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Abstract

The study of Wnt signalling has attracted significant biological and mathematical at-
tention over the last few decades. Wnt signalling plays a major role in both embryonic
development and in disease. The canonical Wnt signalling pathway studied in this thesis
heavily influences cell fate and decision making. Classical theoretical studies of the canon-
ical Wnt pathway focus on the regulation of the protein β-catenin by a destruction protein
complex containing, among other things, the protein Axin. To effectively study intracel-
lular phenomena such as signalling pathways, mathematical techniques which accurately
and efficiently model the underlying reaction-diffusion processes need to be developed.

The mathematical study of reaction-diffusion processes are broadly classified as either
deterministic or stochastic. Deterministic models usually assume the scale of the sys-
tem is sufficiently large, and the effect of stochastic fluctuations are negligible. On the
other hand, a stochastic model is usually harder to analyse, but is useful in explaining
phenomena which are driven by noise. One of the goals in this thesis is to explore the
interface between stochastic and deterministic model properties for use in cell signalling
applications.

Two common stochastic model frameworks for modelling reaction-diffusion systems
in biology are those developed by Smoluchowski and Doi. The characteristic property
of these frameworks is that each molecule is treated as a point diffusing under random
Brownian motion. Molecules are said to react at rates which are a function of their
relative separation. The greatest challenges limiting the use of these frameworks are the
complications which arise from fast-slow kinetics and chemical reversibility. Presented
in this thesis is a single formulation for the Doi and Smoluchowski frameworks which
extends the classical theory to both high-order and reversible reactions. Applying this
new framework to a gold standard Wnt signalling model highlights not just the necessity
for stochastic models in biochemical systems, but also for techniques which correctly treat
fast and slow chemical processes.

The difference between stochastic and deterministic modelling is further exemplified
in this thesis by an investigation of Wnt signalling with Axin2 feedback. The consequence
of reducing complex deterministic models of Wnt signalling is that the resulting model
can be analytically investigated. This analysis generated a number of directly provable
statements about Wnt signalling with feedback from a theoretical perspective. It is shown
further that many of these statements are significantly changed when simulating the
feedback under stochastic conditions. In some cases, these properties are completely
invalidated due to stochastic effects, which arose from studying the equivalent system
under well-mixed and spatio-temporal stochastic conditions. These stochastic results are
juxtaposed against the analytically-derived deterministic features.

The works in this thesis provides many opportunities to advance the study of both
reaction-diffusion processes and the Wnt signalling pathway. The new stochastic frame-
work allows complex systems with fast-slow reactions to be simulated in an efficient man-
ner. The simplified models for Wnt signalling provide new insights into the fundamental
behaviour of the pathway.
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Chapter 1

Introduction

1.1 Motivation

The field of mathematical biology has grown rapidly over the last few decades. Just as
mathematics has been used to further theoretical understanding in physics and chemistry,
it is now common to use mathematics to describe fundamental processes in biology. The
greatest advantage of using mathematics to model biological processes is that it can
help guide biological experiments, and provides a theoretical framework against which
to interpret experimental results. A typical biological experiment can take anywhere
from a few days to a few years to complete. Hence careful planning and preparation is
a necessity, especially for longer experiments. Mathematics fills in this gap by building
models focusing on the fundamental behaviour of a biological process. It is easy to modify
parameters in a simulation. Thus once the model is built correctly, many simulations
(which can be thought of as mathematical experiments) can be completed in a matter of
hours.

The Wnt signalling pathway is a critical cell signalling pathway in multiple animal
species (for example, humans, frogs, mice, zebrafish) [1]. The pathway is involved in
developmental biology [2] and various diseases including cancer [3]. The study of Wnt
signalling is relatively young as the family of Wnt proteins were only discovered in 1982
[4]. Understanding of Wnt was accelerated by a number of biological experiments in the
1990s [5, 6, 7, 8, 9], and the addition of mathematical modelling during the 2000s [10].

There are a large number of different Wnt proteins (approximately 19 can be found in
humans) [11]. The three most commonly studied Wnt signalling pathways are: the planar
cell polarity pathway [12], the Wnt/Ca2+ pathway [13], and the canonical Wnt pathway
[14]. This thesis focuses on the canonical Wnt pathway and the underlying diffusion-
limited biological reactions that drive this process. In particular, the thesis investigates
methods for modelling agent-based stochastic reaction-diffusion processes which may pro-
vide unique insights into the behaviour of the pathway.

To effectively simulate the Wnt pathway, it is important to note how the coupling
of reaction processes with diffusion can provide unique insights that are not seen in
reaction-only models. The following section introduces mathematical methods for mod-
elling chemical reactions, and how these relate to biological pathways. It highlights the
typical framework for constructing models which are either deterministic (modelled us-
ing ordinary differential equations), or stochastic (modelled using agent-based methods).
Diffusion is then briefly introduced, for which spatio-temporal effects are important to
accurately model biological systems.

1



1.2. AIMS

1.2 Aims

By exploring reaction-diffusion processes in the canonical Wnt signalling pathway, this
thesis aims to answer the following three questions:

• How can reactions involving more than two molecules be modelled using the current
state-of-the-art framework?

• What are the fundamental components of the Wnt signalling pathway which give
rise to feedback-driven oscillations? What conditions need to be placed on the
interactions between these components for oscillatory behaviour to arise?

• What are the consequences of noise in the Wnt signalling pathway with feedback-
driven oscillations?

1.3 Introduction to reaction-diffusion processes

1.3.1 Chemical reactions

Mathematical models of reaction and reaction-diffusion processes focus on describing the
rate of change of concentration (or copy number) of each chemical species undergoing a
reaction in a system. The rate of reaction is characterised by the reaction rate constant
(typically denoted by the letter k, or the capital K used in Chapters 5 and 6), and the
order of the reaction. For example, the bimolecular reaction,

A+B
k−→ C, (1.1)

is a reaction that combines/modifies the two reactant molecules A and B to form the
product molecule C. As this reaction involves two reactants, it is of order two. The rate
of change of the concentrations of the three molecules A, B, and C, can be described
by the law of mass action, which states, for a well-mixed system, the rate of a chemical
reaction is proportional to the product of the concentrations of the reactants. Using
this law, the system of ordinary differential equations (ODEs) to describe the change in
concentration of A, B, and C are

d[A]

dt
= −k[A][B], (1.2)

d[B]

dt
= −k[A][B], (1.3)

d[C]

dt
= +k[A][B], (1.4)

where the ‘[ ]’ notation describes the concentration of a chemical species. Due to this
specific definition of the reaction rate constant, the units for k in a second-order reaction
are 1/(Concentration× Time).

In general, reactions can be of any order. For this reason, determining the rate of
reaction is generalised to the following chemical reaction, in which N reactants react
together to form M products. A generalized Nth-order reaction is given by,

A1 + A2 + . . .+ AN
k+N−→ P1 + P2 + . . .+ PM , (1.5)

2



1.3. INTRODUCTION TO REACTION-DIFFUSION PROCESSES

where k+
N represents the reaction rate constant for the forward reaction (left-to-right) that

is of order N . The subscript for k usually refers to the number of a reaction in a reaction
network, whereas for this example, it is used to denote the order of the reaction. The rate
for the reaction in (1.5) is calculated by,

Rate = k+
N

N∏
i=1

[Ai]. (1.6)

A zeroth-order reaction would mean that N = 0, and the product in (1.6) would return
the empty product. Thus the rate for a zeroth-order reaction is just the reaction rate
constant. The ODE for describing the change in rate of concentration for each molecule
An and Pm are,

d[An]

dt
= −k+

N

N∏
i=1

[Ai], for n = 1, 2, . . . , N, (1.7)

d[Pm]

dt
= +k+

N

N∏
i=1

[Ai], for m = 1, 2, . . . ,M. (1.8)

The units for the reaction rate constant k+
N are 1/(ConcentrationN−1×Time). For reaction

networks modelled with stochastic methods, it is necessary to convert the concentrations
of each molecule [Ai] into copy numbers. This is done by multiplying each concentration
by the volume V of the system, to obtain ai = [Ai]V , where the lower-case ai represents
the copy number of the ith chemical species. Substitution of ai = [Ai]V into (1.6) and
simplifying it, yields the stochastic reaction rate,

Rate =
k+
N

V N−1

N∏
i=1

ai. (1.9)

The units for the stochastic reaction rate constant k+
N/V

N−1 are 1/(Copy numberN−1 ×
Time). Note: if a chemical reaction involves N identical species, then the product of copy
numbers is determined by reducing the copy number by 1 for each successive repeat, i.e.
A× (A− 1)× (A− 2)× . . .× (A− (N − 1)).

It is common to see in some works that k+
N/V

N−1 is rewritten as k+
N . This is done

primarily when working with discrete populations rather than concentrations. Where this
is done in this thesis for brevity, it will be noted. Otherwise reaction rate constants k
should be interpreted in their ‘concentration’ form.

In a reaction network, there are multiple reactions occurring. The change in con-
centration of a chemical species An is determined by the summation of the rate of each
reaction it is involved in. Equation (1.5) is an example of a single chemical reaction.
However in most biological processes, more than one reaction occurs at a time, so instead
a reaction network needs to be modelled. To obtain the total rate of change for a single
chemical species in a reaction network, it is sufficient to sum the rates of every reaction
it is involved in (where it is produced and where it is consumed). This statement can be
represented by the general formula,

Total rate of change =
∑

Production rates−
∑

Consumption rates. (1.10)

3



1.3. INTRODUCTION TO REACTION-DIFFUSION PROCESSES

1.3.2 Reaction-diffusion systems

For sparse biological systems, it is not possible to correctly simulate the network using
purely the reaction kinetics described in the previous section. This is because the system
is no longer well-mixed, therefore the movement of molecules is important in describing
the overall change in concentration/copy number. That is, it is no longer enough to
state (as in (1.7) for example) that the rate of reaction is proportional to the number of
combinations of possible reactants in the system, as this assumes that reactions between
each set of reactants has equal likelihood. When considering transport as well as reaction,
the proximity of reactants to each other is an important feature which determines the
reaction rate. This thesis uses diffusion in the form of Brownian motion to describe the
random movement of particles.

The addition of diffusion increases the complexity of modelling biological systems.
Macroscopic scale reaction-diffusion systems are typically modelled using partial differen-
tial equations (PDEs). However, small systems often use agent-based methods where the
exact or approximate location of each molecule is computed, and reactions occur according
to a set of rules which are governed by the proximity of individual reactants. A detailed
literature review of the methods used to model reaction-diffusion systems, specifically at
small scales, is presented in Chapter 3.

1.3.3 Reaction network diagrams

Throughout this thesis, reaction networks will be presented diagrammatically. These
diagrams range in complexity from 3 to 17 chemical species, interacting through a host
of mass-action reactions. Table 1.1 contains a list of common reaction types written in
standard notation and their diagrammatic representation. The rules which govern the
diagrammatic notation that will be used in this thesis and summarised in Table 1.1 are as
follows. It is assumed that each solid arrow should be interpreted as a single mass-action
interaction. Each reaction indicated by an arrow occurs at a rate proportional to the
concentrations of each chemical at the base/bases of the arrow, and produces each of the
chemicals indicated by the arrow head/heads.

4



1.4. THESIS OUTLINE

Table 1.1: Pathway diagrams, and the chemical reaction they represent. These diagrams
represent the types of reactions that will appear in this thesis. In this table, P represents
the product molecule, P1 and P2 is used to represent the reaction which produces more
than one product, and A, B, C are reactants. The emptyset notation (∅) is used to
either denote a zero-order reaction (if it is on the left hand side), or a degradation/decay
reaction if it is on the right hand side. In the diagram column, an empty space is used
in place of the emptyset symbol. Reversible reactions, although they appear as a single
motif, should be thought of as two separate reactions.

Diagram Reaction Description

∅
k+−⇀↽−
k−

P Reversible zeroth-order

A
k+−⇀↽−
k−

P Reversible first-order

A
k→ A+ P First-order signalling

A
k→ P1 + P2 First-order dissociation

A+B
k→ ∅ Second-order degradation (A and B)

A+B
k→ A Second-order degradation (B only)

A+B
k+−⇀↽−
k−

P Reversible second-order

A+B + C
k+−⇀↽−
k−

P Reversible third-order

1.4 Thesis outline

This thesis consists of 7 chapters, which answers the research questions proposed in the
aims.

Chapter 2 is a detailed literature review of different mathematical models for the
canonical Wnt signalling pathway. This chapter begins by describing the biological as-
pects of Wnt signalling, and its importance in both developmental biology and disease
development. The highly cited Lee model is introduced, which was one of the first mod-
els to comprehensively describe most molecular interactions in the pathway. From this

5



1.4. THESIS OUTLINE

model, it is shown that there are three separate time-scales which are important to Wnt
signalling, first identified by analysis of the Lee model. These separate time-scales will
be used to investigate the foundational properties of the Wnt signalling pathway later in
Chapter 4. A review of feedback mechanisms associated with Wnt, specifically that of
Axin2 production by β-catenin is presented. Three key models are reviewed, the Wawra,
Jensen, and Tymchyshyn models. The Tymchyshyn model in particular forms the basis
of the new models presented in Chapter 5.

A detailed review of common stochastic modelling algorithms for reaction-diffusion
processes is presented in Chapter 3. Each of these stochastic models are important to
modelling different biological processes. An overview of commonly used software is pre-
sented to the reader if they wish to experiment with some of these algorithms. This
leads to a detailed derivation of the Gillespie stochastic simulation algorithm (SSA), an
algorithm commonly used in modelling reaction-diffusion processes. The popular Smolu-
chowski kinetics is introduced, and a review of the frameworks which build upon Smolu-
chowski’s work is presented. This chapter concludes with an overview of the Smoldyn
software, one of the most commonly cited software to model reaction-diffusion processes.

The research presented in Chapter 4 extends the Smoluchowski kinetic framework
to reversible Nth-order reactions. The research combines the kinetics of four different
approaches, into a single coherent framework. This new framework is used to alter the
Smoldyn algorithm such that reversible Nth-order reactions can be simulated. The new
model and algorithm is tested by simulating basic second-, third-, and fourth-order re-
actions. It is then applied to the classical canonical Wnt signalling pathway without
feedback. The original model is simulated, and it is shown to give inaccurate results,
due to a fundamental problem in Smoluchowski kinetics. It is shown that replacing two
bimolecular reactions in the Lee model with a single trimolecular reaction eliminates this
problem.

The Axin2 feedback loop in the canonical Wnt signalling pathway is researched in
Chapter 5. In this chapter, existing Axin2 feedback models are simplified as much as
possible, without altering the key behaviour of the model. This simplification produces
two models: (1) the implicit-delay model, and (2) the explicit-delay model. The implicit-
delay model is a pathway of four species described by a system of ordinary differential
equations, whilst the explicit-delay model is a pathway of three species described by a
system of delay differential equations. The models are simple enough such that analyti-
cal conditions for stability of the pathway are derived and discussed for their biological
implications. By examining the differences in the two models, interesting mathematical
observations are made and discussed.

In Chapter 6, the simplified models created in Chapter 5, are simulated stochastically
using the methods of Chapters 3 and 4. This is done in order to determine when and if
the region of parameters which induce oscillations is changed under stochastic conditions.
The reactions in the implicit-delay model defined in Chapter 5 are modelled using both
the Gillespie SSA, and the Smoldyn algorithm to simulate what happens when a spatial
component is introduced into this model. Various spatio-temporal noise-related effects on
the Wnt signalling pathway are presented and discussed.

The thesis concludes with Chapter 7. The last chapter summarises the main results
from the thesis, and uses this to motivate new open research problems.
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Chapter 2

Review of Wnt signalling pathway
models

Throughout this chapter, there are a large number of proteins with long names. In
any equations written for these proteins, their names are abbreviated or replaced with a
symbol. All of these abbreviations and symbols are contained in Table 2.1. Refer to this
table throughout the chapter to be reminded what each symbol stands for.

2.1 The canonical Wnt signalling pathway

The Wnt signalling pathways are important processes in developmental biology [2], and for
its role in cancer development [3]. Molecularly, Wnts constitute a family of evolutionary
conserved glycoproteins encoded by 19 genes in humans, which interact with 10 different
Wnt receptors and seven-transmembrane spanning Frizzled (Fzd) proteins [11]. After the
Wnt ligands bind to these receptors, they form ligand-receptor complexes, which include
specific co-receptors to activate various downstream pathways [15] such as the Wnt/PCP
pathway [12], the Wnt/Ca2+ pathway [13], and the canonical Wnt/β-catenin signalling
pathway [14], the latter of which is studied in this thesis.

The canonical Wnt pathway is heavily involved in the regulation of gene transcription
[16]. Studies have shown the pathway influences cell proliferation [17], differentiation [18],
migration [19], cell-fate specification [20], and axis patterning [21]. These processes are
commonly studied in humans [22], Xenopus (a genus of frogs) [23], and Drosophila (a
genus of flies) [24].

Study of the canonical Wnt pathway has helped highlight a link between the pathway
and various diseases such as bone disease and cancer [25, 26]. Wnt was initially identified
in its activation of the breast cancer gene in mice [4], and then its role in human colon
cancer [27]. Often these types of cancers are characterised by elevated levels of β-catenin,
a protein responsible for rapid cell division and cell migration [28]. Mutations in this
pathway can mis-regulate these processes and lead to cancer development [5].

The canonical pathway has the following main functions: the formation of a destruc-
tion complex responsible for regulating β-catenin, the dissociation of destruction complex
in the presence of an inhibitory Wnt receptor complex, and the translocation of β-catenin
into the nucleus to induce cellular responses.

The destruction complex in the canonical Wnt pathway is responsible for regulation
of β-catenin [29, 6]. The destruction complex is composed of the scaffolding proteins:
adenomatous polyposis coli (APC) [30], Axin [7], glycogen synthase kinase 3β (GSK3β)
[31], protein phosphatase 2A (PP2A) [32], and casein kinase 1α (CK1) [33]. Within this
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Table 2.1: List of common notation used throughout this thesis.

Notation Description

A Axin

Am mAxin2 RNA

Ap APC

Ap/A APC/Axin

Ax2 Axin2

B β-catenin

B/Ap β-catenin/APC

B/DC β-catenin/Destruction complex

B/G/A β-catenin/GSK3β/Axin

B/T β-catenin/TCF

C Destruction complex

C1 β-catenin/Destruction complex

C2 Receptor complex/Destruction complex

Da Activated Dishevelled

Di Inactive Dishevelled

DC Destruction Complex (APC/Axin/GSK3β)

DK DKK1 (dickkopf inhibitor 1)

G GSK3β

G/A GSK3β/Axin

ki Reaction rate constant for reaction i

k+ Forward reaction rate constant

k− Reverse reaction rate constant

L LRP5/6 co-receptor

L/A LRP5/6 co-receptor/Axin

R Receptor complex

T TCF (Transcription Factor)

W Wnt

X* Phosphorylated protein or complex

complex, APC and Axin are phosphorylated by the presence of bound GSK3β and CK1
[34, 8]. This allows the complex to bind to and phosphorylate β-catenin [35]. Phos-
phorylated β-catenin is released from this complex, and then targeted for degradation
[36].

Activation of the Wnt section of the pathway starts with Wnt ligands binding to Fzd
receptors [37] and its co-receptor, the low-density lipoprotein receptor-related protein 5/6
(LRP5/6) [38]. The subsequent formation of a Wnt-Fzd-LRP5/6 complex [39] leads to
the recruitment of the destruction complex to the plasma membrane. In the Wnt-ON
state, LRP5/6 is phosphorylated leading to inactivation of GSK3β and blockage of β-
catenin phosphorylation and thereby stabilization of β-catenin [9, 40]. The stabilized
β-catenin can then accumulate in the nucleus where it interacts with TCF/LEF and
activates Wnt-dependent target gene expression [41]. Wnt signalling regulates the level
of the Axin proteins at several steps, with Axin2 being a major transcriptional target of
the β-catenin/TCF complex [42]. Activation of Axin2 induces β-catenin degradation [43].
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2.2. MODELLING THE CANONICAL WNT SIGNALLING PATHWAY

Therefore, Axin2 functions as a negative feedback pathway regulating Wnt signalling [44].
The final main process in the canonical pathway is the translocation of β-catenin into

the nucleus [45, 46]. This typically occurs by its binding with transcription factor (TCF)
[47]. β-catenin can then influence various cellular processes. However, in the absence
of a Wnt receptor complex, β-catenin is rapidly phosphorylated and degraded by the
destruction complex. This continuous depletion prevents translocation of β-catenin to
the nucleus.

Recently, experiments have illuminated much of the uncertainty that once shrouded
the manner by which Wnt receptor complexes interact with β-catenin regulation. A
mechanism has been suggested through which endocytosis (a process describing a protein
that is brought into a cell) may facilitate β-catenin signal activation [48]. In this process,
Dishevelled (Dvl) [49] serves as a hub protein which interacts with several Wnt signalling
components [50] and the endocytic machinery. After Wnt binds to its receptors Fzd
and LRP5/6, the β-catenin destruction complex re-localises to the cell membrane for
de-activation. To do so, Dvl binds to the Fzd receptor and to Axin to form a polymeric
structure – the so-called Dvl-Axin scaffold [51], which recruits more activated Fzd-LRP5/6
proteins to the Wnt signalosome (the collection of Wnt proteins involved in the canonical
Wnt pathway). Intracellularly, Dvl and Axin provide the structural scaffold for the other
components of the β-catenin destruction complex. In parallel, Dvl interacts with the
µ2 subunit of the Clathrin-mediated endocytic complex AP2 [52, 53]. Dvl binds to one
end of the elongated C-terminal domain of AP2µ2 to induce the formation of Clathrin-
coated pits. Interference of Dvl2-AP2µ2 binding leads to the degradation of the Dvl-Axin
scaffold and blocks the formation and endocytosis of the Wnt signalosome [54] together
with the destruction complex. After endocytosis, the Dvl-Axin scaffold is stabilised, and
maintains the platform for Wnt signalosome function [55]. Lack of AP2 might lead to
conformational changes of Dvl [56] and Axin [57] leading to inactivation of the bound
β-catenin destruction complex [54]. This mechanism ensures continuous inhibition of the
destruction complex by deactivation rather than dissociation as proposed by Lee et al.
[58]. This deactivation mechanism forms the basis for the models developed in Chapter 5.

Advancements in the understanding and development of the Wnt signalling pathway
has been heavily influenced by mathematical models [10]. Section 2.2 explores how the
main mathematical models for Wnt were constructed, and how these models influence the
scientific discovery of the Wnt mechanism.

2.2 Modelling the canonical Wnt signalling pathway

From this point on, notation is introduced to simplify the protein names down to only a
few letters. Refer back to Table 2.1 to see a summary of all notation used in this chapter.
Where possible, notation is kept as similar to what is used in the paper (for example the
numbering of reactions in Lee et al.).

2.2.1 Lee model

A 2003 paper by Lee et al. has been treated as the mainstay Wnt signalling pathway
amongst biologists and modellers [58]. The paper was the first to comprehensively de-
scribe major molecular interactions in the pathway, in an attempt to understand how the
concentration of β-catenin is affected by the presence of a Wnt signal. The paper was
based on and calibrated against a mixture of new and previous experimental data [40].
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2.2. MODELLING THE CANONICAL WNT SIGNALLING PATHWAY

The Lee model represents Wnt signalling with 15 proteins and 17 reaction processes.
These processes are a combination of binding, dissociation, phosphorylation, dephospho-
rylation, production, and degradation. The pathway is presented in Figure 2.1. There
are three main steps to this pathway: (1) the formation of destruction complex, (2) the
degradation of β-catenin through the destruction core cycle, and (3) the inhibition of the
destruction complex in the presence of Wnt.

The destruction complex is made up of the three scaffolding proteins, APC (Ap),
Axin (A), and GSK3β (G). The Lee model describes the formation of destruction com-
plex occurring in three sequential steps: (1) the binding of APC with Axin to form
APC/Axin (Ap/A) (Reaction 7), (2) the binding of APC/Axin with GSK3β to form
APC/Axin/GSK3β (DC) (Reaction 6), and (3) the phosphorylation of APC and Axin by
GSK3β to form APC*/Axin*/GSK3β (DC*) (Reaction 4 and 5). Each of these processes
can also occur in reverse. Of note in the Lee model is that there is no turnover of APC or
GSK3β, but there is turnover of Axin (Reaction 13). A main finding from the Xenopus
data used by the authors is that Axin exists at significantly lower concentrations com-
pared to APC and GSK3β (0.2 nM compared to 100 nM). This supports the assumption
that APC and GSK3β are conserved in this pathway. However, in other cell lines, Axin
is much less sparse [1].

The β-catenin (B) protein is degraded via the destruction core cycle in three steps:
it first binds to the phosphorylated destruction complex (B/DC*) (Reaction 8), which
can go in reverse. This complex then phosphorylates β-catenin (B*/DC*) (Reaction
9). Phosphorylated β-catenin (B*) is released from the complex (Reaction 10) before
degrading (Reaction 11). DC* is then returned, in which it can bind with more β-catenin
and repeat the process. The constant replenishment of DC* and its low concentration
levels implies that β-catenin phosphorylation is highly sensitive to destruction complex.
The Lee model also includes the turnover of β-catenin (Reaction 12).

Lee et al. acknowledge in their paper that the binding of Wnt to Frizzled receptors,
and the activation of Dishevelled is poorly defined. They simplify this process by assuming
in the presence of a Wnt signal (W), inactive Dishevelled (Di) is activated (Reaction 1
and 2). The activated Dishevelled (Da) then dissociates the unphosphorylated destruction
complex (Reaction 3). The rate of this dissociation can effectively be treated as constant,
as Da is not consumed in the reaction, and Da reaches a steady state early in simulations
(see Figure 2.2). The models developed in Chapters 4 and 5 treat this reaction rate as
constant, ignoring the transient behaviour of switching Wnt on and off.

The Lee model includes other proteins and binding steps not directly influential to the
destruction core cycle, but important for the pathway overall as they sequester signalling
components. This includes the binding of β-catenin to TCF to form β-catenin/TCF (B/T)
(Reaction 14), and the binding of β-catenin to APC to form β-catenin/APC (B/Ap)
(Reaction 15). The former is important for Axin2 feedback models.

The reaction pathway in Figure 2.1 can be described by the system of 15 ODEs,
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2.2. MODELLING THE CANONICAL WNT SIGNALLING PATHWAY

Figure 2.1: The Lee model for the Wnt signalling pathway. The three main parts to
this model are encapsulated within the three red rectangles. These parts include (1)
the formation of destruction complex (DC), (2) the phosphorylation and regulation of
β-catenin (B), and (3) the activation of Dishevelled (Di to Da) by a Wnt (W) signal.

d[Di]

dt
= −v1 + v2, (2.1)

d[Da]

dt
= v1 − v2, (2.2)

d[DC*]

dt
= v4 − v5 − v8 + v10, (2.3)

d[DC]

dt
= −v3 − v4 + v5 + v6, (2.4)

d[G]

dt
= v3 − v6, (2.5)

d[Ap/A]

dt
= v3 − v6 + v7, (2.6)

d[Ap]

dt
= −v7 − v15, (2.7)

d[B/DC*]

dt
= v8 − v9, (2.8)

d[B*/DC*]

dt
= v9 − v10, (2.9)

d[B*]

dt
= v10 − v11, (2.10)

d[B]

dt
= v12 − v8 − v14 − v15, (2.11)

d[A]

dt
= v13 − v7, (2.12)

d[T ]

dt
= −v14, (2.13)

d[B/T ]

dt
= v14, (2.14)

d[B/Ap]

dt
= v15, (2.15)

where each vi is a flux related to reaction i, described by,
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v1 = k1[W ][Di],

v2 = k2[Da],

v3 = k3[Da][DC],

v4 = k4[DC],

v5 = k5[DC*],

v6 = k+
6 [G][Ap/A]− k−6 [DC],

v7 = k+
7 [Ap][A]− k−7 [Ap/A],

v8 = k+
8 [B][DC*]− k−8 [B*/DC*],

v9 = k9[B/DC*],

v10 = k10[B*/DC*],

v11 = k11[B*],

v12 = k+
12 − k−12[B],

v13 = k+
13 − k−13[A],

v14 = k+
14[B][T ]− k−14[B/T ],

v15 = k+
15[B][Ap]− k−15[B/Ap].

The fluxes in v7, v8, v14, and v15 are assumed by Lee et al. to reach pseudo-equilibrium
rapidly. The Lee model makes use of these assumptions to reduce the number of ODEs.
However, here these assumptions will not be used, and instead the forward reaction rate
constants are set to k+

i = 100. In using values smaller than 100, the results obtained will
differ to that of Lee et al., mostly due to a computational issue in solving the system of
ODEs where the reverse reaction is significantly larger than the forward reaction. Without
a large value for k+

i , the forward reaction will never be seen. This is then multiplied by
their corresponding dissociation constant Ki to obtain the back reaction rate constant
k−i . The calibrated parameters used by Lee et al. to simulate the model are found in
Table 2.2.

Table 2.2: Parameters for the Lee model.

Parameter Value Units

Conservation quantities Dsh0 100 nM

APC0 100 nM

TCF0 15 nM

GSK3β0 50 nM

Dissociation constants K7 50 nM

K8 120 nM

K14 30 nM

K15 1200 nM

Rate constants k1 0.1818 min−1

k2 1.818× 10−2 min−1

k3 0.05 nM−1 min−1

k4 0.2667 min−1

k5 0.1333 min−1

k+
6 9.091× 10−2 nM−1 min−1

k−6 0.909 min−1

k9 206 min−1

k10 206 min−1

k11 0.417 min−1

k+
12 0.423 nM min−1

k−12 2.489× 10−4 min−1

k+
13 8.22× 10−5 nM min−1

k−13 0.167 min−1
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The model is simulated using the following approach. The system starts at the cor-
responding steady state for when Wnt is in its off state ([W ] = 0). At t = 0, Wnt is
turned on ([W ] = 1), and the simulation runs until t = 2000 minutes, allowing it to reach
a new steady state. At t = 2000 minutes, Wnt is turned off again, and run until t = 4000
minutes so it can return to its original state. This simulation demonstrates how well Wnt
can transition between the two states, which provides an insight into how the key com-
ponents of the pathway operate. Figure 2.2 demonstrates how the change in destruction
complex compared to the change in β-catenin clearly operate on different time-scales.
This statement was confirmed in a future paper by Mirams et al. which is explored in
Section 2.2.2, for which the Lee model operates on not two distinct time-scales, but on
three [59].

Interestingly, the time it takes for the first switch to reach steady state is noticeably
longer than the time it takes for the second switch. This phenomenon can be explained by
noticing how sensitive β-catenin is to a small change in destruction complex. Given a slight
increase in destruction complex at t = 2000 minutes, β-catenin starts to rapidly degrade
and reaches steady state at around the same time as destruction complex. However for the
first 2, 000 minutes, despite the shorter time for destruction complex to reach steady state,
it takes a while for β-catenin to respond even though it is no longer rapidly degraded.
This is because the natural degradation of β-catenin (k−12) operates on a longer time-scale
than to the phosphorylation of β-catenin via destruction complex (as demonstrated in
the next section). Hence it takes longer for β-catenin to reach steady state.
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Figure 2.2: Time evolution of solutions to the Lee model (2.1) to (2.15) as the Wnt state
is changed from the off ([W ] = 0) state to the on ([W ] = 1) state at time t = 0 minutes.
The parameters used are those listed in Table 2.2 with forward rate parameters set to
100 for k+

7 , k+
8 , k+

14, and k+
15. The Wnt state is then turned off ([W ] = 0) again at time

t = 2000 minutes (denoted by a dashed line at t = 2000). The system smoothly moves
between the off and on states reaching steady state in approximately 2, 000 minutes.

The Lee model was calibrated to experimental data in transition from on to off (see
Figure 2.3). These experiments and simulation investigated how β-catenin would degrade
in response to four changes compared to (a) an initial reference state. These include: (b)
the addition of 0.2 nM of Axin, (c) addition of 1, 000 nM of activated Dishevelled, (d)
inhibition of GSK3β, and (e) the addition of 1, 000 nM of TCF. In comparison to the
reference state, the addition of Axin rapidly degraded β-catenin, whilst the other three
methods slowed down the degradation of β-catenin in similar ways. The simulations in
Figure 2.3 suggest that adding TCF or inhibiting GSK3β were more effective in preventing
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β-catenin degradation than the addition of activated Dishevelled. This statement matches
experimental data [9]. This suggests that Wnt helps decrease β-catenin degradation,
however it does not completely prevent it from being phosphorylated through the core
destruction cycle. Meanwhile inhibition of GSK3β suggests that it significantly decreases
the concentration of destruction complex. The addition of TCF suggests that all the
β-catenin binds to TCF and is therefore protected from destruction complex.

The final claim from Lee et al. is that Axin exists in very small concentrations (relative
to the other components of destruction complex APC and GSK3β), and is therefore the
limiting factor in determining how β-catenin is phosphorylated via the core destruction
cycle. This can be seen in Figure 2.3 by comparing simulation (a) and (b) together.
Addition of a small amount of Axin results in a significantly faster degradation of β-
catenin. This further supports that Axin is the limiting component in how the destruction
complex forms. This claim is supported by comparing the model to experimental results
[58]. However, it was later found that this key behaviour only exists in Xenopus oocytes
(the type of cells used in Lee et al.’s experiments), and that this claim does not easily
extend to other animals, in particular mammalian cells [1].

0 50 100 150

Time (min)

0

0.2

0.4

0.6

0.8

1

1.2

C
o

n
ce

n
tr

at
io

n
 o

f 
-c

at
en

in
 (

n
M

) Reference

(a)

(b)

(c)

(d)

(e)

Figure 2.3: Simulations of β-catenin degradation where β-catenin and Axin influx are set
to zero (k+

12 = 0, k+
13 = 0). For t < 0, the system is at steady state with [W ] = 0. At t = 0,

k+
12 and k+

13 are set to 0. (a) Reference case where no changes were made. (b) Addition
of 0.2 nM of Axin. (c) Addition of 1, 000 nM of activated Dishevelled and k2 = 0. (d)
Inhibition of GSK3β by setting k4 and k9 to zero. (e) Addition of 1, 000 nM of TCF.

2.2.2 The multiple time-scales of the Wnt signalling pathway

A paper by Mirams et al. investigated how different sections of the Lee model operated
on different time-scales [59]. The paper reduced the ODE system from 15 components
down to six [60], and then completed a systematic analysis to support the claim that the
Lee model operates on three distinct time-scales.

To reproduce the results from Mirams, the first step is to non-dimensionalise the
reduced ODE system in (2.1) to (2.15). Time is scaled by 1/k5, and the 6 chemical
species are scaled as in Table 2.3.
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Table 2.3: Mirams model variables and scaling for the six key components in the model.

Dimensional Dimensionless Scaling Description

Da X1 1/Dsh0 Dishevelled (active)

DC X2 k5/k
+
13 APC/Axin/GSK3β

B*/DC* X3 k5/k
+
13 β-catenin*/APC*/Axin*/GSK3β

A X4 k5/k
+
13 Axin

DC* X5 k5/k
+
13 APC*/Axin*/GSK3β

B X6 1/K14 β-catenin

The resulting dimensionless ODEs which are obtained from the original Lee model in
(2.1) to (2.15) are,

dX1

dt
= k′1[W ](1−X1)− k′2X1, (2.16)

dX2

dt
= −(k′3X1 + k′4 + k

′−
6 )X2 +X5 +

k
′+
6 X4

1 +K ′14X6

, (2.17)

dX3

dt
= k′9X5X6 − k′10X3, (2.18)

dX4

dt
=

(
k′3X1 + k

′−
6

)
X2 −

(
k
′+
6

1 +K ′14X6

+ k
′−
13

)
X4 + 1 +

dX6

dt

K ′7K
′
14X4

(1 +K ′14X6)2

1 +
K ′7

1 +K ′14X6

, (2.19)

dX5

dt
=

Ψ(X2, X3, X5, X6)Φ(X5, X6)−X5K
′
8

(
k
′+
12 −K ′14X5X6 − k

′−
12X6

)
(1 +K ′8X6) Φ(X5, X6)− k′+13X5

, (2.20)

dX6

dt
=
k
′+
13X6Ψ(X2, X3, X5, X6)− (1 +K ′8X6)

(
k
′+
12 −K ′13X5X6 − k

′−
12X6

)
k
′+
13K

′
8X5X6 − (1 +K ′8X6) Φ(X5, X6)

, (2.21)

where

Ψ(X2, X3, X5, X6) = k′4X2 + k′10X3 −X5 − k′9X5X6 (2.22)

Φ(X5, X6) = 1 + k
′+
6 k

′+
13X5 +

TCF0

(1 +X6)2
+

APC0

(1 +K ′14X6)2
. (2.23)

By scaling each species, the reaction rate (and dissociation) constants change as well.
These scaled rates are represented as k′ or K ′. The constants k1, k2, k4, k−6 , k10, k11, k−12,
and k−13 are all scaled (divided) by k5. The other constants are scaled as k′3 = Dsh0k3/k5,
k
′+
6 = k+

6 GSK30APC0/(K7k5), k′9 = k9K14/(k5K8), k
′+
12 = k+

12/(k5K14), k
′+
13 = k+

13/(k5K8),
K ′13 = k9k

′+
13/k5, K ′7 = APC0/K7, K ′8 = K14/K8, and K ′14 = K14/K15.

