
Tidy tools for supporting fluent

workflow in temporal data

analysis

Yiru (Earo) Wang

B.Comm. (Hons), Monash University

A thesis submitted for the degree of Doctor of Philosophy at

Monash University in 2019

Department of Econometrics and Business Statistics





Contents

Copyright notice v

Abstract vii

Declaration ix

Acknowledgements xi

Preface xiii

1 Introduction 1

1.1 Calendar-based graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Tidy temporal data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Missingness in time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Calendar-based graphics for visualizing people’s daily schedules 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Creating a calendar display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 A new tidy data structure to support exploration and modeling of tem-

poral data 29

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Contextual semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Temporal data pipelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Software structure and design decisions . . . . . . . . . . . . . . . . . . . . . 42

3.6 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Data representation, visual and analytical techniques for demystify-

ing temporal missing data 59

iii



CONTENTS

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Categories of temporal missing data . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 New data abstraction and operations for missing data in time . . . . . . . . 63

4.4 Visual methods for exploring temporal missingness . . . . . . . . . . . . . . 65

4.5 Scaling up to large collections of temporal data . . . . . . . . . . . . . . . . . 69

4.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Conclusion and future plans 83

5.1 Software development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Final words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A Data dictionary 89

Bibliography 91

iv



Copyright notice

© Yiru (Earo) Wang (2019).

I certify that I have made all reasonable efforts to secure copyright permissions for third-

party content included in this thesis and have not knowingly added copyright content to

my work without the owner’s permission.

v





Abstract

This work is driven by the need for a conceptual framework to tackle temporal analyses

in a data-centric workflow. Most research on temporal data focuses on modeling. Corre-

sponding software requires very stringently formatted data, but does little in providing

guidelines or tools for wrangling raw data into the required format. This has led to ad-hoc,

and once-off solutions, which this research repairs.

There are three original contributions for the temporal data analysis in this research. They

are grounded in the spirit of exploratory data analysis for time-indexed data. The first

contribution (Chapter 2) is a new technique for visualizing data using a calendar layout. It

is most useful when the data relates to daily human activity, and patterns can be explored

in relation to people’s schedules. The second contribution (Chapter 3) is a new data

abstraction which streamlines transformation, visualization, and modeling in temporal

contexts. This “tsibble” object is a data infrastructure forming the foundation of temporal

data pipelines. The third contribution (Chapter 4) is to equip analysts with exploratory and

explanatory tools for discovering missing patterns in time, and thus facilitating decisions

on appropriate imputation methods for further downstream analysis.
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Chapter 1

Introduction

Temporal data analysis has assumed that the entry point to data analysis is at a model-

ready data format, which provides little organization or conceptual oversight on how one

should get the wild data into a tamed state. This mind-set is related to a long-held belief

that exploratory data analysis is a highly ad hoc statistical area, impossible to teach or

formalize. However, the tidyverse framework implemented in the statistical software R (R

Core Team, 2018), as originating in Wickham (2014), fundamentally overturns this thinking.

Data plots and data wrangling, which the “tidy data” conceptualization supports, can

be formally described using an abstract grammar. The grammar of graphics and data

manipulation, as implemented in the ggplot2 (Wickham et al., 2019a) and dplyr (Wickham

et al., 2019b) R packages respectively, form the core of the tidyverse suite of tools. My

contributions extend the tidyverse way of thinking to the temporal domain, by providing

tidy tools, built as R packages, for supporting fluent workflow in temporal data analysis.

1.1 Calendar-based graphics

Visualization is critical for understanding data patterns, and for discovering the unex-

pected in data. Chapter 2 describes how to make a calendar layout to produce a new

type of plot. It is especially focused on human activity data that can be examined to

explore the rhythm of a society’s daily behavior, especially the distinctions between work-

ing and leisure life. The layout algorithm provides a new method for assembling small
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CHAPTER 1. INTRODUCTION

multiples into a familiar calendar structure. It is fully integrated into the grammar of

graphics (Wilkinson, 2005; Wickham, 2009), specifying the plots as a functional mapping

from data variables to graphical primitives. This new calendar-based display sketches

the patterns of daily and sub-daily human behaviors, unlocking vivid and detailed data

stories about the way we live. The chapter contains a comprehensive literature review

related to calendar-based graphics.

1.2 Tidy temporal data structure

Data representation is an important component of data science research. “Tidy data”

(Wickham, 2014) is the fundamental data architecture of the tidyverse ecosystem, making

it possible to build fluent data pipelines for transformation, visualization, and modeling.

It does not adequately describe temporal data, and the current time series structures that

are primarily model-oriented, inhibits a data-centric workflow. This research develops a

new tidy data abstraction for temporal data, which lubricates the plumbing of temporal

data analysis. Chapter 3 describes this abstraction, the process of using it for time series

analysis, and modeling, and includes a comprehensive literature review of related work.

1.3 Missingness in time

Missing data always creates an obstacle in data analysis, because many techniques cannot

operate without complete data. Another way to think about it is that the invisibles

(missing values) may mask some data gems. The ability to explore missing value patterns

without thought to later analyses is a worthwhile pursuit in itself. To support missing

value handling for temporal data, a new data structure is designed which indexes missing

values and efficiently stores the information. Building on this, several new operations and

visualization methods have been designed. Chapter 4 describes these developments, and

how they can be used to support exploration of missing patterns in time, and preparing

data for imputation to feed into models. These methods expand the temporal data

handling capabilities into a tidy workflow infrastructure.

2



CHAPTER 1. INTRODUCTION

1.4 Summary

The thesis is structured as follows. Chapter 2 provides details of the calendar plot,

algorithm and applications. This is implemented in the R package sugrrants. Chapter 3

explains the new data abstraction–tsibble–and illustrates how it can be used to for the basis

of exploratory methods, visualization and modeling of temporal data. This is available

as the R package tsibble. Chapter 4 describes new procedures for exploring temporal

missing patterns, and assisting in handling missing values prior to modeling. This is in

the developing R package mists.

Chapter 5 summarizes the software tools developed for the work and their impact, and

discusses some future plans.

3





Chapter 2

Calendar-based graphics for visu-

alizing people’s daily schedules

Calendars are broadly used in society to display temporal information and events. This

paper describes a new calendar display for plotting data, that includes a layout algorithm

with many options, and faceting functionality. The functions use modular arithmetic on

the date variable to restructure the data into a calendar format. The user can apply the

grammar of graphics to create plots inside each calendar cell, and thus the displays syn-

chronize neatly with ggplot2 graphics. The motivating application is studying pedestrian

behavior in Melbourne, Australia, based on counts which are captured at hourly intervals

by sensors scattered around the city. Faceting by the usual features such as day and month,

is insufficient to examine the behavior. Making displays on a monthly calendar format

helps to understand pedestrian patterns relative to events such as work days, weekends,

holidays, and special events. The functions for the calendar algorithm are available in the

R package sugrrants.

2.1 Introduction

A new method for organizing and visualizing temporal data, collected at sub-daily inter-

vals, into a calendar layout is developed. The format is created using modular arithmetic,

giving a restructuring of the data that can then be integrated into a data pipeline. The core
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component of the pipeline is to visualize the resulting data using the grammar of graphics

(Wilkinson, 2005; Wickham, 2009), as used in ggplot2 (Wickham et al., 2019a), where plots

are defined as a functional mapping from variables in the data to graphical elements.

The data restructuring approach is consistent with the tidy data principles available in

the tidyverse suite of tools (Wickham, 2017). The methods are implemented in a new R

package called sugrrants (Wang, Cook, and Hyndman, 2019a).

The purpose of the calendar-based visualization is to provide insights into human activities,

especially relative to events such as work days, weekends, holidays, and special events.

This work was originally motivated by studying foot traffic in the city of Melbourne,

Australia (City of Melbourne, 2017). There are many sensors installed across the inner-city

area, that count pedestrians every hour (Figure 2.1). Data from 43 sensors in 2016 is

analyzed here. This data can shed light on people’s daily rhythms, and assist the city

administration and local businesses with event planning and operational management.

Patterns relative to special events (such as public holidays and recurring cultural/sporting

events) would be worth studying in comparison to regular days, but conventional displays

of time series data may bury this detail.

A routine examination of the data would involve constructing a time series plot to examine

the temporal patterns. The faceted plots in Figure 2.2 give an overall picture of the foot

traffic at three different sensors in 2016. Further faceting by day of the week (Figure 2.3)

provides a better view of the daily and sub-daily (hourly) pedestrian patterns. Flagstaff

Station has a strong commuter pattern, with peaks in the morning and evening, and no

pedestrians on the weekend. Around the State Library there are pedestrians walking

around during the day, and an unusually large number on one Saturday night and Sunday

morning. Birrarung Marr has a varied pedestrian pattern, with very different numbers of

people on different days and times.

Faceting, initially called trellis displays (Becker, Cleveland, and Shyu, 1996), is an example

of a small multiple (Tufte, 1983), where different subsets of the same data are displayed

across one or more conditioning variables. It allows the comparison of subsets. Faceting

can also be thought of as a simple ensemble graphic (Unwin and Valero-Mora, 2018). It

6
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Figure 2.1: Google map of the Melbourne city area, gray dots indicate sensor locations. The three
locations highlighted will be analyzed in the paper: the State Library is a public library;
Flagstaff Station is a train station, closed on non-work days; Birrarung Marr is an
outdoor park hosting many cultural and sports events.

is a homogeneous collection of plots, whereas the ensemble graphics broadly organize

related plots for a data set together into one display.

The work is inspired by Wickham et al. (2012), which uses modular arithmetic to display

spatio-temporal data as glyphs on maps. It is also related to recent work by Hafen (2019)

which provides methods in the geofacet R package to arrange data plots into a grid, while

preserving the geographical position. Both of these show data in a spatial context.

In contrast, calendar-based graphics unpack the temporal variable, at different resolutions,

to digest multiple seasonalities and special events. There are some existing works in this

area. For example, Van Wijk and Van Selow (1999) developed a calendar view of the

heatmap to represent the number of employees in the work place over a year, where colors

indicate different clusters derived from the days. It contrasts weekdays and weekends,

highlights public holidays, and presents other known seasonal variation such as school

vacations, all of which have influence over the turn-outs in the office. Some variants

of calendar-based heatmaps have been implemented in R packages: TimeProjection

(Wong, 2013), ggTimeSeries (Kothari and Ather, 2016), and ggcal (Jacobs, 2017). However,

these techniques are limited to color-encoding graphics and are unable to use time scales

smaller than a day. Time of day, which serves as one of the most important aspects in

explaining substantial variations arising from the pedestrian sensor data, will be neglected
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Figure 2.2: Time series plots showing 2016 pedestrian counts, measured by three different sensors
in the city of Melbourne. Small multiples of lines show that the foot traffic varies
at one location to another. The spike in counts at the State Library corresponds to
the timing of the event “White Night”, where there were many people taking part in
activities in the city throughout the night. A relatively persistent pattern repeats from
one week to another at Flagstaff Station. Birrarung Marr looks rather noisy and spiky,
with several runs of missing records.

through daily aggregation. Color-encoding is also low on the hierarchy of optimal variable

mapping (Cleveland and McGill, 1984; Lam, Munzner, and Kincaid, 2007).

The proposed algorithm goes beyond the calendar-based heatmap. The approach is devel-

oped with three conditions in mind: (1) to display time-of-day variation in addition to

longer temporal components such as day-of-week and day-of-year; (2) to incorporate lines

and other types of glyphs into the graphical toolkit for the calendar layout; (3) to accentuate

unusual patterns, such as those related to special events, for viewers. The proposed algo-

rithm has been implemented in the frame_calendar() and facet_calendar() functions

in the sugrrants package using R.
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Figure 2.3: Hourly pedestrian counts for 2016, faceted by sensors, and days of the week. The
focus is on time of day and day of week across the sensors. Daily commuter patterns
at Flagstaff Station, the variability of the foot traffic at Birrarung Marr, and the
consistent pedestrian behavior at the State Library, can be seen.

The remainder of the paper is organized as follows. Section 2.2 details the construction of

the calendar layout in depth. It describes the algorithms of data transformation (Section

2.2.1), the available options (Section 2.2.2), variations of its usage (Section 2.2.3), including

the full faceting extension equipped with formal labels and axes (Section 2.2.3). An analysis

of half-hourly household energy consumption, using the calendar display, is illustrated in

a case study in Section 2.3. Section 2.4 discusses the limitations of calendar displays and

possible new directions.

2.2 Creating a calendar display

2.2.1 Data transformation

The algorithm of transforming data for constructing a calendar plot uses modular arith-

metic, similar to that used in the glyph map displays for spatio-temporal data (Wickham
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et al., 2012). To make a year long calendar requires cells for days, embedded in blocks

corresponding to months, organized into a grid layout for a year. Each month conforms to

a layout of 5 rows and 7 columns, where rows and columns refer to weeks of the month

and days of the week respectively. These cells provide a micro canvas on which to plot the

data. The first day of the month could be any of Monday–Sunday, which is deterministic

given the year of the calendar. Months are of different lengths, ranging from 28 to 31 days.

