
On the Art of Modelling for
Constraint-Based Scheduling:

new methods, theory, and applications

A thesis submitted for the degree of

Doctor of Philosophy

by

Steven J. Edwards

Supervisors:
Prof. Andreas T. Ernst
Dr. Davaatseren Baatar
Prof. Kate Smith-Miles

School of Mathematics
Monash University, Australia

May, 2019

Copyright notice

c© Steven J. Edwards (2019)

I certify that I have made all reasonable efforts to secure copyright permissions for
third-party content included in this thesis and have not knowingly added copy-
right content to my work without the owner’s permission.

ii

Abstract

This thesis studies modelling choices in Constraint-Based Scheduling, which is
the application of Constraint Programming (CP) to scheduling problems. CP is
a problem-solving framework that establishes a clear distinction between (1) the
modelling of an optimisation problem in terms of variables, constraints and an
objective function, and (2) the algorithms that solve the model. Through the recent
development of powerful automated solving procedures, some modern CP solvers
are now able to model and solve broad classes of problems efficiently. This greatly
reduces the challenge of solving many practical problems as end-users can now
focus on understanding how best to model the problem they seek to solve. In fact,
methods using off-the-shelf CP solvers now represent state-of-the-art techniques
for many classical and industrial scheduling problems. Despite these advances,
there still appears to be little theoretical insight into understanding why one model
of a problem might in general outperform another.

The aim of this thesis is to understand how scheduling problems can be best
modelled and solved by existing combinatorial solvers. In particular, the work is
motivated by the scheduling of a fully-automated robotic system for the applica-
tion of advanced cell staining: a process routinely used by pathologists to diagnose
cancers and infectious diseases by enhancing cell visualisation. However, signifi-
cant effort has been made to generalise insights as much as possible to allow for
broader application.

The major contributions of the thesis include the following:

1. Symmetry Breaking - The thesis proposes methods for exploiting symmetry
in models of multi-project scheduling problems with identical projects in or-
der to accelerate solver performance. These methods are evaluated on both
existing and modified models based on CP and Mixed-Integer Programming.
The proposed symmetry breaking methods in general improve the perfor-
mance of all the different approaches and in fact find a number of new best
solutions on a well-established dataset.

2. Driving Variables and LU Consistency - The thesis formalises a method for
developing models to CP problems where a feasible assignment over a subset
of the variables can be efficiently extended to a complete solution. We name
such subsets the driving variables of the problem, which extends the existing
concept of backdoors to typical case complexity. The method is based on a
novel local consistency measure that we name Lower Upper (LU) consistency.

iii

We prove that a range of filtering algorithms and consistency checks from an
existing CP solver enforce LU consistency under certain conditions and show
how this concept can be used to significantly improve solver performance.

3. Interval Clusters - The thesis proposes a framework for modelling scheduling
problems that reason over multiple levels of abstraction based on the novel
concept of interval clusters. An interval cluster is a group of variables con-
taining exactly one driving variable as well as satisfying a number of other
conditions. To demonstrate the concept of interval clusters we model the real-
world scheduling problem that motivates this work and demonstrate that the
model can be solved efficiently.

The scheduling problems considered in this thesis range from the very abstract
to a complex industrial scheduling problem. We initially provide an overview of
relevant discrete optimisation techniques from the last few decades of research and
discuss the strengths and limitations of alternative approaches. We then introduce
a number of simplified problems that contain some real-world aspects and use
these to test the effectiveness of the proposed ideas. The development of methods
for solving these simplified problems are then generalised such that they can be
used on the industrial scheduling problem we seek to solve. In this sense, the
thesis achieves a balance between application-oriented research and fundamental
research with more generalisable contributions.

iv

Declaration

This thesis is an original work of my research and contains no material which has
been accepted for the award of any other degree or diploma at any university or
equivalent institution and that, to the best of my knowledge and belief, this thesis
contains no material previously published or written by another person, except
where due reference is made in the text of the thesis.

Signature:......................................

Steven J. Edwards, 30th June 2019

v

Acknowledgements
Firstly, thank you to my supervisors, Prof Andreas Ernst, Prof Kate Smith-Miles,
and Dr Davaatseren Baatar for your guidance, encouragement, and support. I am
extremely lucky to have been supervised by such a complementary group of people
and appreciate our many discussions. I have learnt so much from working with
you all.

There are many people from the School of Mathematics at Monash that I wish
to acknowledge. Firstly, John and Gertrude, thank you for all of your support; we
are incredibly lucky to have you both. To Chloé, your laughter is like sunshine
and could light up even those dark times in research where nothing seemed to
work. I am so grateful for your continuous support and friendship. To Simon and
Andrew, thank you for the many brainstorms and for providing such a great place
to ask such dumb questions. And to Carlos, Darcy, Michael, Joe, Cal, Anita, James,
Kevin, Anurag, Dhananjay, Alin, Dana, Damien, Jens, Eduard, and the many other
officemates, thank you for all of the memories.

I would also like to thank the wider research community. I have felt nothing
but encouragement and support from the academics I have come into contact with
during my candidature. In particular, I would like to thank Prof Mark Wallace for
leading me down the path of Constraint Programming, and Dr Philippe Laborie
for always providing very timely insights.

To my industry partner, Leica Biosystems, thank you for being an exciting
company to work with and for providing such an interesting motivating problem.
In particular, thank you to Matt Elvey-Price for being an excellent point of contact.

I am also grateful for being able to have spent time working from Canberra.
Thank you to Dr Phil Kilby from Data 61, and Prof Tabrabata Ray from University
of New South Wales, for making that possible. Also, an enormous thank you to Liz,
Liv and Pepper at the Ritz; I could not have dreamt of a more idyllic place to live
while writing up my thesis. I will cherish those times forever.

To my family - Mum and Dad, Tom and Emily (and Archie!), and MaMa and
Pa - thank you for your ongoing love, support, and patience. And finally, to Anika,
thank you for your constant belief in me, for riding the highs and lows with me,
and for even proof-reading the thesis. You are a constant source of inspiration and
I am so incredibly lucky to have you in my life.

Steven J. Edwards, June 2019

vi

Contents

1 Introduction . 1

1.1 Motivation . 1

1.2 Research Aims and Methodology . 4

1.3 Thesis Outline and Contributions . 5

2 Background . 10

2.1 Project Scheduling Problems . 10

2.1.1 Classification Scheme . 11
2.1.2 Reference Problem - RCPSP/max 15

2.2 Mixed Integer Programming . 25

2.2.1 Models . 25
2.2.2 Limitations . 30

2.3 Constraint Programming . 30

2.3.1 Background . 31
2.3.2 Global Constraints . 34
2.3.3 Modelling the RCPSP/max 40
2.3.4 Search . 40

2.4 CP Optimizer . 49

2.4.1 Background . 50
2.4.2 Decision Variables and Constraints 50
2.4.3 Modelling the RCPSP/max 59
2.4.4 Search and Constraint Propagation 60
2.4.5 Constraint Propagation . 61

3 Symmetry Breaking in the High-Multiplicity RCPSP/max 63

3.1 Introduction . 63

3.2 Background . 64

vii

CONTENTS

3.2.1 Problem description . 64
3.2.2 Literature review . 66

3.3 Symmetry breaking . 68

3.4 Mixed-Integer Programming . 75

3.4.1 Formulation based on binary pulse start variables 75
3.4.2 Reduced formulation based on integer pulse start variables . 76
3.4.3 Reduced formulation based on integer step & on-off variables 78
3.4.4 Synthesis of polyhedral analysis 80

3.5 Constraint Programming . 81

3.5.1 Integer Based Variables . 81
3.5.2 Interval Based Variables . 82

3.6 Computational study . 83

3.6.1 Multiples of PSPLIB . 84
3.6.2 Instances from MPSPlib . 89

3.7 Conclusion . 93

4 Liquid Handling Robot Scheduling Problem 95

4.1 Introduction . 95

4.1.1 Problem Description . 96
4.1.2 Related Problems . 98

4.2 CP Optimizer Models . 100

4.2.1 Model 1 - (CP1) . 101
4.2.2 Model 2 - (CP2) . 105
4.2.3 Model 3 - (CP3) . 109

4.3 Lower Bounds . 116

4.3.1 Temporal-Based . 116
4.3.2 Resource-Based . 117

4.4 Computational Study . 118

4.4.1 Data . 118
4.4.2 Preprocessing . 119
4.4.3 Experimental Set Up . 119
4.4.4 Results . 119

4.5 Conclusion . 125

5 Driving Variables and Lower-Upper Consistency 126

viii

CONTENTS

5.1 Introduction . 126

5.2 Definitions . 129

5.2.1 Constraint Satisfaction Problems 129
5.2.2 LU Consistency . 130
5.2.3 Driving Variables . 132

5.3 Related Concepts . 134

5.3.1 Function Dependencies . 134
5.3.2 W-Cutsets and Constraint Graphs 135
5.3.3 Strong Backdoors to Typical Case Complexity 136
5.3.4 Variable Locks . 138

5.4 LU Consistency in Special Cases of Scheduling Constraints 140

5.4.1 Inequality / Precedence Constraints 143
5.4.2 Disjunctive with Setup Times 144
5.4.3 State Functions . 146
5.4.4 Cumulative Expressions . 150

5.5 Case Study - A Liquid Carrying Robot Problem 153

5.5.1 Problem Description . 153
5.5.2 Model Description . 155
5.5.3 Driving Variables of the Problem 158
5.5.4 Computational Results . 160

5.6 Conclusion . 161

6 Interval Clusters . 164

6.1 Introduction . 164

6.2 Problem Description . 166

6.2.1 Protocols . 166
6.2.2 System Description . 169
6.2.3 Objectives . 173

6.3 Model Description . 174

6.3.1 Notation . 174
6.3.2 From Protocols to Project Classes 174
6.3.3 Assigning Staining Projects to Units 180

6.4 CP Optimizer Model . 181

6.4.1 Top Level Description . 181
6.4.2 Clusters Level Descriptions 184

ix

CONTENTS

6.5 Computational Study . 199

6.5.1 Data . 199
6.5.2 Model Improvements . 201
6.5.3 Search Phases . 201
6.5.4 Experimental Setup . 202
6.5.5 Computational Results . 203

6.6 Model Extensions / Future Work . 206

6.7 Conclusion . 207

7 Concluding Remarks . 208

7.1 Contribution . 208

7.2 Future Work . 210

A Additional Material - Chapter 3 . 213

A.1 Tightening Constraints . 213

A.2 Polyhedral Analysis . 214

B Additional Material - Chapter 4 . 221

B.1 MIP Model for LHRSP . 221

Bibliography . 224

x

CHAPTER 1
Introduction

1.1 Motivation

This thesis is motivated by modelling and solving scheduling problems that arise
when automating scientific experiments. More specifically, we are motivated by
scheduling fully-automated robotic systems that complete cell staining processes
in the fields of Immunohistochemistry (IHC) and In-Situ Hybridisations (ISH). For
simplicity, we refer to these processes as advanced cell staining. Advanced cell stain-
ing considers the process of using chemicals and dyes to enhance the visualisation
of cellular subcomponents of tissue samples under a microscope. The technique is
commonly used to help pathologists identify the presence or prevalence of partic-
ular cell types, structures or microorganisms for the clinical diagnosis of cancers
and infectious diseases. For an example of a tissue sample that has undergone cell
staining, refer to Figure 1.1.

The ability to use dyes to better differentiate between cellular properties is a
well established practice in the field of pathology. In fact, some staining techniques
that were developed more than a century ago are still routinely used today, such
as: (1) Haematoxylin and Eosin staining (H&E) (Mayer, 1891) used to detect the
abnormalities in the organisation of cells typically associated with cancer, and (2)
Giemsa staining (Giemsa, 1904) used to diagnose parasites such as malaria. Older
still, the earliest reported usage of dyes to improve microscopic observations is

1

1.1. MOTIVATION

Figure 1.1: An example of a tissue sample after advanced cell staining. More specifically a user
validated Prostate Marker Cocktail - HMW CK mouse antibody stains brown and p540S rabbit
antibody stains red (Biosystems, 2012).

attributed to Hooke (1665). Given that significant examples have existed for well
over a century which clearly demonstrate the practical importance of cell staining,
it is unsurprising that the field has received extensive research since this time.

Today, advanced cell staining techniques allow pathologists to probe beyond
pure gene morphology and test for the presence of specific proteins and RNA or
DNA sequences. These techniques are all based on the sequential application of
chemicals to a sample according to a very specific set of instructions commonly
known as a staining protocol. Samples are generally sections of skin tissue taken
from patients by biopsy. Although manual staining is still possible, in general
advanced cell staining is typically completed by fully-automated systems such as
that shown in Figure 1.2.

The need for automation is based on a number of factors. Firstly, due to the
large number of steps in staining protocols, there is a risk of technical errors when
performed manually, affecting variability in the quality, consistency and reliability
of the results (Bánkfalvi et al., 2004). Secondly, as a single staining protocol can
often take more than a couple of hours and multiple staining protocols are often

2

CHAPTER 1. INTRODUCTION

Figure 1.2: An image of Leica Biosystem’s BOND-MAX Fully Automated IHC and ISH staining
instrument (Biosystems, 2019).

used for a single sample from a single patient, automation increases the number of
staining protocols a pathologist can complete in a given amount of time. The more
tests a pathologist can complete, the more information they have available to reach
an accurate diagnosis.

Automated systems vary in their design but in general can process dozens of
different samples in parallel. We refer the interested reader to Prichard (2014) for
a recent summary of the different automated instruments. Such systems generally
consist of a range of different resources such as various types of liquid handling
robots, heating/cooling apparatuses, and vacuums that must be coordinated in or-
der to transfer chemicals to a set of samples such that they are processed according
to their specified staining protocols.

This thesis is motivated by the scheduling of the resources of a system to
process a large number of experiments efficiently while still adhering strictly to
the specific staining protocols. In particular, we consider the next-generation ad-
vanced cell staining instrument developed by our industry partner Leica Biosys-
tems, which has not yet been released to market.

While we are not aware of any existing literature specific to the scheduling
of automated staining instruments, it is interesting to note that radiation therapy
scheduling (Petrovic et al., 2013), i.e. the automated design and scheduling of radia-
tion treatments, is a well-established optimisation problem in Operations Research.

3

1.2. RESEARCH AIMS AND METHODOLOGY

Thus, although improved scheduling techniques are already been used to optimise
cancer treatment, this thesis concentrates on the related process of optimising the
diagnostic instruments themselves.

1.2 Research Aims and Methodology

The aim of this thesis is to provide theoretical insights and develop frameworks
that can help understand how best to model and solve the types of scheduling prob-
lems that motivate this research. Although motivated by a very specific application,
the aim of this thesis is not necessarily to develop a single application-specific al-
gorithm. Our inclination to study more general techniques is based on the fact that
the design of real-world systems can often change considerably during product
development. By focussing on general solving approaches, this not only provided
us with the flexibility to adapt to inevitable changes but also alleviated many of
the issues surrounding the disclosure of sensitive information.

We restrict the scope of the thesis to understanding how the relevant prob-
lems are best modelled by existing combinatorial solvers such that they are solved
efficiently. In doing so, we discovered that solvers based on Constraint Program-
ming (CP) were particularly efficient. CP is a problem-solving framework that
establishes a clear distinction between (1) the modelling of a discrete optimisation
problem in terms of variables, constraints and objective function, and (2) the algo-
rithms that solve the model. Much of the potential of CP has long been based on
this distinction; as Freuder (1997) famously stated,

Constraint Programming represents one of the closest approaches computer
science has yet made to the Holy Grail of programming: the user states the
problem, the computer solves it.

Despite the goal of declarative problem solving, CP has not always adhered to
a model-and-run paradigm (Puget, 2004). Not only do users have to specify how
to model a problem in terms of variables, constraints and objective, but they also
frequently have to specify how the search for a solution must proceed. In regards
to Freuder’s quote, the user must not only state the problem but also how the
computer should solve it.

Recently, through the development of strong automated solving procedures,
many CP solvers have aligned with the model-and-run paradigm. This was largely
achieved in two distinct ways:

1. By complementing CP with the no-good learning technologies and strong

4

CHAPTER 1. INTRODUCTION

automated search developed for boolean satisfiability (SAT) problems such
as by the solver Chuffed (Chu, 2011), and

2. By developing a scheduling specific modelling language on top of traditional
CP and developing search processes specific to scheduling problems such as
by IBM’s CP Optimizer (Laborie et al., 2018)

As a result, CP methods using off-the-shelf solvers represent the state-of-the-art
for many classical scheduling problems (Schutt et al., 2013c, 2011, 2013a; Vilim
et al., 2015), as well as for many industrial scheduling problems (Booth et al., 2016;
Kinable, 2015; Giles and van Hoeve, 2016; Kizilay et al., 2017; Kinnunen, 2016;
Frank et al., 2016).

The benefits of having strong automated solving procedures is that it allows
users to focus on how best to model the problem they wish to solve. Yet despite
the recent advances of constraint-based scheduling techniques, there still appears
to be little theoretical insight into understanding why one CP model of a problem
might in general outperform another. Although the focus of the thesis is largely on
solving technologies based on CP, where appropriate during the thesis, concepts
are extended to Mixed Integer Programming (MIP) and relevant concepts from
Project Scheduling. As mentioned, the work itself is particularly motivated by an
industrial application, however significant effort has been made to generalise all
insights as much as possible to allow for broader application.

1.3 Thesis Outline and Contributions

Each chapter of the thesis, excluding the introduction and conclusion, considers a
single scheduling problem that relates to the motivating real-world problem. The
relationship between these problems, which is visually summarised in Figure 1.3,
uses two different approaches to simplifying the real-world problem that we refer
to as (1) a top-down approach and (2) a bottom-up approach.

Before describing these approaches, we note the reasons why we consider
special cases of the real-problem instead of describing and solving the motivating
problem directly. Firstly, as previously stated the real-world problem is based on
the development of an automated system by our industry partner that has not
yet been released and thus is commercially sensitive. As such we wished to struc-
ture the research in such a way that any theoretical contributions could be shared
with the research community independent of the immediate application. To that
end, we restrict all of the potentially sensitive information to a single chapter of

5

1.3. THESIS OUTLINE AND CONTRIBUTIONS

the thesis, that is Chapter 6, which will not be made public until the product is
launched. Secondly, our initial attempts to model and directly solve the problem in
its full complexity were not immediately beneficial. We study restricted versions
of the problem that offer insight into strategies to tackle the additional complexity.
Thirdly, we aim to leverage and build upon existing methods in the scheduling lit-
erature and thus aimed to simplify the problem to connect it to classical problems.

Figure 1.3: The thesis roadmap. The blue boxes indicate the main problems considered in the thesis.
The red boxes indicate the main theoretical contributions of the thesis. The dashed boxes indicate
where the problems and theories relate to the chapters of the thesis.

The top-down approach is based on making conservative simplifying assump-
tions to the real-world problem until we reach a classical problem in the literature.
Examples of conservative assumptions include assuming a worst case travel time
for the components that must move around the system, assuming that slides are
placed into specific locations of the system, assuming that robots aspirate a single
unit of chemical at a time, and assuming that tasks that the robots could do at
the same time are done one at a time. Despite these assumptions being restrictive,
there are multiple benefits of the top-down. Firstly, as all simplifying assumptions
are conservative, any feasible solution obtained to the real-world instances of the
simplified problem can be used directly as a feasible solution of the real-world

6

CHAPTER 1. INTRODUCTION

problem. Secondly, by mapping the real-world problem into a problem that exists
in the literature, we can understand and leverage existing approaches. Thirdly, as
was the case for us, when mapping real-world instances into an existing problem,
these instances can have special properties that can be exploited. The main limita-
tions of the top-down approach it does not necessarily provide optimal solutions
to the real-world problem and it may not be immediately clear how to overcome
the simplifying assumptions.

The bottom-up approach completely ignores some aspects of the real-world
problem and starts with a sub-problem that is intuitive to state yet still challenging
to solve. Once a satisfactory solution method has been developed for the simpli-
fied version of the problem for approximations of real-world instances, additional
aspects of the real-world problem can be considered. This process is repeated until
all remaining aspects are included. The limitation of the bottom-up approach is
that solutions to the simplified versions of the problem cannot necessarily be imme-
diately used as solutions to the real-world problem as some aspects are completely
ignored. The benefit of the bottom-up approach is that: (1) it allows the develop-
ment of insights into the structure of the problem that might not have been made
on the full problem, (2) it can more easily compare a range of different approaches,
and (3) it starts with and gradually considers problem-specific attributes of the
real-world problem.

Clearly both the top-down and bottom-up approach have their respective
benefits and limitations. In this thesis, Chapters 2 and 3 are based on the top-down
approach, whereas Chapters 4 to 6 are based on a bottom-up approach. With this
in mind, we will now provide an overview of the remaining chapters of the thesis.

Chapter 2: The aim of this chapter is to introduce the necessary terminology, con-
cepts and solving technologies that are used throughout the thesis. This includes an
introduction to relevant aspects of Project Scheduling, Mathematical Programming,
Constraint Programming, and IBM’s CP Optimizer. As a reference problem, this
chapter considers the Resource-Constrained Project Scheduling Problem with Gen-
eralised Precedence Constraints (RCPSP/max), which is a well-studied generali-
sation of the classical Resource-Constrained Project Scheduling Problem (RCPSP).
As shown in Figure 1.3, we consider the RCPSP/max because it is possible to map
instances of the motivating problem into instances of the RCPSP/max by making
conservative simplifying assumptions. It was observed that once mapped, these
instances contained a lot of symmetry for which methods that exploit this observa-
tion were developed and presented in the following chapter.

7

1.3. THESIS OUTLINE AND CONTRIBUTIONS

Chapter 3: The aim of this chapter is to understand how symmetry can be ex-
ploited in instances of the RCPSP/max that include multiple projects with identi-
cal characteristics. We refer to these instances as high-multiplicity instances. These
arise naturally in our application when the same staining protocol is used for mul-
tiple slides. The chapter is based on our journal article (Edwards et al., 2019), which
is an extension of our conference paper (Edwards et al., 2017). We show that there
exists symmetry between projects of the same class and propose two approaches
of symmetry breaking: (1) adding additional constraints to the model in the form
of precedence constraints, (2) remodelling the problem to reduce the number of
variables. To test the usefulness of the symmetry breaking approaches a compu-
tational study is completed considering two families of discrete-time based MIP
models and a number of state-of-the-art CP-based scheduling approaches. The
study shows that both symmetry breaking approaches allow all solving methods
to find and prove more optimal solutions. The best CP approach is then used to
find a number of new best solutions to relevant problems from the MPSPlib, a
multi-project scheduling problem library, whereas the best MIP approach is used
to determine a number of tighter lower bounds.

Chapter 4: The aim of this chapter is twofold. Firstly, we aim to consider some
challenging aspects of the motivating real-world problem that are not considered
by the RCPSP/max. We do this by proposing and studying a problem that is sim-
ple and intuitive enough to be understood without needing to know the technical
and potentially sensitive details, is challenging enough that developing good solv-
ing approaches is not immediately straightforward, and yet still has an interesting
problem structure that can be exploited. Secondly, we wish to propose and com-
pare a range of different approaches to how the problem can be modelled and
solved. The chapter considerably extends the work of our workshop paper (Ed-
wards et al., 2018). We introduce the Liquid Handling Robot Scheduling Problem
(LHRSP) which seeks to minimise the time taken by a robot to transfer chemicals to
a set of slides using a single pipette with finite capacity. We consider three different
CP Optimizer models. The best approach exploits an observation that once a sub-
set of the decision variables are fixed, and constraint propagation reaches a fixed
point, the partial assignment can be extended immediately to a complete solution.
This observation formed the basis for the next chapter.

Chapter 5: The aim of this chapter is to firstly formalise the insights made in the
previous chapter of how solvers can be accelerated by only considering a subset of

8

CHAPTER 1. INTRODUCTION

the variables, and then demonstrate how this can be applied to solve a generalised
version of the LHRSP, denoted LHRSP+, that contains some additional real-world
aspects. More specifically, in many applications of CP it is often necessary to in-
troduce auxiliary variables into a model either because it is difficult to express the
constraints at all in terms of existing variables, or to improve propagation. An im-
mediate consequence of additional variables however is that unless they are dealt
with effectively they can significantly increase the search effort as there are more
variables to choose from when branching. To help identify the subset of variables
that should be used as choice points in the search tree, we introduce the notion
of driving variables. Driving variables are a subset of the variables that once as-
signed values and constraint propagation reaches a fixed point, a search strategy
can be determined in polynomial time that will always generate a complete assign-
ment without backtracking. We distinguish our notion of driving variables from
related concepts such as functional variable dependencies, backdoors to typical
case complexity, and tractable structures for constraint satisfaction problems such
as constraint networks. To ensure a search strategy will not backtrack we intro-
duce a novel local consistency measure, Lower-Upper (LU) consistency, that can be
used to reason about complete assignments. We then prove for a number of special
cases of global constraints from CP Optimizer that existing filtering algorithms and
consistency checks ensure LU consistency for various variable partitions.

Chapter 6: The aim of the chapter is to both describe the real-world motivating
problem in detail and demonstrate how the theory of the previous chapters can
be built upon to model and solve the problem. We introduce a framework for
building models to Constraint-Based Scheduling systems that explicitly considers
multiple levels of abstraction and can still be solved efficiently. More explicitly,
we model the problem such that it is possible to partition the set of all variables
into interval clusters, which represent subsets of variables containing exactly one
driving variable as well as satisfying a number of sufficient conditions involving
connectivity and boolean logic. In doing so, we structure the problem in such
a way that each cluster can be thought of as a single higher level variable and
the sufficient conditions ensure desirable behaviour over the remaining variables.
We demonstrate the benefit of considering interval clusters when modelling and
solving the next generation of fully automated advanced cell staining instruments.

Chapter 7: This chapter concludes the work done in this thesis and identifies
opportunities for future research in the field.

9

CHAPTER 2
Background

This chapter introduces necessary terminology, concepts and solving technologies
that are used throughout the thesis. The chapter is divided into four sections. The
first section provides an overview of relevant scheduling concepts from Project
Scheduling (PS). This includes describing the RCPSP/max, a well-studied gen-
eralisation of the classical RCPSP, which will be used as the reference problem
throughout the chapter. The second section provides an overview of more than 50
years of trying to model and solve the RCPSP and its variants using MIP. Some
limitations faced by MIP are discussed. The third section is an introduction to CP,
in which an overview of fundamental aspects of the technology such as global con-
straints and search strategies are provided with a focus on scheduling problems.
This sections also includes an introduction to Lazy-Clause Generation, a hybrid solv-
ing approach combining CP and boolean satisfiability problems (SAT). The fourth
section provides a comprehensive introduction to CP Optimizer, which has been
designed to model and solve industrial scheduling problems.

2.1 Project Scheduling Problems

PS considers a very broad class of optimisation problems that can be classified
based on the attributes that define the problem. In general, these problems address
the allocation of scarce resources to activities over time while trying to minimise
some objective function. The field of PS is far reaching and overlaps other areas

10

CHAPTER 2. BACKGROUND

of discrete optimisation such as Planning, Rostering and Routing — for example,
it is well known that classical Vehicle Routing Problems (VRPs) can be viewed
as variants of the Job Shop Problem (JSP), and vice versa (Beck et al., 2003). For
the purpose of this thesis, we consider PS to be all problems that can be defined
by the three-field classification scheme proposed by Brucker et al. (1999a), which
importantly includes the RCPSP and its variants. A full review of the field of PS is
outside the scope of this thesis; for a more complete reference the reader may refer
to the recent handbooks by Schwindt and Zimmermann (2015a,b).

2.1.1 Classification Scheme

To structure the problems that fall under the umbrella of PS, many classification
schemes have been proposed — the most famous of which is the classification
scheme proposed by Brucker et al. (1999a). Classification schemes are extremely
important as they allow the scientific community to keep track of which ideas
are new, and which are already known. The classification scheme proposed by
Brucker et al. (1999a) was inspired by those from machine scheduling, as machine
scheduling is typically a special case of project scheduling problems. It is based
on three fields: (1) the resource environment, (2) activity characteristics, and (3)
the objective function. We briefly introduce a modified version of this scheme
considering aspects relevant to the thesis.

Resource and Project Characteristics

• Single Machine (1): A single machine problem considers the case where there
is a single renewable resource |R| = 1, with a unit capacity, R0 = 1. Renew-
able resources with unit capacity are also known as disjunctive resources as
the activities requiring the resource cannot overlap in time.

• Project Scheduling with renewable resources (PS): These problems consider
a set of renewable resource with a capacity that cannot be exceeded at any
time in the time horizon.

• Project Scheduling with production consumption resources (PS±): Produc-
tion consumption resources (Neumann and Schwindt, 2003), also known as
reservoirs (Laborie, 2003a), are resources where activities can either produce
or consume units of resource at the start or end of the activity. The amount of
resource available can be constrained to always be within a certain range.

• Multi-Project Scheduling with renewable resources (mPS): The multi-project

11

2.1. PROJECT SCHEDULING PROBLEMS

scheduling problem is a special case of project scheduling where multiple
projects are considered. Precedence constraints are only defined between ac-
tivities from the same project or from the master dummy start or end activities.
Multi-project scheduling is discussed in more detail in Chapter 3.

• Job Shop (J): A job shop is a special case of multi-project scheduling with
renewable resources. It considers a set of jobs, which can be thought of as
projects for which the precedence constraints enforce a specific ordering on
the activities in the project. Furthermore the problem considers a set of re-
newable resources with unit capacity, referred to as machines. The number
of activities in each job is equal to the number of machines. Each activity in
the job requires the use of a unique job for a certain amount of time.

Activity and Precedence Characteristics

Activity characteristics:

• Pre-emption (prmp): Pre-emption means that an activity can be interrupted
even during processing and recovered later on. Pre-emptive activities can be
separated into multiple activities of unit-time and ordered by simple prece-
dence relations.

• Release dates (releasei): An activity / project can not be started before a cer-
tain time.

• Due dates (duei): An activity / project must be completed before a certain
time. Due dates can either be implemented as hard constraints that cannot be
violated or soft constraints that incur a penalty cost to an objective function.

• Sequence-dependent setup times (SDST): Sequence-dependent setup times
can be defined for pairs of activities that require the same disjunctive re-
sources. Some simple practical examples of where sequence-dependent setup
times occur are when a machine must change a tool before operating on a
different type of activity, or when a machine must move from the location of
the first activity to the location of the second.

• Activity Modes (mode): Activities can have multiple modes of execution, i.e.,
the problem not only decides when to complete the activity but, given an
explicit set of options, how the activity is to be completed. Different modes
of the same activity have different parameter information for characteristics
such as duration and resource requirement.

• Mode-identity constraints (ident): Mode-identity constraints consider specific

12

CHAPTER 2. BACKGROUND

modes from pairs or sets of different activities and enforce that all activities
are completed in the associate mode or neither of them are (Rahimi et al.,
2013; Drexl et al., 2000).

Precedence characteristics:

• Simple precedence constraints (prec): This parameter details for pairs of ac-
tivities that the first activity must end before the second activity may start.

• Generalised precedence constraints (temp): This parameter details that gen-
eralised precedence constraints are to be considered, i.e., the precedences
can specifies both a minimum and maximum waiting time between pairs of
activities.

• Precedence Chains (chain): Assuming firstly that the problem only consid-
ers simple precedence relations, we say a problem has a precedence chain
structure if each activity has at most one immediate predecessor and one
immediate successor (Du et al., 1991). If generalised precedence constraints
exist, an AoN network has a precedence chain structure if each activity has
at most two neighbours; a predecessor with minimum and maximum wait-
ing times and a successor with minimum and maximum waiting times. In
general throughout this thesis we refer to projects with a precedence chain
structure as jobs.

Objective Functions

There is a large range of different objective functions considered in the PS literature.
Informally, objectives functions are considered regular if the objective function of
a feasible schedule cannot be improved by only increasing the start times of (i.e.,
delaying) activities, and irregular otherwise. A more detailed discussion of shifts
and schedule types is given in Section 2.1.2 with respect to Schedule Generation
Schemes. A number of objective functions that are referred to throughout the thesis
are as follows:

• Project Makespan (Cmax): Minimise the time it takes to complete all of the
activities considered, i.e., minimise the maximum completion time of any
activity.

• Average Project Delay (APD): This objective is with respect to multi-project
scheduling and aims to minimise the average that each project is delayed by.
This can equivalently be interpreted as minimising the sum of the makespans
from each individual project.

13

2.1. PROJECT SCHEDULING PROBLEMS

• Maximum Tardiness (Lmax): The objective is to minimise the maximum late-
ness of any of the activities with respect to certain due dates.

• Net Present Value (NPV): In this formulation each activity has an associated
cash flow which may be a payment (negative cash flow) or a receipt (positive
cash flow). The cash flows are discounted with respect to certain discount
rates, which makes it, in general, beneficial to execute activities with positive
cash flows as early as possible, and negative cash flows as late as possible.
Thus NPV is an example of an irregular objective function.

Solving Environment

Industrial scheduling problems have a number of practical challenges on top of
the problems typically considered in the scheduling literature.

• Static Scheduling: Static scheduling, also known as deterministic scheduling, is
based on the implicit assumption that the input data to the problem is pre-
cisely known in advance and no disruptions will occur when the schedule
is implemented. The vast majority of scheduling problems considered in the
literature are static scheduling problems. Static scheduling problems pro-
vide a great starting point to abstractions of real-world scheduling problems,
where techniques can be developed independent to engineering challenges
that arise during implementation.

• Dynamic Scheduling: Dynamic scheduling considers problems where the num-
ber of activities / jobs / projects can increase from the initial parameters
provided. These problems are common in machine scheduling where jobs
continuous arrive throughout the course of the day. The arrival of jobs are ei-
ther assumed to be completely unpredictable or based on a stochastic process
(Melchiors, 2015).

• Stochastic Scheduling: Stochastic Scheduling considers the situation where the
input parameters are not precisely known and are thus modelled probabilisti-
cally, i.e., the durations of activities or resource requirements may be different
to what is exactly specified (Melchiors, 2015).

• Reactive Scheduling: Reactive scheduling is based on revising or re-optimising
an existing schedule when an unexpected event occurs (Herroelen and Leus,
2004) during the execution of the scheduling. Reactive scheduling is inti-
mately related to both dynamic scheduling, as newly arrived activities must
be incorporated into an existing schedule, and stochastic scheduling, as the
initial parameters are discovered to be incorrect.

14

CHAPTER 2. BACKGROUND

Problems can also be distinguished based on whether or not the time taken by
the scheduling algorithm to determine a schedule impacts the problem itself.

• Offline Scheduling: Offline scheduling considers problems in which a schedule
can be generated before it is executed. Hence in offline scheduling the execu-
tion time of the algorithm used to determine the schedule does not need to
be taken into account

• Online Scheduling: Online scheduling, also known as real-time scheduling, con-
siders the case where the time taken to determine the schedule must be taken
into account by the schedule. Many scheduling problems in industrial set-
tings are online scheduling problems.

The scheduling problems considered in this thesis are all static and offline. In
reality though, the problems that motivated this thesis are dynamic, stochastic and
online. The decision to narrow the focus of the thesis to static and offline versions
of the problems was very deliberate. Many dynamic, stochastic, online scheduling
problems can be solved by sequentially solving reactive scheduling problems. Zhao
et al. (2013) propose such a framework for an industrial scheduling problem - the
hoist scheduling problem. Hence we claim that any development made on the
static and offline versions of the problem can be engineered to help the real-world
systems.

2.1.2 Reference Problem - RCPSP/max

As claimed by Kolisch (2015), the RCPSP is probably the most studied problem
in PS. The RCPSP have been extensively studied due to a combination of being
easy to state, relevant in practice and yet hard to solve; being proven NP-Complete
by Blazewicz et al. (1983). Some key scheduling concepts used in this thesis will
be introduced with respect to a common generalisation of the RCPSP, that is the
RCPSP/max. The problem description of the RCPSP/max is now given, a number
of well-known related concepts stated, and then a working example is detailed
that is returned to frequently throughout the chapter to solidify new concepts.
With respect to the classification scheme the RCPSP/max is denoted PS|temp|Cmax,
whereas the RCPSP is denoted PS|prec|Cmax.

15

2.1. PROJECT SCHEDULING PROBLEMS

Problem Description

An instance of the RCPSP/max considers a single project that consists of n activities
has to be scheduled subject to generalised precedence relations and renewable re-
source constraints. The project is typically depicted as an Activity-on-Node (AoN)
network with node set V := {0, 1, ..., n + 1} where each node represents an activ-
ity and nodes 0 and n + 1 are dummy activities representing the start and end of
the project, respectively. A generalised precedence relation between two activities
i, j ∈ V : i 6= j, is represented by an arc (i, j) with arc weight δi,j. Let A denote
the set of all arcs of a project and R denote the set of all the renewable resources
required to undertake the project. Each renewable resource k ∈ R has a capacity of
Rk. In order to be processed activity i ∈ V requires ri,k units of renewable resource
k ∈ R for every period of its duration di without interruption, i.e., pre-emption is
not allowed.

A schedule S = (S0, S1, ..., Sn + 1) defines for each activity i ∈ V the start time,
Si. A schedule is said to be time-feasible if for each arc (i, j) ∈ A, the following is
true

Sj − Si ≥ δi,j.

A schedule is said to be resource-feasible if at each time period t ∈ H across the
time-horizon, H, the demand for each resource k ∈ R does not exceed its capacity
Rk, i.e.,

rk(S, t) = ∑
i∈V:

Si≤t<Si+di

ri,k ≤ Rk.

A schedule is called feasible if it is both time- and resource-feasible. The objective
is to determine a feasible schedule such that the time required for performing all
activities, i.e., Sn+1, is minimised. This objective function is known as minimising
the makespan of the project.

Relevant Theory

The generalised precedence relations as defined above are represented in so-called
standardized form, i.e., they are defined between the start times of the two activities.
Bartusch et al. (1988) make the observation that as pre-emption is not allowed
for activities the end-start, start-end, and end-end relations can be transformed to
start-start relations by the so-called Bartusch et al transformations. If pre-emption is
allowed, or the duration of the activities is a variable in the problem, the end-start,
start-end, and end-end precedences must be considered explicitly.

16

CHAPTER 2. BACKGROUND

Generalised precedence relations can describe both minimum and maximum
time lags. Consider the case where between two activities, there is both a minimum
and maximum amount of waiting time between the start of the two activities,
i.e., for i, j ∈ V, δmin

i,j ≤ Sj − Si ≤ δmax
i,j . The minimum time, δmin

i,j , is called the
minimum time lag, and the maximum time, δmax

i,j , is called the maximum time lag.
To model the minimum time lag as a generalised precedence constraint, an arc
(i, j) is introduced into the AoN network with arc weight δi,j := dmin

i,j . To model the
maximum time lag as a generalised precedence constraint, an arc (j, i) is introduced
with δj,i := −δmax

i,j . This is a valid operation as Si−Sj ≥ −δmax
i,j ⇐⇒ Sj−Si ≤ δmax

i,j .
Throughout this thesis we frequently refer to generalised precedence constraints
with non-negative arc weights as minimum time lags, and those with negative arc
weights as maximum time lags.

The classical RCPSP is a special case of the RCPSP/max where for each arc
(i, j) ∈ A the weight of the arc is equal to the duration of the predecessor activity,
i.e., δi,j = di. The precedences in the RCPSP are more commonly expressed as end-
start precedences with arc-weight 0 and commonly referred to as simple precedences.
As all activities are defined to have a non-negative duration, there do not exist
any maximum time lags. As the RCPSP is a special case of the RCPSP/max and
it is known that the RCPSP is strongly NP-Hard, then so too is the RCPSP/max.
Furthermore the problem of detecting whether a feasible solution exists for the
RCPSP/max is NP-complete (Bartusch et al., 1988).

Working Example

The following example will be used frequently throughout the chapter to exemplify
a number of concepts.

Example 2.1.1. Consider an instance of the RCPSP/max with a single renewable
resource and five activities. The single resource has a capacity of 4. The five activ-
ities are labelled A, B, C, D, and E, and have durations of 2, 8, 3, 1, 4 respectively,
and resource requirements of 3, 2, 1, 2, 2, respectively. There are five generalised
precedence constraints: SA + 2 ≤ SB, SB + 4 ≤ SC, SC − 9 ≤ SA, SD + 4 ≤ SE, and
SE − 4 ≤ SD. The AoN network associated with this instance is given in Figure 2.1.
An optimal solution of this instance is represented as a Gantt chart in Figure 2.2.

Schedule Generation Schemes

Schedule generation schemes are the backbone of heuristics to solve project schedul-
ing problems (Kolisch, 2015). Here we first introduce the different types of sched-

17

2.1. PROJECT SCHEDULING PROBLEMS

Figure 2.1: The activity-on-node network of the example problem

A B C

D E

0

0

2 4

-9

4

-4

3

8

4

Figure 2.2: An optimal solution to the example problem

0 1 2 3 4 5 6 7 8 9 10 11 12

4

A
B

C

D

E

ules, then state the serial and parallel schedule generations with respect to the
RCPSP, and then discuss the challenges of generalising this to the RCPSP/max.

Active, Semi-Active, Non-Delay Schedules With respect to the RCPSP, Sprecher
et al. (1995) introduced the notion of active, semi-active, and non-delay schedules.
These different schedule types formed the basis of analysis for comparing special
types of heuristics known as schedule generation schemes. First we must introduce the
notion of a shift. A shift is of an activity i ∈ V with respect to a feasible schedule S
is an operation which derives from S another feasible schedule S′ such that activity
i is changed and all other activities remain the same, i.e., S′i 6= Si and S′j = Sj for
j ∈ V \ {i}. A left-shift of activity i ∈ V is a shift such that activity i starts earlier in
the updated schedule, i.e., S′i < Si and S′j = Sj for j ∈ V \ {i}. A one-period left shift
of activity i ∈ V is a left shift such that Si − S′i = 1. A local left shift of an activity
i is a left shift of activity i which is obtained by one or more successively applied
one-period left shifts of activity i. This implies that each intermediate schedule
derived from a local left shift is also feasible. A global left shift of an activity i is a
left shift of activity i which is not obtainable by a local left shift. Hence for a global
left shift Si − S′i > 1 and at least one of the intermediate schedules in the course

18

CHAPTER 2. BACKGROUND

of the global left shift is not feasible. Equivalent definitions can be made for right
shifts.

The notion of shifts is also used to classify different objective functions. An
objective function is said to be regular if a solution cannot be improved through
performing right shift operations. Objective functions that are not regular are irreg-
ular. Minimising makespan is clearly an example of a regular objective function
as it is not possible to finish the project earlier by starting activities later than they
currently are.

The schedule types are now defined as follows. An active schedule is a feasible
schedule where none of the activities can be locally or globally left shifted. A semi-
active schedule is a feasible schedule where none of the activities can be locally
left shifted. A non-delay schedule is an active schedule even if each activity i ∈ V
with duration di is split into a series of dj activities with duration 1 and simple
precedences are between consecutive sections, i.e., the first time unit must finish
before the start of the second time unit and so on. Sprecher et al. (1995) then prove
that the set of feasible schedules is a subset of all schedules, the set of semi-active
schedules is a subset of all feasible schedules, the set of all active schedules is a
subset of all semi-active schedules, and the subset of all non-delay schedules is a
subset of all active schedules. The set of schedules with the smallest cardinality
that contains an optimal solution with respect to a regular objective function is
the active set, i.e., the set of non-delay schedules does not necessarily contain an
optimal schedule.

Serial Schedule Generation Scheme The serial schedule generation scheme (SSGS)
inserts activities into a schedule one-by-one at their earliest feasible start time.
For a scheduled activity there are no local or global left shifts possible. Hence
SSGSs generate active schedules (Kolisch, 1996). First let Cµ be the set of activi-
ties which have been scheduled up to iteration µ, known as the completed set. Let
A(Cµ, t) = {i ∈ Cµ|Si ≤ t < Si + di} be the set of activities in the completed set in
progress at time t ∈ H, known as the active set. Now, let R̃k(t) = Rk −∑i∈A(Cµ,t) ri,k

be the remaining capacity of resource k at time t. Finally let Dµ be the decision set
containing the activities that have not yet been scheduled but all of their predeces-
sors have been scheduled, i.e., Dµ = {i ∈ V \ Cµ|Pred(i) ⊆ Cµ}.

The SSGS takes n iterations. In line 1, the dummy start node is set to start at
0, is inserted into the completed set and the resource profile is empty. Then for
each iteration the following steps are completed. Firstly the decision set and the

19

2.1. PROJECT SCHEDULING PROBLEMS

Algorithm 1 Serial Schedule Generation Scheme (SSGS) for the RCPSP

1: Initialization S0 = 0, C0 := {0}, R̃k(t) = 0
2: for each job µ do
3: Update Dµ and R̃k(t) for all k ∈ R and t ∈ H
4: Select i ∈ Dµ

5: ESTi := maxj∈Pred(i)(Sj + dj)

6: Si := min{t|ESTi ≤ t, ri,k ≤ R̃k(τ) for all k ∈ R and τ = t, ..., t + di − 1}
7: Cµ := Cµ−1 ∪ {i}

resource profile are updated, line 3. Then one of the activities from the decision set
is selected, line 4, and its earliest start time in calculated, line 5. From the earliest
start time, the activity is inserted into the first slot that does not violate the resource
capacities of any of the resources. Finally the activity is added to the completed set.

Kolisch and Hartmann (1999) observe that when searching for the earliest
resource feasible start time Si in line 6 not every t has to be checked. Instead, the
resource feasibility only needs to be checked at the end time of activities that have
already been completed, thereby reducing the time complexity from the naive
implementation of O(n · T · |R|) to O(n2 · |R|).

Priority Rules In order to decide which activity should be chosen from the deci-
sion set in line 4, there are two differing frameworks: priority rules and activity lists.
Priority rules are, as the name implies, rules for determining the priority of the
activities to be considered in the decision set. For example, a well-known priority
rule is the minimum slack priority rule, where the slack of an activity i ∈ V is the
difference between its latest and earliest start times, LSTi − ESTi + 1. When the
minimum slack priority rule is being utilised, the activity with the minimum slack
compared with other activities in the decision set is selected. Ties can either be
broken randomly or based on the index of the activities.

Much research has been undertaken to determine which priority rules for the
RCPSP are the best. Klein (2000) benchmarked 73 different priority rules for the
RCPSP and evaluated them experimentally. Clearly the best choice of priority rule
will depend on the problem instance. More recently, genetic programming has been
used to automate the process of determining good quality priority rules (Chand,
2018; Chand et al., 2018).

List heuristic An activity list, ` := {i1, i2, ..., in}, is determined before the start
of the algorithm and used to determine which activity in the decision set to se-

20

CHAPTER 2. BACKGROUND

lect. The activity list is precedence feasible if for each activity ik in the list, each
immediate predecessor in the AoN, Pred(ik), has to be before ik in the list, i.e.,
Pred(ik) ⊆ {i1, ..., ik−1} holds. The SSGS applied to activity lists is employed by
many metaheuristics for the RCPSP, as summarised by Kolisch and Hartmann
(2006).

Parallel Schedule Generation Scheme The parallel schedule generation scheme
is time oriented, whereby activities are inserted into the schedule in a monoton-
ically increasing order with respect to start time. Each iteration µ has an associ-
ated start time tµ. The active, decision and completed sets must now be redefined
with respect to tµ. The completed set C ′µ consists of all the activities such that
the finish time is less than or equal to tµ, i.e., C ′µ := {i ∈ V|Si + di ≤ tµ}. The
active set, A′µ, consists of all the activities that are currently in process at tµ, i.e.,
A′µ := {i ∈ V|Si ≤ tµ < Si + di}. The remaining capacity of resource k ∈ R at
time tµ is R̃′(tµ) = Rk − ∑i∈A′µ ri,k. Finally the decision set is now defined as the
set of all activities that are not yet completed, all the predecessors of which have
been completed and at time tµ there is enough remaining capacity in order to be
processed, i.e., D′µ := {i ∈ V \ {C ′µ ∪ A′µ}|Pred(i) ⊆ C ′µ and ri,k ≤ R̃′k(tµ) for all
k ∈ R}. Kolisch and Hartmann (1999) state that the time complexity of the PSGS
is also O(n2 · |R|).

Algorithm 2 Parallel Schedule Generation Scheme (PSGS) for the RCPSP

1: Initialization µ := 0, tµ := 0, C ′0 := ∅, S0 = 0, A′0 := {0}
2: while |C ′µ ∪A′µ| ≤ n do
3: µ := µ + 1
4: tµ := mini∈A′µ−1

(Si + di)

5: Update C ′µ,A′µ, R̃′k(tµ) for all k ∈ R,Dµ

6: while D′µ 6= ∅ do
7: Select i ∈ D′µ
8: Si := tµ

9: Update R̃′k(tµ) for all k ∈ R, as well as A′µ,D′µ.

10: Sn+1 = maxi∈Pred(n+1)Si + di

The algorithm first sets the dummy start node to zero and assigns the dummy
start to the active set, line 1. Each iteration has a unique counter µ and a unique
schedule time tµ, set in lines 3 and 4 respectively. The unique schedule time is the
earliest end time of the activities in process in iteration µ− 1. For the new iteration,
and schedule time, the sets of completed and active activities, the remaining capac-

21

2.1. PROJECT SCHEDULING PROBLEMS

ity of the resources, and the decision set are calculated in line 5. Following this, the
start times of activities from the decision set are iteratively assigned to µ until the
decision set is empty, in lines 7- 9. Once all of the n activites have been scheduled,
the start time of the dummy end activity n + 1 is fixed in line 10.

Priority rules and activity lists can again be used when deciding which activity
to select from the decision set, in this case in line 7. In the case where an activity
list is used, the activity from the decision set is chosen which is on the foremost
position of the list.

A schedule constructed by the PSGS belongs to the set of non-delay schedules
(Kolisch, 1996). Therefore the PSGS is not necessarily capable at generating the
optimal solution. However in practice as the cardinality of the set of non-delay
schedules is smaller than the set of active schedules, in general fewer schedules
must be generated when searching for a good schedule with the PSGS compared
with the SSGS. This was experimentally verified by Kolisch and Sprecher (1997),
who observed that for a simple priority based heuristic, independent of the specific
priority rule employed, the average objective function value when employing the
PSGS outperforms those obtained with the SSGS.

Schedule Generation Schemes for RCPSP/max

Much research in the mid to late 1990s focussed on generalising the schedule gen-
eration schemes generated for the RCPSP to the more challenging RCPSP/max. A
consequence of the maximum time lags is that it is no longer possible to contin-
uously right-shift an activity to find a feasible starting time in the schedule. Con-
sequently, it is no longer possible to safely insert activities into the schedule one
at a time without encountering the possibility of infeasibility. An overview of the
priority rules methods of Zhan (1994), Neumann and Zhan (1995), and Brinkmann
and Neumann (1996) can be found in Brucker et al. (1999a) and Neumann and
Zimmermann (1999). In general all of these methods introduced the notion of an
unscheduling step.

The unscheduling step, as reviewed by Franck et al. (2001), is performed as fol-
lows. In Line 6 of the SSGS, the selected activity, i ∈ V, is set to the earliest starting
time that does not violate the resource capacities, let t∗ denote this time. However
when maximum time lags are considered it is now possible for this scheduling
time to be greater than the latest starting time of the activity, t∗ > LSTi. This can
only be due to a maximum time lag between i and one or more activities in the
completed set. Therefore a subset of the activities in the completed set must now

22

CHAPTER 2. BACKGROUND

be unscheduled. Let this unschedule set be defined as U := {j ∈ C|LSTi = Sj − δi,j}.
All activities j ∈ U are unscheduled and their earliest start times are increased by
t∗ − LSTi. As the number of unscheduling steps may be exponential with respect
to the number of activities, typically a maximum number of unscheduling steps is
prescribed, after which the algorithm terminates without a solution. The algorithm
then continues as usual.

The connectivity of the AoN network can be used to help schedule the activ-
ities to reduce the number of unscheduling steps required. Recall that a strongly
connected component of a directed graph is a set of at least two nodes such that
every vertex in the set is reachable from every other vertex following the direc-
tions of the arcs. Neumann and Zhan (1995) observe that a project network has
a feasible schedule if and only if for each strongly connected component of the
AoN network, there is a feasible subschedule. Moreover, if all of the arcs in all of
the strongly connected components are contracted, i.e., strongly connected com-
ponents are represented by a single node, the resulting graph, referred to as the
contracted graph, contains no cycles, and thus no negative time lags. The remaining
precedences in the contracted graph thus enforce the order in which the strongly
connected components can be considered for scheduling. Once all the activities
from the strongly connected component that corresponds to the root node in the
contracted graph have been scheduled, then assuming that all strongly connected
components have a feasible subschedule, a feasible schedule exists that respects
this subschedule. Heuristics such as the direct method introduced by Franck et al.
(2001), take advantage of this property. Hence once all activities from a strongly
connected component have been successfully incorporated into the schedule, these
activities will never have to be unscheduled.

Example 2.1.2. Considering the instance of the RCPSP/max from Example 2.1.1
there are two strongly connected components; (1) nodes A, B, and C, and (2) nodes
D and E. Furthermore, if considered in isolation, there clearly exist feasible sub-
schedules for each of the subcomponents, e.g., SA = 0, SB = 2, SC = 6 for the
first component and SD = 0, SE = 4 for the second. If all the edges within both
components are contracted, there does not exist a precedence relation between the
two components.

In the following example we see how the unscheduling step uses the maxi-
mum time lags to learn values that would also lead to a failure.

Example 2.1.3. Consider scheduling instance of the RCPSP/max from Example
2.1.1 with a list scheduling algorithm with list L = {A, B, C, D, E}. The algorithm

23

2.1. PROJECT SCHEDULING PROBLEMS

begins by selecting activity A and assigning it to its lower bound, SA = 0. The
earliest start of activity B is updated due the minimum time lag between A and B,
ESTB = 2. Likewise the earliest start time of C is updated due to the precedence
with B, ESTC = 6. Activity B is then assigned to its earliest start time, SB = 2, as
that does not violate the resource capacity. Activity C is assigned to its earliest start
time, SC = 6. From Example 2.1.2, we know that as A, B, and C constitute a strongly
connected component in the AoN network (without any proceeding components),
there must exist a feasible schedule to the instance with this subschedule.

The algorithm proceeds to assign activity D a start time of 2 as that is the
earliest time after its current earliest start time that would be resource feasible. The
earliest start time of E is updated to be 6 due to the minimum time lag with D.
Activity E is then assigned to start at 9 as that is the first time after its earliest start
time that would be resource feasible. However this start time violates the maximum
time lag between D and E that ensures that SD + 4 ≥ SE. The earliest start time
of D is then set to 5 as that would be the earliest time that would not violate the
maximum time lag, then activities D and E are removed from the schedule. The
algorithm then continues to assign D a start time of 5 and E to 9, which is now
feasible. As a schedule has been found the algorithm terminates.

The insight of the unscheduling step is that the algorithm never tries to assign
activity D to start times of 3 and 4 as they are known to lead to infeasible schedules.

Figure 2.3: The unscheduling step in schedule generation schemes of the RCPSP/max is used to
skip over sections of the search that are known to violate a maximum time lag. The graph below
illustrates a section of Example 2.1.3 where the earliest start time of activity D is moved from 2 to 5
so that the maximum time lag with E is not violated.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4

A
B

C
D D E

24

CHAPTER 2. BACKGROUND

2.2 Mixed Integer Programming

Mixed Integer Programming (MIP) considers problems that can be modelled as a
set of n variables, m linear constraints and a linear objective function such as,

min
n

∑
i=1

cixi (2.1a)

s.t.
n

∑
i=1

ai,jxi ≤ bj ∀j ∈ [1, ..., m] (2.1b)

xi ≥ 0 ∀i ∈ [1, ..., n] (2.1c)

xi ∈ integer (for some or all of i ∈ [1, ..., n]) (2.1d)

where ai,j, bj, and ci are parameters of the problem. An overview to MIP is sig-
nificantly outside the scope of this thesis. Due to the success of MIP in many fields
of discrete optimisation, many different models have been proposed applying MIP
to PS, particularly to the RCPSP. In fact, the first MIP models for the RCPSP were
proposed over 50 years ago in the seminal work of Pritsker and Watters (1968). An
excellent recent summary of the different approaches is given by Artigues et al.
(2015), however this does not account for the recent work on compact models com-
pleted by Tesch (2016, 2018a). Significantly more effort has been placed on applying
MIP to the RCPSP, compared with the RCPSP/max. However in general these mod-
els can be trivially extended to account for generalised precedence constraints and
hence for now we revise the models for the RCPSP.

2.2.1 Models

Here we briefly revise the known models to the RCPSP in order of decreasing num-
ber of variables. The number of variables is typically a function of the number of
activities n as well as the time-horizon T considered. Note that in general the time
horizon is significantly larger than the number of activities, T > n. The number of
precedence constraints theoretically can be quadratic with respect to the number
of activities. However in the majority of practical applications, including those that
motivate this thesis, the number of precedences is linear with respect to the number
of activities.

O(Tn) :

25

2.2. MIXED INTEGER PROGRAMMING

• Chain-Decomposition formulation: The model is based on the decomposition of
the precedence constraints of the AoN network into chains. A binary variable
is introduced for each chain and each possible subschedule that the chain
can feasibly have. Considering the case where all activities belong to a single
chain, and for simplicity all activities have zero duration, there are (T

n) possi-
ble feasible subschedules, which corresponds to an order of O(Tn) variables
required. Furthermore as O(Tn) ≥ O(nn) ≥ O(n!) the model is worse than
factorial with respect to the number of activities — making it clearly impracti-
cal to ever implement directly. The model was originally proposed by Kimms
(2010) as a column-generation procedure to compute upper bounds of the
net present value maximization problem.

O(T · 2n) :

• Feasible-Subset formulation: A feasible subset is a set of activities that can be
in progress simultaneously without exceeding the resource availability of
any renewable resource and are not pairwise linked by a simple precedence
constraint. Considering the trivial case where all activities in the project can
form a feasible subset, the number of feasible subsets are ∑n

k=0 (
n
k) = 2n. A

MIP model based on the concept of feasible subsets was initially proposed by
Mingozzi et al. (1998). A binary variable is introduced for each time point and
each feasible subset representing the case where all activities in that subset are
in progress at that time, hence requiring O(T · 2n) possible binary variables.

O(T · n) :

• Discrete-time formulations: Discrete-time formulations have been widely stud-
ied for project scheduling problems. This is due to their relatively strong
LP relaxations and to their ability for being extended to incorporate differ-
ent constraints and objective functions. These models are based on decision
variables of the type xi,t indicating a particular status (start, in-progress or
complete) of activity i ∈ V at time t ∈ H. As the number of variables is linear
in function of the scheduling horizon, the standard variants of these mod-
els are pseudo-polynomial size with O(T · n) binary variables. As a compact
MIP formulation is defined to have a polynomial number of variables and
constraints, the discrete-time formulations are not compact formulations.

– Variable Definitions: It is worth mentioning at this point that discrete-
time formulations can be classified into three groups based on what
the binary variables represent. Firstly, a pulse-start variable xi,t equals

26

CHAPTER 2. BACKGROUND

1 if activity i ∈ V starts at exactly t ∈ H, and 0 others. Models based
on pulse-start variables were proposed by Pritsker and Watters (1968)
Pritsker et al. (1969). Secondly, a step variable xi,t equals 1 if activity
i ∈ V starts at time t ∈ H or before, and 0 otherwise. Although pre-
sented as new by Klein (2000), models containing step variables were
also proposed by Pritsker and Watters (1968). Thirdly, an on/off variable
xi,t equals 1 if activity i ∈ V is in progress at time t ∈ H, and 0 otherwise.
On/Off variables were first motivated by the RCPSP where pre-emption
was allowed (Kaplan, 1998).

It is well known that it is possible to obtain formulations based on the
different variables from one another through non-singular transforma-
tions of the binary variables, and these different formulations yield the
same LP relaxation (Artigues, 2017). Moreover, Kopanos et al. (2014)
showed experimentally that in practice solvers can benefit from models
that have combinations of the different variable types. These benefits
are a result of formulating models that modern MIP solvers can take
advantage of. For example, formulations based on step-variables have
a relatively sparser constraint matrix, which modern solvers can take
advantage of, yet this comes at the compromise that the formulations of
the constraints makes it more difficult for the solvers to automatically
infer cuts during search. Hence these variables can be augmented with,
e.g. on/off variables, such that the constraint matrix is still sparse and
cuts can easily be inferred by the solvers.

– Variations: There also exist variations of discrete-time models where the
time discretisation is non-uniform, also known at time-buckets (Hurink
et al., 2002).

O(n3) :

• Disaggregated Position Model: The disaggregated position model (Tesch, 2016,
2018a) is a type of event-based formulation. Event-based formulations were
first proposed for the multi-mode RCPSP (Zapata et al., 2018), before being
adapted to the RCPSP (Koné et al., 2011). In event-based formulations, the
time horizon is pre-decomposed into an ordered set of events. An event rep-
resents the start and end of one of the activities, without specifying which
activity in particular. There are generally O(n) events — the RCPSP has the
nice property that in semi-active schedules the start times of activities is at

27

2.2. MIXED INTEGER PROGRAMMING

0 or coincide with the end time of another activity and thus only n events
would be required, however for different objectives this is not always the
case and 2n events would need to be considered. The disaggregated position
model considers two types of decision variables; (1) a binary variable for
each activity and each combination of event pairs, which is equal to one if
the activity starts at the first event and ends at the second event, and (2) a
continuous variable for each event to represent the time that the event occurs.
As the binary variable has three indices each in the order of n, the model has
clearlyO(n3) variables. The nice property of this model though is that it does
not contain the big-M parameters that are required by the O(n2) models.

O(n2) :

• Event-Based formulations: Two event-based formulations for the RCPSP were
initially proposed by Koné et al. (2011), one based on start and end variables
and another based on on/off variables. In these models, two types of deci-
sion variables are used; (1) a binary variable that relates some status of the
activities to events, and (2) a continuous variable for each event that indicate
the time at which the event occurs. As the binary variables have two indices
each in the order of n, the model has clearly O(n2) binary variables. Event
based formulations also suffer from relatively weak LP relaxations, due to
the existence of big-M notation, however they are an interesting in that they
too have quadratic number of variables and constraints with respect to the
number of activities.

• Sequence and Natural-Date Formulations: These models use at least two types
of variables: (1) binary variables are defined for every ordered pair of activ-
ities and are equal to one if the first activity precedes the second, and (2)
continuous variables are defined for each activity to indicate the start time of
that activity. Thus there are n continuous (natural-date) variables, n(n− 1)
binary (sequencing) variables, and thus O(n2) variables. These types of for-
mulations typically have very weak LP relaxations as the constraints that
link the binary and continuous variables require big-M notation where M
is a function of the time-horizon. Formulations differ on how they enforce
resource-feasibility:

– Minimal-Forbidden-Set-Based formulation: A forbidden set is a set of activ-
ities that cannot be in progress simultaneously as they will exceed the
capacity of one of the renewable resources. A minimal forbidden set is a

28

CHAPTER 2. BACKGROUND

forbidden set such that any proper subset of the forbidden set is a fea-
sible subset. Alvarez-Valdés and Tamarit (1993) proposed the first MIP
model based on minimal forbidden sets. For each minimal forbidden set
a constraint is added to ensure that at least one of the activities in the set
precedes another activity in the set such that not all of the activities can
be in progress simultaneously. Artigues et al. (2015) claim that due to
the exponential number of constraints, they are not aware of any cases
where this formulation has been used in practice.

– Flow-Based formulation: The flow-based formulation, proposed by Ar-
tigues et al. (2003), is another example of a sequence and natural-date
formulation. Instead of using the concept of minimal forbidden sets to
account for resource feasibility, additional variables are introduced to
account for the flow of resources between activities. More explicitly, for
each ordered pair of activities and for each renewable resource, a contin-
uous variable is introduced to indicate the amount of the resource that
is transferred from the first activity to the second. For each activity and
each resource, constraints are added to ensure the amount of flow into,
and out of the activity must equal to the resource requirement of the ac-
tivity. Likewise, constraints are added such that the amount of flow out
of the dummy start activity and into the dummy end activity is equal
to the resource capacity. Although this formulation still suffers from the
weak LP relaxation, it is interesting as it was the first formulation of
have a polynomial number of variables and constraints. It has also been
shown to be competitive, compared with discrete-time formulations, for
instances that have a large time horizon (Koné et al., 2011).

