma et al.,

2017a; Pukatzki et al., 2007). Also, there is evidence of genetic link-

age between the known T6SS chaperones, such as DUF4123 of Tap-

1/TEC (Liang et al., 2015) and DUF2169 (Bondage et al., 2016;

Liang et al., 2015), and their cognate T6SE. More recently, conserved

domains have been used to identify T6SEs: Rhs/YD repeat

(Koskiniemi et al., 2013; Ma et al., 2017b; Murdoch et al., 2011;

Whitney et al., 2014), PAAR (Ma et al., 2014; Rigard et al., 2016;

Whitney et al., 2014), TTR (Flaugnatti et al., 2016; Shneider et al.,

2013) and MIX motifs (Salomon, 2016; Salomon et al., 2014, 2015)

have all been used as tools to identify tentative T6SEs. While these

bioinformatics approaches have identified some T6SEs they are lim-

ited to, and highly dependent on, the existing knowledge of biochem-

ical features and transport mechanisms of T6SEs.

We sought to develop a universal machine learning based

method to accurately predict T6SS effector proteins. We extracted a

wide variety of features from T6SEs based on their sequence profile,

evolutionary information and physicochemical property, and com-

prehensively analyzed the prediction performance of these features

using unsupervised and supervised learning. A set of SVM-based

models was then developed for these features, assembled as a

two-layer integrative to identify potential T6SEs, effectively and

robustly. This ensemble model was further tested using (i) an inde-

pendent dataset of 20 newly discovered T6SEs, and (ii) by assess-

ment of two newly discovered and experimentally validated T6SEs.

The results show that our proposed model achieved a much better

performance in terms of ACC (0.943), F-value (0.946), MCC

(0.892) and AUC (0.976) when compared with single feature based

models, one-layer ensemble models and two motif-based searching

methods. Additionally, by accurately recognizing new experimen-

tally validated T6SEs, the proposed model demonstrated its effect-

ivity and robustness toward identification of potential T6SEs.

Furthermore, with our genome-wide prediction across 12 bacterial

species, involving a total of 54 212 encoded protein sequences, we

were able to identify 94 putative T6SE candidates. Lastly, we de-

veloped an online bioinformatics server, termed Bastion6 (Bacterial

secretion effector predictor for type VI secretion system), to provide

a user-friendly T6SE prediction service. To the best of our know-

ledge, Bastion6 is the first machine learning based predictor for

T6SE prediction. We envisage this server will be widely used to fa-

cilitate discovery of novel T6SEs.

2 Materials and methods

An overview of the workflow of our Bastion6 methodology is illus-

trated in Figure 1. Briefly, three major stages are involved in the devel-

opment of Bastion6: (i) sequence analysis based on the curated

dataset; (ii) feature extraction, model training and construction and

(iii) feature analysis, model parameterization and performance assess-

ment using unsupervised analysis, supervised analysis and case study.

2.1 Data collection and preprocessing
To construct the training dataset, we extracted 178 known T6SE se-

quences from the SecretEPDB database (An et al., 2017) and 1132

non-effectors from the literature (Zou et al., 2013), and then

removed highly homologous sequences at the threshold of 90% se-

quence identity due to limited positive samples. We finally obtained

a training dataset containing 138 positive and 1112 negative protein

sequences (Supplementary Fig. S1).

To further evaluate the performance of our proposed ensemble

method, as compared with single feature based models and existing

motif-based T6SE searching methods, we generated an independent

dataset by extracting T6SEs from recently published works in the lit-

erature (Supplementary Table S1) and non-T6SEs from Vibrio para-

haemolyticus. After highly homologous samples (with more than

Fig. 1. Workflow of our developed Bastion6 approach
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90% similarity) were removed from our training dataset, we ob-

tained the final independent dataset with 20 positive and 200 nega-

tive samples. Aside, two very recently experimentally validated

T6SEs (Lin et al., 2017; Si et al., 2017) were used as case studies to

test the identifying capability of the proposed method.

2.2 Feature extraction
A protein’s amino acid sequence contains important intrinsic infor-

mation that dictates its properties. These include composition, per-

mutation and combination modes of amino acids, orders of amino

acids, similarities, homologies with other proteins, evolutionary in-

formation and physicochemical properties. While each type of fea-

ture may contribute to the characteristics of T6SEs, none of the

features is predominant among all T6SEs, or indeed constitutes a

sufficient and necessary determinant for a protein to be an effector.

Thus, extracting features from a wide range of properties would bet-

ter characterize T6SEs. In this work, we categorized this information

into three groups: sequence profile, evolutionary information and

physicochemical property.

2.2.1 Group 1: sequence-based features

Protein function is determined by the three-dimensional structure of

the protein itself, which in turn depends on the primary structure,

i.e. amino acid sequence (Anfinsen, 1972). Different proteins dif-

fer in the percentage compositions of amino acids, the modes of

combination of amino acids, and the orders of amino acids.

Accordingly, three types of sequence-derived features, including

amino acid composition (AAC), dipeptide composition (DPC) and

Quasi-Sequence-Order descriptors (QSO), were encoded to repre-

sent the above characteristics, respectively.

1. AAC is a widely used type of characterizing the occurrence fre-

quencies of 20 amino acids in a sequence and can thus generate

a 20-dimensional feature vector.

2. DPC describes the frequencies of dipeptides, each of which is

made up of a pair of amino acids. It thus generates a 400-dimen-

sional feature vector, which partially reflects the sequence order

information and fragment information.

3. QSO (Chou, 2000) describes the sequence order effect based on

the physicochemical distance between amino acids. The QSO de-

scriptors of the sequence can be calculated as:

Xr ¼
fr

P20
r¼1 fr þx

Pmaxlag
d¼1 sd

; r ¼ 1; 2; . . . ; 20;

Xd ¼
xsd#20P20

r¼1 fr þ x
Pmaxlag

d¼1 sd

; d ¼ 21;22; . . . ; 20þmaxlag;

sd ¼
XN#d

i¼1

ðdisti;iþdÞ2;d ¼ 1; 2; . . . ;maxlag;

8
>>>>>>>>>><

>>>>>>>>>>:

where fr represents the normalized occurrence for amino acid r,

disti;iþd denotes the distance between the ith amino acid and the

(iþd)th amino acid of the sequence, N counts the amino acids of

the sequence, x denotes the weighting factor and maxlag defines the

maximum lag that should be no more than the length of the protein

sequence. Accordingly, by applying these formulas into Schneider-

Wrede physicochemical distance matrix (Schneider and Wrede,

1994) and another chemical distance matrix (Grantham, 1974), two

feature vectors were obtained, each of which combines Xr and Xd

in 20 þmaxlag dimensions, with default values x¼0.1 and

maxlag¼30.

2.2.2 Group 2: evolutionary information-based features

An increasing number of studies have shown that including evolu-

tionary information is more informative than just sequence informa-

tion alone (An et al., 2018; Wang et al., 2017a; Zou et al., 2013).

Accordingly, such information can serve as a basis for additional

feature encodings (Wang et al., 2017b):

1. The Blocks substitution matrix (BLOSUM) is a substitution ma-

trix used to score local alignments between evolutionarily diver-

gent protein sequences. Due to its usefulness it has been applied

in many previous bioinformatics studies (Capra and Singh,

2008; Jones, 1999; Jones and Cozzetto, 2015; Wen et al., 2016).

In this work, we encoded a protein sequence by mapping its

amino acids onto the BLOSUM62 matrix to retrieve the residue

similarity values. Accordingly, we obtained a 175-dimentional

feature vector.

2. A position-specific scoring matrix (PSSM) is a L & 20 matrix,

where L is the length of its corresponding protein sequence. The

(i, j)th element of the matrix denotes the probability of amino

acid j to appear at the ith position of the protein sequence

(Wang et al., 2017a). By borrowing the idea of a DPC encoding

algorithm and applying it to a PSSM, DPC-PSSM is designed to

partially express the local sequence-order effect (Liu et al.,

2010). As a result, DPC-PSSM is represented by a 400-dimen-

tional feature vector, which utilizes the evolutionary information

and, moreover, reflects the sequence-order information. DPC-

PSSM can be calculated as:

Y ¼ y1;1; . . . ; y1;20; y2;1; . . . ; y2;20; . . . ; y20;1; . . . ; y20;20

! "T

yi;j ¼
1

L# 1

XL#1

k ¼1

p k ;i & p k þ1;j 1 ' i; j ' 20ð Þ

8
>><

>>:

where p k ;i denotes the element at k th row and ith column of PSSM,

and L denotes the row counts of the PSSM, which is equal to the

length of the corresponding protein sequence.

3. S-FPSSM is designed to extract evolutionary information deli-

cately based on the matrix transformation of the original PSSM

(Zahiri et al., 2013). The ‘filtered’ matrix FPSSM is produced

from PSSM in a preprocessing step during which all negative

elements of the PSSM are set to zero and all positive elements

greater than an expected value d (with a default value of 7) are

set to d. Consequently, all elements in FPSSM are in the range

from 0 to d. This step can help eliminate the negative elements’

influence on the positive ones when adding two elements during

matrix transformation. Based on the FPSSM, the resulting fea-

ture vector S ¼ ðS 1ð Þ
1 ; . . . ; S 1ð Þ

20 ; . . . ; S 20ð Þ
1 ; . . . ; Sð20Þ

20 Þ can be defined

as follows:

sðiÞj ¼
XL

k ¼1

fp k ;j & dk ;i

subject to

dk ;i ¼ 1; rk ¼ ai

dk ;i ¼ 0; rk 6¼ ai

i; j ¼ 1; . . . ; 20

(

where L denotes the total number of rows of the FPSSM, fp k ;i de-

notes the element in the k th row and ith column of FPSSM, rk
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denotes the k th residue in the sequence, and ai denotes the ith amino

acid of 20 primary amino acids.

4. Pse-PSSM was originally proposed by Chou et al. and many empir-

ical studies demonstrated its usefulness in protein sequence analysis

(Chou and Shen, 2007). It is a reliable feature encoding method for

extracting evolutionary information based on the PSSM transform-

ation, and dimension normalization of the resulting feature vector.

Pse-PSSM can be described using the following formulae:

mean i ¼
P20

k ¼1 Ei;k

20
; i ¼ 1;2; . . . ;L

STDi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP20
u ¼1 Ei;u "mean i

" #

20

s

; i ¼ 1; 2; . . . ;L

Ti;j ¼
Ei;j "mean i

STDi
; i ¼ 1;2; . . . ;L

Ha
j ¼

1

L" a

XL"a

i¼1

ðTi;j " Tiþ a;jÞ2

!Tj
¼ 1

L

XL

i¼1

Ti;j

T
0 ¼ ½T1 ; . . . ;T20 '

H
0 ¼ ½Ha

1; . . . ;Ha
20'

Pa
PsePSSM ¼ ½T

0
;H

0 '

where Ei;k denotes the element in the ith row and k th column of the

original PSSM, and L denotes the length of the protein sequence.

Consequently, Pse-PSSM can be represented as a 40-dimentional

feature vector, which reflects the relationship between an amino

acid and its following ath amino acid in the sequence. In this work,

we used the default value a ¼ 1.

2.2.3 Group 3: physicochemical features

We included two types of physicochemical properties [i.e. compos-

ition, transition and distribution (CTD)], composition among CTD

(termed as CTDC) and transition among CTD (termed as CTDT)

(Xiao et al., 2015), which were previously designed to describe the

global composition of amino acid properties in protein sequence

(Dubchak et al., 1995).

1. There are seven types of physicochemical properties in this

work. For each property, 20 primary amino acids are catego-

rized into 3 different classes, according to their attributes

(Table 1). Thus, CTDC is represented as a 21-dimentional fea-

ture vector, obtained from a protein sequence, as follows:

CA ¼
n A

N
; A ¼ 1; 2;3

where n A denotes the number of amino acid type (class) A, and N

denotes the sequence length.

2. CTDT is a representation of the frequency with which a type A

residue is followed by a type B residue, or vice versa.

Accordingly, CTDT is a 21-dimentional feature vector and can

be calculated as follows:

TAB ¼
n AB þ n BA

N " 1

TBC ¼
n BC þ n CB

N " 1

TCA ¼
n CA þ n AC

N " 1

8
>>>>>><

>>>>>>:

where n AB denotes the number of dipeptide AB in the sequence, and

N denotes the length of the sequence.

2.3 Integrative model construction
To address the imbalanced classification problem, we constructed N

(N¼100 in our setting) SVM classifiers and trained each of them

with a different subset of the training dataset (Chen and Jeong,

2009). More specifically, to construct an individual classifier, all the

positive samples and an equal number of negative samples randomly

selected from the training dataset were combined as training sam-

ples. For each SVM classifier, we adopted the Gaussian radial basis

kernel and performed a grid search to optimize the two parameters,

Cost (C) and Gamma ðcÞ, in the search space 2"10; . . . ;210g
$

. Thus,

for each feature, an ensemble SVM classifier (termed as single

feature-based model) was generated by averaging the prediction

scores of all the N SVM classifiers. In this way, the imbalanced clas-

sification problem is transformed and replaced by multiple balanced

data classification problems.

Different features correspond to different properties of proteins

and thus can be viewed as capturing distinct protein characteristics

from various perspectives, thereby resulting in different data distri-

butions (Chen and Jeong, 2009). Incorporating such knowledge may

help improve the prediction performance, as compared to models

that have been trained using a single feature only. For each group of

features, the prediction scores of single feature based models are

averaged to obtain a one-layer ensemble model. Lastly, prediction

scores of these one-layer ensemble models (corresponding to differ-

ent feature groups) are averaged to form an integrative two-layer en-

semble model for the final prediction (Fig. 1).

2.4 Performance evaluation
To measure the performance of the proposed method, we carried

out an unsupervised analysis, a supervised analysis (including 5-fold

cross-validation and independent tests) and case studies. Five

Table 1. Classification of 20 standard amino acid types according to seven specific types of physicochemical properties

Class 1 Class 2 Class 3

Hydrophobicity Polar R, K, E, D, Q, N Neutral G, A, S, T, P, H, Y Hydrophobicity C, L, V, I, M, F, W

Normalized van der

Waals volume

0–2.78 G, A, S, T, P, D, C 2.95–4.0 N, V, E, Q, I, L 4.03–8.08 M, H, K, F, R, Y, W

Polarity 4.9–6.2 L, I, F, W, C, M, V, Y 8.0–9.2 P, A, T, G, S 10.4–13.0 H, Q, R, K, N, E, D

Polarizability 0–0.108 G, A, S, D, T 0.128–0.186 C, P, N, V, E, Q, I, L 0.219–0.409 K, M, H, F, R, Y, W

Charge Positive K, R Neutral A, N, C, Q, G, H, I, L, M,

F, P, S, T, W, Y, V

Negative D, E

Secondary Structure Helix E, A, L, M, Q, K, R, H Strand V, I, Y, C, W, F, T Coil G, N, P, S, D

Solvent Accessibility Buried A, L, F, C, G, I, V, W Exposed R, K, Q, E, N, D Intermediate M, S, P, T, H, Y
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performance measures including SN, SP, ACC, F-value and MCC

were used. These are defined as follows:

SN ¼ TP

TPþ FN

SP ¼ TN

TN þ FP

ACC ¼ TPþ TN

TPþ FPþ TN þ FN

F # value ¼ 2$ TP

2TPþ FPþ FN

MCC ¼ TP$ TNð Þ # ðFN $ FPÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FNÞ $ ðTN þ FPÞ $ ðTPþ FPÞ $ ðTN þ FNÞ

p

where TP, TN, FP and FN denote the numbers of true positives,

true negatives, false positives and false negatives, respectively.

3 Experimental results

3.1 Sequence analysis
One of the current tools for T6SE discovery is a motif-based search

called MIX (marker for type six effectors) focused on N-terminal se-

quence similarities found in a sample of T6SEs from Vibrio parahae-

molyticus (Salomon et al., 2014), and together with other analysis

has suggested common features may be present more broadly in the

N- and C- terminal sequences of T6SEs (Lien and Lai, 2017). To test

this hypothesis, a sequence analysis was conducted to characterize

the amino acid occurrences on the first 50N-terminal and 50C-ter-

minal positions of T6SEs (Supplementary Fig. S2A). The calculated

amino acid frequencies show no indication for a strongly conserved

sequence motif at either end of the proteins. Indeed, the only dis-

cernible position with a high conservation level (bit count twice

as high as the second highest stack) is found at position 1 of the

N-terminal sequences. However, a similarly high conservation is

also found for non-effector proteins (Supplementary Fig. S2B),

which can be distinguished at that position only by the relative

abundance of lysine (K) and phenylalanine (F) residues and a deple-

tion in proline (P) and arginine (R) residues. The C-terminal amino

acids of both T6SEs and non-effectors show a distinctively even con-

servation distribution, indicating that none of the positions plays a

major role in recognition. A more than twofold increase compared

to the average stack height is only observed for the very last position

of non-effector proteins, which is enriched in lysine (K) and glutam-

ate (E), but depleted in leucine (L).

3.2 Unsupervised analysis
To intuitively visualize the effect of different feature encodings on

the classification performance, we conducted an unsupervised ana-

lysis based on a randomly selected balanced dataset (due to the im-

possibility of visualizing all N balanced datasets) and demonstrated

the value of such analysis to ascertain whether the extracted features

can be used to effectively discriminate the T6SEs from non-effectors

(Hulsman et al., 2014). For each feature encoding, we mapped all

the samples (including both positives and negatives) onto the 2D

space (Fig. 2), so that the differences in the characterization of these

samples would be represented by their mutual distances in space.

Although the samples from both classes are not evenly distributed

across the 2D map, the embedding didn’t show a clear division into

distinct subgroups. To further investigate this, the data was pro-

cessed using K-means clustering. In this way, the samples in the pic-

ture were colored by their clustering labels, and shaped by the true

labels. The classified distribution of the data samples in each cluster

is shown as the bar chart in Figure 2 (with detailed results listed in

Supplementary Table S2).

DPC-PSSM outperformed all other feature encoding methods:

using DPC-PSSM, non-T6SEs dominated in Cluster 1 (accounting

for 99.1%) while T6SEs dominated in Cluster 2 (accounting for

84.6%). The apparently higher division and low mixture rate of two

classes of samples in each cluster strongly demonstrated the ability

of this encoding scheme to recognize the T6SEs from non-effectors.

Following DPC-PSSM, DPC, AAC and Pse-PSSM achieved a good,

comparable performance, with a moderate mixture rate within each

cluster. The good performances of these four encoding methods il-

lustrate that evolutionary information-based and sequence-based

features contribute the most to T6SE classification.

Note that although T6SEs dominated in Cluster 2 (96.9%) for

BLOSUM, there was a considerable number of T6SEs and non-

T6SEs aggregated together in Cluster 1 (43.9% of T6SEs and

56.1% of non-T6SEs). Moreover, there was an imbalance between

Cluster1 (containing 244 samples) and Cluster 2 (containing 32

samples) which could potentially impact the classification outcome.

3.3 Supervised analysis
We further evaluated the effect of each feature encoding in a super-

vised setting, enabling us to quantitatively assess them by using a set

of standard measures on 5-cross validation and independent tests.

All 5-fold cross validation tests in this work were conducted based

on N (N¼100 in our setting) balanced training datasets, and the

performance was averaged over these N balanced datasets.

3.3.1 Performance evaluation using 5-fold cross-validation tests

For each feature encoding method, an SVM classifier was trained

with optimally-tuned parameters and validated based on the train-

ing dataset by performing randomized 5-fold cross-validation tests.

The averaged results are shown in Table 2 and Figure 3A.

As can be seen, PSSM-based features achieved the overall best

performance in terms of ACC (>0.91), F-value (>0.91), MCC

(>0.83) and AUC (>0.96) (Table 2 and Fig. 3A). This suggested

that PSSM-based features were the most informative for T6SE classi-

fication, and its related features were considered as essential for

building accurate models. These observations agree well with previ-

ous bioinformatics studies (An et al., 2018; Wang et al., 2017a; Zou

et al., 2013). DPC-PSSM was shown to be the most powerful feature

encoding method, which consistently achieved the highest values of

SN (0.950), ACC (0.938), F-value (0.940), MCC (0.878) and AUC

(0.983). These results are in accordance with those in our unsuper-

vised analysis. Similarly, following the PSSM-based feature encod-

ing, AAC achieved the second-best performance reflected by the

ACC (0.873), F-value (0.872), MCC (0.748) and AUC (0.943). The

poorer performance of BLOSUM indicates that the substitution ma-

trix was less informative when compared with the PSSM, although

the former is more accessible and can be directly calculated. The

same holds for CTDT, which yielded only a moderate performance,

despite it providing a novel perspective on the feature extraction of

protein sequences. These results suggest that BLOSUM and CTDT

can be used as complementary encoding schemes in conjunction

with the essential PSSM features.
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Our supervised analysis also revealed differences with respect to the

unsupervised analysis. In particular, we found that CTDC and QSO

achieved an equivalent performance as the second-best feature encod-

ing methods (with a performance that was slightly better than that of

DPC). This suggests that the performance of individual encoding

schemes may depend on the machine learning method being applied.

Generally, while there is a preference for high SN and SP values,

a trade-off between SN and SP is necessary for a predictor to achieve

a comprehensive and stable performance. Otherwise, it could gener-

ate predictions that are biased by a preference for a certain class of

samples. In this work, the gaps between SN and SP were minor

across all the encoding methods, which formed a solid basis for our

model to achieve a stable performance over all metrics, including

ACC, F-value, MCC and AUC.

3.3.2 Performance evaluation using various sequence similarity rates

Considering that the features used for training the models were

derived from protein sequences, the training datasets curated with

different sequence similarity cut-offs could result in different model

performances. To examine the effect of the sequence similarity cut-

off on the overall performance of the models, six sequence identity

thresholds (i.e. 70, 75, 80, 85, 90 and 95%) were applied when

Fig. 2. Representation and clustering of data samples of T6SEs and non-T6SEs based on nine different types of feature encodings. For each encoding, the repre-

sentation of data samples is presented in two dimensions after dimensionality reduction using principal component analysis (PCA). Samples were then clustered

into two groups using the K-means algorithm; each cluster (represented by one color) consists of two types of samples (i.e. T6SEs and non-T6SEs) with two dif-

ferent shapes, in which circle and multiplication signs represent T6SEs and non-T6SEs, respectively. The classified distribution of T6SEs (right-hand bar) vs. non-

T6SEs (left-hand bar) in each cluster is shown as the inset bar chart

Table 2. The performance of SVM classifiers using different sequence encoding methods based on 5-fold cross-validation tests

Encoding SN SP ACC F-value MCC

Group 1 AAC 0.87160.022 0.87560.028 0.87360.020 0.87260.020 0.74860.041

DPC 0.83760.020 0.85260.027 0.84360.020 0.84160.020 0.68960.039

QSO 0.84360.020 0.86360.027 0.85160.018 0.84960.018 0.70660.036

Group 2 BLOSUM 0.81060.034 0.79660.031 0.80260.024 0.80360.025 0.60860.048

DPC-PSSM 0.95060.020 0.92960.019 0.93860.013 0.94060.013 0.87860.025

S-FPSSM 0.91560.014 0.91860.020 0.91460.012 0.91560.012 0.83160.024

Pse-PSSM 0.92560.015 0.94460.019 0.93260.012 0.93360.012 0.86860.023

Group 3 CTDC 0.85760.025 0.84760.033 0.85060.021 0.85160.020 0.70560.042

CTDT 0.77460.031 0.76460.030 0.77160.024 0.76760.026 0.54460.049

Note: The values were expressed as mean 6 standard deviation. For each metric, the best performance value across different encoding methods is highlighted in

bold for clarification.
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constructing training datasets. Using these generated datasets and

the original dataset (without homologous sequence reduction), the

performance of each model was evaluated using the same fivefold

cross-validation. As can be seen from Figure 4A, in all cases, the

models trained with the original dataset outperformed those trained

with other datasets (i.e. after removal of homologous sequences) in

terms of the MCC value. This suggests that high sequence homology

in the original dataset can indeed lead to overestimated per-

formances of the corresponding models, thereby highlighting

the importance and necessity of performing sequence homology

reduction prior to model training. However, models trained with

datasets resulting from different sequence similarity cut-offs show a

similar performance, indicating the robustness of the proposed

models.

3.3.3 The effect of searched databases for PSSM-based features

To characterize the potential effect of the size of searched databases

on the performance of PSSM-based models, we further generated

PSSM profiles by searching against three uniref databases with dif-

ferent sizes (i.e. uniref50, uniref90 and uniref100) with parameters

of j¼3 and h ¼0.001. Based on these PSSM profiles, PSSM-based

models were trained and performance evaluated using the same five-

fold cross-validation procedure. The results indicate that there was

no significant difference in the performance between these PSSM-

based models (Fig. 4B), suggesting that the size of searched data-

bases did not have a significant impact on the performance of the

PSSM-based models on the curated T6SE dataset.

3.3.4 The effect of various selected features on the model

performance

GainRatio (Frank et al., 2004) was applied to conduct a set of fea-

ture selection experiments using the same fivefold cross-validation.

We found that for different types of features, models trained using

the entire features generally resulted in a better predictive perform-

ance compared to models trained using selected features (such as the

top 50, 100, 150, 200, 250, 300 and 350 features) (Supplementary

Fig. S3). The only exception was the BLOSUM-based model, which

achieved a similar performance when compared to the correspond-

ing model trained using selected features. A possible explanation is

that the original size of each generated feature set was so small (i.e.

less than 400 dimensions) that all features in the feature set without

further selection could be interpreted well by machine learning

methods, contributing to the models’ overall performance.

3.3.5 Comparison with homology-based baseline predictor

To compare with the proposed models, we applied a homology-

based approach to develop a baseline predictor. For each query se-

quence in the test set, the blastp program—implemented in the

Blastþ software (Camacho et al., 2009)—was used to search against

the training dataset. Based on the blastp search results, the query se-

quence was assigned the same label as that of the top ranked protein

sequence with the lowest E-value in the training dataset. We thus as-

sessed the performance of this homology-based baseline predictor

using the same fivefold cross-validation. The results showed that the

baseline predictor achieved a lower performance with an F-value of

0.787, an ACC of 0.741 and an MCC of 0.517, than our proposed

models. An explanation is that the homology-based baseline pre-

dictor could not recognize valuable patterns beyond the sequence

identity, thus resulting in an unsatisfactory performance compared

with our machine learning-based models.

Fig. 3. (A) ROC curves of different feature encoding methods for T6SS effector

prediction based on 5-fold cross-validation tests; (B) ROC curves of single fea-

ture-based models, one-layer models and the final model used by Bastion6

on the independent test. The results were distinguished by color curves. AUC

values for each model are also presented

Fig. 4. (A) Performance of various feature encoding methods using differ-

ent sequence similarity cut-offs based on 5-fold cross-validation tests;

(B) Performance of various PSSM-based feature encoding methods against

different uniref databases based on 5-fold cross-validation test
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3.3.6 Performance validation on the independent test

Using the independent test, the proposed two-layer ensemble model

was further assessed, and benchmarked against the single feature-

based, one-layer ensemble models. All experiments were conducted

10 times. Each time, a balanced independent dataset was formed by

the positive samples and 20 randomly chosen negative samples. As

shown in Figure 3B and Supplementary Table S3, most of the ensem-

ble models display a better and more stable performance in terms of

ACC, F-value, MCC and AUC, when compared to their single

feature-based models, while Bastion6 achieved the best performance

among them with respect to ACC (0.943), F-value (0.946), MCC

(0.892) and AUC (0.976).

To measure the ability of positive sample identification, we

further looked into the numbers of true positives predicted by

various models in the independent test. Bastion6 outperformed

the single feature-based models and one-layer ensemble models

(Supplementary Table S4), without misclassifying any T6SE. In con-

trast, single feature-based models misclassified a larger number of

T6SEs. As expected, ensemble models were able to correct the mis-

classifications of single feature-based models, and consequently

achieved more stable performances.

Two previous motif search-based methods were assessed as a

benchmark for the independent test, since motif strategies referred

to as MIX and SAVC (Secretome analysis of Vibrio cholera) were re-

cently used to discover T6SEs (Altindis et al., 2015; Salomon et al.,

2014). Regarding the capability of recognizing T6SEs, Bastion6 suc-

cessfully retrieved 20 positive samples, while MIX and SAVC

retrieved 0 and 2 positive samples, respectively, from 20 T6SEs of

the independent dataset (Supplementary Table S5). This result sug-

gested that motif-based searching methods do not function well

across bacterial species, and demonstrated the usefulness and neces-

sity of our universal and highly accurate T6SE prediction method.

3.4 Case study
To examine the scalability and robustness of the proposed method,

we carried out a case study using two very recent experimentally

validated T6SEs: neither of these effectors was present in the train-

ing dataset, and both differ significantly from all other proteins in

the training dataset (Supplementary Figs S4 and S5). Detailed pre-

diction results are listed in Supplementary Table S6.

Our first case study protein was TseM (Si et al., 2017), a T6SS-

4–dependent Mn2þ-binding effector experimentally characterized

from Burkholderia thailandensis. The proposed model correctly

identified TseM as a T6SE, with a probability score of 0.544. As a

comparison, models trained using sequence-based features generated

lower probability scores (<0.5) due to the low sequence similarity

between TseM and the protein sequences in the training dataset

(Supplementary Figs S4 and S5). Models trained using PSSM (except

S-FPSSM) and physicochemical properties could correctly recognize

TseM as a T6SE with higher prediction scores. More specifically,

the CTDT model correctly predicted this protein with the highest

score of 0.763, despite its poorer performance in benchmarking

experiments.

The second case study was the T6SE TseF recently identified in

Pseudomonas aeruginosa (Lin et al., 2017). TseF is secreted by the

H3-T6SS, and then incorporated into outer membrane vesicles to fa-

cilitate the uptake of iron (Lin et al., 2017). The proposed model

successfully predicted TseF as a T6SE with a score of 0.681.

Surprisingly, DPC-PSSM and Pse-PSSM models, which performed

best in benchmarking experiments, failed to predict this T6SE.

This highlights the necessity of exploiting the different but

complementary feature encoding schemes that can capture useful

‘signals’ from different perspectives.

These results confirm the usefulness and reliability of our pro-

posed method, and the value of integrating various models into en-

semble learning models. By taking all these single models into

account, the developed two-layer model achieved balanced predict-

ive power, thus providing a reliable tool for identifying novel poten-

tial T6SEs.

3.5 Genome-scale prediction across various species
Currently, there are only a limited number of experimentally vali-

dated T6SEs. This has restricted our understanding of the functional

roles in their interactions with their eukaryotic hosts or prokaryotic

competitors. To facilitate the functional characterization, we per-

formed a genome-wide prediction of T6SEs in 12 different bacterial

species, including those that have been previously shown to possess

T6SEs. As a result, a total of 94 putative T6SEs (with probability

scores larger than 0.9) were extracted from 54 212 protein se-

quences. A statistical summary of the genome-wide prediction re-

sults is listed in Supplementary Table S7. A full list of the predicted

T6SEs can be found at the Bastion6 server.

4 Discussion

Identification of T6SEs is a key to understanding the role of T6SS in

bacteria’s anti-bacterial competition, inter-bacterial interaction and

virulence to their eukaryotic hosts (Ho et al., 2014). Bacterial gen-

ome sequencing is advancing at an unprecedented pace and, conse-

quently, rapid and accurate identification of T6SEs from genome

sequence data is both achievable and highly desirable. Previous stud-

ies have reported motifs in N- or C-terminal sequences in some bac-

terial (Lien and Lai, 2017) suggested to define T6SEs. However,

these motifs prove to be specific to a subset of T6SEs in only certain

bacterial species. The latter was shown through sequence analysis

and further validated in the benchmark tests in this work. To pro-

vide highly accurate prediction of T6SEs in and across diverse bac-

terial species, we extracted nine widely used features based on

amino acid sequence information, evolutionary information and

physicochemical properties. These features have been systematically

and comprehensively assessed through unsupervised and supervised

learning. The features demonstrated their effectiveness in different

scenarios. PSSM-based features achieved the overall best perform-

ance in most cases. They could accurately predict novel T6SEs espe-

cially in cases where they significantly differ from known effectors.

However, we also noticed that in some cases, PSSM-based features

did not perform well while other features performed better on inde-

pendent tests and case studies. There might be several reasons for

this. First, compared to the vast number of uncharacterized effectors

the dataset of known T6SEs was very limited when it comes to ex-

tracting sufficient knowledge and useful patterns. Accordingly, it

was hard to quantitatively assess how a feature performs, relative to

other features. Second, different features may be suitable for predict-

ing different T6SEs. A feature-based model may be good at recogniz-

ing a subset of T6SEs while it fails to identify another subset of

T6SEs. Therefore, taking advantage of all single feature-based mod-

els and integrating them into an ensemble model helps to improve

the prediction of T6SEs.

The relatively small number of T6SE samples in the benchmark

dataset will likely result in some bias in the prediction performance.

However, the discovery of new T6SEs: bioinformatically, genetic-

ally and through other experimental approaches, will expand the
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benchmark dataset and, accordingly, improve the model by lessen-

ing any potential bias. Additionally, other features that have proved

useful in other bioinformatics studies (such as structure-based fea-

tures and GO-based features) may help identify new patterns and

improve the model once more T6SE data becomes available.

In this study, we have developed Bastion6, a two-layer ensemble

machine learning method integrating a number of individual SVM-

based models. Extensive benchmarking experiments validated the ef-

fectiveness and robustness of our proposed model. We further

applied Bastion6 to perform genome-wide predictions and obtained

a list of high-confidence, putative T6SEs in 54 212 proteins across

12 bacterial species. With these promising results, we believe our

predicted T6SEs can serve as a preliminary screen for follow-up ex-

periments. In addition, we implemented a publicly accessible web

server, to meet users’ specific demands. We believe that our pro-

posed method can be a vastly useful tool for T6SE prediction, and

will expedite the discovery of novel T6SEs.
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Abstract

Motivation: Type III secreted effectors (T3SEs) can be injected into host cell cytoplasm via type III
secretion systems (T3SSs) to modulate interactions between Gram-negative bacterial pathogens
and their hosts. Due to their relevance in pathogen–host interactions, significant computational
efforts have been put toward identification of T3SEs and these in turn have stimulated new T3SE
discoveries. However, as T3SEs with new characteristics are discovered, these existing computa-
tional tools reveal important limitations: (i) most of the trained machine learning models are based
on the N-terminus (or incorporating also the C-terminus) instead of the proteins’ complete sequen-
ces, and (ii) the underlying models (trained with classic algorithms) employed only few features,
most of which were extracted based on sequence-information alone. To achieve better T3SE pre-
diction, we must identify more powerful, informative features and investigate how to effectively in-
tegrate these into a comprehensive model.
Results: In this work, we present Bastion3, a two-layer ensemble predictor developed to accurately
identify type III secreted effectors from protein sequence data. In contrast with existing methods
that employ single models with few features, Bastion3 explores a wide range of features, from vari-
ous types, trains single models based on these features and finally integrates these models
through ensemble learning. We trained the models using a new gradient boosting machine,
LightGBM and further boosted the models’ performances through a novel genetic algorithm (GA)
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based two-step parameter optimization strategy. Our benchmark test demonstrates that Bastion3
achieves a much better performance compared to commonly used methods, with an ACC value of
0.959, F-value of 0.958, MCC value of 0.917 and AUC value of 0.956, which comprehensively outper-
formed all other toolkits by more than 5.6% in ACC value, 5.7% in F-value, 12.4% in MCC value and
5.8% in AUC value. Based on our proposed two-layer ensemble model, we further developed a
user-friendly online toolkit, maximizing convenience for experimental scientists toward T3SE pre-
diction. With its design to ease future discoveries of novel T3SEs and improved performance,
Bastion3 is poised to become a widely used, state-of-the-art toolkit for T3SE prediction.
Availability and implementation: http://bastion3.erc.monash.edu/
Contact: selkrig@embl.de or wyztli@163.com or jiangning.song@monash.edu or trevor.lithgow@
monash.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Type III secretion systems (T3SSs) are central to many host–

pathogen interactions, as one of the major means for the secretion of

effector proteins into host cells (Deng et al., 2017; Galan and

Waksman, 2018). These effectors are diverse proteins by size and

sequence, and they function to mimic factors in diverse host cell

functions in order to pervert host cell biology to the advantage of

the bacterium (Deng et al., 2017; Galan et al., 2014; Jennings et al.,

2017; Raymond et al., 2013). In the biomedical arena, identifying

type III secretion system effectors (T3SEs), characterizing their spe-

cific activity and thereby understanding their functions on human

cells, are all key steps towards providing ‘immune boost’ treatments

for critical infections.

Previous studies across various bacterial species had suggested

that the key signals characterizing T3SEs exist in the first 30/100

amino acids at the N-terminus consisting of intrinsically disordered

sequence features (Buchko et al., 2010), as well as a chaperone-

binding domain where structural motifs come together as three-

dimensional signals to provide for effector recognition by the T3SS

(Birtalan et al., 2002; Ernst et al., 2018; Lilic et al., 2006). Based on

this assumption, past computational methods have been developed

to identify T3SEs through extracting features as inputs of machine

learning models based on N-terminal protein sequences (Arnold

et al., 2009; Karavolos et al., 2005; Lloyd et al., 2001, 2002;

Samudrala et al., 2009). These methods successfully stimulated the

discovery of new T3SEs. However, recent works have revealed that

signals for T3SE recognition and transport are not confined to the

N-terminus, but can exist dispersed through the protein sequence

and do not necessarily require the action of chaperones for their rec-

ognition (Goldberg et al., 2016). In addition, the existing methods

largely employ few and simple features, when a wide range of fea-

tures extracted from different aspects can better characterize a pro-

tein type, and provide superior protein classification performance

(Wang et al., 2017a, 2018; Zou et al., 2013). Specifically, there is

potential in a case such as that of T3SE detection where a great

breadth of species has been sampled by wet-lab studies, computa-

tional models trained with evolutionary information based features

can contribute greatly to the final prediction and can act as an essen-

tial factor when constructing predictors.

Some current methods for TS3E detection combine various fea-

tures to train a single model based on classic machine-learning algo-

rithms, e.g. support vector machine (SVM) (Dong et al., 2013,

2015; Goldberg et al., 2016; Samudrala et al., 2009; Wang et al.,

2011, 2013b; Yang et al., 2010), Naive Bayes (NB) (Arnold et al.,

2009; Tay et al., 2010), random forest (RF) (Yang et al., 2013),

artificial neural network (ANN) (Löwer and Schneider, 2009) and

Markov Model (MM) (Wang et al., 2013a). Among these, Löwer

and Schneider (2009) investigated the performances of both ANN

and SVM, while Dong et al. (2015) and Goldberg et al. (2016) pro-

posed a hybrid model by combining a BLAST-based predictor and

an SVM-based classifier. Nevertheless, novel and promising machine

learning algorithms (Ke et al., 2017; Meng et al., 2016; Wen et al.,

2016) with better performance are emerging, which might lead to

improved integrated models based on ensemble learning (Zhou,

2015).

To take up these challenges, and to address the aforementioned

shortcomings of existing methods, we present Bastion3 (Bacterial

secreted effector classifier for type III secretion system) a two-layer

ensemble learning-based predictor for accurately identifying T3SEs

from protein sequences. Bastion3 is designed based on four novel-

ties: (i) To gain more informative patterns for more accurate T3SE

recognition, it extracts features from full-length sequences instead of

exclusively from the N-terminus or C-terminus, the effects of which

are further demonstrated by our experiments; (ii) in contrast to

existing methods that employ fewer and simplistic features (see a list

in Supplementary Table S1), Bastion3 explores a comprehensive set

of features by considering multiple aspects that collectively charac-

terize T3SEs. These include multiple evolutionary information-

based features that have demonstrated power in previous protein at-

tribution prediction studies (Wang et al., 2017a, 2018; Zou et al.,

2013) and which are introduced, analyzed and integrated into our

predictor. As expected, these features significantly improve the

T3SE prediction accuracy and contribute meaningfully to the final

ensemble model of Bastion3; (iii) Bastion3 employs a recent and

powerful gradient boosting decision machine (GBM), LightGBM

(Ke et al., 2017), with high accuracy, efficiency and scalability, to

train the models. Furthermore, a novel genetic algorithm (GA)-

based two-step parameter optimization strategy is employed to

boost performances of LightGBM-based models, and, lastly, (iv) a

two-layer ensemble model is constructed to make full use of differ-

ent informative groups of features. Benefiting from all these aspects,

Bastion3 outperformed existing state-of-the-art predictors for T3SE

prediction by more than 5.6% in ACC value, 5.7% in F -value,

12.4% in MCC value and 5.8% in AUC value, respectively. The

proposed computational framework of Bastion3 is readily applic-

able and extensible to other different types of protein attributes and

function prediction problems. To maximize the convenience of

interested users, we further developed a user-friendly, well-designed

and easy-to-use online toolkit, which is publicly accessible at http://

bastion3.erc.monash.edu/. It is anticipated that this state-of-the-art
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toolkit will allow effective and accurate screening for putative

T3SEs, thereby expediting the discovery of novel T3SEs and facili-

tating experimental validation in the future.

2 Materials and methods

The overall workflow of Bastion3 is summarized according to the

5-step rule (Chou, 2011; Song et al., 2018a) in Figure 1A: (i) collec-

tion and curation of both training and independent test datasets; (ii)

extraction of useful features that describe the key patterns and char-

acteristics of biological sequences; (iii) feature analysis, model par-

ameterization and model ensemble construction; (iv) performance

assessment and (v) web server development and deployment.

2.1 Data collection and curation
We constructed the training dataset by mining currently known

effectors from the literature, as well as cross-referencing to several

existing T3SE datasets (An et al., 2017; Arnold et al., 2009; Dong

et al., 2013, 2015; Samudrala et al., 2009; Tay et al., 2010; Wang

et al., 2011, 2013a; Yang et al., 2013), and non-effectors from previ-

ous works (Wang et al., 2017a, 2018). After manually removing

wrongly annotated effectors and homologous sequences at the

threshold of 70%, clustered by the CD-HIT program (Huang et al.,

2010), the final dataset contained 379 effectors (Supplementary Fig.

S1) and 1112 non-effectors. It is worth noting that lower thresholds

of the sequence identity (i.e. 50% or below) might help reduce bias

introduced by sequence homology, and in principle result in more

reliable and powerful trained models. However, due to the limited

size of the dataset in this study, using CD-HIT with a higher thresh-

old was deemed necessary.

We subsequently generated an independent test dataset by manu-

ally extracting T3SEs from recently published literature and non-

T3SEs from various bacterial species, in order to rigorously evaluate

the predictive capability of our proposed method, and compare it

against the existing state-of-the-art T3SE predictors. After removing

highly homologous samples (with more than 70% similarity) from

our training dataset, we finally constructed the independent test

dataset containing 108 T3SEs (Supplementary Fig. S2 and

Supplementary Table S2) and 108 non-T3SEs. We further per-

formed a case study, using additional three very recently experimen-

tally validated T3SEs (Supplementary Table S3) and examined in

detail the predictive performance of different approaches.

2.2 Feature extraction
Considering that it is less likely to recognize a T3SE based on single

clues (such as N-terminal signals), we also extracted patterns and

characteristics of T3SEs from their whole protein sequences, physi-

cochemical properties and evolutionary information, so as to com-

prehensively assess and model how T3SSs recognize their specific

effectors for secretion. Due to the complexity of evolutionary

information-based methods and their overwhelming dominance in

Fig. 1. Overall framework of Bastion3. (A) The flowchart of Bastion3 development; (B) Detailed procedures for constructing the prediction models within

Bastion3’s two-layer architecture and (C) Tackling the data imbalance problem by assigning a weight to each sample
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T3SE prediction, we provide their detailed algorithm descriptions in

the following sections.