Some months could extend over six weeks, but for these months the last few days are

wrapped up to the top row of the block for compactness, and because it is convention.

The fifth row could be blank for February if the month starts on Monday. The notation for

creating these cells is as follows:

• k = 1, . . . , 7 is the day of the week, that is the first day of the month.

• d = 28, 29, 30 or 31 representing the number of days in any month.

• (i, j) is the grid position, where 1 ≤ i ≤ 5 is the row (week of the month), and

1 ≤ j ≤ 7 is the column (day of the week), with (1, 1) being in the upper left corner.

• g = k, . . . , (k + d− 1) indexes the day in the month, inside the 35 possible cells.

The grid position for any day in the month is given by

i = d(g mod 35)/7e,

j = g mod 7 + 1.
(2.1)

To create the layout for a full year, (m, n) denotes the position of the month arranged in

the plot, where 1 ≤ m ≤ M is the row and 1 ≤ n ≤ N is the column; b denotes the small

amount of white space between each month for visual separation.

Each cell forms a canvas on which to draw the data. Initialize the canvas to have limits

[0, 1] both horizontally and vertically. For the pedestrian sensor data, within each cell,

hour is plotted horizontally, and count is plotted vertically. Each variable is scaled to have

values in [0, 1], using the minimum and maximum of all the data values to be displayed,

assuming fixed scales. Let h be the scaled hour, and c be the scaled count.

10
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Then the final coordinates for making the calendar plots of the pedestrian sensor data are

given by:

x = j + (n− 1)× 7 + (n− 1)× b + h,

y = i− (m− 1)× 5− (m− 1)× b + c.
(2.2)

Note that for the vertical direction, the top left is the starting point of the grid, which

is easier to lay out and why the subtraction is performed. Within each cell, the starting

position is the bottom left.

The R package, lubridate (Grolemund and Wickham, 2011), is used to extract the compo-

nents of time, such as days of the week and the number of days in a month, that create the

layout. These time variables are converted to integers for the modular arithmetic. Note

that for any date-time information is associated with time zone. If your data is collected

over multiple time zones, you will need to convert them to the same time zone before

conducting any temporal analysis.

Figure 2.4 shows the line graphs framed in the monthly calendar over the year 2016. This

is achieved by the frame_calendar() function, which computes the coordinates on the

calendar for the input data variables. These can then be plotted using the usual ggplot2 R

package (Wickham et al., 2019a). Thus, the grammar of graphics can be applied.

In order to make calendar-based graphics more accessible and informative, reference lines

dividing each cell and block, as well as labels indicating weekday and month are also

computed before plot construction.

Regarding the monthly calendar, the major reference lines separate every month panel

and the minor ones separate every cell, represented by the thick and thin lines in Figure

2.4, respectively. The major reference lines are placed surrounding every month block: for

each m, the vertical lines are determined by min (x) and max (x); for each n, the horizontal

lines are given by min (y) and max (y). The minor reference lines are only placed on the

left side of every cell: for each i, the vertical division is min (x); for each j, the horizontal

is min (y).
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Figure 2.4: The calendar plot of hourly foot traffic at Flagstaff Station ranging from 0 to 6952,
using line graphs. The disparities between weekday and weekend along with public
holiday, are immediately apparent. The arrangement of the data into a 3× 4 monthly
grid represents all the traffic in 2016. Note that the algorithm wraps the last few days
in the sixth week to the top row of each month block for a compact layout, which occurs
in May and October.
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The month labels located on the top left using (min (x), max (y)) for every (m, n). The

weekday texts are uniformly positioned on the bottom of the whole canvas, that is min (y),

with the central position of a cell x/2 for each j. Formal axes and labels are discussed later

in Section 2.2.3.

2.2.2 Options

The algorithm has several optional parameters that modify the layout, direction of display,

scales, plot size and switching to polar coordinates. These are accessible to the user by the

inputs to the function frame_calendar():

frame_calendar(data, x, y, date, calendar = "monthly", dir = "h",

week_start = 1, nrow = NULL, ncol = NULL, polar = FALSE,

scale = "fixed", width = 0.95, height = 0.95, margin = NULL)

It is assumed that the data is in tidy format (Wickham, 2014), and x, y are the variables

that will be mapped to the horizontal and vertical axes in each cell. For example in Figure

2.4, the x is the time of the day, and y is the count. The date argument specifies the date

variable in the data, facilitating the range of dates plotted in the calendar layout.

The algorithm handles displaying a single month or several years. The arguments nrow

and ncol specify the layout of multiple months. For some time frames, some arrangements

may be more beneficial than others. For example, to display data for three years, setting

nrow = 3 and ncol = 12 would show each year on a single row.

Layouts

The monthly calendar is the default, but two other formats, weekly and daily, are available

with the calendar argument. The daily calendar arranges days along a row, one row

per month. The weekly calendar stacks weeks of the year vertically, one row for each

week, and one column for each day. The reader can scan down all the Mondays of the

year, for example. The daily layout puts more emphasis on day of the month. The weekly

calendar is appropriate if most of the variation can be characterized by days of the week.

On the other hand, the daily calendar should be used when there is a yearly effect but not
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a weekly effect in the data (for example, weather data). When both effects are present, the

monthly calendar would be a better choice. Temporal patterns motivate which variant

should be employed.

Orientation

By default, grids are laid out horizontally. This can be transposed by setting the dir

parameter to "v", in which case i and j are swapped in Equation (2.1). This can be useful

for creating calendar layouts for countries where vertical layout is the convention.

Start of the week

The start of the week for a monthly calendar is adjustable. The default is Monday (1),

which is chosen from the data perspective. The week, however, can begin with Sunday (7)

as commonly used in the US and Canada, or other weekday, subject to different countries

and cultures.

Polar transformation

When polar = TRUE, a polar transformation is carried out on the data. The computation is

similar to the one described in Wickham et al. (2012). This produces star glyphs (Chambers

et al., 1983), where time series lines are transformed in polar coordinates, embedded in

the monthly calendar layout. It is most useful in exhibiting cyclical patterns in the data.

Scales

By default, global scaling is done for values in each plot, with the global minimum and

maximum used to fit values into each cell. If the emphasis is on comparing trend rather

than magnitude, it is useful to scale locally. For temporal data, this would harness the

temporal components. The choices include: free scale within each cell (free), cells derived

from the same day of the week (free_wday), or cells from the same day of the month

(free_mday). The scaling allows for the comparisons of absolute or relative values, and

the emphasis of different temporal variations.
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Figure 2.5: Line graphs on the calendar format showing hourly foot traffic at Flagstaff Station,
scaled individually by day. The shape on a single day becomes more distinctive, as
compared to Figure 2.4.

With local scaling, the overall variation gives way to the individual shape. Figure 2.5

shows the same data as Figure 2.4, scaled locally using scale = "free". The daily trends

are magnified.

The free_wday scales each weekday together. It can be useful to compare trends across

weekdays, allowing relative patterns for weekends versus weekdays to be examined.

Similarly, the free_mday uses free scaling for any day within a given month.
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Language support

Most countries have adopted this western calendar layout, while the languages used for

weekday and month would be different across countries. Other language specifications

than English, for text labeling, are available.

2.2.3 Varieties of calendar display

Information overlay

Plots can be layered. A comparison of sensors can be done by overlaying them in the

same calendar pane. Figure 2.6 overlays the pedestrian counts for three locations on the

same calendar. Differences between the pedestrian patterns at these locations can be more

directly compared. For example, the magnitude of the difference in pedestrians at Flagstaff

Station at peak hours of commuter can be seen. The big peak in pedestrian counts for

special events at Birrarung Marr is clear. Birrarung Marr has a very distinct temporal

pattern relative to the other two locations. The nighttime events, such as White Night

(third Saturday in February), only affects the foot traffic at the State Library and Birrarung

Marr.

Faceting by covariates

To avoid overlapping, when differences between groups are large enough to be seen

separately, the calendar layout can be faceted into a series of subplots for the different

sensors. Figure 2.7 shows calendar plots that are faceted by sensors. This arrangement

allows comparison of the overall structure between sensors, while emphasizing individual

sensor variation. In particular, it can be immediately learned that Birrarung Marr was

busy and packed over many weekends, but events took place on Friday evenings only

in September. The Australian Open, a major international tennis tournament, attracted

constant foot traffic in the last two weeks of January. The calendar plot can be faceted by

any categorical variable in the data.
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Sensor State Library Flagstaff Station Birrarung Marr

Figure 2.6: Overlaying line graphs of the three sensors in the monthly calendar, to enable a
direct comparison of the counts at three locations. They have very different traffic
patterns. Birrarung Marr tends to attract large numbers of pedestrians for special
events typically held on weekends, contrasting to the bimodal massive peaks showing
commuting traffic at Flagstaff Station.
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Figure 2.7: Line graphs, embedded in the 6× 2 monthly calendar, colored and faceted by the 3
sensors. The variations of an individual sensor are emphasized.
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Different types of plots

Many types of plot can be shown in a calendar pane, by taking advantage of the existing

ggplot2 plotting capabilities. An example is shown in Figure 2.8: the panes contain lag

scatterplots for Flagstaff Station from Week 1 to 17 in 2016, constructed with the scaling

for each day and aligning by days of the week, where the lagged hourly count is assigned

to the x argument and the current hourly count to the y argument. It indicates strong

autocorrelation on weekends, and weak autocorrelation on work days. The V-shape in

the weekday graphs arises when the next hour sees a substantial increase or decrease in

counts.

The algorithm can also produce more complicated plots, such as boxplots. Figure 2.9

uses a loess smooth line (Cleveland, 1979) superimposed on side-by-side boxplots. It

shows the distribution of hourly counts across all 43 sensors during December. The last

week of December is the holiday season: people are off work on the day before Christmas

(December 24), go shopping on the Boxing day (December 26), and stay out for the

fireworks on New Year’s Eve. The text in the plot is labeled in Chinese, showcasing the

support for other languages.

Interactivity

The previous calendar plots are static, made with ggplot2. The interactivity of calendar-

based displays can be easily enabled, as long as the interactive graphics system remains

true to the spirit of the grammar of graphics, for example, plotly (Sievert, 2018) in R. As

a standalone display, an interactive tooltip can be added to show labels when mousing

over a point in the calendar plot, for example the hourly count with the time of day. It

is difficult to sense the values from the static display, but the tooltip makes it possible.

Options in the frame_calendar() function can be ported to a form of selection button or

text input in a graphical user interface like R shiny (Chang et al., 2019). The display will

update on the fly accordingly, via clicking or text input, as desired.

Linking calendar displays to other types of charts is valuable to visually explore the

relationships between variables. An example can be found in the wanderer4melb shiny

application (Wang, 2019). The calendar most naturally serves as a tool for date selection: by
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Figure 2.8: Examining lag 1 autocorrelation for Flagstaff Station from week 1 to 17, using lag
scatterplots scaled by each day and aligned by days of the week. Each hour’s count is
plotted against the previous hour’s count. The autocorrelation is stronger on non-work
days (blue) than work days (red).
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Figure 2.9: Side-by-side boxplots of hourly counts for all the 43 sensors in December 2016, with
the loess smooth line superimposed on each day. It shows the hourly distribution in
the city as a whole. The increased variability is notable on the last day of December as
New Year’s Eve approaches. The month and weekday are labeled in Chinese, which
demonstrates the support for languages other than English.
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selecting and brushing the glyphs in the calendar, it subsequently highlights the elements

of corresponding dates in other time-based plots. The linking between weather data and

calendar displays is achieved using the common dates.

Faceted calendar

The frame_calendar() function described in Section 2.2.2 is a data restructuring function,

neatly integrating into a data pipeline but it requires two steps: data transformation and

then plot. There is also little freedom to tailor axes and labels, because specialist code

needs to be applied.

The facet_calendar() integrates the algorithm into the ggplot2 graphical system so

that the calendar layout is automatic, and the full functionality of axes, labels, and cus-

tomization is accessible. A faceting method lays out panels in a grid. The user needs

to supply the variable containing dates, in order for the faceting calendar function to

prepare the arrangement of panels, as defined by Equation (2.1). The remainder of the

plot construction for each panel is handled entirely by ggplot2 internals.

Formal axes and labels unavailable in calendar plots generated by the frame_calendar()

are possible (Figure 2.10). It is much easier for readers to infer the scaling (global or local)

employed for the plot. Non-existing panels mean non-existing days in the month, and

blank panels indicate missing data on the day. This avoids confusion about missing data

or days when missingness lives in the ends of month panels, which may occur when using

frame_calendar().