• Hybrid Position flow model: This model, introduced by Tesch (2016), can be
seen as a hybrid of event-based and flow-based models. The number of
events1 is one more than the number of activities. At each event only one
can start, and only one activity can complete. For each combination of events
and each renewable resource a continuous variable is introduced to measure
the amount of flow from the first event to the second. Tesch (2016) suggest
the performance of this model is not competitive even for problem sizes of
30 activities.

1The term events are referred to as positions in the original document but we use events here for
consistency

29

2.3. CONSTRAINT PROGRAMMING

2.2.2 Limitations

To the best of our knowledge, in the more than 50 years of applying MIP to the
RCPSP and its variants there does not exist a model for which the number of vari-
ables is better than quadratic with respect to the number of activities considered.
In the literature the performance of the various MIP models are only compared on
relatively small instances with between 30-120 activities. On instances with more
activities, or large time horizons for the discrete-time formulations, Artigues et al.
(2015) notes that even the time taken to load the models can become significant and
suggests that techniques based on column-generation would need to be developed
to improve this result. We are not aware of any such techniques at this time. In the
next section we show how CP can be used to provide models with a linear number
of variables and constraints and how they can naturally incorporate ideas from
project scheduling.

2.3 Constraint Programming

Constraint Programming (Jaffar and Lassez, 1987; Marriott and Stuckey, 1998; Rossi
et al., 2006) aims at solving Constraint Satisfaction Problems (CSPs) and Constraint
Optimisation Problems (COPs). Like MIP, it is a problem-solving paradigm that es-
tablishes a clear distinction between two pivotal aspects of a problem: (1) a precise
definition of the constraints that define acceptable solutions to the problem to be
solved and (2) the algorithms and heuristics enabling the selections of decisions to
solve the problem.

Scheduling has been one of the most successful application domains of CP
(Laborie et al., 2018). There are two fundamentally different approaches for inte-
grating scheduling into CP. The first approach complements classic CP on integer
variables with a set of global constraints useful for modelling and solving schedul-
ing problems. This approach has the advantage that they can be solved by general
CP solvers, such as Chuffed, Gecode, CHIP, Opturion’s CPX or Choco. The second
approach is to develop a completely scheduling-dedicated modelling language on
top of classical integer CP — this approach was taken by IBM’s CP Optimizer, a
complete redesign of ILOG Scheduler. In this section we provide an introduction
to CP and demonstrate how the first approach is implemented. In the following
section we provide an overview of the second approach.

30

CHAPTER 2. BACKGROUND

2.3.1 Background

Constraint Satisfaction and Optimisation Problems

Informally a CSP is a problem that can be represented by a set of constraints that
define acceptable assignments over a set of variables. Each variable has a domain,
which defines the set of possible values to which the variable can be assigned. For
the purpose of this thesis, domains can assumed to be a finite set of non-negative
integers. A constraint determines which combinations of value assignments are
acceptable and which are not. A solution to a CSP is an assignment of variables
that satisfy all of the constraints.

More formally, a CSP is a tuple P := (V , C,D) where V represents a set of
variables, D a set of domains and C a set of constraints. Each variable x ∈ V is
associated with a domain dom(x) ∈ D of potential values. A literal l represents the
assignment of a variable to a value, i.e., x = v, where x ∈ V and v ∈ dom(x). For
a literal l of the form x = v the term var(l) is used to denote the variable that has
been assigned, i.e., in this case x. An assignment A over a set of variables X ⊆ V
is a set of literals that has exactly one literal x = v for each variable x ∈ X. An
assignment A over V is called a complete assignment.

A constraint C ∈ C is defined over a set of variables, referred to as the scope
of the constraint, and denoted vars(C) ⊆ V . A constraint C specifies a set of al-
lowed assignments over vars(C). An assignment over vars(C) that is not allowed is
disallowed by C. The projection of an assignment A over a subset of variables X is de-
fined as {l ∈ A : var(l) ∈ X}. An assignment A over X ⊆ V satisfies constraint C if
vars(C) ⊆ X and the projection of A over vars(C) is allowed by C. An assignment
A over X ⊆ V violates constraint C if vars(C) ⊆ X and the projection of A over
vars(V) is disallowed by C. A solution of a CSP is a complete assignment which
satisfies every constraint in C ∈ C.

For consistency, throughout the thesis we will define integer variables, i.e. the
typical decision variables considered in CP where the domains are sets of integers
as

x ∈ integer(dominit(x)),

where dominit(x) is the initial domain of the integer variable. Similarly, we define
boolean variabies, i.e. integer variables whose domain is {0, 1}, explicitly as

b ∈ boolean.

31

2.3. CONSTRAINT PROGRAMMING

An extension of a CSP is a COP. In an optimisation problem, the aim is to
find an assignment A that satisfies all constraints and that optimises (minimises or
maximises) some objective function. CP performs optimisation by first finding a so-
lution that satisfies the constraints, i.e. the CSP is solved. It then adds an additional
constraint to the model that ensures that any other solution that also satisfies the
constraints will have a better objective value. This continues until the search tree is
exhausted and no new solution is found, at which point the most recent solution
obtained is proven to be optimal.

Constraint Propagation

Constraint propagation is the process of reducing a problem by eliminating from
the domains of the variables those values that can never participate in a solution.
Constraint propagation is fundamentally related to the notion of a support. A literal
has a support with respect to a constraint if there exists an assignment of the re-
maining variables to values from their domains such that the constraint is satisfied.
If a literal has no support with respect to some constraint then its value can be
removed from the domain — we say that the value is inconsistent. Algorithms that
determine which values are inconsistent with respect to constraints are known as
filtering algorithms for the constraint. The filtering algorithms iterate until either
none of them are able to prune a domain any more (we call that state a fixpoint), or
one of the domains of variables become empty, i.e., propagation fails. This iterative
process is called constraint propagation.

More formally, a CSP P = (V ′, C ′,D) is a reduced form of a CSP P = (V , C,D)
if the same variables are considered, V = V ′, and the domains of the variables are a
subset of their corresponding domains, dom(x)′ ⊆ dom(x) for all x ∈ V , and the set
of solutions of P is the set of solutions to P′. The values removed from any dom(x)
are said to have been pruned.

In general, propagation is incomplete. That is, propagation may leave a value
v in the domain of a variable x even though the literal x = v does not participate in
a solution. There are two reasons for why this is typical. Firstly, in CP constraints
are considered separately and the domain reduction that relies on their conjunc-
tion is not inferred. Secondly, filtering algorithms for certain types of constraints
can be too computationally expensive to prune all inconsistent values. To better
understand this second point let us now introduce the different definitions of con-
sistency.

32

CHAPTER 2. BACKGROUND

Consistency

Local consistency conditions relate to the consistency of subsets of variables and
constraints. Within the field of CP, there are a large variety of different types of
consistency measures, many of which are not relevant to this thesis. Here, we briefly
mention a few important local consistency measures. We make the distinction
between the consistency of a variable and the consistency of a constraint. In general,
a variable consistency measure will ensure that the current domain of the variable
will satisfy certain properties for a specific subset of the constraints. The following
two consistency measures are common examples of variable consistency.

• Node consistency considers unary constraints, i.e., constraints that only have
a single variable in their scope. A variable is node consistent if all values
within its domain are consistent with all unary constraints on the variable.
Node consistency is typically performed in preprocessing.

• Arc consistency considers binary constraints, i.e., constraints that only have
two variables in its scope. A variable x ∈ V is arc-consistent with respect to
another variable y ∈ V : x 6= y if for every value in the domain of x there
exists a value in the domain of y such that any binary constraint considering
x and y is satisfied.

For more complicated constraints, i.e., for constraints that have more than
two variables in its scope, it is often useful to talk about constraint consistency. A
constraint consistency measure will ensure that the domains of the variables in the
scope of the constraint satisfies certain properties. The following two consistency
measures are common examples of consistency measures on constraints.

• Generalised arc consistency is an extension of arc consistency to constraints
with more than two variables in their scope. A variable x ∈ V is generalized
arc consistent (GAC) with respect to a constraint if every value in the domain
of the variable can be extended to all the other variables of the constraint in
such a way that the constraint is satisfied. A constraint is GAC if all variables
is its scope are GAC consistent with respect to the constraint.

• Bounds consistency is commonly defined with respect to an interval support.
Value v ∈ dom(x) of variable x has an interval support with respect to
constraint C if there exists a feasible assignment to C where x = v and
y ∈ [min(dom(y)), max(dom(y))], for every other variable y ∈ vars(C) \ {x}.
A constraint is bounds consistent if for each variable x ∈ vars(c) each of the

33

2.3. CONSTRAINT PROGRAMMING

values min(dom(x)) and max(dom(x)) has an interval support in C. 2

In the domain of scheduling even bound consistency is usually too expensive
(Vilím, 2007). In practice, global constraints are defined which perform propagation
according to certain rules. Next we introduce the concept of global constraints and
then some important rules for scheduling.

2.3.2 Global Constraints

One of the strengths of CP is in the ability to define global constraints. The power
of global constraints is threefold. Firstly, global constraints have the self-evident
advantage of additional expressiveness, i.e., they can more clearly communicate
the underlying purpose of the constraint. Secondly, global constraints allow large
sets of constraints to be represented in a compact form, which can reduce the
number of constraints required by orders of magnitude. Thirdly, and perhaps most
importantly, they enforce local consistency for the whole set of constraints, which is
superior to enforcing consistency for each single constraint individually. Filtering
algorithms for a global constraint must make reasonable (polynomial) time and
space complexity and hence there is of course a limitation to how many different
types of constraints can be grouped within the same global constraint.

In this section we introduce three global constraints; AllDifferent, Disjunctive,
and Cumulative. The AllDifferent constraint is the quintessential global con-
straint, for which an GAC algorithm was first proposed by Regin (1994) based
on matching theory. The remaining two global constraints arise in scheduling
problems, where Disjunctive is a special case of Cumulative. Even determin-
ing whether Disjunctive, and thus Cumulative, is satisfiable is NP-Complete and
therefore it is NP-hard to enforce bounds consistency on these constraints (Fahimi
et al., 2018). To overcome this there have been many rules proposed for which a
weaker notion of consistency than bounds consistency can be achieved for these
global constraints in polynomial time. A full review of these rules and correspond-
ing algorithms is outside the scope of this thesis. Instead we satisfy ourselves by
introducing two well-known rules for the Cumulative constraint: TimeTable and
Edge-Finding. We discuss these rules with respect to the Cumulative constraint par-
ticularly as this constraint is used to model our reference problem, the RCPSP/max.
There exist other filtering algorithms for the Cumulative constraint such as Ener-

2Although not a focus of the thesis, we note that some papers in the literature (Loong et al., 2016)
differentiate bounds consistency on whether the interval supports are considered to be strictly
integer, known as Z-bounds consistency, or allowed to be continuous, known as Q-bounds consistency.
Unless otherwise stated we assume that interval supports are integer.

34

CHAPTER 2. BACKGROUND

getic Reasoning (Erschler and Lopez, 1990), Not-First/Not-Last (Nuijten and Aarts,
1996) and hybrids such as Precedence Energetic Reasoning (Laborie, 2003a) and
Energetic Edge-Finding (Tesch, 2018b), yet due to their higher computation complex-
ities or need for more iterations to achieve equivalent levels of filtering they tend
to be less useful in practice.

AllDifferent

The classical example of a global constraint is the AllDifferent constraint that
is posted on a set of variables and amalgamates a full network of inequality con-
straints, i.e.,

AllDifferent([xi]i∈X) ⇐⇒ xi 6= xj ∀xi, xj ∈ X : i < j

A great example given by Lombardi (2009) to demonstrate how enforcing local
consistency on the global constraint is superior to enforcing local consistency for
the whole set of constraints is as follows.

Example 2.3.1. Consider the following CSP

x0 6= x1, x0 6= x2, x1 6= x2

x0, x1 ∈ integer([1, 2]), x2 ∈ integer([1, 2, 3])

It can be seen that enforcing arc consistency on each constraint individually
that no domain can be reduced, as for each xi all values v in the domain Di have
a support in Dj, in the context of each of the three constraints. In contrast, by
considering all constraints at the same time, it is possible to see that values 1 and 2
must be assigned to constraints x0 and x1 in order to have a feasible solution, and
thus the domain of x2 can be reduced to D2 = {3}.

Disjunctive

The Disjunctive and Cumulative global constraints are typically used in non-
preemptive resource-constrained scheduling problems, where the variables X rep-
resent the start time of the activities V . Variants of these constraints exist that
account for optional activities, a special type of execution mode where the activity
does not have to be processed, or when pre-emption is allowed. Here we simply in-
troduce the non-preemptive compulsory versions of the constraints. Disjunctive
can be seen as a decision variant of the scheduling problem 1|ri|Lmax, which is

35

2.3. CONSTRAINT PROGRAMMING

known to be strongly NP-hard (Lenstra et al., 1977). The objective is to minimize
the maximum lateness Lmax = maxn

i=1 max{0, xi + di − duei} where Lmax = 0 iff
the instance is feasible. The constraint is defined as follows,

Disjunctive([xi]i∈X, [di]i∈X) ⇐⇒ xi + di ≤ xj ∨ xj + dj ≤ xi ∀i, j ∈ X

where X is an array of activity start variables, and [di]i∈X the corresponding
durations. The release and due dates are built into the domains of each activity
variable.

There exist a number of rules such as Edge Finding, Not-First/Not-Last, and
Detectable Precedences for Disjunctive that can be computed in O(n log(n))
(Vilím, 2007), whereby a number of these constraints would require O(n2) com-
plexity for the more general Cumulative constraint. For that reason it is worthwhile
introducing Disjunctive separately.

Cumulative

The Cumulative global constraint, which was first introduced by Aggoun and
Beldiceanu (1993), models the renewable resources for the working example the
RCPSP/max. The Cumulative global constraint aims to satisfy the cumulative
scheduling problem, which can be seen as a decision variant of the scheduling
problem P|rj|Lmax, i.e., similar to Disjunctive but now where a single renewable
resource k ∈ R is considered as opposed to a single disjunctive resource. The
constraint is defined as follows,

Cumulative([xi]i∈X, [di]i∈X, [ri,k]i∈X, Rk) ⇐⇒ ∑
i∈X

∑
xi≤τ<xi+di

ri,k ≤ Rk ∀t ∈ H

where [xi] is an array of activity start variables, and [di] and [ri,k] provide the
corresponding durations and resource requirements respectively. The following
rules are defined for which polynomial filtering algorithms exist.

Time-table The core idea of timetabling is to track activities for which their latest
start time is strictly less than their earliest end time, i.e., i ∈ V such that LSTi <

EETi. Although the start time of these activities are not necessarily fixed, these
activities require the resource during the interval [LSTi, EETi] - these intervals are

36

CHAPTER 2. BACKGROUND

known as compulsory parts. By aggregating the compulsory parts a resource profile,
also known as a timetable, is computed. This resource profile is maintained during
the search and used to both detect infeasibility and to update time bounds for
activities both with a complexity of O(n log(n)) (Lahrichi, 1982). For each task the
earliest start is updated to the first possible time point with respect to the resource
profile such that the capacity is not exceeded.

More formally let, RQ(t) be the resource profile at time t ∈ H and RQ(t, i) be
the resource profile in the hypothesis that activity i is running at time t ∈ H, i.e.,
RQ(t, i) = RQ(τ) if LSTi ≤ τ < EETi and RQ(τ) + RQ(τ) + ri,k otherwise. If for
any activity i ∈ V the following rule is true,

RQ(τ, i) > Ck, ∀τ ∈ [ESTi, ..., LSTi] (2.2)

then it is possible to update the earliest start time of i to the following

ESTi = min{τ|RQ(τ′, i) ≤ Ck, ∀τ′ ∈ [τ, ..., τ + di]} (2.3)

In the following example we show how time-tabling can infer information
about the resource profile before the starting times of activities are assigned to a
specific value.

Example 2.3.2. We consider the instance of the RCPSP/max considered in Example
2.1.1, but now with a resource capacity of 3 (instead of 4). We consider the point
during search / propagation where the earliest and latest start time are as in the
table in Figure 2.4. Hence activity A has been assigned to start time 0, the earliest
start time of B and C have been updated to 2, and 6 respectively due to the min-
imum time lags. The maximum time lag between A and C ensure the latest start
time of C is 9, and again then due to the minimum between B and C, the latest
start time of B is 5. The earliest start time of activity D is updated to 2 — this is
in fact done by the time-table constraint however as A is fixed this propagation is
straight-forward. The minimum time lag between D and E propagates to ensure
the earliest start time of E is 6.

As the difference between the latest start and earliest start of activity B is less
than the duration of the activity, information can be assumed about its contribution
to the resource profile. More explicitly, activity B has a compulsory region between
time 5 and 10, as shown by the red box in Figure 2.4. As ESTE is currently 6, due
to the inferred resource usage of activity B, the time-table constraint propagates
ESTE = 10 as shown in Figure 2.4. Propagation continues by updating ESTD = 6

37

2.3. CONSTRAINT PROGRAMMING

due to the maximum time lag between D and E. Again the time-table constraint is
used to update ESTD = 10, and then due to the minimum time lag between D and
E, ESTE = 14. This is now a fix-point.

Figure 2.4: An example (from Example 2.3.2) of how time-table filtering can update ESTE from 6 to
10.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

3

A B

E

E

i ESTi LSTi
A 0 0
B 2 5
C 6 9
D 2 T
E 6 T

The main limitation of time-tabling is that nothing is propagated until the
domains of activity start time variables are so small that the compulsory regions
can be inferred. This means that unless strong commitments are made early in the
search, this approach is not able to propagate efficiently.

(Extended) Edge-Finding Edge-finding reasons over the energy of sets of activ-
ities, Ω ⊆ V. The energy of activity i ∈ V for resource k ∈ R is defined as
the duration of the activity multiplied by the resource required by the activity,
i.e., ei = di · ri,j. The earliest start (latest completion) time of the set Ω is consid-
ered to be the earliest start (latest completion) time of any activity in the set, i.e.,
ESTΩ = mini∈Ω{ESTi} and LETΩ = maxi∈Ω{LETi}. The energy of the set is con-
sidered to be the energy of each of the activities in the set, i.e., eΩ = ∑i∈Ω ei. The
total energy available for Ω is Rk(LETΩ − ESTΩ). If any subset Ω requires more
energy than there is available, there is no solution.

If for an activity i ∈ V and a subset of activities Ω ⊆ V \ {i} the following
check is true,

eΩ + ei > Rk(LETΩ − ESTΩ) + σ
j
Ω (2.4)

then is possible to update the earliest start time of i to the following

ESTi := max
Ω′⊂Ω:rest(Ω′,rik>0)

(ESTΩ′ + d
rest(Ω′, rik)

rik
e) (2.5)

Where σi
Ω = rik ·max(ESTΩ − ESTi, 0) is the maximum amount of resource

38

CHAPTER 2. BACKGROUND

used by activity i before ESTΩ and rest(Ω′, rik) = eΩ′ − (Rk − rik) · (LETΩ′ −
ESTΩ′).

The first complete algorithm for extended edge-finding was introduced by
Mercier and Van Hentenryck (2007) with a complexity of O(k n2), where k is the
number of distinct resource requirements of the activities. This complexity was
improved to O(k n log(n)) by Vilím (2009).

Example 2.3.3. Consider the problem with a single resource k with capacity Rk = 3
and four activities V = {A, B, C, D} with earliest start time, latest end time, du-
ration and resource requirement as given in Figure 2.5. Consider activity D with
respect to set Ω = {A, B, C}. Hence ESTΩ = 0, LETΩ = 5 and eΩ = 3 + 3 + 4 = 10.
It is possible to see that check (2.4) would be true for Ω and D as eΩ + eD = 10+ 6 =

16 > Rk(LETΩ − ESTΩ) + σ
j
Ω = 3(5− 0) + 0 = 15. Thus the start time of activity

D can be updated according to Equation 2.5 to ESTD = 4 where the subset corre-
sponding to the maximum increase is Ω′ = {B, C}. It is possible to see that the
time-tabling would not propagate on this example.

Figure 2.5: An example of how edge-finding filtering can update ESTD from 0 to 4

0 1 2 3 4 5 6 7 8 9 10

3

A

B

C D

i ESTi LETi di rik ei
A 0 5 1 3 3
B 2 5 3 1 3
C 2 5 2 2 4
D 0 ∞ 3 2 6

Time-Table Edge-Finding As observed by Vilím (2011) edge finding does not
dominate timetabling and vice versa, therefore edge finding can be improved by
taking into account the timetable. In order to use the timetable each activity is
split into a fixed part accounted for in the timetable and a remaining free part. This
filtering algorithm can be seen as a hybrid of time tabling and edge finding and is
hence referred to as time-table edge finding. The additional strength of propagation
comes at a higher worst-case complexity ofO(n2). Time-table edge finding has pre-
dominantly had success at improving lower bounds; when it was first introduced
by Vilím (2011) it improved 169 out of the 438 open RCPSP problems (in 9 cases
backtrack free) and then when combined with no-good learning by Schutt et al.
(2013b) a further 60% of the instances had their lower bounds improved.

39

2.3. CONSTRAINT PROGRAMMING

2.3.3 Modelling the RCPSP/max

For continuity we will now briefly mention how our reference problem, the RCPSP/max,
is typically modelled in CP. The starting time of each activity i ∈ V is assigned
a decision variable xi, which must be mapped to an integer from the initial do-
main Dinit := [ESTi, LSTi]. Initial domains are typically obtained through deter-
mining a maximum time horizon T based on a heuristic solution or conservative
assumption and then considering the precedence graph. A typical CP model for
the RCPSP/max is then,

min max
i∈V

(xi + di) (2.6a)

s.t. xi + δi,j ≤ xj ∀(i, j) ∈ A (2.6b)

Cumulative([xi], [di], [ri,k], Rk) ∀k ∈ R (2.6c)

xi ∈ integer([ESTi, ..., LSTi]) ∀i ∈ V (2.6d)

The objective function (2.6a) is to minimise the maximum completion time
of any of the activities. Constraints (2.6b) enforce the generalised precedence con-
straints. Each resource is represented by a single Cumulative constraint (2.6c) with
a constant capacity over the considered project duration. The propagation algo-
rithm(s) used to implement the global constraints are typically not specified at the
time of modelling. Each variable must be assigned to a value from its original do-
main (2.6d). Note that the number of decision variables is equal to the number of
activities, the number of precedence constraints is equal to the number of gener-
alised precedence constraints, and the number of cumulative constraints is equal
to the number of renewable resources. Assuming that the number of precedence
constraints is proportional to the number of activities, this model is linear with
respect to both the number of variables and constraints.

We will now introduce some typical methods that CP uses to search and prove
optimality for scheduling problems.

2.3.4 Search

Constraint propagation rarely reduces the domains of variables of a problem to a
single value. In most cases, it is necessary to reduce the problem further by way
of search, i.e., by exploring the different values in the domain of the variables. A
backtracking tree search is used that branches by assigning values to variables,

40

CHAPTER 2. BACKGROUND

i.e., on the left branch a literal is chosen xi = di and on the right branch the value
from the literal is removed from the domain of the variable, D′i = Di \ {di}. Once
a branching decision has been made, constraint propagation is run to propagate
the implications of that decision, thus further reducing the domains of the unfixed
variables. If some constraint is violated by the partial assignment, then there do not
exist solutions within the subtree and the solver backtracks. This kind of inference
can dramatically reduce the amount of search that CP solvers must do compared
to naive enumeration approaches, and is one of the core strengths of CP. The search
is complete because every solution of the problem will be found, and if no solution
is found then the problem is known to not have a solution.

Variable-Value Ordering

Although generic search algorithms in CP such as impact-based search (Refalo,
2004), weight-degree heuristics (Boussemart et al., 2004) and activity-based search
(Michel and Van Hentenryck, 2012) have had some success, in general the user
must tell CP solvers how to search, i.e., rules for deciding which variables and
values to branch on. Furthermore the order in which variables and their values are
selected can have a dramatic effect on how much of the search space needs to be
explored.

For scheduling problems with regular objective functions such as the RCPSP
and RCPSP/max, assigning variables to their lower bound, i.e., fixing the start time
of activities to their earliest starting time generates active schedules and thus is the
default choice for value selection. For irregular objective functions the choice of
value selection is not trivial.

There are many parallels between the choice of variable selection and priority
rules and activity lists introduced with respect to schedule generation schemes.
In the following example we demonstrate how an activity list is implemented
in CP and highlight how constraint propagation (using time-tabling to filter the
Cumulative constraint) can avoid areas of search that would be explored by the
scheduling generation scheme with unscheduling step.

Example 2.3.4. In this example we implement the same list scheduling algorithm
as in Example 2.1.3 but now just to guide our variable selections within CP search.
Figure 2.6 shows the partial schedule and current bounds after the first three choice
points, where activity A is assigned to 0, B to 2 and C to 6, equivalent to Example
2.1.3. Now, due to the time-table propagator, the earliest start time of activity E is

41

2.3. CONSTRAINT PROGRAMMING

updated to 9, and then due the maximum time lag between D and E, ESTD = 5.
This contrasts significantly to how the list scheduling algorithm used in Example
2.6 assigns the start time of D to 2, only to unschedule the activity later in the
search. The algorithm then assigns the start time of activity D to 5, and then E to 9.

Figure 2.6: The schedule obtained by using the activity list ` = {A, B, C, D, E} to determine the
variable ordering to guide a CP search. The schedule is obtained without obtaining a single fail,
this contrasts to how the schedule generation scheme from Example 2.3 requires an unscheduling
step.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

4

A
B

C
D E

Schedule-or-Postpone

Schedule-or-Postpone is a tree-based strategy that relies on constraint propagation to
determine dominance relations during search for scheduling problems. A dominance
relation is a relationship between two possible solutions to a problem where one
solution is always preferred to another. The type of dominance relations considered
by Schedule-or-Postpone are those where if one solution is infeasible then so too
must the other one. The method was first proposed for the RCPSP with regular
objective functions as a method of only creating active schedules (Pape et al., 1994),
and thus much smaller search trees than naive variable-value ordering.

The basic Schedule-or-Postpone strategy is as follows. At each fix-point, an
activity for which all of its predecessors have been scheduled is selected according
to some rule. This creates a choice point in the search tree. On the left branch the
chosen activity is scheduled to its earliest start time. On the right branch the activity
is marked is non-selectable, i.e., the activity is postponed. If the earliest start time of
the activity is modified by propagation, the activity is marked as selectable again.

The Schedule-or-Postpone strategy is the foundation of the SetTimes algorithm,
first proposed by (Pape, 1994) and recounted in detail by Godard et al. (2005). In
SetTimes, activities are selected in a chronological way, i.e., the activity with the
lowest earliest start time is selected first, with lowest latest end time and then ac-
tivity index used to break ties. CP Optimizer uses many variants and extensions

42

CHAPTER 2. BACKGROUND

of the SetTimes algorithm, for example, Laborie and Rogerie (2016) recently intro-
duced a generalisation in which the selected activity is set to an indicator value,
which is not necessarily the earliest start time, an approach beneficial for problems
with irregular objective functions. Yet the idea of using the Schedule-or-Postpone
strategy to determine dominance relations is the same.

In some particular cases, such as for the RCPSP, the Schedule-or-Postpone strat-
egy, and thus SetTimes, is known to be complete in the sense that it will find an
optimal solution if there is one (Pape et al., 1994). However in many cases, such as
even for the RCPSP/max, this is not the case, as activities can no longer be continu-
ously right-shifted until they can be scheduled. To overcome this limitation, weaker
versions of the Schedule-or-Postpone strategy are known whereby if all activities
in the decision set are marked unselectable, activities can become selectable again
by removing their earliest start time from their current domains. These weaker
versions are clearly not as beneficial at closing off search trees, and thus proving
optimality, however they can still be exceptionally useful at generating good solu-
tions, as is demonstrated in the following example for the RCPSP/max.

Example 2.3.5. The aim of the example is to highlight the dominance relations that
can be inferred through the Schedule-or-Postpone strategy. In this example we
consider how the SetTimes algorithm can find a feasible schedule on the instance
of the RCPSP/max given in Example 2.1.1. Initially the two eligible activities are
A and D, both have the same earliest start time, however the latest start time of
activity A is one less than D, and so A is selected and scheduled to its earliest start
time, and the constraints are propagated. At the next choice point, activities B and
D are eligible, both have an earliest start time of 2, however the latest start time of
B is 5 due to the maximum time lag between A and C and the minimum time lag
between B and C, and so B is selected and assigned to 2. At the next choice point,
D and C are both eligible, however the earliest start time of D is 2 compared to 6
for E, and so D is chosen and assigned to 2. However the propagation of this value
assignment leads to a failure: activity E is fixed to start at 6 and then the time-table
constraint propagates to try and set the earliest start time of C to be at 10 however
this is after the latest start time.

At a failure the algorithm backtracks and sets D as "unselectable". Now only
activity C is eligible, and thus C is fixed to its earliest start time of 6. The time-table
constraint propagates the earliest start of E to be at 9, and then the maximum time
lag between D and E propagates the earliest start time of D to 5. As the value of
2 is filtered from the domain of D, the status of D is now updated to "selectable".

43

2.3. CONSTRAINT PROGRAMMING

Hence the algorithm continues by fixing D to 5, which propagates to fix E to 9.

Now consider what would have occurred if the Schedule-or-Postpone strategy
was not used. After the failure that occurs when D is fixed to 2, the algorithm would
move to the right branch of the tree where ESTD > 2. Again D would be selected
and now assigned to 3, its current earliest start time. Again a failure would occur,
and then the algorithm would move to the right branch and again D would be
selected as it has the earliest start time 4, which again would fail. The Schedule-or-
Postpone strategy effectively allowed us to jump over all of these failures.

In the next section we will introduce an alternative method of determining
dominance relations during search.

Lazy Clause Generation

Recently there have been a number of developments in CP solvers that incorporate
methods developed for the Boolean Satisfiability Problem (SAT). SAT was the first
problem proven to be NP-Complete (Cook, 1971) and thus lies at the heart of the
theory of computational complexity. SAT considers a set of boolean variables, B.
With respect to SAT, a literal, l, is a boolean variable b ∈ B, i.e., l ≡ b, or its negation,
i.e., l ≡ ¬b. A clause, c, is a set of literals in disjunction, i.e., {l1 ∨ ... ∨ ln}. Thus a
clause is satisfied if at least one of its literal li is true. An assignment, A, is a set of
literals that does not include a variable and its negation, @b ∈ B : {b,¬b} ⊆ A.
A theory T is a set of clauses. A SAT problem consists of finding an assignment
A containing each boolean variable in either a positive and negative context, and
satisfying all clauses in the theory T .

SAT solvers propagate clauses by unit-propagation. Unit propagation detects
failure if all literals in a clause are false and detects a new unit consequence l if
all but one literals in a clause are false, i.e., c ≡ l ∪ c′ and {¬l′|l′ ∈ c′} ∈ A, in
which case it adds l to the current assignment A. Unit propagation continues until
failure is detected, or no unit consequences can be determined, i.e., a fixed point is
reached. If a fixed point is reached a solver chooses an unfixed variable b ∈ B and
creates two separate problems (T ,A′ ∪ {b}), (T ,A′ ∪ {¬b}). This literal added to
the assignment by choice is referred to as a decision literal.

Modern SAT solvers contain effective methods that aim to prevent search from
revisiting similar parts of the search space. More explicitly, the SAT solvers records
the clause that causes unit propagation, also known as the explanation, for each unit
consequence discovered to determine a set of mutually incompatible decisions,
known as a nogood. Nogoods can be added as a new clause to the theory of the

44

CHAPTER 2. BACKGROUND

problem and can drastically reduce the size of the search space that needs to be
examined. The autonomous search procedures in modern SAT solvers are also very
powerful. These search procedures concentrate on the variables that are involved
in the most failures, which the solver keeps track of. A significant limitation of
SAT is the often huge models that are required to represent a problem using only
boolean variables and clauses.

Lazy Clause Generation (LCG) (Ohrimenko et al., 2009) is a method used to
help CP solvers take advantage of the nogood learning and activity based search of
modern SAT solvers, while attempting to overcome the issue of the huge models
required to encode the entire problem as clauses over boolean variables. The key
idea of LCG is to lazily create a clausal representation of the problem that a SAT
solver can understand by explaining the propagation achieved by constraints in
CP. Thus in LCG a constraint propagator is no longer just a mapping from domains
to domains, it is also a generator of clauses describing propagation.

In LCG, each integer variable in the CP problem has a clausal representation in
the SAT solver. We denote boolean variables with double square brackets, [[.]]. Each
integer variable x ∈ X with initial domain Dinit(x) = [l, ..., u] is represented by
2(u− l) + 1 boolean variables: [[x = l]], [[x = l + 1]], ..., [[x = u]] and [[x ≤ l]], [[x ≤
l + 1]], ..., [[x ≤ u− 1]]. The boolean variable [[x = d]] is true if variable x takes the
value d, and false if x takes a value different from d. Similarly, the variable [[x ≤ d]]
is true if x takes a value less or equal to d and false otherwise. For simplicity we use
the notation [[x ≥ d]] to refer to the literal ¬[[x ≤ d− 1]].

To ensure the assignment of boolean variables are consistent with the integer
variable x, a number of clauses are added to the SAT solver. These constraints are
known as the domain clauses and described as follows:

[[x ≤ d]]→ [[x ≤ d + 1]] ∀d ∈ [l, ..., u− 1) (2.7a)

[[x = l]]↔ [[x ≤ l]] (2.7b)

[[x = d]]↔ ([[x ≤ d]] ∧ ¬[[x ≤ d− 1]]) ∀d ∈ (l, ..., u) (2.7c)

[[x = u]]↔ ¬[[x ≤ u− 1]] (2.7d)

Typically constraints (2.7b− 2.7d) are added lazily when propagation needs to
express something using the literal [[x = d]] (Feydy, 2010). Any assignment on the
boolean variables can be converted back to the domains of the CP integer variables.

45

2.3. CONSTRAINT PROGRAMMING

It is important to point out that LCG impacts the number of variables used to
encode the RCPSP(/max). As a pure CP approach uses a single integer variable
to represent the start time of each of the activities the number of variables of the
model is O(n). Now that a boolean variable is used to encode each element of
the initial domain of each of the integer variables this is essentially a discrete-
time representation of the problem, and thus the number of variables is O(n · T).
Therefore CP solvers the utilise LCG will inevitably have a issue with scalability
as the time-horizon increases.

When a propagator f changes the domain of the variables, i.e., f (D) 6= D,
we assume that the propagator can determine a clause c to explain each domain
change. An explanation, c → l, is a conjunction of literals, c, true in the current
assignment that result in a literal, l, that was previously unfixed in the current
assignment to become true. The explanation clauses of the propagation are sent to
the SAT solver on which unit propagation is performed.

The nogood generation used in LCG is based on an implication graph and the
first unique implication point (1UIP). The implication graph is a directed acyclic
graph where nodes represent fixed literals and arcs represent the reason why a
literal became true, i.e., the explanations. Every time a literal is fixed through unit-
propagation, a node is added to the implication graph along with the arcs from
the literals (nodes) that explain the assignment. When a literal is fixed by a search
decision only the node is added to the graph, i.e., the node will have no incoming
arcs, and a counter known as the search level is incremented. Every node and arc is
associated with the search level at which they are added to the graph.

Once propagation leads to a failure, the 1UIP nogood is calculated based on
the implication graph. A conflict occurs when the unit propagation reaches a clause
where all literals are false. This clause is the starting point of the analysis and builds
a first tentative nogood. Literals in the tentative nogood are replaced one by one
by the literals from their incoming edges in the implication graph, in reverse order
of their addition to the graph. This process continues until the tentative nogood
contains exactly one literal from the current search level. The resulting nogood is
called the 1UIP nogood (Moskewicz et al., 2001). The solver then backtracks, un-
doing the previous decision and its consequences, and the 1UIP nogood is added
as a clause to the theory, which will force unit propagation. In the following ex-
ample we demonstrate how LCG can determine the same dominance relation as
determined by the Schedule-or-Postpone strategy in Example 2.3.5.

Example 2.3.6. This example is modified version of one contained in Schutt et al.

46

CHAPTER 2. BACKGROUND

(2013c) to demonstrate how non-trivial clauses can be learnt through LCG. Con-
sider the instance of the RCPSP/max introduced in Example 2.1.1 and assume an
initial time horizon of T = 20. Hence after the initial propagation of the prece-
dence constraints, the domains are D(SA) = [0, ..., 10], D(SB) = [2, ..., 12], D(SC) =

[6, ..., 17], D(SD) = [0, ..., 12], and D(SE) = [4, ..., 16].

Search now sets SA ≤ 0. This sets literal [[SA ≤ 0]] as true and unit propagation
on the domain clauses sets [[SA ≤ 1]], [[SA ≤ 2]], etc. In the remainder of this exam-
ple we ignore the propagation of the domain clauses unless they are particularly
relevant to other propagation.

The maximum time lag SC − 9 ≤ SA forces SC ≤ 9 with explanation [[SA ≤
0]] → [[SC ≤ 9]]. The minimum time lag SB + 4 ≤ SC forces SB ≤ 5 with explana-
tion [[SC ≤ 9]] → [[SB ≤ 5]]. The timetable propagator then forces SD ≥ 2, with
explanation [[SA ≤ 0]] → [[SD ≥ 2]]. The minimum time lag SD + 4 ≤ SE forces
SE ≥ 6 with explanation [[SD ≥ 2]] → [[SE ≥ 6]]. Next the search sets SB ≤ 2. No
propagation other than the propagation of domain clauses for B occur at this point.

Next the search sets SD ≤ 2. The maximum time lag SE− 4 ≤ SD forces SE ≤ 6
with explanation [[SD ≤ 2]] → [[SE ≤ 6]]. Lets now consider the compulsory parts
of the resource profile resulting from B and E. As both activities are now effectively
fixed, 2 units of resource is required by B from [2, ..., 10) and 2 units are required by
E from [6, ..., 10), hence there is 0 resource available between [6, ..., 10). As the initial
propagation of the precedence constraints ensure SC ≥ 6, the timetable constraint
can filter the domain of SC. Here we consider pointwise explanation for domain
filtering of the time-table propagator as defined in Schutt et al. (2011) 3. Considering
the time point 8, the timetable propagator forces SC ≥ 9 with explanation [[SE ≤
8]] ∧ [[SE ≥ 5]] ∧ [[SB ≤ 8]] ∧ [[SB ≥ 1]] ∧ [[SC ≥ 6]]→ [[SC ≥ 9]].

The previous propagation forces a compulsory part of C to occur at 9 which
causes the demand of the resource to exceed the capacity at this time. A pointwise
explanation of this failure 4 is [[SB ≤ 9]] ∧ [[SB ≥ 2]] ∧ [[SC ≤ 9]] ∧ [[SC ≥ 9 ∧ [[SE ≤
9]] ∧ [[SE ≥ 6]]]] → f ailure. The relevant parts of the implication graph are shown
in Figure 2.7.

The nogood generation process starts from the original explanation of failure.
It creates a tentative nogood by replacing the failure node with its explanation.

3The pointwise explanation for filtering the time-table constraint is ([[t+ 1− dj ≤ Sj)]]∧
∧

i∈Ω[[t+
1− di ≤ Si]] ∧ [[Si ≤ t]])→ [[t + 1 ≤ Sj]], Ω are the activities that compulsory are used at time point
t, and j is the activity whose domain is being filtered.

4The pointwise explanation for consistency checking of the time-table constraint is
∧

i∈Ω[[t + 1−
di ≤ Si]] ∧ [[Si ≤ t]]→ f alse, where Ω are the activities that compulsory are used at time point t.

47

2.3. CONSTRAINT PROGRAMMING

Hence the tentative nogood is initially the clauses that explain the failure, i.e., [[SE ≤
9]] ∧ [[SE ≥ 6]] ∧ [[SB ≤ 9]] ∧ [[SB ≥ 2]] ∧ [[SC ≤ 9]] ∧ [[SC ≥ 9]]. However as [[SC ≥ 7]]
and [[SE ≤ 9]] are both associated with the current conflict level, they are replaced
by their explanations. Hence [[SC ≥ 7]] is replaced in the nogood by [[SC ≥ 9]] and
[[SE ≤ 9]] is replaced by [[SE ≤ 8]]. Again both of the new clauses are associated
with the current conflict level. Hence [[SC ≥ 9]] is replaced by its explanation, i.e.,
[[SB ≤ 8]] ∧ [[SB ≥ 1]] ∧ [[SC ≥ 6]] ∧ [[SE ≤ 8]] ∧ [[SE ≥ 5]]. Now [[SE ≤ 8]] is the only
clause in the nogood from the current conflict level and hence the current tentative
nogood is the 1UIP nogood. Removing the implied clauses from this nogood, the
1UIP nogood is [[SB ≤ 9]]∧ [[SB ≥ 1]]∧ [[SC ≤ 9]]∧ [[SC ≥ 6]]∧ [[SE ≤ 8]]∧ [[SE ≥ 5]].
Rewritten as a clause it is (¬[[SB ≤ 9]] ∨ [[SB ≤ 0]] ∨ ¬[[SC ≤ 9]] ∨ [[SC ≤ 5]]¬[[SE ≤
8]] ∨ [[SE ≤ 4]]).

Now the solver backtracks to the previous decision level, undoing the decision
SD ≤ 2 and its consequences. The newly added nogood unit propagates to force
SE ≥ 9 with explanation [[SB ≤ 9]]∧ [[SB ≥ 1]]∧ [[SC ≤ 9]]∧ [[SC ≥ 6]]∧ [[SE ≥ 5]]→
[[SE ≥ 9]]. The precedence constraint SE − 4 ≤ SD forces SD ≥ 5. Search proceeds
to look for a solution. Note here that clause learning allows the solver to effectively
skip from SD ≤ 2 to SD ≤ 5.

Figure 2.7: The relevant parts of the implication graph for the propagation of Example 2.3.6. De-
cision literals are shown double boxed, literals fixed through propagation are shown boxed, and
relevant literals fixed through propagation of domain clauses are shown in dashed boxes. Dashed
lines are used only to indicate the literals that resulted in the fail and the 1UIP is indicated with
blue.

SC ≥ 6

SB ≥ 2

SB ≥ 1

SA ≤ 0

SC ≤ 9
SB ≤ 5

SD ≥ 2 SE ≥ 6

SE ≥ 5

SB ≤ 2

SB ≤ 8

SB ≤ 9

SD ≤ 2

SE ≤ 6 SE ≤ 8 SE ≤ 9

SC ≥ 9 SC ≥ 7

f ail

LCG and Schudule-or-Postpone are two different strategies that try to reduce
the amount of search required within a CP framework. The Schedule-or-Postpone
strategy is specific to scheduling problems yet is still a very general concept as it
allows the search to determine dominance relations independently to the actual

48

CHAPTER 2. BACKGROUND

constraints used to model the problem. This means that it can be used even in
very complicated real-world models. A limitation of the Schedule-or-Postpone
strategy is that in general it is incomplete. Weaker variants are typically used that
still benefit from the dominance relations in finding feasible solutions. However
these weaker version can still result in very large search trees and are thus less
useful in proving optimality.

LCG complements CP with the nogood learning and automated search devel-
oped for SAT problems. An ongoing challenge and an interesting field of research
is determining the most efficient ways to explain different global constraints to the
SAT solver. A fundamental limitation of LCG however is the need to represent all
elements of a variables domain as a boolean variable in the SAT solver. Although
LCG allows for introducing constraints to a SAT solver, for scheduling problems
with very large time-horizon, even enumerating the variables can be intensive.

In this section we have provided a brief introduction to CP and shown how
CP can be complemented by a number of scheduling specific global constraints
and search strategies. However modelling complex scheduling problems using
this complementary approach can become challenging — typically several global
constraints are connected through reified constraints. This can result in complex
models that are hard to understand and hard to maintain. Furthermore it is difficult
to develop efficient generic algorithms to solve such models as a lot of the struc-
ture of the problem, such as the AoN network, is lost when expressing schedul-
ing problems using integer variables. In the next section we will introduce the
scheduling-specific modelling language of CP Optimizer.

2.4 CP Optimizer

In this section we introduce relevant modelling concepts from CP Optimizer. While
acknowledging that there are others CP solvers that specialise in solving schedul-
ing problems, we consider CP Optimizer specifically as it currently provides a
unique method for modelling and thus solving scheduling problems. Other solvers
may have a different collection of constraint modelling constructs, yet for the the-
sis we are restricting ourselves to those available in traditional CP as presented in
the previous section, and those available in CP Optimizer. The section is largely a
synthesis of the relevant concepts from the recent paper by Laborie et al. (2018) as
well as the CP Optimizer User Manual. However we point out that much of the
style and syntax for presenting the variables and constraints is our own.

49

2.4. CP OPTIMIZER

2.4.1 Background

In the early 1990s, ILOG began development of constraint-based approaches for
scheduling problems, known as ILOG Scheduler. ILOG Scheduler was success-
fully applied to many industrial scheduling problems and successively grew to
incorporate many different aspects of real-world scheduling problems. However
there were a number of fundamentally limiting aspects to ILOG Scheduler. The
growing complexity of the modelling language, combined with the lack of auto-
matic search made using the tool cumbersome for users new to CP. Furthermore
it had difficulty efficiently handling some important aspects of scheduling prob-
lems, such as the notion of different modes of execution. In 2007, the team behind
ILOG Scheduler redesigned their CP tools and CP Optimizer. CP Optimizer puts
a strong emphasis on a model-and-run development process, which would help
align it with mathematical programming tools as advocated by Puget (2004), and
introduces a minimal number of concepts to effectively model real-world schedul-
ing problems. It also comes with a robust automatic search so that, like MIP, users
can focus on the declarative model without having to develop overly complex
search algorithms.

2.4.2 Decision Variables and Constraints

On top of the conventional integer variables in CP, CP Optimizer consider four
other types of data structures for building models: interval variables, sequence
variables, state functions, and cumul functions. By convention, the term variable is
used to indicate that the data structure can be used in choice points during search.
On the other hand, the term function is used to indicate that the data structure is
only used to build more complicated constraints and is never used as a choice point
in search. However, to ensure modelling consists of an objective function, a set of
constraints, and a set of decision variables, we relax these semantics. Throughout
this thesis we consider all of these different data structures to be decision variables.
In this section we will introduce each of these types of decision variables and the
constraints the can be defined on them.

Interval Variables

Overview: An interval variable, α ∈ interval, an interval of time not necessarily
of a fixed length that we may or may not need to consider in our schedule. Each in-
terval variable can be considered to be two integer variables representing the start

50

CHAPTER 2. BACKGROUND

time s(α) ∈ integer and the end time e(α) ∈ integer, and a boolean variable rep-
resenting the presence status x(α) ∈ boolean 5. Interval variables are optional in the
sense that they are either absent (x(α) = 0), or they are present (x(α) = 1). If the inter-
val variable must be present then we say it is compulsory. The domain of an interval
variable dom(α) is a subset of {⊥} ∪ {[s, e)|s ∈ dom(s(α)), e ∈ dom(e(α)), s ≤ e},
where⊥ indicates the case where the interval is absent. Therefore when an interval
variable is fixed it is either absent α = ⊥ or present with a fixed interval α = (s, e).
In this case, s and e represent the start and end of the interval respectively and has
length l = e− s.

Throughout the thesis, interval variables will be defined with respect to two
parameters: (1) a boolean parameter indicating presence status (cond) and (2) a tu-
ple to indicate the minimum and maximum lengths (lmin, lmax) of the interval. The
presence condition is compulsory (comp), optional (opt), or a boolean expression
dependent on fixed parameters. If the interval has a fixed length a single parameter
will be given in place of the minimum and maximum length tuple. The convention
for describing interval variables is as follows,

α ∈ interval(cond, (lmin, lmax)) (2.8a)

Expression on Interval Variables: For each interval variable α, the expressions
that provide access to the the start time integer variable (s(α)), the end time integer
variable (e(α)), and the presence boolean variable (x(α)), respectively, are indicated
as follows,

startOf(α, abs) (2.8b)

endOf(α, abs) (2.8c)

presenceOf(α) (2.8d)

In constraints (2.8b) and (2.8c) the second parameter, abs, refers to the value
that is returned if the interval variable is absent, i.e. x(α) = 0. These expressions
can be used to, in theory, model any constraints that one could typically write
with respect to conventional integer variables. However, in our experience only

5Strictly speaking, in CP Optimizer, interval variables are atomic variables that cannot be decom-
posed. However, throughout this thesis it is adequate to consider interval variables as two integer
variables and a boolean variables

51

2.4. CP OPTIMIZER

the presenceOf expression is ever required as there are often more efficient meth-
ods for building constraints on the start and end times of interval variables then
considering the corresponding integer variables explicitly. For example, next we
will discuss how precedence constraints can be modelled such that information
about the temporal network is captured.

Precedence Constraints / Temporal Network: Recall that in PS an AoN network
is a network where activities are represented by nodes and the generalised prece-
dence constraints are represented by arcs. A temporal network, also known as a
precedence graph, is a generalisation of this concept where now both the start time
and end time of the activities (intervals) are represented by nodes and again gener-
alised precedence constraints are represented by arcs between the nodes.

The minimum and maximum lengths of an interval variable, as introduced
when defining the variable (2.8a), are used when creating the temporal network.
The minimum length of an interval variable is represented by a weighted arc from
the start time node to the end time node with arc weight equal to the minimum
length. Similarly, the maximum length of an interval variable is represented by
a weighted arc from the end time node to the start time node with arc weight
equal to the negative of the maximum length. The temporal network provides
information to the solver about the structure of the problem and, like the AoN in
the RCPSP/max, is used for a range of different purposes.

The following global constraints are used to build a temporal network in CP
Optimizer,

startBeforeStart(αi, αj, δi,j) (2.8e)

endBeforeStart(αi, αj, δi,j) (2.8f)

startBeforeEnd(αi, αj, δi,j) (2.8g)

endBeforeEnd(αi, αj, δi,j) (2.8h)

startAtStart(αi, αj, δi,j) (2.8i)

endAtStart(αi, αj, δi,j) (2.8j)

startAtEnd(αi, αj, δi,j) (2.8k)

endAtEnd(αi, αj, δi,j) (2.8l)

Constraints (2.8e)-(2.8h) model generalised precedence constraints, where weighted

52

CHAPTER 2. BACKGROUND

arcs are added from the start/end of one activity to the start/end of another activ-
ity with arc weight δi,j. Constraints (2.8i)-(2.8l) provide a shorthand way of stating
that the start/end of one activity must happen exactly a certain time before the
start/end of another activity. With respect to the temporal network, an arc is added
from the start/end of the first interval to the start/end of the second with arc
weight δi,j and another arc is added from the second to the first with arc weight
−δi,j. Therefore, the advantage of expressing of expressing precedence constraints
by using, for example startBeforeStart constraints instead of building the equiv-
alent constraints using the startOf expressions, is that the solver can keep track of
the temporal network.

Boolean Constraints / Logical Network: A logical network is also built which
aggregates all the information regarding the interaction of the presence statuses
between variables. More explicitly, all constraints between the presence statuses of
the form

[¬]presenceOf(α1) ∧ [¬]presenceOf(α2)

are used to construct a boolean network similar to one proposed by Brafman (2001).
The positive and negative literals of each boolean variable are represented as a
node, and if a constraint exists such that one literal implies another then an arc
from the first to the second is added to the network. The logical network allows
for constant time access to logical relations that can be inferred between any two
intervals. It also allows traversals to help understand which intervals imply the
presence or absence of other intervals.

Constraints on groups of interval variables: There are a range of global con-
straints defined over groups of interval variables. The following are modelled as
follows,

span(α, {β1, ..., βn}) (2.8m)

alternative(α, {β1, ..., βn}) (2.8n)

isomorphism({α1, ..., αm}, {β1, ..., βn}) (2.8o)

Informally, the span constraint ensures the α intervals spans the β intervals.
The alternative constraint states that the β intervals are different alternatives of
the α interval. The isomorphism constraint is used to unify two separate sets of
intervals, here the α and β, which in fact are modelling the same set of intervals.
More formally,

53

2.4. CP OPTIMIZER

• the span constraint holds if and only if:

(x(α) = 0) ⇐⇒
∧

i∈[1,n]

(x(βi) = 0)), and

(x(α) = 1) ⇐⇒

(
∨

i∈[1,n](x(βi) = 1))

(s(α) = mini∈[1,n):x(βi)=1 s(βi))

(e(α) = maxi∈[1,n):x(βi)=1 e(βi))

• the alternative constraint holds if and only if:

(x(α) = 0) ⇐⇒
∧

i∈[1,n]

(x(βi) = 0)), and

(x(α) = 1) ⇐⇒ ∃k ∈ [1, n]

(x(βk) = 1)∧

i∈[1,n]\k(x(βi) = 0)

s(α) = s(βk)

e(α) = e(βk)

• the isomorphism constraint holds if and only if:

∃ f : P(A)→ P(B), where f is bijective, and

∀α ∈ P(A)

s(α) = s(f (α))

e(α) = e(f (α))

Where P(A) is the set of present α interval variables and P(B) is the set of
present β interval variables.

Sequence Variables

Overview: A sequence variable, ρ, is a decision variable that is defined with re-
spect to a set of interval variables A. A value of the sequence variable is a permuta-
tion π : A→ {⊥} ∪ {1, ..., |A|}, which is a mapping from the interval variables to
either the symbol ⊥ stating the interval is absent, or a positive integer bounded by
the number of interval variables being considered. Sequence variables inherently
constraint a permutation π such that (1) each interval variable α ∈ A is absent
x(α) = 0 if and only if π(α) = ⊥; (2) if an activity is present (x(α) = 1) it is
mapped to an integer equal to or less than the number of present interval variables;

54

CHAPTER 2. BACKGROUND

and (3) for every pair of interval variables, if they are both present then they cannot
have the same position. Hence the domain of a sequence variable consists of all
the permutations of the present interval variables of A. Furthermore, each interval
α ∈ A is also associated with a non-negative integer parameter known as a type,
denoted by T(α).

In the thesis, sequence variables are defined either explicitly by defining all of
the interval variables and interval types up front as follows,

ρ ∈ sequence((α, T(α))∀α∈A) (2.9a)

Or constructively by first defining a sequence variable and then stating which
interval variables, along with their types, are considered by the sequence variable,
as follows,

ρ ∈ sequence (2.9b)

inSequence(ρ, α, T(α)) ∀α ∈ A (2.9c)

The sequence variable on their own do not enforce any constraints on the
interval start and end times. An interval α could be sequenced before an interval
variable α′ in a sequence ρ without any impact on the relative position between the
start and end times of α and α′.

NoOverlap Constraint: To ensure that the interval variables considered by a se-
quence variable do not overlap, the noOverlap constraint is defined as follows,

noOverlap(ρ, M) (2.9d)

Where M is a transition distance matrix that specifies the minimal distance
that must separate two consecutive intervals in the sequence depending on their
type. The number of rows and columns of M is equal to the number of different
types associated with the interval variables in the sequence. The transition matrix
does not necessarily need to satisfy the triangle inequality6. More formally, the

6CP Optimizer contains two versions of the noOverlap constraint depending on whether or
not the transition matrix applies between all predecessors/successors or only between immediate
ones. Here we present the more general version of the constraint but note that in the case where M

55

2.4. CP OPTIMIZER

NoOverlap constraint ensures that for every two unique interval variables α, α′ ∈
A, if they are both present then

π(α) < π(α′)⇔ e(α) + M[T(ρ, α), T(ρ, α′)] ≤ s(α′)

Relative Position Constraints: To constrain certain interval variables to certain
positions in the sequence, the following global constraints are defined,

first(ρ, α) (2.9e)

last(ρ, α) (2.9f)

before(ρ, α, α′) (2.9g)

prev(ρ, α, α′) (2.9h)

The first constraint ensures that if α is present then π(α) = 1. The last
constraint ensures that if α is present then π(α) = |{α ∈ A : x(α) = 1}|. The before
constraint ensures that if two unique interval variables α, α′ ∈ A are both present
then π(α) < π(α′). The prev constraint is a stronger version of this constraint
where the first interval must directly precede the second, i.e., π(α) = π(α′)− 1.

State Variables

Motivation: Many scheduling problems also involve reasoning about the state
of certain resources. Typical examples include the temperature of an oven in which
jobs can only be executed within certain ranges, the type of material that is present
in a tank, or the current tool installed on a machine. Jobs can only be completed
when resources are in certain states and it might require some time to transition be-
tween different states of the resouce. To account for such situations, CP Optimizer
introduces state functions.

Overview: A state function, ψ, is a decision variable that represents a set of non-
overlapping intervals of time that we refer to as segments. We refer to the intervals
of a state function as segments to distinguish them from interval variables. Each of
the segments i are associated with a non-negative integer value vi that represents
the state of the function over the segment. Hence a value of state function ψ is

satisfies the triangle inequality, these two versions are equivalent.

56

CHAPTER 2. BACKGROUND

denoted as ([si, ei) : vi)i∈[1,n], where si and ei are the start and end times of each
segment, respectively. Inherently state functions constrain si < ei for each segment.
For a fixed state function ψ the set of points where the state function is associated
with a state is defined as D(ψ) =

⋃
i∈[1,n][si, ei). For a point t ∈ D(ψ), the unique

segment of the function that contains t is denoted by [s(ψ, t), e(ψ, t)) and the value
of the segment is denoted by ψ(t).

Like sequence variables, state functions are defined with respect to a set of
interval variables. However, the interactions between the interval variables and
state function can be somewhat more complicated to those with respect to sequence
variables. For that reason, state functions are only defined constructively as follows,

ψ ∈ state(M) (2.10a)

Where M is again a transition distance matrix that represents the minimum
distance that must separate two consecutive states in the state function. The dimen-
sion of M is equal to the maximum possible value that a segment might take.

Constraints: There exist a range of constraints to define the different relations
between interval variables and state functions. A number of constraints that are
used in this thesis are expressed as follows,

alwaysNoState(ψ, α) (2.10b)

alwaysConstant(ψ, α,↔) (2.10c)

alwaysEqual(ψ, α, v,↔) (2.10d)

The alwaysNoState constraint ensures that the state is not defined over the in-
terval of the interval variable, i.e., D(ψ)∩ [s(α), e(α)) = ∅. For the alwaysConstant
constraint, whenever α is present, state function ψ must be defined everywhere
between the start and end of interval α and be constant over this interval, i.e.,
[s(α), e(α)) ⊆ [s(ψ, s(α)), e(ψ, s(α)). The arrow parameter ↔ is a shorthand rep-
resentation for start and end alignments, and may be either − (no alignment),←
(start alignment only),→ (end alignment only), or ↔ (both start and end align-
ment). If start alignment is required then the start of the interval variable must
occur at the start of the corresponding interval from the state function, i.e., s(α) =

57

2.4. CP OPTIMIZER

s(ψ, s(α)). Similarly, if end alignment is required then the end of the interval vari-
able must occur at the end of the corresponding interval from the state function, i.e.,
e(α) = e(ψ, e(α)). The alwaysEqual constraint is equivalent to an alwaysConstant
constraint with the addition that the corresponding interval from the state function
must equal a specific value, i.e., f (s(α)) = v.

Cumul Function Expressions

Motivation: Many scheduling problems consider cumulative resources, where
the cumulative usage of the resource is represented as a function over time. For
the renewable resources in the RCPSP(/max), activities increase the cumulative
resource usage function at their start times and decrease it when they release the
resource at their end time. However in many real-world scheduling problems there
exist activities that can produce and consume resources. Take for example the
contents of a tank or activities that produce and consume money. For these cases,
the resource level can also be described as a function of time. Hence the cumulated
contribution of certain intervals on the resource can be represented by a function
of time, and then constraints can be posted on this function.

Overview: A cumul function, f , is function that represents the sum of individual
contributions of intervals to the total resource usage. These individual contribu-
tions are known as elementary function expressions and describe the contribution
from a single interval variable or a fixed interval of time to the resource usage. Let
f (t) be the value of cumul function f at time t. Note that it is typically inefficient to
store the value of at each time point, instead cumul functions use data structures
where the value at each point in time can be inferred based on the time points
that change the value, i.e., the starts and ends of intervals. Interval variables can
interact with cumul functions, and thus we define cumul functions constructively
as follows,

f ∈ cumul (2.11a)

f += pulse(α, h) (2.11b)

f += stepAtStart(α, h) (2.11c)

f += stepAtEnd(α, h) (2.11d)

f −= pulse(α, h) (2.11e)

f −= stepAtStart(α, h) (2.11f)

f −= stepAtEnd(α, h) (2.11g)

58

CHAPTER 2. BACKGROUND

When a cumul function f is first defined (2.11a), the value at each time point
is zero, i.e., f (t) = 0 for all t. Constraints (2.11b)-(2.11g) demonstrate how interval
variables can affect the value of a cumul function. The pulse constraint ensures
that if the interval variable is present, the value of the cumul function increases
(or decreases) by positive integer h for the duration of the interval, i.e., f (t) += h
(or f (t) −= h) for all t ∈ [s(α), e(α)). Likewise, the stepAtStart and stepAtEnd
constraints increase (or decrease) the cumul function by positive integer h for all
time points after the start and end of the interval, i.e., f (t) += h (or f (t) −= h) for
all t ∈ [s(α, ∞)) or t ∈ [e(α), ∞)), respectively. For all the pulse stepAtStart and
stepAtEnd constraints it is possible to add a fixed range [s, e) instead of an interval
variable.

Constraints: Constraints exist to restrict the possible values that a cumul function
can take at different time points. The types considered in this thesis are as follows,

hmin ≤ f ≤ hmax (2.12a)

alwaysIn(f , α, hmin, hmax) (2.12b)

Constraints (2.12a) ensure that the value of the cumul function never is less
than hmin or more than hmax at any time point, i.e., hmin ≤ f (t) ≤ hmax for all t. The
alwaysIn constraint (2.12b) is a relaxation of this, where the values of the cumul
function are again restricted to between hmin and hmax but only during the interval
value α if α is present, i.e., hmin ≤ f (t) ≤ hmax for all t ∈ [s(α), e(α)) if x(α) = 1.

2.4.3 Modelling the RCPSP/max

For continuity, we describe how the reference problem, the RCPSP/max, is typ-
ically modelled in CP Optimizer. Each activity i ∈ V is assigned a compulsory
interval variable αi, with a fixed duration di. A typical CP Optimizer model for the
RCPSP/max is then,

min max
i∈V

(endOf(αi)) (2.13a)

s.t. startBeforeStart(αi, αj, δi,j) ∀(i, j) ∈ A (2.13b)

fk += pulse(αi, ri,k) ∀k ∈ R; i ∈ V (2.13c)

59

2.4. CP OPTIMIZER

fk ≤ Rk ∀k ∈ R (2.13d)

αi ∈ interval(comp, di) ∀i ∈ V (2.13e)

fk ∈ cumul ∀k ∈ R (2.13f)

The objective function (2.13a) is to minimise the maximum completion time
of any of the activities. Constraints (2.13b) enforce the generalised precedence
constraints. Each resource is represented by a single cumul function expression
(2.13f) that represents the sum of the individual resource requirements during
the interval variables (2.13c) with a constant capacity over the considered project
(2.13d). For each activity an interval variable is defined with length equal to the
duration of the activity and present status fixed such that it must be present (2.13e).
Assuming that the number of precedence constraints is proportional to the number
of activities, this model is linear with respect to both the number of variables and
constraints.

2.4.4 Search and Constraint Propagation

CP Optimizer has a very powerful default search that incorporates many of the
ideas from the serial schedule generation schemes, constraint propagation, and
the Schedule-Or-Postpone strategies discussed in the previous sections. The au-
tomated search has three distinct phases: initial heuristics are used to generate
feasible solutions; an improvement phase tries to improve the feasible solution;
and finally the solver focusses on determining an optimality proof. For a full re-
view of the default search we refer the reader to the following references (Laborie
et al., 2018; Godard et al., 2005; Vilim et al., 2015)

Initial solutions are generated using a range of heuristics that utilise the tem-
poral network. A topological sort is computed over the temporal network to de-
termine information that will help determine feasible schedules through variable
orderings. An example of the topological sort is, as already discussed in section
2.1.2, to find the strongly connected components. The methods for building sched-
ules depends on the type of objective function being considered by the problem.