2.2.1 Group 1: Sequence-based features

The difference between proteins can be directly reflected by their

amino acid sequences. We thus extracted three types of sequence-

based features: amino acid composition (AAC), dipeptide compos-

ition (DPC) and Quasi-Sequence-Order descriptors (QSO). AAC

generates a 20-dimensional feature vector by characterizing the oc-

currence frequencies of 20 amino acids, DPC generates a 400-di-

mensional feature vector by characterizing the frequencies of

dipeptides, while QSO (Chou, 2000) explores a protein’s order ef-

fect to generate a 100-dimensional feature vector, by measuring the

physicochemical distance between amino acids within the sequence.

A detailed description of QSO with a set of equations is provided in

(Chou, 2000; Wang et al., 2018).

2.2.2 Group 2: Physicochemical properties

Physicochemical properties have been widely and successfully

applied in a number of prediction tasks for protein (Wang et al.,

2018), DNA (Liu et al., 2018) and RNA (Chen et al., 2016) attrib-

utes. In this work, two types of physicochemical property-based fea-

tures were included to describe the global composition of amino

acid properties in protein sequence: CTDC and CTDT (Xiao et al.,

2015). Both feature encoding methods categorize the 20 primary

amino acids into three main classes, according to seven specific types

of physicochemical properties, leading to a 21-dimensional feature

vector based on different formulas, respectively. A detailed descrip-

tion of CTDC and CTDT with a set of equations is given in our pre-

vious work (Wang et al., 2018).

2.2.3 Group 3: Evolutionary information

Evolutionary information is useful for characterizing common fea-

tures within specific types of effectors, and thus can be more inform-

ative than the sequence information alone when being applied to

effector prediction (An et al., 2018; Wang et al., 2017a, 2018; Zou

et al., 2013). For a protein sequence with a length of L, a position-

specific scoring matrix (PSSM) can be obtained in the form of a

L!20 matrix, representing the sequence’s evolutionary informa-

tion. The (i, j)th element in this matrix represents the probability of

amino acid j (j¼1, 2,. . ., 20) to appear at the ith position of the pro-

tein sequence (Wang et al., 2017a). Here, we generate the following

PSSM-based features using the POSSUM standalone toolkit (Wang

et al., 2017b):

(1) The PSSM-composition encoding method (Liu et al., 2010)

converts the original PSSM profile into a 20! 20 matrix by sum-

ming up all rows of the same amino acid residue:

Ri ¼
XL

k¼1

rk ! dk (1)

subject to

dk ¼ 1; p k ¼ ai

dk ¼ 0; p k 6¼ ai
; i ¼ 1; . . . ; 20

!
(2)

where Ri represents the ith row of the transformed matrix, rk

denotes the kth row of original PSSM, p k denotes the kth amino

acid in original sequence, and ai denotes the ith of 20 basic amino

acids. As a result, we obtained a 400-dimensional vector by trans-

forming the 20! 20 matrix into a straight line.

(2) Inspired by the probe concept used in microarray technolo-

gies, the RPM-PSSM encoding (Jeong et al., 2011) applies the resi-

due probing method to scan the original PSSM and filters all the

negative elements as a preprocessing step to form a ‘filtered’ PSSM

matrix, where all entities with values of less than 0 are set to 0. This

‘filtered’ PSSM matrix can be further converted into a 20! 20 ma-

trix using the same method as the PSSM-composition encoding

method, and we subsequently transformed the 20! 20 matrix into a

400-dimensional vector.

(3) Similar to RPM-PSSM, the D-FPSSM encoding (Zahiri et al.,

2013) preprocesses the original PSSM profile prior to matrix trans-

formation. D-FPSSM first generates a ‘filtered’ matrix (termed as

FPSSM) by setting all negative elements of the original PSSM profile

to 0 and all positive elements greater than an expected value d (with

a default value of 7) to d. Consequently, all elements in FPSSM vary

within the range between 0 and d, and in this way the negative ele-

ments’ influence on the positive ones is eliminated when adding two

elements during matrix transformation. Based on the FPSSM, we

obtained a vector D of 20 dimensions, whose ith element di can be

calculated as follows:

dj ¼
XL

i¼1

fp i;j; j ¼ 1; . . . ; 20 (3)

where fp i; j denotes the element at the ith row and jth column of

FPSSM. To eliminate the potential influence of protein sequences

with different lengths, di is further normalized as follows:

di ¼
di #min

max ! L
(4)

where min and max denote the minimum and maximum values in

the ith column of FPSSM, respectively.

(4) The TPC encoding method (Zhang et al., 2012) calculates the

correlation between two adjacent residues by importing the transi-

tion probability matrix into PSSM. After transition, we obtained a

400-dimensional vector, which can be defined as follows:

TPC ¼ ðy1;1; . . . ; y1; 20; . . . ; yi;1; . . . ; yi;20; . . . ; y20;1; . . . ; y20; 20Þ
T

(5)

yi;j ¼

XL#1

k¼1
Pk;i ! Pkþ 1;j

X20

j¼1

XL#1

k¼1
Pkþ 1;j ! Pk;i

; 1' i; j' 20 (6)

where Pk; i denotes the (k, i)th element in the original PSSM profile.

(5) DP-PSSM (Juan et al., 2009) describes the relationship of an

amino acid and the ath (with a default value of 5) succeeding amino

acid, which is an extension of Chou’s Pse-PSSM algorithm (Chou

and Shen, 2007). DP-PSSM first normalizes the elements in the ori-

ginal PSSM profile to a matrix T according to the following three

equations:

mean i ¼

X20

k¼1
Ei;k

20
(7)

STDi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX20

u¼1
ðEi;u #mean iÞ2

20

s

(8)

Ti;j ¼
Ei;j #mean i

STDi
(9)

where Ei; k represents the element at ith row and kth column of ori-

ginal PSSM profile.
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Secondly, DP-PSSM calculates the average of squared differences

between entries corresponding to amino acids at position i and iþ k

in the jth column of matrix T:

D
P
k ;j ¼

1

NDPj

X
ðTi;j $ Tiþk ;jÞ2; if Ti;j $ Tiþk ;j & 0

D
N
k ;j ¼

1

NDNj

X
ðTi;j $ Tiþk ;jÞ2; if Ti;j $ Tiþk ;j < 0

; 0 < k ' a;

8
>><

>>:

(10)

where NDPj and NDNj denote the numbers of positive and negative

values of fTi; j $ Tiþk ; j j i ¼ 1; 2; . . . Lg, respectively.

Thirdly, DP-PSSM combines these positive and negative terms

into a feature row vector Gj:

Gj ¼ ½D
P
1; j;D

N
1; j;D

P
2; j;D

N
2; j; . . . ;D

P
a; j;D

N
a; j); j ¼ 1; 2; . . . ; 20: (11)

A feature vector G0 of 20* ða* 2Þ dimensions can be obtained

by directly merging 20 vectors Gj:

G0 ¼ ½G1;G2; . . . ;G20) (12)

Fourthly, DP-PSSM calculates the average of positive and nega-

tive terms in each column of the normalized matrix T:

T
P
j ¼

1

NPj

X
Ti; j; if Ti; j& 0

T
N
j ¼

1

NNj

X
Ti; j; if Ti; j < 0

; j ¼ 1; 2; . . . ; 20;

8
>><

>>:
(13)

and combines these averaged values to a feature row vector T0 with

40 dimensions:

T0 ¼ ½T P
1;T

N
1 ;T

P
2;T

N
2 ; . . . ;T

P
20;T

N
20) (14)

Finally, a DP-PSSM feature vector Pa
DP$ PSSM is obtained by com-

bining the generated T0 and G0:

Pa
DP$ PSSM ¼ ½T

0;G0) ¼ ½p1;p2; . . . ;p40þ40*a) (15)

In this study, a was set to 5 as the default value and we accord-

ingly obtained a 240-dimensional vector.

2.3 Model training and optimization
2.3.1 LightGBM

Gradient Boosting Decision Tree (GBDT) (Friedman, 2001) is an it-

erative decision tree algorithm with a variety of successful applica-

tions in bioinformatics and computational biology (Chen et al.,

2017a; Liao et al., 2016; Rawi et al., 2018). With the explosive

growth of feature dimensions and data size, the efficiency and scal-

ability of a few implementations based on GBDT are unsatisfactory

(Ke et al., 2017). More recently, a new GBDT extension, LightGBM

(Ke et al., 2017) has been proposed, based on two novel techniques:

Gradient-based One-Side Sampling (GOSS) and Exclusive Feature

Bundling (EFB) to solve the time-consuming problem of convention-

al GBDT while retaining high accuracy.

GOSS uses significant data instances, instead of all data instan-

ces, for calculations (Supplementary Algorithm S1). Conventional

implementation of GBDT requires scanning all data instances for

each feature to estimate the information gain for all possible split

points. The gradient of the instances, which refer to their absolute

values, is positively related to the information gain according to the

definition of the latter (Ke et al., 2017). In view of this, GOSS takes

all instances with large gradients and randomly samples instances

with small gradients, to estimate the information gain for reducing

computational complexities. By doing so, it is equivalent to reducing

the number of data instances at the time of calculation and further

improving the operating efficiency.

In addition to the number of data instances, the number of fea-

tures is also reduced in LightGBM. High-dimensional feature space

is often sparse. The EFB algorithm uses a greedy idea to bundle

many exclusive features into a single feature which rarely take non-

zero values simultaneously without affecting the accuracy of the cal-

culation (Supplementary Algorithm S2). Therefore, the speed of

model training in LightGBM is significantly boosted over other

GBDTs because the number of bundled features will be much

smaller than those of the original features.

LightGBM improves the efficiency of model training by reducing

both numbers of data instances and features. Multiple sets of experi-

ments have shown that the training speed of LightGBM is 20 times

higher than conventional GBDT on the premise of maintaining the

same accuracy (Ke et al., 2017). In this work, LightGBM was imple-

mented using the lightgbm package in R language (https://github.

com/Microsoft/LightGBM).

2.3.2 Parameter optimization

Compared with traditional machine learning algorithms, which only

need to adjust two or fewer parameters, LightGBM requires users to

tune a larger number of parameters (Supplementary Table S4) to en-

sure model’s accuracy and robustness. To optimize the 12 required

parameters, the simplest method is to use the grid-search parameter

adjustment to exactly obtain optimal parameters. However, it is

costly to use grid-searching to tune all the 12 parameters concurrent-

ly, especially when the search space is relatively large. To deal with

this, we propose a novel GA-based two-step parameter tuning strat-

egy (Algorithm 1) to approximate an optimal solution but in a large-

ly reduced computational time.

First, tune parameters (one by one) for each and all 12 parame-

ters. Considering that the amount of grid search calculation is too

large to be handled by a normal computer, we adjusted the above-

mentioned 12 parameters one by one to maximize the value of AUC

based on 10-fold cross validation. The tuned optimal parameters are

then used as the input parameters for tuning the next parameter,

until all 12 parameters have been adjusted. Second, parameter tun-

ing based on GA (Hooker, 1995; Scrucca, 2013) is taken using the

Algorithm 1 A GA-based two-step parameter optimization

Step 1: One by one parameter tuning for 12 parameters

Input: parameters: 12 parameter intervals, M: max AUC

for parameter in parameters do

for i¼1 to len(parameter) do

AUC lightgbm.tune(parameter[i])

if M ' AUC then

M AUC

lightgbm.parameter parameter[i]

Output: 12 preliminarily adjusted parameters

Step 2: GA-based parameter tuning

Input: 12 preliminarily adjusted parameters

fitness: lightgbm.tune()

max a* preliminary adjusted parameters

min b * preliminary adjusted parameters

finally adjusted parameters GA(fitness, max , min,. . .)

Output: 12 finally adjusted, optimal parameters
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output from step 1 as preliminary parameters. GA is a randomized

search method inspired by the principles of evolution in living sys-

tems. After all 12 parameters are initially adjusted, one by one, GA

is applied to further fine tune them and obtain all 12 final parameter

values. In this process, the value of the AUC, based on 10-fold cross

validation of the LightGBM model, is defined as the fitness value,

and the upper or lower boundary values (a¼1.8 and b¼0.2) of the

12 parameters are set to the by 80 percent increased or decreased

values of those obtained in step1, respectively. The GA method was

implemented using the GA package (Scrucca, 2013) in the R

language.

2.3.3 Solving imbalanced problem

In the field of computational biology, there are often more negative

samples than positive samples in collected datasets. The imbalance

between the positive and negative samples can lead to overfitting of

a model that favors the prediction of the sample class that has the

larger proportion: namely, the prediction can be biased towards the

category with more samples. This situation applies to our training

dataset, where the number of T3SEs is much smaller than that of

non-T3SEs. To solve this problem, LightGBM provides a means to

assign a particular weight for each sample (Fig. 1C). Considering it

is impossible to optimize a weight for every individual sample,

we assign a weight for the samples with the label (positive or nega-

tive in our work) and then tune weights for both positive and

negative samples. In this study, specifically, labels of the positive

and negative samples were set to 1 and 0, respectively. The weight

of each sample is defined as follows:

weight ðiÞ ¼ ðlabelðiÞ $ w þ 1Þ=
XN

j¼1

ðlabel ðjÞ $ w þ 1Þ (16)

where label (i) denotes the ith instance label, weight (i) denotes the

ith instance weight and N is the total number of instances (including

positive and negative samples). Since the proportion of the negative

and positive samples is about 3 (in the range of 1–10), we set w 2
{1; 2; 3; . . . ; 9; 10} to calculate ten different positive and nega-

tive sample weights. Accordingly, the weight parameter was opti-

mized among the above ten different weights in this work.

2.4 Integrative model construction
Compared with the models trained simply with a combined set of

features, the ensemble learning strategy can, in principle, significant-

ly improve the model performance (Chen et al., 2017b; Chen and

Jeong, 2009; Wan et al., 2017; Wang et al., 2017a, 2018; Zhang

et al., 2018; Zou et al., 2015). In this work, a LightGBM-based clas-

sifier is trained with each feature encoding method, and for each fea-

ture group (i.e. group 1, group 2 or group 3) the prediction scores of

their classifiers were evenly averaged to obtain a one-layer ensemble

model to represent each feature group’s predictive contribution. The

prediction scores of these one-layer ensemble models are then inte-

grated as a final two-layer ensemble model (Fig. 1B) using different

weights (group 1: group 2: group 3¼1: 1: 2), considering that

PSSM-based features (group 3) possess a dominant position in T3SE

prediction (data shown in Section 3.1.2).

2.5 Performance evaluation
To analyze the contribution of different feature groups and to meas-

ure the performance of the ensemble models as compared with exist-

ing state-of-the-art methods, five metrics using Chou’s intuitive

representation (Lin et al., 2014; Song et al., 2018b) are applied

based on cross-validation and independent test as defined by:

SN ¼ 1 & Nþ&
Nþ

0 ' SN ' 1 (17)

SP ¼ 1 &
N&þ
N&

0 ' SP ' 1 (18)

ACC ¼ 1 &
Nþ& þ N&þ
Nþ þ N&

0 ' ACC ' 1 (19)

F & value ¼ 2 $ Nþ & Nþ&
2Nþ & Nþ& þ N&þ

0 ' F & value ' 1 (20)

MCC ¼
1 & Nþ&

Nþ þ
N&þ
N&

! "

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ N&þ & Nþ&

Nþ

! "
1 þ Nþ& & N&þ

N&

! "r & 1' MCC' 1 (21)

where Nþ and N& represent the total numbers of positive and nega-

tive samples, respectively. Nþ& denotes the number of positive sam-

ples incorrectly predicted to be negatives, while N&þ denotes the

number of the negative samples incorrectly predicted to be positives.

Moreover, the Receiver Operating Characteristic (ROC) curves are

used to visualize the performance results between different methods

with a calculated area under ROC curve (AUC).

3 Experimental results

3.1 Performance evaluation based on 100-time 5-fold
cross-validation test
All experiments in this section were conducted using the benchmark

training dataset by performing 100-time 5-fold cross-validation test.

The prediction models were trained and tuned using the two-step

parameter optimization if not explicitly specified.

3.1.1 The effect of parameter optimization

To examine how our proposed two-step parameter optimization

improved the trained LightGBM models, we compared the perform-

ance of the models tuned by this two-step parameter optimization

with those tuned by the first-step-only parameter optimization

and those trained with the initial parameter setting. As shown in

Fig. 2. The effect and performance comparison of two-step parameter opti-

mization of different feature encoding methods, compared with one-step par-

ameter optimization and initial parameter settings. The red star indicates the

best performance amongst the three different parameter settings for each

feature encoding method
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Figure 2 and Supplementary Table S5, the first-step-only parameter

optimization could significantly improve the model performance,

compared with models trained using the initial parameters. This ob-

vious performance improvement benefited from the efficiency of the

step-wise parameter tuning, which makes it possible to preliminarily

tune parameters in the prohibitively large search space. Based on the

output of the first-step-only parameter optimization, the GA-based

parameter tuning strategy could further improve the model perform-

ance by fine tuning within a relatively small parameter search range.

Taken together, such new two-step parameter optimization strategy

enables the LightGBM models trained with different feature encod-

ing methods to achieve the best performance at a reasonable cost of

the training time.

3.1.2 Performance evaluation between different feature encoding

method

In this section, we further evaluated the performance of models

trained using different feature encoding methods. We conducted a

100-time randomized 5-fold cross-validation test for each feature

encoding method and compared corresponding predictive perform-

ances. More specifically, for each feature set, we first reduced their

dimensions to two using the t-SNE algorithm (van der Maaten and

Hinton, 2008), such that they could be projected and visualized in

2D. As shown in Figure 3A, the red and grey spots represent T3SE

and non-T3SE samples, respectively, while spots with a black edge

indicate samples that had been incorrectly predicted. The differences

of T3SE and non-T3SE samples in the higher-dimensional space can

be represented by their mutual distances in the 2D space. While

there is an apparent inhomogeneity in the distribution of T3SE and

non-T3SE samples in the 2D projections for all feature encodings,

classifications associated with PSSM-based features appear more

clustered than those for other features. Moreover, we observe that a

decreased number of samples were marked with black edges when

predicted using models trained on PSSM-based feature sets, which

suggests that PSSM-based feature encoding methods could indeed

extract more informative characteristics and patterns for T3SE

classification.

We further examined the performance metrics on the cross-

validation tests and, as shown in Figure 3B and Table 1, the PSSM-

based feature encoding methods (e.g. PSSM-composition, RPM-

PSSM, D-FPSSM, TPC and DP-PSSM) achieved the top-level per-

formance with ACC of larger than 0.927, F -value of larger than

0.857 and MCC of larger than 0.809, respectively. All of these were

respectively larger than those of sequence-based and physicochemi-

cal property-based feature encoding methods. Among these PSSM-

based feature groups, the model trained using the DP-PSSM features

achieved the overall best performance with an ACC of 0.945,

F -value of 0.894 and MCC of 0.858, followed by the model trained

using the PSSM-composition features, which achieved a slightly

worse performance but had the highest SN value of 0.93 (Table 1).

These results clearly demonstrate the dominating predictive power

of PSSM-based features for predicting T3SEs, and are consistent

with previous observations that such PSSM-based features are critic-

al for predicting different types of effectors (An et al., 2018; Wang

et al., 2017a; Wang and Li, 2013; Zou et al., 2013). Nevertheless,

the best-performing type of PSSM-based features might differ from

each other depending on the specific type of effectors. Altogether,

these results indicate that different types of effectors may share cer-

tain common characteristics and evolutionary features, but still have

some subtle differences. In addition to the PSSM-based features,

models trained using other sequence-based features also achieved a

reasonable performance, among which the QSO model performed

the best due to its excellent ability to extract amino acid order infor-

mation from protein sequence (Table 1). In accordance with the

results reported in a previous work (Wang et al., 2018), physico-

chemical property-based features contributed to the T3SE prediction

as another important and complementary feature type.

3.1.3 The effect of sequence segments based on N/C-terminus

To further examine whether the N-terminal or C-terminal sequence

features can be used as effective features for T3SE prediction, we

extracted three types of sequence-based features (i.e. AAC, DPC and

QSO) with varying lengths of N-terminal, C-terminal and full pro-

tein sequences. Using these extracted features, LightGBM models

were trained, tuned and validated based on 100-time 5-fold cross-

validation.

As shown in Supplementary Figure S3, we did not observe any re-

markable tendency showing that the model performance increased or

decreased in association with the changes in N-terminal or C-terminal

sequences. Generally, the models trained using N-terminal features

achieved a relatively better performance than those trained with C-

terminal features, which is within the expectation that the N-terminal

sequences provided more useful information for T3SE classification

than the C-terminal sequences. However, we found that the models

trained using the commonly used 30 or 100 N-terminal residues failed

to achieve a better performance compared to the models trained using

full-length sequences, suggesting that the first 30 or 100 N-terminal

residues alone could only provide partial information for the identifi-

cation of T3SEs (Supplementary Fig. S3). Full-length sequence-based

models consistently achieved the best performance compared to all

other N/C-terminal sequence-based models, suggesting that some fea-

tures for accurate effector prediction are contained at the full-length

protein sequence level, instead of residing within the N-terminal or C-

terminal regions. This observation will have important implications

for future development of next-generation computational methods

for identifying bacterial effectors.

3.1.4 Performance evaluation of PSSM-based features using differ-

ent databases

Just as PSSM profiles differ when generated using different uniref

databases, so might the different options of uniref databases have an

influence on the performance of the corresponding models trained

on such PSSM-based features. To examine this potential influence,

we first generated the PSSM profiles by searching different uniref

databases (i.e. uniref50, uniref90 and uniref100) with the same par-

ameter settings, and then extracted PSSM-based features based on

these PSSM profiles to train the models. By measuring the perform-

ance of these models using the same 100-time 5-fold cross-

validation procedure, we characterized the potential effect of the

generation of PSSM profiles by searching against different uniref

databases on the model performance. As a result, the influence of

different uniref databases on the performance of the PSSM-based

models was marginal (Supplementary Fig. S4). This observation was

consistent with a previous study on type VI secreted effector predic-

tion (Wang et al., 2018).

3.2 Performance validation using independent test
All single feature-based models assessed on the independent test

were trained based on the benchmark training dataset and tuned by

the proposed two-step parameter optimization. These models were

then integrated into the one-layer group-based ensemble models and

the final two-layer ensemble model (described in Section 2.4). The
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independent dataset was randomly and evenly divided into five sub-

sets. Based on these subsets, five-time independent tests were per-

formed and each time one subset was used to assess the predictive

performance. The final performance results were obtained by aver-

aging the outcomes of these five random independent tests.

3.2.1 The performance of group-based ensemble models

We first assessed and benchmarked the predictive performance of

different single feature-based models on the independent dataset,

and present the results in Supplementary Table S6 and

Supplementary Figures S5 and S6.

Fig. 3. Performance comparison of different types of feature encoding methods based on 100-time 5-fold cross-validation test. (A) Embedding of different types

of features using t-SNE (van der Maaten and Hinton, 2008). The red and grey dots represent T3SEs and non-T3SEs, respectively. A black-edge dot indicates that

this sample was incorrectly predicted during 100-time 5-fold cross-validation. (B) ROC curves and metrics for evaluating the performance of different types of fea-

ture encoding methods. The legends of the two panels were merged together with the same feature encoding method denoted by the same color in both panels.

The red star on top of the bar chart marks the best performance across different feature encoding methods for each metric

Table 1. Performance comparison of different LightGBM classifiers on the 100-time 5-fold cross-validation test

Encoding SN SP ACC F-value MCC

Group 1 AAC 0.791 6 0.011 0.914 6 0.005 0.882 6 0.004 0.772 6 0.008 0.694 6 0.011

DPC 0.741 6 0.013 0.914 6 0.005 0.870 6 0.005 0.742 6 0.010 0.656 6 0.013

QSO 0.779 6 0.011 0.926 6 0.004 0.888 6 0.004 0.779 6 0.009 0.705 6 0.012

Group 2 CTDC 0.839 6 0.009 0.833 6 0.006 0.835 6 0.005 0.719 6 0.007 0.619 6 0.010

CTDT 0.688 6 0.012 0.872 6 0.006 0.825 6 0.005 0.666 6 0.009 0.549 6 0.013

Group 3 PSSM-composition 0.930 6 0.006 0.949 6 0.003 0.944 6 0.003 0.893 6 0.005 0.857 6 0.006

RPM-PSSM 0.900 6 0.008 0.945 6 0.003 0.933 6 0.003 0.872 6 0.007 0.828 6 0.009

D-FPSSM 0.865 6 0.010 0.949 6 0.004 0.927 6 0.004 0.857 6 0.008 0.809 6 0.011

TPC 0.900 6 0.007 0.953 6 0.003 0.940 6 0.003 0.883 6 0.006 0.843 6 0.008

DP-PSSM 0.925 6 0.007 0.952 6 0.003 0.945 6 0.003 0.894 6 0.005 0.858 6 0.007

Note: Values were expressed as mean 6 standard deviation. To facilitate understanding, the best performance value for each metric across different encoding

methods is shown in bold font.
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Generally, there is a consistent observation (with results

obtained on 5-fold cross-validation test) that PSSM-based, se-

quence-based and physicochemical property-based models achieved

the best, second best and third best performance successively.

Additionally, similar to the results on the 5-fold cross-validation

test, the model trained with QSO features achieved the best per-

formance among all the sequence-based models, followed by the

model trained with AAC features, which highlights the benefit of

exploiting the amino acid order information for enhancing the T3SE

prediction. However, we noticed that the model trained with TPC

features, who were ranked the third on the 5-fold cross-validation

test, outperformed all single PSSM-based models with an ACC value

of 0.939, F -value of 0.939 and MCC value of 0.880. A similar ob-

servation also applies to the model trained with D-FPSSM features,

whose performance was the worst of all PSSM-based features in

5-fold cross-validation tests, but was ranked the third in the

independent test, only slightly inferior to the model trained with

PSSM-composition in terms of MCC value. This observation indi-

cates that, while PSSM-based features contributed the most to the

T3SE prediction which benefits from the informative evolutionary

profile, their performance and relative ranking varied depending on

the T3SE sets. This also reflects the necessity and importance to

explore different types of PSSM-based encodings and further inte-

grate them into a consolidated framework for improving the predic-

tion of T3SEs.

Next, we examined the performance of one-layer group-based

ensemble models and the final two-layer ensemble model, in

comparison with single feature-based models. As shown in

Supplementary Table S6 and Supplementary Figures S5 and S6, all

one-layer group-based ensemble models apparently improved the

performance when compared with their corresponding intra-group

models as the baseline. After integrating these one-layer ensemble

models, the final two-layer model further enhanced its performance

to a new level with a remarkable ACC value of 0.959, F -value of

0.958, MCC value of 0.917 and AUC value of 0.978.

3.2.2 Comparison with other existing state-of-the-art methods

To further validate the performance of the proposed two-layer en-

semble model (termed Bastion3), we compared its performance with

that of several existing state-of-the-art methods, including BEAN

2.0 (Dong et al., 2015), pEffect (Goldberg et al., 2016), EffectiveT3

(Arnold et al., 2009), T3_MM (Wang et al., 2013a), BPBAac (Wang

et al., 2011) and SIEVE (Samudrala et al., 2009) on the

independent test dataset. The performance results of these methods

are provided in Figure 4, Supplementary Table S7 and

Supplementary Figure S7. Note that the majority of the existing

toolkits predict samples with a true or false label without providing

a detailed probability score, which may result in slight differences

on the performance comparison. Therefore, to make a fair compari-

son, we first transformed the generated probability scores of

Bastion3 and SIEVE into the predictive labels (true or false), and

then uniformly generated the ROC curves for all the toolkits based

on their predictive labels.

As can be seen, Bastion3 comprehensively outperformed all

the compared methods by more than 5.6% in ACC value, 5.7%

in F -value, 12.4% in MCC value and 5.8% in AUC value. While

achieving a better SP value than Bastion3, SIEVE and BPBAac

yielded a much lower SN value, which indicates a tendency to gener-

ate more false negatives. In addition, we noticed that BEAN 2.0

and pEffect, which integrated a BLAST search procedure (similar

to the PSSM profile generation procedure used by Bastion3) in the

prediction process, achieved a comparatively better and more

stable performance than that of other existing methods. This indi-

cates that BLASTing a query sequence against a specified T3SE data-

set (in the case of BEAN 2.0 and pEffect) or the commonly used

uniref database (in the case of Bastion3), could provide useful infor-

mation, which can be further exploited for improved T3SE

prediction.

3.3 Case study
In this section, we performed a case study based on three recent ex-

perimentally validated T3SEs to validate the predictive capability of

our proposed Bastion3 model, as compared with other existing

methods. Phylogenetic analysis was performed using Clustal Omega

(Li et al., 2015), with the results visualized using iTOL (Letunic and

Bork, 2016) so as to show the relationships between the three study

proteins and all T3SEs in the training dataset and independent data-

set in terms of the sequence similarity (Supplementary Fig. S8).

In addition, the pair-wise sequence alignment between each of the

three proteins and its closest sequence homologue was generated

using T-Coffee (Notredame et al., 2000) and visualized using

Jalview (Clamp et al., 2004) (Supplementary Figs S9–S11).

We found that sequences from this study differ significantly in terms

of the similarity, compared with those that were included in the

training and independent test datasets. Besides, the conserved se-

quence motifs in the case study proteins were visualized through

searching the case study proteins against Pfam (Bateman et al.,

2002) by using the MOTIF Search service in GenomeNet (Kanehisa,

1997) (Supplementary Fig. S12). Detailed prediction results gener-

ated from different variant models of Bastion3 and other compared

methods are provided in Supplementary Tables S8 and S9.

The first case study protein is XopAV (Teper et al., 2016), an ex-

perimentally confirmed T3SE protein in Xanthomonas campestris.

As originally discovered by Teper et al., XopAV did not have

sequence homology to any previously known T3SEs obtained in

other bacterial species and its biological function remained to be

characterized. Only Bastion3 and BEAN 2.0 correctly identified

XopAV as a T3SE. Upon a closer look at the prediction results, we

found that all sequence-based models (group 1), physicochemical

property-based models (group 2) and their one-layer ensemble mod-

els failed to predict this protein. However, PSSM-based models

(except D-FPSSM) and their ensemble models could precisely recog-

nize XopAV as a T3SE. This again confirmed the effectiveness of

incorporating the PSSM-based features to capture the evolutionary

Fig. 4. Performance comparison between Bastion3 (using the final two-layer

ensemble model) and six other existing methods for T3SE prediction on the

independent test
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relationship of T3SEs’ and improve their prediction, even under the

circumstances where there only exists a low sequence similarity.

Next, we proceeded to investigate two more, recently validated

T3SE proteins: HaRxL23 from Hyaloperonospora arabidopsidis

(Deb et al., 2018) and YggG from Salmonella Typhimurium

(Li et al., 2018). Through convergent evolution, HaRxL23 is struc-

turally and functionally similar to the bacterial effector protein

AvrE, but at the sequence level they are unrelated (Deb et al., 2018).

Bastion3 readily predicted HaRxL23as a T3SE with a relatively

higher score of 0.820, while BEAN 2.0, EffectiveT3 and T3_MM

also successfully predicted this T3SE protein. As to YggG, although

its biological function is not entirely clear, this effector and its prote-

ase activity were demonstrated essential for the virulence of

Salmonella (Li et al., 2018). Bastion3 successfully recognized YggG

as a T3SE protein with a relatively high score of 0.815. As a com-

parison, amongst all other six existing tools, only EffectiveT3 cor-

rectly predicted YggG as a T3SE.

Taken together, Bastion3 outperformed all the currently avail-

able T3SE methods and achieved a more accurate and robust

predictive performance. Our analyses indicate that different feature-

based models contributed to the T3SE prediction, making it neces-

sary to make full use of such heterogeneous features extracted from

different perspectives. We also show that even in cases where single

feature-based models or their one-layer group-based models fail to

make the correct prediction, combining all these features in the final

ensemble model could make an important difference and helped cor-

rect errors, thus improving the performance of T3SE prediction.

3.4 Web server construction and usage
To maximize user convenience without going through complicated

algorithmic details, we have developed a user-friendly and easy-

to-use web server as an implementation of the proposed two-layer

ensemble model of Bastion3. The web server is deployed and hosted

by an extensible and well-maintained cloud computing server ma-

chine at Monash University, publicly accessible at http://bastion3.

erc.monash.edu/.

Using Bastion3’s user submission interface (Supplementary Fig.

S13A), users can directly fill the input form or upload a query se-

quence file in the raw or FASTA format, and submit their job tasks.

Once submitted, unique URL links will be returned, enabling the

users to check the processing status of their jobs. After jobs are

accomplished, users will be notified if they choose to provide an

email address along with their job submission. Users could check the

status and output of their finished jobs via the prediction results

page (Supplementary Fig. S13B), which provides the detailed predic-

tion result for each query protein sequence (including prediction

scores of single feature-based models and the final two-layer ensem-

ble model). The result will be marked as ‘predicted protein’ for a

computationally predicted protein, and as ‘experimentally validated

protein’ if the query protein is a known, experimentally validated

effector. In the latter case, a corresponding URL link of BastionHub

(a public database in development that integrates all the annotations

of currently known secreted effectors, coupled with the analysis and

prediction functionality) is available to provide detailed information

for this effector. Moreover, users can download all the prediction

results in multiple formats for local analysis and research purposes.

4 Discussion

In this work, we have presented Bastion3, a two-layer ensemble pre-

dictor developed for accurate identification of T3SE proteins. First,

we showed that full-length protein sequences contained more

useful information and patterns for T3SE prediction than their

N-terminus and/or C-terminus alone. Second, we exploited a wide

range of complementary and heterogeneous features, and trained

and assessed the model performance based on 100 randomization

runs of 5-fold cross-validation tests. Specifically, the evolutionary

information-based features, which have proved useful in a number

of previous prediction studies of protein attributes, significantly

improved the predictive performance and contributed the most to

the final ensemble model of Bastion3. Third, we leveraged a recently

proposed machine learning algorithm, LightGBM, to improve the

models for each feature type coming from imbalanced datasets.

Moreover, we also proposed a novel GA-based two-step parameter

optimization strategy to boost the performance of LightGBM mod-

els, with considerably reduced computational time (compared to

grid search parameter optimization) during the multiple parameter

tuning process. Finally, we integrated single feature-based

LightGBM models based on each main feature group into one-layer

ensemble models, and further integrated such one-layer ensemble

models to construct a final two-layer ensemble model. The extensive

benchmarking test and case study validations demonstrated that

Bastion3 represents a comprehensive, state-of-the-art predictor,

which has clearly outperformed all other existing methods for T3SE

prediction.

It is anticipated that our Bastion3 methodology and user-friendly

online web server, will expedite the discovery of putative T3SEs and

greatly facilitate the effort of a wider research community for func-

tional characterization and understanding of the roles of bacterial

effectors. In addition to effector prediction, we believe that the pro-

posed computational framework, including feature analysis, model

training and parameter optimization, and ensemble model construc-

tion strategy, can serve as useful guidance and inspire researchers to

develop novel computational methods in a broader context in the

field of bioinformatics and computational biology.
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CHAPTER 3: Integrative system for annotation, analysis and 

prediction of various types of secreted substrates in Gram-

negative bacteria 

Due to the important role of the bacterial secreted substrates in pathogen–host interaction, 

bacterial survival, pathogenesis and competition, significant computational and experimental 

efforts have been made into the identification of various types of substrates. This significantly 

promotes the discovery of new substrates and substantially leads to a considerable 

accumulation of known substrates. The numbers of known substrates largely vary between 

different species or even among different strains within the same organism, and they display 

different structural and biochemical properties and functions. Here, it is aimed to 

comprehensively collect and annotate various types of secreted substrates in Gram-negative 

bacteria, to provide analytical and predictive functional modules, and to interconnect them as 

an integrative platform to provide a one-stop service for interested users. 

This chapter presents the integrative platform for annotation, analysis and prediction of 

various types of secreted substrates in Gram-negative bacteria, which is developed in two 

steps. Section 3.1 describes the BastionX prediction system for systematic and accurate 

prediction of type I, II, III, IV and VI substrates in Gram-negative bacteria. As an integrative 

toolkit suite, BastionX consists of a user-friendly online server within the distributed 

framework and a command line based standalone toolkit to systematically predict various 

types of substrates from genome-scale data in Gram-negative bacteria in a high throughput 

manner. This guarantees that BastionX can be practically applied in genome-scale substrate 

annotation and thus builds up a landscape of substrate distributions within bacteria genomes. 

Section 3.2 describes the BastionHub, a universal platform for integrating and analyzing 

substrates secreted by Gram-negative bacteria. Through further integrating BastionX as a 

prediction option, BastionHub additionally annotates various types of substrates and provides 

a range of functional modules, including substrate analysis and their relationship analysis. By 

linking various functional modules together as an interactive system, BastionHub formulates 

and offers a series of pipelines to enable substrate investigation, prediction and relationship 

comparison or detection. 
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3.1 
BastionX: Systematic and accurate prediction of 
secreted substrates in Gram-negative bacteria within 
a distributed framework 

 
The supplementary information for this manuscript is listed in Appendix 4. 
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ABSTRACT 

Gram-negative bacteria have evolved an extraordinary array of secretion systems to export 

substrates into target cells or the surrounding environment. These substrates differ significantly in 

their structures and functions, and in the secretory pathways they use. Accordingly, it is particularly 

difficult to develop computational systems for accurate prediction of substrate type. Currently, 

several platforms are available to predict the secretory pathway of a given substrate, but they are 

severely limited in their practicality because they are restricted by their substrate range and/or are 

not amenable to large-scale sequence input. Considering these limitations, a universal platform has 

remained elusive until now. In this work, we present an integrative prediction system, BastionX, to 

comprehensively and accurately predict each type of secreted substrates in Gram-negative bacteria 

in high throughput. Remarkably, BastionX outperforms existing substrate predictors by three major 

upgrades: 1) BastionX incorporates the first predictor for type II secreted substrates, includes more 

accurate predictors for types I, III, IV, and VI, and achieves state-of-the-art performance for each 

single substrate predictor through an effective stacking strategy to intelligently combine multiple 

machine learning algorithms with a wide array of feature encoding methods; 2) In the output 

window, BastionX lists the most likely secretory pathway (if any) used by a given protein and 

includes additional prediction scores for each of the other pathways; 3) BastionX can be exploited 

in high throughput using an efficient and extensible distributed framework, thereby outperforming 

the existing single server-based predictors by up to 5.8 times. In combination with the provided 

additional standalone toolkit, BastionX can be conveniently executed locally to conduct sequence 

analysis and be readily integrated into user’s own pipeline to facilitate the downstream follow-up 

analysis. Taken together, BastionX can simultaneously annotate thousands of protein sequences 

with their potential substrate types, and therefore map a global landscape of how secreted substrates 

are distributed in bacterial genomes. The distributed web server and standalone toolkit of BastionX 

are publicly accessible at http://bastionx.erc.monash.edu/. 
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1. INTRODUCTION 

Gram-negative bacteria have evolved a remarkable variety of secretion systems, as their virulence 

“weapons”, to export substrates into the surrounding environment or target cells (1). There are six 

distinct types of substrates (types I-VI) according to their secretion systems, which vary from type I 

to type VI secretion systems (abbreviated as T1SS to T6SS, respectively) (2,3). Compared to 

substrates secreted by T1SS (4), T2SS (5), T3SS (6), T4SS (7) and T6SS (8), substrates secreted by 

type V secretion systems (9,10) are instead surface-localized proteins that typically remain 

associated with the bacterial outer membrane. In this context, our study covers all five types of 

secreted substrates, and therefore excludes the type V secretion system. 

Secreted substrates play a vital role in disease and survival; they are important for ensuring 

growth in particularly harsh environments (including host cells) and competitively killing other 

bacteria as both vie for the same nutrients. Type I and II substrates are usually hydrolytic enzymes 

that facilitate access to, and absorption of, nutrients from the environment. The majority of type III, 

IV and VI substrates however, directly imitate host-cell functions and are hence referred to as 

secreted "effectors". Recently, two experimentally validated type VI secreted substrates, Mn2+-

binding protein TseM (11) and iron uptake assisted protein TseF (12), were discovered, highlighting 

a new role for type VI substrates in nutrient acquisition. 

Using the type I, III, IV, or VI secretion system, substrates are translocated across the bacterial 

envelope by a one-step secretion mechanism (cytoplasm to extracellularly), while the secretion of 

type II substrates are conducted in a two-step process, first via the Sec or Tat translocons 

(cytoplasm to periplasm) then through the type II secretion system to be delivered extracellularly. 

Accordingly, experimental validation protocols of those substrates vary from one type to another, 

and even largely differ within the same secretion type, making experimental validation particularly 

difficult and time-consuming. Therefore, despite the difficulty, it is essential that there exists a 

computational toolkit that is capable of accurately and systematically predicting each type of 

secreted substrate in high throughput. 

A considerable number of computational approaches have been developed to predict different 

types of substrates (13-15). These include machine learning-based methods developed to predict 

type I (16), III (17-30), IV (31-36) and VI substrates (37,38). Some of these toolkits have then been 

included into other toolkits or integrative toolkits (17,39,40), their capability and practicability 

could be further expanded by comprehensively predicting various types of substrates within a 

uniformed toolbox. Towards this target, (41) have developed a toolkit to identify substrates across 

various secretion systems, but mixed all substrates together as a predictive target. As a result, they 
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could identify a general substrate without an annotation of their exact type, which largely reduces 

its practical usability. 

Technically, most methods make use of a single machine learning algorithm as a base to train 

predictive models, including support vector machine (SVM) (18,20-23,31,37,41,42), Naive Bayes 

(NB) (25), random forest (RF) (16,26), Markov Model (MM) (30), Convolutional Neural Network 

(CNN) (28,36), and Light Gradient Boosting Machine (LightGBM) (29). To further improve the 

accuracy of each predictor, some groups opted to use a combination of multiple machine learning 

algorithms. (27) adopted both ANN and SVM, while (17,19) combined a BLAST-based predictor 

and SVM-based classifier to predict type III substrates. (32,33,35) trained and integrated multiple 

machine learning algorithms together for more accurate identification of type IV substrates, while 

(38) employed multiple machine learning algorithms for predicting type VI substrates. 

As the number of feature-encoding methods and machine learning algorithms increases, many 

combinatory strategies have been applied to obtain more powerful and stable models. For example, 

regarding to type IV substrate prediction, (31,33,35,36) integrated various types of features and 

machine learning algorithms as the final ensemble model via the majority vote strategy. Similarly, 

(38) constructed the final model based on the majority vote strategy to predict type VI secreted 

substrates. (37) trained a SVM-based model with each of nine features, and integrated them by 

averaging their output scores within a group-based two-layer framework in type VI substrate 

prediction. (29) further integrated a set of LightGBM models to predict type III substrates within the 

same framework but assigned unequal weights for different groups depending on their predictive 

contributions. (32) characterized type IV substrates by a single feature, based on which eight 

preliminary models were trained and then integrated using a stacking strategy. This method can be 

further expanded as a solution to combine the increasing number of feature encoding methods with 

machine learning algorithms. 

