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Abstract 

Amyloidogenic and antimicrobial peptides demonstrate preferential toxicity towards 

eukaryotic and prokaryotic cells, respectively. Whereas amyloidogenic peptides have varying 

sizes and predominantly consist of hydrophobic residues, the antimicrobial peptides usually 

contain less than 50 amino acid residues and have a balanced distribution of cationic and 

hydrophobic residues. However, both classes of peptides are amphipathic and manifest their 

cytotoxicity using similar modes of membrane action. Thus, relatively smaller antimicrobial 

peptides, such as 17 amino acid residues long uperin 3.x peptides, can serve as model peptides 

to study the effect of electrolyte concentration and cationic to hydrophobic residue substitution 

on the propensity of antimicrobial peptides to form amyloid-like fibrils.  

Both coarse-grained and fully-atomistic simulations were employed to determine that sodium 

chloride salt promotes uperin 3.5 aggregation by screening electrostatic repulsion and 

facilitating increased α-helical content in the early stages of peptide aggregation. All uperin 3.x 

peptides and corresponding variants interacted more favourably with bacterial membrane-

mimic, anionic sodium dodecyl sulphate micelles; than with eukaryotic membrane-mimic, 

zwitterionic dodecyl phosphatidylcholine micelles. Moreover, the alanine variants 

demonstrated relatively weaker interaction with both types of micelles, compared to the wild-

type peptides. Also, peptide segments predominantly consisting of hydrophobic residues were 

found to be crucial in the interaction of uperin 3.x peptides and their variants with these bilayer 

analogues. Furthermore, fully-atomistic simulations were performed to elucidate the effect of 

seventh-position substitution of arginine or lysine residue with alanine on these uperin 3.x 

peptides. It was observed that peptide aggregates solely composed of coil and turn secondary 

structures demonstrated a relatively rapid β-aggregation than those containing helical 

signatures. In general, alanine substitution at seventh-position increases the β-aggregation 

propensity of the uperin 3.x wild-type peptides. However, the initial structural composition of 

the peptide conformers and the three-dimensional inter-peptide orientation at the beginning 

would also play a crucial role. 
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Chapter 1 

Introduction 

1.1. Background 

Amyloidogenesis involves transition of certain peptides or proteins from soluble functional 

states into highly organized fibrillar aggregates, via protofibrillar intermediates1. The ‘amyloid 

hypothesis’ implicates peptide or protein aggregates for the cytotoxic ‘degenerative’ events 

associated with neurodegeneration and other misfolding diseases (Table 1.1)2-3. Although 

protofibrils or diffuse amyloids are soluble intermediates without fibrillar substructure, they 

serve as precursors to mature amyloid fibrils; and are linked to the cytotoxicity observed in 

amyloid diseases2, 4-6. Especially, in neurological disorders involving the central nervous 

system, these oligomeric forms cause the pathogenicity, primarily due to their small size 

allowing faster diffusion and greater exposure of hydrophobic amino acid sidechains on their 

surface7. 

An increasing number of antimicrobial peptides (AMPs) have been identified with an inherent 

ability to form amyloid structures8. For example, indolicidin, temporin L, magainin 2, and 

plantaricin A are all AMPs that can form amyloid-like fibrils, and consist of 13, 13, 23, and 48 

amino acid residues, respectively9. Furthermore, the mechanism of cytotoxic action of AMPs 

and, amyloidogenic peptides and proteins, have considerable similarities8-9. Therefore, 

relatively small AMPs, such as 17 residues long uperin 3.x peptides (naturally obtained from 

Uperoleia mjobergii), can serve as model peptides for understanding the process of amyloid 

formation10. The uperin (U) 3.5 wild-type (wt) is unusual, as it does not aggregate in pure water, 

but self-aggregates in NaCl buffer at neutral pH to form amyloid-like fibrils8. Electrolytes can 
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play a crucial role in the stabilization of peptide secondary structure and fibril formation by 

screening the charges on the residues, and thus reducing the surface tension11-12. Moreover, 

monovalent cations (Na+, K+) facilitate intra-peptide hydrogen bonds and turn structures, and 

hence promote peptide self-assembly12-13.  

Table 1.1. Examples of peptides or proteins that form extracellular amyloid deposits or 

intracellular inclusions with amyloid-like features in human diseases7. 

Peptide or protein name Number of 

residuesa  

Structureb Associated disease 

Amyloid-β peptide 40 or 42c Intrinsically disordered Alzheimer disease 

α-Synucleind 140 Intrinsically disordered Parkinson disease 

Prion protein 208 Intrinsically disordered 

(1–102) + All-α, prion-

like (103–208) 

Creutzfeldt-Jakob 

disease, Kuru 

Huntingtin exon 1d ∼103–187c Intrinsically disordered Huntington disease 

β2-microglobulin 99 All-β, Ig-like Dialysis-related 

amyloidosis 

Islet amyloid polypeptide 37 
 

Intrinsically 

disordered 

Type II diabetes 

Insulin (30 + 21)e 
 

All-α, insulin-like Injection-localized 

amyloidosis 

aLengths of the processed forms depositing into the aggregates, not the precursor proteins. 

bStructural class and fold of the native, processed protein or peptide prior to aggregation, according to the 

Structural Classification of Proteins database. 

cFragments of various lengths were reported for ex vivo fibrils. 

dIntracellular proteins, unlike the others that are extracellular. 

eLengths of the A and B chains linked by a disulphide bridge. 

Uperin 3.x peptides are known to have antimicrobial activity against a host of Gram-positive 

bacteria10. Compared to U3.6 wt, seventh-position alanine variant U3.6 K7A exhibits 

drastically reduced antibiotic activity, as observed against a host of Gram-positive and Gram-

negative bacterial cultures14. The membrane action of U3.5 wt and U3.5 R7A has been 

investigated15, and it was observed that compared to U3.5 wt, membrane action was greatly 

reduced or almost inhibited when U3.5 R7A peptide solution was introduced to a membrane 

bilayer. Furthermore, molecular dynamics (MD) simulations of melittin and MG-H2 AMPs 
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indicate that the presence of charged residues at the N-termini region plays a crucial role in 

their membrane action16. In general, AMPs exert their cytotoxic activity by acting on the 

bacterial cell membranes, with membrane disruption and pore formation being the most 

common modes of action17. 

A lot of AMPs demonstrate a fibril-forming potential8-9. However, the formation of such 

amyloid structures would have different kinetic pathways for the diverse amyloidogenic 

peptides7. For instance, the investigation of U3.5 wt and U3.5 R7A revealed that U3.5 wt has 

lesser aggregation and β-sheet formation propensity, compared to U3.5 R7A15. The seventh-

position substitution of a positively-charged amino acid with a nonpolar alanine residue has 

been found to increase the fibril content for the U3.5 R7A peptide. Substitution of isoleucine 

with arginine (I254R) in a p53252−258 fragment adversely affected the propensity to form β-sheet 

structures18. Similarly, the introduction of charge also reduced the fibril formation of α-

synuclein19. Furthermore, substitution of a lysine residue with alanine (K28A) increased the 

intra-peptide hydrophobic interactions in a Aβ21–30 segment20. Significantly, most pathogenic 

mutations, common in hereditary amyloid diseases, disrupt the native structure of the protein 

and make it prone to aggregation1, 7. 

Table 1.2. Amino acid sequences of uperin 3.x wild-type peptides10 and corresponding 

seventh-position alanine variants. 

 Peptide 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 C-Ter 

1. U3.4 wt G V G D L I R K A V A A I K N I V -NH2 

2. U3.4 R7A G V G D L I A K A V A A I K N I V -NH2 

3. U3.5 wt G V G D L I R K A V S V I K N I V -NH2 

4. U3.5 R7A G V G D L I A K A V S V I K N I V -NH2 

5. U3.6 wt G V I D A A K K V V N V L K N L F -NH2 

6. U3.6 K7A G V I D A A A K V V N V L K N L F -NH2 

In this thesis, we study the peptides from the uperin 3.x family and their corresponding alanine 

variants. The primary objective is to understand the effects of electrolyte concentration and 

cationic to hydrophobic residue substitution on the initial stages of aggregation, such as, the 

evolution of secondary structure. Moreover, the interaction of uperin 3.x peptides and variants 

with bilayer analogues is also investigated. The peptide sequences of U3.4 wt, U3.5 wt, and 

U3.6 wt, and their respective seventh-position variants, U3.4 R7A, U3.5 R7A, and U3.6 K7A, 
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are listed in Table 1.2. Uperin wild-type peptides from the 3.x family have innate amidation at 

the C-terminus10, as shown in Table 1.2. 

Uperin 3.x peptides are relatively small amyloidogenic AMPs, and therefore ideal for 

understanding the effect of electrolyte concentration on the amyloid formation process, and the 

associated secondary structure changes. Furthermore, these uperin 3.x peptides can provide 

important insights into the effect of cationic to hydrophobic residue substitution on the process 

of amyloidogenesis, the evolution of secondary structure, and the interaction with lipids. 

Therefore, both fully-atomistic and coarse-grained MD simulations were used in this study to 

examine the aggregation and lipid interaction properties of the uperin 3.x peptides and variants 

listed in Table 1.2. 

1.2. Thesis objectives and roadmap  

The central objective of the thesis was to explore the ‘amyloidogenicity and lipid interaction 

of antimicrobial anuran peptides’, and this has been addressed in the following chapters, briefly 

described below: 

Chapter 3 - Mechanistic insight into the early stages of amyloid formation using an anuran 

peptide: the objective was to understand the effect of NaCl concentration on the aggregation 

behaviour and the associated secondary structure evolution of U3.5 wt peptide in an aqueous 

medium. 

Chapter 4 - Interaction of anuran peptides with DPC and SDS micelles: A Molecular Dynamics 

study: the objective was to obtain mechanistic insight into the effect of seventh-position alanine 

substitution  on the interaction of uperin 3.x peptides and corresponding alanine variants with 

eukaryotic membrane-mimic zwitterionic dodecyl phosphatidylcholine (DPC) and bacterial 

membrane-mimic anionic sodium dodecyl sulphate (SDS) micelles. 

Chapter 5 - Propensity of Uperin 3.x peptides towards beta-aggregation: Analysis of 

structurally-diverse conformers: the objective was to elucidate the effect of seventh-position 

alanine substitution on the self-aggregation phenomena of uperin 3.x wild-type peptides and 

corresponding alanine variants. 

The thesis also includes a literature review (Chapter 2), and a chapter on concluding 

remarks (Chapter 6). Chapter 2 (Literature review) is further divided into Amyloidogenesis 

(Section 2.1), Antimicrobial peptides (Section 2.2), Role played by ions and mutations (Section 
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2.3), An introduction to molecular dynamics theory (Section 2.4.), and Computational models 

and methods (Section 2.5). Chapter 6 provides a summary, and a cross-link between the 

Chapters 3–5 (as mentioned above). Moreover, it also provides suggestions for future research. 
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Chapter 2 

Literature Review 

2.1. Amyloidogenesis 

2.1.1. Introduction 

A large number of human diseases occur due to the failure of a specific peptide or protein to 

adopt or remain in its native functional conformational state1. These pathologies are referred 

to as protein misfolding or protein conformational diseases. The largest group of misfolding 

diseases is associated with the conversion of specific peptides or proteins from their soluble 

functional states into highly organized fibrillar aggregates. These structures are generally 

described as amyloid fibrils or plaques when they accumulate extracellularly, whereas the term 

“intracellular inclusions bodies” is employed if such fibrils form inside the cell. The ‘amyloid 

hypothesis’ implicates protein aggregation as the trigger of a cascade of events that result in 

neurodegeneration and disease2. The diseases can be broadly grouped into neurodegenerative 

conditions, in which aggregation occurs in the brain; non-neuropathic localized amyloidosis, 

in which aggregation occurs in a single type of tissue other than the brain; and non-neuropathic 

systemic amyloidosis, in which aggregation occurs in multiple tissues1. However, most 

amyloid-forming proteins do not share any apparent sequence identity or structural homology. 

Moreover, considerably large variation is observed in secondary structure composition and the 

polypeptide chain length. Although, most of them have fewer than 100 amino acid residues3. 
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Figure 2.1. A schematic representation of some of the many conformational states that can be 

adopted by polypeptide chains, and of the means by which they can be interconverted3. 
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2.1.2. Fibril formation kinetics 

During fibril formation, sigmoidal kinetics is observed with three distinct phases: a lag phase, 

an exponential phase (also termed as elongation, growth, polymerization, or fibrillation phase), 

and an equilibrium phase (also termed as plateau or saturation phase)3.  

A range of amyloid-prone proteins, such as α-synuclein (αs), tau, and the islet amyloid 

polypeptide (IAPP) are largely unstructured in solution, also described as natively unfolded or 

intrinsically disordered (Figure 2.1)3. However, they might fold into more well-defined 

structures after interaction with specific binding partners. Intrinsically disordered systems can 

also be generated following proteolysis from larger proteins that are otherwise folded, such as 

the amyloid-β peptide (Aβ) and the amyloidogenic fragment of gelsolin. In case of globular 

proteins like β2-microglobulin and transthyretin, the usually compact and highly cooperative 

structures bury the most aggregation-prone regions of the molecules within the core of the 

protein. Thus, fully folded proteins must convert into a partially unstructured ensemble that is 

competent for fibrillar aggregation. The different conformational states adopted by proteins 

involve a highly complex series of equilibria, whose thermodynamics and kinetics in a 

normally functioning living system are determined by their intrinsic amino acid sequences as 

well as through interactions with molecular chaperones, degradation processes, and other 

sophisticated quality control mechanisms. Here, the competition between intramolecular and 

intermolecular interactions needs to be considered, resulting in a dramatic increase in landscape 

ruggedness4.  Multiple pathways are accessible and selected depending on 

experimental conditions, protein sequence, and conformational state adopted by the 

amyloidogenic monomer3. Although the amino acid sequences of proteins and peptides and, 

the surrounding biological environments in which they function have coevolved to maintain 

them in their soluble states, in some circumstances they can convert into non-functional and 

potentially damaging protein aggregates (Figure 2.1).  

During an aggregation reaction, the initial species are generally largely unstructured, with the 

β-sheet–containing species appearing only later3. The large oligomers with high β-sheet 

content represent off-pathway species that need to dissociate prior to forming amyloid fibrils. 

The average β-sheet content generally increases with molecular weight, suggesting that an 

increase in size stabilizes their β-sheet structure. Such structures usually possess both 

antiparallel and parallel as well as out-of-register strands. However, in the Aβ40/Aβ42 fibrils. 

the β-strands are arranged in a parallel and in-register manner.   
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In nucleated polymerization mechanism, monomers that are completely or partially disordered 

convert into nuclei through a thermodynamically unfavourable process that takes place early 

in the lag phase3. These contain a relatively small number of molecules, and generally retain a 

structural memory of the monomeric states that have generated them (Figure 2.1). Such early 

aggregates are usually unstable, as only relatively weak intermolecular interactions are 

involved, and they may dissociate to regenerate soluble species. However, when the 

aggregation proceeds, such aggregates can undergo internal reorganization to form more stable 

species having β-sheet structure, a process that is often accompanied by an increase in 

compactness and also size. Fibrils then grow from these nuclei through the addition of 

monomers, often with structural reorganizations, to form well-defined fibrils with cross-

β structure and a high level of structural order. This model can describe the aggregation of 

mammalian cellular prion protein (PrP), Aβ40 and Aβ42, αs, polyGln sequences, insulin, 

and others. 

In some cases, however, monomers convert rapidly into misfolded aggregates that lack the 

structural characteristics needed to grow into organized fibrils. But these initial aggregates can 

undergo structural reorganization to generate nuclei, and other disorganized oligomers can 

interact with the end region of this aggregate to acquire the amyloid conformation through a 

templating or induced-fit mechanism, eventually leading to the formation of fibrils3. This 

nucleated conformational conversion mechanism has been used to describe amyloid formation 

by Aβ40, αs, PrP, huntingtin exon 1, IAPP, and others. 

2.1.3. Fibril structure 

The amyloid fibrils are highly organized, with persistence lengths on the order of microns, and 

with a tensile strength that approaches that of steel3. The mechanical strength and stability of 

the amyloid fibrils can be primarily attributed to the formation of the extended arrangement of 

hydrogen-bonded β-sheets, that are characteristic of the amyloid architecture. This feature is 

enhanced by the presence of multiple closely interacting sheets as well as further association 

of protofilaments to form higher order structures. The morphological and structural similarity 

of the fibrils formed by different polypeptide chains include the similarities in the lengths of 

the β-strands, the low degree of twist in the β-sheets, and the fact that short peptides 

can assemble into three-dimensional crystals, whereas the most regular structures attainable by 

longer sequences are one-dimensional filamentous assemblies.  Even under physiological 

conditions. the amyloid form of a protein molecule can be more stable than the native state, 
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whether intrinsically disordered or globular. Such a situation is particularly true in the case of 

short sequences, as longer sequences not only incorporate a fraction of their polypeptide chains 

into the cross-β core, but also have an increasing probability of being unable to generate highly 

ordered structures from unfolded segments of their sequences. Therefore, the polypeptides 

associated with amyloid formation have relatively short chain lengths, whereas proteins 

forming amorphous or native-like deposits are on average much longer (Figure 2.1). The 

regions found to correlate with a high level of hydrophobicity, a high propensity to form β-

sheet structure, a small number of charged residues, and the presence of alternating hydrophilic 

and hydrophobic residue patterns, are frequently observed in these fibrils. The inherent 

architecture of the amyloid structure is not only determined by the intrinsic properties of the 

main chain, but also the optimization of the interactions among the various sidechains.    

Even under the same solution conditions, a multitude of fibril morphologies can be formed 

simultaneously, indicating the complexity and multiplicity of aggregation pathways4. Because 

of this polymorphism, the same protein sequence can give rise to fibrils that differ both in the 

molecular structures of their protofilaments, and the overall morphology of the mature fibrils3. 

The conformational polymorphism of amyloid fibrils can also affect their biological 

properties4. The cause of these subtle but highly significant conformational changes is situated 

in the assembly precursor states further upstream in the aggregation landscape (Figure 2.1)3. 

Polymorphism is an inherent consequence of the generic ability of polypeptide chains to 

form amyloid fibrils. Unlike native folds that have been selected through evolution and are 

encoded in their amino acid sequences, the amyloid architecture is simply a consequence of the 

physicochemical properties of a polypeptide chain, and a given sequence can be incorporated 

in such structures in multiple ways (Figure 2.2). In the majority of cases, in the absence of 

evolutionary selection and optimization, a multiplicity of structural arrangements of closely 

similar energy is likely. However, once a given type of assembly has been initiated, it will 

generally propagate because of the inherent stability of repetitive structures in highly organized 

systems, and the high kinetic barriers that exist for the interconversion between polymorphs. 
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Figure 2.2. The ten amyloid symmetry classes of homo-steric zipper amyloid spines illustrated 

with the fictitious Max Perutz bank note. Single-bladed arrows signify 21 symmetry axes, 

meaning that the two sheets are related by a 180◦ rotation about the arrow and a translation 

along the arrow of one-half the distance between Max Perutz bank notes5.  

The strands are generally found to interact to form β-sheets with a parallel in-register 

arrangement in Aβ40, Aβ42, αs, tau, IAPP and β2-microglobulin fibrils3. The frequency of this 

parallel in-register arrangement relative to other alternatives can be attributed to both 

thermodynamic and kinetic factors, as it maximizes the number of hydrogen bonds and 

hydrophobic interactions along the fibril axis. The out-of-register arrangement necessarily 

generates alternative interactions of hydrophobic-hydrophilic residues in the fibril direction, 
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and so is likely to give rise to less stable structures.  However, for small peptides, alternative 

organizations of the β-strands within fibrils, in which an antiparallel arrangement is sometimes 

preferred to a parallel one, are known to exist. The small number of residues involved means 

the energetic penalty to be paid in breaking the parallel in-register arrangement is relatively 

low and can be compensated by alternative interactions, for example, salt bridges between 

amino acid residues with opposite charges at the N-terminus and C-terminus, that are spatially 

close in the fibrils. Interestingly, in polyQ containing peptides, an antiparallel arrangement has 

been found for both long and short sequences. Antiparallel arrangements have also been found 

for long sequences without repetitive amino acid residues, such as in fibrils of calcitonin, 

some polymorphs of transthyretin, and the D23N mutant of Aβ40. Except for peptides 

containing less than approximately 12 residues, only a fraction of the polypeptide chain is 

incorporated in the cross-β core of the fibrils.      

2.1.4. Amyloid pathogenicity 

The pathogenic species in non-neuropathic systemic or localized amyloidoses are both the 

extracellular amyloid deposits affecting the organ integrity, and the protein oligomers that are 

generated during the process of their formation or are released by mature deposits, causing 

direct cellular damage3. However, in neuropathic diseases involving the central nervous 

system, the pathogenicity arises from the oligomeric forms generated in the process of 

aggregation. Prefibrillar species or protofibrils lack fibrillar substructure and are a precursor to 

fibrillar amyloid2. These oligomers are thought to represent the most pathogenic species in the 

diseases associated with amyloid fibril formation3. Aβ42 forms protofibrils more rapidly than 

Aβ40, and is more strongly correlated with the pathology2. 

The fibrils can, however, deplete key components of the protein homeostasis network, serve as 

a reservoir of protein oligomers that can be released, and perhaps most importantly, act as 

potent catalysts for the generation of toxic oligomers through secondary nucleation3. Moreover, 

spreading of fibrils within organs such as the brain generates a number of fibrillar aggregates 

that amplify all such possibilities. In addition, at least some polymorphs of mature fibrils can 

have significant cytotoxicity.  

The exposure of hydrophobic groups on the oligomer surface is a major determinant of 

oligomer-mediated toxicity3. Small-sized oligomers have a high diffusion coefficient, which 

allows them to diffuse more rapidly and have frequent aberrant interactions with the 

surrounding environment. Hence, the toxicity of the oligomers was found to correlate strongly 
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and inversely with their size, and directly with their surface hydrophobicity. Interestingly, the 

shape of the oligomers is not a crucial factor. 

Different kinds of toxic aggregates are associated with these neuropathic diseases3. Further, the 

large network of aberrant interactions that such species can generate indicates that it is 

improbable to have a unique molecular interaction, a unique mechanism of action, or a unique 

cascade of cellular events, associated with a given disease. Instead, the toxicity of the protein 

aggregates, that results in diseases, is probably a result of their intrinsic misfolded nature and 

their structural heterogeneity. Such properties will cause them to engage in a multitude of 

aberrant interactions with a range of cellular components, including phospholipid bilayers, 

protein receptors, soluble proteins, RNAs, and small metabolites—any or all of which have the 

potential to cause cellular damage and ultimately cell death. 

Fibrillar species with amyloid characteristics can serve a number of biological functions in 

vivo1. Such fibrillar structures have been observed in Escherichia coli and Streptomyces 

coelicolor bacteria, and also melanosomes in humans. However, these fibrils are formed under 

controlled conditions, and have extremely highly regulated assembly processes. 

2.1.5. Causative agents 

 

Figure 2.3. A number of factors have been proposed to trigger protein oligomerization 

(protofibril formation) and disease2. 
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Half of the amyloid-related diseases, such as Alzheimer’s and Parkinson’s diseases, are 

predominantly sporadic, although hereditary forms are also well documented3. When sporadic, 

they have a relatively late age of onset, suggesting that the protein aggregation and the 

associated symptoms originate primarily from a progressive loss of regulatory control with 

aging. One-third of the diseases, such as the lysozyme and fibrinogen amyloidoses, arise from 

specific mutations and are hereditary. Therefore, they have an early age of onset. A small 

number of amyloid disorders occur as a result of medical treatment. Notable examples include 

dialysis-related amyloidosis, injection-localized amyloidosis, and PrP-associated Creutzfeldt-

Jakob and Kuru diseases.    

The genes linked to diseases are predominantly of two types: familial and susceptibility 

factors2. Several genes of the former type have been identified, and when mutated, these cause 

rare, early-onset forms of disease. The mutations are typically located in the polypeptide chain 

that undergoes aggregation, and are autosomal dominant; in other words, a mutation in just one 

copy of the gene is sufficient to cause disease3. Although susceptibility factors are observed in 

many patients, it is difficult to translate their subtle effects into a working hypothesis2.  