Feasible solutions are improved using a self-adapting Large Neighbourhood
Search (SA-LNS). LNS (Shaw, 1998) is a well-known, solution-based metaheuristic
for the systematic search for sufficiently good solutions to an optimization problem.
The process is based on the continual relaxation and re-optimization of a feasible
solution. A significant challenge of implementing LNS on scheduling problems
is that typically most commonly used heuristics generate a schedule with fixed

60

CHAPTER 2. BACKGROUND

start times, in which relaxing a solution by unfreezing the start time of a subset
of activities in the schedule provides limited flexibility to re-optimize the relaxed
solution. To provide the framework more flexibility, Godard et al. (2005) relax initial
solutions into partial order schedules (POSs) (Policella et al., 2004), after which a
LNS relaxation is applied with respect to the POS. The optimization component of
CP Optimizer’s default search is a SA-LNS, for which the fundamental mechanics
are describe in Godard et al. (2005). Relaxations of the problem are reconstructed
using different variants of the SetTimes algorithm as discussed in Section 2.3.4.

Once the solver decides it has becomes difficult to improve the solution, Fail-
ure Directed Search (FDS) is used to efficiently close the search tree. FDS was first
described by (Vilim et al., 2015) and operates on the assumption that the current
problem is infeasible. Therefore FDS directs the search into conflicts in order to
prove that the current branch is infeasible. Choices that fail the most are preferred.
When FDS is being used, stronger filtering algorithms are used. For example, typi-
cally time-tabling is used to enforce constraints over cumul expressions, however
when FDS begins, the time-table edge finding filtering algorithm is used.

As will be used extensively in this thesis, there are applications where there
exist a group of key decision variables, such that once these variables are fixed, it is
straightforward to extend the partial solution to the remaining variables. A search
phase is a group of decision variables of the same type (integer, interval or sequence).
Search phases can be used to instruct the solver to consider groups of variables in
a specified order: the decision variables of the first phase are instantiated before
the variables in the second phase and so on.

2.4.5 Constraint Propagation

CP Optimizer uses a range of filtering algorithms to enforce the constraints of the
problem. Details regarding all of the different filtering algorithms are not necessar-
ily made public and as the emphasis of this thesis is on the modelling, complete
knowledge of all the different filtering algorithms is not necessary. However as dif-
ferent filtering algorithms will be used depending on how a problem is modelled,
it is worthwhile to consider the following:

• Exploiting the temporal network - As all precedence constraints are aggre-
gated into the temporal network, it is possible to perform filtering on all
temporal constraints at once extremely efficiently using improved versions
of shortest path algorithms such as the Bellman-Ford algorithm. Therefore it
is generally beneficial to provide the temporal network with as much infor-

61

2.4. CP OPTIMIZER

mation as possible.

• Exploiting the logical network - The propagation of precedence constraints
on the temporal network exploit the implication relations between presence
intervals in the logical network. These propagations are well summarised
in Laborie and Rogerie (2008) and Laborie et al. (2009). Hence the presence
status of an interval variable does not necessarily have to be fixed in order for
its precedences to be considered while propagating the temporal network.

• Timetabling - The default filtering algorithm for all sequence variables, state
functions and cumul functions are modified versions of the timetable filtering
algorithm discussed in Section 2.3.2. This is discussed in greater detail in
Chapter 5 of this thesis.

• Edge Finding - If a cumul function consists of only positive pulses (2.11b)
and the only constraints on the cumulative function is an upper limit (2.12a),
then the edgefinder cumulative constraint can also be used. In Chapter 4, we
will see how this can help improve performance.

62

CHAPTER 3
Symmetry Breaking in the

High-Multiplicity RCPSP/max

3.1 Introduction

With respect to job shop scheduling, Hochbaum and Shamir (1991) describe high-
multiplicity scheduling problems as problems that consist of many jobs which can
be partitioned into relatively few groups, where all the jobs within each group are
identical. Typically these groups of identical jobs are referred to as classes (Van Der
Veen and Zhang, 1996).

In this chapter we consider the high-multiplicity version of the RCPSP/max.
With respect to our real-world problem, scheduling the finite resources of the auto-
mated system to process multiple tests in parallel in the least amount of time can be
modelled as the high-multiplicity RCPSP/max. Each protocol is represented by a
project class. Tests with the same protocol are represented as projects from the same
class. The activities of a project represent the activities that must be completed by
the system, and a set of generalised precedence relations account for the timings
of the chemical processes. The resources of the automated system are modelled as
renewable resources.

In our conference paper Edwards et al. (2017), we claimed that there exists
symmetry between tests of the same protocol and that this symmetry can be bro-

63

3.2. BACKGROUND

ken by considering an additional set of precedence constraints. Furthermore we
claimed that these additional precedence constraints allowed CP Optimizer to, on
average, find better solutions on a real-world data set compared to the existing
approach. This chapter presents the work in (Edwards et al., 2019), which extends
(Edwards et al., 2017) by making the following additional contributions:

• Model the problem as the high-multiplicity version of the well-known RCPSP/max,
and contextualise this problem within the scheduling literature;

• Formally prove the existence of the symmetry between activities of the same
index from projects of the same class;

• Consider two different symmetry breaking approaches: (1) by reformulating
the model to reduce the number of decision variables, and (2) by introducing
additional precedence constraints to break symmetries;

• Propose two mixed-integer programming (MIP) formulations based on inte-
ger decision variables that eliminate the symmetry between identical projects;

• Complete a computational study to analyse the different approaches of sym-
metry breaking in various MIP and CP-based scheduling models; and

• Demonstrate the efficiency of symmetry breaking on relevant benchmark
problems in the multi-project scheduling problem library (MPSPlib).

The structure of the chapter is as follows. Section 3.2 gives the problem de-
scription of the high-multiplicity RCPSP/max and then contextualises the problem
within the literature. Section 3.3 provides a formal proof of the symmetry between
projects of the same class. Section 3.4 adapts a well known discrete-time MIP model
for the classical resource-constrained project scheduling problem (RCPSP) to the
high-multiplicity RCPSP/max and proposes two MIP models based on integer
variables that reduce the number of variables required. Section 3.5 includes how
the symmetry can be broken for two well known models based on CP. Section
3.6 includes two computational experiments and a discussion of the results. The
chapter concludes by discussing future research directions.

3.2 Background

3.2.1 Problem description

An instance of the high-multiplicity RCPSP/max is represented by a single, mas-
ter AoN, N = (V, A). In the network, activities are represented by vertices and

64

CHAPTER 3. SYMMETRY BREAKING IN THE HIGH-MULTIPLICITY
RCPSP/MAX

generalised precedence constraints are represented by weighted arcs.

Individual projects, which can be divided into a set of project classes C, are
considered. The class defines the set of nc activities that must be processed in
order to complete a single project of class c ∈ C. The set of activities for project
class c ∈ C is defined Vc := {0, 1, ..., nc, nc + 1}, where 0 and nc + 1 are dummy
start and end activities for projects of that class. The class also defines the set
of precedence relations between these activities represented by the set Ac. Here
(i, i′) ∈ Ac represents a precedence from activity i ∈ Vc to activity i′ ∈ Vc for all
projects p ∈ P of class c ∈ C. For each project class c ∈ C, a number of multiples of
that project, mc, must be completed. Let Pc := {0, ..., mc − 1} denote the projects of
class c ∈ C.

For notational consistency we introduce a dummy class, 0 ∈ C. Class zero
contains a single dummy project m0 = 1, with two dummy activities (0, 0, 0) and
(ω, 0, 0) that can be interpreted as the global start and end activities respectively.
For brevity we refer to the dummy end node as simply ω where possible. The
global node set is thus defined as V := {(i, p, c)|i ∈ Vc, p ∈ Pc, c ∈ C}. The
global arc set is the union of three sets; (1) the project arcs defined by the classes,
Areal := {((i, p, c), (i′, p, c))|(i, i′) ∈ Ac, p ∈ Pc, c ∈ C}, (2) the arcs from the global
dummy start activity to the project dummy starts, Astart := {(0, 0, 0), (0, p, c)|p ∈
P, c ∈ C \ {0}} and (3) the arcs from the project dummy ends to the global dummy
end, Aend := {(nc + 1, p, c), (ω, 0, 0)|p ∈ P, c ∈ C \ {0}}. Hence A := Areal ∪
Astart ∪ Aend.

A schedule is an assignment of start times to activities,S := {Si,p,c|(i, p, c) ∈ V},
where Si,p,c denotes the start time of activity (i, p, c) ∈ V . Two distinct sets of
constraints are considered:

1. Generalised Precedence Constraints: each precedence ((i, p, c), (i′, p′, c′)) ∈ A
has an associated time lag δ(i,p,c),(i′,p′,c′), which states that activity (i, p, c)
starts at least δ(i,p,c),(i′,p′,c′) time-units before activity (i′, p′, c′), i.e.,

Si′,p′,c′ − Si,p,c ≥ δ(i,p,c),(i′,p′,c′), ∀ ((i, p, c), (i′, p′, c′)) ∈ A (3.1)

If a time lag is non-negative it is referred to as a minimum time lag. If a time lag
is negative it is referred to as a maximum time lag. A schedule S is time-feasible
if all of the time lags are respected, i.e., (3.1) holds.

2. Resource Constraints: we are given a set of renewable resources R. Each re-
source k ∈ R has a capacity of Rk units. In order to be processed, activity

65

3.2. BACKGROUND

i ∈ Vc of class c ∈ C, requires ri,c,k units of resource k ∈ R for the entire
duration, di,c, of the activity. At each time t over some horizon H, the demand
for resource k ∈ R, denoted by rk(S , t), must not exceed the capacity Rk, i.e.,

rk(S , t) = ∑
(i,p,c)∈V :t∈[Si,p,c,Si,p,c+di,c[

ri,c,k ≤ Rk, ∀ t ∈ H, k ∈ R (3.2)

A schedule S is resource-feasible if the demand for a resource never exceeds the
capacity of the resource, i.e., (3.2) holds. A schedule is feasible if the schedule is both
time-feasible and resource-feasible. The objective is to find the schedule with the
lowest makespan, i.e., minimise Sω. For completion it is noted that the duration of
all dummy activities is zero. The resource requirements of all dummy activities for
all resources are zero. The time lags associated with each dummy arc, i.e., those in
Astart and Aend, are zero.

3.2.2 Literature review

To the best of our knowledge the high-multiplicity RCPSP/max has not been con-
sidered in the literature. However there exists many closely related well-studied
problems. Here we contextualise the problem considered in this chapter within the
literature.

As claimed by Kolisch (2015), the RCPSP is probably the most studied problem
in project scheduling. The RCPSP has been extremely well studied in the schedul-
ing literature, due to a combination of being easy to state, relevant in practice and
yet hard to solve; famously being proven NP-Complete by Blazewicz et al. (1983).
The RCPSP is a special case of the RCPSP-max where all the precedence constraints
have a time lag equal to the duration of the predecessor activity. These precedence
constraints are referred to as simple precedence constraints and are more typically
presented as a zero time lag between the end of the predecessor activity and the
start of the successor activity. A vast number of variations to the RCPSP have been
considered in the literature. For a detailed overview of common problem exten-
sions, we refer the reader to Schwindt and Zimmermann (2015a), Schwindt and
Zimmermann (2015b) and Hartmann and Briskorn (2010).

As the RCPSP/max is a generalisation of the RCPSP, finding an optimal so-
lution remains in general NP-hard. Moreover as shown by Bartusch et al. (1988)
even proving that a problem is feasible given an unlimited time horizon is NP-
Complete. Finally with respect to the naming convention of Brucker et al. (1999a),

66

CHAPTER 3. SYMMETRY BREAKING IN THE HIGH-MULTIPLICITY
RCPSP/MAX

the RCPSP/max is denoted PS|temp|Cmax. When pre-emption is not allowed, which
is the case considered in this chapter, it is possible to represent start/end, end/end
and end/start generalised precedence constraints as start/start precedences, through
the so-called Bartusch et al. transformations (Bartusch et al., 1988).

The state-of-the-art solution technique to the RCPSP/max (Schutt et al., 2013c)
is a constraint programming approach that includes SAT-inspired nogood learn-
ing based on lazy-clause generation (Ohrimenko et al., 2009) and conflict-driven
search. The approach closed 573 out of the 631 open problems in well established
benchmarks and improved a further 51 upper bounds of the 58 remaining open
problems. We refer to CP solvers that use lazy-clause generation as learning CP
solvers.

Learning CP solvers have also been used on a number of generalisations of
the RCPSP/max considered in the literature. Schutt and Stuckey (2016) explored
different types of learning languages to explain producer and consumer types of
resource constraints, i.e., resources for which an activity can produce or consume
at the start or end of the activity. The performance achieved is comparable with the
best of the nine methods considered by Laborie (2003a). A learning CP solver was
successfully implemented by Kreter et al. (2017) on the more general RCPSP/max
where calendar constraints are also considered, denoted RCPSP/max-cal. The au-
thors develop a specialised propagator for the cumulative resource constraints
taking the calendar constraints into account. Finally learning CP solvers has been
successfully implemented in other related scheduling problems such as the classi-
cal RCPSP Schutt et al. (2011) and the flexible job shop scheduling problem Schutt
et al. (2013a).

CP Optimizer been shown to perform well on a number of scheduling prob-
lems (Laborie et al., 2018). The default search incorporates a range of heuristics
to find and improve feasible solutions. Vilim et al. (2015) show how this default
search can be complimented by running in parallel a destructive lower bound
method, which they name failure-directed search, after a sufficiently good solution
has been found. This method was used to close many open instances from a range
of different project scheduling problems, of which the RCPSP/max was one. For
some problems the approach made remarkable improvements, for example in the
multi-mode RCPSP the approach closes 535 out of the 552 open instances. However
for the RCPSP/max the approach was only able to close one of the 58 instances left
open by Schutt et al. (2013c).

The basic multi-project scheduling problem (BMPSP) is a special case of the

67

3.3. SYMMETRY BREAKING

RCPSP where two or more projects which require the same renewable resources are
scheduled in parallel. A common modelling approach in multi-project scheduling
problems is to merge all projects into an artificial super-project with dummy start
and end activities, as is done in this chapter. In some versions of the BMPSP a
distinction is drawn between local and global resources (Confessore et al., 2007). A
local resource is a resource that is only shared amongst activities from that project,
whereas a global resource is shared by all activities from all projects. If a problem
only considers local resources, then the BMPSP can be decomposed into separate
instances of the RCPSP. In this chapter all resources are global, as this is the case in
our motivating problem.

Neumann and Zhan (1995) point out that an instance of the RCPSP/max is
feasible if and only if each maximal strongly connected component of the project
network, which they refer to as a cycle, has a feasible schedule. This decomposition
has been used frequently in particular for schedule generation schemes for the
RCPSP/max, which are well summarised in Franck et al. (2001).

For a number of high-multiplicity scheduling problems, good-quality, polynomial-
time approximation algorithms have been presented. These approaches generally
derive dispatching rules from the solutions of the linear relaxation of scheduling
problems and prove that the quality of these solutions are guaranteed to be within
a certain bound of the optimal solution. Some examples of such algorithms for
the minimum makespan high-multiplicity jobshop problem (Boudoukh et al., 2001;
Masin and Raviv, 2014) and the 3-stage flowshop scheduling problem with identi-
cal jobs and uniform parallel machines (Verma and Dessouky, 1999).

3.3 Symmetry breaking

Symmetry breaking is a method that is widely used in optimization to reduce the
search space. Excellent overviews of symmetry in CP and MIP are given by Gent
et al. (2006) and Margot (2010) respectively. A symmetry is a mapping between
variable-value pairs that maps feasible solutions to other feasible solutions with
the same objective value. Two solutions are symmetric if there exists a symmetry
that maps one solution to the other. The aim of symmetry breaking is to ideally
eliminate all but one of the symmetric solutions.

In this section we prove the existence of symmetry between activities of the
same index of projects from the same class. To provide some intuition to the notion
of symmetry under investigation consider the following small example. Figure

68

CHAPTER 3. SYMMETRY BREAKING IN THE HIGH-MULTIPLICITY
RCPSP/MAX

3.1 presents the activity-on-node (AoN) network of the non-dummy activities of
three projects from the same class. The node index (i, p, c) stands for activity i ∈
{1, 2, ..., 5} from project p ∈ {1, 2, 3} from class c = 1. For clarity arc values are
omitted from the network, however we assume for feasibility that the projects
contain no positive cycles. We will prove that the symmetry in this section can be
broken by considering the additional precedence constraints, represented by the
dotted arcs.

Figure 3.1: Intuition of the symmetry breaking constraints. Additional precedence constraints (dot-
ted) can be added between activities of the same index between projects from the same class.
Alternatively the symmetry can be removed through remodelling.

Kovács and Váncza (2006) prove the existence of symmetry between related
activities of special types of sets of activities for the RCPSP, which they refer to as
progressive pairs, and show how additional precedence constraints can be inferred
between these activities under certain conditions. They then show how the sym-
metry breaking constraints hold for more general versions of the RCPSP, including
those with non-negative time lags. As Kovács and Váncza (2010) do not explicitly
consider negative time lags, the project networks are all direct acyclic graphs and
hence do not contain any cycles. In this chapter we prove that the symmetry holds
in the face of maximum time lags for identical projects, and thus for precedence
graphs that contain cycles. Furthermore the proof by Kovács and Váncza (2010) is
based on consecutively considering sets of identical activities in pairs. Our proof
considers all projects of the same class simultaneously and shows how a certain
schedules can be obtained directly from any feasible schedule, which is a novel

69

3.3. SYMMETRY BREAKING

contribution in itself.

Our proof is based on swapping start times between activities in feasible sched-
ules. We first consider any feasible schedule to any instance of the RCPSP/max
and then show how a unique type of schedule can be determined by swapping
activity start times in a specific way. To perform these swaps, we introduce the start
time ordering function, Oq

i,c(S), which denotes the qth smallest start time of activity
index i ∈ Vc amongst all the projects of class c ∈ C according to schedule S .

Thus given any schedule S a permutation of the schedule Sπ can be defined
by assigning the start times using the start time ordering function as follows,

Sπ
i,p,c := Op

i,c(S) ∀ i ∈ Vc, p ∈ Pc, c ∈ C (3.3)

Hence for a given class c ∈ C and activity index i ∈ Vc the start time for
project p ∈ Pc is assigned the pth lowest start time of the corresponding activities
in the original schedule S . We will refer to the schedules Sπ obtained by permuting
the start times of a feasible schedule S using the start time ordering function as
permuted schedules. We say Sπ is the permuted schedule of S .

A small example that demonstrates how the start time ordering function is
used to reorder the start times of activities of the same index from projects of the
same class is illustrated in Figure 3.2. The network associated with some prece-
dence (i, i′) ∈ Ac for a class with mc = 5, is shown on the left. Two schedules are
shown on the right hand side. A rectangle is used to indicate the interval of the
activity according to the corresponding schedules. The horizontal line indicates
the project, on each line the rectangle on the left refers to activity index i, whereas
the rectangle on the right refers to i′. The top schedule is some feasible schedule
S , the bottom schedule Sπ is the permuted schedule of S . The activities in Sπ are
ordered by the starting times in S .

The following two lemmas show that a permuted schedule of any feasible
schedule are resource-feasible and time-feasible, respectively.

Lemma 3.3.1. For any feasible schedule S , the permuted schedule Sπ is resource-feasible

Proof. As S is feasible, we know that (3.2) holds and hence rk(S , t) ≤ Rk for all
t ∈ H and k ∈ R. As activities of the same index of projects from the same class
have the same duration di,c and resource requirements ri,c,k, any reordering of start
times will not change the resource profile for all resources, and hence r(Sπ, t) =
r(S , t) ≤ Rk.

70

CHAPTER 3. SYMMETRY BREAKING IN THE HIGH-MULTIPLICITY
RCPSP/MAX

Figure 3.2: A small example that demonstrates how the start time ordering function is used to
construct unique schedules. The figure on the left is the subgraph of an AoN for activities from five
different projects from the same class with the same activity index. On the top right is a gantt chart
of a feasible schedule S . The figure on below shows activities in the permuted schedule Sπ ordered
by the start times in S .

Lemma 3.3.2. For any feasible schedule S , the permuted schedule Sπ is time-feasible

Proof. As we know S is feasible, it is also time-feasible and thus (3.1) holds. Hence

min
p∈Pc

(Si′,p,c − Si,p,c) ≥ δ(i,p,c),(i′,p,c) ∀ (i, i′) ∈ Ac, c ∈ C.

The dummy precedences associated with arc sets Astart and Aend trivially hold in
Sπ. To complete the proof it is sufficient to instead prove that

Sπ
i′,p,c − Sπ

i,p,c ≥ min
p′∈Pc

(Si′,p′,c − Si,p′,c) ∀ (i, i′) ∈ Vc, p ∈ Pc, c ∈ C.

For the sake of contradiction assume that there exists some pair of activities, i, i′ ∈
Vc, from some project p̂ ∈ Pc in class ĉ ∈ C such that the time lag from activity
(i, p̂, ĉ) to activity (i′, p̂, ĉ) is strictly less than all corresponding time lags in the
initial schedule, i.e. Sπ

i′,p̂,c− Sπ
i,p̂,c < minp∈Pc(Si′,p,c− Si,p,c). This assumption implies

that in the original schedule, there does not exist any project p ∈ Pĉ from class ĉ ∈ C,
where Si,p,ĉ ≥ Sπ

i,p̂,ĉ and Si′,p,ĉ ≤ Sπ
i′,p̂,ĉ.

We now consider two sets of projects of class ĉ. Let A be the set of projects

71

3.3. SYMMETRY BREAKING

in Pĉ for which the starting time of activity index i in the original schedule is
strictly less than the starting time of activity index i of the violating project in the
permuted schedule, i.e. A := {p ∈ Pĉ : Si,p,ĉ < Sπ

i,p̂,ĉ}. Let B be the set of projects
for which the starting time of activity i′ in the original schedule is less than or
equal to the starting time of activity i′ of the project p̂ in the permuted schedule, i.e.
B := {p ∈ Pĉ : Si′,p,ĉ ≤ Sπ

i′,p̂,ĉ}.

As we know there does not exist any project p ∈ Pc such that, Si,p,ĉ ≥ Sπ
i,p̂,ĉ and

Si′,p,ĉ ≤ Sπ
i′,p̂,ĉ, hence for all p ∈ Pc, if Si′,p,ĉ ≤ Sπ

i′,p̂,ĉ then Si,p,ĉ < Sπ
i,p̂,ĉ. Equivalently

this implies that B ⊆ A.

Now let us consider the cardinality of A and B. Recall that the permuted sched-
ule is constructed through assigning activities by (3.3). Hence all activities in the
violating project p̂ were assigned the p̂th smallest start time of the corresponding
start times in the original schedule. Hence |A| ≤ p̂ − 1. Note that |A| could be
smaller than p̂ − 1 if there exists some p′ ∈ Pc : p′ < p̂ such that Sπ

i,p′,c = Sπ
i,p̂,c.

Similarly |B| ≥ p̂.

Finally as |B| ≥ p̂ > p̂ − 1 ≥ |A|, then B * A. Therefore there exists at
least one project p ∈ Pĉ such that p ∈ B and p /∈ A, hence Si,p,ĉ ≥ Sπ

i,p̂,ĉ and
Si′,p,ĉ ≤ Sπ

i′,p̂,ĉ, which implies Sπ
i′,p̂,c − Sπ

i,p̂,c ≥ Si′,p,c − Si,p,c. This is a contradiction
to our initial assumption and hence the permuted schedule of a feasible schedule
is time-feasible.

These lemma leads to the following theorem.

Theorem 3.3.3. A feasible schedule S is symmetric to its permuted schedule Sπ

Proof. Equation (3.3) is a symmetry if it maps feasible solutions to other feasible
solutions with the same objective value. From Lemma 3.3.1 and Lemma 3.3.2 we
know that if S is feasible then Sπ is resource-, and time-feasible respectively. Hence
Sπ is also feasible. Finally as m0 = 1 the start time of the dummy end activity, ω, is
not permuted and hence S and Sπ have the same objective value. Hence equation
(3.3) is a symmetry and S and Sπ are symmetric.

A direct-consequence of Theorem 3.3.3 is that we are able to introduce an
additional set of precedence constraints between activities of the same index of
successive projects of the same class, i.e. Asym

1 := {((i, p, c), (i, p + 1, c))|i ∈ Vc, p ∈
Pc \ {mc}, c ∈ C}, all with an associated time lag δ(i,p,c),(i′,p+1,c) = 0. These ad-
ditional precedence constraints can be considered to be symmetry-breaking con-
straints.

72

CHAPTER 3. SYMMETRY BREAKING IN THE HIGH-MULTIPLICITY
RCPSP/MAX

Due to the presence of the renewable resources, it may be possible to introduce
a second set of additional precedence constraints, which exploit situations where
the number of projects in a class exceeds the number of activities of the same index
that can be executed in parallel without violating the capacity of the resources. In
such cases end-start precedence constraints can be added between certain pairs of
activities as follows.

Proposition 3.3.4. Given the permuted schedule, Sπ, of some feasible schedule S . If there
exists a project class c ∈ C with activity i ∈ Vc such that ε = mink∈R

⌊
Rk
rick

⌋
≥ 1, then

for all projects p ∈ {0, ..., mc − ε− 1}, Sπ
i,p,c + di,c ≤ Sπ

i,p+ε,c.

Proof. From Theorem 3.3.3, we know that in the permuted schedule, Si,p,c ≤ Si,p+1,c

for all i ∈ Vc, p ∈ Pc, c ∈ C. Now assume for the sake of contradiction for a
given activity index i ∈ Vc from a given class c ∈ C, there exists an integer
z = mink∈R

⌊
Rk
rick

⌋
≥ 1 such that Sπ

i,p,c + di,c > Sπ
i,p+z,c for some p ∈ {1, ..., z}. The

resource demand rk(Sπ, di,c − 1) ≥ ri,c,k · (z + 1) = (
⌊

Rk
rick

⌋
+ 1) · rick > Rk. Hence

the model is not resource-feasible, which is a contradiction.

Hence, it is possible to add to the model a second set of additional precedence
constraints, Asym

2 := {(i, p, c), (i, p + ε, c)|i ∈ Vc, p ∈ {0, ..., ε − 1}, c ∈ C} with
associated time lag, δ(i,p,c),(i,p+ε,c) = di,c. It should be noted that these additional
precedence constraints would be propagated by certain cumulative propagation
algorithms used in constraint programming if Asym

1 were included.

Some multi-project scheduling problems in the literature distinguish between
global and local resources. We show here when considering local resources that in
general the symmetry no longer exists. The renewable resources we have consid-
ered so far,R, can be seen as global resources as they must be shared between all
the individual projects. By contrast, local resources are used exclusively by individ-
ual projects. With respect to our notation, the local resources Qp,c can be introduced
for each project p ∈ Pc and each class c ∈ C. We assume that all projects of the same
class have identical, yet distinct, local resources, hence we say Qp,c = Qc for all
p ∈ Pc. As with global resources, each local resource, k ∈ Rlocal

c , has finite capacity,
Rlocal

c,k , and each activity of the class i ∈ Vc requires rlocal
i,c,k units. Hence a schedule S

is local-resource-feasible if

rk(S, t) = ∑
i∈Vc :t∈[Si,p,c,Si,p,c+di,c)

rlocal
i,c,k ≤ Rlocal

c,k , ∀ t ∈ H, k ∈ Qc, p ∈ Pc, c ∈ C (3.4)

73

3.3. SYMMETRY BREAKING

Proposition 3.3.5. The additional symmetry breaking precedence constraints, Asym
1 , and

consequently Asym
2 , are not valid when local resources are considered.

Proof. The proof follows a simple counter example (see Figure 3.3) for which an
optimal solution without the constraints is better than the optimal solution with
the constraints. For brevity in this example we ignore the dummy nodes and arcs.
Consider scheduling two projects of the same class, i.e. c = 1 ∈ C and m1 = 2.
The class consists of two activities, n1 = 2. Both activities have the same duration
d1,1 = d1,2 = 1. No precedences exist between the two activities, A1 = ∅. The class
considers a single local resource Qc = {1} with capacity, Rlocal

1 = 1 and one global
resource R = {1} with capacity R1 = 1. Finally the activities have the following
resource requirements, r1,1,1 = 1, r2,1,1 = 0 and rlocal

1,1,1 = rlocal
2,1,1 = 0.

Consider an optimal schedule, S , where S1,1,1 = S2,2,1 = 0 and S2,1,1 = S1,2,1 =

1. This schedule does not violate the local resources as activities of the same project
are never executed concurrently. The schedule does not violate the global con-
straint as the activities of index 1 are never executed concurrently. Now consider
the permuted version of this schedule. The global resource is still feasible, the
two activities of index 1 have not changed. However the capacity of both local
resources are exceeded. Furthermore when the precedence constraints are consid-
ered between the activities of the same index of projects from the same class the
optimal solution of three can be found where S1,1,1 = 0, S2,1,1 = S1,2,1 = 1 and
S2,2,1 = 2, which is clearly worse than when these precedence constraints were not
considered.

Figure 3.3: A visualisation of the counter example used in the proof of Proposition 3.3.5. It shows
the symmetry breaking constraints are not valid for projects with local resources. Activities from
the same project have the same pattern. Both activities require the local resource so cannot overlap.
The two activities using the global resource are coloured blue and cannot overlap. The left image
represents the optimal solution without the symmetry breaking constraints, which takes 2 time-
units. The middle image represents the permuted schedule, which is infeasible since it violates both
local resources. The right image represents the optimal schedule when the additional precedences
constraints are added, which takes 3 time-units.

74

CHAPTER 3. SYMMETRY BREAKING IN THE HIGH-MULTIPLICITY
RCPSP/MAX

3.4 Mixed-Integer Programming

In this section we first show how a standard MIP model for RCPSP based on
binary pulse start decision variables can be reformulated for the high-multiplicity
RCPSP/max. We then show how a version of this model can be formulated that
takes advantage of the symmetry between projects from the same class by using
integer variables instead of binary. By considering integer variables, we reduce
the total number of variables being considered by the model. We then propose
another reduced model that is based on different decision variables. A number of
tightening constraints are proposed to ensure that the continuous relaxations are
at least as good as a simple resource-based lower bound.

To narrow the scope of analysis we consider MIP models with discrete-time
start variables and precedence constraints that are in disaggregated form. Discrete-
time models with disaggregated precedence constraints are known to have the
strongest LP relaxations compared to alternative MIP models, as summarised by
Artigues (2017). Furthermore they are known to perform well in practice, as veri-
fied by both Tesch (2018a) and Bianco and Caramia (2013). This is not to say that
discrete-time models are necessarily the best models for all instances. Kopanos
et al. (2014) compare a number of different MIP approaches to the RCPSP and find
empirically two of their formulations based on continuous variables perform on
average the best across a range of instances. Koné et al. (2011) claim that event-
based and flow-based formulations outperform the discrete time-based methods
when the time horizon is very large.

All models require an upper bound on the duration of the project, T. The
time-horizon of the project is then H := [0, ..., T[. The earliest start time, ESi,p,c, of
activity (i, p, c) ∈ V, is equal to the longest path from the dummy start node to
(i, p, c) in the project network. Similarly the latest start time, LSi,p,c is equal to T− 1
minus the longest path from from (i, p, c) to the dummy end node.

3.4.1 Formulation based on binary pulse start variables

With respect to the classical RCPSP, the discrete-time model was introduced in the
pioneering work of Pritsker et al. (1969). The discrete time model was extended
to the discrete time model with disaggregated precedences by Christofides et al.
(1987), which provide stronger continuous relaxations. With respect to our notation,
the model is based on binary variable xi,p,c,t, for all (i, p, c) ∈ V and t ∈ H such
that xi,p,c,t = 1 if and only if activity (i, p, c) starts at time t and 0 otherwise. We

75

3.4. MIXED-INTEGER PROGRAMMING

generalise this model to take into account the generalised precedence constraints.
This type of decision variable is known as pulse variables and the basic discrete-time
formulation based on pulse variables, denoted DDT, is then modelled by:

min ∑
t∈H

t · xω,t (3.5a)

s.t.
t−δ(i,p,c),(ī,p̄,c̄)

∑
τ=0

xi,p,c,τ −
t

∑
τ=0

xī,p̄,c̄,τ ≥ 0 ∀ ((i, p, c), (ī, p̄, c̄)) ∈ A; t ∈ H (3.5b)

∑
(i,p,c)∈V

t

∑
τ=t−di,c+1

ri,c,k · xi,p,c,τ ≤ Rk ∀ t ∈ H; k ∈ R (3.5c)

∑
t∈H

xi,c,p,t = 1 ∀ (i, p, c) ∈ V (3.5d)

xi,p,c,t = 0 ∀ (i, p, c) ∈ V ; t ∈ H \ [ESipc, LSipc]

(3.5e)

xi,p,c,t ∈ {0, 1} ∀ (i, p, c) ∈ V ; t ∈ [ESipc, LSipc] (3.5f)

The disaggregated generalised precedence constraints (3.5b) enforce the log-
ical relation: Si′,p′,c′ ≤ t =⇒ Si,p,c ≤ t− δ(i,p,c),(i′,p′,c′). Constraints (3.5c) enforce
the resource constraints, (3.5d) ensure that each activity starts in the time horizon,
(3.5e) ensure that the activities do not start before their earliest starting time but
not later than their latest starting time. Finally constraints (3.5f) define the binary
pulse decision variables.

The symmetry contained in DDT can be removed by considering the addi-
tional sets of precedence constraints A ∪ Asym

1 ∪ Asym
2 in constraints (3.5b). We will

refer to the DDT model with additional symmetry breaking constraints as DDT-
Sym. Alternatively the symmetry in the model can be broken by remodelling the
problem, as discussed next.

3.4.2 Reduced formulation based on integer pulse start variables

We now propose a reduced version of the pulse start model based on integer vari-
ables yi,c,t for all i ∈ Vc and t ∈ H for projects of class c ∈ C, such that yi,c,t is an
integer variables that indicates the number of activities i ∈ Vc from any project
p ∈ Pc for class c ∈ C that start at time t.

This model takes advantage of the symmetry between projects from the same

76

CHAPTER 3. SYMMETRY BREAKING IN THE HIGH-MULTIPLICITY
RCPSP/MAX

class by no longer keeping track of exactly which specific project of the same class
an activity comes from. For any feasible solution a specific assignment of activ-
ities to projects and be created by assigning activities with earlier start times to
projects with lower indices. The decision variables are integer, as opposed to bi-
nary, as it may be possible that two or more activities of the same index from
projects of the same class start at the same time in a feasible schedule. To re-
strict the upper bound of these integer variables, we introduce the parameter
µi,c := min(mc, mink∈Rb Rk

ri,c,k
c), which represents the maximum number of mul-

tiples of activity i ∈ Vc available from class c ∈ C that can occur simultane-
ously without violating any resource constraints. Furthermore as precedences are
now only defined between activities from the same project, and not also used
for symmetry breaking constraints, we defined the short-hand time lag notation
δi,i′,c := δ(i,p,c),(i′,p′,c′) for all (i, i′) ∈ Ac for project class c ∈ C.

Hence the reduced model based on integer pulse variables, denoted RDDT, is:

min ∑
t∈H

t · yω,t (3.6a)

s.t.
t−δi,i′ ,c

∑
τ=0

yi,c,τ −
t

∑
τ=0

yi′,c,τ ≥ 0 ∀ (i, i′, c) ∈ Ac; c ∈ C; t ∈ H (3.6b)

∑
c∈C

∑
i∈Vc

t

∑
τ=t−di,c+1

ri,c,k · yi,c,τ ≤ Rk ∀ t ∈ H; k ∈ R (3.6c)

∑
t∈H

yi,c,t = mc ∀ i ∈ Vc; c ∈ C (3.6d)

t

∑
τ=0

ync+1,c,τ −mc

t

∑
τ=0

yω,τ ≥ 0 ∀ c ∈ C; t ∈ H (3.6e)

yi,c,t−di,c ≤ µi,c

T

∑
τ=t

yω,τ ∀ i ∈ Xc; c ∈ C; t ∈ H (3.6f)

yi,c,t ∈ [0, ..., min(µi,c, Ti,c,t)] ∀ i ∈ Vc; c ∈ C; t ∈ H (3.6g)

The objective (3.6a) is to minimise the starting time of the dummy end activity.
Constraints (3.6b) represent the disaggregated generalised precedence constraints
and work by ensuring that the number of activities i that have started by t− δi,i′,c

must be at least equal to the number of activities i′ that have started by time t. Con-
straints (3.6c) are the resource constraints. Constraints (3.6d) state that the number
of times the activities occurs is equal to the multiplicity of the class that the activity
belongs to. Constraints (3.6e) are disaggregated precedence constraints between

77

3.4. MIXED-INTEGER PROGRAMMING

the project dummy end nodes and the master dummy end nodes. Constraints (3.6f)
are aggregated precedence constraints for all activities that may finish last in a class,
Xc := {i ∈ Vc | (i, ω) ∈ Ac ∧ µi,c < mc}. Finally (3.6g) are the integer pulse start
variables, where Ti,c,t = |{p ∈ Pc | t ∈ [ESi,p,c, LSi,p,c]}|

If all the individual projects are modelled as single instances of a distinct
project class, then RDDT and DDT are equivalent. This can be seen as constraints
(3.6e) become disaggregated precedence constraints with a time lag of zero and no
constraints of type (3.6f) are added when a single multiple is considered. Further-
more the definition of (3.6g) enforces that activities start between their earliest and
latest start times. Given this relationship we say DDT is the expanded version of
RDDT and RDDT is the reduced version of DDT.

3.4.3 Reduced formulation based on integer step & on-off vari-
ables

In this section we introduce an alternative MIP model that uses both step vari-
ables and on/off style start variables as opposed to pulse start variables. Here we
present only the reduced version of the model, which utilises integer variables and
is denoted ROOSDDT. Similar to the relationship between RDDT and DDT, it is
possible to obtain an equivalent expanded version of the model if all the individual
projects are modelled as single instances of a distinct project class. The expanded
version of ROOSDDT is denoted OOSDDT. Furthermore it is possible to break the
symmetry in OOSDDT by considering additional symmetry breaking constraints
Asym

1 and consequently Asym
2 . We denote this model OOSDDT-Sym.

Step variables were first introduced as an alternative to pulse start variables
for the RCPSP (Pritsker et al., 1969). Compared with pulse-start variables, step-
start variables greatly reduce the density, i.e., the number of non-zero terms in
the constraint matrix, of the resulting MIP model. As discussed by Sankaran et al.
(1999), step variables had the additional benefit for the classical RCPSP in that when
the resource constraints are relaxed the constraint matrix is totally unimodular.

We define our step variables as follows. Let zi,c,t equal the number of activities
of index i ∈ Vc from projects p ∈ Pc of class c ∈ C that have started by time t ∈ H.
Hence zi,c,t = ∑t

τ=0 yi,c,τ.

A practical downside of using step-variables in isolation is that in our experi-
ence commercial MIP packages are currently not able to automatically generate as
many cuts during solve as they can with pulse starts and on-off starts. To overcome

78

CHAPTER 3. SYMMETRY BREAKING IN THE HIGH-MULTIPLICITY
RCPSP/MAX

this we augment our step-variable models with addition on/off variables. On/off
variables were first motivated by the RCPSP where preemption was allowed (Ka-
plan, 1998). However on/off variables have recently been shown to perform well
in practice in conjunction with other variable types for the RCPSP by Kopanos et al.
(2014). To reduce the number of these additional variables that are required, we
first define two additional sets of activities.

First let Ψ be the set of all the different resource requirements of the nodes,
i.e., Ψ =

⋃
i∈Vc

⋃
c∈C({ri,c,k|k ∈ R}). Each set of resource requirements ψ ∈ Ψ

defines the amount of resources that at least one activity requires, rψ,k for all k ∈
R. Hence only one on-off variable is introduced for all activities with the same
resource requirements. Furthermore for each ψ ∈ Ψ we define a set of activities
Vψ := {(i, p, c) ∈ V|∧k∈R ri,c,k ≡ rψ,k}. It can be seen that in the worst case, each
activity has a unique resource requirement across the set of renewable resources
and hence |Ψ| = |V|.

We define our on-off variables as follows. Let ξψ,t equal the number of activities
with resource requirement ψ ∈ Ψ that are being processed at time t ∈ H. Hence
ξψ,t = ∑(i,p,c)∈Vψ

(zi,c,t − zi,c,t−di,c) for all ψ ∈ Ψ. Now the reduced model based on
integer step and on/off variables, denoted by ROOSDDT, is given by,

min ∑
t∈H

t (zω,t − zω,t−1) (3.7a)

s.t. zi,c,t−δi,i′ ,c
− zi′,c,t ≥ 0 ∀ (i, i′) ∈ Ac; c ∈ C; t ∈ H (3.7b)

ξψ,t = ∑
(i,p,c)∈Vψ

(zi,c,t − zi,c,t−di,c) ∀ ψ ∈ Ψ; t ∈ H (3.7c)

∑
ψ∈Ψ

rψ,k · ξψ,t ≤ Rk ∀ t ∈ H; k ∈ R (3.7d)

znc+1,c,t −mc · zω,t ≥ 0 ∀ c ∈ C; t ∈ H (3.7e)

zi,c,t+1 − zi,c,t ≤ µi,c · (1− zω,t+di,c) ∀ i ∈ Xc, c ∈ C, t ∈ H (3.7f)

zi,c,t ≥ zi,c,t−1 ∀ i ∈ Vc; c ∈ C; t ∈ H (3.7g)

zi,c,t ∈ [Tmin
i,c,t , ..., Tmax

i,c,t] ∀i ∈ Vc; c ∈ C; t ∈ H (3.7h)

ξψ,t ∈ [0, ..., µψ] ∀ψ ∈ Ψ; t ∈ H (3.7i)

Note that in the way that we have presented constraints (3.7a-3.7c, 3.7f-3.7g)
it is possible that t can be defined outside of the time-horizon. We assume zi,c,t = 0
if t /∈ H where required. The objective (3.7a) is to minimise the starting time of the
dummy end activity. Constraints (3.7b) represent the disaggregated generalised

79

3.4. MIXED-INTEGER PROGRAMMING

precedence constraints. Constraints (3.7c) are the consistency constraints between
the two variables types. Constraints (3.7d) are the resource constraints based on
the on/off variables. Constraints (3.7e) ensure the dummy end starts after all the
projects are completed similar to (3.6e). Constraints (3.7f) are aggregated prece-
dence constraints similar to (3.6f). Constraints (3.7g) are consistency constraints
for the step variables. Constraints (3.7h) define the integer step variables between
the bounds Tmin

i,c,t := |{p ∈ Pc|LSi,p,c ≤ t}| and Tmax
i,c,t := |{p ∈ Pc|ESi,p,c ≥ t}|. The

definition of Tmin
i,c,t ensures that all the activities are completed by the end of the

time horizon. Finally constraints (3.7i) define the on-off integer variables.

3.4.4 Synthesis of polyhedral analysis

An important method of comparing different MIP models is based on the strength
of their respective linear programming relaxations. Artigues (2017) clarifies the
current knowledge about the strengths of the different formulations to time-index
RCPSP models. While acknowledging that practical performances of integer pro-
gramming is not necessarily related to the strength of the LP relaxation, Artigues
(2017) argues that “new" formulations that are equivalent to existing formulations
via non-singular transformations should be distinguished from formulations with
stronger linear relaxations. Therefore in this section we compare the different MIP
formulations presented in this chapter with respect to the DDT, which is well
known in the literature.

We recall the following definitions as given by Artigues (2017) for any pair
of integer linear programming formulations F1 and F2 and their respective linear
relaxations P(F1) and P(F2):

• F1 ≡LP F2 if there exists an affine non-singular (i.e. bijective) transformation
that allows one to obtain one formulation from the other.

• F1 �LP F2 if there exists an affine transformation of F2 on the solution space
P(F1) that gives formulation F′2 and solution space P(F′2) such that P(F′2) ⊆
P(F1).

• F1 ≺LP F2 if F1 �LP F2 and if, in addition, we can find a point x ∈ P(F1) such
that x /∈ P(F′2) which yields P(F′2) ⊂ P(F1).

Hence, if F1 ≡LP F2, then F1 and F2 have the same relaxation strength and thus
provide the same LP relaxation (lower) bound of the integer program. Furthermore
if F1 ≺LP F2, then there exists an objective coefficient vector such that the LP lower
bound (for minimisation) of F1 is strictly lower than the lower bound of F2.

80

CHAPTER 3. SYMMETRY BREAKING IN THE HIGH-MULTIPLICITY
RCPSP/MAX

The following proposition summarises the relative strengths of the linear re-
laxation of the various models considered in this chapter. Here we simply state the
proposition. For brevity the proofs are omitted from the chapter but can be found
in Appendix A.2.

Proposition 3.4.1. For the total-makespan objective

RDDT ≡LPROOSDDT ≺LP

DDT ≡LP OOSDDT ≺LP

DDT-Sym ≡LP OOSDDT-Sym

From Proposition 3.4.1 we know that in general the linear-programming re-
laxation of the models based on integer variables are not as strong as that of the
binary variables. Furthermore the symmetry breaking constraints strengthen the
linear relaxations. Finally the models based on the step and on-off variables are
equivalent up to non-singular transformation of the corresponding version of the
model.

3.5 Constraint Programming

Constraint programming offers an alternative methods of modelling optimization
problems. For completeness we include the CP models used by the CP solvers
in the computational study. These models are already known in the literature,
however the models allow us to explain explicitly how the symmetry breaking
constraints are added.

3.5.1 Integer Based Variables

The starting time of each activity (i, p, c) ∈ V is assigned a decision variable Si,p,c,
which must be mapped to an integer from the initial domain Xinit

i,p,c := [ESi,p,c, LSi,p,c].
A typical CP model for the RCPSP/max is then,

min Sω

s.t. Si,p,c + δ(i,p,c),(i′,p′,c′) ≤ Si′,p′,c′ ∀ ((i, p, c), (i′, p′, c′)) ∈ A (3.8a)

cumulative(s, d, [ri,c,k(i, p, c) ∈ V], Rk) ∀ k ∈ R (3.8b)

Si,p,c ∈ integer(Xinit
i,p,c) ∀ (i, p, c) ∈ V (3.8c)

81

3.5. CONSTRAINT PROGRAMMING

Constraints (3.8a) are simple difference constraints that enforce the generalised
precedence constraints. Each resource is represented by a cumulative constraint
(3.8b) with a constant capacity over the considered project duration. Constraints
(3.8c) ensure that the decision variables take a value from their domain. As dis-
cussed in Chapter 2 of this thesis, there are many propagation algorithms for the
cumulative constraint, but the most widely used for project scheduling problems
is based on timetable propagation (Pape, 1994), which is used here.

Additional constraints can be added to the model to improve the strength
of propagation. We say that two activities, (i, c) and (i′, c′), are in disjunction if
they cannot be executed in parallel, i.e., ri,c,k + ri′,c′,k > Rk for some k ∈ R. Let
D be the set of all pairs of disjunctive activities. In some circumstances, it is pos-
sible to infer the ordering of a pair of disjunctive activities. More explicitly, we
define the subset of disjunctive activities for which an ordering can be inferred as
D := {((i, p, c), (i′, p′, c)) ∈ D| LSi,p,c < ESi′,p′,c′ + di′,c′}. Here we are effectively
implementing the disjunctive constraint, discussed in Chapter 2, by the two half-
reified constraints (Feydy et al., 2011) sharing some boolean variable B(i,p,c),(i′,p′,c′).
The additional constraints are as follows:

Si,p,c + di,c ≤ Si′,p′,c′ ∀ ((i, p, c), (i′, p′, c′)) ∈ D (3.9a)

B(i,p,c),(i′,p′,c′) → Si,p,c + di,c ≤ Si′,p′,c′ ∀ ((i, p, c), (i′, p′, c′)) ∈ D \ D (3.9b)

¬B(i,p,c),(i′,p′,c′) → Si′,p′,c′ + di′,c′ ≤ Si,p,c ∀ ((i, p, c), (i′, p′, c′)) ∈ D \ D (3.9c)

B(i,p,c),(i′,p′,c′) ∈ boolean ∀ ((i, p, c), (i′, p′, c′)) ∈ D \ D (3.9d)

Constraints (3.9a) add precedence constraints between the ordered, disjunc-
tive activities. Constraints (3.9b) and (3.9c) enforce that for each pair of disjunctive
activities, one more end before the other starts. Finally (3.9d) define the additional
boolean variables. It is possible to remove the symmetry from this model by con-
sidering the additional arc set A ∪ Asym

1 in constraints (3.8a).

3.5.2 Interval Based Variables

For completeness, we include the scheduling-specific model possible in CP Opti-
mizer, which makes use of interval variables. The model is based on a single type
of interval variable, αi,p,c, representing the activity of index i ∈ Vc of project p ∈ Pc

of class c ∈ C. The duration of the interval variables are fixed to the duration of
the activities. Each renewable resource k ∈ R is represented by a single cumulative
function, fk.

82

CHAPTER 3. SYMMETRY BREAKING IN THE HIGH-MULTIPLICITY
RCPSP/MAX

The model, denoted by CpOpt, is given by,

min max
(i,p,c)∈V

(endOf(αi,p,c)) (3.10a)

s.t. startBeforeStart(αi,p,c, αi′,p′,c′ , δ(i,p,c),(i′,p′,c′)) ∀ ((i, p, c), (i′, p′, c′)) ∈ A (3.10b)

fk = ∑
(i,p,c)∈V

pulse(αi,p,c, ri,c,k) ≤ Rk ∀ k ∈ R (3.10c)

αi,p,c ∈ interval(comp, di,c) ∀ (i, p, c) ∈ V (3.10d)

fk ∈ cumul ∀k ∈ R (3.10e)

The objective (3.10a) is to minimise the maximum end time of each interval
variable. Constraints (3.10b) represent the generalised precedence constraints. Con-
straints (3.10c) represent the resource constraints by implicitly building a cumula-
tive expression. The pulse function, pulse(α, r) enforces the cumulative resource
expression by stating the function is increased by r units at the start of interval
α and decreased by r at the end of interval α. The interval variables and cumula-
tive functions are defined in (3.10d) and (3.10e), respectively. The symmetry that
exists in CpOpt can be removed by considering the additional set of precedence
constraints A ∪ Asym

1 in constraints (3.10b). We will refer to the CpOpt model with
additional symmetry breaking constraints as CpOpt-Sym.

3.6 Computational study

The computational study consists of two parts. Firstly, we seek to understand the
effects of the different approaches of symmetry breaking on the presented MIP
models as well as some state-of-the-art CP-based methods on the CP models. As
the high-multiplicity RCPSP/max has not been considered in the literature, there
does not exist any publicly available datasets. To construct a data set, we take multi-
ples of instances from the well-known Project Scheduling Problem Library (PSPLIB)
(Kolisch and Sprecher, 1997). Secondly, to compare the best performing approaches,
we consider relevant instances from the Multi-Project Scheduling Library (MP-
SPlib) (Homberger, 2007). These instances do not consider generalised precedence
constraints and are thus a special case of the high-multiplicity RCPSP/max.

Both experiments were run on the MonARCH HPC Cluster. The processors
are Intel Xeon E5-2667 v3 3.2GHz, 20M Cache, 9.60GT/s QPI, Turbo, HT, 8C/16T
(135W). The memory and number of CPUs requested differ for the two experiments

83

3.6. COMPUTATIONAL STUDY

and will be discussed in the relevant sections. Gurobi 7.5 was used for all MIP
models. Dual simplex and barrier methods were run concurrently to solve the
root node of the MIP models. Two different commercial CP-solvers were used:
Opturion’s Discrete Optimiser 1.0.2 (Cpx) and IBM CPLEX 12.8.0 CP Optimizer.
The other CP solver used is Chuffed. Both Chuffed and Cpx solvers were executed
on the Integer Based CP model, outlined in Section 3.5.1, implemented on Minizinc-
2.1.7 (Nethercote et al., 2007). CP Optimizer used the Interval Based CP Model,
outlined in Section 3.5.2.

3.6.1 Multiples of PSPLIB

Solution methods

Table 3.1 summarises the different solution methods being tested in this section. In
total there are twelve different approaches being tested that can be divided into five
distinct families. The first two families are distinguished based on the type of deci-
sion variables considered in the corresponding MIP models, pulse start variables
and step & on-off variables respectively. For each of two families, the expanded
version is tested without symmetry breaking constraints, the expanded version is
tested with symmetry breaking constraints, and finally the reduced version of the
model is tested. The MIP models include addition tightening constraints that are
detailed in Appendex A.1.

Table 3.1: A summary of the different methods being tested. Symmetry conditions (Sym): (0) there
exists symmetry in the model, (1) symmetry is removed through additional precedence constraints,
(2) symmetry is removed through remodelling

Family Acronym Sym Section Formulation Solver

Pulse MIPs

DDT 0 3.4.1 MIP (Pulse) Gurobi
DDT-Sym 1 3.4.1 MIP (Pulse) Gurobi
RDDT 2 3.4.2 MIP (Reduced Pulse) Gurobi

Step MIPs

OOSDDT 0 3.4.3 MIP (Step) Gurobi
OOSDDT-Sym 1 3.4.3 MIP (Step) Gurobi
ROOSDDT 2 3.4.3 MIP (Reduced Step) Gurobi

Chuffed
{

Chuffed 0 3.5.1 CP (Integer) Chuffed
Chuffed-Sym 1 3.5.1 CP (Integer) Chuffed

Cpx
{

Cpx 0 3.5.1 CP (Integer) Opturion Cpx
Cpx-Sym 1 3.5.1 CP (Integer) Opturion Cpx

CpOpt
{

CpOpt 0 3.5.2 CP (Interval) CP Optimizer
CpOpt-Sym 1 3.5.2 CP (Interval) CP Optimizer

84

CHAPTER 3. SYMMETRY BREAKING IN THE HIGH-MULTIPLICITY
RCPSP/MAX

The remaining three families of approaches are distinguished based on the CP
solver used; Chuffed, Cpx, and CP Optimizer. For each there are two approaches: 0
or 1 (-Sym suffix) for solving without or respectively with the symmetry breaking
constraints. The authors of Schutt et al. (2013c) mentioned that it was impossible
to test symmetry breaking methods in their approach but recommended Chuffed.

To stay as consistent with the literature as possible for Chuffed we adopted
the search strategy that obtained the best results in Kreter et al. (2017). It alternates
between two different search strategies. The first is a first fail approach, which
selects the variable with the smallest domain size and assigns the minimal value
in the domain to it. The second search strategy is an activity-based search, which
is a variant of the Variable-State-Independent-Decaying-Sum (VSIDS) approach
developed for SAT solvers (Moskewicz et al., 2001). The search is combined with
Luby restarts (Luby et al., 1993) and a restart base of 100 conflicts. Hence the search
strategy alternates between the two approaches after each restart using the same
restart policy and base as for activity-based search.

Opturion’s Cpx is similar to Chuffed in the sense that it uses lazy clause gener-
ation techniques to learn from failure during search as well as using Luby restarts.
For optimization problems, the default search is preceded by a probing phase in
which random probes of the search tree are used to initialise the variable activity
counts.

Experimental setup

Given the lack of publicly available data sets of the high-multiplicity RCPSP/max,
we artificially construct instances with symmetry by taking multiples of the 73
feasible instances of the UBO10 data set from PSPLIB. Each instance in this data
set considers 10 activities and 5 resources. We treat each instance of the UBO10
problem as a project class. All 12 of the scheduling methods are compared on in-
stances containing a single project class and multiplicities taken from the range
{2, 3, 5, 8, 10}. Hence each approach is tested on a total of 365 instances. Admit-
tedly, it would be realistic to have multiple classes per instance. Such situations are
considered in the subsequent computational study. To align with the specifications
used in recent papers that consider the RCPSP/max instances in PSPLIB (Schutt
et al., 2013c; Vilim et al., 2015) each approach is given 10 minutes wall time on a
single CPU. Finally 4GB RAM is requested.

As each of the 73 feasible instances of the UBO10 test set have already been
proven optimal, these optimal values are used to construct valid upper bounds.

85

3.6. COMPUTATIONAL STUDY

A feasible canonical schedule is obtained by sequentially scheduling the correct
number of multiples of these optimal solutions one after the other. The makespan of
the canonical schedule is used as the upper bound for all the models. Furthermore
the MIP models are seeded with the canonical schedule to ensure they at least
obtain a feasible solution.

Results / discussion

Table 3.2 summarises the number of instances across the varying multiplicities for
which the different methods in the different symmetry conditions could (1) prove
optimality and (2) find solutions that are known to be optimal.1 The symmetry
breaking techniques allow each of the approaches to both solve more instances to
optimality and find more instances that are known to be optimal.

The results suggest it is more effective to break the symmetry by reformulat-
ing the models to their reduced versions rather than adding additional precedence
constraints to the expanded versions of the models. This is despite the stronger
formulation of the expanded model and the expanded model with additional sym-
metry breaking constraints. Remodelling allows fewer variables to be considered,
albeit integer instead of binary, rather than simply adding more constraints to rep-
resent the additional precedences. However the integer variable models are still
restricted by the increasing time-horizon resulting from the increased project multi-
plicities and hence for multiplicities of 5, 8 and 10 find and prove very few optimal
solutions. This is further highlighted by noticing that for three of the instances the
canonical solution is in fact the optimal solution.

The CP-based methods all benefit greatly from the symmetry breaking con-
straints. Cpx-Sym appears to be the best in proving optimality, managing to prove
210 instances optimal and 10 instances with a multiplicity of 10. Chuffed-Sym man-
ages to prove 188 instances optimal, whereas CpOpt-Sym proves 173 optimal. On
the other hand, CpOpt manages to find more optimal solutions (218), compared
with 204 by Chuffed and 217 by Cpx.

Figures 3.4a and 3.4b summarise the total number of instances for which the
methods prove optimality and find optimal solutions respectively. Both figures
highlight the benefits of symmetry breaking in increasing the number of instances
proven optimal and for finding the known optimal solutions. In particular, for the
MIP models it was consistently seen that the reduced models were more effective

1The full data and results can be found as the following link:
https://doi.org/10.26180/5bfb37e6250ab

86

CHAPTER 3. SYMMETRY BREAKING IN THE HIGH-MULTIPLICITY
RCPSP/MAX

Table 3.2: Summary of the number of instances proven optimal / found.

Model Nb. Optimal Solutions Proven / Found

2 3 5 8 10 Total

DDT 68 / 70 10 / 19 0 / 0 0 / 0 0 / 0 78 / 89
DDT-Sym 73 / 73 32 / 36 2 / 2 0 / 0 0 / 0 107 / 111
RDDT 72 / 72 33 / 38 6 / 7 1 / 1 0 / 1 113 / 119

OOSDDT 71 / 62 12 / 34 0 / 1 0 / 1 0 / 0 89 / 108
OOSDDT-Sym 72 / 73 53 / 59 4 / 5 0 / 0 0 / 0 129 / 137
ROOSDDT 73 / 73 57 / 64 9 / 12 1 / 1 0 / 0 140 / 150

Chuffed 73 / 73 46 / 70 2 / 18 0 / 4 0 / 2 121 / 167
Chuffed-Sym 73 / 73 67 / 72 33 / 39 10 / 12 5 / 7 188 / 204

Cpx 73 / 73 48 / 72 3 / 29 0 / 7 0 / 3 124 / 184
Cpx-Sym 73 / 73 71 / 72 42 / 46 14 / 15 10 / 11 210 / 217

CpOpt 72 / 73 52 / 72 2 / 41 0 / 14 0 / 7 126 / 207
CpOpt-Sym 73 / 73 67 / 72 28 / 46 3 / 16 2 / 11 173 / 218

than adding additional symmetry breaking constraints to the expanded models.

(a) Solutions proven to optimality (b) Optimal solutions found

Figure 3.4: A summary of the total number of instances out of the 365 tested for which the solvers
managed to (a) prove optimality and (b) find the known optimal solution. Symmetry conditions:
(0) no symmetry breaking, (1) symmetry breaking through additional precedences, (2) symmetry
breaking through reformulation.

Understanding how each of the methods manages to improve both the upper
and lower bounds provides useful insight. Firstly, let us define the notion of lower
bound improvement and upper bound improvement. For a given instance let LBR be the
resource-based lower bound (described in A.1), UBC be the upper bound obtained
by the canonical solution, LBX and UBX be the lower bound and upper bound
obtained by the solving approach under consideration for that instance respectively,
and finally LBB and UBB be the best known lower bound and upper bound for that

87

3.6. COMPUTATIONAL STUDY

Table 3.3: The mean lower bound and upper bound improvements for project instances at different
multiplicities

Model Lower Bound Improvement (%) Upper Bound Improvement (%)

2 3 5 8 10 2 3 5 8 10

DDT 98.6 64.7 1.1 0.0 0.0 98.7 48.4 8.1 4.1 4.1
DDT-Sym 100.0 83.7 8.6 0.7 0.6 100.0 71.9 8.2 4.1 4.1
RDDT 99.8 88.3 64.0 24.8 11.4 99.8 81.6 35.0 6.9 5.5

OOSDDT 99.9 70.5 5.1 0.0 0.0 99.6 67.2 16.1 4.8 4.1
OOSDDT-Sym 100.0 91.3 25.8 0.1 0.0 100.0 89.7 22.6 4.9 4.1
ROOSDDT 100.0 95.7 71.5 32.0 12.5 100.0 95.8 41.2 9.1 5.2

Chuffed 100.0 63.0 2.7 0.0 0.0 100.0 99.1 84.1 49.3 32.4
Chuffed-Sym 100.0 91.8 45.2 13.7 6.8 100.0 99.5 88.4 62.7 52.9

Cpx 100.0 65.8 4.1 0.0 0.0 100.0 99.5 84.1 49.3 32.4
Cpx-Sym 100.0 97.3 57.5 19.2 13.7 100.0 99.5 91.1 67.8 58.9

CpOpt 98.7 71.4 5.0 0.8 0.7 100.0 99.5 91.4 71.4 64.7
CpOpt-Sym 100.0 93.6 45.1 11.5 9.3 100.0 99.5 91.3 71.4 64.5

instance respectively. Hence the lower bound improvement of a given method on
a specific instance is expressed as LBimprove := max(LBX ,LBR)−LBR

UBB−LBR
∗ 100. Likewise

the upper bound improvement of a given instance is expressed as UBimprove =
UBC−UBX
UBC−LBB

∗ 100. If for some instance UBC = LBB then we set UBimprove = 100.

Chuffed and Cpx prove optimality by showing that there does not exist any
feasible solution when the time horizon is set to UBB − 1. Hence for both of these
solvers we set LBX = UBB if UBX = LBX otherwise LBX = LBR. Alternatively it is
possible to implement a destructive lower bound, however this is outside the scope
of this thesis. Table 3.3 summarises both the average lower bound improvement
and upper bound improvement for all instances by multiplicity for each solving
method and relevant symmetry condition.

For both DDT and OOSDDT, the reduced formulations significantly improve
the lower bound. In fact the ROOSDDT is an efficient method at improving the
lower bounds for larger problems. For a multiplicity of 8, the corresponding lower
bound improvement of ROOSDDT of 32.0% is significantly better than the other
methods. However it is apparent for increasing multiplicities the MIP models be-
come highly inefficient at improving the upper bound. This is true for even the
reduced models.

The symmetry breaking constraints considerably help all the CP-based ap-

88

CHAPTER 3. SYMMETRY BREAKING IN THE HIGH-MULTIPLICITY
RCPSP/MAX

proaches improve their lower bounds, particularly for problems with fewer projects.
Intuitively this makes sense as the additional constraints reduce the size of the
search tree. For Cpx and Chuffed this is a direct consequence of being able to solve
more models to optimality. For CpOpt, the symmetry breaking constraints seem
to assist the failure directed search in improving the lower bound. It is likely that
the lower bounds obtained by Chuffed and Cpx could be significantly improved
if, like CpOpt, they switched to trying to improve the lower bound once a good
quality feasible solution is found.

Interestingly, in general the symmetry breaking constraints did not seem to
help CpOpt find better feasible solutions. For multiplicities 5 and 10, CpOpt on
average found marginally better feasible solutions without the symmetry breaking
constraints than with them. This appears to contradict the results found for the
more practical problems reported in Edwards et al. (2017) and Kovács and Váncza
(2006, 2010). In the CP literature more generally however, it is a well-known phe-
nomena that symmetry breaking does not always improve performance as the
ordering can conflict with the search strategy (Kiziltan, 2004). To understand when
the symmetry breaking constraints would expect to improve performance, further
experiments would be required.