In this work, we propose BastionX [Bacterial secreted substrate classifier for type X (X=I, II, III, 

IV and VI) secretion systems] as an integrative system to systematically predict each type of 

substrates secreted by Gram-negative bacteria. Aimed at bridging the gap between computational 

method and practical application, BastionX differentiates itself from previous toolkits by three 

noticeable advancements: Firstly, in addition to being the first type II substrate predictor, BastionX 

outperforms existing predictor methods for types I, III, IV, and VI substrate types by employing a 

stacking strategy to intelligently integrate a considerable number of features and machine learning 

algorithms. Secondly, BastionX seamlessly integrates each of these single substrate type predictors 

into a unified platform that lists the likelihood a given substrate is secreted through one of the five 

pathways and selects the most likely pathway for user convenience (Fig. 1A). Lastly, in order to 
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enable high throughput and genome-scale prediction, BastionX is designed within an extensible 

distributed framework. This enables BastionX to divide a prediction task into small slices of sub-

tasks and then executes them in parallel using multiple computing nodes. Accordingly, BastionX 

improves its prediction throughput by up to 5.8 times as compared to the single-server-based 

predictors. In addition, a standalone toolkit is provided to maximize user convenience in executing 

local substrate prediction or further pipeline integration for downstream analysis. Both the 

distributed predictor and its standalone toolkit are publicly accessible via 

http://bastionx.erc.monash.edu/. In summary, BastionX offers systematic, accurate and high 

throughput prediction of various substrate types in Gram-negative bacteria. It can be used for 

genome-scale substrate annotation and will no doubt be an important tool for determining how 

secreted substrates are distributed amongst Gram-negative bacteria. Besides, the pilot distributed 

architecture outlined is extremely extensible in subsequent high-throughput program development, 

and is expected to inspire and motivate next-generation toolkit development in the era of big data. 

2. MATERIAL AND METHODS 

The general framework of BastionX consists of three parts (Fig. 1): (1) construction of a single 

powerful predictor for each substrate type using multiple techniques and strategies (Fig. 1B), (2) 

construction of a unified predictive system by integrating a series of single substrate type predictors 

to provide all-in-one service to identify various types of substrates, and (3) design and 

implementation of a practical architecture to achieve high-throughput prediction towards bacterial 

genome-scale annotation. 

2.1 Single substrate predictor construction 

2.1.1 Dataset collection and curation 

For each type of secreted substrate, we conducted an exhaustive and thorough literature search to 

construct the benchmark dataset, followed by a redundancy reduction procedure using the CD-HIT 

program (43) at a sequence identity cut-off threshold of 0.7. Accordingly, we obtained 161, 79, 504, 

414 and 148 protein sequences for type I, II, III, IV and VI substrates, respectively. The curated 

data for each type of substrate was randomly split into the training dataset (80%) and independent 

dataset (20%) as positive samples (Table S1). For each substrate type, 1112 non-substrates used in 

previous work (29,31,35,37) were included as negative samples in the training dataset. Non-

substrates retrieved from the UniProt database were included as negative samples to construct the 

independent dataset with a ratio of 1:1 between positive and negative samples (Table S1). 



 
 

88 
 

 
Fig. 1. Overall scheme of BastionX from integrative system design to ensemble model 

construction to toolkit implementation. (A) The integrative framework of BastionX; (B) Detailed 

procedures for constructing the single substrate type predictor within BastionX based on a multiple-
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stage architecture; (C) Solving the data imbalance problem using multiple-time undersampling; (D) 

Illustration of the distributed framework of BastionX compared to traditional single-server-based 

modes. 

 

We further selected five different substrates as a case study to illustrate the superior predictive 

performance of BastionX, as compared with existing single type predictors. These substrates are 

associated with different secretion systems, but each of them contains characteristics that can be 

mistakenly recognized by more than one single type predictor. 

2.1.2 Feature representation 

As a key step to constructing powerful machine learning-based predictors, feature encoding 

methods aim to extract distinguishable features from sequences in the form of informative vectors. 

Considering that a single feature often characterizes samples from one point of view, previous work 

suggests extracting multiple features to represent different aspects of a given protein could 

significantly enhance the predictive performance (35,44-46). 

Accordingly, in this work, we consider extracting various patterns and features from known 

substrates by investigating a broad range of heterogeneous feature encoding methods. These 

features have been successfully applied to tackle different biomedical problems, and could be 

generally categorized into three major groups, including sequence-based features, physicochemical-

based features and evolutionary-based features. Among these, sequence-based features, including 

AAC, DPC, DP and DDE, explore patterns directly reflected by the amino acids in the protein 

sequence. Physicochemical-based features, including QSOrder, CTDC and PDT, further 

characterize the protein sequence by additionally taking into account the physicochemical 

properties of each of its amino acids. Evolutionary-based features, including RPSSM, TPC-PSSM, 

RPM-PSSM, DP-PSSM, Pse-PSSM, AAC-PSSM, AB-PSSM, EEDP and PSSM-composition, 

describe characteristics of sequences based on their associated evolutionary profile, often in the 

form of position-specific scoring matrix (PSSM). The detailed information of these adopted 

features, including their brief descriptions, parameter settings and dimensions is listed in Table S2. 

2.1.3 Machine learning algorithms 

Machine learning algorithms mine and infer patterns from data based on statistical learning for 

generalized predictive power. For this purpose, numerous machine learning algorithms have been 

designed and implemented from different points of view. As there is no one-size-fits-all algorithm 
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that fits all datasets, it is necessary to take a trial-and-error approach with each machine learning 

algorithm for each of our datasets, which vary greatly in terms of the features collected. 

To effectively learn patterns from various substrate datasets, we included six different machine 

learning algorithms: K-nearest neighbor (KNN) (47), Naïve Bayes (NB) (48), support vector 

machine (SVM) (49), random forest (RF) (50), eXtreme Gradient Boosting (XGBoost) (51), and 

Light Gradient Boosting Machine (LightGBM) (52). The detailed information of these machine 

learning algorithms, including brief descriptions, implementation, and parameter-tuning strategies, 

is listed in Table S3. 

2.1.4 Solving the data imbalance problem 

In our datasets, the number of known substrates is much smaller than that of non-substrates. This is 

a common situation in practice as experimentally-validated samples are often more difficult to 

obtain. This imbalance possibly leads to biased models that prefer to predict samples to the class in 

larger proportion. To solve this data imbalance problem, we applied a simple ensemble strategy in 

line with our previous work (37) (Fig. 1C). For each feature set, we randomly selected N (N=10 in 

this work) non-substrates using under-sampling, and combined each of them with known substrates, 

to obtain N balanced datasets. For each of these balanced datasets, we trained a model and then 

averaged their prediction outputs as an ensemble model (termed a single-method-based model). 

2.1.5 Ensemble model construction 

Using ensemble learning is a powerful technique for building more accurate and robust predictors 

(13,53-55). Previously, ensemble models for secreted substrate prediction have been constructed 

using the majority vote strategy (31,35), the weighted averaging strategy (29,37), or the stacking 

strategy (32), in order to better integrate multiple features (29,31,37), or machine learning 

algorithms (32,33), or both (35). 

Considering that there are a number of ways to combine a list of ten features with six machine 

learning algorithms, it is ineffective to simply integrate these generated models together, or set 

different weights for different models based on an a priori assumption. Therefore, for each type of 

substrate, we constructed an integrative predictor using the stacking strategy, which could be 

divided into two stages (Fig. 1B). At stage 1, for each feature, we trained 10 single-method-based 

models based on six individual machine learning algorithms. In total, 60 (10 × 6) single-method-

based models were obtained. At stage 2, the numeric outputs of the single-method-based models 

were first transformed into binary labels (with the value of 0 or 1) and then fed into an RF-based 

model as the inputs to generate the final ensemble model. In this way, the integrative predictor 
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could make full use of multiple features and machine learning algorithms, and therefore boost its 

final prediction performance. 

2.1.6 Performance assessment 

To comprehensively and rigorously assess the performance of our proposed method, multiple 

validation methods were used in this study, including 5-fold cross validation, independent test, and 

case study. Accordingly, five metrics were applied to measure the prediction performance during 

different validation tests, which are defined as follows: 
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where !"		, !"		, !"		, and !"		 represent the numbers of true positives, true negatives, false positives, and 

false negatives, respectively. Moreover, the Receiver Operating Characteristic (ROC) curves were 

used to visualize the prediction performance of the assessed methods with the area under ROC 

curve (AUC) calculated. 

2.2 Construction of the integrative prediction system  

To construct the integrative prediction system that could systematically predict each type of 

substrates, we first trained independent predictors for each type of substrates (Fig. 1A). These 

single type predictors were established using the same method based on their own positive datasets 

using the same negative dataset. Using the same background data, it is logical that an inquiry 

protein will be scored highest by its most associated substrate predictor. This could potentially 

avoid confusion and incorrect predictions in the case where substrates in different types share 

certain common features and therefore will be positively predicted by two or more single type 
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substrate predictors (Fig. S1). For example, both type III and IV substrates contain featured signals 

in their sequences, which results in similar residue distribution or evolutionary information between 

some substrates (56). This situation would unfortunately increase the false positive rate when only 

single secretion type predictors are used (31). Therefore, to reduce the number of false positives, 

when given an inquiry protein sequence, BastionX will list the scores generated by each single type 

substrate predictor, and then specify the most likely substrate type with the highest prediction score. 

2.3 Architecture design and implementation 

To best meet users’ demand, we designed and implemented a distributed web server and an 

additional standalone toolkit, in favor of users’ potential applications at different levels.  

2.3.1 The distributed web server 

As web servers execute prediction tasks on their own central computing facilities, the prediction 

throughput is largely confined by their hardware computing capability, which is typically reflected 

by a limited number of sequences allowed for each individual submission. To improve the 

prediction throughput, we designed and implemented a distributed web server (Fig. 1D) towards 

bacterial genome-scale prediction. In contrast to previous servers that simply handle a request 

within the central computing node, BastionX parallelizes this procedure based on a distributed 

computing cluster, which can be formulated into the four following steps: 

  Step 1. Task splitting 

  Upon receiving a prediction request, BastionX splits the requested task into a number of subtasks.  

  Step 2. Sub-task dispatching 

  These subtasks are put into a task dispatching system for future task distribution.  

  Step 3. Subtask execution in parallel 

  Available threads in computing nodes within the distributing cluster fetch the subtasks and then 

execute separately on their corresponding nodes. 

  Step 4. Task merging 

  Once all subtasks are completed, their respective prediction results will be merged together and 

appear in the output page.  

  During the whole process, a database is responsible for sharing the status of each subtask, while a 

distributed file storage system is employed and configured to share intermediate and resultant files 

for all subtasks. In this way, the distributed architecture is highly uncoupled and extensible, and 

therefore readily to be expanded through adding new computing nodes for further increasing 

demands. It is also noticeable that the whole distributed procedure runs in background at the server 
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end, and consequently, its current execution and possible future expansion are both transparent to 

users. 

2.3.2 Standalone toolkit 

Another way to improve prediction throughput is by providing a standalone toolkit. This 

encourages users to execute prediction tasks on their local computing facilities, and therefore 

reduces the burden on the BastionX server. In addition, the standalone toolkit could extend the 

BastionX with the wider application scope, as it allows further integration into users' own pipelines 

for automatic and streamlined downstream sequence analysis. 

To this end, we have developed a cross-platform standalone toolkit based on Python and R 

languages. After proper configuration in the local computer by following the user instructions 

(Python, R, and a number of their libraries are required and specified), users can use a simple 

command line to execute substrate prediction tasks across various operating systems, including 

Unix/Linux, Windows and Mac OS. 

3. RESULTS 

3.1 Performance evaluation based on cross-validation and independent tests 

In this section, 5-fold cross-validation and independent tests were conducted to rigorously assess 

and validate the performance of each single-method-based models and their ensemble models. 

3.1.1 Performance evaluation based on cross-validation and independent tests 

For each type of secreted substrates, we evaluated the performance of 60 single-method-based 

models trained using different combinations of features and machine learning algorithms. As shown 

in Fig. 2 and Table S4-S13, RF and SVM regularly achieved a better performance compared to 

other machine learning algorithms (i.e. KNN, NB, XGBoost and LightGBM) across the five types 

of secreted substrate data. This observation is consistent with general machine learning research 

(57) and our own previous computational biological research (35). On the other hand, two 

successful implementations of Gradient Boosting Decision Tree (GBDT) (58), XGBoost and 

LightGBM, achieved the third best performance on the type III substrate dataset, which has the 

largest number of known substrates, but both GBDT-derived models performed worse than KNN on 

the other four substrate types. This suggests that both XGBoost and LightGBM would perform 

better on large-scale datasets (29,59) as they were specifically designed for processing industrial-

scale massive data (51,52). NB-based classifiers performed the worst across all types of substrate 
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datasets, suggesting that they should only act as the complementary elements to construct the final 

ensemble models. 

The performance of models trained with evolutionary-based features was superior to that of the 

models trained with the two other groups of features, when evaluated on both cross-validation and 

independent tests across each type of secreted substrates. This demonstrates that the evolutionary-

based features play a dominant role in determining which secretion system a substrate will be 

targeted to (29,35,37). In particular, on the cross-validation test, the SVM-based models trained 

with DP-PSSM features achieved the over-all best performance with MCC of 0.923, 0.851, 0.801, 

and 0.814 across type I, III, IV, and VI secreted substrate datasets, respectively, while the SVM-

based model trained with Pse-PSSM features achieved the overall best performance with an AAC of 

0.907, an F-value of 0.906 and an MCC of 0.818 for predicting type II secreted substrates. Single-

method-based models trained with sequence-based features and physicochemical-based features 

achieved a relatively low performance in the cross-validation tests, but otherwise usually achieved 

equal or similar prediction performance as models trained with evolutionary-based features based 

on the independent test. This suggests that sequence-based features and physicochemical-based 

features could provide additional and complementary information for improving the performance of 

the final ensemble model (29,35,37,59,60). 

3.1.2 Performance evaluation of ensemble models based on the stacking strategy 

For each type of secreted substrates, we further compared the performance of 60 single method-

based models with that of their ensemble model using the stacking strategy on both 5-fold cross-

validation and independent tests. 

As shown in Fig. 2 and Tables S4-S15, it is obvious that in most cases the stacking-based 

ensemble models outperformed their respective single-method-based models. For example, for 

prediction of type IV secreted substrates, the ensemble model achieved a much better performance 

compared to its single-method-based models, with an ACC of 0.907, F-value of 0.903 and an MCC 

of 0.814, respectively on cross-validation test. Although the performance of a few single-method-

based models was better than that of the ensemble model based on 10-time 5-fold cross-validation, 

the performance of these single-method-based models was much worse than that of their ensemble 

models on the independent test (e.g. the SVM-based model trained with the Pse-PSSM feature for 

the prediction of type II secreted substrates). These observations strongly agree with previous 

studies, which show that the performance of single-method-based models can be further improved 

by an ensemble model using the stacking strategy (61-63). 
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We also compared the stacking strategy with another two commonly used ensemble strategies, 

i.e. the averaging strategy (59) and the majority voting strategy (35). The averaging strategy 

averaged the prediction scores of the single method-based models, while the majority voting 

strategy conducted a majority vote based on the prediction label of the single method-based models. 

As a result, the performance of ensemble models using the stacking strategy outperformed their 

counterparts across all the five types of secreted substrates on 10-time 5-fold cross validation test. 

All three types of ensemble models achieved a similar performance on the independent test, 

possibly due to the limited number of independent test samples. Taken together, the ensemble 

models built using the stacking strategy were more accurate and robust than the ensemble model 

using either the simple average or majority voting strategy. 

3.1.3 Effect of different single-method baseline models on the performance of the final 

ensemble model 

We further explored the contributions of different single method-based models to the performance 

of the final ensemble model. As the final ensemble model was trained based on RF, the feature 

importance was measured and ranked according to the values of the Mean Decrease in Gini within 

the RF model. For each type of secreted substrate, ten RF models were trained during the stacking 

process based on ten subsets (Refer to the methods section), and the ten resultant groups of values 

of the Mean Decrease in Gini were then averaged as the final score used to rank the models’ 

importance. For each type of secreted substrate, the importance of the top 30 models was listed and 

their proportions by each machine learning algorithms are shown in Fig. 2. As can be seen from 

Tables S16-S20 and Fig. 2, the models trained with the evolutionary-based features were 

consistently first ranked regardless of which machine learning algorithm was used. Specifically, the 

SVM-based model trained with the DP-PSSM feature had the best performance with an importance 

value of 31.124, when constructing the final ensemble model for the prediction of type III secreted 

substrates. In contrast to the contribution of features toward accuracy, we noticed that the SVM- 

and RF-based machine learning models always accounted for around half of the proportions within 

the top 30 models across each type of secreted substrate. These results suggest that the performance 

of single-method-based models positively affects the contribution that they make in the final 

ensemble model. 

3.2 Comparison with other existing state-of-the-art methods on the independent test 

To further validate the performance of the BastionX (using the final ensemble model), we compared 

its performance with that of several existing state-of-the-art predictors across different types of  
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Fig. 2. Performance comparison and analysis of models trained using different methods. (A) 

The bar charts (left panel) compare the performance between different single method-based models 

and their ensemble modes in terms of the MCC value on both 10-time 5-fold cross-validation test 

and independent test. (B) The combination of the bar and pie charts (right panel) shows the 

contribution of different single method-based models to the performance of the final ensemble 

model based on the stacking strategy. Panels I, II, III, IV and VI represents the cases for type I, II, 

III, IV and VI secreted substrates, respectively. 
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Fig. 3. Performance comparison between BastionX and the existing state-of-the-art toolkits. 

(A) Performance for predicting singe types of secreted substrates on the independent test. (B) 

Prediction results of the five different substrates in the case study. 

 

secreted substrates by performing the independent test. The currently available toolkits include 

Bastion3 (29) and DeepT3 (28) for predicting type III secreted substrates, Bastion4 (35), PredT4SE-

Stack (32) and CNN-T4SE (36) for predicting type IV secreted substrates, and Bastion6 (37) for 

predicting type VI secreted substrates. As can be seen from Fig. 3 and Table S21, BastionX 

achieved an overall best performance than the existing state-of-the-art toolkits when predicting type 
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III and VI secreted substrates, respectively. It achieved the second-best performance in type IV 

substrate prediction, slightly inferior to the CNN-T4SE predictor. It is also noticeable that, for the 

prediction of type VI secreted substrates, BastionX achieved correct predictions on the independent 

tests. This situation may be due to the limited number of independent datasets, and the performance 

could be further benchmarked when more data become available in the future. Based on current 

data and experimental results, BastionX represents the most powerful predictor that provides the 

accurate and stable performance for predicting different types of secreted substrates. 

To further illustrate the superior performance and effectiveness of BastionX as an integrative 

predictive system, five representative secreted substrates were selected as case studies (Table. S22).  

As a result, the single type predictors incorrectly predicted other types of secreted substrates to be 

positive as they may have similar characteristics to its own secreted substrates (Fig. 3). In contrast, 

the BastionX predictor accurately specified the secreted substrate pathway by selecting the highest 

predictive score (Fig. 3). More than one single type predictors within the BastionX predictor may 

predict a sample as their positive samples; however, the decision based on the highest predictive 

score enables the BastionX to make the final correct prediction (Table S23). 

3.3 The usage and computational performance of the distributed web server 

The BastionX distributed web server is currently equipped with 10 sub-nodes and deployed on 

Monash University cloud servers, which is freely accessible at http://bastionx.erc.monash.edu/. 

Users can submit their prediction tasks and have their jobs run in parallel among those sub-nodes. 

They are able to check their job status and also browse the prediction results via a unique URL link. 

If the submitted protein is already an experimentally validated secreted substrate, the results will be 

marked as “experimentally validated”, otherwise annotated with a “predicted” label. In the former 

case, the detailed information about this known secreted substrate will be provided via 

corresponding URL link of BastionHub (http://bastionhub.erc.monash.edu/). Finally, BastionX 

provide prediction results downloadable in multiple formats to facilitate users to perform their 

follow-up analysis locally. 

To demonstrate the computational efficiency of this distributed web server, we benchmarked it with 

a single-node-based server using a genome-scale sequence dataset of Escherichia coli IAI39. 

Benchmarking experiments were repeated using different subsets, each of which was randomly 

selected from the overall dataset, starting with 500 sequences, and in increments of 500. As can be 

seen from Fig. S2, the time taken by BastionX was approximately 1.8-fold to 5.8-fold shorter than 

that of the single node-based server across different experiments. The possible reasons for the 

variations of the performance gap are expected because: (1) the randomly selected subsets have a 
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variable sequence distribution that will affect the parallelization effect of the BastionX, and (2) even 

though the sub-nodes were equipped with the same hardware and software configuration, their 

computing abilities are influenced by other nodes within the same cluster environment. The 

performance gap became larger when the size of datasets increased, highlighting the strength of the 

distributed framework in the context of large genome-scale data. 

4. DISCUSSION 

In this work, we have developed BastionX, an integrative bioinformatics suite that is capable of 

accurately mapping the complete repertoire of substrates secreted by Gram-negative bacteria from 

sequences information. We employed a stacking-based ensemble strategy to intelligently combine a 

wide range of feature-encoding methods with multiple machine learning algorithms. Extensive 

benchmarking experiments demonstrate that this has achieved more robust and accurate prediction 

performance. Through a distributed architecture-based web server and the additional standalone 

toolkit, BastionX provides a publicly accessible high-throughput prediction service by up to a 5.8-

fold improvement, and can also be further integrated into a user's own pipeline for downstream 

analysis and meet the user’s specific need. With all of these characteristics, BastionX offers 

practicality with the ability to perform high-throughput screening of thousands of protein sequences 

and identify their possible substrate types, and will undoubtedly be used as an important first-step 

during genome-scale annotations. 

In the future, newly experimentally-validated substrates with novel characteristics will require 

additional informative feature encoding methods to mine their intrinsic characteristics. These 

features accordingly call for interpretation and recognition by new and more attractive machine 

learning algorithms. The extensible ensemble framework of BastionX makes it particularly suitable 

to be extended by incorporating additional features together with machine learning algorithms. 

Specifically, if the substrate datasets expand rapidly to a large enough scale, deep learning 

techniques may be required to directly learn the underlying patterns and key characteristics from the 

sequence data without manual feature engineering. In this way, it is promising to take advantages of 

the strengths and merits of both classical machine learning and deep learning techniques, and 

achieve more accurate and robust substrate prediction. 
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Abstract 

Gram-negative bacteria utilize secretion systems to export substrates, so-called effectors, into 

their environment and sometimes directly inject these substrates into neighboring target cells. 

These substrates play pivotal roles in interactions between pathogens and their hosts, 

competitors, and with the external environment. Resulting from a rapid development of 

computational and experimental techniques in the field, a growing number of substrates have 

been discovered. To date, several online knowledgebases have been developed to present 

substrates with a focus on experimentally validated attributes and functions, as to maximize 

users’ convenience in exploring known substrates. However, these resources usually focus on 

one (or a few) types of substrates and present limited options for users to analyze known and 

potential substrates. In response, we developed a universal platform, BastionHub, which 

integrates various types of substrates with detailed annotations from five different secretion 

systems (types I-IV and VI). To the best of our knowledge, BastionHub is the most 

comprehensive knowledgebase available, and it is the first to cover type I and type II secreted 

substrates while simultaneously providing updated information and increased numbers of 

other types of substrates. Moreover, BastionHub provides and extends basic functions, and 

integrates new tools to facilitate sequence analysis of both known and potential substrates: (i) 

the prediction module, including machine learning based prediction and hidden Markov 

model (HMM) based prediction; (ii) a relationship analysis, including BLAST-based 

similarity analysis and multiple alignment based phylogenetic analysis. By systematically 

integrating these modules as both a universal and interconnected platform, BastionHub 

facilitates analysis of known substrates and allows prediction of potential substrates and 

identification of their relationships in terms of sequence and phylogenetic similarity. 

BastionHub is freely available at http://bastionhub.erc.monash.edu/. 
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1. Introduction 

Secretion systems are one of the key virulence “weapons” of bacteria, used to release 

numerous substrates into eukaryotic host cells or into neighboring bacterial cells to disrupt 

their cell biology (1). Following experimental discovery (2), these substrates have been 

classified into six distinct types according to their secretion systems (from type I to type VI, 

abbreviated as T1SS to T6SS). Among them, substrates secreted by T1SS (3), T2SS (4), 

T3SS (5), T4SS (6) and T6SS (7) are often named as type I, II, III, IV and VI secreted 

effectors (abbreviated as T1SE, T2SE, T3SE, T4SE and T6SE), respectively. A further group, 

the substrates secreted by the Type V secretion system (T5SS) (8,9) are a highly diverse set 

of sub-systems (T5SSa-T5SSf) with diverse functions, many of which are not released from 

the bacterial cell surface (10). 

      Proteins secreted by T1SS-T6SS are referred to generally as “substrates”. A sub-set of 

these substrates are referred to as “effectors” but, specifically, this term is used for those 

substrates where the function is known to be a direct imitator of a host-cell functionality; 

effects thereby manipulate host-cell biology by mimicking a host-cell function. Hereafter, we 

used the general term substrate in this work, but still kept the term effector in the description 

of previous work. The substrates secreted by the T1SS and T2SS are usually enzymes, often 

hydrolases, and usually facilitate access and uptake of nutrients from the environment. The 

majority of studied substrates secreted by the T3SS, T4SS and T6SS have proved to be 

effectors (T3SE, T4SE and T6SE). Considering that secreted substrates vary in sequence, 

structure, secretion mechanism and function, it has been challenging to establish a universal 

platform that integrates various types of effectors with detailed attribute information, and to 

further provide analytic functions to assist users in systematic analysis and comparison of 

effectors by taking their functions, secreted types and bacterial species into consideration. 

      Considerable computational efforts have been put into collecting the various types of 

secreted effectors, and providing necessary functions supporting known effector analysis 

(Table 1) (11). Among them, T3SEdb (12), T3DB (13) and BEAN2.0 (14) collect and 

annotate T3SE proteins, but differ in the numbers of T3SEs and functions provided by each. 

Examples of other web-based resources are SecReT4 (15) and SecReT6 (16), which present 

T4SEs and T6SEs, respectively. SecretEPDB (17) further integrates previous known datasets 

and manually collects additional effectors to build a more universal resource for three types 

of effectors (T3SEs, T4SEs and T6SEs). EffectiveDB (18,19) is a database that provides a 

very large number of predicted T3SEs, T4SEs and T6SEs across multiple bacterial species, 
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picking up experimentally validated effectors but without means for browsing them or 

investigating their detailed information. Beyond providing data annotation and basic 

functions to investigate known secreted substrates, these toolkits offer various advanced 

functions to facilitate prediction of potential effectors. Specifically, to provide T3SE 

prediction, T3SEdb employs a selectable NaiveBayes or BayesNet model, T3DB integrates 

BPBAac (20), T3SEpre and a Markov model, and BEAN 2.0 integrates an updated model 

based on BEAN (21). Lastly, EffectiveDB integrates EffectiveT3 (22) and T4SEpre (23), and 

includes the algorithms EffectiveCCBD and EffectiveELD for T3SE or T4SE prediction. 

      Here, we present BastionHub, a universal platform to integrate and analyze various types 

of substrates secreted by Gram-negative bacteria. By manually mining current literature and 

curated data, we collected sequence information for those proteins that have been 

experimentally validated as secreted by T1SS and T2SS from a range of bacterial species. To 

the best of our knowledge this is the first time T1SS and T2SS substrate proteins are 

incorporated in a database. Further, by integrating current known datasets followed by 

manual checks, to remove incorrectly classified substrates, we obtained preliminary datasets 

for type III, IV and VI substrates. The latter were further supplemented with previously 

ignored substrates and recent experimentally validated substrates, through exhaustive 

literature screens. In total, BastionHub integrates five types of secreted substrate proteins, 

providing detailed sequence information, functional and structural annotations. To facilitate 

users’ exploration and analysis of known substrate proteins, we incorporated basic functions 

including various data searches, download, and multiple visualizations. We then updated, 

integrated our developed machine learning based predictor BastionX and further developed 

hidden Markov model (HMM) based predictors to comprehensively predict all five types of 

substrates as a preliminary screening in a high-throughput manner. Finally, we integrated 

BLAST-based sequence similarity analysis and multiple alignment based phylogenetic 

analysis, allowing users to easily locate a potential homologs and functional analogs from 

comparisons to known and other substrates. By comprehensively integrating various types of 

secreted proteins alongside different functions, and providing interactive services as a 

pipeline across different functional modules, BastionHub aims to provide all-in-one service 

for users to analyze known substrates, predict potential effectors, and easily recognize their 

relationships. 
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Table 1.  Comparison between BastionHub and previous web resources of various secreted proteins in Gram-negative bacteria. 

Resource 
Dataseta Function 

URL Reference 
T1SE T2SE T3SE T4SE T6SE Browse Basic 

Search Statistics Prediction Other functions 

T3SEdb - - 504 - - Ö Ö Ö Ö d BLAST based search http://effectors.bic.nus.e
du.sg/ (12) 

T3DB - - 325 - - Ö Ö × Öd - https://biocomputer.bio.
cuhk.edu.hk/T3DB/ (13) 

BEAN 2.0 - - 1215 - - -b -b × Öd 
Subcellular location prediction 

Pfam domain scan 
Protein disorder prediction 

http://systbio.cau.edu.cn
/bean/ (14) 

SecReT4 - - - 239 - Ö Ö × × T4SS location  
T4SS component/effector search 

http://db-
mml.sjtu.edu.cn/SecRe

T4/ 
(15) 

SecReT6 - - - - 92 Ö Ö × × 
T6SS gene cluster detection and comparison 

Effector/Immunity/Component protein searches 
Bacterial genome rapid annotation 

http://db-
mml.sjtu.edu.cn/SecRe

T6/ 
(16) 

EffectiveD
B - - -c -c -c -c -c -c Öd Subcellular location prediction http://effectors.org/ (18,19) 

SecretEPD
B - - 1230 731 259 Ö Ö Ö × - http://secretepdb.erc.mo

nash.edu/ (17) 

BastionHu
b 196 83 1236 731 195 Ö Ö Ö Öd BLAST based similarity analysis 

Phylogenetic analysis 
http://bastionhub.erc.mo

nash.edu/ this work 

Abbreviations: TxSE, type x secreted protein (x=1,2,3,4,6); TxSS, type x secretion system (x=1,2,3,4,6); 
Note: aOnly experimentally validated substrates were counted for each web resource; 
bThese functions were inaccessible at the time of undertaking this project; 
cEffectiveDB doesn’t have separate modules for experimentally validated effectors; 
dT3SEdb can predict T3SEs using a NaiveBayes or BayesNet model; T3DB integrates BPBAac (20), T3SEpre and a Markov model for T3SE prediction; BEAN 2.0 integrates an updated model 
of BEAN (21) for T3SE prediction; EffectiveDB integrates EffectiveT3 (22) and T4SEpre (23), and develops EffectiveCCBD and EffectiveELD for T3SE/T4SE prediction; BastionHub 
integrates BastionX and developed a set of HMM based models to predict various types of secreted proteins. 
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2. The BastionHub framework 

We wish to illustrate BastionHub’s functionality in the following three ways (Figure 1): (i) 

data representation, including substrate data collection, curation, and annotation; (ii) data 

analysis, including known substrate investigation, potential substrate prediction, and 

relationship analysis between known and potential substrates; (iii) data pipeline: interactions 

between functional modules showcase how BastionHub facilitates substrate analysis through 

automatic operations running in the background. 

 
Figure 1. General framework showing how data construction, data annotations and various functions are 

provided by BastionHub. 

2.1 Data representation 

2.1.1 Data collection and curation 

Development of universal web resources for type I and II secreted proteins had not been 

undertaken, largely due to the fact that there were no uniform names for these types of 

substrates, thus increasing difficulties in type I and II substrate retrieval. To fill this gap, we 

manually and thoroughly screened existing literature. These untargeted searches in a wide 

range resulted in more than 5000 non-repeating references retrieved. For each publication, we 

manually checked the abstract and main text, to obtain detailed information in aims to 

minimize potential mistakes of retrieving non-substrates, especially excluding any candidates 

without experimental validation. In total, 196 type I substrates across 63 species and 83 type 

II substrates across 13 species were obtained, after removing redundant entries. 
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      Considering that there have been some web resources for type III, IV or VI substrates 

(Table 1), the retrieval of these three types of substrates could be divided into two steps. In 

step 1, for each type of substrates, we merged all publicly accessible datasets into a 

preliminary dataset. Through a manual check of these datasets, we carefully removed evident 

erroneous entries (e.g. membrane protein and secretion chaperone protein) based on BLAST 

alignment results against the UniProt database, and added the PubMed reference for each 

correct entry for future tracking and identification. In step 2, we conducted an exhaustive 

literature search, similar to that for T1SS and T2SS substrate retrieval, to obtain the 

previously missed substrates and the recent experimentally validated ones. In total, 1236 type 

III substrates across 65 species, 731 type IV substrates across 16 species and 195 type VI 

substrates across 69 species were obtained, after removing redundant entries. 

 
Figure 2. Distribution (by secretion system types and bacterial species) of all 2441 substrate proteins 

covered in BastionHub. The doughnut chart illustrates the proportions of different types of substrates in 

BastionHub. Each subgraph shows the species distribution of one type of substances, among which the bar 

chart lists the numbers of secreted substrates per species and the pie chart present their percentages.  

      Altogether, we obtained 2441 substrates secreted by the five types of secretion systems 

across 168 species (Fig. 2). These were further annotated and organized in BastionHub, in a 

user-friendly manner, to facilitate users’ understanding of diverse substrates in Gram-

negative bacteria. 

2.1.2 Data annotation 
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Beyond keeping detailed information that previous databases (i.e. SecretEPDB) provide, such 

as substrates’ basic information, multiple alignment visualization or secondary structure and 

disordered region visualization, the following new features are present in BastionHub (Fig. 

3A): 

 
Figure 3. User interface of BastionHub. (A) The detailed information of substrates annotated in 

BastionHub. (B) The Browse web page. (C) The Download page. (D) The Timeline page and its update 

reminder popup at the main page. (E) The search page and its result page. (F) The statistics and 

visualization page. (G) The data submission page. (H) The input and output pages for the BastionX 

predictor. (I) The input and output pages for the HMM based predictor. (J) The input and output pages for 

the BLAST-based similarity analysis. (K) The input and output pages for the multiple alignment based 

phylogenetic analysis. 

      (1) For each substrate that was not retrieved in UniProt, BastionHub obtained an identical 

sequence in the same species by blasting it against UniProt, so that more information could 

be complemented for this secreted protein. 

      (2) For each substrate, the phylogenetic trees are provided using jsPhyloSVG (24) with 

this substrate highlighted, as to facilitate users locate it among its like and recognize its 

closest phylogenetic relationship. 
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      (3) Similarly, each substrate’s inter-species networks are provided using Cytoscape.js 

(25), with the substrate highlighted.  

      (4) For each substrate, the substrates with identical sequence content or high sequence 

similarity are provided, to inspire users to further investigate their attributes in a crosswise 

comparison. 

2.2 Data analysis 

2.2.1 Known substrate investigation 

BastionHub provides a couple of functions to facilitate users’ investigation of known 

substrates: 

      (1) Data browse. Substrates are organized according to their associated types to provide a 

landscape of various substrates. A "search and filter" function is available in the BROWSE 

page, which enables users to narrow down the scopes of their interested substrates (Fig. 3B). 

By clicking the BastionHub ID, users can look into the detailed information of a substrate and 

refer to the original literature in PubMed to track this substrate's discovery and functional 

validation. 

      (2) Data download. To facilitate users working with data in batch mode, whole datasets 

and related files can be downloaded, including the SQL format and FASTA format, multiple 

alignment files, phylogenetic tree structure files, and network structure files (Fig. 3C). All 

datasets are marked with download counts and last update time, and their update history is 

recorded in the TIMELINE module to help users identify their status (Fig. 3D). 

      (3) Data search. Search conditions are refined to allow accurate searches by BastionHub 

ID and UniProt ID, and fuzzy searches by protein name, mutation and species (Fig. 3E).  

      (4) Data visualization. We use ECharts (https://ecomfe.github.io/echarts-

doc/public/en/index.html/) to visualize data statistics according to secreted types and species 

(Fig. 3F). Phylogenetic inter-species relationships are visualized by jsPhyloSVG, while 

network architectures within inter-species are visualized by Cytoscape.js. 

      (5) Data update. Other than keeping track of new published literature, thoroughly 

checking and regularly updating the database, BastionHub allows users to contribute to the 

database update by means of crowdsourcing. Users may simply provide some clues that 

facilitate new substrate retrieval via the ‘quick submission’ module, or provide detailed 

information of a substrate, to speed up the substrate retrieval via the ‘formal submission’ 

module (Fig. 3G). 

      (6) Update reminder. Beyond simply recording the information for database entry 
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alteration, as implemented in SecretEPDB, the TIMELINE module in BastionHub records the 

update history of both downloadable datasets and functional modules. In this way, users can 

easily and thoroughly comprehend latest changes to the database, from various angles. The 

latest development announcement will be presented in the homepage of BastionHub in the 

form of a pop-up box, providing a link to the TIMELINE module for detailed information 

(Fig. 3D).  

2.2.2 Potential substrate prediction 

Inference or prediction of new substrates, based on experimentally validated substrates, is an 

essential but challenging task. Both experimental and computational scientists have proposed 

a variety of solutions to recognize new substrates resulting from different types of secretion 

systems, such as sequence similarity based analysis (26,27), conserved domain based search 

(28,29), and machine learning based predictions (11,30). Aiming to provide integrative 

platform with all-in-one service for potential substrate prediction, BastionHub integrates two 

developed predictive modules as follows (Fig. 4): 

      (1) Machine learning based prediction. BastionX is a newly developed machine learning 

based predictor within a distributed framework towards high-throughput prediction of various 

types of secreted substrates (Fig. 3H). Taking advantages of our previous singe type substrate 

predictors, i.e. Bastion3 (31), Bastion4 (32) and Bastion6 (33), BastionX further develops 

type I and II substrate predictors to comprehensively predict all types of substrates in Gram-

negative bacteria. With additional options on its prediction outputs (Fig. 3H), BastionX can 

easily and seamlessly interact with other functional modules in BastionHub, and significantly 

reduce users' manual inputs and operations (illustrated in detail in Section 2.3). 

      (2) HMM based prediction. Although machine learning based predictors have 

demonstrated their prediction power of various types of substrates, they usually limit the 

number of input sequences per submission, due to underlying complex calculations. 

Accordingly, we constructed a set of HMM based models using HMMER (34) to predict 

potential type I, II, III, IV and VI substrates for preliminary control screening (Fig. 3I). These 

HMM based predictors allow users to submit genome-scale sequences and operate in a high-

throughput manner. Generated results can be further processed by using machine learning 

based models, to increase accuracy of results (Fig. 3I). In this way, the tradeoff between 

prediction time and accuracy is balanced in BastionHub. 

2.2.3 Relationship analysis between potential and known substrates 
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Considering that substrates with similar sequences may have similar structures, and usually 

similar functions as well, analyzing the relationship between potential substrates and known 

substrates may assist inference of possible structures and functions of potential substrates, 

based on that of known substrates. However, based on the patterns and characteristics learned 

from known substrate datasets, machine learning and HMM based models can only recognize  

 

Figure 4.  Illustration of BastionHub functional modules and their interactions. Solid lines indicate 

procedures in each functional model operating as an independent toolkit, while dotted lines highlight 

interactions between different functional modules. 

potential substrates without specifying their closest relationship among known substrates. We 

therefore developed two relationship analysis modules (Fig. 4), to select a potential 

substrate’s closest analogues out of known substrates. Those analogues and their detailed 

information, presented in BastionHub, are intended to inspire users to infer possible structural 

and functional attributes of a potential substrate, and guide design of experimental validation 

protocols. 

      (1) BLAST-based similarity analysis. For a potential substrate (also referred to as an 

inquiry protein), BastionHub can search this protein sequence against a user-selected specific 

dataset (i.e. type I, II, III, IV or VI substrates or their combinations) using BLAST (35) (Fig. 
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3J). In this way, one can check if a potential substrate is homologous to any known 

substrates. All hits, namely resulting known substrates, will be listed (Fig. 3J). These will be 

sorted by similarity significance, and their BastionHub ID will also be provided, allowing 

users to further investigate detailed information such as structures and functions. 

      (2) Multiple alignment based phylogenetic analysis. For a potential substrate, 

BastionHub first utilizes Maffet to search this protein against user-selected dataset (i.e. type I, 

II, III, IV or VI substrates or their combination). This allows generation of multiple alignment 

results, based on phylogenetic tree structure inferences by FastTree (36). Finally, the 

phylogenetic relationship between a potential substrate and the selected known substrates is 

obtained in form of a phylogenetic tree by using jsPhyloSVG (Fig. 3K). Within the presented 

phylogenetic tree, the potential substrate is highlighted, and links to the known substrates 

(identified by BastionHub ID) are provided to facilitate tracking their corresponding detailed 

information (Fig. 3K). 

2.3 Data pipeline 

All functional modules in BastionHub are designed and implemented as independent 

services; consequently, each can serve users as a standalone toolkit. With that said, there are 

natural interactions between different modules that are worth highlighting (Fig. 4): (i) 

potential substrates predicted by HMM based models may be fed into machine learning based 

models for more accurate outcomes; (ii) properties of predicted substrates from both HMM 

based models and machine learning based models may be fed into relationship analysis 

modules to observe their relationships with known substrates. To facilitate users’ mining of 

potential and known substrates, BastionHub includes convenient interactive services between 

various modules. 

      (1) BastionHub provides functions allowing users to feed some or all of the identified 

potential substrates (predicted by HMM based models, in the prediction results page) as 

inputs to BastionX (Figs. 3I and 4). Without individually selecting these predicted potential 

substrates out of the prediction result generated by HMM based models, often followed by a 

manual copy-and-paste operation to fill them into BastionX, these potential substrates could 

be automatically gathered by BastionHub and then filled into the input filed of BastionX 

predictors for subsequent machine learning based prediction (Fig. 3H). 

      (2) When predicting potential substrates (using HMM-based models or the BastionX 

predictor), BastionHub first searches them against the known substrates. Whenever sequences 

are identified as known substrates, these are marked as “Exp.” in the prediction results, with 



 
 

118 
 

links to the corresponding detailed information for users' reference (Fig. 3H-I). For potential 

substrates (marked as “Pred.”) predicted by either HMM based models or the BastionX 

predictor, BastionHub provides links on the prediction result page, allowing downstream 

relationship analysis between selected potential substrates and known substrates (Figs. 3H-K 

and 4). With all selected potential substrates automatically fed to the input field, users may 

select a known substrate dataset to launch the relationship analysis. 

      Altogether, BastionHub provides a user-friendly, intuitive, interconnected platform 

allowing analysis of known bacterial substrates (types I-IV, VI), prediction of potential 

substrates, and identification of relationships, to fit users’ specific demands. 

3. Conclusion 

In this work, we present BastionHub, a universal platform developed with the intention to 

integrate and analyze various types of substrates secreted by Gram-negative bacteria. By 

comprehensively integrating various types of substrates, providing a range of functional 

modules, and interconnecting them, BastionHub provides users with an all-in-one service to 

facilitate known substrate investigation, potential substrate prediction, and relationship 

analyses between known substrates and potential substrates. 
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CHAPTER 4: Computational toolkits to facilitate development of 

machine learning based predictors 

As a fundamental step in the construction of high-quality machine learning-based predictors, 

feature extraction is key to ensure the effectiveness of their applications in bioinformatics and 

biomedicine. Towards streamlined automatic feature extraction, feature generating toolkits 

are desired to accelerate the development and elevate the predictive performance of machine 

learning models by sparing users from complex and arcane mathematical formula and 

expertised programming implementations.  