The pathogenic mutations often increase the propensity of the protein to aggregate, either 

directly or indirectly, as observed in transthyretin and lysozyme amyloidosis3. Formation of 

partially unfolded states facilitates aggregation, as hydrophobic groups and segments of the 

polypeptide backbone that are buried and engaged in structure formation in the native state 

become available for intermolecular interactions.  Moreover, some mutations, such as those 

linked with familial amyloidosis, have been reported to increase the rate of aggregation of the 

fragments themselves.  Most of these pathogenic mutations destabilize the native states, 

making them susceptible to aggregation either directly or following proteolytic 

cleavage.  Mutations in tau protein cause alternative splicing of the pre-mRNA of tau, 

generating a highly amyloidogenic isoform in addition to the normal sequence.  For 

Alzheimer’s disease, mutations in the β-amyloid precursor protein (βAPP) increase the 

specificity of γ-secretase for cleavage sites so that the proportion of the Aβ42 isoform is 

increased relative to the less amyloidogenic Aβ40.  Mutations can also become pathogenic 

through a change in the stop codon for translation, as observed in genes associated with 

hypotrichosis simplex of the scalp, familial British dementia, and others. In addition, there are 

several disorders associated with the elongation of the amyloidogenic CAG repeat expansion 

within a gene, as observed for the exon 1 of the huntingtin gene of the Huntington’s disease. A 
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duplication or triplication of the gene, resulting in a higher concentration of the amyloidogenic 

protein, is observed in hereditary forms of Alzheimer’s disease and Parkinson’s disease.      

Given the intrinsic propensity of proteins to form thermodynamically stable amyloid fibrils 

and the generally detrimental effects of misfolded protein oligomers, all living organisms have 

developed a dedicated network of cellular machineries to assist protein folding and counteract 

protein aggregation3. This network is generally referred to as the “proteostasis network” and is 

constituted by the translational machinery of the cell, molecular chaperones and cochaperones, 

and protein degradation mechanisms, such as the ubiquitin proteasome system (UPS) 

and autophagy. Molecular chaperones and cochaperones play a crucial role in protein folding, 

the assembly of complexes, inhibiting protein aggregation, and mediating protein degradation 

via the UPS or autophagy. Moreover, cells also use integrated processes in which sensors of 

the misfolded species activate the transcription of genes coding for proteostasis network 

components, such as the heat shock response in the cytosol and nucleus. Further, the 

aggregation of a polypeptide chain is also intrinsically inhibited by its amino acid sequence, 

that is carefully selected by evolution to promote folding into a compact stable structure, and 

generally possesses a very low propensity to self-assemble and aggregate when adopting a 

partially or fully unfolded state. Even transcriptional expression and half-lives of proteins are 

carefully regulated, depending on their intrinsic aggregation propensities.  

A narrow boundary exists between health and diseases, and subtle changes caused, for 

example by genetic mutations, environmental stress, or increasing age, can result in the 

initiation of the pathogenic aggregation process, leading to the disruption of the proteostasis 

network (Figure 2.3)3. A progressive failure of the proteostasis network occurs with aging in 

humans: chaperone levels are reduced because they are sequestered by the increasing number 

of protein aggregates, and their expression is significantly downregulated with aging. An age-

related decline of the UPS activity has also been observed, along with decreased efficiency of 

macroautophagy and chaperone-mediated autophagy. The age-associated increase of oxidative 

stress and decrease in mitochondrial function and ATP production further reduces the 

efficiency of the proteostasis network. Regulation of mRNA transcriptional levels determines 

the protein concentration, and thus the aggregation propensity as supersaturated environments 

are highly susceptible to aggregation.  

Once the protein homeostasis network is overwhelmed, fibrils have an extraordinary ability 

to proliferate, not only as a result of their growth and the formation of new nuclei, but also 
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through secondary processes, such as fibril fragmentation and secondary nucleation, which 

increase the number of fibrils3. Moreover, fibrils or their precursors can spread from cell-to-

cell within the same tissue and even across distinct regions of the same or different organs, 

contributing to the transmission of the histopathological traits of their associated disease to 

involve different locations.  

2.1.6. Membrane action 

 

Figure 2.4. Schematic illustration of possible membrane-disruption mechanisms and 

aggregation pathways in solution by amyloid peptides6. 

Membrane disruption by amyloidogenic peptides usually occurs via two general mechanisms: 

the peptides can either penetrate into the membrane to form ion-channels/pores or associate 

with the membrane surface by adsorption/insertion to induce membrane thinning (Figure 

2.4). Whereas both mechanisms are common for small monomers or oligomers, larger 

oligomers primarily act via membrane thinning6. Amyloid-forming peptides, such as the human 

IAPP, can also exert detergent-like effects on membrane permeation and disruption via amyloid 

oligomers and fibrils.  Large membrane-bound amyloid aggregates and fibrils can severely 

distort the membrane curvature and cause membrane thinning, as observed for human IAPP 

fibrils. The carpet model can explain the exponential leakage kinetics and absence of a lag 

phase in both human IAPP- and rat IAPP-induced membrane leakage. Amyloidogenic peptides 

can induce both barrel-stave and toroidal pores, although computational studies of amyloid 

channels indicate that barrel-stave pores are more energetically favourable than toroidal pores. 
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Amyloid channels in cell membranes consist of several loosely contacting mobile oligomers. 

Further, these channels contain a U-shaped β-strand–turn–β-strand conformation, as observed 

in channels of Aβ, K3 and human IAPP oligomers. Thus, it may represent a general building 

block for both amyloid channels and amyloid fibrils.   

2.1.7. Therapeutic avenues 

The ability of antibodies to not only bind to unique sequences, but also to well-defined 

aggregation states, has led to considerable efforts to develop immunotherapies for amyloid-

associated diseases3. In case of globular proteins, an evidently powerful strategy would be to 

stabilize the folded state to prevent both unfolding and the structural fluctuations that generate 

native-like states. An analogue of thyroxine, termed tafamidis, stabilizes the native tetramer of 

transthyretin and reduces its aggregation propensity. Therefore, it is widely utilized to treat 

familial amyloid polyneuropathy. Many rational design efforts have focused on inhibition of 

the process of aggregation itself. However, all early attempts to develop aggregation inhibitors 

have failed at one or other stage of clinical trials. Hence, efforts are instead being focused upon 

specific steps in the aggregation reaction by screening compounds in vitro and in vivo to 

identify potential inhibitors targeted towards neurodegenerative diseases. One stratagem is to 

develop inhibitors of the specific proteases that produce amyloidogenic fragments, such as 

the β- and γ-secretases that produce the N- and C-termini of the Aβ fragments, 

respectively. Upon inhibition of Aβ oligomerization by a PKC inhibitor, the capture and release 

of lipids by oligomeric Aβ are completely ceased, thus preventing Aβ oligomer-induced 

cell toxicity6. In non-neuropathic amyloidosis, strategies based on the removal or reduction of 

the source of amyloidogenic proteins are effective therapeutic avenues3. Moreover, βAPP and 

a large fraction of proteins coaggregating with amyloid plaques and intracellular neurofibrillary 

tangles, respectively, are transcriptionally downregulated in the central nervous system of 

Alzheimer’s disease patients relative to healthy age-matched controls, presumably in 

an attempt to limit their further aggregation. This could be used as an early indicator of diseases 

and as a biomarker for their progression. 

2.2. Antimicrobial peptides 

2.2.1. Introduction 

Antimicrobial peptides (AMPs) function as host-defence or host-offense components of many 

innate immune systems in plants, animals and humans6. Naturally occurring AMPs are 
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typically 20–40 residues in length, with a wide range of sequence diversity. Unlike native 

proteins, AMPs usually have a short and appropriate length, which helps them to fold into a 

relatively simple secondary structure and size approximating the membrane thickness. Most 

AMPs are overall cationic, with more abundant hydrophobic amino acids and less abundant 

polar residues. Due to natural selection, some AMPs preferentially kill particular pathogens, 

and therefore show certain amino acid compositional preferences. For instance, histatin and 

indolicidin are rich in histidine and tryptophan residues, respectively. 

2.2.2. Membrane action 

Bacterial membranes and human cell membranes have similar functions and structures, 

but different compositions6. Human cell membranes usually contain up to 45% cholesterol 

among the total lipids, while bacterial membranes do not contain cholesterol. The cholesterol 

in human cell membranes contributes to substantially lower adsorption of the peptides, 

resulting in lower membrane rupture and leakage. Most eukaryotic human cell membranes 

contain zwitterionic phospholipids, rendering the outer layer of the membrane uncharged. 

However, the outer membrane of prokaryotic bacterial cells is rich in anionic lipids. These 

compositional differences impart a structural basis for AMPs to preferentially bind to anionic 

lipids over zwitterionic phospholipids, which leads to cell selectivity.  Positively-

charged residues (e.g. lysine and arginine) of AMPs determine their cell selectivity for anionic 

bacterial membranes, and thus promote selective surface binding to target 

bacterial membranes. Upon adsorption, hydrophobic residues facilitate further penetration into 

the hydrophobic interior of the membranes, but they favour no tilt angle in particular. 

Therefore, polar and charged residues are crucial for determining the correct peptide 

orientation relative to the membrane surface. Antimicrobial activity is mainly governed by the 

appropriate balance of hydrophobic and electrostatic interactions between peptides, water, and 

lipids, as well as by the peptide sequence and structure. 

In the carpet model, at a high peptide-to-lipid (P/L) ratio, AMPs intensively adsorb onto 

the membrane, with a preferentially parallel orientation, to reduce membrane thickness and 

increase membrane conductance (Figure 2.5c)6. Alternatively, AMPs at a high concentration 

act as “detergents” to extract lipids from the membrane to form peptide-lipid micelles, resulting 

in membrane disintegration (Figure 2.5d). In both models, the monomeric or oligomeric 

peptides accumulate at the membrane surface at high density to cause membrane damage. After 
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certain level of adsorption of peptides, secondary factors, such as membrane thinning, 2D 

phase separation, pore formation, and curvature strain, come into play. 

 

Figure 2.5. Different membrane-disruption models for antimicrobial peptides6. 

Peptides with a high threshold  P/L* value act via carpet and detergent models, while those with 

a low P/L* appear to form leaking pores6. AMPs can insert into the cell membranes to form 

barrel-stave or toroidal transmembrane pores (Figures 2.5a and 2.5b, respectively). For 

example, distinctin and ceratotoxins can form barrel-stave pores, while viroporin and protegrin-

1 (PG-1) create toroidal transmembrane pores. The barrel-stave pore-forming peptides stay at 

the membrane surfaces or inside the membrane, whereas the toroidal pore-forming peptides 

show stronger preference to stay at the water-lipid interface, while disfavouring but not fully 

excluding the centre of the membrane. Both pore models can cause similar membrane 

disruption, leakage of cytoplasmic contents, and concomitant bacterial cell death. Often both 

pore models are applicable to the same peptide under different conditions, as observed for bee-

venom melittin and alamethicin. 

2.2.3. Structural composition 

The AMPs with known structures can be generally classified into four groups based on their 

secondary structure: α-helix, β-turn/sheet, mixed α/β structure and random coil6. Most α-

helical and random coil AMPs lack disulphide bonds, while many AMPs with β-strand, β-

hairpin or loop-strand conformation (e.g. PG-1 and defensins) often have disulphide bonds 

between cysteine residues to stabilize their peptide conformation.  
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AMPs can adopt completely different structures in solution and within the membrane6. 

Typically, AMPs undergo a complex structural transition from the bulk solution to the water-

membrane interface to the membrane interior (if membrane insertion occurs), depending on the 

interplay among peptides, membranes, and environments. Many AMPs without disulphide 

bonds, such as melittin and cecropin A, undergo a random coil-to-helix transition upon 

interaction with the membranes.  However, some unstructured AMPs lack the ability to 

convert to ordered secondary structure (e.g. α or β structures) even after adsorption onto a lipid-

water interface.  

2.2.4. Comparison with amyloidogenic peptides 

Cytolytic peptides damage cell membranes and cause target cell death6. The two major 

categories of cytolytic peptides are amyloidogenic peptides (AMYs) and AMPs. Although the 

AMYs have a varied size, they typically contain less than 50 residues. Most AMYs have a high 

content of hydrophobic residues, whereas most AMPs are cationic, with abundant hydrophobic 

residues to counterbalance the positive charges. However, both AMYs and AMPs are largely 

amphipathic, with hydrophobic and charged hydrophilic regions. Amphipathicity is essential 

for the membrane disruption, as it facilitates membrane interaction. Both classes of peptides 

have a high content of hydrophobic residues, such as isoleucine and valine, because they are 

critical for membrane insertion, and stabilizing peptide insertion states with preferential 

hydrophobic match with hydrophobic lipids inside the membrane core. Positively-charged 

residues, such as arginine and lysine, play a crucial role in antimicrobial peptide-cell membrane 

interactions, but these residues rarely occur in amyloid sequences, as they prevent 

peptide aggregation. Interestingly, AMYs usually contain hydrophobic (P), hydrophilic (H) 

and charged (C) residues in a sequential manner, like CCCHHHPPPPPPPPPPPPPC, while in 

AMPs they are arranged in an alternate fashion, like PHCPHCPHCPHCPHCPHC. 

While AMYs exhibit a characteristic cross-β-sheet structure, AMPs have diverse 

secondary structures6. For the β-rich structures of AMYs and AMPs, disulphide bonds usually 

occur less often in AMYs than in AMPs.  Proline disfavours the β-structure in amyloid 

sequences but shows no obvious preference in AMP sequences. Many AMPs adopt a helical 

structure upon interaction with the membranes, and thus α-helical pores are observed 

more frequently than pores of the other conformations. The helical structure might be the active 

conformation of AMPs for membrane permeation. However, almost all computationally 
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modelled amyloid pores adopt β-sheet structures, probably because AMYs have an intrinsic 

ability to form β-sheet structures, both in solution and on the membrane. 

2.2.5. Correlation between antimicrobial activity and amyloidogenicity  

The serum amyloid A peptide can assemble into fibrils6, and demonstrates antimicrobial and 

cytotoxic actions via formation of ion-permeable channels in cell membranes. Aβ can exert 

strong antimicrobial activity against some common and clinically relevant microbes, such as 

against the growth of Candida albicans. Amyloidogenic IAPP can cooperate with 

both antimicrobial magainin 2 and its D isomer to induce significantly greater membrane 

leakage and ultimately bacterial cell death, as compared to any of these individual peptides.  

Some AMPs, such as temporin L, magainin 2, indolicidin, and plantaricin A, can form 

amyloid-like fibres6. In fact, PG-1 AMPs not only form fibrils with morphologies similar to 

the Aβ42 fibrils in solution, but also PG-1 fibrils grow relatively faster than Aβ42 fibrils. Human 

α-defensin 6 can self-assemble into functional amyloid-like fibrils, and then surround 

and entangle the target bacteria.  

The cross-seeding with bacterial CsgA and CsgB reduced the lag-time of both IAPP and Aβ 

amyloid formation6. However, both CsgA and CsgB strongly inhibited IAPP elongation, 

exerted a concentration dependent effect on Aβ elongation. Therefore, AMYs might act 

synergistically with AMPs to exert different biological functions.  

While some AMPs can self-assemble into amyloid-like fibrils with signature cross-β-sheet 

structures, certain AMYs can exert antimicrobial activity against several common 

microorganisms6. Such commonalities in their structural and functional properties indicate 

towards a potential functional link between amyloidogenic and antimicrobial peptides. 

2.3. Role played by ions and mutations 

2.3.1. Ions 

2.3.1.1. Introduction 

Most biomolecular MD simulations are performed in an aqueous medium with a certain ionic 

concentration to mimic the in vivo environment. Ions play a crucial role in not only modulating 

the intra- and inter-peptide interactions, but also the interaction of the peptides with the 

surrounding solvent molecules. In the absence of salt, uncharacteristically strong interactions 

between oppositely-charged sidechains could be observed because of negligible charge 
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screening7. However, placement of ions near the charged sidechain moieties at the outset of the 

simulation would significantly screen the electrostatic interactions amongst them, thus 

retarding translational diffusion and delaying equilibration. Since the Debye length for ions 

decreases with increasing ionic strength, a higher salt concentration would result in reduced 

Maxwell relaxation period. Thus, adding just enough ions to maintain charge-neutrality of the 

system might not be sufficient. However, high ionic strength would entail computation of 

electrostatic interactions without truncation.  The salt ions also reduce the dielectric constants 

of the peptide and the surrounding water molecules in the solvation shell, as they hinder the 

movement of other atoms due to electrostatic interactions8. 

2.3.1.2. Effect on structure 

Consisting of a group IIA cation, the CaCl2 salt promotes and stabilizes random coil structures 

in Aβ21−30, while reducing the intrapeptide hydrogen bonding9. This could be attributed to 

cation-peptide salt-bridges and accompanying interaction with the water molecules in the 

peptide hydration-shell. Similar but relatively diminished action is exhibited by the MgCl2 salt 

also. Such random coil structures within full-length Aβ might be prone to aggregation and 

subsequent fibril formation. Interestingly, the NaCl and KCl salts of group IA cations do not 

affect the secondary structure of the Aβ fragment but accentuate intrapeptide hydrogen bonding 

and salt-bridge formation along with the stabilization of turn structures.  

The N- and C-terminal capped peptide Ace-AEAAAKEAAAKA-Nme demonstrates diverse 

responses to very high salt concentrations (3–4 M) of different salts10. It loses its predominantly 

α-helical (71%) structure upon introduction of NaCl, although NaI proved to be a stronger 

denaturant. Interestingly, the potassium salts demonstrated negligible influence on the 

structural composition. The Na+ cation possesses a far greater affinity to sidechain carboxylates 

and backbone carbonyls than K+ cation, and thus it effectively attenuates the salt-bridges and 

the hydrogen bonds involved in secondary structure formation. Moreover, the comparatively 

bigger I- anion has a strong affinity to small hydrophobic moieties such as nonpolar alanine, 

and therefore acts in sync with Na+ cation in its destabilizing activity. In presence of the 

strongest denaturant NaI, the peptide is least hydrated, indicating towards a preferential 

solvation of the peptide backbone by the salt ions.    

Transient salt-bridges observed in the Val-24–Lys-28 loop region of Aβ21–30, involving Lys-28 

and, Glu-22 or Asp-23, get stabilised in the presence of NaCl ions11. Further, at physiological 
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NaCl concentration (0.14 M), Aβ42 demonstrates stable α-helical signatures along with 

transient 310-helix segments12. 

2.3.1.3. Effect on aggregation 

RADA 16-I is a synthetic and amphiphilic peptide, consisting of four subsequent RADA 

repeats13. Subject to the surrounding solvent environment, this peptide can self-assemble in a 

controlled manner to generate fibrils and higher-order structures. Greatest aggregation or 

cluster formation was observed in 0.2 M NaCl solution, followed by in pure water. However, 

no clusters could be observed in solutions containing CaCl2 salt. Increased aggregation in NaCl 

solution could be attributed to the transitional, expanded α-helical signatures observed. These 

structures might facilitate better inter-peptide interaction, and thus promote initial cluster 

formation and ultimately peptide self-aggregation. The α-helical structures might be an 

outcome of the screening of the charged amino acid residues by salt ions, with monovalent Na+ 

cation playing a crucial role. Further, a stepwise assembly process was proposed, characterised 

by conformational changes from random coil or turn to α-helical intermediates, and 

culminating in β-scaffold structures. Lack of peptide clusters in CaCl2 solution could be 

attributed to the divalent Ca2+ cation inducing unstructured peptide aggregates.     

Larger Aβ37−42 oligomers in increased proportion were observed in 2 M NaCl solution, as 

compared to pure water14. Further, NaCl not only amplifies the aggregation propensity of the 

polypeptide, but also alters the molecular mechanism of Aβ37−42 self-association. Increased 

dimer formation and their subsequent aggregation is observed only in the presence of NaCl, 

but not in pure water systems. Moreover, even coarse-grained systems demonstrated faster 

assembly and increased stability of the diphenylalanine bilayer in 0.25 M NaCl solution, 

compared to pure water (Figure 2.6)15. Hence, NaCl salt could be used to modulate the overall 

fabrication process and achieve the precise design and desired properties in the targeted 

biomaterials.  
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Figure 2.6. Simulation trajectories of two different coarse-grained molecular dynamic 

simulations. (a) Self-assembling simulation of diphenylalanine bilayer without sodium 

chloride (orange and yellow), (b) same simulation with sodium chloride ions (grey and 

magenta). Except for the existence of ions, all simulation conditions were identical15.  

2.3.1.4. Effect on lipid interaction 

The binding of antimicrobial peptide magainin to POPC (palmitoyloleoyl phosphatidylcholine) 

lipid bilayers is stronger at lower NaCl concentrations16. This phenomenon could be attributed 
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to the sequential reduction in average area available per lipid head group with increasing NaCl 

concentration. The Na+ cations strongly bind to the lipid ester oxygens, and thus cause denser 

packing of the lipids. Hence, the destabilizing effect of peptides on the lipids in immediate 

vicinity (within the bilayer) is diminished.  

In experimental studies, presence of divalent Cu2+ or Zn2+ cations lead to the insertion of both 

Aβ40 and Aβ42 peptides into POPC and POPS (palmitoyloleoyl phosphatidylserine) bilayers 

within the pH range of 5.5–7.517. However, membrane penetration could not be observed at 

higher pH because of changes in the Cu2+ coordination sphere. Significantly, in solvent 

environments devoid of CuCl2 and ZnCl2 salts, both peptides could enter the membranes only 

at pH < 5.5. Interestingly, increasing the cholesterol level to 0.2 mole fraction of the total lipid 

composition completely inhibited membrane insertion of both peptides under all conditions 

investigated. Further, peptides undergoing membrane insertion adopted α-helical structures, 

whereas those unable to penetrate the membrane formed β-sheet structures on the surface.  

2.3.2. Mutations 

2.3.2.1. Effect on structure 

At physiological ionic strength (0.14 M), Aβ42 wild-type (wt) adopts a partially folded but 

extended conformation12. Whereas the E22Q mutant attains a two-helix collapsed structure due 

to the clustering of hydrophobic residues. This might be attributed to the lack of a stable Val-

24–Lys-28 loop in the E22Q mutant of Aβ21–30 segment, as compared to the wild-type 

segment11. However, alternative turn structures stabilized by only a salt-bridge between Asp-

23–Lys-28 were observed. Therefore, mutation-linked perturbations in Aβ folding pathway 

might lead to the formation of pathological structures. 

Among the four mutations of Aβ42 wt, viz. E22G, E22K, E22Q, and D23N, a reduction in α-

helical propensity in Aβ33–36 region was observed in all cases18. Further, E22K and E22Q 

mutations augment the helicity in Aβ20–23 segment of the respective peptides, relative to the 

Aβ42 wt peptide. Even though the α-helical propensity of peptides is inversely correlated with 

their tendency to aggregate, α-helical intermediates might be crucial in the process of 

amyloidogenesis. Further, structural modifications alter the aggregation process, and might 

lead to increased neurotoxicity of the aggregates. Whereas E22K and E22Q mutants aggregate 

more rapidly, E22G and D23N mutants demonstrate marginally slower aggregation than Aβ42 

wt. Moreover, for the Aβ21–30 fragment, E22Q and K28A mutations increase the intra-peptide 

hydrophobic interactions, whereas the D23N mutation reduces them19.  
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The A2V mutant demonstrates a fourfold increase in β-hairpin content along with a twofold 

reduction in intrinsic disorder, when compared with the Aβ1–28 wt fragment20. This could also 

explain the higher aggregation propensity of A2V mutant relative to the Aβ40 wt. However, 

due to appreciable differences in the conformational ensembles, an environment consisting of 

both Aβ1–28 wt and Aβ1–28 A2V peptides demonstrates lower aggregation and might protect 

against the deleterious effects of Alzheimer’s disease. 

2.3.2.2. Effect on aggregation 

In hexamers of Aβ16–35 wt, solvation of the buried Asp-23 and Lys-28 residues disrupted the 

amyloid-like oligomer structure, especially in the Glu22–Gly29 and Leu16–Ala21 regions21. 

However, in the case of E22Q/D23N and D23N/K28Q double mutants, and E22Q/D23N/K28Q 

triple mutant, the dehydrated neutral amide side-chains can form linear cross-strand hydrogen 

bond chains within mutant hexamers. These hydrogen bonds are also referred to as ‘‘polar 

zippers’’, and they can stabilize amyloid-like conformations. Oxidation of Met-35 decreases 

the β-strand content in Aβ29–40 region, and additionally affects the secondary structure of the 

Aβ33–35 region of Aβ40 monomer22. Since such structural modifications could diminish Aβ fibril 

formation, oxidative stress might manifest its toxicity independent of peptide aggregation. 

Amongst different mutations of α-synuclein (αs), ones incorporating an additional charge 

greatly influence the resultant amyloid polymorphs23. Further, mutations introducing more 

hydrophobic residues such as Q/T (A53T and H50Q) facilitate the early stages of αs 

aggregation. However, substitution with negatively-charged D/E residues (A53E and G51D) 

hinders the αs assembly due to electrostatic repulsion. Interestingly, replacing a negative charge 

with a positive one in E46K mutant augments the rate the aggregation. Since the proline residue 

preferentially adopts β-turn structure instead of β-sheet, the A30P mutation slows both the 

formation of oligomeric intermediates and subsequent fibrils. The A117V mutation in prion 

protein fragment PrP113–120 facilitates aggregation by increasing the β-sheet and oligomeric 

contents24. The rise in intrinsic disorder due to the mutation is accompanied by an increase in 

inter-peptide backbone hydrogen bonding and sidechain hydrophobic interactions. 