However, the facet_calendar() takes much more run time compared with

frame_calendar(). The faceted calendar also uses more plot real estate for panel head-

ings and axes. The reader can compare the two approaches by examining the compact

Figure 2.6, relative to Figure 2.10. The space consumed by the former shows a full year,

and the latter shows four months, only a third of the data. For fast rendering and economy

of space, frame_calendar() is recommended.
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Figure 2.10: A faceted calendar showing a fraction of the data shown in Figure 2.6. The faceted
calendar takes more plot real estate than the calendar plot, but it provides native
ggplot2 support for labels and axes.
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2.2.4 Reasons to use calendar-based graphics

The purpose of the calendar display is to facilitate quick discoveries of unusual patterns in

people’s activities, which is consistent with why analysts should and do use data visualiza-

tion. It complements the traditional graphical toolbox used to understand general trends,

and better profiles vivid and detailed data stories about the way we live. Comparing

the conventional displays (Figure 2.2 and 2.3) with the new display (Figure 2.7), it can

be seen that the calendar display is more informatively compelling: when special events

happened, and on what day of the week, and whether they were day or night events. For

example, Figure 2.7 informs the reader that many events were held in Birrarung Marr on

weekend days, while September’s events took place on Friday evenings, which is difficult

to discern from conventional displays.

2.3 Case study

The use of the calendar display is illustrated on smart meter energy usage from four

households in Melbourne, Australia. Individuals can download their own data from the

energy supplier, and the data used in this section is sourced from four colleagues of the

authors. The calendar display is useful to help people understand their energy use. The

data contains half-hourly electricity consumption in the first half of 2018. The analysis

begins by looking at the distribution over days of week, then time of day split by work

days and non-work days, followed by the calendar display to inspect the daily schedules.

Figure 2.11 shows energy consumption against time of day, separately by weekday and

weekend. Household 1 is an early riser, starting their day before 6 and going back home

around 18 on weekdays. They switch air conditioning on when they get home from

work and keep it operating until midnight, evident from the small horizontal cluster of

points around 0.8 kWh. On the other hand, the stripes above 1 kWh for household 2

indicates that air conditioning may run continuously for some periods, consuming twice

the energy as household 1. A third peak occurs around 15 for household 3 only, likely

coinciding when the children arrive home from school. They also have a consistent energy

pattern between weekdays and weekends. As for household 4, their home routine starts
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Figure 2.11: Examining sub-daily variability of energy usage by time of day, with hourly averages
overlaid, faceted by household and type of day. On weekdays, household 1 wakes up
early before 6, and household 2 around 6, followed by household 3 and 4. The use of
air conditioning is notable in households 1 and 2, as seen by horizontal clusters of
points.

after 18 on weekdays. Figures 2.11, part of a traditional graphical toolkit, are useful for

summarizing overall deviations across days and households.

Figure 2.12 displays the global scaling of each household’s data in a calendar layout,

unfolding their day-to-day life via electricity usage. Glancing over household 1, their

overall energy use is relatively low. Their weekday energy use is distinguishable from

their weekends, indicating a working household. The air conditioner appears to be used

in the summer months (January and February) for a couple of hours in the evening and

weekends. In contrast, household 2 keeps a cooling system functioning for much longer

hours, which becomes more evident from late Wednesday through Thursday to early

Friday in mid-January. These observations help to explain the stripes and clusters of

household 2 in Figure 2.11. It is difficult to give a succinct description of household 3

since everyday energy pattern is variable, but May and June see more structure than the
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Figure 2.12: Calendar displays faceted by each household using global scales. Long flat low energy
usage indicates vacation time, and high energy consumption by household 2 is visible
in January and February. Note that April 30 is wrapped to the start of the month.
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previous months. Individual data can be idiosyncratic, hence aggregated plots like Figure

2.11 are essential for assembling pieces to form a picture. However, the calendar plots tell

the stories that are untold by previous plots, for example, their vacation time. Household

1 is on vacation over three weeks of mid-June, and household 2 also took some days off in

the second week of June. Further, household 3 takes one short trip in January and another

one starting in the fourth week of June. Household 4 is away over two or three weeks in

early April and late June. They all tend to take breaks during June probably due to the

fact that the University winter break starts in June.

2.4 Discussion

The calendar-based visualization provides data plots in the familiar format of an everyday

tool. Patterns relating to special events and public holidays for the region are more visible

to the viewer.

The calendar layout will be useful for studying consumer trends and human behavior. It

will be less useful for physical processes such as weather. The layout does not replace

traditional displays, but serves to complement them to further tease out structure in

temporal data. Analysts would still be advised to plot overall summaries and deviations

in order to study general trends.

The methodology creates the western calendar layout, because most countries have

adopted this format. The main difference between countries is the use of different lan-

guages for labeling, which is supported by the software. Formats beyond the western

calendar, or six-weeks and tetris-like layouts could be achieved by slightly tweaking the

modular arithmetic approach. These features will be added as new options in the future.
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Chapter 3

A new tidy data structure to sup-

port exploration and modeling of

temporal data

Mining temporal data for information is often inhibited by a multitude of formats: regular

or irregular time intervals, point events that need aggregating, multiple observational

units or repeated measurements on multiple individuals, and heterogeneous data types.

This work presents a cohesive and conceptual framework for organizing and manipulating

temporal data, which in turn flows into visualization, modeling and forecasting routines.

Tidy data principles are extended to temporal data by: (1) mapping the semantics of

a dataset into its physical layout; (2) including an explicitly declared “index” variable

representing time; (3) incorporating a “key” comprising single or multiple variables to

uniquely identify units over time. This tidy data representation most naturally supports

thinking of operations on the data as building blocks, forming part of a “data pipeline”

in time-based contexts. A sound data pipeline facilitates a fluent workflow for analyzing

temporal data. The infrastructure of tidy temporal data has been implemented in the R

package, called tsibble.

29



CHAPTER 3. A NEW TIDY DATA STRUCTURE TO SUPPORT EXPLORATION AND MODELING
OF TEMPORAL DATA

3.1 Introduction

Temporal data arrives in many possible formats, with many different time contexts. For

example, time can have various resolutions (hours, minutes, and seconds), and can be

associated with different time zones with possible adjustments such as daylight saving

time. Time can be regular (such as quarterly economic data or daily weather data), or

irregular (such as patient visits to a doctor’s office). Temporal data also often contains

rich information: multiple observational units of different time lengths, multiple and

heterogeneous measured variables, and multiple grouping factors. Temporal data may

comprise the occurrence of time-stamped events, such as flight departures.

Perhaps because of this variety and heterogeneity, little organization or conceptual over-

sight on how one should get the wild data into a tamed state is available for temporal

data. Analysts are expected to do their own data preprocessing and take care of anything

else needed to allow further analysis, which leads to a myriad of ad hoc solutions and

duplicated efforts.

Wickham and Grolemund (2016) proposed the tidy data workflow, to give a conceptual

framework for exploring data (as described in Figure 3.1). In the temporal domain, data

with time information arrives at the “import” stage. A new abstraction, tsibble, introduced

in this paper, is the gatekeeper at the “tidy” stage, to verify if the raw temporal data is

appropriate for downstream analytics. The exploration loop will be aided with declarative

grammars, yielding more robust and accurate analyses.

The paper is structured as follows. Section 3.2 reviews temporal data structures corre-

sponding to time series and longitudinal analysis, and discusses “tidy data”. Section 3.3

proposes contextual semantics for temporal data, built on top of tidy data principles. The

concept of data pipelines, with respect to the time domain, is discussed in depth in Section

3.4, followed by a discussion of the design choices made in the software implementation in

Section 3.5. Two case studies are presented in Section 3.6 illustrating temporal data explo-

ration using the new infrastructure. Section 3.7 summarizes current work and discusses

future directions.
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Figure 3.1: Annotation of the data science workflow regarding temporal data, drawn from Wick-
ham and Grolemund (2016). The new data structure, tsibble, makes the connection
between temporal data input, and downstream analytics. It provides elements at the

“tidy” step, which produce tidy temporal data for temporal visualization and modeling.

3.2 Data structures

3.2.1 Comparing time series and longitudinal data

Temporal data problems often fall into two types of analysis, time series and longitudinal.

Both of these may have similar data input, but the representation for modeling is typically

different. Time series analysis tends to focus on the dependency within series, and the

cross-correlation between series. Longitudinal analysis tends to focus on overall temporal

patterns across demographic or experimental treatment strata, that incorporates within

subject dependency.

Time series can be univariate or multivariate, and require relatively long lengths (i.e., large

T) for modeling. With this large T property, the series can be handled as stochastic pro-

cesses for the primary purposes of forecasting and characterizing temporal dynamics. Due

to an expectation of regularly spaced time, and equal lengths across series, multivariate

time series are typically assumed to be in the format where each column contains a single

time series, and time is specified implicitly. This also implies that data are columns of

homogeneous types: either all numeric or all non-numeric. It can be frustrating to wrestle

data from its original format to this modeling format. The format could be considered

to be model-centric, rather than data-centric, and thus throws the analyst into the deep

end of the pool, rather than allowing them to gently wade to the modeling stage from the
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shallow end. The expectation is that the “model” is at the center of the analytical universe.

This is contrary to the tidyverse conceptualization (Figure 3.1), which holistically captures

the data workflow. More support needs to be provided, in the form of consistent tools and

data structures, to transform the data into the analytical cycle.

Longitudinal data (or panel data) typically assumes fewer measurements (small T) over a

large number of individuals (large N). It often occurs that measurements for individuals

are taken at different time points, and in different quantities. The primary format required

for modeling is stacked data, blocks of measurements for each individual, with columns

indicating panels, times of measurement and the measurements themselves. An appealing

feature is that data is structured in a semantic manner with reference to observations and

variables, with panel and time explicitly stated.

3.2.2 Existing data standards

In R (R Core Team, 2018), time series and longitudinal data are of different representations.

The native ts object and the enhancements by zoo (Zeileis and Grothendieck, 2005) and xts

(Ryan and Ulrich, 2018), assemble time series into wide matrices with implicit time indexes.

If there are multiple sub-groups, such as country or product type, these would be kept

in different data objects. A relatively new R package tibbletime (Vaughan and Dancho,

2018b) proposed a data class of time tibble to represent time series in heterogeneous long

format. It only requires an index variable to be declared. However, this is insufficient,

and a more rigid data structure is required for temporal analytics and modeling. The plm

(Croissant and Millo, 2008) and panelr (Long, 2019) packages both manage longitudinal

data in long format.

Stata (StataCorp, 2017) provides two commands, tsset and xtset, to declare time series

and panels respectively, both of which require explicit panel id and time index specifi-

cation. Different variables would be stored in multiple columns. The underlying data

arrangement is only long form, for both types of data. Both groups of functions can be

applied interchangeably to whether the data is declared for time series or longitudinal

data. The SAS software (SAS Institute Inc., 2018) also handles both types of data in the

same way as Stata.
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3.2.3 Tidy data

Wickham (2014) coined the term “tidy data”, to standardize the mapping of the semantics

of a dataset to its physical representation. In tidy form, rows correspond to observations

and columns to variables. Tidy data is a rephrasing of the second and third normal forms

from relational databases, but the explanation in terms of observations and variables is

easier to understand because it uses statistical terminology.

Multiple time series, with each column corresponding to a measurement is tidy data

when the time index is explicitly stored in a column. The stacked data format used in

longitudinal data is tidy, and accommodates explicit identification of sub-groups.

The tidy data structure is the fundamental unit of the tidyverse, which is a collection of R

packages designed for data science. The ubiquitous use of the tidyverse is testament to the

simplicity, practicality and general applicability of the tools. The tidyverse provides ab-

stract yet functional grammars to manipulate and visualize data in easier-to-comprehend

form. One of the tidyverse packages, dplyr (Wickham et al., 2019b), showcases the value

of a grammar as a principled vehicle to transform data for a wide range of data chal-

lenges, providing a consistent set of verbs: mutate(), select(), filter(), summarize(),

and arrange(). Each verb focuses on a singular task. Most common data tasks can

be rephrased and tackled with these five key verbs, in conjunction with group_by() to

perform grouped operations.

The tidyverse largely formalizes exploratory data analysis. Many in the R community

have adopted the tidyverse way of thinking and extended it to broader domains, such

as simple features for spatial data in the sf package (Pebesma, 2018) and missing value

handling in the naniar package (Tierney and Cook, 2018). This paper with the associated

tsibble R package (Wang, Cook, and Hyndman, 2019b) extends the tidy way of thinking

to temporal data.

For temporal data, the tidy definition needs additional criteria, that assist in handling the

time context. This is addressed in the next section, and encompasses both time series and

longitudinal data. It provides a unified framework to streamline the workflow from data

preprocessing to visualization and modeling, as an integral part of a tidy data analysis.
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index key measurements

Figure 3.2: The architecture of the tsibble structure is built on top of the “tidy data” principles,
with temporal semantics: index and key.

3.3 Contextual semantics

The choice of tidy representation of temporal data arises from a data- and model-oriented

perspective, which can accommodate all of the operations that are to be performed on the

data in time-based contexts. Figure 3.1 marks where this new abstraction is placed in the

tidy model, which is referred to as a “tsibble”. The “tidy data” principles are adapted in

tsibble with the following rules:

1. Index is a variable with inherent ordering from past to present.

2. Key is a set of variables that define observational units over time.

3. Each observation should be uniquely identified by index and key.

4. Each observational unit should be measured at a common interval, if regularly

spaced.