To this end, this chapter presents two feature generating toolkits that have been developed to 

expedite machine learning based modelling and analysis. Section 4.1 describes the first 

specialized bioinformatics toolkit suite POSSUM for generating numerical features based on 

PSSM profiles from protein sequences. Both its online webserver and local standalone 

software enable users to generate more than 20 types of PSSM profile-based features, which 

substantially addresses a crucial need for bioinformaticians and computational biologists. 

Section 4.2 describes a universal feature generating toolkit, DIFFUSER, for generating a 

great variety of machine learning features based on protein, DNA and RNA sequences. 

Compared to POSSUM, DIFFUSER represents a remarkable enhancement and upgrade, as it 

both enables more some comprehensive feature generation, which it is a common 

requirement in practical applications, and allows high-throughput and genome-scale feature 

generation that is becoming ever critical in the era of big data. Although both toolkits were 

initially developed to facilitate the development of substrate predictors, they could be 

commonly applied in machine learning related studies and therefore contribute to more 

effective analysis and modeling in general bioinformatics and biomedicine research. 
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4.1 
POSSUM: A bioinformatics toolkit for generating 
numerical sequence feature descriptors based on 
PSSM profiles 

 
The supplementary information for this manuscript is listed in Appendix 5. 
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Abstract

Summary: Evolutionary information in the form of a Position-Specific Scoring Matrix (PSSM) is a
widely used and highly informative representation of protein sequences. Accordingly, PSSM-based
feature descriptors have been successfully applied to improve the performance of various predictors
of protein attributes. Even though a number of algorithms have been proposed in previous studies,
there is currently no universal web server or toolkit available for generating this wide variety of de-
scriptors. Here, we present POSSUM (Position-Specific Scoring matrix-based feature generator for
machine learning), a versatile toolkit with an online web server that can generate 21 types of PSSM-
based feature descriptors, thereby addressing a crucial need for bioinformaticians and computational
biologists. We envisage that this comprehensive toolkit will be widely used as a powerful tool to fa-
cilitate feature extraction, selection, and benchmarking of machine learning-based models, thereby
contributing to a more effective analysis and modeling pipeline for bioinformatics research.
Availability and implementation: http://possum.erc.monash.edu/.
Contact: trevor.lithgow@monash.edu or jiangning.song@monash.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Feature extraction or feature encoding is a fundamental step in the

construction of high-quality machine learning-based models.

Specifically, this step is key to determining the effectiveness of

trained models in bioinformatics applications (Chou, 2011). In the

last two decades, a variety of feature encoding schemes have been

proposed in order to exploit useful patterns from protein sequences.

Such schemes are often based on sequence information or represen-

tation of physicochemical properties. Although direct features

derived from sequences themselves (such as amino acid compos-

itions, dipeptide compositions and counting of k-mers) are regarded

as essential for training models, an increasing number of studies
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have shown that evolutionary information in the form of PSSM pro-

files is much more informative than sequence information alone (An

et al., 2016). Accordingly, PSSM-based feature descriptors have

been commonly used as indispensable primary features to construct

models, filling a major gap in the current bioinformatics research.

For example, PSSM-based feature descriptors have successfully im-

proved the prediction performance of structural and functional

properties of proteins across a wide spectrum of bioinformatics ap-

plications (See Supplementary Table S1 in the Supplementary

Material for a comprehensive lists of applications). These include

for example protein fold recognition (Lobley et al., 2009) and the

prediction of protein structural classes (Liu et al., 2010), protein-

protein interactions (Zahiri et al., 2013), protein subcellular local-

ization (Xie et al., 2005), RNA-binding sites (Cheng et al., 2008)

and protein functions (Radivojac et al., 2013), to name a few.

A number of servers and standalone software packages have

been developed to derive a variety of feature descriptors from pro-

tein, DNA and RNA sequences, including PROFEAT (Rao et al.,

2011), PseAAC (Shen and Chou, 2008), propy (Cao et al., 2013),

repDNA (Liu et al., 2015), protr/ProtrWeb (Xiao et al., 2015),

Pse-in-One (Liu et al., 2015; Liu et al., 2017a), repRNA (Liu et al.,

2016) and Pse-Analysis (Liu et al., 2017b). Despite their usefulness

and popularity, these tools primarily focus on the generation of fea-

tures related to sequence-based and/or physicochemical descriptors,

instead of PSSM profile-based features. Indeed, there are over 20 dif-

ferent PSSM-based algorithms that calculate and model PSSM-based

feature descriptors. However, to the best of our knowledge, there is

currently no consolidated web server or toolkit available for gener-

ating these PSSM-based feature descriptors. Here, we present a bio-

informatics toolkit, POSSUM, an effective tool that enables users to

generate a broad spectrum of PSSM-based numerical representation

schemes for protein sequences. It implements a wide range of algo-

rithms available in the literature, provides an easy-to-use interface,

and offers much needed functionality and flexibility for users to de-

rive and customize these descriptors. We demonstrate the usage of

POSSUM-calculated PSSM features for the prediction of bacterial

secretion effector proteins (cf. Supplementary Material results).

2 Implementation

The POSSUM server consists of two major components: the client

web interface and the server backend (See Supplementary Fig. S1).

The former was implemented using jQuery, Bootstrap, Struts and

Hibernate. Users can interact with the client web interface to input

their protein sequences and choose the specific feature descriptors to

be generated. Submitted jobs are then forwarded to the server back-

end. For the latter, a Perl CGI program lines up submitted jobs in a

queue and invokes a Perl daemon thread for each job to execute the

descriptor generation process. This architecture guarantees that mul-

tiple jobs can be executed simultaneously, within the maximum

number of allowed threads predefined in the server, while any re-

maining jobs are queued until processing slots become available.

With the client web interface, users can upload a protein se-

quence file in the FASTA format, or directly input protein sequences

(Supplementary Figs S2 and S3). Next, users need to customize par-

ameters to generate PSSM profiles, which is followed by selection of

the feature descriptors needed to be calculated. POSSUM generates

PSSM profiles of the submitted sequences by running PSI-BLAST.

Depending on the length of the input protein sequence, the PSSM

profile generation process can be computationally time-consuming.

To address this issue, we implemented a caching module in

POSSUM, allowing re-use of generated PSSM profiles instead of

computing them again. Based on the PSSM profiles, POSSUM can

calculate the corresponding feature descriptors in the background

inside the server backend. Users do not need to wait for job progress:

they can track the progress of submitted jobs through a unique link,

or be informed by email (if they opted for this in the client interface)

once their jobs are finished. Both the raw PSSM files and resulting

descriptors can then be downloaded from their unique link.

Table 1. A full list of PSSM-based feature descriptors that can be generated by POSSUM

Descriptors groups Descriptor Number Original

Row transformations AAC-PSSM 20 (Liu et al., 2010)

D-FPSSM 20 (Zahiri et al., 2013)

smoothed-PSSM –a (Cheng et al., 2008)

AB-PSSM 400 (Jeong et al., 2011)

PSSM-composition 400 (Zou et al., 2013)

RPM-PSSM 400 (Jeong et al., 2011)

S-FPSSM 400 (Zahiri et al., 2013)

Column transformations DPC-PSSM 400 (Liu et al., 2010)

k-separated-bigrams-PSSM 400 (Saini et al., 2016)

tri-gram-PSSM 8000 (Paliwal et al., 2014)

EEDP 400 (Zhang et al., 2014)

TPC 400 (Zhang et al., 2012)

Mixture of row and column transformations EDP 20 (Zhang et al., 2014)

RPSSM 110 (Ding et al., 2014)

Pse-PSSM 40 (Chou and Shen, 2007)

DP-PSSM –a (Juan et al., 2009)

PSSM-AC –a (Dong et al., 2009)

PSSM-CC –a (Dong et al., 2009)

Combination of above descriptors AADP-PSSM 420 (Liu et al., 2010)

AATP 420 (Zhang et al., 2012)

MEDP 420 (Zhang et al., 2014)

aThe number of feature descriptor values depends on the choice of the parameter.
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For users who prefer to apply their own parameter settings for

specific research purposes and users who have the capacity to per-

form high throughput generation of PSSM files for a very large data-

set using their local computers, an open source standalone software

toolkit is also available. The standalone version of POSSUM (See

Supplementary Fig. S4) was developed using Python and Perl, and

can be executed on Unix/Linux, Windows and Mac OS. As an open

source software, users can access, modify and redistribute the source

codes, allowing users to tailor POSSUM according to their specific

requirements.

PSSM-based algorithms are based on matrix transformations

from original PSSM profiles, which can be categorized into three

types: row transformations, column transformations, or a mixture

of row and column transformations. For POSSUM, these descriptors

are divided into four groups (Table 1). The first group consists

of AAC-PSSM, D-FPSSM, smoothed-PSSM, AB-PSSM, PSSM-

composition, RPM-PSSM and S-FPSSM, which are generated by

row transformations of the original PSSM. The second group con-

tains the descriptors generated by column transformations, includ-

ing DPC-PSSM, k-separated-bigrams-PSSM, tri-gram-PSSM, EEDP

and TPC. The third group includes EDP, RPSSM, Pse-PSSM, DP-

PSSM, PSSM-AC and PSSM-CC, which are generated by a mixture

of row and column transformations. The fourth group comprises of

AADP-PSSM, AATP and MEDP, which simply combine descriptors

in the former three groups.

3 Results

In this work, we present POSSUM, a comprehensive, flexible, user-

friendly and publicly accessible toolkit (with both local standalone

software and online webserver) that we developed to allow users to

easily generate more than 20 types of PSSM profile-based feature de-

scriptors. It greatly facilitates feature generation, analysis, training

and benchmarking of machine-learning models and predictions.

POSSUM has been extensively benchmarked to guarantee correct-

ness of computations, and was deliberately designed to ensure work-

flow efficiency. To the best of our knowledge, this is the first toolkit

for generating such a great variety of evolutionary feature descrip-

tors. Future work will include parallelization of PSSM profile gener-

ation to improve the throughput of POSSUM server. POSSUM is

freely accessible at http://possum.erc.monash.edu/.
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4.2 
DIFFUSER: A distributed framework to generate 
machine learning features based on protein, DNA 
and RNA sequences 

 
The supplementary information for this manuscript is listed in Appendix 6. 
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ABSTRACT 

High-throughput sequencing technologies have generated unprecedented amounts of 

biological sequence data in the post-genomic era. Accordingly, numerous toolkits have been 

developed based on machine learning techniques for classifying and predicting properties of 

biological molecules from such sequence data. However, a significant challenge to overcome 

is the development of appropriate strategies for transforming the raw sequence information 

into meaningful features that allow for pattern-recognition, prior to feeding these extracted 

features into machine learning models. To address this challenge, we developed DIFFUSER, 

a distributed computational framework that enables cost-effective and high-throughput 

generation of a broad spectrum of heterogeneous features from biological sequences: whether 

they be DNA, RNA or protein sequences. DIFFUSER distinguishes itself from other existing 

feature generation toolkits by three key improvements: 1) a novel distributed architecture to 

improve the online feature generation process using decentralized/parallel computing and 

distributed storage; 2) a comprehensive feature generation package that can extract a wide 

range of features, and 3) implementation and availability of both user-friendly web-based 

server and a unified, cross-platform standalone toolkit with feature customization to cater for 

different user needs. Here, we outline the architecture of the distributed framework and 

standalone toolkit of DIFFUSER, demonstrate its improved performance by comparing it to 

the single server mode, and illustrate how DIFFUSER can benefit machine learning-based 

analysis and modelling of biological sequences by accelerating the core feature extraction 

pipeline. The distributed web server and standalone toolkit of DIFFUSER are publicly 

accessible at http://diffuser.erc.monash.edu/. 
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INTRODUCTION 

Over the last two decades, an unprecedented amount of biological sequence data has been 

generated due to the wide application of high-throughput sequencing technologies. Ongoing 

and increasing efforts to sequence whole genomes of organisms will result in continued 

accumulation of even more biological sequence data in the foreseeable future. For example, 

the 100,000 Genomes Project by the National Health Service (NHS) of the UK aims at 

sequencing 100,000 genomes from around 85,000 people. The participants include patients 

with rare diseases, unusual family lineages, and patients suffering from different cancer 

types. In accordance with the flourishing growth of these genome-scale datasets, machine 

learning techniques have been increasingly developed and used to bridge the genotype-

phenotype gap and gain insights into the features of biological systems and complex diseases, 

and in many recent studies, have been considered as a necessary and integral component in 

cutting-edge systems-level biomedical research (1-3). For various such applications, a 

common but crucial step is to transform raw sequence data into representative features that 

encode their underlying relationships in order to train machine learning models. However, 

feature extraction can pose a challenge for designing successful machine learning models in 

biology and biomedicine, partly due to the difficulty in formulating the biological sequences 

as machine learning-compatible vectors and matrices. 

 To bridge this gap, there have been tremendous efforts made that aim at transforming 

biological sequences to discrete or numerical vectors that can better capture and encode 

intrinsic patterns and characteristics of sequences (4-21). Such approaches differ from each 

other in several key aspects, including the types of sequence extraction algorithms, their 

implementation, and availability and functionality of web-based and/or standalone toolkits. 

While the currently available toolkits have individual advantages, they also have certain 

limitations. These typically include: 1) limited computing power and capacity of generating 

features, reflected by the limited number of query sequences allowed for each job 

submission; 2) lack of web server extensibility to facilitate users to customize the feature 

generation process, i.e. many web servers do not allow for flexible adjustment and do not 

provide options for numerical parameters, and 3) lack of versatile toolkits that allow the 

integration of heterogeneous feature types. 

 To overcome these shortcomings, we designed and developed a distributed framework 

termed DIFFUSER, for effective generation of a broad spectrum of heterogeneous features 

from different types of biological sequences. The contribution of DIFFUSER can be 
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summarized as follows: 1) First, DIFFUSER employs a novel distributed architecture to 

capitalize on a cluster of computing nodes, instead of relying on a single server, to 

substantially improve the throughput of feature generation. Compared to a single server, 

DIFFUSER is able to achieve up to 9-fold acceleration of the feature-generating procedure. 

Benefitting from the extensibility of the distributed framework, the computing power of 

DIFFUSER can be readily and flexibly extended in a linear scale, by simply adding more 

computing nodes with a simplified configuration; 2) Second, DIFFUSER represents the most 

comprehensive feature generator available to date, covering the largest number of biological 

sequence features from a broad spectrum, and 3) Third, DIFFUSER provides a user-friendly 

web server and a standalone toolkit, both of which possess the same functions to generate all 

types of features in full support of feature customization to meet the needs of different users. 

 In this paper, we outline the distributed framework of DIFFUSER with a detailed 

description of its distributed computing and storage strategy. Next, we conduct performance 

benchmarking experiments to investigate the impact of different numbers of computing nodes 

on the efficiency of DIFFUSER, and further evaluate its performance against currently 

available single server-based feature generation toolkits. Finally, we illustrate how users can 

gain significant benefits from the DIFFUSER web server and standalone toolkit to expedite 

their research involving machine learning-based sequence analysis and modelling. 

MATERIAL AND METHODS 

Overview of the DIFFUSER toolkit 

The main purpose of developing the DIFFUSER toolkit is to provide a service for generating 

customizable and heterogeneous features from biological sequences, including DNA, RNA 

and protein sequences. To this end, we integrated and implemented 116 types of features in 

five major groups, i.e. sequence-based features, physicochemical property-based features, 

PSSM-based features, predicted structural features and other profile-based features (we refer 

to Table 1 for a statistical summary of the features generated by 18 different toolkits, and 

Tables S1-S3 for the descriptive summary of features generated by DIFFUSER). As shown 

in Table 1, DIFFUSER represents the most comprehensive and versatile tool that covers a 

wider range of heterogeneous features than any other existing feature generation toolkit in 

terms of the number, type and diversity of features. 

 To meet the needs of users with different requirements for processing the sequence data 

and generating features, we developed both a web-based server and a standalone toolkit. 
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Table 1. Comparison of various types of features generated by DIFFUSER and other currently available toolkits. 

Toolkit (Ref.) 
Protein DNA RNA 

Total Group1b Group2b Group3b Group4 Grou
p5 Group1 Group2 Group1 Group2 Group4 

PROFEATa (4-6) 1 8 - - - - - - - - 9 
PseAAC (7) 1 2 - - - - - - - - 3 
PseAAC-Builder (8) 1 2 - - - - - - - - 3 
propy (9) 1 10 - - - - - - - - 11 
PseKNC (10) - - - - - - 6 - 2 - 8 
PseAAC-General (11) 1 9 1 - 2 - - - - - 13 
repDNA (12) - - - - - 3 12 - - - 15 
PseKNC-General (13) - - - - - 1 8 1 5 - 15 
Pse-in-One (14) 1 5 - - - 2 12 1 5 - 26 
protr (15) 1 15 3 - - - - - - - 19 
repRNA (16) - - - - - - - 1 2 3 6 
PseKRAAC (17) - 16 - - - - - - - - 16 
Pse-Analysis (18) - 1 - - - - 1 - 1 - 3 
POSSUM (19) - - 21 - - - - - - - 21 
BioSeq-Analysis (20) 3 6 7 2 1 5 15 3 8 3 53 
iFeature (21) 10 33 1 7 - - - - - - 51 
iLearn (22) 10 33 1 7  12 14 11 7  95 
DIFFUSER 13 38 21 7 3 5 15 3 8 3 116 
Note: Group1 represents sequence-based features; Group2 represents physicochemical property-based features; Group3 represents 
PSSM-based features; Group4 represents predicted structural features; Group5 represents other profile-based features. For a feature 
group, the corresponding toolkit(s) that can generate the maximal number of features is highlighted as bold for comparison 
purpose. 
aOnly sequence-based features were included for the PROFEAT server; 
bFeature groups with similar categorization or groupings, such as k-mer and its derivatives (e.g. AAC, DPC and TPC) were only 
counted once. 
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Unlike some existing toolkits that only provide a standalone version to generate features with no 

flexible options available for users to choose thereby limiting the practicality of such tools, 

DIFFUSER provides exactly the same functionality as part of its web server and the standalone 

toolkit. In addition, it provides support for users to customize the feature generation process to meet 

their specific needs. 

     The workflow of the DIFFUSER web server is illustrated in Figure S1. Depending on the input 

sequence type (DNA, RNA or protein), DIFFUSER provides three panels for each sequence type 

that users can manipulate parameters. Once a panel is selected, users can copy and paste or upload 

their input sequences in either FASTA format or as raw sequences (Figure S1A). Next, users can 

select some or all optional features, and customize the generation of these features by tuning the 

corresponding parameters or, alternatively, uploading their own defined files. Once submitted, a 

unique URL will pop up, allowing users to check the processing status of the submitted job and 

retrieve the results when the job is accomplished (Figure S1B). In addition, users are also permitted 

to provide a valid email address as an optional input; in such case, once their jobs are completed 

they will receive an email containing a URL link to the result page. At the result page (Figure 

S1C), users can check the summary information of the job, and download the features in the CSV 

(i.e. comma-separated values) format together with the intermediate files generated by the server. 

Moreover, for each type of the generated features, the corresponding command line with all selected 

parameters is also provided, which can be directly used to execute the standalone toolkit to generate 

the same feature result file in a local computer (Figure S1D). This user-friendly function 

conveniently provides users with the option to either quick start from the graphical user interface 

(GUI) or to use the command line for specialized operations. 

Distributed framework of the DIFFUSER server 

Apart from the advantage of providing easiness for researchers with little programming 

background, web servers have some intrinsic issues to address in regards to their computing 

capability, due to the fact that they process all the requests based on their own central computing 

power. This situation becomes difficult in cases where the users’ submitted jobs (such as the PSSM-

based feature generation, which is computationally expensive) are time consuming, or in other cases 

where many job requests are submitted within a short period of time. To deal with this dilemma, 

most existing feature generation servers set a maximal number of sequences allowed for each job 

submission (usually less than 500), which eases the servers’ computational burden to some extent, 

but at the same time compromises users’ experience and limits their high-throughput application 

potential. 
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      Considering the increasing requirements for processing large datasets in machine learning 

applications, especially in the context of big data analytics, it is vital and necessary to develop and  

 
Figure 1. The overall framework of the DIFFUSER web server based on a distributed architecture. 
Users' requests are handled by DIFFUSER through a distributed computing cluster, consisting of 
two kinds of nodes: master node and slave node. The master node receives the users' submitted 
sequences followed by a data formatting procedure, splits them into multiple subsets, and then 
dispatches these subsets to multiple slave nodes for subsequent processing. The slave node accepts 
the subset(s) from the task dispatching system in the master node, and executes the feature 
generation procedure for these subsets and stores the generated features (for each subset) into the 
distributed file system. After all slave nodes complete the generation of all sub-feature sets for those 
subsets, the master node will merge all the divided feature segments and generate the final features. 
During the entire process, a MySQL database is used to synchronize messages, while a distributed 
file system, FastFile, is used to share files among the master node and slave nodes. 

 

and implement next-generation web servers equipped with extensible computing power for 

processing large-scale data. To this end, we designed and implemented a distributed framework of 

DIFFUSER based on distributed/parallel computing and distributed file storage (Figure 1). This 

enables the DIFFUSER web server to process large amounts of biological sequence data at the 

whole genome scale. 
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 The distributed computing cluster is responsible for parallel executions of the feature generation 

task, by dividing the task into a number of sub-tasks. Each sub-task will then be executed by a 

single computer node, and the results of these sub-tasks are merged into a final feature file. 

Specifically, the distributed computing cluster consists of two types of nodes: a master node and 

multiple slave nodes. Deployed in the master node, the web server provides users with a graphical 

and user-friendly interface to submit their query sequences after selecting a few or all of the 

preferred features and specifying the corresponding parameters. Once the sequences are submitted, 

they will be passed to the backend of the web server (developed by the JAVA web developing 

suite) for further check and formatting. The submitted sequences will be then forwarded in a 

uniform format to a job dispatching system, which is developed based on Gearman 

(http://gearman.org/) using Perl programming language and deployed across the master node and 

the slave nodes. The submitted sequences will be split into subsets and then put into the job queue 

by the master node. The slave nodes with idle threads will proactively fetch jobs from the job 

queue, and accordingly execute feature generation jobs separately for each individual subset. Once 

a slave node finishes the feature generation procedure for a subset, it will notify the client of the job 

dispatching system in the master node. Once all the subtasks are finished, the client of the job 

dispatching system in the master node is responsible for merging all of these sub-feature sets 

together into a final feature file. 

 The distributed file storage is responsible for sharing temporary and final files within the 

distributed computing cluster. Developed using FastDFS (https://github.com/happyfish100/fastdfs), 

it has been deployed in all the distributed computing cluster nodes. Each node can directly drop its 

files during the feature generation process, and those files will be automatically duplicated and 

shared by other nodes. Additionally, a database, which is developed based on MySQL, is used for 

recording and sharing the status of sub-jobs. In this way, the nodes within the distributed computing 

cluster can operate in parallel but manage to work well with each other as an overall distributed 

system. 

Architecture of the DIFFUSER standalone toolkit 

In addition to the web server, the standalone toolkit of DIFFUSER is also implemented to enable 

the users to customize large-scale features on their own by using local computers. This is 

particularly required if the feature extraction procedure has to be automatically executed or included 

in a sequence analysis pipeline. Existing toolkits have been developed for this purpose based on 

different programming languages, including Pse-in-One (14), iFeature (21) and iLearn (22) in 

Python; protr (15) in R, POSSUM (19) in Perl and Python; and PseAAC-General (11) in C/C++, 
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which sets an obstacle for users to deal with if they need to generate a group of informative features 

across a range of candidate features. This situation becomes even more difficult, in cases where 

users are required to write programming language-specific scripts, for example Python is essential 

for use of propy (9) and R for protr. To avoid this complexity, the standalone toolkit of DIFFUSER 

is designed and implemented to cover as many types of features as possible and execute the feature 

generation in accordance with its web server, in order to provide full support of users’ 

configurations. As a Python-based toolkit, it is straightforward to configure (only a few Python-

based libraries are required and can be easily installed by executing several consecutive commands) 

and user-friendly to operate on different operating systems, such as Unix/Linux, Windows and Mac 

OS. To generate a type of feature on a given biological sequence dataset, only a line of Shell 

command is needed, which can also be directly obtained from the DIFFUSER web server (at the 

result page). 

RESULTS 

Performance evaluation of DIFFUSER 

The effect of the number of nodes used by the distributing computing cluster. Currently, the 

computing cluster used by DIFFUSER has 10 nodes, each of which is equipped with 16 cores and 

64 GB memories. Among those computing nodes, all of them play the role as a slave node, while 

one of them is also nominated as a master node. To investigate the effect of the number of nodes 

used by the distributing computing cluster on the computational performance, we compared the 

computing performance of DIFFUSER in line with the different number of computing nodes. We 

used the DIFFUSER web server to generate a total of 18 types of representative time-consuming 

PSSM-based features (with default parameters) with a varying number of computing nodes. For this 

example, a genome-scale dataset from Klebsiella pneumoniae MGH78578 was used as input data. 

The results indicate that DIFFUSER's computing performance grew almost linearly in accordance 

with the increase of the number of its computing nodes (Figure 2A). On one hand, this observation 

clearly demonstrates the superiority of the distributed framework over its single node mode. On the 

other hand, the linear scalability of the DIFFUSER means that its computing performance can be 

augmented simply by adding more computing nodes to meet further demands in the big data era. It 

is also notable that, compared to the single node mode, the distributed framework with 10 nodes 

achieved a 5.4-time (less than 9-time) improvement. Possible reasons include: (1) the varying 

processing time for different sequences may affect the parallelizing effect; (2) The computing 

abilities are influenced by other nodes within the same cluster environment, even that they have  
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Figure 2. Computational performance comparison. (A) The effect of cluster nodes used by 
DIFFUSER on its computing performance, (B) Performance comparison between DIFFUSER and 
POSSUM in terms of the computing time. Both groups of experiments were conducted based on a 
genome-scale dataset from Klebsiella pneumoniae MGH78578, which was pre-processed to remove 
unexpectedly time-consuming sequences (Figure S2). Experiments in (A) were additionally 
conducted based on a simulated dataset that contains 3985 identical sequences as contrast under 
ideal condition. Sub-nodes and the single node involved in all experiments run 16 threads to 
concurrently process the sub-tasks. 

been equally configured at the level of both hardware and software. The former normally happens 

in practical scenarios, which can be further validated by a 6-time improvement in additional 

experiments under a relatively ideal condition where all processed sequences are identical and thus 

their feature generation process consume equal time. The latter was further validated in next section 

by multiple times experiments to reduce the influence brought by stochastic outcomes. 

Performance comparison between DIFFUSER and existing feature generation toolkits. In order 

to benchmark the performance between the DIFFUSER web server and existing toolkits, we 

selected POSSUM (19) as the baseline toolkit based on two considerations: (1) As a specialized 

toolkit, POSSUM is able to generate representative time-consuming PSSM-based features, and (2) 

the host server of POSSUM is relatively powerful and has the same configuration as a single node 
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of DIFFUSER's computing cluster. These features make it a reasonable comparison between 

DIFFUSER and POSSUM servers. 

  Based on the above dataset, the same numbers of features were generated using DIFFUSER and 

POSSUM web servers with default parameters. We repeated this operation using different subsets, 

each of which was randomly selected from the original dataset, starting with 500 sequences, and in 

increments of 500. The performance comparison results between DIFFUSER and POSSUM are 

summarized in Figure 2B. Since the time consumed on feature generation for a sequence is roughly 

the same, the total time consumed by both DIFFUSER and POSSUM grows linearly in accordance 

with the increase of the size of the submitted datasets (i.e. number of submitted sequences). 

However, for each submission, the consumed time by DIFFUSER ranged from 5.7 to 8.8-fold 

shorter than that by POSSUM. This observation shows more stable improved performance when 

increasing the scale of experiments. It is also notable that the DIFFUSER outperformed the 

POSSUM with more than 8-times improvement based on the subsets with more than 2000 

sequences. This indicates that additional time consuming might be incurred by the processing 

procedures (e.g. file splitting & merging) on the master node and the communications and 

synchronizations among nodes, but as the number of sequences grows, the feature generation time 

on each node will grow much faster than the extra overhead. In this case, the relatively shorter time 

consumed on additional operations within the distributed architecture, will exert less influence on 

the overall performance. 

Applications of DIFFUSER to two practical scenarios 

As a key and indispensable step involved in machine learning-based analysis and modelling, feature 

extraction is time-consuming and complicated, and is often inundated with mathematical 

formulations (14). By automatically generating various types of features, existing toolkits can 

greatly facilitate the efforts and speed up machine learning-based studies in biology. 

Complementing currently available toolkits, DIFFUSER facilitates feature generation especially 

from large-scale sequence datasets, by providing a service to generate a great variety of 

heterogeneous features based on a distributed framework. In this section, we apply DIFFUSER to 

two real-world machine learning based sequence analysis scenarios and illustrate how it can better 

serve user demands in these studies. 

Bacterial secreted effector protein prediction. As secreted effectors play an important role in 

bacterium–host interactions or inter-bacteria competitions, the in-silico identification of such 

proteins is fundamental to an understanding of their functions and roles in the pathogenic process 
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(23,24). A consensus of previous studies is that features extracted from various aspects could have 

an important influence on the predictor’s performance and it remains a challenge to develop more 

accurate predictors for the prediction of different types of bacterial secreted effector proteins (25-

28). Recent research (26) that focused on type VI effector prediction extracted nine features across 

three major groups (i.e. sequence-based features, evolutionary information-based features and 

physicochemical features) which collectively contributed to the predictor's performance. In order to 

generate such features, two toolkits, namely POSSUM (19) and protr (15), were used in this study. 

Furthermore, to construct the predictor, users need to install and configure the standalone toolkits of 

POSSUM and protr, configure Perl, Python and R runtime environments, and require proper skills 

of R to execute some necessary scripts using protr (developed using R). In addition, to perform 

genome-scale prediction of potential bacterial secreted effectors for a bacterial species (~3,000-

5,000 sequences), the features should be first generated. For example, in the case of evolutionary 

information-based features, users need to submit 10 times to the POSSUM web server, each time 

with a maximum number of 500 sequences, and will wait for several days before they can get all 

results. With the availability of the standalone DIFFUSER toolkit, users can now run and complete 

these mentioned tasks more easily using local computers as only Python is required (Python is pre-

installed for Linux or Mac OS systems). In addition, users can alternatively use the DIFFUSER web 

server (with 10 computing nodes) by only submitting one task (5,000 sequences permitted per 

submission) for a bacterial genome, and obtain the prediction results after several hours. In this 

way, DIFFUSER is able to substantially expedite the feature generation process, and enhance user's 

experience by significantly reducing the waiting time. 

Prediction of post-translational modification (PTM). PTMs play important roles in the regulation 

of diverse cell functions and are often associated with various diseases (29,30). As an alternative 

approach for identifying PTM sites, computational methods can complement with experimental 

studies by narrowing down the PTM substrates for experimental validation. Among different types 

of PTMs, lysine malonylation is a recently discovered PTM and has been shown to be closely 

associated with the regulation of metabolic pathways, particularly the pathways of glucose and fatty 

acid metabolism. In a recent study on the prediction of lysine malonylation (31), a total of 11 

features were extracted and investigated. At least three toolkits are required to generate these 

features. These include the following types of features: 1) 1-gram and 2-gram (instantiations of k-

mer when k is set to 1 and 2, respectively) that can be generated by most feature generation toolkits; 

2) QSO and AAINDEX features, which can be generated by protr or iFeature (21); 3) BINA and 

KNN features, which can be only generated by iFeature; 4) PSSM and S_FPSSM, which were 
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exclusively generated by POSSUM. The remaining features, including NUM, LOGO and EBGW, 

will need to be manually generated by writing computer scripts due to the unavailability of the 

corresponding toolkits. In real applications, it would be a long way to go for users to obtain all 

required features before training the machine learning-based models for lysine malonylation 

prediction. Nevertheless, with the availability of DIFFUER that covers all the major feature groups, 

all features can be generated using its online web server by unlocking the corresponding toggles, or 

the local standalone command line tool. 

DISCUSSION 

In this work we developed DIFFUSER, a bioinformatics toolkit for generating a broad and 

comprehensive range of heterogeneous features from biological sequences. DIFFUSER has been 

implemented as both an online web server and a local stand-alone software program. Unlike most 

other existing toolkits that only consider one or some groups of features, DIFFUSER has covered 

the largest number of feature categories, to facilitate seamless operations on extracting and 

generating features for machine learning applications. 

 To enable high-throughput feature generation, we designed and implemented a distributed 

framework of the DIFFUSER online server to enhance its processing capability based on 

distributed/parallel computing and distributed storage. This distributed framework connects and 

coordinates single computing nodes to enable them to operate as an integrated system. As a result, 

this has significantly improved the computing performance, compared to the single server based 

toolkits. Moreover, the computing power of this distributed framework can be readily extended by 

adding more numbers of computing nodes with a simple configuration. 

 Both web server and standalone toolkit have the same functionality to generate all types of 

features in full support for feature customization (including parameter adjustment and self-defined 

file definition). Specially, features generated by the online web server will be provided together 

with their corresponding commands, which can be also directly executed locally to generate the 

same features. In this way, DIFFUSER offers an easy and convenient way for users to switch from 

using the online web server to the standalone toolkit. 

 In summary, we present a bioinformatics toolkit based on a distributed computing framework 

that can be effectively used to generate a great variety of heterogeneous features from biological 

sequence data in a high-throughput manner. It also allows automatic feature extraction and provides 

opportunities to be further integrated into downstream computational pipelines in the future. We 

have also applied DIFFUSER to two real-world application scenarios and demonstrated its 
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practicality and value to greatly facilitate feature generation efforts. It is expected that DIFFUSER 

will be a useful tool for accelerating machine learning-based research in biology and medicine. 
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CHAPTER 5: Conclusion 

Responsible for many infectious diseases and deaths all over the world, Gram-negative 

bacteria have evolved a wide range of highly diverse secretion systems as their weapons to 

export substrates into either environments or host cell cytoplasm to modulate the interactions 

within their environments, target hosts or competitors. It is a common consensus that these 

secreted substrates play vital roles in competitive survival, host cell subversion and 

pathogenesis, and bacterial competitor elimination. Experimental validation of secreted 

substrates is a fundamental step that is required to uncover their structural and biochemical 

properties, as well as their function roles, which will further promote our understanding of the 

survival strategies and pathogenesis mechanisms of the bacteria. Despite the importance of 

the bacterial secreted substrates, how these specialized proteins are targeted for secretion by 

their corresponding secretion systems is still not fully understood.  

Contrasting the time-consuming and labour-intensive experimental strategies with the rapid 

advance of high-throughput sequencing techniques, the gap between the number of the 

known bacterial secreted substrates and sequence-known proteins is growing ever wider. This 

imbalance could be significantly reduced through the introduction of high-throughput and 

accurate computational analysis and prediction methodologies. For this purpose, this thesis 

has made three contributions. 

Three ensemble substrate predictors with demonstrated improved performance. 

Through systematically analyzing the known substrates, new methodologies have been 

developed to predict three well studied types of substrates. The methods I employed explore a 

wide spectrum of heterogeneous features that are extracted from different aspects, train 

models to mine patterns from them using different machine learning algorithms, and integrate 

these models as the final ensemble models based on multiple ensemble learning strategies. 

The proposed predictors have been demonstrated by extensive benchmarking tests to 

outperform existing state-of-the-art predictive toolkits, and are now providing public service 

to facilitate discoveries of new secreted substrates. 

An integrative platform for annotation, analysis and prediction of secreted substrates. 

To comprehensively and systematically annotate, analyze and predict the repertoire of 

substrates secreted by Gram-negative bacteria, a universal platform has been developed to 

provide an all-in-one service to ensure there is a seamless transition between the prediction 

and analysis procedure. To achieve this, an integrative prediction system has been developed 
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to comprehensively and accurately predict each type of secreted substrates from genome-

scale sequences within a distributed framework. It is further expanded and integrated into a 

new developed platform, which integrates various types of experimentally validated and 

annotated substrates and provides a range of analytic modules. Together these form the final 

one-stop platform to enable users to investigate known substrates, predict potential substrates, 

and analyze relationships between the two. 

Two versatile toolkits for generating machine learning features. To speed up machine 

learning based modelling and analysis, and improve the performance of the constructed 

predictors, two versatile toolkits have been developed. This allows users to easily generate a 

great variety of heterogeneous features from their biological sequence. The distributed web 

architecture guarantees the practical application to genome-scale data, while their standalone 

toolkits offer opportunities to execute analysis locally whilst still being possible to be 

integrated into downstream computational pipelines. This allows automatic feature extraction 

or machine learning based sequence analysis and modelling thereafter. My work in secreted 

substrate prediction is a direct real-world application scenario that demonstrates how both 

feature generating toolkits could benefit machine learning-based analysis and modelling of 

biological sequences through accelerating the core feature extraction procedure.  

The proposed predictors together with the universal platform is anticipated to expedite the 

overall understanding of known substrates, the discovery of putative substrates, and the 

computational analysis and comparison between known and potential substrates. Apart from 

providing specialized bacterial substrate predictors, the proposed computational frameworks, 

including feature extraction, analysis and visualization, model training and parameter 

optimization, ensemble model construction strategies, and the distributed architecture design 

may inspire researchers to design and develop novel computational methods in a broader 

context in the field of biomedicine, bioinformatics and computational biology. 

In the future, as the number of experimentally validated substrates expands, our proposed 

models could be further updated: new substrates with novel characteristics need to be 

characterized by new and additional informative features, which are required be learned and 

interpreted by new or more suitable machine learning algorithms. If the datasets grow large 

enough, deep learning techniques could be introduced to directly learn the patterns and 

characteristics without manual feature engineering (Angermueller et al., 2016; Ekins, 2016; 

Esteva et al., 2019; Gawehn et al., 2016; Min et al., 2017; Park & Kellis, 2015; Wainberg et 

al., 2018; Zou et al., 2019). It would be of particular interest to compare effects of both deep 
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learning and classical machine learning algorithms on the substrate prediction and further 

investigate a proper way to integrate them for more accurate and robust prediction by taking 

advantages of their strengths and merits. 

In addition to substrate analysis and prediction, more unified platform is promising to be 

designed and implemented in a scalable software architecture to allow to install or uninstall 

plugins for new functional extensions. In this way, it can be easily upgraded and continuously 

updated with increasing functionalities, such as virulence factor detection, subcellular 

localization prediction, bacterial function annotation, antibiotic resistance prediction and drug 

resistance prediction. Finally, it is expected to evolve as an enhanced, universal and 

automatic pipeline which could annotate bacteria genomes with various inferred functions 

and attributes, pinpoint their potential pathogenic or antibiotic resistant genes, or recommend 

possible drug therapy strategies. Hopefully, one day we can “diagnose” the capabilities of 

bacteria in the same way as genome technologies are being applied in human diagnosis and 

treatment in this era of medical big data and precision medicine. 
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Appendix  

Appendix 1 - Supplementary information for Chapter 2.1 

 

Systematic analysis and prediction of type IV secreted 
effector proteins by machine learning approaches 

 
Supplementary information 

 
Table S1. Performance of various classifiers based on 5-fold cross-validation tests. Values are 
presented as mean±standard error. Except for AAC (20D) and PPT (72D), all feature vectors are 200-
dimensional and were selected using GainRatio. In the Table, Group 1 denotes the amino acid 
composition group (AAC, DPC, CKSAAP and PPT); Group 2 denotes the PSSM group (PSSM, 
PSSM_AC and PSSM_SMTH); Group 3 denotes the structure group (SA, SS and DISO), while All 
features include all the 10 feature types and are used as a whole group. For each group, corresponding 
features were combined into a vector to train the model. 