The aggregation of tumour suppressor p53 protein can cause cancer. For both p53251−257
25 

p53252−258
26 fragments, I254R mutation acts as a suppressor of aggregation. Whereas the wild-

type fragments demonstrate high aggregation propensity with characteristic β-sheet signatures, 

the I254R mutant displays a substantially reduced aggregation propensity, and preferentially 

adopts a disordered state. However, in a mixed system, the wild-type fragment can induce β-
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sheet formation in the I254R mutant and can incorporate it into aggregates. Significantly, in a 

cross-interaction system, the wild-type p53251−257 fragment has a greater propensity to interact 

with the I254R mutant than with itself25. Hence, while designing drugs to target protein 

aggregation, the drug molecule should not self-aggregate and be resistant to cross-interaction 

and subsequent aggregation with both target and other molecular species within the system. 

The Transforming Growth Factor β‑Induced Protein (TGFBIp) has been implicated in corneal 

dystrophies, where its aggregation and resulting fibril formation can adversely affect vision27. 

Most pathogenic mutations of TGFBIp are located in the fourth and ultimate fasciclin-1 (FAS1) 

domain. Although both A546T and R555W mutations affect the packing in the hydrophobic 

core of FAS1-4, only A546T mutant forms fibrils. Lack of a substantial population of fibrillar 

intermediates might explain the resistance of Arg-555 mutants to amyloid formation. In 

amyloid fibrils observed in the Alzheimer’s disease, the diphenylalanine motif is a part of the 

central hydrophobic cluster in the fibrils28. Therefore, the diphenylalanine peptides were found 

to self-aggregate into twisted fibrils, with an inverse γ-turn structure. However, in similar 

experiments with tyrosine-substituted analogues, the peptides formed aggregates with parallel 

β-sheet structures, which later agglomerated as microspheres. 

The human IAPP (hIAPP), implicated in Type II diabetes, forms fibrils in vivo and 

demonstrates cytotoxic effects towards the cultured pancreatic islet β-cells29. However, the rat 

IAPP (rIAPP), differing from hIAPP at only six amino acid residues in the central rIAPP18– 29 

region, neither forms fibrils nor displays cytotoxicity. Single-residue substitutions in rIAPP 

sequence with amino acid residues from corresponding positions of the hIAPP sequence viz. 

R18H, L23F, or V26I, generated fibrils morphologically similar to the hIAPP fibrils, but with 

a relatively slower kinetics. Further, combination of two or three mutations increased fibril 

formation. The remaining three proline residues (Pro-25, Pro-28 and Pro-29) of rIAPP hinder 

the process of amyloidogenesis too and act in sync with the other three residues (Arg-18, Leu-

23 and Val-26) in the rIAPP18– 29 region. Interestingly, the F15A and F23A mutations of hIAPP 

did not inhibit amyloid fibril formation, as the alanine substitution preserved the interactions 

in central and C-terminal regions of the peptide30.  

2.3.2.3. Effect on lipid interaction 

The E22K and A21G mutants of native Aβ11–28 fragments were studied in aqueous 

environments containing SDS micelle31. Whereas the E22K mutant attains a stable α-helix 

structure, glycine residue introduced by the A21G mutation causes the peptide to be more 
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flexible and thus adopt an unstructured conformation with a bend in the central region. Further, 

the E22K mutant demonstrates relatively stronger interaction with the anionic SDS micelle, as 

compared to the wild-type peptide and the A21G mutant. For hIAPP, the H18K mutation 

significantly alters the structure of the N-terminal region of the peptide, and hence diminishes 

its ability to disrupt the cell membrane of the pancreatic β-cells30.   

For the antimicrobial peptide (AMP) indolicidin, the P10A mutant demonstrates greater 

penetration into the DPC micelle than the wild-type peptide32. Further, even for the tryptophan 

residues in both peptides, deeper insertion into the hydrophobic core of the micelle was 

observed in case of the P10A mutant compared to the wild-type peptide. These observations 

can elucidate the relatively higher haemolytic activity of the P10A mutant than the native 

indolicidin, as its comparatively stronger interaction might disrupt the structural components 

of the cell membrane. The substitution of terminal VGR segment of protegrin-1 (PG-1) AMP 

with polar threonine (PC101), hydrophobic isoleucine (PC104), and negatively-charged 

glutamic acid (PC107) residues resulted in similar activities against Gram-negative bacteria, as 

compared with PG-133. However, differences in cytotoxicity were observed, especially for 

PC107, which demonstrated significantly reduced toxicity towards the epithelial cells. 

In case of ovispirin-1, the I10G (novispirin-G10) and I7T (novispirin-T7) mutants 

demonstrated reduced antimicrobial activity compared to the native peptide34. This 

phenomenon could be attributed to reduced hydrophobicity and altered structure of the mutants, 

relative to the wild-type peptide. The I7T mutation inhibits insertion of the peptide into the 

hydrophobic core of cell membrane. However, the I10G mutation introduces a bend in the 

central region of the peptide. Interestingly, this mutation still maintains the helical structure of 

the peptide, improves the binding of its positively-charged C-terminal motif to bacterial 

membranes, and yet diminishes its cytotoxicity towards host-cells. Piscidin 1 (Pis-1) is a potent 

AMP, but still demonstrates a low degree of haemolysis35. Both Pis-1 and its G8A/G13A 

double mutant (Pis-1AA) interact more strongly with the zwitterionic dioleoyl 

phosphatidylcholine (DOPC) membrane, as compared to the G8P mutant (Pis-1PG). This could 

be attributed to the introduction of a kink in the α-helical structure of Pis-1PG because of the 

proline residue, and the accompanying increase in flexibility of the peptide backbone (Figure 

2.7)35-36. Significantly, in the absence of bilayer interaction, all the peptides in aqueous 

environment lose stability and unfold rapidly35. Further, Asp-4 to isoAsp-4 mutation of citropin 

1.1 eliminates its pathogenicity towards Gram-positive Staphylococcus aureus and Bacillus 

subtilis bacteria37. 
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Figure 2.7. Structures of Pis-1 and its mutants. The backbones, hydrophobic, and hydrophilic 

sidechains are shown in green, blue, and red, respectively. Residues 8 and 13 are depicted with 

yellow. A: One of the NMR structures of Pis-1 in 300 mM SDS micelles. B: Mutated structure 

of Pis-1AA. C: Mutated structure of Pis-1PG. D: Head-on view of Pis-1. E: The diagram of 

piscidin-lipids model (Pis-1 paralleled with lipids)35.  

KR-12 is a small AMP consisting of residues 18–29 of the LL-37 peptide. It largely retains the 

antibiotic activity of LL-37 but demonstrates highly diminished cytotoxic and haemolytic 

activities38. R-KR12 and K-KR12 are two mutants of KR-12 with lysine residues mutated to 

arginine, and arginine residues mutated to lysine, respectively. None of these mutant peptides 

showed a stable interaction with the POPC (palmitoyloleoyl phosphatidylcholine) bilayer but 

demonstrated a strong interaction with the POPC/POPG (palmitoyloleoyl 

phosphatidylglycerol) bilayer. The latter bilayer additionally contains anionic lipids apart from 

the zwitterionic lipids, and this facilitates its initial interaction with the cationic peptides. 

Although these peptides remain unstructured in a purely aqueous environment, they adopt an 

amphipathic α-helical structure upon insertion into the headgroup region of bilayer. Due to the 

stronger cationic charge distribution of arginine compared to lysine, R-KR12 interacts more 

intensively with the POPC/POPG bilayer than K-KR12 and forms greater and stronger 

hydrogen bonds with it. This phenomenon corresponds to the observation that arginine-rich 

AMPs display higher toxicity towards both eukaryotic and prokaryotic cell lines than their 
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lysine-rich variants. Hence, R-KR12 demonstrates deeper insertion and subsequent disruption 

of the inner membrane of Gram-negative Escherichia coli bacterium than K-KR12. 

 

Figure 2.8. Pores at the end of MD simulations: melittin (MLT) at 140 ns, K7A at 216 ns, 

K7Q, K23L/R24L and K21F/R24L at 160 ns, P14A at 200 ns; alamethicin (AMT Q7) and Q7K 

at 160 ns; MG-H2 at 160 ns, K3Q/K4Q at 136 ns, and K11Q/K14Q, K11Q and K14Q at 160 

ns. The peptides and ions are removed for clarity. The phosphocholines are shown as 

green balls and water as blue balls36.  

The net charge of a peptide, along with the distribution of charges, plays a crucial role in 

determining the pore shape36. MD simulations were performed with four monomers of different 

peptides and their mutants, placed in a pre-formed cylindrical pore within a DMPC bilayer, 

with the nonpolar side of the peptides towards the lipids. Upon substitution of Lys-7 in the N-

terminal region of melittin with alanine (K7A) or glutamine (K7Q), the cylindrical pore 

remained stable and did not transform into a toroidal pore (Figure 2.8). To avoid 

electrostatically unfavourable interactions with the lipid head groups and the surrounding water 

molecules and ions, both K23L/R24L and K21F/R24L double mutations tilt the orientation of 

the respective peptides. This places the Lys-7 residue closer to the lower leaflet headgroups of 

the bilayer, and therefore inhibits the formation of a toroidal pore. Although the P14A mutant 

forms a toroidal pore, its structure differs from that of the wild-type melittin pore, and it is only 
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metastable. Thus, the positive-charge in the N-terminal region of the helical structure along 

with its imperfect amphipathicity are essential for melittin to form toroidal pores. Similarly, 

for MG-H2, whereas the wild-type peptide forms a toroidal pore, the K3Q/K4Q double mutant 

generates a semi-toroidal pore. On the other hand, although native alamethicin peptide prefers 

cylindrical pores, its Q7K mutant forms semi-toroidal pores. Therefore, cationic charges in the 

N-terminal region of the peptides might be critical in the formation of toroidal pores. 

2.4. An introduction to molecular dynamics theory 

2.4.1. Simulation algorithm 

Molecular dynamics (MD) is a computational method that simulates the time evolution of a 

multi-particle system through the phase space, governed by the laws of Newtonian 

mechanics39. These simulations provide statistical predictions about the average behaviour of 

a macroscopic system. An MD simulation consists of different steps that are mentioned below: 

1. Initialization: The parameters that specify the conditions of the simulation run, such as 

initial temperature, dimensions, density, boundary conditions, and time step, are defined at 

this stage. 

2. Specification of initial atom parameters: The initial positions, velocities, and topologies of 

all the particles are defined.  

3. Force-field selection: A force-field specifies the inter-atomic potentials, and along with the 

simulation parameters, defines the total potential energy of the system of interest. A 

detailed description of the force-fields can be found in section 2.4.2. 

4. Force computation: Forces on all the particles in the system are computed. For a particle i 

at position ��, the force F� acting on it can be represented as −∇��, � being the total 

potential energy of the system. 

5. Numerical integration: Forces calculated using the Newtonian equations of motion in the 

previous step are numerically integrated over the simulation time step with algorithms, such 

as, the velocity-Verlet algorithm.  

6. Simulation loop: Steps 4 and 5 are repeated for the desired simulation time period until the 

required system characteristics have been achieved. 
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7. Output: Calculation of statistical values and rendition of trajectory snapshots using the 

simulation data, with intermediate post-processing steps as required. 

2.4.2. Force-fields for molecular dynamics 

In a typical MD simulation, the dynamics of a system of N particles evolves according to the 

Newtonian equations of motion40:  

                    ���̈⃗� =  − 
�

��⃗�
 ������(�⃗�, �⃗�, . . . , �⃗�),       � =   1, 2 . . . � 

     (1) 

Here, �� is the mass of atom α, �⃗α is its position, and ������ is the total potential energy, 

dependent on the positions of all the atoms and therefore, linked to their motion. 

In a MD simulation setup, an individual molecule is generally defined as a series of charged 

points (atoms) linked by springs (bonds)41-42. Therefore, to describe the time evolution of bond 

lengths, bond angles and torsions, along with the non-bonding van der Waals and electrostatic 

interactions between the different atoms, a force-field is required. The force-fields consist of a 

collection of equations and associated constants modelled to reproduce molecular geometry 

and selected properties of pretested structures and systems. A force-field contains two principal 

components: (1) a functional form that defines the computation of the energies and forces on 

each particle of the system, and (2) a set of parameters that defines the relationship between 

the positions of the atoms, and their energy. Therefore, a force-field represents the total 

potential energy of the system. 

The potential energy function, ������, has the following contributions: 

������ = ������� + �����������                                           (2) 

Here, ������� denotes the interactions between the chemically-bonded atoms. This energy 

component would be discussed in detail in section 2.5.1.1. 

The interactions beyond chemically-bonded nearest neighbours are represented by the 

����������� component, and it consists of two energy terms for van der Waals (vdW) and 

electrostatic (Coulombic) interactions, as shown below40: 

               ����  =   �  � 4

����

��� � �
���

���
�

��

−   �
���

���
�

�

� 
         (3) 
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                         ��������  =   �  �
����

4������
����

          (4) 

Here ���, ���, and ��� represent the well depth, the radius, and the distance between atoms � and 

�, respectively. The �� and �� are partial atomic charges on atoms � and �, respectively and, �� 

denotes permittivity of free space. The vdW energy term is approximated by a Lennard–Jones 

(LJ) 6–12 potential, representing attractive and repulsive interactions, respectively. 

2.4.3. Numerical integration 

After the forces between the different particles have been calculated, numerical integration is 

performed on the Newtonian equations of motion over the specified time step using certain 

algorithms, such as Verlet algorithm.  

For a particle within the system of interest, the Taylor expansion of its coordinate around time 

t can be represented as: 

r(t + ∆t)  =  r(t) + �(t)∆t +  
f(t)

2m
∆t� +

∆t�

3!
 r⃛  + �(∆t�) 

(5) 

Here, f(t) and �(t) denote the force acting on the particle of mass m, and its instantaneous 

velocity, respectively. The estimation of the particle’s new position involves an error of the 

order ∆t�, where ∆t denotes the time step of the MD simulation. 

Similarly, the Taylor expansion of the particle’s coordinate around time t can also be 

represented as: 

r(t − ∆t)  =  r(t) − �(t)∆t +  
f(t)

2m
∆t� −

∆t�

3!
 r⃛  + �(∆t�) 

(6) 

The summation of Equations 5 and 6 results in:  

       r(t + ∆t) +  r(t − ∆t)  =  2r(t) + 
f(t)

m
∆t� + �(∆t�) 

 

                                  r(t + ∆t)  ≈  2r(t) −  r(t − ∆t) +  
f(t)

m
∆t� 

(7) 

It could be noted that the Verlet algorithm does not require the particle’s velocity to compute 

the new position. Although, the velocity can be obtained from the particle’s trajectory 

information: 
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             r(t + ∆t) −  r(t − ∆t)  =  2�(t)∆t + �(∆t�)  

     �(t) =
r(t + ∆t) −  r(t − ∆t)

2∆t
 + �(∆t�) 

(8) 

The velocity expression involves an error of the order ∆t�. 

After the calculation of new positions, the positions at the time t − ∆t can be discarded, and 

the numerical integration proceeds to the next time step. 

The velocities generated can be used to calculate the kinetic energy of the particle, and therefore 

its instantaneous temperature. Further, the potential energy of the system is also calculated. For 

the Verlet-derived “velocity-Verlet” algorithm, the Taylor expansion of a particle’s coordinate 

can be represented as: 

                              r(t + ∆t)  =  r(t) + �(t)∆t +  
f(t)

2m
∆t� 

(9) 

However, compared to the Verlet algorithm, the velocities here are derived differently: 

                              �(t + ∆t)  =  �(t) + 
f(t + ∆t) + f(t)

2m
∆t 

(10) 

In the velocity-Verlet algorithm, the new velocities can be calculated only after the new 

positions have been obtained. Likewise, the new forces can be derived after the computation 

of the new velocities. 

The Verlet and Verlet-derived methods are time reversible. Moreover, not only they conserve 

linear and angular momentum, but also just one force evaluation is required for each time step. 

Further, the total energy is constant throughout the simulation if the net linear momentum was 

zero at the onset of the simulation. 

For large time steps, the accuracy of the calculations is very important because the longer the 

time step, the fewer evaluations of the forces are performed per unit of simulation time39. Thus, 

a sophisticated or higher-order algorithm is used that requires information about the higher-

order derivatives of the particle coordinates. However, such algorithms require more storage 

due to the use of higher-order derivatives. Although higher-order algorithms tend to have very 

good energy conservation for short time periods, often the overall energy drifts over long time 

scales. Further, higher order Runge-Kutta type methods are not suitable for biomolecular 

simulations because they require several force evaluations for each time step, thereby 

increasing the duration of the corresponding MD simulations40. 
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In contrast, Verlet-derived algorithms usually have only moderate short-term energy 

conservation but little long-term drift39. It should be noted that no algorithm has been 

formulated to date that can accurately predict the trajectory of all particles for both short and 

long time periods. The Verlet-derived algorithms are much faster than the sophisticated 

algorithms, even though forces on all the particles must be computed more frequently due to 

the smaller time steps required for these lower-order algorithms. Also, they need comparatively 

lesser memory storage than higher-order algorithms. 

2.4.4. Simulation ensembles 

In an MD simulation, a certain simulation environment or ensemble is usually maintained, and 

the various ensembles differ in the system variables that are regulated or conserved43-44. All 

these ensembles are characterised by a thermodynamic potential, that provides information 

about the most stable state of the system45. Some of the most commonly used ensembles are43-

44: 

1. Microcanonical or NVE: The simulations are characterised by a constant number of 

particles (N), constant volume (V), and constant energy (E). The sum of kinetic and 

potential energy is conserved and, the temperature and pressure are unregulated. The 

thermodynamic potential is the entropy (S): 

����  =   
1

�! ℎ��
 � ����  δ (�(�, �) − �) 

                                                  � =   ��������                                                          (11) 

Here ℎ and �� denote the Planck’s and Boltzmann’s constants, respectively. ���� is the 

partition function. �(�, �) is the system Hamiltonian, with r and p representing the particle 

position and velocity, respectively. δ function selects the states where the total energy is �. 

2. Canonical or NVT: The simulations are characterised by a constant number of particles 

(N), constant volume (V), and constant temperature (T). The temperature is regulated via a 

thermostat and the pressure is unregulated. The thermodynamic potential is the Helmholtz 

free energy (A):  

����  =   
1

�! ℎ��
 � ����  exp �

−�(�, �)

���
� 

                                                 � =   −���������                                                     (12) 
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Here, ���� is the partition function. 

3. Isothermal-isobaric or NPT: The simulations are characterised by a constant number of 

particles (N), constant pressure (P), and constant temperature (T). The temperature is 

regulated via a thermostat and the pressure via a barostat. The thermodynamic potential is 

the Gibbs free energy (G): 

����  =   
1

�! ℎ����
 � ����  exp �

−�(�, �) + ��

���
� 

                                         � =   −���������                                                             (13) 

Here, ���� is the partition function and �� is the initial volume. 

4. Grand-canonical or µVT: The simulations are characterised by a constant chemical 

potential or molar Gibbs free energy of the selected components (µ)45, constant volume 

(V), and constant temperature (T). The temperature is regulated via a thermostat and the 

pressure is unregulated. The thermodynamic potential is the grand potential (Ω): 

����  =   �
1

�! ℎ��

�

 exp �
−��

���
� � ����  exp �

−�(�, �)

���
� 

                                  Ω =   −���������                                                                   (14) 

Here, ���� is the partition function. 

The NVE ensemble provides the real solution to the N-body problem, since it conserves the 

total energy of the simulation system. However, under experimental conditions, NVE ensemble 

is usually not applicable and therefore, NVT, NPT and µVT ensembles are used as necessary. 

2.4.4.1. Thermostat 

Constant temperature of the simulation system can be maintained using different schemes. For 

example, in the isokinetic MD scheme, the average kinetic energy per particle is kept 

constant44. Whereas in the velocity-scaling methods, the velocities of the particles are scaled 

according to the set temperature. The constant temperature can also be maintained by coupling 

the system to an external heat bath. The Andérsen method implements this coupling by 

applying stochastic impulsive forces on arbitrarily selected particles within the system. For the 

Nosé-Hoover thermostat, a fictious degree of freedom, consisting of both potential and kinetic 

energy components, is added to the system to control its temperature46. 
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The constant temperature can also be maintained using Langevin dynamics40. This method uses 

a stochastic coupling, where two force terms are added to the Newton’s second law in Equation 

15 to account for the neglected degrees of freedom. Not only it is easier to implement, but the 

friction terms tend to enhance the dynamical stability of the system. Hence, Langevin dynamics 

can search conformations better than the Newtonian molecular dynamics. The typical Langevin 

equation is: 

                  ��̇  =  �(�) − �� + �
2����

�
 �(�) 

(15) 

Here � is the mass, � is the velocity, � is the sum of all forces, � is the position, � is the friction 

coefficient, �� is the Boltzmann’s constant, � is the temperature, and �(�) is a univariate 

Gaussian random process. Coupling to the thermal reservoir is modelled by the fluctuating or 

random force (the last term), and the dissipative or frictional force (−�� term). Since friction 

opposes the motion, the first additional force is proportional to the particle's velocity but 

oppositely directed.  

2.4.4.2. Barostat 

For a multi-particle system, the constant pressure can be maintained using one of the various 

pressure-control methods or barostats. In the Andersén method, a fictious degree of freedom 

with a mass � (in units of mass × length-4), and linked to the volume of the cubic simulation 

cell, acts as a piston47. This fictional piston equalizes the internal pressure of the system and 

the applied pressure by undergoing self-adjustment. The Parrinello-Rahman method also uses 

a fictious mass to control the rate of pressure adjustment48. However, unlike the Andersén 

method, this method permits variation in the shape of the simulation cell (allows non-cuboidal 

shapes). 

A modified Nosé-Hoover method49 can also be employed to maintain constant pressure during 

the simulation, in which Langevin dynamics is used to control the piston fluctuations in the 

barostat to allow partial damping50. In the Nosé-Hoover method, not only the isotropic volume 

fluctuations are maintained, but like the Parrinello-Rahman method, it is also ensured that the 

simulation cell is totally flexible49. The Langevin piston Nose-Hoover method is usually 

combined with a method of temperature control, such as Langevin dynamics, to simulate the 

NPT ensemble40. The equations of motion for the particles, along with the volume of the (cubic) 

simulation system, can be represented as50: 
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   �̇� =  
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�� 

(16) 

 �̇� =  �� +  
1

3

�̇

�
�� 

(17) 

                                     �̈  =  
1

�
[�(�) − ����]  −  ��̇ + �(�) 

(18) 

Here, � denotes the volume. �(�) and ���� represent the instantaneous and imposed pressures, 

respectively. Further, �, �, �, and � denote the position, momentum, mass, and force, 

respectively, for each particle in the system. The collision frequency and the random force are 

represented by � and �(�), respectively. 

                                           〈�(0)�(�)〉 =
2�����(�)

�
 

(19) 

�(�) is derived from a Gaussian distribution with a zero mean and variance. Here, �� and � 

denote the Boltzmann’s constant and piston mass, respectively. 

2.4.5. Periodic boundary conditions 

In order to avoid surface effects at the boundary of a multi-particle system, and thus to mimic 

an infinite bulk environment, periodic boundary conditions are employed in the MD 

simulations40, 51. The defined volume containing all the particles is taken as a cell and replicated 

to an infinite lattice of identical cells by periodic translations. Any particle in the system that 

leaves the cell on one side is substituted by a copy entering the cell on the opposite side. Further, 

each particle is subject to interactions with all other particles in the system, including images 

in the surrounding cells. All the cells are identical to each other, and the image particles across 

different cells move together. It should be noted that although the origin of the periodic lattice 

can be chosen anywhere, the shape and orientation of the periodic cell is kept fixed. Periodic 

boundary conditions eliminate surface effects, but effects related to the finite-size of the 

periodic cell are still present. 
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Figure 2.9. Schematic representation of periodic boundary conditions51. 

The van der Waals and electrostatic interactions exist between every nonbonded pair of atoms 

in the system (including those in neighbouring cells)40, 51. Hence, reliable computation of long-

range interactions with periodic boundary conditions is not theoretically feasible because the 

calculation of the potential energy would involve an infinite sum of interactions to simulate the 

bulk behaviour. However, most interatomic interactions are short-ranged and can be truncated 

beyond a certain cut-off distance. Thus, the van der Waals interaction is spatially truncated, 

generally using a smoothing function, at a specified cut-off distance. The cut-off is set to be 

less than half the diameter of the periodic box to avoid double force calculations. Periodicity 

of the system plays an important role in the computation of nontruncated electrostatic 

interaction with minimal additional computational cost using the particle-mesh Ewald (PME) 

method.   