Results of the solutions to (2.16) to (2.21) are shown in Figure 2.4 for which the
system starts at steady state with Wnt off ([W ] = 0), then it is turned on ([W ] = 1) at
t = 0 until it reaches steady state, then Wnt is turned off again and run until it returns
to the original steady state. From this figure, it is more clear that the turnover of β-
catenin (X6) operates on a longer time-scale than the other components. Although it
is not immediately clear if active destruction complex and β-catenin- bound destruction
complex (X5 and X3 respectively) operate on a shorter time-scale than the remaining
three components. This becomes clearer when noticing that the reaction rate constants
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k′9 and k′10, which helps bind and phosphorylates β-catenin, are about 100 times larger
than all other constants, suggesting that the phosphorylation of β-catenin via the core
destruction cycle is rapid in comparison to the turnover rate of β-catenin.
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Figure 2.4: Simulations of the dimensionless versions of the Lee model (2.16) to (2.21).
For t < 0, the system is at steady state when [W ] = 0. The parameters used are scaled
versions of the parameters in Table 2.2. The rate constants k1, k2, k4, k−6 , k10, k11, k−12,
and k−13 are all scaled (divided) by k5. The other constants are scaled as k′3 = Dsh0k3/k5,
k
′+
6 = k+

6 GSK30APC0/(K7k5), k′9 = k9K14/(k5K8), k
′+
12 = k+

12/(k5K14), k
′+
13 = k+

13/(k5K8),
K ′13 = k9k

′+
13/k5, K ′7 = APC0/K7, K ′8 = K14/K8, and K ′14 = K14/K15. For 0 < t < 500,

Wnt is turned on ([W ] = 1) and allowed to reach steady state. At t = 500 (denoted by a
dashed line), Wnt is turned off ([W ] = 0), and the system returns to its original steady
state.

To determine the three time-scales that the Wnt pathway operates on, Mirams intro-
duced the parameter ε = k

′−
12 = 1.93×10−3, using this to scale the six dimensionless ODEs.

This parameter scales the other reaction rate constants onto a similar level. The param-
eters that change are k̂9 = ε1k′9, k̂10 = ε1k′10, k̂+

12 = ε−1k
′+
12 , k̂+

13 = ε−2k
′+
13 , K̂13 = ε−1K ′13,

and K̂14 = ε−1K ′14. All other constants remain unchanged, and are relabelled as k̂i = k′i
for the ith reaction rate (or dissociation) constant. Making these substitutions, the di-
mensionless ODEs (2.16) to (2.21) become,

dX1

dt
= k̂1Ŵ(1−X1)− k̂2X1, (2.24)

dX2

dt
= −(k̂3X1 + k̂4 + k̂−6 )X2 +X5 + k̂+

6

X4

1 + εK̂14X6

, (2.25)

ε
dX3

dt
= k̂9X5X6 − k̂10X3, (2.26)

dX4

dt
=

(k̂3X1 + k̂−6 )X2 − (k̂+
6 + k̂−13)X4 + 1

1 + K̂7

, (2.27)

ε
dX5

dt
= −(k̂9X5X6 − k̂10X3)

1 + K̂8X6

+ ε
k̂4X2 −X5

1 + K̂8X6

, (2.28)

1

ε

dX6

dt
= (k̂+

12 − K̂13X5X6 −X6)− k̂+
13X6

1 + K̂8X6

(k̂9X5X6 − k̂10X3), (2.29)

where the three time-scales are determined by the ε1, ε0, and ε−1 coefficients in front of
the various time derivatives.
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2.3. MODELS OF CANONICAL WNT SIGNALLING WITH AXIN2 FEEDBACK

O(ε): Short time-scales - Rapid phosphorylation of β-catenin via the core
destruction cycle

Equations (2.26) and (2.28) operate on a short time-scale, that is to say they reach pseudo-
equilibrium rapidly. These reactions relate to the phosphorylation of β-catenin and its
release from DC*. It is this time-scale which provides further evidence of how efficiently
destruction complex can regulate β-catenin, and why in the presence of Wnt, a small
decrease in destruction complex results in a large increase of β-catenin. Future models of
Wnt, explored throughout the rest of this chapter and in Chapters 4 and 5, all take into
account the speed of this reaction as a fundamental assumption.

O(1): Medium time-scales - Formation of destruction complex

Before destruction complex can phosphorylate β-catenin, it first needs to form from its
scaffolding proteins, Axin, APC, and GSK3β. Mirams considers the speed at which this
forms to be on a medium time-scale. Realistically, these reactions occur on the order of
minutes in experiments, and therefore can appear to be “quick”. However relative to the
processes in Section 2.2.2, these reactions are ‘medium’ in speed.

For the Mirams model, the components Dishevelled, destruction complex, and Axin
all operate on this scale (see (2.24), (2.25) and (2.27)). Interestingly, Dishevelled works on
time-scales of the same order as destruction complex and Axin, which means that changes
to Wnt can result in observable changes in destruction complex and Axin.

The reactions in this time-scale become important in building microscopic stochastic
simulations for the Wnt pathway (see Chapter 3). Specifically, the rate of destruction
complex formation causes an issue in utilising Smoluchowski kinetics (see Section 3.5.4).
This issue is addressed in Chapter 4.

O(ε−1): Long time-scale - Degradation of free β-catenin

The longest characteristic time-scale refers to the degradation of β-catenin via both the
natural degradation and proteasomal removal. The degradation of β-catenin rate con-
stant, k13 = 2.57× 10−4 min−1 is approximately 1, 000 times smaller than any other first
order reaction rate constant in the Lee model. This suggests why in a system with Wnt
on ([W ] = 1), β-catenin takes a while before reaching steady state, as its steady state
depends mostly upon the influx of β-catenin (k+

12) and the degradation (k−12) when destruc-
tion complex is mostly inhibited. The same cannot be said for when Wnt goes from the
on state to the off state. The second part of Figure 2.4 (t > 500), shows a rapid decrease
in the concentration of β-catenin, which can be explained by the increase of destruction
complex on the medium time-scale, causing the rapid phosphorylation of β-catenin on the
short time-scale, making it appear that the degradation of β-catenin occurs on a scale
smaller than the long time-scale.

2.3 Models of canonical Wnt signalling with Axin2

feedback

2.3.1 Introduction to oscillating signalling pathways

Oscillatory behaviour in developmental biology is a commonly studied biological phe-
nomena. In cellular signalling, three important oscillating pathways are those involving
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Notch [61], fibroblast growth factors (FGF) [62], and Wnt [63]. These three oscillating
pathways can be coupled together to form what is called the segmentation clock [64], a
complicated gene network which coordinates somitogenesis with a clock-like periodicity.
The three pathways are linked together by the nucleus of a cell which allows the pathway
to have crosstalk. This crosstalk has been studied extensively through experiments and
mathematical models [65, 66, 67]. Chapter 5 focuses on the Axin2 feedback loop in the
Wnt oscillating pathway, therefore the models presented in this section will focus on Wnt
independent of Notch and FGF. Linking the proposed models in Chapter 5 with the Notch
and FGF signalling network could form the basis of future work.

It has been demonstrated that the canonical Wnt pathway exhibits oscillatory be-
haviour, and this is explained through the presence of a negative feedback loop involving
Axin2. Research has shown that β-catenin and the β-catenin/TCF complex, when it has
translocated into the nucleus, can induce the production of the Axin2 protein [44], which
is a negative regulator of β-catenin. Higher levels of Axin lead to higher levels of destruc-
tion complex, which results in larger regulation of β-catenin. The decrease in β-catenin
then decreases Axin2. This negative feedback loop can then repeat resulting in observed
oscillatory behaviour.

There has been considerable mathematical interest into the Axin2 feedback loop. Ini-
tial models based on the Lee model were complex, and required the use of mathematical
heuristics to obtain reasonable results. Recent modelling approaches are significantly sim-
pler and less computationally expensive. The following sections highlight the changes in
modelling the feedback loop, and how variations in the modelling has led to new insights
into the Wnt signalling pathway.

2.3.2 Wawra model

The model by Wawra et al. extends the Lee model by introducing two negative feedback
loops [68]. The first of these introduces Axin2 (Ax2), a protein that is produced in the
presence of β-catenin, which then increases the production of Axin. The second loop, uses
dickkopf inhibitor 1 (DK) [69], also produced in the presence of β-catenin, which inhibits
the ability of Dishevelled to dissociate the destruction complex [70]. The reaction pathway
for this model is shown in Figure 2.5. The new species and reactions are highlighted in
red, to distinguish that these are added to the Lee model.
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Figure 2.5: The Wawra model for describing the Axin2 (Ax2) and dickkopf inhibitor 1
(DK) feedback loops in the Wnt signalling pathway. This model extends that of Lee et
al. by introducing the feedback reactions and components in red. Synthesis of Ax2 and
DK is accelerated by a β-catenin and β-catenin/TCF signal. Ax2 then up-regulates Axin
(A). DK inhibits the effect Da has on dissociating the destruction complex (DC). This
inhibition is represented by a “/”.

The Wawra model uses the ordinary differential equations from the Lee model, and
adds two components (and their reactions) to it. The Wawra model introduces time
delays which converts the ODEs into delay differential equations (DDEs). The Lee model
equations that differ in the Wawra model are listed below. These equations are,

d[DC]

dt
= −v3 − v4 + v5 + v6, (2.30)

d[G]

dt
= v3 − v6, (2.31)

d[Ap/A]

dt
= v3 − v6 + v7, (2.32)

d[A]

dt
= −v7 + v13, (2.33)

d[Ax2]

dt
= v16, (2.34)

d[DK]

dt
= v17, (2.35)
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Each bolded flux vi (which differ from the Lee model in Section 2.2.1) is equal to,

v3 = k3[Da][DC]

(
1− [DK](t− Tp,DK − Tdiff,DK)−DKW=0

DKW=1 −DKW=0
v3,inh

)
, (2.36)

v13 = k+
13 − k−13 + a[Ax2](t− Tp,Ax2), (2.37)

v16 = bh+([B](t− Tr,Ax2) + [B/T ](t− Tr,Ax2), θ,m) + l − c[Ax2], (2.38)

v17 = bh+([B](t− Tr,DK) + [B/T ](t− Tr,DK), θ,m) + l − c[DK], (2.39)

where v3, v13, v16, and v17 have time delays. The flux in v16 and v17 utilises the Hill
function,

h+(X, θ,m) =
Xm

Xm + θm
. (2.40)

Hill functions are generally found in modelling gene networks, and Wawra finds that they
work well in describing the Axin2 feedback loop in the Wnt/β-catenin pathway. The new
parameters used by Wawra et al. for these DDEs are listed in Table 2.4.

Table 2.4: Parameters for the Wawra model.

Parameter Value Units

Rate constants c 0.23 min−1

Synthesis fluxes k+
13 7.4× 10−5 nM min−1

Delays Tr,Ax2 33.45 min

Tp,Ax2 7 min

Tr,DK 8.22 min

Tp,DK 2.26 min

Tdiff,DK 30 min

Hill function θ 111.7 nM

m 5 dimensionless

Translation Rate a 4.5 min−1

Other constants DKW=0 1.827× 10−6 nM

DKW=1 1.644× 10−5 nM

l 4.129× 10−7 nM min−1

b 3.831× 10−6 nM min−1

v3,inh 0.5 dimensionless

The Wawra model is a complex process and difficult to reproduce for the following
reasons. The most prominent reason is that it uses delay differential equations. These
have the added complexity of needing to keep track of the systems history. Additionally,
stiff DDEs (which is the case for oscillatory systems), generally cause computational issues
with typical solvers. Combining this with the fact the Wawra model is a system of 17
differential equations further increases the computational cost to simulate the model.
Sections 2.3.3 and 2.3.4 overcome this computational problem by using a simplified Wnt
model that incorporates the removal of destruction complex instead of it dissociating into
its scaffolding proteins [71, 72].

The purpose of the Wawra et al. paper was to investigate how Axin2 feedback and
dickkopf inhibitor 1 feedback affected oscillations in β-catenin, and to attempt to compu-
tationally determine how sensitive these oscillations are to these two feedback components.
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The results implied that both processes are needed to induce oscillations, as Axin2 affects
the concentration of destruction complex, whilst dickkopf inhibitor 1 affects how well
Dishevelled can deconstruct the destruction complex.

The paper provided one of the first mathematical insights into oscillations of β-catenin.
Even though the results are difficult to analyse, they do provide enough information to
warrant further investigation. For example, it is not clear if Axin2 or dickkopf inhibitor
1 feedback is a dominating mechanism, or if both are required to modulate the systems.

2.3.3 Jensen model

A paper by Jensen et al. [71] further explores the negative feedback loop created by
Axin2. However the model moves away from the heuristic and complex detail of the
Lee and Wawra models, simplifying the process to 8 components (see Figure 2.6). The
Jensen model differs to that in Wawra et al. as it uses a Wnt deactivator type process
which removes destruction complex from the system, instead of just dissociating it like
the Wawra model. This change in how Wnt operates is highlighted in red in Figure 2.6.

Figure 2.6: The Jensen model for describing the Axin2 feedback loop. Reactions and
components that differ to the Lee model are highlighted in red. Central to this process is
the deactivation of Axin (A) by a Wnt receptor complex represented by LRP5/6 (L). This
process helps degrade Axin at a varying rate, which is essential for inducing oscillations
in β-catenin.

The Jensen model has 8 ODEs (8 chemical species) that describe 15 reactions. These
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ODEs are,

d[B/G/A]

dt
= k+

1 [B][G/A]− k−1 [B/G/A]− k2[B/G/A], (2.41)

d[G/A]

dt
= k+

3 [G][A]− k−3 [G/A]− k+
1 [B][G/A] + k−1 [B/G/A] + k2[B/G/A], (2.42)

d[B]

dt
= k4 − k+

1 [B][G/A] + k−1 [B/G/A], (2.43)

d[G]

dt
= −k+

3 [G][A] + k−3 [G/A], (2.44)

d[A]

dt
= −k+

3 [G][A] + k−3 [G/A] + k7[Am]− k+
5 [A][L] + k−5 [L/A], (2.45)

d[Am]

dt
= k6[B]2 − 1/τAm[Am], (2.46)

d[L/A]

dt
= k+

5 [A][L]− k−5 [L/A]− k7[L/A], (2.47)

d[L]

dt
= −k+

5 [A][L] + k−5 [L/A] + k7[L/A], (2.48)

where B/G/A is the complex (β-catenin/GSK3β/Axin), G/A is the GSK3β/Axin com-
plex, B is β-catenin, G is GSK3β, A is Axin, Am is Axin2 mRNA, L is LRP5/6, and L/A
is the Axin/LRP5/6 complex. The parameters for these ODEs are listed in Table 2.5.

Table 2.5: Parameters for the Jensen model.

Parameter Value Units

k+
1 0.1 nM−1 min−1

k−1 7 min−1

k2 200 min−1

k+
3 0.2 nM−1 min−1

k−3 1.2 min−1

k4 0.4 nM min−1

k+
5 10 nM−1 min−1

k−5 0.08 min−1

k6 0.7 nM−1 min−1

k7 0.7 min−1

τAm 40 min

k8 0.1 min−1

The model is simulated in Figure 2.7 using parameter values from Table 2.5, and
setting the initial concentrations to zero for all components except GSK3β and LRP5/6,
which are both set to 50 nM. From this figure, it is clear that all 8 components demonstrate
oscillatory behaviour.
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Figure 2.7: (a) Simulated results for β-catenin (B) and destruction complex (B/G/A). (b)
Simulated results for Axin (A), GSK3β (G), Axin2 mRNA (Am), GSK3β/Axin (G/A),
LRP5/6 (L), Axin/LRP5/6 (L/A). Simulations are run until 1,500 minutes, and plotted
from t = 1, 000 to t = 1, 500 minutes to skip past any initial transient behaviour. The
concentration of destruction complex (B/G/A) has been multiplied by 100 to make the
results comparable to β-catenin for plotting purposes.

There are three key differences that the Jensen model exhibits compared to the Wawra
model:

1. The model uses Wnt as a deactivator of destruction complex instead of a decon-
structor,

2. The system contains 8 ODEs using only zero, first, and second order reactions,

3. The system treats delays by dividing Axin2 mRNA by an exponentially distributed
average time delay τ . This effectively reduces the rate at which Axin2 mRNA
degrades.

Statement (1) means that the pathway needed to describe oscillations is much simpler
than that of the Wawra model. Statement (2) makes it easier to perform a stability
analysis and thus gain a deeper insight into the fundamental mechanisms. Statement (3)
means that the system can be solved easily using many of the available ODE solvers, and
can be solved in a short amount of time. This also means Jensen et al. were able to run
many simulations exploring how oscillations are affected by different parameter sets.

According to Jensen et al., the two important parameters for determining if oscillations
are induced are DB/G/A and DG/A, both of which are dissociation constants of destruction
complex and the GSK3β/Axin2 complex,

DB/G/A =
k−1
k+

1

, (2.49)

DG/A =
k−3
k+

3

. (2.50)

To determine how these parameters affect the appearance of oscillations, simulations are
run where the ratiosDB/G/A andDG/A are both varied from 1 to 1, 000. The amplitude and
the period between oscillations (if any) of Axin2 are plotted as a heat map in Figure 2.8
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to show how the variation in these two parameters affect the oscillations. Jensen et al.
created other heat maps, but claimed that this is the best one as it provides such a large
domain for which these pairs of parameters can be chosen from.

(a) (b)

Figure 2.8: Two heat maps demonstrating the region for which oscillations occur for
different parameter choices of DB/G/A and DG/A in the Jensen model. These maps plot
the magnitude of the amplitude (a), and the period (b) of each oscillation of Axin2 (A).
Amplitude is calculated as the average difference between the maximum and minimum
values of Axin2, whilst period is computed as the average time between each peak of
Axin2.

The results of the paper suggested that the following conditions are necessary to induce
oscillations:

1. There must be an Axin2 feedback loop, in which β-catenin produces Axin2.

2. There must be a saturated degradation of Axin2 via the Wnt receptor complex,
which inadvertently causes a time delay for which the Axin2 complex can then
degrade β-catenin.

3. There is a lower limit for Wnt, and that the LRP5/6 complex must be greater than
this limit.

2.3.4 Tymchyshyn model

A paper by Tymchyshyn and Kwiatkowska [72] used stochastic modelling techniques
[73, 74] to explore how oscillations of β-catenin occur in the presence of a high and low
Wnt stimulus. This model used only 6 components, focusing on Axin, β-catenin, and the
Wnt receptor complex. Reactions for the Tymchyshyn model are presented in Figure 2.9.
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Figure 2.9: The Tymchyshyn model for describing the Axin2 feedback loop in the Wnt
signalling pathway. Here, A represents Axin, B is β-catenin, C is active destruction
complex, R is the Wnt receptor complex, C1 is the B/C complex, and C2 is the R/C
complex. This model treats the total concentration of R as constant. The removal of
C after binding with R is rapid. This demonstrates that the rate of removal of C is
significantly faster than the phosphorylation of B by C.

The Tymchyshyn paper does not list the differential equations used to model the
process deterministically, so these have been derived based on reactions and rate constants
listed in their code [72]. This model contains 6 components, and a total of 15 reactions.
The equivalent ODE system is,

d[A]

dt
= k1[B]− µA[A]− k+[A] + k−[C], (2.51)

d[B]

dt
= k2 − k+

3 [B][C] + k−3 [C1]− µB[B], (2.52)

d[C]

dt
= −k+

3 [B][C] + (k−3 + µ1)[C1] + k+[A]− k−[C]− k+
4 [R][C] + k−4 [C2], (2.53)

d[R]

dt
= −k+

4 [R][C] + (k−4 + µ2)[C2], (2.54)

d[C1]

dt
= k+

3 [B][C]− (k−3 + µ1)[C1], (2.55)

d[C2]

dt
= k+

4 [R][C]− (k−4 + µ2)[C2], (2.56)

where the parameters are listed in Table 2.6.
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Table 2.6: Parameters for the Tymchyshyn model.

Parameter Value Units

k1 0.012 nM−1 min−1

k2 0.423 min−1

k+
3 1 nM−1 min−1

k−3 0.1 min−1

k+
4 100 nM min−1

k−4 0.01 min−1

k+ 0.05 nM−1 min−1

k− 0.025 min−1

µ1 0.5 nM−1 min−1

µ2 0.008 min−1

µA 0.0167 min

µB 0.001 min

To reproduce the results from Tymchyshyn et al., simulations are run using a high Wnt
stimulus (Rtotal = 10 nM), and low Wnt stimulus (Rtotal = 2 nM), where the deterministic
solution is overlapped with the stochastic simulation (see Figure 2.10). The stochastic
simulation uses the Gillespie SSA [75] (see Section 3.4.1) in lieu of the π-calculus algorithm
used by the authors. For the high Wnt case, the stochastic and deterministic solutions
match closely with only minor discrepancies between the models. For the low Wnt case,
periodic spiking is observed in the stochastic simulation, whilst the deterministic solution
reaches steady state. Although the paper does not analyse this spiking in detail, the
results most resemble the phenomenon called self-induced stochastic resonance [76, 77].
This behaviour is explored in further detail in Chapter 6.
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Figure 2.10: Comparison of stochastic simulations of the Tymchyshyn model for (a) high
Wnt case (Rtotal = 10 nM) and (b) low Wnt case (Rtotal = 2 nM), using the Gillespie
SSA, and plotted against its deterministic solution. The high Wnt case demonstrates
oscillations both stochastically and deterministically, which match well. The low Wnt
case only oscillates for the stochastic simulation.
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2.4 Conclusion

In this chapter, common mathematical models for Wnt signalling were reviewed, and
the key behaviours of each model were highlighted. The Lee model, being one of the
first models to comprehensively describe most molecular interactions in the pathway,
has provided an excellent basis for which future models were built on. In particular,
the work by Mirams et al. showed how the Lee model operates on three distinct time-
scales. This means the pathway has slow, fast, and very fast reactions. This difference in
reaction speeds for Wnt is simulated in Section 4.5, where the model is used to highlight
a fundamental problem when modelling the pathway stochastically.

The Axin2 feedback models developed by Wawra, Jensen, and Tymchyshyn, showed
how the Lee model with feedback can be simplified. The Wawra model was a highly
complex model that can be difficult to use to induce oscillations. The Jensen and Tym-
chyshyn models both showed that if the model is simplified, and is simulated using Wnt
as a deactivator-type process, then it is significantly easier to induce oscillations, which
leads to deeper analysis into how these oscillations occur. However, these models were
still too complex to develop analytical relationships to determine the exact conditions for
oscillations. This problem is solved by the models created in Chapter 5, for which the
Jensen and Tymchyshyn models are simplified down to four components.
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Chapter 3

Stochastic modelling of
reaction-diffusion processes in
biology

3.1 Introduction to stochastic reaction-diffusion sys-

tems

For many biological systems, it is insufficient to model reactions using only determinis-
tic approaches such as ordinary or partial differential equations. For example, systems
with low concentrations (low population/copy numbers) often require consideration of
how these particles stochastically interact with each other, and where these particles are
located in space. To accurately include these characteristics, a model is required which
resolves the trajectories and interactions of individual agents which constitute the sys-
tem. In the most common case of reaction-diffusion systems, the exact type of modelling
approach used depends upon a number of factors, mainly the concentration of each agent,
and the volume of the system. The former of these factors affects the computational
cost-accuracy trade off for reactions whilst the latter affects that of diffusive processes. In
short, the characteristic scales of the system determine the type of model which is most
appropriate.

For this chapter, the following three spatial scales in order of decreasing scale will
be considered: macro-, meso-, and micro-scale models. Typically, macro-scale models are
used for volumes and copy numbers large enough such that a concentration can be defined.
Meso-scale models are used for systems with a small volume and copy numbers smaller
than macro-scale models. Micro-scale models operate on a similar (but usually smaller)
scale than meso-scale models, but at the point where the actual positions of particles are
required. Scales smaller than this include molecular, atomic, and quantum scales, which
are not of interest to this thesis.

This chapter begins with a general description of algorithms for reaction-diffusion
processes, and the commonly used software to simulate these systems. Following on from
that, a detailed discussion about meso-scale models, and the so-called Gillespie algorithm
will be presented. Attention is then turned to micro-scale systems, with an emphasis
on using Smoluchowski kinetics (and the frameworks that extend Smoluchowski’s work)
to model reaction-diffusion systems for irreversible reactions of any order, and reversible
reactions up to order two. The chapter concludes with a detailed description of the
Smoldyn program, and its underlying mathematics and algorithms. It shall be noted here
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3.2. OVERVIEW OF ALGORITHMS AND SOFTWARE FOR
REACTION-DIFFUSION PROCESSES

that discussion in this literature review will be limited to systems which ignore crowding
effects.

3.2 Overview of algorithms and software for reaction-

diffusion processes

In this section, a general description of algorithms for reaction-diffusion processes is pre-
sented alongside a quick overview of the main software used to model these systems. For
a non-mathematical modeller who only needs to simulate a system under a particular set
of parameters, the algorithms and software presented in this section are self-contained
and user friendly. The actual algorithms and mathematical basis on which each software
is built is only of interest to those who need to write their own algorithms. For this
reason, the software and algorithms are presented first, then Sections 3.4 and 3.5 explain
the underlying methods in detail.

Algorithms used to simulate reaction-diffusion systems can be classified into two main
categories:

• Fixed time-step algorithms, and

• Event-driven algorithms.

The first of these algorithms, evolves the system from some current time t to a future
time t + ∆t at a fixed or predetermined time-step ∆t. Within this small time window,
any reaction or diffusive processes that occur are carried out. The system is updated, and
the process is repeated until the simulation reaches a pre-defined end time.

Event-driven algorithms, work by skipping ahead to the next reactive or diffusive
‘event’, thereby eliminating all the time-steps in between in which nothing happens. This
type of algorithm works best for smaller systems in which the likelihood of there being a
lot of time where nothing occurs is high. Typically the event-driven algorithms are exact
kinetics whilst fixed time-step algorithms are efficient but suffer from inaccuracies which
often disappear as ∆t→ 0.

3.2.1 Algorithms for reaction-only processes

For a deterministic (typically macro-scale) system, reaction-only processes are frequently
simulated by solving a dynamical system of ordinary differential equations (ODEs). ODE
models are very widely used due to their ease of construction and well-known numerical
solution algorithms. However, when attempting to simulate this process stochastically,
different methods are required.

The most intuitive way to introduce stochasticity and discreteness into these systems
is to define a fixed time-step ∆t and set the discrete copy numbers for each chemical
species. At each time-step, assuming mass action kinetics, the modeller checks to see if a
reaction occurs. The probability that a reaction happens at each time-step is equal to the
product of the reaction rate constant, the population numbers of all molecules involved in

the reaction, and the time-step ∆t. For example, the bimolecular reaction A + B
k−→ P

occurs with probability P∆t = k∆tA(t)B(t), where A(t), B(t) represents the population
number of A and B at time t.

There are two major limitations of using a fixed time-step to simulate reactions, (1)
the time-step ∆t needs to be small enough such that one reaction occurs at a time, and
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(2) if the time-step is too small, then the computational time will be too high. Therefore
a balance between accuracy and computational speed needs to be determined when using
fixed time-step methods.

Daniel Gillespie [75] proposed a solution to this problem by realising that for small
systems, there is a lot of time between reactions in which nothing happens. Rather
than calculate all of these time-steps, it was proposed to skip ahead to the next reaction
event, which would maintain the accuracy, but significantly reduced the computational
time. The method that resulted is now referred to as the Gillespie stochastic simulation
algorithm (SSA). This algorithm is explained in detail in Section 3.4.1.

A major drawback of the Gillespie SSA is that if the system is large enough, then
the average time-step will be quite small, resulting in a very large computation time. To
bypass this, Daniel Gillespie introduced the τ -leaping method which approximates the
Gillespie SSA to speed up computational time with acceptable losses in accuracy [78].

3.2.2 Algorithms for reaction-diffusion processes

The coupling of diffusion with reactive processes significantly increases the complexity
and computational power required in comparison to reaction-only algorithms. The meso-
scale and micro-scale models to be introduced in Sections 3.4 and 3.5 work on the basis
that molecules in a bimolecular reaction need to be ‘close’ to each other to react. For
meso-scale models on a lattice, the two particles need to be in the same compartment. For
micro-scale models, particles react based on their separation, and for other more complex
models, their energy. These conditions mean that any algorithm needs to be designed to
efficiently check how far apart molecules are, and whether they can react with each other.

For meso-scale models, molecules diffuse by jumping into their neighbouring compart-
ments. This ‘jumping’ can be thought of as a reaction, where particles diffuse to the next
compartment at a rate proportional to their diffusion constant. Treating diffusion like a
reaction allows the use of event-driven algorithms like the Gillespie SSA for meso-scale
models (see Section 3.4.1).

Micro-scale models unfortunately do not lend themselves to event-driven algorithms
quite easily. Particles on the micro-scale scale move about freely, and interact with each
other through collisions. A lot of the software used to model these systems utilise a fixed
time-step [79, 80, 81]. Recent work has been focused on how micro-scale reaction-diffusion
systems can be more efficiently modelled using an event-driven algorithm [82, 83, 84].

3.2.3 Software for meso-scale models

Common software to model meso-scale reaction-diffusion systems include StochKit2 [85],
URDME [86], CRDME [87], MesoRD [88], and StochSS [89].

StochKit2 is typically used for modelling systems with reactions-only and does not
consider diffusive processes. The main algorithms used by the program include the Gille-
spie SSA [75], and the τ -leaping method [78]. A major advantage to StochKit2 is it
automatically chooses the best algorithm to use based on the system to simulate, thus
resulting in faster computational speeds at the required accuracy.

For simulating reaction-diffusion systems on a lattice structure, URDME, CRDME,
and MesoRD would all be appropriate choices. MesoRD simulates systems on a typical lat-
tice using the Next Subvolume Method [90]. URDME (Unstructured Reaction-Diffusion
Master Equation) looks at modelling systems on arbitrary meshes. CRDME (Convergent
Reaction-Diffusion Master Equation) reduces the compartmental size small enough such
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that each compartment includes only a single particle. Bimolecular reactions are then
resolved by checking for molecules in neighbouring compartments. This reduction signif-
icantly decreases the computational time as there are now less combinations of pairs of
molecules to check for.

3.2.4 Software for micro-scale models

Micro-scale models as defined in this thesis involve particles moving freely in continuous
space, and reacting when they collide. In comparison to on-lattice meso-scale models,
the diffusion of particles is limited by the size of the time-step used, as opposed to the
physical size of a compartment in a lattice for fixed time-step micro-scale models. Small
time-steps must be used, otherwise it becomes possible for particles to pass through each
other and not react, artificially reducing the effective reaction radius at the scale of the
whole system. This is a major computational issue with micro-scale models; use a time-
step too small and the simulation takes too long to complete, or use a large time-step
which sacrifices accuracy.

The Smoldyn program [81] solves the problem of speed and accuracy by implementing
an algorithm that adjusts the condition which defines a reaction event based on the time-
step selected. This lets the user set a larger time-step, whilst still maintaining a high level
of accuracy. The Smoldyn algorithm will be the focus of Section 3.6.

The MCell program [79, 80] pre-dates Smoldyn, and for a while was one of the most
commonly used software for micro-scale models. This has since changed, as Smoldyn has
been repeatedly optimised to provide far superior computational speed whilst maintaining
accuracy [91, 92, 93]. Where MCell lacks in computational speed, it makes up for by
having an excellent graphical interface using the program CellBlender [94].

The eGFRD program (enhanced Green’s Function Reaction Dynamics) utilises an
event-driven algorithm for modelling micro-scale systems [82, 83, 84]. For lattice-models,
event-driven algorithms are simple to implement, as each compartment acts as a bound-
ary to each particle, and therefore particles can only react with reactants inside that
compartment, or they can diffuse to the next compartment. Micro-scale models do not
lend themselves as well to event-driven algorithms, as the distance between each diffusive
step is microscopically small and limited by the time-step used in Brownian dynamics
[95]. The eGFRD program solves this problem, by placing protective spheres around each
particle, or a pair of particles that could react. For each sphere, the time it takes until
both the next reaction and diffusive step (escaping the protective sphere) is calculated,
and stored in an ordered list. The algorithm then moves through the list one event at a
time, executing the events, and updating the overall system based on the event outcome.
Although event-driven algorithms in general are quicker to compute than fixed time-step
methods, it has been shown recently that the eGFRD program has issues for systems with
more than 10,000 molecules due to significant computational resources required to adapt
dynamically to the events simulated [96].

3.2.5 Hybrid-scale models

There have been various successful attempts at combining the algorithms across macro-,
meso-, and micro-scale frameworks into so-called hybrid models. Hybrid models aim to
increase the computational speed of simulations, by allowing the system to be modelled
on different scales. The rules for combining the scales depends upon each model. This
thesis does not go into detail into how the models are constructed. Instead, common
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hybrid models for each combination of scale is presented.
An algorithm that combines macro- and meso-scale models is the pseudo-compartment

method [97]. PDE-assisted Brownian dynamics is used to couple the macro-scale with
micro-scale models [98]. Meso- and micro-scale models can be combined using the two-
regime method [99], the adaptive two-regime method [100], the compartment-placement
method [101], and the ghost cell method [102].

The Smoldyn algorithm has recently been updated to simulate hybrid models that
combine meso- and micro-scale models [103]. Other software packages describing the
combination of meso- and micro-scale models include Virtual Cell [104], and the hybrid
model developed by Klann et al. [105]. Smoldyn claims that its hybrid simulations are
faster and more accurate [103], hence it is suggested to choose that software over the
others.

3.3 Macro-scale models

Macro-scale models are typically used for any large-volume system in which the number of
molecules present is usually in the order of over 1 million (however that is not to say meso-
and micro-scale models cannot model 1 million molecules), and the stochastic interactions
between individual molecules are not important, but instead only the expected macro-
scale distribution of reactants is of interest. Systems of this type are modelled with the
reaction-diffusion PDE,

∂u

∂t
= D∇2u + R(u), (3.1)

in which u(x, t) describes the concentration of molecules with position x at time t, D is
the diffusion constant, ∇2 is the Laplacian with respect to spatial coordinates x, and R(u)
describes any reaction terms, and is often non-linear. The advantage of using (3.1) is that
there is an extensive literature describing analytical and numerical methods to efficiently
solve systems of this type. This equation can even be extended to include stochastic
behaviour implicitly by introducing noise terms and turning it into a stochastic partial
differential equation (SPDE). The details for the PDE literature will not be explained as
this is outside the scope for this thesis.

3.4 Meso-scale models

One of the major limitations of macro-scale methods is that they do not capture stochastic
effects of individual events very well. One way to address this problem with minimal
computational cost, is to model the movement and reaction of individual molecules on a
lattice. There are various ways to model reaction-diffusion processes on a lattice [106].

The focus of this section is on what would be considered the simplest approach to
meso-scale models (using a regular lattice), and how to simulate it using a Gillespie
algorithm [75]. Refer back to Section 3.2.3 for a discussion of more advanced algorithms
and software that make use of more complex lattice structures.

For meso-scale models simulated on a one-dimensional regular lattice, the following
approach is taken.

1. Construct a one-dimensional lattice with length L and divide it into K compart-
ments. Each compartment has length h = L/K.
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2. Initialize the distribution of particles by assigning them to lattice compartments.

3. If required, define on which part of the lattice particles may enter or leave the
system.

4. At each time-step (∆t), particles jump into a neighbouring compartment with prob-
ability D∆t/h2.

5. Particles in each compartment may react on their own, or react with another particle
inside that lattice. The probability of these reactions are computed by multiplying
the associated reaction rate constant with the product of the copy numbers of each
reactant and the time-step ∆t.