Feature Method PRE SN SP F-score ACC MCC 

AAC RF 0.836±0.009 0.825±0.005 0.839±0.012 0.829±0.006 0.831±0.007 0.663±0.014 

SVM 0.856±0.007 0.845±0.011 0.859±0.009 0.849±0.007 0.851±0.007 0.703±0.014 

LR 0.816±0.006 0.834±0.005 0.813±0.007 0.824±0.003 0.823±0.004 0.647±0.009 

NB 0.792±0.005 0.837±0.004 0.782±0.005 0.813±0.004 0.809±0.003 0.619±0.007 

KNN 0.827±0.005 0.838±0.009 0.826±0.006 0.831±0.005 0.831±0.003 0.664±0.008 

MLP 0.864±0.010 0.727±0.008 0.886±0.011 0.788±0.007 0.805±0.007 0.620±0.013 

PPT RF 0.816±0.006 0.816±0.014 0.817±0.005 0.815±0.010 0.816±0.008 0.633±0.017 

SVM 0.818±0.009 0.828±0.007 0.817±0.011 0.822±0.005 0.822±0.005 0.645±0.010 

LR 0.803±0.007 0.788±0.003 0.808±0.008 0.794±0.004 0.797±0.004 0.596±0.008 

NB 0.715±0.006 0.348±0.003 0.860±0.004 0.464±0.004 0.603±0.002 0.243±0.007 

KNN 0.808±0.008 0.745±0.008 0.824±0.008 0.773±0.010 0.783±0.009 0.570±0.016 

MLP 0.843±0.016 0.689±0.035 0.872±0.019 0.755±0.020 0.779±0.014 0.571±0.027 

DPC RF 0.811±0.015 0.810±0.006 0.812±0.017 0.809±0.010 0.810±0.011 0.621±0.023 

SVM 0.837±0.007 0.805±0.010 0.844±0.010 0.819±0.005 0.823±0.004 0.648±0.007 

LR 0.812±0.003 0.839±0.005 0.806±0.002 0.824±0.003 0.822±0.002 0.645±0.005 

NB 0.793±0.002 0.840±0.003 0.782±0.004 0.815±0.002 0.811±0.003 0.623±0.006 

KNN 0.797±0.004 0.820±0.006 0.793±0.003 0.807±0.005 0.806±0.003 0.612±0.006 

MLP 0.813±0.015 0.681±0.012 0.843±0.014 0.739±0.013 0.761±0.012 0.531±0.023 
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CKSAAP RF 0.840±0.004 0.813±0.009 0.846±0.005 0.825±0.003 0.829±0.002 0.659±0.006 

SVM 0.877±0.005 0.726±0.009 0.900±0.006 0.793±0.004 0.812±0.002 0.635±0.005 

LR 0.737±0.009 0.742±0.012 0.736±0.012 0.738±0.009 0.738±0.009 0.477±0.018 

NB 0.819±0.003 0.831±0.004 0.817±0.004 0.824±0.003 0.823±0.003 0.648±0.006 

KNN 0.763±0.008 0.860±0.007 0.732±0.010 0.808±0.006 0.796±0.006 0.598±0.011 

MLP 0.831±0.008 0.733±0.006 0.852±0.007 0.779±0.005 0.792±0.005 0.589±0.010 

PSSM RF 0.909±0.004 0.900±0.005 0.911±0.003 0.904±0.004 0.905±0.003 0.811±0.007 

SVM 0.933±0.001 0.861±0.008 0.939±0.003 0.895±0.004 0.900±0.003 0.803±0.006 

LR 0.808±0.007 0.851±0.016 0.797±0.011 0.828±0.008 0.824±0.006 0.649±0.012 

NB 0.888±0.004 0.887±0.003 0.889±0.003 0.887±0.004 0.888±0.003 0.776±0.006 

KNN 0.899±0.003 0.911±0.003 0.898±0.003 0.904±0.003 0.904±0.003 0.809±0.005 

MLP 0.935±0.013 0.859±0.010 0.943±0.010 0.895±0.009 0.902±0.008 0.806±0.016 

PSSM_A
C 

RF 0.906±0.006 0.771±0.009 0.921±0.005 0.832±0.007 0.846±0.006 0.699±0.012 

SVM 0.897±0.012 0.765±0.022 0.914±0.012 0.825±0.015 0.839±0.012 0.686±0.022 

LR 0.720±0.011 0.757±0.012 0.705±0.015 0.736±0.008 0.730±0.008 0.463±0.017 

NB 0.610±0.001 0.867±0.003 0.447±0.003 0.715±0.002 0.656±0.002 0.346±0.006 

KNN 0.833±0.004 0.816±0.004 0.836±0.004 0.823±0.002 0.825±0.002 0.652±0.006 

MLP 0.896±0.021 0.690±0.009 0.921±0.018 0.777±0.007 0.805±0.007 0.628±0.018 

PSSM_S
MTH 

RF 0.859±0.006 0.825±0.007 0.865±0.006 0.840±0.005 0.844±0.005 0.691±0.011 

SVM 0.873±0.007 0.790±0.014 0.886±0.004 0.828±0.010 0.837±0.008 0.679±0.017 

LR 0.733±0.017 0.734±0.014 0.730±0.026 0.732±0.008 0.732±0.011 0.466±0.020 

NB 0.658±0.003 0.870±0.002 0.548±0.006 0.748±0.001 0.708±0.002 0.441±0.006 

KNN 0.804±0.004 0.784±0.005 0.809±0.007 0.793±0.003 0.796±0.005 0.594±0.010 

MLP 0.886±0.016 0.756±0.022 0.909±0.013 0.815±0.018 0.835±0.016 0.675±0.030 

DISO RF 0.714±0.011 0.733±0.015 0.708±0.011 0.722±0.012 0.719±0.011 0.441±0.022 

SVM 0.736±0.016 0.726±0.020 0.739±0.020 0.728±0.015 0.732±0.014 0.466±0.027 

LR 0.604±0.008 0.607±0.018 0.602±0.020 0.603±0.009 0.603±0.007 0.209±0.016 
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NB 0.631±0.026 0.657±0.033 0.625±0.009 0.637±0.033 0.640±0.016 0.283±0.037 

KNN 0.695±0.005 0.746±0.008 0.674±0.010 0.718±0.004 0.709±0.004 0.422±0.006 

MLP 0.733±0.016 0.570±0.032 0.791±0.016 0.639±0.022 0.680±0.014 0.371±0.028 

SA RF 0.611±0.005 0.642±0.010 0.590±0.005 0.623±0.008 0.613±0.006 0.232±0.013 

SVM 0.604±0.010 0.606±0.022 0.600±0.022 0.601±0.013 0.600±0.010 0.206±0.018 

LR 0.585±0.014 0.591±0.015 0.581±0.016 0.585±0.012 0.583±0.012 0.172±0.026 

NB 0.543±0.006 0.911±0.011 0.207±0.007 0.672±0.006 0.560±0.007 0.179±0.015 

KNN 0.633±0.014 0.498±0.007 0.711±0.019 0.555±0.008 0.603±0.010 0.214±0.020 

MLP 0.576±0.019 0.449±0.036 0.671±0.017 0.502±0.030 0.560±0.014 0.123±0.032 

SS RF 0.560±0.022 0.535±0.030 0.579±0.016 0.544±0.025 0.555±0.022 0.115±0.046 

SVM 0.562±0.021 0.463±0.043 0.634±0.023 0.492±0.034 0.540±0.021 0.102±0.037 

LR 0.536±0.017 0.542±0.022 0.531±0.018 0.537±0.019 0.536±0.018 0.073±0.037 

NB 0.543±0.007 0.673±0.018 0.432±0.010 0.597±0.012 0.555±0.007 0.111±0.015 

KNN 0.530±0.017 0.493±0.018 0.564±0.020 0.505±0.017 0.524±0.016 0.057±0.032 

MLP 0.535±0.024 0.361±0.029 0.688±0.032 0.428±0.025 0.525±0.018 0.052±0.037 

Group 1 RF 0.823±0.008 0.800±0.007 0.829±0.008 0.810±0.007 0.813±0.006 0.629±0.012 

SVM 0.829±0.008 0.758±0.008 0.844±0.009 0.790±0.006 0.800±0.005 0.604±0.009 

LR 0.797±0.013 0.805±0.016 0.796±0.015 0.799±0.013 0.799±0.012 0.601±0.023 

NB 0.800±0.004 0.827±0.005 0.795±0.004 0.812±0.003 0.810±0.002 0.622±0.006 

KNN 0.788±0.005 0.809±0.007 0.783±0.007 0.797±0.004 0.795±0.004 0.591±0.009 

MLP 0.802±0.016 0.702±0.023 0.825±0.014 0.746±0.017 0.762±0.015 0.531±0.029 

Group 2 RF 0.912±0.003 0.900±0.003 0.914±0.003 0.905±0.003 0.906±0.002 0.813±0.005 

SVM 0.940±0.003 0.862±0.007 0.945±0.004 0.899±0.003 0.904±0.002 0.810±0.004 

LR 0.801±0.018 0.859±0.008 0.787±0.026 0.828±0.010 0.823±0.012 0.647±0.024 

NB 0.887±0.003 0.896±0.004 0.887±0.003 0.891±0.003 0.891±0.002 0.782±0.005 

KNN 0.927±0.003 0.881±0.004 0.932±0.004 0.903±0.004 0.906±0.003 0.813±0.007 

MLP 0.932±0.008 0.854±0.009 0.939±0.009 0.891±0.002 0.896±0.002 0.796±0.003 

Group 3 RF 0.715±0.009 0.733±0.017 0.708±0.009 0.722±0.012 0.720±0.010 0.441±0.020 
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SVM 0.736±0.016 0.726±0.020 0.739±0.020 0.728±0.015 0.732±0.014 0.466±0.027 

LR 0.602±0.010 0.607±0.014 0.599±0.019 0.602±0.009 0.602±0.010 0.206±0.022 

NB 0.631±0.026 0.657±0.033 0.625±0.009 0.637±0.033 0.640±0.016 0.283±0.037 

KNN 0.704±0.008 0.760±0.005 0.682±0.011 0.729±0.005 0.720±0.006 0.443±0.013 

MLP 0.737±0.020 0.581±0.018 0.791±0.023 0.647±0.013 0.685±0.012 0.381±0.024 

All 
features 

RF 0.815±0.004 0.781±0.008 0.824±0.005 0.796±0.005 0.801±0.005 0.605±0.010 

SVM 0.856±0.009 0.727±0.016 0.878±0.007 0.785±0.012 0.801±0.009 0.612±0.018 

LR 0.686±0.017 0.697±0.018 0.681±0.019 0.690±0.017 0.688±0.018 0.378±0.036 

NB 0.657±0.003 0.870±0.002 0.545±0.008 0.747±0.002 0.707±0.003 0.439±0.007 

KNN 0.816±0.003 0.763±0.003 0.828±0.004 0.787±0.004 0.794±0.003 0.591±0.007 

MLP 0.871±0.011 0.669±0.045 0.907±0.011 0.754±0.030 0.793±0.022 0.599±0.039 
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Figure S1. ROC curves of RF, SVM, NB, KNN, LR and MLP predictors of type IV secreted 
effectors with different feature encodings. Group 1 denotes the amino acid composition group 
(AAC, DPC, CKSAAP and PPT); Group 2 denotes the PSSM group (PSSM, PSSM_AC and 
PSSM_SMTH); Group 3 denotes the structure group (SA, SS and DISO), while All features include 
all the 10 feature types and are used as a whole group. For each group, corresponding features were 
combined into a vector to train the model. 
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Fig. S2. Phylogenetic tree of T4SS effectors in the training dataset. Multiple sequence alignment 
for all the included proteins was carried out using Clustal Omega [1]. The  phylogenetic tree was 
generated using iTOL [2]. 
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Fig. 1. Distribution of proteins in the training dataset by organism. (A) Bar chart listing the numbers of 
proteins in the training dataset for the top 13 species; (B) Pie chart showing the percentages of major 
protein associated species; and (C) Bar chart detailing the numbers of proteins per organism. 
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Table 1.  Detailed information regarding positive samples in the independent dataset. 

Effector 
ID 

Effector 
name 

                        Species Reference Comments 

1 Hcp-
effector 

Desulfobacterium autotrophicum (Wang, et al., 2015)  

2 Hcp3 Pseudomonas fluorescens (Brunet, et al., 2015)  

3 EvpP Edwardsiella tarda (Durand, et al., 2014)  

4 VgrG3 Pseudomonas fluorescens (Durand, et al., 2014)  

5 Tse1 Pseudomonas aeruginosa (Durand, et al., 2014)  

6 Tae4 Enterobacter cloacae (Durand, et al., 2014)  

7 TecA Burkholderia cenocepacia (Aubert, et al., 2016)  

8 VgrG2b Pseudomonas aeruginosa (Sana, et al., 2015)  

9 KatN Pseudomonas aeruginosa (Wan, et al., 2017)  

10 Tle1 Escherichia coli (Flaugnatti, et al., 
2016) 

 

- RhsA Escherichia coli (Koskiniemi, et al., 
2013) 

Removed due to high 
similarity with RhsB 

11 RhsB Escherichia coli (Koskiniemi, et al., 
2013) 

 

12 Hcp-ET1 Escherichia coli (Ma, et al., 2017)  

13 Hcp-ET2 Escherichia coli (Ma, et al., 2017)  

14 Hcp-ET3 
(1) 

Salmonella bongori (Ma, et al., 2017)  

- Hcp-ET3 
(2) 

Escherichia coli (Ma, et al., 2017) Removed due to high 
similarity with Hcp-ET3+4 

- Hcp-ET3 
(3) 

Escherichia coli (Ma, et al., 2017) Removed due to high 
similarity with Hcp-ET3+4 

15 Hcp-ET3 
(4) 

Escherichia coli (Ma, et al., 2017)  

16 Hcp-ET3+4 Escherichia coli (Ma, et al., 2017)  

17 Hcp-ET5 Salmonella enterica (Ma, et al., 2017)  

18 Unclear Escherichia coli (Ma, et al., 2017)  

19 MIX-
effector1 

Vibrio proteolyticus (Salomon, 2016)  

20 MIX-
effector2 

Vibrio proteolyticus (Salomon, 2016)  

 

 



 
 

156 
 

 

 

 

 

 3 

 

Fig. 2.  Position-specific amino acid sequence profiles of 138 T6SEs and 1112 non-effectors, for 50 
different N- and C-terminal positions. Images were generated with Seq2Logo (Thomsen and Nielsen, 
2012) using the default settings. The positive y-axis depicts enriched amino acids in terms of amount of 
information in bits, while negative y-axis depicts corresponding depleted amino acids. The horizontal axis 
represents the N-/C-terminal position number. For the N terminal sequences, the methionine (M) at 
position 1 of each sequence is removed to improve readability. Here, the height of the stack represents the 
conservation level at each position, while the size of the letters depicts the relative frequency of each 
amino acid. (A) and (B) illustrate sequence logo representations for T6SEs and non-effectors, respectively. 
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Table 2.  Details of distributions of T6SEs and non-T6SEs in each cluster. 

Encoding Cluster1 Cluster2 

Total T6SEs non-T6SEs Total T6SEs non-T6SEs 

AAC 115 96 (83.5%) 19 (16.5) 161 42 (26.1%) 119 (73.9%) 

DPC 105 92 (87.6%) 13 (12.4%) 171 46 (26.9%) 125 (73.1%) 

QSO 68 49 (72.1%) 19 (27.9%) 208 89 (42.8%) 119 (57.2%) 

BLOSUM 244 107 (43.9%) 137 (56.1%) 32 31 (96.9%) 1 (3.1%) 

DPC-PSSM 114 1 (0.9%) 113 (99.1%) 162 137 (84.6%) 25 (15.4%) 

S-FPSSM 79 54 (68.4%) 25 (31.6%) 197 84 (42.6%) 113 (57.4%) 

Pse-PSSM 118 91 (77.1%) 27 (22.9%) 158 47 (29.7%) 111 (70.3%) 

CTDC 132 78 (59.1%) 54 (40.9%) 144 60 (41.7%) 84 (58.3%) 

CTDT 238 124 (52.1%) 114 (47.9%) 38 14 (36.8%) 24 (63.2%) 
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Fig. 3. Comparisons of the performance of various feature encoding methods with different numbers of 
top features, selected by GainRatio based on 5-fold cross-validation tests. grX 
(X=50,100,150,200,250,300,350) means top X features as ranked by GainRatio, while non-gr means full 
features without feature selection by GainRatio. 
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Table 3.  The detailed prediction performance of various models in the independent test. 

 Model SN SP ACC F-value MCC 

Single  
feature-based  
models 

AAC 0.900±0.000 0.875±0.075 0.887±0.038 0.890±0.033 0.777±0.074 

DPC 0.800±0.000 0.865±0.097 0.833±0.049 0.829±0.041 0.670±0.101 

QSO 0.850±0.000 0.875±0.072 0.863±0.036 0.862±0.031 0.727±0.074 

BLOSUM 0.800±0.000 0.830±0.101 0.815±0.050 0.814±0.042 0.634±0.105 

DPC-PSSM 0.950±0.000 0.745±0.101 0.848±0.051 0.863±0.039 0.712±0.088 

S-FPSSM 0.750±0.000 0.770±0.116 0.760±0.058 0.760±0.042 0.523±0.115 

Pse-PSSM 0.950±0.000 0.780±0.111 0.865±0.056 0.878±0.044 0.743±0.098 

CTDC 0.900±0.000 0.850±0.094 0.875±0.047 0.880±0.040 0.753±0.090 

CTDT 0.850±0.000 0.795±0.064 0.823±0.032 0.828±0.026 0.647±0.063 

Ensemble model Group 1 0.850±0.000 0.880±0.079 0.865±0.039 0.864±0.034 0.733±0.081 

Group 2 1.000±0.000 0.825±0.072 0.912±0.036 0.920±0.030 0.839±0.062 

Group 3 0.950±0.000 0.840±0.088 0.895±0.044 0.902±0.038 0.797±0.082 

Final ensemble model Bastion6 1.000±0.000 0.885±0.053 0.943±0.026 0.946±0.024 0.892±0.049 
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Table 4.  Prediction results of positive samples from the independent dataset using single encoding 
method-based models, group based ensemble models and Bastion6. Here, samples with a prediction score 
larger than 0.5 are recognized as T6SS effectors, and otherwise as non-T6SS effectors (marked in grey). 

Effector 
ID 

Effector 
Name 

Single encoding method based model Ensemble Model 
Bastion6 

AAC DPC QSO BLOSUM DPC-
PSSM 

S-
FPSSM 

Pse-
PSSM CTDC CTDT Group 

1 
Group 

2 
Group 

3 

1 Hcp 0.960 0.919 0.938 0.970 0.950 0.939 0.976 0.913 0.815 0.939 0.959 0.864 0.921 

2 Hcp3 0.658 0.854 0.819 0.482 0.980 0.841 0.961 0.440 0.715 0.777 0.816 0.577 0.723 

3 EvpP 0.752 0.850 0.838 0.787 0.966 0.864 0.905 0.568 0.585 0.813 0.880 0.576 0.757 

4 VgrG3 0.921 0.940 0.977 0.931 0.987 0.961 0.948 0.719 0.750 0.946 0.957 0.735 0.879 

5 Tse1 0.831 0.708 0.843 0.710 0.963 0.939 0.981 0.905 0.781 0.794 0.898 0.843 0.845 

6 Tae4 0.842 0.923 0.848 0.948 0.992 0.968 0.968 0.897 0.798 0.871 0.969 0.848 0.896 

7 TecA 0.575 0.423 0.313 0.299 0.987 0.495 0.819 0.693 0.768 0.437 0.650 0.730 0.606 

8 VgrG2b 0.934 0.936 0.941 0.845 0.969 0.993 0.959 0.838 0.810 0.937 0.941 0.824 0.901 

9 KatN 0.684 0.838 0.746 0.643 0.830 0.186 0.361 0.803 0.929 0.756 0.505 0.866 0.709 

10 Tle1 0.406 0.572 0.536 0.482 0.336 0.450 0.824 0.746 0.460 0.505 0.523 0.603 0.543 

11 RhsB 0.987 0.979 0.987 0.935 0.957 0.707 0.950 0.961 0.929 0.985 0.888 0.945 0.939 

12 Hcp-
ET1 0.584 0.375 0.210 0.491 0.956 0.909 0.848 0.632 0.413 0.390 0.801 0.522 0.571 

13 Hcp-
ET2 0.507 0.475 0.572 0.829 0.767 0.391 0.570 0.588 0.386 0.518 0.639 0.487 0.548 

14 Hcp-
ET3 (1) 0.878 0.909 0.939 0.956 0.928 0.725 0.754 0.842 0.675 0.909 0.841 0.758 0.836 

15 Hcp-
ET3 (4) 0.926 0.932 0.971 0.940 0.968 0.967 0.923 0.903 0.792 0.943 0.949 0.848 0.913 

16 Hcp-
ET3+4 0.707 0.741 0.889 0.793 0.969 0.777 0.812 0.484 0.647 0.779 0.838 0.565 0.728 

17 Hcp-
ET5 0.679 0.501 0.514 0.893 0.973 0.242 0.745 0.662 0.713 0.565 0.713 0.688 0.655 

18 Unclear 0.432 0.446 0.374 0.850 0.980 0.847 0.873 0.851 0.641 0.417 0.887 0.746 0.684 

19 MIX-
effector1 0.989 0.965 0.976 0.707 0.950 0.982 0.993 0.953 0.906 0.976 0.908 0.930 0.938 

20 MIX-
effector2 0.987 0.920 0.953 0.783 0.945 0.976 0.983 0.888 0.689 0.953 0.922 0.789 0.888 
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Table 5.  Detailed prediction results of Bastion 6 and of two motif-based methods for positive samples in 
the independent dataset. Misclassified proteins are marked in grey. 

Effector ID Effector Name Bastion6 Motif Methods 

MIX SAVC 

1 Hcp 0.921 � × × 

2 Hcp3 0.723 � × × 

3 EvpP 0.757 � × × 

4 VgrG3 0.879 � × × 

5 Tse1 0.845 � × × 

6 Tae4 0.896 � × × 

7 TecA 0.606 � × × 

8 VgrG2b 0.901 � × × 

9 KatN 0.709 � × × 

10 Tle1 0.543 � × × 

11 RhsB 0.939 � × � 

12 Hcp-ET1 0.571 � × × 

13 Hcp-ET2 0.548 � × � 

14 Hcp-ET3 (1) 0.836 � × × 

15 Hcp-ET3 (4) 0.913 � × × 

16 Hcp-ET3+4 0.728 � × × 

17 Hcp-ET5 0.655 � × × 

18 Unclear 0.684 � × × 

19 MIX-effector1 0.938 � × × 

20 MIX-effector2 0.888 � × × 
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Fig. 4. Phylogenetic tree of all T6SEs in the training dataset and the two case study proteins TseM and 
TseF. Multiple sequence alignment was constructed for all the included proteins using Clustal Omega (Li, 
et al., 2015), with the phylogenetic tree generated using iTOL (Letunic and Bork, 2016). 
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Fig. 5.  Graphical two-dimensional representation of sequence similarities between the T6SS effectors of 
the training dataset and two case study effectors using the software CLANS. To draw a three-dimensional 
graph (projected here onto two dimensions), we performed all-against-all BLAST searches and used all 
significant high-scoring segment pairs (HSPs). In the graph, each node represents a T6SS effector protein 
and each edge (shaded according to p-value) represents a significant HSP with a p-value lower than 0.05 
Each cluster is highlighted, while TseM and TseF are marked in the graph. 
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Table 6.  Detailed prediction results of single encoding method based models, group based ensemble 
models and Bastion6, for two case study T6SS effector sequences. 

Effector 
Name 

Single encoding method based model Ensemble Model 
Bastion6 

AAC DPC QSO BLOSUM DPC-
PSSM 

S-
FPSSM 

Pse-
PSSM CTDC CTDT Group 

1 
Group 

2 
Group 

3 

TseM 0.351  0.497  0.390  0.267  0.728  0.445  0.734  0.585  0.763  0.413 0.544 0.674 0.544 

TseF 0.809  0.808  0.606  0.396  0.168  0.902  0.500  0.815  0.805  0.741 0.491 0.810 0.681 

 

 

Table 7. Statistics of T6SE prediction results from 54,212 sequences of 12 bacterial species scanned 
by Bastion6. We list results using different thresholds, noting all results were filtered by readily validated 
T6SS effectors. 

Species Total number >=0.5  >=0.6 >=0.7 >=0.8 >=0.9 

Acidovorax citrulli strain AAC00-1 4652 925 495 225 83 29 

Klebsiella pneumoniae AJ218 5108 524 299 142 47 4 

Klebsiella pneumoniae B5055 5198 552 308 131 34 3 

Burkholderia thailandensis E264 5763 954 497 240 89 14 

Cronobacter turicensis z3032 3987 556 303 173 68 11 

Flavobacterium johnsoniae UW101 5101 1009 594 284 70 6 

Legionella pneumoniae Phi1 2943 212 88 34 6 0 

Klebsiella pneumoniae MGH78578 4859 495 274 132 36 3 

Proteus mirabilis BB2000 3325 364 211 111 40 1 

Pseudomonas aeruginosa PAO1 5558 690 388 198 94 12 

Ralstonia solanacearum CFBP2957 3174 481 216 90 17 3 

Vibrio parahaemolyticus RIMD 2210633 4544 530 309 162 67 8 
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Table S1.  A summary of the key aspects of previously developed T3SE prediction methods in comparison with Bastion3. 

Method Algorithm 

Sequence 
length 

used for 
extracting 
features 

Features Species 
Dataset size: 
Number of 

proteins 

Ensemble 
learning 
strategy 

used 

Web server or software accessibility Reference 

SIEVE SVM N30 AAC, SEQ, GC, 
CONS and PHYL 

S. 
Typhimurium  
 P. syringae 

T3SE: 65 
non-T3SE: - 

N http://cbb.pnnl.gov/portal/tools/sieve.html/ (Samudrala, et al., 2009) 

EffectiveT3 NB N100 AAC, SEQ, GC, 
CONS and PHYL 

5 species T3SE: 100 
non-T3SE: 200 

N http://www.effectors.org/method/effectivet3/ (Arnold, et al., 2009) 

T3SS_prediction ANN  
SVM 

N30 N-AAC P. syringae  
and other 
species 

T3SE: 575 
non-T3SE: 685 

N Unavailable (Löwer and Schneider, 
2009) 

T3Edb NB N100 PP 28 species T3SE: 100 
non-T3SE: 100 

N Unavailable 
 

(Tay, et al., 2010) 

SSE-ACC SVM N100 AAC, SS and ACC P. syringae T3SE: 108 
non-T3SE: 3424 

N Unavailable (Yang, et al., 2010) 

BPBAac SVM N100 AAC unclear T3SE: 154 
non-T3SE: 308 

N http://biocomputer.bio.cuhk.edu.hk/T3DB/BPBAac.php/ 
 

(Wang, et al., 2011) 

T3SPs RF N100 AAC, SS, ACC, PP 16 species T3SE: 189  
non-T3SE: 385 

N Unavailable 
 

(Yang, et al., 2013) 

T3_MM Markov 
model 

N100 Conditional 
dependence of AAC 

unclear T3SE: 154 
non-T3SE: 308 

N http://biocomputer.bio.cuhk.edu.hk/T3DB/T3_MM.php/ 
 

(Wang, et al., 2013) 

T3SEpre SVM N100 AAC, SS and ACC unclear T3SE: 189 
non-T3SE: 385 

N http://biocomputer.bio.cuhk.edu.hk/T3DB/T3SEpre.php/ 
 

(Wang, et al., 2013) 

BEAN2.0 BLAST  
SVM 

N120 
C50 

S, D, AAC PSSM 
 

unclear T3SE: 243 
non- T3SE: 486 

N http://systbio.cau.edu.cn/bean/ 
 

(Dong, et al., 2015) 

pEffect BLAST  
SVM 

Full  
sequence 

S, PSSM 43 species T3SE: 115 
non-T3SE: 3460 

N http://services.bromberglab.org/peffect/ 
 

(Goldberg, et al., 2016) 

Bastion3 LightGBM Full  
sequence 

AAC, DPC, QSO, 
CTDC, CTDT, 

PSSM, S_FPSSM, 
Pse_FPSSM, 
SS_FPSSM 

62 species T3SE: 379 
non-T3SE: 1112 

Y http://bastion3.erc.monash.edu/  Proposed in this work.  

Abbreviations: T3SE, type III secreted effector; S. typhimurium, Salmonella Typhimurium; P. syringae, Pseudomonas syringae; N, No; Y, Yes. 
Note: Nxxx indicates the corresponding number of features was extracted based on the top xxx amino acids from the N-terminus of the sequence. In comparison, Cxxx indicates the 
corresponding number of features was extracted based on the top xxx amino acids from the C-terminus of the sequence. 
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Fig. S1. Distribution of 379 T3SE proteins in the training dataset, by organism. Bar chart lists the 
numbers of proteins in the training dataset for all 62 species; Pie chart shows the percentages of major 
protein associated species. 
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Fig. S2. Distribution of 108 T3SE proteins in the independent dataset, by species. Bar chart lists the 
numbers of proteins in the independent dataset for all 29 species; Pie chart shows the percentages of 
major protein associated species. 
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Table S2.  Detailed information of positive samples in the independent dataset. 

Effector 
ID 

Effector/Gene name                         Species Reference 

1 OrgC Salmonella enterica (Day and Lee, 2003) 

2 ExoY Pseudomonas aeruginosa (Yahr, et al., 1998) 

3 EspD Edwardsiella (Tejeda-Dominguez, et al., 2017) 

4 sboH Salmonella bongori (Fookes, et al., 2011) 

5 VPA0450 Vibrio parahaemolyticus (Waddell, et al., 2014) 

6 AopP Aeromonas salmonicida (Dorohonceanu and Nevill-
Manning, 2000) 

7 SlrP Salmonella enterica 
 

(Bernal-Bayard and Ramos-
Morales, 2009) 

8 ExoU Pseudomonas aeruginosa (McMorran, et al., 2003) 

9 HopPsyA Pseudomonas viridiflava (van Dijk, et al., 2002) 

10 GogB Escherichia coli (Tobe, et al., 2006) 

11 DspE Pectobacterium carotovorum (Hogan, et al., 2013) 

12 EseI Edwardsiella ictaluri (Rogge, et al., 2013) 

13 YspI Yersinia enterocolitica (LeGrand, et al., 2015) 

14 BspR Bordetella bronchiseptica (Abe, et al., 2015) 

15 NopP Rhizobium (Ausmees, et al., 2004) 

16 SteB Salmonella typhimurium (Geddes, et al., 2005) 

17 HrpZ Pseudomonas savastanoi (Li, et al., 2002) 

18 NopM Rhizobium (Xin, et al., 2012) 

19 BapA Burkholderia pseudomallei (Treerat, et al., 2015) 

20 EseH Edwardsiella tarda (Hou, et al., 2017) 

21 PA14_16720 Pseudomonas aeruginosa (Burstein, et al., 2015) 

22 PA14_44480 Pseudomonas aeruginosa (Burstein, et al., 2015) 

23 ORF13 Shigella flexneri (Pinaud, et al., 2017) 

24 RSp0213 Ralstonia solanacearum (Lonjon, et al., 2016) 

25 XopAD Xanthomonas campestris (Teper, et al., 2016) 

26 XopAP Xanthomonas campestris (Teper, et al., 2016) 

27 XopAK Xanthomonas campestris (Teper, et al., 2016) 

28 XopAU Xanthomonas campestris (Teper, et al., 2016) 

29 XopAW Xanthomonas campestris (Teper, et al., 2016) 

30 eseJ Edwardsiella tarda (Xie, et al., 2015) 

31 CT_695 Chlamydia trachomatis (Mueller and Fields, 2015) 

32 MA20_12780 Bradyrhizobium japonicum (Tsurumaru, et al., 2015) 
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33 xopG Xanthomonas campestris (Teper, et al., 2015) 

34 xopH Xanthomonas campestris (Teper, et al., 2015) 

35 XopI Xanthomonas oryzae (Teper, et al., 2015) 

36 XopK Xanthomonas oryzae (Teper, et al., 2015) 

37 XopV Xanthomonas oryzae (Teper, et al., 2015) 

38 XopZ1 Xanthomonas oryzae (Teper, et al., 2015) 

39 XopAK Xanthomonas oryzae (Teper, et al., 2015) 

40 AvrBsT Xanthomonas euvesicatoria (Teper, et al., 2015) 

41 avrXv3 Xanthomonas euvesicatoria (Teper, et al., 2015) 

42 AvrXv4 Xanthomonas euvesicatoria (Teper, et al., 2015) 

43 XopAE Xanthomonas oryzae (Teper, et al., 2015) 

44 Pthxo3 Xanthomonas oryzae (Hutin, et al., 2015) 

45 VopO Vibrio parahaemolyticus  (Hiyoshi, et al., 2015) 

46 SpvD Salmonella dublin (Patton, et al., 2016) 

47 cigR Salmonella enterica (Yin, et al., 2016) 

48 RipAY Ralstonia solanacearum (Fujiwara, et al., 2016) 

49 VPA1336 Vibrio parahaemolyticus (Zhou, et al., 2013) 

50 VPA1350 Vibrio parahaemolyticus (Zhou, et al., 2013) 

51 vopA Vibrio parahaemolyticus (Zhou, et al., 2013) 

52 hpx2 Ralstonia solanacearum (Mukaihara, et al., 2010) 

53 hpx4 Ralstonia solanacearum (Mukaihara, et al., 2010) 

54 hpx8 Ralstonia solanacearum (Mukaihara, et al., 2010) 

55 hpx9 Ralstonia solanacearum (Mukaihara, et al., 2010) 

56 hpx11 Ralstonia solanacearum (Mukaihara, et al., 2010) 

57 hpx18 Ralstonia solanacearum (Mukaihara, et al., 2010) 

58 hpx23 Ralstonia solanacearum (Mukaihara, et al., 2010) 

59 hpx25 Ralstonia solanacearum (Mukaihara, et al., 2010) 

60 hpx26 Ralstonia solanacearum (Mukaihara, et al., 2010) 

61 hpx27 Ralstonia solanacearum (Mukaihara, et al., 2010) 

62 hpx28 Ralstonia solanacearum (Mukaihara, et al., 2010) 

63 hpx30 Ralstonia solanacearum (Mukaihara, et al., 2010) 

64 hpx32 Ralstonia solanacearum (Mukaihara, et al., 2010) 

65 hpx33 Ralstonia solanacearum (Mukaihara, et al., 2010) 

66 hpx34 Ralstonia solanacearum (Mukaihara, et al., 2010) 

67 hpx35 Ralstonia solanacearum (Mukaihara, et al., 2010) 

68 hpx36 Ralstonia solanacearum (Mukaihara, et al., 2010) 
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69 hpx13 Ralstonia solanacearum (Mukaihara, et al., 2010) 

70 hpx14 Ralstonia solanacearum (Mukaihara, et al., 2010) 

71 hpx16 Ralstonia solanacearum (Mukaihara, et al., 2010) 

72 rip53 Ralstonia solanacearum (Mukaihara, et al., 2010) 

73 rip28 Ralstonia solanacearum (Mukaihara, et al., 2010) 

74 rip1 Ralstonia solanacearum (Mukaihara, et al., 2010) 

75 rip3 Ralstonia solanacearum (Mukaihara, et al., 2010) 

76 rip4 Ralstonia solanacearum (Mukaihara, et al., 2010) 

77 rip6 Ralstonia solanacearum (Mukaihara, et al., 2010) 

78 rip10 Ralstonia solanacearum (Mukaihara, et al., 2010) 

79 rip15 Ralstonia solanacearum (Mukaihara, et al., 2010) 

80 rip16 Ralstonia solanacearum (Mukaihara, et al., 2010) 

81 rip22 Ralstonia solanacearum (Mukaihara, et al., 2010) 

82 rip30 Ralstonia solanacearum (Mukaihara, et al., 2010) 

83 rip31 Ralstonia solanacearum (Mukaihara, et al., 2010) 

84 rip32 Ralstonia solanacearum (Mukaihara, et al., 2010) 

85 rip36 Ralstonia solanacearum (Mukaihara, et al., 2010) 

86 rip41 Ralstonia solanacearum (Mukaihara, et al., 2010) 

87 rip42 Ralstonia solanacearum (Mukaihara, et al., 2010) 

88 rip51 Ralstonia solanacearum (Mukaihara, et al., 2010) 

89 rip57 Ralstonia solanacearum (Mukaihara, et al., 2010) 

90 rip59 Ralstonia solanacearum (Mukaihara, et al., 2010) 

91 rip61 Ralstonia solanacearum (Mukaihara, et al., 2010) 

92 rip62 Ralstonia solanacearum (Mukaihara, et al., 2010) 

93 rip67 Ralstonia solanacearum (Mukaihara, et al., 2010) 

94 rip69 Ralstonia solanacearum (Mukaihara, et al., 2010) 

95 rip71 Ralstonia solanacearum (Mukaihara, et al., 2010) 

96 rip72 Ralstonia solanacearum (Mukaihara, et al., 2010) 

97 PseB Pantoea agglomerans (Nissan, et al., 2018) 

98 HrpK Enterobacter/Pantoea agglomerans (Nissan, et al., 2018) 

99 pip Xanthomonas citri (Kan, et al., 2018) 

100 RSp0672 Ralstonia solanacearum (Angot, et al., 2006) 

101 RSc1800 Ralstonia solanacearum (Peeters, et al., 2013) 

102 XOO3803 Xanthomonas oryzae (Fan, et al., 2017) 

103 PXO_03702 Xanthomonas oryzae (Fan, et al., 2017) 

104 EseG Edwardsiella tarda (Xie, et al., 2010) 
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105 BPSS1385 Burkholderia pseudomallei (Vander Broek and Stevens, 2017) 

106 SopF Salmonella typhimurium (Cheng, et al., 2017) 

107 SsrB Salmonella typhimurium (Cordero-Alba, et al., 2012) 

108 avrGf2 Xanthomonas fuscans (Gochez, et al., 2017) 

 

Table S3.  Detailed information of T3SE proteins used in the case study.  

Effector ID Effector/Gene name Species Reference 

1 XCV1197 (XopAV) Xanthomonas campestris (Teper, et al., 2016) 

2 HaRxL23 Hyaloperonospora arabidopsidis (Deb, et al., 2018) 

3 YggG Salmonella Typhimurium (Li, et al., 2018) 
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Algorithm S1: Gradient-based One-Side Sampling 
Input: I: training data, d: iterations  
Input: a: sampling ratio of large gradient data  
Input: b: sampling ratio of small gradient data  
Input: loss: loss function, L: weak learner 
models�(Day and Lee, 2003), fact� (1 − a)/b 
topN�a � len(I) , randN�b � len(I)  
for i = 1 to d do 

preds�models.predict(I)  
g�loss(I, preds), w�(Dorohonceanu and Nevill-Manning, 2000)  
sorted�GetSortedIndices(abs(g))  
topSet�sorted[1:topN]  
randSet�RandomPick(sorted[topN:len(I)], randN) 

usedSet�topSet + randSet  
w[randSet] �= fact � Assign weight fact to the small gradient data. 
newModel�L(I[usedSet], − g[usedSet], w[usedSet]) 
models.append(newModel) 

 

Algorithm S2: Greedy Bundling 
Input: F: features, K: max conflict count  
Construct graph G 
searchOrder�G.sortByDegree()  
bundles�{}, bundlesConflict�{}  
for i in searchOrder do 

needNew�True  
for j = 1 to len(bundles) do 

cnt�ConflictCnt(bundles[j],F[i]) 
if cnt + bundlesConflict[i] � K then  

bundles[j].add(F[i]), needNew�False  
break 

if needNew then  
Add F[i] as a new bundle to bundles 

Output: bundles 
 

Note: The above algorithms come from (Ke, et al., 2017), where LightGBM was proposed. Please refer to such 
paper for more detailed description for the algorithms. 
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Table S4. Explanation of the 12 parameters on LightGBM.  

Parameters Declarationa Parameter tuning rangeb 

weight (alias: weight_column) used to specify the weight column [1,10], step: 1 

learning_rate shrinkage rate [2-10, 2-1], step: 21 

num_leaves number of leaves in one tree [50, 800], step: 50 

max_depth max depth of the tree [5,10], step: 1 

min_data_in_leaf minimal number of data in one 
leaf 

[21, 26], step: 21 

max_bin max number of bins that feature 
values will be bucketed in 

[25, 210], step: 21 

feature_fraction percentage of features selected 
before training each tree 

[0.5,1], step: 0.02 

min_sum_hessian minimal sum hessian in one leaf [0,0.02], step: 0.001 

lambda_l1 L1 regularization [0,0.01], step: 0.002 

lambda_l2 L2 regularization [0,0.01], step: 0.002 

drop_rate only used in dart [0,1], step: 0.1 

max_drop max number of dropped trees on 
one iteration 

[1,30], step: 2 

Note: aThe description of the above parameters comes from the official LightGBM document 
(http://lightgbm.readthedocs.io/en/latest/index.html). 
          bParameter tuning range represents the tuning range and step length in the process of one-by-one parameter 
tuning (step 1). 
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Table S5.  Detailed performance of using two-step parameter optimization for various feature encoding methods compared with first-step-only 
parameter optimization and initial parameter setting, based on 100-time 5-fold cross-validation. 

Model AAC DPC QSO CTDC CTDT PSSM-
composition 

RPM-PSSM D-FPSSM TPC DP-PSSM 

default 0.613±0.012 0.515±0.016 0.625±0.014 0.611±0.010 0.488±0.011 0.820±0.008 0.731±0.012 0.720±0.012 0.824±0.008 0.836±0.008 

step1 0.692±0.011 0.654±0.014 0.690±0.011 0.611±0.011 0.540±0.013 0.847±0.008 0.815±0.009 0.808±0.010 0.840±0.008 0.853±0.007 

step1+step2 0.694±0.011 0.656±0.013 0.705±0.012 0.619±0.010 0.549±0.013 0.857±0.006 0.828±0.009 0.809±0.011 0.843±0.008 0.858±0.007 

Note:  Values were expressed as mean±standard deviation. To ease understanding, the best performance value for each encoding method across different models 
appears in bold font. 
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Fig. S3. Performance comparison of LightGBM models trained using different sizes of sequence 
segments based on three feature encoding methods. Nxx and Cxx represent the features extracted 
based on the top xx (xx denotes the length of the sequence segments) N-terminus and C-terminus of 
the sequences, respectively, while Full represents features extracted based on full protein sequences. 
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Fig. S4. Performance comparison of multiple PSSM-based feature encoding methods when using 
different uniref databases (i.e. uniref50, uniref90 and uniref100) based on 100-time 5-fold cross-
validation test. 
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Table S6. Performance comparison of single feature-based models, group-based one-layer ensemble 
model and the final two-layer ensemble model on the independent test. 

Model SN SP ACC F-value MCC 

AAC 0.870±0.036 0.838±0.089 0.856±0.049 0.860±0.041 0.711±0.099 

DPC 0.806±0.031 0.886±0.045 0.848±0.025 0.842±0.028 0.696±0.050 

QSO 0.862±0.061 0.863±0.083 0.865±0.038 0.865±0.040 0.729±0.077 

CTDC 0.897±0.039 0.737±0.085 0.815±0.048 0.829±0.051 0.641±0.087 

CTDT 0.787±0.132 0.867±0.064 0.821±0.075 0.814±0.080 0.654±0.146 

PSSM-composition 0.954±0.034 0.900±0.058 0.930±0.014 0.932±0.018 0.861±0.027 

RPM-PSSM 0.945±0.053 0.846±0.080 0.900±0.042 0.904±0.043 0.802±0.080 

D-FPSSM 0.915±0.041 0.932±0.063 0.927±0.028 0.928±0.022 0.855±0.059 

TPC 0.918±0.052 0.957±0.042 0.939±0.033 0.939±0.031 0.880±0.066 

DP-PSSM 0.927±0.054 0.856±0.052 0.896±0.034 0.898±0.035 0.792±0.067 

Group 1 0.886±0.046 0.890±0.071 0.890±0.040 0.892±0.031 0.780±0.083 

Group 2 0.898±0.061 0.855±0.081 0.874±0.048 0.876±0.050 0.753±0.094 

Group 3 0.954±0.034 0.935±0.051 0.948±0.012 0.949±0.008 0.897±0.023 

Final model 0.954±0.034 0.958±0.025 0.959±0.008 0.958±0.010 0.917±0.017 

Note: Values are expressed as mean±standard deviation. To facilitate understanding, the best performance 
value for each metric across different encoding methods is shown in bold font.  
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Fig. S5. Performance evaluation of single feature-based models, group-based one-layer ensemble and 
the final two-layer ensemble models based on the independent test. 
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Fig. S6. ROC curves of single feature-based models, group-based one-layer ensemble models, and the 
final two-layer ensemble model used by Bastion3 based on the independent test. Results for each are 
color coded, and respective AUC values are also presented. 
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Table S7.  Detailed prediction performance of Bastion3 (using the final two-layer ensemble model) 
and other existing state-of-the-art toolkits based on the independent test. 

Toolkit SN SP ACC F-value MCC 

Bastion3 0.954±0.034 0.958±0.025 0.959±0.008 0.958±0.010 0.917±0.017 

BEAN 2.0 0.891±0.060 0.917±0.069 0.908±0.015 0.906±0.024 0.816±0.033 

pEffect 0.878±0.088 0.909±0.041 0.895±0.048 0.889±0.066 0.790±0.100 

EffectiveT3 0.741±0.086 0.873±0.037 0.809±0.038 0.794±0.051 0.623±0.068 

T3_MM 0.804±0.040 0.783±0.054 0.795±0.031 0.797±0.043 0.588±0.066 

BPBAac 0.288±0.067 0.978±0.031 0.629±0.062 0.437±0.082 0.371±0.072 

SIEVE 0.122±0.057 1.000±0.000 0.557±0.048 0.214±0.091 0.247±0.063 

Note: Values are expressed as mean±standard deviation. To facilitate understanding, the best performance 
value for each metric across different toolkits is shown in bold font.  
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Fig. S7. ROC curves of Bastion3 (using the final two-layer ensemble model) and other existing state-
of-the-art toolkits based on the independent test. Results for each are color coded, and respective AUC 
values are also presented. Curves composed by connected lines in the figure were obtained due to the 
fact that most of the existing toolkits predicted samples with a true or false label, but without giving 
the detailed probability score. Therefore, to make a fair comparison, we first transformed the 
prediction probabilities of Bastion3 and SIEVE into predictive labels (true or false), and then 
uniformly used the predictive labels to generate the ROC curves for all the toolkits under comparison 
in this study. 
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Fig. S8. Phylogenetic tree of all T3SEs in the training dataset, independent dataset and the three case 
study proteins XCV1197 (XopAV), HaRxL23 and YggG. We used Clustal Omega (Li, et al., 2015) to 
generate multiple sequence alignment for all these proteins, based on which we plotted the 
phylogenetic tree using iTOL (Letunic and Bork, 2016). T3SEs under the same red area indicates a 
relatively closer relationship with the case study protein in terms of sequence similarity. 
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Fig. S9. Visualization of the pair-wise sequence alignment between the case study protein XCV1197 
(XopAV) and its closest sequence homologue (HopI1; UniProt ID: Q87W07; located in training 
dataset). We used Jalview (Clamp, et al., 2004) to visualize the pair-wise sequence alignment result, 
which was generated by T-Coffee (Notredame, et al., 2000) with default settings per Jalview’s built-in 
function. 