CpOpt was the best method for improving the upper bounds. This is unsur-
prising as the default search in CpOpt has been specifically built to find good
feasible solutions quickly for related scheduling problems. ROOSDDT was on av-
erage marginally the best method at improving the lower bounds. We will now
further investigate these approaches on a known dataset in the literature.

3.6.2 Instances from MPSPlib

Experimental setup

The MPSPlib is a multi-project scheduling problem library for the BMPSP. The
library consists of 140 instances, comprising of multi-project instances with 2, 5, 10,
or 20 single-project instances. Each multi-project instance is made up of one or more
RCPSP instances from PSPLIB of the same size. The number of global and local
resources vary between instances as well as the arrival dates of the single projects
and capacities of the resources. From the 140 instances, there exist 22 instances that
contain project multiplicities but do not contain local resources. For all 22 of these
instances each individual project consists of 90 activities and four global resources
are available. Hence the number of activities vary from 180 to 1800 activities per

89

3.6. COMPUTATIONAL STUDY

instance.

In some instances of the MPSPlib, individual projects have different arrival
times. With respect to our notation let ap,c denote the arrival time of project p ∈ Pc

from class c ∈ C. All the models in this chapter can easily incorporate arrival
times simply by modifying the project network used to determine the earliest and
latest start times. More explicitly, the arc from the master dummy start node to
the individual project start nodes is given the weight value of ap,c. Moreover if we
ensure that projects of the same class are defined in non-decreasing order of arrival
times, the symmetry breaking methods hold.

The instances in MPSPLib are evaluated with respect to two different objec-
tive functions. The first is the Total Makespan (TMS), which is equivalent to the
makespan as we have defined it in this chapter. The other objective is the Aver-
age Project Delay (APD), which is the average duration by which projects exceeds
their Critical Path Duration (CPD). The CPD of a project is the makespan when an
infinite amount of resources is available. Thus the APD is

APD =
1
n ∑

c∈C
∑

p∈Pc

(
Sω,p,c − ap,c − CPDc

)
(3.11)

In this section we consider both objectives explicitly. We run CpOpt both with
and without the symmetry breaking constraints. We then use the ROOSDDT to see
if the lower bound can be improved above the given resource-based lower bound
and the bound given by CpOpt. CpOpt is run for 10 minutes per instances, but
now with 4 threads and 2GB RAM. The ROOSDDT is given one hour, 8 threads
and 8GB RAM. For the makespan objective the ROOSDDT is given the best known
solution as the upper bound on the time-horizon. For APD objective determining
an acceptable time-horizon is slightly more challenging as a schedule with the
shortest TMS does not necessarily have the lowest APD. We use the objective
function of the canonical schedule as the upper bound, which particularly for the
larger instances can be seen as a conservative time-horizon.

No upper bound is given to CpOpt as the in-built heuristics are effective at
finding good feasible solutions without having one provided.

Results / discussion

The results for the TMS objective are summarised in Table 3.4. Here BKS stands for
the existing best known solution, CP is the solution obtained by CpOpt without
symmetry breaking constraints, CP-Sym is the solution obtained by CpOpt with

90

CHAPTER 3. SYMMETRY BREAKING IN THE HIGH-MULTIPLICITY
RCPSP/MAX

Table 3.4: Summary of performance on relative instances from MPSPlib. A (*) is used to indicate
optimal solutions, and a (†) indicates instances where the MIP could not solve the linear relaxation
within the computational limits. OOM denotes out-of-memory.

ID Instance Upper Bound Lower Bound

BKS CP CP-Sym LBR LBCP LBMIP

62 mp_j90_a10_nr5_AC10 172 171 170 166 168 169
66 mp_j90_a10_nr5_AC5 361 356 355 344 347 347
72 mp_j90_a20_nr5_AC10 483 479 478 469 471 472
80 mp_j90_a20_nr5_AC9 426 428 414 392 392 392
96 mp_j90_a5_nr5_AC5 256 250 248 241 244 245
71 mp_j90_a20_nr5_AC1 446 436 436 423 138 OOM†

76 mp_j90_a20_nr5_AC5 123 119 119 107 118 118
77 mp_j90_a20_nr5_AC6 236 229 229 227 96 227
78 mp_j90_a20_nr5_AC7 270 266 266 265 94 264†

79 mp_j90_a20_nr5_AC8 157 145* 145* 145 145 145
74 mp_j90_a20_nr5_AC3 159 144* 144* 128 144 144
82 mp_j90_a2_nr5_AC10 105 101 101 97 99 100
92 mp_j90_a5_nr5_AC10 254 246 246 241 243 243
90 mp_j90_a2_nr5_AC9 329 332 329 275 275 275
86 mp_j90_a2_nr5_AC5 72* 72* 72* 72 72 72
73 mp_j90_a20_nr5_AC2 127* 127* 127* 127 127 127
75 mp_j90_a20_nr5_AC4 363 354 355 323 328 330
65 mp_j90_a10_nr5_AC4 667 669 671 610 613 610†

70 mp_j90_a10_nr5_AC9 233 234 235 212 213 215
95 mp_j90_a5_nr5_AC4 816 835 824 686 686 687
100 mp_j90_a5_nr5_AC9 808 842 820 686 686 686
85 mp_j90_a2_nr5_AC4 329 329 330 275 275 276

symmetry breaking constraints, LBR is the resource based lower bound, LBCP is
the lower bound obtained by CpOpt, and finally LBMIP is the bound obtained
by the ROOSDDT. The lower bounds of CpOpt with and without the symmetry
breaking constraints were equivalent and hence only one column is shown, LBCP.
Furthermore the ROOSDDT does not improve the solution from the upper bound
for any of the instances and hence only the lower bound is given in the graph.

Out of the 22 instances, 14 new best solutions were obtained and a solution
with the same objective as the best known solution was obtained for a further 5
instances. Hence there were 4 instances for which neither CP or CP-Sym could find
the best known solution or better. Out of the 14 new best solutions, 5 were obtained
by just CP-Sym, 1 was obtained from just CP, and 8 were obtained by both CP and
CP-Sym. Instances 74 and 79 were closed by both CP and CP-Sym.

91

3.6. COMPUTATIONAL STUDY

The ROOSDDT was able to improve the lower bounds obtained by CpOpt
and the resource lower bounds in 8, and obtain the equal best lower bound in a
further 19 out of the relevant 22 instances. In the three instances where ROOSDDT
does not at least equal the other two lower bounds (71, 78, 65) the solver was not
able to solve the root relaxation within the specified time-limit or before running
out of memory, i.e., exceeding 8GB RAM.

The lower bounds obtained by CP Optimizer on these instances is typically
bounded below by LBR and bounded above by LBCP. CP Optimizer determines
lower bounds as follows. An an initial lower bound is obtained by the minimum
value of the objective variables given by propagation at the root note, which for
the RCPSP/max is largely based on propagating the precedence constraints. Once
the engine has found a number of solutions it then tries to compute a second lower
bound by performing a dichotomy on the objective values with strong propagation
algorithms. Finally during search the lower bound can be improved by Failure Di-
rected Search (Vilim et al., 2015) through learning no-goods. The poor performance
of LBCP on instances 71, 77 and 78 is a result of CP Optimizer not being able to
improve the initial lower bound by using the strong propagation algorithms within
the time-limit.

The results for the APD objective are summarised in Table 3.5. The columns
are the same as defined for Table 3.4. The MIP model used to obtain the lower
bound is for this objective function is a slightly modified version of ROOSDDT.
The objective function (3.7a) is replaced with the following objective function,

min
1
n ∑

c∈C
(∑

t∈H
t(zω,c,t − zω,c,t−1)− ∑

p∈Pc

ac,p −mc · CPDc) (3.12)

Furthermore as the master dummy-end activity is no longer required the prece-
dence constraints (3.7e) and (3.7f) as well as the resource-based tightening con-
straints are not required.

Out of the 22 instances, 11 new best solutions were determined and a solution
with the same objective as the best known solution was obtained for a further 2
instances. Out of the 11 new best solutions, 6 were obtained by CP-Sym, 4 were
obtained by CP, and 1 was obtained by both CP and CP-Sym. No instances were
closed for this objective function. It is also worth directly comparing the perfor-
mance of CP and CP-Sym. Out of the 22 instances, CP-Sym outperforms CP on 14
instances, CP outperforms CP-Sym on 5 instances, and they obtain the same results
on the remaining 3 instances. Although this is not conclusive it suggests that the

92

CHAPTER 3. SYMMETRY BREAKING IN THE HIGH-MULTIPLICITY
RCPSP/MAX

Table 3.5: Summary of performance on relative instances from MPSPlib for the Average Project
Delay objective. OOM denotes out-of-memory.

ID Instance Upper Bound Lower Bound

BKS CP CP-Sym LBCP LBMIP

62 mp_j90_a10_nr5_AC10 51.2 50.8 50.2 10.1 46.1
78 mp_j90_a20_nr5_AC7 77.6 70.9 70.6 0.2 OOM
79 mp_j90_a20_nr5_AC8 23.5 22.4 20.1 2.6 OOM
74 mp_j90_a20_nr5_AC3 10.2 8.50 8.45 0.9 7.0
82 mp_j90_a2_nr5_AC10 21.0 20.5 20.0 16.0 17.0
75 mp_j90_a20_nr5_AC4 116.9 116.7 115.3 0.3 107.0
72 mp_j90_a20_nr5_AC10 210.6 208.8 208.8 20.20 195.0
86 mp_j90_a2_nr5_AC5 0.0 0.0 0.0 0.0 0.0
73 mp_j90_a20_nr5_AC2 0.0 0.0 0.0 0.0 0.0
77 mp_j90_a20_nr5_AC6 62.9 56.4 58.4 0.2 OOM
80 mp_j90_a20_nr5_AC9 171.7 169.5 171.1 0.5 158.3
71 mp_j90_a20_nr5_AC1 139.8 136.1 138.6 0.3 OOM
76 mp_j90_a20_nr5_AC5 7.6 5.7 5.8 0.6 5.3
66 mp_j90_a10_nr5_AC5 125.8 130.7 128.0 23.6 112.5
96 mp_j90_a5_nr5_AC5 88.8 98.0 96.0 31.4 73.8
92 mp_j90_a5_nr5_AC10 98.4 102.4 101.2 35.2 82.4
90 mp_j90_a2_nr5_AC9 179.0 184.5 180.0 100.5 102.0
65 mp_j90_a10_nr5_AC4 290.8 304.3 297.7 49.7 246.1
70 mp_j90_a10_nr5_AC9 79.1 80.9 79.8 13.9 71.8
95 mp_j90_a5_nr5_AC4 418.6 461.0 446.8 119.2 294.2
100 mp_j90_a5_nr5_AC9 428.2 448.0 448.6 122.4 304.2
85 mp_j90_a2_nr5_AC4 175.0 186.0 183.0 100.0 100.0

symmetry breaking constraints are helping direct the search.

The ROOSDDT was able to considerably improve the lower bounds obtained
by CpOpt when it did not run out of memory. The improvements in lower bound
are very significant. For example consider instance ID 80, where the LBMIP is 158.25
compared with LBCP of 0.45.

3.7 Conclusion

In this chapter we have proven the existence of symmetry between projects of
the same class in the high-multiplicity RCPSP/max. We explore two symmetry
breaking approaches; (1) by adding symmetry breaking constraints in the form of
precedences between activities of the same index from projects of the same class,

93

3.7. CONCLUSION

and (2) remodelling the problem to reduce the number of variables required. Our
computational experiments show that both methods allow a number of different
models to significantly increase the number of instances proven to optimality. The
reduced version of the MIP models were found to outperform the expanded ver-
sion of the MIP models with symmetry breaking constraints. The proposed MIP
models which combine step variables and on-off variables also consistently outper-
form the pulse-start variable models.

There are a number of directions for future work. Firstly decomposition-methods
have been shown to work effectively for multi-project scheduling (Toffolo et al.,
2016). Given the smaller size of the reduced MIP models presented in this chapter,
they should be useful in similar decomposition-based methods. The strong per-
formance of Chuffed and Cpx with the symmetry breaking constraints in terms
of proving optimality suggest these SAT-style CP solvers could be very useful
in a destructive approach at obtaining lower bounds. This could be an effective
comparison with the ROOSDDT model.

In general, the symmetry considered in this chapter does not exist for the multi-
mode RCPSP. It is possible to find trivial counter examples where the symmetry
does not hold in hybrid flow shop scheduling, which is well known to ba a special
case of the multi-mode RCPSP (as considered by, e.g., Voß and Witt (2007)). Given
the advantages we have demonstrated for the single-mode scheduling problem
studied in this chapter we believe further study into symmetry of more general
problems and their special cases is a topic that deserves further investigation.

94

CHAPTER 4
Liquid Handling Robot Scheduling

Problem

4.1 Introduction

This chapter considers the Liquid Handling Robot Scheduling Problem (LHRSP),
which seeks to minimise the time taken by a robot to transfer chemicals to a set
of slides using a single pipette with finite capacity. The LHRSP is a sub-problem
of the motivating real-world problem considered in Chapter 6 of this thesis. We
study the LHRSP for two reasons. Firstly, we wish to understand how to model and
solve this aspect of the real-world problem as even on its own it is a challenging
scheduling problem. Secondly, we wish to develop a range of different approaches
for the problem and empirically evaluate their performance. In this chapter we
consider three different CP Optimizer models.

This work considerably extends results in the conference paper (Edwards et al.
(2018)). The paper contains a MIP model, the first CP Optimizer model, and adapts
two heuristics from the literature to obtain solutions to a restricted version of the
problem. Due to their poor performance the heuristics have been omitted from
this chapter. The MIP model can be found in Appendix B.1. The two improved
CP Optimizer models appear here for the first time. The results presented in this
chapter clearly reflect the benefits that these unpublished extensions make.

95

4.1. INTRODUCTION

Perhaps the most significant insight gained in this chapter is that it is possi-
ble to obtain complete solutions to the problem by only searching on a subset of
the variables. More specifically, if after a complete assignment of a certain subset
of variables is made and constraint propagation reaches a fixed point, then it is
possible to prove that the partial assignment can always be extended to a com-
plete solution in a specific way. This insight results in considerable performance
improvement and is the basis of the following two chapters.

4.1.1 Problem Description

The problem considers a single robot that is responsible for processing a set of
jobs. In reality these jobs represent experiments that are processed through the
sequential application of chemicals. When processing a single experiment the robot
remains idle for the majority of the time, waiting for the correct chemical reactions
to occur. Thus to make better use of its time, the robot is capable of processing
many experiments in parallel.

The robot has a single pipette with finite volume that it uses to transfer chemi-
cals to the set of n jobs J := {1, ..., n}. A simple schematic of the problem is given
in Figure 4.1. The n jobs are arranged in the system according to their index, i.e.,
job j ∈ J is at location j. The system also contains a set of vial containing different
chemicals. These vials are located at location 0, as shown. To transfer a given chem-
ical from a vial to job j ∈ J the robot must (1) move to the vials, (2) aspirate chemical
up into the pipette tip, (3) travel to job j, (4) dispense the chemical onto the sample.
The robot takes p↑ time units to aspirate, and p↓ to dispense. The time taken for
the robot to move from the location of job j to the location of job j′ is denoted p→j,j′ ,
where j, j′ ∈ J ∪ {0} and 0 represents the location of the vials.

Job j ∈ J has Nj required operations, each of which corresponds to the dispens-
ing of 1-unit of a certain chemical. To complete a job, chemicals are reqchapuired in
a given order. Each job can be represented by a chain, as shown in Figure 2, where
arcs represent the precedence relation between consecutive operations and nodes
are color-coded to show the chemical required for the operation. Let C represent
the set of the chemicals. Let ci,j ∈ C be the chemical required by operation i from
job j. Note that one type of chemical might be required multiple times in the same
job.

To ensure that the correct chemical reactions occur there exist minimum and
maximum time lags between start times of consecutive operations from the same
job. Let Oj := {1, 2, ..., Nj} be all the operations of job j ∈ J. The time lags are

96

CHAPTER 4. LIQUID HANDLING ROBOT SCHEDULING PROBLEM

Figure 4.1: Schematic of the problem set-up. Vials are at location 0, jobs are at locations correspond-
ing to the job’s index. The robot can move between the vials and the jobs to transfer chemicals to
the jobs.

Figure 4.2: An example of a precedence graph that outlines the order in which the chemicals must
be considered for a single job j ∈ J. Colours are used to indicate the chemical that is required by
the operation. Positive and negative arc weights arise from the minimum and maximum timelags,
respectively.

defined for all operations of job j ∈ J, except for the very last operation, i.e., {Oj \
{Nj}}. Hence once an operation, i ∈ Oj \ {Nj} of job j ∈ J, has started there is a
minimum amount of time units, `min

i,j , before operation (i + 1) is allowed to start.
Likewise once operation i ∈ Oj \ {Nj} has started there is a maximum amount of
time, `max

i,j , within which operation (i + 1) must start. These time lags are expressed
as

`max
i,j ≥ Si+1,j − Si,j ≥ `min

i,j , (i ∈ Oj \ {Nj}, j ∈ J)

where Si,j is the start time of operation i ∈ Oj from job j ∈ J,

The robot is allowed to aspirate multiple units of a single type of chemical at
a time. This means the robot can, for example, (1) aspirate two units of a certain
chemical, (2) move to a given job, (3) dispense one unit of the chemical at that job,
(4) move to another job requiring the same chemical, (5) dispense the other unit
of chemical at that job. For chemical c ∈ C the robot can aspirate up to Lc units at
a time. The time taken to aspirate multiple units of chemical is negligible and the
processing time of each aspirate regardless of the quantity is p↑. Only one type of
chemical can be in the pipette at a time. Given the robot can aspirate multiple units

97

4.1. INTRODUCTION

of a chemical at a time, it can effectively reduce the number of times that it must
aspirate the chemicals.

In practice there are typically more jobs than the system can accommodate at
once, which often makes the system the bottleneck in other laboratory workflows.
Hence the objective is to process all the jobs in the least amount of time, i.e., min-
imise makespan. We consider a job to be processed at the end time of the dispense
of the final operation.

For simplicity, we assume in this chapter that once a job is completed it re-
mains in the system. In reality though, as will be discussed in later chapters, once
a job is completed it is removed from the system such that additional jobs can be
inserted. Thus for now, we consider the problem as a static scheduling problem.
Furthermore, the LHRSP problem assumes that the location of each job is fixed.
Determining where each job should be located is an interesting and hard problem
itself that can have significant impact on the quality of the schedule. The assign-
ment of jobs to locations is considered in greater detail in Chapter 6. In this chapter
however, no consideration is given to job location at all.

4.1.2 Related Problems

The LHRSP has a number of closely related problems studied in the literature.
Firstly, to prove the complexity of the problem we consider the minimal-makespan
single machine scheduling problem with unit processing times and minimum
time lags (1p-SMSPmin), denoted by PS1|chains(lij); pi = 1|Cmax using the project
scheduling classification scheme proposed by Brucker et al. (1999a). The 1p-SMSPmin
is known to be NP-Hard (Yu et al., 2004).

Theorem 4.1.1. The LHRSP is NP-Hard

Proof. We reduce 1p-SMSPmin to the LHRSP. Let I be an instance of 1p-SMSPmin.
For each chain in I construct a job j ∈ J, where each activity in the chain corre-
sponds to an activity i ∈ Oj. Let `min

i,j = li,j and `max
i,j = M, where M is some

sufficiently large number and li,j is the minimum time lags specified in I. Now
let p↓ = 1, p↑ = 0, p→j,j′ = 0, for all j, j′ ∈ J ∪ {0}. For completeness let |C| = 1,
ci,j = c and Lc = |

⋃
j∈J Oj|. As we can reduce 1p-SMSPmin to the LHRSP, and the

1p-SMSPmin is NP-Hard, then the LHRSP is also NP-Hard.

If it is further assumed that only one unit of chemical can be transferred at a
time, i.e., c ∈ C is Lc = 1, the LHRSP can be simplified into a special case of the
single machine scheduling problem with time lags (SMSP-TL), which is denoted

98

CHAPTER 4. LIQUID HANDLING ROBOT SCHEDULING PROBLEM

PS1|chains, temp|Cmax, which is known to still be NP-Hard (Wikum et al., 1994).
The aspirate, travel and dispense times are incorporated into the processing time
of the activity. Hence all activities i ∈ Oj from job j have the same processing time,
defined by pj := p↑ + p→0,j + p→j,0 + p↓. The time lags are still valid as all operations
in the same job have the same processing time, now pj as opposed to simply the
dispense time p↓, and time lags only exist between operations of the same job.

The SMSP-TL is closely related to the well-studied job shop scheduling prob-
lem with time lags (JSP-TL), denoted by Jm|temp|Cmax (Brucker et al., 1999b). As
pointed out in Caumond et al. (2008), when considering maximum time lags build-
ing non-trivial feasible solutions is not straightforward, however scheduling all
operations of a single job after all operations of another job leads to feasible sched-
ules. These types of schedules are referred to as canonical schedules. It is possible to
generate similar feasible solutions to the LHRSP, albeit very poor ones, by complet-
ing all operations of one job, then all operations of the next job, and so on.

To find better initial solutions than the canonical schedules for the JSP-TL,
Caumond et al. (2008) proposed a list-based heuristic combined with a method for
repairing solutions. Following this, Artigues et al. (2011) proposed a job insertion
heuristic (JIH), which exploits the fact that precedences only exist between con-
secutive operations of the same job. In the experimental study in Artigues et al.
(2011), the JIH is shown to produce better solutions than the list-based heuristic
from Caumond et al. (2008). Moreover the state-of-the-art approach to the JSP-TL
(González et al., 2015) also utilises the JIH to obtain initial feasible solutions to their
scatter-search with path-relinking approach. In the conference paper (Edwards
et al., 2018), we adapted the JIH to the LHRSP, however it has been omitted from
this thesis due to its relatively poor performance.

Both the SMSP-TL and JSP-TL are special cases of the well-studied resource-
constrained project scheduling problem with generalised precedence constraints
(RCPSP-max), denoted by P|temp|Cmax. CP (CP) approaches, such as Schutt et al.
(2013c) and Vilim et al. (2015), have been particularly effective for this RCPSP-max.
Furthermore for the RCPSP-max there are a number of effective schedule genera-
tion schemes such as serial schedule generation scheme (SSGS) with unscheduling
step, also referred to as the direct method proposed by Franck et al. (2001). This
method has been modified for many practical applications, such as the generalised
surgery scheduling problem (Riise et al., 2016). In the conference paper (Edwards
et al., 2018), we adapted the SSGS to the LHRSP, however it has also been omitted
from this thesis due to its relatively poor performance.

99

4.2. CP OPTIMIZER MODELS

The LHRSP also closely relates to a number of scheduling problems where ma-
terial handling is considered. In particular, the problem has a strong resemblance
to hoist scheduling problems (HSP)s, which have been motivated by electroplating
lines. There are many variants of the HSP considered in the literature, see Manier
and Bloch (2003) for a very detailed classification. In general one or more hoists
move different carriers, which can be thought of as different jobs, between chemi-
cal baths, within which the jobs must remain between a minimum and maximum
allowable time. Superficially, the LHRSP resembles a type of HSP where instead
of transferring jobs between different chemical baths, the hoist transfers different
chemicals to the jobs.

From the perspective of scheduling, the LHRSP has a number of additional
challenges that make it difficult to model as a type of HSP. In HSPs, a hoist carries a
single job at a time. Furthermore once a job has been lifted from one chemical bath,
the hoist must travel and lower the job into the next chemical bath immediately.
This is known as the no-wait requirement and is enforced to ensure the jobs are not
damaged by oxidation during transfer. A result of this is that the transport tasks
have a known, fixed duration, and the scheduling of the time the jobs are in the
baths can be accounted for in the scheduling of the transfer tasks. In contrast, the
LHRSP can transfer a number of units of chemicals simultaneously. This introduces
a number of fundamental differences, such as not knowing how many times the
robot must aspirate in a solution.

Finally, the problem can be seen as a travelling salesman problem (TSP) with
minimum and maximum time lags with additional side constraints. To the best of
our knowledge, no papers have studied the pure TSP with minimum and maxi-
mum time lags between deliveries, however similar problems such as the vehicle
routing problem with temporal dependencies have been studied by Dohn et al.
(2011). Practical applications that consider vehicle routing with time lags include
homecare crew routing problem (Rasmussen et al., 2012) and the concrete deliv-
ery problem (Kinable et al., 2014), for which both CP and MIP models have been
effective.

4.2 CP Optimizer Models

In this section we propose three different CP Optimizer models. A MIP model for
the LHRSP can be found in Appendix B.1. It is not included in the body of the thesis
due to its relatively poor performance in practice. Furthermore, let O =

⋃
j∈J Oj be

100

CHAPTER 4. LIQUID HANDLING ROBOT SCHEDULING PROBLEM

the set of all operations and to distinguish between dispenses of different chemicals,
let all the activities requiring c ∈ C be defined as Oc = {(i, j) ∈ O|ci,j = c}.

4.2.1 Model 1 - (CP1)

Overview

The first CP Optimizer model, CP1, was introduced in the conference paper (Ed-
wards et al., 2018). The model is based on the observation that the liquid handling
robot iterates between aspirating a chemical and carrying the chemical to dispense
on the different jobs. The optimal number of times aspiration needs to be com-
pleted is not known before scheduling, however the maximum number should
never exceed the total number of dispenses, i.e., aspirate one unit of chemical for
each dispense. An important distinction of this model compared with the subse-
quent models is that in CP1 we do not consider aspirating as part of a job.

The model considers four types of interval variables all of which are compul-
sory. Firstly, a dispense variable, α

dispense
i,j , is defined for each operation (i, j) ∈ O

and represents the interval in which chemical is being dispensed with duration
equal to p↓. Secondly, an aspirate variable, α

aspirate
q , is defined for (but not associated

with) each possible operation q ∈ [1, ..., |O|] and represents the interval in which
chemical is being aspirated with duration equal to p↑. For clarity, we emphasise
that the aspirate intervals are defined independent of specific dispense operations.
Precedence constraints re added to enforce an ordering on the aspirate intervals
such that, for example, α

aspirate
1 will occur first, α

aspirate
2 will occur second and so

on. Clearly, it is not possible to enforce such an ordering on the dispense intervals.
It is also worth stating that although all of the aspirate variables are defined to
be compulsory, the objective function will be defined in such a way that unused
aspirate intervals can be removed in post-processing and does not violate the va-
lidity of the model. The third type of interval variable, is a carry variable, α

carry
q ,

that represents an interval where chemical is being carried in the pipette is defined
for each possible operation q ∈ [1, ..., |O|] with a minimum length of p↓. Fourthly, a
cover variable, αcover

i,j , that represents an interval that spans the associated dispense

interval is defined for each operation (i, j) ∈ O also with a minimum length of p↓.
Constraints will be added such that the dispense variables are dispersed correctly
between the aspirate variables by coordinating the carry and cover intervals.

To ensure the correct behaviour occurs between the interval variables a num-
ber of sequence variables, state functions and cumulative functions are defined.

101

4.2. CP OPTIMIZER MODELS

Firstly, to ensure the travel times are respected a sequence variable, ρlocation, is de-
fined over the aspirate and dispense variables, where the types of the variables are
associated with the location where the variables must occur. Hence the type asso-
ciated of the aspirate variables are all set to 0, the location of the vials, whereas the
type associated with the dispense variables are set to the index of the correspond-
ing job j. Secondly, to ensure the correct transfer of chemicals two state functions
are defined. The carry state function, ψcarry, is 1 when chemical is being carried
and 0 otherwise. The pipette state function, ψpipette, is always equal to the index
of the chemical c ∈ C currently being carried to avoid cross contamination oc-
curing. Finally, for each chemical k ∈ R a cumul function, f k, is used to ensure
the amount of chemical does not exceed the limit of the pipette. More explicitly,
the carry variables will increase the cumul functions by the maximum number of
units that can be carried of each chemical. The cover intervals will decrease the
appropriate cumul function by 1 unit for their duration.

Intuition

The intuition of CP1 is visualised in Figure 4.3. Here we consider a subset of three
operations from a possible schedule, (i, j), (i′, j′), (i′′, j′′), where two operations
require the chemical associated with the colour pink, ci,j = ci′,j′ = c1, L1 = 2, the
other requires the chemical associated with the colour blue, ci′′,j′′ = c2, L2 = 1. The
dispense and cover variables are indexed by their associated operations. Whereas
the aspirate and carry variables are indexed chronologically. An ordering is forced
on the aspirate and carry variables such that they alternate and lower indexed
variables are sequenced earlier than higher indexed variables. Cover variables start
before the start and end after the end of the corresponding dispense variables. The
carry state ensures that when a cover and carry interval overlap they start together
and end together.

Each carry variable produces the maximum number of units possible for each
of the chemicals, hence during the first carry variable, carry_var1, 1 unit of the blue
unit and 2 pink units are produced corresponding to the maximum number of
units that the pipette can carry at a time for each chemical. The cover variables of
(i, j) and (i′, j′) consume 1 unit each of the pink chemical for their duration, hence
the amount produced by the carry variable is cancelled out by the cover variables.
Whereas the one blue unit produced by the carry variable is neither consumed by
either (i, j) nor (i′, j′) hence there is a net increase in the amount of blue chemical of
1 unit during this interval. Here we emphasise that it is possible multiple dispense

102

CHAPTER 4. LIQUID HANDLING ROBOT SCHEDULING PROBLEM

Figure 4.3: Visual summary of CP1

intervals during a carry interval. The colour state is used to ensure that only all
pink cover variables or all blue cover variables overlap and hence prevent cross
contamination.

The makespan is taken as the end of time of the last dispense, indicated here
with the red line. Note that the third aspirate and carry intervals are scheduled
after the makespan. These remaining interval can be simply removed in a post-
processing stage.

Model

The first CP Optimizer model, CP1, can now be defined as follows.

min max
(i,j)∈O

endOf(αdispense
i,j) (4.1a)

s.t. startOf(αaspirate
1) = 0 (4.1b)

endBeforeStart(αaspirate
q , α

carry
q) ∀q ∈ [1, ..., |O|] (4.1c)

endBeforeStart(αcarry
q , α

carry
q+1) ∀q ∈ [1, ..., |O| − 1] (4.1d)

startBeforeStart(αdispense
i,j , α

dispense
i+1,j , δmin

i,j) ∀i ∈ Oj; j ∈ J (4.1e)

startBeforeStart(αdispense
i+1,j , α

dispense
i,j ,−δmax

i,j) ∀i ∈ Oj; j ∈ J (4.1f)

startBeforeStart(αcover
i,j , α

dispense
i,j) ∀(i, j) ∈ O (4.1g)

endBeforeEnd(αdispense
i,j , αcover

i,j) ∀(i, j) ∈ O (4.1h)

alwaysEqual(ψpipette, αcover
i,j , ci,j,↔) ∀(i, j) ∈ O (4.1i)

alwaysEqual(ψcarry, αcover
i,j , 1,↔) ∀(i, j) ∈ O (4.1j)

alwaysEqual(ψcarry, α
carry
q , 1,↔) ∀q ∈ [1, ..., |O|] (4.1k)

103

4.2. CP OPTIMIZER MODELS

f cap
k += pulse(αcarry

q , Lc)) ∀k ∈ R; (i, j) ∈ O : ci,j = c (4.1l)

f cap
k −= pulse(αcover

i,j , 1)) ∀k ∈ R; (i, j) ∈ O : ci,j 6= c (4.1m)

f cap
k ≥ 0 ∀k ∈ R (4.1n)

inSequence(ρ, α
dispense
i,j , j) ∀(i, j) ∈ O (4.1o)

inSequence(ρ, α
aspirate
q , 0) ∀(i, j) ∈ O (4.1p)

noOverlap(ρ, M) (4.1q)

α
dispense
i,j ∈ interval(comp, p↓) ∀(i, j) ∈ O (4.1r)

αcover
i,j ∈ interval(comp, (p↓, ∞)) ∀(i, j) ∈ O (4.1s)

α
aspirate
q ∈ interval(comp, p↑) ∀q ∈ [1, ..., |O|] (4.1t)

α
carry
q ∈ interval(comp, (p↓, ∞)) ∀q ∈ [1, ..., |O|] (4.1u)

fk ∈ cumul ∀k ∈ R (4.1v)

ψpipette, ψcarry ∈ state (4.1w)

ρ ∈ sequence (4.1x)

The objective (4.1a) to minimise the completion time of the last dispense vari-
ables. Constraint (4.1b) fixes the first aspirate to start at the beginning of the sched-
ule. Constraints (4.1c) and (4.1d) then ensure that the aspirate variables alternate
with the carry variables. Constraints (4.1e) and (4.1f) ensure the minimum and max-
imum time lags, respectively, are respected between consecutive operations from
the same job. Constraints (4.1g) and (4.1h) ensure the cover variables start before
the start, and end after the end of the corresponding dispense variable, respectively.
Together, constraints (4.1i)-(4.1k) ensure that only a single chemical can be carried
by the pipette at a time. Constraint (4.1i) ensures that the interval of the pipette
state must always be equal to the corresponding value of the chemical required by
the cover variables, and these intervals are both left and right aligned. Likewise,
constraints (4.1j) and (4.1k) ensure that the interval of the carry state must always be
equal to one during both the cover and carry intervals, and these intervals are both
left and right aligned. Constraints on cumulative functions (4.1l)-(4.1n) then en-
sure the cover, and thus dispense variables, must only occur in parallel with a carry
variable, and that the quantity of chemical carried does not exceed the capacity of
the pipette. To do so, constraint (4.1l) ensures that each carry interval produces the
maximum amount of units of chemical that be carried by the pipette for each chem-
ical. Then constraint (4.1m) ensures that the cover intervals consume a single unit
of the appropriate chemical, and constraint (4.1n) ensures the cumulative functions
are never negative. Constraint(4.1q) ensures the correct travel times between the

104

CHAPTER 4. LIQUID HANDLING ROBOT SCHEDULING PROBLEM

aspirate and dispense variables, where M = ((p→l,l′)l∈L)l′∈L is a distance matrix be-
tween all the different locations. Finally, the interval variables, sequence variables,
state and cumulative functions are defined by constraints (4.1r-4.1x).

Comments

There are a number of aspects of the model that can be improved. Two sets of
interval variables; (1) the aspirate and carry variables and (2) the dispense and
cover variables, are not strongly constrained. More explicitly, the nodes associated
with the aspirate and carry variables in the inferred temporal network are com-
pletely disjoint from the remaining nodes. Thus the model relies on the cumul
expressions and state functions to ensure overlapping carry and cover variables
are synchronised to propagate. Strongly connected components of the temporal
network are also important when building initial solutions. To find initial solutions
CP Optimizer uses a topological sort in the temporal network to determine sets of
activities to insert one at a time. The strongly connected components in the tempo-
ral network for CP1 are (1) all the dispense and cover variables for each job and (2)
one chain of aspirate and carry variables. These strongly connected components
are not particularly insightful into the structure of the problem as for example it is
not possible to schedule the connected component of dispense and cover variables
without also scheduling a section of the chain of aspirate and carry variables due
to the interaction of the cumulative expression.

Also CP1 defines a different cumulative expression for each chemical. How-
ever due to the pipette state function, only one chemical can be consumed by a
dispense at any point in time and thus only a single cumulative expression can be
violated at any point in time. Hence it should be possible to model the problem
using a single cumulative expression.

4.2.2 Model 2 - (CP2)

Overview

A second CP Optimizer model, CP2, is given that we would expect to in general
outperform CP1. The key difference between CP1 and CP2 is that the latter ex-
plicitly indexes aspirate variables to specific operations, i.e. an aspirate variable
α

aspirate
i,j is defined for each operation (i, j) ∈ O. To account for the fact that multiple

units of chemical can be aspirated at once the aspirate variables are allowed to over-
lap in time. This contrasts to CP1 where aspirates are not constrained to specific

105

4.2. CP OPTIMIZER MODELS

dispenses, are not allowed to overlap in time and potentially not all of the aspirate
variables are used. The model CP2 now considers only two other types of interval
variables. Dispense variables, α

dispense
i,j , are defined identically to CP1. We refer to

the final type of interval variable as serve variables. A serve variables, αserve
i,j , is de-

fined with respect to each specific operation, (i, j) ∈ O, and represents the interval
of time from the start of the corresponding aspirate to the end of the corresponding
dispense. No restrictions are placed on the length of the serve variables.

A sequence variable, ρlocation, is defined over just the dispense variables, where
the type of the variables are still associated with the index of the corresponding
job. The aspirate variables are now not considered by the sequence variable as we
allow them to overlap. Instead we define a location state function, slocation, where
the value of the intervals represent the location of the robot and the distance matrix
M ensures travel times are respected through these transitions. Again the pipette
state, ψpipette, is always equal to the index of the chemical c ∈ C currently being
carried. Finally, a single cumulative function, f capacity, is defined that represents
the amount of chemical being carried by the pipette.

Intuition

The intuition of CP2 is visualised in Figure 4.4. Here we consider the equivalent
CP2 schedule for the example used for CP1 in Figure 4.3. A significant difference
is that the aspirate variables are now associated with specific dispenses. As can be
seen, the serve variables start at the start of the corresponding aspirate and end
at the end of the corresponding dispense. The pipette state then ensures that only
serves corresponding to operations which require the same chemical are allowed to
overlap. Furthermore a single cumul expression is used to keep track of how much
chemical is being carried in the pipette. The cumul is constrained to always be in
an acceptable range during the intervals of the serve variables, which is visualised
by ensuring that the black line is always within the coloured rectangles. Finally the
pos state keeps track of where the robot is, the values in the associated rectangles
represent the type of the interval used to enforce the sequence-dependent setup
times.

106

CHAPTER 4. LIQUID HANDLING ROBOT SCHEDULING PROBLEM

Figure 4.4: In CP2 an aspirate variable is associated with each aspirate.

Model

The second CP Optimizer model, CP2, can now be defined as follows.

min max
(i,j)∈O

endOf(αdispense
i,j) (4.2a)

s.t. startBeforeStart(αdispense
i,j , α

dispense
i+1,j , δmin

i,j) ∀i ∈ Oj; j ∈ J (4.2b)

startBeforeStart(αdispense
i+1,j , α

dispense
i,j ,−δmax

i,j) ∀i ∈ Oj; j ∈ J (4.2c)

startAtStart(αaspirate
i,j , αserve

i,j) ∀(i, j) ∈ O (4.2d)

endAtEnd(αdispense
i,j , αserve

i,j) ∀(i, j) ∈ O (4.2e)

endBeforeStart(αaspirate
i,j , α

dispense
i,j , p→0,j) ∀(i, j) ∈ O (4.2f)

alwaysEqual(ψpipette, αserve
i,j , ci,j,←) ∀(i, j) ∈ O (4.2g)

alwaysEqual(ψlocation, α
dispense
i,j , j,↔) ∀(i, j) ∈ O (4.2h)

alwaysEqual(ψlocation, α
aspirate
i,j , 0,↔) ∀(i, j) ∈ O (4.2i)

f capacity += pulse(αserve
i,j , 1) (i, j) ∈ O (4.2j)

alwaysIn(f capacity, αserve
i,j , 0, Lci,j) (i, j) ∈ O (4.2k)

noOverlap(ρlocation, M) (4.2l)

α
dispense
i,j ∈ interval(comp, p↓) ∀(i, j) ∈ O (4.2m)

α
aspirate
i,j ∈ interval(comp, p↑) ∀(i, j) ∈ O (4.2n)

αserve
i,j ∈ interval(comp, pserve

i,j) ∀(i, j) ∈ O (4.2o)

107

4.2. CP OPTIMIZER MODELS

f capacity ∈ cumul (4.2p)

ψpipette ∈ state (4.2q)

ψlocation ∈ state(M) (4.2r)

ρlocation ∈ sequence((αdispense
i,j , j)(i,j)∈O) (4.2s)

The objective (4.2a) is to minimise the maximum completion time of any opera-
tion. Constraints (4.2b) and (4.2c) represent the minimum and maximum time lags
between dispense operations in the same job, respectively. Constraints (4.2d) and
(4.2e) ensure the serve variables start at the start of the associated aspirate variable
and end at the end of the associated dispense variable, respectively. Constraints
(4.2f) ensure that the aspirate variables occurs before the associated dispense vari-
ables. Constraints (4.2g) ensure that the values of the intervals of the pipette state
must always be equal to the corresponding value of the chemical required by the
serve variables, and these intervals are left aligned. In doing so, this ensures that
if two serve variables overlap, then their aspirate variables start at the same time.
Constraints (4.2h) and (4.2i) ensure that the values of the intervals of the location
state must always be equal to 0 for the aspirate variables and the appropriate job
index j for the corresponding dispense variables, respectively. Constraints (4.2j)
increases the cumulative expression by a single unit for the duration of each serve
variable. Then constraints (4.2k) ensure that the value of the cumulative expression
is always between 0 and the limit Lci,j throughout the serve interval associated with
each operation (i, j) ∈ O. Constraints (4.2l) ensure the location sequence does not
overlap and has the correct travel times matrix M. Finally constraints (4.2m)-(4.2s)
define the various decision variables and functions.

Comments

There are still a number of improvements which can be made to CP2. Firstly, it
is possible to normalise the different pipette capacities of the different chemicals
such that the capacity of the pipette is constant across the time-horizon. This will
benefit powerful propagation algorithms that work on the global capacity of a
resource, such as edge-finder (Vilím, 2009), which is used by CP Optimizer. In order
to normalise the carrying capacities, we determine the lowest common multiple,
LCM, of all the carrying capacities, i.e., Lc for all c ∈ C. Then for each dispense
operation (i, j) ∈ Vc requiring chemical c ∈ C we associate an equivalent chemical
consumption, qi,j := LCM

Lc
.

108

CHAPTER 4. LIQUID HANDLING ROBOT SCHEDULING PROBLEM

Secondly, a number of strengthening constraints can be added that will pro-
vide more information to the temporal network. Additional precedence constraints
can be added between aspirates and dispenses from the same job. More explicitly,
if two consecutive dispenses from the same job require different chemicals, then
the corresponding aspirate intervals cannot overlap. Hence the preceding dispense
must be completed before the following aspirate can begin, while also considering
the transition time in between. Alternatively, if two consecutive dispenses require
the same chemical, then it is possible for the two aspirates to occur simultaneously.
However the succeeding aspirate cannot start before the preceding aspirate has
started.

4.2.3 Model 3 - (CP3)

Overview

A third CP Optimizer model, CP3, is given that we would expect to outperform
CP2. The key difference between CP2 and CP3 is that the latter does not model
the aspirate intervals explicitly. The model considers only two types of interval
variables. Again the dispense variables, α

dispense
i,j , are defined identically to CP1

and CP2. The serve variables, αserve
i,j , are again defined and still represent the time

from the start of the corresponding aspirate until the time after the end of the
corresponding dispense required to return to the vials. To account for the fact that
aspirate variables are not defined the length of the serve variables are defined to be
at least pserve

j = p↑+ p→0,j + p↓+ p→j,0. This assumes that the triangle inequality holds

with the travel time. The model considers a location sequence, ρlocation, considering
just the dispense variables, where again the type of the variable is set to the job
index j of the operation. The model considers a single cumulative function, f capacity,
that represents the (normalised) quantity of chemical being carried by the pipette.
The model considers a single state function, the pipette state f pipette where the
intervals are always equal to the index of the chemical c ∈ C being carried.

Intuition

The intuition of CP3 is visualised in Figure 4.5. Much of the intuition of the model
of CP3 is the same as CP2 yet there are a number of key differences. The serve vari-
ables now start and end at the vials and thus include the time taken to travel back
to the vials once a dispense is completed. The aspirate variables and the position
state are no longer required. The cumulative expression has also been reformulated.

109

4.2. CP OPTIMIZER MODELS

Now the cumulative expression is constrained to not exceed the capacity of the
pipette across the entire schedule. During serve variables the amount of chemical
in the pipette is increased. Note that during the transfer of the chemical for the
two operations requiring the pink chemical, the pipette is increased to the capacity
of the pipette at first, and then decreased to half of that after the end of the first
serve variable. For the blue chemical, the cumulative expression is increased to the
capacity of the pipette despite only one serve variable being completed during this
time. This is because the pipette can only transfer one-unit of blue chemical at a
time.

Figure 4.5: Visual summary of CP3

Model

The third CP Optimizer model, CP3, can now be defined as follows.

min max
(i,j)∈O

endOf(αdispense
i,j) (4.3a)

s.t. startBeforeStart(αdispense
i,j , α

dispense
i+1,j , δmin

i,j) ∀i ∈ Oj; j ∈ J (4.3b)

startBeforeStart(αdispense
i+1,j , α

dispense
i,j ,−δmax

i,j) ∀i ∈ Oj; j ∈ J (4.3c)

endAtEnd(αdispense
i,j , αserve

i,j , d→j,0) ∀(i, j) ∈ O (4.3d)

startBeforeStart(αserve
i,j , αserve

i+1,j) ∀(i, j) ∈ O : ci,j = ci+1,j (4.3e)

endBeforeStart(αserve
i,j , αserve

i+1,j) ∀(i, j) ∈ O : ci,j 6= ci+1,j (4.3f)

alwaysEqual(ψpipette, αserve
i,j , ci,j,←) ∀(i, j) ∈ O (4.3g)

110

CHAPTER 4. LIQUID HANDLING ROBOT SCHEDULING PROBLEM

f cap = ∑
(i,j)∈O

pulse(αserve
i,j , q(ci,j)) ≤ Rpipette (4.3h)

noOverlap(ρlocation, M) (4.3i)

α
dispense
i,j ∈ interval(comp, p↓) ∀(i, j) ∈ O (4.3j)

αserve
i,j ∈ interval(comp, (pserve

j , ∞)) ∀(i, j) ∈ O (4.3k)

f capacity ∈ cumul (4.3l)

ψpipette ∈ state (4.3m)

ρlocation ∈ sequence((αdispense
i,j , j)(i,j)∈O) (4.3n)

The objective (4.3a) is to minimise the maximum completion time of the dis-
pense variables. Constraints (4.3b) and (4.3c) enforce the minimum and maximum
time lags respectively. Constraints (4.3d) ensure the end of the serve variables oc-
curs exactly the amount of time required to return to the vials after the end of the
corresponding dispense variable. Constraints (4.3e) strengthen the temporal net-
work by ensuring that if consecutive operations of the same job require the same
chemical then the start of the serve variable of the predecessor does not start after
the start of the serve variable of the successor. Similarly, constraints (4.3f) ensure
that if consecutive operations from the same job require different chemicals then
the end of the serve variable associated with the predecessor occurs not after the
start of the serve variable of the successor. Constraints (4.3g) ensure the value of the
intervals of the pipette state must always be equal to the corresponding value of the
chemical required by the serve variables, and these intervals are left aligned. Con-
straint (4.3h) ensures that the serve variable associated with each operation (i, j)
increases the value of the cumulative function by the normalised quantity q(ci,j) for
the correct chemical, and that the value of the cumulative function never exceeds
the normalised capacity Rpipette. Constraint (4.3i) ensures the location sequence
does not overlap and respects the travel times. Finally, constraints (4.3j)-(4.3n) de-
fine the various decision variables and functions.

Search Phase Theory

Let A be an assignment over the set of dispense variables that is not disallowed by
any constraints, i.e., the start times (and thus end times) of the dispense variables
are fixed such that constraint propagation does not fail. In this section we prove
that if an assignment A is made and constraint propagation does not fail then it is
possible to construct a feasible solution.

111

4.2. CP OPTIMIZER MODELS

Proposition 4.2.1. Given A the minimum and maximum time lag constraints and the
noOverlap constraint are satisfied.

Proof. As the span of both the minimum and maximum time lag constraints, (4.3b)
and (4.3c) respectively, and the noOverlap constraint, (4.3i), are only over the dis-
pense variables, any assignment A over the dispense variables that is not disal-
lowed by any constraints in the model must satisfy these constraints.

From Proposition 4.2.1, the dispense variables in the assignment A are in a non-
overlapping sequence, seq(A). From constraint 4.3d, after propagation the ends of
the serve variables are also fixed. Hence the only remaining unfixed variables
are the start times of the serve variables. As we know that assignment A is not
disallowed by any constraints, we know that after propagation the domains of
these variables are non-empty, i.e., ES(αserve

i,j) ≤ LS(αserve
i,j). Let us now consider the

possible values for the latest start of the serve variables.

Proposition 4.2.2. Given A, let (i, j) directly precede (i′, j′) in the sequence seq(A), the
latest start time of the latter serve variable after propagation is

LS(αserve
i′,j′) =

LS(αserve
i,j), if S(αdispense

i′,j′)− C(αdispense
i,j) < p→j,0 + p↑ + p→j′,0

S(αdispense
i′,j′)− p↑ − p→0,j′ , otherwise

(4.4)

Proof. Given assignment A after propagation of the end-at-end constraints and the
minimum length of the serve variables, for each operation (i, j) ∈ O we know
that LS(αserve

i,j) ≤ S(αdispense
i,j)− p↑ − p→0,j. Hence the proof reduces to proving that

LS(αserve
i′,j′) is further filtered to LS(αserve

i,j) if and only if S(αdispense
i′,j′)− C(αdispense

i,j) <

p→j,0 + p↑ + p→j′,0.

If S(αdispense
i′,j′)− C(αdispense

i,j) < p→j,0 + p↑ + p→0,j′ , then LS(αserve
i′,j′) < C(αserve

i,j) and
hence due to the always-equal constraints on the pipette state (4.3g), must be in the
same interval as well as being left aligned. Hence the two serve variables must
start at the same time, which filters LS(αserve

i′,j′) = LS(αserve
i,j).

If S(αdispense
i′,j′)− C(αdispense

i,j) ≥ p→j,0 + p↑+ p→0,j′ then LS(αserve
i′,j′) ≥ C(αserve

i,j). Hence
it is possible that the two operations are in different intervals of the pipette state
and thus the end time cannot yet be further filtered.

From Proposition 4.2.2 if there is insufficient time to aspirate between two

112

CHAPTER 4. LIQUID HANDLING ROBOT SCHEDULING PROBLEM

dispenses then the serve variables associated with these variables must start to-
gether. It is possible to have multiple such pairs in sequence. Let us now consider
sequences of such pairs. Let Γc be a set of all subsequence in seq(A) such that for
any subsequence γ ∈ Γc all operations in the subsequence require chemical c ∈ C,
i.e. ci,j = c ∀(i, j) ∈ γ and the cardinality of the subsequence minimally exceeds the
capacity of the pipette, i.e., |γ| = Lc + 1. Also for any sequence γ, let (i1, j1) ∈ γ

denote the first operation in the sequence, (i2, j2) ∈ γ denote the second operation
in the sequence and so on.

Proposition 4.2.3. For every subsequence γ ∈ Γc of sequence seq(A) for chemical c ∈ C,
there must exists at least one consecutive pair of operations (i, j), (i′, j′) ∈ γ such that
S(αdispense

i′,j′)− C(αdispense
i,j) ≥ p→j,0 + p↑ + p→j′,0

Proof. For the sake of contradiction assume for a given chemical c ∈ C that there
exists a set of consecutive dispenses γ ∈ Γc such that for all consecutive operations
(i, j), (i′, j′) ∈ γ, the distance between the dispenses is S(αdispense

i′,j′)− C(αdispense
i,j) <

p→j,0 + p↑ + p→j′,0. From Proposition 4.2.2, we know that the latest start time of all the
serve variables associated with all operations in the subsequence must then be at
the same time, LS(αserve

i1,j1). As a result we know that all for all operations in the subse-
quence the serve variables will at least overlap in the interval [LS(αserve

i1,j1), ..., C(αserve
i1,j1)].

However this is a contradiction as the cardinality of the subsequence, |γ| = Lc + 1,
exceeds the carrying capacity for the required chemical, and thus the cumulative
expression (4.3h) would be violated.

Before considering the construction of the solution based on assignment A let
us first consider the additional precedence constraints (4.3e) and (4.3f).

Proposition 4.2.4. Given A, if any of the constraints (4.3e) and (4.3f) are violated then
the always equal constraints on the pipette state (4.3g) are also violated.

Proof. Given assignment A let us assume for the sake of contradiction that there
exists an additional precedence constraint that is violated, which does not violate
the pipette-state. Let (i, j), (i + 1) ∈ O be the two operations from the violated
precedence constraint.

Firstly lets assume that ci,j = ci+1,j. Hence the violated constraint is a start-start
precedence constraint and hence we know that LS(αserve

i+1,j) < ES(αserve
i,j). This implies

LS(αserve
i+1,j) < ES(αserve

i,j) < C(αserve
i,j) < C(αserve

i+1,j). Given the always-equal constraints
between the pipette state and the serve variables the two serve variables must be
in the same interval of the pipette state for the duration of both intervals. However
the serve variables are also left aligned and thus must both start at the start of the

113

4.2. CP OPTIMIZER MODELS

interval in the pipette state. As LS(αserve
i+1,j) < ES(αserve

i,j) this violates the always-equal
constraints.

Thus the only alternative is that ci,j 6= ci+1,j. Hence the violated constraint is
an end-start precedence constraint. As this is violated we know that ES(αserve

i+1) <

C(αserve
i,j). Hence LS(αserve

i+1,j) < C(αserve
i,j) < C(αserve

i+1,j). Thus there is an interval of time
where the serve variables must overlap. This violates the always-equal constraints
on the serve variables, as the pipette state must always equal the value associated
with their respective chemicals for the duration of the serve variables. This is a
contradiction.

Using all of the previous propositions it is now possible to prove the following
theorem.

Theorem 4.2.5. Given assignment A a solution can be constructed by fixing the start
time of all serve variables to their latest start time after propagation.

Proof. From Proposition 4.2.4 we do not need to consider if the additional prece-
dence constraints are violated as so too will the constraints on the pipette state.
From Proposition 4.2.2 we know that for any assignment of the start time of the
serve variables less than its latest starting time after propagation will satisfy the
conjunction of the end-at-end constraints and the minimum length on the serve
variables. Thus we only need to consider the always-equal constraints and the
cumulative constraint.

From Proposition 4.2.2, we know that for consecutive operations if ci,j = ci′,j′ ∧
S(αdispense

i′,j′)− C(αdispense
i,j) < p→j,0 + p↑ + p→j′,0 then LS(αserve

i′,j′) = LS(αserve
i,j), otherwise

LS(αserve
i′,j′) = S(αdispense

i′,j′) − p↑ − p→0,j′ . Let us now fix S(αserve
i,j) = LS(αserve

i,j) for all
(i, j) ∈ O. This also fixes the intervals of the pipette state. For all consecutive
operations (i, j), (i′, j′) ∈ O where S(αdispense

i′,j′)− C(αdispense
i,j) ≥ p→j,0 + p↑ + p→j′,0, we

know that S(αserve
i′,j′) ≥ C(αserve

i,j) and hence are in different intervals of the pipette

state. On the other hand if ci,j = ci′,j′ ∧ S(αdispense
i′,j′)− C(αdispense

i,j) < p→j,0 + p↑ + p→j′,0
then S(αserve

i′,j′) = S(αserve
i,j), which satisfies the constraints on the pipette state as the

two serve variables are left aligned and have the same value.

Finally from Proposition 4.2.3, we know that given the seq(A) there does not
exist a subsequence γ ∈ Γc, where all consecutive pairs of operations (i, j), (i′, j′) ∈
γ have dispenses that are separated by S(αdispense

i′,j′)− C(αdispense
i,j) < p→j,0 + p↑ + p→j′,0.

Hence we know that there is at most Lc serve variables in each interval of the
pipette state of value c ∈ C. Therefore the cumulative constraint is satisfied and

114

CHAPTER 4. LIQUID HANDLING ROBOT SCHEDULING PROBLEM

thus the construction satisfies all of the constraints and is thus a solution.

Theorem 4.2.5 proves that it is possible to schedule all of the dispense variables
first and then fix the serve variables afterwards. Thus it is possible to separate
the search into two search phases. The first phase searches only on the dispense
variables. The second search phase simply assigns all the remaining variables to
their latest starting time.

An alternative construction that does not guarantee a solution is based on
assigning the serve variables to their earliest start times according to the SetTimes
strategy (recapped in Godard et al. (2005)). This construction is important as Set-
Times is used extensively by CP Optimizer. These strategies consider interval vari-
ables by increasing the indicative start (or end) times and trying to schedule them
as close as possible to their indicative times. For objectives such as makespan this
means that variables are assigned to their earliest start time. As described in La-
borie et al. (2018), when a failure occurs, in the right branch the decision variable
is marked "unselectable" and will remain so until constraint propagation removes
from the current domain of the variable the literal that was used on the left branch.

Proposition 4.2.6. Given A, using SetTimes to fix the start times of serve variables is
incomplete.

Proof. The proof is a simple counter example that is visualised in Figure 4.6. Con-
sider a problem with three jobs |J| = 3, each job having one operation each |Oj| = 1
for all j ∈ J. Let p↑ = 20, p↓ = 10 and p→j,j′ = |j− j′| for all j, j′ ∈ J ∪ {0}. All jobs
require the same chemical c, which has a limit Lc = 2. Fix the start time of the dis-
pense intervals for operations (1, 1), (1, 2), (1, 3) to 21, 61, 73 respectively. From the
end-at-end constraints, the end of the serve variables are fixed. Moreover after prop-
agation S(αserve

1,1) = 0. As S(αdispense
1,3)−C(αdispense

1,2) < p→2,0 + p↑+ p→0,3, we know that
due to the always-equal constraints on the state function that LS(αserve

1,2) = LS(αserve
1,3)

and ES(αserve
1,2) = ES(αserve

1,3). Note that an assignment of ES(αserve
1,2) = 0 would

clearly violate the cumulative constraint as this would propagate ES(αserve
1,3) = 0

and thus the three serve variables would overlap and exceed the carrying limit
of their required chemical. Recall that in CP constraints are considered separately
and domain reductions that rely on their conjunction are not inferred. Hence de-
spite these failures the domains on the early start of the serve variables would not
be reduced as they rely on the conjunction of the cumulative constraints and the
always-equal constraints on the pipette state. Therefore αserve

1,2 and αserve
1,3 both have

the same earliest and latest starting times and assigning either variable to their ear-

115

4.3. LOWER BOUNDS

liest starting time will lead to a failure, SetTimes will fail. Furthermore as a solution
exists where ES(αserve

1,2) = ES(αserve
1,3) = 32, SetTimes is incomplete.

CP Optimizer has a time-enumerated version of the SetTimes strategy. Hence
their default search is still complete. In the time-enumerated version when a failure
occurs, in the right branch the literal assigned on the left branch is simply removed
from the domain. For example, for the counter example used in the proof of Propo-
sition 4.2.6, after the solver tries and fails to assign both αserve

1,2 and αserve
1,3 to start at

time 0, the solver will then try to assign one of these variables to time 1, and then
time 2 and so on until a feasible solution is found. From Theorem 4.2.5 we know
that a feasible construction is possible for assignment A when the serve variables
are assigned to their latest starting time so clearly the time-enumerated version of
the SetTimes strategy will also lead to a feasible construction eventually.

Figure 4.6: Counter example in proof of Proposition 4.2.6

4.3 Lower Bounds

Here we consider how lower bounds can be obtained to the problem based on the
(1) the temporal network, and (2) the minimum resource required on the robot.

4.3.1 Temporal-Based

The first lower bound is based on the precedences, or the temporal network, of the
problem. Intuitively the temporal-based lower bound represents the least amount
of time required to schedule a single job j from the set of jobs J. Clearly it is not

116

CHAPTER 4. LIQUID HANDLING ROBOT SCHEDULING PROBLEM

possible to schedule all jobs in less time than it is to schedule a single job in that

set. Firstly we define a strengthened minimum time lag, `
min
i,j between consecutive

operations, (i, j) and (i + 1, j) from the same job, j ∈ J \ {Nj},

`
min
i,j :=

max(`min
i,j , p↓ + p↑ + p→0,j + p→j,0) if ci,j 6= ci+1,j

max(`min
i,j , p↓) otherwise

If consecutive operations from the same job require different chemicals then
the robot must travel back to the vials to aspirate more chemical between these
two operations. On the other hand, if the consecutive operations from the same
job require the same chemical, then the robot still must dispense the first unit of

chemical before it can dispense the second. Clearly `
min
i,j ≥ `min

i,j for all i ∈ Oj and
j ∈ J. Now we can express the temporal-based lower bound as follows,

LBtemp = max
j∈J

(p↑ + p→0,j + ∑
i∈Oj\{nj}

`
min
i,j + p↓) (4.5)

4.3.2 Resource-Based

The second lower bound is based on the minimum time the robot requires to com-
plete all the possible operations. For this lower bound we ignore the precedences,
and thus the minimum and maximum time lags, between consecutive operations
from the same job. Hence it is now possible to schedule operation i + 1 before
operation i. We first define the minimum number of dispenses and aspirates of
chemical c ∈ C as n↓c := |Oc| and n↑c := d |O

c|
Lc
e respectively. The resource-based

lower bound is then defined as follows,

LBres = ∑
c∈C

(n↓c ∗ p↓︸ ︷︷ ︸
(i)

+ n↑c ∗ p↑︸ ︷︷ ︸
(ii)

+ ∑
k∈[1,n↑]

(k−1)Lc
max

(i,j)∈Oc
(p→0,j + p→j,0)︸ ︷︷ ︸

(iii)

)−max
j∈J

p→j,0︸ ︷︷ ︸
(iv)

(4.6)

where the operator
k

max refers to the k′th largest element in the specified set.
The first two terms, (i) and (ii), represent the minimum amount of time required
dispensing and aspirating, respectively. The third term, (iii), represents a valid
lower bound on the amount of travel time required. For each chemical, the opera-
tions are effectively placed in groups of size Lc (with one group representing the

117

4.4. COMPUTATIONAL STUDY

remainder) according to how much time it takes to travel to and from the job. For
each of these groups we only consider the maximum time. The main idea, is that
we might travel past the other locations of operations in this group during this
travel time. This is true when the jobs are arranged in a straight line as depicted in
Figure 4.1. The forth term, (iv), subtracts the time to return from the furthest job
to the vial to account for the fact that the makespan is measured from the end of
the last dispense operation.

4.4 Computational Study

4.4.1 Data

To test the different models we have generated a data set of 24 instances where
parameters are chosen from intervals that try to replicate the structure of the real-
world problem while also incrementally increasing the number of jobs and opera-
tions being considered.

All jobs in an instance have the same number of operations denoted by m, i.e.,
|Oj| = m for all j ∈ J. The size of an instance is represented by a tuple, (n, m, |C|),
which describes the number of jobs, number of operations per job and the num-
ber of unique chemicals respectively. For all instances the processing times are as
follows, p→j,j′ = |j

′ − j| for all j, j′ ∈ J ∪ {0}, p↓ = 10, p↑ = 20. The carry limit Lc

for individual chemicals c ∈ C within an instance is taken as a random integer
between 2 and 5. The minimum time lags, `min

i,j are selected at random from the

interval [p↓, λ ∗ (p↓ + p↑ + 2n)], to allow the minimum time lags to increase as
the number of jobs increases, where λ is a scaling parameter. In Edwards et al.
(2018) the 18 instances considered all had λ = n. This resulted in instances where
the temporal lower bound dominated the resource lower bound. In this chapter
we consider six more instances where the resource lower bound dominates the
temporal lower bound and for these instances λ = n/4.

In practice it is trivial to design the parameters of the instance to ensure feasibil-
ity. As such, in this study we restrict ourselves to feasible instances. Consequently,
the minimum time lag is used when constructing the corresponding maximum
time lag, by introducing factor εi,j = max(`min

i,j , p↓ + 2n + p↑), which is the maxi-
mum of the minimum time lag and the minimum amount of time the robot requires
to complete consecutive operations for the furthest job if the operations require
different chemicals. The maximum time lags, `max

i,j and are selected at random be-

118

CHAPTER 4. LIQUID HANDLING ROBOT SCHEDULING PROBLEM

tween `max
i,j ∈ [εi,j, nεi,j]. This allows the maximum time lags to increase when more

jobs are considered. We round the minimum time lags and maximum time lags.

4.4.2 Preprocessing

As noted in the precedence based lower bound section, Section 4.3.1, it is possible
to strengthen the minimum time lags between consecutive operations from the
same job. Before all of the approaches mentioned we complete a preprocessing
step where the minimum-time lags are replaced by the strengthened minimum
time lags. All approaches benefit from this preprocessing step however no formal
study was completed to demonstrate the extent of this improvement.