6. The algorithm returns to step 4 until a desired end in the simulation.

This method approximates particles into a local environment and allows each particle to
interact with other particles in the local neighbourhood. However, this method is lim-
ited by how small each compartment can be. As the compartment size is decreased, the
computational complexity increases but accuracy increases. There is a lower limit to the
compartmental size, at which the parameter h is small enough, causing the probability
of reaction to be greater than 1 irrespective of how small the time-step is (that is the
compartmental effective reaction rate goes to infinity) [107]. If resolution beyond this
critical level is required, it is necessary to use the micro-scale models discussed in Sec-
tion 3.5. However some of the methods presented in Section 3.2.3, in particular convergent
reaction-diffusion master equation (CRDME) [87], can be used accurately at any com-
partmental size. This effectively allows accurate simulations of reaction-diffusion systems
without massively increasing the computational cost associated with micro-scale models.

3.4.1 Gillespie stochastic simulation algorithm (SSA)

Event-driven algorithms are commonly used in stochastic modelling at the meso-scale
generally because they run fast without compromising on accuracy. One of the most
widely used algorithms for meso-scale reaction-diffusion processes was proposed by Daniel
Gillespie [75]. The key characteristic of this algorithm is that it calculates the time until
the next event happens (whether it be a reaction or diffusion step), jumps ahead to this
time, updates this one event only, and then updates the event propensities/rates. This
type of algorithm is most beneficial to small systems that react slowly, as there would be a
large time gap in between events occurring. However for larger systems with fast reactions,
the time between events is significantly smaller, therefore increasing the computational
cost of using this approach.

The Gillespie SSA can be used for reaction-only, diffusion-only, or for reaction-diffusion
processes. To model diffusion via the Gillespie SSA, it is necessary for the system to be
defined on a lattice, such that each particle can transfer across compartments.

Reaction processes

The Gillespie SSA for a reactive system is;

1. Generate two random numbers r1, r2 uniformly distributed in the interval (0,1).
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2. For each reaction, calculate the mass action propensity,

αi = ki

Ni∏
j=1

Aj(t), (3.2)

where αi is the propensity for the ith reaction, ki is the reaction rate constant, Ni

is the number of reactants for the ith reaction, and Aj(t) represents the number of
molecules at time t for the jth reactant. Note that this equation is slightly different
if the same reactant is utilised more than once in the reaction. For example, in
a bimolecular reaction involving two A molecules, the propensity is calculated as
A ∗ (A− 1) instead of A2.

3. Compute the total propensity,

α =
m∑
i=1

αi, (3.3)

where m is the total number of reaction events in the system.

4. Calculate the time τ until the next reaction using the inverse transform sampling
relation,

τ =
1

α
log(r−1

1 ). (3.4)

5. Determine which reaction occurs by finding i that satisfies,

1

α

i−1∑
j=0

αj 6 r2 <
1

α

i∑
j=0

αj, (3.5)

where α0 = 0. Update the copy numbers for each species based on reaction i, then
advance time from t to t + τ . Repeat steps (1-5) until the time reaches the end of
the simulation.

In practice, the speed of the algorithm can be improved by updating step 2 after the
reaction event in step 5. By knowing what reaction has happened, the user can then
update only the propensities that will change, that is the ones which include the reactants
and products of the reaction event. This type of process resembles the “next-reaction
method” [108].

Diffusion processes

The Gillespie SSA can be applied to diffusion processes, by treating each diffusion step
as a reaction-like event. The algorithm for diffusion is described in one dimension on a
regular lattice for a single species, however the method can easily be extended to 2 or 3
dimensions, for irregular lattices, and for multiple species.

Given a 1-dimensional domain of length L, divide the domain into K compartments
of length h = L/K. Let Ai(t) denote the number of molecules in compartment i at time
t. Let the diffusion rate constant be d = D/h2. Each diffusion step is denoted as the set
of reactions,

A1

d−⇀↽−
d
A2

d−⇀↽−
d
. . .

d−⇀↽−
d
AK , (3.6)

34



3.4. MESO-SCALE MODELS

where Ai
d→ Ai+1 represents a jump of one molecule to the right, and Ai

d← Ai+1 is a
jump of one molecule to the left. With these definitions, the Gillespie SSA for diffusion
processes is as follows,

1. Generate two random numbers r1, r2 uniformly distributed in the interval (0,1).

2. For each compartment, calculate the propensity,

αi = Ai(t)d, (3.7)

where αi is the propensity for the ith diffusion event, and Ai(t) is the number of
molecules in compartment i at time t.

3. Compute the total propensity,

α =
K−1∑
i=1

αi +
K∑
i=2

αi, (3.8)

as each molecule can jump to the compartment to the left or right (except for the
two end compartments).

4. Calculate the time τ until the next reaction by,

τ =
1

α
log(r−1

1 ). (3.9)

5. Determine if a jump to the left or right occurs.

(a) If r2 <
∑K−1

i=1 αi, a jump to the right occurs. Therefore an i is found which
satisfies,

1

α

i−1∑
j=1

αj 6 r2 <
1

α

i∑
j=1

αj. (3.10)

Update Ai(t) and Ai+1(t) by decreasing and increasing them by 1 respectively.

(b) Else if r2 >
∑K−1

i=1 αi, a jump to the left occurs. Therefore an i is found which
satisfies,

1

α

(
K−1∑
j=1

αj +
i−1∑
j=2

αj

)
6 r2 <

1

α

(
K−1∑
j=1

αj +
i∑

j=2

αj

)
. (3.11)

Update Ai(t) and Ai+1(t) by increasing and decreasing them by 1 respectively.

6. Advance time from t to t + τ , and then repeat steps (1-7) until the desired end of
the simulation.
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Reaction-diffusion processes

The Gillespie SSA for reaction-diffusion processes combines the previous two algorithms,
where the time until the next reaction or diffusion event is computed, and which event
occurs is determined. However, there is now the added complication of needing to know
which compartment each molecule is in, which increases the computational power for any
reactions involving more than one molecule. This increases the complexity of computing
the propensity for bimolecular reactions.

This thesis uses the Gillespie SSA for comparison purposes only and does not con-
tribute to the development of associated methods, therefore the detailed algorithm is not
included. Instead, the reader is referred back to the software presented in Section 3.2.3
for background on software for reaction-diffusion systems.

3.5 Micro-scale models

For the purposes of this thesis, a micro-scale model is defined as a model which considers
individual biological molecules (proteins, enzymes, DNA, etc.) as point particles with no
intrinsic three-dimensional form, and how each biological molecule moves and interacts
with each other. There are models which operate on even smaller scales (molecular,
atomic, quantum scales) whereby intra-molecular properties are considered, however these
are not of interest to this thesis as they are typically limited to only a very small number
of molecules.

In Chapter 4, diffusion is modelled using Brownian motion of individual molecules
[109], and reactions are modelled using the framework derived by Marian von Smolu-
chowski [110]. This framework is then used again in Chapter 6 to model feedback loops
in the Wnt signalling pathway.

3.5.1 Brownian motion

In 1827, Robert Brown observed the supposedly random motion of pollen particles sus-
pended in water [109]. This type of random motion has since been referred to as Brownian
motion. A particle undergoing Brownian motion is one that is suspended in some solvent,
and is constantly bombarded by solvent particles, which makes the particle appear to
move erratically.

Mathematically, Brownian motion is usually described by the Wiener process,

dXt =
√

2DdWt, (3.12)

where Xt is the trajectory of a particle in three dimensions, Wt is a three-dimensional
Wiener process, andD is the diffusion constant for the particle studied. The corresponding
Fokker-Planck equation [111, 112] for the probability density function p of Xt is,

∂

∂t
p(x, t) = D∇2p(x, t), t > 0 (3.13)

which corresponds to the PDE for diffusion, and the lower-case x represents the position
of a particle in three-dimensional space. For simulation purposes, the Wiener process in
(3.12) is integrated from t to t+∆t using Ito calculus [113] to give the Brownian dynamics,

X(t+ ∆t) = X(t) +
√

2D∆tξ, (3.14)
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where ∆t is the time-step, and ξ is a vector of normally distributed random numbers
with zero mean and unit variance that differs for each particle and each dimension. This
equation indicates how a new position X(t + ∆t) is randomly calculated based on the
previous position X(t) in the absence of any interactions with boundaries of reactants.
These Brownian dynamics are explored further in Section 3.6.

3.5.2 Zero- and First-order reactions

Zero-order reactions

A zero-order reaction is one which takes the chemical notation,

∅ k0−→ P, (3.15)

in which the products P (of which there can be more than one product) are randomly
generated at an average rate of k0 molecules per unit time, and either placed at a pre-
determined location, or placed randomly inside the domain. The empty set symbol (∅)
denotes that the molecules are produced from nothing according to the model. In reality,
this would not be physically possible. Therefore in the context of modelling reaction-
diffusion systems, the ∅ represents either molecules that flow into the system, or molecules
produced from some other molecule that is not of interest to the overall process. When a
zero-order reaction occurs in a micro-scale model, the initial position of products P will
depend on the context of the reaction, but is often placed randomly inside the domain.

First-order reactions

First-order reactions take the form,

A
k1−→ P, (3.16)

where the products P can also be replaced by ∅ (denoting a decay reaction). In micro-
scale models, when a first-order reaction takes places, the molecules P are placed at the
location of the reactant molecule A.

3.5.3 An important note about bimolecular and higher-order
reactions

In the case of bimolecular reactions (and in fact any reaction involving more than one
reactant), a rule which defines when a reaction will occur between local reactants should
be defined. The rule needs to be matched to the reaction kinetics being modelled.

For the meso-scale models described in Sections 3.2.3 and 3.4, molecules had to be
within the same compartment. In the case of micro-scale models, the ‘closeness’ now
depends on the actual relative distance between two or more molecules, and thus requires
a more rigorous mathematical explanation than what is given by meso-scale models. To
model this ‘closeness’, the simplest definition for bimolecular reactions is just the Eu-
clidean separation of the reactants. The following sections explain the work of Smolu-
chowski (and the models built on this framework) where ‘closeness’ is the separation
of the molecules for a bimolecular reaction, and then show how these ideas extend to
higher-order reactions. In Chapter 4, this will be extended further to apply to reversible
higher-order reactions.
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3.5.4 Smoluchowski kinetics for bimolecular reactions

Smoluchowski kinetics are based on the model developed by Marian von Smoluchowski
in 1916 [110]. Smoluchowski was originally motivated to develop these ideas to describe
the rate at which two diffusing, hard, spheres come into contact, for example, in more
traditional systems of particles in a fluid. Smoluchowski made a note that this result
would be useful for modelling chemical reactions, which certainly proved to be the case.
Classical Smoluchowski kinetics is applied to bimolecular reactions,

A+B
k→ P, (3.17)

where k is the reaction rate constant, and P represents the product molecules.
Smoluchowski kinetics is defined by imposing that around any one point reactant A,

there is a sphere with radius ρ (called the binding radius). According to the Smoluchowski
framework for modelling a reaction, when the reactant B diffuses onto the surface of this
sphere, then A and B undergo a reaction. This process is represented diagrammatically
in Figure 3.1.

Figure 3.1: Smoluchowski radius for bimolecular reactions. A sphere is placed around the
molecule A, with radius equal to the binding radius ρ. When a molecule of B diffuses
onto the surface of this sphere, then A and B react.

The following derivation determines the size of the binding radius ρ in relation to
the reaction rate constant k and the diffusion constants DA, DB. Let A and B be two
diffusing molecules whose positions are XA(t), XB(t), with diffusion constants DA and DB

respectively. Both A and B diffuse with Brownian dynamics. Let R(t) = XB(t)−XA(t)
be the separation between the coordinates for A and B. This separation in a micro-scale
model is determined by (3.14),

R(t+ ∆t) = R(t) + (
√

2DB∆tξB −
√

2DA∆tξA). (3.18)

As both ξA and ξB are vectors of independent normally distributed random numbers with
zero mean, their difference is also a vector of normally distributed random numbers with
zero mean, and variance equal to the sum of the variances. Therefore (3.18) becomes,

R(t+ ∆t) = R(t) +
√

2(DA +DB)∆tξ. (3.19)

The Fokker-Planck equation for (3.19) is,

∂P (r, t)

∂t
= (DA +DB)∇2P (r, t), (3.20)
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where P (r, t) is the joint cumulative distribution function that at time t, the separation
between molecule A and B is r and has yet to react. If the initial separation r(0) is
uniformly distributed and external boundaries are neglected, the system is spherically
symmetric. Letting ‖r‖ = r, (3.20) becomes (in a spherical coordinate system),

∂p(r, t)

∂t
= (DA +DB)

1

r2

∂

∂r

(
r2∂p(r, t)

∂r

)
, (3.21)

where the lower-case p(r, t) is a cumulative distribution function. Smoluchowski inves-
tigates (3.21) at pseudo-steady state (ignoring any transient effects on small time-scales
and assuming that boundaries are at r →∞), reducing (3.21) to the ODE,

d2p

dr2
+

2

r

dp

dr
= 0. (3.22)

For this ODE, there are two boundary conditions. The first is that a reaction occurs
instantaneously on the surface of a sphere with radius r = ρ. This means p(ρ) = 0, which
implies that p = 0 also for r 6 ρ. The second condition is p(r) → 1 as r → ∞. This
condition represents that if B is far enough away from A, then they cannot react together.
Solving (3.22) and applying the boundary conditions gives the cumulative distribution
function,

p(r) = 1− ρ

r
, for r > ρ. (3.23)

To relate ρ to the reaction rate constant k, the diffusive flux over the sphere with radius
ρ is computed by the relation,

k = 4πρ2(DA +DB)
dp

dr

∣∣∣∣
r=ρ

. (3.24)

Substitution of (3.23) into (3.24), and evaluating the derivative at r = ρ gives the Smolu-
chowski relation,

k = 4πρ(DA +DB). (3.25)

To use (3.25) to simulate a model, the reaction rate constant k and the diffusion constants
DA and DB are usually taken from experimental values. Substitution of these constants
into (3.25) gives the size of the binding radius ρ. Molecules in the system will diffuse via
Brownian dynamics, and react whenever a molecule of B diffuses onto the surface of the
sphere of radius ρ placed around A.

3.5.5 The Collins-Kimball model

The Smoluchowski kinetics in the previous section makes the assumption that a bimolec-
ular reaction will occur instantaneously once the two reactants come into contact. This
condition can be mathematically represented as an absorbing boundary, where the surface
of the sphere placed around the molecule A will absorb a molecule of B that diffuses onto
the surface. This type of assumption makes the reaction diffusion-limited, where the rate
at which the reaction will occur is limited by how quickly the molecules diffuse to each
other.
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The Collins-Kimball model analyses Smoluchowski kinetics, and modifies it such that
reactions become activation-limited instead [114]. This is achieved by changing the bound-
ary at the binding radius ρ, from

p(ρ) = 0, (3.26)

for the Smoluchowski case, to the Collins-Kimball boundary condition,

dp(r)

dr

∣∣∣∣
r=ρ

=
kp(ρ)

D
. (3.27)

This provides an alternative way to resolve bimolecular reactions. However for simula-
tions, determining if two molecules react together under this condition is more computa-
tionally intensive than the Smoluchowski approach [81]. For this reason, this thesis will
not focus on the Collins-Kimball model.

3.5.6 Doi kinetics for generalized bimolecular reactions

Under the Smoluchowski framework, molecules react instantly once they are within a
distance ρ of each other. In reality, Smoluchowski kinetics could be considered simplistic
since molecules are likely to collide with each other multiple times before undergoing a
reaction, if they were to react at all.

Masao Doi proposed modifying Smoluchowski kinetics to say that when two molecules
come into contact, they react at a rate proportional to some constant λ [115]. A visual
representation of this is shown in Figure 3.2. This allows the molecules to pass through
each other, and it is possible for the two molecules to come into ‘contact’ but not react.
This framework allows a very simple way to model two molecules colliding with each other
before reacting (or not reacting).

Figure 3.2: The Doi model for bimolecular reactions. The binding radius now depends on
some constant rate λ. When a molecule of B diffuses into the sphere around A, there is a
probability less than 1 that the two molecules react. Under this framework, it is entirely
possible for B to diffuse completely through this sphere without reacting with A.

To build Doi’s model, the assertion is that when a molecule of B comes within the
sphere with binding radius ρλ placed around the molecule A, they react at a constant
rate equal to λ. Note, this also means the Doi model reduces to Smoluchowski kinetics
if λ → ∞ (i.e. the reaction is instantaneous). In fixed time-step simulations, the two
molecules react with probability Pλ = λ∆t, where ∆t is the time-step. To obtain the
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ODEs for this model, (3.21) is used, where the PDE is split into two regions, the first
for r 6 ρλ which is the region in which a reaction occurs, and the second for r > ρλ. In
pseudo-steady state, the resulting ODEs are analogous to (3.22), and are,

0 = (DA +DB)

(
d2p

dr2
+

2

r

dp

dr

)
− λp, for r 6 ρλ, (3.28)

0 = (DA +DB)

(
d2p

dr2
+

2

r

dp

dr

)
, for r > ρλ. (3.29)

Solving these two ODEs gives the general solutions,

p(r) =
a1

r
sinh(rβ) +

a2

r
cosh(rβ), for r 6 ρλ, (3.30)

p(r) = a3 +
a4

r
, for r > ρλ, (3.31)

where the constant β =
√
λ/(DA +DB) is introduced to simplify the notation. Given

that there are now two ODEs, two additional conditions are introduced in order to solve
both equations. The condition limr→∞ p(r) = 1 remains. As the reaction at r = ρ is no
longer instantaneous, the condition p(ρ) = 0 is removed. Instead, p(r) and p′(r) are both
continuous at r = ρ, and that p(r) is finite at r = 0. Imposing these four conditions gives
the solutions,

p(r) =
sinh(rβ)

rβ cosh(ρλβ)
, for r 6 ρλ, (3.32)

p(r) = 1− ρλ
r

+
tanh(ρλβ)

rβ
, for r > ρλ. (3.33)

To relate ρλ to the reaction rate constant k, the diffusive flux over the sphere with radius
ρλ is calculated by,

k = 4π(DA +DB)ρ2
λ

dp

dr

∣∣∣∣
r=ρλ

. (3.34)

Substitution of (3.32) or (3.33) into (3.34) and evaluating it gives the Doi relation,

k = 4π(DA +DB)

[
ρλ −

√
DA +DB

λ
tanh

(
ρλ

√
λ

DA +DB

)]
. (3.35)

As expected, the limit λ→∞ sends the ‘tanh’ term to zero faster than
√

(DA +DB)/λ,
and returns the Smoluchowski result in (3.25), where ρ = limλ→∞ ρλ.

3.5.7 Lipková kinetics for reversible bimolecular reactions

For this section, complications arising from a reversible bimolecular reaction will be dis-
cussed. A reversible bimolecular reaction takes the form,

A+B
k+−⇀↽−
k−

P. (3.36)

Extending Smoluchowski kinetics to reversible reactions brings in the added problem of
what to do with the reverse reaction. When the product molecule P undergo the reverse
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reaction and the reactants A and B return, a reasonable question to ask is, where should
these molecules be placed? A natural thought is to place all the molecules at the centre of
mass of the product molecule P . If this is done, then by the Smoluchowski model, these
two molecules are within the binding radius ρ, and therefore must instantaneously react
to form the product again. With this rule, the reverse reaction effectively never happens,
therefore Smoluchowski kinetics does not work for reversible reactions. However, this is
not an issue with Doi kinetics.

A paper by Lipková et al. develops reversible reaction kinetics under a Doi regime
(which can reduce to a Smoluchowski framework) [116]. When the reverse reaction occurs,
the Lipková model places the two molecules at a distance σ from each other. This σ is
referred to as the unbinding radius. Under a Smoluchowski framework, the unbinding
radius σ must be larger than the binding radius ρ. For the Doi regime, the relative sizes
of the two radii is irrelevant. When the product molecule P dissociates into the reactant
molecules A and B, the molecule B is placed randomly on the surface of a sphere with
radius σ around A such that the centre of mass of A and B is equal to the position of the
centre of mass of product molecule P .

In the Lipková model, the new dimensionless parameter α is introduced, where α =
σ/ρλ is the ratio between the unbinding and binding radius. The derivation of the Lipková
model is split into two sections, one where α > 1, and the other where α 6 1. An
advantage to the first case is that a modeller can utilise either the Smoluchowski or
Doi framework unlike the second case where only a Doi framework can be used. An
advantage to the second case is that one can take α→ 0, which helps reduce the number
of parameters needed to simulate a reversible reaction. A visual representation of both
cases is shown in Figure 3.3.

(a) (b)

Figure 3.3: The two cases for the Lipková model. The first case (a), is when α > 1, that
is to say the unbinding radius is larger than the binding radius. The second case (b), is
the opposite, that is α 6 1.

The reverse reaction rate constant k− is independent of the binding and un-
binding radius

In the Lipková model, the binding (ρλ) and unbinding (σ) radius are only related to the
forward reaction rate constant k+, and not the reverse reaction rate constant k−. The
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Lipková model is built to describe how far the two reactants have to be to react together
(binding), and how close they can be when they are produced by the reverse reaction
(unbinding). These rules are in place to ensure the micro-scale rates correctly match the
macro-scale reaction rate constant k+. They are only in place to match k+, hence ρλ and
σ will only be related to k+ in this model, and for all future models involving reversible
reactions (see Chapter 4).

The reverse reaction rate constant is included in the Lipková model in the same way
that first-order reactions are treated. At a particular time t, the product molecule P can
dissociate with probability Prev = 1− exp(−k−∆t).

Case α > 1

For this case, there are two ODEs, one in the region for which the forward reaction occurs,
and the other for outside this region, which is where the reverse reaction happens. The
ODEs for the cumulative distribution function p(r) is derived in the same way as (3.28)
and (3.29) with the addition of a point source at r = σ to the reverse reaction. The ODEs
are,

(DA +DB)

(
d2p

dr2
+

2

r

dp

dr

)
− λp = 0, for r 6 ρλ, (3.37)

(DA +DB)

(
d2p

dr2
+

2

r

dp

dr

)
+Q(r − σ) = 0, for r > ρλ, (3.38)

where Q is a placeholder function that behaves like a Dirac delta function (molecules from
the reverse reaction are placed at exactly σ away from the origin), and p is a cumulative
distribution function describing the probability of finding a molecule of B at a distance
less than r from a molecule of A. The ODEs are nondimensionalised by the following
variables,

β = ρλ

√
λ

DA +DB

, κ =
k+

ρλ(DA +DB)
, r′ =

r

ρλ
. (3.39)

For brevity’s sake, r′ will be rewritten as r. By introducing these parameters, (3.37)
and (3.38) become,

d2p

dr2
+

2

r

dp

dr
− β2p = 0, for r 6 1, (3.40)

d2p

dr2
+

2

r

dp

dr
+

κ

4πα2
δ(r − α) = 0, for r > 1, (3.41)

where δ(r − α) is the Dirac delta function centred at r = α. To solve these ODEs, the
following four conditions are defined: p(r) is finite at the origin, p(r) and its derivative
are continuous at r = 1, and as r → ∞, p(r) → 1. Using these conditions, the solution
to (3.40) and (3.41) are,

p(r) =
4πα + κ

4παβ cosh(β)

sinh(βr)

r
, for r 6 1, (3.42)

p(r) =
4πα + κ

4πα

(
1− 1

r
+

tanh(β)

βr

)
− κH [r − α] (r − α)

4πrα
, for r > 1, (3.43)
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where H [r − α] is the Heaviside step function. To relate ρλ and σ to the dimensionless
forward reaction rate constant κ, the diffusive flux through a dimensionless sphere with
radius 1 is computed by,

κ = 4π
dp

dr

∣∣∣∣
r=1

. (3.44)

Substitution of (3.42) or (3.43) into (3.44) and evaluating gives the first Lipková relation,

κ =
4πα(β − tanh(β))

βα− β + tanh(β)
. (3.45)

Redimensionalising (3.45) whilst keeping the β variable, gives the full dimensional Lipková
relation,

k+ =
4πρλσ(DA +DB) (β − tanh (β))

β(σ − ρλ) + ρλ tanh (β)
. (3.46)

Taking the limit σ → ∞ for (3.46) yields the Doi relation in (3.35). In this limit, the
reverse reaction does not recombine without diffusing from outside the boundary layer
near the reaction radius, and therefore is indistinguishable from a forward reaction in
a well-mixed environment. A well-mixed environment is one where the distribution of
molecules appear to be similar across the entire domain.

Case α 6 1

By having both the forward and reverse reaction occur inside the sphere with binding
radius ρλ, the ODEs in (3.40) and (3.41) are replaced with the single ODE in dimensionless
form,

d2p

dr2
+

2

r

dp

dr
− β2p+

κδ(r − α)

4πα2
= 0, for r 6 1. (3.47)

As both the forward and reverse reaction are within the binding radius ρλ, then there is
no diffusive flux for r > 1 in steady-state. This means that p(r) = 1 for r > 1. The extra
condition that p(r) must be finite at the origin gives the solution,

p(r) =
4παβ + κ sinh(β − βα)

4παβ sinh(β)

sinh(βr)

r
− κH [r − α] sinh(βr − βα)

4παβr
. (3.48)

Differentiating (3.48), and enforcing p′(1) = 0, yields the second Lipková relation,

κ =
4πα(β − tanh(β))

cosh(β − βα)(tanh(β)− tanh(β − βα))
. (3.49)

Redimensionalising (3.49) but keeping the dimensionless β variable for the sake of brevity
yields the full form,

k+ =
4πσ(DA +DB) (β − tanh (β))

cosh

(
(ρλ − σ)

β

ρλ

)(
tanh (β)− tanh

(
(ρλ − σ)

β

ρλ

)) . (3.50)
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Geminate recombination

When it comes to reversible reactions, there is the added complication of geminate recom-
bination [81, 117]. A geminate recombination event occurs when molecule P dissociates
into molecules A and B, and those same two molecules recombine some nominally small
time after, but before the molecules diffuse apart. When it comes to simulating reversible
reactions, it is advisable to reduce the probability of geminate recombination, otherwise
the overheads of simulations will be significantly higher [117].

Let Φ be the probability of geminate recombination, and π(r) be the probability
density that newly created molecules A and B from the same dissociation reaction, react
again before having a chance to diffuse away from each other. Of all forward reactions
that occur, a fraction Φ are geminate reactions. To derive the ODEs for π(r), it is noted
that the probability of finding π(r) is determined by summation of the flux of geminate
reactions with the rate of reaction of non-geminate reactions. That is to say,

0 =
d2π

dr2
+

2

r

dπ

dr
+ β2(1− π(r)), for r 6 1, (3.51)

0 =
d2π

dr2
+

2

r

dπ

dr
, for r > 1. (3.52)

These ODEs can be derived using an approach found in Chapter 3 of Berg’s book [113].
As r → ∞, the two molecules A and B are far enough away from each other that it is
impossible for them to recombine, hence the probability is equal to zero. The additional
constraints are that π(r) is finite at the origin, and it is continuous (including its deriva-
tive) at r = 1. Solving (3.51) and (3.52) subject to these boundary conditions gives the
solutions,

π(r) = 1− sinh(rβ)

rβ cosh(β)
, for r 6 1, (3.53)

π(r) =
β − tanh(β)

rβ
, for r > 1. (3.54)

In dimensionless variables, when the reverse reaction occurs, A and B are placed a distance
α away from each other. The probability of geminate recombination is then defined as
Φ = π(α). This gives the probabilities,

Φ = 1− sinh(αβ)

αβ cosh(β)
, for α 6 1, (3.55)

Φ =
β − tanh(β)

αβ
, for α > 1. (3.56)

In the case of an instantaneous forward reaction (β →∞), (3.56) reduces to,

Φ =
1

α
. (3.57)

3.5.8 Higher-order kinetics

Given Smoluchowski (and Doi) kinetics have been developed for irreversible and reversible
bimolecular reactions, a natural question to ask is, how do these kinetics extend to tri-
molecular reactions and even higher-order reactions? This section focuses on developing
the kinetics required to model the irreversible reaction,

A1 + A2 + . . .+ AN
k+→ P, (3.58)
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where each Ai represents the ith reactant in a reaction involving N reactants.
The main problem with developing kinetics for higher-order reactions, is to properly

define what ‘closeness’ means. For example, let there be three molecules, A, B, C,
undergoing a trimolecular reaction. If a sphere of radius ρ is placed around the molecule
A (as done for Smoluchowski kinetics), then a reaction occurs when B and C both come
into contact with this sphere (similar to the bimolecular case). This rule says nothing
about how far B and C are from each other. Furthermore, the probability that these two
events would occur simultaneously is infinitesimally small. On the other hand, if they are
on complete opposite ends of that sphere, then it is likely that they are too far apart from
each other and should not react. At the same time, it is unclear how to calculate the size
of this sphere, as it needs to relate to the trimolecular reaction rate constant.

3.5.9 Flegg kinetics for higher-order reactions

The recent work of Flegg [118] produced a generalised result that allows one to model a
reaction involving any number of reactants under a Smoluchowski framework. However
this work was not extended to reversible reactions of any order. This is addressed in
Chapter 4.

Flegg resolves the problem of ‘closeness’ by first changing the distance metric into Ja-
cobi vectors (usually used in N -body problems). Jacobi vectors are then related together
in a Pythagorean way. The size of the binding radius ρ, is then related back to this new
distance metric.

Transformation to Jacobi coordinates

For the N -molecular reaction defined in (3.58), the coordinates of each species Ai is
denoted by xi. This represents the Cartesian position of each molecule in 3-dimensional
space. Each coordinate undergoes the linear transformation,

ηi =
N∑
j=1

Mijxj, (3.59)

where Mij represents the matrix transformation coefficients calculated in (3.60), and ηi
represents the displacement of molecule i from the weighted average position of the pre-
vious (i − 1) molecules. Here, η represents the Jacobi coordinates (separation vectors).
Mij is chosen such that η evolves according to linear diffusion,

N∑
i=1

DiMijMik = 0, (3.60)

for each j 6= k. This condition is met when the weighted average position is defined by
the centre of diffusion using,

xi =

∑i
j=1 xjD

−1
j∑i

m=1D
−1
m

. (3.61)

With this, the separation vectors are now defined as,

η1 = xN , (3.62)

ηi = xi − xi−1, (3.63)
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where η1 defines the weighted average position for all N molecules. The transformation
in (3.59) that represents (3.62) and (3.63) is described by a matrix M with elements,

Mij =


D−1
j

[∑N
m=1D

−1
m

]−1

, i = 1,

−D−1
j

[∑i−1
m=1D

−1
m

]−1

, j < i, i > 1,

1, j = i, i > 1,

0, j > i, i > 1.

(3.64)

Kinetics for irreversible N-molecular reactions

To derive the kinetics for an irreversible N -molecular reaction, P is defined to be the
joint cumulative distribution function of finding a combination of reactant molecules with
positions x1,x2, . . . ,xN that are yet to react. P is governed by the diffusion equation,

∂P (x, t)

∂t
=

[
N∑
i=1

Di∇2
i

]
P (x, t), (3.65)

where ∇2
i is the Laplacian operator for each position xi. Transforming this system into

Jacobi coordinates (see (3.62) and (3.63)), then (3.65) becomes,

∂Pηi(ηi, t)

∂t
=

[
N∑
i=1

D̂i∇̂2
i

]
Pηi(ηi, t), (3.66)

where theˆnotation denotes which symbols relate to the transformed Jacobi coordinates,
and,

D̂i =
N∑
j=1

DjM
2
ij =

{
DN , i = 1,

Di +Di−1, i > 1,
(3.67)

where DN is the diffusion constant for the centre of diffusion of N molecules given by,

DN =
1∑N

i=1D
−1
i

. (3.68)

Equation (3.66) is defined over all η, however η1 represents the average weighted position
of all N molecules, and does not describe the ‘closeness’ of the molecules. For a well-mixed
system that is arbitrarily large, the cumulative distribution function Pη is independent
of η1. Integrating (3.66) over the whole domain reduces the dimensionality down and
becomes,

∂P (η, t)

∂t
=

[
N∑
i=2

D̂i∇̂2
i

]
P (η, t), (3.69)

where P (η, t) represents the cumulative distribution function of finding a set of molecules
within a set proximity range that have yet to react. This dimensionality reduction is
analogous to using the moving frame in regards to the bimolecular problem.

What is left to describe is the condition for which the reaction of N molecules occurs.
To do this, Flegg defines the reactive boundary to be,

P2
N = ∆N

N∑
i=2

‖ηi‖2

D̂i

6 ρ2, (3.70)
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(a) (b)

Figure 3.4: (a) A physical representation of how the Jacobi vectors (η) are constructed
relative to four molecules. (b) The red point represents the proximity of four molecules
moving in 3(N − 1)-dimensional space (N = 4). A reaction occurs when the proximity of
four molecules moves to within the hypersphere with radius ρ.

where

∆N =
ΣN
i=1D

−1
i

Σ16m<i6N(DiDm)−1
, (3.71)

(3.72)

is a diffusion parameter that scales (3.70) such that it is a distance metric, and the
1 6 m < i 6 N notation refers to finding all combinations of m and i such that m is
less than i, and both are less than N . The symbol PN denotes what is to be known as
the proximity of N molecules, and describes the overall separation of all molecules from
each other in a concise way which is well suited to determining the reaction kinetics. A
physical representation of the binding proximity ρ for N molecules is shown in Figure 3.4.

To relate the reaction rate constant k+ to the binding proximity ρ, (3.65) is taken to
pseudo-steady state assuming a Doi-like reaction at rate λ inside the reaction proximity
to yield the following two PDEs,

0 = ∇̂2P − λP, for PN 6 ρ, (3.73)

0 = ∇̂2P, for PN > ρ, (3.74)

where the first equation is in the proximity region for which the reaction occurs. Equa-
tions (3.73) and (3.74) are nondimensionalised using the following dimensionless quanti-
ties,

r =

√√√√∆N

ρ2

N∑
i=2

‖ηi‖2

D̂i

, β = ρ

√
λ

∆N

, κ =
k+

∆NDρ2µ
, µ =

3N − 5

2
, (3.75)

where,

D =
N∏
i=2

(
D̂i

∆N

)3/2

. (3.76)
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Applying the dimensionless relationships converts (3.73) and (3.74) to,

0 =
d2p

dr2
+

(2µ+ 1)

r

dp

dr
− β2p, for r 6 1, (3.77)

0 =
d2p

dr2
+

(2µ+ 1)

r

dp

dr
, for r > 1. (3.78)

Solving both of these ODEs yields the general solutions,

p(r) =
a1

rµ
Iµ(rβ) +

a2

rµ
Kµ(rβ), for r 6 1, (3.79)

p(r) = a3 +
a4

r2µ
, for r > 1, (3.80)

where Iµ and Kµ are the modified Bessel functions of the first and second kind respectively
both with order µ. The conditions that p(r) must be finite at the origin, is continuous at
r = 1 including its derivative, and as r →∞, p(r)→ 1, will be used to find the constants.
Using these, the solutions are,

p(r) =
4µ

2µIµ(β) + β (Iµ−1(β) + Iµ+1(β))

Iµ(rβ)

rµ
, for r 6 1, (3.81)

p(r) = 1− 1

r2µ

µIµ(β)− β (Iµ−1(β) + Iµ+1(β))

µIµ(β) + β (Iµ−1(β) + Iµ+1(β))
, for r > 1. (3.82)

To relate ρ to k+, the flux of the cumulative distribution function p(r) over the surface of
the hypersphere with radius 1 is calculated by,

k+

∆NDρ2µ
= S2(µ+1)

dp

dr

∣∣∣∣
r=1

, (3.83)

where Sm = mπm/2/Γ(m/2 + 1) represents the surface area of an m-dimensional hyper-
sphere, and Γ is the Gamma function. Evaluating (3.83) by substituting (3.81) or (3.82)
gives the irreversible N -molecular Doi kinetics,

k+ =
4πµ+1D∆Nρ

2µ

Γ(µ)
Φµ(β), (3.84)

where,

Φµ(β) = 1− 4µIµ(β)

β[Iµ−1(β) + Iµ+1(β)] + 2µIµ(β)
. (3.85)

To obtain the Smoluchowski version of (3.84), the limit β →∞ (λ→∞) is taken resulting
in Φµ(β)→ 1, and gives,

k+ =
4πµ+1D∆Nρ

2µ

Γ(µ)
. (3.86)

For the bimolecular case (N = 2), then µ = 1/2, and (3.86) reduces to the Smoluchowski
relation,

k+ = 4πρ(DA +DB). (3.87)
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3.6 The Smoldyn algorithm

Smoldyn is a widely popular software which allows modellers to simulate micro-scale
reaction-diffusion processes using a finite time-step algorithm. The Smoldyn algorithm
allows for simulation of the following main processes: diffusion, surface interactions, zero-
order reactions, first-order reactions, and bimolecular reactions. The order for which
Smoldyn updates these events for a single time-step is shown in Figure 3.5.