 

 



 
 

186 
 

 

Fig. S10. Visualization of the pair-wise sequence alignment between the case study protein HaRxL23 
and its closest sequence homologue (EspF; UniProt ID: D2TKD7; located in training dataset). We 
used Jalview (Clamp, et al., 2004) to visualize the pair-wise sequence alignment result, which was 
generated by T-Coffee (Notredame, et al., 2000) with default settings per Jalview’s built-in function. 
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Fig. S11. Visualization of the pair-wise sequence alignment between the case study protein YggG and 
its closest sequence homologue (EspM3; UniProt ID: B1GVN9; located in training dataset). We used 
Jalview (Clamp, et al., 2004) to visualize the pair-wise sequence alignment result, which was 
generated by T-Coffee (Notredame, et al., 2000) with default settings per Jalview’s built-in function. 
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Fig. S12. Visualization of the conserved sequence motifs in the three case study proteins: (A) 
XCV1197 (XopAV), (B) HaRxL23 and (C) YggG. The MOTIF Search service in the GenomeNet 
resources (Kanehisa, 1997) was used to search each of the three respective case study proteins against 
the Pfam database (Bateman, et al., 2002). As a result, 0, 1 and 2 motifs were detected in the proteins 
XCV1197 (XopAV), HaRxL23 and YggG, respectively. 
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Table S8.  Detailed prediction results of the three T3SE samples used in the case study using single 
encoding method-based models, group-based one-layer ensemble models and the final two-layer 
ensemble model. Here, samples with a prediction score larger than 0.5 are recognized as T3SS 
effectors, and otherwise as non-T3SS effectors (marked in grey). 

Effector 
ID 

Effector 
name 

Single encoding method based model Ensemble model 
Final 
model AAC DPC QSO CTDC CTDT PSSM-

composition 
RPM-
PSSM 

D-
FPSSM TPC DP-

PSSM 
Group 

1 
Group 

2 
Group 

3 

1 XopAV 0.400 0.413 0.205 0.317 0.281 0.947 0.856 0.474 0.835 0.657 0.339 0.299 0.754 0.536 

2 HaRxL23 0.991 0.764 0.825 0.989 0.755 0.984 0.838 0.113 0.995 0.942 0.860 0.872 0.774 0.820 

3 YggG 0.902 0.941 0.749 0.984 0.880 0.501 0.329 0.998 0.967 0.865 0.864 0.932 0.732 0.815 

 

Table S9.  Detailed prediction results of Bastion3 (using the final two-layer ensemble model) and 
other existing state-of-the-art toolkits for T3SE samples regarding the case study. Misclassified 
protein samples are marked in grey. 

Effector ID Effector Name Bastion3 BEAN 2.0 pEffect EffectiveT3 T3_MM BPBAac SIEVE 

1 XopAV 0.536 Ö Ö × × × × × 

2 HaRxL23 0.820 Ö Ö × Ö Ö × × 

3 YggG 0.815 Ö × × Ö × × × 
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Fig. S13. Screenshot of the Bastion3 online web server: (A) user submission interface and (B) 
predicted result for a case study using 4 protein sequences as input. The result is marked as ‘Pred.’ for 
a computationally predicted protein, and ‘Exp.’ if the predicted protein belongs to a known 
(experimentally verified) effector. 

 

 

 

 

 

 

 



 
 

191 
 

References 

Abe, A., et al. The Bordetella Secreted Regulator BspR Is Translocated into the Nucleus of 
Host Cells via Its N-Terminal Moiety: Evaluation of Bacterial Effector Translocation by the 
Escherichia coli Type III Secretion System. PloS one 2015;10(8):e0135140. 

Angot, A., et al. Ralstonia solanacearum requires F-box-like domain-containing type III 
effectors to promote disease on several host plants. Proceedings of the National Academy of 
Sciences of the United States of America 2006;103(39):14620-14625. 

Arnold, R., et al. Sequence-based prediction of type III secreted proteins. PLoS pathogens 
2009;5(4):e1000376. 

Ausmees, N., et al. Characterization of NopP, a type III secreted effector of Rhizobium sp. 
strain NGR234. Journal of bacteriology 2004;186(14):4774-4780. 

Bateman, A., et al. The Pfam protein families database. Nucleic acids research 
2002;30(1):276-280. 

Bernal-Bayard, J. and Ramos-Morales, F. Salmonella type III secretion effector SlrP is an E3 
ubiquitin ligase for mammalian thioredoxin. The Journal of biological chemistry 
2009;284(40):27587-27595. 

Burstein, D., et al. Novel type III effectors in Pseudomonas aeruginosa. mBio 
2015;6(2):e00161. 

Cheng, S., et al. Identification of a Novel Salmonella Type III Effector by Quantitative 
Secretome Profiling. Molecular & cellular proteomics : MCP 2017;16(12):2219-2228. 

Clamp, M., et al. The Jalview Java alignment editor. Bioinformatics 2004;20(3):426-427. 

Cordero-Alba, M., Bernal-Bayard, J. and Ramos-Morales, F. SrfJ, a Salmonella type III 
secretion system effector regulated by PhoP, RcsB, and IolR. Journal of bacteriology 
2012;194(16):4226-4236. 

Day, J.B. and Lee, C.A. Secretion of the orgC gene product by Salmonella enterica serovar 
Typhimurium. Infection and immunity 2003;71(11):6680-6685. 

Deb, D., et al. Application of alignment-free bioinformatics methods to identify an oomycete 
protein with structural and functional similarity to the bacterial AvrE effector protein. PloS 
one 2018;13(4):e0195559. 

Dong, X., Lu, X. and Zhang, Z. BEAN 2.0: an integrated web resource for the identification 
and functional analysis of type III secreted effectors. Database : the journal of biological 
databases and curation 2015;2015:bav064. 

Dorohonceanu, B. and Nevill-Manning, C.G. Accelerating protein classification using suffix 
trees. Proceedings / ... International Conference on Intelligent Systems for Molecular Biology 
; ISMB. International Conference on Intelligent Systems for Molecular Biology 2000;8:128-
133. 

Fan, S., et al. Identification of phenolic compounds that suppress the virulence of 
Xanthomonas oryzae on rice via the type III secretion system. Mol Plant Pathol 
2017;18(4):555-568. 

Fookes, M., et al. Salmonella bongori provides insights into the evolution of the Salmonellae. 
PLoS pathogens 2011;7(8):e1002191. 



 
 

192 
 

Fujiwara, S., et al. RipAY, a Plant Pathogen Effector Protein, Exhibits Robust gamma-
Glutamyl Cyclotransferase Activity When Stimulated by Eukaryotic Thioredoxins. The 
Journal of biological chemistry 2016;291(13):6813-6830. 

Geddes, K., et al. Identification of new secreted effectors in Salmonella enterica serovar 
Typhimurium. Infection and immunity 2005;73(10):6260-6271. 

Gochez, A.M., et al. Molecular characterization of XopAG effector AvrGf2 from 
Xanthomonas fuscans ssp. aurantifolii in grapefruit. Mol Plant Pathol 2017;18(3):405-419. 

Goldberg, T., Rost, B. and Bromberg, Y. Computational prediction shines light on type III 
secretion origins. Scientific reports 2016;6:34516. 

Hiyoshi, H., et al. Interaction between the type III effector VopO and GEF-H1 activates the 
RhoA-ROCK pathway. PLoS pathogens 2015;11(3):e1004694. 

Hogan, C.S., et al. The type III secreted effector DspE is required early in solanum 
tuberosum leaf infection by Pectobacterium carotovorum to cause cell death, and requires 
Wx(3-6)D/E motifs. PloS one 2013;8(6):e65534. 

Hou, M., et al. Identification and functional characterization of EseH, a new effector of the 
type III secretion system of Edwardsiella piscicida. Cell Microbiol 2017;19(1). 

Hutin, M., et al. A knowledge-based molecular screen uncovers a broad-spectrum 
OsSWEET14 resistance allele to bacterial blight from wild rice. Plant J 2015;84(4):694-703. 

Kan, J., et al. A dual role for proline iminopeptidase in the regulation of bacterial motility and 
host immunity. Mol Plant Pathol 2018. 

Kanehisa, M. Linking databases and organisms: GenomeNet resources in Japan. Trends 
Biochem Sci 1997;22(11):442-444. 

Ke, G., et al. LightGBM: A highly efficient gradient boosting decision tree. Advances in 
Neural Information Processing Systems 2017:3149-3157. 

LeGrand, K., Matsumoto, H. and Young, G.M. A novel type 3 secretion system effector, 
YspI of Yersinia enterocolitica, induces cell paralysis by reducing total focal adhesion kinase. 
Cell Microbiol 2015;17(5):688-701. 

Letunic, I. and Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and 
annotation of phylogenetic and other trees. Nucleic acids research 2016;44(W1):W242-245. 

Li, C.M., et al. The Hrp pilus of Pseudomonas syringae elongates from its tip and acts as a 
conduit for translocation of the effector protein HrpZ. EMBO J 2002;21(8):1909-1915. 

Li, M., et al. YggG is a Novel SPI-1 Effector Essential for Salmonella Virulence. bioRxiv 
2018. 

Li, W., et al. The EMBL-EBI bioinformatics web and programmatic tools framework. 
Nucleic acids research 2015;43(W1):W580-584. 

Lonjon, F., et al. Comparative Secretome Analysis of Ralstonia solanacearum Type 3 
Secretion-Associated Mutants Reveals a Fine Control of Effector Delivery, Essential for 
Bacterial Pathogenicity. Molecular & cellular proteomics : MCP 2016;15(2):598-613. 

Löwer, M. and Schneider, G. Prediction of Type III Secretion Signals in Genomes of Gram-
Negative Bacteria. PloS one 2009;4(6):e5917. 

McMorran, B., et al. Effector ExoU from the type III secretion system is an important 
modulator of gene expression in lung epithelial cells in response to Pseudomonas aeruginosa 
infection. Infection and immunity 2003;71(10):6035-6044. 



 
 

193 
 

Mueller, K.E. and Fields, K.A. Application of beta-lactamase reporter fusions as an indicator 
of effector protein secretion during infections with the obligate intracellular pathogen 
Chlamydia trachomatis. PloS one 2015;10(8):e0135295. 

Mukaihara, T., Tamura, N. and Iwabuchi, M. Genome-wide identification of a large 
repertoire of Ralstonia solanacearum type III effector proteins by a new functional screen. 
Mol Plant Microbe Interact 2010;23(3):251-262. 

Nissan, G., et al. Revealing the inventory of type III effectors in Pantoea agglomerans gall-
forming pathovars using draft genome sequences and a machine-learning approach. Mol 
Plant Pathol 2018;19(2):381-392. 

Notredame, C., Higgins, D.G. and Heringa, J. T-Coffee: A novel method for fast and accurate 
multiple sequence alignment. Journal of molecular biology 2000;302(1):205-217. 

Patton, M.J., et al. Chlamydial Protease-Like Activity Factor and Type III Secreted Effectors 
Cooperate in Inhibition of p65 Nuclear Translocation. mBio 2016;7(5). 

Peeters, N., et al. Repertoire, unified nomenclature and evolution of the Type III effector 
gene set in the Ralstonia solanacearum species complex. BMC Genomics 2013;14:859. 

Pinaud, L., et al. Identification of novel substrates of Shigella T3SA through analysis of its 
virulence plasmid-encoded secretome. PloS one 2017;12(10):e0186920. 

Rogge, M.L., et al. Comparison of Vietnamese and US isolates of Edwardsiella ictaluri. Dis 
Aquat Organ 2013;106(1):17-29. 

Samudrala, R., Heffron, F. and McDermott, J.E. Accurate prediction of secreted substrates 
and identification of a conserved putative secretion signal for type III secretion systems. 
PLoS pathogens 2009;5(4):e1000375. 

Tay, D.M., et al. T3SEdb: data warehousing of virulence effectors secreted by the bacterial 
Type III Secretion System. BMC bioinformatics 2010;11 Suppl 7:S4. 

Tejeda-Dominguez, F., et al. A Novel Mechanism for Protein Delivery by the Type 3 
Secretion System for Extracellularly Secreted Proteins. mBio 2017;8(2). 

Teper, D., et al. Identification of novel Xanthomonas euvesicatoria type III effector proteins 
by a machine-learning approach. Mol Plant Pathol 2016;17(3):398-411. 

Teper, D., et al. Five Xanthomonas type III effectors suppress cell death induced by 
components of immunity-associated MAP kinase cascades. Plant Signal Behav 
2015;10(10):e1064573. 

Tobe, T., et al. An extensive repertoire of type III secretion effectors in Escherichia coli 
O157 and the role of lambdoid phages in their dissemination. Proceedings of the National 
Academy of Sciences of the United States of America 2006;103(40):14941-14946. 

Treerat, P., et al. The Burkholderia pseudomallei Proteins BapA and BapC Are Secreted 
TTSS3 Effectors and BapB Levels Modulate Expression of BopE. PloS one 
2015;10(12):e0143916. 

Tsurumaru, H., et al. A Putative Type III Secretion System Effector Encoded by the 
MA20_12780 Gene in Bradyrhizobium japonicum Is-34 Causes Incompatibility with Rj4 
Genotype Soybeans. Appl Environ Microbiol 2015;81(17):5812-5819. 

van Dijk, K., et al. The ShcA protein is a molecular chaperone that assists in the secretion of 
the HopPsyA effector from the type III (Hrp) protein secretion system of Pseudomonas 
syringae. Molecular microbiology 2002;44(6):1469-1481. 



 
 

194 
 

Vander Broek, C.W. and Stevens, J.M. Type III Secretion in the Melioidosis Pathogen 
Burkholderia pseudomallei. Front Cell Infect Microbiol 2017;7:255. 

Waddell, B., et al. Identification of VPA0451 as the specific chaperone for the Vibrio 
parahaemolyticus chromosome 1 type III-secreted effector VPA0450. FEMS Microbiol Lett 
2014;353(2):141-150. 

Wang, Y., et al. T3_MM: a Markov model effectively classifies bacterial type III secretion 
signals. PloS one 2013;8(3):e58173. 

Wang, Y., et al. Effective identification of bacterial type III secretion signals using joint 
element features. PloS one 2013;8(4):e59754. 

Wang, Y., et al. High-accuracy prediction of bacterial type III secreted effectors based on 
position-specific amino acid composition profiles. Bioinformatics 2011;27(6):777-784. 

Xie, H.X., et al. Identification and functional characterization of the novel Edwardsiella tarda 
effector EseJ. Infection and immunity 2015;83(4):1650-1660. 

Xie, H.X., et al. EseG, an effector of the type III secretion system of Edwardsiella tarda, 
triggers microtubule destabilization. Infection and immunity 2010;78(12):5011-5021. 

Xin, D.W., et al. Functional analysis of NopM, a novel E3 ubiquitin ligase (NEL) domain 
effector of Rhizobium sp. strain NGR234. PLoS pathogens 2012;8(5):e1002707. 

Yahr, T.L., et al. ExoY, an adenylate cyclase secreted by the Pseudomonas aeruginosa type 
III system. Proceedings of the National Academy of Sciences of the United States of America 
1998;95(23):13899-13904. 

Yang, X., et al. Effective identification of Gram-negative bacterial type III secreted effectors 
using position-specific residue conservation profiles. PloS one 2013;8(12):e84439. 

Yang, Y., et al. Computational prediction of type III secreted proteins from gram-negative 
bacteria. BMC bioinformatics 2010;11 Suppl 1:S47. 

Yin, J., et al. Construction and characterization of a cigR deletion mutant of Salmonella 
enterica serovar Pullorum. Avian Pathol 2016;45(5):569-575. 

Zhou, X., et al. A Vibrio parahaemolyticus T3SS effector mediates pathogenesis by 
independently enabling intestinal colonization and inhibiting TAK1 activation. Cell reports 
2013;3(5):1690-1702. 

 

 

 

 

 

 

 



 
 

195 
 

Appendix 4 - Supplementary information for Chapter 3.1 
 

BastionX: Systematic and accurate prediction of secreted 
substrates in Gram-negative bacteria within a distributed 

framework 

    Supplementary file 

 

Table S1. Statistical summary of the datasets collected and curated in this study. 

Datasets 

Number of the substrates     

(All/Less than 70% similarity) 

Type I Type II Type III Type IV Type VI 

196/161 81/79 511/504 420/414 160/148 

Training set 
Positive samples 132 62 410 339 119 

Negative samples 1112 1112 1112 1112 1112 

Independent 
set 

Positive samples 29 17 94 75 29 

Negative samples 29 17 94 75 29 
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Table S2. The detailed information of adopted feature encoding methods in this study. 

Group Method Description Dimension Ref 

Group 1 

AAC The frequency of the amino acids 20 (Liu, et al., 2008) 

DPC The frequency of the dipeptides 400 (Liu, et al., 2008) 

DP The PseAAC using the distance-pairs and 
reduced alphabet 

n+dn2 (n=14, 
d=3) (Liu, et al., 2014) 

DDE The dipeptide deviation from expected mean 400 (Chen, et al., 2018) 

Group 2 

QSOrder The quasi-sequence-order feature 20+20+lag*2 
(lag=30) (Chou, 2000) 

CTDC The composition among CTD (composition, 
transition and distribution) N*3 (N=13) (Lin, et al., 2007) 

PDT Feature based on the physicochemical distance 
transformation 

531*lamada 
(lamada=1) (Liu, et al., 2012) 

Group 13 

RPSSM 

Feature by calculating the correlation between 
two adjacent residues via importing the 
transition probability matrix into the PSSM 
profile 

110 (Ding, et al., 2014) 

TPC-PSSM 

Feature based on the transition probability 
matrix (TPM), which is extended from the 
PSSM to avoid complete loss of the sequence-
order information 

400 (Zhang, et al., 2012) 

RPM-PSSM Feature based a ‘filtered’ PSSM that is 
generated by a residue probing method 400 (Jeong, et al., 2011) 

DP-PSSM 
Extension of the Pse-PSSM feature encoding 
method to describe the relationship of an amino 
acid and its α-th succeeding amino acid 

(α+1)* 40   
(α=5) (Juan, et al., 2009) 

Pse-PSSM Feature based on a set of PSSM transformations 
and dimension normalization 40 (Chou and Shen, 2007) 

AAC-PSSM 
Extension of the concept of traditional AAC 
feature encoding method from the primary 
sequence to the PSSM profile 

20 (Liu, et al., 2010) 

AB-PSSM Feature based on averaged blocks of the PSSM 
profile 400 (Jeong, et al., 2011) 

EEDP Feature based on an ED-PSSM that is generated 
by an evolutionary formula (EDF) 400 (Zhang, et al., 2014) 

PSSM-
composition 

Feature by converting the original PSSM profile 
into a 20*20 matrix through summing up all 
rows of the same amino acid 

400 (Zou, et al., 2013) 

Note: Groups 1, 2 and 3 represent sequence based features, physicochemical property based features and 
evolutionary information based features, respectively. 
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Table S3. The detailed information of machine learning algorithms adopted in this study. 

Machine learning Parameters Parameter tuning range 

K-nearest neighbor (KNN) k [1,100], step: 1 

Naïve Bayes (NB) - - 

support vector machine (SVM) 
gamma [2-10, 210], step: 21 

cost [2-10, 210], step: 21 

random forest (RF) mtry 1000 

eXtreme Gradient Boosting 
(XGBoost) 

max_depth [4,8], step: 1 

eta [0.01, 0.03], step: random 

gamma [0, 0.2], step: random 

subsample [0.6, 0.9], step: random 

colsample_bytree [0.5, 0.8], step: random 

min_child_weight [1, 40], step: 1 

max_delta_step [1,10], step: 1 

Light Gradient Boosting Machine 
(LightGBM) 

weight (alias: weight_column) [1,10], step: 1 

learning_rate [2-10, 2-1], step: 21 

num_leaves [50, 800], step: 50 

max_depth [3,10], step: 1 

min_data_in_leaf [21, 25], step: 21 

max_bin [25, 210], step: 21 

feature_fraction [0.5,1], step: 0.02 

min_sum_hessian [0,0.02], step: 0.001 

lambda_l1 [0,0.01], step: 0.002 

lambda_l2 [0,0.01], step: 0.002 

drop_rate [0,1], step: 0.1 

max_drop [1,30], step: 2 
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Table S4. Performance comparison of single-method-based models for predicting type I secreted 
substrates based on the 5-fold cross-validation test. 

Model Encoding SN SP ACC F-value MCC 

KNN 

AAC 0.890±0.014 0.981±0.008 0.934±0.006 0.931±0.007 0.872±0.012 

DPC 0.945±0.010 0.835±0.053 0.887±0.025 0.893±0.020 0.782±0.044 

DDE 0.856±0.026 0.972±0.024 0.914±0.013 0.907±0.014 0.834±0.024 

QSOrder 0.896±0.012 0.976±0.007 0.935±0.007 0.932±0.008 0.873±0.014 

CTDC 0.898±0.010 0.961±0.021 0.928±0.009 0.925±0.009 0.858±0.020 

RPSSM 0.903±0.020 0.971±0.025 0.937±0.010 0.934±0.009 0.876±0.022 

TPC-PSSM 0.839±0.022 0.984±0.014 0.911±0.014 0.903±0.016 0.831±0.025 

RPM-PSSM 0.899±0.007 0.988±0.010 0.943±0.007 0.940±0.005 0.889±0.014 

DP-PSSM 0.913±0.017 0.979±0.012 0.946±0.008 0.944±0.009 0.893±0.015 

Pse-PSSM 0.899±0.012 0.982±0.011 0.940±0.007 0.937±0.007 0.883±0.015 

RF 

AAC 0.916±0.012 0.968±0.012 0.941±0.007 0.939±0.007 0.883±0.014 

DPC 0.918±0.014 0.986±0.014 0.952±0.007 0.950±0.007 0.905±0.015 

DDE 0.910±0.019 0.975±0.013 0.941±0.014 0.939±0.013 0.884±0.027 

QSOrder 0.910±0.012 0.979±0.014 0.944±0.007 0.942±0.007 0.890±0.015 

CTDC 0.925±0.008 0.959±0.012 0.941±0.009 0.940±0.008 0.882±0.018 

RPSSM 0.921±0.014 0.973±0.017 0.948±0.010 0.945±0.010 0.896±0.021 

TPC-PSSM 0.920±0.004 0.979±0.014 0.950±0.008 0.948±0.008 0.901±0.016 

RPM-PSSM 0.937±0.009 0.972±0.013 0.953±0.010 0.952±0.010 0.907±0.020 

DP-PSSM 0.947±0.011 0.969±0.017 0.959±0.010 0.958±0.011 0.917±0.021 

Pse-PSSM 0.938±0.010 0.974±0.015 0.956±0.012 0.954±0.012 0.912±0.024 

LightGBM 

AAC 0.910±0.012 0.942±0.014 0.924±0.009 0.922±0.010 0.850±0.019 

DPC 0.924±0.013 0.940±0.019 0.932±0.008 0.929±0.008 0.864±0.017 

DDE 0.923±0.017 0.961±0.022 0.943±0.015 0.941±0.015 0.886±0.029 

QSOrder 0.909±0.018 0.949±0.018 0.929±0.014 0.926±0.016 0.858±0.031 

CTDC 0.923±0.012 0.952±0.019 0.937±0.013 0.936±0.013 0.874±0.028 

RPSSM 0.919±0.014 0.962±0.015 0.940±0.011 0.939±0.012 0.881±0.023 

TPC-PSSM 0.920±0.014 0.972±0.015 0.946±0.011 0.944±0.011 0.893±0.022 

RPM-PSSM 0.938±0.015 0.967±0.013 0.952±0.010 0.951±0.010 0.905±0.021 

DP-PSSM 0.945±0.010 0.963±0.018 0.953±0.010 0.953±0.011 0.906±0.021 

Pse-PSSM 0.927±0.017 0.958±0.017 0.943±0.013 0.941±0.013 0.886±0.027 
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NB 

AAC 0.911±0.010 0.961±0.010 0.934±0.008 0.932±0.008 0.871±0.015 

DPC 0.834±0.013 0.972±0.010 0.902±0.007 0.894±0.008 0.812±0.012 

DDE 0.810±0.019 0.981±0.012 0.895±0.013 0.883±0.016 0.801±0.025 

QSOrder 0.904±0.013 0.966±0.008 0.934±0.010 0.932±0.009 0.870±0.018 

CTDC 0.904±0.006 0.934±0.013 0.919±0.006 0.916±0.007 0.838±0.012 

RPSSM 0.893±0.045 0.744±0.103 0.819±0.038 0.830±0.027 0.653±0.066 

TPC-PSSM 0.891±0.027 0.953±0.017 0.921±0.016 0.918±0.017 0.843±0.031 

RPM-PSSM 0.841±0.012 0.979±0.011 0.910±0.007 0.902±0.008 0.828±0.012 

DP-PSSM 0.910±0.014 0.959±0.018 0.935±0.011 0.931±0.012 0.870±0.023 

Pse-PSSM 0.909±0.017 0.972±0.016 0.941±0.013 0.939±0.014 0.883±0.027 

SVM 

AAC 0.933±0.007 0.962±0.013 0.946±0.008 0.945±0.008 0.893±0.017 

DPC 0.878±0.015 0.962±0.017 0.919±0.011 0.915±0.012 0.841±0.023 

DDE 0.891±0.020 0.953±0.019 0.921±0.014 0.919±0.014 0.845±0.028 

QSOrder 0.943±0.006 0.966±0.014 0.954±0.009 0.954±0.009 0.909±0.017 

CTDC 0.935±0.008 0.958±0.012 0.945±0.007 0.944±0.008 0.892±0.014 

RPSSM 0.923±0.016 0.967±0.014 0.945±0.013 0.944±0.014 0.892±0.027 

TPC-PSSM 0.891±0.033 0.926±0.021 0.905±0.017 0.903±0.019 0.816±0.030 

RPM-PSSM 0.943±0.010 0.963±0.017 0.953±0.009 0.952±0.010 0.906±0.019 

DP-PSSM 0.958±0.007 0.965±0.015 0.962±0.008 0.962±0.008 0.923±0.017 

Pse-PSSM 0.949±0.007 0.965±0.011 0.957±0.008 0.956±0.009 0.914±0.017 

XGBoost 

AAC 0.911±0.011 0.944±0.021 0.927±0.009 0.925±0.008 0.854±0.018 

DPC 0.915±0.008 0.934±0.019 0.925±0.012 0.922±0.011 0.849±0.025 

DDE 0.921±0.015 0.961±0.016 0.941±0.014 0.939±0.014 0.883±0.027 

QSOrder 0.898±0.015 0.952±0.015 0.924±0.011 0.922±0.011 0.850±0.024 

CTDC 0.925±0.008 0.958±0.013 0.941±0.008 0.940±0.008 0.882±0.018 

RPSSM 0.916±0.013 0.964±0.015 0.939±0.010 0.937±0.010 0.879±0.020 

TPC-PSSM 0.922±0.009 0.973±0.011 0.948±0.005 0.946±0.006 0.897±0.011 

RPM-PSSM 0.943±0.010 0.975±0.012 0.959±0.009 0.958±0.009 0.918±0.019 

DP-PSSM 0.929±0.013 0.959±0.016 0.944±0.012 0.943±0.011 0.887±0.024 

Pse-PSSM 0.921±0.015 0.959±0.015 0.940±0.013 0.937±0.013 0.880±0.026 

Note: Values are expressed as mean±standard deviation. The best performance value for each metric across 
different encoding methods within the same machine learning algorithm is highlighted in bold.  
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Table S5. Performance comparison of single method-based models for predicting T1SE based on 
independent test.  

Model Encoding SN SP ACC F-value MCC 

KNN 

AAC 0.966 0.966 0.966 0.966 0.931 

DPC 0.966 0.897 0.931 0.933 0.864 

DDE 0.966 0.966 0.966 0.966 0.931 

QSOrder 0.966 0.966 0.966 0.966 0.931 

CTDC 0.966 0.931 0.948 0.949 0.897 

RPSSM 0.966 1 0.983 0.982 0.966 

TPC-PSSM 0.931 0.966 0.948 0.947 0.897 

RPM-PSSM 0.966 0.966 0.966 0.966 0.931 

DP-PSSM 0.966 0.966 0.966 0.966 0.931 

Pse-PSSM 0.966 1 0.983 0.982 0.966 

RF 

AAC 0.966 0.966 0.966 0.966 0.931 

DPC 0.966 0.966 0.966 0.966 0.931 

DDE 0.931 0.966 0.948 0.947 0.897 

QSOrder 0.966 1 0.983 0.982 0.966 

CTDC 0.966 0.931 0.948 0.949 0.897 

RPSSM 0.966 0.966 0.966 0.966 0.931 

TPC-PSSM 0.966 1 0.983 0.982 0.966 

RPM-PSSM 0.966 1 0.983 0.982 0.966 

DP-PSSM 0.966 1 0.983 0.982 0.966 

Pse-PSSM 0.966 1 0.983 0.982 0.966 

LightGBM 

AAC 0.966 0.931 0.948 0.949 0.897 

DPC 0.966 0.897 0.931 0.933 0.864 

DDE 0.931 0.966 0.948 0.947 0.897 

QSOrder 0.966 1 0.983 0.982 0.966 

CTDC 0.966 0.931 0.948 0.949 0.897 

RPSSM 0.966 0.966 0.966 0.966 0.931 

TPC-PSSM 0.966 1 0.983 0.982 0.966 

RPM-PSSM 0.966 0.966 0.966 0.966 0.931 

DP-PSSM 0.966 0.931 0.948 0.949 0.897 

Pse-PSSM 0.966 1 0.983 0.982 0.966 
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NB 

AAC 0.966 0.966 0.966 0.966 0.931 

DPC 0.966 1 0.983 0.982 0.966 

DDE 0.931 0.966 0.948 0.947 0.897 

QSOrder 0.966 0.966 0.966 0.966 0.931 

CTDC 0.966 0.897 0.931 0.933 0.864 

RPSSM 0.966 0.862 0.914 0.918 0.832 

TPC-PSSM 0.931 0.966 0.948 0.947 0.897 

RPM-PSSM 0.897 1 0.948 0.945 0.901 

DP-PSSM 0.966 1 0.983 0.982 0.966 

Pse-PSSM 0.966 1 0.983 0.982 0.966 

SVM 

AAC 0.966 0.931 0.948 0.949 0.897 

DPC 0.966 0.931 0.948 0.949 0.897 

DDE 0.966 0.931 0.948 0.949 0.897 

QSOrder 0.966 0.966 0.966 0.966 0.931 

CTDC 0.966 0.931 0.948 0.949 0.897 

RPSSM 0.966 1 0.983 0.982 0.966 

TPC-PSSM 0.966 0.966 0.966 0.966 0.931 

RPM-PSSM 0.966 1 0.983 0.982 0.966 

DP-PSSM 0.966 0.966 0.966 0.966 0.931 

Pse-PSSM 0.966 1 0.983 0.982 0.966 

XGBoost 

AAC 0.966 0.931 0.948 0.949 0.897 

DPC 0.966 0.897 0.931 0.933 0.864 

DDE 0.966 0.966 0.966 0.966 0.931 

QSOrder 0.931 0.862 0.897 0.9 0.795 

CTDC 0.966 0.931 0.948 0.949 0.897 

RPSSM 0.966 0.966 0.966 0.966 0.931 

TPC-PSSM 0.966 1 0.983 0.982 0.966 

RPM-PSSM 0.966 0.966 0.966 0.966 0.931 

DP-PSSM 0.966 1 0.983 0.982 0.966 

Pse-PSSM 0.966 1 0.983 0.982 0.966 

Note: The best performance value for each metric across different encoding methods in each model is 
highlighted in bold.  
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Table S6. Performance comparison of single-method-based models for predicting type II secreted 
substrates based on the 5-fold cross-validation test. 

Model Encoding SN SP ACC F-value MCC 

KNN 

DDE 0.814±0.074 0.880±0.082 0.836±0.026 0.845±0.022 0.704±0.046 

DPC 0.856±0.095 0.717±0.135 0.784±0.044 0.796±0.041 0.595±0.075 

DP 0.878±0.074 0.796±0.051 0.836±0.023 0.839±0.029 0.682±0.050 

QSOrder 0.857±0.048 0.837±0.039 0.845±0.016 0.844±0.019 0.699±0.035 

PDT 0.865±0.050 0.714±0.074 0.788±0.030 0.801±0.023 0.591±0.051 

AAC-PSSM 0.863±0.055 0.857±0.054 0.860±0.020 0.858±0.023 0.725±0.037 

TPC-PSSM 0.697±0.067 0.907±0.039 0.801±0.033 0.770±0.045 0.624±0.066 

RPM-PSSM 0.904±0.031 0.839±0.045 0.870±0.016 0.874±0.012 0.748±0.031 

DP-PSSM 0.845±0.043 0.815±0.055 0.828±0.021 0.827±0.023 0.664±0.041 

Pse-PSSM 0.863±0.043 0.870±0.047 0.863±0.024 0.861±0.025 0.734±0.044 

RF 

DDE 0.803±0.037 0.788±0.036 0.794±0.030 0.792±0.031 0.600±0.058 

DPC 0.788±0.027 0.878±0.038 0.832±0.022 0.820±0.022 0.674±0.046 

DP 0.796±0.020 0.892±0.020 0.841±0.014 0.829±0.015 0.693±0.027 

QSOrder 0.836±0.035 0.856±0.039 0.845±0.027 0.843±0.028 0.699±0.054 

PDT 0.823±0.033 0.860±0.035 0.840±0.022 0.834±0.023 0.687±0.047 

AAC-PSSM 0.828±0.029 0.899±0.028 0.865±0.017 0.854±0.019 0.738±0.031 

TPC-PSSM 0.832±0.022 0.898±0.034 0.864±0.016 0.857±0.013 0.734±0.030 

RPM-PSSM 0.824±0.033 0.904±0.039 0.862±0.027 0.854±0.026 0.734±0.053 

DP-PSSM 0.841±0.025 0.888±0.046 0.861±0.024 0.856±0.024 0.733±0.049 

Pse-PSSM 0.859±0.036 0.909±0.022 0.883±0.019 0.879±0.021 0.771±0.040 

LightGBM 

DDE 0.772±0.062 0.759±0.065 0.766±0.054 0.764±0.058 0.537±0.102 

DPC 0.769±0.045 0.794±0.044 0.783±0.036 0.775±0.039 0.572±0.072 

DP 0.787±0.054 0.818±0.030 0.802±0.032 0.793±0.039 0.609±0.064 

QSOrder 0.817±0.060 0.809±0.038 0.814±0.046 0.812±0.053 0.632±0.096 

PDT 0.834±0.044 0.842±0.045 0.839±0.035 0.833±0.039 0.681±0.073 

AAC-PSSM 0.843±0.045 0.879±0.031 0.862±0.024 0.855±0.026 0.729±0.049 

TPC-PSSM 0.819±0.029 0.863±0.034 0.840±0.024 0.833±0.023 0.685±0.051 

RPM-PSSM 0.811±0.029 0.825±0.049 0.815±0.037 0.811±0.035 0.639±0.072 

DP-PSSM 0.843±0.061 0.859±0.031 0.850±0.040 0.845±0.044 0.707±0.076 

Pse-PSSM 0.847±0.047 0.872±0.037 0.860±0.030 0.854±0.033 0.727±0.063 
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NB 

DDE 0.802±0.054 0.820±0.061 0.812±0.047 0.805±0.046 0.630±0.093 

DPC 0.771±0.041 0.753±0.050 0.764±0.035 0.759±0.035 0.532±0.070 

DP 0.782±0.019 0.837±0.040 0.809±0.019 0.801±0.018 0.625±0.037 

QSOrder 0.807±0.030 0.834±0.048 0.820±0.027 0.814±0.027 0.649±0.050 

PDT 0.775±0.034 0.794±0.041 0.785±0.030 0.778±0.029 0.571±0.060 

AAC-PSSM 0.847±0.030 0.617±0.054 0.733±0.025 0.757±0.023 0.481±0.047 

TPC-PSSM 0.776±0.142 0.681±0.189 0.726±0.053 0.732±0.055 0.480±0.100 

RPM-PSSM 0.823±0.029 0.889±0.029 0.856±0.022 0.846±0.027 0.717±0.047 

DP-PSSM 0.817±0.042 0.875±0.032 0.845±0.029 0.835±0.035 0.695±0.063 

Pse-PSSM 0.870±0.032 0.916±0.015 0.893±0.018 0.890±0.021 0.790±0.036 

SVM 

DDE 0.829±0.030 0.868±0.044 0.848±0.029 0.843±0.029 0.701±0.059 

DPC 0.807±0.027 0.869±0.023 0.839±0.019 0.829±0.020 0.684±0.032 

DP 0.812±0.034 0.871±0.030 0.842±0.022 0.832±0.025 0.693±0.040 

QSOrder 0.815±0.030 0.877±0.031 0.846±0.020 0.836±0.023 0.698±0.037 

PDT 0.837±0.027 0.885±0.030 0.859±0.025 0.854±0.027 0.726±0.049 

AAC-PSSM 0.929±0.018 0.919±0.026 0.922±0.019 0.923±0.017 0.849±0.037 

TPC-PSSM 0.835±0.035 0.839±0.048 0.837±0.030 0.835±0.028 0.679±0.064 

RPM-PSSM 0.859±0.026 0.911±0.025 0.884±0.018 0.879±0.020 0.775±0.037 

DP-PSSM 0.876±0.036 0.905±0.037 0.889±0.032 0.886±0.034 0.784±0.064 

Pse-PSSM 0.900±0.017 0.915±0.032 0.907±0.017 0.906±0.016 0.818±0.035 

XGBoost 

DDE 0.688±0.080 0.713±0.081 0.698±0.074 0.687±0.083 0.404±0.146 

DPC 0.679±0.112 0.740±0.089 0.704±0.095 0.683±0.113 0.426±0.181 

DP 0.706±0.082 0.747±0.106 0.726±0.083 0.711±0.087 0.459±0.175 

QSOrder 0.748±0.062 0.781±0.049 0.760±0.050 0.748±0.060 0.535±0.097 

PDT 0.794±0.048 0.790±0.074 0.790±0.053 0.787±0.053 0.586±0.106 

AAC-PSSM 0.756±0.085 0.837±0.088 0.799±0.071 0.778±0.081 0.605±0.145 

TPC-PSSM 0.719±0.112 0.805±0.107 0.763±0.091 0.742±0.105 0.537±0.183 

RPM-PSSM 0.742±0.071 0.805±0.101 0.770±0.076 0.760±0.076 0.551±0.149 

DP-PSSM 0.770±0.096 0.836±0.072 0.799±0.066 0.786±0.076 0.615±0.120 

Pse-PSSM 0.802±0.062 0.834±0.068 0.817±0.053 0.812±0.056 0.640±0.107 
Note: Values are expressed as mean±standard deviation. The best performance value for each metric 

across different encoding methods within the same machine learning algorithm is highlighted in bold.  
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Table S7. Performance comparison of single-method-based models for predicting type II secreted 
substrates based on independent test. 

Model Encoding SN SP ACC F-value MCC 

KNN 

DDE 0.882 0.941 0.912 0.909 0.825 
DPC 0.941 0.647 0.794 0.821 0.615 
DP 1 0.765 0.882 0.895 0.787 
QSOrder 0.941 0.588 0.765 0.8 0.566 
PDT 1 0.824 0.912 0.919 0.837 
AAC-PSSM 0.941 0.765 0.853 0.865 0.717 
TPC-PSSM 0.765 0.941 0.853 0.839 0.717 
RPM-PSSM 0.941 0.824 0.882 0.889 0.77 
DP-PSSM 0.882 0.706 0.794 0.811 0.598 
Pse-PSSM 0.882 0.941 0.912 0.909 0.825 

RF 

DDE 0.941 0.941 0.941 0.941 0.882 
DPC 0.882 0.882 0.882 0.882 0.765 
DP 0.882 0.824 0.853 0.857 0.707 
QSOrder 0.824 0.765 0.794 0.8 0.589 
PDT 0.882 0.882 0.882 0.882 0.765 
AAC-PSSM 0.765 0.882 0.824 0.812 0.652 
TPC-PSSM 0.765 0.941 0.853 0.839 0.717 
RPM-PSSM 0.824 0.882 0.853 0.848 0.707 
DP-PSSM 0.941 0.824 0.882 0.889 0.77 
Pse-PSSM 0.941 0.882 0.912 0.914 0.825 

LightGBM 

DDE 0.882 1 0.941 0.938 0.889 
DPC 0.941 0.882 0.912 0.914 0.825 
DP 0.941 0.824 0.882 0.889 0.77 
QSOrder 0.882 0.765 0.824 0.833 0.652 
PDT 0.882 0.824 0.853 0.857 0.707 
AAC-PSSM 0.765 0.882 0.824 0.812 0.652 
TPC-PSSM 0.706 0.941 0.824 0.8 0.666 
RPM-PSSM 0.882 0.882 0.882 0.882 0.765 
DP-PSSM 0.941 0.882 0.912 0.914 0.825 
Pse-PSSM 0.941 0.824 0.882 0.889 0.77 

NB 

DDE 0.824 0.882 0.853 0.848 0.707 
DPC 0.941 0.941 0.941 0.941 0.882 
DP 0.941 0.824 0.882 0.889 0.77 
QSOrder 0.765 0.824 0.794 0.788 0.589 
PDT 0.941 0.765 0.853 0.865 0.717 
AAC-PSSM 0.882 0.412 0.647 0.714 0.333 
TPC-PSSM 0.941 0.824 0.882 0.889 0.77 
RPM-PSSM 0.882 0.824 0.853 0.857 0.707 
DP-PSSM 0.941 0.824 0.882 0.889 0.77 
Pse-PSSM 0.824 0.882 0.853 0.848 0.707 
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SVM 

DDE 0.882 0.941 0.912 0.909 0.825 
DPC 0.882 0.941 0.912 0.909 0.825 
DP 0.882 0.824 0.853 0.857 0.707 
QSOrder 0.882 0.765 0.824 0.833 0.652 
PDT 0.941 0.882 0.912 0.914 0.825 
AAC-PSSM 0.882 0.882 0.882 0.882 0.765 
TPC-PSSM 0.882 0.882 0.882 0.882 0.765 
RPM-PSSM 0.941 0.824 0.882 0.889 0.77 
DP-PSSM 0.941 0.824 0.882 0.889 0.77 
Pse-PSSM 0.941 0.882 0.912 0.914 0.825 

XGBoost 

DDE 0.882 0.941 0.912 0.909 0.825 
DPC 0.824 0.882 0.853 0.848 0.707 
DP 0.941 0.882 0.912 0.914 0.825 
QSOrder 0.824 0.824 0.824 0.824 0.647 
PDT 0.882 0.824 0.853 0.857 0.707 
AAC-PSSM 0.824 0.824 0.824 0.824 0.647 
TPC-PSSM 0.765 0.882 0.824 0.812 0.652 
RPM-PSSM 0.882 0.882 0.882 0.882 0.765 
DP-PSSM 0.941 0.882 0.912 0.914 0.825 
Pse-PSSM 0.882 0.824 0.853 0.857 0.707 

Note: The best performance value for each metric across different encoding methods within the same 
machine learning algorithm is highlighted in bold.  
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Table S8. Performance comparison of single-method-based models for predicting type III secreted 
substrates based on the 5-fold cross-validation test. 