2.4.6. Particle-mesh Ewald electrostatics 

Ewald summation is used to calculate the long-range electrostatic interactions for the defined 

volume containing a multi-particle system, with periodic boundary conditions40. Compared to 

spatial truncation at a certain user-specified cut-off distance, the Ewald summation is 

considered more reliable. The Ewald sum consists of the following four terms: 

�������� =  ������ = ���� + ���� + ����� + ��������         (20) 

Here, ����, ����, �����, and �������� represent the direct sum, reciprocal sum, self-energy, and 

surface energy components, respectively40. The self-energy term is an inconsequential 

constant. Further, the surface energy term is generally not considered as ��  is assumed to be 

infinity due to the high dielectric constant of water (�� ≈ 80 >> 1). Therefore, the N number of 
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point charges in the system, in Figure 2.10, can be represented as a set of screened charges 

whose interactions are calculated by direct summation, and the residual smoothly varying 

screening background is handled by the reciprocal sum component of the Ewald summation52. 

 

Figure 2.10. A set of point charges may be considered as a set of screened charges and a 

smoothly varying screening background52. 

After dropping the prefactor 1/4πε0, the terms of Ewald summation can be represented as40: 

���� =
1

2
 � ����

�

�,���

 �.

��⃗ �

� erfc����⃗� −  �⃗� + ��⃗ ���

��⃗� − �⃗� + ��⃗ ��
          − �

����

��⃗� − �⃗� + �⃗���
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(24) 

Here, �� and �⃗i are the charge and position of atom �, respectively, and ��⃗ r is the lattice vector. 

For any simulation box defined by three independent base vectors �⃗1, �⃗2, �⃗3, ��⃗ r  = n1�⃗1 + n2�⃗2 

+ n3�⃗3, where n1, n2, and n3 are integers. Σ´ denotes a summation over ��⃗ r that excludes the ��⃗ r 
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= 0 term in case � = �; “excluded” denotes the set of atom pairs whose direct electrostatic 

interaction should be excluded. �⃗�� denotes the lattice vector for a (�, �) pair, that minimises 

��⃗� − �⃗� + �⃗���. � is a parameter adjusting the computational load between the direct sum and 

reciprocal sum terms. �� is the dielectric constant of the surroundings of the simulation box, 

which is water for most biomolecular systems. � is the volume of the simulation box. ���⃗  is the 

reciprocal vector defined as ���⃗  = m1��⃗ 1 + m2�2 + m3��⃗ 3, where m1, m2, m3 are integers, and the 

reciprocal base vectors ��⃗ 1, ��⃗ 2, ��⃗ 3 are defined such that 

   �⃗α ·  ��⃗ β = �⃗αβ,        α, β = 1, 2, 3                      (25) 

The complementary error function erfc(�) in Equation 21 is 

                  erfc(�) =
2

√�
 � ����

�

�

�� 
(26) 

The infinite summation of charge-charge interactions for a charge-neutral system is dependent 

on the order of calculation40. For Ewald summation, this order can be specified as follows: first 

sum over each box, followed by sum over spheres of boxes of increasingly larger radii. 

However, the artificial periodicity involved in this summation can bias the free energy 

dynamics and for example, erroneously stabilise a protein structure that should have unfolded 

quickly. Moreover, this summation scheme is computationally expensive for large systems, 

because the computational cost scales as N 3/2, N being the number of charges in the system52. 

For intermediate-sized systems (N ≈ 103–104), the relatively faster particle-mesh Ewald (PME) 

summation is an appropriate option52. However, to improve the accuracy of the particle-mesh 

method, the short-range and the long-range interactions are calculated separately40. The short-

range contribution is directly derived from the particle-particle interactions, whereas the 

particle-mesh method is applied for the long-range component. In PME, the β parameter is 

calibrated such that the major computational load is directed towards the reciprocal sum, while 

the direct sum is calculated at a computational cost proportional to N. Using an interpolation 

scheme, PME distributes the charges present in the system to the nodes of a uniform grid to 

generate a discretised Poisson equation40, 52. Then, this equation is solved using the Fast Fourier 

Transform (FFT) to obtain the reciprocal sum. Since the computational load of PME scales to 

N log N, it provides a major reduction in the simulation time, compared to the simple Ewald 

summation. For full electrostatic computations, the smooth PME (SPME) method is used 

where B-spline functions serve as the basis functions for charge interpolation40. The continuity 
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of B-spline functions and their derivatives reduces the computational time required to obtain 

an analytical expression of forces, and thus decreases the number of FFTs by approximately 

half, compared to the original PME method. Hence, SPME enables faster calculation of the 

reciprocal sum, and therefore a reduction in computational cost; resulting in a faster simulation. 

2.4.7. NAMD 

The Nanoscale Molecular Dynamics (NAMD) program is a popular MD simulation package 

suited for parallel computation and high-performance simulations of large biomolecular 

systems40. We have used NAMD for simulating the different systems in this study. Further, 

NAMD is compatible with the CHARMM force-fields employed in our simulations41, 

discussed in detail in section 2.5.1.1. NAMD employs a multiple-time-stepping method to 

improve the integration efficiency40. It computes the slower-varying forces less frequently than 

the faster-varying ones in MD simulations. This stratagem is implemented in NAMD by three 

levels of integration loops. The inner loop uses only bonded forces to advance the system, the 

middle loop uses LJ and short-range electrostatic forces, and the outer loop uses long-range 

electrostatic forces. 

2.5. Computational models and methods 

2.5.1. Atomistic models 

Atomistic models provide the greatest insight, but are accompanied by a massive computational 

cost53. Hence, they are limited to the study of monomeric and very small oligomeric complexes 

and analysing the stability of preformed fibril models and their interaction with dyes, small 

molecules, or peptide inhibitors. 

The initial partially folded, aggregation-prone structures and prenucleus assemblies, present 

during the early stages of aggregation, are transient and unstable entities53. Hence, these are 

difficult to detect experimentally, and atomistic simulations play a crucial role in their study. 

Structural differences at monomeric level have been observed between the Aβ40 and Aβ42 

alloforms. The information gleaned from the transient secondary structures could help in the 

identification of protein regions critical for initiating aggregation. Further, atomistic 

simulations have been used to study the growth phase of fibril formation and the role of point 

mutations in modulating aggregation. Also, the identification of aggregation-prone structures 

from a diverse family of existing structures has been achieved using these simulations.  
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Figure 2.11. The contrasting breadth of timescales of protein rearrangement and assembly53. 

Simulations of IAPP peptide revealed significant differences in the monomeric structure, with 

the aggregating variants (e.g., human IAPP) generating both compact and extended 

conformations, and the nonaggregating variants (e.g., rat IAPP) showing only compact 

structures53. Atomistic simulations have been used to refine the fibril structures of Aβ and IAPP 

obtained from solid-state NMR. Moreover, it was observed that fibrils with a cross-β structure 

could act as template for the formation of additional β structure in Aβ monomers. Further, it 

was revealed that the inhibitory role of Congo Red (dye) in blocking fibril extension could be 

attributed to a new binding site in  the molecule, which gets bound to the edge of the fibril, and 

this binding site is not observed for thioflavin T (dye) and its radioactive derivative Pittsburgh 

compound B (PiB). 

Different atomistic force-fields can lead to relatively different secondary structure predictions, 

especially for the intrinsically disordered peptides such as Aβ and IAPP53. Since most force-

fields have been parameterized on the basis of folded motifs, they may need reoptimization to 

better account for the unfolded/partially folded nature of the intrinsically disordered peptides. 
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2.5.1.1. CHARMM force-field 

The CHARMM (or Chemistry at Harvard Macromolecular Mechanics) force-field is one of the 

most widely used force-field for biological systems. The potential function of a force-field 

consists of chemically-bonded and nonbonded energy terms, as discussed in section 2.4.2. 

The interactions between chemically-bonded nearest neighbours can be represented by the 

bonded or intramolecular energy terms, as shown below54: 

    ������� = ������ + ������� + ���������� + ���������
���������

+ ��� (27) 
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Here, ������, �������, ����������, ��������� ���������, and ��� terms represent the covalent 

bond stretching, angle bending, dihedral, improper dihedral, and Urey-Bradley energy terms, 

respectively. Further, ��, ��, ��, and ��,�;� are the bond, angle, improper and Urey-Bradley 

equilibrium values, respectively. The K’s are the corresponding force constants, and n and δ 

are the dihedral multiplicity and phase, respectively. The term “dihedral” describes atom pairs 

separated by exactly three covalent bonds, with the central bond subject to the torsion angle. 

The “improper dihedral” term defines the geometry of four planar, covalently-bonded atoms40. 

The Urey-Bradley term is crucial for the in-plane deformations as well as for separating the 

symmetric and asymmetric bond stretching modes (for example, in aliphatic molecules)41. 
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2.5.2. Coarse-grained models 

Minimum timescales and length scales needed to study the aggregation process are typically 

higher than those required for protein folding studies (Figures 2.11 and 2.12)53. Hence, 

although atomistic simulations can capture the initial stages of aggregation, access to the total 

assembly process (from monomers to fibril) is not computationally feasible at present. The 

structural similarity between amyloid fibrils generated by diverse peptides supports the use of 

simplified peptide models that neglect certain molecular details but retain the crucial physical 

aspects of aggregation. Moreover, such models could also be employed to study the interaction 

of these peptides with membranes and other lipid structures and determine their influence on 

peptide aggregation. 

 

Figure 2.12. The approximate timescales involved in different classes of molecular 

simulations: quantum mechanical (QM), atomistic, coarse-grained and continuum models53. 

Coarse graining entails trade-off between physical accuracy and computational efficiency53. 

Thus, the degree of coarse graining should depend on the smallest important length scale of the 

system of interest. Because of the extreme range of length scales and timescales involved, this 

is determined a priori, and an appropriate model is selected accordingly. 

2.5.2.1. Lower-resolution models 

Highly coarse-grained models forego sequence-level resolution53.  However, tetrahedral, tube 

and cuboid models have been used to study the nucleation growth mechanism. By restricting 
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the moves to small increments, dynamic Monte Carlo method has been used with low-

resolution models to achieve physically relevant kinetics. Coarse graining could also extend 

beyond the molecular length scale. For instance, the fibril itself could be modelled as a chain 

of coarse-grained beads. Such mesoscale model procures the elastic parameters from implicit 

water fully-atomistic simulations.  

 

Figure 2.13. Different resolution models for the study of protein aggregation, from coarse-

grained to atomistic. (a) Simple models: the orientable stick model and the sphero-cylindrical 

model. (b) Phenomenological models: the lattice model, Caflisch model, and Shea model. (c) 

Systematic coarse graining: a coarse-grained polyalanine chain. (d) High-resolution models: 

the MARTINI model, PRIME model, and OPEP model. (e) Atomistic models of the Alzheimer 

amyloid-β peptide: monomers from replica exchange molecular dynamics simulations, and 

PIB bound to fibrils53. 

2.5.2.2. Phenomenological models 

Coarse graining over atomic length scales, with one or more beads representing an 

amino acid, have been able to elucidate the physical properties of a protein that are crucial for 

aggregation53. However, these models typically use only generic amino acid types, such as 

charged, polar, hydrophobic, or neutral. The low-resolution lattice model uses a single bead to 

describe an amino acid and restricts the allowed coordinates to a cubic lattice (Figure 2.13b). 

Multi-bead description of the amino acids can identify the aggregate-prone conformations. In 

conjunction with implicit solvent models, these phenomenological models have been able to 

demonstrate the correlation between the peptide β-sheet propensity and the kinetics of fibril 
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formation. Although peptides with high β-sheet propensity formed fibrils via an ordered β-

sheet nucleus, peptides with lower β-sheet propensity first formed disordered oligomers, and 

then the β structure emerged from this. 

The mid-resolution Caflisch model utilizes two beads per residue53. It has been used to 

elucidate the crucial role played by peptide concentration, external conditions, and 

membranes surfactants in the fibril formation process. With this model, Phe-Phe, GNNQQNY, 

transthyretin, and Aβ40 were identified as highly amyloidogenic proteins, whereas Aβ42, Sup35, 

prion proteins, and myoglobin were weakly amyloidogenic. The Shea peptide model uses three 

beads per residue: two for the backbone and one for the sidechain.  In addition to the nucleation 

step, this model can also be used to study fibril growth.  

2.5.2.3. MARTINI force-field 

The MARTINI force-field is the most popular coarse-grained atom model53. It generally 

combines four heavy atoms into a single bead (Figure 2.13d). Likewise, MARTINI water 

model incorporates four water molecules into one bead. Although the bonded interactions are 

matched to an all-atom reference, the nonbonded interactions are based on the chemistry of the 

respective united atoms (i.e., their charge, polarity, and hydrogen bonding propensities). Since 

the nonbonded potentials are modelled on distinguishable chemical properties, instead of being 

system-specific, the MARTINI model can be optimized for all-atom simulations of water, 

lipids, proteins, and nucleic acids. However, this model neglects details of the peptide 

backbone, which are crucial to the study of protein aggregation. Nevertheless, the MARTINI 

model has been able to capture the amyloid assembly process, rapidly screen aggregation-

prone sequences, and elucidate the effect of membranes and fluid interfaces on protein 

aggregation. 

2.5.2.4. PRIME model and discontinuous molecular dynamics 

PRIME model typically employs discontinuous molecular dynamics (DMD) simulations, 

which permit discontinuous breaks in the energy functional by computing the reflection or 

transmission of particles across the discontinuity53. This model reduces the number of particles 

to four per amino acid (Figure 2.13d) and can capture the hydrogen bonding 

energetics.  Although the PRIME model reduces the number of interaction parameters, but each 

parameter is still physically relevant. Moreover, it also retains structural discrimination. 



51 
 

Using this model, it was observed that sequences containing long stretches of hydrophobic 

residues prefer a disordered, collapsed state, instead of a fibrillar structure53. For the Aβ16–22 

fibrils, nucleation growth mechanism was observed at lower temperatures, but templated 

assembly at higher temperatures. Apart from PRIME model, the DMD simulations have been 

used to study peptide aggregation with the tetrahedral protein model. In this model, the proteins 

were represented as a chain of hard spheres centred on the Cα atoms, with sequence-dependent 

hydrogen bonding. 

2.5.2.5. OPEP model 

OPEP is a high-resolution coarse-grained model with a high degree of chemical 

specificity53. Although the sidechain is represented as a single coarse-grained bead, the 

backbone heavy atoms are modelled with full atomic resolution (Figure 2.13d). Therefore, no 

artificial constraints are imposed on the protein secondary structure. This model has been used 

to elucidate the dimerization of various alloforms of Aβ. Further, it was determined that 

different drugs not only exhibit differences in their binding modes, but also may have varying 

effectiveness at different stages of Aβ oligomerization. The OPEP model was also used to study 

the early stages of oligomerization of yeast prion Sup35 fragments. 

2.5.3. Computational methods 

2.5.3.1. Systematic coarse graining 

Systematic coarse graining provides a bottom-up methodology to obtain the optimum coarse-

grained potentials corresponding to the behaviour of fully-atomistic simulations or 

experimental data (Figure 2.13c)53. It is extensively used to study protein aggregation and could 

be achieved by different computational methods. The relative entropy method uses information 

theory to find the potentials with minimal information loss in the configurational 

ensembles. This method was applied to study the self-assembly of polyalanine, where it was 

observed that the fibrillar structure could be achieved following internal reorganization within 

the disordered aggregate. Multiscale coarse graining is a variational technique that best 

matches all-atom momenta in the coarse-grained sites. For the polyglutamine peptides, increase 

in the aggregation propensity was observed with both concentration and chain length. The 

iterative Boltzmann inversion method can reproduce all-atom Boltzmann statistics. When 

applied to the aggregation process of oligoalanine peptides, it was found that certain details 

lost during the coarse graining process could be recovered by back-mapping to the atomistic 

coordinates. 
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Systematic coarse graining methods however require reliable all-atom statistics to parameterize 

the coarse-grained model53. Further, these potentials are highly system-specific, and would 

theoretically entail reparameterization of all the interactions; if the system changed in any 

manner. Therefore, these methods are ideal only for studying the self-assembly of numerous 

identical molecules.  

2.5.3.2. Thermodynamic methods  

To compute the free energy profiles more efficiently, increased sampling of Boltzmann-

disfavoured morphologies is required53. These enhanced sampling methods can be used with 

both fully-atomistic and coarse-grained simulations. The replica exchange method enhances 

sampling by launching parallel simulations, such that each simulation explores a particular 

point in the parameter space. If this parameter is temperature, then the method is also referred 

to as parallel tempering. At regular intervals, each trajectory is given an opportunity to 

exchange trapped systems with trajectories at neighbouring temperatures to overcome free 

energy barriers (Figure 2.14b). Substantial energy overlap with neighbouring replicas is 

required to maintain a high temperature swap rate, and to ensure correct thermodynamics. 

However, because of this swapping procedure, each parameter has discontinuous trajectories 

and the correct kinetics are lost. This method can be used with both Monte Carlo and molecular 

dynamics simulations. The replica exchange statistical temperature molecular dynamics 

algorithm minimizes the number of replicas required for good sampling and provides a more 

even energy sampling. This method has been applied to study protein folding. 

In umbrella sampling method, a predefined collective variable is kept at a particular target 

value53. Multiple trajectories are launched at varying target values, such that the statistics of 

neighbouring umbrellas, or Gaussian hills overlap. Umbrella sampling forces the system into 

regions of state space that might have poor sampling. This method has been applied to deduce 

the energy of separation of monomers, as the separation can be conveniently defined as a 

collective variable. Umbrella sampling was also used to study the binding of Aβ to a lipid 

bilayer, and it was observed that such binding facilitated the conversion of Aβ to aggregate-

prone conformations.  
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Figure 2.14. A schematic comparison of (a) metadynamics, and (b) replica exchange53. 

Metadynamics also involves enhanced sampling over collective variables, using a biased 

potential to force the system to sample low-probability states53. However, unlike umbrella 

sampling, metadynamics is an adaptive method. It automatically biases away configurations 

from the most visited regions of the state space by adding Gaussian hills (Figure 2.14a). Not 

only does this make the sampling more efficient, but also this provides access to rarer 

configurations. Like umbrella sampling, the bias is factored into while deducing the correct 

unbiased statistics of the system. It has been employed to study the diverse configurations of 

amyloidogenic proteins.  

2.5.3.3. Kinetic methods 

The previously described methods lose kinetic information by either biasing the sampling of 

collective variables (umbrella sampling and metadynamics), or giving discontinuous 

trajectories at constant temperature (replica exchange)53. However, certain sampling 

methods can preserve kinetics by launching multiple short, parallel trajectories. Markov state 
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model (MSM) increases sampling by deploying parallel trajectories. MSM bins sets of 

configurations in state space and models the system as a set of Markovian (history- 

independent) transitions between these configurations. Hence, it generates a kinetic map of 

transition probabilities between different states. This method adaptively selects starting 

configurations that require additional sampling, and therefore effectively samples the 

associated kinetic landscape. However, to ensure self-consistency, it needs to be verified that 

the transitions are indeed Markovian. It is also critical to bin the collective variables properly. 

This model has been applied to multiple biomolecular simulations. 

Apart from MSM, other kinetic methods have also been used to study the biomolecular 

systems53. The free energy guided sampling method, applied to study protein folding, uses an 

approximate free energy surface instead of collective variables to bias the starting 

configurations. WExplore method biases the launching of trajectories towards poorly sampled 

regions of configuration space. However, unlike the MSM method, it accomplishes state 

transitions by using a weight for each trajectory with which it contributes to statistical 

averages. The WExplore method has been used to study the RNA 

conformational dynamics. Secondary nucleation data analysis methods represent the fibril 

formation kinetics as a function of an order parameter defining the degree of fibrillization. 

The data from experiments or simulations are fitted into a master equation that breaks down 

fibril growth into elongation, fragmentation, nucleation, and end-to-end association.  The 

normal mode analysis method is applied to an existing (generally fully-atomistic) trajectory. It 

models the protein into coarse-grained sites, and then deduces collective motions of 

the biomolecule from the vibrational network of pairs of these sites. It has been employed to 

analyse the elastic properties of human IAPP fibrils and Aβ fibrils. 
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Chapter 3 

Mechanistic insight into the early stages of amyloid formation 

using an anuran peptide† 

3.1. Introduction 

Amyloidogenesis involves the conversion of specific peptides or proteins from soluble 

functional states into highly organized fibrillar aggregates with protofibrillar intermediates1. 

The ‘amyloid hypothesis’ implicates peptide or protein aggregation as the trigger for a cascade 

of events that result in neurodegeneration and other misfolding diseases2-3. Multiple pathways 

consisting of nucleation and growth phases with sigmoidal kinetics are accessible during the 

process of amyloidogenesis; depending on the physiological conditions, protein sequence and 

the surrounding molecular environment4. Protofibrils or diffuse amyloids are amyloid deposits 

that lack fibrillar substructure, but are precursors to mature amyloid fibrils and might be linked 

to cytotoxicity observed in amyloid diseases2, 5-7. Especially in neurological disorders involving 

the central nervous system, oligomeric forms cause the pathogenicity, primarily due to their 

small size allowing faster diffusion and greater exposure of the hydrophobic groups on their 

surface4. 

An increasing number of anti-microbial peptides (AMPs) have been identified with an inherent 

ability to form amyloid structures8. Uperin 3.5 (GVGDL5IRKAV10SVIKN15IV-NH2) is one 

such broad-spectrum AMP, obtained from the skin secretion of the toadlet Uperoleia 
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mjobergii9. Uperin 3.5 is unusual, as it does not aggregate in pure water, but self-aggregates in 

saline buffer at neutral pH to form amyloid fibrils8. Fibril formation occurs with the growth of 

oligomeric intermediates in a linear direction. These fibrils consist of a coiled-coil 

ultrastructure, rich in β-sheet content. Addition of co-solvent 2,2,2-trifluoroethanol (TFE) in 

small quantities is found to stabilize α-helical secondary structure intermediates and enhance 

fibril formation. However, fibril formation is not observed at higher concentrations of TFE due 

to an increased stability of the helical state.  

The ability to form amyloid structures is an inherent property of certain polypeptide chains, 

and depends on overall charge, secondary-structure biases, and hydrophobicity of the peptide4, 

10. However, there is no apparent sequence identity, structural homology or critical polypeptide 

chain length observed among these peptides1, 11. Still, most of these peptides are small in size 

(usually less than 100 residues). Most pathogenic mutations, common in hereditary amyloid 

diseases, disrupt the native structure of the protein and make it prone to aggregation. For 

example, the removal of a charged amino acid residue from a critical position in amyloid-beta 

(Aβ) protein (found in Alzheimer’s disease) increases fibril formation in molecular dynamics 

(MD) simulations12. On the other hand, a synthetic mutant of amyloid-prone human islet 

amyloid polypeptide (hIAPP) showed significantly lesser membrane disruption activity 

compared to the wild-type polypeptide13. Peptide secondary structure is influenced by the 

surrounding environment. Simulations with Aβ25−35, a portion of Aβ peptide, indicate that the 

solvent contributes to structural transitions that occur in amyloid structures. Notably, the 

random coil structure that dominates in aqueous environments is replaced by ordered secondary 

structures in membrane-mimicking environments14. Similar behaviour is observed for a host of 

amyloid-prone peptides in vitro, including uperin 3.5, which adopts an α-helical structure in 

membrane-like environments8, 15. Although, as observed for hIAPP, the surrounding lipid 

environment might also disrupt peptide aggregation16. Electrolytes can play a crucial role in 

the stabilization of peptide secondary structure and fibril formation by screening the charges 

on the residues and thus reducing the surface tension17-18. In addition, the valency of ions is 

also a critical factor in fibril formation. For instance, divalent cations (Ca2+, Mg2+) destabilize 

hydrogen bonds and turn structures in Aβ peptide and fragments through peptide-ion 

interactions and alterations to hydration shell, leading to the formation of unstructured 

aggregates18-19. But, monovalent cations (Na+, K+) facilitate intra-peptide hydrogen bonds and 

turn structures and hence promote peptide self-assembly.  
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There is increasing evidence that the mechanism of action of AMPs and amyloidogenic 

peptides and proteins have considerable similarity8. Thus, relatively small AMPs that form 

amyloid structures, such as uperin 3.5, can serve as model peptides for understanding the 

amyloid formation process. Further investigation of uperin 3.5 aggregation with MD 

simulations can provide significant insight into the structure of the transient and unstable 

oligomers observed in early stages of aggregation, at a resolution not accessible by current 

experimental facilities20. Examples of such phenomena and effects would include, the 

evolution of various oligomeric states adopted by uperin 3.5 peptides during aggregation, the 

influence of electrolyte concentration and solvent composition on uperin 3.5 aggregation, and 

the role played by charged residues in the process of amyloidogenesis. Finally, MD simulations 

can aid in the identification of regions crucial for inter-peptide interaction, and possibly the 

aggregation-prone structures20.  