Figure 3.2 sketches out the data form required for a tsibble, an extension of the tidy format

to the time domain. Beyond the layout, tsibble gives the contextual meaning to variables

in order to construct the temporal data object, as newly introduced “index” and “key”

semantics stated in definitions 1 and 2 above. Variables other than index and key are

considered as measurements. Definitions 3 and 4 imply that a tsibble is tidier than tidy data,

positioning itself as a model input that gives rise to more robust and reliable downstream

analytics.

To materialize the abstraction of the tsibble, a subset of tuberculosis cases (World Health

Organization, 2018), as presented in Table 3.1, is used as an example. It contains 12

observations and 5 variables landing in a tidy data form. Each observation comprises the

number of people who are diagnosed with tuberculosis for each gender at three selected

countries in the years of 2011 and 2012. From tidy data to tsibble data, index and key
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should be declared: column year as the index variable, and column country together

with gender as the key variables forming the observational units. Column count is the

only measured variable in this data, but the data structure is sufficiently flexible to hold

more measurements; for example, slotting the corresponding population size (if known)

into the data column for normalizing the count later. Note, this data further satisfies the

need for the distinct rows to be determined by index and key, and is regularly spaced over

one-year intervals.

Table 3.1: A small subset of estimates of tuberculosis burden collected by World Health Organi-
zation in 2011 and 2012, with 12 observations and 5 variables. The index refers to
column year, the key to multiple columns: country and gender, and the measured
variable to column count.

country continent gender year count

Australia Oceania Female 2011 120
Australia Oceania Female 2012 125
Australia Oceania Male 2011 176
Australia Oceania Male 2012 161
New Zealand Oceania Female 2011 36
New Zealand Oceania Female 2012 23
New Zealand Oceania Male 2011 47
New Zealand Oceania Male 2012 42
United States of America Americas Female 2011 1170
United States of America Americas Female 2012 1158
United States of America Americas Male 2011 2489
United States of America Americas Male 2012 2380

The new tsibble structure bridges the gap between raw data and the rigorous state of

temporal data analysis. The proposed contextual semantics is the new add-on to tidy

data in order to support more intuitive time-related manipulations and enlighten new

perspectives for time series and panel model inputs. Index, key and time interval form the

three pillars to this new semantically structured temporal data. Each is now described in

more detail.

3.3.1 Index

Index is a variable with inherent ordering from past to present.
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Time provides the contextual basis for temporal data. Time can be seen in numerous

representations, from sequential numerics to the most commonly accepted date-times.

Regardless of this diversity, time should be inherently ordered from past to present, so

should be the index variable to a tsibble.

Index is an explicit data variable rather than a masked attribute (such as in the ts and zoo

classes), exposing a need for more accessible and transparent time operations. It is often

necessary to visualize and model seasonal effects of measurements of interest, meaning

that time components, such as time of day and day of week, should be easily extracted

from the index. When the index is available only as meta information, it creates an obstacle

for analysts by complicating the writing of even simple queries, often requiring special

purpose programming. From an analytical point of view this should be discouraged.

3.3.2 Key

Key is a set of variables that define observational units over time.

What subjects/entities are to be observed over time, leads to the second component of a

tsibble–key. The key can consist of empty, single, or multiple variables identifying units

measured along the way. When only a single observational unit is present in the table,

no key needs to be specified. However, when multiple units exist in the data, the key

should be supplied by identifying variables to sufficiently define the units. In longitudinal

data, the key can be thought of as “panel” (such as in the Stata) but constrained to a single

variable in existing data structures. In tsibble, the key allows for multiple variables of

nesting, crossing, or union relations (Wilkinson, 2005), that can be useful for forecasting

reconciliation (Hyndman and Athanasopoulos, 2017; Hyndman et al., 2018) and richer

visualization. For example, Table 3.1 describes the number of tuberculosis cases for each

gender across the countries every year. This suggests that the key comprises at least

columns gender and country. Since country is nested within continent, continent

can be included in the key specification, but is not compulsory.

Each observation should be uniquely identified by index and key.
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Figure 3.3: Details about the tidy stage for a tsibble. Built on top of “tidy data”, each observation
should be uniquely identified by index and key, thereby no duplicated key-index pairs.

Inspired by a “primary key” (Codd, 1970), a unique identifier for each observation in a

relational database, the tsibble key also uniquely identifies each observational unit over

time. When constructing a tsibble, any duplicates of key-index pairs will fail, because

duplicates signal a data quality issue, which would likely affect subsequent analyses and

hence decision making. For example, either gender or country alone is not enough to

be the key for the tuberculosis data. Analysts are encouraged to better understand the

data, or reason about the process of data cleaning when handling duplicates. Figure 3.3

reveals the tidy module with clear routes required for a tsibble. The rigidity of tsibble, as

the fundamental data infrastructure, ensures the validity of subsequent temporal data

analysis.

Since observational units are embedded, modeling and forecasting across units and time

in a tsibble will be simplified. The tsibble key plays the role of the central transit hub

in connecting multiple tables managed by the data, models, and forecasts. This neatly

decouples the expensive data copying from downstream summarization, which can

significantly reduce the required storage space.

3.3.3 Interval

Each observational unit should be measured at a common interval, if regularly spaced.

The principal divide of temporal data is regularly versus irregularly spaced data. Event

data typically involves irregular time intervals, such as flight schedules or customer

transactions. This type of data can flow into event-based data modeling, but would need

to be processed, or regularized, to fit models that expect data with a fixed-time interval.
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There are three possible interval types: fixed, unknown, and irregular. To determine

the interval for regularly spaced data, tsibble computes the greatest common divisor

as a fixed interval. If only one observation is available for each unit, which may occur

after aggregating data, the interval is reported as unknown. When the data arrives with

irregular time, like event data, the interval would be specified as irregular, to prevent the

tsibble creator attempting to guess an interval.

To abide by the “tidy data” rules – “Each type of observational unit should form a table” –

in a tsibble each observational unit shares a common interval. This means that a tsibble

will report one single interval, whether the data has a fixed or mixed set of intervals. To

handle mixed interval data, it should be organized into separate tsibbles for a well-tailored

analysis.

This tiny piece of information, the interval, is carried over for tsibble-centric operations.

For example, this makes implicit missing time handling convenient, and harmoniously

operates with statistical calculations, and models, on seasonal periods.

3.4 Temporal data pipelines

A data pipeline describes the flow of data through an analysis, and can generally assist

in conceptualizing the process for a stream of problems. McIlroy, Pinson, and Tague

(1978) coined the term “pipelines” in software development while developing Unix at Bell

Labs. In Unix-based computer operating systems, a pipeline chains together a series of

operations based on their standard streams, so that the output of each program becomes

the input to another. The Extract, Transform, and Load (ETL) process, described in recent

data warehousing literature (Kimball and Caserta, 2011), outlines the workflow to prepare

data for analysis, and can also be considered a data pipeline. Buja et al. (1988) describes a

viewing pipeline for interactive statistical graphics, that takes control of the transformation

from data to plot. Swayne, Cook, and Buja (1998), Swayne et al. (2003), Sutherland et al.

(2000), Wickham et al. (2010) and Xie, Hofmann, and Cheng (2014) implemented data

pipelines for the interactive statistical software XGobi, GGobi, Orca, plumbr and cranvas,

respectively.
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A fluent data pipeline anticipates a standard data structure. The tsibble data abstraction

lays the plumbing for data analysis modules of transformation, visualization and modeling

in temporal contexts. It provides a data infrastructure to a new ecosystem, tidyverts

(Tidyverts Team, 2019). (The name “tidyverts” is a play on the term “tidyverse” that

acknowledges the time series analysis purpose.)

3.4.1 Transformation

The tsibble package not only provides a tsibble data object but also a domain specific

language in R for transforming temporal data. It takes advantage of the wrangling verbs

implemented in the dplyr package, and develops a suite of new tools for facilitating

temporal manipulation for primarily easing two aspects: implicit missingness handlers

and time-aware aggregations.

Implicit missings are values that should be present but are absent. In regularly spaced

temporal data, these are data entries that should be available at certain time points but

are missing, leaving gaps in time. These can be detected when computing the interval

estimate. It will be a problem for temporal models and operations like lag/lead, that

expect consecutive time. A family of verbs is provided to help explore implicit missing

values, and convert them into an explicit state, as follows:

• has_gaps() checks the existence of time gaps.

• scan_gaps() reveals all implicit missing observations.

• count_gaps() summarizes the time ranges that are absent from the data.

• fill_gaps() turns them into explicit ones, along with imputing by values or func-

tions.

These verbs are evocative, and of simple interface. They, by default, look into gaps for each

individual time period. Switching on the option .full = TRUE will fill in the full-length

time span, and create fully balanced panels in longitudinal data, when possible.

The other important function, is an adverb, index_by(), which is the counterpart of

group_by() in dplyr, grouping and partitioning by the index only. It is most often used in

conjunction with summarize(), thus creating aggregations to higher-level time resolutions.
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This combination automatically produces a new index and interval, and can also be used

regularize data of irregular interval.

In addition to the new verbs, the dplyr vocabulary has been adapted and expanded to

facilitate temporal transformations. The dplyr suite showcases the general-purpose verbs

for effectively manipulating tabular data. But these verbs need handling with care due to

the context switch. A perceivable difference is summarizing variables between normal

data and tsibble using summarize(). The former gives a single summary for a data table,

and the latter provides the corresponding summary for each index value.

Attention has been paid to warning and error handling. The principle that underpins

most verbs is a tsibble in and a tsibble out, thereby striving to maintain a valid tsibble over

the course of the transformation pipeline. If the desired temporal ordering is changed

by row-wise verbs (such as arrange() and slice()), a warning is broadcast. If a tsibble

cannot be maintained in the output of a pipeline module (likely occurring with column-

wise verbs), for example the index is dropped by select()-ing, an error informs users of

the problem and suggests alternatives. This avoids surprising users and reminds them of

the time context. In general, users who are already familiar with the tidyverse, should

have less resistance to learning the new semantics and verbs.

3.4.2 Visualization

The ggplot2 package (Wickham, 2009) (as the implementation of grammar of graphics)

builds a powerful graphical system to declaratively visualize data. The data underpinning

of ggplot2 is tidy data, and in turn tsibble integrates well with ggplot2. The integra-

tion encourages more flexible graphics for exploring temporal structures via index, and

individual or group differences via key.

Line charts are universally accepted for ordered data, such as time series plots or spaghetti

plots, depending on the fields. But they end up with exactly the same grammar: chrono-

logical time mapped to the horizontal axis, and the measurement of interest on the vertical

axis, for each unit. Many specialist plots centering around time series or longitudinal data,

can hence be described and re-created under the umbrella of the grammar and ggplot2.
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3.4.3 Model

Modeling is crucial to explanatory and predictive analytics, where time series and longitu-

dinal data analysis diverge. The tsibble, as a model-oriented object, can flow into both

types of modeling, and the new semantics (index and key) can be internally utilized to

accelerate modeling.

Most time series models are univariate, such as ARIMA and Exponential Smoothing, mod-

eling temporal dynamics for each series independently. The fable package (O’Hara-Wild,

Hyndman, and Wang, 2019), currently under development, provides a tidy forecasting

framework built on top of tsibble, with the goal of promoting transparent and human-

centered forecasting practices. With the presence of the key, a tsibble can hold many series.

Since models are fundamentally scalable, the model() and forecast() generics will take

care of fitting and forecasting univariate models to each series across time in a tsibble at

once.

Panel data models, however, put emphases on overall, within, and between variation both

across individuals and time. Fixed and random effects models could be developed in line

with the fable design.

3.4.4 Summary

To sum up, the tsibble abstraction provides a formal organization of forwarding tidy

data to model-oriented temporal data. The supporting operations can be chained for

sequencing analysis, articulating a data pipeline. As Friedman and Wand (2008) stated,

“No matter how complex and polished the individual operations are, it is often the quality

of the glue that most directly determines the power of the system.” A mini snippet below,

illustrates how transformation and forecasting are glued together, to realize the fluent

pipeline.
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pedestrian %>%

fill_gaps() %>% # turn implicit missingness to explicit

filter(year(Date_Time) == 2016) %>% # subset data of year 2016

model(arima = ARIMA(Count)) %>% # fit ARIMA to each sensor

forecast(h = days(2)) # forecast 2 days ahead

Here, the pedestrian dataset (City of Melbourne, 2017), available in the tsibble package

is used. It contains hourly tallies of pedestrians at four counting sensors in 2015 and

2016 in inner Melbourne. The pipe operator %>% introduced in the magrittr package

(Bache and Wickham, 2014) chains the verbs, read as “then”. A sequence of functions are

composed in a way that can be naturally read from left to right, which improves the code

readability. This code is read as “take the pedestrian data, fill the temporal gaps, filter to

2016 measurements, then apply an ARIMA model and forecast ahead 2 days.”