The Smoldyn algorithm does not simulate reactions involving more than two molecules
(trimolecular and above). It is often proposed that higher-order reactions can simply
be formed using a series of bimolecular reactions. In the case of micro-scale models,
this is not accurate. This will be explored further in Chapter 4. In this section is a
detailed description of the Smoldyn algorithms. These algorithms are then extended and
generalised where necessary in Chapter 4 to be able to simulate reversible reactions of
any order under a Doi or Smoluchowski regime.

Figure 3.5: A flowchart depicting the processes in the Smoldyn algorithm, and the order
for which it progresses through various events in each time-step. Once the system is ini-
tialized, it enters a loop, where the particles diffuse, any surface interactions are resolved,
then zero-, first- and second-order reactions are computed in that order. Changes to the
system are recorded, and it then goes through the loop again until it reaches the end of
the simulation.

Diffusion with Brownian dynamics

In the micro-scale framework, there are many ways to simulate diffusion. Smoldyn utilises
Brownian Dynamics [95], the numerical approximation to Brownian motion, which has a
very simple implementation. Equation (3.14) is rewritten here explicitly for a molecule
with position (X, Y, Z) as

X(t+ ∆t) = X(t) +
√

2D∆tξ1, (3.88)

Y (t+ ∆t) = Y (t) +
√

2D∆tξ2, (3.89)

Z(t+ ∆t) = Z(t) +
√

2D∆tξ3, (3.90)

where each ξ is sampled from the normal distribution with zero mean and unit variance
at each time-step for each molecule and each dimension it moves in.

Surface interactions

Smoldyn considers three possible surface interactions,

1. Reflecting boundary,
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2. Periodic boundary,

3. Absorbing boundary.

For reflecting boundaries, the particle is treated like light reflecting off a mirror. From
time t to t+ ∆t, the particle is assumed to have a straight line trajectory, and if this hits
the boundary, then it reflects and continues its trajectory until it reaches it new position.
Note that if ∆t is small enough, a smooth boundary can be considered locally flat, which
is why this works also on curved boundaries.

For periodic boundaries, the system is treated as if it had no boundary, and instead the
particle wraps around the domain. Physically this would be similar to particles diffusing
on the surface of a torus in which once they have diffused a complete rotation around
the torus, it ends up in its original position. To calculate the new position for a particle
under periodic boundary conditions in one-dimension, the domain goes from 0 to L. If a
particle with position X moves a distance a, and if X + a > L, then the particle wraps
around to the start, and has new position X + a − L. This method can be extended to
multiple dimensions.

For absorbing boundaries, if a particle diffuses to outside the domain, then that particle
is said to have been absorbed and is removed from the system. For large time-steps, it is
possible that the trajectory of the particle passes through the boundary before arriving at
a final position which is still in the domain. That is the particle still exists in the system,
when it should have been absorbed. To correct this problem, Smoldyn has the option to
calculate the probability that a particle crossed the boundary in between t and t + ∆t,
and if it did, the particle is absorbed.

Zero-order reactions

Recalling the zero-order reaction,

∅ k0−→ P, (3.91)

where k0 is the reaction rate constant for a zero-order reaction and P is the product
molecule. The rate at which molecules are produced in a zero-order reaction is inde-
pendent of the concentration of any molecules in the system. Hence for each time-step
∆t, an average of k0∆t molecules of P are produced. For a stochastic simulation, this
actual number of molecules produced changes at each time-step. To handle this, Smoldyn
samples the number of molecules to add at each time-step from a Poisson distribution.
Specifically, the probability P0 that exactly j molecules of P are produced in a single
time-step is calculated by,

P0(j) =
(k0∆t)j exp(−k0∆t)

j!
. (3.92)

First-order reactions

Recalling the first-order reaction,

A
k1−→ P, (3.93)

where k1 is the first-order reaction rate constant, and P may be a product molecule, or
it is ∅ denoting that a molecule has decayed. The probability that a molecule undergoes
a first-order reaction in a single time-step ∆t is calculated by P1 = 1− exp(−k1∆t). The
reactant molecule A is then either decayed, or replaced with the product molecule P ,
which is placed at the exact location of A.
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3.6. THE SMOLDYN ALGORITHM

Irreversible bimolecular reactions

Recalling the irreversible bimolecular reaction,

A+B
k+−→ P, (3.94)

where A and B are two molecules that react with each other at a rate proportional to
the reaction rate constant k+. Smoldyn uses the binding radius ρ defined by Smolu-
chowski, hence the namesake SMOLuchowski DYNamics. The Smoluchowski relation for
instantaneous irreversible bimolecular reactions is restated here as,

k+ = 4πρ(DA +DB), (3.95)

where DA and DB are the diffusion constants for molecules A and B respectively. The use
of Smoluchowski kinetics in this form makes the assumption that ∆t → 0. However, for
an actual simulation, ∆t is finite. This causes a problem, where in a single time-step from
t to t+∆t, it is possible for a molecule of B to pass through the binding radius around A,
and finish at a point outside of this binding radius. This results in molecules A and B still
in the system, when they no longer should be, producing results with artificially smaller
reaction rates. Smoldyn addresses this problem by increasing the size of ρ as ∆t increases,
that is there is a corrected binding radius ρ∆t such that ρ∆t > ρ for all ∆t > 0. In the
limit as ∆t→ 0, then ρ∆t → ρ. For brevity’s sake, this section will use ρ in place of ρ∆t.
The precise correction to ρ required for a finite time-step ∆t is not so straightforward.
The following steps need to be completed,

1. Generate a lookup table that relates k+ to the parameter s =

√
2(DA+DB)∆t

ρ
, which is

the dimensionless root mean square (RMS) separation change in a time-step relative
to the reaction radius.

2. Use an inverted iterative scheme to find ρ based on a particular choice of k+ and
∆t.

The bulk of the work is in first generating the lookup table, however the table only needs
to be generated once, and then it can be used for many other simulations (Smoldyn
actually stores this table into the software so it does not need to be recalculated). The
table is generated by starting with the reaction-diffusion PDE,

∂g

∂t
=
D

r2

∂

∂r

(
r2∂g

∂r

)
, (3.96)

where g(r, t) is called the radial distribution function (RDF). To generate the lookup
table, let s = exp(δ), where −3 6 δ 6 3 sampled at regular intervals usually separated
by 0.1. The PDE (3.96) can be solved using Green’s functions, where between ti and
ti+1 = ti + ∆t, the solution g(r) is found by iterating through,

gi+1(r) =

∫ ∞
0

4πr′2Ψ(r, r′, s)gi(r
′)dr′. (3.97)

Here gi and gi+1 is used to denote the RDF at time t and t+∆t respectively. The function
Ψ(r, r′, s) is,

Ψ(r, r′, s) =
1

4πrr′
[Gs(r − r′) +Gs(r + r′)] , (3.98)

where Gs(c) =
1

s
√

2π
exp(− c2

2s2
), (3.99)
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3.6. THE SMOLDYN ALGORITHM

is the Green’s function for diffusion in radial coordinates. To reduce the time it takes to
solve (3.97) and to simplify the calculation, the trapezoidal method is used to approximate
the integral from 0 6 r 6 R, where R is far enough away from the reaction boundary at
r = 1 (R is usually set to 10), and the rest of the integral is calculated by approximating

gi(r) = 1 +
ai
r

, where ai is a parameter fitted from the last 10% of the RDF in 0 6 r 6 R.

Equation (3.97) is integrated in the external region r > R analytically to yield,

4πRs2Ψ(r, R, s) +
1

2
(e− + e+) +

ai
2r

(e− − e+), (3.100)

where e± = erfc

(
R± r
s
√

2

)
. (3.101)

Finally, at each time-step, the reduced reaction rate is calculated by,

ki∆t

ρ3
=

∫ 1

0

4πr2gi(r)dr, (3.102)

which computes the reduced reaction rate over the region in which the bimolecular reaction
occurs (0 6 r 6 1).

The Smoldyn algorithm can be summarised as,

1. Initialize δ = −3 and set s = exp(δ). Set g(r, 0) = g0(r) = 1.

2. Diffuse molecules by calculating (3.97).

3. React molecules by calculating reduced reaction rate with (3.102).

4. Set g(r) = 0 for 0 6 r 6 1.

5. Repeat steps 2-4 until the difference between successive k values is less than 1/105.

6. Store the value of the reduced reaction rate k corresponding to the value of s.

7. Increment δ by 0.1, and repeat steps 1-6 until δ = 3.

The stored values of the reduced reaction rate k and the parameter s now form a lookup
table. This lookup table only needs to be generated once in the Smoldyn algorithm (and
in fact is already loaded in the Smoldyn software).

Before the table can be used, the case of when δ < −3 and δ > 3 need to be considered.
For these cases, it is not worth calculating k using the above algorithm. Instead these
cases converge to exact simple equations of the form,

k∆t

ρ3
= 2πs2, for s < exp(−3), (3.103)

k∆t

ρ3
=

4π

3
, for s > exp(3), (3.104)

where (3.103) is the Smoluchowski relation for small ∆t whilst (3.104) assumes each
time-step is large enough that the distribution of particles inside the reaction radius is
well-mixed and equal everywhere to the constant distribution as r →∞.

Given that there is now a table and equations for all values of s, the table can be
inverted to find ρ given a particular choice of k and ∆t. This inversion process is carried
out using a root bracketing algorithm (see [81]). Theoretically, this new value of ρ (for a
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large time-step) should provide the same results as the ρ from Smoluchowski (for a small
time-step). If this is the case, then the larger time-step would run much faster, and is
better to use. In reality, there still needs to be a balance of accuracy against speed, so
the larger time-step may not produce highly accurate results since the reaction becomes
rate-limited instead of diffusion-limited, but it does allow a complicated simulation to be
completed in a much faster time. To that extent, Smoldyn actually does an excellent job
at getting accurate results for larger time-steps, and this explains its widespread utility
in scientific and mathematical research.

Reversible bimolecular reactions

Smoldyn can also simulate reversible bimolecular reactions. Let α = σ/ρ be the ratio
between the unbinding and binding radius. The algorithm in the previous section to
generate the lookup table is only modified slightly. After the reaction in step 4 (g(r) set
to 0 for 0 6 r 6 1), a diffused delta function Ψ(r, σ, s) is added to g(r). Given a particular
choice of k+, α, and ∆t, the lookup table is inverted to solve for ρ and σ.

3.7 Conclusion

The main focus of this chapter was to provide a detailed overview of how Smoluchowski
kinetics can simulate reaction-diffusion processes on a microscopic scale. Smoluchowski
and Doi kinetics are used to simulate irreversible bimolecular reactions. Lipková et al.
extended this work to reversible bimolecular reactions. Flegg took Smoluchowski and Doi’s
approach, extending it to irreversible Nth-order reactions. This leads to the question,
how can these kinetics be generalized into one singular framework capable of modelling
reversible N -molecular reactions? Naturally this leads to the next question, how does the
Smoldyn algorithm need to be modified such that it can simulate reversible N -molecular
reactions? These two questions are researched in Chapter 4.
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Chapter 4

Reversible Doi and Smoluchowski
kinetics for high-order reactions

4.1 Introduction

Smoluchowski kinetics has undergone an extensive evolutionary process since its creation
over 100 years ago. The kinetics, originally describing the contact rate of two diffusing
spheres [110], has since been applied to modelling reaction-diffusion processes for biolog-
ical systems [81]. Masao Doi extended the kinetics to simulate the repeated collision of
molecules before they react [115]. This framework was expanded to model bimolecular
reactions that can go in reverse [116]. Most recently, the kinetics described the irreversible
reaction of more than two molecules [118].

The continuous development of these kinetics has championed one of the last works
by Marian von Smoluchowski [110]. However, there is still one missing piece with these
kinetics, that is how can they be used to describe reversible reactions involving any number
of molecules under a Doi regime?

The focus of this chapter is on developing the Doi (and subsequently Smoluchowski)
kinetics for the following chemical reaction of N molecules at the scale of individual
molecules,

A1 + A2 + · · ·+ AN
k+−⇀↽−
k−

P, (4.1)

where k+ and k− are the reaction rate constants for the forward and reverse reaction
respectively, Ai is the ith chemical reactant, and P is the product of the reaction of N
molecules [119].

To derive the kinetics for (4.1), the notation in this chapter will closely follow that of
Lipková et al. and Flegg, where the reversible bimolecular reaction frameworks in Lipková
et al. [116] are extended to higher-order reactions in the framework of Flegg [118]. A lot
of the notation was introduced in Sections 3.5.7 and 3.5.9, however it is reintroduced here
to remind the reader.

To begin with, a particular set of N reactants in the system of molecules is identified.
At any moment in time these N reactants can either be in the bound state P or in the
dissociated state. In the dissociated state, the positions of the N molecules (one of each
reactant species Ai) in space is denoted by xi for i = 1, . . . , N with diffusion constants
Di respectively. For higher-order reactions, it is useful to transform the problem of the
reacting system to ‘proximity’ coordinates ηi (analogous to a scaled Jacobi coordinate
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system) rather than particle coordinates xi. These coordinates are,

ηi =

√
∆N

D̂i

(xi − xi−1) , for i = 2, . . . , N (4.2)

where xi =

∑i
j=1 xjD

−1
j∑i

m=1 D
−1
m

, (4.3)

D̂i = Di +Di−1, (4.4)

∆N =
ΣN
i=1D

−1
i

Σ16m<i6N(DiDm)−1
, (4.5)

Di =
1

Σi
m=1D

−1
m

, and (4.6)

D =
N∏
i=2

(
D̂i

∆N

)3/2

. (4.7)

The sum in the denominator of (4.5) is taken for all integer combinations of i and m where
i is strictly greater than m. The variable xi−1 represents the centre of diffusion of the
previous (i−1) molecules (that is, the molecules of A1 through Ai−1 inclusive) [118]. Jacobi
coordinates are usually constructed using the centres of mass. The centre of diffusion is
calculated in the same way as the centre of mass but instead of weighting with mass the
inverse diffusion constants of the respective point particles are used instead (4.3). The
advantage of using diffusion-based Jacobi coordinates is that under this transformation to
the system, the Laplacian remains unchanged whilst at the same time the vectors ηi for
i = 2, . . . , N are measures of the point separations rather than their absolute positions in

space. The scaling of

√
∆N/D̂i for each of the proximity vectors in (4.2) mean that the

resultant diffusion of the set of reactants in proximity space is isotropic and symmetry may
then be exploited. The vectors ηi for i = 2, . . . , N describe the relative positions of the
molecules in space and are shown diagrammatically without their scaling in Figure 4.1a.

The measure of ‘closeness’ is called the proximity for the N molecules PN [118]. This
proximity is,

PN =

[
N∑
i=2

‖ηi‖2

]1/2

. (4.8)

A higher-order reaction (or even a bimolecular reaction) occurs when the proximity of N
reactants falls within a critical distance ρ. That is, when

PN < ρ. (4.9)

The reaction parameter ρ, often referred to as the binding radius, is ubiquitous through-
out the various reaction frameworks discussed in Chapter 3, and is determined by the
macroscopic reaction rate constant k+. Throughout this chapter, ρ shall be referred to
as the binding proximity, as it is a parameter that operates in 3(N − 1) dimensional
space. The two-dimensional projection of ρ for a 3-particle system is shown visually in
Figure 4.1b. The projection into the two-dimensional plane is dependent on the angle
between the position vectors and the diffusion constants of the model.
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Figure 4.1: (a) Unscaled proximity coordinates ηi = ηi

√
D̂i/∆N in relation to molecule

positions in space xi for a 4-molecule system of reactants. (b) Plot of the 2-D projection
of how far x2 and x3 can be from x1, given the angle α, which is the angle between the
vectors x2 − x1 and x3 − x1. This plot is centred around x1. The diffusion constants
and the reaction proximity ρ are set to 1. Each curve is part of the ellipse with equation
‖x2‖2 + ‖x3‖2 − ‖x2‖‖x3‖ cos(α) = 3/2, where the three α angles are chosen as 0, π/2,
and π. For α = π, x2 and x3 are at their furthest point away from each other, hence they
need to be much closer to x1 to satisfy the reaction condition (4.8). For α = 0 (black
curve), x2 and x3 are the closest to each other that they can be, therefore allowing the
molecules to be further away from x1 and still satisfy (4.8).

When the reaction goes in reverse, the resulting N molecules are placed a proximity
at exactly the critical distance σ. That is, when

PN = σ. (4.10)

To derive the kinetics for this reaction, a similar approach to the derivations in Sec-
tion 3.5 is executed. Specifically, the methods used in the derivation of Flegg kinetics
(Section 3.5.8) and Lipková kinetics (Section 3.5.7) are combined together.

Similar to the Lipková approach, the problem is split up into two cases: the case when
the ratio α > 1, and the case where α 6 1 (reminder that α = σ/ρ). The probability of
geminate recombination φ is derived for both cases, and it is shown how they can be used
to assist in choosing the parameters for numerical simulations. The algorithm to simulate
these kinetics is developed by extending the Smoldyn algorithm to reversible N -molecular
reactions. This is then applied to a theoretical example to check the method works for the
simplest bimolecular, trimolecular, and quadmolecular reaction. Finally, this stochastic
simulation is applied to the Lee model of the Wnt signalling pathway, highlighting how
the model fails, and how it can be fixed by modifying the model to include a trimolecular
reaction.
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4.2 Reaction kinetics for reversible N-molecular re-

actions

To model reversible reactions involving N reactants, the parameter α, used in the Lipková
et al. paper [116], is reintroduced here as,

α =
σ

ρ
. (4.11)

As a reminder, α is the ratio of the unbinding proximity σ to the binding proximity ρ. In
simpler terms, α demonstrates how far away the reactants produced by a reverse reaction
are placed (with relative separation equal to σ) in comparison to the reactants combining
together (within the binding proximity ρ) for the forward reaction of (4.1).

It is important to note that the unbinding radius σ in this case is a parameter to
control the rate of the forward reaction (and not the reverse reaction). This appears to
be counter-intuitive, as it is only introduced when modelling reversible reactions. This
is because, under pseudo-steady state conditions where particles unbind at a distance
σ and rate k−, the forward reaction rate which includes geminate recombination and
bulk interactions should remain k+, and this is dependent on carefully determining the
correct diffusion-controlled relationship between σ and ρ. Since the presence of geminate
recombination increases the net forward reaction rate, the reaction radii ρ is smaller than
its irreversible counterpart. If α is large, then the reversible reaction is initialised so
that the forward reactants are effectively placed ‘in bulk’ and geminate recombination
probability goes to zero. In this case, ρ is expected to reduce to the irreversible case (as
will be demonstrated in general in this section, and was demonstrated for bimolecular
reactions by Lipková et al. [116])

The implementation of the unbinding radius is as follows. At an exponentially dis-
tributed time with rate k−, P unbinds into A1, . . . , AN . A uniformly distributed random
direction in [3(N − 1)]-dimensional proximity coordinates (as defined by (4.2)) is chosen
and the N molecules are initialized with a proximity of σ in that direction.

In the Doi framework, it is possible to set σ 6 ρ and still balance the reverse and
forward reactions (which is obviously not possible in the Smoluchowski framework). Thus,
the results of the analysis will be presented separately depending on whether or not α > 1
or α 6 1 in the Doi framework. Specifically, it will be shown the relationships between
k+, σ and ρ which keep (1) the net forward reaction rate at k+ times the concentration
of reactants in the bulk and (2) the forward and reverse reactions in pseudo-equilibrium.
The derivation for these relations are in Sections 4.2.1 and 4.2.2. The two cases are shown
diagrammatically in Figure 4.2 (for the case of N = 3).

58



4.2. REACTION KINETICS FOR REVERSIBLE N -MOLECULAR REACTIONS

(a) (b)

Figure 4.2: Two-dimensional projection of proximity coordinates for a set of three reac-
tants undergoing a reversible third order reaction shown for cases in which (a) α > 1 and
(b) α 6 1. The red point indicates a possible set of three reactants moving within the
coordinate system. When the proximity is less than ρ, a reaction may occur between these
reactants which removes the state from the system. The region in which the reaction may
occur is shaded in gray and is determined by the forward reaction rate k+ and σ. At a
rate k−, for each reacted product P in the system, a set of three reactants is initialized
with P at their centre of diffusion such that their proximity is exactly σ. This corresponds
to somewhere, randomly sampled, from the dotted manifold. An example of one of these
initiated reactant triplets is portrayed in blue in each case. This newly initiated set of
reactants then either diffuse away from the reaction region in gray or reacts shortly after
being initialized (geminate recombination).

4.2.1 Case α > 1

Here the kinetic rate equation for a Nth order reversible reaction under the Doi regime is
derived. Let P be a joint cumulative distribution function that describes the probability
of finding a combination of reactant molecules with positions x1,x2, . . .xN that have yet
to react. This function satisfies,

∂P (x, t)

∂t
=

[
N∑
i=1

Di∇2
i

]
P (x, t). (4.12)

Equation (4.12) is transformed into proximity coordinates by (4.2) and the domain is split
into two regions; the region inside the binding proximity (3.70) and the region outside
it. Inside the binding proximity, a sink at a rate λ is added. It is assumed that the
reversible reaction occurs at some rate at a proximity of σ outside of the reaction radius.
A pseudo steady-state is assumed. In steady state the cumulative distribution function
in the proximity space for a set of reactants is described by the PDEs,

0 = ∇̂2P − λP, for PN 6 ρ, (4.13)

0 = ∇̂2P +Q(PN − σ), for PN > ρ, (4.14)

where ∇̂2 is the full 3(N − 1) dimensional Laplacian and Q(PN − σ) is a Dirac-like
distribution describing the creation of molecules from the reverse reaction at a proximity
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σ from the origin. It may seem important at this stage to enforce that the rate of
production described by Q is dependent on k− and the probability of being in the bound
state, but this is not important. This is because for any rate of production at a proximity
σ, the production rate is balanced with a forward reaction rate of k+; the rate k− just
determines the rate particles should be generated at σ in steady state, but it should
not affect the calculation of k+ as it relates to σ. To analyse these PDEs, the following
dimensionless quantities are introduced,

r =

√√√√ N∑
i=2

‖ηi‖2

ρ2
, β = ρ

√
λ

∆N

, κ =
k+

∆NDρ2µ
, µ =

(3N − 5)

2
. (4.15)

In the processes of transforming (4.12) into (4.13) and (4.14), the scaling Jacobian D is
introduced, and a normalization factor ∆N , which depend on the diffusion constants of
the system of particles. Due to the symmetry of the problem, (4.13) and (4.14) produce
the following two ODEs for p(r) (the dimensionless cumulative distribution function P in
its radial proximity coordinate),

0 =
d2p

dr2
+

(2µ+ 1)

r

dp

dr
− β2p, for r 6 1, (4.16)

0 =
d2p

dr2
+

(2µ+ 1)

r

dp

dr
+ ωδ(r − α), for r > 1, (4.17)

where ω describes the non-dimensional nominal rate of creation of molecules at r = α
(which becomes inconsequential after balancing this rate with the flux over the boundary
r = 1) and δ(r−α) is the Dirac delta function. The following conditions are implemented:
that p(r) remains bounded at r = 0, is continuous and differentiable at r = 1, and in the
limit that r → ∞, p(r) → 1 which represents the dimensionless cumulative distribution
function of molecules far enough away from the origin. The parameter ω is eliminated by
noting that at equilibrium, the rate of molecules created by the reverse reaction is equal
to the rate at which molecules are consumed in the forward reaction. Additionally, the
dimensionless forward reaction rate constant κ is equal to the total flux of the cumulative
distribution function over the unit hypersphere at r = 1. Combining these two statements
gives

κ = S2(µ+1)ωα
2µ+1 = S2(µ+1)

dp

dr

∣∣∣∣
r=1

, (4.18)

where Sm is the surface area of a unit m-dimensional hypersphere calculated by Sm =
mπm/2/Γ(m/2+1), where Γ is the gamma function with respect to the argument (m/2+1).
Solving (4.16) and (4.17) with the appropriate boundary conditions gives,

p(r) = 2µ

(
1 +

ωα

2µ

)
1

βI ′µ(β) + µIµ(β)

(
Iµ(rβ)

rµ

)
, for r 6 1, (4.19)

p(r) =

(
1− 1

r2µ

)(
1 +

ωα

2µ

)
βI ′µ(β)− µIµ(β)

βI ′µ(β) + µIµ(β)

− ωαH(r − α)

2µ

(
1−

(α
r

)2µ
)
, for r > 1, (4.20)
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where H is the Heaviside step function, I is the modified Bessel function of the first
kind and I ′µ(β) is the derivative of Iµ(rβ) with respect to r and evaluated at r = 1. This
relation is equal to I ′µ(β) = [Iµ−1(β) + Iµ+1(β)] /2. Insertion of (4.19) or (4.20) into (4.18)
gives

κ =
4πµ+1α2µΦµ(β)

Γ(µ) (α2µ − Φµ(β))
, (4.21)

where

Φµ(β) = 1− 4µIµ(β)

β[Iµ−1(β) + Iµ+1(β)] + 2µIµ(β)
. (4.22)

Redimensionalising (4.21) gives the new kinetics,

k+ =
4πµ+1D∆Nρ

2µσ2µΦµ (β)

Γ(µ) [σ2µ − ρ2µΦµ (β)]
. (4.23)

Special cases of this relation can be derived by taking appropriate limits. For the case of
α > 1, the Smoluchowski regime is valid, and the relationship between k+, ρ, and σ is
derived by simply taking the limit λ→∞ (β →∞) to give,

k+ =
4πµ+1D∆Nρ

2µσ2µ

Γ(µ)(σ2µ − ρ2µ)
. (4.24)

The irreversible rate is derived from initializing reversible reactions at σ →∞. As σ →∞,
(4.23) and (4.24) agree with (3.84) and (3.86) as expected. It is important to note that
one cannot simply take the limit k− → 0 to go from reversible to irreversible regimes
since this violates the assumption that k− = O(1). With such slow reversible reactions, a
pseudo-steady state cannot be assumed and other more detailed methods are required (or
in many circumstances with k− small one can just assume that the reaction is irreversible
and/or simply place initialized reactants far from the reaction radius).

If the forward reaction is bimolecular, substitution of N = 2 into (4.23) reduces the
relation to (noting that when N = 2, µ = 1/2 and Φµ reduces to include hyperbolic
trigonometric functions),

k+ =

4πσD̂2

(
ρ

√
λ

D̂2

− tanh

(
ρ

√
λ

D̂2

))

σ

√
λ

D̂2

− ρ
√

λ

D̂2

+ tanh

(
ρ

√
λ

D̂2

) , (4.25)

which is the same as (3.46), albeit written in a different form.
The famous Smoluchowski result k+ = 4π(DA + DB)ρ is recovered from (4.23) by

taking the series of limits σ →∞ and λ→∞, and then setting N = 2.

4.2.2 Case α 6 1

This section focuses on the derivation for the reaction kinetics for a Nth order reversible
reaction in which the unbinding proximity is smaller than the binding proximity (i.e.
α 6 1). In this case the ODEs (4.16) and (4.17) have to be replaced with the single ODE,

d2p

dr2
+

(2µ+ 1)

r

dp

dr
− β2p+

κ

S2(µ+1)α2µ+1
δ(r − α) = 0, for r 6 1. (4.26)
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As the reactions occur within r 6 1, there is no diffusive flux (since the system in steady
state) for r > 1. Hence the scaled cumulative distribution function p(r) is constant and
equal to 1 for r > 1. The general solution to (4.26) is

p(r) =
c1

rµ
Iµ(rβ) +

c2

rµ
Kµ(rβ)

− κ

(rα)µS2(µ+1)

f(r, α) [Kµ(αβ)Iµ(rβ)− Iµ(αβ)Kµ(rβ)] , (4.27)

where Kµ is the modified Bessel function of the second kind and

f(r, α) = (2H[r − 1]− 1)H [α− rH[1− r]−H[r − 1]]×
H [−α +H[1− r] + rH[r − 1]] . (4.28)

As there is no diffusive flux at r = 1, then
dp

dr

∣∣∣∣
r=1

= 0 and p(1) = 1. Applying these

conditions to (4.27) gives

κ =
2πµ+1αµβ2Iµ+1(β)

Iµ(αβ)Γ(µ+ 1)
. (4.29)

In this case reactants are generated with a proximity σ less than ρ, and immediately
after being initialized, they satisfy the binding condition (4.9). As such, a Smoluchowski
framework cannot be used here. Thus the Doi framework is exclusively considered here.
In this case, in dimensionalised form,

k+ =
2πµ+1Dσµρ2+µλIµ+1 (β)

Iµ

(
σ

√
λ

∆N

)
Γ(µ+ 1)

. (4.30)

The most logical advantage in using the case α 6 1 is it allows for placement of reactants
to be on top of each other (in the location of the original product P ) when the reverse
reaction occurs. This significantly simplifies the implementation of the reverse reaction in
practical problems. The forward reaction rate can be determined in this case by taking
α→ 0. In this limit, (4.30) becomes

k+ = (2π)µ+1Dρ2+µλβ−µIµ+1 (β) . (4.31)

Whilst this equation is easy to implement, it may not be ultimately desirable due to the
high expected frequency of geminate recombination which slows the computational time
of practical simulations significantly. In the next section, the geminate recombination
probability is derived. One of the other important reasons for knowing this probability
as a function of model parameters is because it allows a modeller to answer the question
of ‘how large should σ be such that the forward rate of reaction is determined by the
irreversible relationship?’. In other words, if the assumptions of pseudo-steady state are
relaxed, how does geminate recombination go to zero as σ gets large resulting in decreased
coupling of the forward and reverse processes?

4.2.3 Geminate recombination

Let φ be the probability of geminate recombination, β is the dimensionless Doi reaction
rate, and π(r) the probability that newly created molecules A1, A2, · · · , AN formed from
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the dissociation of P with a proximity of PN = r react again before diffusing away (that
is the separation of molecules r → ∞). Of all forward reactions that occur, a fraction φ
of them are geminate reactions. To calculate the probability π(r), the fraction of non-
geminate reactions (1 − φ), and the rate (β2) that they undergo a reaction needs to be
known. Using a method similar to Berg [113] and Lipková [116], the resultant ODEs are,

0 =
d2π(r)

dr2
+

(2µ+ 1)

r

dπ(r)

dr
+ β2(1− π(r)), for r 6 1, (4.32)

0 =
d2π(r)

dr2
+

(2µ+ 1)

r

dπ(r)

dr
, for r > 1, (4.33)

where the right hand term of (4.32) describes the rate at which molecules that have yet
to combine will recombine, whilst (4.33) does not have a term as this is outside the region
for the forward reaction. Solving these two ODEs gives the general solutions

π(r) = a1
Iµ(rβ)

rµ
+ a2

Kµ(rβ)

rµ
+ 1, for r 6 1, (4.34)

π(r) = a3 +
a4

r2µ
, for r > 1. (4.35)

π(r) has constraints that it exists at the origin, is continuous at r = 1 including its
derivative, and that as r → ∞, p(r) → 0. In dimensionless variables, when the reverse
reaction happens, the separation of particles is equal to α. Implementing the above
conditions and defining φ = π(α) yields the probability of geminate recombination,

φ = 1− 4µIµ(αβ)

αµ [βIµ−1(β) + 2µIµ(β) + βIµ+1(β)]
, for α 6 1, (4.36)

φ =
[βIµ−1(β)− 2µIµ(β) + βIµ+1(β)]

α2µ [βIµ−1(β) + 2µIµ(β) + βIµ+1(β)]
, for α > 1. (4.37)

In the Smoluchowski limit (β → ∞), then φ = 1 for α 6 1 (as expected, geminate
recombination is inevitable), and for α > 1, φ = α−2µ, which agrees in the bimolecular
case of φ = 1/α as published by Andrews and Bray [81].

Returning to the Doi framework, in the case when α → 0 (σ → 0) discussed in
Section 4.2.2, (4.36) reduces to

φ = 1− 4µβµ

2µΓ(µ+ 1) [βIµ−1(β) + 2µIµ(β) + βIµ+1(β)]
. (4.38)

As previously discussed, whilst setting α = 0 has benefits for numerical implementation,
it can lead to high computational overhead because of the suboptimal geminate recom-
bination probability. To keep φ small in the case of α = 0, set β = βc � 1 and take the
first order Taylor expansion of (4.31) and (4.38) to obtain,

φ ≈ β2
c

4µ
, and k+ ≈ πµ+1∆NDρ2µβ2

c

Γ(µ+ 2)
. (4.39)

Combining the two equations in (4.39) together alongside the Flegg kinetics in (3.86)
gives,

φ =
k+Γ(µ)(µ+ 1)

4πµ+1∆NDρ2µ
=
ρ2µ
s

ρ2µ
(µ+ 1), (4.40)
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where ρs is the binding proximity for the irreversible case in (3.86). This new relation
is based on the kinetics if the reaction was irreversible, in comparison to the reversible
reaction kinetics.

The final thing to note about the geminate recombination probability in the case of
α > 1 is that φ falls away at a rate of α−2µ. In terms of reaction order this is α3N−5. The
implication is that convergence of k+ as defined in the reversible case to the irreversible
case is much faster as σ gets large when the reactions are higher-order reactions. The
advantage of using higher-order reactions in this case is that one can effectively use the
σ → ∞ limiting case more easily without sacrificing the accuracy of the simulation. As
previously discussed, taking the limit σ → ∞ means that forward and reverse reaction
rates are not coupled by geminate recombination which allows for a relaxation of the
pseudo-steady state assumption.

4.2.4 Selecting free parameters

For irreversible Doi reactions, there are two parameters to determine λ and ρ. Equa-
tion (3.84) determines one parameter, so at most there is one free parameter to calculate.
Often the choice is determined by setting either ρ = ρmol (the molecular radius) for more
heuristically ‘realistic’ simulations or λ → ∞ for more simplistic implementation. For
reversible Doi reactions, there are three parameters to determine, λ, ρ, and σ. Finding
a suitable value for σ is complicated by the introduction of the probability of geminate
recombination φ.

In both the Doi and Smoluchowski frameworks, φ ∝ α−2µ, where α = σ/ρ > 1.
Choosing α (by appropriately choosing σ sufficiently large) such that φ is kept low has
a number of benefits. Firstly, it means that simulations will not need to track a large
number of superfluous geminate recombination events. Secondly, the reaction rate k+

more accurately approximates the irreversible rate and therefore the simulations are more
robust to relaxations in the pseudo-steady state assumption.

Choosing parameters in order to keep φ small depends on the application. Of course,
setting σ to be so large that reactants initialized in the domain of the problem are well-
mixed will lead accurately to irreversible forward reaction rates, however at the cost of
losing the spatial heterogeneity of these reactants required in many applications. Ideally,
one should choose σ large enough such that k+ in the reversible case is approximately the
irreversible case. Based on (4.23), this is achieved for σ � ρΦµ(β)1/(2µ) where ρ is the
irreversible reaction radius. To what extent is ‘much less than’ here depends on the order
of the reaction N as discussed in the previous section (since φ ∝ α−2µ). Once σ is chosen,
the other parameters ρ and λ may be chosen.

In some applications, taking a large σ is just not practical. In these situations, one
might choose to minimize the complexity of the numerical simulations by simply setting
α = 0 and choosing β to be small as described in Section 4.2.3.

4.3 Development of Smoldyn-based algorithm for re-

versible N-molecular reactions

The modelling of chemical reactions can be broken down into three main steps: diffusion
of the particles, forward reaction of N molecules, and a reversible reaction. Diffusion
is modelled with Brownian dynamics as dictated by the Euler-Maruyama method [95].
The forward reaction occurs with probability, Pλ = λ∆t whenever N reactants meet the
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reaction proximity condition in (4.9). If Pλ = 1, then the reaction occurs instantly, i.e.
the reaction is in the Smoluchowski regime. For the reverse reaction, each molecule can
dissociate with probability, Prev ≈ 1− exp(−k−∆t).

The simulation proceeds by the following 3 steps in each time-step,

1. If one of each of the molecules A1 to AN are within the binding proximity ρ, then
generate a random number r1 uniformly distributed in the interval (0, 1). If r1 < Pλ,
then the forward reaction occurs. A molecule of P is placed such that it is located
at the centre of diffusion of the N reacting molecules.