4.4.3 Experimental Set Up

Experiments have been tested under the Windows 10 (64-bit) operating system
with 8GB RAM and Intel R© CoreTM i7-3537U, 2.5GHz processor. The MIP model
was implemented in Gurobi 7.0.2 and the CP model was implemented in IBM ILOG
CPLEX Optimization Studio V12.8.0 CP Optimizer. The MIP and CP approaches
for the full problems are given 4 threads and 10 minutes wall-time.

Table 4.1 summarises the different approaches being tested. Recall that for
CP3 we proved that it is possible to search first on the dispense variables and then
once they are all fixed search on the serve variables. CP3X is the CP3 model where
a search phase is added to complete the default search on the dispense variables.
Hence CP3X will use the time-enumerated version of SetTimes to schedule the
serve variables once the dispense variables have been fixed. CP3Y is the CP3 model
where again a search phase is added to complete the default search on the dispense
variables, after which a second phase is used to assign the serve variables to their
latest starting time. As of version 12.8.0 of CP Optimizer it is not possible to directly
implement this type of search phase on interval variables. Hence for each serve
variable an integer variable is introduced and a constraint is used to force the start
of the serve variable to equal this integer variable. It is then possible to add a
search phase on these integer variables and assign each to the largest value in their
domain.

4.4.4 Results

Unless specified otherwise, a result is displayed in bold if it corresponds to the best
solution found and an asterisk (*) is used to indicate that corresponding approach

119

4.4. COMPUTATIONAL STUDY

Table 4.1: A summary of the different approaches being tested.

Problem Acronym Section Notes

Full

MIP B.1
CP1 4.2.1
CP2 4.2.2
CP3 4.2.3
CP3X 4.2.3 Default search to schedule serve variables
CP3Y 4.2.3 Serve variables assigned to their LST

could prove that the solution found is the optimal solution within the specified
time-limit.

The results of the complete approaches are summarised in Table 4.2. The col-
umn lb represents the best known lower bound on the instance. For all models
ub and t(s) represent the best objective value found and the wall time that the
algorithm requires to prove optimality respectively. The upper bound column is
left empty if no feasible solution is found. The time column is left empty if the
algorithm does not prove optimality and thus terminates after 10 minutes. Finally
the MIP model has the additional column, lazy, which represents the number of
lazy-constraints that were added in the MIP approach.

120

CHAPTER 4. LIQUID HANDLING ROBOT SCHEDULING PROBLEM

Ta
bl

e
4.

2:
Be

st
So

lu
ti

on
(1

0
m

in
ut

es
)

In
st

.
Si

ze
lb

M
IP

C
P1

C
P2

C
P3

C
P3

X
C

P3
Y

la
zy

ub
t(

s)
ub

t(
s)

ub
t(

s)
ub

t(
s)

ub
t(

s)
ub

t(
s)

1
(3

-5
-2

)
36

1
7

36
1*

3.
69

36
1

-
36

1*
2.

51
36

1*
0.

37
36

1*
0.

57
36

1*
0.

74
2

(3
-5

-3
)

47
7

-
47

7*
3.

12
47

7
-

47
7*

4.
89

47
7*

0.
93

47
7*

0.
75

47
7*

1.
02

3
(3

-5
-5

)
58

8
-

58
8*

8.
62

58
8

-
58

8*
9.

82
58

8*
1.

43
58

8*
1.

51
58

8*
2.

43
4

(5
-5

-2
)

70
7

54
71

6
-

71
6

-
70

7*
10

.5
2

70
7*

1.
71

70
7*

1.
15

70
7*

2.
43

5
(5

-5
-3

)
69

6
12

74
9

-
70

7
-

69
6*

28
.0

0
69

6*
4.

05
69

6*
3.

25
69

6*
4.

20
6

(5
-5

-5
)

64
4

9
64

9
-

64
4

-
64

4*
11

.5
2

64
4*

3.
47

64
4*

2.
68

64
4*

3.
70

7
(5

-1
0-

2)
11

87
-

-
-

13
41

-
13

59
-

13
27

-
13

39
-

13
27

-
8

(5
-1

0-
3)

12
61

-
-

-
12

67
-

12
67

-
12

61
*

46
3.

00
12

61
-

12
73

-
9

(5
-1

0-
5)

13
35

-
-

-
14

75
-

13
35

-
13

35
*

18
7.

16
13

35
*

15
9.

44
13

35
*

30
2.

07
10

(1
0-

10
-2

)
28

91
-

-
-

30
77

-
28

91
*

32
4.

82
28

91
*

33
.6

0
28

91
*

53
.0

2
28

91
*

18
6.

03
11

(1
0-

10
-3

)
27

00
-

-
-

30
76

-
28

19
-

27
67

-
27

56
-

27
63

-
12

(1
0-

10
-5

)
29

73
-

-
-

33
46

-
30

24
-

29
80

-
29

78
-

29
74

-
13

(2
0-

10
-2

)
48

34
-

-
-

66
08

-
54

91
-

52
00

-
52

33
-

52
40

-
14

(2
0-

10
-3

)
37

06
-

-
-

67
92

-
44

05
-

42
65

-
42

26
-

43
07

-
15

(2
0-

10
-5

)
44

68
-

-
-

72
88

-
52

06
-

51
73

-
52

39
-

51
30

-
16

(1
5-

20
-2

)
10

34
9

-
-

-
11

40
4

-
10

34
9*

59
1.

46
10

34
9*

10
6.

94
10

34
9*

14
2.

28
10

34
9*

32
.7

2
17

(1
5-

20
-3

)
10

70
7

-
-

-
13

83
6

-
10

70
7*

54
2.

80
10

70
7*

45
.2

8
10

70
7*

19
.1

2
10

70
7*

9.
38

18
(1

5-
20

-5
)

11
23

4
-

-
-

17
08

1
-

11
57

1
-

11
23

4*
19

6.
76

11
23

4*
12

.8
2

11
23

4*
22

.2
2

19
(3

0-
20

-2
)

15
03

6
-

-
-

-
-

34
52

2
-

17
89

0
-

17
26

5
-

17
19

7
-

20
(3

0-
20

-3
)

15
47

4
-

-
-

46
00

4
-

-
-

19
10

0
-

18
07

0
-

17
97

0
-

21
(3

0-
20

-5
)

17
98

4
-

-
-

42
35

2
-

40
76

4
-

22
44

7
-

21
34

3
-

21
12

5
-

22
(2

0-
30

-2
)

23
34

3
-

-
-

-
-

25
27

7
-

23
34

3*
48

7.
49

23
35

3
-

23
34

3*
69

.0
7

23
(2

0-
30

-3
)

25
08

7
-

-
-

-
-

90
15

0
-

25
08

7*
35

0.
66

25
08

7*
15

4.
99

25
08

7*
71

.8
0

24
(2

0-
30

-5
)

23
04

8
-

-
-

-
-

19
75

69
-

24
12

3
-

23
45

2
-

23
34

4
-

121

4.4. COMPUTATIONAL STUDY

The lower bounds determined by the different methods are summarised in
Table 4.3. The column temp-lb and res-lb are the temporal and resource-based lower
bounds respectively. The remaining six columns represent the lower bounds ob-
tained by the different approaches after 10 minutes solve time respectively. These
values are left blank if the lower bounds are the same as the temporal based lower
bound.

Table 4.3: Lower Bounds

Inst. Size temp-lb res-lb MIP CP1 CP2 CP3 CP3X CP3Y

1 (3-5-2) 292 270 361 301 361 361 361 361
2 (3-5-3) 366 250 477 - 477 477 477 477
3 (3-5-5) 396 342 588 - 588 588 588 588
4 (5-5-2) 692 514 - - 707 707 707 707
5 (5-5-3) 664 490 - - 696 696 696 696
6 (5-5-5) 624 538 - - 644 644 644 644
7 (5-10-2) 1134 1156 - 1144 1164 1177 1187 1170
8 (5-10-3) 1045 1022 - - 1073 1261 1111 1076
9 (5-10-5) 1178 1178 - - 1193 1335 1335 1335

10 (10-10-2) 2833 1788 - - 2891 2891 2891 2891
11 (10-10-3) 2664 2084 - - 2698 2704 2704 2704
12 (10-10-5) 2973 2188 - - - - - -
13 (20-10-2) 2130 4834 4796 2136 2159 3461 3461 3461
14 (20-10-3) 2229 3706 3487 - 2269 2279 2279 2279
15 (20-10-5) 2025 4468 4307 2046 2069 2920 2920 2920
16 (15-20-2) 10349 6216 - - - - - -
17 (15-20-3) 10707 6150 - - - - - -
18 (15-20-5) 11234 6672 - - - - - -
19 (30-20-2) 7327 15036 13589 - 7364 10693 10693 10693
20 (30-20-3) 7494 15474 14139 7496 - 11186 11186 11186
21 (30-20-5) 7641 17984 17824 7647 - 14195 14195 14195
22 (20-30-2) 23324 10974 - - 23336 23343 23343 23343
23 (20-30-3) 25087 11798 - - - - - -
24 (20-30-5) 23048 119176 - - - - - -

Table 4.4 compares the solutions found by the CP models after 1 minute solve
time. The column lb refers to the best lower bound found by any model on the full
problem.

In Table 4.2 one can clearly see gradual improvement on the results from the
MIP model to CP3Y, i.e., from left to right. The MIP model does not scale well. The
number of arc variables is in the order of the square of the number of operations.
Furthermore the big M notation in the linking constraint is very weak. We believe
that these two factors limit the viability of this approach.

Although the heuristics in CP Optimizer allow the CP1 model to find a number
of feasible solution, CP1 also has a problem with scaling. For instances 19 and 22-

122

CHAPTER 4. LIQUID HANDLING ROBOT SCHEDULING PROBLEM

Table 4.4: Comparison of CP approaches (1 minute)

Inst. Size lb CP1 CP2 CP3 CP3X CP3Y

1 (3-5-2) 361 361 361* 361* 361* 361*
2 (3-5-3) 477 477 477* 477* 477* 477*
3 (3-5-5) 588 588 588* 588* 588* 588*
4 (5-5-2) 707 716 707* 707* 707* 707*
5 (5-5-3) 696 707 696* 696* 696* 696*
6 (5-5-5) 644 644 644* 644* 644* 644*
7 (5-10-2) 1167 1396 1392 1351 1339 1327
8 (5-10-3) 1073 1372 1296 1296 1282 1282
9 (5-10-5) 1211 1513 1378 1371 1360 1360
10 (10-10-2) 2891 3283 2896 2891* 2891* 2912
11 (10-10-3) 2700 3158 2861 2816 2833 2769
12 (10-10-5) 2973 3599 3068 3059 2978 2980
13 (20-10-2) 4386 10245 9371 5430 5349 5355
14 (20-10-3) 3706 8197 4643 4584 4428 4462
15 (20-10-5) 4468 9416 5472 5431 5390 5247
16 (15-20-2) 10349 15412 34930 10509 10473 10349*
17 (15-20-3) 10707 21173 49024 10707* 10707* 10707*
18 (15-20-5) 11234 22649 92468 11641 11234* 11234*
19 (30-20-2) 15036 - - 32982 19361 19110
20 (30-20-3) 15474 - - 20277 20138 19863
21 (30-20-5) 17984 - - 35517 23571 23480
22 (20-30-2) 23343 - 96632 24176 23458 23343*
23 (20-30-3) 25087 - - 26615 25855 25097
24 (20-30-5) 23048 - - 44194 24013 23816

24 CP1 is unable to even find a feasible solution within 10 minutes. Furthermore
CP1 is not able to prove any instances to optimality and is only able to marginally
improve the lower bounds from the temp-lb in 6 instances. This highlights the weak
propagation between the two sets of variables, (1) the aspirate and carry variables
and (2) the cover and dispense variables.

CP2 significantly improves the results from CP1. CP2 is able to prove opti-
mality for 9 instances. It also either finds the same or better solution of both MIP
and CP1 on all instances except instance 20 where it cannot find a feasible solu-
tion within 10 minutes. CP2 also manages to improve the lower bound from the
temporal lower bound on 16 of the instances. Clearly CP2 appears to considerably
outperform CP1, which is attributed in the stronger propagation between aspirate
and dispense variables, as well as using a single cumulative expression to keep
track of the chemical being carried.

CP3 considerably improves the results from CP2. In fact, CP2 does not out
perform CP3 on a single instance. For the larger instances the improvement ob-
tained by CP3 is very significant, for example consider the improvement for in-

123

4.4. COMPUTATIONAL STUDY

stance 24 from 197,569 to 24,123. Furthermore CP3 manages to prove 14 instances
to optimality, five more than CP2. The improvement between CP3 and CP2 can
be attributed to the stronger propagation achieved through the additional prece-
dence constraints that provide more information to the precedence graph, the nor-
malised cumulative expression being able to use the edge finding propagator, and
increasing the size of the serve variables. Remodelling the serve variable had the
additional benefit of making the aspirate variable and the position state redundant
and hence reduced the size of the model. The stronger propagation is reflected by
the tighter lower bounds found by CP3 compared to CP2. This is particularly clear
on the instances where the resource lower bound dominates the temporal lower
bounds (instances 13-15, 20-22).

The search phases in general allow for better solutions to be found faster. This
is true for both the solutions found after 1 and 10 minutes but is particularly clear
on larger instances of the former. For instances 15-21,23-24 in Table 4.4 the solution
found by CP3 is not better than the solution found by CP3X, which is itself not
better than the solution found by CP3Y. Despite having to introduce additional
integer variables to implement CP3Y, in general it tends to find the best solutions.
Intuitively this makes sense as once the dispense variables are fixed, a solution is
constructed directly by assigning the start time of the serve variables to their latest
starting time. Whereas we know that there are situations for which CP3X must
enumerate the time horizon to obtain a solution after the primary search phase,
which would logically take more time. The integer variables introduced by CP3Y
do incur some additional overhead. As search phases are ignored during FDS, as
of CP Optimizer version 12.8, these additional variables result in a larger search
tree.1 This is highlighted by the inferior lower bounds found by CP3Y on instances
7 and 8 compared to CP3 and CP3X. Furthermore CP3X and CP3 both obtain a
better solution on instance 14 than CP3Y. We suspect this is also a result of the fact
that the CP Optimizer uses an adaptive LNS during the search, so accepting an
incumbent solution may lead the search to different areas. It is believed that the
results of CP3Y could be even further improved if CP Optimizer allowed for the
desired search phase to be implemented directly on the serve variables without the
need to introduce additional integer variables.

1Thank you to Dr Philippe Laborie for making this clarification.

124

CHAPTER 4. LIQUID HANDLING ROBOT SCHEDULING PROBLEM

4.5 Conclusion

In this chapter we introduced the LHRSP, which is a sub-problem of the real-world
problem. We proposed and studied three different CP Optimizer models (CP1,
CP2, CP3). A major contribution of this chapter is that for CP3, we proved that
it is possible to only search over a subset of the variables and then extend this
partial assignment to a complete solution. We compared two different methods for
implementing the corresponding seach phases (CP3X and CP3Y).

The best CP model, CP3, demonstrates the benefits that can be obtained by
modelling problems with a strong temporal network of which the maximally con-
nected components represent logical choices for schedule generation schemes. Fur-
thermore CP3 demonstrates the benefits that can be obtained through modelling
cumulative expressions such that the edge-finder constraint propagator can be
used. Finally CP3X and CP3Y also demonstrate how search phases can be used
to only search on a subset of decision variables. This is particularly true for CP3Y,
which constructs a solution directly once the first search phase is completed. This
resulted in a considerable reduction of the time taken to find good quality solu-
tions.

In the next chapter we generalise the insight used in this chapter that once a
subset of the variables are fixed and constraint propagation reaches a fixed point, it
is always possible to extend the partial assignment to a complete solution. We then
consider a more general version of the LHRSP, and demonstrate that searching
over a subset of the variables is key to good solver performance.

125

CHAPTER 5
Driving Variables and Lower-Upper

Consistency

5.1 Introduction

In many practical applications of constraint programming (CP) it is often necessary
to introduce auxiliary variables into a model either because it is difficult to express
the constraints at all in terms of the existing variables, or to allow the constraints to
be expressed in a form that would propagate more efficiently (Smith, 2006). As seen
in the previous chapter, an immediate consequence of increasing the number of
variables however is that unless the additional variables are dealt with effectively,
they can dramatically increase the size of the search tree as there are more variables
to choose from when branching. As a result, there has been much research in the
literature that explores how assignments over subsets of variables can be extended
to complete solutions.

In this chapter we formalise the notion of driving variables. To our knowledge,
the term driving variables was first used by Wallace (1996) to informally describe
the set of variables whose “final values define a complete solution". To that effect,
we consider a subset of the variables to be driving variables if once they are as-
signed values and constraint propagation reaches a fixed point, a search strategy is
known to always generate a complete assignment without backtracking. Note that

126

CHAPTER 5. DRIVING VARIABLES AND LOWER-UPPER CONSISTENCY

there may be more than one subset that can be considered as the driving variables.
A key distinguishing characteristic of driving variables is that once the driving
variables have been assigned, it is possible to reason about the domains of the
remaining unfixed variables at a fixed point due to the local consistency rules of
the various filtering algorithms independent of the constraint structure. Although
the chapter introduces and distinguishes driving variables from related concepts
in detail, a very high-level summary is as follows.

• Functional dependencies, a concept more associated with relational databases
(Watt and Eng, 2014), rely on the filtering of individual constraints to fix
dependent variables independent of the structure of the constraints. However
they result in all variables becoming fixed through propagation, which is
often too strict of a condition to be applied in many situations.

• W-cutsets of constraint graphs (Dechter, 2006), and their generalisations, use
relational consistency rules to reason about complete assignments, yet this
reasoning is restrictively based on the structure of the corresponding con-
straint graph. Consequently, this excludes other local consistency rules such
as the one introduced in this chapter.

• Backdoors to typical case complexity (Williams et al., 2003) is a general frame-
work for reasoning about problems where for any assignment over a subset of
the variables there exists a polynomial-time algorithm that can either extend
the assignment to a full solution or prove that a solution does not exist. When
considering backdoors with respect to CP, a significant limitation arises when
considering the fact that in general reaching a fixed point by constraint propa-
gation requires pseudo-polynomial-time, which is technically not considered
polynomial (Hall, 2013). Consequently, by definition, backdoors exclude the
use of constraint propagation when extending the partial assignment to a full
solution. This is a significant restriction. If constraint propagation does not
reach a fixed point, then it is not possible to reason about the status of the
domains of the remaining variables based on the local consistency rules of
the filtering algorithms of the individual constraints.

To demonstrate how it is possible to reason about complete solutions based
on local consistency rules independent of constraint structure, we introduce the
novel concept of Lower-Upper (LU) consistency. LU consistency is a local consistency
rule requiring that for a given partition of variables in the scope of a constraint, it
is always possible to satisfy the constraint by assigning the first set of variables to
their lower-bound and the second set of variables to their upper-bound. If all con-

127

5.1. INTRODUCTION

straints are LU-consistent for the same partition of variables, a complete solution
can then be determined at a fixed point through the correct assignment of variables
in these sets. Admittedly, LU consistency is a very strict level of local-consistency
and most known filtering algorithms cannot ensure that level of consistency in
general. However, as will be demonstrated in this chapter, there are many useful
scenarios in which special cases of known filtering algorithms and consistency-
checks can become LU-consistent. In this context, driving variables can be seen as
the set of variables that once set, ensure that all constraints become LU-consistent
for a unique partition of the remaining variables.

In many applications of CP there exist sufficiently tight bounds on the size of
domains, in which case one could reasonably argue that fixed point computation
is tractable. In such a case, as proven in this chapter, driving variables are then
equivalent to (strong) backdoors. However, one of the strengths of CP comes from
its ability to efficiently reason over variables with very large domains. Such exam-
ples frequently arise in the field of scheduling, which is one of the most successful
application areas of CP (Laborie et al., 2018). In this chapter we motivate why
constraint-based scheduling approaches can often have very large domain sizes,
which serves to highlight the importance of considering fixed point complexity
explicitly and thus the need to differentiate driving variables from backdoors. We
then prove for many important global constraints in scheduling that there are nu-
merous special cases where various partitions of variables are LU-consistent. The
global constraints considered include four of the major classes of constraint types
in CP Optimizer: precedences constraints, cumulative function expressions, state
functions, and non-overlapping sequences.

The remainder of the chapter is structured as follows. Section 5.2 introduces
necessary definitions and terminology to allow a formal definition of driving vari-
ables and LU consistency to be stated. Section 5.3 reviews the related concepts from
the literature and clearly motivates and distinguishes the concepts introduced in
this chapter. Section 5.4 proves that a number of existing filtering algorithms and
consistency-checks from the scheduling-literature are LU-consistent in various
special-cases and for specific partitions. Section 5.5 then demonstrates the practi-
cal benefit that can be obtained by correctly accounting for driving variables on
the real-world scheduling problem that motivated this work. Finally, Section 5.6
provides a conclusion and suggests directions for future work.

128

CHAPTER 5. DRIVING VARIABLES AND LOWER-UPPER CONSISTENCY

5.2 Definitions

This section is divided into three parts. Firstly, we introduce some notation and
general definitions of constraint satisfaction problems (CSPs). Secondly, we define
the novel local consistency measure, LU-consistency, and demonstrate how LU con-
sistency can be used to extend partial assignments to complete solutions. Thirdly,
we formally define the term driving variables, and provide the main theorem of
the chapter which relates driving variables and LU-consistency.

5.2.1 Constraint Satisfaction Problems

A CSP is a tuple P := (V , C,D), where V denotes the set of decision variables, D
the set of domains, and C the set of constraints. Each variable x ∈ V is associated
with a finite domain, dom(x) ∈ D, of potential values. Each constraint C ∈ C is a
constraint over some subset of variables, denoted vars(C) ⊆ V , referred to as the
scope of the constraint. A constraint specifies the allowed combination of values for
variables in this scope. Given a constraint C, we use the notation t ∈ C to denote a
tuple t, which is an assignment of a value to each of the variables in vars(C) that
satisfies the constraint C. We use the notation t[x] to denote the value assigned
to variable x ∈ vars(C) by the tuple t ∈ C. A value assignment A : X → D is a
mapping defined on a subset of variables, X ⊆ V , to values in the appropriate
domains. An assignment satisfies constraint C if vars(C) ⊆ X and there exists t ∈ C
such that t[x] = A[x] for all x ∈ vars(C). The objective is to find an assignment
over all of the variables that satisfies all of the constraints.

We assume the domains of variables are totally ordered. The minimum and
maximum values in the domain dom(x) of a variable x are denoted by min(dom(x))
and max(dom(x)), and the interval notation [a, b) is used as a shorthand for the set
of values {a, a + 1, ..., b− 1}.

CP is a framework for solving CSPs by interleaving backtracking tree search
and constraint propagation. Backtracking tree search works by iteratively decom-
posing the problem into possible subproblems. In this chapter it is sufficient to
consider sub-domain subproblems, where problem P1 is a subproblem of P2, de-
noted P1 ⊆ P2, if both problems have identical variable and constraint sets, and
where each value in the domain of variables in P1 is also in the domain of the
associated variable in P2. Constraint propagation is the process of eliminating from
the domains of the variables those values, referred to as inconsistent values, that
can never participate in a solution. Algorithms that determine which values are

129

5.2. DEFINITIONS

inconsistent with respect to constraints are known as filtering algorithms for the
constraint. Filtering algorithms are designed to be fast, i.e. have polynomial-time
complexity and in many practical cases typically linear or log-linear, as they are
called frequently throughout search. Consequently, it is often too expensive for
filtering algorithms to remove all inconsistent values, i.e., they are incomplete. In-
stead filtering algorithms remove inconsistent values according to certain local
consistency rules. The filtering algorithms for the different constraints iterate until
either none of the filtering algorithms can prune a domain according to their local
consistency rules (a state that is known as a fixed point) or at least one of the do-
mains of the variables become empty (a state that is known as a failure). To make
explicit this process of constraint propagation, if P is the current problem being
solved, then we denote the problem at fixed point as P and observe that P ⊆ P .

At a fixed point the search branches by assigning an unfixed variable a value
from its domain according to some predescribed rule, known as a search strategy.
More formally, a search strategy is a tuple of two functions. The first function
defines a variable selection strategy, f variable, which takes the set of unfixed variables
as input and return a single variable from that set. The second function defines a
value selection strategy, f value, which returns a value from the domain of the selected
variable. At a fixed point, search branches by assigning the selected variable x to the
selected value v ∈ dom(x) based on the search strategy, and then again completing
constraint propagation. Let P|x=d ⊆ P be the subproblem created by assigning
x = d. Similarly, let P|A be the subproblem created by assignment A : X → D
over a subset of variables X ⊆ V . If propagation fails, then the search backtracks.
This process is continued until a complete assignment is found or the entire tree is
exhausted.

For optimisation problems, once a solution is found an extra constraint is
added to the model to ensure only solutions with better objectives than the incum-
bent can be found. Once the search tree is exhausted the last solution to be found is
guaranteed to be an optimal solution. Hence unless otherwise stated in this chapter
we will simply consider satisfaction versions of the problem.

5.2.2 LU Consistency

First we define the novel local consistency measure, LU consistency, and demon-
strate how LU consistency can be used to reason about complete solutions.

Definition 5.2.1 (LU consistency). A constraint C ∈ C is said to be LU-consistent
for the given partition of variables L, U ⊆ vars(C) if there exists t ∈ C such that

130

CHAPTER 5. DRIVING VARIABLES AND LOWER-UPPER CONSISTENCY

t[x] = min(dom(x)) for all x ∈ L and t[y] = max(dom(y)) for all y ∈ U.

If all constraints are LU consistent for the same disjoint partition of the vari-
ables, then at a fixed point a complete assignment can be obtained as follows,

Proposition 5.2.2. If all constraints of problem P are LU consistent with respect to the
same partition of the variables L, U ∈ V then at a fixed point P the complete assignment
A, where A[x] = min(dom(x)) for x ∈ L and A[y] = max(dom(y)) for y ∈ U, is a
feasible solution.

Proof. At a fixed point, filtering algorithms are no longer able to filter inconsistent
values and thus local consistency is ensured to the prescribed strength of the filter-
ing algorithms. Thus, if each constraint has a filtering algorithm that enforces LU
consistency with respect to the same partition L, U ∈ V then assigning all variables
in L to their lower bound and all variables in U to their upper bound satisfies each
of the constraints and thus ensures a feasible solution.

We now recount the definition of bounds consistency, as used by Lopez-Ortiz
et al. (2003), and show that bounds consistency and LU consistency are incompa-
rable, i.e., one does not necessarily imply the other. Bounds consistency is most
easily defined with respect to interval supports. Value v ∈ dom(x) of variable x
has an interval support with respect to constraint C if there exists a tuple t ∈ C
such that t[x] = v and t[y] ∈ [min(dom(y)), max(dom(y))], for every other variable
y ∈ vars(C).

Definition 5.2.3 (bounds consistency). A constraint C ∈ C is bounds consistent
if for each variable x ∈ vars(c) each of the values min(dom(x)) and max(dom(x))
has an interval support in C.

We note that LU consistency and bounds consistency are incomparable. If a
filtering algorithm is LU consistent for a given partition L, U ⊆ V then by definition
the lower bounds of each variable in L and the upper bounds of each variable in
U have an interval support, i.e., all based on the same tuple. However this does
not ensure the upper bounds of variables in L and the lower bounds of variables
in U have interval supports, and hence LU consistency does not imply bounds
consistency. Conversely, if a filtering algorithm is bounds consistent both the upper
and lower bounds of each variable has an interval support. However each support
may be based on a different tuple, which does not ensure for any specific partition
L, U ∈ V that there exists a solution to the tuple where t[x] = min(dom(x)) for
x ∈ L and t[y] = max(dom(y)) for y ∈ U.

As interval supports in bounds consistency may be based on different tuples,

131

5.2. DEFINITIONS

assigning any variable to their upper or lower bound may make the current lower
and upper bound values inconsistent. While LU consistency is in essence one-sided,
assigning all the variables to the appropriate bound is based on the same tuple and
hence fixing all values simultaneously to the required bound will definitely satisfy
that individual constraint.

We now define the notion of protected values and redundant constraints, and
discuss how they relate to LU consistency.

Definition 5.2.4 (protected values). The value d ∈ dom(x) of variable x ∈ vars(C)
is protected with respect to constraint C if for any tuple t ∈ C there exists another
tuple t′ ∈ C such that t′[x] = d and t′[y] = t[y] for all other y ∈ vars(C).

Observe that by definition if given some partition of variables L, U ∈ V , if each
value min(dom(x)) of variables x ∈ L and and each value max(dom(y)) of vari-
ables y ∈ U are protected, then the constraint is LU consistent with respect to that
partition. The definition of protected values can be seen as a more general description
of variable locks, which will be discussed in greater detail in Section 5.3.4.

Definition 5.2.5 (redundant constraints). A constraint C is redundant if every value
d ∈ dom(x) of every variable in the scope of the constraint x ∈ vars(C) is protected.

Again observe that it follows from the definition that if a constraint C is redun-
dant then it is LU consistent for every possible partition of the variables.

5.2.3 Driving Variables

In the introduction we informally described driving variables as a subset of vari-
ables such that once assigned values and constraint propagation reaches a fixed
point, a search strategy can be determined in polynomial time that will always gen-
erate a complete assignment without backtracking. To more explicitly define what
is meant by determining a search strategy in polynomial time that will always gen-
erate a complete assignment without backtracking, we introduce the notion of a
sub-strategy. The definition of a sub-strategy that follows is based on the definition
of a sub-solver defined with respect to backdoors (Williams et al., 2003).

Definition 5.2.6 (sub-strategy). A sub-strategy G takes as input a CSP, P , and sat-
isfies the following:

• (Trichotomy) G either rejects the input P , determines P correctly as unsatisfi-
able, or returns a search strategy (f variable, f value) that will lead to a complete
assignment without backtracking;

132

CHAPTER 5. DRIVING VARIABLES AND LOWER-UPPER CONSISTENCY

• (Efficiency) G can be determined in polynomial time;1

• (Trivial solvability) G can determine if P is trivially true (has no constraints)
or trivially false (has a contradictory constraint); and

• (Self-reducibility) if G determines P , then G determines every subproblem
P ′ ⊆ P .

The difference between a sub-strategy and a sub-solver is that sub-solvers re-
turn an explicit solution instead of a back-track free search strategy. Note that if
a sub-strategy can determine a complete solution explicitly then it is possible to
return that complete solution in the form of a back-track free search strategy where
the variable selection strategy picks any variable arbitrarily and the value selec-
tion strategy simply sets that variable to the value in the complete solution. This
approach is guaranteed to be back-track free as constraint propagation cannot re-
move any required values as they are known not to be inconsistent. Sub-strategies
are thus more general than sub-solvers as they can also reason about complete
assignments based on constraint propagation and thus the local consistency rules
of individual filtering algorithms, which due to the complexity of fixed point com-
putation cannot technically be completed by sub-solvers.

Definition 5.2.7 (driving variables). A nonempty subset X of the variables in a
problem P are driving variables if for any assignment, A : X → D, constraint
propagation will either fail, or reach a fixed point P |A for which there is always a
sub-strategy G.

We can now define the following theorem that relates driving variables and
LU consistency.

Theorem 5.2.8. Given a problem P and any assignment A over the subset of variables X,
if constraint propagation reaches fixed point P |A and each constraint C in this sub-problem
has a filtering algorithm that is LU consistent for the same partition of variables, then X
constitutes a set of driving variables.

Proof. This follows immediately from the definition of driving variables and Propo-
sition 5.2.2. For assignment A, if constraint propagation can reach a fixed point
and all constraints are LU-consistent for the same partition L, U ∈ V then a sub-
strategy that will always lead to a complete assignment without backtracking is
one where variables are chosen arbitrarily, the value selected for all variables x ∈ L

1Note that, in an effort to generalise backdoors, this definition accounts for the case where a
solution can be determined in polynomial time and then returned in the form of a search strategy,
where variables are set to their values in the found solution.

133

5.3. RELATED CONCEPTS

are then min(dom(x)) and the value selected for all variables in y ∈ U is then
max(dom(y)).

Therefore when considering driving variables with respect to LU consistency,
driving variables can be seen as the set of variables for which any assignment will
result in at least one of the filtering algorithms for every constraint becoming LU
consistent with respect to the same partition of variables.

5.3 Related Concepts

As discussed in the introduction there are a number of related concepts to driving
variables and LU consistency in the literature. We will introduce these concepts
with respect to our notation and then prove how these concepts relate to our work.

5.3.1 Function Dependencies

Functional dependencies is a concept that originated from the field of relational
database theory. With respect to CP and our notation, a functional dependency
is a single constraint C ∈ C whose scope can be partitioned into distinct sets,
X, Y ⊆ vars(C), such that once all of the variables in X are fixed all of the variables
in Y become fixed through propagation of this constraint. More generally, we say
that given two distinct subsets of the variables, X, Y ⊆ V , that Y is functionally
dependent on X if given any assignment over X either propagation determines an
inconsistency or at a fixed point all variables in Y are fixed. The following proposi-
tion states that functional dependencies are a special case of driving variables.

Proposition 5.3.1. Given a partition of the variable set X, Y ⊆ V where Y is functionally
dependent on X, then X represents a set of driving variables

It is possible for sets of variables to functionally dependent on each other.
These situations are ubiquitous in problems that incorporate multiple viewpoints.
Viewpoints are a concept first informally introduced by Geelen (1992) and then for-
mally defined by Law and Lee (2002). Multiple viewpoints combine two or more
models of the same problem and introduce functional dependencies such that as-
signments in one viewpoint can be translated into assignments in the others (Cheng
et al., 1999). In such problems, search can be constrained to only the variables from
one of the viewpoints and any feasible assignment will instantiate all of the depen-
dent variables, and this has been show to have practical benefit (Hnich et al., 2004).
Although restricting search based on functional variable dependencies has been

134

CHAPTER 5. DRIVING VARIABLES AND LOWER-UPPER CONSISTENCY

shown to improve practical performance, for our purposes the requirement that
all remaining variables are fixed through propagation of individual constraints is
too restrictive.

5.3.2 W-Cutsets and Constraint Graphs

Constraint graphs and w-cutsets are concepts introduced to demonstrate how rela-
tional consistency measures and the structure of constraints can be used to reason
about complete assignments. There has been a significant amount of work in this
area, for a more detailed introduction to the concepts we refer the reader to the
following textbook chapters (Dechter, 2003a,b,c, 2006).

A constraint graph is a graphical representation of a problem where each
node represents a variable and edges are introduced between pairs of nodes if the
associated variables are both contained in the scope of at least one constraint.2 An
ordered constraint graph is a constraint graph with a given ordering of the nodes.
Ordered constraint graphs are important with respect to backtrack free search in
CP as orderings can be implemented as the variable selection strategy. The nodes
adjacent to a given node x that also precede it with respect to the ordering are
called its parents. The width of a node in an ordered graph is its number of parents.
The width of an ordering is the maximum width of any node. The width of a graph
is the minimum width over all of the possible orderings of the graph. It is possible
to relate the width of the constraint graph to special types of relational consistency
measures.

An assignment over a subset of the variables X ⊆ V is called consistent if it
satisfies all the constraints C for which the scope of the constraint is a subset of
these variables, i.e., vars(C) ⊆ X. A problem is i-consistent if for any consistent
assignment over a subset of i− 1 variables there exists an instantiation of any other
variable such that the assignment over i variables is also consistent. Arc-consistency
and path-consistency corresponds to special cases of i-consistency where i equals
2 and 3, respectively. A problem is strongly i-consistent if it is j-consistent for all
j ≤ i. In his seminal work, Freuder (1982) famously proved that if a constraint
graph with has a width i − 1, and if it is also strongly i-consistent, then there a
is backtrack-free variable ordering. Furthermore, although it is NP-complete to
determine whether a graph G has width at most a given variable k (Arnborg et al.,

2An alternative representation is based on constraint hypergraphs (Dechter, 2006), where the scope
of each constraint is represented explicitly as a subset of variables known as a hyperedge, however
for simplicity we narrow the analysis to constraint graphs and then simply comment on extensions.

135

5.3. RELATED CONCEPTS

1987), when k is a fixed constant the graphs with width k can be constructed in
linear time (Bodlaender, 1993).

It is uncommon however that the width of the constraint graph is less than
the level of strong i-consistency. Methods have been proposed to try and achieve
this however by both increasing the level of strong i-consistency of the graph, and
by reducing the width of the graph. The latter is based on the concept of w-cutsets.
Given a constraint graph a subset of nodes is called a w-cutset if when the subset
is removed the resulting graph has an width less than or equal to w. A minimal
w-cutset of a graph has a smallest size among all w-cutsets of the graph.

Proposition 5.3.2. If X is a w-cutset to the constraint graph and the resulting problem is
strongly w+1-consistent at a fixed point, then X is also a set of driving variables.

Proof. The proof follows immediately from the various definitions. If X is a w-
cutset then any possible assignment over X results in a problem with a width of w.
Given that after constraint propagation the corresponding problem is strongly w+1-
consistent, we know from Bodlaender (1993) that there is a backtrack-free variable
ordering that can be determined in linear time. Therefore using this ordering as
the variable selection strategy and assigning those variables to any value in the
corresponding domain will lead to a complete solution.

Practically, there are a number of challenges of both determining w-cutsets
and enforcing strong i-consistency. Firstly, in general determining a minimal w-
cutset, and thus determining the driving variables of the problem, is intractable.
Secondly, strong i-consistency is what is known as a relative consistency measure
as it is based on subsets of variables being extended to larger subsets, not based on
the local consistency rules of the filtering algorithms of the constraints. As a result
enforcing strong i-consistency in typical CP solvers can require the addition of an
exponential number of constraints (Bessiere, 2006).

5.3.3 Strong Backdoors to Typical Case Complexity

A (strong) backdoor is a subset of variables that once fixed there is a known
polynomial-time algorithm, referred to as a sub-solver, that can either find a so-
lution for the remaining variables or determine that a solution does not exist
(Williams et al., 2003). Backdoors are particularly useful in understanding the ex-
cellent scaling behaviour of modern boolean satisfiability (SAT) solvers in many
practical instances, which appear to defy the theoretical intractability of the prob-
lem. With respect to SAT, a backdoor is a subset of variables that once assigned

136

CHAPTER 5. DRIVING VARIABLES AND LOWER-UPPER CONSISTENCY

values, the problem reduces to a tractable class of problems such as 2-SAT and
HornSAT. Although the definition of backdoors naturally holds for the more gen-
eral Constraint Satisfaction Problem (CSP), the requirement that the solver is a
polynomial-time algorithm is very restrictive for practical problems due to the
complexity of reaching a fixed point.

In CP, determining a fixed point for variables with finite domains by constraint
propagation in general takes pseudo-polynomial-time (Lhomme, 1993)3. Moreover,
fixed point computation has been shown to be weakly NP-complete even when
restricted to very simple constraints such as binary linear constraints (Bordeaux
et al., 2011). In contrast, determining a fixed point in SAT can be achieved in linear
time by unit-propagation (Zhang and Stickel, 1996). As pseudo-polynomial algo-
rithms are technically exponential functions of their input size, in the strict sense
they are not considered polynomial (Hall, 2013). Furthermore, as backdoors are
defined with respect to polynomial sub-solvers and fixed points are computed in
pseudo-polynomial-time, in general it is thus not possible to include constraint
propagation as part of the sub-solver. As a result, given a partial assignment of the
backdoor variables in CP, it is not possible to reason about the status of the domains
of the remaining variables based on the local consistency enforced by the filtering
algorithms of the various constraints. This is significantly limiting. Consequently,
the analysis of backdoors in CP in the literature to date appear to be largely theo-
retical and appear to primarily focus on extensionally represented constraints, i.e.,
constraints for which all possible value combinations are known (Gaspers et al.,
2017a,b).

Proposition 5.3.3. If X ⊆ V is a strong backdoor to problem P , then X is also a set of
driving variables.

Proof. If X is a strong backdoor to the problem P then for any assignment A :
X → D there exists a sub-solver to P|A that returns a satisfying assignment to
the remaining or concludes unsatisfiability. Due to the self-reducibility property
of sub-solvers we can use the sub-solver to P|A as the sub-strategy to P |A, noting
P |A ⊆ P|A.

In many CSPs there are upper bounds that can be assumed on the size of the
domains of the variables. In such cases the complexity of determining a fixed point
is consider fixed-paramater tractable, which is accepted to be polynomial solveable.
In such cases strong backdoors and driving variables and equivalent.

3This of course assumes that all filtering algorithms can be performed in polynomial-time.

137

5.3. RELATED CONCEPTS

Proposition 5.3.4. If X ⊆ V is a set of driving variables, and the size of the domains of
variables is bounded by some parameter k, then X is also a strong backdoor.

Proof. The sub-solver used for the backdoor can be determined by the following
three observations. Firstly, as k bounds the size of the domains of the remaining
variables, constraint propagation is now polynomial with respect to the number
of remaining variables. Secondly, a sub-strategy can be determined in polynomial
time. Thirdly, the sub-strategy can be used to determine a complete solution with-
out backtrack and thus constraint propagation is called at most n more times, where
n is the number of remaining variables. Hence the sub-solver is has polynomial-
complexity.

However there are other problems for which the size of the domains can be
very large. One area in particular where the size of domains are generally excep-
tionally large, or even unbounded, is in the application domain of scheduling. In
the next section we will discuss driving variables and LU consistency with respect
to some filtering algorithms used in constraint-based scheduling solvers.

5.3.4 Variable Locks

The notion of variable locks was first introduced by Achterberg (2007) to help over-
come the inaccessibility of dual information about the variables when considering
abstract constraints such as global constraints in CP. Informally, an up-lock is a con-
straint that blocks a variable from taking values towards its upper bound and a
down-lock is a constraint that blocks a variable from taking values towards its lower
bound. The notions of up-locks and down-locks have a clear resemblance to the
definition of LU consistency that is worth making explicit.

More formally, the notion of locks are defined with respect to whether a con-
straint is monotone decreasing or monotone increasing. With respect to our notation,
a constraint C is monotone decreasing (increasing) in variable xj, if for any assign-
ment t ∈ C, for all values in its domain less (greater) than t[xj], i.e. v ∈ dom(xj)

where v < t[xj] (v > t[xj]), there exists another feasible assignment t′ ∈ C, with
t[xk] = t′[xk] for all k 6= j and t′[xj] = v. Simply put, for any feasible assignment
it is possible to decrease or increase the value of the specific variable and ensure
feasibility of the individual constraint. We say that constraint C needs to down-
lock (up-lock) variable xj if and only if the constraint is not monotone decreasing
(increasing) in variable xj.

In the following theorem, we show how up-locks and down-locks can be

138

CHAPTER 5. DRIVING VARIABLES AND LOWER-UPPER CONSISTENCY

used to reason about LU consistency, but in an admittedly very simple and one-
directional manner.

Theorem 5.3.5. A constraint C ∈ C is LU-consistent for the disjoint partition of variables
L, U ⊆ vars(C) if all variables x ∈ L do not need a down-lock and all variables x ∈ U do
not need an up-lock.

Proof. Let t ∈ C be any feasible assignment to C. The proof is completed directly
by constructing an assignment t′[x] by changing the value of one variable at a time,
where t′[x] = min(dom(x)) for all x ∈ L and t′[x] = max(dom(x)) for all x ∈ U.

First consider any of the lower variables, xj ∈ L. As C does not need a down-
lock for xj, C is monotone decreasing in xj. Hence if xj is not set to its lower bound
in t, i.e., t[xj] 6= min(dom(x)), then by definition there exists a feasible assignment
t′ such that t′[xk] = t[xk] for all k 6= j and t′[xj] < t[xj]. Replace t with t′ and repeat
for the remaining lower variables.

Similarly, consider any of the upper variables, xj ∈ U. As C does not need an
up-lock for xj, C is monotone increasing in xj. Hence if xj is not set to its upper
bound in t, i.e., t[xj] 6= max(dom(x)), then by definition there exists a feasible
assignment t′ such that t′[xk] = t[xk] for all k 6= j and t′[xj] > t[xj]. Replace t with
t′ and repeat for the remaining upper variables.

As t′ is a feasible assignment, the constraint is LU-consistent for the specific
partitions L and U.

Note the inverse of the Theorem 5.3.5 is not necessarily true, i.e., if constraint
C is LU-consistent for the disjoint partition of variables L, U ⊆ vars(C), this does
not imply that the constraint does not need to down-lock each lower variable x ∈ L
and does not need to up-lock each upper variable x ∈ U. This comes from the fact
that ensuring a specific assignment exists for a constraint is not sufficient to imply
that individual variables are monotone increasing or decreasing with respect to
that constraint.

The key difference between LU consistency compared with variable locks is
that LU consistency is a local consistency measure and thus must reason about the
feasibility of all the variables in the scope of a constraint simultaneously. In con-
trast, locks consider individual variables of a constraint in isolation. The following
example demonstrates how LU consistency can observe additional scenarios to sat-
isfy a constraint than those observed by simply considering the locks on individual
variables.

139

5.4. LU CONSISTENCY IN SPECIAL CASES OF SCHEDULING CONSTRAINTS

Example 5.3.6. Consider the constraint

ax1 + b ≤ x2,

where a and b are fixed parameters and x1 and x2 are variables. For x1, the con-
straint needs an up-lock but not a down-lock. For x2, the constraint needs a down-
lock but not an up-lock. From the point of view of locks, it is only possible to
see that setting x1 to its lower bound and x2 to its upper bound will satisfy the
constraint. From the point of view of LU consistency however, as will be shown
explicitly in Section 5.4.1, setting both variables to their lower bound, both to their
upper bound, as well as the scenario observed from the perspective of locks, will
all satisfy the constraint.

The manner in which locks have been used in practice is subtly different to
how we utilise LU consistency in this chapter. Variable locks have been used for
a range of different purposes. Achterberg (2007) show how the number of up-
locks and down-locks (if any) of individual variables can be used to guide primal
heuristics such rounding heuristics, diving heuristics, and improvement heuristics.
Furthermore, in the case were a variable does not have any up-locks or down-
locks, that the variable can be fixed in a process known as dual fixing. In the recent
PhD thesis, Heinz (2018) investigates variable locks with respect to cumulative
scheduling problems in great detail. Variable locks were used to remove certain
variables from the scope of constraints and increase the strength of propagation of
specific constraints under a range of different conditions.

In this chapter LU consistency is used to solely reason about the subsets of
variables in a problem that can be extended to a complete solution once success-
fully fixed. We demonstrate how being able to reasoning about assigning subsets
of variables to values at the same time is an extremely powerful component of
LU consistency. By considering the assignment of variables simultaneously, the
conditions resulting in LU consistency are significantly different to those that are
considered by Heinz (2018) in the analysis of locks.

5.4 LU Consistency in Special Cases of Scheduling Con-
straints

Scheduling is one of the most successful application areas of CP (Laborie et al.,
2018). The success of constraint programming in scheduling is achieved based on

140

CHAPTER 5. DRIVING VARIABLES AND LOWER-UPPER CONSISTENCY

the combination of a range of factors. These factors can demonstrate why it is often
necessary for variables in the accompanying CSP models to have large domains,
and thus the need to consider the complexity of fixed point computation explicitly.
Scheduling problems can be modelled very naturally and compactly as CSPs. Typ-
ically integer variables represent the events (the starts and ends of intervals of time)
that may need to be scheduled, the domain of the variables represent the possible
times that the event can be executed, and the scheduling-specific global constraints
and filtering algorithms reason over the type and amount of resources required
by events, as well as the necessary precedence relations between pairs of events.
The recent introduction of interval variables and their respective global constraints
only further improve this modelling capability.

In scheduling problems, as in packing problems, it is often sufficient to only
reason over the upper and lower bounds of the domains of variables. This is a
consequence of two factors. Firstly, the vast majority of scheduling-related filter-
ing algorithms work by simply increasing the lower bound and decreasing the
upper bound of variables according to certain local consistency rules (Vilím, 2007).
Secondly, many scheduling problems have what are known as regular objective func-
tions. For a problem with a regular objective function it is never possible to improve
a solution by only starting events later. This quality means that when branching a
variable can always be set to its lower bound.

Due to the fact that both branching and filtering algorithms often only consider
the bounds of variables, some solvers do not explicitly enumerate the entire do-
mains of the variables. Instead it is sufficient to represent the domain of an integer
variable simply with two natural numbers: one for the lower bound, and one for the
upper bound. Filtering algorithms still work by increasing the lower bound and de-
creasing the upper bound, but now an inconsistency is detected if the upper bound
is less than the lower bound. This representation alleviates the computational over-
head of representing scheduling problems with very large time-horizons. In fact,
CP Optimizer represents these variable bounds using double-precision floating-
points and thus the assumed maximum bound on the size of the domains of the
variables is 252. Although this bound is clearly conservative for many practical
problems, it highlights the point that domains in many CSPs can be extremely
large and thus the fixed point complexity in CP should not be simply dismissed.

In this section we consider a number of filtering algorithms and consistency
checks for existing global constraints that arise in scheduling problems. The con-
straints considered here are motivated by the many different precedence con-

141

5.4. LU CONSISTENCY IN SPECIAL CASES OF SCHEDULING CONSTRAINTS

straints, sequence variables, cumulative function expressions, and state functions
incorporated in CP Optimizer. 4 In all of the constraints considered in this chap-
ter, filtering is achieved by increasing the lower bound and decreasing the upper
bound of the integer variables.

We consider interval variables α ∈ interval as considered by CP Optimizer.
In this chapter, we assume that all interval variables must be present. The analysis
presented in this chapter can be extended to consider optional interval variables
but largely in the trivial case where all optional interval variables are fixed to be
absent. Furthermore for shorthand let:

• the earliest start of an interval be denoted by ES(α) = min(dom(s(α)));

• the latest start of an interval be denoted by LS(α) = max(dom(s(α)));

• the earliest end of an interval be denoted by EE(α) = min(dom(e(α))); and

• the latest end of an interval be denoted by LE(α) = max(dom(e(α))).

Figure 5.1: A representation of an interval with a compulsory region.

α

ES(α) LS(α) EE(α) LE(α)

For consistency we will use A to represent the set of interval variables and
X(A) :=

⋃
α∈A{s(α) ∪ e(α)} for the corresponding set of integer variables, i.e., the

start and end integer variables associated with the set of interval variables A. As the
filtering algorithms work by updating the bounds on integer variables, we will use
the notation min(dom(x)) ← v, to for example state that the lower bound of vari-
able x is updated to some value v. Furthermore, as many of the filtering algorithms
consider interval variables with a compulsory region, let Comp(A) ⊆ A be the set
of intervals with a compulsory region, i.e., Comp(A) := {α ∈ A|LS(α) ≤ EE(α)}.
Figure 5.1 demonstrates how an interval variable with a compulsory region is vi-
sualised as a whisker-plot, the left whisker represents the ES(α), the left side of the
box represents the LS(α), the right side of the box represents the EE(α) and the
right whisker represents the LE(α).

4In CP Optimizer, many constraints are combined to form a global constraint under the hood by
the solver. For example, alwaysEqual and alwaysConstant define different interactions between
individual interval variables and a state function. For each state function, CP Optimizer combines
all of the individual constraints into one global constraint and has filtering algorithms on the global
constraint. Equivalent techniques exist for cumulative functions and sequence variables. Hence in
this chapter, we present simplified versions of these global constraints but cannot give a reference
as, to our knowledge, have not been made public by the team at CP Optimizer.

142

CHAPTER 5. DRIVING VARIABLES AND LOWER-UPPER CONSISTENCY

5.4.1 Inequality / Precedence Constraints

Consider the binary inequality constraint between two integer variables x, y ∈ X,

y ≥ x + a, (5.1)

where a is a constant. Inequality constraints are prevalent in scheduling problems
as they are used to represent generalised precedence relations. Filtering this con-
straint is achieved as follows

min(dom(y))← max(min(dom(y)), min(dom(x)) + a) (5.2)

max(dom(x))← min(max(dom(x)), max(dom(y))− a) (5.3)

It is often possible to group all inequality relations into a temporal network,
where nodes represent the events corresponding to integer variables and then, with
respect to Equation (5.1), an arc is drawn from the predecessor x, to the successor
y with arc-weight a. By grouping all inequalities into a temporal network, the
propagation of Equations (5.2) and (5.3) can be achieved by using shortest path
algorithms. Furthermore the structure of the temporal network can be used to help
construction heuristics find initial feasible solutions. Regardless, the basic filtering
rule offers a simple example of how LU consistency can be determined. First we
prove partitions of the variables for which the filtering rule enforces the inequality
constraint to be LU-consistent, then we prove a requirement on bounds of the
variables for which the constraint is redundant.

Proposition 5.4.1. The binary inequality constraint y ≥ x + a for integer variables
x, y ∈ X and constant a ∈ Z is LU-consistent with (1) L = {x, y}, U = ∅, (2) L =

∅, U = {x, y}, and (3) L = {x}, U = {y}.

Proof. From filtering rule (5.2) we know at a fixed point min(dom(y)) ≤ min(dom(x)+
a) and thus L = {x, y}, U = ∅ is LU-consistent. Similarly from (5.3) we have
max(dom(x)) ≤ max(dom(y))− a, and thus L = ∅, U = {x, y} is LU-consistent.
Finally since min(dom(x)) ≤ (max(dom(x)) and from (5.3) we have L = {x}, U =

{y} is LU-consistent.

Proposition 5.4.2. The inequality constraint is redundant if min(dom(y)) ≥ max(dom(x))+
a.

Proof. If max(dom(y)) ≥ min(dom(y)) ≥ max(dom(x)) + a ≥ min(dom(x)) + a,

143

5.4. LU CONSISTENCY IN SPECIAL CASES OF SCHEDULING CONSTRAINTS

hence filtering rules (5.2) and (5.3) would never be applied and constraint (5.1)
would always be satisfied for any choice of x and y.

An immediate consequence of Proposition 5.4.2 is that if one of the variables
x or y are fixed, then after propagation of the constraint the constraint will become
redundant.

5.4.2 Disjunctive with Setup Times

Many scheduling problems involve disjunctive resources which can only perform
one activity at a time. Examples of such a resource are workers, machines and
vehicles. From the point of view of the resource, a solution is a sequence of activities
to be processed. Beside the fact that activities in the sequence do not overlap in time,
common additional constraints on such resources are setup times or constraints on
the relative position of activities in the sequence. Here we present a basic version
of the disjunctive global constraint on interval variables,

DisjunctiveIntervals(A, T(α)α∈A, M)⇔
e(a) + M[T(a), T(b)] ≤ s(b) ∨ e(b) + M[T(b), T(a)] ≤ s(a) ∀a, b ∈ A,∧

(5.4)

lmin ≤ e(α)− s(α) ≤ lmax ∀α ∈ A (5.5)

The input parameters are (i) a set of activities A, (ii) for each activity α ∈ A a
non-negative integer is specified referred to as the type of the variable, and (iii) a
transition matrix M that represents the minimal non-negative distance that must
separate every two interval types in the sequence from the end of one and the start
of the next. Here we assume that M obeys the triangle inequality. The constraint is
satisfied if every pair is separated by the required distance (5.4) and if the length
of the interval variables are allowed (5.5).

A simple filtering algorithm for the above constraint is based on a time-table.
Figure 5.2 visualises how the filtering algorithm works. We will now show how the
earliest starting times of intervals can be updated by considering the timetables. A
symmetrical rule exists for the latest end but for simplicity we omit this.

For every compulsory interval b ∈ Comp(A) and every interval a ∈ A \ {b}, if

144

CHAPTER 5. DRIVING VARIABLES AND LOWER-UPPER CONSISTENCY

Figure 5.2: The time table filtering rule for DisjunctiveIntervals for a small example consider
three interval variables: A, B, C. The left side indicates before constraint propagation, the right side
indicates the regions after constraint propagation.

A
B

C

T(A) T(B) T(C)

A
B

C

T(A) T(B) T(C)

LS(b)− EE(a) < M[T(a), T(b)], then the following filtering rules can be enforced,

ES(a)← max(ES(a), EE(b) + M[T(b), T(a)]) (5.6)

EE(a)← max(EE(a), ES(a) + lmin(a)) (5.7)

Proposition 5.4.3. If EE(α) > LS(α) for all α ∈ A, then the constraint is LU-consistent
with (1) L = A, U = ∅ and (2) L = ∅, U = A.

Proof. We consider the case where L = X and U = ∅ and for the sake of contraction
assume the constraint is not LU-consistent for this partition. Hence we assume that
at a fix point where variables have non-empty domains fixing s(α) = ES(α) and
e(α) = EE(α) for all α ∈ A violates the constraint. From Proposition 5.4.1 we know
that inequalities in Equation 5.5 must be satisfied for this partition. Hence Equation
5.4 must be violated and thus there must exist a pair of interval variables a, b ∈ A
such that ES(b) < EE(a) + M[T(a), T(b)] and ES(a) < EE(b) + M[T(b), T(a)].
This implies that LS(b) − EE(a) ≥ M[T(a), T(b)] otherwise filtering algorithm
5.6 would ensure ES(a) ≥ EE(b) + M[T(b), T(a)], which would violate the as-
sumption that we are at a fixed point. Similarly LS(a)− EE(b) ≥ M[T(b), T(a)].
Rearranging we show that LS(b) ≥ M[T(a), T(b)] + EE(a) > M[T(a), T(b)] +
LS(a) ≥ EE(b) + M[T(b), T(a)] + M[T(a), T(b)]. As all values in the transition
matrix are non-negative, this implies that LS(b) > EE(b), which violates the con-
dition that EE(α) > LS(α) for all α ∈ A. A symmetrical argument can be made for
L = ∅, U = X.

Proposition 5.4.4. If EE(α)− LS(α) ≥ lmin(α) for all α ∈ vars(C), then the constraint
is LU-consistent with L = e(α) and U = s(α) for all α ∈ X.

Proof. From Propositions 5.4.1 and 5.4.2 the maximum and minimum length in-

145

5.4. LU CONSISTENCY IN SPECIAL CASES OF SCHEDULING CONSTRAINTS

equalities are LU-consistent and redundant respectively. Hence Equation 5.4 must
be violated and there must exist a pair of intervals a, b ∈ A such that ES(b) <

EE(a) + M[T(a), T(b)] and ES(a) < EE(b) + M[T(b), T(a)]. However at a fixed
point either LS(b)− EE(a) ≥ M[T(a), T(b)] or the filtering algorithm 5.6 would
ensure EE(b) + M[T(b), T(a)] ≤ ES(a) ≤ LS(b), which is a contradiction.

5.4.3 State Functions

It is often necessary to reason over the state of different resources throughout
a schedule. Typical examples include the type of tool in a machine, the type of
material present in a location, or the current temperature of an oven. Time may
be required to transition from one state to another, certain activities may only be
possible to be completed when the resource is in a given state. Moreover, it might
be a requirement that an activity begins or ends in line with the beginning or end
of a certain state. To this end, CP Optimizer, introduces the notion of a state function
(Laborie et al., 2018).

A state function f = ([sσ, eσ) : vσ)σ∈Ω is a set of non-overlapping intervals
where each interval σ ∈ Ω has a fixed start and end time, [sσ, eσ), and is associated
with a non-negative integer value vσ that represents the state of the function over
the segment. We define the domain of f as D(f) = ∪i∈[1,n][si, ei), i.e., the set of
points where the state function is associated with a state. For a fixed state function f
and a point t ∈ D(f), we denote [s(f , t), e(f , t)) the unique segment of the function
that contains t and f (t) the value of this segment. A state function can also be
endowed with a transition distance matrix M. If M[v, v′] is a transition distance
between state v and state v′, then ∀σ ∈ Ω, eσ + M[vσ, vσ+1] ≤ sσ+1.

Here we present a basic version of constraints on state functions over interval
variables,

StateIntervals(A, (vα,algns
α, algne

α)α∈A, M)⇔
∃ f = ([sσ, eσ) : vσ)σ∈Ω) s.t.

[s(α), e(α)) ⊆ [s(f , s(α)), e(f , s(α)), ∀α ∈ A (5.8)

algns
α ⇒ s(α) = s(f , s(α)), ∀α ∈ A (5.9)

algne
α ⇒ e(α) = e(f , e(α)), ∀α ∈ A (5.10)

f (s(α)) = v(α), ∀α ∈ A (5.11)

e(σ) + M[v(σ), v(σ + 1)] ≤ s(σ + 1), ∀σ ∈ Ω (5.12)

146

CHAPTER 5. DRIVING VARIABLES AND LOWER-UPPER CONSISTENCY

lmin ≤ e(α)− s(α) ≤ lmax ∀α ∈ A (5.13)

As input the constraint takes (i) a set of interval variables A, (ii) for each vari-
able α ∈ A a triple is defined that contains the required value v(α) the interval
can take, and two boolean values algns

α and algns
α that indicate the start and end

alignment property respectively, and (iii) a transition matrix M between all the
possible values. The constraint is satisfied if there exists a state function f such
that: every interval variable in the scope of the constraint is contained within a
single interval of the state function (5.8); if the interval is start aligned then the
start time of the interval variable aligns with the start time of the corresponding
interval from the state function (5.9); if the interval is end aligned then the end
time of the interval variable aligns with the end time of the corresponding interval
from the state function (5.10); the value of the state function in an interval is equal
to value required by all the corresponding interval variables (5.11); the intervals
of the state function respect the transition matrix (5.12); and the minimum and
maximum lengths of the interval variables are respected (5.13).

Figure 5.3: Time Table filtering of StateIntervals global constraint with three intervals, A, B and
C. The value required by A is 1 and the value required by B and C is 2. Interval C must be start
aligned to its corresponding state interval. On the left is the bounds and tentative state function
before propagation, whereas on the right is after propagation. Note the travel matrix between states
is sufficient that tentative intervals for B and C are merged. The latest start bound of C is updated
due to its alignment.

A
B

C

1 2

A
B

C

1 2

Tentative intervals of the state function can be inferred based on the cur-
rent bounds of the interval variables with a compulsory region. Figure 5.3 illus-
trates this on a small example. Let Comp(A) ⊆ A be the set of interval variable
such that EE(α) ≥ LS(α). For every α ∈ Comp(A) a tentative interval σ is con-
structed with s(σ) = LS(α), e(σ) = EE(σ), v(σ) = v(α), and vars(σ) = {α}. As
a number of the tentative intervals may be overlapping, the current state func-
tion is constructed by merging these overlapping intervals. More precisely, if two
tentative intervals σ1, σ2 must overlap, i.e., e(σ1) + M([v(σ1), v(σ2)]) ≥ s(σ2) or

147

5.4. LU CONSISTENCY IN SPECIAL CASES OF SCHEDULING CONSTRAINTS

e(σ2) + M([v(σ2), v(σ1)]) ≥ s(σ1), then they are merged into a single tentative in-
terval σ by s(σ) = min(s(σ1, s(σ2)), e(σ) = max(e(σ1, e(σ2)), v(σ) = v(σ1) = v(σ2)

and vars(σ) = vars(σ1) ∪ vars(σ2). If merging is not possible due to the required
values of the intervals, then an inconsistency is determined.

The final set of tentative intervals of the state function can be used to filter
domains on the interval variables. Firstly for every interval variable α ∈ A and
every tentative interval of the state function σ ∈ Ω if s(σ)− EE(a) < M[v(a), v(σ)]
and v(σ) ∩ v(α) = ∅, then the earliest start of α can be filtered according to the
following rules,

ES(α)← max(ES(α), e(σ) + M[v(σ), v(α)]) (5.14)

This is identical to how time-tabling is used to filter the bounds of interval
variables in the DisjunctiveIntervals constraint. Again a symmetrical rule exists
for propagating the latest start and end times but is omitted here. Filtering can also
be performed using the start and end alignment information. For every interval
with a compulsory region α ∈ Comp(A) that is start aligned, algns

α = 1, then the
following filtering rules can be implemented,

LS(α)← s(f , LS(α)) (5.15)

ES(α)← maxα′∈vars(σ):algns
α′=1(ES(α′)) (5.16)

The latest start time of the interval variable is filtered by Equation (5.15) to the
start time of the corresponding tentative interval in the state function. The earliest
start time is set to the maximum earliest start time of all other interval variables
and the latest start time can then be updated if necessary by Equation (5.16).

Proposition 5.4.5. If EE(α)− LS(α) ≥ lmin(α) for all α ∈ A, then the constraints on a
state function are LU-consistent with L = e(α), U = s(α).