Piping coordinates a user’s analysis making it cleaner to follow, and permits a wider

audience to follow the data analysis from code, without getting lost in a jungle of compu-

tational intricacies. It helps to (1) break up a big problem into more manageable blocks, (2)

generate human readable analysis workflow, and (3) forestall introducing mistakes or, at

least, make it possible to track, and fix, mistakes upstream through the pipeline.

3.5 Software structure and design decisions

The tsibble package development follows closely to the tidyverse design principles (Tidy-

verse Team, 2019).

3.5.1 Data first

The primary force that drives the software’s design choices is “data”. All functions in the

package tsibble start with data or its variants as the first argument, namely “data first”.

This lays out a consistent interface and addresses the significance of the data throughout

the software.

Beyond the tools, the print display provides a quick and comprehensive glimpse of data

in temporal contexts, particularly useful when handling a large collection of data. The
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contextual information provided by the print() function, shown below from Table 3.1,

contains (1) data dimension with its shorthand time interval, alongside time zone if date-

times, (2) variables that constitute the “key” with the number of units. These summaries

aid users in understanding their data better.

#> # A tsibble: 12 x 5 [1Y]

#> # Key: country, gender [6]

#> country continent gender year count

#> <chr> <chr> <chr> <dbl> <dbl>

#> 1 Australia Oceania Female 2011 120

#> 2 Australia Oceania Female 2012 125

#> 3 Australia Oceania Male 2011 176

#> 4 Australia Oceania Male 2012 161

#> 5 New Zealand Oceania Female 2011 36

#> # ... with 7 more rows

3.5.2 Functional programming

Rolling window calculations are widely used techniques in time series analysis, and

often apply to other applications. These operations are dependent on having an ordering,

particularly time ordering for temporal data. Three common types of variations for sliding

window operations are:

1. slide: sliding window with overlapping observations.

2. tile: tiling window without overlapping observations.

3. stretch: fixing an initial window and expanding to include more observations.

Figure 3.4 shows animations of rolling windows for sliding, tiling and stretching on annual

tuberculosis cases for Australia. A block of consecutive elements with a window size of

5 is initialized in each case, and the windows roll sequentially to the end of series, with

average counts being computed within each window.
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Figure 3.4: An illustration of a window of size 5 to compute rolling averages over annual
tuberculosis cases in Australia using sliding, tiling and stretching. The anima-
tions are available with the supplementary materials online, and can also be viewed
directly at https://github.com/earowang/paper-tsibble/blob/master/
img/animate-1.gif.
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Rolling windows adapt to functional programming, for which the purrr package (Henry

and Wickham, 2019a) sets a good example. These functions accept and return arbitrary

inputs and outputs, with arbitrary methods. For example, moving averages anticipate

numerics and produce averaged numerics via mean(). However, rolling window regres-

sion feeds a data frame into a linear regression method like lm(), and generates a complex

object that contains coefficients, fitted values, etc.

Rolling windows not only iterate but roll over a sequence of elements of a fixed window. A

complete and consistent set of tools is available for facilitating window-related operations,

a family of slide(), tile(), stretch(), and their variants. slide() expects one input,

slide2() two inputs, and pslide() multiple inputs. For type stability, the functions

always return lists. Other variants including *_lgl(), *_int(), *_dbl(), *_chr() return

vectors of the corresponding types, as well as *_dfr() and *_dfc() for row-binding and

column-binding data frames respectively. Their multiprocessing equivalents prefixed by

future_*() enable rolling in parallel, via future (Bengtsson, 2019) and furrr (Vaughan

and Dancho, 2018a).

3.5.3 Modularity

Modular programming is adopted in the design of the tsibble package. Modularity

benefits users by providing small focused and cleaner chunks, and provides developers

with simpler maintenance.

All user-facing functions can be roughly organized into three major chunks according to

their functionality: vector functions (1d), table verbs (2d), and window family. Each chunk

is an independent module, but works interdependently. Vector functions in the package

mostly operate on time. The atomic functions (such as yearmonth() and yearquarter())

can be embedded in the index_by() verb to collapse a tsibble to a less granular interval.

Since they are not tied to a tsibble, they can be used in a broader range of data applications

not constrained to tsibble. On the other hand, the table verbs can incorporate many other

vector functions from a third party, like the lubridate package (Grolemund and Wickham,

2011).
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3.5.4 Extensibility

As a fundamental infrastructure, extensibility is a design decision that was employed from

the start of tsibble’s development. Contrary to the “data first” principle for end users,

extensibility is developer focused and would be mostly used in dependent packages;

it heavily relies on S3 classes and methods in R (Wickham, 2018). The package can be

extended in two major ways: custom indexes and new tsibble classes.

Time representation could be arbitrary, for example R’s native POSIXct and Date for

versatile date-times, nano time for nanosecond resolution in nanotime (Eddelbuettel and

Silvestri, 2018), and numerics in simulation. Ordered factors can also be a source of time,

such as month names, January to December, and weekdays, Monday to Sunday. The

tsibble package supports an extensive range of index types from numerics to nano time,

but there might be custom indexes used for some occasions, for example school semesters.

These academic terms vary from one institution to another, with the academic year defined

differently from a calendar year. A new index would be immediately recognized upon

defining index_valid(), as long as it can be ordered from past to future. The interval

regarding semesters is further outlined through interval_pull(). As a result, all tsibble

methods such as has_gaps() and fill_gaps() will have instant support for data that

contains this new index.

The class of tsibble is an underpinning for temporal data, and sub-classing a tsibble will

be a demand. A low-level constructor new_tsibble() provides a vehicle to easily create a

new subclass. This new object itself is a tsibble. It perhaps needs more metadata than those

of a tsibble, that gives rise to a new data extension, for example prediction distributions to

a forecasting tsibble.

3.5.5 Tidy evaluation

The tsibble packages leverages the tidyverse grammars and pipelines through tidy evalu-

ation (Henry and Wickham, 2019c) via the rlang package (Henry and Wickham, 2019b).

In particular, the table verbs extensively use tidy evaluation to evaluate computation in

the context of tsibble data and spotlight the “tidy” interface that is compatible with the
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tidyverse. This not only saves a few keystrokes without explicitly repeating references

to the data source, but the resulting code is typically cleaner and more expressive, when

doing interactive data analysis.

3.6 Case studies

3.6.1 On-time performance for domestic flights in U.S.A

The dataset of on-time performance for US domestic flights in 2017 represents event-driven

data caught in the wild, sourced from US Bureau of Transportation Statistics (Bureau

of Transportation Statistics, 2018). It contains 5,548,445 operating flights with many

measurements (such as departure delay, arrival delay in minutes, and other performance

metrics) and detailed flight information (such as origin, destination, plane number, etc.) in

a tabular format. This kind of event describes each flight scheduled for departure at a time

point in its local time zone. Every single flight should be uniquely identified by the flight

number and its scheduled departure time, from a passenger’s point of view. In fact, it fails

to pass the tsibble hurdle due to duplicates in the original data. An error is immediately

raised when attempting to convert this data into a tsibble, and a closer inspection has to

be carried out to locate the issue. The tsibble package provides tools to easily locate the

duplicates in the data with duplicates(). The problematic entries are shown below.

#> flight_num sched_dep_datetime sched_arr_datetime dep_delay arr_delay

#> 1 NK630 2017-08-03 17:45:00 2017-08-03 21:00:00 140 194

#> 2 NK630 2017-08-03 17:45:00 2017-08-03 21:00:00 140 194

#> carrier tailnum origin dest air_time distance origin_city_name

#> 1 NK N601NK LAX DEN 107 862 Los Angeles

#> 2 NK N639NK ORD LGA 107 733 Chicago

#> origin_state dest_city_name dest_state taxi_out taxi_in carrier_delay

#> 1 CA Denver CO 69 13 0

#> 2 IL New York NY 69 13 0

#> weather_delay nas_delay security_delay late_aircraft_delay

47



CHAPTER 3. A NEW TIDY DATA STRUCTURE TO SUPPORT EXPLORATION AND MODELING
OF TEMPORAL DATA

#> 1 0 194 0 0

#> 2 0 194 0 0

The issue was perhaps introduced when updating or entering the data into a system. The

same flight is scheduled at exactly the same time, together with the same performance

statistics but different flight details. As flight NK630 is usually scheduled at 17:45 from

Chicago to New York (discovered by searching the full database), a decision is made to

remove the first row from the duplicated entries before proceeding to the tsibble creation.

This dataset is intrinsically heterogeneous, encoded in numbers, strings, and date-times.

The tsibble framework, as expected, incorporates this type of data without any loss of

data richness and heterogeneity. To declare the flight data as a valid tsibble, column

sched_dep_datetime is specified as the “index”, and column flight_num as the “key”.

This data happens to be irregularly spaced, and hence switching to the irregular option is

necessary. The software internally validates if the key and index produce distinct rows,

and then sorts the key and the index from past to recent. When the tsibble creation is done,

the print display is data-oriented and contextually informative, including dimensions,

irregular interval with the time zone (5,548,444 x 22 [!] <UTC>) and the number of

observational units (flight_num [22,562]).

#> # A tsibble: 5,548,444 x 22 [!] <UTC>

#> # Key: flight_num [22,562]

Transforming a tsibble for exploratory data analysis with a suite of time-aware and general-

purpose manipulation verbs can result in well-constructed pipelines. A couple of use

cases are described to show how to approach the questions of interest by wrangling the

tsibble while maintaining its temporal context.

What time of day and day of week should passengers travel to avoid suffering from

horrible delay? Figure 3.5 plots hourly quantile estimates across day of week in the form

of small multiples. The upper-tail delay behaviors are of primary interest, and hence 50%,

80% and 95% quantiles are computed. This pipeline is initialized by regularizing and

reshaping the list of the upper quantiles of departure delays for each hour. To visualize the
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Figure 3.5: Line plots showing departure delay against time of day, faceted by day of week and
50%, 80% and 95% quantiles. The blue horizontal line indicates the 15-minute on-
time standard to help grasp the delay severity. Passengers are more likely to experience
delays around 18 during a day, and are recommended to travel early. The variations
increase substantially as the upper tails.
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Figure 3.6: Flow chart illustrates the pipeline that preprocesses the data for creating Figure 3.5.

temporal profiles, the time components (for example hours and weekdays) are extracted

from the index. The flow chart (Figure 3.6) demonstrates the operations undertaken in

the data pipeline. The input to this pipeline is a tsibble of irregular interval for all flights,

and the output ends up with a tsibble of one-hour interval by quantiles. To reduce the

likelihood of suffering a delay, it is recommended to avoid the peak hour around 6pm (18)

from Figure 3.5.

A closer examination of some big airports across the US will give an indication of how

well the busiest airports manage the outflow traffic on a daily basis. A subset that

contains observations for Houston (IAH), New York (JFK), Kalaoa (KOA), Los Angeles

(LAX) and Seattle (SEA) airports is obtained first. The succeeding operations compute
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Figure 3.7: Daily delayed percentages for flight departure, with two-month moving averages
overlaid, at five international airports. There are least fluctuations, and relatively
fewer delays, observed at KOA airport.
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Figure 3.8: Flow chart illustrating the pipeline that preprocessed the data for creating Figure 3.7.
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delayed percentages every day at each airport, which are shown as gray lines in Figure

3.7. Winter months tend to fluctuate a lot compared to the summer across all the airports.

Superimposed on the plot are two-month moving averages, so the temporal trend is more

visible. Since the number of days for each month is variable, moving averages over two

months will require a weights input. But the weights specification can be avoided using

a pair of commonly used rectangling verbs–nest() and unnest(), to wrap data frames

partitioned by months into list-columns. The sliding operation with a large window

size smooths out the fluctuations and gives a stable trend around 25% over the year, for

IAH, JFK, LAX and SEA. LAX airport has seen a gradual decline in delays over the year,

whereas the SEA airport has a steady delay. The IAH and JFK airports have more delays

in the middle of year, while the KOA has the inverse pattern with higher delay percentage

at both ends of the year. This pipeline gets the data into the daily series, and shifts the

focus to five selected airports.

This case study begins with duplicates fixing, that resolved the issue for constructing

the tsibble. A range of temporal transformations can be handled by many free-form

combinations of verbs, facilitating exploratory visualization.

3.6.2 Smart-grid customer data in Australia

Sensors have been installed in households across major cities in Australia to collect data

for the smart city project. One of the trials is monitoring households’ electricity usage

through installed smart meters in the area of Newcastle over 2010–2014 (Department

of the Environment and Energy, 2018). Data from 2013 have been sliced to examine

temporal patterns of customers’ energy consumption with tsibble for this case study.

Half-hourly general supply in kwH has been recorded for 2,924 customers in the data

set, resulting in 46,102,229 observations in total. Daily high and low temperatures in

Newcastle in 2013 provide explanatory variables other than time in a different data table

(Bureau of Meteorology, 2019), obtained using the R package bomrang (Sparks et al., 2018).