In the current study, we utilize both fully-atomistic (FA) and coarse-grained (CG) MD 

simulations to understand the effect of salt concentration on the unusual aggregation behaviour 

of uperin 3.5 peptides in an aqueous medium. We use CG and FA simulations in a 

complementary way to gain insight into the peptide aggregation process in terms of both 

physical interactions as well as conformational transitions that take place in the early stages of 

aggregation. CG simulations provide large scale clustering and aggregation information over 

significantly longer time scales at relatively less computational period. In the absence of 

secondary structure details, CG simulations also allow us to understand the peptide aggregation 

process in simpler physical terms, analogous to aggregation in colloidal systems. The FA 

simulations, which are computationally more expensive, are intended to provide details of 

inter-atomic interactions and conformational changes that take place in the peptides. 

3.2. Methods 

Two interacting uperin 3.5 peptides with different inter-peptide orientations and aggregated in 

a dimeric state are shown in Figure 3.1, corresponding to both FA (Figure 3.1A) and CG 

(Figure 3.1B) representations. Whereas the FA representation is explicit and shows all the 

atomistic details, the CG representation corresponds to the MARTINI description. We note that 

the CG representation in Figure 3.1B is not the coarse-grained version of the FA representation 

in Figure 3.1A. The snapshots are purely representational and sourced from different time 

frames of completely independent simulations. In the MARTINI coarse graining scheme, the 

FA representation of  every amino acid residue is substituted by one bead for the backbone and 
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a set of zero to four beads for the sidechain21. For bonded interactions, the MARTINI 

description correlates to an all-atom reference, but non-bonded interactions are determined by 

the chemistry of the united atoms (i.e., their charge, polarity, and hydrogen bonding 

capabilities)20.  

 

Figure 3.1. Representative snapshots of uperin 3.5 dimer in: (A) FA representation at 40 ns 

and (B) CG representation at 500 ns, obtained from corresponding uperin 3.5 dimer simulations 

in aqueous environment at 0.50 M salt concentration. Glycine (G) and valine (V) are the N-

terminus (Nt) and C-terminus (Ct) amino acid residues respectively, in uperin 3.5 peptide. 

In order to mimic the zwitterionic nature of peptides at physiological pH (7.4), a charge of +1 

and -1 is usually assigned to the first and last backbone atoms of the peptide, i.e. the N- and C-

terminus, respectively. However, in this case, the uperin 3.5 wild-type is amidated at the C-

terminus9, which means that no charge was assigned to the backbone atom at the C-terminus. 

Both FA and CG MD were used for simulating the following systems: (a) two uperin 3.5 

peptides in a periodic box, and (b) twenty uperin 3.5 peptides in a periodic box, details of which 

are provided in Table 3.1. The peptide concentrations for two and twenty peptide systems 

(simulation numbers 1–9 in Table 3.1) are maintained at 3.32 mM and 20 mM, respectively. 
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Table 3.1. Setup details of CG and FA simulations performed. 

Simulation 
number 

Number 
of 

peptides 

Simulation 
type 

Box size 
(Å3) 

Number of 
water 

molecules 

Salt 
concentration 

(NaCl, M) 

Simulation 
time (ns) 

1 2 CG 100 × 100 
× 100 

6518 0.00 1000 

2 2 CG 100 × 100 
× 100 

6478 0.15 1000 

3 2 CG 100 × 100 
× 100 

6382 0.50 1000 

4 20 CG 118 × 118 
× 118 

10168 0.00 500 

5 20 CG 118 × 118 
× 118 

10104 0.15 500 

6 20 CG 118 × 118 
× 118 

9956 0.50 500 

7 20 FA 118 × 118 
× 118 

50483 0.00 350 

8 20 FA 118 × 118 
× 118 

50199 0.15 350 

9 20 FA 118 × 118 
× 118 

49537 0.50 350 

The CG MD simulations were performed using the MARTINI force-field for proteins, ions and 

water21-24 in NAMD25. It is important to note that the MARTINI force-field description used 

here does not use polarizable models to describe either water or ions in the system. However, 

the MARTINI description appears to be adequate in correctly describing the qualitative 

changes in electrostatic effects at different salt concentrations.  Periodic boundary conditions 

were applied along all three orthonormal directions. A switching function was implemented 

for the Lennard-Jones (LJ) interactions, with a smooth cut-off from 9 to 12 Å. Coulombic 

interactions were calculated directly with a shifting function throughout the interaction range, 

with a cut-off at 12 Å. Simulations were performed using a 10 fs timestep and a Langevin 

thermostat with a damping coefficient of 5 ps-1 26-27. A constant pressure of 1 atmosphere (1 

atm = 1.01325 bar) was maintained using a Nosé-Hoover28 Langevin29 piston, with a period of 

2 ps and a decay time of 1 ps. The systems were solvated with CG water molecules and ionized 

with hydrated sodium and chloride ions to get the desired salt concentrations30. All systems 

were equilibrated for 425 ps in a canonical (NVT) ensemble (T = 310 K), followed by 1 ns in 

an isothermal-isobaric (NPT) ensemble (P = 1 atm and T = 310 K).  Then production runs were 

performed in NVT ensemble (T = 310 K). 
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The FA MD simulations were performed using the CHARMM36 force-field for proteins31-33 

and TIP3P water34 in NAMD. Periodic boundary conditions were applied along all three 

orthonormal directions. A switching function was implemented for the LJ potential, with a 

smooth cut-off from 10 to 12 Å. Particle-mesh Ewald summation35, with a grid spacing of 1 Å, 

was used for calculating the electrostatic interactions. Simulations were performed using a 2 fs 

timestep and a Langevin thermostat with a damping coefficient of 1 ps-1. A constant pressure 

of 1 atm was maintained using a Nosé-Hoover28 Langevin29 piston, with a period of 100 fs and 

a decay time of 50 fs. The peptides were solvated with TIP3P water molecules. Then, Na+ and 

Cl- ions were added as required. With only α-carbon of amino acid residues in the peptides 

restrained, equilibration was performed for 300 ps in an NVT ensemble (T = 310 K), followed 

by further equilibration for 500 ps in an NPT ensemble (P = 1 atm and T = 310 K). Finally, the 

systems were equilibrated for 1 ns in an NPT ensemble (P = 1 atm and T = 310 K) without any 

restraints. The resulting systems were then simulated in NVT ensemble (T = 310 K). 

The effect of salt concentration on the free-energy of interaction between two CG uperin 3.5 

peptides36 is evaluated by calculating the potential of mean force (PMF) using the 

metadynamics  method37-41, as implemented by the Colvars module42 in NAMD. The PMF is 

evaluated as a function of two variables, namely, the backbone root-mean-square deviation 

(RMSD) of the two peptides, with reference to an aggregated dimer state, and the radius of 

gyration (Rg) of the two peptides30.  The PMF sampling was done in the range of 0–50 Å for 

both RMSD and Rg reaction coordinates and the corresponding CG simulations were run for 5 

µs. 

Uperin 3.5 appears to have a random coil conformation in aqueous environment and a 

predominantly α-helical structure in membrane-mimicking environments8. However, no 

definitive structural information is available regarding the individual peptide conformations 

that progress to amyloid fibril formation. In a related study, theoretical models have shown that 

Aβ peptide conformations with predominantly random coil and turn secondary structures 

aggregate to form propagating oligomers that would lead to amyloid fibrils43. Hence, we start 

our simulations with random coil uperin 3.5 conformation43. The molecular editors 

PACKMOL44 and VMD45 were used to create the simulation systems. Tachyon ray-tracer46, as 

incorporated in VMD, was used for visualization. Backbone RMSD clustering47-48 was 

performed with the Stillinger algorithm49. Order parameters were derived using Wordom 
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program package50-51. Secondary structure in FA simulations was determined by STRIDE 

program52 using DSSP definitions53, as implemented by the Timeline plugin54 in VMD.  

3.3. Results 

3.3.1. Aggregation of two peptides 

3.3.1.1. Inter-peptide interaction 

In order to examine the inter-peptide interaction in detail, we simulated the aggregation of two 

CG uperin 3.5 peptides under varying salt concentrations and analysed the peptide trajectories 

over the simulation period. We tested several different random coil conformations of uperin 

3.5 monomers as different initial conditions and observed similar aggregation behaviours with 

respect to changing salt concentration. Thus, different starting configurations did not seem to 

have a statistically significant impact on the aggregation process. The centre of mass distance 

provides a measure of the average distance between the centre of mass of two peptides within 

the simulation system. The variation of centre of mass distance for two interacting uperin 3.5 

peptides (denoted by P1 and P2) is plotted with respect to time for different salt concentrations 

in Figure 3.2, corresponding to a total simulation duration of 1000 ns. The N-termini (G1) and 

C-termini (V17) backbone atoms in uperin 3.5 have been represented as brown and violet 

coloured spheres, respectively in Figure 3.2 and elsewhere (as applicable). In the absence of 

salt (����� = 0.00 M), the peptide-peptide separation was found to be always more than 20 Å 

throughout the simulation duration, indicating negligible inter-peptide interaction (Figure 

3.2A). With an increase in salt concentration, both the centre of mass distance values and 

fluctuations in the plots were found to decrease (Figures 3.2B and 3.2C); and were significantly 

lower at ����� = 0.50 M for nearly 700 ns, clearly showing an increased attraction between the 

two peptides at higher salt concentrations. Increased hydrophobic interaction with an increase 

in salt concentration points to the screening of charged residues on the peptides by counter-

ions from the salt, which results in the weakening of electrostatic repulsion between charged 

residues on the two peptides. Therefore, the plot for 0.50 M salt concentration has lesser 

fluctuations when compared to 0.15 M salt concentration. Hence, at ����� = 0.15 M, weak 

attractions between the peptides result in a loosely associated dimer which is prone to 

disruption, as illustrated by the large fluctuations in the centre of mass distance plot (Figure 

3.2B).  At ����� = 0.50 M, the dimeric state is significantly more stable for nearly 700 ns, and 

only after ~ 700 ns does the inter-peptide separation steadily increase. This suggests that 
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hydrophobic interactions between the two CG uperin 3.5 monomers at higher salt concentration 

remain susceptible to disruption.  

 

Figure 3.2. Centre of mass separation between the two peptides, P1 and P2, plotted as a 

function of time for different salt concentrations of (A) 0.00 M, (B) 0.15 M, and (C) 0.50 M 

NaCl. Peptide trajectory snapshots from the CG simulations, showing dimer interaction at 

different salt concentrations, and at two representative time instances of 200 ns (left-side 

panels) and 400 ns (right-side panels). 

The CG uperin 3.5 simulations are characterized by large fluctuations of the peptide backbones, 

which could lead to an increased disruption of the aggregated dimers. These fluctuations could 

be inherent to the uperin 3.5 structure in aqueous media, arising from a lack of proline or 

aromatic residues in uperin 3.59. Larger backbone fluctuations could also be an artefact of the 

reduced number of overall inter-atomic interactions in a CG model21, which would otherwise 

be responsible for stabilizing conformations in a FA simulation. As a result, hydrophobic 

interactions between the two peptides might not be strong enough to keep the two peptides 
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associated for extended durations, even at high salt concentrations (Figure 3.2C). Trajectory 

snapshots of the two uperin 3.5 monomers (Figure 3.2) that were taken from the uperin 3.5 

dimer simulations also show an increasing tendency of the monomers to aggregate in the 

defined salt concentrations. At 200 ns, the peptides are in close proximity in 0.15 M (Figure 

3.2B) and 0.50 M (Figure 3.2C) systems, but further apart in 0.00 M system (Figure 3.2A). 

Similarly, at 400 ns, the uperin 3.5 monomers in 0.15 M (Figure 3.2B) and 0.50 M (Figure 

3.2C) systems are closely associated, but well-separated from each other in 0.00 M system 

(Figure 3.2A).  

At this stage, it is important to reiterate that several trajectories (corresponding to different 

initial peptide conformations and initial separations at a given NaCl concentration) were 

simulated, but the differences between the simulations were statistically insignificant. This 

means that the trajectories shown in Figure 3.2 can be considered as representative of dimer 

aggregation for a particular NaCl concentration. Whereas dimerization is never observed in the 

absence of NaCl, most trajectories lead to dimerization at 0.50 M NaCl. Large backbone 

fluctuations, inherent to uperin 3.5 CG simulations, can lead to disruption of the dimer (as seen 

in Figures 3.2B and 3.2C), and the lifetime of a dimer at a particular NaCl concentration 

depends on the initial peptide configuration and inter-peptide separation. The re-aggregation 

of the two peptides into a dimer after a disruption event is dependent on a collision probability, 

which is expected to increase with increasing peptide concentration. Since the peptide 

concentration is very small (3.32 mM) in the dimer simulations, a re-appearance of the dimeric 

state is a rare event and was not observed in the simulations. However, re-aggregation events 

following disruption of clusters are observed quite frequently for the CG:20 and FA:20 

simulations, where the peptide concentration is much higher (20 mM) (see Figures 3.11 and 

3.12).  

For a more detailed analysis of the inter-residue contacts between peptide 1 (P1) and peptide 2 

(P2) in the CG simulations of the uperin 3.5 dimers, contact maps55-56 were generated as shown 

in Figure 3.3 for ����� = 0.00 M, 0.15 M and 0.50 M. A contact map is generated by counting 

the total number of contacts between all possible pairs of residues along the two uperin 3.5 

peptides55. A pair of residues, each located on a different peptide, is assumed to be in contact 

if the backbone residue atoms are separated by less than 12 Å. Using this distance criterion 

(based on the cut-off employed for non-bonded interactions in the CG simulations), the total 
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number of contacts are counted for all trajectory outputs (sampled every 100 ps) over the entire 

duration of the simulation. 

 

Figure 3.3. Contact maps showing inter-peptide interactions, calculated from CG simulations 

of two uperin 3.5 monomers as functions of NaCl concentration (increasing from left to right) 

and simulation time (increasing from top to bottom). 

A visual inspection of the contact maps in Figure 3.3 clearly shows that most of the inter-

peptide interactions occur along the stretches of predominantly hydrophobic residues 9–13 

(AVSVI segment) on the two peptides. The highest number of interactions (or contacts) in this 

region were observed in 0.50 M system throughout the simulation period of 1000 ns. Based on 

this observation, we use the maximum value obtained for a contact pair in the AVSVI segment 

at 0.50 M NaCl as a reference value to normalize the number of contacts at all NaCl 

concentrations. Following this procedure, the number of contacts can be represented on a scale 

of 0 to 1 (as shown in Figure 3.3), where a value of 1 represents the highest value of contacts 

observed for a pair of residues in the AVSVI segment at 0.50 M NaCl. After 200 ns, the contact 

map shows negligible interaction (0.5%) at ����� = 0.00 M, and interactions at only 47.2% of 

the maximum value were noted at �����= 0.15 M (as could be deduced by the increase in the 

white region of the contact map with respect to the colour scale, compared to the 0.00 M 

system). However, at ����� = 0.50 M, significant interactions were observed along the AVSVI 
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stretch; as defined by the intense dark red regions. The contact maps in Figure 3.3 represent 

long time-scale peptide-peptide interactions by counting the cumulative number of residue-

residue contacts up to a given time. The evolution of contact maps has been explained in detail 

in Figure 3.4, where contact maps for �����= 0.50 M are generated by counting residue-residue 

contacts over shorter 100 ns intervals at various stages of the CG uperin 3.5 dimer trajectory. 

Significantly, the shorter time-scale contact maps in Figure 3.4 clearly show that the peptide-

peptide interactions are primarily confined to the AVSVI hydrophobic stretches of the two 

peptides. 

At longer timescales (> 400 ns), the situation remains invariant at ����� = 0.00 M, i.e., the 

interactions remain negligible (0.5%). In contrast, at ����� = 0.15 M, there is an appreciable 

increase in the number of interactions (68.6% of the highest value) at 400 ns compared to 0.00 

M NaCl. Once again, at the end of the simulations (1000 ns), fewer interactions (45.5 %) were 

observed at ����� = 0.15 M in comparison to those observed at ����� = 0.50 M. Fluctuations 

observed in contact maps at ����� = 0.15 M and 0.50 M over the simulation period can be 

attributed to fluctuations in inter-peptide interaction over the duration of the simulation. These 

data are consistent with the role of salt as a facilitator of hydrophobic interactions between two 

uperin 3.5 peptides in the aqueous environment. Here, it is important to note that our simulation 

results are in agreement with the experimental observations of Calabrese et al.8, where it was 

shown that introduction of salts facilitates aggregation of the uperin 3.5 peptides dissolved in 

water. 

In order to validate the hypothesis that peptide-peptide interactions occur along the AVSVI 

hydrophobic stretches, we generated contact maps for the CG uperin 3.5 dimer trajectory at 

����� = 0.50 M, but with residue-residue contacts counted only over 100 ns intervals. Four such 

contact maps are shown in Figure 3.4 that are evaluated at different time intervals of the 

trajectory in Figure 3.2C corresponding to different stages of dimer aggregation, namely, 

tightly bound states (400–500 ns and 550–650 ns), during dimer dissociation (650–750 ns), and 

after dimer disruption (850–950 ns). It is very clear from the contact maps that the peptide-

peptide interactions are primarily confined to their hydrophobic regions when the two peptides 

are in a tightly bound dimeric state. As expected, as the two peptides drift apart during 

dissociation, fewer residue-residue contacts are observed and the contact maps appear smeared 

out. No contacts are observed after the disruption event. Further, computational analysis with 
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the TANGO algorithm57-59 indicates towards a crucial role played by the predominantly 

hydrophobic A9VSVI13 segment in peptide aggregation, with increasing NaCl concentration. 

 

Figure 3.4. Centre of mass separation between the two uperin 3.5 peptides, P1 and P2, plotted 

as a function of time for salt concentration of 0.50 M NaCl, along with contact maps showing 

inter-peptide interactions calculated over different time intervals of the trajectory. 

The TANGO algorithm57-59 was employed in Figure 3.5 to analyse the effect of NaCl 

concentration on secondary structure and aggregation propensities of uperin 3.5. As with the 

multi-peptide simulations in this study, the temperature and the peptide concentration were 

kept at 310 K and 20 mM, respectively, for the analysis. It could be observed that the algorithm 

predicts similar β-sheet propensities of ≈ 11% in the V10SV12 region at all three salt 

concentrations in Figure 3.5A. However, in the A9VSVI13 region of uperin 3.5 in Figure 3.5B, 

β-aggregation propensities of 0.00%, 0.67%, and 1.63% were predicted by the algorithm at 

����� = 0.00 M, 0.15 M, and 0.50 M, respectively. Therefore, this analysis indicates that the 

A9VSVI13 region plays a crucial role in the self-aggregation phenomena of uperin 3.5, 

corroborated by the observations made in Figures 3.3 and 3.20 of the manuscript. 
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Figure 3.5. Plots showing the variation of (A) β-sheet secondary structure and (B) β-
aggregation propensities along the peptide length at different salt concentrations, as predicted 
by the TANGO algorithm57-59. 

3.3.1.2. Energetics of interaction  

Figure 3.6 shows the effect of increasing salt concentration on the interaction between two 

uperin 3.5 peptides, highlighting the positively-charged residues R7, K8 and K14 that are most 

influenced by charge screening. These charged residues are adjacent to the predominantly 

hydrophobic AVSVI segment (9–13). In addition, there is also a negatively-charged aspartic 

acid residue at position 4 (D4). The simulation snapshots (Figure 3.6A) clearly show an 

increase in the number of negatively-charged chloride counter-ions (Cl-) localized in the 

immediate vicinity of the positively-charged residues as the NaCl concentration increases. In 

contrast, almost no Na+ counter-ions (in fact only one can be seen at both 0.15 M and 0.50 M 

NaCl) are observed next to the negatively-charged D4 residues.  
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Figure 3.6. (A) Representative simulation snapshots taken at 400 ns from CG uperin 3.5 dimer 

simulations at different NaCl concentrations of 0.00 M, 0.15 M, and 0.50 M, with a focus on 

charged residues (D4, R7, K8 and K14) and the surrounding counter-ions. Negatively-charged 

chloride ions are represented as light blue spheres and positively-charged sodium ions are 

represented as light red spheres. (B) Electrostatic potential distribution in the X-Z plane for two 

uperin 3.5 peptides separated by 50 Å, and at 0.15 M and 0.50 M NaCl. (C) Variation of 

electrostatic potential along X-axis. (D) Radial distribution function and (E) number density of 

Cl- counter-ions around positively-charged R7, K8 and K14 residues. 
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An increased electrostatic screening of the positively-charged residues with increasing salt 

concentration is also apparent from the variation of the electrostatic potential at ����� = 0.15 M 

and 0.50 M in Figures 3.6B and 3.6C. The electrostatic potential variation was evaluated for 

two uperin 3.5 peptides held at a constant separation of 50 Å in a simulation box of volume 

200 × 200 × 200 Å3, and at NaCl concentrations of 0.15 M and 0.50 M (Figure 3.6B). For these 

two simulations, the peptide centre-of-mass were constrained to remain at a constant separation 

of 50 Å over the 100 ns duration. The relevant planes and contour maps of the electrostatic 

potentials are presented in Figure 3.6B, clearly showing a positive electrostatic potential around 

the positively-charged residues which decays as one moves away from the peptides. Since the 

separation between the two peptides is along the X-axis, Figure 3.6C shows the variation of 

electrostatic potential along the X-axis, as averaged over the last 40 ns of the simulations. 

Higher electrostatic potentials are observed at the lower NaCl concentration of 0.15 M. For 

both salt concentrations, the electrostatic potentials decay as one moves away from the 

peptides. However, the electrostatic potential is lower at the higher salt concentration of 0.50 

M NaCl, clearly pointing to the effect of greater electrostatic screening due to the presence of 

additional salt ions. Thus, a greater charge screening at higher salt concentration leads to 

reduced electrostatic repulsion between the two uperin 3.5 peptides. 

Figures 3.6D and 3.6E discuss the counter-ion distribution (Cl- ion) in the vicinity of the 

positively-charged residues R7, K8, and K14, at different salt concentrations. The radial 

distribution function plot for the Cl- ion, �������(�) in Figure 3.6D, shows that the Cl- ion 

distribution peaks at 4.5 Å around the charged residues. The peak height increases from 0.00 

M to 0.15 M NaCl, but decreases with further increase in the NaCl concentration to 0.50 M. 

However, if we calculate the number density of Cl- ions, �������(�) in Figure 3.6E, as a 

function of radial distance from the positively-charged residues), we find that the number 

density of Cl- ions in the immediate vicinity of the positively-charged residues increases with 

increasing NaCl concentration. This number density is significantly higher at the highest salt 

concentration of 0.50 M NaCl when compared to ����� = 0.00 M (nearly 10 times) and ����� = 

0.15 M (almost double), and therefore conclusively shows that the electrostatic screening of 

positive charges on the peptides increases with increasing salt concentration. An increased 

electrostatic screening by Cl- counter-ions leads to a weakening of the electrostatic repulsion 

between the two peptides. 
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Figure 3.7. Radial distribution function between positively-charged R7, K8 and K14 residues 

on two different uperin 3.5 peptides. 

Figure 3.7 discusses the radial distribution function ��������(�), representing the inter-chain 

correlations between the positively-charged residues on the two uperin 3.5 peptides. The plot 

clearly shows that the inter-chain correlations between the positively-charged residues on the 

two peptides increase with increasing salt concentration, with the greatest correlation occurring 

at a separation of approximately 9 Å. This correlation peak appears at nearly double the 

distance of the correlation peak observed in �������(�) plot in Figure 3.6D, suggesting 

formation of ion bridges between positively-charged residues on either peptide chain, via the 

Cl- counter-ions. 

 

Figure 3.8. Radial distribution functions between (A) A9VSVI13 segments and surrounding 
water molecules, and (B) A9VSVI13 segments on two different uperin 3.5 peptides. 

From the analysis of CG dimer simulations (specifically contact maps in Figure 3.3), we 

concluded that dimer formation occurs primarily along the A9VSVI13 segments of the uperin 
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3.5 peptide. Hence, in Figures 3.8A and 3.8B, we calculated these radial distribution functions 

at different salt concentrations: ������������(�) to quantify A9VSVI13-water correlations, and 

������������(�) to quantify inter-chain A9VSVI13-A9VSVI13 correlations. A careful 

examination of the radial distribution function plots clearly shows that hydrophobic 

interactions between the two peptides increase with increasing salt concentration, which then 

leads to greater aggregation. Figure 3.8A shows that  ������������(�) values decrease for all 

distances with increasing salt concentration, demonstrating that the water is depleted from the 

vicinity of the A9VSVI13 segments. In consonance with this, inter-chain A9VSVI13-A9VSVI13 

correlations increase significantly with increase in salt concentration, as evidenced from the 

������������(�) plots in Figure 3.8B. In fact, inter-chain A9VSVI13-A9VSVI13 correlations are 

nearly non-existent at ����� = 0.00 M, but show a significant increase at ����� = 0.15 M, and 

more than double at ����� = 0.50 M. The first correlation peak for the inter-chain A9VSVI13-

A9VSVI13 contacts occurs at nearly 5 Å separation for both 0.15 M and 0.50 M NaCl systems, 

suggesting dimerization of uperin 3.5 peptides by aggregation. 