Proof. For the sake of contradiction assume the partition is not LU-consistent.
From Propositions 5.4.1 and 5.4.2, the maximum and minimum length inequal-
ities are LU-consistent and redundant respectively. Thus there must not exist a
state function such that constraints (X-Y) hold. As all intervals have a compulsory
region Comp(A) = A, the set of tentative intervals Ω contains all the variables,
i.e.,

⋃
σ∈Ω vars(σ) = A. Thus based on how the tentative intervals are constructed

148

CHAPTER 5. DRIVING VARIABLES AND LOWER-UPPER CONSISTENCY

constraints 5.8 and 5.11 must be true. Constraints (5.9) must be true otherwise
filtering rule 5.15 must propagate which violates the assumption that we are at
a fixed point. Symmetrically 5.16 must hold. This leaves only constraint 5.12 to
be violated, however this is a contradiction as if there exists a pair of consecutive
intervals σ, σ + 1 ∈ Ω such that σ + M[v(σ), v(σ + 1)] > s(σ + 1) they would be
merged into a single tentative interval.

Finally we formalise two reasonably trivial propositions that account for situ-
ations where the StateIntervals constraint ensures that some values of variables
are protected. This is based on the insight that if all interval variables in the state
function either require the same value or do not require any alignment, then the
constraint is redundant.

Proposition 5.4.6. If all variables α ∈ A of a state intervals constraint require the same
value v and no interval requires alignment, i.e. algne

α = algns
α = 0, then the constraint is

redundant.

Proof. This comes directly from observing that all filtering is performed based on
either the compulsory regions of intervals requiring different values (5.14) or from
the same value but requiring alignment (5.15) and (5.16).

The previous proposition only really helps to identify that there are situations
where the StateIntervals constraint has no purpose. However this concept can be
applied to each interval variable to show that locally some specific values in their
domain might be protected. Firstly, let B(s, e, v) be the subset of interval variables
in A that might be affected by adding an interval to the state function from s to e
with value v. More explicitly, let B = {b ∈ A|[ES(b), LE(b)) ∩ [s−M[v(b), v], e +
M[v, v(b)]) 6= ∅}.

Proposition 5.4.7. For interval variable α not requiring start or end alignment and let
s ∈ [ES(α), LS(α)) and e ∈ [EE(α), LE(α)) be possible start and end times, respectively.
If all intervals b ∈ B(s, e, v(α)) require the same value v(b) = v(α) and also do not
require start or end alignment, algns

b = algne
b = 0, then s and e are protected.

Proof. Let t ∈ C be a solution to the constraint. The proof is completed by con-
structing a new solution t′ ∈ C such that t′[x] = t[x] for all x ∈ X(A \ {α}) and
t′[s(α)] = s and t′[e(α)] = e. As t ∈ C we know that there exists a state func-
tion f (t) = ([sσ, eσ) : vσ)σ∈Ω such that (5.8-5.12) is true and that the interval
inequalities 5.13 are also true. As t′ is constructed from t at a fixed point we im-
mediately get that 5.13 remains true. We construct a state function f ′ from f by

149

5.4. LU CONSISTENCY IN SPECIAL CASES OF SCHEDULING CONSTRAINTS

adding the additional tentative interval σ constructed for α to the intervals Ω of
the state function f of t. If there does not exist another interval σ′ ∈ Ω such that
e(σ) + M([v(σ), v(σ′)]) ≥ s(σ′) or e(σ′) + M([v(σ′), v(σ)]) ≥ s(σ), then σ is not
merged with any other intervals and constraints (5.8-5.12) remain true. If there
does exist such a σ, then by the definition of B(s, e, v) we know that for all variables
b ∈ vars(σ), v(b) = v(a), and algne

b = algns
b = 0 and thus constraints (5.8-5.12)

remain true.

5.4.4 Cumulative Expressions

Many scheduling problems must reason about the quantity of certain types of
resources over time and must ensure that this quantity never exceeds given ca-
pacities. Here we present a version of such a global constraint where an interval
variable can either increase or decrease the quantity of resource available at both
the start and the end of the resource and the capacity of the resource may vary over
time, inspired by cumulative functions in CP Optimizer. More explicitly,

ReservoirIntervals(A,(hs(α), he(α))α∈A, Ct)⇔

∑
x∈X(A):x≤t

hx ≤ Ct ∀t ∈ H (5.17)

lmin ≤ e(α)− s(α) ≤ lmax ∀α ∈ A (5.18)

As input, the constraint takes (i) a set of interval variables A, (ii) for each
variable α ∈ A a tuple containing hs(α), hs(α) ∈ Z that represents the amount
of resource added at the start and end of the interval respectively, and (iii) the
maximum capacity Ct of resource that can be used at time t ∈ H. The constraint
is satisfied if (5.17) the resource limit never exceeds the maximum capacity at any
time point and (5.18) the minimum and maximum lengths of the intervals are
respected.

The typical Cumulative constraint is a special case of the ReservoirIntervals
where Ct is constant for all t ∈ H, the length of the interval is fixed lmin

α = lmax
α

for all α ∈ A, resource is claimed at the start hs(α) ≥ 0 and the same quantity is
released at the end he(α) = −hs(α) for all α ∈ A.

Here we only present a consistency check that can be used on the constraint to
ensure that the constraint is still potentially feasible based on the current bounds
on the domains of the interval variables. We do not present any additional filtering

150

CHAPTER 5. DRIVING VARIABLES AND LOWER-UPPER CONSISTENCY

rules as to our knowledge they do not lead to any noteworthy cases of LU consis-
tency. Figure 5.4 provides an illustrative example of how the minimum capacity
profile is determined.

Firstly let X+, X− ⊆ X(A) be the subset of integer variables the produce and
consume resource respectively. More precisely,

X+ :=
⋃

α∈A:hs
α>0

s(α) ∪
⋃

α∈A:he
α>0

e(α)

X− :=
⋃

α∈A:hs
α<0

s(α) ∪
⋃

α∈A:he
α<0

e(α)

To check if the ReservoirInterval constraint can still possibly be feasible, a
minimum capacity profile can be inferred based on the bounds of the intervals.
The constraint is still potentially feasible if all integer variables in X+ start as late
as possible and X− start as early as possible, i.e.,

∑
x∈X+ :max(dom(x))≤t

hx + ∑
x∈X− :min(dom(x))≤t

hx ≤ Cmax
t , ∀t ∈ H (5.19)

The consistency check described by constraints (5.19) can be improved. For
example, consider the case where an interval variable α ∈ A represents the use of a
renewable resource, i.e., hs(α) = −he(α) > 0 and if the earliest end time is less than
the latest start time the existence of the interval will in fact reduce the minimum
capacity profile instead of increasing it. However, for the purpose of this section,
5.19) is sufficient.

Figure 5.4: The minimum capacity profile associated with a constraint with A = [a, b, c] associated
with tuples (2,−1), (−1, 0), (0, 2) respectively, and Ct = 2 for all t ∈ H except Ct = 1 for t ∈
[3, 5). The relevant bounds, namely LS(a), ES(b), EE(a), LE(c) are represented by a dashed line, the
capacity is the red line

A
B

C

151

5.4. LU CONSISTENCY IN SPECIAL CASES OF SCHEDULING CONSTRAINTS

Before considering LU consistency, we introduce the following subsets of inter-
val variables. We denote A∼∼, where∼∈ {+,−,=}, to represent the set of interval
variables depending on the amount produced or consumed at the start and end of
the activities. More precisely,

A++ := {α ∈ A|hs
α > 0∧ he

α > 0}
A+− := {α ∈ A|hs

α > 0∧ he
α < 0}

A+= := {α ∈ A|hs
α > 0∧ he

α = 0}
A−+ := {α ∈ A|hs

α < 0∧ he
α > 0}

A−− := {α ∈ A|hs
α < 0∧ he

α < 0}
A−= := {α ∈ A|hs

α < 0∧ he
α = 0}

A=+ := {α ∈ A|hs
α = 0∧ he

α > 0}
A=− := {α ∈ A|hs

α = 0∧ he
α < 0}

Note that here X(A==) is ignored as we can assume without loss of generality
that all interval variables considered by the ReservoirIntervals constraint have at
least some contribution of the resource profile. The start and end integer variables
can then be partitioned into those that will be set to their upper bound X→ and
those that will be set to their lower bound X←, as follows.

X→ := X(A++) ∪ X(A+=) ∪ X(A=+) ∪
⋃

α∈A+−
s(α) ∪

⋃
α∈A−+

e(α)

X← := X(A−−) ∪ X(A−=) ∪ X(A=−) ∪
⋃

α∈A−+
s(α) ∪

⋃
α∈A+−

e(α)

The following Proposition can now be stated.

Proposition 5.4.8. if (1) EE(α) − LS(α) ≥ lmin(α) for all α ∈ A+−, (2) LE(α) −
ES(α) ≤ lmax(α) for all α ∈ A−+, then the constraint is LU-consistent with L = X←

and U = X→.

Proof. At a fixed point, the consistency check (5.19) must hold otherwise we know
the constraint is infeasible. As X+ ⊆ U and X− ⊆ L, then the minimum capac-
ity profile will not change after the partial assignment is extended to a complete
solution and thus (5.17) holds. It remains to show that length inequalities (5.18)
are valid. This comes directly from noting that the start and end integer variables
associated with interval variables from A++, A+=, A=+, A−−, A−=, A=− are ei-
ther both in L or both in U and are thus futile. Furthermore, as it is given that

152

CHAPTER 5. DRIVING VARIABLES AND LOWER-UPPER CONSISTENCY

EE(α)− LS(α) ≥ lmin
α for all α ∈ A+− and s(α) ∈ U and e(α) ∈ L, the associated

minimum length is valid. A similar argument can be made for the A−+ interval
variables.

5.5 Case Study - A Liquid Carrying Robot Problem

5.5.1 Problem Description

The case study considers a version of the LHRSP presented in Chapter 4 of this
thesis that contains a number of added real-world complexities seen in the mo-
tivating industrial problem that. More explicitly, the new complexities consider
multiple methods for transferring different types of chemical as well as the fact
that the pipette must be washed at a specific location before coming in contact with
different type chemicals. We denote the problem in this chapter the LHRSP+.

The problem considers a single robot that is responsible for processing oper-
ations Oj from a set of jobs j ∈ J by transferring a set of chemicals C in a given
manner. The robot has two methods of transferring the chemical: (1) a single pipette
with finite volume, L, similar to that from Chapter 4, that it uses to transfer high-
value chemicals from vials to the jobs and (2) a probe that is directly connected to a
set of chemicals referred to as bulk chemicals.

Each job j ∈ J has Nj operations. Let Oj := {1, 2, ..., Nj} be the set of operations
of job j ∈ J. Let C be the set of chemicals. Each operation corresponds to dispensing
qi,j units of a certain chemical ci,j ∈ C. For each pair of consecutive operations i, i +
1 ∈ J from the same job there exist minimum and maximum time lags, denoted by
δmin

i,j , δmax
i,j respectively.

A simple schematic of the problem is given in Figure 5.5. The schematic shows
the jobs arranged in the system as well as a wash station at location index 0, where
the robot can wash the pipette to avoid cross contamination, and a set of chemical
vials at location 1, which contains the different high-value chemicals that can be
transferred using the pipette. The schematic also shows the set of bulk chemicals
and how they are directly connected by tubing to the probe of the robot.

To transfer a high value chemical to job j ∈ J the robot must (1) move to the
vials, (2) aspirate chemical into the pipette, (3) travel to job j at location index j + 1,
and (4) dispense the chemical. Assuming the required quantities of chemical do
not exceed the capacity of the probe, it is possible for the robot to aspirate chemical
for multiple dispenses of the same high-value chemical at the same time using the

153

5.5. CASE STUDY - A LIQUID CARRYING ROBOT PROBLEM

Figure 5.5: A schematic for the problem considered in the case study. The robot has two mechanisms
for transferring chemicals to jobs. The first is a pipette with finite capacity that it uses to aspirate
high-value chemical from vials. The pipette must be washed at the wash station to avoid cross
contamination. The second is a probe that is directly connected to a set of bulk chemicals. It is
possible to dispense bulk chemical from the probe while there is high value chemical in the pipette.

pipette and then dispense the chemical accordingly. To avoid cross-contamination
the robot must wash the pipette at the wash station before coming into contact
with a different chemical. The robot cannot dispense bulk and high-value chemical
at the same time.

To transfer a bulk chemical the robot simply travels directly to the appropriate
job and dispenses the chemical using the probe. It is possible to dispense a bulk
chemical through the probe while holding high-value chemical in the pipette. Fur-
thermore the robot does not need to clean the probe between dispenses different
bulk chemicals. Thus from the point of view of scheduling all the bulk chemicals
can be thought of as a single chemical. Thus we reserve chemical index 0 in the set
of chemicals C = {0, 1, ..., nc} for bulk chemicals and the remaining indices are for
the nc high-value chemicals.

The robot takes p↑ time units to aspirate, p↓ to dispense, pwash to wash the
pipette, and p→l,l′ to travel between locations l, l′ ∈ L. At the start of the problem
we assume the robot starts at the chemical vials and the pipette is uncontaminated.
The objective is to process all the jobs in the least amount of time, i.e., minimise
makespan.

154

CHAPTER 5. DRIVING VARIABLES AND LOWER-UPPER CONSISTENCY

5.5.2 Model Description

The model considered here is based on CP3 from Chapter 4 due to its excellent
performance for the more basic LHRSP. First we will introduce the model with
respect to the variables and constraints used in CP Optimizer, then comment about
how this relates to the global constraints studied in this chapter. The model will be
described with reference to Figure 5.6.

Figure 5.6: Visualisation of the model.

The model has five types of interval variables, three state functions, a se-
quence variable, and a cumulative function. Each operation has a dispense variable,
α

dispense
i,j , which corresponds to dispensing of both the bulk and high-value chem-

icals. Each operation that requires a high-value chemical has an additional four
interval variables: (1) an aspirate variable, α

aspirate
i,j , representing the time to aspirate

the chemical at the vials, (2) a wash variable, αwash
i,j , representing the time to wash

the pipette at the wash station, (3) a serve variable, αserve
i,j , representing the time

from when the chemical is aspirated at the vials to the earliest time required to
return to the vials after the chemical is dispensed, and (4) a return variable, αreturn

i,j ,
representing the time from the instant the pipette becomes contaminated by the
required chemical until the chemical is eventually washed and the robot returns

155

5.5. CASE STUDY - A LIQUID CARRYING ROBOT PROBLEM

to the vials to aspirate a different chemical. The key difference between the serve
and return variables is that the serve variables are used to keep track of when spe-
cific units of chemical are in the pipette, whereas the return variables are used to
keep track of when the pipette is contaminated. Now that washing of the pipette
is considered, these times are no longer the same.

Three state functions are defined. The first ψloc represents the location of the
robot. The second ψpipette represents the type of chemical that is currently in the
pipette. Whereas the third ψchemical represents the chemical that has currently con-
taminated the pipette if required. The pipette state is used to align the serve vari-
ables correctly, whereas the chemical state is used to align the return variable cor-
rectly.

To ensure the dispense intervals do not overlap a sequence variable, ρlocation, is
defined that only contains the dispense variables and the type of the variables cor-
responds to the location of the jobs. Finally a single cumulative function, f capacity,
is used to represent the amount of chemical in the pipette. A constraint on the
function represents the capacity and ensures that it is never exceeded.

The full CP model can now be expressed as follows.

min. max(i,j)∈V(endOf(αdispense
i,j)) (5.20a)

s.t. startBeforeStart(αdispense
i,j , α

dispense
i+1,j , δ

min
i,j) ∀(i, j) ∈ O (5.20b)

startBeforeStart(αdispense
i+1,j , α

dispense
i,j ,−δmax

i,j) ∀(i, j) ∈ O (5.20c)

startBeforeStart(αreturn
i,j , αserve

i,j) ∀(i, j) ∈ O (5.20d)

startAtStart(αserve
i,j , α

aspirate
i,j) ∀(i, j) ∈ O (5.20e)

endBeforeStart(αaspirate
i,j , α

dispense
i,j , p→1,j) ∀(i, j) ∈ O (5.20f)

endAtEnd(αdispense
i,j , αserve

i,j , p→j,1) ∀(i, j) ∈ O (5.20g)

endBeforeStart(αdispense
i,j , αwash

i,j , p→1,j) ∀(i, j) ∈ O (5.20h)

endAtEnd(αwash
i,j , αreturn

i,j , p→0,1) ∀(i, j) ∈ O (5.20i)

alwaysEqual(slocation, αwash
i,j , 0,↔), ∀(i, j) ∈ O (5.20j)

alwaysEqual(slocation, α
aspirate
i,j , 1,↔), ∀(i, j) ∈ O (5.20k)

alwaysEqual(slocation, α
dispense
i,j , j + 1,↔), ∀(i, j) ∈ O (5.20l)

alwaysEqual(spipette, αserve
i,j , ci,j,←), ∀(i, j) ∈ O (5.20m)

alwaysEqual(ψchem, αreturn
i,j , ci,j,↔), ∀(i, j) ∈ O (5.20n)

noOverlap(ρ, M) (5.20o)

f cap = ∑
(i,j)∈V:ci,j>0

pulse(αserve
i,j , qi,j) ≤ L (5.20p)

156

CHAPTER 5. DRIVING VARIABLES AND LOWER-UPPER CONSISTENCY

endBeforeStart(αreturn
i,j , αreturn

i′ ,j , p→0,1) ∀(i, i′, j) ∈ Z 6= (5.20q)

startBeforeStart(αreturn
i,j , αreturn

i′ ,j) ∀(i, i′, j) ∈ Z= (5.20r)

startBeforeStart(αserve
i,j , αserve

i′ ,j) ∀(i, i′, j) ∈ Z= (5.20s)

α
dispense
i,j ∈ interval(comp, p↓) ∀(i, j) ∈ O (5.20t)

α
aspirate
i,j ∈ interval(comp, p↑) ∀(i, j) ∈ O (5.20u)

αwash
i,j ∈ interval(comp, pwash) ∀(i, j) ∈ O (5.20v)

αserve
i,j , αreturn

i,j ∈ interval(comp) ∀(i, j) ∈ O (5.20w)

ψpipette, ψchemical ∈ state (5.20x)

ψloc ∈ state(M) (5.20y)

ρseq ∈ sequence (5.20z)

f cap ∈ cumul (5.20aa)

The objective (5.20a) is to minimise the largest end time from all of the dispense
activities. Constraints (5.20b) and (5.20c) represent the minimum and maximum
time lags between consecutive operations of the same job, respectively. The mini-
mum time lags can be strengthened, similar to that in Section 4.3.1 in the LHRSP,
as follows

δ
min
i,j =

max(δmin
i,j , p↓ + p→j+1,0 + pwash + p→0,1 + p↑ + p→1,j+1) if ci,t 6= ci+1,j ∧ ci,j, ci+1,j > 1

δmin
i,j , Otherwise

Constraints (5.20d)-(5.20i) are all precedence constraints between intervals of
the same operation and are ordered from left to right in Figure 5.6. Constraints
(5.20d) ensure the start of the return interval occurs before the start of the serve
variable. Constraints (5.20e) ensures the serve and aspirate intervals start at the
same time. Constraints (5.20f) ensure the start of the dispense can only occur after
the end of the corresponding aspirate interval with enough time to travel from the
vials to the appropriate job. Constraints (5.20g) ensure the end of the serve interval
occurs exactly the amount of time for the robot to travel from the job back to the
vials after the end of the appropriate dispense interval. It would still be valid to
have the serve intervals end at the end of the dispense intervals. However as the
serve intervals are used to track the amount of chemical in the pipette and chemical
can only be aspirated at the vials, it is possible to extend the serve variables in the
proposed way to pass more information to the cumulative function. Constraints
(5.20h) ensure the start of the wash interval can only occur after the end of the

157

5.5. CASE STUDY - A LIQUID CARRYING ROBOT PROBLEM

corresponding dispense interval with enough time to travel from the job to the
wash station. Finally constraints (5.20i) ensure the end of the return interval occurs
exactly the amount of time for the robot to travel from the wash station to the vials
after the end of the wash interval.

Constraints (5.20j)-(5.20n) relate the state functions to the interval variables.
Constraints (5.20j-5.20l) ensure that the location of the wash variables occur at
the wash station, the location of the aspirates occur at the vials, and the location
of the dispenses occur at the appropriate job. All of these interval variables are
left and right aligned to the intervals of the location state function. Constraints
(5.20m) ensure the interval of the pipette state function is always equal to the value
corresponding to the appropriate high-value chemical required by the operation
for the entirety of the appropriate serve variable and that these intervals are start
aligned. Constraints (5.20n) ensure the interval of the chemical state function is
always equal to the value corresponding to the appropriate high-value chemical
required by the operation for the entirety of the appropriate return variable and
that these intervals are both state and end aligned. Constraint (5.20o) ensures the
intervals in the sequence variable do not overlap and are separated by the transition
distance matrix M. Finally constraint (5.20p) ensures the capacity of the pipette is
never exceeded.

Finally constraints (5.20q)-(5.20s) are strengthening constraints, which provide
additional information to the underlying temporal network. Let Z 6= be the set of
consecutive operations from the same job that require different high-value chemi-
cals. Constraints (5.20q) ensure that the pipette must be washed after the dispense
of the predecessor before aspirating the appropriate chemical for the successor.
Likewise, let Z= be the set of consecutive operations from the same that require
the same high-value chemical. Hence constraints (5.20r) and (5.20s) ensure that the
serve and return variables of the predecessor activity occur not after the serve and
return interval variables, respectively, of the successor activity. Constraints (5.20t)-
(5.20aa) define the various interval variables, state functions, sequence variable
and cumulative function.

5.5.3 Driving Variables of the Problem

It is possible to prove that a subset of the variables can be used as the driving
variables of the problem. Firstly to clarify we note the functional dependencies
implied by the precedence constraints and fixed lengths of some intervals. As
displayed in Figure 5.6, the various integer start and end variables from intervals

158

CHAPTER 5. DRIVING VARIABLES AND LOWER-UPPER CONSISTENCY

of the same operation can be partitioned into four subsets D1, D2, D3, D4 ⊆ V .
We refer to these subsets as datums as once any variable in the datum is fixed
then all other variables from the corresponding activity also become fixed through
propagation. The datums are as follows:

• D1 :=
⋃
(i,j)∈V:ci,j>0 s(αreturn

i,j);

• D2 :=
⋃
(i,j)∈V:ci,j>0(s(αserve

i,j), s(αaspirate
i,j), e(αaspirate

i,j));

• D3 :=
⋃
(i,j)∈V(s(αdispense), e(αdispense)) ∪⋃(i,j)∈V:ci,j>0 e(αserve

i,j); and

• D4 :=
⋃
(i,j)∈V:ci,j>0(s(αwash

i,j), e(αwash
i,j), e(αreturn

i,j)).

The following theorem can then be proven with respect to these datums.

Theorem 5.5.1. The variables representing the start time of the dispense intervals, X :=⋃
α∈V s(αdispense), are a set of driving variables.

Proof. The proof is based on the fact that for any assignment A : X → D if a fixed
point can be reached all constraints become LU consistent for a given partition of
the variables, where L = D4 and U = D1 ∪ D2. This can be shown by considering
the constraints and objective function individually.

• Firstly D3 is functionally dependent on X, by constraints (5.20t) and (5.20g),
and hence all variables in D3 are fixed at a fixed point.

• We then note that the scope of constraints (5.20b,5.20c, 5.20t, 5.20g, 5.20o) and
the objective function (5.20a) are subsets of variables in D3 hence must be
satisfied.

• As precedence constraints (5.20f, 5.20h) contain one fixed variable from Propo-
sition 5.4.2 we know that at a fixed point these constraints are redundant.

• For inequalities (5.20u, 5.20u, 5.20d, 5.20e, 5.20i, 5.20r, 5.20s), as both variables
are either in L or both variables are in U from Proposition 5.4.1 we know that
they are LU consistent.

• By Proposition 5.4.1, as precedence constraint 5.20q has the predecessor in L
and successor in U, then the constraint is LU-consistent.

• Each state function corresponds to a global StateIntervals constraints from
Section 5.4. Constraint 5.20m corresponds to the global constraint
StateIntervals(

⋃
i,j∈V:ci,j>0 αserve

i,j ,
⋃
(i,j)∈V:ci,j>0(ci,j, 1, 0), ∅)

, and constraint (5.20n) corresponds to
StateIntervals(

⋃
i,j∈V:ci,j>0 αreturn

i,j ,
⋃
(i,j)∈V:ci,j>0(ci,j, 1, 1), ∅), where ∅ indicates

that no travel time is required.

159

5.5. CASE STUDY - A LIQUID CARRYING ROBOT PROBLEM

• From precedence constraints (5.20d-5.20i), we know at a fixed point EE(αserve
i,j)−

LS(αserve
i,j ≥ lmin(α) = 0 for each serve interval and hence (5.20m) is LU con-

sistent for the given partition by Proposition 5.4.5. Likewise, for the return
intervals and thus constraints (5.20n) is also LU consistent for the partition.
Constraint (5.20p) is equivalent to the global constraint
ReservoirIntervals(

⋃
(i,j)∈V:ci,j>0 αserve

i,j , (qi,j,−qi,j)(i,j)∈V:ci,j>0, L).

• With respect to Proposition 5.4.8, A+ refers to all the serve variables, which
we know have a non-negative minimum length again due to the precedence
constraints, hence again we can show that (5.20p) is LU consistent for the
given partition.

• Constraints (5.20j-5.20l) correspond to
StateIntervals(

⋃
i,j∈V:ci,j

(α
dispense
i,j , α

aspirate
i,j , αwash

i,j , T,
⋃

l,l′∈L p→l,l′) where T is the
set of tuples which for the dispense variables are (j + 1, 1, 1), the wash vari-
ables are (0, 0, 0) and the aspirate variables are (1, 0, 0).

• From constraints (5.20n), the precedence constraints, and Proposition 5.4.7,
we know that the earliest start and earliest end of all the αwash variables are
protected. Likewise we know that the latest end and latest completion times
for the αaspirate are protected. Therefore (5.20j-5.20l) are LU-consistent.

5.5.4 Computational Results

A brief computational experiment is completed using small modifications to the
data in Chapter 4. The same 24 instances where used. The washing time was set
to always equal to dispense time, i.e., pwash = p↓. As now some instances become
infeasible, the maximum time lags were also increased by pwash. In line with how
the problem has been modelled, we assume the chemical with the lowest index are
bulk chemicals.

The same model was solved by CP Optimizer using four different search
phases. The first search phase, denoted None, does not define any explicit search
phase, allowing CP Optimizer to perform its default search. The second search
phase, denoted Low, asserts that the aspirate, dispense, and wash variables must
be fixed before the serve and return variables are considered. The third search
phase, denoted High, asserts that the dispense variables must be fixed before the
remaining interval variables are considered. Finally the search phase, denoted Com-
plete, again asserts that the dispense variables must be fixed, then it asserts that

160

CHAPTER 5. DRIVING VARIABLES AND LOWER-UPPER CONSISTENCY

the integer variables from datums D1 and D2 are fixed to their upper bounds, and
variables from datum D4 are set to their lower bounds. As CP Optimizer does not
currently allow search phases to set interval variables to their upper bounds, addi-
tional integer variables are required for the start of the return and serve variables
in order to implement the Complete search phase correctly.

The results after 1 minute wall time are summarised in Table 5.1. The precedence-
based and resource-based lowerbounds are denoted LB-T and LB-R, respectively.
The results are consistent with the additional performance achieved from correct
use of search phases as seen in Chapter 4. Again we see, particularly for the larger
instances, a dramatic improvement is obtained based purely on how the search
phases are implemented.

Table 5.1: Comparison of the CP model with different search phases with 1 minute solve time. The
symbol (*) indicates that the model was able to prove the instance to optimality, (-) indicates no
feasible solution was found.

Inst. Size LB-T LB-R None Low High Complete

1 (3-5-2) 299 244 299* 299* 299* 299*
2 (3-5-3) 394 210 394* 394* 394* 394*
3 (3-5-5) 441 386 583 583 583 583
4 (5-5-2) 693 502 693* 693* 693* 693*
5 (5-5-3) 665 392 665* 665* 665* 665*
7 (5-10-2) 1122 950 1159 1158 1154 1159
8 (5-10-3) 1076 1096 1271 1242 1224 1224
9 (5-10-5) 1150 984 1326 1334 1306 1306
10 (10-10-2) 2805 1517 2805* 2805* 2805* 2805*
11 (10-10-3) 2665 1725 2713 2665* 2682 2680
12 (10-10-5) 2945 2109 3047 3046 2956 2946
13 (15-20-2) 10315 4762 10315* 16996 10315* 10315*
14 (15-20-3) 10685 6122 10952 14615 10685* 10685*
15 (15-20-5) 11248 6334 46729 20391 11522 11375
16 (20-10-2) 2132 5538 5980 6018 5764 5806
17 (20-10-3) 2186 4022 10520 5601 5247 5452
18 (20-10-5) 2127 5706 7560 8066 7359 7276
19 (30-20-2) 7308 12968 - 52993 20797 20555
20 (30-20-3) 7407 19070 - 37420 25788 25425
21 (30-20-5) 7650 25508 - 57674 32688 32688
22 (20-30-2) 23325 9329 - - - 23325*
23 (20-30-3) 25050 11357 - - 25050* 25050*
24 (20-30-5) 23049 13685 - - 24397 24261

5.6 Conclusion

This chapter formalised the novel concept of driving variables as well as the novel
local consistency rule LU consistency. We differentiated driving variables from

161

5.6. CONCLUSION

related concepts such as functional variable dependencies, w-cutsets to constraint
networks, and backdoors to typical case complexity. We proved in a number of
special cases of known global constraints that existing filtering algorithms and
consistency checks are LU consistent for various partitions over the set of variables.
We then showed how driving variables and LU consistency is used to significantly
improve the performance of CP Optimizer through the correct application of search
phases to the LHRSP+.

There are a number of directions for future work. Firstly, we would like to
further understand the relationship between driving variables and backdoors to
typical case complexity. In essence, driving variables are simply a relaxation of the
definition of backdoors such that constraint propagation can be considered as part
of the sub-solver, as strictly constraint propagation takes pseudo-polynomial time
to reach a fixed point or infer failure. However, in practice it is often possible to
define the constraints to a problem such that constraint propagation is performed
quickly. Thus having more theoretical insight into understanding when constraint
propagation will require worse-case complexity would be beneficial. Secondly,
because the computational study is quite brief, we wish to evaluate this theory on
other problems.

Thirdly, our concept of LU consistency seems to be related to unimodularity in
linear programming (LP). Recent papers such as that by (Baatar et al., 2015) show
how within a MIP framework it can be beneficial to branch upon certain decision
variables such that the resulting problem becomes unimodular. This has many par-
allels to the work completed in this chapter. For the precedence constraints and the
sequencing decisions with setup times these can be mapped easily to unimodular
matrices in LP. However for the state and cumulative constraints considered this
mapping is not immediately clear. Lastly, LU consistency can also be related with
the notion of Necessary Truth Criterion in AI Planning & Scheduling, as utilised
by Laborie (2003b). If a resource temporal network, which can be thought as a
generalisation of state and cumulative functions, satisfies the NTC, then proving it
is LU-consistent should be straight forward, as the temporal network is satisfied.5

Formalising this connection seems like a worthwhile exercise.

In the next chapter we build upon the concepts of driving variables and LU
consistency to create a framework to help reason about scheduling problems at
different levels of abstractions by proposing the concept of interval clusters. We
will consider the real-world problem in complete detail.

5Thank you to Dr Philippe Laborie for making this observation.

162

CHAPTER 6
Interval Clusters

6.1 Introduction

The ability to reason at different levels of abstraction has been a fundamental part
of modelling and solving varying types of practical combinatorial problems involv-
ing automated reasoning. The quintessential example from the field of Planning
in Artificial Intelligence is the concept of Hierarchical Task Networks, where the
dependency among actions can be given in the form of hierarchical structured
network and different levels in the hierarchy may correspond to different orders
of abstraction. Inspired by this concept, and building upon the notion of driving
variables and LU consistency introduced in the previous chapter, in this chapter we
introduce a framework for building models to Constraint-Based Scheduling sys-
tems that explicitly consider multiple levels of abstraction and can still be solved
efficiently.

More explicitly, we model the problem such that is possible to partition the set
of all variables into interval clusters, which represent subsets of variables containing
exactly one driving variable as well as satisfying a number of sufficient conditions
involving connectivity and boolean logic. In doing so, we structure the problem in
such a way that each cluster can be thought of as a single higher level variable and
the sufficient conditions ensure desirable behaviour over the remaining variables.
We demonstrate the benefit of considering interval clusters when modelling an

163

6.1. INTRODUCTION

industrial scheduling of a fully automated advanced cell staining instrument.

In the previous chapter we saw how by considering driving variables and LU
consistency it is possible to partition the set of variables into those driving variables
that should be used as choice-points, and the auxiliary variables that are simply
there to define constraints in a natural way. Here we define interval clusters as
follows.

Definition 6.1.1. An interval cluster V ⊆ V is a subset of the interval variables such
that

• (Unique) Each cluster contains a single driving variable x.

• (Connected) The start and end nodes of each interval variable in a cluster are
in the same strongly connected component in the temporal network.

• (Optionality) The presence status of all auxiliary variables are equal to the
presence status of the driving variable from the cluster, i.e., the auxiliary
variables are present if and only if the driving variable is present.

Interval clusters provide a framework for decomposing a complicated schedul-
ing problem into (1) a top level description of the problem in terms of driving
variables, and (2) cluster level descriptions for all of the different possible interval
clusters that must be considered. To demonstrate this concept, consider the tempo-
ral network in Figure 6.1, where nodes represent interval variables and arcs repre-
sent generalised precedences. The driving variables are coloured different colours
depending on the structure of their interval clusters and the auxiliary variables are
grey. On the left the full precedence graph is given. Although this representation
is valid, it does not take into account any of the structure of the problem. Instead,
on the right we demonstrate how the problem can be represented by a top level
description of the driving variables (top right), and then descriptions for the var-
ious interval clusters (bottom right). Note that at the cluster level description, in
the temporal network each cluster is a strongly connected network.

In this chapter we consider the real-world scheduling problem of how the
next-generation of Leica Biosystem’s Advanced Cell Staining Instrument processes
multiple slides in parallel according to strict staining protocols in order to max-
imise the throughput of the machine. In the next section we will first provide a de-
tailed description of a protocol, then provide a detailed description of the different
components of the automated system, then discuss the objective of the scheduling
problem.

164

CHAPTER 6. INTERVAL CLUSTERS

Figure 6.1: A visualisation that demonstrates how a full temporal network of a problem can be
represented through a top level description of the graph induced by the driving variables and
individual descriptions of the different types of clusters.

6.2 Problem Description

6.2.1 Protocols

Protocols are similar to cooking recipes, they provide a systematic set of instruc-
tions that if followed correctly will achieve desirable chemical reactions. There are
two different types of protocols; (1) staining protocols, (2) mixing protocols. 1 A stain-
ing protocol refers to the set of steps that must be completed in order to process a
slide correctly. A mixing protocol refers to the set of steps that must be completed
in order to create a certain quantity of special types of chemicals known as mixed
chemicals. Mixed chemicals have a short lifespan and thus must be created from its
components parts within a certain amount of time before they can be applied to the
samples. Although the outcomes are different, these different types of protocols
are defined with respect to the same components.

A protocol consists of an ordered set of steps. Examples of a staining protocol
and a mixing protocol are provided in Table 6.1. A protocol step consists of the
following;

a) Step Number (s) - the ordinal number of the protocol stage.

b) Main Action (as) - the main action of a step may correspond to a "Dispense",

1In reality there are also cleaning protocols, which have been omitted in this chapter for simplic-
ity.

165

6.2. PROBLEM DESCRIPTION

a "Mix", or "None". A "Dispense" represents either a chemical being placed
in contact with the sample for a staining protocol or a chemical being added
to a mixing vial for a mixing protocol. A "Mix" is only relevant to mixing
protocols and represents the situation where no additional chemical is added
to the mixing vial but instead the chemicals already in the vials are mixed
together to encourage a chemical reaction. The option "None" refers to a
step that neither adds chemical or combines chemical but some other step
parameters are required. This option provides more flexibility when defining
protocols.

c) Chemical (cs) - the chemical associated with the step. If the action is "Dispense"
then the chemical is dispensed either onto the slide or into a mixing vial
during that step. If the action is "Mix" then this corresponds to the chemical
that is produced based on the action of mixing.

d) Minimum Time (δmin
s) - the minimum amount of time that must elapse before

the following step can commence. This allows a sufficient time to allow the
required chemical reactions to occur.

e) Maximum Time (δmax
s) - the maximum amount of time that can elapse before

the following step must commence. If some chemical reactions occur for too
long then the quality of the stain can be severely compromised and even the
sample itself may be damaged.

f) Scavenge (βscav
s) - A scavenge refers to removing a previously applied chemical

from the sample prior to applying the next chemical. It is important that the
scavenge occurs immediately before applying the next chemical to prevent
the sample from being exposed to air and drying out. In general a scavenge
is required for all but the first of the dispensing steps however occasionally
there are situations where it is not required.

g) Agitations (nag
s) - An agitation refers to the process of moving chemical back

and forth at a controlled rate over the sample and as such is only relevant
to staining protocols. Typically when a chemical is dispensed onto a slide
the chemical remains static. However for some steps it may be necessary to
agitate the chemical to better facilitate the reaction between the chemical and
the sample. If the number of agitations nag

s in a protocol step is greater than 0,
then these agitations must take place within certain intervals of one another,
[δ

ag
s , δ

ag
s]. These intervals start from after the second temperature ramp, if

one is required, otherwise after the main action until the minimum time of
the step has been reached. With respect to Step 2 of the staining protocol in

166

CHAPTER 6. INTERVAL CLUSTERS

Table 6.1, an agitate must occur every 50-60 seconds for 120 seconds after the
second temperature change is been completed.

h) Microscavenge (nmicro
s) - A microscavenge refers to the process of removing

trapped bubbles from a sample by removing excess air from the slide. Mi-
croscavenging is only relevant to staining protocols. Similar to agitations, if
microscavenging is required then a number of microscavenges, nmicro

s , take
place within certain intervals, [δ

micro
s , δmicro

s]. These intervals are taken from
the end of the second temperature ramp, if one is required, otherwise from
the end of the main action. With respect to Step 3 of the staining protocol in
Table 6.1, a microscavenge must occur every 180-200 seconds for 600 seconds
after the main action of the step starts.

i) First Temperature Change (∆1
s) - A first temperature change is used to indicate

the increase or decrease in temperature which ends immediately before the
scavenge if required or otherwise immediately before the main action of the
step.

j) Second Temperature Change (∆2
s) - A second temperature change is used to indi-

cate the increase or decrease in temperature required immediately after the
completion of the main action.

Table 6.1: Example of a staining protocol (top) and mixing protocol (bottom)

s as cs δmin
s δmax

s βscav
s [δ

ag
s , δ

ag
s] [δ

micro
s , δmicro

s] ∆1
s ∆2

s

St
ai

ni
ng

1 Dispense Red 30 30 × × × 0 0
2 Dispense Blue 120 130 X [50,60] × 0 10
3 None - 600 800 × × [180,200] -10 0
4 Dispense Green 60 120 X × × 0 0

M
ix

in
g 1 Dispense Blue 30 60 × × × × ×

2 Dispense Yellow 120 150 × × × × ×
3 Mix GreenMix 90 300 × × × × ×

Figure 6.2 helps visually summarise the relative timings of a protocol step
associated with a "Dispense" or a "None". The protocol step begins with the first
temperature change. Immediately following this is the scavenge step if required,
which removes the previous chemical from the sample. The main action begins
at the end of the scavenge followed again immediately by a second temperature
change if required. After the desired temperature has been reached the sample
is maintained at a constant temperature. Microscavenges and agitations occur at
specified intervals after this point. The main action of the next step must begin

167

6.2. PROBLEM DESCRIPTION

between the minimum and maximum times. A "Mixing" step is much simpler as it
does not require scavenges, agitates, microscavenges, or temperature changes.

Figure 6.2: A visualisation of a possible protocol step

6.2.2 System Description

Two schematics of the system are provided and are referred to frequently during
this overview of the system. The first schematic, Figure 6.3, provides a conceptual
layout of the system. This layout will be used to explain the general work flow of
the samples and the interaction that they have with the different components of
the system. The second schematic, Figure 6.4, provides a conceptual layout of the
internal mechanisms of the system. The internal view is useful in explaining how
chemicals can be transferred through the system and also how vacuums are used
for different purposes.

Before the samples are placed into the system laboratory technicians must
perform some preparation. This preparation is not relevant to the scheduling prob-
lem being described however provides context to the workflow. A tissue sample is
taken from a patient by biopsy and sent typically to a large pathology laboratory
for testing. Before the sample can be stained and viewed it must be prepared so
that a very thin section, typically 2-7µm, can be cut and placed onto a microscope
slide. The slides are screened using an initial round of preliminary staining, known
as Hematoxylin and Eosin staining (Mayer, 1891). This routine staining provides
the pathologist with a very detailed view of tissue, which is often sufficient to allow
a disease diagnosis. However if more information is required the pathologist will
require the slide to undergo advanced cell staining according to a specific staining
protocol. The laboratory technician places the slide into the input drawer of the
system and then removes the from the output drawer after the slide is processed.

168

CHAPTER 6. INTERVAL CLUSTERS

Figure 6.3: A conceptual layout of the automated cell staining system.

Figure 6.4: A conceptual layout of the internal mechanisms of the automated cell staining system.

A multi-purpose robot, referred to as the gantry, is able to transfer the slides
one at a time from the input drawer to individual processing units, referred to from
now on as simply units. The gantry transfers the slides using its liquid handling
probe, or simply its probe. Units are designed to facilitate the correct interactions

169

6.2. PROBLEM DESCRIPTION

between chemicals and the samples. The units are arranged across different banks.
Once slides are in a unit they can then be processed by the system according to
their staining protocol, a detailed description about how protocols are transformed
into activities that the system can process is given in the following section. If the
staining protocol requires a mixed chemical then the chemical must be mixed in a
mixing vial according to its mixing protocol. Once a slide has finished processing the
gantry can transfer the slide from its unit to the output drawer where the laboratory
technician can receive it and forward it for examination.

The system has a number of different mechanisms for transferring chemical
between locations. First, the three different methods of transferring chemical to
the units and mixing vials will be explained followed by an explanation of how
chemical is removed from both the units and the system.

The first method of transferring chemical to a slide is for so called bulk chemicals.
A bulk chemical is a chemical that is frequently used across multiple protocols. As
seen in Figure 6.4, bulk chemicals are directly connected to the gantry as well as
to secondary types of robots referred to as bank robots or simply robots. There is
a single robot per bank. In order to dispense a certain bulk chemical, either the
appropriate robot (depending on the bank) or the gantry moves directly to the
corresponding location and dispenses the chemical directly. The gantry does not
require the use of its probe to dispense bulk chemical. A specific bulk chemical is
either connected to the robots or the gantry but not both and thus there is never a
choice of which resource should dispense which chemical.

The second method of transferring chemical is for primary chemicals. Primary
chemicals are less frequently used than bulk chemicals. 2 Given that there are many
different primary chemicals, it is not possible to directly connect all of them to the
robots as done with the bulk chemicals. Instead primary chemicals are contained
in chemical vials, seen in Figure 6.3. To transfer the chemicals from the chemical
containers to a unit or a mixing vial the gantry uses its probe. Hence to transfer
primary chemical, the gantry must (1) move to the appropriate chemical container,
(2) aspirate the correct amount of chemical, (3) move to the correct unit, (4) dispense
the chemical. Furthermore the probe has a finite capacity so there is a limit to the
amount of chemical that it can carry at once and the probe must be washed before
aspirating a different chemical to ensure no cross contamination occurs.

The third method of transferring chemical to a slide is for the mixed chemicals.

2Common examples of primary chemicals are all of the different antibodies used in immunohis-
tochemistry, where each protocol might require a unique antibody.

170

CHAPTER 6. INTERVAL CLUSTERS

Mixed chemicals are similar to primary chemicals in the sense that they must be
transferred by the probe of the gantry. However they have the added complexity
that they expire in a very short amount of time once being created. Thus mixed
chemicals must be first produced by the system according to its mixing protocol.
To do so the gantry must transfer components of the mixed chemical from chemical
vials to the mixing vials, seen in Figure 6.3 and mix the chemicals according to the
mixing protocol. We use the term high-value (HV) chemicals to refer to a chemical
that is either a primary chemical or a mixed chemical.

Chemicals are removed from the system as waste. There are two different
types of waste; (1) hazardous waste and (2) standard waste, as seen in Figure 6.4.
The motivation behind this distinction is that laboratories must pay to dispose of
hazardous waste, whereas it is safe to dispose of standard waste locally. Hence
by separating the waste this helps laboratories avoid excessively large hazardous
waste costs. The two different waste containers have individual vacuum systems,
the hazardous vacuum and the standard vacuum, that are used to draw the waste
chemical into the appropriate waste container. The vacuums must be held at dif-
ferent pressures depending on their function and it takes a certain amount of time
for the vacuum to change pressure.

The hazardous vacuum is used to remove chemical to the hazardous waste
container. It is connected to each unit and each of the washing stations — the gantry
as well as each robot has its own wash station. Chemicals, due to their toxicity,
are either considered hazardous or safe. If the primary or mixed chemical that was
most recently in the probe is hazardous, then the hazardous vacuum is used when
the probe is washed. Any chemical that has come into contact with the sample
is considered hazardous. Therefore the hazardous vacuum is used to scavenge
the chemicals from the units. The robots only require washing after agitating the
sample, and as the robots have the potential to come into contact with the sample
in this process, all of washes for the robots are considered hazardous. Finally the
hazardous vacuum is also used to complete the appropriate microscavenges and
in order to do so is typically on a low pressure setting.

The standard vacuum is primarily used to remove safe chemical to the stan-
dard container. As any liquid that has been in contact with a sample is considered
hazardous, the only point where non-toxic liquids are removed from the system
is at the wash station of the gantry. With respect to removing waste, the standard
vacuum is only used when washing the probe after transferring a safe chemical. As
this expected workload is considerably less than that of the hazardous vacuum, the

171

6.2. PROBLEM DESCRIPTION

standard vacuum also has another purpose. The standard vacuum is connected
to the probe of the gantry, as shown in Figure 6.4 and is used to transfer slides
between the units and input/output drawers. As the pressure required to transfer
slides is considerably more than required during the waste removal, the vacuum
must be charged to the high pressure setting before the transfer of slides.

Finally the system has the capability to heat, cool and maintain the units at
constant temperature. Each unit has its own heat pump. The heat pump can be
used for both heating and cooling. It is assumed that these heat pumps can change
the temperature of the unit at a constant rate regardless of whether it is heating
or cooling. In order to operate, the heat pumps require a significant amount of
energy. The system has a limited power budget, which restricts the number of heat
pumps that can run in parallel. This must be taken into account when scheduling
the usage of the heating pumps.

Once slides are in the input drawer a scheduling algorithm is run to coordi-
nate the resources of the system such that the slides are loaded into the system,
completed according to their specific staining protocols, and unloaded to the out-
put drawer. Furthermore the system is designed such that laboratory technicians
can place slides into unoccupied slots in the input drawers at any time, and the
scheduling algorithm will adapt the existing schedule to include the new activities
that must be completed. The system only becomes aware of the slides once they
are placed into the input drawer. Hence, at least at first, the system must wait until
a schedule is created. Clearly this is a dynamic, online scheduling problem.

6.2.3 Objectives

The overarching aim of the machine is to process all the slides according to their
staining protocols as fast as possible without making any mistakes. All slides are
considered equally important. Large pathology labs can run multiple systems in
parallel and want as high a throughput as possible. Hence the objective of the
scheduler is to quickly find a schedule for the slides in the input drawer, plus
the slides currently being processed, such that all slides are processed in the least
amount of time, i.e., minimise makespan. In practice it is generally accepted that it
might take up to a minute to determine a reasonable schedule.

There are a number of secondary objectives that are of interest but are cur-
rently not considered explicitly. This includes: (a) minimising the amount of mixed
chemical that does not get used as this increases cost of operation, (b) maximising
the consistency between multiple slides of the same protocol, and (c) minimising

172

CHAPTER 6. INTERVAL CLUSTERS

total completion times so that some slides can be removed as early as possible.

6.3 Model Description

In this section we demonstrate how interval clustering provides a framework for
modelling this complicated industrial scheduling problem. First we introduce the
require notation and parameters of an instance to the above scheduling problem.
We will then describe how staining and mixing protocols are converted into project
classes that give a top level description of the model. We then describe the differ-
ent primitive actions that the automated system can complete and demonstrate
how the top level description of the model can be translated into various interval
clusters in terms of driving variables.

6.3.1 Notation

A summary of the notation used to represent the various sets and indices is pro-
vided in Table 6.2, and various parameters of the problem are provided in Table 6.3.
It is worthwhile noting that we assume that the durations specified in Table 6.3 are
independent of the actual amount of chemical that is being aspirated, dispensed,
mixed, etc. In practice this is a reasonable assumption as the handling of chemicals
actually makes up one portion of this time. For example, in the time allocated to
dispense primary chemicals, ddisp the gantry must lower the pipette into the unit,
dispense the chemical, and then lift the pipette back up to the height it is kept at in
transit.

6.3.2 From Protocols to Project Classes

A protocol represents an ordered set of instructions. Each protocol is converted
to a project class Q. Each class q ∈ Q can be represented as a network where the
nodes represent interval clusters i ∈ Vq and the arcs represent the generalised
precedence constraints between these clusters (i, i′) ∈ Aq. The specifics of the
different interval clusters will be defined in a later section, for now it is sufficient to
think of the clusters as individual interval variables. As each cluster has a unique
driving variable to an extent this is in fact a valid interpretation. Staining protocols
and mixing protocols are converted to project classes by different methods.

173

6.3. MODEL DESCRIPTION

Table 6.2: Summary of notation used for various sets

Index Set Description

q Q Project classesi.
Qstaining ⊆ Q Staining project classes.
Qmixing ⊂ Q Mixing project classes.

(p, q) P Projects.
Pcritical ⊆ P Critical projects that must start by tcritical.

p Pq ⊆ P Projects of class q ∈ Q.
(i, p, q) V Activity clustersii.

Vtype ⊆ V Activity clusters of a specific typeiii.
(i, i′) Aq Generalised precedence constraints in class q ∈ Q iv.
b B Banks.
u U Units.

Ub ⊆ U Units on bank b ∈ B.
c C Chemicalsv.

Cprimary ⊆ C Primary chemicals.
Cmixed ⊆ C Mixed chemicals.
Cbulk ⊆ C Bulk chemicals.
Cgantry ⊆ Cbulk Bulk chemicals connected to the gantry.
Crobot ⊆ Cbulk Bulk chemicals connected to the robots.
Csa f e ⊆ C Chemicals considered safe.
Chaz ⊆ C Chemicals considered hazardous.

l L Locationsvi.
Lunits ⊂ L Locations of the units, i.e.,

⋃
u∈U Lunit

u .
Lbank

b ⊆ Lunits Locations of the units on bank b ∈ B, i.e.,
⋃

u∈Ub
Lunit

u .
Lgantry ⊂ L Locations that the gantry can access.
Lrobot

b ⊂ L Locations that the robot on bank b ∈ B can access.
ω Ω Pressure levels of vacuums.

Ωhaz ⊆ Ω Pressure levels require by the hazardous vacuum.
Ωstandard ⊆ Ω Pressure levels require by the standard vacuum.

i Each staining and mixing protocol has a corresponding project class as defined in Section 6.3.2.
ii Activity clusters are groups of activities associated with the same index.
iii The different cluster types are summarised in Table 6.4, so VDispense would correspond to the

cluster associated with the dispense of a primary chemical.
iv As generalised precedence relations are only defined between activity clusters from the same

class we do not introduce a set of of these relations.
v The set of chemicals can either be classified into the three disjoint subsets Cprimary, Cmixed, and

Cbulk based on the chemical type, or into the two disjoint subsets Csa f e and Chaz based on the
toxicity of the chemical.

vi The set L consist of the location of the input drawer Linput, output drawer Linput, chemical vials
Lvials, mixing vials Lmixing, probe wash station Lwash, robot wash station Lwash

b on each bank
b ∈ B, and the units Lunits.

174

CHAPTER 6. INTERVAL CLUSTERS

Table 6.3: Summary of model parameters

Notation Description

δi,i′,q Timelag associated with arc (i, i′) ∈ Aq of class q ∈ Q
∆1

i,q First temperature change associated with cluster i ∈ Vq of class q ∈ Q
∆2

i,q Second temperature change associated with cluster i ∈ Vq of class q ∈
Q

βscav
i,q Binary parameter equal to 1 if cluster i ∈ Vq of class q ∈ Q requires a

scavenge, 0 otherwise
tcritical The time before which all critical projects must start by.
daspirate The time to aspirate chemical by the pipette
ddisp The time to dispense chemical by the pipette
dbulk1 The time to dispense bulk chemical by the gantry
dbulk2 The time to dispense bulk chemical by a bank robot
dclean The time to clean a mixing vial
dmix The time to mix the contents of a mixing vials
dhaz The time to wash a hazardous chemical from the pipette
dstandard The time to wash a safe chemical from the pipette
dwash The time to wash the bank robot
dscav The time to scavenge a unit
dmicro The time to microscavenge a unit
dpickup The time to pickup a slide from the input drawer
dplace The time to place a slide into the output drawer
dload The time to load a slide into a unit
dunload The time to unload a slide from a unit
dagitate The time to perform agitation
dtemp The time required to change the temperature of a unit by 1 degree
dgantry

l,l′ The travel time for the gantry to move between locations l, l′ ∈ Lgantry

drobot
b,l,l′ The travel time for the robot on bank b ∈ B to move between locations

l, l′ ∈ Lrobot
b

dstandard
ω,ω′ The recharge time of the standard vacuum between states ω, ω′ ∈

Ωstandard

dhaz
ω,ω′ The recharge time of the hazardous vacuum between states ω, ω′ ∈

Ωhaz

ci,q The chemical required by cluster i ∈ Vq of class q ∈ Q
c(q) The mixed chemical produced by project class q ∈ Qmix

zc The number of units of mixed chemical q(c) ∈ Cmixed produced by
completing a project from class q ∈ Qmix

Rmix The number of mixing vials available
Rpower The number of temperature ramping activities that can occur concur-

rently
Rprobe The capacity of the probe

175

6.3. MODEL DESCRIPTION

Staining Protocols

The steps of a staining protocol are converted into a project class with seven differ-
ent types of interval clusters. Recall that intuitively an interval cluster represents
a higher level description of a set of primitive tasks that must be completed. The
seven different interval clusters required for the project classes from staining pro-
tocols are:

1. Load - transferring a slide from the input drawer to the required unit;

2. Bulk - dispensing a bulk chemical onto the slide;

3. HV Dispense - dispensing a HV chemical onto the slide;

4. Agitate - using a bank robot to move chemical back and forth across a sample
to accelerate a chemical reaction;

5. Micro - removing bubbles from the sample through short bursts of the haz-
ardous vacuum; and

6. None - an additional cluster reserved for steps of the protocol where no
chemical is dispensed yet a scavenge is required or temperature needs to
be changed.

7. Unload - transferring a slide from the unit to the output drawer.

Algorithm 3 provides a formal description of how a staining protocol is con-
verted into a project class. Figure 6.5 demonstrates the project class created for the
staining protocol specified in Table 6.1. All project classes begin with a Load cluster.
Each step of the protocol is then converted into either a Bulk, HV Dispense, or
None cluster, depending on what type of chemical (if any) is required in that step.
If the step of the protocol requires agitation or microscavenging, then the number
of Agitate or Microscavenge clusters required is determined based on the ratio
of the minimum time required by the step. For example in step 2 of the example
staining protocol given in Table 6.1 the minimum time of the step is 120 time units
and the minimum time between agitates is 50 time units, thus two agitate clusters
are required. Likewise, in step 3 of the example staining protocol the minimum
time of the step is 600 time units and the minimum time between microscavenges
is 180 time units, thus three microscavenge clusters are required. All project classes
end with an unload cluster.

176

CHAPTER 6. INTERVAL CLUSTERS

Figure 6.5: A staining project class.

Algorithm 3 Converting staining protocols to project classes.

1: Initialise the class with a load node Vq = {Node(0, load,−, 0, 0, 0)}, a single arc
Aq = {Arc(0, 1, 0)}, and set i = 1

2: for each step s in protocol do
3: type = InferType(cs)
4: addNode(i, type, cs, ∆1

s , ∆2
s , βscav

s)
5: if nag

s > 0 then
6: Set pred := i, succ := i + 1
7: for each agitate do
8: addArc(pred, succ, δ

ag
s), addArc(succ, pred,−)δag

s)
9: addNode(succ, agitate, cs,−,−,−)

10: pred = succ and increment succ
11: addArc(pred, i + 1 + nag

s + nmicro
s , 0)

12: if nmicro
s > 0 then

13: Set pred := i, succ := i + nag + 1
14: for each microscavenge do
15: addArc(pred, succ, δmicro

s), addArc(succ, pred,−δmicro
s)

16: addNode(succ, micro, Cs,−,−,−)
17: pred = succ and increment succ
18: addArc(pred, i + 1 + nag

s + nmicro
s , 0)

19: addArc(i, i + 1 + nag
s + nmicro

s , δmin
s), addArc(i + 1 + nag

s + nmicro
s , i,−δmax

s)
20: i = i + 1 + nag

s + nmicro
s

21: addNode(i, unload,−, 0, 0, 0)

Mixing Protocols

A mixing protocol specifies the procedure to create a certain number of units of a
mixed chemical. Before a schedule is generated it is not clear how many times a

177

6.3. MODEL DESCRIPTION

single mixing protocol must be completed, i.e., how many projects from a project
class based on a mixing protocol are processed. Reducing the number of mixing
projects reduces the amount of work needed to be done by the system. However,
given the mixed chemicals expire in a short amount of time, completing fewer
mixing projects may impose unnecessarily strict temporal constraints on the corre-
sponding dispenses from the staining projects. We wish to model this aspect of the
problem in such a way that the solver can determine the correct number of mixing
projects itself.

The steps of a mixing protocol are converted into a project class with four
different types of interval clusters.

1. HV Dispense - dispensing a HV chemical into a mixing vial;

2. Mix - mixing chemicals in a mixing vial to encourage a reaction;

3. Clean - cleaning a mixing vial after it has been used such that another mixed
chemical can be prepared in it; and

4. Dummy - a dummy variable that represents the dispensing of the mixed
chemical created by a project on a possible staining project.

An isomorphism constraint will be used to link the Dummy clusters for a
certain mixed chemical with the HV clusters from the staining projects that require
that mixed chemical. The mixing projects where no dummy clusters are used in
the mapping of the isomorphism constraint correspond to mixing procedures that
are never used for staining. Hence these projects can be removed from scheduling
or the corresponding interval variables set to absent.

Figure 6.6: A mixing project class.

Algorithm 4 proves a formal description of how a mixing protocol is converted
into a project class. Figure 6.6 visualises the project class created for the mixing
protocol specified in Table 6.1. A node is created for each step in the protocol; if
the main action of the step is to Mix then a Mix cluster is created, otherwise if the

178

CHAPTER 6. INTERVAL CLUSTERS

main action is a Dispense then a HV Dispense cluster is created. After the last step
a Dummy cluster node is created for each unit of mixed chemical produced, i.e.,
if a protocol creates 3 units of mixed chemical then 3 Dummy clusters are created.
Finally, the project ends with a Clean cluster with simple precedences from each of
the Dummy nodes.

For mixing project class, q ∈ Qmix, the maximum number of instances of the
class is equal to the number of HV Dispense clusters from the staining project
classes requiring that mixed chemical, i.e., |Pq| = |{(i, p, q) ∈ VDispense : ci,q =

c(q)}|.

Algorithm 4 Converting mixing protocols to project classes

1: Initialization Vq = ∅, Aq = ∅, i = 0
2: for each step s do
3: type = InferType(cs), addNode(i, type, cs)
4: if not the last step then
5: addArc(i, i + 1, δmin

s), addArc(i + 1, i,−δmax
s)

6: increment i
7: store last step node i′ = i− 1
8: store cleaning node i′′ as i plus number of dummy nodes
9: for each dummy dispense required do

10: addNode(i, Dummy, cs)
11: addArc(i′, i, δmin

s), addArc(i, i′,−δmax
s)

12: addArc(i, i′′, 0)
13: if not last dummy node then
14: addArc(i, i + 1, 0)
15: increment i
16: addNode(i, Clean,−, 0, 0, 0)

6.3.3 Assigning Staining Projects to Units

The CP Optimizer model presented in this chapter assumes that each staining
project has been assigned to a specific unit. This is a significant assumption and
one that we intend to revisit in the future. Currently this assignment is completed
using the following simple heuristic. Each staining class is assigned a science time,
which is the sum of minimum times, δmin

s , of each step s in the associated staining
protocol. Each unit has a vacant-time associated with it that represents when it will
possibly become vacant, which is originally set to zero. Project classes are then
selected in non-increasing order of their respective class’s science time. A project
class q ∈ Qstaining is selected and then all projects of that class p ∈ Pq are iteratively

179

6.4. CP OPTIMIZER MODEL

assigned to the unit with the lowest vacant-time, splitting ties based on the index
of the unit. We denote the location of the projects as l(p, q) ∈ L and the bank of
the project b(p, q) ∈ B. When a project is assigned to a unit, the respective vacant-
time is increased by the project’s science time. It is important to note that, in this
heuristic the choice of whether to assign projects of the same class to units on the
same bank largely depends on the indices of the units. The location of all mixing
projects are set to the Lmixing.

6.4 CP Optimizer Model

We will describe the model of this industrial scheduling problem by first providing
a top level description of the problem where interval clusters will be represented
by their unique driving variables. The different sequence variables, state functions,
and cumulative functions used to represent different resources of the system will
be described at this top level description. Models for each interval cluster will then
be introduced in isolation. This will include the definition of the driving and aux-
iliary interval variables for each cluster. No sequence variables, state functions or
cumulative functions are introduced at the cluster level description of the models.
Finally, we will prove that any assignment over the driving variables that reaches
a fixed point results in all remaining constraints becoming LU consistent for a spe-
cific partition of the auxiliary variables that are not functionally dependent on the
driving variables.

6.4.1 Top Level Description

The top level description considers two types of interval variables. For each cluster
(i, p, c) ∈ V a driving variable α

driving
i,p,c is assumed to exist. The details of these

driving variables, such as lengths and presence status, are defined at the cluster
level. For each project (p, q) ∈ P, a project interval variable α

project
p,q is defined to

represent the span of the individual project.

The different resources and components of the automated system are repre-
sented by a range of sequence variables, state functions and cumulative functions.
Firstly, we will consider the gantry. The location of the gantry is represented by
both a sequence variable ρgantry and a state function ψgantry. The gantry state func-
tion will consider all intervals where the gantry is constrained to be at a specific
location, whereas the gantry sequence variable will only consider the subset of

180

CHAPTER 6. INTERVAL CLUSTERS

these intervals that cannot overlap.3 The types of the intervals in the gantry state
function, as well as the values of the state function, represent the location of the
gantry. A transition matrix representing the travel time required by the gantry
between the different locations, Mgantry = ((dgantry

l,l′)l∈Lgantry)l′∈Lgantry , will be used
between different types of the gantry sequence variable and to transition between
state values of the gantry state function. A state function, ψcarry, is used to indicate
the type of chemical the gantry is currently carrying in its pipette. Similarly, a state
function, ψcontam, is used to indicate which chemical, if any, is contaminating the
pipette. The values of the carry and contaminate state functions indicate the type
of chemical being carried or contaminating the pipette, respectively. A cumula-
tive function, f pipette, represents the amount of chemical currently in the pipette. A
state function, ψmixing, is used to indicate which mixing project was used for each
of the dummy intervals. This state function is used to ensure that different mixed
chemicals are not aspirated from different mixing vials.

The pressure level of the hazardous and standard vacuums are each repre-
sented by a state function, ψhaz and ψstandard, respectively, and a sequence vari-
able, ρhaz and ρstandard, respectively. Similar to how the gantry location is mod-
elled, the state functions consider all intervals where the individual vacuums
must be maintained at a certain pressure level, and the sequence variables only
consider the subset of these intervals that cannot overlap. Transition matrices
representing the recharge time between different pressure states are defined for
both the hazardous vacuum, Mhaz = ((dhaz

ω,ω′)ω∈Ω)ω′∈Ω and standard vacuum,
Mstandard = ((dstandard

ω,ω′)ω∈Ω)ω′∈Ω. These transition matrices are considered by the
state functions between different states and the sequence variables between differ-
ent interval types.