Aggregating the half-hourly energy data to the same daily time interval as the temperature

data allows us to join the two data tables to explore how local weather can contribute to

the variations of daily electricity use and the accuracy of demand forecasting.
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During a power outage, electricity usage for some households may become unavailable,

thus resulting in implicit missing values in the database. Gaps in time occur to 17.9% of

the households in this dataset. It would be interesting to explore these missing patterns as

part of a preliminary analysis. Since the smart meters have been installed at different dates

for each household, it is reasonable to assume that the records are obtainable for different

time lengths for each household. Figure 3.9 shows the gaps for the top 49 households

arranged in rows from high to low in tallies. (The remaining households values have been

aggregated into a single batch and appear at the top.) Missing values can be seen to occur

at any time during the entire span. A small number of customers have undergone energy

unavailability in consecutive hours, indicated by a line range in the plot. On the other

hand, the majority suffer occasional outages with more frequent occurrence in January.

Aggregation across all individuals helps to sketch a big picture of the behavioral change

over time in the region, organized into a calendar display (Figure 3.10) using the sugrrants

package (Wang, Cook, and Hyndman, 2018). Each glyph represents the daily pattern

of average residential electricity usage every thirty minutes. Higher consumption is

indicated by higher values, and typically occurs in daylight hours. Color indicates hot

days. The daily snapshots vary depending on the season in the year. During the summer

months (December and January), the late-afternoon peak becomes the dominant usage

pattern. This is probably driven by the use of air conditioning, because high peaks mostly

correspond to hot days, where daily average temperatures are greater than 25 degrees

Celsius. In the winter time (July and August) the daily pattern sees two peaks, which is

probably due to heating in the morning and evening.

A common practice with energy data analysis is load forecasting, because providers need

to know they have capacity to supply electricity. To illustrate the pipeline including

modeling, here demand is modeled for December 2013, with the usage forecast for the

last day (48 steps ahead because the data is half-hourly). The energy data for the last day

is not used for modeling. ARIMA models with and without a temperature covariate are

fitted using automatic order selection (Hyndman and Khandakar, 2008). The logarithmic

transformation is applied to the average demand to ensure positive forecasts. Figure 3.11

plots one-day forecasts from both models against the actual demand, for the last two-week
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Figure 3.9: Exploring temporal location of missing values, using time gap plots for the 49 cus-
tomers with most implicit missing values. The remaining customers are grouped into
the one line in the bottom panel. Each cross represents an observation missing in time
and a line between two dots shows continuous missingness over time. Missing values
tend to occur at various times, although there is a higher concentration of missing in
January and February for most customers.
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Figure 3.10: Half-hourly average electricity use across all customers in the region, organized into
calendar format, with color indicating hot days. Energy use of hot days tends to be
higher, suggesting air conditioner use. Days in the winter months have a double peak
suggesting morning and evening heater use.
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Figure 3.11: One-day (48 steps ahead) forecasts generated by ARIMA models, with and without a
temperature covariate, plotted against the actual demand. Both nicely capture the
temporal dynamics, but ARIMA with temperature performs better than the model
without.

compute average 
electricity demand 

across all the customers

summarize()
arrange in the calendar 
format by adding two 
computed variables

frame_calendar()
join daily temperatures 
by a common variable 

`date`

left_join()
add and extract hour, 

weekday, and dates from 
the index variable

mutate()

fit two ARIMA models 
with and without 

temperatures

model()
generate one-day ahead 
forecasts for each fitted 

model

forecast()

Figure 3.12: Flow chart illustrating the pipeline involved for creating Figure 3.10 and Figure
3.11.

window. The ARIMA model which includes the average temperature covariate gives a

better fit than the one without, although both tend to underestimate the night demand.

The forecasting performance is reported in Table 3.2, consistent with the findings in Figure

3.11.

Table 3.2: Accuracy measures to evaluate the forecasting performance between ARIMA models
with and without temperatures, using the validation set.

model ME RMSE MAE MPE MAPE

temperature -0.009 0.030 0.025 -6.782 11.446
w/o temperature 0.016 0.043 0.032 2.634 12.599
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This case study demonstrates the significance of tsibble in lubricating the plumbing of

handling time gaps, visualizing, and forecasting in general.

3.7 Conclusion and future work

The data abstraction, tsibble, for representing temporal data, extends the tidy data prin-

ciples into the time domain. Tidy data takes shape in the realm of time with the new

contextual semantics: index and key. The index variable provides direct support to an

exhaustive set of ordered objects. The key, which can consist of single or multiple variables,

identifies observational units over time. These semantics further determine unique data

entries required for a valid tsibble. It shepherds raw temporal data through the tidying

stage of an analysis pipeline to the next exploration stage to fluently gain insights.

The supporting toolkits articulate the temporal data pipeline, with the shared goal of

reducing the time between framing of data questions and the code realization. The rapid

iteration for broader understanding of the data is achieved through frictionlessly shifting

among transformation, visualization, and modeling, using the standardized tsibble data

infrastructure.

Future work includes allowing user-defined calendars, so that the tsibble structure respects

structural missing observations. For example, a call center may operate only between 9:00

am and 5:00 pm on week days, and stock trading resumes on Monday straight after Friday.

No data available outside trading hours would be labeled as structural missingness.

Customer calendars can be embedded into the tsibble framework in theory. A few R

packages provide functionality to create and manage many specific calendars, such as the

bizdays package (Freitas, 2018) for business days calendars. However, a generic flexible

calendar system is lacking, and requires complex implementation, so this is left for future

work.
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Chapter 4

Data representation, visual and

analytical techniques for demysti-

fying temporal missing data

Missing data provokes an air of mystery, that makes analysts discombobulated throughout

the exploration loop of transformation, visualization, and modeling. How to handle

missing values involves decisions with many degrees of freedom, leading to a tedious and

unwieldy process. The challenge of missingness is rooted in seeing what is not there. The

aim of this work is to clear that mysterious air away from missing data with the focus on

temporal contexts from a data-centric perspective. A new sparse representation facilitates

the efficient indexing of runs of missings in time, with supporting operations and visual

methods. This places missing data in the spotlight, speaking for themselves. When too

many missings are scattered across variables and observations over time, missing data

polishing strategies are populated and formulated. This equips analysts with tidy tools to

iteratively remove missings from rows and columns, while keeping the temporal nature

intact. The accompanying software is the R package mists.
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4.1 Introduction

Temporal missingness occurs when there is an absence of a value in time. For regularly

spaced data, which is often assumed in time series, implicit missing values can be rela-

tively easily spotted because there are gaps in the regularity. These can be converted to

explicit missing values with ease. In irregular temporal data, missings should be specified

explicitly in the raw data. Once the missings are explicitly declared, the patterns can be

explored, and appropriate methods for imputation employed. Missing value research has

a long history, but little attention has been paid to temporal missings.

Little (1988) established a taxonomy for missing data mechanisms: missing completely

at random (MCAR), missing at random (MAR), and missing not at random (MNAR).

This is a view of missingness from the probabilistic perspective, because these mecha-

nisms all specify a generating distribution from which to specify imputation methods.

A data-centric approach to missings is described in Unwin et al. (1996), which shows

how to explore missing value patterns with interactive graphics. Swayne and Buja (1998)

illustrated how using a shadow matrix could be useful for exploring multivariate missings

using interactive graphics. A graphical user interface for exploring missing values in

multivariate data using static plots is provided by Cheng, Cook, and Hofmann (2015).

Recently, Tierney and Cook (2018) developed a collection of tidy tools in the R package

naniar to facilitate transforming, visualizing, and imputing missing data.

In contrast to multivariate data, temporal data has the time dimension that needs to be

explored, to understand the temporal dynamics of missing values. Little work has been

conducted in this area. Gschwandtner et al. (2012) provides a taxonomy of time-oriented

data quality problems from single and multiple sources. This work is accompanied by an

interactive visual system, TimeCleanser (Gschwandtner et al., 2014), for assessing data

qualities for time-oriented missing data, which facilitates cleaning different time formats.

Missing values are considered to be a data quality issue as a component of that system. The

R package imputeTS (Moritz and Bartz-Beielstein, 2017) provides time series imputation

methods, such as temporal interpolation and Kalman Smoothing (Welch, Bishop, et al.,

2006), with a few graphical methods for summarizing missing values in time series. None
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of the existing work fully addresses the problem of handling temporal missing data. There

is a need for better data structures, and visualization methods to explore temporal missing

data, to better understand the temporal dynamics, and prepare it for imputation and

subsequent modeling.

The paper is organized as follows. Section 4.2 outlines four categories of temporal missing

patterns. Section 4.3 proposes a new type of vector class to encode missing values in time,

coupled with visual tools (Section 4.4). A new suite of polishing techniques, for dealing

with missings on large collection of series, are discussed in Section 4.5. Applications

illustrating the new techniques are in Section 4.6. Section 4.7 concludes the paper.

4.2 Categories of temporal missing data

Missing values in time can occur in many different patterns. Figure 4.1 presents a classical

time series, monthly totals of international airline passengers from 1949 to 1960 (Box and

Jenkins, 1990), with simulated gaps of missing values arising from four different patterns:

1. sporadically, where data is missing at random time points, which will be called

Missing at Occasions (MO).

2. periodically, for example, missing every Tuesday, which will be called Missing at

Periodic time (MP). This could be thought of as structural missing values.

3. functionally, such as more frequent with time, as might happen in a longitudinal

study where participants drop out increasingly as time progresses. This will be called

Missing at Functional (MF).

4. in runs, for example, in an instrument breakdown, it might take some time period to

repair the machine. This will be called Missing at Runs (MR).

This categorization may not be exhaustive, although with combinations these four types

can form a wide range of temporal missing data patterns.

Some of these types can be mapped to probability nomenclature for missing values. MO

mirrors MCAR, where missings are completely at random. MP and MF are forms of MAR,
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Figure 4.1: Line plots of a series spiked with four different types of temporal missing patterns.
It is hard to discern the difference in the patterns from line plots, which motivates
development of new graphical methods for exploring temporal missingness.

where a known variable could be used to build imputation models. MR does not have an

analogy.

It is difficult to detect the missing patterns, or discern the difference, from Figure 4.1.

This is a typical way to plot time series in the presence of missing values, but it is not a

good diagnostic plot. Thus, the motivation for this new work, a desire to provide better

diagnostic plots for exploring temporal missings, that neatly integrates with the tidy data

workflow. To lubricate this work, a new data structure is developed, and discussed in the

next section.
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4.3 New data abstraction and operations for missing

data in time

Figure 4.1 is a typical time series plot, plotting the present data and leaving gaps between

to indicate what is not available. The result is that missing values receive little attention,

due to a lack of visual emphasis. A need to better represent and display missing data

in time is exposed. To begin this process, it is convenient to first address appropriate

computer representation. In R, missing values are encoded as NA. However, the notion

of an ordered NA does not exist. A new abstraction for ordered NA provides the scope for

conveying the temporal locations and dependencies in missing data.

4.3.1 New encoding for indexing missing data by time

Inspired by run-length encoding (RLE), a new encoding is proposed to solely extract the

NAs from time-indexed data and compress them in a simpler form, namely “RLE <NA>”. It

comprises three components to locate the missings and mark their corresponding runs:

(1) positions where NA starts, (2) run lengths (NA in a row), and (3) interval (for example,

hourly or yearly intervals). This implies that time indices should be unique.

This new encoding purely focuses on indexed missing values, separated from its data

input. It is partially lossless, because its reverse operation can recover the original positions

of missing values, but not the whole data. It is most useful and compact on indexing runs

of missing data, requiring less storage than its original lengthy form. However, when

missings mostly involve runs of length one, it is not that advantageous. Considering the

missingness types of Missing at Occasions and Missing at Runs in Figure 4.1, the former

occupies 14 positions to store NAs; while the latter uses 7 positions for storing more NAs

than the former as a sparser representation. The RLE <NA> is easy to interpret: a sequence

of 12 NAs beginning at 1949 March, followed by 13 NAs since 1950 August, and so on, for

the latter.
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#> <list_of<Run Length Encoding <NA>>[2]>

#> [[1]]

#> <Run Length Encoding <NA>[13]>

#> $lengths: <int> 1 1 1 1 1 1 1 1 1 1 ...

#> $indices: <date> 1951 Apr 1952 May 1953 May 1954 Apr 1955 Feb 1955

Nov 1956 Jul 1957 Feb 1957 Aug 1958 Jan ...

#> [[2]]

#> <Run Length Encoding <NA>[7]>

#> $lengths: <int> 12 13 5 3 4 8 4

#> $indices: <date> 1949 Mar 1950 Aug 1951 Dec 1953 Jan 1955 Jun 1956

Apr 1958 Dec

The instance of RLE <NA> is a reduced form for representing NA in time, built on top of the

new vctrs framework (Wickham, Henry, and Vaughan, 2019).

4.3.2 Supporting functions operating on RLE <NA>

The RLE <NA> prioritizes indexed missing data as the raw data itself, that provides the

opportunities to manipulate the missings with many useful operations.