2. For each molecule of P , generate a random number r2 uniformly distributed in the
interval (0, 1). If r2 < Prev, then the reverse reaction occurs. The molecules A1 to
AN are placed randomly on the surface of a 3(N − 1)-dimensional hypersphere with
radius σ such that their centre of diffusion is equal to the dissociating molecule P .

3. Use Brownian dynamics to update the position of every molecule.

In the event that ∆t → 0, then the Smoluchowski results derived in this chapter are
sufficient to use in a simulation. This method utilizes a finite time-step, as done in the
Smoldyn program [81]. This algorithm was extended by Flegg to work for irreversible
N-molecular reactions [118]. For numerical purposes, the size of the reaction proximities,
ρ and σ are modified based on the time-step and the choice of λ. For larger time-steps
and smaller λ, the reaction proximity increases. This modification effectively allows a
modeller to use a higher time-step without compromising on accuracy.

The algorithms to generate a lookup table relating the reaction rate constant k+ to
the reaction proximity ρ, and to find ρ from this lookup table, as well as a numerical algo-
rithm to calculate the probability of geminate recombination are detailed in the following
sections.

4.3.1 Generating a finite time-step lookup table relating ρ to k+

for a reversible Nth order reaction

A lookup table allows one to choose an appropriate reaction proximity ρ based on the
reaction rate constant k+ and the time-step ∆t. The cumulative distribution function
g(r, τ) is defined to behave like a time-dependent analogue of the distribution p(r) in
between time-steps. Creating a source term at r = α for the reverse reaction gives the
reaction-diffusion PDE,

∂g

∂τ
=

1

r2µ+1

∂

∂r

(
r2µ+1∂g

∂r

)
+

κδ(r − α)

S2(µ+1)α2µ+1
. (4.41)

The time-step is nondimensionalised by ∆t = ρ2∆τ/∆N . For even values of N , analytic
Green’s functions can be used to solve (4.41) and give an integral equation relating g(r, τ+
∆τ) and g(r, τ). For odd values of N this cannot easily be done analytically, which means
(4.41) must be solved numerically. This is done by implementing a forward-time central-
space (FTCS) finite difference scheme.

To ease the restrictions on the time-step, the parameter s′ is introduced where s′ =√
2∆N∆t

ρ
=
√

2∆τ . For the sake of generating a table, let s′ = exp(δ), where s′ has

a range exp(−3) 6 s′ 6 exp(3) and the values of δ typically increase by 0.2. The table
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generated from the proceeding steps will store dimensionless reduced reaction rate K with
each value of s′ where,

K = κ∆τ =
k+∆t

Dρ2µ+2
= lim

τ→∞
Pλ

∫ 1

0

S2(µ+1)r
2µ+1G(r)dr, (4.42)

and G(r) is the steady distribution g(r, τ) that is generated by iterating a numerical
solution of (4.41) from τ to τ + ∆τ . Before each iteration, the g(r, τ) distribution is
reduced by a factor (1− Pλ) for r < 1 to simulate removal by forward reaction.

The following iterative scheme is implemented to generate the table.

1. Set values for Pλ and α. Set δ = −3. δ increases at each iteration until it reaches
δ = 3. For α 6 1, the order is reversed, δ begins at 3 and decreases until it reaches
-3 or K →∞. Set s′ = exp(δ).

2. Initialize g(r, 0) = g0(r, 0) = 1 for 0 < r < R. R is chosen to be sufficiently far from
the reacting proximity at r = 1. It is found that choosing R to be the greater of
dαe or 2 is good enough. Values of r are separated by ensuring ∆r � ∆τ .

3. Diffusion simulated by numerically solving the homogeneous part of (4.41) from
τ = 0 to τ = ∆τ . Boundary conditions are implemented by letting g(r) = 1 for
r > α. If α 6 1, then g(r) = 1 for r > 1. At the origin, a zero derivative boundary
condition is implemented.

4. The reduced rate of reaction K is computed by (4.42).

5. The forward reaction depletes the cumulative distribution function for r 6 1 for the
next iteration of g by setting g(r, 0) = gi+1(r, 0) = (1− Pλ)gi(r,∆τ) in this region,
but leaving the distribution unchanged elsewhere.

6. The back reaction is incorporated by adding

f(r) = ωδ(r − α) =
Pλ
α2µ+1

δ(r − α)

∫ 1

0

r2µ+1gi(r,∆τ)dr (4.43)

to the function gi+1(r, 0).

7. Repeat steps (2) through (6) iterating gi each time. If consecutive K differ by more
than 1 part in 105, the scheme undergoes another iteration by repeating steps (4)
to (7) using the new initial distribution gi+1(r, 0). Otherwise, take gi(r,∆τ) = G(r)
and the corresponding reaction rate constant from (4.42) is stored in a table.

8. For α > 1, increase δ by 0.2. If α 6 1, decrease δ by 0.2. Repeat steps (2) to (8).

9. If required, repeat the entire algorithm for different values of Pλ and α.

4.3.2 Finding ρ from the lookup table

With the lookup table generated in Section 4.3.1, a second iterative scheme is used to
determine the value of ρ to be used in a simulation. The table in Section 4.3.1 is generated
for values of s′ in the range exp(−3) 6 s′ 6 exp(3). Within this range, K is found by the
lookup table. Outside of this range, other formulas are used.
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For s′ > exp(3), approximate G(r) = 1 for all r, τ , and

K =
Pλπ

µ+1

Γ(µ+ 2)
. (4.44)

For s′ < exp(−3), the Smoluchowski results from Section 4.2 can be used. The time-step
∆t is approximated by a differential dt and if α > 1, then

K =
2s′2πµ+1α2µΦµ(β)

Γ(µ) [α2µ − Φµ(β)]
. (4.45)

In the case where Pλ = 1, then (4.45) reduces to

K =
2s′2πµ+1α2µ

Γ(µ) (α2µ − 1)
. (4.46)

If α 6 1, then substitute the related equation into (4.42) to get

K =
s′2αµπµ+1β2Iµ+1(β)

Iµ(αβ)Γ(µ+ 1)
. (4.47)

In the special case of α = 0, then

K = 2µs′2πµ+1β−µρ2+µλIµ+1(β). (4.48)

The binding proximity ρ can then be found by following the root bracketing algorithm
used by Andrews and Bray [81], and Flegg [118]. Evaluations of K in this algorithm are
given by a table (in the suitable range of s′) or by the formulas presented in this section.
In the case that Pλ � 1 and α > 1, then it is advisable to tabulate s′ ∈ [exp(−6), exp(0)]
instead of s′ ∈ [exp(−3), exp(3)].

4.3.3 Numerical probability of geminate recombination

After using the methods in Sections 4.3.1 and 4.3.2 to calculate the binding proximity
given a particular pair of values of α and Pλ, the resulting values can be validated by
comparing them to the probability of geminate recombination. Given the choice of α,
Pλ and s′, these values are accepted if the probability of geminate recombination, φ, is
significantly less than 1.

To calculate this probability, a modification of the method from Lipková et al. is
presented [116]. From Lipková et al., p(r) is the probability that a newly formed molecule
reacts with its newly formed partner before escaping to infinity. The function p(r) satisfies
the equation

p(r) = Pλ

∫ 1

0

K(r, r′, s)dr′ + (1− Pλ)
∫ 1

0

K(r, r′, s)p(r′)dr′

+

∫ ∞
1

K(r, r′, s)p(r′)dr′, (4.49)

where K(r, r′, s) is the Green’s function solution to

∂g

∂τ
=

1

r2µ+1

∂

∂r

(
r2µ+1∂g

∂r

)
, (4.50)
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where (4.49) has the boundary condition that p(r) → 0 as r → ∞. The probability of
geminate recombination is then given as φ = p(α). Given that a Green’s function cannot
easily be found for higher-order reactions, the PDE is solved numerically instead. At each
time-step, the PDE is solved numerically from r = 0 to r = R, where R is far enough
away from r = α. Then p(r) in the range 0 6 r 6 1 is replaced with

pi+1(r) = Pλ + (1− Pλ)pi(r), for 0 6 r 6 1, (4.51)

where i refers to the ith iteration of solving the PDE. The iterations terminate when the
difference between pi+1(α) and pi(α) are less than 1 part in 105. After solving this, if φ is
too high, then choose either a higher value of α, or a lower value of Pλ, then repeat the
method in Sections 4.3.1 and 4.3.2 to find the required value of ρ.

4.4 Theoretical simulations

Here, the accuracy of higher-order reversible reactions is tested by comparing examples of
N = 2, N = 3 and N = 4 molecular reactions. The three independent chemical systems
start from steady state, and are run to determine how well they remain at steady state.
These three examples represent the reactions,

A+B
k+2−⇀↽−
k−2

P, (4.52)

A+B + C
k+3−⇀↽−
k−3

P, (4.53)

A+B + C +D
k+4−⇀↽−
k−4

P, (4.54)

where P represents some product molecule.

4.4.1 Definitions of parameters for theoretical simulations

For each simulation, k−i and k+
i is designed in such a way that the expected number of

reactant and product molecules at steady state would be 25. Nominal (dimensionless)
values for diffusion constants are set to DA = DB = DC = DD = DP = 1, and a domain
which was a unit cube with periodic boundary conditions (so as not to introduce any
boundary effects) was chosen. The initial copy numbers of A, B, C, D, and P are set to
their expected values of 25, and are uniformly distributed throughout the domain. The
dimensionless rate constants for each of the systems k+

2 = 3.2, k−2 = 80, k+
3 = 0.0032,

k−3 = 2, k+
4 = 1.28× 10−5, k−4 = 0.2 were set. For these simulations, a Doi regime is used,

by setting λ = 104, and ∆t = 10−5.

4.4.2 Results of theoretical simulations

The steady state distribution (defined at long times - specifically t = 100) for each chem-
ical system is displayed in Figure 4.3 juxtaposed with known well-mixed copy number
distributions for P (see Section 4.4.3 for the derivation).
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(a) (b)

(c)

Figure 4.3: The distribution of copy numbers for the production of product molecule P in
each of the steady state reversible systems overlapped with the theoretical distributions
(4.59). (a) Bimolecular system (4.52) with Kullback-Leibler divergence of 8.938×10−4, (b)
Trimolecular system (4.53) with Kullback-Leibler divergence of 0.0113, and (c) Fourth-
order molecular system (4.54) with Kullback-Leibler divergence of 0.011. The steady
state distribution (assumed after a dimensionless time period of t = 100) with time-step
∆t = 10−5 is plotted as blue bars. The theoretical distributions are plotted as red points.

Increasing the order of the reaction increases the computational time for each simu-
lation. For these simulations, custom MATLAB code was used. The computational time
for each simulation was recorded. For the bimolecular reaction, it took 1, 422 seconds,
the trimolecular reaction took 2, 211 seconds, and the quadmolecular reaction took 7, 242
seconds to complete. As expected, the computational time increases as the order of reac-
tion increases. The main reason for this is because at each time-step, each combination
of reactant molecules need to be checked to see if they are within the binding proximity.
Increasing the order of reaction increases the number of combinations of molecules to
check. One way to reduce the computational time is to implement computer science tech-
niques to speed up the algorithm, and to increase the CPU speed. This could be done
by following a similar method to the Smoldyn program designed to run on a graphics
processing unit [93].
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4.4.3 Chemical master equation derivation for N-molecular re-
actions

The theoretical steady state distributions in Figure 4.3 are found from the steady state
of the associated chemical master equation for each system. This equation is derived as
follows. Begin with the the general chemical reaction,

A1 + A2 + · · ·+ AN
k+−⇀↽−
k−

P. (4.55)

The results in this section were completed such that each of the reactants and products
will always have the same copy number. Hence let Ai(t) = n for all i = 1, 2, . . . , N . Define
pn to be the probability that there are n molecules each of Ai(t) at time t. The associated
master equation for (4.55) is,

dpn
dt

= −k+nNpn + k+(n+ 1)Npn+1 + k− [NT − (n− 1)] pn−1 − k−(NT − n)pn, (4.56)

where N is the order of the reaction, and NT is the maximum possible number of molecules
of Ai(t). Taking the steady state distribution,

p1 =
k−

k+
NTp0, (4.57)

pn+1 =
(k+nN + k−(NT − n))pn − k−(NT − (n− 1))pn−1

k+(n+ 1)N
. (4.58)

The solution of this recurrence formula is,

pn =

(
NT

n

)(
k−

k+

)n
p0

(n!)N−1
, (4.59)

where NT = 50 is the maximum number of product molecules possible in each of the
simulations in Figure 4.3, N is the order of the reaction, and pn is the probability that
there are n molecules of the product at steady state. The constant p0 is a normalization
constant such that

∑NT
n=0 pn = 1.

4.4.4 Comparison of theoretical simulations to steady state dis-
tributions

The distributions (4.59) (also plotted in Figure 4.3) start similar to a binomial distribu-
tion for N = 2 and become progressively narrower as the reaction order increases. This
is a property of the fact that when the system fluctuates to have fewer (or more) than
expected P molecules, the rate at which the system attempts to correct this is not pro-
portional to the deviation away from the expected value because the forward reaction rate
is proportional to (NT − n)N . There is very strong agreement between the simulations
and the theoretical distributions calculated by the Kullback-Leibler divergence for each
distribution [120].

4.5 Stochastic Doi model of the Wnt signalling path-

way

Here a stochastic microscopic model is developed for the Wnt signalling pathway using
the proposed simulation framework of this chapter. It is unclear how Wnt (and its target
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protein, β-catenin) give rise to a vast array of different cellular outcomes. It has been
suggested that noise-induced effects and/or positive feedback of negative regulators may
play a role in determining dynamic β-catenin concentrations in cells but to date, no
molecular-based stochastic model has been proposed [68].

In modelling the Wnt pathway, the erroneous outcomes that may result in modelling
some biological phenomena using only bimolecular reactions in a microscopic framework
is highlighted.

4.5.1 From the Lee model to a modified Wnt model

The presentation of the model is as follows; first the reader is reintroduced to the Lee
model [58]. As the model was fully discussed in Section 2.2.1, this section will just recap
the main processes and behaviour of the Lee model. From here, the Lee model is stripped
back to isolate the main β-catenin regulation cycle. The ‘modified’ Wnt model is simulated
using the Gillespie SSA (see Section 3.4.1 for details of the algorithm). Importantly, the
modified Wnt model (as with the Lee model on which it is based) considers chemical
reactions to be sequences of bimolecular reactions. It will be shown that, because of the
presence of fast time-scales in the model, a microscopic Smoluchowski simulation of the
modified Wnt system yields completely non-physical results. Interpreting the fast reaction
using a trimolecular reaction allows for a more accurate simulation and in the process of
constructing the model, it is noted that β-catenin levels may be subject to significant
stochastic focusing which may raise the β-catenin levels if the protein Axin is in short
supply (as is the case with Xenopus oocytes).

The Lee model contains 15 protein species which undergo a total of 17 possible zero-,
first-, and second-order reactions [58]. The full Lee ODE model is presented diagrammati-
cally in Figure 4.4a, alongside the ‘modified’ Wnt model in Figure 4.4b, and the ‘modified’
trimolecular Wnt model in Figure 4.4c. The main components of the pathway to be stud-
ied in this chapter include the formation of destruction complex (DC) from its constituent
proteins, the turnover of β-catenin (B) through natural production and degradation, the
rapid phosphorylation of β-catenin by destruction complex (DC*), and the influence of
Wnt (W) and Dishevelled (Di, Da) on dissociating the destruction complex.

4.5.2 A modified Wnt model

In this chapter, the components of the full Lee model which are stripped back in the
modified model are shown in boxes in Figure 4.4a. The remaining modified model is shown
in Figure 4.4b. The model is fully reduced to use a trimolecular reaction in Figure 4.4c.
Details of how this model reduction is achieved through quasi-steady state assumptions
is detailed in Section 4.5.3. The omissions of the modified Wnt model are justified here:

1. It is assumed the activation of Dishevelled in the presence of the Wnt protein reaches
equilibrium instantly. This is a significant simplification since the delay caused by
waiting for Dishevelled activation or deactivation can be important. This assump-
tion is made because Dishevelled activation/deactivation simply delays changes in
the core B regulation cycle and this is mathematically uninteresting to the underly-
ing mechanism being modelled. The modified Wnt model assumes the dissociation
rate of DC* is constant (but dependent on the binary states of Wnt being on or
off). If Wnt is switched from on to off (or vice versa), then the rate of dissociation
of the DC complex is instantaneously changed to match the Lee model in the case
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(a)

(b)

(c)

Figure 4.4: (a) Lee model with proteins to be removed enclosed within red boxes. (b)
Modified Lee model. (c) Modified Lee model using a trimolecular reaction for DC forma-
tion.
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where activated Dishevelled (Da) and inactivated Dishevelled (Di) reach instanta-
neous equilibrium. Thus, Wnt and Dishevelled are not explicitly present in the
modified model but the effects of these chemical species are modelled through the
changing of parameter k−6 (the dissociation rate of DC).

2. It is assumed phosphorylation of B bound to the destruction complex is rapid, there-
fore the effective binding rate of B to DC* is modified (reduced) to appropriately
reflect this change. The intermediate B/DC* complex simply adds a delay to the
degradation of B, therefore it is effectively modelled by delaying the association of
B with DC*.

3. The association of B/APC and B/TCF is excluded from the simulation. This was
done mostly for numerical efficiency but also because these reactions in the model
affect B only through a sequestration effect. Such an effect is experienced by other
(unmodelled) binding events such as B to surface proteins. This model does not
necessitate any of these stabilizing protein complexes which have a passive role in B
regulation and are uninteresting to the underlying regulatory process being modelled
here.

4.5.3 Reduction of the Lee model for Wnt signalling

In this section, the following notation is reintroduced. Di is inactive Dishevelled, Da is
activated Dishevelled,W is Wnt, Ap is APC, A is Axin, G is GSK3β, Ap/A is APC/Axin,
DC is APC/Axin/GSK3β, DC* is APC*/Axin*/GSK3β, B is β-catenin, B/DC* is β-
catenin/APC*/Axin*/GSK3β, and B*/DC* is β-catenin*/APC*/Axin*/GSK3β. The
values for each reaction rate constant, ki are presented in Table 4.1.

The dissociation of destruction complex by Dishevelled is treated as a constant
rate

To simplify the effect of W on DC, take the ODE for Da to be at equilibrium,

d[Da]

dt
= k1[W ][Di]− k2[Da] = 0. (4.60)

By adding the total concentration of Dishevelled, Dsh0 = [Di] + [Da], then the steady
state concentration of [Da] reduces to,

[Da] =
k1[W ]Dsh0

k1[W ] + k2

. (4.61)

The binding and subsequent phosphorylation of β-catenin with destruction
complex is combined into a single step

To simplify B/DC*, let its corresponding ODE reach equilibrium,

d[B/DC*]

dt
= k+

8 [B][DC*]− k−8 [B/DC*]− k9[B/DC*] = 0. (4.62)

This in turn gives,

[B/DC*] =
k+

8 [B][DC*]

k−8 + k9

. (4.63)

73



4.5. STOCHASTIC DOI MODEL OF THE WNT SIGNALLING PATHWAY

The ODEs for DC* and B*/DC* are (ignoring other reactions),

d[DC*]

dt
= −k+

8 [B][DC*] + k−8 [B/DC*] + k10[B*/DC*], (4.64)

d[B*/DC*]

dt
= k9[B/DC*]− k10[B*/DC*]. (4.65)

Substitution of (4.63) into (4.64) and (4.65) gives,

d[DC*]

dt
= −[B][DC*]

(
k+

8 −
k+

8 k
−
8

k−8 + k9

)
+ k10[B*/DC*], (4.66)

d[B*/DC*]

dt
= [B][DC*]

(
k+

8 −
k+

8 k
−
8

k−8 + k9

)
− k10[B*/DC*]. (4.67)

This is simplified by saying that k
+

8 is the modified reaction rate constant for Reaction 8,
and is given by,

k
+

8 =

(
k+

8 −
k+

8 k
−
8

k−8 + k9

)
. (4.68)

Formation of destruction complex is converted into a single trimolecular re-
action

To convert the formation of DC into a single trimolecular reaction, then the ODE for
Ap/A needs to be taken at equilibrium,

d[Ap/A]

dt
= k+

7 [Ap][A]− k−7 [Ap/A]− k+
6 [Ap/A][G] + [DC](k−6 + k3[Da]) = 0. (4.69)

At equilibrium,

[Ap/A] =
k+

7 [Ap][A] + [DC](k−6 + k3[Da])

k−7 + k+
6 [G]

. (4.70)

The ODE for DC (ignoring the phosphorylation/dephosphorylation reactions) is,

d[DC]

dt
= k+

6 [Ap/A][G]− [DC](k−6 + k3[Da]), (4.71)

Inserting (4.70) and (4.61) into (4.71) gives,

d[DC]

dt
=
k+

6 k
+
7 [Ap][A][G]

k−7 + k+
6 G0 − [DC]

(
k−6 +

k1k3[W ]Dsh0

k1[W ] + k2

)(
k−7

k−7 + k+
6 G0

)
, (4.72)

where G0 is the total concentration of GSK3β. The trimolecular rates are therefore,

k+
Tri =

k+
6 k

+
7

k−7 + k+
6 G0 , k−Tri =

k−6 k
−
7

k−7 + k+
6 G0 , kWnt =

(
k1k3[W ]Dsh0

k1[W ] + k2

)(
k−7

k−7 + k+
6 G0

)
,

(4.73)

where k+
Tri, k

−
Tri, and kWnt, are the trimolecular reaction rate constants for the forward

reaction, back reaction, and the increase to the back reaction rate in the presence of Wnt
respectively. Equation (4.72) is rewritten using the notation in (4.73) to give,

d[DC]

dt
= k+

Tri[Ap][A][G]− (k−Tri + kWnt)[DC]. (4.74)
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The parameters taken from the Lee model, and the new parameters calculated in this
section, are summarized in Table 4.1.

Table 4.1: Reaction rate constant parameters as used in the Lee model and the modified
model. A parameter not used in one of the models will be labelled N/A for not applicable.

Reaction Rate Constant Units Lee Model Modified Model

k1 min−1 0.182 N/A

k2 min−1 1.82× 10−2 N/A

k3 nM−1min−1 5× 10−2 N/A

k4 min−1 0.267 0.267

k5 min−1 0.133 0.133

k+
6 nM−1min−1 9.09× 10−2 N/A

k−6 min−1 0.909 N/A

K7 nM 50 N/A

K8 nM 120 N/A

k9 min−1 206 N/A

k10 min−1 206 206

k11 min−1 0.417 0.417

k+
12 nM min−1 0.423 0.423

k−12 min−1 2.57× 10−4 2.57× 10−4

k+
13 nM min−1 8.22× 10−5 8.22× 10−5

k−13 min−1 0.167 0.167

k+
Tri nM−2min−1 N/A 1.802× 10−4

k−Tri min−1 N/A 0.0901

kWnt min−1 N/A 0.451

k
+

8 nM−1min−1 N/A 1.717

k+
7 nM−1min−1 N/A 1.0× 10−2

k−7 min−1 N/A 0.5

k+
8 nM−1min−1 N/A 100, 000

k−8 min−1 N/A 12, 000, 000

4.5.4 A stochastic model from the modified Wnt model

To build a stochastic Wnt model, a spatial domain is introduced, and diffusion is used as
a mechanism for molecular transport. It is assumed that proteins diffuse at a constant
rate for all molecules where D = 10−6 mm2/s is used as it is a typical diffusion constant
for proteins [81]. Furthermore, the concentration of each protein needs to be converted
into a population number. This is achieved by multiplying the concentration by the
cell volume (V ). The Lee model uses Xenopus eggs which has a typical cell diameter
of 1 mm, (a cell volume of 4.2 mm3) [121]. Since Xenopus eggs are substantially larger
than most cells, using the whole cell volume would mean there are on the order of 100
billion molecules to simulate. A cubic sub-volume with one millionth the volume of the
whole cell is used, specifically a volume of size V = 4.2 × 10−6 mm3 which reduces the
approximate (expected) total population size to under 800,000. The initial copy numbers
for each species is listed in Table 4.2. On the boundaries of a cube, periodic boundary
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conditions are used.

Table 4.2: Initial populations of each protein

Protein Ap A Ap/A G DC DC* B B/DC* B*

Size 223,745 1 2 126,124 2 4 385,941 5 2,321

Importantly, the reduction in the domain volume means that the expected copy num-
ber of Axin (a core component of DC) is just 1. Careful consideration in this situation
has been taken to ensure that fluctuations in DC concentration on this spatial scale occur
mainly from reactions (on the time-scale of 1/k−6 ∼ 60 s) rather than from loss of spatio-
temporal fluctuations which would ordinarily be derived from diffusive transport between
sub-volumes of the oocyte (on the time-scale of V 2/3/D ∼ 250 s).

To simulate the molecules and reactions in the modified Wnt model, a Doi regime is
chosen for the simulations with Pλ = 0.1, α = 1.5 and ∆t = 5×10−5 min. The simulations
are run until a maximum time of 800 minutes. The simulation models the transition from
Wnt-on to Wnt-off by initializing molecular copy numbers to expected values according to
the steady state of the ODE system with k−6 in the ‘on’ state. In principle, the simulation
models the transition from high expected B copy numbers (∼ 386, 000) to low expected
B copy numbers (∼ 73, 000) as determined by the mean-field ODE system. As shall be
seen, this is not the case.

The Smoluchowski version of the modified Wnt model is compared to the model
simulated using the Gillespie SSA. The Gillespie SSA used in these simulations only
take into account the reaction events. The volume for the Gillespie SSA is kept as
V = 4.2 × 10−6 mm3, and the mean of 100 Gillespie simulations are plotted alongside
the Smoluchowski simulation in Figure 4.5

4.5.5 Failure of the modified Lee model and simulation of bi-
molecular reactions

Figure 4.5 compares the stochastic bimolecular simulation (Smoluchowski model) with
another stochastic simulation modelled using the Gillespie SSA [75]. In Figure 4.5b, it is
observed that initially the B does not seem to degrade as fast as it should but then ends
at a steady ‘Wnt-off’ state which is significantly less than the Gillespie model predicts. As
shall be seen later, the initial behaviour of B can be explained as a consequence of noise in
the system. The late (under prediction) of the Smoluchowski simulation, however, can be
explained by erroneous simulation of DC assembly using serialized bimolecular reactions.
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Figure 4.5: Results of the modified Lee model through comparison of the Smoluchowski
(blue curve) and Gillespie (red curve) models for (a) destruction complex, and (b) β-
catenin levels. The Smoluchowski model runs for 800 minutes using a time-step ∆t = 5×
10−5 min. For the Gillespie model, the average results of 100 simulations are plotted. The
models agree for the first 200 minutes at which point the number of APC/Axin/GSK3β
begin to increase. As a result, the degradation of β-catenin sharply increases and reaches
a lower than expected steady state.

In Figure 4.5a, it is clear that the reason for low B copy numbers in the Wnt-off state
are due to significantly inflated DC copy numbers. This phenomenon can be explained by
the fact that reaction radii are determined by assuming that they are small and pseudo-
steady flux is achieved quickly. In the case of APC/Axin complex binding with GSK3β
to form the destruction complex, the reaction radius is large (due to the high affinity of
GSK3β for APC/Axin) and thus the forward rate (the formation of DC) is unphysically
inflated.

The simulations can be visualized with the use of Figure 4.6 which breaks the bimolec-
ular formation of DC into two stages. When APC and Axin combine to form APC/Axin,
the binding radius for the following reaction is large and is created at a single instance
in time (this is shown in Figure 4.6 with the sudden materialization of point 4). Since
Reaction 6 is rapid, the instant that APC/Axin is created, it finds local GSK3β to bind
with. Thus, the forward reaction is not ‘fast’, it is ‘instantaneous’ and this throws the
balance in favour of the DC assembly when compared with the first order (fast) dissocia-
tion of APC/Axin into its constituents (the reverse Reaction 7). Despite the number of
DC molecules only increasing by 30 (in the simulations), it causes B to degrade by an
extra 50,000 molecules (see Figure 4.5b). This is because the system is highly sensitive
to DC, which are efficient regulators of B.

77



4.5. STOCHASTIC DOI MODEL OF THE WNT SIGNALLING PATHWAY

(a)

(b)

Figure 4.6: (a) The pathway for the formation of DC. (b) State of the system when an
APC molecule (1) is about to combine with an Axin molecule (2) to form an APC/Axin
complex (4). The APC/Axin complex (4) then looks for a GSK3β molecule (3) to combine
with. Notice how multiple GSK3β molecules are encompassed within the binding radius.
This makes the second reaction effectively instantaneous, leading to a larger than expected
amount of DC.

4.5.6 Modified Wnt model using a trimolecular reaction

Due to the rapid decay of APC/Axin, it is possible to show that the Gillespie model
reduces to a trimolecular reversible reaction whereby molecules Axin, APC and GSK3β
combine to form DC in a single step.

To ensure that there are no fundamental changes to the model, the Gillespie SSA
for both the bimolecular and trimolecular interpretations of DC assembly are compared.
Figure 4.7 demonstrates that (aside from early transient behaviour) the two Gillespie
models are very similar. This validates the use of a trimolecular model in place of the
bimolecular model.
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Figure 4.7: Comparison of the modified Wnt model against a model using a trimolecular
reaction for the formation of destruction complex. The amount of (a) destruction complex,
and (b), β-catenin levels are plotted. The blue line represents the modified bimolecular
model, whilst the red line represents the modified trimolecular model. Both are modelled
using the Gillespie SSA. Initially there is a small difference between the two models,
however the models still reach the same steady state.

Using the reversible trimolecular technique proposed in this chapter, the trimolecu-
lar modified model is simulated against its equivalent Gillespie model using simulation
parameters Pλ = 0.1, α = 1.5 and ∆t = 5 × 10−5 min. The simulations are run until a
maximum time of 800 minutes and are plotted in Figure 4.8.
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Figure 4.8: Results of the modified Wnt model (using a trimolecular reaction) through
comparison of the Smoluchowski (blue curve) and Gillespie (red curve) models for (a)
destruction complex, and (b) β-catenin levels. The Smoluchowski model runs for 800
minutes using a time-step ∆t = 5 × 10−5 min. For the Gillespie model, the average
results of 100 simulations are plotted.

Immediately, it can be seen in Figure 4.8a that the issue with unbalanced assembly of
DC is no longer a problem with the trimolecular interpretation of this process. On the
other hand, B levels do not respond as expected to Wnt switching off. There still seems
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to be a period of B over-prediction in the simulation. The discrepancy diminishes nearly
to zero by about 400 minutes into the transition from the on state to off state.

The over-prediction of B in the Smoluchowski model is driven by the high asymmetric
noise in DC levels in the Wnt-on state. In the Wnt-off state the DC concentration levels
are high enough that a symmetric distribution around the mean is expected and the ODE
correctly predicts level of B. This is known as stochastic focusing and is a bi-product of
intrinsic noise often overlooked by ODE models (not a computational error) [122, 123].

Stochastic focusing occurring within the core destruction cycle can be verified by
isolating the cycle, and fixing the DC copy numbers by decoupling it from constant
assembly and dissociation into APC, Axin and GSK3β. The ‘first’ reduced core cycle
model is,

DC* +B → B*/DC*, (4.75)

B*/DC*→ DC*, (4.76)

∅
 B. (4.77)

This first reduced core cycle model ignores DC fluctuations which is hypothesized as the
cause of increased B copy numbers.

In a second reduced core cycle model, the model is fully reduced to the model without
stochastic focusing in [122] by replacing (4.75) and (4.76) with the reaction DC* + B →
DC* (with a combined forward reaction rate to compensate).

Simulations are run in Figure 4.9 where the system starts at steady state with Wnt-on,
and Wnt remains on. This is to determine how well each model remains at steady state.
Four simulations are plotted in Figure 4.9. The trimolecular Smoluchowski model for
Wnt is plotted alongside the expected steady state determined by solving the associated
system of ODEs, and alongside the two reduced core cycle models.

As predicted, in the reduced core models the level of B does not deviate from the
steady state. The simulation of the first reduced core cycle model shows a slight decrease
in B which remains within 10% of the expected steady state and can be explained by the
fact that the steady state copy number for DC in this model was not a whole number
and had to be rounded up to accommodate the discrete model of DCs. The fact that B
deviation from the ODE seems to be dependent on not only low DC concentrations in
the Wnt-on regime but also temporal fluctuations in DC copy number is strong evidence
that stochastic focusing may play a significant role in B levels.
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Figure 4.9: Simulations with Wnt turned on demonstrating the inclusion of stochastic
focusing. The blue curve (hidden underneath the purple curve), is the expected steady
state from the ODE model. Given the model already starts at steady state with [W ] = 0,
it will remain at steady state (and theoretically so will the stochastic models). The red
curve corresponds to the full model in the case that Wnt is turned on ([W ] = 1). The
orange curve models the reactions in (4.75) to (4.77) only. The purple curve uses the
same model as the orange curve, except DC* is kept constant throughout.

4.6 Conclusion

In this chapter, Doi – and by extension – Smoluchowski theory of diffusion-limited inter-
actions has been extended to incorporate reversible reactions of any order. It was shown
that the theory for reversible reactions developed by Lipková et al. [116] is easily extended
to higher dimensions under the theoretical framework of Flegg [118]. By utilizing the Doi
model, there were two potential strategies that could be used to choose parameters for
simulating reactions, one where molecules which result from a reverse reaction are placed
outside the reaction radius (α > 1), and one which reactants are placed inside the reaction
radius (α 6 1). By considering both the probability of geminate recombination and the
simplicity of implementation, the consequences and limitations of these strategies were
discussed.

In the validation of the methodologies, it was first shown that it can be used to
recover analytically derived predictable steady states. Then a classical model for Wnt
signalling was used to demonstrate the usefulness of the higher-order reaction methodology
[58]. This was done by first demonstrating that in the case of fast bimolecular catalytic
reactions, the Doi (and Smoluchowski) frameworks may be inappropriate and inaccurate.
Secondly, a reduced form of the classical model was simulated to demonstrate that the
methodology can be used for running accurate individual particle-based simulations of
real complex systems, and in the process, identify new stochastic effects which may not
be a feature of more coarse-grained approaches.

81



Chapter 5

Delay-driven oscillations via Axin2
feedback in the Wnt/β-catenin
signalling pathway

5.1 Introduction

The Lee model proposed a comprehensive theoretical model of cytosolic β-catenin reg-
ulation and the role of Wnt signalling in this [58]. Whilst there is some clarity in the
understanding of the β-catenin regulation cycle, the way in which Wnt and its receptor
complex interferes with this cycle precisely is still being studied. Lee et al. assumed that
the action of Wnt was to activate Dishevelled, which in turn increased the dissociation
rate of the enzyme GSK3β from the destruction complex scaffolding proteins APC and
Axin. Conceded by the authors in 2003, the signal propagation from the Wnt ligand to
the destruction complex was ‘poorly understood’.

Recent experiments have illuminated much of the uncertainty that once shrouded
the manner by which Wnt receptor complexes interact with β-catenin regulation [48].
Section 2.1 explored experimental models in which a Wnt receptor complex deactivates
destruction complex rather than dissociating it. These experiments led to the mathemat-
ical models in Section 2.3 for which the Jensen [71] and Tymchyshyn [72] models support
the induction of sustained oscillations through deactivation processes.

The difference in outcome between deactivation and dissociation mechanisms might
seem trivial when considering the overall effect on β-catenin levels. However, it is demon-
strated in this chapter that it is not as trivial as may first appear since significant differ-
ences in the asymptotic stability of β-catenin levels is observed between these two models
when negative feedback is considered.

Multiple feedback loops have been identified in reference to Wnt signalling, and there
have been various attempts to develop mathematical models for these. The most studied
feedback loop acknowledges that Axin2 is a target for β-catenin/TCF regulated tran-
scription [44, 27]. As a component of the destruction complex, β-catenin/TCF regulated
Axin2 transcription represents a negative feedback for Wnt signalling.

The main Axin2 feedback models from Section 2.3 are summarised again in the follow-
ing paragraphs. Each paragraph gives a brief overview into each model’s unique behaviour,
any mathematical and computational limitations, and the models advantages and disad-
vantages. Each of these models influence the construction of the new models developed
in this chapter.

Oscillations in Wnt signalling have been observed experimentally and studied for its
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relationship to oscillations in other pathways [124]. Theoretically oscillations can be
generated for the Lee model with the inclusion of Axin2 and DKK1 [68]. It was shown by
Wawra et al. that the inclusion of heuristically defined Hill’s function kinetics, and the
use of delay differential equations can induce oscillations [68]. This work constituted a
purely numerical investigation due to the model complexity (a system of 17 ordinary and
delay differential equations), which made it impossible to fully analyse the conditions for
the oscillatory behaviour.