A build-up of counter-ions around each charged residue would screen that residue’s charge, 

reducing the range of the repulsive electrostatic interactions between the charged residues on 

the two peptides. This would in turn reduce the electrostatic repulsion between the positively-

charged residues and allow the neighbouring AVSVI stretches of predominantly hydrophobic 

residues on the peptides to interact with each other, thereby facilitating an attractive inter-

peptide interaction. This picture of counter-ion condensation due to the addition of NaCl, 

leading to enhanced attraction between the two peptides, is also consistent with the observation 

made in Figure 2, where the centre of mass distance between the two peptides decreased with 

increasing salt concentration. With increasing NaCl concentration, radial distribution function 

plots show increased screening of charged residues (Figure 3.6E), increased inter-chain 

correlations between charged residues (Figure 3.7), and enhanced inter-chain hydrophobic 

interactions accompanied by depletion of water from the vicinity of hydrophobic A9VSVI13 

segments, leading to dimer formation (Figure 3.8).  
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Figure 3.9. (A) Electrostatic, (B) van der Waals, and (C) total interaction energies between 
two CG uperin 3.5 peptides at 0.00 M, 0.15 M and 0.50 M NaCl. 

Interaction energies between two CG uperin 3.5 peptides undergoing dimerization, at different 

salt concentrations, have been depicted in Figure 3.9. The electrostatic and van der Waals 

components of the interaction energy, along with the sum of these two contributions have been 

plotted in Figures 3.9A, 3.9B, and 3.9C, respectively, as functions of time. The interaction 

between the two uperin 3.5 monomers is modulated by the monovalent sodium and chloride 

ions present between these peptides and also the rest of the simulation system. As the salt 

concentration increases, the charges on the peptides get screened, allowing greater hydrophobic 

interaction and more stable association between the peptides. The electrostatic interaction 
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energy within the system increases with increasing NaCl concentration as observed in Figure 

3.9A, resulting from reduced electrostatic repulsion between the peptides. This in turn allows 

closer association of the two peptides, resulting in more attractive van der Waals interaction 

between the two peptides, which can be observed from the highly negative van der Waals 

interaction energies in Figure 3.9B at ����� = 0.15 M and 0.50 M. Upon taking both electrostatic 

and van der Waals effects into consideration, it can be clearly noted in Figure 3.9C that an 

attractive inter-peptide interaction is not favoured at no salt case. However, attraction between 

the two peptides is energetically favourable in 0.15 M and 0.50 M NaCl systems, with inter-

peptide interaction at 0.50 M NaCl being comparatively more attractive than at 0.15 M NaCl. 

 

Figure 3.10. The PMF showing the interaction free energy between two uperin 3.5 peptides, 

plotted as a function of the backbone RMSD and the Rg of the two peptides at NaCl 

concentrations of (A) 0.00 M, (B) 0.15 M, and (C) 0.50 M. 

Figure 3.10 shows PMF plots for two CG uperin 3.5 peptides at different salt concentrations as 

a function of the backbone RMSD of the two peptides with reference to an aggregated dimer, 

and the Rg of the two peptides. The PMF is an indicator of the interaction free energy between 
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the two peptides. Hence, PMF plots also indicate the propensity of two uperin 3.5 peptides to 

form a stable dimer at a particular salt concentration.  

For the no salt case (0.00 M), the minimum PMF in Figure 3.10A was observed at RMSD and 

Rg values of 7.75 Å and 9.75 Å, respectively. At ����� = 0.15 M in Figure 3.10B, the minimum 

PMF was at RMSD and Rg values of 7.95 Å and 9.95 Å, respectively. Similarly, at the highest 

salt concentration of 0.50 M in Figure 3.10C, the minimum PMF was noted at RMSD and Rg 

values of 7.95 Å and 9.65 Å, respectively. The well-depths observed at ����� = 0.00 M, 0.15 

M, and 0.50 M are 0.68, 0.66, and 0.86 kcal mol-1, respectively. In fact, the PMF well depths 

at all three salt concentrations are very close to the thermal energy (���) values at the 

simulation temperature of 310 K, where �� is the Boltzmann’s constant. Thus, the RMSD and 

Rg values at the minimum PMF, and the PMF well-depths are very similar at all three NaCl 

concentrations. This is most likely due to the fact that the peptides in these simulations are 

fluctuating random coils that sample a large number of conformations during the simulations. 

Using MD simulations, Tsigelny et al. have demonstrated that Aβ peptides have a diverse set 

of conformations, which result in dimers with large structural diversity and differing tendencies 

for amyloid formation43.  However, the dimeric (or aggregated) state in our simulations most 

likely represents an average over all the possible uperin 3.5 conformations that may lead to 

aggregation. As a result, significant energy differences between dimerization processes at 

different salt concentrations are not visible. It is quite likely that specific uperin 3.5 

conformations which form energetically stable dimers may well show significant differences 

in their dimerization PMFs at different salt concentrations. However, testing of such a 

hypothesis is beyond the scope of the present work.  The overall PMF funnel is rugged and 

appears to shift towards higher values of RMSD as the salt concentration increases from 0.00 

M to 0.50 M.  

3.3.2. Aggregation of multiple peptides  

3.3.2.1. Clustering analysis 

Although uperin 3.5 dimer simulations provide significant insight into the nature of the 

interactions between two uperin 3.5 peptides, it remains difficult to predict how a fixed 

concentration (20 mM) of these peptides would associate during the initial stages of 

aggregation. In order to understand the initial aggregation process for a finite number of 

peptides, both CG (CG:20 for 1000 ns) and FA (FA:20 for 350 ns) simulations were carried 
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out at ����� = 0.00 M, 0.15 M and 0.50 M, with 20 peptides in the simulation box corresponding 

to a peptide concentration of 20 mM (Table 3.1). In these simulations, the extent of peptide 

aggregation was quantified by introducing the concept of ‘loosely associated clusters’ (LAC), 

which defines a group of peptides that are in close proximity, and apparently in an aggregated 

state. For the purpose of a qualitative description of the extent of aggregation, simulation 

snapshots are shown in Figures 3.11A and 3.12A for CG:20 and FA:20, respectively, which 

convey an approximate picture of individual cluster sizes and the total number of clusters in 

the simulation box, based on visual inspection. Of course, a more rigorous quantitative 

description based on Stillinger’s clustering algorithm is obtained and the results are shown in 

Figures 3.11B, 3.11C, 3.12B, and 3.12C. 

A detailed RMSD analysis of the simulations was done for determining the number of peptides 

in a particular cluster. Backbone RMSD accounts for relative backbone orientation between 

two peptides and hence is a better criterion than the centre of mass separation between two 

peptides. More specifically, backbone RMSD for a given pair of peptides is obtained for every 

simulation frame by calculating the root mean-square distance between the backbone atoms of 

the two peptides. In this manner, RMSD values are calculated for all possible peptide pairs in 

a simulation frame, and RMSD is used as a clustering criterion in the Stillinger algorithm to 

identify all possible clusters in that frame. Therefore, using an RMSD cut-off value, each cluster 

is defined by the number of peptides that are associated with each other in a particular 

aggregate. The backbone RMSD cut-off used for these simulations was calculated based on 

uperin 3.5 dimer simulations for both CG and FA representations. RMSD cut-off values of 14.5 

Å for CG:20 and 16.25 Å for FA:20, respectively, were used to define the cluster size. The 

clusters were categorized as monomers, dimers, trimers, tetramers, pentamers, hexamers and 

multimers; based upon the number of peptides in a specific cluster. For analytical clarity, only 

changes in the population of tetramers have been plotted here for all the multi-peptide 

simulations. This is because no clear patterns could be deduced from the monomer, dimer and 

trimer populations in these simulations. Moreover, a negligible number of pentamers and 

hexamers were observed, and no higher order clusters were found.  

At 0.00 M NaCl, four LACs containing two to five peptides were observed in the CG:20 

trajectory snapshot in Figure 3.11A, with the remaining peptides randomly scattered 

throughout the simulation volume.  Moreover, at ����� = 0.15 M, four LACs containing two to 

seven peptides were present. As anticipated, aggregation was greater at ����� = 0.50 M, where 
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three LACs consisting of three to nine peptides were observed. Thus, by increasing the 

concentration of NaCl from 0.00 M to 0.50 M, there is a clear trend towards an increase in the 

size of the largest LAC observed. Figure 3.11B shows that tetramer occurrences are extremely 

rare at ����� = 0.00 M NaCl but increase at higher NaCl concentrations. A plot of the cumulative 

tetramer population (collected over the duration of the simulation) as a function of salt 

concentration (Figure 3.11C) also shows that tetramer (aggregate) formation increases at higher 

NaCl concentrations. 

 

Figure 3.11. Aggregation of multiple peptides for CG:20. (A) Simulation snapshots showing 

peptide aggregation and cluster formation at different NaCl concentrations (increasing top to 

bottom). Sodium (Na+) and chloride (Cl-) ions have also been shown as brown and orange 

spheres, respectively. Water molecules have been omitted for visual clarity. (B) Evolution of 

tetramer populations over time for different NaCl concentrations (increasing top to bottom), 

and (C) cumulative tetramer population as a function of NaCl concentration. 



83 
 

 

Figure 3.12. Aggregation of multiple peptides for FA:20. (A) Simulation snapshots showing 

peptide aggregation and cluster formation at different NaCl concentrations (increasing top to 

bottom). Sodium (Na+) and chloride (Cl-) ions have also been shown as brown and orange 

spheres, respectively. Water molecules have been omitted for visual clarity. (B) Evolution of 

tetramer populations over time for different NaCl concentrations (increasing top to bottom), 

and (C) cumulative tetramer population as a function of NaCl concentration.  

The representative FA:20 trajectory snapshots in Figure 3.12A show approximately three 

LACs containing two to four peptides at ����� = 0.00 M, with the remaining peptides distributed 

within the remaining volume of the simulation box.  At 0.15 M NaCl, three LACs consisting 

of two to ten peptides were observed, with two remaining peptides not interacting. Finally, as 

anticipated, the maximum aggregation is observed with nineteen of the twenty peptides 

aggregating to form a single LAC at ����� = 0.50 M, leaving only one peptide not associated. 

Thus, a progressive increase in the size of the largest LAC was observed as the salt 
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concentration increased from 0.00 M to 0.50 M NaCl. Figure 3.12B shows that tetramer 

occurrences are extremely rare at ����� = 0.00 M, show a marginal increase at ����� = 0.15 M, 

and a very large increase at ����� = 0.50 M, clearly supporting the visual data of Figure 3.12A 

and showing that addition of salt leads to larger peptide aggregates in uperin 3.5. A plot of the 

cumulative tetramer population as a function of salt concentration (Figure 3.12C) also 

corroborates the same result that tetramer formation is favoured at higher salt concentrations. 

3.3.2.2. Order parameter analysis 

The CG simulations clearly showed that the AVSVI segment has a crucial role in inter-peptide 

interactions. The coordinates of α-carbon atoms for alanine (ninth position) and isoleucine 

(thirteenth position) residues were used to draw a unit vector to define the direction of the 

AVSVI segments. Vectors defined in this manner for individual peptides were used to calculate 

nematic and polar order parameters between multiple peptides.  

The nematic order parameter, ���, in Equation 1 quantifies the relative orientation between 

different molecules or segments. A value of 1.0 denotes perfect alignment within a defined 

segment and 0.0 indicates no ordering51, 60.  
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       (1) 

Furthermore, the polar order parameter, ���, in Equation 2 defines the overall polarity of a 

system. Again, an absolute value of 1.0 would correspond to parallel orientation of vectors, 

whereas 0.0 would be the value for anti-parallel alignment within the system. Intermediate 

values would be obtained for a mixed strand orientation. 
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�

���

                    (2) 

Here, ��  is a unit vector that denotes the preferred direction of alignment, whereas �̂� is a vector 

defined by a pair of suitably chosen three-dimensional coordinates obtained from the molecule 

or segment of interest, and N is the total number of molecules or segments being considered 

for the particular analysis. 



85 
 

 

Figure 3.13. A representative trajectory snapshot of peptides showing several loosely 
associated clusters, taken at 100 ns from a multi-peptide FA:20 simulation with a salt 
concentration of 0.15 M. In particular, two stable LACs consisting of two and four peptides 
have been highlighted here. 

In the multi-peptide FA simulations, LACs consisting of up to four peptides were observed; 

which remained stable over most of the simulation period. Hence, two stable LACs consisting 

of two and four interacting peptides were selected from each of the three salt concentrations of 

0.00 M, 0.15 M, and 0.50 M NaCl to study the relative interaction between the constituent 

peptides with increasing salt concentration. Figure 3.13 shows two such LACs at ����� = 0.15 

M, a “dimer” (blue) and a “tetramer” (tan), which were selected and tracked over the course of 

the simulation.  Then the relative ordering and interaction within these LACs was analysed 

over the simulation period. 

At ����� = 0.00 M, the peptides in the dimer have lower ordering (0.59) as per the nematic 

order parameter (���), as shown in Figure 3.14A, compared with the dimers at 0.15 M (0.96) 

and 0.50 M (0.85) NaCl concentrations. The polar order parameter (��
� ) indicates that the 

peptides at 0.00 M NaCl have mixed strand orientations (0.85). However, the peptides at 0.15 

M (0.99) and 0.50 M (0.00) NaCl concentrations are in a parallel and an anti-parallel 

arrangement, respectively. This indicates not only a higher level of ordering with increasing 

NaCl concentrations, but also a lack of preference for a parallel versus an anti-parallel 

alignment between the respective AVSVI segments of the two peptides. The time evolution of 

the two order parameters for the dimers also show similar trends (Figures 3.15A and 3.15B). 

The variation of the Rg values for the dimers at the three salt concentrations is shown in Figure 

3.14B. The Rg plot in Figure 3.14B at ����� = 0.00 M shows significant fluctuations, with an 

average Rg of ≈ 12.5 Å. At ����� = 0.15 M, the average Rg is ≈ 11.5 Å, and at ����� = 0.50 M, 
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the dimer has an average Rg of ≈ 10 Å. This clearly indicates the increase in hydrophobic 

interaction with increasing salt concentration due to the higher charge screening capacity. 

 

Figure 3.14. (A) Snapshots of dimer LACs at 200 ns, with nematic (���) and polar (���) order 

parameter values for all NaCl concentrations of 0.00 M, 0.15 M and 0.50 M. (B) Rg of the 

dimer LACs plotted as a function of time for all NaCl concentrations of 0.00 M, 0.15 M and 

0.50 M. 
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Figure 3.15. Nematic (���) and polar (���) order parameter plots for dimer (A, B) and tetramer 

(C, D) LACs; obtained from FA:20 simulations for NaCl concentrations of 0.00, 0.15 and 0.50 

M. In the case of dimers, higher nematic and polar ordering is present in 0.15 and 0.50 M 

systems compared to no salt case. Similarly, for the tetramers, higher nematic ordering is 

observed in 0.15 M and 0.50 M cases compared to 0.00 M system. However, no conclusive 

trend could be noted in polar order parameter plots of the tetramers. Hence, as indicated by 

these plots, inter-peptide interaction increases upon introduction of NaCl and leads to higher 

ordering within the cluster. 

If tetramers are considered (Figure 3.16), the constituent peptides have a relatively low nematic 

order parameter (���) at 0.00 M NaCl (0.28) compared to those peptides at 0.15 M (0.55) and 

0.50 M (0.54) NaCl, indicating less ordering of the peptides; as seen in Figure 3.16A. 

Furthermore, no discernible pattern could be derived from the polar order parameters (���). 

Thus, no clear conclusion could be derived from the data in Figure 3.16A regarding the 

preferred alignment direction between AVSVI segments, i.e. whether parallel or anti-parallel.  

Similar inferences can be drawn from the time evolution plots of ��� and ��� for these tetramers 

(Figures 3.15C and 3.15D). The Rg average in the tetramer simulations is shown in Figure 

3.16B, and is ≈ 22 Å for 0.00 M NaCl, ≈ 14 Å for 0.15 M NaCl, and ≈ 12 Å for 0.50 M NaCl. 
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Thus, the tetramer shows significantly lower values of Rg (and also smaller fluctuations in Rg) 

in presence of NaCl, clearly indicating that the presence of salt leads to enhanced attractive 

interactions between the peptides. Similar trends in Rg values were also observed in the case of 

the dimers in Figure 3.14B. 

 

Figure 3.16. (A) Snapshots of tetramer LACs at 100 ns, with nematic (���) and polar (���) order 

parameter values for all NaCl concentrations of 0.00 M, 0.15 M and 0.50 M. (B) Rg of the 

tetramer LACs plotted as a function of time for all NaCl concentrations of 0.00 M, 0.15 M and 

0.50 M. 

3.3.2.3. Secondary structure evolution during aggregation 

In the CG simulations based on the MARTINI model, the secondary structure is predefined 

and thus invariable21. Therefore, any conformational changes involving the evolution of 

secondary structure over the course of the simulation are not accessible using MARTINI 
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coarse-grained simulations. Moreover, the starting conformations in all our simulations are 

random coils. However, information can be obtained from the secondary structure analysis61 

of the peptide trajectories from twenty peptide FA simulations.  

 

Figure 3.17. Plots showing time evolution of (A) α-helix, (B) β-sheet, and (C) random coil 

secondary structure components of the peptides, obtained from the FA:20 simulations at 

different NaCl concentrations.  

Secondary structure analysis examines peptide conformational changes that take place over 

time in terms of the evolution of the various secondary structure elements, including α-helix, 

310-helix, π-helix, β-sheet, isolated β-bridge, random coil and turn structures. The time 

evolution plots of α-helix and β-sheet elements over 350 ns long FA:20 simulations at the three 

different NaCl concentrations are shown in Figures 3.17A and 3.17B, respectively. Significant 

differences with respect to the salt concentration were observed only for the α-helix and the β-

sheet elements (shown in Figure 3.17). In the absence of salt, the α-helical content is found to 

steadily decrease with time and settles to a very low value of nearly 2% after 180 ns. In contrast, 
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when salt is present, the α-helical content increases and reaches a steady-state value of close to 

10% at an earlier time (≈ 50 ns). Although, post 200 ns, the α-helical content is somewhat 

higher at 0.15 M (≈ 12%) than at 0.50 M NaCl (≈ 9%). In comparison to the α-helical content, 

the evolution of the β-sheet element shows a reverse trend in Figure 3.17B. The β-sheet content 

remains negligible (≈ 1%) for the intermediate 0.15 M NaCl concentration. However, it is 

found to steadily increase for the 0.00 M case and attains an average value of approximately 

10% towards the end of the simulation. These results seem to suggest that addition of salt to 

the solution promotes peptide conformations with higher α-helical content. In the absence of 

salt, peptide conformations with higher β-sheet content and negligible α-helical content are 

noted. Interestingly, at ����� = 0.50 M, conformations with significant amounts of both α-

helical and β-sheet content seem to be favoured. 

 

Figure 3.18. Plots showing time evolution of (A) 310-helix, (B) π-helix, (C) isolated β-bridge 

and (D) turn secondary structure components of the peptides, obtained from the FA:20 

simulations at different NaCl concentrations. Negligible π-helical content could be noted at all 

three salt concentrations. Whereas after ≈ 100 ns, the 310-helix and turn structure fractions are 

at similar values for all three salt concentrations. 

Isolated β-bridge plots for the three salt concentrations (Figure 3.18C) follow a trend similar to 

β-sheet plots in the 110–270 ns time range. A higher isolated β-bridge content (≈ 4%) is 
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observed for the salt-free (0.00 M) and high salt (0.50 M) cases compared to intermediate salt 

concentration of 0.15 M (≈ 1%). Significantly after ≈ 210 ns, a lower random coil content (≈ 

49%) is noted at 0.50 M NaCl in Figure 3.17C compared to 0.00 M and 0.15 M NaCl systems 

(≈ 58%). This could be due to the higher α-helical and β-sheet content at ����� = 0.50 M relative 

to 0.00 M and 0.15 M NaCl, as noted earlier in Figures 3.17A and 3.17B, respectively. 

 

Figure 3.19. Simulation snapshots showing the time evolution (time increases from top to 

bottom) of α-helical and β-sheet components in the FA:20 simulations for different NaCl 

concentrations (salt concentration increases from left to right).   

Figure 3.19 shows simulation snapshots emphasizing on the evolution of the α-helical and β-

sheet regions at different time frames of the FA:20 simulations at the three salt concentrations. 

The results are consistent with the results of Figure 3.17 and clearly show that the α-helical 

content is low at 0.00 M NaCl. In contrast, the α-helical content is significantly higher at ����� 

= 0.15 M and 0.50 M. However, the β-sheet content appears to be higher at both 0.00 M and 

0.50 M NaCl, but nearly vanishes at 300 ns at the intermediate 0.15 M salt concentration. We 

note that the snapshots may not be at the same magnification and may not show all the twenty 
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peptides. However, the corresponding snapshots in Figure 3.19 and Figure 3.12A are from the 

same simulations, which showed an increase in aggregation between peptides and the aggregate 

size with increasing salt concentration. The results from Figures 3.12A, 3.17 and 3.19 suggest 

that a greater α-helical content with increasing salt concentration appears to promote greater 

aggregation between the peptides. Further, at much higher salt concentration (0.50 M NaCl), 

significant amounts of both α-helical and β-sheet content appear, which lead to still larger 

aggregate sizes. 

 

Figure 3.20. Plots showing the variation of (A) α-helix and (B) β-sheet secondary structure 

components along the peptide length at different salt concentrations.  

The variation of α-helical and β-sheet content across the peptide sequence for different salt 

concentrations is shown in Figure 3.20. The percentage of these secondary structure elements 

at each peptide residue is calculated by taking an average over the 300–350 ns time period. 

Negligible α-helical content (≈ 2%) was observed in the no salt case in Figure 3.20A. However, 

at the intermediate salt concentration of 0.15 M, a high α-helical content of 17% was observed 

in the D4LIRKAVSVIK14 region. Interestingly, an overall decrease in the α-helical content is 

observed as the salt concentration is further increased to 0.50 M, although the α-helical content 

is still significant in the V2GDLIRKAVSVIK14 region (≈ 9%). The overall α-helical content at 

0.50 M, though slightly reduced in comparison to the 0.15 M case, is still much higher when 
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compared to the no salt case. At ����� = 0.00 M, a high β-sheet content of 13% is observed in 

the L5IRKAVSVIKNI16 region in Figure 3.20B. In contrast to the increase in α-helical content 

observed with addition of salt, the β-sheet content reduces to less than 2% as the salt 

concentration increases to 0.15 M. However, a rise in β-sheet content is observed at ����� = 

0.50 M compared to the 0.15 M system, primarily localized at the D4LIRKAVS11 (≈ 12%) and 

K14NIV17 (≈ 12%) regions. 

The residue-specific secondary structure analysis in Figure 3.20 shows that the addition of salt 

leads to screening of the charged residues (previously discussed for D4, R7, K8, and K14 

residues in Figure 3.6) and is accompanied by a significant change to an α-helical structure for 

most of the peptide sequence. The increase in α-helical content, arising from addition of salt, 

is accompanied by a nearly equivalent loss in the β-sheet content for most of the peptide 

sequence when NaCl concentration increases to 0.15 M. However, at 0.50 M NaCl, both α-

helical and β-sheet contents are significant. Since peptide aggregation is also seen to 

significantly increase with addition of salt, our results suggest a correlation between 

aggregation and conformational change to an α-helical structure. A conformational change to 

an α-helical structure may lead to a more amphipathic conformation for the peptide, which in 

turn would provide better shielding of the hydrophobic residues from water in an aggregated 

state. In contrast, a correlation between aggregation and evolution of β-sheet content does not 

emerge very clearly from the current simulation data. Longer simulations would provide more 

definitive insight into further evolution of the secondary structure during the aggregation 

process. However, the time scales are computationally prohibitive, since conformational 

transitions, such as helix formation in peptides, typically take place on the time scales of 

hundreds of nanoseconds to hundreds to microseconds20. 

Sidechains of hydrophobic amino acid residues (alanine, isoleucine, leucine and valine) of the 

peptide regions in α-helical conformation could be observed in the inter-helical region in Figure 

3.21 at ����� = 0.15 M and 0.50 M. In contrast, the charged acidic (aspartic acid) and basic 

(arginine and lysine) amino acid sidechains are excluded from the inter-helical core, as they 

preferentially interact with the surrounding water and ion molecules (not shown for the sake of 

visual clarity). These α-helical clusters could not be observed for the salt-free case (0.00 M 

NaCl) due to negligible charge-screening by counterions, as discussed earlier for Figure 3.6. 