It is computationally efficient to sum (sum()) and count (length()) the run lengths

over a standalone RLE <NA>, than directly dealing with its original form for identical

results. Other mathematical functions, such as mean() and median(), make it accessible

to compute runs-related statistics. For example, mean() gives the average of missings per

run. If not going on the route of RLE, it would be cumbersome to compute these statistics

otherwise.

These math operations primarily require a singular RLE <NA> at a time. The other set

is the set operators that performs set union (union()), intersection (intersect()), and

asymmetric difference (setdiff()) on a pair of RLE <NA>. They are useful for exploring

the association between multiple sets of missing data. For example, the intersect()

operator could tell if they overlap with each other and by how much, which powers one
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of the plots in the next section. Since set operators are binary functions, a collection of

series can be successively combined and applied to give an overall picture about all.

4.4 Visual methods for exploring temporal missingness

The RLE <NA> object provides an additional layer that adheres to the original data. To

frame this in the grammar of graphics, indexed missing data can be considered as a graph-

ical layer on top of the existing data plot, infusing the missings into a richer data context

instead of an isolated context. The imputeTS R package makes a gallery of graphics

available for plotting the distribution and aggregation of missingness for univariate time

series, but they are cumbersome and limited. This section enhances the visual toolkit for

temporal missing data.

4.4.1 Visualizing distributions

The range plot is designed to focus primarily on missingness. Figure 4.2 shows the range

plots of the four scenarios. A line range with closing points corresponds to a run length

in the RLE <NA>, and a single point when the element is of length one. The range plot is

the graphical equivalent of RLE <NA>. The missingness patterns (MO, MP, MF, MR) are

clearer in this compact display, than the gaps in the original series (Figure 4.1).

Runs

Functional

Periodic

Occasions

1950 1955 1960
Year month

Figure 4.2: The range plot gives an exclusive focus on missing data over time, a graphical real-
ization of the RLE <NA>. The dot indicates a single missing point, and a line range
suggests the missings at runs. It is easier to compare and contrast the locations and
run lengths of missings across series.
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Figure 4.3: The jailbird plot puts the focus on the locations and lengths of missing values, which
allows for better detection of different patterns. Using gray for the bars, with black
lines for the complete values, enables the continuity principle of perception to take
effect. Implicitly, the viewer’s brain imputes the missings to extend the series through
the “occluded” parts.

Figure 4.3 focuses on the distribution of missing values as well as the data. It is an

adaptation of the plot provided by the imputeTS plotNA.distribution() function. A

new data layer, associated with the pre-computed RLE <NA>, is visually presented as

strips or rectangles to the existing data plot of Figure 4.1, and we have aptly named it

a jailbird plot. The purpose of the strips is perceptual: they both mark the location of

missings and draw attention to these times, but they stimulate the continuity principle of

perception where our brains mentally fill in the gap with a pseudo-imputed value.

4.4.2 Visualizing aggregations

Visualizing aggregations summarizes run lengths of missing data, for example the occur-

rences of distinctive runs and the tallies. The imputeTS package implements this idea

in the form of bar charts as the plotNA.gapsize() function. Figure 4.4 shows this plot,
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Figure 4.4: The occurrence plot show the summaries of distinct gap sizes, provided by the im-
puteTS package. The left-hand bar gives the number of occurrences for each gap size,
with the corresponding tallies of NA on the right-hand side.

which contrasts the counting of missing values occurring by the two mechanisms, Missing

at Occasions and Runs. It takes some time to digest this plot. The number of runs is a as

categorical variable, with the left bar mapped to the frequencies and the right mapped to

total missings. The confusion arises from Figure 4.4 because occurrences and tallies are

separated as colored bars but the count is displayed on the same axis. A better alternative

to use a spineplot to represent this information (Figure 4.5). A spine plot is a special case of

a mosaic plot (Hofmann, 2006). A 100% bar is mapped to a run length: the width displays

the number of occurrences, and the corresponding bar area is naturally the total number

of missings, both of which remain treated as quantitative variables.

67



CHAPTER 4. DATA REPRESENTATION, VISUAL AND ANALYTICAL TECHNIQUES FOR
DEMYSTIFYING TEMPORAL MISSING DATA

Functional Runs

Occasions Periodic

1
[12]

2
[1]

3
[1]

4
[2]

5
[1]

8
[1]

12
[1]

13
[1]

1
[14]

1
[12]

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

runs [frequency]

Figure 4.5: The gasp plot turns the focus from distributions to aggregations of run lengths, for the
four missing patterns. Missing at Runs is clearly differentiated from the rest.

Figure 4.5 demonstrates the use of the gasp plot (also known as the spineplot) for visualiz-

ing the aggregations of missingness in time. Since the plot is faceted by the four types,

it shows the individual distribution of run lengths and compares between, but puts no

emphasis on the association between them. The four types of missing patterns produce

quite different gasp plots.

Figure 4.6 explores the idea of how missings intersect on the two variables. The 100% of

the bar in Figure 4.5 is replaced by the proportion of intersection with another variable.

The missing values of the Occasions type intersects with the Runs type by 25% in the left

panel. The right panel interchanges two variables, and indicates that there is little overlap

on the long runs. This also showcases the use of the set operation intersect().
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Figure 4.6: The spineplot is extended to temporal missing data for exploring associations based on
their run lengths. The purple area highlights their intersections in time. The Runs
type overlaps the Occasions in the longer run.

4.5 Scaling up to large collections of temporal data

Section 4.4 discussed the graphics for revealing and understanding the missingness

patterns in a handful of series. However, they have little capacity for scaling up to handling

a large collection of temporal data, which involve many series and many measures in a

table. A solution to dealing with missing values at scale is proposed and described in

this section, which is referred to as “missing data polish”. Tukey (1977) coined the term

“median polish” — an iterative procedure to obtain an additive-fit model for data. Here, a

new analytical technique is developed to strategically remove observations and variables

in order to reduce the proportion of missing values in the data, called “missing data polish”.

The polishing process can give numerical summaries to facilitate the understanding, and

in turn produce a reasonable subset to work with, especially when too many missings are

scattered across variables and observations.

4.5.1 Polishing missing data by variables and observations

The polishing procedure assumes that the incoming data is a “tsibble” (Wang, Cook, and

Hyndman, 2019c). The tsibble is a modern re-imagining of temporal data, which formally

organizes a collection of related observational units and measurements over time in a
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tabular form. A tsibble consists of index, key, and measured variables in a long format.

The index variable contains time in chronological order; the key uniquely defines each

observational unit over time; columns other than index and key are classified as measures.

This data structure invokes polishing procedures in two directions (by rows and columns),

resulting in four polishers:

• na_polish_measures(): A column polisher for removing measured variables.

• na_polish_key(): A row polisher for removing a whole chunk of units across

measures.

• na_polish_index(): A row polisher for removing leading indexed observations

within each unit across measures.

• na_polish_index2(): A row polisher for removing trailing indexed observations

within each unit across measures.

This set of polishers covers the basics of missing values occurring in a tsibble. The decision

rule on deleting certain rows or columns is controlled by a constant cutoff value (0 ≤ c ≤ 1).

Each polisher first computes pi = proportion of overall missings, where i is a partition of

the data (i.e. each column for na_polish_measures() and each chunk of rows for the rest

of polishers). If pi ≥ c, the ith column or chunk of rows will be removed; otherwise as is.

However, an ideal choice of c is not clear. Missing data polishing is an upstream module

relative to other analytical tasks from data visualization to modeling. These analytics

have various degrees of tolerance for missing values. For example, data plots are almost

independent of missing data, implying higher tolerance. For such, specifying a higher

c removes little data. On the other hand, (time series) models would likely complain

about the existence of any missings and some would even decline the job, requiring lower

tolerance. A lower c is likely to produce a complete dataset for such downstream analyses,

but may remove too much data.

4.5.2 Formulating polishing strategies

The polishers described in the previous section are the elementary tools provided to

analysts for brushing missings away. A few iterations using these functions are often
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required with lots of manual efforts to achieve a desired result. The polished data can

be influenced by the ordering of polishers and cutoff choices. The polishing goal, in

general, is to maximize the proportion of missings in the removed data slice as well as to

minimize the number of observations to be removed. An automated polishing strategy

is formulated to refine the procedure with less human involvement, as implemented in

na_polish_auto(). It essentially takes care of the sequence of polishers and the number

of iterations in operation, but leaves the cutoff in the user’s hands. This automating

process involves a loss metric in a loop to determine the order the polishers and when to

stop the iterations. This loss metric is defined as

li = (1− pi)×
ri

N
, (4.1)

where p is the proportion of missings, r is the number of removed observations for each

data slice i = 1, . . ., and N is the total observations. Minimizing the loss l guides the

polishing procedure:

1. Run four polishers independently to obtain li.

2. Re-run the polishers sequentially according to the li from high to low, and obtain lI

where I is an iteration.

3. Repeat 1 and 2 until lI ≤ τ, where τ is a pre-specified tolerance value close to 0.

(Early exit given a higher τ.)

The companion function na_polish_autotrace() documents the entire polishing process

above, and traces the pi, ri, and li along the way. These quantities can provide useful

visual summaries about missing data patterns, and an aid to choose the cutoffs in return.

4.6 Applications

4.6.1 World development indicators

The motivating example for the polishing techniques is the World Development Indicators

(WDI), sourced from the World Bank Group (2019). The dataset presents 55 national

estimates of development indicators from 217 countries and regions around the globe
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Figure 4.7: Missing data heatmap, with black for missing values and gray for present values.
Pixels are arranged as the data cells, reflecting the missingness status. The amount of
missings varies vastly by variables.

every year from 1969 to 2018 (A data dictionary is given in Table A.1 in Appendix A). It

contains 10,850 observations with 44.9% of missing values in the measurements. Figure

4.7 gives the overall picture of missingness in the data. Missingness appears as blocks and

strips across observations and variables. Such data involving a great amount of missing

values can spark overwhelmingness at the first try. This severely inhibits further analyses.
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Figure 4.8: The loss metrics against the number of iterations conditional on two tolerance values.
When τ = 0, it can take the number of iterations up to 21, with marginal improvements
from the second iteration onwards.

A grid search on the polishing parameters c and τ is performed on this dataset to study

their robustness. After setting τ to 0 and 0.1 respectively, a sequence of c, ranging from

0.4 (worst) to 0.9 (best) by 0.1, are passed to each polisher. This setup gives 2,592 possible

combinations for the automatic polishing strategy to take place.

Figure 4.8 exhibits the number of iterations needed to exit the polishing,with l ≤ τ given

the same set of c when τ = 0 or τ = 0.1. If τ = 0, the procedure can take up to 21

iterations to complete; but if τ = 0.1, maximum 4 iterations are sufficient. The loss metric

dramatically declines from iteration 1 to 2, with a marginal decrease afterwards for both τ.

It suggests τ = 0.1 is perhaps a right amount of tolerance and saves a considerable amount

of computational time. When τ = 0.1, Figure 4.9 shows the influence of different values

of c on the polishing results. Following the rule of minimizing the loss (i.e. maximizing

the proportion of missing values while minimizing the proportion of removed data), the

polishers na_polish_index(), na_polish_key(), and na_polish_measures(), suggest

that 0.5 is a good candidate of c. No matter which value c takes, the na_polish_index2()

polisher behaves constantly.

Using c = 0.5 for each polisher and τ = 0.1, the automatic polishing process goes through

3 iterations to get the data polished. Removing 11 of 55 variables and 37 of 217 countries,

produces a polished data with 11.8% instead of 44.9% missing values. Figure 4.10 displays
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Figure 4.9: The beeswarm plot showing the effect of the grid parameters for four polishers.
The choice of cutoff (c) makes a significant impact on na_polish_key() and
na_polish_measures(), but little changes for the polishing indexes (first two
columns).

the missingness map for the polished data. Comparing to the original dataset, the polished

subset shrinks in size, but is much more complete, making it more feasible to impute and

do further analysis.

The polishing process prepares the data for imputation, and in turn for modeling. Figure

4.11 displays the data pipeline that polishes, filters in and out, imputes, models and

forecasts each series. The series for China is used to illustrate the result from this pipeline.

In this subset, 14 of 29 variables contain missing data. The jailbird plot (Figure 4.12) is used

to highlight the blocks of missings. The red dots represent imputed values, computed

using the Stineman interpolation (Stineman, 1980; Bjornsson and Grothendieck, 2018) for

each series. The results look very consistent for each series. The complete data is passed

into Exponential Smoothing models (ETS) and forecast for the next three years. Figure

4.13 shows the point forecasts with 80% and 95% prediction intervals. ETS does not accept

any missings, so this pipeline has provided a smooth flow of messy temporal data into

tidy model output.
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Figure 4.10: Missingness heatmap for the polished data. The polished data gives 11.8% missing
values, compared to 44.9% in Figure 4.7.

polish missing data off 
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na_interpolation()
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Figure 4.11: The pipeline demonstrates the sequence of functions required for modeling data
with a large amount of missings. It begins with the polishing, and then transform,
interpolate, model, and forecast.
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Figure 4.12: The jailbird plot, for the subset of 14 time series from China, overlaid with imputed
values (red). The gaps are filled with the well-behaved imputations that are consistent
with the complete data.
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Figure 4.13: Three-year forecasts built with ETS models on the polished and imputed data for
China, with 80% and 95% prediction intervals.
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4.6.2 Melbourne pedestrian sensors

Many sensors have been installed that track hourly pedestrian tallies in downtown Mel-

bourne (City of Melbourne, 2017), as part of the emerging smart city plan. It is valuable

for understanding the rhythm of daily life of people in the city. There are numerous

missing values, likely due to sensors failing for periods of time. Figure 4.14 illustrates

the distributions of missingness in 2016 across 43 sensors, using the range plot organized

from the most missing sensor to the least.