Considering only the Axin2 feedback mechanism, Tymchyshyn et al. were able to show
that a stochastic model of Wnt signalling was capable of inducing oscillatory behaviour
[72] . This model reduces the Wnt pathway to 6-components. Characteristic of the
Tymchyshyn model is the treatment of the Wnt receptor complex as a deactivator (rather
than dissociator) of the destruction complex which is in line with recent experimental
observations. The Tymchyshyn model used stochastic π-calculus techniques [74] via the
BioSPI simulation platform [73] to investigate how their model behaves stochastically.
They run two types of simulations, one in which there is a high Wnt stimulus, and the
other for a low Wnt stimulus, and they compare this to the deterministic solution. For the
high Wnt stimulus case, both the stochastic and deterministic solutions show sustained
oscillatory behaviour. However for the low Wnt stimulus case, the deterministic solution
does not exhibit any oscillations, but the stochastic simulation has periodic spiking. It
is not established by Tymchyshyn et al. if the oscillatory behaviour of their model is
stochastically induced, or if it is a property of the underlying dynamical system since
their analysis is achieved through numerical experiments alone. This oscillatory behaviour
forms the basis for Chapter 6 in which Gillespie and Smoldyn simulations are computed
to determine how these stochastic oscillations arise.

By investigating a Wnt oscillator model for somitogenesis, Jensen et al. were able to
create an ODE model that exhibits oscillatory behaviour [71]. They present a simplified
version of the Wnt pathway (using 8 components), and provide parameter regimes for
when oscillations are induced. One key finding from this paper included the qualitative
condition necessary to produce oscillations: that a high concentration of β-catenin can
promote Axin2 mRNA such that deactivation of Axin2 by the receptor complex reaches
saturation [65]. The model uses non-linear kinetic feedback terms, and is a system of ODEs
with sufficient complexity that analytical investigation is not possible. The conditions for
oscillatory behaviour in their model are explored by numerical experimentation in the
parameter space, as is the case in all of these modelling attempts.

In this chapter, an investigation into the detail of the theoretical conditions for sus-
tained oscillations in Wnt signalling is conducted. This is completed by first constructing
a deterministic dynamical model based on recent findings, and reducing this model to
exhibit its fundamental features and structure. The models focus on the Axin2 feedback
mechanism.

It is first demonstrated that a simple model of Wnt signalling whereby the Wnt recep-
tor complex dissociates the destruction complex into active components (reminiscent of
the Lee model), will not exhibit sustained oscillatory behaviour observed in experiments
under any parameter regime.

Since Axin2 is upregulated by β-catenin-moderated transcription, it is uncertain how
best this process should be modelled, specifically how should the intrinsic temporal feed-
back delay be incorporated into the model. Two separate models are investigated and
compared in which feedback delay is implemented (1) implicitly with an intermediate
chemical species, and (2) explicitly using delay differential equations. The condition for
asymptotic instability of the static steady state which drive the system into sustained
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oscillations for model type (1) and model type (2) is solved analytically, with the key fea-
tures determined from this. These relationships give deep insight into the Wnt signalling
pathway structure. Importantly, it will be proved that the Wnt-dependent deactivation
rate of Axin needs to be above a threshold amount compared with the rate of Axin
degradation of β-catenin for sustained oscillations.

It will be shown that the delay in feedback is a necessary characteristic of the system
driving sustained oscillations, and that oscillations occur in all cases within a single finite
window of Wnt signal strengths. The width of this window changes with the parameters
of the system in a well-defined way. It will be shown numerically how the amplitude and
period of the resultant sustained oscillations depends significantly on the parameters of
the model. These kinds of theoretical insights explain (in a mathematically rigorous way)
why some cells respond differently to different levels of Wnt stimulus compared with other
cells.

5.2 Models

Wnt signalling in this chapter is modelled at a very fundamental level, focusing on the
key underlying structure of the model on the time-scale of the whole signalling process.
Since the focus is on the key Axin2 feedback mechanism, the following chemical species
are included in each of the models; Axin (A), β-catenin (B), active destruction complex
(C), and Wnt-bound (activated) receptor complex (R). For brevity’s sake, the [ ] notation
that represents the concentration of a species is dropped.

5.2.1 The reduction of the Tymchyshyn model to its base struc-
ture

The model of Tymchyshyn et al. (first reviewed in Section 2.3.4) forms the basis of the
deactivation models in this chapter. The model is presented in Figure 5.1. Notice that
this model includes two intermediate protein complexes B/C (C1) and R/C (C2), which
are formed by binding of each of the two indicated proteins.
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Figure 5.1: Tymchyshyn et al. model using 6 components. This model is the same as that
reviewed in Figure 2.9, except with the addition of the dotted reaction involving the rate
constant k5. This rate is not part of the Tymchyshyn model, but is used for the models
developed throughout this chapter.

This model contains 6 components and a total of 12 reactions. The ODEs are,

dA

dt
= k1B − µAA− k+A+ k−C, (5.1)

dB

dt
= k2 − k+

3 BC + k−3 C1 − µBB, (5.2)

dC

dt
= −k+

3 BC + (k−3 + µ1)C1 + k+A− k−C − k+
4 RC + k−4 C2, (5.3)

dR

dt
= −k+

4 RC + (k−4 + µ2)C2, (5.4)

dC1

dt
= k+

3 BC − (k−3 + µ1)C1, (5.5)

dC2

dt
= k+

4 RC − (k−4 + µ2)C2, (5.6)

The first assumption is that phosphorylation and removal of β-catenin via the destruction
complex (denoted by the rate µ1) is efficient when compared to other possible fates for the
temporary complex C1 [59]. Without scaling time, it is clear from (5.5) that C1 = O(µ−1

1 )
and a pseudo-steady state µ1C1 = k+

3 BC is concluded by looking at dominant balances in
(5.5). This algebraic relation negates the need for (5.5) and terms such as k−3 C1 in other
equations vanish to leading order.

The second modification applied to the Tymchyshyn model reflects the assumption
that receptor complex is dynamic during Wnt signalling, not conserved as in the Tym-
chyshyn model [48]. Based on recent findings outlined in Section 5.1, it is assumed that
receptor complex is formed at a rate k5 which is dependent on receptor and co-receptor
turnover rates and supply of Wnt signal. In the process of deactivating the destruction
complex, the receptor complex is itself deactivated (sent to the proteasome). By mak-
ing the assumption that the deactivation process is rapid once a binding of R and C is
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achieved, it is clear from a dominant balance of (5.6) that k−4 C2 may be neglected to
leading order.

The third assumption is that β-catenin degradation is dominated by Axin-mediated
ubiquitination. Therefore it is assumed that µB is small and can be neglected from the
model.

The fourth assumption is much the same as the third. It assumes that the removal of
Axin under Wnt stimulus is dominated by deactivation via the Wnt receptor signalosome.
Thus, it assumes that µA is small and can be neglected. This is not the case, however, in
the deconstructor models inspired by Lee et al.. In the deconstructor models, Axin is not
removed at all by receptors and natural decay of Axin µA is non-zero (it is chosen such
that A, B and C have the same steady state concentrations as the deactivator models).

Finally, during Wnt signalling, it is assumed that an active destruction complex is
much more likely to be removed via Wnt receptor deactivation (a dominant feature of
the model) than by spontaneous dephosphorylation or dissociation of the destruction
complex. Therefore the activation of A is approximated to be irreversible (k− = 0). The
exception to this is of course the deconstructor model of Wnt signalling (for example, the
Lee model) which postulates that active Wnt receptor complex acts by increasing k− to
non-trivial values.

For the models in this chapter, the rate constants are relabelled as k+
3 = K3, k+

4 =
K4, k5 = K5, and k± = K±. The deconstructor and deactivator models, are shown in
Figure 5.2. In this figure, the black and blue reactions represent the deconstructor model,
whilst the black and red reactions represent the deactivator model. In the following
sections, the four models depicted in this figure are explored; the deconstructor model,
the implicit-delay deactivator model, the zero-delay deactivator model, and the explicit-
delay deactivator model.

Figure 5.2: The reduced version of the Tymchyshyn model. Reactions in black represent
the base model. Adding the reactions in blue to the base model produces the deconstructor
model. Alternatively, adding the red reactions to the base gives the deactivator model.

86



5.2. MODELS

5.2.2 The deconstructor model

This section begins with an exploration of the deconstructor model which focuses on
the key components of the Lee model. The parameter K− is used to encapsulate the
deconstruction of the destruction complex (C) in the presence of a Wnt stimulus. To
balance the system, the parameter µA is retained, although it is assumed that this will
be negligible for future models.

In Figure 5.3, a diagram of the key interactions which form the signalling network
is presented for the deconstructor model. Importantly, in the deconstructor model, it is
assumed that activated receptor complex interacts with destruction complex and decon-
structs it into its components without affecting the concentration of the receptor complex
and therefore, the receptor complex dynamics is decoupled from the network and con-
sidered to reach a steady state which depends on the supply of Wnt stimulus (transient
solutions are not considered in this chapter). Thus, the receptor complex (R) is assumed
to indirectly govern the reaction rate given by K−. As shall be demonstrated for this
simple system, irrespective of the efficacy of the effect of Wnt stimulation (the value of
K−), sustained oscillating solutions cannot be generated without adding complexity to
the model (that is, the base structure of this system does not easily lend itself to sustained
oscillatory behaviour).

Figure 5.3: The deconstructor model is a reduced version of the Lee model. The effect of
Wnt in deconstructing the destruction complex (C) is summarised within the rate constant
K−. In comparison to the deactivation model (see Figure 5.4), this deconstructor model
includes removal of Axin (A) through degradation at a rate proportional to µA (to stop
unbounded production of Axin in the absence of removal by Wnt).

The deconstructor model is the following system of three ordinary differential equations
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(ODEs),

dA

dt
= K1B − (K+ + µA)A+K−C, (5.7)

dB

dt
= K2 −K3BC, (5.8)

dC

dt
= K+A−K−C, (5.9)

Stability analysis of deconstructor Wnt mechanisms

Here it is proved that the Wnt receptor mechanism which deconstructs the destruction
complex (such as that of Lee et al.) cannot maintain sustained oscillatory behaviour
under Axin feedback in the simplified model. The deconstructor Wnt mechanism acti-
vates Dishevelled which then breaks the destruction complex into its scaffolding proteins
(APC, Axin, and GSK3β). These scaffolding proteins are not removed from the system,
therefore they can recombine to form the destruction complex. The focus here will be
on the long time stability of the systems steady state under Wnt stimulation, so that
the deconstruction rate can be considered as some constant K− which depends on the
concentration of Wnt as well as other properties of the cell and relevant proteins.

Let dX/dt = F(X), where X = (A,B,C), and F represents the RHS of (5.7) to (5.9).
Let the steady state X0 be such that F(X0) = 0 in which all chemical species are non-
negative. Denote the steady state to be X0 = (A0, B0, C0). The steady state concentra-
tions are uniquely defined as,

A0 =

(
K1K2K−
K3µAK+

)1/2

, B0 =

(
K2µAK−
K1K3K+

)1/2

, C0 =

(
K1K2K+

K3µAK−

)1/2

. (5.10)

Linearisation around this steady state X = X0 + ε where 0 < |ε| � 1 reduces the model
to dε/dt = JF(X0)ε+O(|ε|2), where JF(X0) is the Jacobian of the RHS of (5.7) to (5.9)
evaluated at X0. Stability around this steady state is therefore predicated on all of the
real parts of the eigenvalues of JF(X0) being less than 0. The eigenvalues λ of JF(X0)
are given by

|JF(X0)− λI| =

∣∣∣∣∣∣
−K+ − µA − λ K1 K−

0 −K3C0 − λ −K3B0

K+ 0 −K− − λ

∣∣∣∣∣∣ = 0, (5.11)

which yields the auxiliary equation D(λ) = λ3 + aλ2 + bλ+ c = 0, where

a = µA +K+ +K− +K3C0, (5.12)

b = µAK− +K3C0(µA +K+ +K−), (5.13)

c = K1K3K+B0 + µAK3K−C0. (5.14)

The Routh-Hurwitz criteria for a third order polynomial states that D(λ) = 0 will have
roots which lie entirely in the left half plane - meaning the steady state is asymptotically
stable - if and only if (1) the coefficients a, b, and c are all positive and (2) (ab− c) > 0.
Condition (1) is met since all parameters are assumed positive and thus a, b, and c are
all sums of positive numbers. Condition (2) is met by inspection since each of the two
terms in c appear as terms in the product ab, which has many other (unbalanced) positive
terms. This analysis demonstrates that the introduction of Axin feedback into a simple
model of Wnt which features a deconstruction role for the Wnt receptor complex will not,
under any parameter regime, lead to an asymptotically unstable steady state and thus
sustained oscillations.
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5.2.3 The implicit-delay deactivator model

A deactivator model, one in which Wnt receptor complex (R) deactivates destruction
complex, is based on the mechanism for Wnt signalling at the receptor level first described
in Section 2.1. In the Wnt-on situation, Wnt ligand is bound to Fzd receptor and its co-
receptor LRP6. Activation of this receptor complex leads to Ap2-dependent recruitment
of the β-catenin destruction complex to the plasma membrane. In particular, Dvl binds
to Fzd and Axin to LRP6 and thus, ensures signalosome formation at the cytoplasmic
membrane and tight association with the destruction complex. Subsequent internalization
of the Wnt signalosome is mediated by the interaction of Dvl with Ap2µ2 and leads to
the sequestration of Dvl, Axin, CK1, GSK3β, and β-catenin in cytoplasmic aggregates
– the inactive β-catenin destruction complex. The ligand-receptor complex is routed to
late endosomes for degradation or recycling, whereas the β-catenin destruction complex is
kept inactive. The degradation of Wnt and the deactivation of Axin (destruction complex)
results in a co-removal of these species from the system and is described in the model to
occur at some rate K4. Subsequently, the destruction complex becomes activated again
by, for example, phosphorylation of Axin. However this occurs on comparatively very
long time-scales and is not a significant process in the Wnt-on state.

In this model, as opposed to the deconstructor model, receptor complex is supplied at
some rate K5. This rate is determined by the Wnt stimulus, but also other factors such
as the cell-type and expression levels of Fzd receptors, co-receptors (for example from
the LRP family), and/or promoters such as R-spondin. The receptor complex binds to
active destruction complex, and then removes both itself and destruction complex from
the system.

The implicit-delay model is presented diagrammatically in Figure 5.4. This model is
a system of four ordinary differential equations (ODEs),

dA

dt
= K1B −K+A, (5.15)

dB

dt
= K2 −K3BC, (5.16)

dC

dt
= K+A−K4CR, (5.17)

dR

dt
= K5 −K4CR. (5.18)
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Figure 5.4: The implicit-delay deactivator model. This model contains four chemical
species that can be modelled using ODEs. Key to this model is the deactivation of
destruction complex (C) by removal with the receptor complex (R), and the delay in
production of (C) by the intermediate production and conversion of Axin (A).

A simulation of this model is plotted in Figure 5.5 which produces sustained oscillations
in β-catenin. This simulation shows that there is indeed at least one set of parameters
for which the system sustains oscillations. The exact conditions to determine what set
of parameters cause the steady state to become asymptotically unstable and instigate
sustained oscillations will be researched in Section 5.3.2.
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Figure 5.5: Implicit-delay deactivator model with rate constants K1 = 0.012 min−1, K2 =
0.423 nM min−1, K3 = 1 nM−1 min−1, K+ = 0.1 min−1, K4 = 10 nM−1 min−1, and
K5 = 0.18 nM min−1. These rate constants are taken from the model in Tymchyshyn et
al. [72]. This set of rate constants show that there is at least one case in which sustained
oscillations are induced.

In this model, there is a delay in the feedback mechanism between β-catenin (B) and
destruction complex (C). This delay is modelled implicitly by the necessity of β-catenin
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(B) to produce, first, inactive Axin (A). It was found that if this delay is not present in
the system (for example, if it is assumed that β-catenin (B) produces destruction complex
(C) directly), the system behaves very differently and does not have the potential to result
in sustained oscillations. This fact is proved in Section 5.2.4 by taking the limit of this
model as K+ → ∞. Part of this delay in the feedback could be thought to occur due to
the time taken for transcription of Axin. Section 5.2.5 will describe a separate model in
which the delay is made explicit using a delayed differential equation.

5.2.4 The zero-delay deactivator model

The implicit-delay model from the previous section simplifies the pathway to four compo-
nents, so a natural question to ask is, can sustained oscillations be generated by a simpler
model? The first attempt to answer this question is to note that Axin (A) seemingly has
a small contribution to the overall system. It is produced by β-catenin and subsequently
converted into activated Axin. This suggests the implicit-delay model can be simplified
by letting destruction complex (C) be produced directly from β-catenin (B). In doing so,
the new pathway is shown in Figure 5.6.

Figure 5.6: The zero-delay deactivator model with three chemical species. This model
does not include Axin (A), and instead directly produces destruction complex (C). The
thick line with rate constant K1 denotes that this is treated as a fixed time delay for the
explicit-delay model in Section 5.2.5.

This pathway has the following system of ODEs,

dB

dt
= K2 −K3BC, (5.19)

dC

dt
= K1B −K4CR, (5.20)

dR

dt
= K5 −K4CR. (5.21)
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Stability analysis of deactivator Wnt models with no feedback delay

Here it is mathematically proved that a non-zero delay is necessary in the Axin feedback
mechanism of a deactivator Wnt model in order to produce sustained oscillations. The
unique steady states of (5.19) to (5.21) are,

B0 =
K5

K1

, C0 =
K1K2

K3K5

, R0 =
K3K5K5

K1K2K4

. (5.22)

Following an identical analysis methodology from the previous section, the auxiliary equa-
tion D(λ) = λ3 + aλ2 + bλ+ c = 0 is computed, where,

a = K3C0 +K4C0 +K4R0, (5.23)

b = K3K4C0R0 +K3K4C0C0 +K1K3B0, (5.24)

c = K1K3K4C0B0. (5.25)

Checking the Routh-Hurwitz criteria, similar to Section 5.2.2, it is noted that (1) a, b,
and c are all positive as the system parameters are positive, and (2) (ab− c) > 0 since the
second term of a multiplied by the third term of b is c, and thus c only cancels part of ab.
Therefore the eigenvalues of the Jacobian for this system all lie in the left half plane and
the steady state is asymptotically stable - and unable to sustain oscillations irrespective
of the other model parameters.

Importance of a delay in deactivator models

Going from an implicit-delay deactivator model to a zero-delay model, the sustained
oscillations have disappeared, and it was proved that a zero-delay model will never have
sustained oscillations. This suggests that a delay is vital to inducing sustained oscillations,
and it is shown in the next section that adding a fixed time delay to the zero-delay model
allows the system to oscillate again. Before moving to the next model, the implicit-delay
model is graphically investigated to provide a hint as to how a system of three differential
equations can still oscillate.

In Figure 5.7, all four components (A, B, C, R) are plotted, by first scaling each
component by its corresponding maximum concentration, then overlapping A and B on
the one plot, with C and R on the other plot. In the first plot, it is seen that A always
lags B, which demonstrates that there is a slight delay in producing A from B.
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Figure 5.7: Scaled plots of the implicit-delay deactivator model with Axin (A) and
β-catenin (B) in the top plot, and destruction complex (C) with receptor complex
(R) in the bottom plot. The simulations uses rate constants K1 = 0.012 min−1,
K2 = 0.423 nM min−1, K3 = 1 nM−1 min−1, K+ = 0.1 min−1, K4 = 10 nM−1 min−1,
and K5 = 0.18 nM min−1.

In comparing C to R, it can be seen that they appear to be inversely proportional to
each other. Also, the time at which C spikes seems to line up well with the trough of
B. This suggests that at this trough, the gap between A and B is wider because of the
increase in C.

5.2.5 The explicit-delay deactivator model

An important feature which can determine the existence of sustained oscillating solutions
for the implicit-delay deactivator model is the existence of a delay in the feedback from β-
catenin to destruction complex. In the previous model, it was shown that in the absence of
this delay, the system is always asymptotically stable, hence a delay is required in these
models. Previously it was assumed that this delay can be modelled implicitly by the
inclusion of an intermediate species (which one can think of as inactive Axin or perhaps
Axin mRNA). In practice, it is not clear that this delay should be modelled in this manner.
The transcription processes has many steps and works like a machine to produce Axin
proteins after some period of delay. It may therefore be argued that an equally appropriate
model is for the β-catenin dependent upregulation of destruction complex to occur after
some fixed, explicit, delay.

To build the explicit-delay deactivator model, the model from Section 5.2.4 is used,

and where a time delay τ is introduced into the reaction B
K1−→ B + C. The ODEs now

become the delay differential equations (DDEs),

dB

dt
= K2 −K3BC, (5.26)

dC

dt
= K1B(t− τ)−K4CR, (5.27)

dR

dt
= K5 −K4CR. (5.28)

To compare the explicit- and implicit-delay models, τ is required to be set to τ ≡ 1/K+.
One simulation is plotted using τ = 1/0.1 = 10 min in Figure 5.8, and it can be seen that
sustained oscillations are induced which are similar, but slightly different to the implicit-
delay model from Figure 5.5. Whilst under this condition (τ = 1/K+), the explicit- and
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implicit-delay models are not identical, it is simple to prove (see Section 5.3.3) that under
this condition the two models share the same steady state (of which there is always only
one), and under limiting conditions this steady state shares similar conditions for stability
(see Section 5.3.1).

0 200 400 600 800 1000
0

1.5
Destruction complex

0 200 400 600 800 1000
0

30
-catenin

Time (min)

C
on

ce
nt

ra
tio

n 
(n

M
)

Figure 5.8: Plot of the evolution of destruction complex and β-catenin in the explicit-
delay deactivator model. The simulation uses parameters K1 = 0.012 min−1, K2 =
0.423 nM min−1, K3 = 1 nM−1 min−1, τ = 1/K+ = 10 min, K4 = 10 nM−1 min−1,
and K5 = 0.18 nM min−1.

5.2.6 Key observations from each model

Throughout Section 5.2, four models were constructed (with comparable parameter sets)
to determine which models can produce sustained oscillations, and proved which models
cannot. By completing an initial exploration into these four models, the following key
observations are made;

1. A Wnt receptor mechanism which deactivates (rather than deconstructs) destruction
complex is capable of generating sustained oscillations.

2. Without a delay in the feedback mechanism, the deconstructor Wnt models do
not sustain oscillatory behaviour. This is true and provable for any set of positive
parameters.

3. Modelling the feedback delay explicitly or implicitly appears to have minimal effect
on the behaviour of the system, although sustained oscillations resulting from an
explicit-delay model seem to have a slightly larger amplitude and larger period than
the implicit-delay model.

Each of these observations are anecdotal and may be true circumstantially due to
the choice of parameters and the simplicity of the model. However, since the models
represent the core system structure, they can be analysed. In particular, as mentioned,
it was shown explicitly that, in regards to observation (1), the deconstructor model is
asymptotically stable for any choice of parameter set. In regards to observation (2),
it was proven in Section 5.2.4 that if the delay τ vanishes, so too does the possibility of
sustained oscillations. In the following sections, a more detailed analysis will be followed to
determine the full set of possible parameters for which sustained oscillations are generated
in both the implicit- and explicit-delay deactivator models.
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5.3 Results and Discussion

5.3.1 A note comparing implicit- and explicit-delay models

The explicit-delay model outlined in Section 5.2.5 is taken as an approximation to the
implicit-delay model in Section 5.2.3, or, depending on how it is looked at, the implicit-
delay model is an approximation of the explicit-delay model. Here it will be outlined how
this comparison is achieved, and under what circumstances the models behave the same
and how they differ.

The implicit-delay model is given by the evolution of the following ODE system

dA

dt
= K1B −K+A, (5.29)

dB

dt
= K2 −K3BC, (5.30)

dC

dt
= K+A−K4CR, (5.31)

dR

dt
= K5 −K4CR. (5.32)

A can be written as the power series

A = a0 +
1

K+

a1 +
1

(K+)2
a2 + . . . , (5.33)

where a0, a1, . . . are constants. Substitution of (5.33) into (5.29), and matching powers
of K+ gives a0 = 0 and

ai = (−1)(i−1)K1
d(i−1)B

dt(i−1)
. (5.34)

Substitution of A as a power series into (5.31) and disregarding A which is now defined
in terms of B and its derivatives, the implicit-delay model becomes

dB

dt
= K2 −K3BC, (5.35)

dC

dt
= −K4CR +K1

(
∞∑
i=0

(
(−1)

K+

)i
diB

dti

)
, (5.36)

dR

dt
= K5 −K4CR. (5.37)

Noting that

∞∑
i=0

(
(−1)

K+

)i
diB

dti
= B

(
t− 1

K+

)
, (5.38)

this gives the explicit-delay model

dB

dt
= K2 −K3BC, (5.39)

dC

dt
= K1B (t− τ)−K4CR, (5.40)

dR

dt
= K5 −K4CR, (5.41)
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where τ = 1/K+ is a good approximation of the implicit-delay model under conditions
where τ is much smaller than characteristic time-scales for changes in B. The differences,
in the two models depends on the parameters of the system but are diminished if τ is
reduced. It is interesting to point out though that because the discrepancy that lead to
(5.40) depends on time derivatives of B, these two models exhibit the same steady states
(whereby B is constant with time). It is not clear, however, what are the differences in
the stability of this steady state. The stability of these steady states will be explored
in the following sections. As shall be seen, these two models require significant delays
in order to induce sustained oscillations, and therefore it can be seen that there are
significant differences in the two models when focusing on the conditions for stability of
their common steady states.

5.3.2 Stability analysis for the implicit-delay deactivator model

Model stability

The set of four ODEs constituting the implicit-delay model are,

dA

dt
= K1B −K+A, (5.42)

dB

dt
= K2 −K3BC, (5.43)

dC

dt
= K+A−K4CR, (5.44)

dR

dt
= K5 −K4CR. (5.45)

The steady state concentrations for this system are,

A0 =
K5

K+

, B0 =
K5

K1

, C0 =
K1K2

K3K5

, R0 =
K3K5K5

K1K2K4

. (5.46)

In Sections 5.2.2 and 5.2.4, the stability those simpler models could be easily analysed.
However, this is not possible for the implicit-delay model (and also the explicit-delay
model). Instead the analysis is significantly simplified by first non-dimensionalising the
system of ODEs. The following dimensionless variables and parameters are defined,

A =
A

A0

, B =
B

B0

, C =
C

C0

, R =
R

R0

, σ =
K1K2

K5

t, (5.47)

and,

α =
K4

K3

, β =
K+

(K1K2K3)1/3
, and γ =

K3K
3
5

(K1K2)2
, (5.48)

where deviations from standard non-dimensionalisation has been included to simplify the
analysis. The parameters α, β and γ measure the relative magnitudes of K4, K+ and K5
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respectively. The non-dimensionalised model becomes

dA

dσ
= γ1/3β

(
B − A

)
, (5.49)

dB

dσ
= 1−B C, (5.50)

dC

dσ
= γ

(
A− C R

)
, (5.51)

dR

dσ
= α

(
1− C R

)
. (5.52)

By linearising around the steady state X0 = (1, 1, 1, 1), the eigenvalues λ for the
Jacobian JF(X0) are determined by

|JF(X0)− λI| =

∣∣∣∣∣∣∣∣∣
−γ1/3β − λ γ1/3β 0 0

0 −1− λ −1 0

γ 0 −γ − λ −γ
0 0 −α −α− λ

∣∣∣∣∣∣∣∣∣ = 0, (5.53)

which generates the auxiliary equation,

D(λ) = λ4 + aλ3 + bλ2 + cλ+ d = 0, (5.54)

where,

a = βγ1/3 + α + γ + 1, (5.55)

b = (α + γ + 1)βγ1/3 + α + γ, (5.56)

c = βγ1/3 (2γ + α) , (5.57)

d = βγ4/3α. (5.58)

The Routh-Hurwitz criteria for a fourth order polynomial of the form (5.54) with
positive coefficients a-d states that D(λ) will have roots which lie entirely in the left half
plane - meaning the steady state X0 is asymptotically stable - if and only if,

ab− c > 0, and abc− a2d− c2 > 0. (5.59)

It is clear by inspection that ab > c and therefore the steady state X0 is asymptotically
stable if and only if abc − a2d − c2 > 0. Let Θ = βγ(α2 + 2αγ + 2γ2 + α + 2γ) > 0 and
Φ = (abc − a2d − c2)/Θ. In the case, Φ < 0 the steady state is asymptotically unstable
and in the case Φ > 0 the steady state X0 is asymptotically stable. The manifold of the
bifurcation defined explicitly by Φ = 0 will be investigated. The important quantity Φ
can be written as a quadratic in terms of β:

Φ = β2 + 2pβ + q, (5.60)

where

p(α, γ) =
2γ3 + (3α + 2)γ2 + (2α2 + 3α + 2)γ + α3 + 2α2 + α

2γ1/3 (α2 + 2αγ + 2γ2 + α + 2γ)
, and (5.61)

q(α, γ) =
− (α + γ + 1) ((α− 2)γ2 + α(α− 2)γ − α2)

γ2/3 (α2 + 2αγ + 2γ2 + α + 2γ)
. (5.62)
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The bifurcation at Φ = 0 can be written using β as the subject to give

β = ψ(α, γ) = −p(α, γ) +
√
p(α, γ)2 − q(α, γ). (5.63)

The negative branch of the root of the quadratic (5.60) is not taken since it is clear from
(5.61) that p > 0 and thus the negative branch is always negative (whereas β should be
positive to obtain asymptotically unstable solutions). Furthermore, if ψ(α, γ) as defined
by (5.63) is negative for some α and γ, then the steady state for these parameters is
asymptotically stable irrespective of the value of β. Thus, (5.63) is defined to be only
on the domain that coincides with ψ(α, γ) > 0. This function shall be explored in the
coming sections.

The domain of ψ(α, γ)

The function ψ which defines the bifurcation points β = ψ(α, γ) is defined only where
q(α, γ) < 0. Noting that if K3 > 0 and K4 > 0, then α > 0. Using (5.62), it is clear that
α > 2 is necessary for ψ(α, γ) to be positive.

Furthermore, if α > 2, (5.62) indicates that for small γ, q(α, γ) is negative. When γ
increases from 0 however, it is clear that q(α, γ) goes from positive to negative exactly
once (due to the signs of the coefficients in the quadratic part of the numerator in (5.62)).
Thus, there is some function γ∗(α) with α > 2 such that q = 0 on γ = γ∗(α). This curve
defines the boundary of the domain of ψ(α, γ). It can be found by identifying the positive
zero (with respect to γ) of (5.62),

γ∗(α) =
α

2

(√
α + 2

α− 2
− 1

)
, for α > 2. (5.64)

Note that γ∗ > 1 for all α > 2. The domain for ψ(α, γ) is therefore as follows: {(α, γ) ∈
(2,∞)× (1,∞) s.t. γ > γ∗(α)}. On this domain, ψ is positive. It is also smooth because
it consists of square roots and polynomial fractions with no cusps or singularities in the
domain.

Inside this domain, if β is chosen such that 0 < β < ψ, then sustained oscillations will
be observed. However, if β > ψ, then the steady state of the system will be asymptotically
stable. The steady state will be asymptotically stable irrespective of β if outside the
domain of ψ.

Therefore, given that α > 2 and γ > γ∗, then K4 > 2K3 and K5 > K∗5 are necessary
conditions in order to have some chance of sustained oscillations where,

K∗35 =
K2

1K
2
2K4

2K2
3

(√
K4 + 2K3

K4 − 2K3

− 1

)
. (5.65)

The lower bound on K∗5 means irrespective of the parameter K+ or K4, a receptor turnover
rate of at least K5 = [(K1K2)2/K3]1/3 is required for sustained oscillations to occur.

Necessary conditions for an instability in the steady state is that K4 > 2K3 and
K5 > K∗5 . Within those parameters, ψ(α, γ) is positive and a sufficient condition for
asymptotic instability is 0 < β < ψ(α, γ). The functional form of ψ(α, γ) is given in
(5.63) combined with (5.61) and (5.62). This functional form is not very attractive. In
the next subsection, the focus will be on the qualitative and approximate characteristics
of ψ(α, γ) which can be established.
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The shape of ψ(α, γ)

On the boundary γ = γ∗(α), q = 0 and therefore by (5.63), ψ = 0. As γ → ∞, it can
be seen from (5.61) and (5.62) that p ∼ γ2/3/2 + αγ−1/3 +O(γ−4/3) and q ∼ −α−2

2
γ1/3 +

O(γ−2/3). Thus, from (5.63), ψ ∼ α−2
2
γ−1/3 + O(γ−4/3) and as such limγ→∞ ψ(α, γ) = 0.

When α→∞ it gives p ∼ γ−1/3α/2 +γ−1/3/2 +O(α−1) and q ∼ −αγ−2/3(γ−1) +O(α0).
Thus, ψ ∼ γ−1/3(γ − 1) + O(α−1). That is, limα→∞ ψ(α, γ) = γ−1/3(γ − 1), a constant
with respect to α.

It is possible to prove that ψ(α, γ), for any α, on the interval γ ∈ (γ∗,∞), rises from
zero at γ∗ to a single local maximum and then falls monotonically to zero (asymptotically,
as already found, as α−2

2
γ1/3). The following arguments require substantial and careful

bookkeeping. The key steps are outlined here, but the details are quite long and not put
in print. Local extrema are found by solving

∂ψ/∂γ = 0, (5.66)

noting that ψ is a smooth function that can be differentiated everywhere. With careful
manipulation, this reduces to finding the zeros of an order 9 polynomial

9∑
i=0

aiγ
i = 0,

where the exact forms of ai have been omitted here for brevity. It can be shown that

{sgn(ai)}9
i=0 = {1, 1,−1,−1,−1,−1, 1, 1, 1, 1}.

The Descartes’ rule of signs then states that there are at most two positive solutions to
(5.66). Since ψ(α, γ∗(α)) = ψ(α,∞) = 0 and in between ψ > 0 it is not possible to have
an even number of turning points on the interval γ ∈ (γ∗,∞). Thus there is exactly one
and it must be a local maximum.

The consequences of the shape are as follows. For all α > 2 there exists some minimum
time delay 1/K∗+ (1/β∗(α) in dimensionless variables) below which sustained oscillations
will not be possible and above which a single continuous interval/window γ−(α, β) < γ <
γ+(α, β) exists in which sustained oscillations will occur. This window monotonically
grows in size as the time delay is increased (the rate β is decreased) above the minimum
time delay. In practical terms, this means that if α > 2 and β is sufficiently small, K5

which describes the turnover of active receptor complex (and therefore linked to the Wnt
signal strength) needs to lie within a single finite window of values such that the model
generate sustained oscillations.

Bounds and approximations for ψ(α, γ)

Figure 5.9 is a surface plot of the function β = ψ(α, γ) focusing near the boundary of the
domain (small α and small γ). The region of parameter space which lies below the surface
exhibits sustained oscillations in the model, otherwise the steady state is asymptotically
stable.
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Figure 5.9: A surface plot of β = ψ(α, γ). The solid line indicates γ∗(α) and the dashed
line indicates where ∂ψ/∂γ = 0.

The full surface ψ(α, γ) given by (5.63) provides all of the information required to
determine if the implicit model is going to exhibit sustained oscillations. However, (5.63)
is not an aesthetically pleasing function. Here, (5.63) is used to report on bounds and
approximations for the key characteristic functions (1) γ−(α, β), (2) γ+(α, β) and, (3)
β∗(α).

As can be seen in Figure 5.9, ψ rather rapidly increases with respect to γ towards its
maximum value before decaying at a much slower rate. It may suit the purposes of the
reader to approximate γ−(α, β) ≈ γ∗(α) for each β less than β∗(α). More complicated
estimates may also be found from power series approximations of ψ but none of these
offer a satisfyingly simple closed form.

It was already seen that ψ ∼ α−2
2
γ−1/3 as γ →∞. Furthermore, subtracting α−2

2
γ−1/3

explicitly from the full analytic description of ψ(α, γ), it can be shown, using γ > γ∗(α)
and α > 2, that α−2

2
γ−1/3 − ψ(α, γ) < 0. Thus, α−2

2
γ−1/3 is not only an asymptotically

good approximation for ψ at large values of γ, but it is also an upper bound for the

function as a whole. Therefore, the approximation γ+(α, β) =
(
α−2
2β

)3

is taken. Both of

the approximations for γ− and γ+ are outer bounds for the interval (γ−, γ+). That is, the
true window (γ−, γ+) lies entirely within the same window which is estimated using the
approximations here.