Therefore, although the inter-peptide interaction is dominated by hydrophobic interactions 
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between the residue sidechains, effective charge-screening by counterions appears to facilitate 

the same. 

 

Figure 3.21. Snapshots at 150 ns from FA:20 simulations showing significant α-helical content 

in peptide aggregates comprising three uperin 3.5 monomers at 0.15 M and 0.50 M NaCl. 

In the absence of salt, a large number of β-sheet structural elements could be observed. 

However, as electrostatic screening of charged residue sidechains is insignificant at 0.00 M 

NaCl, stable peptide aggregates were not observed. Introduction of salt screens the peptide 

charges, which reduces the range of electrostatic repulsion and leads to a greater contribution 

from hydrophobic interactions to the overall interaction between peptides. Addition of salt also 

results in peptide regions with greater α-helical content, which in an aggregated state would 

provide a water-excluded environment to the hydrophobic residues. Moreover, high salt 

concentration (0.50 M) also stabilizes the β-sheet structural elements on account of 

significantly reduced electrostatic repulsion between the charged peptide sidechains. Hence, 

there seem to be two aspects of increased aggregation with addition of salt in the case of uperin 

3.5, namely, electrostatic screening of charged residues, and secondary structure changes. 

3.4. Discussion 

Addition of salt to a peptide solution can screen the positive and negative charges along the 

polypeptide, reduce electrostatic repulsion between charged residues, and lead to an effective 

increase in hydrophobic interactions between the peptides18. This should facilitate aggregation 

between the peptides, and the enhanced aggregation kinetics with increase in salt concentration 

can be understood in the context of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory 
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of colloidal stability62. For most colloidal systems, charges are more or less uniformly 

distributed on the surfaces, and colloidal particles rarely show conformational diversity in 

terms of secondary structures. However, charge distribution along a polypeptide sequence is 

usually non-uniform, and charged residues may appear in stretches, interspersed with stretches 

of hydrophobic residues. In case of uperin 3.5, there are only four charged residues non-

uniformly distributed along the sequence; with stretches of hydrophobic residues in between. 

As salt concentration increases, peptides can undergo conformational change30, which can also 

influence aggregation kinetics. Thus, the aggregation of peptides in the presence of salt would 

depend on a combination of factors, including electrostatic screening, modified peptide-peptide 

interactions due to conformational change30, and enhanced aggregation arising from stretches 

of hydrophobic residues63. 

In the CG simulations of two uperin 3.5 peptides, addition of NaCl to the system lead to a 

steady decrease in the centre of mass distances between the two peptides (Figure 3.2), 

indicating a greater attraction between the peptides at higher salt concentration. A thorough 

analysis of residue-residue contacts between the two peptides (Figure 3.3) showed interactions 

between predominantly hydrophobic segments (AVSVI, residues 9–13) increase with 

increasing salt concentration, with the highest number of residue-residue interactions observed 

at the highest salt concentration of 0.50 M NaCl. As expected, electrostatic screening of the 

charges on the charged residues (positively-charged residues at R7, K8 and K14 and 

negatively-charged residues at D4) increased with increasing salt concentration (Figure 3.6). 

The positively-charged residues at R7, K8 and K14 border the hydrophobic AVSVI stretch 

along the peptide. Electrostatic screening of the charged residues should result in reduced 

repulsion between charged residues on the two interacting peptides, and therefore a 

corresponding increase in attraction between the hydrophobic AVSVI segments on the two 

peptides. 

Qualitatively, the aggregation behaviour of the two uperin 3.5 peptides agrees well with a 

DLVO approach to colloidal aggregation. However, PMF plots for formation of dimer 

aggregates do not show significant quantitative differences at different salt concentrations 

(Figure 3.10). The well depths of the attractive minima in the free energy landscape do not 

change significantly with NaCl concentration. This is in contrast with observations of Figures 

3.2 and 3.6, where there are clear indications of increasing attraction between uperin 3.5 

peptides with increasing salt concentration. In addition, a comparison of CG and FA 
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simulations of systems of 20 uperin peptides (CG:20 vs. FA:20 in Figures 3.11 and 3.12, 

respectively) suggests that electrolyte effects are more pronounced in the case of FA 

simulation. Although, both CG and FA simulations show increased aggregation with increase 

in salt concentration, larger sized clusters are more frequently observed for the FA simulations 

in comparison to the CG simulations. The greater extent of aggregation observed in the case of 

FA:20 simulation could be due to the softer potentials employed in CG simulations64. Thus, 

the reduced molecular friction in CG systems might affect the peptide-peptide interactions, and 

result in greater backbone flexibility compared to the FA systems64. This is especially relevant 

for a relatively short peptide like uperin 3.5 that does not contain any proline or aromatic amino 

acid residues9 that might  stabilize backbone orientations. These two results, namely the PMF 

plots (Figure 3.10) and more pronounced aggregation for FA:20 simulations (Figure 3.12), 

suggest that conformational evolution of the peptide structure may have a significant influence 

on the aggregation kinetics of uperin 3.5.  

A detailed analysis of the evolution of secondary structure components of peptides from the 

FA:20 simulations showed that the addition of salt lead to significant changes in the relative 

fractions of α-helical and β-sheet contents. Although approximately 85% of the peptide 

structure is comprised of random coils and turns, nearly 10–12% of the structure is distributed 

between α-helical and β-sheet components at all salt concentrations (Figures 3.17 and 3.18). 

Whereas in the absence of salt the β-sheet component is dominant with very little α-helical 

content, the opposite trend is observed at 0.15 M NaCl. With increase in salt concentration 

(0.15 M NaCl), the α-helical content increases with a corresponding decrease in the β-sheet 

component (Figure 3.17). At the highest salt concentration of 0.50 M NaCl, significant 

fractions of both α-helical and β-sheet components are observed, with a marginal decrease in 

the random coil component at 0.50 M NaCl. The increase in α-helical content with increase in 

salt concentration is a direct consequence of charge screening at the charged residues, and the 

largest increase in α-helical content is indeed observed in the D4LIRKAVSVIK14 region 

(Figure 3.20). We find that a larger α-helical content at high salt concentrations would lead to 

more amphipathic peptide conformations, which would facilitate aggregation of peptides due 

to formation of a core region populated by sidechains of hydrophobic residues that is relatively 

well-shielded from the surrounding aqueous environment. This is clearly observed in 

simulation snapshots at both 0.15 M and 0.50 M NaCl in Figure 3.21. Thus, a correlation 

between an increase in α-helical content and enhanced aggregation for uperin 3.5 with addition 

of NaCl is observed. In a related study, Calabrese et al.8 have also shown that addition of TFE 
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to a uperin 3.5 assay induces α-helical content by stabilizing hydrogen bonds within the 

peptide, and also enhances peptide aggregation at lower concentrations of TFE (< 20 %, v/v). 

In summary, addition of salt promotes transitions to α-helical conformations, which might 

facilitate further transformations to peptide structures rich in β-sheet conformations. However, 

amyloid-like fibrils composed of α-helices might be obtained instead, as noted for phenol-

soluble modulin α365 and certain ionic-complementary peptides66. 

3.5. Conclusions 

Both CG and FA MD simulations were used to study the effect of NaCl concentration on the 

aggregation process of an amyloidogenic peptide, uperin 3.5, in an aqueous environment. The 

simulations show that uperin 3.5 aggregates in the presence of salt, and its aggregation 

propensity increases with an increase in salt concentration, which is in agreement with previous 

experimental observations8, 67. A detailed analysis of residue-residue contacts shows that 

peptide aggregation is primarily driven by interactions along the hydrophobic AVSVI stretch 

(residues 9 – 13) of uperin 3.5. In the presence of NaCl media, chloride ions screen the 

positively-charged R7, K8 and K14 residues located at either side of the AVSVI region, and 

therefore reduce the electrostatic repulsion between two uperin 3.5 peptides. The extent of this 

screening effect was higher at higher NaCl concentrations, resulting in an increased 

hydrophobic interaction and enhanced aggregation between the peptides. Our results also show 

a strong correlation between increased α-helicity of the uperin 3.5 peptide and its aggregation 

in presence of NaCl. In contrast, in the absence of salt, uperin 3.5 conformations are dominated 

by random coil components, with very little α-helical content, and show little or no propensity 

to aggregate. This supports the hypothesis that an α-helical intermediate lies on the pathway 

towards amyloid formation, and facilitates the initial stages of peptide aggregation8. Thus, in 

an aqueous environment, the addition of salt enhances fibril formation by stabilizing the 

secondary structure of intermediates along the fibril pathway. Since uperin 3.5 wild-type is 

known to adopt a predominantly random coil conformation in water, the peptide lacks 

secondary structure components in its native state that may act as templates/precursors for 

further amyloid formation. Thus, in the context of relatively short, random coil peptides, this 

study highlights the crucial roles played by the peptide sequence and charged residues in the 

process of aggregation at molecular level as a function of salt concentration. 
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Chapter 4 

Interaction of anuran peptides with DPC and SDS micelles: A 

Molecular Dynamics study 

4.1. Introduction 

Uperin 3.x peptides, naturally obtained from Uperoleia mjobergii, are known to have 

antimicrobial activity against a host of Gram-positive bacteria1. Hence, these peptides are also 

referred to as antimicrobial peptides (AMPs). In general, AMPs exert their cytotoxic activity 

by acting on the bacterial cell membranes, with membrane disruption and pore formation being 

the most common modes of action2. Compared to uperin (U) 3.6 wild-type (wt), seventh-

position alanine variant U3.6 K7A exhibits drastically reduced antibiotic activity, as observed 

against a host of Gram-positive and Gram-negative bacterial cultures3. In a recent study, 

membrane action of U3.5 wt and U3.5 R7A has been investigated4. It was observed that 

compared to U3.5 wt, membrane action was greatly reduced or almost inhibited when U3.5 

R7A peptide solution was introduced to a membrane layer. Molecular dynamics (MD) 

simulations of melittin and MG-H2 AMPs indicate that the presence of charged residues at the 

N-termini region plays a crucial role in their membrane action5. Thus, to obtain a greater 

mechanistic insight into the significance of the seventh-position residue of the uperin 3.4, 3.5 

and 3.6 wild-type peptides, and the corresponding alanine variants using MD simulations, the 

eukaryotic membrane-mimic, zwitterionic dodecyl phosphatidylcholine (DPC) and the 

bacterial membrane-mimic, anionic sodium dodecyl sulphate (SDS) micelles were selected for 

these simulations. 
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The peptide sequences of U3.4 wt, U3.5 wt and U3.6 wt, and their respective seventh-position 

variants, U3.4 R7A, U3.5 R7A and U3.6 K7A, are listed in Table 4.1. Uperin wild-type 

peptides from the 3.x family have innate amidation at the C-terminus1, as shown in Table 4.1. 

All the uperin 3.x wild-type peptides have a net positive charge of +3, thus as alanine is a 

neutral residue, the respective variants have a +2 charge. Pre-equilibrated DPC and SDS 

micelles consisting of 65 and 60 monomers, respectively, were obtained from previously 

performed simulations by Tielman et al.6 and MacKerell et al.7, respectively. 

Table 4.1. Amino acid sequences of uperin 3.x wild-type peptides1 and corresponding seventh-

position alanine variants.  

 Peptide 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 C-Ter 

1. U3.4 wt G V G D L I R K A V A A I K N I V -NH2 

2. U3.4 R7A G V G D L I A K A V A A I K N I V -NH2 

3. U3.5 wt G V G D L I R K A V S V I K N I V -NH2 

4. U3.5 R7A G V G D L I A K A V S V I K N I V -NH2 

5. U3.6 wt G V I D A A K K V V N V L K N L F -NH2 

6. U3.6 K7A G V I D A A A K V V N V L K N L F -NH2 

The overall aim of this study is to find quantitative support for the differential action of uperin 

3.x peptides and variants on membrane-mimic surfaces that model membranes. A rational 

explanation for the crucial role played by the seventh-position, positively-charged amino acid 

residues in the antibiotic activity of these uperin 3.x peptides is needed. Thus, simulations were 

performed to elucidate the disparity of these peptides interacting with DPC and SDS micelles. 

4.2. Methods 

The starting structure for U3.5 wt was based on the α-helical representation determined by 

NMR, with the peptide present in aqueous SDS detergent8. It should be noted that no definite 

peptide structure could be obtained in a solely aqueous environment8. However, in the presence 

of membrane-mimicking SDS molecules, U3.5 wt adopted a predominantly α-helical 

conformation like most AMPs, probably due to its amphipathic nature4, 9. Using SWISS-

MODEL Workspace10, the initial structure of U3.4 wt was generated using the U3.5 wt as a 

template. These two peptides differ by only two amino acids of their sequences at the eleventh 

and twelfth positions, as indicated in Table 4.1, so it is not surprising that U3.4 wt also has an 
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α-helical secondary structure in Figure 4.1a. The U3.6 wt peptide has been shown to adopt a 

predominantly α-helical amphipathic structure by NMR in the membrane-mimicking TFE-

aqueous environment3. Hence, an α-helical structure was also imposed on the U3.6 wt peptide 

sequence, as shown in Figure 4.1c, using the Protein Builder module11 available in VMD12. In 

order to generate an alanine variant of the three uperin 3.x wild-type peptides, the Mutator 

plugin of VMD was employed to execute a point substitution at the seventh-position of the 

wild-type peptides. Hence, like their wild-type templates, these three variants were also 

primarily α-helical at the onset of the respective simulations, as shown in Figures 4.1d–4.1f). 

 

Figure 4.1. Molecular models of the uperin 3.x peptides in this study, represented as an α-helix. 

(a-c) shows the three uperin 3.x wild-type peptides and (d-f) their corresponding seventh-

position variants. Heavy (non-hydrogen) atoms of the seventh-position residues have been 

shown with stick representation.  

To diminish the computational time required for these peptides to stably bind to the micelles13, 

the Autodock software14 was deployed to obtain a peptide-micelle complex, and this complex 

is used as an initial structure for subsequent MD simulations later. The peptides were kept as 

ligands, and the micelles were receptor targets used for docking. The peptide backbone was 

kept rigid and the amino acid sidechains were allowed to be flexible. The docking calculations 

were based on Gasteiger-Marsili charges15. Autogrid was used for grid preparation, with a grid 

spacing of 0.375 Å. Ten peptide-micelle docking runs were performed using Lamarckian 

genetic algorithm, with the rates of gene mutation and crossover kept at 0.02 and 0.8, 
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respectively for the LUDI scoring function employed16. All other docking parameters were 

kept at their default values. Ten runs were undertaken and the peptide-micelle complex with 

most energetically favourable docking energy was selected for further simulations, as depicted 

for U3.5 wt peptide and, DPC micelle (Figure 4.2a) and SDS micelle (Figure 4.2b). The N-

termini (G1) and C-termini (V17) backbone atoms in uperin 3.5 have been represented as brown 

and violet colored spheres, respectively in Figure 4.2 and elsewhere (as applicable). 

 

Figure 4.2. Docked complex of U3.5 wild-type peptide, and (a) DPC and (b) SDS micelles, 

along with the schematic of the respective lipid monomers. 

The fully-atomistic (FA) MD simulations were performed using the CHARMM36m force-field 

for proteins17 and lipids18, and TIP3P water19 in NAMD20. Periodic boundary conditions were 

applied along all three orthonormal directions. A switching function was implemented for the 

LJ potential, with a smooth cut-off from 10 to 12 Å. Particle-mesh Ewald summation21 with a 

grid spacing of 1 Å was used for calculating the electrostatic interactions. Simulations were 

performed using a 2 fs timestep and a Langevin thermostat with a damping coefficient of 1 ps-

1. A constant pressure of 1 atmosphere (1 atm = 1.01325 bar) was maintained using a Nosé-

Hoover22 Langevin23 piston, with a period of 100 fs and a decay time of 50 fs. The peptides 

were solvated with TIP3P water molecules. Then, Na+ and Cl- ions were added to obtain an 

NaCl concentration of 0.15 M. The peptide and water molecules were initially kept under 
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harmonic constraints of 10 and 5 kcal mol-1 Å-2, respectively, to restrict water diffusion into 

the micelle and allow the micellar lipid molecules to relax around the peptide24. The restraints 

were gradually removed with 400 ps minimization steps (steepest descent method) over a 2 ns 

period. Thereafter, the total simulation system was further minimized for 400 ps without any 

constraint. Further, equilibration was performed for 1 ns in an NVT ensemble (T =310 K), 

followed by final equilibration for 1 ns in an NPT ensemble (P = 1 atm and T = 310 K). The 

resultant DPC micelle-peptide and SDS micelle-peptide systems were then simulated in NPT 

ensembles (P = 1 atm and T = 310 K) for 50 ns and 40 ns, respectively.  

The molecular editors PACKMOL25 and VMD12 were used to create the simulation systems. 

Tachyon ray-tracer26, as incorporated in VMD, was employed for trajectory visualization. The 

antimicrobial propensity indices for the different peptides were calculated using the AMPA 

web server27. Helical wheel schematics for the different wild-type and variant peptides were 

constructed using the HELIQUEST server28. Secondary structure composition was determined 

by STRIDE program29 using DSSP definitions30, as implemented by the Timeline plugin31 in 

VMD. The remaining analyses of data were performed with VMD and in-house scripts. The 

interaction energies, radial distribution function (RDF) plots and solvent-accessible surface 

area (SASA) values were derived from last 20 ns of the respective simulation trajectories. 

Trajectories were sampled every 10 ps. 

4.3. Results and discussion 

4.3.1. Peptide-micelle interaction 

4.3.1.1. Peptide-micelle separation 

As noted from the centre of mass distance plots of uperin peptides and the DPC (a–c) and SDS 

(d–f) micelles in Figure 4.3, a near steady-state is attained for most of the systems within the 

first 5 ns of the simulation. Interestingly, for U3.4 wt and U3.4 R7A (Figure 4.3a), the 

interaction with DPC micelle requires almost 18 ns to stabilize and the centre of mass distance 

reaches a value of ≈16 Å. For U3.5 wt and U3.5 R7A simulations (Figure 4.3b), a centre of 

mass separation of approximately 15 Å was observed. The U3.6 wt and U3.6 K7A peptides 

(Figure 4.3c) also reached a centre of mass distance of ≈15 Å, with respect to the DPC micelle. 

For the SDS micelle, the centre of mass distance from the U3.4 wt and U3.4 R7A peptides was 

at nearly 13 Å (Figure 4.3d), as was the case for U3.5 wt and U3.5 R7A (Figure 4.3e). The 

centre of mass distance for U3.6 wt and U3.6 K7A peptides (Figure 4.3f) was observed at ≈12 
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Å. Thus, to conclude from the centre of mass distance values for all peptides studied here, the 

peptides remain bound to the DPC and SDS micelles after the peptide-micelle interaction 

reaches a near steady-state. Moreover, only minor differences are found in the centre of mass 

distance plots for the uperin 3.x wild-type and variant peptides with the micelles. Interestingly, 

for the same set of peptides, there is a difference of 2–3 Å in the centre of mass separation 

values relative to DPC and SDS micelles. Proximity of the peptides to the centre of the SDS 

micelles, compared to that of the DPC micelle, could be attributed to the smaller number of 

lipids in the SDS micelle, along with the anionic nature of these lipids. Hence, further 

quantitative analyses would be required to glean further information regarding the differential 

interaction of these peptides with DPC and SDS micelles, if present. 

 

Figure 4.3. Centre of mass distance plots of wild-type and variant uperin 3.x peptides with 

respect to (a–c) DPC and (d–f) SDS micelles. 

The interaction of U3.5 wt with both DPC and SDS micelles stabilized within the first 5 ns, as 

noted in Figures 4.3b and 4.3e, respectively. However, since both micelles have head groups 

of different atomic and electrostatic charge composition, analysis of the type of peptide 
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residues that preferentially interact with these micelles was undertaken. Figure 4.4 shows that 

the initial interaction has the nonpolar residues positioned towards the micelle, post docking 

with the Autodock program. Moreover, even at 25 and 50 ns, only the nonpolar residues 

preferentially interact with the DPC micelle, with the remaining acidic, basic and polar residues 

preferring greater contact with the surrounding water molecules and ions (omitted for clarity). 

Further, there is negligible difference between the peptide-micelle interactions at 25 and 50 ns 

trajectory snapshots, in agreement with the centre of mass distance plot in Figure 4.3b. 

 

Figure 4.4. Trajectory snapshots of U3.5 wt and DPC micelle complex taken at 0, 25 and 50 

ns instances of the simulation. 

The interaction between U3.5 wt and SDS micelle in Figure 4.5 shows a similar pattern to that 

observed for U3.5 wt-DPC micelle interaction in Figure 4.4. The peptide-micelle interactions 

observed in 20 and 40 ns snapshots are indistinguishable, indicating that the equilibration of 

this interaction is achieved by 20 ns, as also noted in the centre of mass distance plot in Figure 

4.3e. Remarkably, in the trajectory snapshots taken at the middle and end of both these 

simulations in Figures 4.4 and 4.5, formation of a groove in the micellar structure could be 

observed, especially in the front view images. This might be attributed to the penetration of the 

nonpolar amino acid sidechains towards the hydrophobic core of these micelles, away from the 

water molecules in vicinity. However, further quantitative analysis would be required to 

discern the disparity in the interaction between uperin 3.x peptides and variants on one hand, 

and DPC and SDS micelles on the other, as opined earlier during the discussion of Figure 4.3. 
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Figure 4.5. Trajectory snapshots of U3.5 wt and SDS micelle complex taken at 0, 25 and 50 

ns instances of the simulation. 

4.3.1.2. Energetics of interaction 

Table 4.2. Autodock docking energies between uperin 3.x wild-type peptides and seventh-

position variants, and DPC and SDS micelles. 

Peptide 
Docking energy (kcal mol-1) 

DPC SDS 

1. U3.4 wt 11.41 -2.51 

2. U3.4 R7A 10.26 -2.08 

3. U3.5 wt 8.83 0.35 

4. U3.5 R7A 9.20 -2.31 

5. U3.6 wt 8.10 -5.43 

6. U3.6 K7A 7.57 -3.14 

The Autodock docking energies were obtained after docking the uperin 3.x wild-type and 

seventh-position variant peptides onto the DPC and SDS micelles using the Autodock software, 

as discussed in the Methods section. No definitive pattern could be obtained from the docking 

energies of uperin 3.x peptides and their corresponding seventh-position variant with either 

DPC or SDS micelle. However, all the peptides demonstrated a more favourable docking with 

the SDS micelle; compared to the DPC micelle. 



  
 

113 
 

 

Figure 4.6. Interaction energies: (a) electrostatic, (b) vdW and (c) nonbonded, between U3.5 

wt and U3.5 R7A, and DPC micelles. 

To obtain a deeper insight into these peptide-micelle interactions, the interaction energies were 

calculated between uperin 3.x wild-type and seventh-position variant peptides, and DPC 

micelles. Over the 50 ns simulation period, it could be observed that in general, the U3.5 wt 

has a more favourable electrostatic interaction with DPC micelle, compared to U3.5 R7A 

(Figure 4.6a). Electrostatic energies of nearly -300 and -180 kcal mol-1 were observed for the 

U3.5 wt and the U3.5 R7A, respectively. No discernible difference could be noted in the van 

der Waals (vdW) interaction energies between these two peptides and the DPC micelle, with 

an approximate value of -75 kcal mol-1 observed (Figure 4.6b). The trend in nonbonded 

interaction energies is similar to the one noted for electrostatic energies (Figure 4.6c). The 

nonbonded energies can be defined as the sum of electrostatic and vdW interaction energies 

between two distinct entities. U3.5 wt has an appreciably higher total nonbonded interaction 

with the DPC micelle, relative to U3.5 R7A, with energy values around -370 and -250 kcal 
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mol-1, respectively. It could be noted that due to the dynamic nature of these MD simulations, 

high fluctuation in energy values are observed throughout these simulations in Figure 4.6. 

 

Figure 4.7. Interaction energies: (a) electrostatic, (b) vdW and (c) nonbonded of uperin 3.x 

wild-type peptides and seventh-position variants with DPC micelles. 

A convenient comparison between the different interaction energy values for the uperin 3.x 

wild-type and variant peptides with DPC micelle was obtained with a statistical average of the 

energy values, calculated over the last 20 ns of the respective simulations in Figure 4.7. Then, 

the error bars were added using the standard deviation calculated over the 20 ns dataset. 

Electrostatic energies of these peptide-micelle interactions were -303, -265 and -253 kcal mol-

1 for U3.4 wt, U3.5 wt and U3.6 wt simulations, respectively (Figure 4.7a). For U3.4 R7A, 

U3.5 R7A and U3.6 K7A, these electrostatic energies were -158, -180 and -227 kcal mol-1, 

respectively. The vdW energies for these interactions were -75, -78 and -81 kcal mol-1 for U3.4 
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wt, U3.5 wt and U3.6 wt peptides, respectively (Figure 4.7b), and -66, -72 and -79 kcal mol-1 

for U3.4 R7A, U3.5 R7A and U3.6 K7A, respectively. The nonbonded energies for peptide-

micelle interactions were observed at -378, -343 and -334 kcal mol-1, for U3.4 wt, U3.5 wt and 

U3.6 wt systems, respectively (Figure 4.7c). The U3.4 R7A, U3.5 R7A and U3.6 K7A had 

nonbonded energies of -224, -252 and -306 kcal mol-1, respectively. 