In contrast to the WDI data, the pedestrian data features multiple seasonal components:

time of day, day of week, and different types of days like public holidays. Seasonal

patterns corresponding to these temporal elements can be seen. The jailbird plot in Figure

4.16, overlays imputed values (red), computed using the seasonal split method available

in the imputeTS package. They appear to fall in the reasonable range, but do not seem to

have captured the seasonality. Mostly what can be observed in the long time series is work

day vs not seasonality. Figure 4.17 drills down into the finer daily seasonality. It splits the

series into work and non-work days, colored by imputed or not. The imputation actually

does well to capture the daily patterns, at least for working days, It fails on non-working

days because it estimates a commuter pattern. This imputation method does not perform

well with the multiple seasonality.
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Figure 4.14: The range plot arranges the 43 pedestrian sensors from most missing to the least.
Missing at Runs and Occasions can be found in the data. Across series, many
missings can be seen to be occurring at similar times. The common missing at
the beginning of October is likely the start of daylight savings (summer) time in
Melbourne, where an hour disappears from the world.
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Figure 4.15: The gasp plot for missings at Spencer St-Collins St (South), with six disjoint runs
coupled with the frequencies of one to four.

0

500

1000

1500

Aug Sep Oct Nov Dec Jan
Date time

H
ou

rly
 C

ou
nt

s

Figure 4.16: The jailbird with colored imputed data using the seasonal split method for the sensor
at Spencer Street from 2016 August to December. Strong seasonal features are
prominent in the original data, but it is hard to detect the seasonal pattern from the
imputed data.
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Figure 4.17: Examining the daily seasonality, relative to the work day vs not components, using
faceted line plots. The imputation (purple) grasps the key moments (morning and
afternoon commutes, and lunch break) in a work day, but is unable to build the
non-work profile.
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4.7 Conclusion

The presence of missing values provides a barrier to getting analysis started, and if the

proportion of missing is high, imputation can be unreliable. Restricting to only complete

data might produce an analysis using little data. This paper has presented a new data

structure, several new visual techniques, and an algorithm for handling large amounts

of temporal missings. These tools facilitate exploring and understanding missing value

patterns, and diagnosing the imputations in preparation for time series modeling. These

are available in the R package, mists.

There are some natural next directions of this work. The literature review uncovered a

lack of a comprehensive system for simulating different types of missing value patterns.

Conceptualizing and developing a system would greatly help in understanding what is

seen in practice. Much of the early work on exploratory methods for missings provided

interactive graphical methods. The plots developed in this paper could be adapted and

extended to incorporate interaction, as new technology arises that makes this easier.
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Chapter 5

Conclusion and future plans

The three papers assembled in this thesis share a common theme of exploratory analysis

for temporal data using tidy tools. Chapter 2, “Calendar-based graphics for visualizing

people’s daily schedules”, described a new calendar-based display. Chapter 3, “A new

tidy data structure to support exploration and modeling of temporal data”, proposed a

new temporal data abstraction. Chapter 4, “Data representation, visual and analytical

techniques for demystifying temporal missing data”, explored missing data in time. These

papers are bundled with software. In this conclusion, I will briefly summarize each

package and their impact, and discuss the future directions of my research.

5.1 Software development

A particular emphasis of this thesis is on translating research methodologies in the form

of open source R packages: sugrrants, tsibble, and mists. Figure 5.1 gives an overview of

my Git commits to these repositories, and Figure 5.2 shows the daily downloads of the

packages from the RStudio mirror (one of 90 CRAN mirrors) since they were available on

CRAN.

5.1.1 sugrrants

The sugrrants package implements the idea of displaying data in the familiar calendar

style using frame_calendar() and facet_calendar(). The research article, a shorter
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Figure 5.1: Patterns of my package development effort during my PhD years based on Git commits
to three repositories, sugrrants, tsibble, and mists. Scatter plots of weekly totals are
overlaid with a loess smoother. The sugrrants package was the first project with much
initial energy, followed by small constant maintenance. The tsibble package has been
a major project with ongoing constant development and bursts of effort in response to
users’ feedback. The mists package has been a recent intense project.
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Figure 5.2: Impact of these works (sugrrants and tsibble) as measured by daily downloads (on
square root scale) from the RStudio mirror since they landed on CRAN. The tsibble
package has an increasing trend, suggesting the steady adoption of the new data
structure.
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version of Chapter 2, has been awarded the best student paper prize from ASA Sections

on Statistical Computing and Statistical Graphics and ACEMS Business Analytics in 2018.

There has been a grand total of 14,706 downloads from the RStudio mirror dating from

2017-07-28 to 2019-09-20; and it has been starred 48 times on Github so far. The homepage

at https://pkg.earo.me/sugrrants contains detailed documentation and a vignette on

frame_calendar().

5.1.2 tsibble

The tsibble package provides a data infrastructure and a domain specific language in

R for representing and manipulating tidy temporal data. This package provides the

fundamental architecture that other temporal tools will be built upon. For example,

a new suite of time series analysis packages, titled “tidyverts”, have been developed

for the new “tsibble” object. The tsibble package has won the 2019 John Chambers

Statistical Software Award from the ASA Sections on Statistical Computing and Statistical

Graphics. It has been downloaded 41,058 times from the RStudio mirror since it landed

on CRAN; and it has received 241 stars on Github. These metrics are the indicators of my

research impact, the recognition by professionals, and the uptakes by users. The website

(https://tsibble.tidyverts.org) includes full documentation and three vignettes

about the package usage.

5.1.3 mists

The mists package aims at exploring missing values for temporal data analytically and

graphically. It implements a compact abstraction for efficiently indexing missing data

in time, along with numerical and visual methods. It also provides new missing data

polishing techniques. The Github repository has received 22 stars, but the package is not

on CRAN yet. The documentation site is available at https://pkg.earo.me/mists.
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5.2 Future work

5.2.1 Process for generating missing data in time

Missing values in multivariate data are typically characterized by the overall, row-wise,

and column-wise numbers of missings. However, none of these captures the dynamics in

temporal data. A well-defined characteristic is need to characterize temporal missingness,

and this could possibly shed light on the processes for generating and imputing missing

data in time.

Generating temporal missingness can be decomposed into two steps: (1) injecting missings

at time points to reflect the functional form of time, and (2) generating the corresponding

run lengths to reflect the temporal dependency. I plan to expand on Chapter 4 to generalize

missing data generating processes in temporal contexts. Because of the evolving nature

of time, the underpinning mechanisms of missing data may change from one period to

another. Applying the new characteristic to the data, on a rolling window basis, could

indicate the missing data status and thus lead to appropriate missing data remedies.

5.2.2 Visual methods for temporal data of nesting and crossing inter-

actions

A collection of time series are often structured in a way that allows nesting and crossing

interactions (Hyndman and Athanasopoulos, 2017). For example, a manufacturing com-

pany can add up every store’s sales by region, by state and by country, which gives a

strictly hierarchical time series; alternatively, they can gather the sales based on common

attributes such as store, brand, price range and so forth, which leads to a crossed con-

figuration. Nesting is a special case of crossing, with parent-children relations involved.

Temporal information such as date-times is often also intrinsically hierarchical, seconds

nested within minutes, hours, and etc. The new tsibble structure has the neat capability of

supporting these structural embeddings.

Numerous nesting and crossing combinations can yield unwieldy plots, in many of which

an abundance of information is possibly buried. Focus-plus-context visualization with
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interactivity comes to the rescue. Dual contexts, structurally informative subjects, and time

provide the source and visual clues for elegant navigation. Interactions on contextual plots

control what is to be visualized in the main plots. Many kinds of visual displays can be

generated to progressively build a richer data picture through guided or self explorations.

5.3 Final words

Presentations, package development, and writing are the three primary types of activities

that shape this thesis. I have developed a habit of using Git and Github to track and

synchronize my academic work since I started the PhD program. All commits are grouped

by the activity types, with annotations of important milestones, shown in Figure 5.3. It

has been a fruitful program.
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Figure 5.3: Beeswarm plots of my Git commits split by the activity types during my PhD years,
labeled with some milestones.
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Appendix A

Data dictionary

Table A.1: Data dictionary for the World Development Indicators.

Series Code Series Name

sp_ado_tfrt Adolescent fertility rate (births per 1,000 women ages 15-19)

nv_agr_totl_zs Agriculture, forestry, and fishing, value added (% of GDP)

er_h2o_fwtl_zs Annual freshwater withdrawals, total (% of internal resources)

sh_sta_brtc_zs Births attended by skilled health staff (% of total)

en_atm_co2e_pc CO2 emissions (metric tons per capita)

sp_dyn_conu_zs Contraceptive prevalence, any methods (% of women ages 15-49)

fs_ast_doms_gd_zs Domestic credit provided by financial sector (% of GDP)

eg_use_elec_kh_pc Electric power consumption (kWh per capita)

eg_use_pcap_kg_oe Energy use (kg of oil equivalent per capita)

ne_exp_gnfs_zs Exports of goods and services (% of GDP)

dt_dod_dect_cd External debt stocks, total (DOD, current US$)

sp_dyn_tfrt_in Fertility rate, total (births per woman)

bx_klt_dinv_cd_wd Foreign direct investment, net inflows (BoP, current US$)

ag_lnd_frst_k2 Forest area (sq. km)

ny_gdp_mktp_cd GDP (current US$)

ny_gdp_mktp_kd_zg GDP growth (annual %)

ny_gnp_pcap_cd GNI per capita, Atlas method (current US$)

ny_gnp_pcap_pp_cd GNI per capita, PPP (current international $)

ny_gnp_atls_cd GNI, Atlas method (current US$)

ny_gnp_mktp_pp_cd GNI, PPP (current international $)

ne_gdi_totl_zs Gross capital formation (% of GDP)
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APPENDIX A. DATA DICTIONARY

Table A.1: Data dictionary for the World Development Indicators. (continued)

Series Code Series Name

tx_val_tech_mf_zs High-technology exports (% of manufactured exports)

sh_imm_meas Immunization, measles (% of children ages 12-23 months)

ne_imp_gnfs_zs Imports of goods and services (% of GDP)

si_dst_frst_20 Income share held by lowest 20%

nv_ind_totl_zs Industry (including construction), value added (% of GDP)

ny_gdp_defl_kd_zg Inflation, GDP deflator (annual %)

sp_dyn_le00_in Life expectancy at birth, total (years)

tg_val_totl_gd_zs Merchandise trade (% of GDP)

ms_mil_xpnd_gd_zs Military expenditure (% of GDP)

it_cel_sets_p2 Mobile cellular subscriptions (per 100 people)

sh_dyn_mort Mortality rate, under-5 (per 1,000 live births)

tt_pri_mrch_xd_wd Net barter terms of trade index (2000 = 100)

sm_pop_netm Net migration

dt_oda_alld_cd Net official development assistance and official aid received (current US$)

bx_trf_pwkr_cd_dt Personal remittances, received (current US$)

en_pop_dnst Population density (people per sq. km of land area)

sp_pop_grow Population growth (annual %)

sp_pop_totl Population, total

si_pov_dday Poverty headcount ratio at $1.90 a day (2011 PPP) (% of population)

si_pov_nahc Poverty headcount ratio at national poverty lines (% of population)

sh_dyn_aids_zs Prevalence of HIV, total (% of population ages 15-49)

sh_sta_maln_zs Prevalence of underweight, weight for age (% of children under 5)

se_prm_cmpt_zs Primary completion rate, total (% of relevant age group)

gc_rev_xgrt_gd_zs Revenue, excluding grants (% of GDP)

se_prm_enrr School enrollment, primary (% gross)

se_enr_prsc_fm_zs School enrollment, primary and secondary (gross), gender parity index (GPI)

se_sec_enrr School enrollment, secondary (% gross)

iq_sci_ovrl Statistical Capacity score (Overall average)

ag_srf_totl_k2 Surface area (sq. km)

gc_tax_totl_gd_zs Tax revenue (% of GDP)

er_ptd_totl_zs Terrestrial and marine protected areas (% of total territorial area)

ic_reg_durs Time required to start a business (days)

dt_tds_dect_ex_zs Total debt service (% of exports of goods, services and primary income)

sp_urb_grow Urban population growth (annual %)
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