The locations of the bank robots on each bank b ∈ B are represented by in-
dividual sequence variables, ρrobot

b . A state function is not required for the bank
robots because, as will be seen at the interval level, all intervals requiring the bank
robot cannot overlap. A transition matrix is introduced for each robot b ∈ B, to
represent the travel time between the different locations for the robot on each bank
Mrobot

b,l,l′ = ((drobot
b,l,l′)l∈Lrobot

b
)l′∈Lrobot

b
.

The remaining resources of the system are modelled as follows. The amount
of power being used by the system is represented by a cumulative function, f power.

3Similar to the previous two chapters, state functions will be used to enforce location constraints
in such a way that multiple intervals are allowed to overlap so long as they represent the same
process. For example, in previous chapters the aspirate intervals represented the probe aspirating
chemical from a single location.

181

6.4. CP OPTIMIZER MODEL

The number of available clean mixing vials of the system is represented by a cu-
mulative function, f mixing. Each unit u ∈ U is represented by a sequence variable
ρunit

u that is defined without a transition matrix.

The top level description of the model can now be expressed as follows.

min. max
(p,q)∈Pprimary

(endO f (αproject
p,q)) (6.1a)

s.t. (6.2a)− (6.8g)

startAtStart(αproject
p,q , αdrive

1,p,q , δi,i′ ,q), ∀q ∈ Q; p ∈ Pq (6.1b)

endAtEnd(αproject
p,q , αdrive

|Pq |,p,q), ∀q ∈ Q; p ∈ Pq (6.1c)

startBefore(αproject
p,q , tcritical) ∀(p, q) ∈ Pcritical (6.1d)

startBeforeStart(αdrive
i,p,q , αdrive

i′ ,p,t), ∀(i, i′) ∈ At, p ∈ Pq; q ∈ Q (6.1e)

isomorphism(V1
c , V2

c), ∀c ∈ Cmix (6.1f)

presenceOf(αproject
p,q) = presenceOf(αdrive

i,p,q) ∀(i, p, q) ∈ V \VDummy : q ∈ Qmix (6.1g)

presenceOf(αproject
p,q) ≥ presenceOf(αdrive

i,p,q) ∀(i, p, q) ∈ VDummy (6.1h)

presenceOf(αdrive
i,p,q) ≥ presenceOf(αdrive

i+1,p,t) ∀(i, p, q), (i + 1, p, q) ∈ VDummy (6.1i)

inSequence(ρunit
u(p,q), α

project
p,r) ∀(p, q) ∈ Pmix (6.1j)

noOverlap(ρgantry, Mgantry), (6.1k)

noOverlap(ρhaz, Mhaz), (6.1l)

noOverlap(ρstandard, Mstandard), (6.1m)

noOverlap(ρrobot
b , Mrobot

b), ∀b ∈ B (6.1n)

noOverlap(ρunit
u), ∀u ∈ U (6.1o)

f mix += pulse(αproject
p,q , 1) ∀(p, q) ∈ Pmix (6.1p)

f mix ≤ Rmix, (6.1q)

f power ≤ Rpower, (6.1r)

f probe ≤ Rprobe, (6.1s)

α
project
p,q ∈ interval(q ∈ Qprime, (0, ∞)) ∀q ∈ Q; p ∈ Pq (6.1t)

f probe, f power, f mixing ∈ cumul (6.1u)

ρstandard, ρhaz, ρgantry ∈ sequence (6.1v)

ρrobot
b ∈ sequence ∀b ∈ B (6.1w)

ρunit
u ∈ sequence ∀u ∈ U (6.1x)

ψgantry ∈ state(Mgantry) (6.1y)

ψstandard ∈ state(Mstandard) (6.1z)

ψhaz ∈ state(Mhaz) (6.1aa)

ψcarry, ψcontam, ψmixing ∈ state (6.1ab)

182

CHAPTER 6. INTERVAL CLUSTERS

The objective (6.1a) is to minimise the maximum completion time of any
of the staining projects. Constraints (6.2a)-(6.8g) consider the constraints and in-
terval variable definitions for the individual cluster, which will be presented in
the following sections. Constraints (6.1b) and (6.1c) ensure the project intervals
start at the start of the first driving interval of the project, and end at the end
of the last driving interval of the project, respectively. Constraints (6.1d) ensure
the critical projects start within the specified amount of time. Constraints (6.1e)
ensure all of the precedences are respected between the driving variables of the
different clusters in the same project. Constraints (6.1f) ensure the HV dispense
clusters requiring mixed chemical are mapped to the dummy clusters appropri-
ately, where V1

c =
⋃
(i,p,q)∈VDummy

c
α

disp
i,p,q and V2

c =
⋃
(i,p,q)∈VDispense

c
α

disp
i,p,q. Constraints

(6.1g) relate the presence status of the mixing project intervals to all the driv-
ing variables excluding all but the first Dummy Cluster from each project, i.e.,
VDummy

= {(i, p, q) ∈ VDummy : ∃i′ < is.t.(i, p, q) ∈ Vdummy}. Constraints (6.1h)
state that if a Dummy Cluster is completed then the whole mixing project must be
present. Constraints (6.1i) force an ordering on the driving variables from Dummy
Clusters.

Constraints (6.1j) state that the project intervals are considered by the appro-
priate unit sequence variable. Constraints (6.1k)-(6.1o) state that intervals in the
gantry sequence, hazardous vacuum sequence, standard vacuum sequence, bank
robot sequences, and unit sequences must not overlap and if appropriate respecting
specific transition matrices, respectively. Constraints (6.1p) state that each mixing
projects requires a single mixing vial by ensuring that the value of the mixing
vial cumulative function increases by a single unit for the duration of the project.
Constraints (6.1q)-(6.1s) ensure the mixing vial cumulative function, power budget
cumulative function, and probe capacity cumulative functions never exceed the
number of vials, the power budget, and the capacity of the probe, respectively. Con-
straints (6.1t) define the project interval variables. Finally, constraints (6.1u)-(6.1ab)
define the various sequence variables, state functions, and cumulative functions
that will also be used interval cluster.

6.4.2 Clusters Level Descriptions

The model consists of ten different types of interval clusters. A summary of the
different interval clusters is given in Table 6.4. The start and end times of the
interval variables from a cluster can be partitioned with respect to a set of datums.

183

6.4. CP OPTIMIZER MODEL

All start and end times associated with a single datum are functionally dependent
on one another. As the driving variable in each cluster can only be associated with
a single datum, special attention is paid to clusters with more than one datum. We
partition the datums that are not associated with a driving variable into a lower set
L and an upper set U . Once all the driving variables have been fixed and constraint
propagation reaches a fixed point we assign all variables in L to their lower bound
and all variables in U to their upper bound.

To reduce the amount of repetition, where possible, interval clusters with a lot
of similarity will be introduced together.

Table 6.4: Variable clusters

Cluster Name D
ri

vi
ng

V
ar

ia
bl

e

Se
tN

ot
at

io
n

Pr
im

ar
y

Pr
oj

ec
ts

M
ix

in
g

Pr
oj

ec
ts

N
b.

In
te

rv
al

s

N
b.

D
at

um
s

Bulk αdisp VBulk X × 4 1
None αnone VNone X × 4 1
HV Dispense αdisp VDispense X X 8 4
Load αli f t VLoad X × 3 1
Unload αplace VUnload X × 4 1
Agitate αagitate VAgitate X × 2 1
Microscavange αmicro VMicro X × 1 1
Mix αmix VMix × X 3 2
Clean αclean VClean × X 3 2
Dummy αdisp VDummy × X 2 3

Bulk / None Clusters

A Bulk cluster, (i, p, c) ∈ VBulk, represents a step in the staining protocol where a
bulk chemical c ∈ Cbulk is dispensed on a slide either by the gantry or the relevant
bank robot. Similarly, a None cluster, (i, p, c) ∈ VNone, represents a step in a staining
protocol without a main action. Recall that steps without a main action are useful in
practice to describe more complicated heating/cooling procedures or to scavenge
not immediately before a dispense.

Both clusters consider four different types of interval variables. A dispense
variable, α

disp
i,p,q, represents when chemical c ∈ Cbulk is being dispensed on the slide.

For None Clusters the length of the dispense variable is set to zero. If c ∈ Cgantry

184

CHAPTER 6. INTERVAL CLUSTERS

then the chemical is dispensed by the gantry and the interval has duration dbulk1,
otherwise if c ∈ Cbulk then the chemical is dispensed by the bank robot and the
interval has duration dbulk2. Two interval variables, α

temp1
i,p,q and α

temp2
i,p,q , represent

the time to change the temperature (if any) of the relevant unit before and after
the dispense, respectively. The duration of these temperature change intervals is
equal to the required temperature change, ∆1

i,q and ∆2
i,q, multiplied by the rate the

units can change temperature, dramp. Where required, a scavenge interval αscav
i,p,q is

considered with fixed duration dscav to represent the removal of the previously
applied chemical. The dispense interval variable is considered the driving variable.
The cluster level description of the Bulk and None Clusters can now be modelled
as follows.

Figure 6.7: A visualisation of the Bulk Dispense cluster of interval variables and their interaction
with the relevant sequence variables, state variables and cumul functions. Here the dispense vari-
able is considered the driving variable. Note that either the gantry or the appropriate bank robot
completes the dispense depending on the type of bulk chemical required - this is indicated by the
”?” symbols.

endAtStart(αtemp1
i,p,q , α

disp
i,p,q, dscav

i,q · βscav
i,q), ∀(i, p, q) ∈ VBulk ∪VNone : ∆temp1

i,q > 0 (6.2a)

endAtStart(αscav
i,p,q, α

disp
i,p,q), ∀(i, p, q) ∈ VBulk ∪VNone : βscav

i,p,q (6.2b)

endAtStart(αdisp
i,p,q, α

temp2
i,p,q), ∀(i, p, q) ∈ VBulk ∪VNone : ∆temp2

i,q > 0 (6.2c)

alwaysEqual(ψgantry, α
disp
i,p,q, l(p, q),↔) ∀(i, p, q) ∈ VBulk : ci,q ∈ Cgantry (6.2d)

alwaysEqual(ψhaz, αscav
i,p,q, ωmed,↔) ∀(i, p, q) ∈ VBulk ∪VNone : βscav

i,q (6.2e)

185

6.4. CP OPTIMIZER MODEL

inSequence(ρgantry, α
disp
i,p,q, l(p, q)) ∀(i, p, q) ∈ VBulk : ci,q ∈ Cgantry (6.2f)

inSequence(ρrobot
b(p,t), α

disp
i,p,q, l(p, q)) ∀(i, p, q) ∈ VBulk : ci,q ∈ Crobot (6.2g)

inSequence(ρhaz, αscav
i,p,q, ωmed) ∀(i, p, q) ∈ VBulk ∪VNone : βscav

i,q (6.2h)

f power += pulse(αtemp1
i,p,q , 1) ∀(i, p, q) ∈ VBulk ∪VNone : ∆temp1

i,q > 0 (6.2i)

f power += pulse(αtemp2
i,p,q , 1) ∀(i, p, q) ∈ VBulk ∪VNone : ∆temp2

i,q > 0 (6.2j)

α
driving
i,p,q = α

disp
i,p,q ∈ interval(comp, dbulk1) ∀(i, p, q) ∈ VBulk : ci,q ∈ Cgantry (6.2k)

α
driving
i,p,q = α

disp
i,p,q ∈ interval(comp, dbulk2) ∀(i, p, q) ∈ VBulk : ci,q ∈ Crobot (6.2l)

α
driving
i,p,q = α

disp
i,p,q ∈ interval(comp, 0) ∀(i, p, q) ∈ VNone (6.2m)

α
temp1
i,p,q ∈ interval(comp, dtemp · ∆1

i,q) ∀(i, p, q) ∈ VBulk ∪VNone : ∆1
i,q > 0 (6.2n)

α
temp2
i,p,q ∈ interval(comp, dtemp · ∆2

i,q) ∀(i, p, q) ∈ VBulk ∪VNone : ∆1
i,q > 0 (6.2o)

αscav
i,p,q ∈ interval(comp, dscav) ∀(i, p, q) ∈ VBulk ∪VNone : βscav

i,q (6.2p)

Constraints (6.2a) ensure that the first temperature change variables either end
at the start of the corresponding scavenge variable, or if no scavenge is required
at the start of the corresponding dispense variable. Constraints (6.2b) and (6.2c)
ensure that the scavenge variable ends at the start of the dispense variable, and
the dispense variables ends at the start of the second temperature change variable,
respectively. Constraints (6.2d) ensure that the values of the intervals of the gantry
state function must always be equal to the value of the location of the correspond-
ing project of the dispense intervals, and that these intervals are both left and right
aligned. Likewise, constraints (6.2e) ensure that the values of the hazardous state
function must always be equal to the medium value pressure during the scavenge
intervals, and these intervals are both left and right aligned. Constraints (6.2f) en-
sure the dispense variables that require bulk chemicals connected to the gantry are
considered by the gantry sequence variable, whereas constraints (6.2g) ensure the
dispense variables requiring bulk chemicals attached to the bank robots are consid-
ered by the appropriate robot sequence variable. In both cases the type associated
with the dispense variables indicates the location of the corresponding project.
Constraints (6.2h) ensure the scavenge variables are considered by the hazardous
sequence variable and all types indicate the medium vacuum pressure. Constraints
(6.2i) and (6.2j) ensure that the first and second temperature change variable, re-
spectively, increase the value of the power cumulative function by a unit for their
durations. Finally, constraints (6.2k)-(6.2p) define the different interval variables
considered.

186

CHAPTER 6. INTERVAL CLUSTERS

All interval variables in the Bulk and None clusters can be expressed with
respect to a single datum, DBulk/None

1 .

Dispense Cluster

A Dispense Cluster, (i, p, c) ∈ VDispense, models a step in a staining or mixing pro-
tocol where a primary or mixed chemical is to be transferred to the either a slide or
mixing vial. The Dispense Clusters are by far the most complicated of the interval
clusters presented in this chapter. They combine aspects of the Bulk Clusters, and
the model from the previous chapter (Section 5.5.2). Each Dispense Cluster consists
of eight different types of interval variables set across four datums. Equivalent to
the Bulk Cluster, the Dispense Cluster considers two temperature change inter-
vals, α

temp1
i,p,q and α

temp2
i,p,q , a scavenge interval, αscav, and a dispense interval, αdisp. The

lengths are determined as in the Bulk Cluster, with the exception that the length of
the dispense variable is now ddisp. An aspirate interval variable, α

aspirate
i,p,q represents

the aspirating of the appropriate chemical required by the cluster with fixed length
daspirate. A wash interval variable, αwash

i,p,q , represents the washing of the pipette after

the dispense of chemical. If c ∈ Chaz, then the hazardous vacuum is used for the
wash and the interval has duration dwash2, otherwise c ∈ Csa f e and the standard
vacuum is used with duration dwash1. A carry interval variable, α

carry
i,p,q , is defined to

represent the interval of time that the chemical that is dispensed during this cluster
is being carried by the pipette. Similarly, a contaminate interval variable, αcontam

i,p,q ,
is defined to represent the interval of time that the pipette is contaminated by the
chemical that is dispensed during this cluster. The carry and contaminate intervals
do not have a fixed length. The cluster level description of the Dispense Cluster
can now be modelled as follows.

endAtStart(αtemp1
i,p,q , α

disp
i,p,q, dscav · βscav

i,q), ∀(i, p, q) ∈ VDispense : ∆temp1
i,q > 0 (6.3a)

endAtStart(αscav
i,p,q, α

disp
i,p,q), ∀(i, p, q) ∈ VDispense : βscav

i,q (6.3b)

endAtStart(αdisp
i,p,q, α

temp2
i,p,q), ∀(i, p, q) ∈ VDispense : ∆temp2

i,q > 0 (6.3c)

startBeforeStart(αcontam
i,p,q , α

carry
i,p,q), ∀(i, p, q) ∈ VDispense (6.3d)

startAtStart(αcarry
i,p,q , α

aspirate
i,p,q), ∀(i, p, q) ∈ VDispense (6.3e)

endBeforeStart(αaspirate
i,p,q , α

disp
i,p,q, dA

i,p,q), ∀(i, p, q) ∈ VDispense (6.3f)

endAtEnd(αdisp
i,p,q, α

carry
i,p,q , dB

i,p,q), ∀(i, p, q) ∈ VDispense (6.3g)

endBeforeStart(αdisp
i,p,q, αwash

i,p,q , dC
i,q), ∀(i, p, q) ∈ VDispense (6.3h)

endAtEnd(αwash
i,p,q , αcontam

i,p,q), ∀(i, p, q) ∈ VDispense (6.3i)

187

6.4. CP OPTIMIZER MODEL

Figure 6.8: A visualisation of the HV Dispense cluster of interval variables and their interaction with
the relevant sequence variables, state variables and cumul functions. Here the dispense variable
is the driving variable. Note that the vacuum required during the wash interval depends on the
chemical being dispensed, which is indicated by the ”?” symbols.

alwaysEqual(ψgantry, α
aspirate
i,p,q , Lmix,↔) ∀(i, p, q) ∈ VDispense : ci,q ∈ Cmix (6.3j)

alwaysEqual(ψgantry, α
aspirate
i,p,q , Lvials,↔) ∀(i, p, q) ∈ VDispense : ci,q ∈ Cprimary (6.3k)

alwaysEqual(ψgantry, α
disp
i,p,q, l(p, q),↔) ∀(i, p, q) ∈ VDispense (6.3l)

alwaysEqual(ψgantry, αwash
i,p,q , Lwash,↔) ∀(i, p, q) ∈ VDispense (6.3m)

alwaysEqual(ψhaz, αscav
i,p,q, ωmed,↔) ∀(i, p, q) ∈ VDispense : βscav

i,q (6.3n)

alwaysEqual(ψhaz, αwash
i,p,q , ωmed,↔) ∀(i, p, q) ∈ VDispense : ci,q ∈ Chaz (6.3o)

alwaysEqual(ψstandard, αwash
i,p,q , ωmed,↔) ∀(i, p, q) ∈ VDispense : ci,q ∈ Cstandard (6.3p)

alwaysEqual(ψcarry, α
carry
i,p,q , ci,q,←) ∀(i, p, q) ∈ VDispense (6.3q)

alwaysEqual(ψcontam, αcontam
i,p,q , ci,q,↔) ∀(i, p, q) ∈ VDispense (6.3r)

inSequence(ρgantry, α
disp
i,p,q, Lmix) ∀(i, p, q) ∈ VDispense : ci,q ∈ Cmix (6.3s)

188

CHAPTER 6. INTERVAL CLUSTERS

inSequence(ρgantry, α
disp
i,p,q, l(p, q)) ∀(i, p, q) ∈ VDispense : ci,q ∈ Cprimary (6.3t)

inSequence(ρhaz, αscav
i,p,q, ωmed) ∀(i, p, q) ∈ VDispense : βscav

i,q (6.3u)

f probe += pulse(αcarry
i,p,q , q(ci,q)) ∀(i, p, q) ∈ VDispense (6.3v)

f power += pulse(αtemp1
i,p,q , 1) ∀(i, p, q) ∈ VDispense : ∆temp1

i,q > 0 (6.3w)

f power += pulse(αtemp2
i,p,q , 1) ∀(i, p, q) ∈ VDispense : ∆temp2

i,q > 0 (6.3x)

presenceOf(αdisp
i,p,q) = presenceOf(αvar

i,p,q) ∀(i, p, q) ∈ VDispense; var ∈ Xdisp (6.3y)

α
driving
i,p,q = α

disp
i,p,q ∈ interval(q ∈ Qstain, p↓) ∀(i, p, q) ∈ VDispense (6.3z)

α
aspirate
i,p,q ∈ interval(q ∈ Qstain, pwash) ∀(i, p, q) ∈ VDispense (6.3aa)

αwash
i,p,q ∈ interval(q ∈ Qstain, dwash1) ∀(i, p, q) ∈ VDispense : ci,q ∈ Csa f e (6.3ab)

αwash
i,p,q ∈ interval(q ∈ Qstain, dwash2) ∀(i, p, q) ∈ VDispense : ci,q ∈ Chaz (6.3ac)

α
temp1
i,p,q ∈ interval(q ∈ Qstain, dtemp · ∆1

i,q) ∀(i, p, q) ∈ VDispense : ∆1
i,q > 0 (6.3ad)

α
temp2
i,p,q ∈ interval(q ∈ Qstain, dtemp · ∆2

i,q) ∀(i, p, q) ∈ VDispense : ∆2
i,q > 0 (6.3ae)

αscav
i,p,q ∈ interval(q ∈ Qstain, dscav) ∀(i, p, q) ∈ VDispense : βscav

i,q (6.3af)

α
carry
i,p,q ∈ interval(q ∈ Qstain, (dcarry

i,p,q , ∞)) ∀(i, p, q) ∈ VDispense (6.3ag)

αcontam
i,p,q ∈ interval(q ∈ Qstain, (dcontam

i,p,q , ∞)) ∀(i, p, q) ∈ VDispense (6.3ah)

Constraints (6.3a)-(6.3c) define the same end-at-start precedence constraints
between the scavenge, dispense, and both temperature intervals as in the Bulk
Dispense cluster. Constraints (6.3d)-(6.3i) are based on the precedence constraints
(5.20d)-(5.20i) from the model presented in the previous chapter (Section 5.5.2).
Constraints (6.3d) ensure the contaminate variables start before the carry variables
start. Constraints (6.3e) ensure the aspirate and carry variables start together. Con-
straints (6.3f) ensure the ends of the aspirate variables leave sufficient time for the
gantry to move to the correct location for the corresponding dispense variable, i.e.,
dA

i,p,q = dgantry
Laspirate,l(p,q)

. Constraints (6.3g) ensure the ends of the dispense variables
occur a specific amount of time before the end of the carry variables such that
the gantry can move to the aspirate location, i.e., dB

i,p,q = dgantry
l(p,q),Laspirate . Constraints

(6.3h) ensure there is sufficient time after the end of the dispense variables before
the start of the wash variables, i.e., dC

i,p,q = dgantry
l(p,q),Lwash . Constraints (6.3i) ensure the

end of the wash variables and contaminate variables occur together.

Constraints (6.3j)-(6.3r) relate interval variables with the state functions. Con-
straints (6.3j)-(6.3m) enforce the correct travel times of the gantry are respected by
ensuring the value of intervals of the gantry state function are always equal to the
correct location for the aspirate variables for mixing projects, aspirate variables for

189

6.4. CP OPTIMIZER MODEL

staining projects, dispense variables, and wash variables, respectively, and that the
interval variables and the appropriate intervals from the gantry state function are
both left and right aligned. Similarly, constraints (6.3n)- (6.3p) enforce the correct
behaviour of the vacuums by ensuring the values of the intervals of the hazardous
and standard state functions are always equal to medium pressure value for the
scavenge and wash intervals. Constraints (6.3q) keep track of which chemical is
currently in the pipette by ensuring the values of the intervals of the pipette state
function are always equal to the correct chemical value during the carry intervals.
Finally, constriants (6.3r) keep track of which chemical is contaminating the pipette
by ensuring the values of the intervals of the chemical state function are always
equal to the correct chemical value during the contaminate intervals.

Constraints (6.3s) and (6.3t) state that the dispense variables are considered by
the gantry sequence variable and thus they are not allowed to overlap. Likewise,
constraints (6.3u) state that the scavenge variables are considered by the hazardous
sequence variable and thus are also not allowed to overlap. Constraints (6.3v) state
that the probe cumulative function increases by a certain amount during the carry
variables depending on the chemical required. Constraints (6.3w) and (6.3x) state
that the power cumulative expression increases by a single unit during both the
temperature variables. Constraints (6.3y) ensure that the presence status of the
drive variables indicates the presence status of the other interval variables in the
cluster, where Xdisp = (aspirate, wash, temp1, temp2, carry, contaminate, scavenge).
Finally, constraints (6.3z)-(6.3ah) define the various interval variables.

The interval variables in a Dispense cluster can be partitioned according to
the following datums:

• DDispense
1 = s(αcontam);

• DDispense
2 := αaspirate and s(αcarry);

• DDispense
3 := αdisp, αtemp1, αscav, αtemp2, and e(αcarry

i,j); and

• DDispense
4 := αwash and e(αcontam).

Datum Ddisp
3 contains the driving variable, datums DDispense

1 and DDispense
2 are

considered in U , and datums DDispense
4 is considered in L.

Load and Unload Clusters

A Load Cluster, (i, p, q) ∈ VLoad, represents the loading of a slide from the input
drawer to the relevant unit and an Unload Cluster, (i, p, q) ∈ VUnload, represents
the unloading of a slide from the relevant unit to the output drawer. Firstly, both

190

CHAPTER 6. INTERVAL CLUSTERS

clusters consider an up interval variable, α
up
i,p,q, which represents the gantry pick-

ing up the slide from the correct location. Secondly, both clusters define a down
interval variable, αdown

i,p,q , which represents the gantry placing the slide at the cor-

rect location. Thirdly, both clusters consider a carry interval variable, α
carry
i,p,q , which

represents the interval of time the gantry is carrying the slide. Finally, the Unload
Cluster considers a scavenge interval, αi,p,q, which represents the removal of the
last remaining chemical on the slide before unloading.

The Load and Unload Clusters can now be modelled as follows.

Figure 6.9: Visualisation of the Load and Unload Clusters. Scavenging is only considered when
unloading

startAtStart(αcarry
i,p,q , α

up
i,p,q), ∀(i, p, q) ∈ VLoad ∪VUnload (6.4a)

endAtEnd(αcarry
i,p,q , αdown

i,p,q), ∀(i, p, q) ∈ VLoad ∪VUnload (6.4b)

endAtStart(αscav
i,p,q, α

up
i,p,q) ∀(i, p, q) ∈ VUnload (6.4c)

alwaysEqual(ψgantry, α
up
i,p,q, Linput,↔), ∀(i, p, q) ∈ VLoad (6.4d)

alwaysEqual(ψgantry, α
up
i,p,q, l(p, q),↔), ∀(i, p, q) ∈ VUnload (6.4e)

alwaysEqual(ψgantry, αdown
i,p,q , l(p, q),↔), ∀(i, p, q) ∈ VLoad (6.4f)

alwaysEqual(ψgantry, αdown
i,p,q , Loutput,↔), ∀(i, p, q) ∈ VUnload (6.4g)

alwaysEqual(ψhaz, αscav
i,p,q, ωmed,↔), ∀(i, p, q) ∈ VUnload (6.4h)

alwaysEqual(ψstandard, α
carry
i,p,q , ωhigh,↔), ∀(i, p, q) ∈ VLoad ∪VUnload (6.4i)

alwaysNoState(ψcontam, α
carry
i,p,q), ∀(i, p, q) ∈ VLoad ∪VUnload (6.4j)

inSequence(ρgantry, α
up
i,p,q, Linput), ∀(i, p, q) ∈ VLoad (6.4k)

inSequence(ρgantry, α
up
i,p,q, l(p, q)), ∀(i, p, q) ∈ VUnload (6.4l)

191

6.4. CP OPTIMIZER MODEL

inSequence(ρgantry, αdown
i,p,q , l(p, q)), ∀(i, p, q) ∈ VLoad (6.4m)

inSequence(ρgantry, αdown
i,p,q , Linput), ∀(i, p, q) ∈ VUnload (6.4n)

inSequence(ρhaz, αscav
i,p,q, ωmed), ∀(i, p, q) ∈ VUnload (6.4o)

inSequence(ρstandard, α
carry
i,p,q , ωhigh), ∀(i, p, q) ∈ VLoad ∪VUnload (6.4p)

α
driving
i,p,q = α

up
i,p,q ∈ interval(comp, dpickup), ∀(i, p, q) ∈ VLoad (6.4q)

α
driving
i,p,q = α

up
i,p,q ∈ interval(comp, dunload) ∀(i, p, q) ∈ VUnload (6.4r)

αdown
i,p,q ∈ interval(comp, dload), ∀(i, p, q) ∈ VLoad (6.4s)

αdown
i,p,q ∈ interval(comp, dplace) ∀(i, p, q) ∈ VUnload (6.4t)

α
carry
i,p,q ∈ interval(comp, dcarry

p,q), ∀(i, p, q) ∈ VLoad ∪VUnload (6.4u)

αscav
i,p,q ∈ interval(comp, dscav) ∀(i, p, q) ∈ VUnload (6.4v)

Constraints (6.4a) and(6.4b) ensure the carry intervals start at the start of the
corresponding up interval and end at the end of the corresponding down interval,
respectively. Constraints (6.4c) ensure the scavenge intervals end at the start of the
corresponding up interval. Constraints (6.4d)-(6.4g) enforce the correct locations of
the gantry by ensuring the values of the intervals of the gantry state function are
always equal to the correct locations for the up and down intervals. Constraints
(6.4k)-(6.4n) pass the same information to the gantry sequence variable. Likewise,
constraints (6.4i) ensure the values of the intervals of the standard vacuum state
function are always equal to the high pressure value during the carry intervals,
and constraints (6.4p) pass this information to the standard vacuum sequence
variable. Constraints (6.4h) enforce the hazardous vacuum has the correct pressure
by ensuring the values of the intervals from the hazardous state function are always
equal to the medium pressure value during the scavenge intervals, and constraints
(6.4o) pass this same information to the hazardous sequence variable. Constraint
(6.4j) enforces that the pipette of the gantry is clean by ensuring the chemical state
function has no state during the carry intervals. Finally, constraints (6.4q)-(6.4v)
define the various interval variables of the cluster.

All interval variables in the Load and Unload clusters can be expressed with
respect to a single datum, DLoad/Unload

1 .

Mixing and Cleaning Clusters

A Mixing Cluster, (i, p, q) ∈ Vmix, represents the procedure of encouraging chemi-
cals in a mixing vial to react by having the pipette of the gantry blow bubbles. A

192

CHAPTER 6. INTERVAL CLUSTERS

Cleaning Cluster, (i, p, q) ∈ VClean, represents the cleaning of the mixing vial by
the pipette of the gantry.4 Both clusters consider three types of interval variables.
Firstly, a vial interval variable, αvial

i,p,q, is defined to represent either the mixing or the
cleaning at the vial by the pipette of the gantry. For the Clean cluster the duration
of the vial interval is dclean, whereas for the Mixing cluster the duration is dmix. Sec-
ondly, a wash interval variable is defined to represent the cleaning of the pipette
at the wash station. Similar to other clusters, if a hazardous chemical is used the
interval has dhaz, whereas if a safe chemical is used the interval has dsa f e. Finally,
a contaminate interval variable, αcontam

i,p,q , is defined to represent the time that the
specific mix of clean contaminates the pipette. The Mixing and Cleaning Clusters
can now be modelled as follows.

Figure 6.10: A visualisation of the Mix / Clean Cluster of interval variables

startAtStart(αcontam
i,p,q , αvial

i,p,q) ∀(i, p, q) ∈ VMix ∪VClean (6.5a)

endAtEnd(αcontam
i,p,q , αwash

i,p,q) ∀(i, p, q) ∈ VMix ∪VClean (6.5b)

alwaysEqual(ψgantry, αvial
i,p,q, Lmix,↔) ∀(i, p, q) ∈ VMix ∪VClean (6.5c)

alwaysEqual(ψgantry, αwash
i,p,q , Lwash,↔) ∀(i, p, q) ∈ VMix ∪VClean (6.5d)

alwaysEqual(ψhaz, αwash
i,p,q , ωmed,↔) ∀(i, p, q) ∈ VMix ∪VClean : ci,q ∈ Chaz (6.5e)

alwaysEqual(ψstandard, αwash
i,p,q , ωmed,↔) ∀(i, p, q) ∈ VMix ∪VClean : ci,q ∈ Csa f e (6.5f)

alwaysEqual(ψcontam, αcontam
i,p,q , ci,q,→) ∀(i, p, q) ∈ VMix ∪VClean : ci,q ∈ Csa f e (6.5g)

inSequence(ρgantry, αvial
i,p,q, Lmix) ∀(i, p, q) ∈ VMix ∪VClean (6.5h)

presenceOf(αvial
i,p,q) = presenceOf(αvar

i,p,q) ∀(i, p, q) ∈ VMix ∪VClean; var ∈ Xmix (6.5i)

4In reality cleaning might require multiple protocol steps but for simplicity we are just assuming
it takes a single interval cluster.

193

6.4. CP OPTIMIZER MODEL

α
driving
i,p,q = αvial

i,p,q ∈ interval(opt, dmix) ∀(i, p, q) ∈ VMix (6.5j)

α
driving
i,p,q = αvial

i,p,q ∈ interval(opt, dclean) ∀(i, p, q) ∈ VClean (6.5k)

αwash
i,p,q ∈ interval(opt, dwash1) ∀(i, p, q) ∈ VMix ∪VClean : ci,q ∈ Csa f e (6.5l)

αwash
i,p,q ∈ interval(opt, dwash2) ∀(i, p, q) ∈ VMix ∪VClean : ci,q ∈ Chaz (6.5m)

αcontam
i,p,q ∈ interval(opt, (dcontam

i,p,q , ∞)) ∀(i, p, q) ∈ VMix ∪VClean (6.5n)

Constraints (6.5a) and (6.5b) ensure the contaminate variables start at the start
of the corresponding mix variable and end at the end of the corresponding wash
variable, respectively. Constraints (6.5c) and (6.5d) account for the travel times be-
tween locations by ensuring the values of the intervals of the gantry state functions
are always equal to the location of the mixing vials during the mix intervals, and
the location of the washing station during the wash intervals, respectively. Con-
straints (6.5e) ensure the values of the intervals of the hazardous state function
are always equal to the medium pressure level during the wash intervals for ac-
tivities requiring hazardous chemicals, whereas constraints (6.5f) ensure the same
thing for the standard state function for safe chemicals. Constraints (6.5g) repre-
sents the contamination of the pipette being mixed by ensuring the values of the
intervals of the chemical state function are always equal to the index of the chem-
ical being mixed for the duration of the contaminate interval. Constraints (6.5h)
state that the mix intervals are considered by the gantry sequence variable and the
types associated with the mix intervals correspond to the location of the mixing
vials. Constraints (6.5i) ensure that the presence status of the drive variables in-
dicates the presence statuses of the other interval variables in the cluster, where
Xmix = (contaminate, wash). Finally, constraints (6.5j)-(6.5n) define the interval
variables of the cluster. Here the minimum contamination time, dcontam

i,p,q , is equal to

appropriate the dmix or dclean plus the transit time dgantry
Lmixing,Lwash plus the appropriate

washing time dwash1 or dwash2.

The interval variables in the Mix and Clean clusters can be partitioned accord-
ing to the following datums:

• DMix/Clean
1 = αvial and s(αcontam); and

• DMix/Clean
2 = αwash and e(αcontam).

Datum DMix/Clean contains the driving variable and datum DMix/Clean
2 is con-

sidered in L.

194

CHAPTER 6. INTERVAL CLUSTERS

Agitate Cluster

An Agitate Cluster, (i, p, q) ∈ VAgitate, represents the processing of accelerating a
chemical reaction by moving a chemical back and forth across the sample using
the appropriate bank robot. The clusters consider two types of interval variables.
Firstly, an agitate interval variable, α

agitate
i,p,q , is defined with fixed duration dagitate rep-

resenting the time the appropriate bank robot is at the slide agitating the reaction.
Secondly, a wash interval, αwash, is defined with fixed duration dwash3, represent-
ing the bank robot washing its probe at the appropriate wash station. The Agitate
Cluster can now be modelled as follows.

Figure 6.11: A visualisation of the Agitate cluster of interval variables and their interaction with the
relevant sequence and state variables. Here the agitate variable is considered the driving variable.

endAtStart(αagitate
i,p,q , αwash

i,p,q , dp,q) ∀(i, p, q) ∈ VAgitate (6.6a)

alwaysEqual(ψhaz, αwash
i,p,q , ωmed,−) ∀(i, p, q) ∈ VAgitate (6.6b)

inSequence(ρhaz, αwash
i,p,q , ωmed) ∀(i, p, q) ∈ VAgitate (6.6c)

inSequence(ρrobot
b(p,q), α

agitate
i,p,q , Lmix) ∀(i, p, q) ∈ VAgitate (6.6d)

inSequence(ρrobot
b(p,q), αwash

i,p,q , Lwash
b(p,q)) ∀(i, p, q) ∈ VAgitate (6.6e)

prev(ρrobot
b(p,q), αagitate, αwash

i,p,q ,) ∀(i, p, q) ∈ VAgitate (6.6f)

α
driving
i,p,q = α

agitate
i,p,q ∈ interval(comp, dagitate) ∀(i, p, q) ∈ VAgitate (6.6g)

αwash
i,p,q ∈ interval(comp, dwash3) ∀(i, p, q) ∈ VAgitate (6.6h)

Constraints (6.6a) enforce that the end of the agitate variable occurs exactly
the amount of time to travel from the location of the slide to the appropriate bank

195

6.4. CP OPTIMIZER MODEL

robot wash station before the start of the wash station, i.e., dp,q = drobot
b(p,q),l(p,q),Lwash

b(p,q)
.

Constraints (6.6b) ensures the values of the intervals from the hazardous state
function are always equal to the medium pressure value during the wash intervals.
Similarly, constraints (6.6c) tell this information to the hazardous sequence variable.
Constraints (6.6d) and (6.6e) state that the agitate and wash variables are included
in the appropriate bank robot sequence variables, respectively, where the types
associated with the variables indicate the location of the intervals. Constraints (6.6f)
ensure the the agitate variables occur immediately before their corresponding wash
variables in the appropriate bank robot sequence variables. Finally, constraints
(6.6g) and (6.6h) define the agitate and wash variables respectively.

All interval variables in the Agitate clusters can be expressed with respect to
a single datum.

Microscavenge Cluster

A Micro Cluster, (i, p, q) ∈ Vmicro, represents the process, known as a microscav-
enge, of removing bubbles from an individual unit through the application of the
hazardous vacuum. The cluster consists of a single interval variable, αmicro, the has
a fixed duration of dmicro. The Micro Cluster is modelled as follows.

Figure 6.12: A visualisation of the Microscavenge cluster, which contains a single interval variable.

alwaysEqual(ψhaz, αmicro
i,p,q , ωlow,−) ∀(i, p, q) ∈ VMicro (6.7a)

inSequence(ρhaz, αmicro
i,p,q , ωlow) ∀(i, p, q) ∈ VMicro (6.7b)

α
driving
i,p,q = αmicro

i,p,q ∈ interval(comp, dmicro)∀(i, p, q) ∈ VMicro (6.7c)

196

CHAPTER 6. INTERVAL CLUSTERS

Constraints (6.7a) ensure the values of the intervals of the hazardous state
function are always equal to the low vacuum pressure during the micro inter-
vals. Similarly, constraints (6.7b) tells this information to the hazardous sequence
variable. Finally, constraints (6.7c) simply define the micro interval variable. All
intervals in the Micro Cluster can be expressed with respect to a single datum.

Dummy Cluster

A Dummy Cluster, (i, p, q) ∈ VDummy, represent possible dispenses of a specific
mixed chemical from a specific mixing project. Dummy Clusters from the mixing
projects are mapped to Dispense Clusters from the staining projects requiring
that mixed chemical by isomorphism constraints. The Dummy Cluster consists of
two interval variables. Firstly, like Dispense Clusters, a dispense interval variable,
α

disp
i,p,q. Secondly, a contaminate interval variable, αcontam

i,p,q , which again represents the
relevant interval of time where the pipette is contaminated. The Dummy Clusters
are modelled as followed.

Figure 6.13: A visualisation of the Dummy Dispense cluster of interval variables and their interac-
tion with the relevant state variables. Here the dispense variable is the driving variable.

startBeforeStart(αcontam
i,p,q , α

disp
i,p,q, dA

i,p,q), ∀(i, p, q) ∈ VDummy (6.8a)

endBeforeEnd(αdisp
i,p,q, αcontam

i,p,q , dC
i,p,q), ∀(i, p, q) ∈ VDummy (6.8b)

alwaysEqual(ψcontam, αcontam
i,p,q , ci,q,↔) ∀(i, p, q) ∈ VDummy (6.8c)

alwaysEqual(ψmixing, αcontam
i,p,q , p,↔) ∀(i, p, q) ∈ VDummy (6.8d)

presenceOf(αdisp
i,p,q) = presenceOf(αcontam

i,p,q) ∀(i, p, q) ∈ VDummy (6.8e)

α
driving
i,p,q = α

disp
i,p,q ∈ interval(opt, ddisp) ∀(i, p, q) ∈ VDummy (6.8f)

αcontam
i,p,q ∈ interval(opt, (dcontam

i,p,q , ∞)) ∀(i, p, q) ∈ VDummy (6.8g)

197

6.5. COMPUTATIONAL STUDY

Constraints (6.8a) and (6.8b) ensure the contaminate variables start before the
start, and end after the end of the corresponding dispense variables. The distances
used in these precedences constraints come from the minimum lengths of the con-
taminate variables from the dispense clusters requiring the mixed reagent, i.e., for
operation (i, p, q) ∈ VDummy the lengths are dA

i,p,q = p↓+min(i′,p′,q′)∈VDispense :ci,q=ci′ ,q′
dA

i′,p′,q′

and dC
i,p,q = pwash + min(i′,p′,q′)∈VDispense :ci,q=ci′ ,q′

dC
i′,p′,q′ . Constraints (6.8c) ensure the

values of intervals of the chemical state function are always equal to the index
of the mixed chemical that is being dispensed. Furthermore as the intervals from
the chemical state function and the contaminate intervals are both left and right
aligned, and due to the isomorphism constraints, if a dispense from a dummy clus-
ter is mapped to a dispense from a dispense cluster, the corresponding contaminate
variables will also become aligned. Constraints (6.8d) state that mixed chemical
cannot be used from two different projects, i.e., mixed chemical cannot be aspirated
from two different vials. This is completed by ensuring the values of intervals from
the mixed state function are always equal to the index of the project from the mix-
ing class for the duration of the contaminate variable. Constraints (6.8e) ensure the
presence status of the dispense variable dictates the presence status of the contami-
nate variable. Finally, constraints (6.8f) and (6.8g) define the interval variables from
the cluster and state that the dispense variable is the driving variable.

The interval variables in the Dummy clusters can be partitioned according to
the following datums:

• DDummy
1 = s(αcontam);

• DDummy
2 = αdisp; and

• DDummy
3 = e(αcontam).

Datum DDummy
2 contains the driving variable, datum DDummy

1 is considered in
U , and DDummy

3 is considered in L.

6.5 Computational Study

In this section we provide a brief computational study to demonstrate the effec-
tiveness of solving the model with CP Optimizer 12.8.

6.5.1 Data

To evaluate the model we consider twenty-four instances based on real-world
data. Each of the instances consider the simple scenario where the instrument is

198

CHAPTER 6. INTERVAL CLUSTERS

completely empty and then twenty-four slides are loaded into the input drawer
and a schedule is required. Half of the instances consider the case where all of
the staining protocols are the same, where the other half randomly selects a set of
twenty four projects from the 12 different staining protocols.

Protocols

We consider the two main types of mixed chemicals referred to as DAB and Red.
The mixing protocol for DAB creates up to three units that must be consumed
within an hour. The mixing protocol for Red creates up to two units that must be
consumed within five minutes. The mixing protocol for DAB consists of combining
two component chemicals, whereas for Red it consists of four. For these reasons,
DAB can be thought of as the easier of the two mixed chemicals.

The instances created consider up to twelve different staining protocols. The
staining protocols are classified based on the types of mixed chemical they require
(Red, DAB, Double), the scientific process used to expose target cells (EIER, HIER),
and whether agitation and microscavenging is required, indicated with a plus sign
(+). For example, the protocol denoted DAB-EIER+ requires just DAB, uses EIER to
expose target sites and does consider agitation and microscavenging. Each staining
protocol consists of approximately 50 steps with between 5-10 of those steps requir-
ing a primary chemical, 1-2 requiring a mixed chemical, and the rest requiring bulk
chemicals. The minimum waiting time of each step is often zero after dispensing
a bulk chemical, and range from 3 minutes to 30 minutes after HV chemicals. The
maximum waiting time of each step is typically 30 seconds to 1-2 minutes more
than the minimum time, but in a few of the steps can be up to half an hour. Typ-
ically the maximum times are stricter for the HV chemicals. The science time of
staining protocols typically range from one to two hours.

Instrument

The instrument consists of twenty-four units divided across two banks. The various
durations for tasks such as aspirating, dispensing and mixing, range from two to
eight seconds. The time the gantry and robots require to move between locations
can take up to three seconds. The number of mixing vials exceeds what is required
in the experiments so this does not need to be considered. The capacity of the
pipette can take up to six units of certain primary and mixed chemicals at a time
but more commonly can only take two to three units. In order to ensure the power
budget is not exceeded, only six different units can be heated or cooled at the same

199

6.5. COMPUTATIONAL STUDY

time.

6.5.2 Model Improvements

In order to strengthen the model, it is possible to provide additional information
to the solver. This is typically done by providing as much information to the tem-
poral network as possible. For example, a protocol might specify that no waiting
time is required between two steps, yet due to the physical set up of the system it
might not be possible to start the next step immediately. This information can be
passed to the model in two ways. Firstly, by strengthening the minimum time lags
between driving variables of clusters. Secondly, by considering additional prece-
dences between auxiliary variables. Strengthening methods like this have been
considered in the previous two chapters of the thesis. In implementing the model,
we considered each pair of cluster types for which one could potentially precede
the other explicitly. For each pair we added as much additional information to the
solver as possible. This resulted in many different types of constraints that we will
omit from the thesis for brevity.

6.5.3 Search Phases

Driving Variables and LU Consistency

The benefit of modelling the problem in terms of interval clusters is that we con-
sider driving and auxiliary variables while modelling. Again we pass this informa-
tion to the solver through search phases. The first search phase only consider the
driving variables of the problem. The second search phase considers a single vari-
able associated with each datum assigned to U , i.e., {DDummy

1 , DDispense
1 , DDispense

2 },
randomly selects a variable and assigns it to its current upper bound. The third
search phase considers a single variable associated with each datum assigned to
L, i.e., {DDummy

3 , DDispense
4 , DMix/Clean

2 }, randomly selects a variable and assigns it
to its current lower bound. As CP Optimizer does not allow for interval variables
to be set to their latest start time, additional integer variables are created and used
for the second search phase as was required in the previous two chapters.

List Heuristic

Even when solving the model with search phases to implement the driving and
auxiliary variables correctly, for real-world sized instances the default search of
CP Optimizer was not able to find an initial solution within a reasonable amount

200

CHAPTER 6. INTERVAL CLUSTERS

of time. To overcome this we considered an additional set of search phases and
constraints to effectively force CP Optimizer to implement a list heuristic.

Firstly additional constraints are added to the model to essentially fix the
isomorphism constraint (6.1f). Each dispense cluster from a staining class that re-
quired a mixed chemical, is mapped to the first dummy dispense from a unique
project from the mixing class that produced the required mixed chemical. Let
map(i, p, q) be the dummy cluster of the project from the mixing class that is
mapped from activity (i, p, q) of the staining project from the staining class. The
following constraints are then considered,

presenceOf(αdisp
map(i,p,q) == 1 ∀(i, p, q) ∈ V : ci,q ∈ Cmix ∧ q ∈ Qstaining (6.9a)

startAtStart(αdisp
i,p,q, α

disp
map(i,p,q)) ∀(i, p, q) ∈ V : ci,q ∈ Cmix ∧ q ∈ Qstaining (6.9b)

Constraints (6.9a) ensure the first dummy dispense from each of the projects
from the mixing classes is present. Through propagation of the presence network
and with the isomorphism constriant, this forces all mixing projects to be present
and the remaining dummy variables to be absent. Constraints (6.9b) then ensure
the appropriate mapping between staining. Hence we simply assume that each
time a mixed chemical is required it is produced by its own mixing project.

The list heuristic is based on the idea that staining projects can be inserted into
the schedule one at a time. From a mathematical point of view, it is based on the
contracted graphs introduced by Neumann and Zhan (1995) and that is discussed
in Chapter 2, where arcs of strongly connected components are contracted and then
the resulting nodes inserted into the schedule in the order they are considered in
the contracted graph. The order of the list is determined by Algorithm 5.

The list heuristic is passed to CP Optimizer through a large number of search
phases. A single search phase is added that contains each driving variable in the
order they are found in the list. Once all of the driving variables are added again
a search phase is added for the U variables and a search phase is added for the L
variables.

6.5.4 Experimental Setup

The approach evaluated in the preliminary computational study presented in this
chapter is based on combining the two different types of search phases. Firstly

201

6.5. COMPUTATIONAL STUDY

Algorithm 5 The order of the list heuristic

1: for each staining class q ∈ Qstaining do
2: for each project p ∈ Pq do
3: for each cluster i ∈ Vq do
4: if (i, p, q) ∈ VDisp ∧ ci,q ∈ Cmix then
5: Consider mapped cluster, (i′, p′, q′) = map(i, p, q), and insert all

of the driving variables from clusters (i′′, p′, q′) where i′′ ≤ i′ into the list in
increasing order of the cluster id.

6: The driving variable from cluster (i, p, q) is inserted in the list.
7: for each mixing class q ∈ Qmixing do
8: for each project p ∈ Pq do
9: Insert the last cluster into the list

we aim to quickly find a reasonable first solution. To implement this, we consider
the additional constraints, (6.9a) and (6.9b), and implement the list heuristic. CP
Optimizer is given a single worker at this stage. We wish to restrict CP Optimizer
to one worker so that we could potentially run the list heuristic in parallel with
different list orderings in the future. Secondly, we aim to see whether the default
search of CP Optimizer can improve this solution. Hence we provide the solution
obtained by the list heuristic to CP Optimizer as a feasible solution. At this stage
we also remove the additional constraints, (6.9a) and (6.9b), from the model. CP
Optimizer then performs the default search with three workers but still considering
the search phases to implement the driving variables correctly. This approach is
evaluated on the described twenty-four real-world instances.

6.5.5 Computational Results

A summary of the computational results is given in Table 6.5. The columns of
the table record the following results. Firstly the quality of the initial solution is
evaluated based on how many times the solver had to back-track during search
before finding a feasible solution (Fails), the CPU time required to find the feasi-
ble solution, and the objective function. Recall that the objective function is the
makespan of the schedule, presented here in seconds. Once the initial solution is
seeded into the complete model, we measure the quality of the objective function
after 1 minute and 10 minutes. This is reported as a optimality gap taken with the
best lower bound in the table in the appropriate (Gap) columns. Finally the best
lower bound (LB) obtained by CP Optimizer for the complete model and the lower
bound obtained from the initial propagation of the temporal network (LB-T) are

202

CHAPTER 6. INTERVAL CLUSTERS

given. The lower bound obtained from the temporal network can be interpreted
as the maximum amount of time required to schedule a single staining project
optimally on its own.

Table 6.5: Experimental results

Inst. Name Initial Sol. 1 min 10 min LB LB-T
Fails Time (s) Gap Gap Gap

1 DAB-HIER 73 2.63 19.1 3.2 1.9 5659 4792
2 DAB-EIER 4 7.24 47.0 7.2 6.0 3734 3294
3 DAB-HIER+ 80 3.16 22.3 5.7 2.1 5659 4792
4 DAB-EIER+ 3 3.32 60.8 7.1 4.8 3734 3294
5 Red-HIER 45 3.3 14.7 12.0 5.1 7513 6646
6 Red-EIER 154 3.24 13.9 13.3 10.1 5588 5148
7 Red-HIER+ 23 3.53 12.0 9.0 5.3 7513 6646
8 Red-EIER+ 127 3.57 13.9 12.9 10.6 5588 5148
9 Double-HIER 63 6.47 12.4 11.1 10.7 7891 7024
10 Double-EIER 34 12.09 37.1 35.5 34.1 5966 5526
11 Double-HIER+ 63 8.48 12.4 11.2 10.9 7891 7024
12 Double-EIER+ 34 8.21 37.1 34.6 30.6 5966 5526
13 Combination-1 28 4.14 12.2 12.0 6.6 7046 7022
14 Combination-2 92 4.2 26.4 26.0 10.5 7058 7022
15 Combination-3 38 3.37 15.7 15.7 14.7 7036 7022
16 Combination-4 293 4.15 13.2 13.0 9.4 7172 7022
17 Combination-5 111 3.19 12.5 12.5 4.5 7069 7022
18 Combination-6 21 3.44 15.6 15.6 7.4 7058 7022
19 Combination-7 32 8.46 15.6 13.8 0.1 7058 7022
20 Combination-8 115 3.29 13.3 11.6 2.2 7172 7022
21 Combination-9 42 4.05 12.9 11.2 7.1 7069 7022
22 Combination-10 34 4.58 17.3 17.3 9.2 7069 7022
23 Combination-11 34 3.03 13.4 12.0 8.9 7058 7022
24 Combination-12 81 3.11 17.7 16.0 5.1 7022 7022

The study successfully demonstrates the validity of our approach. In all of
the instances, our list heuristic is able to obtain reasonable feasible solutions very
quickly, i.e., in approximately 5 seconds. Recall that in practice a schedule must
be generated within a minute such that the machine can begin processing, which
the list heuristic clearly satisfies. In fact, it would even be possible to run variants
of this heuristic to obtain a pool of starting solutions. Furthermore, the majority
of solutions can be improved to within 10% optimality gap, which we consider
to very efficient. Noticeably larger gaps are reported for instances 10 and 12, both
consisting of a single staining protocol consisting of both mixed chemicals and

203

6.5. COMPUTATIONAL STUDY

using EIER for epitope retrieval. These instances have a higher demand on the
resources and thus we suspect the lower bound might be improved by explicitly
considering a resource-based lower bound similar to the previous chapter.

The speed with which initial solutions can be found is a immediate result
of how few fails occur when performing the list heuristic. Many of the instances
obtain a feasible solution with less than 100 fails and the worst occurrence is in
instance 16 with 293 fails. When considering that the models have approximately
4,000 variables and 12,000 constraints, and many tight maximum time lags, we
were impressed by how few fails occurred. We believe this result reflects that the
constraints are propagating efficiently and as intended. Based on these results
however the direct relationship between the number of fails and time taken to
obtain a result is not immediately clear. We wish to investigate this further in
future tests.

The lower bounds obtained by propagating the temporal network reveal the
need for further testing. All twelve of the instances created from combinations
have the same LB− T. This indicates that all of the instances contain at least one
slide that requires a Double-HIER(+) staining protocol. Given that we are only con-
sidering the makespan of the problem, the protocols that require the most amount
of time largely dictate the time required to complete a group of instances. In the
future it could be beneficial to evaluate the instances on average project delay to
get a more insightful understanding.

The full model improves the initial solutions with varying degrees of success.
In some instances, e.g. instances 1, 2, and 4, it is possible to significantly improve
the objective within 1 minute. For some instances, e.g. instances 5, 14, 18, and 19,
there is very little improvement within 1 minute but considerable improvement
after 10. For some instances, e.g., 9, 11, and 15, there is very little improvement at all.
Regardless, the experimental results sufficiently demonstrate that it can beneficial
to try to improve the initial solution and that this can be achieved in a relatively
short amount of time.

In practice, we intend to continuously optimise the schedule. Firstly, we will
use the list heuristic to generate a feasible solution. We then lock in a small segment
of the initial solution, have the automated-system begin on the segment, while try-
ing to improve the remaining schedule for the duration of that segment. If an
improved schedule is obtained at the end of that segment is then the schedule that
is followed. If new slides are added into the system, then we will cancel the opti-
misation process and instead incorporate the new slides into the existing schedule.

204

CHAPTER 6. INTERVAL CLUSTERS

In this sense, we can adapt our approach from the offline version of the problem
studied in this paper, to the online, dynamic real-world problem.

6.6 Model Extensions / Future Work

The problem considered in this chapter is an allocation and scheduling problem
similar to those studied by Lombardi (2009). Our model avoids the allocation as-
pect of the problem by heuristically assigning staining projects to specific units.
The benefit of this is that the exact travel times can be included in the weights
of the precedence constraints and are thus known by the temporal network. Fur-
thermore the location of the specific projects are used as parameters to the various
sequence variables and state function that record the locations of the various robots.
A limitation is that an optimal solution to the scheduling problem is not necessar-
ily globally optimum when also considering the different units the projects can
be allocated to. Future work could involve building this assignment component
into the scheduling model. Furthermore it would be interesting to see if we could
estimate how much that would be gained by doing so.

Another limitation to the model is that the Agitate and Micro clusters are all
compulsory. Depending on the maximum time lags between consecutive agitates
or micro scavenges, this can have a tightening effect on the temporal network. In
reality, ideally the number of each of these tasks will depend on gap between the
driving variables from clusters corresponding to the main actions of the current
and next step in the staining protocol. This information is currently not considered
by the model and its impact is not immediately clear.

Currently the model assumes that all dispenses of mixed chemical require the
same quantity. This assumption was made such that the dummy clusters from
the mixing protocols and the relevant dispense clusters from the staining protocol
can be joined by an isomorphism constraint, which in our experience is by far
the most effective method for communicating this information to the solver. If
dispenses of mixed chemical required different quantity of the chemical, this would
significantly complicate both how many dummy clusters per mixing protocol must
be considered, as well as how the dummy and dispense clusters are merged. In our
experience this assumption holds quite well in practice, however understanding
the extent of this limitation is still not exactly clear.

Currently in this chapter we do not consider symmetry breaking. Staining
projects even of the same class assigned to different units technically are not sym-

205

6.7. CONCLUSION

metric due to the travel time of the robots and gantry. However mixing projects
of the same class are symmetric and this could be explored. From Chapter 3 of
this thesis we would expect the symmetry breaking to potentially improve the
lower bounds obtained, but the size of these instances we would not expect much
significant performance improvement in terms of objective function.

There are a range of other heuristic solutions that could be run in parallel
to the list heuristic. Firstly, as already discussed the slides could be allocated to
different units. Secondly, the order in which projects are considered in the list
heuristic could be permuted. Thirdly, instead of a list heuristic, it could be sufficient
to simply consider the strongly-connected components of the temporal network in
a specific order instead of the specific interval clusters. Fourthly, multiple staining
projects could be fixed to different dummy clusters from the same mixing project.
This should be beneficial to mixing projects with long expiry times such as DAB.
Alternatively, it is possible to post-process the heuristic solutions in order to reduce
the number of mixing projects required before passing this information to the full
model.

6.7 Conclusion

In this chapter we modelled and solved the real-world scheduling problem that mo-
tivated this thesis using a framework based on the notion of interval clusters. This
framework allows for the efficient modelling of complicated real-world scheduling
problems that involve multiple levels of abstraction, and can still be solved effi-
ciently. More specifically, it allows a scheduling problem to be modelled with a top
level description of the driving variables and then a description of all the different
types of interval clusters. For our real-world problem, this provided an intuitive
way to describing, modelling, and solving the scheduling problem. Preliminary
results motivate the further development of this approach and a range of possible
extensions to the model have been proposed.

206

CHAPTER 7
Concluding Remarks

7.1 Contribution

This thesis is motivated by modelling and solving scheduling problems considered
by fully-automated robotic systems that complete advanced cell staining: a process
routinely used by pathologists to diagnose cancers and infectious diseases. By
making efficient use of the resources of the system, it is possible to increase the
system’s throughput, while still adhering strictly to the specific staining protocols
and thus ensuring the quality of the tests are maintained. Ultimately, the improved
performance will allow pathologists to perform more tests in a given amount of
time and therefore be more informed when making a diagnosis.

Although motivated by a specific application, the main aim of the thesis was to
provide general insights and frameworks for understanding how related schedul-
ing problems can be best modelled and solved by existing combinatorial solvers.
To that end, the thesis makes the following novel contributions:

• Symmetry Breaking - Proposes and evaluates different methods of exploit-
ing symmetry when considering scheduling problems with identical projects,
specifically for the high-multiplicity RCPSP/max.

• Driving Variables and LU Consistency - Formalises a theory that allows
one to reason about how assignments to specific subsets of variables can be
extended to a complete solution at a fixed point. The method is based on a

207

7.1. CONTRIBUTION

novel local consistency measure, that we name LU consistency.

• Interval Clusters - Develops an intuitive framework based on the novel con-
cept of interval clusters for modelling scheduling problems that reasons over
multiple levels of abstraction. The framework builds upon the concepts of
driving variables and LU consistency.

The thesis considers a range of scheduling problems that are considered for a
number of purposes and relate in different ways to the real-world problem.

• RCPSP/max - We use the RCPSP/max as a reference problem when introduc-
ing the necessary terminology, concepts and solving technologies that were
used throughout the thesis. We consider the RCPSP/max specifically as it
is both well studied in the literature and, although not discussed explicitly
in the thesis, can be used to model instances of the motivating scheduling
problem following a series of conservative simplifying assumptions.

• High-multiplicity RCPSP/max - We consider instances of the RCPSP/max,
referred to as high-multiplicity instances, that include multiple projects with
identical characteristics. These arise naturally in instances of the real-world
problem when the same staining protocol is used for multiple slides. In evalu-
ating the different methods of symmetry breaking we were able to determine
new best solutions to a number of instances in the well-establish dataset (MP-
SPlib). However, it was not immediately clear at this point how to add aspects
of the real-world problem back into the high-multiplicity RCPSP/max and
so we considered the LHRSP.

• LHRSP - To model and solve some complicated aspects of the motivating
real-world problem, we proposed and studied the LHRSP. In modelling the
problem with a CP Optimizer model, we proved that once a specific subset of
the variables are fixed and constraint propagation reaches a fixed point, that
it is always possible to obtain a complete solution through setting the remain-
ing variables to specific values. We empirically demonstrated the significant
improvement in performance that this insight offers.

• LHRSP+ - Upon formalising the concepts of driving variables and LU con-
sistency, we considered a slightly more generalised version of the LHRSP
that contained some more aspects of the real-world problem. Again we em-
pirically demonstrated the significant improvement in performance that this
insight offers.

• Cell Staining Instrument Problem - Building upon the work of the previous

208

CHAPTER 7. CONCLUDING REMARKS

chapters, in Chapter 6 we then modelled the real-world problem. The prob-
lem was not considered until Chapter 6 for a number of reasons. Firstly, as
the robotic instrument has not yet been released to market there is sensitive
information that we cannot yet make public. Secondly, we lacked a frame-
work to describe, model and solve the problem in a simple way. The concept
of interval clusters provided us this framework and the computational study
demonstrated how good-quality, feasible solutions can be obtained quickly
and then significantly improved.

In conclusion, the thesis contains both application-oriented and more funda-
mental research on effective modelling of scheduling problems. By focussing our
research to understanding how to best leverage existing technologies we are able
to develop theory that not only helps us with our real-world problem but also has
more general applicability across different areas of scheduling and combinatorial
optimisation. Testing these ideas on a wide range of problems is beyond the scope
of this thesis.

7.2 Future Work

Directions of future work have been discussed at the end of each of the Chapters
3-6. Here we summarise the most important of these directions as well as make a
number of new high-level directions arising from the work of the dissertation.

Formalising the concept of LU consistency is in our opinion the most salient
contribution of the thesis. Not only did it allow for significantly improved perfor-
mance of the solver, but, in association with driving variables and interval clusters,
also provided the basis for which the motivating problem could eventually be mod-
elled. From a methodological view-point, we believe practitioners solving prob-
lems with CP could significantly benefit from an understanding LU consistency.
Hence future work should consider identifying existing problems in the literature
where it is possible to demonstrate the power of LU consistency to highlight its
more general applicability.

Currently LU consistency has only been proven to exist on special cases of
global constraints primarily considering interval variables without a fixed length
but with a compulsory region. A resource temporal network (Laborie, 2003b) can
be seen as a generalisation of the global constraints considered. Hence relating
LU consistency to resource temporal networks, and the seemingly the associated
Necessary Truth Criterion, might help explain this connection. It is also interesting

209

7.2. FUTURE WORK

to understand whether other existing global constraints are LU consistent for any
useful partitions outside of the scheduling-oriented constraints considered in this
thesis.

We believe the models in Chapters 5 and 6 can be improved. More explicitly,
they contain some interval variables, for example aspirate and wash variables,
that do not necessarily have a compulsory region when the driving variables are
fixed. This can result in weak filtering while trying to feasibly assign the driving
variables. As such, we believe that the models in both these chapters could be
improved by removing such variables in a similar way that the models in Chapter
4 were improved by reducing the types of interval variables.