A formal, but tractable and simple bound for the maximal delay rate (inverse of the
minimum delay time) β∗(α) is challenging to find. Using dominant balance and heuristic
arguments gives,

β∗(α) ≈ (α− 2)2/3 (4α− 3)

10α + 2
, (5.67)

which is a very close approximation to the maximal value of ψ along each line of constant α.
The accuracy of this approximation is demonstrated in Figure 5.10 by plotting it alongside
the true maximum which is calculated numerically. Indeed, this estimate converges to the
true maximum as α→∞ and suffers the greatest errors for α closer to 2.
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Figure 5.10: A plot of β = β∗(α), the maximal value of ψ with respect to γ along each
line of constant α. The solid line is the true maximum calculated numerically from (5.63)
and the dashed line is the approximation (5.67).

In Figure 5.11 a typical cross section of β = ψ(α, γ) is presented with α set to 8.
On this curve, the aforementioned approximations for γ = γ−(α, β), γ = γ+(α, β) and
β = β ∗ (α) are plotted. The purpose here is to demonstrate the context of the bounds
γ− and γ+, and to indicate the importance of β∗ in limiting the region of the parameter
space which is approximated by these bounds to the true region given by (5.63).

Figure 5.11: A sample plot of β = ψ(α, γ) for α = 8 with γ3 on the horizontal axis. The
solid line is the true function found by plotting (5.63). The two dashed lines represent
outer bounds (approximations) on the minimum and maximum values of γ which exhibit
sustained oscillations (γ− and γ+). The dotted line represents the approximation of the
maximum delay rate β∗ for this value of α above which sustained oscillations are not
possible (see (5.67))

The result of this analysis is as follows. Under the necessary condition K4 > 2K3, if
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the delay K+ satisfies

K+ /

(
K1K2(K4− 2K3)2

8K3

)1/3
(4K4 − 3K3)

5K4 + 2K3

, (5.68)

then sustained oscillations will be observed in a single window of K5 values contained
within γ− < γ < γ+. This window is contained within the larger window,[

K2
1K

2
2K4

2K2
3

(√
K4 + 2K3

K4 − 2K3

− 1

)]1/3

< K5 <
K1K2(K4 − 2K3)

2K+K3

. (5.69)

If the value of K5 is not within its window of values or the necessary conditions are not
met, the steady state for the system is asymptotically stable and Wnt signalling simply
acts to increase the concentration of β-catenin.

Summary of key results

The analysis of the implicit-delay model indicated that the asymptotically stable steady
state associated with static concentrations in a given regime, undergoes a bifurcation into
the sustained oscillatory regime, when the inverse of the time delay in the feedback is
below a critical value. This critical value depends on the other parameters of the system,
and is given by K+ < (K1K2K3)1/3ψI(α, γ), where α = K4/K3, γ = K3K

3
5/(K1K2)2,

ψI(α, γ) = −p(α, γ) +
√
p(α, γ)2 − q(α, γ), (5.70)

and

p(α, γ) =
2γ3 + (3α + 2)γ2 + (2α2 + 3α + 2)γ + α3 + 2α2 + α

2γ1/3 (α2 + 2αγ + 2γ2 + α + 2γ)
, and (5.71)

q(α, γ) =
− (α + γ + 1) ((α− 2)γ2 + α(α− 2)γ − α2)

γ2/3 (α2 + 2αγ + 2γ2 + α + 2γ)
. (5.72)

As complicated/messy as this solution appears, some very interesting conclusions can be
demonstrated from it.

1. There is always one and only one positive steady state for the system.

2. The steady state is always asymptotically stable if K4 < 2K3 (irrespective of the
strength of the Wnt stimulus K5 or the magnitude of negative feedback K1).

3. The steady state is always asymptotically stable if K+ > K∗+ (that is, if the feed-
back delay is sufficiently short), where K∗+ is the maximum allowable K+ value for
asymptotic instability of the steady state. This maximum allowable K+ is indepen-
dent of the Wnt signal strength K5. Whilst it is difficult to write down explicitly
what this critical delay is, a good approximation can be found,

K∗+ ≈
(
K1K2(K4 − 2K3)2

8K3

)1/3
(4K4 − 3K3)

5K4 + 2K3

. (5.73)

4. If K4 > 2K3 and K+ < K∗+, then there exists a single finite interval of Wnt signal
strengths K5 in which sustained oscillations will occur. That is, there exist a K5min

and a K5max > K5min such that sustained oscillations in the signalling pathway occur
if and only if K5min < K5 < K5max.
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The first conclusion is not controversial but important. It can be interpreted as ‘in the
case of no sustained oscillations, a given Wnt stimulus will result in a uniquely defined
static chemical steady state within the cell’. The steady state can also be trivially shown
to increase β-catenin levels in response to a Wnt stimulus.

The second conclusion is somewhat profound. It is interpreted as ‘cells for which
destruction complex ubiquitination of β-catenin is more efficient comparatively than the
deactivation efficacy of Wnt stimulation will not exhibit sustained oscillatory behaviour’.
This might highlight new roles for Wnt receptor and co-receptor expression rates in the
cells response to Wnt.

The third conclusion emphasizes the role of transcriptional delay in producing sus-
tained oscillatory behaviour in Wnt signalling. Beyond that, it is difficult to assess the
importance of (5.73) other than to point out that the delay must scale roughly with
respect to the intrinsic time-scales of the β-catenin regulation cycle.

Finally, it is an interesting observation that if sustained oscillations can occur in Wnt
signalling, this only occurs within a finite window of stimulus values K5. Phenomenon
that rely on Wnt signalling sustained oscillations therefore have to maintain a carefully
robust signal strength downstream of the receptor.

5.3.3 Stability analysis for the explicit-delay deactivator model

Model stability

The explicit-delay model from Section 5.2.5 was shown to have at least one case in which
the steady state system is asymptotically unstable, and can generate sustained oscillations.
In this section, the exact conditions to determine when the steady state system changes
its asymptotic stability will be analysed.

The set of three DDEs constituting the explicit-delay model are,

dB

dt
= K2 −K3BC, (5.74)

dC

dt
= K1B

(
t− 1

K+

)
−K4CR, (5.75)

dR

dt
= K5 −K4CR. (5.76)

As already explained in this chapter, the steady states of this system are the same as that
of the implicit-delay model (with the exception of A),

B0 =
K5

K1

, C0 =
K1K2

K3K5

, R0 =
K3K5K5

K1K2K4

. (5.77)

The same dimensionless variables and parameters that were used in the analysis of the
implicit-delay model will be used for the explicit-delay model. These are

B =
B

B0

, C =
C

C0

, R =
R

R0

, σ =
K1K2

K5

t, (5.78)

α =
K4

K3

, β =
K+

(K1K2K3)1/3
, and γ =

K3K
3
5

(K1K2)2
. (5.79)

Recall that parameters α, β, and γ measure the relative magnitudes of K4, K+ and K5
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respectively. The non-dimensionalised model becomes,

dB

dσ
= 1−B C, (5.80)

dC

dσ
= γ

(
B (σ − τ)− C R

)
, (5.81)

dR

dσ
= α

(
1− C R

)
, (5.82)

where τ = (βγ1/3)−1. By linearising around the steady state X0 = (1, 1, 1), and inspecting
the ansatz X(t)−X0 =

(
X(0)−X0

)
exp(λt), it is clear that if Re(λ) > 0 and Im(λ) 6= 0,

the steady state is asymptotically unstable and sustained oscillations will be observed. To
find where in parameter space a bifurcation occurs, an attempt is made to find Re(λ) = 0,
where λ is defined by substitution of the ansatz into the linearised dimensionless model.
Specifically, ∣∣∣∣∣∣

−1− λ −1 0

γe−λτ −γ − λ −γ
0 −α −α− λ

∣∣∣∣∣∣ = 0, (5.83)

which gives the auxiliary equation,

D(λ, τ) = λ3 + aλ2 + (b0 + b1e
−λτ )λ+ ce−λτ = 0, (5.84)

where,

a = α + γ + 1, (5.85)

b0 = α + γ, (5.86)

b1 = γ, (5.87)

c = γα. (5.88)

To investigate the bifurcation of the explicit-delay model from an asymptotically stable
steady state into an unstable one, solutions to Re(λ) = 0 need to be found. Substitution
of λ = µ+ iν into (5.84) so that the real and imaginary parts of λ are explicit gives,

Re(D) = µ3 + aµ2 − aν2 − 3µν2 + b0µ+ ce−τµ cos(τν)

+ b1e
−τµ [µ cos(τν) + ν sin(τν)] = 0, (5.89)

and,

Im(D) = −ν3 + 3µ2ν + 2aµν + b0ν − ce−τµ sin(τν)

+ b1e
−τµ [ν cos(τν)− µ sin(τν)] = 0. (5.90)

Note here that, being a solution to the real (5.84), solutions λ should come as complex
conjugate pairs and so it is expected that the positive and negative values of ν satisfy
(5.89) and (5.90). Setting Re(λ) = µ = 0, (5.89) and (5.90) are simplified to,

−aν2 + c cos(τν) + νb1 sin(τν) = 0, (5.91)

−ν3 + b0ν − c sin(τν) + νb1 cos(τν) = 0. (5.92)
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To solve these equations simultaneously, first eliminate τ by squaring both sides, and then
add the equations together to obtain,

ν6 + ν4(a2 − 2b0) + ν2(b2
0 − b2

1)− c2 = 0. (5.93)

In terms of the dimensionless parameters of the model α and γ, (5.93) is the following
cubic equation in v2,

(ν2)3 + ((α + γ)2 + 1)(ν2)2 + α(α + 2γ)(ν2)− γ2α2 = 0. (5.94)

For any given α > 0 and γ > 0, it is clear, since each coefficient in the cubic (5.94) is
strictly positive except the last term which is strictly negative, that there is exactly one
solution for which µ = 0 and v2 is real and positive, specifically 0 < ν2 < γ2α/(α + 2γ).
To obtain the value of τ which coincides with a given α, γ, and ν(α, γ)2 on the bifurcation
described by µ = 0, rearrange (5.91) and (5.92) into a matrix equation for (cos(τ), sin(τ)),
then solve and rearrange for τ . It was found that

τ =
1

ν
arctan

(
b0c+ (ab1 − c)ν2

−b0b1ν + acν + b1ν3

)
. (5.95)

This expression leads directly to an equivalent explicit-delay version of ψ(α, γ) defined in
Section 5.3.2 for the implicit-delay model. Written in terms of β (rather than τ), α, and
γ, then (5.95) becomes

β = ψ(α, γ) = νγ−1/3

[
arctan

(
(γ + 1)ν2 + α(α + γ)

ν (ν2 + α(α + γ)− γ)

)]−1

, (5.96)

where ν = ν(α, β) is given implicitly as the positive solution to (5.94). As already
discussed, there is exactly one value of ν2 for each α > 0 and γ > 0. Both the negative
and positive square root of ν2 give the same value for ψ(α, γ), so the convention of only
using the positive square root will be adhered to.

As previously for the implicit-delay model, the function ψ(α, β) is defined only on the
domain in which its definition (5.96) is positive. It is on this domain only where there
exists some β which may describe sustained oscillations in the model output.

The domain of ψ(α, γ)

Based on (5.96), the function ψ(α, γ) is positive and therefore defined if α > 1 (that is,
if K4 > K3). This is because ψ(α, γ) > 0 if ν2 + α2 > (1 − α)γ given that α and γ are
both positive parameters. If α > 1, then this statement becomes γ > (ν2 + α2)/(1− α),
which is automatically satisfied since the RHS of this inequality is negative whilst γ > 0.
If α < 1 then ψ(α, γ) is positive only if ν2 > (1−α)γ−α2. Therefore, if the LHS of (5.94)
is negative when evaluated at ν2 = (1 − α)γ − α2, then ψ(α, γ) is positive, otherwise it
is negative. Substituting ν2 = (1− α)γ − α2 into (5.94) gives ψ(α, γ) > 0, and therefore
defined if (1) α > 1 or (2),

H(α, γ) = α4 + (3γ + 2)α3 + (3γ2 + 3γ + 1)α2 + γ(γ2 − 1)α− γ3 − γ2 − γ > 0. (5.97)

Equation (5.97) can be shown to be reducible to α > α∗(γ), where α∗ is a smooth function
between 0 (evaluated at γ = 0), and 1 (which is approached asymptotically as γ → ∞)
for all γ ∈ (0,∞). The proof of this consists of using Descartes’ sign rule to establish, for
each γ ∈ (0,∞), the existence of at most one root of the quartic (5.97) for α > 0, but
zero roots for α > 1. Together with the change of sign, this quartic is between α = 0 and
α = 1. Smoothness is assured since H is a polynomial. Thus, (5.97) encapsulates the less
strict condition α > 1. The domain therefore is simply α > α∗(γ) where α = α∗(γ) is the
solution to (5.97), which lies between 0 and 1.
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The shape of ψ(α, γ)

As γ → ∞, it is possible to demonstrate that ν(α, γ) ∼
√
α by taking the dominant

balance between the ν4 term and ν0 term in (5.94). Thus, ψ(α, γ) ∼
√
α

γ1/3arctan(
√
α/(α−1))

(which is also an upper bound) for α > 1. In the case of α < 1, it is trivial to see
from the previous subsection that the function ψ(α, γ) does not exist in the limit γ →∞
(instead the domain of ψ is bounded above by the implicit curve H(α, γ) = 0). However,
because the boundary α = α∗(γ) is generated by a change in the sign of ψ as defined by

(5.96), if α∗−1(α) is particularly large, ψ(α, γ) ≈ −
√
α

γ1/3arctan(
√
α/(α−1))

as the boundary of

γ = α∗−1(α) is approached.

Summary of key results

This analysis indicated that the same set of generalised rules described for the implicit-
delay model apply to the explicit-delay model. That being said, the solution for the
bifurcation which separates the stable system from the oscillating one is not in the same
position as that for the implicit-delay model where τ = 1/K+, despite having the same
steady state under this assumption. As before, the sustained oscillatory regime occurs
when the inverse of the time delay in the feedback is below a critical value which depends
on the other parameters of the system K+ < (K1K2K3)1/3ψE(α, γ), where α = K4/K3,
γ = K3K

3
5/(K1K2)2,

ψE(α, γ) = νγ−1/3

[
arctan

(
(γ + 1)ν2 + α(α + γ)

ν (ν2 + α(α + γ)− γ)

)]−1

, (5.98)

and ν = ν(α, β) is the implicit positive solution to the polynomial

(ν2)3 + ((α + γ)2 + 1)(ν2)2 + α(α + 2γ)(ν2)− γ2α2 = 0. (5.99)

Once again, this solution seems rather complex but rigorous conclusions can be made from
it. The conclusions for the implicit-delay model are similar to that of the explicit-delay
model.

1. The steady state for the explicit-delay model is uniquely defined and is the same as
the implicit-delay model (except without the component A).

2. The steady state is always asymptotically stable if H < 0, where

H = α4 + (3γ + 2)α3 + (3γ2 + 3γ + 1)α2 + γ(γ2 − 1)α− γ3 − γ2 − γ. (5.100)

3. If the steady state of the implicit-delay model is asymptotically unstable, then so
is the explicit-delay model. That is, the region of instability in parameter space
for the explicit-delay model completely contains the region of instability for the
implicit-delay model.

Whilst the first of these conclusions is important (to ensure that the two models are
comparable), it is relatively uninteresting.

The second condition is substantially more complex than the analogous conclusion
that was made about the implicit-delay model (that the system requires K4 > 2K3 for
sustained oscillations). However, the message is similar. The bifurcation defined implicitly
by H = 0 begins at γ = 0 and α = 0, but as α increases, γ increases and asymptotes
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rapidly towards α = 1. Thus, this condition is really saying that if K5 is ‘not small’,
then one requires K4 & K3 for sustained oscillations to occur, that is, an inefficient Axin
deactivation mechanism will ensure that sustained oscillations will not be generated in
the signalling pathway.

The final conclusion is interesting since it demonstrates that a fixed time delay feed-
back in this context always expands the region of instability and sustained oscillations are
always more easily generated in the system as a result. This begs the more mathematical
question regarding under what conditions on the network structure (for which Wnt sig-
nalling is just one example) does a region of instability stay contained and reduce in size
if a delay is changed from being an explicit fixed delay to an exponentially distributed
time delay? This question is left unanswered for a more mathematical investigation.

5.3.4 Comparison of the implicit- and explicit-delay deactivator
models

Numerical simulations and heat maps

Whilst conclusions were compared about the stability analysis of the implicit- and explicit-
delay models, a full analysis of the non-linear problem after the onset of the instability is
intractable. For this reason, simulations are run similar to those in Figures 5.5 and 5.8,
in which the differences in the amplitude and the period between the two models over a
wide range of parameters K+ and K5 (fixing the other parameters) are compared. It is
noted that the shape of the domain for sustained oscillations with respect to these two
parameters has been shown to be similar irrespective of the other parameters. Therefore
the data is presented with a focus only on K+ (the feedback delay rate) and K5 (the
magnitude of the Wnt stimulus).

This result is plotted in Figure 5.12 using a heat map where blue denotes a small
amplitude and period, and the colour progresses to red representing a high change in
amplitude and period. These heat maps are overlapped with the analytical curves in
(5.70) and (5.98). In comparing these models, the simulations support the claims that
the explicit-delay model has a larger region in parameter space which generate sustained
oscillations, but also that the period and amplitude are larger in the sustained oscillatory
regime. Unsurprisingly, the oscillation amplitude gets bigger as the Wnt stimulus K5

is stronger. However, the period of the oscillations have a curious, difficult to explain,
distribution in the parameter space.
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(a) (b)

(c) (d)

Figure 5.12: Heat map for the implicit-delay model amplitudes (a), periods (b), the
explicit-delay model amplitudes (c), and periods (d). The heat maps demonstrate how the
size of the amplitude, and the length of the periods between oscillations in β-catenin differ
across the parameter space. For the implicit- and explicit-delay models, 10,000 simulations
are computed using 100 logarithmically-spaced K5 ∈ (0.001, 1), and 100 logarithmically-
spaced K+ ∈ (0.01, 1) (τ = 1/K+). The other parameters are held constant as K1 =
0.012 min−1, K2 = 0.423 nM min−1, K3 = 1 nM−1 min−1, and K4 = 10 nM−1 min−1.
Each simulation begins near steady state, and is run up to 10,000 minutes. For each plot,
the analytical curves from (5.70) and (5.98) for the implicit (a, b) and the explicit (c, d)
models respectively are overlapped. Low values in the heat map for both amplitude and
period are coloured blue, whilst high values are coloured red.

A comparison of the analytic derivations of the bifurcations (5.70) and (5.98) is pre-
sented in Figure 5.13, which separates the stable regime from the unstable oscillating one
using the same parameter sets that were used to generate Figure 5.12. From this plot,
it can be seen that there is always an upper and lower bound for K5 in which sustained
oscillations are induced (given the system is in the unstable region). This plot demon-
strates that the region of instability for the implicit-delay model is a subset of the region
for the explicit-delay model.
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Figure 5.13: Plot of the analytical regions separating the boundary of stability for both
the implicit- and explicit-delay models. The rate parameters, K1 = 0.012 min−1, K2 =
0.423 nM min−1, K3 = 1 nM−1 min−1, and K4 = 10 nM−1 min−1 are held constant.
Inside the unstable region, sustained oscillations are induced. Outside of this region is
when the steady state is asymptotically stable.

Proof that the domain of instability for the implicit-delay model is a subset
of the domain of instability for the explicit-delay model

Figure 5.13 suggests that the parameter set region for which sustained oscillations occur in
the implicit-delay model is a subset of the domain for the explicit-delay model. Although
this appears true for the parameter set chosen, it will be proved in this section that this
is always the case regardless of the choice of other parameters.

In this section, the claim that ψE − ψI > 0 will be proved, where ψE is defined for
the explicit-delay function in (5.96), and ψI is defined for the implicit-delay function in
(5.63). Both functions are defined in their domain of instability. For this proof, α > 2
and γ > 1 are used, as both ψE and ψI are positive for these values. ψE(α, γ) > ψI(α, γ)
can be written as,

γ2/3 [ψE(ψE + 2p) + q] > γ2/3 [ψE(ψI + 2p) + q] = 0, (5.101)

where p and q are from (5.61) and (5.62), and the right hand side is equal to zero by
substitution of (5.63). It is sufficient to show that if the left hand side of (5.101) is
greater than zero, then ψE(α, γ) > ψI(α, γ).

From (5.96), and using the fact arctan(x) < x for x > 0, gives,

γ2/3 [ψE(ψE + 2p) + q] > r(α, γ, z)(r(α, γ, z) + 2γ1/3p) + qγ2/3, (5.102)

where,

r(α, γ, z) =
z(z + α(α + γ)− γ)

(γ + 1)z + α(α + γ)
, (5.103)

and z = z(α, γ) = v2(α, γ) is the solution to,

z3 + ((α + γ)2 + 1)z2 + α(α + 2γ)z − α2γ2 = 0, (5.104)

with the restriction z > 0 (which forces v to be a real number). Substitution of the
analytic forms of r, p, and q into the right hand side of (5.102) and factorising it gives
the following form,

γ2/3 [ψE(ψE + 2p) + q] > Φ1(α, γ, z)Φ2(α, γ, z), (5.105)
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where Φ1 is large, but filled with strictly positive terms in sum and quotient relationships
resulting in Φ1 > 0. On the other hand,

zΦ2(α, γ, z) = z3 + ((α + γ)2 + 1− γ)z2 + (2γ2 − γ(γ − 2)α− (γ − 1)α2)z. (5.106)

Subtracting (5.104) from (5.106) simplifies this down to,

zΦ2(α, γ, z) = −γz2 − γ((α− 2)γ + α2)z + γ2α2. (5.107)

Since γ > 1 and α > 2 in the domain of ψI , there exists a z∗ such that for all α and γ in
the domain of ψI , then

Φ2(α, γ, z) > 0, iff z < z∗, (5.108)

Φ2(α, γ, z) < 0, iff z > z∗, (5.109)

where z∗ is the positive zero of (5.107). However from (5.104), it is known that z <
αγ/(

√
(α + γ)2 + 1). Substitution of z equal to this into ((α + γ)2 + 1)3/2zΦ2(α, γ, z)

gives,

((α + γ)2 + 1)3/2zΦ2 =
√

(α + γ)2 + 1γ
[
γα2((α + γ)2 − γ + 1)

]
− γ2α((α− 2)γ + α2)((α + γ)2 + 1). (5.110)

Since
√

(α + γ)2 + 1 > (α + γ),

((α + γ)2 + 1)3/2zΦ2 > γ2α
[
2γ((α + γ)2 + 1)αγ(α + γ)

]
> 0, (5.111)

for α > 2 and γ > 1. Therefore Φ2 > 0 which means by (5.108) that,

z <
αγ√

(α + γ)2 + 1
< z∗, (5.112)

or that Φ2(α, γ, z) > 0 for all α and γ in the domain of ψI .
Since Φ1 > 0 and Φ2 > 0 for all α and γ in the domain of ψI , then (5.105) gives,

γ2/3 [ψE(ψE + 2p) + q] > 0, (5.113)

and therefore, ψE > ψI within the domain for instability.

5.4 Conclusion

In this chapter, a number of simple models of Wnt signalling were investigated, which
contain only the key structures and dynamics postulated in the literature. The rationale
for simplifying these models was so dominant biochemical processes can be rigorously
analysed, and a deep understanding for how these processes are related could be attained.
The chapter focused on what determines if a cell processes a Wnt signal through the
canonical pathway by increasing cytosolic β-catenin to a static equilibrium, or if it will
drive temporal oscillations in the pathway components. The mechanism for oscillations
makes use of the upregulation of Axin2 as a target of β-catenin-dependent transcription
- a negative feedback for the Wnt signalling pathway.

The first investigation primarily asked the question ‘does the destruction complex
inhibitory mechanism of Wnt influence the conditions required for sustained oscillations
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in the pathway?’. This question is inspired by the uncertainty with how Wnt receptor
complex interacts with the destruction complex. Does the mechanism of interaction even
matter from the perspective of Wnt targets? From the perspective of attaining possible
sustained oscillatory behaviour in the pathway, this question is very important. It has been
shown that introducing heuristic and non-linear kinetics can induce sustained oscillations
in the case where the Wnt receptor complex dissociates the destruction complex. It was
proved that with a simple model, the mechanism is not capable of producing sustained
oscillations. This is opposed to a model whereby the Wnt receptor complex deactivates
destruction complex (by removing/sequestering it as active altogether), where sustained
oscillations are much more easily generated.

The second investigation focuses on the nature of the delay in the feedback. Since
Axin2 is fed back into the system by means of transcription, translation and then com-
plex formation (into active destruction complex), there is a significant delay associated
with this feedback. It is not clear what should characterise this delay, whether it is an
exponentially distributed delay (dominated by the wait time required for proteins to form
a complex in the cytoplasm) or if the delay is a fixed time (more likely associated with
the transcription and translation machinery). The changes of each of these descriptions
of the delay (a four-species ODE system or an equivalent three-species DDE system re-
spectively) have on the conditions required for sustained oscillatory behaviour were inves-
tigated. These models are called the ‘implicit-delay’ model and the ‘explicit-delay’ model
respectively. In both of these models, Wnt receptor complex deactivates the destruction
complex (since no sustained oscillations are possible if it simply dissociates it). For each
of these models, analytic solutions were found for the bifurcation of asymptotically stable
Wnt signalling into the sustained oscillatory regime. These analytical solutions gave a
number of insights into just how these sustained oscillations are generated. The main
conclusions are as follows;

• Irrespective of other properties of the system, the Wnt complex must deactivate
the destruction complex at a sufficiently fast rate compared to the ubiquitination/-
turnover rate of β-catenin by active destruction complex in order for sustained
oscillations to occur. For the implicit-delay model, the rate had to be at least twice
as fast. For the explicit-delay model, it just had to be faster.

• A delay in the negative feedback loop is essential. For any possible set of parameters,
a minimum time delay exists, below which no sustained oscillations can be generated.
This is true for both implicit- and explicit-delay models, although the minimum time
delay is always lower in the explicit-delay model.

• If sustained oscillations can be driven in the system, then there is always one, and
only one, finite window of Wnt stimulus levels which will drive sustained oscillations
in the system. That is, if the Wnt stimulus is either too low or too high, no sustained
oscillations will occur.

• It was proved that irrespective of the choice of parameters, if sustained oscillations
were generated in the implicit-delay model, sustained oscillations were guaranteed
in the explicit-delay model (but not the other way around). Whilst it is unclear
what is the specific mathematical quality of the Wnt signalling pathway that leads
to this property, it does hint that fixed time delays (that may be associated with
transcript-based feedback in biochemical systems, for example) have the potential
to increase the possibility for sustained oscillations in sub-cellular systems and thus
provide a mechanism for encoding information in cells.
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Chapter 6

Stochastic oscillations in the
Wnt/β-catenin signalling pathway

6.1 Introduction

In this chapter, the role of stochasticity in driving oscillations in regions where they other-
wise would normally not occur will be investigated. The Tymchyshyn and Kwiatkowska
paper [72] reviewed in Section 2.3.4 suggested that stochasticity can drive oscillations
outside the equivalent parameter space required to drive them in a deterministic model.
In Chapter 5 it was shown which parameters will induce sustained oscillations determin-
istically. In this chapter, stochasticity is investigated in the following two ways:

1. Chemical reactions are simulated stochastically using the Gillespie SSA,

2. Diffusion is introduced to investigate how spatio-temporal noise affects oscillations,
and the associated reaction-diffusion system is simulated using the Smoldyn algo-
rithm.

Method 1 focuses on any change in behaviour due to the introduction of noise associated
with discrete copy numbers in the chemical system. Each simulation using the Gillespie
SSA is assumed to be well-mixed so that no spatio-temporal element to the noise in the
system is considered. The Gillespie SSA for reaction processes provides an excellent initial
exploration into how stochasticity drives oscillations.

Method 2 explores how the introduction of a spatial component (in the form of diffu-
sion) further modifies the model behaviour when compared to the well-mixed system of
method 1. This method highlights the differences between meso- and micro-scale simula-
tions, specifically for the implicit-delay model from Chapter 5.

A comment on the choice of simulation volume

The stochastic simulations of the Wnt signalling pathway in Chapter 4 utilised the cell
volume of Xenopus oocytes (see Section 4.5.4 for the full details of this model). Xenopus
oocytes have a typical cell diameter of 1 mm which translates to an approximate cell
volume of 4.2× 10−9 m3 [121]. As stated in Section 4.5.4, a cell volume of this size would
result in simulating over 100 billion molecules, which would be quite computationally
intensive to simulate. Hence, a cubic sub-volume 1 million times smaller than the cell
volume (V = 4.2× 10−15 m3) was used to overcome this problem.

As this chapter focuses on exploring numerical simulations into stochastic models of
the Wnt signalling pathway rather than investigating experimental models of Wnt, the
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choice of volume to simulate Wnt accurately is not as important as it was in Chapter 4.
For this reason, the simulations start with a volume of V = 10−16 m3, which is smaller
than what was used in Chapter 4. It will be shown throughout this chapter that the choice
of volume for stochastic models of Wnt will significantly affect the simulation outputs.

6.2 Initial investigation into stochastically driven os-

cillations

Stochasticity is introduced to the implicit-delay deactivator model developed in Chapter 5.
Recalling that the model is the system of ODEs,

dA

dt
= K1B −K+A, (6.1)

dB

dt
= K2 −K3BC, (6.2)

dC

dt
= K+A−K4CR, (6.3)

dR

dt
= K5 −K4CR, (6.4)

where A represents Axin, B represents β-catenin, C represents active destruction complex,
and R represents the receptor complex. The steady states of (6.1) to (6.4) are,

A0 =
K5

K+

, B0 =
K5

K1

, C0 =
K1K2

K3K5

, R0 =
K3K5K5

K1K2K4

. (6.5)

To stochastically simulate the implicit-delay model, the concentrations A, B, C, and R
are converted to copy numbers by multiplying each species concentration by the system
volume V .

In this chapter, each simulation will start at the steady state of (6.1) to (6.4) rounded
to the nearest integer copy number (after the concentration of each species is multiplied
by the system volume). Each species starts in a well-mixed distribution (this statement
holds for the entire time for the Gillespie simulations).

6.2.1 Gillespie algorithm - Reaction processes

Throughout this chapter, well-mixed reactions are simulated using the Gillespie algorithm
defined in Section 3.4.1. The Gillespie algorithms were implemented using custom code
in MATLAB.

Using the Gillespie algorithm, two simulations of the implicit-delay model were com-
puted and the results presented in Figure 6.1 alongside the deterministic solutions. The
rate parameters used in both simulations were K1 = 0.012 min−1, K2 = 0.423 nM min−1,
K3 = 1 nM−1 min−1, K4 = 10 nM−1 min−1, K+ = 0.1 min−1, and the system volume was
set to V = 10−16 m3. The first simulation (Figure 6.1a) uses K5 = 0.18 nM min−1 (high
Wnt stimulus), whilst the second simulation (Figure 6.1b) uses K5 = 0.018 nM min−1

(low Wnt stimulus).
The stochastic simulation (blue curve) in the high Wnt case (see Figure 6.1a) matches

well with the deterministic solution (red curve). The β-catenin solutions match closely,
whilst the destruction complex simulations have a similar period, but varying amplitude.
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It is initially evident that a Gillespie simulation under high Wnt conditions closely matches
the deterministic model.

However, the stochastic simulation for the low Wnt case (see Figure 6.1b) shows
various peaks and oscillations when the deterministic solution remains at steady state.
These simulations certainly validates the claim in Tymchyshyn et al. for the implicit-
delay model, that the Wnt/β-catenin pathway can exhibit periodic spiking when the Wnt
stimulus is low [72].
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Figure 6.1: A comparison of stochastic simulations (blue curves) plotted against the
deterministic solutions (red curves) for the implicit-delay model in the presence of (a) high
Wnt stimulus, and (b) low Wnt stimulus. For the stochastic simulations, the Gillespie
algorithm is used with rate parameters K1 = 0.012 min−1, K2 = 0.423 nM min−1, K3 =
1 nM−1 min−1, K4 = 10 nM−1 min−1, K+ = 0.1 min−1, and the system volume was set
to V = 10−16 m3. The high Wnt case (a) is run with K5 = 0.18 nM min−1, whilst the
low Wnt case (b) is run with K5 = 0.018 nM min−1, a 10-fold decrease in the amount
of incoming active receptor complex. Simulations are run until t = 10, 000 minutes, and
only the last 1, 000 minutes are plotted.

6.2.2 Smoldyn algorithm - Reaction-diffusion processes

To determine how the introduction of diffusion into the system alters the stochastic be-
haviour of the model, the Smoldyn algorithm is used. The simulations throughout this
chapter which utilise the Smoldyn algorithm are written with custom MATLAB code. To
use the Smoldyn algorithm, the first step is to define the diffusion constant D for all four
chemical species, and then to define the system boundaries. Simulations in this section
use D = 10−12 m2 /s for all four chemical species (a typical diffusion constant for pro-
teins), a volume of V = 10−16 m3, a fixed time-step of ∆t = 10−4 minutes, and the system
is scaled such that the domain is a cube of unit length with periodic boundary conditions.
These were chosen so that boundary effects do not interfere with model outputs.

Similar to Figure 6.1, two simulations are computed, the first in which K5 is high, and
the second for which it is low. These simulations are plotted against their deterministic
counterpart (that is (6.1) to (6.4)) in Figure 6.2. The parameters in this figure are
exactly the same as Figure 6.1 with the addition of diffusion. Figure 6.2 demonstrates
that periodic spiking occurs under a low Wnt stimulus when using a Smoldyn algorithm.
The actual effect of spatial-associated noise is explored in Section 6.4.
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Figure 6.2: Smoldyn plots for (a) high Wnt (K5 = 0.18 nM min−1), and (b) low
Wnt (K5 = 0.018 nM min−1). The deterministic solutions are plotted in red, whilst
the stochastic simulations are plotted in blue. All simulations use rate parameters
K1 = 0.012 min−1, K2 = 0.423 nM min−1, K3 = 1 nM−1 min−1, K4 = 10 nM−1 min−1,
K+ = 0.1 min−1, a volume V = 10−16 m3, time-step ∆t = 10−4 min, and diffusion
constant D = 10−12 m2 /s. Similar to the Gillespie plots in Figure 6.1, the Smoldyn
simulation for the high Wnt case appears similar to the deterministic solution, and the
Smoldyn simulation for the low Wnt case oscillates when the deterministic solution does
not.

These initial simulations show that both the Gillespie SSA for chemical reactions, and
the Smoldyn algorithm for reaction-diffusion processes can drive oscillations stochastically
in a region of parameter space larger than that associated with the model in the absence
of noise. Further investigation into these methods is the focus of Sections 6.3 and 6.4.

6.3 The stochastic oscillation parameter regime

6.3.1 The stochastic implicit-delay deactivator model

Results in Section 6.2 confirmed that oscillatory behaviour can occur outside of the oscil-
latory parameter region defined in Section 5.3.4. A natural question to ask is, how far do
stochastic effects extend this region?

To answer this question, a computation is run similar to that presented for the de-
terministic models in Figure 5.12, where the amplitude and period of oscillations in the
stochastic models are computed over a large range of values for K5 and K+. However, to
create this heat map, a definition of what constitutes ‘oscillations’ in a noisy time series
is required.

Unlike the heat map for the deterministic solutions in Figure 5.12, it is not so straight
forward to determine if an oscillation actually occurs under stochastic conditions. The
stochastic simulation will never remain at steady state, as there will always be a small
amount of noise. Therefore, to determine that an oscillation has occurred, the following
criteria must be satisfied (represented visually in Figure 6.3). First, simulations are run
up until t = 10, 000 minutes, to ensure the solution is far enough away from any initial
transient effects. For this reason also, oscillations are only checked in the second half of the
simulation (t > 5000 minutes). This domain is then divided into 10 compartments of equal
length. The maximum and minimum β-catenin values are recorded for each compartment.
These maximums and minimums are then averaged together. An oscillation occurs when
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either the average maximum value is 1.3 times greater than the stochastic steady state,
or the average minimum value is 0.7 times the steady state. These values were chosen as
they are far enough away from steady state such that it can be considered as an oscillation
as opposed to noise. The amplitude of the oscillation is then the difference between the
average minimum and maximum values.
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Figure 6.3: Visualisation of the conditions to determine if an oscillation occurs, and
what the amplitude of the oscillations are. The evolution of β-catenin in a single sample
simulation is shown. The dotted black line represents the steady state of β-catenin under
deterministic conditions. The two black lines represent values of 1.3 and 0.7 times the
steady state. The domain to check for oscillations is divided up into compartments (in
this case 5 compartments). The maximum values are recorded for each compartment, and
then the average of these maximums is taken. The same is done for the minimum values.
If the average maximum value is more than 1.3 times greater than the steady state value,
or if the average minimum value is less than 0.7 times the steady state, then an oscillation
is said to occur. The size of the amplitude is then half the difference between the average
maximum and average minimum values.