Model Encoding SN SP ACC F-value MCC 

KNN 

AAC 0.816±0.022 0.876±0.017 0.845±0.008 0.840±0.010 0.693±0.016 

DP 0.750±0.037 0.884±0.019 0.817±0.014 0.802±0.019 0.641±0.026 

DPC 0.747±0.035 0.776±0.037 0.761±0.010 0.756±0.013 0.526±0.019 

QSOrder 0.819±0.020 0.876±0.014 0.847±0.007 0.842±0.009 0.697±0.013 

CTDC 0.777±0.019 0.858±0.020 0.817±0.007 0.809±0.008 0.638±0.014 

AAC-PSSM 0.907±0.009 0.886±0.019 0.896±0.009 0.897±0.008 0.793±0.018 

TPC-PSSM 0.815±0.032 0.883±0.024 0.849±0.011 0.842±0.014 0.700±0.021 

AB-PSSM 0.946±0.007 0.739±0.016 0.843±0.007 0.857±0.006 0.700±0.012 

DP-PSSM 0.913±0.018 0.874±0.020 0.893±0.009 0.895±0.009 0.787±0.018 

Pse-PSSM 0.914±0.013 0.897±0.015 0.905±0.008 0.906±0.008 0.811±0.015 

RF 

AAC 0.856±0.017 0.860±0.011 0.858±0.008 0.857±0.009 0.717±0.016 

DP 0.819±0.011 0.886±0.009 0.852±0.008 0.846±0.008 0.706±0.014 

DPC 0.774±0.017 0.886±0.016 0.829±0.010 0.818±0.010 0.664±0.019 

QSOrder 0.850±0.013 0.862±0.009 0.856±0.007 0.854±0.008 0.712±0.015 

CTDC 0.823±0.010 0.846±0.013 0.834±0.010 0.832±0.010 0.670±0.019 

AAC-PSSM 0.883±0.008 0.923±0.011 0.903±0.008 0.901±0.008 0.806±0.016 

TPC-PSSM 0.875±0.009 0.902±0.011 0.888±0.005 0.887±0.005 0.777±0.010 

AB-PSSM 0.884±0.006 0.937±0.009 0.910±0.005 0.907±0.006 0.822±0.011 

DP-PSSM 0.919±0.005 0.903±0.009 0.911±0.004 0.912±0.004 0.822±0.009 

Pse-PSSM 0.914±0.008 0.902±0.008 0.907±0.007 0.908±0.006 0.815±0.014 

LightGBM 

AAC 0.842±0.011 0.851±0.012 0.847±0.008 0.846±0.008 0.694±0.014 

DP 0.828±0.010 0.858±0.011 0.843±0.007 0.840±0.007 0.687±0.013 

DPC 0.807±0.017 0.838±0.014 0.822±0.012 0.818±0.012 0.646±0.024 

QSOrder 0.844±0.011 0.859±0.010 0.851±0.005 0.849±0.006 0.702±0.012 

CTDC 0.822±0.012 0.846±0.015 0.834±0.011 0.831±0.012 0.668±0.023 

AAC-PSSM 0.898±0.010 0.911±0.012 0.904±0.008 0.903±0.008 0.809±0.016 

TPC-PSSM 0.890±0.008 0.906±0.011 0.898±0.007 0.897±0.007 0.796±0.014 

AB-PSSM 0.898±0.007 0.923±0.009 0.910±0.005 0.909±0.005 0.821±0.010 

DP-PSSM 0.917±0.009 0.914±0.010 0.916±0.008 0.916±0.008 0.831±0.016 

Pse-PSSM 0.912±0.010 0.913±0.012 0.912±0.009 0.912±0.009 0.825±0.017 
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NB 

AAC 0.790±0.016 0.828±0.010 0.809±0.007 0.805±0.008 0.619±0.013 

DP 0.789±0.012 0.819±0.018 0.804±0.012 0.800±0.011 0.609±0.024 

DPC 0.764±0.011 0.694±0.025 0.729±0.014 0.737±0.011 0.460±0.028 

QSOrder 0.743±0.013 0.841±0.009 0.792±0.006 0.780±0.008 0.587±0.013 

CTDC 0.739±0.009 0.777±0.012 0.758±0.006 0.753±0.006 0.517±0.013 

AAC-PSSM 0.886±0.005 0.676±0.016 0.781±0.007 0.801±0.005 0.575±0.012 

TPC-PSSM 0.505±0.045 0.932±0.013 0.718±0.020 0.638±0.037 0.484±0.034 

AB-PSSM 0.867±0.004 0.789±0.014 0.828±0.007 0.834±0.006 0.658±0.012 

DP-PSSM 0.792±0.011 0.880±0.011 0.836±0.009 0.828±0.010 0.675±0.019 

Pse-PSSM 0.908±0.005 0.835±0.010 0.871±0.004 0.875±0.004 0.744±0.008 

SVM 

AAC 0.877±0.007 0.876±0.012 0.876±0.007 0.876±0.006 0.753±0.013 

DP 0.857±0.011 0.867±0.010 0.861±0.009 0.860±0.009 0.724±0.017 

DPC 0.838±0.010 0.871±0.017 0.854±0.012 0.851±0.012 0.710±0.024 

QSOrder 0.866±0.012 0.866±0.009 0.866±0.008 0.865±0.009 0.732±0.017 

CTDC 0.851±0.016 0.872±0.008 0.861±0.008 0.859±0.009 0.723±0.015 

AAC-PSSM 0.916±0.014 0.915±0.016 0.915±0.006 0.915±0.006 0.831±0.013 

TPC-PSSM 0.881±0.023 0.859±0.020 0.870±0.010 0.871±0.011 0.741±0.020 

AB-PSSM 0.913±0.009 0.923±0.017 0.918±0.011 0.918±0.011 0.837±0.021 

DP-PSSM 0.924±0.010 0.927±0.010 0.925±0.009 0.925±0.009 0.851±0.017 

Pse-PSSM 0.927±0.006 0.919±0.008 0.923±0.007 0.923±0.007 0.846±0.013 

XGBoost 

AAC 0.844±0.016 0.855±0.010 0.850±0.010 0.848±0.011 0.700±0.020 

DP 0.832±0.008 0.858±0.011 0.845±0.007 0.842±0.007 0.691±0.014 

DPC 0.810±0.022 0.849±0.018 0.829±0.018 0.825±0.019 0.660±0.036 

QSOrder 0.850±0.010 0.855±0.009 0.852±0.006 0.851±0.007 0.704±0.013 

CTDC 0.825±0.015 0.848±0.015 0.836±0.011 0.834±0.011 0.673±0.022 

AAC-PSSM 0.892±0.007 0.912±0.012 0.901±0.007 0.900±0.007 0.803±0.015 

TPC-PSSM 0.884±0.010 0.900±0.009 0.892±0.007 0.891±0.007 0.784±0.014 

AB-PSSM 0.900±0.013 0.921±0.013 0.910±0.009 0.909±0.009 0.821±0.017 

DP-PSSM 0.914±0.012 0.912±0.016 0.913±0.012 0.913±0.012 0.826±0.025 

Pse-PSSM 0.911±0.011 0.904±0.011 0.907±0.008 0.907±0.008 0.814±0.016 
Note: Values are expressed as mean±standard deviation. The best performance value for each metric 

across different encoding methods within the same machine learning algorithm is highlighted in bold.  
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Table S9. Performance comparison of single-method-based models for predicting type III secreted 
substrates based on independent test. 

Model Encoding SN SP ACC F-value MCC 

KNN 

AAC 0.851 0.713 0.796 0.782 0.569 

DP 0.84 0.755 0.806 0.798 0.598 

DPC 0.83 0.5 0.712 0.665 0.349 

QSOrder 0.851 0.734 0.804 0.793 0.589 

CTDC 0.84 0.862 0.849 0.851 0.702 

AAC-PSSM 0.947 0.894 0.922 0.92 0.842 

TPC-PSSM 0.862 0.894 0.876 0.878 0.756 

AB-PSSM 0.957 0.734 0.861 0.846 0.709 

DP-PSSM 0.957 0.862 0.914 0.91 0.823 

Pse-PSSM 0.947 0.862 0.908 0.904 0.811 

RF 

AAC 0.904 0.819 0.867 0.862 0.726 

DP 0.872 0.851 0.863 0.862 0.724 

DPC 0.883 0.755 0.83 0.819 0.644 

QSOrder 0.883 0.83 0.86 0.856 0.714 

CTDC 0.883 0.894 0.888 0.888 0.777 

AAC-PSSM 0.915 0.926 0.92 0.92 0.84 

TPC-PSSM 0.904 0.904 0.904 0.904 0.809 

AB-PSSM 0.947 0.968 0.957 0.957 0.915 

DP-PSSM 0.936 0.883 0.912 0.91 0.82 

Pse-PSSM 0.915 0.883 0.901 0.899 0.798 

LightGBM 

AAC 0.904 0.809 0.863 0.856 0.716 

DP 0.883 0.83 0.86 0.856 0.714 

DPC 0.883 0.734 0.822 0.809 0.624 

QSOrder 0.872 0.851 0.863 0.862 0.724 

CTDC 0.894 0.872 0.884 0.883 0.766 

AAC-PSSM 0.947 0.894 0.922 0.92 0.842 

TPC-PSSM 0.936 0.915 0.926 0.926 0.851 

AB-PSSM 0.947 0.947 0.947 0.947 0.894 

DP-PSSM 0.947 0.894 0.922 0.92 0.842 

Pse-PSSM 0.926 0.894 0.911 0.91 0.82 
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NB 

AAC 0.851 0.84 0.847 0.846 0.692 

DP 0.851 0.755 0.812 0.803 0.609 

DPC 0.798 0.702 0.761 0.75 0.502 

QSOrder 0.809 0.809 0.809 0.809 0.617 

CTDC 0.819 0.766 0.798 0.793 0.586 

AAC-PSSM 0.904 0.745 0.837 0.824 0.657 

TPC-PSSM 0.468 0.926 0.607 0.697 0.443 

AB-PSSM 0.883 0.851 0.869 0.867 0.734 

DP-PSSM 0.809 0.755 0.788 0.782 0.565 

Pse-PSSM 0.926 0.787 0.866 0.856 0.72 

SVM 

AAC 0.872 0.851 0.863 0.862 0.724 

DP 0.904 0.83 0.872 0.867 0.736 

DPC 0.926 0.766 0.857 0.846 0.7 

QSOrder 0.894 0.809 0.857 0.851 0.705 

CTDC 0.883 0.872 0.878 0.878 0.755 

AAC-PSSM 0.947 0.894 0.922 0.92 0.842 

TPC-PSSM 0.915 0.883 0.901 0.899 0.798 

AB-PSSM 0.947 0.926 0.937 0.936 0.873 

DP-PSSM 0.957 0.862 0.914 0.91 0.823 

Pse-PSSM 0.936 0.894 0.917 0.915 0.831 

XGBoost 

AAC 0.894 0.84 0.87 0.867 0.735 

DP 0.894 0.872 0.884 0.883 0.766 

DPC 0.883 0.755 0.83 0.819 0.644 

QSOrder 0.883 0.819 0.856 0.851 0.704 

CTDC 0.894 0.862 0.88 0.878 0.756 

AAC-PSSM 0.936 0.851 0.898 0.894 0.79 

TPC-PSSM 0.926 0.915 0.921 0.92 0.84 

AB-PSSM 0.947 0.926 0.937 0.936 0.873 

DP-PSSM 0.947 0.904 0.927 0.926 0.852 

Pse-PSSM 0.926 0.872 0.902 0.899 0.799 

Note: The best performance value for each metric across different encoding methods within the same 
machine learning algorithm is highlighted in bold.  
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Table S10. Performance comparison of single-method-based models for predicting type IV secreted 
substrates based on the 5-fold cross-validation test. 

Model Encoding SN SP ACC F-value MCC 

KNN 

AAC 0.803±0.021 0.795±0.030 0.799±0.015 0.799±0.013 0.599±0.028 

DPC 0.867±0.021 0.636±0.061 0.751±0.024 0.777±0.015 0.519±0.040 

PDT 0.790±0.025 0.755±0.036 0.771±0.011 0.775±0.009 0.546±0.022 

QSOrder 0.793±0.009 0.800±0.034 0.796±0.015 0.795±0.012 0.594±0.031 

CTDC 0.786±0.019 0.785±0.023 0.785±0.012 0.785±0.012 0.572±0.024 

AB-PSSM 0.916±0.015 0.622±0.053 0.769±0.021 0.798±0.014 0.563±0.032 

EEDP 0.848±0.021 0.903±0.026 0.875±0.008 0.871±0.008 0.753±0.017 

DP-PSSM 0.846±0.021 0.900±0.016 0.873±0.008 0.869±0.009 0.747±0.015 

PSSM-
composition 0.879±0.019 0.826±0.031 0.853±0.012 0.856±0.010 0.707±0.023 

Pse-PSSM 0.855±0.012 0.888±0.020 0.871±0.011 0.868±0.011 0.743±0.022 

RF 

AAC 0.784±0.008 0.818±0.022 0.800±0.012 0.797±0.011 0.602±0.025 

DPC 0.769±0.013 0.826±0.016 0.797±0.012 0.791±0.012 0.596±0.025 

PDT 0.782±0.020 0.819±0.014 0.800±0.012 0.795±0.014 0.602±0.025 

QSOrder 0.782±0.012 0.821±0.022 0.801±0.014 0.797±0.014 0.603±0.029 

CTDC 0.788±0.015 0.819±0.016 0.803±0.011 0.800±0.012 0.608±0.023 

AB-PSSM 0.842±0.008 0.917±0.011 0.879±0.007 0.874±0.007 0.761±0.014 

EEDP 0.832±0.007 0.929±0.011 0.881±0.007 0.874±0.007 0.765±0.014 

DP-PSSM 0.849±0.005 0.914±0.009 0.882±0.005 0.877±0.005 0.765±0.011 

PSSM-
composition 0.825±0.006 0.933±0.009 0.879±0.003 0.871±0.003 0.762±0.006 

Pse-PSSM 0.850±0.012 0.921±0.012 0.885±0.008 0.880±0.008 0.773±0.016 

LightGBM 

AAC 0.794±0.017 0.801±0.014 0.797±0.011 0.795±0.011 0.595±0.021 

DPC 0.776±0.021 0.795±0.024 0.785±0.019 0.783±0.019 0.571±0.037 

PDT 0.806±0.004 0.804±0.019 0.804±0.010 0.804±0.009 0.610±0.021 

QSOrder 0.800±0.018 0.799±0.018 0.799±0.015 0.799±0.015 0.600±0.029 

CTDC 0.781±0.019 0.801±0.028 0.790±0.020 0.788±0.018 0.584±0.039 

AB-PSSM 0.866±0.010 0.883±0.016 0.875±0.009 0.873±0.009 0.750±0.018 

EEDP 0.848±0.009 0.904±0.012 0.876±0.007 0.872±0.008 0.753±0.015 

DP-PSSM 0.859±0.014 0.913±0.005 0.886±0.008 0.882±0.009 0.773±0.014 

PSSM-
composition 0.848±0.008 0.915±0.016 0.881±0.009 0.877±0.008 0.765±0.018 

Pse-PSSM 0.866±0.005 0.900±0.015 0.883±0.009 0.880±0.009 0.767±0.018 
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NB 

AAC 0.821±0.007 0.728±0.014 0.774±0.010 0.784±0.008 0.552±0.018 

DPC 0.793±0.015 0.685±0.015 0.738±0.011 0.751±0.011 0.480±0.022 

PDT 0.763±0.007 0.704±0.019 0.733±0.011 0.741±0.009 0.468±0.022 

QSOrder 0.827±0.007 0.707±0.018 0.767±0.011 0.780±0.009 0.538±0.020 

CTDC 0.794±0.009 0.674±0.024 0.734±0.014 0.749±0.012 0.472±0.028 

AB-PSSM 0.807±0.005 0.715±0.012 0.762±0.007 0.771±0.006 0.525±0.012 

EEDP 0.825±0.007 0.479±0.024 0.653±0.010 0.703±0.005 0.324±0.018 

DP-PSSM 0.810±0.009 0.875±0.008 0.842±0.007 0.836±0.008 0.686±0.014 

PSSM-
composition 0.825±0.007 0.678±0.030 0.752±0.018 0.769±0.014 0.510±0.034 

Pse-PSSM 0.847±0.006 0.798±0.015 0.823±0.009 0.827±0.008 0.646±0.017 

SVM 

AAC 0.813±0.010 0.837±0.019 0.824±0.010 0.822±0.009 0.651±0.020 

DPC 0.794±0.023 0.831±0.012 0.812±0.013 0.808±0.014 0.626±0.024 

PDT 0.807±0.016 0.832±0.021 0.818±0.010 0.816±0.010 0.639±0.020 

QSOrder 0.815±0.015 0.826±0.014 0.820±0.010 0.819±0.011 0.641±0.020 

CTDC 0.803±0.011 0.803±0.018 0.803±0.012 0.803±0.011 0.607±0.025 

AB-PSSM 0.869±0.011 0.895±0.016 0.882±0.011 0.879±0.012 0.764±0.022 

EEDP 0.848±0.014 0.927±0.020 0.887±0.013 0.882±0.013 0.777±0.026 

DP-PSSM 0.895±0.012 0.906±0.014 0.900±0.008 0.899±0.008 0.801±0.015 

PSSM-
composition 0.866±0.014 0.912±0.017 0.889±0.008 0.886±0.008 0.779±0.017 

Pse-PSSM 0.870±0.009 0.913±0.011 0.892±0.007 0.889±0.007 0.785±0.014 

XGBoost 

AAC 0.789±0.018 0.804±0.018 0.796±0.015 0.794±0.016 0.593±0.031 

DPC 0.791±0.016 0.807±0.016 0.799±0.011 0.797±0.011 0.599±0.021 

PDT 0.798±0.015 0.819±0.023 0.807±0.016 0.805±0.016 0.617±0.033 

QSOrder 0.797±0.015 0.804±0.022 0.800±0.016 0.798±0.016 0.601±0.032 

CTDC 0.781±0.016 0.815±0.021 0.797±0.015 0.793±0.015 0.597±0.031 

AB-PSSM 0.860±0.010 0.883±0.013 0.872±0.010 0.870±0.010 0.743±0.020 

EEDP 0.822±0.043 0.908±0.017 0.864±0.022 0.857±0.026 0.733±0.041 

DP-PSSM 0.849±0.015 0.903±0.016 0.876±0.014 0.872±0.014 0.753±0.027 

PSSM-
composition 0.846±0.009 0.915±0.010 0.880±0.006 0.876±0.006 0.763±0.012 

Pse-PSSM 0.854±0.007 0.904±0.014 0.879±0.008 0.876±0.009 0.760±0.017 

Note: Values are expressed as mean±standard deviation. The best performance value for each metric 
across different encoding methods within the same machine learning algorithm is highlighted in bold.  
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Table S11. Performance comparison of single-method-based models for predicting type IV secreted 
substrates based on independent test. 

Model Encoding SN SP ACC F-value MCC 

KNN 

AAC 0.893 0.827 0.865 0.86 0.722 

DPC 0.973 0.747 0.874 0.86 0.739 

PDT 0.867 0.827 0.85 0.847 0.694 

QSOrder 0.92 0.92 0.92 0.92 0.84 

CTDC 0.867 0.88 0.872 0.873 0.747 

AB-PSSM 1 0.6 0.833 0.8 0.655 

EEDP 0.933 0.893 0.915 0.913 0.827 

DP-PSSM 0.973 0.88 0.93 0.927 0.857 

PSSM-
composition 0.987 0.853 0.925 0.92 0.848 

Pse-PSSM 0.96 0.853 0.911 0.907 0.818 

RF 

AAC 0.933 0.907 0.921 0.92 0.84 

DPC 0.907 0.933 0.919 0.92 0.84 

PDT 0.893 0.907 0.899 0.9 0.8 

QSOrder 0.907 0.947 0.925 0.927 0.854 

CTDC 0.907 0.907 0.907 0.907 0.813 

AB-PSSM 0.947 0.907 0.928 0.927 0.854 

EEDP 0.92 0.92 0.92 0.92 0.84 

DP-PSSM 0.96 0.893 0.929 0.927 0.855 

PSSM-
composition 0.947 0.947 0.947 0.947 0.893 

Pse-PSSM 0.96 0.907 0.935 0.933 0.868 

LightGBM 

AAC 0.933 0.88 0.909 0.907 0.814 

DPC 0.92 0.907 0.914 0.913 0.827 

PDT 0.92 0.853 0.89 0.887 0.775 

QSOrder 0.893 0.933 0.912 0.913 0.827 

CTDC 0.88 0.933 0.904 0.907 0.814 

AB-PSSM 0.947 0.893 0.922 0.92 0.841 

EEDP 0.92 0.88 0.902 0.9 0.801 

DP-PSSM 0.96 0.933 0.947 0.947 0.894 

PSSM-
composition 0.947 0.893 0.922 0.92 0.841 

Pse-PSSM 0.96 0.893 0.929 0.927 0.855 
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NB 

AAC 0.947 0.853 0.904 0.9 0.804 

DPC 0.853 0.88 0.865 0.867 0.734 

PDT 0.853 0.76 0.815 0.807 0.616 

QSOrder 0.933 0.893 0.915 0.913 0.827 

CTDC 0.893 0.8 0.854 0.847 0.696 

AB-PSSM 0.867 0.813 0.844 0.84 0.681 

EEDP 0.88 0.653 0.79 0.767 0.548 

DP-PSSM 0.893 0.8 0.854 0.847 0.696 

PSSM-
composition 0.96 0.8 0.889 0.88 0.77 

Pse-PSSM 0.947 0.76 0.866 0.853 0.719 

SVM 

AAC 0.96 0.947 0.954 0.953 0.907 

DPC 0.867 0.907 0.884 0.887 0.774 

PDT 0.92 0.893 0.908 0.907 0.814 

QSOrder 0.893 0.947 0.918 0.92 0.841 

CTDC 0.96 0.96 0.96 0.96 0.92 

AB-PSSM 0.947 0.893 0.922 0.92 0.841 

EEDP 0.947 0.92 0.934 0.933 0.867 

DP-PSSM 0.987 0.893 0.943 0.94 0.884 

PSSM-
composition 0.987 0.893 0.943 0.94 0.884 

Pse-PSSM 0.947 0.907 0.928 0.927 0.854 

XGBoost 

AAC 0.933 0.867 0.903 0.9 0.802 

DPC 0.933 0.92 0.927 0.927 0.853 

PDT 0.92 0.84 0.885 0.88 0.762 

QSOrder 0.893 0.947 0.918 0.92 0.841 

CTDC 0.907 0.933 0.919 0.92 0.84 

AB-PSSM 0.947 0.907 0.928 0.927 0.854 

EEDP 0.92 0.88 0.902 0.9 0.801 

DP-PSSM 0.973 0.92 0.948 0.947 0.895 

PSSM-
composition 0.973 0.88 0.93 0.927 0.857 

Pse-PSSM 0.96 0.893 0.929 0.927 0.855 
Note: The best performance value for each metric across different encoding methods within the same 

machine learning algorithm is highlighted in bold.  
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Table S12. Performance comparison of single-method-based models for predicting type VI secreted 
substrates based on the 5-fold cross-validation test. 

Model Encoding SN SP ACC F-value MCC 

KNN 

AAC 0.903±0.036 0.699±0.073 0.800±0.035 0.818±0.028 0.615±0.065 

DPC 0.852±0.086 0.527±0.108 0.687±0.030 0.728±0.028 0.410±0.058 

DP 0.899±0.056 0.633±0.075 0.764±0.026 0.789±0.022 0.558±0.049 

QSOrder 0.895±0.031 0.693±0.045 0.793±0.029 0.811±0.025 0.600±0.055 

CTDC 0.849±0.039 0.762±0.034 0.805±0.029 0.811±0.027 0.614±0.056 

EEDP 0.934±0.015 0.794±0.044 0.863±0.022 0.871±0.018 0.735±0.040 

AAC-PSSM 0.913±0.019 0.863±0.034 0.888±0.012 0.890±0.012 0.778±0.025 

AB-PSSM 0.902±0.074 0.788±0.065 0.843±0.025 0.849±0.030 0.699±0.046 

DP-PSSM 0.892±0.029 0.777±0.054 0.832±0.020 0.841±0.015 0.674±0.034 

Pse-PSSM 0.892±0.014 0.810±0.034 0.849±0.015 0.855±0.014 0.704±0.028 

RF 

AAC 0.826±0.023 0.818±0.037 0.819±0.020 0.819±0.018 0.643±0.041 

DPC 0.834±0.016 0.850±0.024 0.836±0.017 0.834±0.015 0.683±0.033 

DP 0.858±0.017 0.849±0.031 0.851±0.021 0.851±0.018 0.706±0.040 

QSOrder 0.798±0.014 0.823±0.034 0.808±0.021 0.806±0.018 0.621±0.041 

CTDC 0.850±0.029 0.798±0.033 0.824±0.023 0.828±0.023 0.649±0.046 

EEDP 0.902±0.013 0.828±0.023 0.864±0.015 0.868±0.014 0.730±0.029 

AAC-PSSM 0.890±0.018 0.884±0.021 0.886±0.016 0.885±0.016 0.773±0.031 

AB-PSSM 0.893±0.018 0.855±0.024 0.872±0.017 0.873±0.017 0.747±0.032 

DP-PSSM 0.871±0.018 0.904±0.019 0.885±0.012 0.882±0.013 0.772±0.025 

Pse-PSSM 0.889±0.016 0.904±0.018 0.895±0.016 0.893±0.016 0.790±0.033 

LightGBM 

AAC 0.809±0.026 0.796±0.048 0.801±0.028 0.802±0.025 0.605±0.056 

DPC 0.803±0.025 0.753±0.022 0.773±0.021 0.777±0.021 0.558±0.042 

DP 0.817±0.025 0.766±0.034 0.789±0.022 0.793±0.020 0.582±0.046 

QSOrder 0.818±0.032 0.765±0.051 0.790±0.034 0.795±0.032 0.584±0.071 

CTDC 0.832±0.022 0.798±0.029 0.815±0.019 0.817±0.019 0.631±0.040 

EEDP 0.893±0.024 0.856±0.020 0.873±0.020 0.874±0.021 0.749±0.037 

AAC-PSSM 0.907±0.015 0.877±0.024 0.891±0.017 0.892±0.017 0.783±0.033 

AB-PSSM 0.898±0.022 0.859±0.013 0.877±0.016 0.878±0.018 0.757±0.030 

DP-PSSM 0.893±0.015 0.875±0.023 0.883±0.013 0.884±0.013 0.767±0.026 

Pse-PSSM 0.895±0.020 0.878±0.020 0.884±0.016 0.885±0.015 0.771±0.033 
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NB 

AAC 0.861±0.022 0.741±0.041 0.800±0.019 0.811±0.017 0.605±0.038 

DPC 0.691±0.081 0.737±0.049 0.713±0.038 0.699±0.053 0.431±0.077 

DP 0.783±0.038 0.773±0.027 0.778±0.013 0.777±0.020 0.558±0.028 

QSOrder 0.842±0.021 0.685±0.050 0.762±0.021 0.779±0.015 0.534±0.042 

CTDC 0.898±0.019 0.666±0.050 0.782±0.025 0.803±0.019 0.578±0.047 

EEDP 0.897±0.026 0.442±0.046 0.671±0.034 0.729±0.024 0.380±0.075 

AAC-PSSM 0.909±0.013 0.556±0.045 0.734±0.023 0.771±0.017 0.499±0.044 

AB-PSSM 0.851±0.015 0.644±0.033 0.746±0.023 0.768±0.019 0.504±0.042 

DP-PSSM 0.866±0.034 0.853±0.023 0.857±0.017 0.857±0.021 0.717±0.035 

Pse-PSSM 0.876±0.013 0.829±0.021 0.850±0.013 0.852±0.011 0.704±0.025 

SVM 

AAC 0.861±0.019 0.836±0.034 0.847±0.022 0.849±0.020 0.697±0.043 

DPC 0.820±0.029 0.833±0.031 0.824±0.023 0.824±0.022 0.652±0.047 

DP 0.833±0.021 0.839±0.030 0.835±0.016 0.834±0.016 0.673±0.040 

QSOrder 0.823±0.028 0.824±0.036 0.821±0.028 0.821±0.027 0.645±0.057 

CTDC 0.822±0.032 0.816±0.034 0.819±0.021 0.818±0.022 0.640±0.038 

EEDP 0.899±0.031 0.899±0.029 0.899±0.015 0.899±0.015 0.798±0.030 

AAC-PSSM 0.893±0.027 0.927±0.023 0.909±0.008 0.907±0.009 0.820±0.015 

AB-PSSM 0.894±0.021 0.888±0.023 0.890±0.013 0.890±0.013 0.781±0.025 

DP-PSSM 0.888±0.035 0.927±0.021 0.905±0.014 0.902±0.017 0.814±0.024 

Pse-PSSM 0.884±0.017 0.910±0.018 0.895±0.013 0.893±0.013 0.792±0.024 

XGBoost 

AAC 0.816±0.021 0.793±0.034 0.804±0.019 0.804±0.017 0.610±0.039 

DPC 0.810±0.025 0.773±0.036 0.786±0.029 0.788±0.027 0.586±0.055 

DP 0.819±0.028 0.787±0.035 0.800±0.027 0.803±0.026 0.606±0.053 

QSOrder 0.813±0.028 0.765±0.053 0.788±0.033 0.793±0.030 0.579±0.070 

CTDC 0.831±0.032 0.784±0.050 0.807±0.034 0.811±0.031 0.616±0.068 

EEDP 0.899±0.026 0.838±0.026 0.868±0.023 0.871±0.025 0.739±0.045 

AAC-PSSM 0.859±0.022 0.844±0.021 0.850±0.019 0.849±0.021 0.702±0.035 

AB-PSSM 0.904±0.030 0.837±0.039 0.869±0.034 0.873±0.034 0.741±0.066 

DP-PSSM 0.856±0.035 0.838±0.022 0.844±0.023 0.844±0.025 0.694±0.041 

Pse-PSSM 0.859±0.018 0.849±0.015 0.852±0.015 0.853±0.016 0.707±0.032 
Note: Values are expressed as mean±standard deviation. The best performance value for each metric 

across different encoding methods within the same machine learning algorithm is highlighted in bold.  
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Table S13. Performance comparison of single-method-based models for predicting type VI secreted 
substrates based on independent test. 

Model Encoding SN SP ACC F-value MCC 

KNN 

AAC 1 0.586 0.793 0.829 0.644 

DPC 1 0.241 0.621 0.725 0.37 

DP 0.966 0.621 0.793 0.824 0.625 

QSOrder 1 0.586 0.793 0.829 0.644 

CTDC 0.966 0.897 0.931 0.933 0.864 

EEDP 1 0.828 0.914 0.921 0.84 

AAC-PSSM 1 0.897 0.948 0.951 0.901 

AB-PSSM 1 0.655 0.828 0.853 0.698 

DP-PSSM 1 0.724 0.862 0.879 0.753 

Pse-PSSM 1 0.931 0.966 0.967 0.933 

RF 

AAC 1 0.862 0.931 0.935 0.87 

DPC 0.897 0.897 0.897 0.897 0.793 

DP 1 1 1 1 1 

QSOrder 0.931 0.862 0.897 0.9 0.795 

CTDC 0.966 0.931 0.948 0.949 0.897 

EEDP 0.966 0.897 0.931 0.933 0.864 

AAC-PSSM 1 0.931 0.966 0.967 0.933 

AB-PSSM 1 0.862 0.931 0.935 0.87 

DP-PSSM 1 0.966 0.983 0.983 0.966 

Pse-PSSM 1 0.931 0.966 0.967 0.933 

LightGBM 

AAC 1 0.793 0.897 0.906 0.811 

DPC 0.897 0.793 0.845 0.852 0.693 

DP 1 0.966 0.983 0.983 0.966 

QSOrder 0.966 0.793 0.879 0.889 0.77 

CTDC 1 0.931 0.966 0.967 0.933 

EEDP 1 0.828 0.914 0.921 0.84 

AAC-PSSM 1 0.931 0.966 0.967 0.933 

AB-PSSM 1 0.828 0.914 0.921 0.84 

DP-PSSM 1 1 1 1 1 

Pse-PSSM 1 0.931 0.966 0.967 0.933 
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NB 

AAC 0.931 0.724 0.828 0.844 0.67 

DPC 0.828 0.862 0.845 0.842 0.69 

DP 0.966 0.828 0.897 0.903 0.801 

QSOrder 0.931 0.69 0.81 0.831 0.64 

CTDC 0.966 0.759 0.862 0.875 0.74 

EEDP 0.862 0.586 0.724 0.758 0.466 

AAC-PSSM 1 0.724 0.862 0.879 0.753 

AB-PSSM 0.966 0.621 0.793 0.824 0.625 

DP-PSSM 1 0.931 0.966 0.967 0.933 

Pse-PSSM 1 0.862 0.931 0.935 0.87 

SVM 

AAC 1 0.862 0.931 0.935 0.87 

DPC 0.931 0.897 0.914 0.915 0.828 

DP 1 0.931 0.966 0.967 0.933 

QSOrder 0.966 0.862 0.914 0.918 0.832 

CTDC 0.966 0.828 0.897 0.903 0.801 

EEDP 1 0.897 0.948 0.951 0.901 

AAC-PSSM 1 0.931 0.966 0.967 0.933 

AB-PSSM 1 0.862 0.931 0.935 0.87 

DP-PSSM 1 0.931 0.966 0.967 0.933 

Pse-PSSM 1 0.897 0.948 0.951 0.901 

XGBoost 

AAC 1 0.828 0.914 0.921 0.84 

DPC 0.931 0.828 0.879 0.885 0.763 

DP 1 0.966 0.983 0.983 0.966 

QSOrder 0.966 0.828 0.897 0.903 0.801 

CTDC 1 0.897 0.948 0.951 0.901 

EEDP 0.966 0.897 0.931 0.933 0.864 

AAC-PSSM 1 0.931 0.966 0.967 0.933 

AB-PSSM 1 0.828 0.914 0.921 0.84 

DP-PSSM 1 0.966 0.983 0.983 0.966 

Pse-PSSM 1 0.931 0.966 0.967 0.933 
Note: The best performance value for each metric across different encoding methods within the same 

machine learning algorithm is highlighted in bold.  
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Table S14. Performance comparison of ensemble models using different strategies for substrate 
prediction based on the 5-fold cross-validation test. 

Substrate 
type Ensemble SN SP ACC F-value MCC 

I 

Stacking 0.950�0.010 0.978�0.013 0.964�0.010 0.963�0.010 0.927�0.019 

Averaging 0.933�0.008 0.983�0.013 0.957�0.008 0.956�0.008 0.916�0.018 

Majority voting 0.930�0.008 0.984�0.013 0.956�0.008 0.955�0.008 0.914±0.018 

II 

Stacking 0.893�0.024 0.917�0.017 0.904�0.016 0.902�0.016 0.812�0.030 

Averaging 0.882�0.023 0.922�0.024 0.901�0.013 0.898�0.014 0.806�0.026 

Majority voting 0.869�0.028 0.929�0.019 0.898�0.016 0.894�0.018 0.802�0.029 

III 

Stacking 0.915�0.009 0.940�0.010 0.927�0.008 0.926�0.008 0.856�0.017 

Averaging 0.912�0.006 0.928�0.010 0.919�0.006 0.919�0.006 0.840�0.012 

Majority voting 0.903�0.006 0.929�0.009 0.916�0.006 0.914�0.006 0.832�0.012 

IV 

Stacking 0.873�0.012 0.942�0.010 0.907�0.007 0.903�0.008 0.817�0.015 

Averaging 0.871�0.007 0.913�0.016 0.892�0.007 0.889�0.007 0.784�0.016 

Majority voting 0.858�0.011 0.906�0.020 0.882�0.010 0.879�0.010 0.766�0.022 

VI 

Stacking 0.905�0.019 0.932�0.020 0.917�0.018 0.915�0.020 0.835�0.036 

Averaging 0.937�0.013 0.886�0.019 0.910�0.015 0.912�0.015 0.822�0.029 

Majority voting 0.928�0.015 0.890�0.017 0.907�0.012 0.909�0.012 0.816�0.025 

Note: Values are expressed as mean±standard deviation. The best performance value for each metric 
across different substrate types is highlighted in bold.  
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Table S15. Performance comparison of ensemble models using different strategies for substrate 
prediction based on the independent test. 

Substrate 
type Ensemble SN SP ACC F-value MCC 

I 

Stacking 0.966 1 0.983 0.982 0.966 

Averaging 0.966 1 0.983 0.982 0.966 

Majority voting 0.966 1 0.983 0.982 0.966 

II 

Stacking 0.941 1 0.971 0.97 0.943 

Averaging 0.941 1 0.971 0.97 0.943 

Majority voting 0.941 1 0.971 0.97 0.943 

III 

Stacking 0.947 1 0.973 0.973 0.948 

Averaging 0.947 1 0.973 0.973 0.948 

Majority voting 0.936 1 0.968 0.967 0.938 

IV 

Stacking 0.973 1 0.987 0.986 0.974 

Averaging 0.973 1 0.987 0.986 0.974 

Majority voting 0.96 1 0.98 0.98 0.961 

VI 

Stacking 1 1 1 1 1 

Averaging 1 1 1 1 1 

Majority voting 1 1 1 1 1 

Note: The best performance value for each metric across different substrate types is highlighted in bold.   
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Table S16.  Detailed contributions of different single-method-based models to the final ensemble 
model for predicting type I secreted substrates. 

Modela Importance value Modela Importance value 

DP-PSSM_SVM 6.674  Pse-PSSM_KNN 1.597  

DP-PSSM_RF 6.007  CTDC_XGBoost 1.548  

RPM-PSSM_XGBoost 5.811  RPSSM_LightGBM 1.460  

Pse-PSSM_RF 5.038  AAC_RF 1.421  

Pse-PSSM_SVM 4.950  RPSSM_KNN 1.314  

QSOrder_SVM 4.917  RPSSM_XGBoost 1.234  

RPM-PSSM_RF 4.560  QSOrder_LightGBM 1.177  

DP-PSSM_LightGBM 4.308  AAC_KNN 1.066  

DPC_RF 4.263  DP-PSSM_NB 1.024  

RPM-PSSM_SVM 4.191  DPC_LightGBM 0.932  

RPM-PSSM_LightGBM 4.009  QSOrder_NB 0.908  

TPC-PSSM_RF 3.604  QSOrder_KNN 0.882  

RPSSM_SVM 3.399  AAC_NB 0.821  

RPSSM_RF 3.245  TPC-PSSM_NB 0.769  

TPC-PSSM_XGBoost 3.063  DPC_XGBoost 0.755  

AAC_SVM 2.844  DDE_SVM 0.505  

TPC-PSSM_LightGBM 2.814  AAC_XGBoost 0.474  

DP-PSSM_KNN 2.770  CTDC_KNN 0.472  

DDE_LightGBM 2.590  QSOrder_XGBoost 0.420  

QSOrder_RF 2.566  DDE_KNN 0.289  

DP-PSSM_XGBoost 2.524  AAC_LightGBM 0.288  

Pse-PSSM_LightGBM 2.492  DPC_KNN 0.237  

RPM-PSSM_KNN 2.250  TPC-PSSM_SVM 0.226  

CTDC_SVM 2.213  CTDC_NB 0.214  

DDE_RF 2.177  RPM-PSSM_NB 0.170  

Pse-PSSM_NB 2.047  TPC-PSSM_KNN 0.152  

DDE_XGBoost 1.995  DPC_SVM 0.141  

Pse-PSSM_XGBoost 1.850  RPSSM_NB 0.114  

CTDC_RF 1.820  DDE_NB 0.107  

CTDC_LightGBM 1.678  DPC_NB 0.098  

Note: aModels are denoted as (feature encoding method)_(machine learning algorithm). For example, DP-
PSSM_SVM denotes that the model is trained with the DP-PSSM feature based on the SVM algorithm. 
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Table S17.  Detailed contributions of different single-method-based models to the final ensemble 
model for predicting type II secreted substrates. 

Modela Importance value Modela Importance value 

AAC-PSSM_SVM 4.538  DP-PSSM_KNN 0.787  

Pse-PSSM_SVM 3.659  Pse-PSSM_XGBoost 0.695  

Pse-PSSM_NB 2.796  TPC-PSSM_LightGBM 0.692  

DP-PSSM_SVM 2.656  TPC-PSSM_KNN 0.678  

RPM-PSSM_SVM 2.020  DP_RF 0.628  

Pse-PSSM_RF 1.939  QSOrder_LightGBM 0.613  

AAC-PSSM_RF 1.681  DP-PSSM_XGBoost 0.612  

Pse-PSSM_KNN 1.671  DDE_NB 0.581  

RPM-PSSM_KNN 1.608  DPC_RF 0.547  

AAC-PSSM_KNN 1.605  DPC_SVM 0.545  

AAC-PSSM_LightGBM 1.600  RPM-PSSM_LightGBM 0.452  

DP-PSSM_LightGBM 1.478  PDT_KNN 0.435  

PDT_SVM 1.442  QSOrder_NB 0.429  

TPC-PSSM_RF 1.340  PDT_XGBoost 0.427  

Pse-PSSM_LightGBM 1.325  DP_NB 0.426  

DP-PSSM_RF 1.319  DPC_LightGBM 0.419  

RPM-PSSM_RF 1.281  DPC_KNN 0.415  

RPM-PSSM_NB 1.164  DDE_LightGBM 0.407  

TPC-PSSM_SVM 1.113  TPC-PSSM_XGBoost 0.382  

DDE_SVM 1.069  DP_LightGBM 0.380  

QSOrder_KNN 1.026  DDE_RF 0.340  

PDT_LightGBM 1.020  RPM-PSSM_XGBoost 0.338  

DP_SVM 0.954  DP_XGBoost 0.337  

DDE_KNN 0.927  QSOrder_XGBoost 0.313  

DP-PSSM_NB 0.919  AAC-PSSM_NB 0.310  

PDT_RF 0.904  TPC-PSSM_NB 0.258  

QSOrder_SVM 0.875  DDE_XGBoost 0.256  

AAC-PSSM_XGBoost 0.848  DPC_XGBoost 0.254  

QSOrder_RF 0.847  PDT_NB 0.254  

DP_KNN 0.817  DPC_NB 0.254  

Note: aModels are denoted as (feature encoding method)_(machine learning algorithm). For example, DP-
PSSM_SVM denotes that the model is trained with the DP-PSSM feature based on the SVM algorithm. 
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Table S18.  Detailed contributions of different single-method-based models to the final ensemble 
model for predicting type III secreted substrates. 