This thesis has largely built off the success of modern Constraint-Based Schedul-
ing technologies. Given the similarities between scheduling and packing problems,
where scheduling can be seen as a 1-dimensional version of either 2d or 3d pack-
ing, could Constraint-Based Packing be a future successful application domain for
CP? We are aware of a number of global constraints specific to packing problems
(Shaw et al., 2004) but have not seen any effort to create a packing specific mod-
elling language on top of traditional CP in the way that CP Optimizer has done
for scheduling. In such a modelling language, one could imagine generalising the
notion of interval variables, from a 1 dimensional line, to higher dimensions such
that they could represent 2d or 3d rectangles to pack. For such generalised vari-
ables, would the concept of LU consistency still be sufficient or would it also need
to be generalised to, for example, Left-Right-Up-Down (LRUD) consistency for 2d
packing problems?

In our opinion, the default search of CP Optimizer could be improved by
considering the list heuristic used to obtain initial solutions in Chapter 6. The
list heuristic is based on trying to insert the strongly connected components of the
temporal network into schedule one at a time, similar to the direct method of Franck
et al. (2001). Although this method does cannot guarantee that failures will not
occur, the heuristic can efficiently generate feasible solutions with a small number
of failures as shown in our results in Chapter 6. Futhermore, there is evidence to
suggest that, particularly for some specific objective functions such as minimising
total makespan, inserting activities by their components can often achieve superior
results. In their winning approach to the MISTA 2013 scheduling competition, Asta
et al. (2016) explicitly outline how they exploit this property.

We believe the symmetry breaking constraint considered in Chapter 3 could
be extended to some special cases of multi-mode scheduling problems. The impact

210

CHAPTER 7. CONCLUDING REMARKS

on the solver performance of these symmetry breaking constraints were somewhat
insignificant, particularly in terms of finding feasible solutions. However, from
a theoretically perspective, understanding the extent that the symmetry can be
generalised, and whether it can be detected efficiently, would still be worthwhile
future research.

Finally, additional future work involves the further development and embed-
ding of our scheduling approach into the robotic instrument that provided the
motivation for this research. More explicitly, this consists of significantly more
computational experiments to assess the performance of the approach under a
wider range of situations such as online scenarios, as well as investigating whether
the assignment of slides to processing units can be incorporated into the model.

211

APPENDIX A
Additional Material - Chapter 3

A.1 Tightening Constraints

In high-multiplicity scheduling problems it is common that the problems have a
high resource utilisation, i.e., resources are required near their capacity for much
of the project. A resource-based lower bound to any instance of the problem is
the minimum amount of time such that one of the resources would need to be
completely utilised to satisfy all the requirements. Constraints can be added to the
MIP models to account for such lower bounds.

For the reduced model based on integer step and on/off variables, denoted
ROOSDDT in Section 3.4.3, the following constraints are added,

Rk

T

∑
τ=t

(1− zω,τ)︸ ︷︷ ︸
(a)

≥ ∑
c∈C

∑
i∈Vc

(
di,c · ri,c,k · (mc − zi,c,t)︸ ︷︷ ︸

(b)

+

t

∑
τ=t∗

(t + di,c − τ) · (zi,c,τ − zi,c,τ−1) · ri,c,k
)

︸ ︷︷ ︸
(c)

∀ k ∈ R; t ∈ H

(A.1)

where t∗ = max(0, t − di,c). Term (a) represents the total amount of energy that

212

APPENDIX A. ADDITIONAL MATERIAL - CHAPTER 3

is available over the interval from t until the dummy end variable Sω. Term (b)
represents the amount of energy required by all activities that have not started
by time t. Term (c) represents the total amount of energy required after time t by
the subset of activities that have started processing before or at t. Hence these
constraints ensure that the start of the dummy-end activity, and hence the length
of the total project, is long enough such that there is sufficient amount of resource
to process all of the activities.

The resource-based tightening constraints for the other models considered can
be expressed similarly. For the reduced formulation based on integer pulse start
variables, denoted RDDT in Section 3.4.2, (using zi,c,t = ∑t

τ=0 yi,c,τ), and for the
corresponding extended version of the model, denoted DDT in Section 3.4.1, the
resource-based constraints are given in (A.2) and (A.3) respectively:

Rk

(
T − t−

T

∑
τ=t

τ

∑
τ′=0

yω,τ′

)
≥ ∑

c∈C
∑

i∈Vc

(
di,cri,c,k · (mc −

t

∑
τ=0

yi,c,τ)+

t

∑
τ=t∗

(t + di,c − τ) yi,c,τ ri,c,k
)
∀ k ∈ R; t ∈ H

(A.2)

Rk

(
T − t−

T

∑
τ=t

τ

∑
τ′=0

xω,τ′

)
≥ ∑

(i,p,c)∈V

(
di,c · ri,c,k(1−

t

∑
τ=0

xi,p,c,τ)+

t

∑
τ=t∗

(t + di,c − τ)xi,p,c,τri,c,k
)
∀ k ∈ R; t ∈ H

(A.3)

Constraints (A.3) can be thought of a special case of constraints (A.2) where
all projects belonged to their own class.

A.2 Polyhedral Analysis

Proposition A.2.1. RDDT ≺LP DDT

Proof. Need a transformation of DDT on the solution space P(RDDT) that gives
formulation DDT’ and solution space P(DDT’) such that P(DDT′) ⊆ P(RDDT).
Let yi,c,t = ∑p∈Pc xi,p,c,t be the orthogonal projection (thus affine transformation) of
DDT onto the solution space of RDDT.

Recall the set of all precedences was defined as A := Areal ∪ Astart ∪ Aend,

213

A.2. POLYHEDRAL ANALYSIS

where Astart are the precedences from the dummy start node of the master projects
to the dummy start nodes of the individual project, Aend are the precedences from
the dummy end nodes of the individual projects to the master dummy end node,
and Areal are the precedences within the individual projects. As the objective func-
tion considered is to minimise makespan it is possible to neglect the Astart prece-
dences as we can assume that start times of the dummy start activities for indi-
vidual projects will start as early as possible. Hence it is possible to consider the
precedence constraints (3.5b) in DDT as the following two constraints,

t−δ(i,i′ ,c)

∑
τ=0

xi,p,c,τ −
t

∑
τ=0

xi′,p,c,τ ≥ 0 ((i, i′, c) ∈ Ac; p ∈ Pc; c ∈ C; t ∈ H) (3.5b-a)

t

∑
τ=0

xω,p,c,τ −
t

∑
τ=0

xω,τ ≥ 0 (p ∈ Pc; c ∈ C; t ∈ H) (3.5b-b)

Here constraints (3.5b-a) represent the precedences from Areal and constraints
(3.5b-b) represent the precedences from Aend. Now by considering the affine trans-
formation for constraints (3.5b-a), we obtain the following,

∑
p∈Pc

(

t−δ(i,i′ ,c)

∑
τ=0

xi,p,c,τ −
t

∑
τ=0

xi′,p,c,τ) ≥ 0 ((i, i′, c) ∈ Ac; c ∈ C; t ∈ H)

t−δ(i,i′ ,c)

∑
τ=0

yi,p,c,τ −
t

∑
τ=0

yi′,p,c,τ ≥ 0 ((i, i′, c) ∈ Ac; c ∈ C; t ∈ H)

Which are equivalent to constraints (3.6b) from the RDDT. A similar argument can
be made to show that after the transformation the resource constraints (3.5c) and
(3.6c) are equivalent, constraints (3.5d) and (3.6d) are equivalents, and constraints
(3.5f) and (3.6g) are equivalent. It remains to show that, after the affine transfor-
mation, the constraints (3.5b-b) are not weaker than either constraints (3.6e) or
(3.6f).

It is possible to show that this is true for constraints (3.6e) as follows,

0 ≤
t

∑
τ=0

xω,p,c,τ −
t

∑
τ=0

xω,τ (c ∈ C; p ∈ Pc; t ∈ H)

214

APPENDIX A. ADDITIONAL MATERIAL - CHAPTER 3

≤ ∑
p∈Pc

(
t

∑
τ=0

xω,p,c,τ −
t

∑
τ=0

xω,τ) (c ∈ C; t ∈ H)

= ∑
p∈Pc

t

∑
τ=0

xω,p,c,τ −mc

t

∑
τ=0

xω,τ (c ∈ C; t ∈ H)

=
t

∑
τ=0

yω,p,c,τ −mc

t

∑
τ=0

yω,τ (c ∈ C; t ∈ H)

Let us now consider (3.6f) as follows,

Firstly recall that Xc := {i ∈ Vc|(i, ω) ∈ Ac ∧ µi,c < mc} represent the set
of activities for class c ∈ C that directly precede the dummy end node of the
individual projects of the class and that due to resource requirements all required
multiples cannot overlap in time.

t−di,c

∑
τ=0

xi,p,c,τ ≥
t

∑
τ=0

xω,p,c,τ ≥
t

∑
τ=0

xω,τ (i ∈ Xc; c ∈ C; t ∈ T)

By instead summing over the intervals after time unit t as follows,

(1−
T

∑
τ=t−di,c

xi,p,c,τ) ≥ (1−
T

∑
τ=t

xω,τ) (i ∈ Xc; c ∈ C; t ∈ T) (?)

It is possible to rearrange these constraints to more closely resemble con-
straints (3.6f) as follows.

T

∑
τ=t

xω,τ ≥
T

∑
τ=t−di,c

xi,p,c,τ (i ∈ Xc; c ∈ C; t ∈ T)

≥ xi,p,c,t−di,c (i ∈ Xc; c ∈ C; t ∈ T)

≥ 1
µi,c

∑
p∈Pc

xi,p,c,t−di,c (i ∈ Xc; c ∈ C; t ∈ T)

215

A.2. POLYHEDRAL ANALYSIS

The first inequality comes directly from rearranging (?). The second inequality
is clearly true as t − di,c ∈ [t − di,c, T[. The third inequality is true due to the
definition of µi,c. Now considering the affine transformation and rearranging we
obtain,

yi,c,t−di,c
≤ µi,c

T

∑
τ=t

yω,τ (i ∈ Xc, c ∈ C, t ∈ H)

Which are clearly equivalent to constraints (3.6f).

To complete the proof we can provide a solution to the linear relaxation of
RDDT that is infeasible in DDT. Consider the simple instance with a single class c
containing a single activity i with a multiplicity mc = 3 and duration di = 1 with
no precedence constraints and no resource constraints.

The LP relaxation of (RDDT), we obtain

t−1

∑
τ=0

yi,c,τ −
t

∑
τ=0

yω,c,τ ≥ 0 (t = 1, 2)

t

∑
τ=0

yω,τ − 3
t

∑
τ=0

yω,c,τ ≥ 0 (t = 1, 2)

∑
t∈[0,1,2]

yi,c,t = 3, ∑
t∈[0,1,2]

yω,c,t = 3, ∑
t∈[0,1,2]

yω,t = 1,

yω,c,t−1 ≤ 2
3

∑
τ=t

yω,τ

0 ≤ yi,c,t ≤ 2 (t = 0, 1, 2)

A solution to the above linear relaxation, which turns out to be optimal, is
given in the table below

t 0 1 2
yi,c,t 2 1 0
yω,c,t 0 2 1
yω,t 0 2/3 1/3

It is possible to show that the corresponding solution in DDT would violate the
disaggregated precedence constraints (3.5b). As yω,c,1 = 1 there must exist a project

216

APPENDIX A. ADDITIONAL MATERIAL - CHAPTER 3

p ∈ Pc such that xω,p,c,1 = 1. Now considering the disaggregated precedence
constraint between (ω, p, c) and the master dummy end node (ω, c) we can see
that for t = 1, the constraint

xω,p,c,0︸ ︷︷ ︸
0

+ xω,p,c,1︸ ︷︷ ︸
0

− xω,0︸︷︷︸
0

− xω,1︸︷︷︸
2/3

≥ 0

is violated as 0− 2/3 � 0.

Proposition A.2.2. DDT ≺LP DDT-Sym

Proof. Clearly DDT �LP DDT-Sym as DDT-Sym was obtained from DDT by con-
sidering the additional precedence constraints Asym

1 and Asym
2 , and thus clearly any

solution to DDT-Sym is also a solution to DDT. To complete the proof consider
the simple instance with a single resource k with capacity Rk = 1, a single class c
with a multiplicity mc = 2, containing a single activity i with duration di = 1, and
resource requirement ri,c,k = 1. The time-horizon is 3.

The LP relaxation of (DDT), we obtain

t−1

∑
τ=0

xi,p,c,τ −
t

∑
τ=0

xω,p,c,τ ≥ 0 (p = 0, 1; t = 1, 2)

t

∑
τ=0

xω,p,c,τ −
t

∑
τ=0

xω,τ ≥ 0 (p = 0, 1; t = 1, 2)

∑
t∈[0,1,2]

xi,p,c,t = 1, ∑
t∈[0,1,2]

xω,c,t = 1, ∑
t∈[0,1,2]

xω,t = 1,

∑
p∈[1,2]

xi,p,c,t ≤ 1, (t = 0, 1, 2)

0 ≤ xi,p,c,t, xω,p,c,t ≤ 1 (p = 0, 1; t = 0, 1, 2)

0 ≤ xω,t ≤ 1 (t = 0, 1, 2)

A solution to the above linear relaxation, which turns out to be optimal, is
given in the table below

t 0 1 2
xi,p,c,t 0.5 0.5 0
xω,p,c,t 0 0.5 0.5

xω,t 0 0.5 0.5

217

A.2. POLYHEDRAL ANALYSIS

The LP relaxation of (DDT-Sym) can be obtained by considering the additional
constraints.

t−1

∑
τ=0

xi,0,c,τ −
t

∑
τ=0

xi,1,c,τ ≥ 0 (t = 1, 2)

These constraints come from the strengthening constraints Asym
2 . Considering

now the solution proposed above on the constraint for t = 1, i.e.,

xi,0,c,0︸ ︷︷ ︸
0.5

− xi,1,c,0︸ ︷︷ ︸
0.5

− xi,1,c,1︸ ︷︷ ︸
0.5

≥ 0

Thus −0.5 � 0 and hence the solution violates the constraint.

As we have modelled the ROOSDDT and RDDT explicitly we will now con-
sider whether the reduced version of the models are polyhedral equivalent up to
linear transformation.

Proposition A.2.3. ROOSDDT ≡LP RDDT

Proof. By substituting constraints (3.7c) into (3.7d), the resource constraints of
ROOSDDT can be expressed as

∑
ψ∈Ψ

rψ,k ∑
(i,p,c)∈Vψ

(zi,c,t − zi,c,t−di,c) ≤ Rk (t ∈ H; k ∈ R) (A.4)

or equivalently

∑
c∈C

∑
i∈Vc

ri,c,k(zi,c,t − zi,c,t−di,c) ≤ Rk (t ∈ H; k ∈ R) (A.5)

Hence ROOSDDT can be expressed entirely in terms of the integer-variable ver-
sion of the step constraints. The integer step variables can then be transformed
to the integer pulse variables by the following transformation, zi,c,t = ∑t

τ=0 yi,c,τ.
Conversely the inverse transformation defines yi,c,t = zi,c,t − zi,c,t−1 gives the step-
variable only version from the ROOSDDT from the RDDT.

Proposition A.2.4. Let DDT+ be the DDT model with the resource-based tightening
constraints (A.3). DDT ≺LP DDT+

Proof. Clearly DDT �LP DDT+ as DDT+ is constructed by adding additional

218

APPENDIX A. ADDITIONAL MATERIAL - CHAPTER 3

constraints to DDT. Hence it remains to show that there exists a solution to DDT
that is not in the solution space of DDT+. We consider the same instance used in
the proof to Proposition A.2.2. Hence we obtain the same relaxation to (DDT) as
given in that proof. The relaxation to (DDT+) can be obtained by considering the
additional tightening constraints, consider the constraint that corresponds to the
time index t = 0 below,

2− xω,1 − 2xω,0 ≥ ∑
p∈[1,2]

((1− xi,p,c,0) + xi,p,c,0)

or equivalently
2− xω,1︸︷︷︸

0.5

−2 xω,0︸︷︷︸
0

≥ ∑
p∈[1,2]

(1) = 2

where again we use the solution to DDT used in the proof of Proposition A.2.2.
Thus 1.5 � 2 and hence the solution violates at least one of the additional con-
straints.

Proposition A.2.5. For the total-makespan objective

RDDT ≡LPROOSDDT ≺LP

DDT ≡LP OOSDDT ≺LP

DDT-Sym ≡LP OOSDDT-Sym

Proof. From Proposition A.2.1 we have RDDT ≺LP DDT. From Proposition A.2.2,
we have DDT ≺LP DDT-Sym. From Proposition A.2.3 we have ROOSDDT ≡LP

RDDT. The model for OOSDDT is not given explicitly in the paper, instead it
is constructed from ROOSDDT by redefining the set of project classes such that
all projects are defined to belong to their own class. This is the same method in
which DDT can be constructed from RDDT. Hence as we know that RDDT ≡LP

ROOSDDT and we know that both DDT and OOSDDT can be constructed in the
same way by redefining sets to RDDT and ROOSDDT respectively, then we have
DDT≡LP OOSDDT. The same logic holds for DDT-Sym≡LP OOSDDT-Sym, as the
models are constructed from DDT and OOSDDT respectively by considering the
same additional set of precedence constraints.

219

APPENDIX B
Additional Material - Chapter 4

B.1 MIP Model for LHRSP

In the mathematical programming approach, the problem is modelled as a routing
problem by the use of a directed, weighted multi-graph G(V, A). Each operation
(i, j) ∈ O is assigned a vertex in the graph, v(i, j) , as well as a dummy start and
dummy end node, denoted by 0 and γ respectively. Hence V := {0} ∪ {v(i, j)|i, j ∈
O} ∪ {γ}. In a multi-graph, there may be multiple arcs from one node to another,
referred to as different routes. Hence we use triplet notation to represent arcs, where
(v, v′, r) ∈ A represents an arc from node v to v′ along route r and has weight wv,v′,r.
The arc set is the union of two disjoint subsets A = A1 ∪ A2, each of which contain
at most a single arc from one node to another. Hence there is at most two routes
from one node to another in the multi-graph G.

Arc set A1 are referred to as the slow routes. An arc (v, v′, 1) ∈ A1 has a weight
that represents the minimum amount of time required between the start of v ∈
V and start of v′ ∈ V if the robot must travel to and from the vials to aspirate
chemicals in between the two operations. More explicitly the arc set and equivalent
weights can be defined as

• An arc from the dummy start to the node corresponding to the first operation
of all jobs, i.e., (0, v(1, j), 1) ∈ A1, with arc weight w0,v(1,j),1 = p↑ + p→0,j, for
all j ∈ J. The arc weight comes from the robot aspirating chemical and then

220

APPENDIX B. ADDITIONAL MATERIAL - CHAPTER 4

Figure B.1: An example of how the multigraph is constructed from imposing two networks. The
top-left graph shows the precedence graph of two jobs with three operations each, where the colour
of the nodes indicates which of the two chemicals are required. The top-right graph shows the
multi-graph that is used in the routing problem, which comes from superimposing the slow routes
(bottom-left graph) and fast routes (bottom-right graph)

travelling to the correct location.

• An arc between operations from different jobs or consecutive operations of
the same job, i.e., (v(i, j), v(i′, j′), 1) ∈ A1 for all (i, j), (i′, j′) ∈ O given that
j 6= j′ or (i′, j′) = (i + 1, j) with weight wv(i,j),v(i′,j′),1 = p↓ + p→j,0 + p↑ + p→0,j′ .
The arc weight comes from the robot dispensing chemical at job j, moving to
the vials, aspirating the next appropriate chemical, and then travelling to job
j′.

• An arc from the last operation of all jobs to the dummy end, i.e., (v(Nj, j), γ, 1) ∈
A1 for all j ∈ J with arc weight wv(Nj,j),γ,1 = p↓. The arc weight is simply the
time required to dispense the chemical.

Arc set A2 can be thought of as the fast routes. An arc (v, v′) ∈ A2 has a weight
that represents the minimum amount of time required between the start of v and
v′ if the robot travels directly between the two without aspirating new chemical in
between. Since the robot can not carry different chemicals at the same time, arcs can
only exist in A2 if both the predecessor and successor require the same chemical.

221

B.1. MIP MODEL FOR LHRSP

More explicitly, A2 and the associated weights can be defined as

• An arc between operations that require the same chemical from different
jobs or consecutive operations of the same jobs, i.e., (v(i, j), v(i′, j′), 2) for all
(i, j), (i′, j′) ∈ Oc given that j 6= j′ or (i′, j′) = (i + 1, j) with weight p↓ + p→j,j′ .
The arc weight comes from the robot dispensing chemical c ∈ C at job j and
then travelling directly from job j to j′ to dispense more of chemical c.

A small example illustrating how the multigraph is constructed is shown in
Figure B.1. The example considers an instance with two jobs, each of which contain
three operations, and two colours. The precedence graph is also shown, where
evidently nodes {1, 2, 3} belong to one job and {4, 5, 6} belong to the other. Fur-
thermore nodes 0 and 7 are the dummy start and end nodes respectively.

In order to tighten the mathematical model, for each vertex v ∈ V an earliest
start time ESv and latest start time LSv are defined. The ESv can be calculated
by the longest path between 0 and v in the precedence graph. Whereas LSv can
be set to M minus the length of the longest path between v and γ, where M is a
sufficiently large number that we generally obtain from from a heuristic. Finally
for ease of notation let Vc := {v(i, j)|(i, j) ∈ Oc} be the set of nodes associated with
operations requiring chemical c ∈ C.

The entire mathematical model can now be formulated as,

Min. Sγ (B.1a)

s.t. ∑
(v′,v,r)∈δ−(v)

xv′,v,r = 1, (v ∈ V) (B.1b)

∑
(v,v′,r)∈δ+(v)

xv,v′,r = 1 (v ∈ V) (B.1c)

∑
((v,v′,r)∈A2:
v∈P∧v′∈P)

xv,v′,r ≤ Lc − 1, (c ∈ C, P ⊆ Vc : |P| = Lc + 1) (B.1d)

`min
i,j ≤ Sv(i+1,j) − Sv(i,j) ≤ `max

i,j , (i ∈ Oj \ {Nj}; j ∈ J) (B.1e)

Sv −Mv,v′(1− xv,v′,r) ≤ (B.1f)

S′v − ∑
r′∈{1,2}:
(v,v′,r′)∈A

wv,v′,r′xv,v′,r′ (v, v′, r) ∈ A|v 6= γ)

∑
(v,v′,r)∈A

wv,v′,rxv,v′,r ≤ Sγ (B.1g)

222

APPENDIX B. ADDITIONAL MATERIAL - CHAPTER 4

∑
v∈Vc

∑
(v,v′,r)∈δ+(v):

r=2

xv,v′,r ≥ ᾱc, (c ∈ C) (B.1h)

xv,v′,r ∈ {0, 1} ((v, v′, r) ∈ A) (B.1i)

ESv ≤ Sv ≤ LSv (v ∈ V) (B.1j)

Binary variables xv,v′,r denote whether the robot moves from v to v′ along
route r. Continuous variable Sv records the time that the robot arrives at node v. In
addition, Sγ records the makespan of the schedule.

The objective is to minimise the makespan, or equivalently, the start time of
the dummy variable, specified in (B.1a). Constraints (B.1b) and (B.1c) enforce that
the in-degree and out-degree of each node is exactly one, respectively, where δ−(v)
and δ+(v) represent the incoming and outgoing arcs from node v ∈ V respectively.
Constraint (B.1d) is a subpath elimination constraint, which ensures that the robot
does not dispense more chemical than it can carry. Given the exponential number
of the subpath elimination constraints, these are added lazily into the model at
each integer solution. At each integer solution we can determine the sets of nodes
between which the robot travels only using the fast routes, P := {P1, P2, ...}. Given
the structure of the multigraph, each of these sets of nodes, Pp ∈ P are associated
with a specific colour, c(Pp) ∈ C. If the size of this set of nodes exceeds the possible
limit, |Pp| > Lc(Pp), we add lazy constraints for each subset P ⊆ Pp of the sets of
nodes according to (B.1d).

Constraints (B.1e) enforce the minimum and maximum time-lags between ad-
jacent operations from the same job. Constraints (B.1f) are linking constraints that
relate the arrival time of a node to the arrival time of the node that the robot directly
travels from, here Mv,v′ := LSv − ES′v is a sufficiently large number. Moreover,
these linking constraints remove the need for sub-tour elimination constraints that
are required by similar MIP formulations for related routing problems. It should
be noted that in constraints (B.1f) if there exists two arcs between the considered
nodes then we sum the weights of both arcs to tighten fractional solutions. Con-
straints (B.1g) and (B.1h) are tightening constraints. Constraint (B.1g) enforce that
the makespan is at least larger than the weight of all the arcs completed. Whereas
constraints (B.1h) ensure that the number of slow routes exiting nodes requiring
chemical c ∈ C is at least equal to the minimum number of aspirates, αc, which
can be calculated by αc =

⌈
|Oc|
Lc

⌉
. Finally constraints (B.1i) state that the xv,v′,k are

binary and constraints (B.1j) are continuous within the range of the earliest and
latest start times.

223

Bibliography

Achterberg, T. Constraint Integer Programming. PhD thesis, Technical University of Berlin, 2007.

Aggoun, A. and Beldiceanu, N. Extending chip in order to solve complex scheduling and placement
problems. Mathematical and Computer Modelling, 17(7):57–73, 1993. doi: 10.1016/0895-7177(93)
90068-A.

Alvarez-Valdés, R. and Tamarit, J. The project scheduling polyhedron: Dimension, facets and lifting
theorems. European Journal of Operational Research, 67(2):204–220, 1993. doi: 10.1016/0377-2217(93)
90062-R.

Arnborg, S., Corneil, D., and Proskurowski, A. Complexity of finding embeddings in a k-tree. SIAM
Journal on Algebraic Discrete Methods, 8(2):277–284, 1987.

Artigues, C. On the strength of time-indexed formulations for the resource-constrained project
scheduling problem. Operations Research Letters, 45(2):154–159, 2017.

Artigues, C., Michelon, P., and Reusser, S. Insertion techniques for static and dynamic resource-
constrained project scheduling. European Journal of Operational Research, 149(2):249–267, 2003. doi:
10.1016/S0377-2217(02)00758-0.

Artigues, C., Huguet, M.-J., and Lopez, P. Generalized disjunctive constraint propagation for solving
the job shop problem with time lags. Engineering Applications of Artificial Intelligence, 24(2):220–
231, 2011. doi: 10.1016/j.engappai.2010.07.008.

Artigues, C., Koné, O., Lopez, P., and Mongeau, M. Mixed-Integer Linear Programming Formulations,
pages 17–41. Springer International Publishing, Cham, 2015. doi: 10.1007/978-3-319-05443-8_2.

Asta, S., Karapetyan, D., Kheiri, A., Özcan, E., and Parkes, A. J. Combining Monte-Carlo and hyper-
heuristic methods for the problem. Information Sciences, 373:476–498, 2016. doi: 10.1016/j.ins.
2016.09.010.

Baatar, D., Krishnamoorthy, M., and Ernst, A. T. A Triplet-Based Exact Method for the Shift Min-
imisation Personnel Task Scheduling Problem. In Bansal, N. and Finocchi, I., editors, Algorithms
- ESA 2015, pages 59–70, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

Bánkfalvi, A., Boecker, W., and Reiner, A. Comparison of automated and manual determination
of HER2 status in breast cancer for diagnostic use: a comparative methodological study using
the Ventana BenchMark automated staining system and manual tests. International Journal of
Oncology, 25(4):929–964, 2004. doi: https://doi.org/10.3892/ijo.25.4.929.

Bartusch, M., Möhring, R. H., and Radermacher, F. J. Scheduling project networks with resource
constraints and time windows. Annals of Operations Research, 16(1):199–240, 1988. doi: 10.1007/
BF02283745.

224

BIBLIOGRAPHY

Beck, C. J., Prosser, P., and Selensky, E. Vehicle Routing and Job Shop Scheduling : What’s the
difference? 13th International Conference on Artificial Intelligence Planning and Scheduling (ICAPS),
pages 267–276, 2003.

Bessiere, C. Constraint Propagation. In Rossi, F., van Beek, P., and Walsh, T., editors, Handbook of
Constraint Programming, volume 2 of Foundations of Artificial Intelligence, pages 29–83. Elsevier,
2006. doi: 10.1016/S1574-6526(06)80007-6.

Bianco, L. and Caramia, M. A new formulation for the project scheduling problem under lim-
ited resources. Flexible Services and Manufacturing Journal, 25(1-2):6–24, 2013. doi: 10.1007/
s10696-011-9127-y.

Biosystems, L. Leica ChromoPlexTM 1 Dual Detection for BOND Fully Automated 1-Step Parallel
Staining, 2012.

Biosystems, L. BOND-MAX Fully automated IHC and ISH, 2019.

Blazewicz, J., Lenstra, J., and Kan, A. Scheduling subject to resource constraints: classification and
complexity. Discrete Applied Mathematics, 5(1):11–24, 1983. doi: 10.1016/0166-218X(83)90012-4.

Bodlaender, H. L. A linear time algorithm for finding tree-decompositions of small treewidth. In
STOC ’93 Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing, pages
226–234, 1993.

Booth, K. E., Tran, T. T., Nejat, G., and Beck, C. J. Mixed-Integer and Constraint Programming
Techniques for Mobile Robot Task Planning. IEEE Robotics and Automation Letters, 1(1):500–507,
2016. doi: 10.1109/LRA.2016.2522096.

Bordeaux, L., Katsirelos, G., Narodytska, N., and Vardi, M. Y. The complexity of integer bound
propagation. Journal of Artificial Intelligence Research, 40:657–676, 2011. doi: 10.1613/jair.3248.

Boudoukh, T., Penn, M., and Weiss, G. Scheduling jobshops with some identical or similar jobs.
Journal of Scheduling, 4(4):177–199, 2001. doi: 10.1002/jos.72.

Boussemart, F., Hemery, F., Lecoutre, C., and Sais, L. Boosting Systematic Search by Weighting
Constraints. In Proceedings of the 16th European Conference on Artificial Intelligence, ECAI’04, pages
146–150, Amsterdam, The Netherlands, The Netherlands, 2004. IOS Press.

Brafman, R. I. A simplifier for propositional formulas with many binary clauses. IJCAI International
Joint Conference on Artificial Intelligence, 34(1):515–520, 2001. doi: 10.1109/TSMCB.2002.805807.

Brinkmann, K. and Neumann, K. Heuristic procedures for resource—constrained project scheduling
with minimal and maximal time lags: the resource—levelling and minimum project—duration
problems. Journal of Decision Systems, 5(1-2):129–155, 1996. doi: 10.1080/12460125.1996.10511678.

Brucker, P., Drexl, A., Mohring, R., Neumann, K., and Pesch, E. Resource-constrained project schedul-
ing: Notation, classification, models, and methods. European Journal of Operational Research, 112
(1):3–41, 1999a. doi: 10.1016/S0377-2217(98)00204-5.

Brucker, P., Hilbig, T., and Hurink, J. A branch and bound algorithm for a single-machine scheduling
problem with positive and negative time-lags. Discrete Applied Mathematics, 94(1-3):77–99, 1999b.
doi: 10.1016/S0166-218X(99)00015-3.

Caumond, A., Lacomme, P., and Tchernev, N. A memetic algorithm for the job-shop with time-lags.
Computers and Operations Research, 35(7):2331–2356, 2008. doi: 10.1016/j.cor.2006.11.007.

Chand, S. Automated Design of Heuristics for the Resource Constrained Project Scheduling Problem. PhD
thesis, The University of New South Wales, 2018.

225

BIBLIOGRAPHY

Chand, S., Huynh, Q., Singh, H., Ray, T., and Wagner, M. On the use of genetic programming to
evolve priority rules for resource constrained project scheduling problems. Information Sciences,
432:146–163, 2018. doi: 10.1016/j.ins.2017.12.013.

Cheng, B. M. W., Choi, K. M. F., Lee, J. H. M., and Wu, J. C. K. Increasing Constraint Propagation by
Redundant Modeling: an Experience Report. Constraints, 4(2):167–192, may 1999. doi: 10.1023/A:
1009894810205.

Christofides, N., Alvarez-Valdes, R., and Tamarit, J. Project scheduling with resource constraints: A
branch and bound approach. European Journal of Operational Research, 29(3):262–273, 1987. doi:
10.1016/0377-2217(87)90240-2.

Chu, G. Improving Combinatorial Optimization. PhD thesis, The University of Melbourne, 2011.

Confessore, G., Giordani, S., and Rismondo, S. A market-based multi-agent system model for
decentralized multi-project scheduling. Annals of Operations Research, 150(1):115–135, 2007. doi:
10.1007/s10479-006-0158-9.

Cook, S. A. The complexity of theorem-proving procedures. In STOC ’71 Proceedings of the third
annual ACM symposium on Theory of computing, volume 15, pages 151–158, Cook1971, 1971. doi:
10.1145/800157.805047.

Dechter, R. chapter 2 - Constraint Networks. In Dechter, R., editor, Constraint Processing, The Morgan
Kaufmann Series in Artificial Intelligence, pages 25–49. Morgan Kaufmann, San Francisco, 2003a.
doi: https://doi.org/10.1016/B978-155860890-0/50003-7.

Dechter, R. chapter 4 - Directional Consistency. In Dechter, R., editor, Constraint Processing, The Mor-
gan Kaufmann Series in Artificial Intelligence, pages 85–115. Morgan Kaufmann, San Francisco,
2003b. doi: https://doi.org/10.1016/B978-155860890-0/50005-0.

Dechter, R. chapter 8 - Advanced Consistency Methods. In Dechter, R., editor, Constraint Processing,
The Morgan Kaufmann Series in Artificial Intelligence, pages 211–243. Morgan Kaufmann, San
Francisco, 2003c. doi: https://doi.org/10.1016/B978-155860890-0/50009-8.

Dechter, R. Chapter 7 - Tractable Structures for Constraint Satisfaction Problems. In Rossi, F., van
Beek, P., and Walsh, T., editors, Handbook of Constraint Programming, volume 2 of Foundations of
Artificial Intelligence, pages 209–244. Elsevier, 2006. doi: https://doi.org/10.1016/S1574-6526(06)
80011-8.

Dohn, A., Rasmussen, M. S., and Larsen, J. The vehicle routing problem with time windows and
temporal dependencies. Networks, 58(4):273–289, dec 2011. doi: 10.1002/net.20472.

Drexl, A., Nissen, R., Patterson, J. H., and Salewski, F. ProGen/πχ - an instance generator for
resource-constrained project scheduling problems with partially renewable resources and fur-
ther extensions. European Journal of Operational Research, 125(1):59–72, 2000. doi: 10.1016/
S0377-2217(99)00205-2.

Du, J., Leung, J. Y.-T., and Young, G. H. Scheduling chain-structured tasks to minimize makespan
and mean flow time. Information and Computation, 92(2):219–236, 1991. doi: 10.1016/0890-5401(91)
90009-Q.

Edwards, S. J., Baatar, D., Bowly, S., and Smith-Miles, K. Symmetry breaking in a special case of
the RCPSP / max. Proceedings of the 8th Multidisciplinary International Conference on Scheduling :
Theory and Applications (MISTA 2017), 05 - 08 Dec 2017, Kuala Lumpur, Malaysia, pages 315–318,
2017.

Edwards, S. J., Baatar, D., Ernst, A. T., and Smith-Miles, K. The Liquid Handling Robot Scheduling
Problem. In Scheduling and Planning Application woRKshop (SPARK’18) in ICAPS, pages 18–26,

226

BIBLIOGRAPHY

Delft, 2018.

Edwards, S. J., Baatar, D., Smith-Miles, K., and Ernst, A. T. Symmetry breaking of identical projects
in the high-multiplicity RCPSP/max. Journal of the Operational Research Society, 0(0):1–22, 2019.
doi: 10.1080/01605682.2019.1595192.

Erschler, J. and Lopez, P. Energy-based approach for task scheduling under time and resources
constraints. In 2nd International Workshop on Project Management and Scheduling, pages 115–121,
1990.

Fahimi, H., Ouellet, Y., and Quimper, C.-g. Linear-time filtering algorithms for the disjunctive
constraint and a quadratic filtering algorithm for the cumulative not-first not-last. Constraints,
23(3):272–293, 2018.

Feydy, T. Constraint programming: improving propagation. PhD thesis, University of Melbourne,
Department of Computer Science and Software Engineering, 2010.

Feydy, T., Somogyi, Z., and Stuckey, P. J. Half Reification and Flattening. In Lee, J., editor, Principles
and Practice of Constraint Programming, pages 286–301. Springer, 2011.

Franck, B., Neumann, K., and Schwindt, C. Truncated branch-and-bound, schedule-construction,
and schedule-improvement procedures for resource-constrained project scheduling. OR-
Spektrum, 23(3):297–324, 2001. doi: 10.1007/PL00013356.

Frank, J., Do, M., and Tran, T. T. Scheduling Ocean Color Observations for a GEO-Stationary Satellite.
(Icaps):376–384, 2016.

Freuder, E. In pursuit of the holy grail. Constraints, 2:57–61, 1997. doi: 10.1145/242224.242304.

Freuder, E. C. A Sufficient Condition for Backtrack-Free Search. Journal of the Association for Com-
puting Machinery, 29(I):24–32, 1982.

Gaspers, S., Misra, N., Ordyniak, S., Szeider, S., and Živný, S. Backdoors into heterogeneous classes
of SAT and CSP. Journal of Computer and System Sciences, 85:38–56, 2017a. doi: 10.1016/j.jcss.2016.
10.007.

Gaspers, S., Ordyniak, S., and Szeider, S. Backdoor Sets for CSP. In The Constraint Satisfaction
Problem: Complexity and Approximability, volume 7, pages 137–157. Dagstuhl Publishing, 2017b.

Geelen, P. A. Dual Viewpoint Heuristics for Binary Constraint Satisfaction Problems. In Proceedings
of the 10th European Conference on Artificial Intelligence, ECAI ’92, pages 31–35, New York, NY, USA,
1992. John Wiley & Sons, Inc.

Gent, I. P., Petrie, K. E., and Puget, J.-F. Symmetry in Constraint Programming. In Rossi, F., van
Beek, P., and Walsh, T., editors, Handbook of Constraint Programming, chapter 10, pages 329–376.
Elsevier, 2006. doi: 10.1016/S1574-6526(06)80014-3.

Giemsa, G. Eine Vereinfachung und Vervollkommnung meiner Methylenblau-Eosin-
Faerbemethode zur Arzielung der Romanowsky-Nochtschen Chromatinfaerbung. Centralblatt
fuer Bakteriologie I Abteillung, 32:307–313, 1904.

Giles, K. and van Hoeve, W. Solving a Supply-Delivery Scheduling Problem with Constraint
Programming. Lecture Notes in Computer Science, 9892, 2016. doi: 10.1007/978-3-642-29828-8.

Godard, D., Laborie, P., and Nuijten, W. Randomized Large Neighborhood Search for Cumulative
Scheduling. Proc. of ICAPS, pages 81–89, 2005.

González, M. A., Oddi, A., Rasconi, R., and Varela, R. Scatter search with path relinking for the
job shop with time lags and setup times. Computers & Operations Research, 60:37–54, 2015. doi:

227

BIBLIOGRAPHY

10.1016/j.cor.2015.02.005.

Hall, L. Computational Complexity, pages 238–241. Springer US, Boston, MA, 2013. doi: 10.1007/
978-1-4419-1153-7_141.

Hartmann, S. and Briskorn, D. A survey of variants and extensions of the resource-constrained
project scheduling problem. European Journal of Operational Research, 207(1):1–14, 2010. doi:
10.1016/j.ejor.2009.11.005.

Heinz, S. Presolving techniques and linear relaxations for cumulative scheduling. PhD thesis, Technical
University of Berlin, 2018.

Herroelen, W. and Leus, R. Robust and reactive project scheduling: a review and classification
of procedures. International Journal of Production Research, 42(8):1599–1620, 2004. doi: 10.1080/
00207540310001638055.

Hnich, B., Smith, B. M., and Walsh, T. Dual Modelling of Permutation and Injection Problems. J.
Artif. Int. Res., 21(1):357–391, feb 2004.

Hochbaum, D. S. and Shamir, R. Strongly polynomial algorithms for the high multiplicity schedul-
ing problem. Operations Research, 39(4):648–653, 1991.

Homberger, J. A multi-agent system for the decentralized resource-constrained multi-project
scheduling problem. International Transactions in Operational Research, 14:565–589, 2007.

Hooke, R. Micrographia: or Some Physiological Descriptions of Minute Bodies, Made by Magnifying
Glasses with Observations and Inquiries Thereupon. James Allestry, 1665.

Hurink, J. L., Kok, A. L., and Paulus, J. J. Decomposition Method for Project Scheduling with Spatial
Resources. pages 1–15, 2002.

Jaffar, J. and Lassez, J.-L. Constraint Logic Programming. In Proceedings of the 14th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages, POPL ’87, pages 111–119, New York,
NY, USA, 1987. ACM. doi: 10.1145/41625.41635.

Kaplan, L. Resource-constrained project scheduling with preemption of jobs. Unpublished ph.d. disserta-
tion, University of Michigan, USA, 1998.

Kimms, A. Mathematical Programming and Financial Objectives for Scheduling Projects. PhD thesis,
University of Melbourne, 2010.

Kinable, J., Wauters, T., and Vanden Berghe, G. The concrete delivery problem. Computers and
Operations Research, 48:53–68, 2014. doi: 10.1016/j.cor.2014.02.008.

Kinable, J. A Reservoir Balancing Constraint with Applications to Bike-Sharing. Integration
of AI and OR Techniques in Constraint Programming, 9075(May):288–305, 2015. doi: 10.1007/
978-3-319-18008-3.

Kinnunen, T. Cost-efficient vacation planning with variable workforce demand and manpower. PhD thesis,
Aalto University, 2016.

Kizilay, D., Eliiyi, D. T., and Hentenryck, P. V. Constraint and Mathematical Programming Mod-
els for Integrated Port Container Terminal Operations. In Proceedings of the 15th international
conference on the integration ofconstraint programming, artificial intelligence, and operations research
(CPAIOR 2018)., 2017.

Kiziltan, Z. Symmetry Breaking Ordering Constraints. PhD thesis, Uppsala University, 2004.

Klein, R. Bidirectional planning: Improving priority rule-based heuristics for scheduling resource-

228

BIBLIOGRAPHY

constrained projects. European Journal of Operational Research, 127(3):619–638, 2000. doi: 10.1016/
S0377-2217(99)00347-1.

Kolisch, R. Serial and parallel resource-constrained project scheduling methods revisited: Theory
and computation. European Journal of Operational Research, 90(2):320–333, 1996. doi: 10.1016/
0377-2217(95)00357-6.

Kolisch, R. Shifts, Types, and Generation Schemes for Project Schedules, volume 1. Springer International
Publishing, 2015. doi: 10.1007/978-3-319-05443-8.

Kolisch, R. and Hartmann, S. Heuristic Algorithms for the Resource-Constrained Project Scheduling
Problem: Classification and Computational Analysis, pages 147–178. Springer US, Boston, MA, 1999.
doi: 10.1007/978-1-4615-5533-9_7.

Kolisch, R. and Hartmann, S. Experimental investigation of heuristics for resource-constrained
project scheduling: An update. European Journal of Operational Research, 174(1):23–37, 2006. doi:
10.1016/j.ejor.2005.01.065.

Kolisch, R. and Sprecher, A. PSPLIB - A project scheduling problem library. European Journal of
Operational Research, 96(1):205–216, 1997. doi: 10.1016/S0377-2217(96)00170-1.

Koné, O., Artigues, C., Lopez, P., and Mongeau, M. Event-based MILP models for resource-
constrained project scheduling problems. Computers and Operations Research, 38:3–13, 2011. doi:
10.1016/j.cor.2012.10.018.

Kopanos, G. M., Kyriakidis, T. S., and Georgiadis, M. C. New continuous-time and discrete-time
mathematical formulation for resource-constrained project scheduling problems. Computers and
Chemical Engineering, 68:96–106, 2014. doi: 10.1016/j.compchemeng.2014.05.009.

Kovács, A. and Váncza, J. Exploiting Repetitive Patterns in Practical Scheduling Problems. In 43rd
CIRP International Conference on Manufacturing Systems, pages 868–875, Vienna, Austria, 2010.

Kovács, A. and Váncza, J. Progressive Solutions : A Simple but Efficient Dominance Rule for
Practical RCPSP. In Beck, J. C., , and Smith, B. M., editors, In Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems, CPAIOR 2006, pages 139–151.
Springer Berlin Heidelberg, 2006. doi: https://doi.org/10.1007/11757375_13.

Kreter, S., Schutt, A., and Stuckey, P. J. Using constraint programming for solving RCPSP/max-cal.
Constraints, 22(3):432–462, 2017. doi: 10.1007/s10601-016-9266-6.

Laborie, P. Algorithms for propagating resource constraints in AI planning and scheduling: Ex-
isting approaches and new results. Artificial Intelligence, 143(2):151–188, 2003a. doi: 10.1016/
S0004-3702(02)00362-4.

Laborie, P. Resource temporal networks: Definition and complexity. IJCAI International Joint Confer-
ence on Artificial Intelligence, pages 948–953, 2003b.

Laborie, P. and Rogerie, J. Reasoning with Conditional Time-Intervals. Proceedings of the Twenty-
First International Florida Artificial Intelligence Research Society Conference, May 15-17, 2008, Coconut
Grove, Florida, USA, pages 555–560, 2008.

Laborie, P. and Rogerie, J. Temporal linear relaxation in IBM ILOG CP Optimizer. Journal of
Scheduling, 19(4):391–400, 2016. doi: 10.1007/s10951-014-0408-7.

Laborie, P., Rogerie, J., Shaw, P., and Vilim, P. Reasoning with Conditional Time-Intervals. Part II:
An Algebraical Model for Resources. FLAIRS Conference, pages 201–206, 2009.

Laborie, P., Rogerie, J., Shaw, P., and Vilím, P. IBM ILOG CP optimizer for scheduling: 20+ years
of scheduling with constraints at IBM/ILOG. Constraints, 23(2):210–250, 2018. doi: 10.1007/

229

BIBLIOGRAPHY

s10601-018-9281-x.

Lahrichi, A. Scheduling: the Notions of Hump, Compulsory Parts and their Use in Cumulative
Problems. C. R. Acad. Sci. Paris, pages 209–211, 1982.

Law, Y. C. and Lee, J. H. M. Model Induction : a New Source of CSP Model Redundancy From
Viewpoints to CSP Models. In AAAI-02, pages 54–60, 2002.

Lenstra, J. K., Rinnooy Kan, A. H., and Brucker, P. Complexity of machine scheduling problems.
Annals of Discrete Mathematics, 1(C):343–362, 1977. doi: 10.1016/S0167-5060(08)70743-X.

Lhomme, O. Consistency techniques for numeric CSPs. International Joint Conference on Artificial
Intelligence, 13:232–232, 1993.

Lombardi, M. Hybrid Methods for Resource Allocation and Scheduling Problems in Deterministic and
Stochastic Environments. PhD thesis, Universita di Bologna, 2009.

Loong, S., Ku, W., and Beck, J. Q-bounds consistency for the spread constraint with variable mean.
Constraints, 21(646), 2016.

Lopez-Ortiz, A., Quimper, C. G., Tromp, J., and Van Beek, P. A fast and simple algorithm for
bounds consistency of the all different constraint. IJCAI International Joint Conference on Artificial
Intelligence, pages 245–250, 2003.

Luby, M., Sinclair, A., and Zuckerman, D. Optimal speedup of Las Vegas algorithms. Information
Processing Letters, 47(4):173–180, 1993. doi: 10.1016/0020-0190(93)90029-9.

Manier, M. A. and Bloch, C. A classification for hoist scheduling problems. International Journal of
Flexible Manufacturing Systems, 15(1):37–55, 2003. doi: 10.1023/A:1023952906934.

Margot, F. Symmetry in Integer Linear Programming. In Juenger, M., Naddef, D., Pulleyblank,
W. R., Rinaldi, G., Liebling, T. M., Nemhauser, G. L., Reinelt, G., and Wolsey, L. A., editors, 50
Years of Integer Programming 1958-2008: From the Early Years to the State-of-the-Art, chapter 17, pages
647–686. Springer, Berlin, Heidelberg, 2010. doi: 10.1007/978-3-540-68279-0.

Marriott, K. and Stuckey, P. Programming with constraints: an introduction. MIT Press, 1998.

Masin, M. and Raviv, T. Linear programming-based algorithms for the minimum makespan
high multiplicity jobshop problem. Journal of Scheduling, 17(4):321–338, 2014. doi: 10.1007/
s10951-014-0376-y.

Mayer, P. Ueber das Farben mit Hamatoxylin. Mitt Zool Stat Neapel, 10:170–86, 1891.

Melchiors, P. Dynamic and Stochastic Multi-Project Planning. Lecture Notes in Economics and
Mathematical Systems, 2015. doi: 10.1007/978-3-319-04540-5.

Mercier, L. and Van Hentenryck, P. Strong polynomiality of resource constraint propagation. Dis-
crete Optimization, 4(3-4):288–314, 2007. doi: 10.1016/j.disopt.2007.01.001.

Michel, L. and Van Hentenryck, P. Activity-based search for black-box constraint programming
solvers. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 7298 LNCS:228–243, 2012. doi: 10.1007/978-3-642-29828-8_15.

Mingozzi, A., Maniezzo, V., Ricciardelli, S., and Bianco, L. An Exact Algorithm for the Resource-
Constrained Project Scheduling Problem Based on a New Mathematical Formulation. Manage-
ment Science, 44(5):714–729, 1998. doi: 10.1287/mnsc.44.5.714.

Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., and Malik, S. Chaff: engineering an efficient
SAT solver. In Proceedings of the 38th Design Automation Conference (DAC 2001), pages 530–535,

230

BIBLIOGRAPHY

Las Vegas, NV, USA, 2001. IEEE. doi: http://doi.acm.org/10.1145/378239.379017.

Nethercote, N., Stuckey, P. J., Becket, R., Brand, S., Duck, G. J., and Tack, G. MiniZinc: Towards a
Standard CP Modelling Language. Principles and Practice of Constraint Programming – CP 2007,
pages 529–543, 2007. doi: 10.1007/978-3-540-74970-7_38.

Neumann, K. and Zhan, J. Heuristics for the minimum project-duration problem with minimal
and maximal time lags under fixed resource constraints. Journal of Intelligent Manufacturing, 6(2):
145–154, 1995. doi: 10.1007/BF00123686.

Neumann, K. and Schwindt, C. Project scheduling with inventory constraints. Mathematical Methods
of Operations Research, 56(3):513–533, 2003. doi: 10.1007/s001860200251.

Neumann, K. and Zimmermann, J. Methods for Resource-Constrained Project Scheduling with Regular
and Nonregular Objective Functions and Schedule-Dependent Time Windows, pages 261–287. Springer
US, Boston, MA, 1999. doi: 10.1007/978-1-4615-5533-9_12.

Nuijten, W. P. and Aarts, E. H. A computational study of constraint satisfaction for multiple ca-
pacitated job shop scheduling. European Journal of Operational Research, 90(2):269–284, 1996. doi:
10.1016/0377-2217(95)00354-1.

Ohrimenko, O., Stuckey, P. J., and Codish, M. Propagation via lazy clause generation. Constraints,
14(3):357–391, 2009. doi: 10.1007/s10601-008-9064-x.

Pape, C. L. Implementation of resource constraints in ILOG SCHEDULE: a library for the develop-
ment of constraint-based scheduling systems. Intelligent Systems Engineering, 3(2):55, 1994. doi:
10.1049/ise.1994.0009.

Pape, C. L., Couronné, P., Vergamini, D., and Gosselin, V. Time-versus-capacity compromises in
project scheduling. In Proc. of the 13th Workshop of the UK Planning Special Interest Group, pages
1–13, 1994.

Petrovic, D., Castro, E., Petrovic, S., and Kapamara, T. Radiotherapy Scheduling. 2013. doi: 10.1007/
978-3-642-39304-4.

Policella, N., Smith, S. F., and Oddi, A. Generating Robust Schedules through Temporal Flexibility.
In ICAPS-04 Proceedings, pages 209–218, 2004.

Prichard, J. W. Overview of automated immunohistochemistry. Archives of Pathology and Laboratory
Medicine, 138(12):1578–1582, 2014. doi: 10.5858/arpa.2014-0083-RA.

Pritsker, A. and Watters, L. A zero-one programming approach to scheduling with limited resources.
The RAND Corporation, 1(RM-5561-PR), 1968.

Pritsker, A. A. B., Waiters, L. J., and Wolfe, P. M. Multiproject Scheduling with Limited Resources: A
Zero-One Programming Approach. Management Science, 16(1):93–108, 1969. doi: 10.1287/mnsc.
16.1.93.

Puget, J.-F. Constraint Programming Next Challenge : Simplicity of Use. In Principles and Practice of
Constraint Programming, pages 5–8, 2004.

Rahimi, A., Karimi, H., and Afshar-Nadjafi, B. Using meta-heuristics for project scheduling under
mode identity constraints. Applied Soft Computing Journal, 13(4):2124–2135, 2013. doi: 10.1016/j.
asoc.2012.11.002.

Rasmussen, M. S., Justesen, T., Dohn, A., and Larsen, J. The Home Care Crew Scheduling Problem:
Preference-based visit clustering and temporal dependencies. European Journal of Operational
Research, 219(3):598–610, 2012. doi: 10.1016/j.ejor.2011.10.048.

231

BIBLIOGRAPHY

Refalo, P. Impact-Based Search Strategies for Constraint Programming. Proceedings of the Tenth
International Conference on Principles and Practice of Constraint Programming, 3258:557–571, 2004.
doi: 10.1007/978-3-540-30201-8_41.

Regin, J. C. A filtering algorithm for constraints of difference. In Proceedings of the 12th National
Conference of the American Association for Artificial Intelligence, pages 362–367, 1994.

Riise, A., Mannino, C., and Burke, E. K. Modelling and solving generalised operational surgery
scheduling problems. Computers and Operations Research, 66:1–11, 2016. doi: 10.1016/j.cor.2015.
07.003.

Rossi, F., Beek, P. V., and Walsh, T. Handbook of Constraint Programming (Foundations of Artificial
Intelligence). 2006.

Sankaran, J. K., Bricker, D. L., and Juang, S. H. Strong fractional cutting-plane algorithm for resource-
constrained project scheduling. International Journal of Industrial Engineering : Theory Applications
and Practice, 6(2):99–111, 1999.

Schutt, A. and Stuckey, P. J. Explaining Producer/Consumer Constraints. In Rueher, M., editor,
Principles and Practice of Constraint Programming: 22nd International Conference, Lecture Notes
in Computer Science, pages 438—-454. Springer International Publishing, 2016. doi: 10.1007/
978-3-319-44953-1_28.

Schutt, A., Feydy, T., Stuckey, P. J., and Wallace, M. G. Explaining the cumulative propagator. Con-
straints, 16(3):250–282, 2011. doi: 10.1007/s10601-010-9103-2.

Schutt, A., Feydy, T., and Stuckey, P. J. Scheduling optional tasks with explanation. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 8124 LNCS:628–644, 2013a. doi: 10.1007/978-3-642-40627-0_47.

Schutt, A., Feydy, T., and Stuckey, P. J. Explaining Time-Table-Edge-Finding Propagation for the
Cumulative Resource Constraint. Lecture Notes in Computer Science, pages 234–250, 2013b.

Schutt, A., Feydy, T., Stuckey, P. J., and Wallace, M. G. Solving RCPSP/max by lazy clause generation.
Journal of Scheduling, 16(3):273–289, 2013c. doi: https://doi.org/10.1007/s10951-012-0285-x.

Schwindt, C. and Zimmermann, J. Handbook on Project Management and Scheduling, volume 1.
Springer International Publishing, 2015a. doi: 10.1007/978-3-319-05443-8.

Schwindt, C. and Zimmermann, J. Handbook on Project Management and Scheduling, volume 2.
Springer International Publishing, 2015b. doi: 10.1007/978-3-319-05915-0.

Shaw, P. Using constraint programming and local search methods to solve vehicle routing
problems. Principles and Practice of Constraint Programming - Cp98, 1520:417–431, 1998. doi:
10.1007/3-540-49481-2_30.

Shaw, P., Ilog, S. A., and Hb, L. T. A Constraint for Bin Packing. pages 648–649, 2004.

Smith, B. M. Modelling. In Rossi, F., van Beek, P., and Walsh, T., editors, Handbook of Constraint
Programming, volume 2 of Foundations of Artificial Intelligence, pages 377–406. Elsevier, 2006. doi:
10.1016/S1574-6526(06)80015-5.

Sprecher, A., Kolisch, R., and Drexl, A. Semi-active, active, and non-delay schedules for the resource-
constrained project scheduling problem. European Journal Of Operational Research, 80(1):94–102,
1995. doi: 10.1016/0377-2217(93)E0294-8.

Tesch, A. Compact Models for the Resource-Constrained Project Scheduling Problem. PhD thesis, Tech-
nische Universitat Berlin, 2016.

232

BIBLIOGRAPHY

Tesch, A. Improved Compact Models for the Resource-Constrained Project Scheduling Problem. In
Fink, A., F{\"u}genschuh, A., and Geiger, M. J., editors, Operations Research Proceedings, Operations
Research Proceedings (GOR (Gesellschaft für Operations Research e.V.)), pages 25–30. Springer,
Cham, 2018a. doi: 10.1007/978-3-319-55702-1_4.

Tesch, A. Improving Energetic Propagations for Cumulative Scheduling. ZIB Report, 29(June),
2018b.

Toffolo, T. A., Santos, H. G., Carvalho, M. A., and Soares, J. A. An integer programming approach
to the multimode resource-constrained multiproject scheduling problem. Journal of Scheduling,
19(3):295–307, 2016. doi: 10.1007/s10951-015-0422-4.

Van Der Veen, J. A. A. and Zhang, S. Low-complexity algorithms for sequencing jobs with a fixed
number of job-classes. Computers & Operations Research, 23(11):1059–1067, 1996.

Verma, S. and Dessouky, M. Multistage Hybrid Flowshop Scheduling with Identical Jobs and
Uniform Parallel Machines. Journal of Scheduling, 2:135–150, 1999. doi: 10.1016/S0377-2217(97)
00194-X.

Vilím, P. Edge Finding Filtering Algorithm for Discrete Cumulative Resources in O(knlog(n)).
In Principles and Practice of Constraint Programming-CP . . . , Lecture Notes in Computer Sci-
ence, vol 6697, pages 802–816. Springer, Berlin, Heidelberg, 2009. doi: https://doi.org/10.1007/
978-3-642-21311-3_22.

Vilím, P. Global Constraints in Scheduling. PhD thesis, Charles University, 2007.

Vilím, P. Timetable Edge Finding Filtering Algorithm for Discrete Cumulative Resources. In Achter-
berg, T. and Beck, J. C., editors, Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems, pages 230–245, Berlin, Heidelberg, 2011. Springer Berlin Hei-
delberg.

Vilim, P., Laborie, P., and Shaw, P. Failure-Directed Search for Constraint-Based Scheduling.
Integration of AI and OR Techniques in Constraint Programming: 12th International Conference,
CPAIOR 2015, Barcelona, Spain, May 18-22, 2015, Proceedings, pages 437–453, 2015. doi: 10.1007/
978-3-642-38171-3.

Voß, S. and Witt, A. Hybrid flow shop scheduling as a multi-mode multi-project scheduling prob-
lem with batching requirements: A real-world application. International Journal of Production
Economics, 105(2):445–458, 2007. doi: 10.1016/j.ijpe.2004.05.029.

Wallace, M. Practical Applications of Constraint Programming. Constraints, 1(1-2):139–168, 1996.
doi: 10.1007/BF00143881.

Watt, A. and Eng, N. Chapter 11 Functional Dependencies. In Database Design, pages 1–10. Victoria,
B.C.: BCcampus., 2nd editio edition, 2014.

Wikum, E. D., Llewellyn, D. C., and Nemhauser, G. L. One-machine generalized precedence
constrained scheduling problems. Operations Research Letters, 16(2):87–99, 1994. doi: 10.1016/
0167-6377(94)90064-7.

Williams, R., Gomes, C. P., and Selman, B. Backdoors To Typical Case Complexity. In 18th Intl. Joint
Conf. on Aritificial Intelligence (IJCAI-03), 2003.

Yu, W., Hoogeveen, H., and Lenstra, J. K. Minimizing makespan in a two machine flow shop with
delays and unit time operations is NP-hard. Journal of Scheduling, 7(5):333–348, 2004.

Zapata, J. C., Hodge, B. M., and Reklaitis, G. V. The multimode resource constrained multiproject
scheduling problem: Alternative formulations. AIChE Journal, 54(8):2101–2119, 2018. doi: 10.

233

BIBLIOGRAPHY

1002/aic.11522.

Zhan, J. Heuristics for scheduling resource-constrained projects in MPM networks. European Journal
of Operational Research, 76(1):192–205, 1994. doi: 10.1016/0377-2217(94)90016-7.

Zhang, H. and Stickel, M. E. An efficient algorithm for unit propagation. In In Proceedings of
the Fourth International Symposium on Artificial Intelligence and Mathematics (AI-MATH’96), Fort
Lauderdale (Florida USA, pages 166—-169, 1996.

Zhao, C., Fu, J., and Qu, Q. Real-Time Dynamic Hoist Scheduling for Multistage Material Handling
Process Under Uncertainties. American Institute of Chemical Engineers, 59(2):465–482, 2013. doi:
10.1002/aic.

234

	Introduction
	Motivation
	Research Aims and Methodology
	Thesis Outline and Contributions

	Background
	Project Scheduling Problems
	Classification Scheme
	Reference Problem - RCPSP/max

	Mixed Integer Programming
	Models
	Limitations

	Constraint Programming
	Background
	Global Constraints
	Modelling the RCPSP/max
	Search

	CP Optimizer
	Background
	Decision Variables and Constraints
	Modelling the RCPSP/max
	Search and Constraint Propagation
	Constraint Propagation

	Symmetry Breaking in the High-Multiplicity RCPSP/max
	Introduction
	Background
	Problem description
	Literature review

	Symmetry breaking
	Mixed-Integer Programming
	Formulation based on binary pulse start variables
	Reduced formulation based on integer pulse start variables
	Reduced formulation based on integer step & on-off variables
	Synthesis of polyhedral analysis

	Constraint Programming
	Integer Based Variables
	Interval Based Variables

	Computational study
	Multiples of PSPLIB
	Instances from MPSPlib

	Conclusion

	Liquid Handling Robot Scheduling Problem
	Introduction
	Problem Description
	Related Problems

	CP Optimizer Models
	Model 1 - (CP1)
	Model 2 - (CP2)
	Model 3 - (CP3)

	Lower Bounds
	Temporal-Based
	Resource-Based

	Computational Study
	Data
	Preprocessing
	Experimental Set Up
	Results

	Conclusion

	Driving Variables and Lower-Upper Consistency
	Introduction
	Definitions
	Constraint Satisfaction Problems
	LU Consistency
	Driving Variables

	Related Concepts
	Function Dependencies
	W-Cutsets and Constraint Graphs
	Strong Backdoors to Typical Case Complexity
	Variable Locks

	LU Consistency in Special Cases of Scheduling Constraints
	Inequality / Precedence Constraints
	Disjunctive with Setup Times
	State Functions
	Cumulative Expressions

	Case Study - A Liquid Carrying Robot Problem
	Problem Description
	Model Description
	Driving Variables of the Problem
	Computational Results

	Conclusion

	Interval Clusters
	Introduction
	Problem Description
	Protocols
	System Description
	Objectives

	Model Description
	Notation
	From Protocols to Project Classes
	Assigning Staining Projects to Units

	CP Optimizer Model
	Top Level Description
	Clusters Level Descriptions

	Computational Study
	Data
	Model Improvements
	Search Phases
	Experimental Setup
	Computational Results

	Model Extensions / Future Work
	Conclusion

	Concluding Remarks
	Contribution
	Future Work

	Additional Material - Chapter 3
	Tightening Constraints
	Polyhedral Analysis

	Additional Material - Chapter 4
	MIP Model for LHRSP

	Bibliography