The period of these oscillations is calculated differently to Section 5.3.4 due to the fact
that the time between peaks can no longer be used to measure the period as the noise
introduces far too many local peaks. Instead, a Fast Fourier Transform is applied to the
results, and the dominant frequency is extracted from this. The ‘period’ is then defined
as the inverse of this dominant frequency. A visual description of this is presented in
Figure 6.4.
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Figure 6.4: An example frequency plot to demonstrate how the period of stochastic
oscillations is determined. The frequency spectrum for one simulation is plotted. The
dominant frequency in this example occurs at 0.0094 min−1, resulting in a period of 106
minutes.

Similar to the heat maps in Figure 5.12, the simulations in this section are computed
over the parameter ranges 0.01 6 K5 6 1, and 0.01 6 K+ 6 100, where K+ is calculated
up to 100, as opposed to 1 in the deterministic models. The other four rate parameters
are held constant. Both the amplitude and period of the simulations, overlapped with the
analytical curve (5.70) (which forms the interface between sustained oscillations and the
stable steady state region for the deterministic model), are presented in Figure 6.5.

(a) (b)

Figure 6.5: Heat-maps showing the magnitude of the amplitude (a) and period (b) of
oscillations in β-catenin for 10,000 simulations using different combinations of parameters
K5 and K+. The units for the amplitude plot are in terms of concentration (nM), and the
units for the period plot are in minutes. This makes the plots comparable to Figure 5.12.
The colour maps operate on a log scale. The volume is set to V = 10−16 m3, and the
simulations are computed using the Gillespie algorithm for reactions. Both plots are
overlapped with the analytical curve (5.70) which separates the parameter regime into
oscillatory and stable regions for the deterministic version of this model. The two black
crosses (x) in both plots refers to the choice of parameters for the simulations in Figure 6.6.
The range labelled ∆K∞5 and bounded by the black dotted lines, refers to a window of
K5 values for which oscillations occur as K+ →∞.

These results suggest that β-catenin can exhibit oscillations stochastically outside of
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the analytical boundary. Figure 6.5 shows that the oscillatory region appears to extend
towards large values of K+ instead of being limited by an absolute upper limit for K+

(unlike the deterministic case in Figure 5.12). It appears that there is a window of K5

values for which the system exhibits oscillations regardless of the value of K+. The width
of this window will be referred to as ∆K∞5 , and is shown visually in Figure 5.12.

The effect of large K+

Before explaining the appearance of the ∆K∞5 window, it is a good idea to see how
the simulation behaves for a set of parameters inside this window. Figure 6.6 compares
two instances of the Gillespie simulations, the first with K+ = 1 min−1, the second with
K+ = 100 min−1, and both with K5 = 0.1 nM min−1. The volume is set to V = 10−16 m3,
and simulations are run until t = 10, 000 minutes with the last 1, 000 minutes plotted. It
is clear in Figure 6.6 that there are oscillations in β-catenin for both plots. The behaviour
between the two simulations appear similar, with the exception of Axin, where the copy
number of Axin in the second simulation regularly reaches zero. This aligns well with
a qualitative understanding of what it means to have large K+, where any Axin that
is produced should almost immediately convert into destruction complex. This type of
behaviour appears reminiscent of the zero-delay model introduced in Section 5.2.4. In
Section 6.3.2, the limit K+ →∞ is taken to reduce the implicit-delay model to the zero-
delay model, and then an investigation is completed to see if the zero-delay model can
oscillate under stochastic conditions.
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Figure 6.6: Single simulations using parameters of K5 and K+ outside of the analytical
boundary. For (a), K5 = 0.1 nM min−1, and K+ = 1 min−1. For (b), K5 = 0.1 nM min−1

and K+ = 100 min−1. Both simulations use rate parameters K1 = 0.012 min−1,
K2 = 0.423 nM min−1, K3 = 1 nM−1 min−1, K4 = 10 nM−1 min−1, and a volume
V = 10−16 m3. Each plot is overlapped with the deterministic curve (which remains
at steady state). Simulations are run up to t = 10, 000 minutes, and only the last 1, 000
minutes are shown.

It is postulated that the ∆K∞5 window appears because of the choice of volume. The
next section investigates what happens when the volume is increased, and determines at
what critical volume does this ∆K∞5 window disappear.
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The effect of increasing the system volume

The supposedly infinite parameter regime for stochastic oscillations in Figure 6.5, can be
explained by investigating the effects of increasing the volume of the system. Increasing
the volume increases the number of particles and thus reduces noise. It is expected in the
limit V →∞, that the deterministic results of Figure 5.12 are recaptured.

In Figure 6.7, the same simulations as Figure 6.5 are computed, except with the
volume increasing from V = 10−16 m3 to V = 10−15 m3, a 10-fold increase in the volume.
Immediately it can be seen that the ∆K∞5 window has disappeared.

Despite V = 10−15 m3 being a rather large volume for this model, there is a small
difference in the region of parameter space associated with oscillations between Figure 6.7
and the deterministic region from Figure 5.12. The stochastic region for oscillations
approximately aligns with the analytical boundary for the deterministic model, except for
low K5 values.

(a) (b)

Figure 6.7: Heat-maps demonstrating the difference in magnitude over the parameter
regime for the amplitude (a), and period (b) of oscillations in β-catenin. This heat-map
uses a volume V = 10−15 m3. This heat-map is generated by running Gillespie simulations
that vary over 10, 000 combinations of pairs of parameters K5 and K+. The analytical
curve (5.70) is drawn on both plots to easily compare the stochastic oscillations to the
deterministic region. The two black crosses (x) in both plots refers to the choice of
parameters for the simulations in Figure 6.8. The dotted black lines represents the upper
and lower boundary of the stochastic parameter regime from Figure 6.5 (and the distance
between the two for large K+ values is the ∆K∞5 window). These lines allow a direct
comparison between changing the volume from V = 10−16 m3 to V = 10−15 m3.

To explain the region outside the analytical boundary which still gives oscillations,
simulations are completed where K5 is just inside the boundary, and when it is just
outside. This is done in Figure 6.8 where K5 = 0.05 nM min−1 for the high Wnt case, and
K5 = 0.03 nM min−1 for the low Wnt case. Similar to the simulations in Figure 6.1, the
system exhibits oscillations deterministically for just the high Wnt case, but stochastically
for both the low and high Wnt cases.
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Figure 6.8: (a) One simulation run with K5 = 0.05 nM min−1 (high Wnt case). (b) One
simulation run with K5 = 0.03 nM min−1 (low Wnt case). Both of these simulations use
K1 = 0.012 min−1, K2 = 0.423 nM min−1, K3 = 1 nM−1 min−1, K4 = 10 nM−1 min−1,
K+ = 0.1 min−1, and the system volume was set to V = 10−15 m3. Simulations are
overlapped with their corresponding deterministic solution.

6.3.2 The stochastic zero-delay deactivator model

An important point to note about Figure 6.5 is that oscillations occur within a window
of K5 even when K+ is large, but as just demonstrated, this window disappears as the
noise is reduced (or volume increased). To investigate the ∆K∞5 window which generates
oscillations in the limit K+ → ∞, a stochastic version of the zero-delay model from
Section 5.2.4 is simulated. The zero-delay model is the implicit-delay model, in the limit
K+ →∞,

dB

dt
= K2 −K3BC, (6.6)

dC

dt
= K1B −K4CR, (6.7)

dR

dt
= K5 −K4CR. (6.8)

It was shown in Section 5.2.4 that this model, without stochasticity, never produces
oscillations regardless of the parameter choice. However the stochastic simulation in
Figure 6.5 suggests that oscillations may occur under stochastic conditions.

To confirm this, simulations are shown in Figure 6.9, where the period and amplitude
is plotted against an increase in K5 with the volume kept constant at V = 10−16 m3. As
can be seen in the figure, there are oscillations in this system until K5 reaches 0.3, after
which, the amplitude sharply decreases and the oscillations disappear.
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Figure 6.9: Plot of the amplitude (a) and period (b) of oscillations in β-catenin versus K5

whilst holding the other parameters the same. The K5 axis is plotted on a log scale. Each
point on these plots represent the average of 10 simulations for a particular choice of K5.
A value of zero for either the amplitude or period denotes that no oscillations occurred
for that particular choice of K5.

Effect of volume on the region for oscillations

The main results from Section 6.3.1 suggests that there is a critical volume for stochastic
simulations using large K+ values above which oscillations are impossible (the ∆K∞5
window disappears). In this section, there is an attempt to explain the behaviour of the
oscillations as the volume varies, and to find the critical volume for which oscillations
occur.

Simulations are run for the zero-delay model where the volume is varied from 10−18 m3

to 10−15 m3 with each point logarithmically spaced. The window of K5 values, ∆K∞5 , is
recorded for which oscillations occur, and this is plotted against volume in Figure 6.10.
As can be seen, the window for which oscillations occur stochastically decreases as volume
increases following a power law distribution (also plotted in Figure 6.10). This distribution
has equation

∆K∞5 = 1.751× 10−10V −0.5635. (6.9)
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Figure 6.10: Plot of the size of the ∆K∞5 window versus an increase in the system volume
V . The results are fitted to a power law distribution with equation ∆K∞5 = 1.751 ×
10−10V −0.5635. The x-axis is plotted on a log scale. On this scale, the size of the ∆K∞5
window decreases logarithmically as V is increased, and appears to reach zero when
V = 10−15 m3. Beyond this volume, the zero-delay model will never oscillate (as is the
case with the associated deterministic model), and thus the implicit-delay model with a
finite K+ must be used to induce oscillations in β-catenin.

6.4 Spatial effects for stochastic oscillations

In this section, there is an investigation into how introducing spatial effects to the simula-
tion provides different results to the Gillespie SSA. It was shown in Section 6.2.2 that there
is a set of parameters where there are no deterministic oscillations, but these oscillations
can be driven stochastically.

The models in this section are designed to be strongly diffusion-limited, as opposed to
rate-limited for the Gillespie SSA. For this reason, a diffusion constant is chosen in such
a way that reducing it any further generates significant inaccuracies in the Smoldyn algo-
rithm. The diffusion constant used is D = 10−15 m2/s (as compared to D = 10−12 m2/s in
Section 6.2.2). In this regime, the focus is heavily on the contribution of spatio-temporal
noise rather than noise associated simply with small copy numbers, although it is ac-
knowledged that these are intrinsically related.

The rate parameters used are K1 = 0.012 min−1, K2 = 0.423 nM min−1, K3 =
1 nM−1 min−1, K4 = 10 nM−1 min−1, K5 = 0.018 nM min−1, and K+ = 0.01 min−1.
The results from Section 6.3 suggest to use a volume of V = 10−15 m3 in order to avoid
oscillations at large K+. Therefore all simulations in this section utilise V = 10−15 m3.

The first set of simulations is presented in Figure 6.11, where the results of the Smoldyn
simulations are compared to the Gillespie SSA, and the corresponding ODE steady state.
Each plot compares the copy number of each combination of species for the implicit-
delay model. It appears that the copy numbers of A, B, and C, (Axin, β-catenin, and
destruction complex respectively) relative to each other, are very similar for both the
Smoldyn and Gillespie SSA. However, when comparing these species against R, there is
a clear difference. The Smoldyn simulation keeps R at less than 2 molecules whilst the
Gillespie SSA regularly reaches values of 18 molecules. This difference is due to the fact
that for these rate parameters, and the choice of diffusion constant, the binding radius for
reaction 4 (K4) is over 50% of the size of the system domain. This results in an artificially
fast bimolecular reaction, thus suggesting the choice of rate, diffusion, and time-step will
produce incorrect results.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.11: Comparison of the phase plane trajectories of the Smoldyn and Gillespie
algorithms. Each axes represents the copy numbers of either Axin, β-catenin, destruction
complex, or receptor complex. Both simulations use a volume V = 10−15 m3. The Smol-
dyn simulations has diffusion constant D = 10−15 m2/s, time-step ∆t = 10−4 minutes,
and is simulated with periodic boundary conditions.

To address this problem, a second simulation is computed, where K4 is reduced by a
factor of 100 which in turn ensures the binding radius is significantly less than the system
domain. Changing K4 on its own would change the stability of the associated determin-
istic system. To avoid this, careful attention is taken to ensure that the dimensionless
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parameters from (5.48),

α =
K4

K3

, β =
K+

(K1K2K3)1/3
, and γ =

K3K
3
5

(K1K2)2
, (6.10)

do not change, resulting in the same analytical curve for stability (see (5.70)). To keep
α, β, and γ the same, reducing K4 by 100 would result in a reduction of K3 by 100, a
reduction of K+ by 1001/3, and K5 is multiplied by a factor of 1001/3. This scaling does
alter the steady states of each species, however this new set of parameters provide a better
insight into how spatial effects alter the solution.

Solutions to the Gillespie and Smoldyn simulations using these new parameters are
plotted in Figure 6.12. For this set of parameters, there is a visual difference between the
range of copy numbers of each species across both types of simulations. In particular for
the species Axin, the minimum copy number for the Smoldyn simulation is smaller than
the minimum for the Gillespie SSA, and the maximum for the Smoldyn is larger than
the maximum for the Gillespie; in other words the range of Axin values is larger in the
Smoldyn simulation than the Gillespie SSA, which is due to spatio-temporal effects.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.12: Smoldyn simulations plotted against the equivalent Gillespie and ODE so-
lutions, where the rate constant K4 is reduced by a factor of 100, thus reducing K3 by
100, K+ by 1001/3, and increasing K5 by a factor of 1001/3. This simulation has volume
V = 10−15 m3, diffusion constant D = 10−15 m2/s, time-step ∆t = 10−4 minutes, and is
simulated with periodic boundary conditions. Each axes represents the copy numbers of
either Axin, β-catenin, destruction complex, or receptor complex.
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6.5 Conclusion

In this chapter, further simulations and analysis of the implicit-delay model were com-
pleted by adding stochasticity to the implicit-delay model. The aim of the chapter was
to see what unique behaviour arises from stochastic modelling of the implicit-delay model
that was not seen in the deterministic model in Chapter 5. Stochasticity was investigated
in two different ways: (1) the model was simulated by introducing stochastic noise into
the chemical reactions (see Section 6.3), and (2) a spatial component was incorporated
into the model (see Section 6.4).

The first, well-mixed model, showed how simply introducing stochasticity could pro-
duce unique behaviour not seen with deterministic methods. This was done by setting a
finite volume for the system, such that there were a discrete number of molecules in the
system. Therefore each reaction would need to be simulated discretely and stochastically.
To simulate this system, the Gillespie SSA was utilised.

The purpose of the second model was to see if the behaviour of the system could
change if spatial effects were considered. These spatial effects were included by modelling
the movement of molecules with diffusion. The Smoldyn algorithm was used to simulate
this type of system.

Initial simulations of both the Gillespie SSA and the Smoldyn algorithm showed that
there is indeed a region where β-catenin can oscillate stochastically, but not determinis-
tically. This supports the claim from the 2008 Tymchyshyn et al. paper [72].

The Gillespie simulations of the implicit-delay model where the volume was chosen to
be V = 10−16 m3, showed that the system would continue to oscillate as K+ increased
(delay decreased). This is in direct contradiction to the main findings of Chapter 5, in
which a minimum delay was needed to induce oscillations in the deterministic model.
This chapter suggests that oscillations can occur stochastically regardless of the delay in
the system.

Taking the limit K+ → ∞, is the same as having zero-delay in the upregulation
of destruction complex by β-catenin. That is, it represents the zero-delay model from
Section 5.2.4. It was shown in the previous chapter that the zero-delay model can never
oscillate deterministically. However, simulations in this chapter identified a parameter
regime where the model can exhibit oscillations stochastically, on the condition that the
volume of the system was below the critical volume V = 10−15 m3.

By using a volume of V = 10−15 m3, a 10-fold increase, the stochastic oscillations for
the zero-delay model disappeared. In fact, the region of oscillations for the stochastic
version of the implicit-delay model matched very closely to that of the deterministic
model. The only difference between the two modelling approaches, is the stochastic
model has a lower limit for K5 (rate of production of the receptor complex) compared to
the deterministic model which supports oscillations.

Simulations of the implicit-delay model with the Smoldyn algorithm were set up to be
highly diffusion-limited to emphasise the effect of spatio-temporal noise. However, this
presented a computational problem, where the rate of removal of the destruction complex
complex by the receptor complex is quite large. This results in an artificially large binding
radius that uses over 50% of the reactive volume of the system. To overcome this problem,
the rate constants were scaled to ensure the binding radius was significantly smaller than
the system volume, whilst ensuring the parameters chosen would keep the system in a
stochastically driven oscillatory state.

In comparing both the Smoldyn and Gillespie SSA results, it was shown that there is
a larger range of values over which Axin, destruction complex, and β-catenin oscillate in
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the Smoldyn simulation. This suggests it is important to model the system with a spatial
effect for sparse systems, as simulations showed that the interaction of each molecule in
the system depends upon their relative distance to each other.

Suggestions for future experiments to investigate oscillations in the Wnt sig-
nalling pathway

Mathematical models are useful tools in helping to design future biological experiments,
for which the results from this chapter can act as a great starting point. A major claim
from Chapter 5 is that oscillations in the Wnt signalling pathway occur within a finite
window of Wnt stimulus values (K5). Chapter 6 extended this claim to state that oscilla-
tions occur stochastically outside of this window. These two points could form the basis
of a biological experiment, which would determine how large this window of oscillations
would be, and if any periodic spiking occurred outside of this window.

Other interesting questions to answer through experiments include:

• Does inhibiting the Wnt feedback mechanism alter the window of Wnt stimulus for
which oscillations are induced?

• Do the claims in this thesis extend to all cell lines, or are they limited to only a few
select species?

However, what is suggested in theory may not be good in practice. One major limitation
in experiments would be detecting oscillations in the Wnt signalling pathway without
interfering with the fundamental behaviour of the cell. Another limitation would be in
accurately controlling the amount of Wnt stimulus entering the cell. Overcoming these
experimental limitations is something the author leaves to the experimentalists.
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Chapter 7

Conclusion

7.1 Thesis summary

The overarching theme of this thesis was on how to improve the modelling of reaction-
diffusion processes with a focus on stochastic effects, and how these models provide new
insights into the canonical Wnt signalling pathway. Recalling the aims from Chapter 1,
research in this thesis was designed to answer the following three questions:

1. How can reactions involving more than two molecules be modelled using the current
state-of-the-art framework?

2. What are the fundamental components of the Wnt signalling pathway which give
rise to feedback-driven oscillations? What conditions need to be placed on the
interactions between these components for oscillatory behaviour to arise?

3. What are the consequences of noise in the Wnt signalling pathway with feedback-
driven oscillations?

These questions arose by exploring gaps in the literature for reaction-diffusion processes,
and the Wnt signalling pathway. This literature was reviewed in Chapters 2 and 3. Each
of the aims formed the basis of the research in Chapters 4 to 6.

Reversible Doi and Smoluchowski kinetics for high-order reactions

The first question proposed in the aims was, ‘How can reactions involving more than
two molecules be modelled using the current state-of-the-art framework?’. This question
was the focus of Chapter 4. In this work, the existing Smoluchowski [110], Doi [115],
Lipková [116], and Flegg [118] kinetics were combined into a single framework capable of
simulating reversible Nth-order reactions [119].

Smoluchowski kinetics (reviewed in Section 3.5.4) was originally designed to describe
two proteins, treated as point particles diffusing freely in space with Brownian motion,
that eventually diffuse to within a critical separation distance of each other and instantly
react. This separation distance is typically denoted as the binding radius (see Figure 3.1).
These kinetics were later developed such that two particles can collide, but not immedi-
ately react with each other (see Figure 3.2). This particular model is referred to as Doi
kinetics (reviewed in Section 3.5.6).

Lipková kinetics (reviewed in Section 3.5.7) were developed to take Smoluchowski
and Doi kinetics, and apply them to reversible bimolecular reactions. These reactions
modelled under a Smoluchowski/Doi regime require the use of a second radius called the
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unbinding radius (see Figure 3.3). This unbinding radius describes how far apart two
particles created from a reverse reaction must be placed. Under a Smoluchowski regime,
these particles must be placed further than their binding radius. For Doi kinetics, this rule
is relaxed, as particles close to each other do not instantly react, which allows particles
the chance to diffuse away from each other.

Flegg kinetics (reviewed in Section 3.5.9) extended the work of Smoluchowski and Doi
to apply to reactions involving three or more molecules. These kinetics utilised a new
distance metric called Jacobian coordinates, which represent a vector that describes the
relative distances of three or more molecules from each other (see Figure 3.4a). If the
scaled lengths of these vectors is less than the binding proximity (a binding radius for
three or more molecules), then (3.70) is satisfied and a reaction occurs.

The new framework to model reversible N -molecular reactions was developed for two
specific cases: (1) the binding proximity is set to be larger than the unbinding proximity
(see Section 4.2.1), and (2) the binding proximity is smaller than or equal to the unbinding
proximity (see Section 4.2.2). The binding and unbinding proximities are similar to those
defined under Lipková kinetics, except they describe the placement of N molecules that
react or dissociate (see Figure 4.2).

The kinetics for case (1) in (4.23), although initially derived under the Doi regime, can
be simplified to a Smoluchowski framework by making the forward reaction instantaneous
(see (4.24)). These kinetics are reducible to the models derived by Flegg, Lipková, Doi,
and Smoluchowski, as demonstrated at the end of Section 4.2.1. Therefore these kinetics
can be used in place of the other frameworks as opposed to having five different models
to work from.

The case (2) kinetics in (4.30) opens itself to a number of interesting modelling choices.
For this case, the unbinding proximity can be taken to be zero (molecules produced from
reverse reaction are placed at the same point), which reduces the number of parameters
to set, and results in the kinetics in (4.31). Additionally, by considering the probability of
geminate recombination derived in Section 4.2.3, (4.30) can be further reduced to (4.40).
This last relation means the binding proximity can be fully determined by the forward
reaction rate constant, the diffusion constants for each molecule, and the probability of
geminate recombination.

To simulate these new kinetics, a modified version of the Smoldyn algorithm [81] from
Section 3.6 is presented in Section 4.3. A crucial step to modifying the Smoldyn algorithm
is solving the PDE in (4.41) using Green’s functions. However, analytic Green’s functions
could not easily be solved for reactions involving an odd number of molecules, resulting
in the need for approximate solutions to this PDE. Thus the algorithm has sacrificed
some accuracy, but this could be fixed in the future if a usable analytic solution to (4.41)
can be found. The modified algorithm was constructed in two parts, the first to build
a lookup table relating the binding proximity to the forward reaction rate constant in
Section 4.3.1, and the second algorithm described how to find the binding proximity from
the constructed lookup table (see Section 4.3.2).

In order to confirm the new framework developed in Chapter 4, simulations were
completed for two main examples. The first example applied these kinetics to theoret-
ical simulations of basic second-, third-, and fourth-order reactions. Figure 4.3 visually
demonstrated the accuracy of these new kinetics for these three cases. The accuracy was
verified by calculating the Kullback-Leibler divergence [120], which were found to be low
in each case. This means there is very strong agreement between the simulations and the
expected steady-states.

The second of these main examples simulated a modified version of the Lee model [58]
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for the Wnt signalling pathway in Section 4.5. This example was intended to demonstrate
the power of these new kinetics and algorithm in simulating a complex reaction pathway.
The Lee model was one of the first models to comprehensively describe most interactions
in the Wnt signalling pathway. In the Lee model, the protein β-catenin, is regulated by
a destruction complex consisting of Axin, APC, and GSK3β. The rate at which this de-
struction complex can regulate β-catenin is heavily influenced by a Wnt receptor complex
containing Dishevelled, which in high concentrations, will increase the dissociation rate
of destruction complex. Further analysis of the Lee model [59] demonstrated that the
pathway operates on three distinct time-scales: (1) a long time-scale on which the degra-
dation of free β-catenin operates, (2) the medium time-scale for which the formation of
destruction complex and its dissociation in the presence of high Dishevelled concentration
is considered, and (3) the short time-scale which deals with the rapid phosphorylation and
degradation of β-catenin via its association with the destruction complex. This demon-
strates that a modified version of the Lee model needs to consider these fast-slow kinetics
as they can cause issues when simulated under Smoluchowski kinetics (see Section 4.5.5).

Initial simulations of the Lee model used Lipková kinetics to describe a series of two
reversible bimolecular reactions in the formation of the destruction complex. This simula-
tion was compared to a reactive-only system of the Lee model simulated by the Gillespie
SSA in Figure 4.5. By comparing the two simulations, it is clear that simulating the Lee
model using bimolecular reactions for the formation of the destruction complex produces
inaccurate results. This inaccuracy is due to an issue with the fundamental nature of
Smoluchowski kinetics when simulating fast-slow reactions. In particular, a fast reaction
can result in a large reaction proximity which artificially inflates the simulated reaction
rate (demonstrated visually in Figure 4.6).

This issue is solved by modifying the Lee model further by treating the formation
of destruction complex as a single trimolecular reaction. The system is then simulated
using the kinetics derived in this thesis in Section 4.2 and the algorithm in Section 4.3.
Figure 4.8 demonstrates that this new method produces results with excellent agreement
to the equivalent Gillespie style simulation. This small change in the model suggests
reversible Nth-order reaction kinetics is more accurate and computationally faster than
using the standard Smoluchowski kinetics for a series of bimolecular reactions involving
fast-slow kinetics.

Although these simulations were more accurate, they are still susceptible to stochastic
effects, in particular stochastic focusing. This behaviour was demonstrated visually in
Figure 4.9, where simulations focusing on the destruction complex regulating β-catenin
were carried out. As the phosphorylation and degradation of β-catenin is quite rapid, these
results suggested that stochastic models of Wnt need to treat this particular process as
instantaneous.

Delay-driven oscillations via Axin2 feedback in the Wnt/β-catenin signalling
pathway

The second questions of the aims were, ‘What are the fundamental components of the
Wnt signalling pathway which give rise to feedback-driven oscillations? What conditions
need to be placed on the interactions between these components for oscillatory behaviour
to arise?’. These questions were researched in Chapter 5.

An important part of Wnt signalling is the effect of Axin2 feedback in the system.
Axin2 creates a negative feedback loop which leads to oscillatory behaviour in the total
concentration of β-catenin. Current models for Wnt signalling [68, 71, 72] can simu-
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late these oscillations. However these models are far too complex to develop analytical
relationships that can describe the exact conditions for which sustained oscillations occur.

This problem is addressed by simplifying the Tymchyshyn model from Section 2.3.4 to
create two new models. Central to the Tymchyshyn model is the deactivation (removal) of
destruction complex by a Wnt receptor complex, a behaviour that is necessary to induce
sustained oscillations.

The first simplified model is called the implicit-delay deactivator model (see Fig-
ure 5.4), where only the four components, Axin, destruction complex, β-catenin, and
a Wnt receptor complex are considered. The interactions in this model are described by
(5.15) to (5.18) which represent a system of four ordinary differential equations. In this
model, Axin is produced from β-catenin, and acts as an ‘implicit’ delay in the production
of destruction complex. This delay in producing destruction complex causes a delay in
both the removal of destruction complex with receptor complex, and the degradation of
β-catenin by destruction complex.

The asymptotic stability of the implicit-delay deactivator model was determined in
Section 5.3.2. Equation (5.70) describes the bifurcation curve for this model, in which
sustained oscillations are obtained when (5.70) is positive. This bifurcation line leads to a
number of conclusions about Axin2 feedback in Wnt signalling. Each of these statements
provides necessary conditions for sustained oscillations to be induced in this model:

1. A delay in destruction complex production is necessary.

2. The delay in destruction complex production must be greater than some minimum
value.

3. The rate at which Wnt receptor complex removes destruction complex must be
greater than the rate at which destruction complex can phosphorylate and degrade
β-catenin.

4. The influx rate of Wnt receptor complex must lie within a finite window of Wnt
stimulus levels for which oscillations can occur.

All of these statements must be satisfied in order to induce sustained oscillations in the
implicit-delay model.

The second model produced in Chapter 5 is the explicit-delay deactivator model (see
Section 5.2.5). This model simplifies the implicit-delay model by replacing the delay in
destruction complex production with a single fixed time delay. The new model is the
system of delay differential equations described by (5.26) to (5.28).

Analysis of the explicit-delay model resulted in the bifurcation line described by (5.96).
Similar to the implicit-delay model, this bifurcation line needs to be positive to produce
sustained oscillations. All the statements that need to be satisfied in the implicit-delay
model in order for sustained oscillations to occur also hold true for the explicit-delay
model. The only difference is that the explicit-delay model has a larger region of param-
eters for which sustained oscillations can be induced.

Equations (5.70) and (5.96) are presented visually in Figures 5.12 and 5.13. The
first figure describes the strength of the amplitude and period of sustained oscillations.
The second compares the stability region for both models. From Figure 5.13, it can be
seen that the region of stability for the explicit-delay model is larger than that of the
implicit-delay model.

It was not determined in Chapter 5 which model should be used. Instead, that choice
is left to the modeller. Both models have advantages and disadvantages. The implicit-
delay model allows a modeller to adjust all the rate constants. This is advantageous if
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the experimental data is provided in terms of reaction rate constants. The explicit-delay
model has less components, and allows for the ability to specify an exact time for the
delay in destruction complex production. However it is more computationally intensive
to solve, which can be a major problem when simulating a large number of systems, for
example, for parameter estimation purposes.

Stochastic oscillations in the Wnt/β-catenin signalling pathway

The final question of the aims was, ‘What are the consequences of noise in the Wnt
signalling pathway with feedback-driven oscillations?’. This was researched in Chapter 6,
by taking the implicit-delay model from Section 5.2.3, and simulating it stochastically
using the Gillespie SSA from Section 3.4.1 and the Smoldyn algorithm from Section 3.6.

The Gillespie SSA determined how noise associated with discrete chemical copy num-
bers alters the stability of the implicit-delay model. Initial simulations using the Gille-
spie SSA demonstrated that under a Wnt stimulus, oscillations can still occur stochasti-
cally when they would not occur deterministically. This claim also holds true for spatio-
temporal systems simulated using the Smoldyn algorithm.

The region of parameter space for which stochastic models induce oscillations (with
a small enough volume) is significantly larger than that for deterministic models (see
Figure 6.5). In particular, given a small volume (V < 10−15 m3) and if the delay in
destruction complex production is taken to be infinitely small, then there is a finite window
of Wnt stimulus values for which oscillations will occur stochastically.

This phenomenon results in stochastic oscillations in the zero-delay model from Sec-
tion 5.2.4. Although this model can never generate sustained oscillations deterministically,
it can when simulated under stochastic conditions. However, by increasing the system
volume, the zero-delay model reaches a critical volume at which oscillations cease (see
Figure 6.10).

In using a volume larger than the critical volume, the region of parameters for which
stochastic oscillations can be induced is smaller than if a value less than the critical
volume is used. The resulting region is presented in Figure 6.7. Solutions from this region
of parameter space can still oscillate stochastically for low values of Wnt stimulus.

By simulating the implicit-delay model using spatio-temporal simulations (reaction-
diffusion model), new behaviour arises. Under highly diffusion-limited conditions, the
range of values for which β-catenin and Axin oscillate over increases. However, care
needs to be taken to ensure the parameters for the Smoldyn algorithm do not result in
artificially large reaction radii (see Figures 6.11 and 6.12).

7.2 Open problems

The main results from this thesis lead to a number of open problems to solve. In this
section, four main research questions are proposed.

What other algorithms can be modified to simulate reversible Nth-order re-
actions?

The kinetics for the reversible Nth-order reaction developed in Chapter 4, were simulated
by a modified version of the Smoldyn algorithm. The Smoldyn algorithm was chosen as it
is simple to implement, and is relatively efficient for dense micro-scale systems. However,
for sparse micro-scale systems, an event-driven algorithm, such as eGFRD [83], would
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be far more computationally efficient than Smoldyn. The eGFRD algorithm was briefly
reviewed in Section 3.2.4. The core component of this algorithm is the placement of
protective boundaries around either a single molecule, or a pair of molecules that have
the potential to react together. The time taken until a single molecule or pair of molecules
diffuses outside the protective boundary, or the molecules react, is calculated and placed in
a list ordered from the shortest time to the longest time. The algorithm proceeds through
this list, executing one event at a time, and updating the list as each event occurs.

To derive the eGFRD algorithm to simulate reversible Nth-order reactions, there are
two main mathematical problems to solve. The first is to determine how protective bound-
aries should be placed around a set of N -molecules. The kinetics for Nth-order reactions
require the binding proximity to operate in 3(N−1)-dimensional space to determine what
is the closest set of N molecules that can react together.

The second problem to solve, is finding an exact solution to the partial differential
equation (PDE) which governs when N molecules react together. This PDE would be
similar to the diffusion equation in the paper by Takahashi et al. [83], except it would
be modified to describe the diffusion of N molecules, as opposed to only two. There is
no guarantee that there are analytical solutions to this PDE. If this was the case, then
approximate solutions would need to be used, and the eGFRD would no longer produce
‘exact’ results.

How would the kinetics for reversible Nth-order reactions be constructed un-
der a Collins-Kimball framework?

The Collins-Kimball model [114] (reviewed in Section 3.5.5) is based on the Smoluchowski
approach to modelling bimolecular reactions, except that reactions are activation-limited
as opposed to diffusion-limited. This type of approach increases both the mathematical
and computational complexity of resolving reactions, however the Smoldyn software pro-
vides a way to overcome these issues [81]. Just as Chapter 4 asked the question about
how Smoluchowski kinetics could be extended to model reversible Nth-order reactions, the
same can be asked of the Collins-Kimball model. The derivation of the Collins-Kimball
model for reversible Nth-order reactions would likely follow a similar approach to that of
Section 4.2, with the modification of how boundary conditions are implemented to ensure
the reactions become activation-limited.

How can models of Wnt with crosstalk between other pathways such as Notch
and FGF signalling be simplified, and how does this crosstalk affect oscillations
in the Wnt signalling pathway?

The implicit- and explicit-delay models developed in Chapter 5 were simplifications of the
oscillatory Wnt pathway. These models beg the question, can other oscillating signalling
pathways, such as that of Notch and fibroblast growth factor (FGF), be simplified in a
similar way for the purposes of analysis? Once these models are simplified (if it is possible
to do so), then it would be interesting to simulate the crosstalk between simplified models
of Wnt, Notch, and FGF signalling. This coupled pathway could then be compared
to the implicit- and explicit-delay models, to determine how the induction of sustained
oscillations differs between the models.
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How can the conditions required to induce oscillatory behaviour in Wnt sig-
nalling be validated through biological experiments?

An important part of modelling biological processes, is to develop models that can in-
fluence and design future biological experiments. A key outcome of Chapter 5 were the
conditions needed to induce oscillations in both the implicit- and explicit-delay models.
In Chapter 6, it was shown that stochastic models have a larger region of Wnt influx
for which periodic spiking is induced. A number of observations were identified as by-
products of simulating a simple model of Wnt signalling. These observations would require
experimental validation before being considered as accepted scientific theory.

7.3 Concluding remarks

The quantity of research in mathematical biology has increased due to the advancement
of mathematical and algorithmic techniques in simulating biological systems. The work
in this thesis has contributed to these advancements in the following way:

• Kinetics for reactions involving more than two molecules were created. These ki-
netics overcome issues in simulating a series of fast-slow reactions in a biological
pathway.

• Simplified pathways for an oscillating Wnt system were developed. This simplifica-
tion provides greater insight into the exact conditions required to induced sustained
oscillations.

• Observations into stochastically modelling the Wnt signalling pathway were made.
These observations highlighted behaviour that could drive future biological experi-
ments.

A barrier in mathematical biology is to design software that can efficiently simulate bi-
ological systems without sacrificing accuracy. Current software handle this problem well
[96]. However as these methods become more efficient, a natural step is to then define
them for smaller scales. If future models can describe the underlying molecular and atomic
dynamics of biological systems, and can simulate these efficiently, then the quality of re-
search in mathematical biology will improve drastically. Until this time, it is important
to design simpler models of biological systems, and to improve the algorithms used to
simulate them.
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