Modela Importance value Modela Importance value 

DP-PSSM_SVM 34.124  AAC_KNN 2.083  

Pse-PSSM_SVM 30.616  DP_SVM 2.043  

AB-PSSM_SVM 26.960  TPC-PSSM_KNN 2.000  

AAC-PSSM_SVM 20.379  QSOrder_XGBoost 1.894  

DP-PSSM_LightGBM 19.249  QSOrder_KNN 1.885  

DP-PSSM_XGBoost 18.648  QSOrder_LightGBM 1.879  

Pse-PSSM_LightGBM 16.915  AAC_RF 1.862  

AB-PSSM_XGBoost 16.443  DP_KNN 1.770  

AB-PSSM_RF 15.676  AAC_LightGBM 1.763  

AB-PSSM_LightGBM 14.790  QSOrder_RF 1.735  

DP-PSSM_RF 14.503  AB-PSSM_NB 1.672  

Pse-PSSM_KNN 12.622  DP_XGBoost 1.651  

Pse-PSSM_XGBoost 12.400  AAC_XGBoost 1.624  

Pse-PSSM_RF 11.367  CTDC_RF 1.543  

AAC-PSSM_LightGBM 10.168  DPC_LightGBM 1.531  

AAC-PSSM_RF 8.937  DPC_KNN 1.516  

AAC-PSSM_XGBoost 8.649  DPC_XGBoost 1.489  

DP-PSSM_KNN 7.799  DP_LightGBM 1.483  

TPC-PSSM_LightGBM 7.155  CTDC_XGBoost 1.460  

AAC-PSSM_KNN 6.547  DP_RF 1.407  

AAC_SVM 4.733  CTDC_LightGBM 1.391  

TPC-PSSM_XGBoost 4.481  AAC-PSSM_NB 1.376  

TPC-PSSM_RF 3.962  CTDC_KNN 1.302  

TPC-PSSM_SVM 3.337  DPC_NB 1.278  

CTDC_SVM 2.831  CTDC_NB 1.258  

QSOrder_SVM 2.684  DP_NB 1.161  

Pse-PSSM_NB 2.648  QSOrder_NB 1.133  

DP-PSSM_NB 2.528  DPC_RF 1.115  

AB-PSSM_KNN 2.165  AAC_NB 1.099  

DPC_SVM 2.143  TPC-PSSM_NB 1.075  

Note: aModels are denoted as (feature encoding method)_(machine learning algorithm). For example, DP-
PSSM_SVM denotes that the model is trained with the DP-PSSM feature based on the SVM algorithm. 
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Table S19.  Detailed contributions of different single-method-based models to the final ensemble 
model for predicting type IV secreted substrates. 

Modela Importance value Modela Importance value 

DP-PSSM_SVM 24.567  DPC_SVM 1.864  

Pse-PSSM_SVM 17.322  EEDP_NB 1.799  

PSSM-composition_SVM 15.274  PDT_KNN 1.700  

EEDP_SVM 14.402  DPC_XGBoost 1.699  

DP-PSSM_LightGBM 13.017  AB-PSSM_KNN 1.660  

Pse-PSSM_RF 12.653  CTDC_NB 1.651  

AB-PSSM_SVM 11.132  CTDC_RF 1.636  

Pse-PSSM_LightGBM 10.837  DPC_KNN 1.600  

PSSM-composition_XGBoost 10.693  CTDC_LightGBM 1.585  

PSSM-composition_LightGBM 10.551  PSSM-composition_NB 1.581  

AB-PSSM_RF 10.013  QSOrder_LightGBM 1.565  

EEDP_RF 9.940  DPC_LightGBM 1.561  

Pse-PSSM_XGBoost 9.517  QSOrder_KNN 1.531  

DP-PSSM_RF 9.148  CTDC_SVM 1.521  

PSSM-composition_RF 8.630  AAC_LightGBM 1.503  

EEDP_LightGBM 8.168  CTDC_XGBoost 1.496  

AB-PSSM_LightGBM 7.640  PDT_XGBoost 1.477  

EEDP_KNN 7.516  DPC_NB 1.467  

DP-PSSM_XGBoost 7.085  CTDC_KNN 1.439  

Pse-PSSM_KNN 6.561  AAC_KNN 1.413  

AB-PSSM_XGBoost 6.545  AB-PSSM_NB 1.409  

DP-PSSM_KNN 6.385  PDT_LightGBM 1.380  

EEDP_XGBoost 6.032  DPC_RF 1.366  

PSSM-composition_KNN 4.256  QSOrder_XGBoost 1.301  

DP-PSSM_NB 2.997  QSOrder_RF 1.259  

AAC_SVM 2.532  PDT_NB 1.245  

Pse-PSSM_NB 2.291  AAC_NB 1.230  

PDT_SVM 2.174  QSOrder_NB 1.226  

QSOrder_SVM 2.067  AAC_RF 1.162  

PDT_RF 1.940  AAC_XGBoost 1.087  

Note: aModels are denoted as (feature encoding method)_(machine learning algorithm). For example, DP-
PSSM_SVM denotes that the model is trained with the DP-PSSM feature based on the SVM algorithm. 
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Table S20.  Detailed contributions of different single-method-based models to the final ensemble 
model for predicting type VI secreted substrates. 

Modela Importance value Modela Importance value 

AAC-PSSM_SVM 8.015  CTDC_RF 0.975  

DP-PSSM_SVM 6.566  AAC_KNN 0.883  

EEDP_SVM 5.667  DPC_SVM 0.872  

Pse-PSSM_SVM 5.509  CTDC_SVM 0.858  

Pse-PSSM_RF 5.423  DP_SVM 0.847  

AB-PSSM_SVM 4.622  QSOrder_KNN 0.780  

AAC-PSSM_KNN 4.568  QSOrder_SVM 0.743  

AAC-PSSM_LightGBM 4.313  CTDC_LightGBM 0.743  

AAC-PSSM_RF 4.089  CTDC_KNN 0.707  

Pse-PSSM_LightGBM 3.947  CTDC_XGBoost 0.704  

DP-PSSM_RF 3.709  AAC_RF 0.627  

DP-PSSM_LightGBM 3.606  DPC_XGBoost 0.608  

EEDP_KNN 3.362  DP_KNN 0.582  

AB-PSSM_XGBoost 3.198  DPC_LightGBM 0.574  

EEDP_LightGBM 3.053  AAC_LightGBM 0.567  

AB-PSSM_LightGBM 3.000  CTDC_NB 0.537  

AB-PSSM_RF 2.717  QSOrder_RF 0.521  

EEDP_XGBoost 2.352  DP_XGBoost 0.500  

EEDP_RF 2.291  QSOrder_LightGBM 0.471  

AB-PSSM_KNN 2.002  AAC_XGBoost 0.467  

Pse-PSSM_KNN 1.952  AAC_NB 0.457  

DP-PSSM_NB 1.918  DP_LightGBM 0.453  

DP_RF 1.655  QSOrder_XGBoost 0.441  

DP-PSSM_KNN 1.561  DP_NB 0.440  

AAC_SVM 1.557  DPC_NB 0.440  

Pse-PSSM_NB 1.497  DPC_KNN 0.437  

Pse-PSSM_XGBoost 1.408  QSOrder_NB 0.397  

AAC-PSSM_XGBoost 1.392  AAC-PSSM_NB 0.391  

DP-PSSM_XGBoost 1.312  AB-PSSM_NB 0.362  

DPC_RF 1.007  EEDP_NB 0.355  

Note: aModels are denoted as (feature encoding method)_(machine learning algorithm). For example, DP-
PSSM_SVM denotes that the model is trained with the DP-PSSM feature based on the SVM algorithm. 
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Table S21. Performance comparison between BastionX and existing state-of-the-art toolkits for 
predicting singe types of secreted substrates based on the independent test.   

Substrate type Toolkit SN SP F-value ACC MCC 

III 

BastionX 0.947 1 0.973 0.973 0.948 

Bastion3 0.978 0.968 0.973 0.973 0.947 

DeepT3 0.734 1 0.867 0.847 0.761 

IV 

BastionX 0.973 1 0.986 0.987 0.974 

Bastion4 0.973 0.973 0.973 0.973 0.947 

PredT4SE-Stack 1 0.98 0.96 0.98 0.961 

CNN-T4SE 1 0.993 0.986 0.993 0.987 

VI 
BastionX 1 1 1 1 1 

Bastion6 1 0.931 0.966 0.967 0.933 

Note: The best performance value for each metric across different substrate type is highlighted in bold.  

 

Table S22.  Detailed information of five secreted substrate proteins used in the case study. 

Substrate 
ID 

Substrate 
type 

Substrate/Gene 
name 

Species Reference 

1 I AprA Pseudomonas brassicacearum (Chabeaud, et al., 2001) 

2 II lpp0489 Legionella pneumophila (Herrmann, et al., 2011) 

3 III spvC Salmonella typhimurium (Yang, et al., 2013) 

4 IV lpg0160 Legionella pneumophila (Zou, et al., 2013) 

5 VI Chain A Pseudomonas Aeruginousa (Dong, et al., 2013) 
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Table S23. Detailed prediction results of case study in different tools. 

Substrate 
ID 

Substrate 
type 

BastionX 
(type I) 

BastionX 
(type II) 

BastionX 
(type III) 

BastionX 
(type IV) 

BastionX 
(type VI) 

BastionX 
(Final) 

1 I 1 1 0.3202 0.4479 0.5336 I or II 

2 II 0 0.9588 0.1772 0.6605 0.5641 II 

3 III 0 0.4993 1 0.9582 0.9881 III 

4 IV 0.0288 0.7403 0.9014 0.9997 0.5055 IV 

5 VI 0.4666 0.851 0.9862 0.7928 0.9996 VI 

Note:  The wrong predict result is highlighted in red. The highest prediction score across different singe 
type predictor within the BastionX for each case study is highlighted in bold. 
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Figure S1. Visualization of sequence similarity network (SSN) across various types of substrates 
based on the curated datasets after redundancy reduction. An all-by-all BLAST was conducted using 
the EFI-EST toolkit (Gerlt, et al., 2015) to generate the SSN file, which was further visualized by the 
Cytoscape software (Shannon, et al., 2003). The dots I, II, III, IV and VI represent type I, II, III, IV 
and VI substrates, respectively. 
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Figure S2. Performance comparison between BastionX (using 10 computing nodes) and its singe 
node mode in terms of the computing time. Both groups of experiments were conducted based on a 
genome-scale dataset from Escherichia coli IAI39. Sub-nodes in the BastionX predictor and its single 
node involved in all experiments run 16 threads to concurrently process the sub-tasks.  
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Appendix 5 - Supplementary information for Chapter 4.1 
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POSSUM: a bioinformatics toolkit for generating numerical 
sequence feature descriptors based on PSSM profiles 

 

Supplementary Material 

 

SUPPLEMENTAL INFORMATION 

Table S1 provides a comprehensive list of a wide range of research areas and application topics 
within the literature for which PSSM profile-based features have proved to be useful. 

 

Table S1. Research topics and areas of PSSM profile-based features in the literature. 

Research Area Feature Descriptors by the Corresponding Research Work References 

Protein 
structural 
class 
prediction 

AAC-PSSM, DPC-PSSM, and AADP-PSSM (Liu, et al., 2010) 

AAC-PSSM, and PSSM-AC (Liu, et al., 2012) 

AAC, and PSSM (Chen, et al., 2008) 

AAC-PSSM, PSSM-AC, consensus sequence descriptors, and  
physicochemical property features 

(Dehzangi, et al., 
2013) 

RPSSM, and secondary structures (Ding, et al., 2014) 

tri-gram-PSSM (Tao, et al., 2015) 

PSSM, physicochemical property features, and GO feature 
descriptors 

(Li, et al., 2014) 

EDP, EEDP, and MEDP (Zhang, et al., 2014) 

AAC-PSSM, TPC, and AATP (Zhang, et al., 2012) 

PSSM (Xia, et al., 2012) 

Post-
translational 
modification 
site prediction 

PSSM, disorder scores, secondary structures, solvent accessibilities, 
AAIndex, and AAC 

(Jiang, et al., 2013) 

AAC, AGG, BLOSUM62, charge-hyd, CKSAAP, binary profiles, 
disorder scores, KNN, and PSSM 

(Chen, et al., 2015) 
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AAIndex, physicochemical descriptors, PSSM, evolutionary 
conservation scores, CKSAAP; predicted disordered regions, 
predicted secondary structures, predicted solvent accessibilities; BP, 
cellular component, molecular function, functional domain from 
InterPro, pathway information, functional domain from Pfam, 
protein-protein interaction annotations; functional domain 
annotations, nucleotide-binding site annotations, disulfide bond 
annotations, post-translational modified residue annotations, active 
site annotations, natural variant annotations, metal ion-binding site 
annotations, and other binding site annotations 

(Li, et al., 2015) 

PSSM, AAC, DPC, solvent accessible surface areas, BLOSUM62, 
PWM, AAIndex 

(Bui, et al., 2016) 

binary profiles, AAC, secondary structures, solvent accessible 
surface areas, and PSSM 

(Chauhan, et al., 
2012) 

PSSM, AAIndex, secondary structures, solvent accessible surface 
areas, and disorder scores 

(Zhang, et al., 2014) 

Protein fold 
recognition 

PSSM, profile-profile alignments, secondary-structure specific gap-
penalties, classic pair and solvation potentials 

(Lobley, et al., 2009) 

Sequence and family information; sequence-sequence alignment; 
sequence-profile alignment; profile-profile alignment (including 
PSSM), and structural information 

(Cheng and Baldi, 
2006) 

k-separated-bigrams-PSSM (Sharma, et al., 2013) 

k-separated-bigrams-PSSM (Saini, et al.) 

PSSM-AC, and PSSM-CC (Dong, et al., 2009) 

tri-gram-PSSM (Paliwal, et al., 2014) 

PSSM (Hong, et al., 2011) 

Prediction of 
protein-
protein 
interactions 

D-FPSSM, and S-FPSSM (Zahiri, et al., 2013) 

physicochemical descriptors, PSSM-AC, and PSSM-CC (Guo, et al., 2008) 

physicochemical descriptors, evolutionary conservation scores, 
information entropy, PSSM, ASA, NCa, and NCr 

(Deng, et al., 2009) 

PSSM, and predicted solvent accessibility (Murakami and 
Mizuguchi, 2010) 

PSSM, and PSSM-AC (Gao, et al., 2016) 

PSSM, and k-separated-bigrams-PSSM (An, et al., 2016) 

PSSM, and solvent accessible surface areas (Melo, et al., 2016) 
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Membrane 
protein 
topology 
prediction 

Pse-PSSM (Chou and Shen, 
2007) 

PSSM, and IAMPC (Integrated Approach for Membrane Protein 
Classification) 

(Pu, et al., 2007) 

physicochemical descriptors, and PSSM (Hayat and Khan, 
2012) 

PSSM, and secondary structures (Yan, et al., 2015) 

PSSM, AAC, DPC, physicochemical descriptors, and biochemical 
feature descriptors 

(Mishra, et al., 2014) 

PSSM, and biochemical feature descriptors (Chen, et al., 2011) 

Prediction of 
protein 
subcellular 
localization  

PSSM (Xie, et al., 2005) 

DP-PSSM (Juan, et al., 2009) 

Pse-PSSM (Juan, et al., 2008) 

PSSM, and PSFM (Guo, et al., 2006) 

PseAAC, and PSSM-AC (Wang and Li, 2013) 

Bacterial 
protein 
prediction 

 

AAC, secondary structures, solvent accessibilities, physicochemical 
descriptors, and PSSM 

(Yang, et al., 2013) 

AAC, DPC, PSSM-composition, and PSSM-AC (Zou, et al., 2013) 

AAC, DPC, and PSSM (Garg and Gupta, 
2008) 

AAC, DPC, MM, and PSSM (Selvaraj, et al., 2016) 

AAC, DPC, physicochemical property features, and PSSM (Restrepo-Montoya, et 
al., 2011) 

HIV 1 
protease 
cleavage 
prediction 

PSSM (Jensen, et al., 2003) 

PSSM (Jensen, et al., 2006) 

geno2pheno, and PSSM (Seclen, et al., 2011) 

geno2pheno, and PSSM (Bunnik, et al., 2011)  

Protein 
disorder 
prediction 

PSSM, and BLOSUM62 (Jones and Cozzetto, 
2015) 

PSSM (Jones and Ward, 
2003) 
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PSSM, and physicochemical property features (Shimizu, et al., 2007) 

PSSM, secondary structures, and solvent accessibilities (Becker, et al., 2013) 

PSSM, and physicochemical descriptors (Su, et al., 2006) 

Protein 
secondary 
structure 
prediction 

PSSM (Bouziane, et al., 
2011) 

PSSM, and SPSSM (Li, et al., 2012) 

PSSM (Tang, et al., 2011) 

conformation parameters, PSSM, net charges, hydrophobic and side 
chain mass 

(Huang and Chen, 
2013) 

Prediction of 
DNA-binding 
sites 

PSSM (Ahmad and Sarai, 
2005) 

biochemical descriptors and PSSM (Wang, et al., 2010) 

AAC, DPC and PSSM (Kumar, et al., 2007) 

physicochemical descriptors, biochemical descriptors and PSSM (Huang, et al., 2011) 

binary profile, BLOSUM62 and PSSM (Hwang, et al., 2007) 

Prediction of 
RNA-binding 
sites  

PSSM, smoothed-PSSM (Cheng, et al., 2008) 

physicochemical descriptors, hydrophobicity, relative accessible 
surface areas, secondary structures, PSSM, and side-chain 
environment 

(Liu, et al., 2010) 

PSSM (Kumar, et al., 2008) 

PSSM, residue interface propensity, predicted residue accessibility 
values, and residue hydrophobicity scores 

(Murakami, et al., 
2010) 

biochemical property features, and PSSM (Wang, et al., 2010) 

PSSM, smoothed-PSSM, and sequence-derived descriptors (Walia, et al., 2012) 

Protein 
function 
prediction 

AB-PSSM, RPM-PSSM, and physicochemical property features (Jeong, et al., 2011) 

PSSM, UniProtKB/Swiss-Prot text mining, amino acid trigram 
mining, FFPRED, orthologous groups, profile-profile comparison, 
and functional space 

(Cozzetto, et al., 
2013) 

GO annotations, and PSSM (Wass and Sternberg, 
2008) 

*PSSM denotes that the original PSSM profile was directly used in the corresponding paper. 
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Fig. S1. The architecture of the POSSUM web server. 

 

The architecture of the POSSUM server is illustrated in Fig. S1. There are two main components 
to this architecture: Client Web Interface and Server Backend. These two components can 
interactively exchange the data of submitted jobs, and inform each other. Please refer to the main 
text of the manuscript for a detailed description and discussion. 

The POSSUM server is currently configured and hosted on an extensible cloud computing 
facility provided by the e-Research Centre at Monash University, equipped with 4 cores, 16GB 
memory and a 1TB hard disk. Importantly, this configuration can be readily expanded and 
upgraded in accordance with the increasing user demand of the webserver. 
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Fig. S2. An example of the user interface of the POSSUM server: (A) Webpage displaying users’ 
submission options; (B) Webpage summarizing the submitted information; (C) Webpage listing 
status of all submitted jobs, and (D) The result page containing the original PSSM files and 
calculated descriptors by POSSUM, as well as the links for downloading the corresponding 
PSSM-based feature files. 
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Fig. S3. Workflow of the POSSUM server. 

 

The workflow of the POSSUM server is displayed in Fig. S3. 
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Fig. S4. Architecture of the POSSUM standalone toolkit. 

 

The architecture of the POSSUM standalone toolkit is displayed in Fig. S4. The toolkit was 
implemented in Python (for core function implementation) and Perl (for universal command line 
interface). The major components of the toolkit are briefly described as follows: 

z Command Line Interface: This module is made available to provide a universal and 
user-friendly command line interface, via which users can effectively interact with 
the toolkit. This module allows users to specify and apply different parameters and it 
invokes the descriptor generating process. 

z PSSM Profile-based Feature Descriptor Generating Module: This module can be 
used to wrap up and output the descriptor files based on the raw descriptor vectors 
(generated by the Matrix Transforming Module) in accordance with the user-
specified parameters. 

z Matrix Transforming Module: This module can be used to transform the PSSM 
matrix (which is abstracted from the original PSSM profile) to generate user-
specified raw descriptor vectors. Various applicable matrix transformation functions 
in groups of row transformations, column transformations, and mixture of row and 
column transformations are available within this module. 
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z PSSM Profile Formatting Module: This module can be used to abstract the PSSM 
matrix from the PSSM profile. 

z PSSM Profile Index Constructing Module: This module is a fundamental part of the 
program that scans the FASTA sequences and the PSSM profile folder to build a 
hash map for each query sequence and its corresponding PSSM profile. 

z PSSM Profile Loading Module: This module looks up the hash table (built by the 
PSSM Profile Index Constructing Module) to check the availability of the PSSM 
profile for a sequence and loads the corresponding PSSM profile into the memory. 

 

Comparison of the computational time of PSSM profile-based feature descriptor 
generation by POSSUM on different uniref databases 

 

Fig. S5. The distribution of submitted sequence lengths. 
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Next, in order to illustrate the computational power of POSSUM, we randomly selected 50 
sequences from the UniProt database (http://www.uniprot.org/). We subsequently evaluated 
POSSUM server’s CPU computing time for generating PSSM profile-based feature descriptors 
on the three different uniref databases (i.e. uniref50, uniref90 and uniref100). Specifically, we 
submitted 10, 20, 30, 40 and 50 sequences to the POSSUM server to generate all 21 types of 
PSSM profile-based feature descriptors. The distributions of sequence lengths for these tasks, 
their computational time against different uniref databases, and the distributions of the 
computational time over a certain task (generating PSSM profile-based feature descriptors for 50 
sequences on uniref50) are shown in Fig. S5, Fig. S6 and Fig. S7, respectively. 

 

 

Fig. S6. Comparisons of the computational time for the POSSUM server to process and generate 
the PSSM profile-based feature descriptors of varying numbers of sequences using three 
different uniref databases (i.e. uniref50, uniref90 and uniref100). The three databases were 
generated based on different sequence identity thresholds. The computational time on the y-axis 
indicates the total computational time for submitted sequences (unit: minute). 
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Fig. S7. Distribution of the computational time involved in the task of generating all types of 
PSSM profile-based feature descriptors as a whole. The results were obtained over the 50 
randomly selected sequences based on the uniref50 database. 

 

Fig. S6 suggests a near linear relationship between the CPU computational time and the number 
of submitted sequences, provided the same uniref database was used. Nevertheless, the 
computational time considerably varied depending on which uniref database was used for the 
same task. Users should keep in mind there is a trade-off between the quality of the PSSM 
profiles generated and computational efficiency, and select which options would best suit their 
practical needs. 

Furthermore, generating a PSSM profile is the most time-consuming step during the entire 
feature descriptor generation process (Fig. S7, left panel), accounting for 96.8% of the 
computing time. In this regard, parallelization of the PSSM profile generation is expected to 
significantly boost the throughput of the POSSUM server. In addition, we also notice that during 
the calculation of PSSM profile-based feature descriptors (Fig. S7, right panel), the tri-gram-
PSSM is the most time-consuming step due to a very large number of features (described as a 
vector in a 8000-dimensional space) required to be generated. 

 

Application of POSSUM-calculated features to the prediction of type IV secretion effectors 
and performance evaluation based on the 10 times of 5-fold cross-validation tests 

To demonstrate the usefulness of PSSM-based features generated by POSSUM, we further 
applied POSSUM features to the prediction of type IV secretion effector proteins and examined 
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the performance of machine learning models trained using these features. We employed the 
dataset prepared in (Zou, et al., 2013) as the benchmark dataset for the performance comparison, 
which included 340 type IV effectors and 1132 non-effectors. After removing the sequence 
redundancy, 338 positive and 338 negative samples were finally selected. Based on this dataset, 
all 21 types of feature descriptors were generated using POSSUM. In addition, some well-known 
sequence-based descriptors were used as a reference, such as composition of k-spaced amino 
acid pairs (CKSAAP) (Chen, et al., 2011), amphiphilic pseudo-amino acid composition 
(APAAC), pseudo-amino acid composition (PAAC), and quasi-sequence-order (QSO), which are 
originally proposed in (Chou, 2000; Chou, 2001) and implemented using the protr package (Xiao, 
et al., 2015). 

 

Table S2. The list of performances of various descriptors. 

Descriptors 
groups 

Descriptor SN SP ACC F-value MCC 

Row 
transformation 

AAC-PSSM 0.883±0.007 0.919±0.009 0.901±0.005 0.899±0.005 0.803±0.011 

D-FPSSM 0.829±0.010 0.895±0.008 0.862±0.007 0.856±0.008 0.725±0.014 

smoothed-PSSM 0.835±0.005 0.919±0.005 0.877±0.003 0.871±0.003 0.757±0.007 

AB-PSSM 0.868±0.004 0.925±0.007 0.896±0.005 0.893±0.004 0.795±0.009 

PSSM-
composition 

0.879±0.008 0.908±0.003 0.894±0.004 0.891±0.004 0.789±0.007 

RPM-PSSM 0.866±0.007 0.935±0.008 0.900±0.003 0.896±0.003 0.803±0.007 

S-FPSSM 0.843±0.008 0.923±0.006 0.883±0.005 0.877±0.005 0.769±0.010 

Column 
transformation 

DPC-PSSM 0.873±0.006 0.915±0.006 0.894±0.004 0.891±0.005 0.789±0.009 

k-separated-
bigrams-PSSM 

0.859±0.007 0.916±0.011 0.888±0.006 0.884±0.006 0.777±0.013 

tri-gram-PSSM 0.869±0.007 0.890±0.009 0.880±0.007 0.878±0.007 0.760±0.014 

EEDP 0.878±0.005 0.931±0.007 0.904±0.005 0.901±0.005 0.810±0.010 

TPC 0.904±0.005 0.897±0.007 0.901±0.004 0.901±0.004 0.802±0.007 

Mixed of row 
and column 
transformation 

EDP 0.854±0.005 0.915±0.004 0.884±0.003 0.880±0.004 0.771±0.006 

RPSSM 0.871±0.006 0.922±0.004 0.897±0.003 0.893±0.003 0.794±0.006 

Pse-PSSM 0.874±0.007 0.926±0.006 0.900±0.005 0.897±0.006 0.801±0.011 

DP-PSSM 0.873±0.007 0.933±0.005 0.903±0.004 0.900±0.005 0.808±0.007 
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PSSM-AC 0.770±0.008 0.914±0.010 0.842±0.006 0.829±0.006 0.691±0.013 

PSSM-CC 0.815±0.007 0.912±0.007 0.863±0.006 0.855±0.005 0.730±0.011 

Combination of 
above 
descriptors 

AADP-PSSM 0.876±0.005 0.912±0.004 0.894±0.004 0.891±0.004 0.789±0.007 

AATP 0.905±0.007 0.902±0.005 0.903±0.005 0.903±0.005 0.807±0.010 

MEDP 0.875±0.006 0.929±0.002 0.902±0.003 0.899±0.004 0.806±0.005 

Sequence-based 
descriptors 

AAC 0.778±0.008 0.826±0.005 0.802±0.006 0.797±0.006 0.605±0.012 

DPC 0.788±0.010 0.824±0.013 0.806±0.009 0.801±0.009 0.613±0.020 

CKSAAP 0.797±0.011 0.830±0.007 0.814±0.007 0.810±0.008 0.629±0.014 

APAAC 0.766±0.011 0.806±0.017 0.786±0.011 0.781±0.010 0.573±0.022 

PAAC 0.769±0.013 0.805±0.015 0.787±0.008 0.782±0.008 0.575±0.017 

QSO 0.762±0.006 0.842±0.009 0.802±0.005 0.794±0.005 0.606±0.010 

The rows highlighted by grey are the descriptors achieving MCC values of 0.800 or larger. 
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Fig. S8. Prediction performance of type IV secretion effectors using random forest classifiers, 
trained using multiple different feature descriptors generated by POSSUM as input features. The 
performance results were evaluated based on the 10 times randomization tests of 5-fold cross-
validation. (A) ROC curves of random forest classifiers trained with feature descriptors within 
the row-transformation group; (B) ROC curves of random forest classifiers trained with feature 
descriptors within the column-transformation group; (C) ROC curves of random forest classifiers 
trained with feature descriptors within the mixture of row-transformation and column-
transformation group, and (D) ROC curves of random forest classifiers trained with feature 
descriptors by combinations of rest groups. 

 

For each type of PSSM-based features, the random forest classifier was trained and validated 
based on the 10-time randomization tests of 5-fold cross-validation. Respective results are shown 
in Table S2 and Fig. S8. 

As can be observed from Table S2, PSSM-based descriptors performed much better when 
compared with sequence-based descriptors in terms of ACC, F-value and MCC scores. These 
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results indicate that PSSM descriptors are much more informative, significantly contributing to 
the model performance. On the other hand, the RF classifiers trained using different types of 
PSSM-derived features achieved a varying performance, in terms of ACC (ranging from 0.842 to 
0.904), F-value (ranging from 0.829 to 0.903) and MCC (ranging from 0.691 to 0.810), 
depending on the particular PSSM feature type used for training the RF models. The 
performance discrepancy implies that selection of optimal PSSM features that best suit the 
specific classification task should be exercised with caution. POSSUM is a tool that offers the 
opportunity to do the latter, by allowing interested users to address this technically challenging 
yet important question and meet their specific needs and facilitate their efforts to optimize the 
model performance within a homogenous framework. Statistically quantifying the contribution 
of various PSSM-based features to the prediction performance of the machine learning models is 
a relevant question of interest, as well as combining different feature selection techniques to 
identify a condensed subset of the most important PSSM features that collectively determine the 
model performance. 

Furthermore, and rather surprisingly, certain uncommon (not well known) descriptors such as 
DP-PSSM and EEDP achieved reasonable performances. In contrast, some popular descriptors 
such as PSSM-AC and PSSM-CC performed poorly in this assessment (Fig. S8C). Taken 
together, we recommend that PSSM matrix transformations be a requisite for the application of 
POSSUM-calculated PSSM features to protein class classification and prediction tasks. In 
addition, various PSSM-based descriptors should be comprehensively assessed based on a well-
prepared benchmark dataset for the purpose of identifying the best-performing descriptors. As 
can be seen from Fig. S8D, feature groups based on the combinations of other individual types of 
descriptors achieved a high and stable prediction performance, suggesting that the combinations 
of descriptors are likely to further improve the performance. This can be further validated and 
examined by assessing the performance of different approaches in a real application, e.g. protein 
classification (Nanni, et al., 2014). Nanni et al. reported that models trained based on the fusion 
of PSSM-based features and sequence-derived features could outperform those trained using 
only PSSM features. In summary, the application of PSSM-based features to the prediction of 
bacterial secreted effectors serves as a demonstration of the usefulness of POSSUM, and 
validates the need to develop and make available such tool to the wider research community. 

Finally, it is worth mentioning that bioinformatics applications of the variety of PSSM-based 
feature descriptors that can be calculated by POSSUM need not be restricted to prediction of 
bacterial secretion effector proteins; in fact, these versatile and informative PSSM features can 
be applied to address a wide range of sequence-based classification tasks related to e.g. protein 
sequence analysis, remote homology detection, protein family prediction, protein structure and 
function prediction, in combination with other complementary features. We hope the new 
bioinformatics tool presented in this work, POSSUM, can be adopted as a useful starting point to 
develop more accurate predictors for bioinformatics’ open questions. 
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Appendix 6 - Supplementary information for Chapter 4.2 
 

DIFFUSER: A distributed framework for high-throughput 
generation of machine-learning features from DNA, RNA 

and protein sequences 

Supplementary file 

Table S1. The details of various features that could be generated by DIFFUSER based on the protein sequence. 

Category Method Description Dimension Reference 

Simple 
sequence 
derived 
features 

Kmera Sub-sequences of length k contained within a protein 
sequence 20k (k=2) (1), (2) 

DR Distance-based residues 20+20*20*d (d=3) (3), (2) 

Distance Pair (DP) The PseAAC using the distance-pairs and reduced 
alphabet n+dn2 (n=14, d=3) (4), (2) 

EAAC Enhanced amino acid composition (peptide-w+1) *20 (w = 5) (5) 
CKSAAP Composition of k-spaced amino acid pairs 400*(g+1) (g=5) (6), (5) 

DDE The dipeptide deviation from expected mean 400 (7), (5) 
GAAC Grouped amino acid composition 5 (8), (5) 

EGAAC Enhanced grouped amino acid composition 5*(peptide-w+1) (w=5) (5) 
CKSAAGP Composition of k-spaced amino acid group pairs 25*(g+1) (g=5) (5) 

GDPC Grouped dipeptide composition 25 (5) 
GTPC Grouped tripeptide composition 125 (5) 

BINARY The binary encoding of amino acids 20*peptide (9), (10) 

NUM Numerical values by mapping amino acids in an 
alphabetical order peptide (10) 

Physicoch
emical 

features 
 

AC Autocovariance N*lag (lag=2, N=3) (11), (2) 
CC Cross-covariance N*(N-1) * lag (lag=2, N=3) (11), (2) 

ACC Auto-cross-covariance N*N*lag (lag=2, N=3) (11), (2) 
PDT Physicochemical distance based transformation 531*lamada (lamada=1) (12), (2) 

Moran Moran lag*N (lag=30, N=8) (13), (5) 
Geary Geary lag*N (lag=30, N=8) (14), (5) 

NMBroto Normalized Moreau-Broto lag*N (lag=30, N=8) (15), (5) 
PAAC Pseudo-amino acid composition 20+lamada (lamada=30) (16), (5) 

APAAC Amphiphilic PAAC 20+N*lamada (N=3, 
lamada=30) (16), (5) 

CTDC The composition among CTD (composition, transition 
and distribution) N*3 (N=13) (17), (5) 

CTDT The transition among CTD N*3 (N=13) (17), (5) 
CTDD The distribution among CTD N*15 (N=13) (17), (5) 
CTriad Conjoint Triad 343 (18), (5) 

KSCTriad Conjoint k-spaced Triad (k+1) * 343 (k=0) (18), (5) 
SOCNumber Sequence-order-coupling number lag*2 (lag=30) (19), (5) 

QSOrder The quasi-sequence-order feature 20+20+lag*2 (lag=30) (19), (5) 
KNNprotein K-nearest neighbor for proteins 60 (5) 
KNNpeptide K-nearest neighbor for peptides 60 (19), (5) 

AAINDEX Feature based on the amino acid index database 
(AAindex) peptide*531 (20), (5) 

BLOSUM62 Feature based on the BLOSUM62 matrix peptide*20 (21), (5) 

ZSCALE Feature based on the transformation of each amino acid 
into five physicochemical variables peptide*5 (22), (5) 

PseKRAAC  
(type1 to type16) Pseudo k-tuple reduced amino acid composition raactypek (k =2) (23), (5) 

EBGW Feature based on grouped weight lamada*3 (lamada=11) (10) 

PSSM 
based 

features 

AAC-PSSM 
Extension of the concept of traditional AAC feature 
encoding method from the primary sequence to the 
PSSM profile 

20 (24), (25) 

D-FPSSM Calculation of the amino acid distribution by summing 
up the entries within each column of the PSSM profile 20 (26), (25) 

smoothed-PSSM Feature based on the PSSM profile segmented by 
soothed windows 

sliding_window * 20 (sliding 
_window=50) (27), (28) 

AB-PSSM Feature based on averaged blocks of the PSSM profile 400 (29), (25) 
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PSSM-composition 
Feature by converting the original PSSM profile into a 
20*20 matrix through summing up all rows of the same 
amino acid 

400 (30), (28) 

RPM-PSSM Feature based a ‘filtered’ PSSM that is generated by a 
residue probing method 400 (29), (25) 

S-FPSSM Feature based on the matrix transformation of a 
‘filtered’ PSSM (called FPSSM) 400 (26), (31) 

DPC-PSSM Extension of the concept of traditional DPC from the 
primary sequence into the PSSM profile 400 (24), (31) 

k-separated-bigrams-
PSSM 

Extension of the concept of traditional Kmer from the 
primary sequence into the PSSM profile 400 (32), (25) 

tri-gram-PSSM 
Feature based on a tri-gram probability matrix 
composed of the probabilities of individual tri-grams, 
which is computed from the PSSM linear probabilities 

8000 (33), (25) 

EEDP 
Feature based on the direct transformation of an ED-
PSSM that is generated by an evolutionary formula 
(EDF) 

400 (34), (25) 

TPC-PSSM 
Feature based on the transition probability matrix 
(TPM), which is extended from the PSSM to avoid 
complete loss of the sequence-order information 

400 (35), (25) 

EDP Feature based on the averaging of an ED-PSSM that 
could be generated by an evolutionary formula (EDF) 20 (34), (25) 

RPSSM 
Feature by calculating the correlation between two 
adjacent residues via importing the transition probability 
matrix into the PSSM profile 

110 (36), (25) 

Pse-PSSM Feature based on a set of PSSM transformations and 
dimension normalization 40 (37), (31) 

DP-PSSM 
Extension of the Pse-PSSM feature encoding method to 
describe the relationship of an amino acid and its α-th 
succeeding amino acid 

(α+1)* 40   (α=5) (38), (25) 

PSSM-AC 
Extension of the concept of autocross-covariance 
transformation (AC) from the primary sequence into the 
PSSM profile 

lg*20 (lg=10) (11), (28) 

PSSM-CC 
Extension of the concept of autocross-covariance 
transformation (CC) from the primary sequence into the 
PSSM profile 

lg*20 (lg=10) (11), (25) 

AADP-PSSM Feature in combination of the AAC-PSSM and DPC-
PSSM 420 (24), (25) 

AATP Feature in combination of the AAC-PSSM and TPC 
(PSSM) 420 (35), (25) 

MEDP Feature in combination of the EEDP and EDP 420 (34), (25) 

Predicted 
Structure 

based 
features 

SSEC Feature based on the secondary structure elements 
(content) 3 (5) 

SSEB Feature based on the secondary structure elements 
(binary) peptide*3 (5) 

Disorder Feature based on the disorder profile peptide (39), (5) 
DisorderB Feature based on the disorder profile (binary) 2 (5) 
DisorderC Feature based on the disorder profile (content) peptide*2 (5) 

ASA Feature based on the accessible surface area peptide (5) 
TA Feature based on the torsional angles peptide*2 (5) 

Other 
profile 
based 

features 

LOGO Feature based on the occurrence frequencies of amino 
acids calculated by the Two Sample Logo program peptide (10) 

LOGO-P-Value Extension of the LOGO feature by integrating the P-
value peptide In this work 

LOGO-BLOSUM62 Extension of the LOGO feature by the BLOSUM62 
matrix peptide In this work 

Note: aKmer indicates the frequency of k amino acids. Specially, Kmer is same as amino acid composition (AAC) when k is 
set to 1, while as dipeptide composition (DPC) when k is set to 2. 
               bThe values in parentheses represent the default values for the parameters. This applies to Tables 2 and 3. 
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Table S2.  The details of various features that could be generated by DIFFUSER based on the DNA sequence. 

Category Methoda Description Dimensionb Ref 
Simple 

sequence 
derived 
features 

Kmer Sub-sequences of length k contained within a DNA sequence 4k(k=2) (40), (41) 
RevKmer The reverse complementary k-mer 22k-1 (k = 1, 3, …) 

22k-1+2k-1 (k = 2, 4, …)   
default k =2 

(40), (42) 

IDKmer Extension of the Kmer with the increment of diversity 2k (k=6) (43), (44) 
Mismatch Feature based on the occurrences of k-mers, allowing at most m 

mismatches 4k (k=3, m=1) (45), (46) 

Sub-sequence Feature based on the occurrences of k-mers, allowing non-
contiguous matches 4k (k=3, d=1) (46), (47) 

Physicoch
emical 

features 

DAC Dinucleotide-based autocovariance N*lag (lag=2, N=6) (11), (2) 
DCC Dinucleotide-based cross-covariance N*(N-1)*lag (lag=2, N=6) (11), (2) 
DACC Dinucleotide-based auto-cross-covariance N*N*lag (lag=2, N=6) (11), (2) 
TAC Trinucleotide-based autocovariance N*lag (lag=2, N=2) (11), (2) 
TCC Trinucleotide-based cross-covariance N*(N-1)*lag (lag=2, N=2) (11), (2) 
TACC Trinucleotide-based auto-cross-covariance N*N*lag (lag=2, N=2) (11), (2) 
MAC Feature based on the Moran autocorrelation N (N=6) (15), (2) 
GAC Feature based on the Geary autocorrelation N (N=6) (14), (2) 
NMBAC Feature based on the normalized Moreau–Broto autocorrelation N (N=6) (13), (2) 
PseDNC Feature based on the pseudo dinucleotide composition 16+lamada (lamada=2) (48), (2) 
PseKNC Feature based on the pseudo k-tuple nucleotide composition 4k+lamada (k=3, lamada=2) (49), (2) 
PC-PseDNC-
General 

General parallel correlation of the pseudo dinucleotide 
composition 

16+lamada (lamada=2) (50), (2) 

PC-PseTNC-General General parallel correlation of the pseudo trinucleotide 
composition 

64+lamada (lamada=2) (50), (2) 

SC-PseDNC-
General 

General series correlation of the pseudo dinucleotide 
composition 

16+lamada*N (lamada=2, 
N=6) 

(50), (2) 

SC-PseTNC-General General series correlation of the pseudo trinucleotide 
composition 

64+lamada*N (lamada=2, 
N=2) 

(50), (2) 

 

Table S3.  The details of various features that could be generated by DIFFUSER based on the RNA sequence. 

Category Methoda Description Dimensionb Reference 
Sequence based 

features 
Kmer Sub-sequences of length k contained within a RNA sequence 4k (k=2) (51), (2) 

Mismatch Feature based on the occurrences of k-mers, allowing at 
most m mismatches 

4k (k=3, m=1) (45), (46) 

Sub-sequence Feature based on the occurrences of k-mers, allowing non-
contiguous matches 

4k (k=3, d=1) (46), (47) 

Physicochemical 
features 

DAC Dinucleotide-based autocovariance N*lag (lag=2, N=6) (11), (2) 
DCC Dinucleotide-based cross-covariance N*(N-1)*lag (lag=2, 

N=6) 
(11), (2) 

DACC Dinucleotide-based auto-cross-covariance N*N*lag (lag=2, N=6) (11), (2) 
MAC Feature based on the Moran autocorrelation N (N=6) (15), (2) 
GAC Feature based on the Geary autocorrelation N (N=6) (14), (2) 

NMBAC Feature based on the normalized Moreau–Broto 
autocorrelation 

N (N=6) (13), (2) 

PC-PseDNC-
General 

General parallel correlation of the pseudo dinucleotide 
composition 

16+lamada (lamada=2) (52), (2) 

SC-PseDNC-
General 

General series correlation of the pseudo dinucleotide 
composition 

16+lamada*N (lamada=2, 
N=6) 

(52), (2) 

Predicted 
Structure based 

features 

Triplet Feature based on the local structure–sequence triplet 
element 

32 (53), (2) 

PseSSC Feature based on the pseudo-structure status composition 10k+l (k=2, l=2) (54), (2) 
PseDPC Feature based on the pseudo-distance structure status pair 

composition 
10+100k+l (k=0, l=2) (55), (2) 
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Fig. S1. An example of the user interface of the DIFFUSER server: (A) Webpage displaying three separate panels for users’ 

submission options; (B) Webpage summarizing the submitted job information and indicating the way to check its status; and 

(C) The result page containing the generated features and the intermediate files and (D) additionally listing the 

corresponding command line with all parameters needed to generate the same features locally. 

 

 

 

 

 

 

 



 
 

255 
 

Fig. S2. Distribution of consuming time of 4859 sequences in the Klebsiella pneumoniae MGH78578. Each bar represents 

the consuming time of a sequence processed by the diffuser in one node mode. The median consuming time among all the 

4859 sequences is 5.783 minutes. Removing the sequences with unexpectedly long consuming time (more than 10 minutes), 

the median consuming time among the rest 3985 sequences is 3.8 minutes. 
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