In summary, the interactions of wild-type peptides with DPC micelle were significantly 

stronger, compared to their respective seventh-position variants. The electrostatic interaction 

energy of U3.4 wt was higher by ≈44 kcal mol-1 than the other two wild-type peptides, with 

U3.6 wt showing the least electrostatic interaction. However, the trend is reversed for the uperin 

3.x variants, with U3.6 K7A and U3.4 R7A demonstrating the highest and the least electrostatic 

interaction, respectively. These trends were also observed for vdW and nonbonded interactions 

of uperin 3.x wild-type peptides and their corresponding variants with DPC micelle. Among 

the uperin 3.x peptides, the U3.4 wt interacts the strongest with the DPC micelle and for the 

uperin 3.x variants, the U3.6 K7A had the strongest interaction. It should be noted that most 

dramatic effect of seventh-position substitution in electrostatic and nonbonded energies of 

interaction could be observed for U3.4 wt and U3.4 R7A, and the least for U3.6 wt and U3.6 

K7A. This highlights the important role played by the peptide sequence in intermolecular 

interaction; even amongst peptides from the same family. 

Similar to the data discussed in Figure 4.6 for simulations with DPC micelle, interaction 

energies were calculated between SDS micelle, and uperin 3.x wild-type peptides and variants. 

During the 40 ns simulation period, it was noted that the U3.5 wt has a significantly greater 

electrostatic interaction with the SDS micelle in Figure 4.8a, compared to U3.5 R7A. 

Electrostatic interaction energies of nearly -650 and -460 kcal mol-1 were observed for U3.5 wt 

and U3.5 R7A, respectively. However, the difference in the vdW interaction energies between 

U3.5 wt and U3.5 R7A, and SDS micelle in Figure 4.8b is smaller in magnitude, with 

approximate values of -87 and -66 kcal mol-1, respectively. The trend in nonbonded interaction 

energies is similar to the one observed for electrostatic interaction energies, with U3.5 wt 

showing greater nonbonded interaction with SDS micelle relative to U3.5 R7A (Figure 4.8c), 

with energy values around -750 and -540 kcal mol-1, respectively. 
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Figure 4.8. Interaction energies: (a) electrostatic, (b) vdW and (c) nonbonded, between U3.5 

wt and U3.5 R7A, and SDS micelles. 

Comparison between the interaction energies of uperin 3.x peptides and variants with SDS 

micelle was done in Figure 4.9, as described previously for the peptide-DPC micelle 

interactions. Electrostatic energies of these peptide-micelle interactions were noted at -588, -

680 and -605 kcal mol-1 for U3.4 wt, U3.5 wt and U3.6 wt systems, respectively (Figure 4.9a). 

For U3.4 R7A, U3.5 R7A and U3.6 K7A, electrostatic interaction energies had a value of -458, 

-464 and -476 kcal mol-1, respectively. vdW energies of interactions were observed at -86, -86 

and -90 kcal mol-1 (Figure 4.9b) for U3.4 wt, U3.5 wt and U3.6 wt peptides, respectively. For 

U3.4 R7A, U3.5 R7A and U3.6 K7A, the vdW energies had a value of -80, -77 and -85 kcal 

mol-1, respectively. Nonbonded energies of these peptide-micelle interactions were noted at -

674, -766 and -695 kcal mol-1 for U3.4 wt, U3.5 wt and U3.6 wt systems, respectively (Figure 

4.9c). For U3.4 R7A, U3.5 R7A and U3.6 K7A, the nonbonded energies had values of -538, -

541 and -561 kcal mol-1, respectively. 
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Figure 4.9. Interaction energies: (a) electrostatic, (b) vdW and (c) nonbonded of uperin 3.x 

wild-type peptides and seventh-position variants with SDS micelles. 

In contrast to previously described interactions with DPC micelle, the electrostatic interaction 

energy is highest for U3.5 wt, distantly followed by U3.6 wt and U3.4 wt in that order i.e. U3.5 

wt>U3.6 wt>U3.4 wt. Moreover, electrostatic interactions between uperin 3.x variants and SDS 

micelle were weaker, compared to the corresponding wild-type peptides. Among the variants, 

strongest electrostatic interactions were observed for U3.6 K7A>U3.5 R7A>U3.4 R7A. 

Similar vdW interaction energies were found for U3.4 wt and U3.5 wt simulations, with the 

U3.6 wt one being slightly higher than the other two. Among uperin 3.x variants, U3.6 K7A 

had the greatest vdW interaction with SDS micelle, and U3.5 R7A the least. For nonbonded 

interactions, similar trends to those noted for electrostatics energies were observed. Among the 

wild-type peptides and variants, strongest nonbonded interaction with SDS micelle was noted 

for U3.5 wt and U3.6 K7A, respectively. Therefore, all these six peptides had a significantly 
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stronger interaction with SDS micelle, when compared to DPC micelle. The trend for the 

interaction energies of wild-type peptides with SDS micelle could be contrasted with the one 

observed for DPC micelle, although the trend in different energy values for uperin 3.x variants 

are similar for both DPC and SDS micelles. The presence of two positively-charged amino acid 

residues next to each other (at seventh and eight positions) in uperin 3.x wild-type peptides 

might result in differential interaction with zwitterionic and anionic head groups of DPC and 

SDS micelles, respectively.  

4.3.2. Computational analysis of peptide sequences 

The crucial role of the seventh-position cationic residue towards the antimicrobial activity of 

the peptide was analysed using a predictive algorithm employed by the AMPA computational 

web server27. The AMPA server uses an algorithm to calculate an antimicrobial propensity 

scale for the given peptide sequence, based on the high-throughput screening results of the 

AMP bactenecin 2A. Half-maximal inhibitory concentration (IC50) values indicate the 

concentration of a particular pharmacological agent required to inhibit a specific biological 

activity by half32. Therefore, it can be used to determine the cytotoxic activity of a 

pharmacological agent against bacterial cell cultures. The antimicrobial IC50 values for all 

amino acid substitutions of bactenecin 2A have been calculated. Using these data, an 

antimicrobial index (AI) can be computed to provide an estimate about the antimicrobial 

propensity of a particular peptide sequence. Lower AI values, as shown in Figure 4.10, 

correspond to greater antimicrobial potency of that region on the peptide. As illustrated in 

Figures 4.10a–4.10c, the substitution of seventh-position cationic residue with alanine 

significantly reduces the antimicrobial activity of the corresponding peptides, i.e. a shift to 

higher AI values. Moreover, it is clear that one amino acid change at the seventh position can 

adversely affect the antimicrobial activity of the entire 4–10 amino acid stretch in the alanine 

variant. Although the AI values are predictive in nature, these plots might help explain the 

difference in the peptide-micelle interaction energies between wild-type and alanine variants 

of the respective uperin 3.x peptides. 
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Figure 4.10. Antimicrobial propensity profiles of (a) U3.4 wt and U3.4 R7A, (b) U3.5 wt and 

U3.5 R7A, and (c) U3.6 wt and U3.6 K7A peptides created using AMPA27. 

The alanine substitution at seventh-position adversely impacts the amphipathic nature of the 

uperin 3.x AMPs, as could be observed in Figure 4.11. Helical AMPs can be roughly partitioned 

into two regions: one that preferentially interacts with the hydrophilic surfactant headgroups 

and the surrounding solvent environment, and the other region that favours interaction with the 

hydrophobic surfactant tails. Therefore, one region is predominantly hydrophilic, composed of 

acidic, basic or polar amino acid residues, and the other region contains hydrophobic or 

nonpolar amino acids. Hydrophobic moment provides a measure of the overall amphipathicity 

of these helical AMPs, and is defined as the mean vector sum of the hydrophobicities of the 

different amino acid sidechains on the helix33. Amongst all three pairs of wild-type peptides 

and their corresponding seventh-position alanine variants, uperin 3.5 pair has the greatest 

hydrophobic moment, followed by uperin 3.6, and finally uperin 3.4 pair. Furthermore, all 

wild-type peptides have a greater hydrophobic moment than their corresponding alanine 

variants. Since an alanine substitution introduces a nonpolar amino acid residue into the 
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hydrophilic region, as seen in Figures 4.11b, 4.11d and 4.11f, this is expected to reduce the 

extent of the hydrophilic region for these peptides. 

 

Figure 4.11. Helical wheel representation of wild-type and variant uperin 3.x peptides28. 

Individual amino acid residues have been numbered as per their location in the peptide 

sequence (from N- to C-terminus). The size and colour of these residues correspond to the 

relative size and, electrostatic and steric nature of their sidechains, respectively. The peptide 

residues have been grouped as: acidic (red), basic (blue), nonpolar (grey, yellow) and polar 

(light pink, purple). A dashed line roughly partitions the helical wheel of these peptides into 

predominantly hydrophilic (HL) and hydrophobic (HB) regions. The downward arrows and the 

numeric values indicate the direction and magnitude of the hydrophobic moment vector, 

respectively.  
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The α-helical secondary structure of U3.5 wt in Figure 4.11c is neatly partitioned into two 

distinct hydrophilic and hydrophobic regions. However, in comparison, the U3.4 wt has an 

alanine residue at the eleventh-position in Figure 4.11a, decreasing the polarity across the 

hydrophilic region and resulting in a lower hydrophobic moment, compared to U3.5 wt. The 

reduction in hydrophobic moment for the U3.6 wt, in Figure 4.11e, might be attributed to the 

relatively weaker atomic charge distribution of the lysine residue, compared to the arginine 

residue34. These strong partial charges could also explain the significant reduction in interaction 

energies of seventh-position alanine variants of U3.4 wt and U3.5 wt with the DPC and SDS 

micelles, as observed in Figures 4.6–4.9, compared to the corresponding wild-type peptides; 

where an arginine residue is present at the seventh-position. Whereas, the U3.6 wt peptide 

contains a lysine residue at the seventh-position, which is expected to cause a relatively smaller 

reduction in interaction energies, following substitution with alanine at the seventh-position of 

the U3.6 K7A variant. 

4.3.3. Seventh residue-micelle interaction 

4.3.3.1. Energetics of interaction 

To elucidate the crucial role played by the seventh-position cationic residues in these peptide-

micelle interactions, the interaction energies of these particular residues with both DPC and 

SDS micelles were calculated and analysed. Electrostatic energies of these seventh residue-

DPC micelle interactions were noted at -106, -96 and -54 kcal mol-1 for arginine (R7)-U3.4 wt, 

R7-U3.5 wt and lysine (K7) - U3.6 wt residues, respectively, in Figure 4.12a. For alanine (A7)-

U3.4 R7A, A7-U3.5 R7A and A7-U3.6 K7A residues, the electrostatic energies had a value of 

-0.5, 0.7 and 1.2 kcal mol-1, respectively. The vdW energies for R7-U3.4 wt, R7-U3.5 wt and 

K7-U3.6 wt residues were noted at -6, -5 and -4 kcal mol-1, respectively, in Figure 4.12b. For 

A7-U3.4 R7A, A7-U3.5 R7A and A7-U3.6 K7A, the vdW energies had a value of -1.6, -1.5 and 

-2.3 kcal mol-1, respectively. Nonbonded energies of these seventh residue-micelle interactions 

were noted at -112, -101 and -58 kcal mol-1 for R7-U3.4 wt, R7-U3.5 wt and K7-U3.6 wt, 

respectively, in Figure 4.12c; and for A7-U3.4 R7A, A7-U3.5 R7A and A7-U3.6 K7A, the 

nonbonded interaction energies were -2.1, -0.8 and -1.1 kcal mol-1, respectively. As observed 

earlier for the wild-type peptides in Figure 4.7, the electrostatic and nonbonded interaction 

energies are highest for R7-U3.4 wt and least for K7-U3.6 wt. The corresponding interaction 

energies between alanine residues at the seventh-position of variants, and DPC micelle, is 

comparatively negligible. It should be noted that the magnitude of error bars is very close to 
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the mean values of vdW energies of all six simulation systems in Figure 4.12, along with the 

electrostatic and nonbonded interaction energies of the alanine residues with DPC micelles. 

Hence, these values might lack statistical accuracy. 

 

Figure 4.12. Interaction energies: (a) electrostatic, (b) vdW and (c) nonbonded of seventh-

position arginine: R7 or lysine: K7 (wild-type peptides), and alanine: A7 (variants) residues with 

DPC micelles. 

Likewise, interaction energies between seventh-position residues and SDS micelles were also 

calculated. Electrostatic energies of these seventh residue-micelle interactions were noted at -

161, -192 and -173 kcal mol-1 for R7-U3.4 wt, R7-U3.5 wt and K7-U3.6 wt, respectively. in 

Figure 4.13a. For A7-U3.4 R7A, A7-U3.5 R7A and A7-U3.6 K7A, the electrostatic energies 

had a value of 0, 0.9 and -1.2 kcal mol-1, respectively. vdW energies of -6, -6 and -5 kcal mol-

1 were observed in Figure 4.13b for R7-U3.4 wt, R7-U3.5 wt and K7-U3.6 wt, respectively. For 
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A7-U3.4 R7A, A7-U3.5 R7A and A7-U3.6 K7A, the vdW energies had a value of -2.2, -2.5 and 

-2.6 kcal mol-1, respectively. Nonbonded energies of these seventh residue-micelle interactions 

were noted at -167, -198 and -178 kcal mol-1 for R7-U3.4 wt, R7-U3.5 wt and K7-U3.6 wt 

respectively in Figure 4.13c. For A7-U3.4 R7A, A7-U3.5 R7A and A7-U3.6 K7A, the 

nonbonded energies had a value of -2.2, -1.6 and -3.8 kcal mol-1, respectively.  

 

Figure 4.13. Interaction energies: (a) electrostatic, (b) vdW and (c) nonbonded of seventh-

position arginine: R7 or lysine: K7 (wild-type peptides), and alanine: A7 (variants) residues with 

SDS micelles. 

As discussed earlier for the wild-type peptides in Figure 4.9, the electrostatic and nonbonded 

interaction energies are maximum for R7-U3.5 wt and least for R7-U3.4 wt. All vdW energies, 

and electrostatic and nonbonded interaction energies of the alanine residues with SDS micelles 

are comparatively negligible, also noted earlier in Figure 4.12. The electrostatic and nonbonded 
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interaction of positively-charged R7 and K7 residues of uperin 3.x wild-type peptides with 

anionic SDS micelle is more energetically favourable, than that observed with zwitterionic 

DPC micelle. This could explain the similar trend observed for the interaction of wild-type 

peptides with DPC and SDS micelles, as described earlier for Figures 4.7 and 4.9. Therefore, 

for both DPC and SDS micelles, the seventh-position cationic residue plays a significant role 

in their interaction with uperin 3.x peptides, which gets adversely affected by its substitution 

with a nonpolar alanine residue in the variants. 

4.3.3.2 Radial distribution plots 

Simulation trajectory snapshots shown in Figure 4.14 demonstrate the differential interaction 

of the positively-charged (arginine) and nonpolar (alanine) sidechain of the seventh-position 

amino acid residue of uperin 3.5 peptides, interacting with either DPC or SDS micelles. These 

snapshots were taken at 50 ns for the DPC systems and 40 ns for the SDS systems i.e. at the 

end of the respective simulations. Only the atoms of interest are represented as solid spheres in 

the figure. Whereas hollow spheres in Figures 4.14a and 4.14c depict the neighbouring 

aliphatic carbon atoms of micelle tails, those in Figures 4.14b and 4.14d represent the 

neighbouring phosphate and sulphate head group heavy (non-hydrogen) atoms. The 

surrounding water molecules and ions have been excluded for clarity. Interestingly, both 

peptides are in a predominantly α-helical conformation. Figure 4.14a shows the R7-U3.5 wt 

preferentially interacting with the negatively-charged phosphate head group of DPC, whereas 

A7-U3.5 R7A shows closest interaction with the aliphatic carbon atoms of the DPC tail (Figure 

4.14b). Similarly, the negatively-charged sulphate head group of SDS aligns near to the R7-

U3.5 wt in Figure 4.14c, and the aliphatic carbon atoms of the SDS tail are closer to A7-U3.5 

R7A, as seen in Figure 4.14d.   
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Figure 4.14. Trajectory snapshots of U3.5 wt and U3.5 R7A near (a–b) DPC and (c–d) SDS 

micelles. Images taken at the end of the respective simulations. 

In order to analyse the seventh residue-micelle interactions, observed between the seventh-

position residue sidechain and a specific chemical moiety from the micelle in Figure 4.14 in 

greater detail, radial distribution functions (RDFs) were calculated between these two groups 

of heavy atoms. Only the sidechain heavy atoms were incorporated in these analyses, along 

with the respective micellar heavy atom selections used as a reference. However, the heavy 

atom selection was restricted to positively-charged terminal region of guanidium (-C-(NH2)2
+), 

and ε-ammonium (-NH3
+) region of arginine and lysine residues, respectively35. The specific 

RDF calculations were then normalized with respect to the number of atoms in the amino acid 

sidechain selection. 
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Figure 4.15. Radial distribution function plots for the sidechain heavy atoms of the seventh-

position residue of the uperin 3.x peptides, with the phosphate head group (a–c) and the 

aliphatic carbon tail (d–f) heavy atoms of the DPC micelle. 

For R7-U3.4 wt, with reference to the DPC phosphate head groups, two distinct peaks were 

observed at 2.6 Å, 3.5 Å and 4.8 Å in Figure 4.15a, with g(r) values of 4.6, 4.4 and 2.8, 

respectively. Whereas for R7-U3.5 wt, three peaks could be noted at 2.6 Å, 3.5 Å and 4.7 Å, in 

Figure 4.15b, with g(r) values of 4.9, 4.0 and 3.5, respectively. As observed in Table 4.1, U3.4 

and U3.5 differ at only two residues of their respective wild-type and variant peptide sequences. 

For K7-U3.6 wt, a sharp peak was noted at 2.6 Å and g(r) of 8.8, in Figure 4.15c. Further, two 

peaks were observed at 3.9 Å and 4.9 Å, having g(r) values of 4.7 and 5.2, respectively. 

Interestingly, in Figures 4.15a–4.15c, for RDF plots of A7-U3.4 R7A, A7-U3.5 R7A and A7-

U3.6 K7A, only one flat peak could be located at 10.7 Å, 13.4 Å and 11.9 Å, with g(r) values 

of 2.6, 2.2 and 2.5, respectively. Similarly, for RDF plots of R7-U3.4 wt, R7-U3.5 wt and K7-
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U3.6 wt with reference to the DPC aliphatic carbon tails, a single flat peak could be noted at 

4.4 Å, 4.6 Å and 6.0 Å and g(r) values of 1.7, 1.2 and 2.2 respectively (Figures 4.15d–4.15d 

f). The data obtained for A7-U3.4 R7A, in Figure 4.15d, show three flat peaks at 4.2 Å, 9.6 Å 

and 14.0 Å, having g(r) values of 1.7, 3.9 and 3.6, respectively. Likewise, the RDF plot of A7-

U3.5 R7A is characterised by three flat peaks at 4.3 Å, 10.1 Å and 14.7 Å, with g(r) values of 

1.7, 3.6 and 3.4, respectively, in Figure 4.15e. However, for A7-U3.6 K7A plot in Figure 4.15 

f, only one distinct peak was found at 4.0 Å and a g(r) of 3.1. Thus, as anticipated, arginine and 

lysine sidechains interacted most favourably with the phosphate head groups of DPC micelles. 

Similarly, for alanine sidechains, the favourable interaction is with the aliphatic carbon tails of 

the DPC micelles. For wild-type and R7A variants of both U3.4 and U3.5, the short-range 

interactions (≈4.5 Å) are very similar, probably due to the zwitterionic DPC head group 

providing an overall neutral environment for the alanine sidechain. However, as the interaction 

range is increased (≈10 Å), the alanine sidechain interacts more favourably with the aliphatic 

carbon tails that constitute the core of the DPC micelle, compared to the cationic sidechains. 

Although, for A7-U3.6 K7A, even at short-range, a noticeable preference for interaction with 

the DPC micelle core is observed. 

Similar RDF calculations were performed between atom selections of seventh-position residue 

sidechain and the SDS micelle, as described in the previous text. In case of R7-U3.4 wt in 

Figure 4.16a, one distinct peak and two flat peaks were observed, with reference to the SDS 

sulphate head groups, at 2.7 Å, 3.6 Å and 4.8 Å, with g(r) values of 2.4, 2.1 and 2.3, 

respectively. Whereas for R7-U3.5 wt, three peaks at 2.7 Å, 3.6 Å and 4.8 Å could be noted in 

Figure 4.16b, having g(r) values of 3.4, 3.0 and 3.2, respectively. For K7-U3.6 wt in Figure 

4.16c, a sharp peak was observed at 2.6 Å and g(r) of 16.3. Apart from that, two additional 

peaks were noted at 4.0 Å and 4.9 Å, with a g(r) value of 9.3. In Figures 4.16a–4.16b, just one 

flat peak could be located for the RDF plots of A7-U3.4 R7A and A7-U3.5 R7A, at 8.9 Å and 

8.6 Å, with g(r) values of 3.2 and 3.8, respectively. No recognizable peak could be observed 

for A7-U3.6 K7A, in Figure 4.16c. Moreover, in Figures 4.16d–4.16f, only one flat peak at 4.7 

Å, 4.7 Å and 5.9 Å could be noted in the RDF plots of R7-U3.4 wt, R7-U3.5 wt and K7-U3.6 

wt, with reference to the SDS aliphatic carbon tails, with g(r) values of 1.5, 1.4 and 2.6, 

respectively.  For A7-U3.4 R7A in Figure 4.16d, one distinct peak and two flat peaks could be 

observed at 4.1 Å, 9.8 Å and 13.8 Å, having g(r) values of 3.0, 4.0 and 3.6, respectively. 

Likewise, for RDF plot of A7-U3.5 R7A too, one distinct peak and two flat peaks could be 

noted at 4.0 Å, 10.0 Å and 14.8 Å, in Figure 4.16e, with g(r) values of 3.8, 4.0 and 3.7, 
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respectively. However, in case of A7-U3.6 K7A in Figure 4.16f, one distinct peak is found at 

4.2 Å and a g(r) value of 3.6, with two broad peaks also observed. 

 

Figure 4.16. Radial distribution function plots for the sidechain heavy atoms of the seventh-

position residue of the uperin 3.x peptides, with the sulphate head group (a–c) and the aliphatic 

carbon tail (d–f) heavy atoms of the SDS micelle. 

For wild-type and R7A peptides of both U3.4 and U3.5, R7 demonstrates marginally greater 

interaction with SDS sulphate head group, when compared to the A7 residue. This could in part 

be explained by the presence of cationic residue at the neighbouring eight-position of both 

wild-type and variant peptides, which might slightly compensate for the loss of a neighbouring 

cationic residue at seventh-position of the variant. Moreover, the anionic SDS sulphate head 

group would interact more strongly with the positively-charged peptide residues, compared to 

the zwitterionic DPC head group. Also, peptide sequence would play a crucial role in peptide-
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micelle interaction too. However, relative to A7-U3.6 K7A, K7-U3.6 wt has a significantly 

stronger interaction with the sulphate head groups. Compared to cationic sidechains, alanine 

sidechains interact more favourably with hydrophobic SDS micellar core. 

4.3.3.3. Angular orientation analysis 

The relative orientation of the seventh-position residue sidechain, with respect to the micelle 

centre of mass, was analysed. The angle between two vectors, one connecting the micelle centre 

of mass and α-carbon of the seventh-position residue, and the other between a specific side-

chain atom and the α-carbon of seventh-position residue, was tracked over the course of the 

simulation, as depicted for the R7-U3.5 wt and SDS micelle in Figure 4.17. For the amino acid 

sidechain atom, the β-carbon atom of alanine, guanidium carbon atom of arginine, and ε-

ammonium nitrogen atom of lysine were considered. 

 

Figure 4.17. Angle between vectors connecting α-carbon of R7-U3.5 wt to its guanidium 

carbon, and to the SDS micelle centre of mass.  

Angular orientation of R7-U3.4 wt relative to the centre of mass of the DPC micelle was 

observed at 100°, after ≈18 ns in Figure 4.18a, but at 140° for A7-U3.4 R7A. Likewise, for R7-

U3.5 wt in Figure 4.18b, an angle of 115° was observed relative to the DPC micelle centre of 

mass. However, an angular orientation of 150° was found for A7-U3.5 R7A. Finally, the 

angular values of 135° and 150° were found for K7-U3.6 wt and A7-U3.6 K7A, respectively, 

with reference to the DPC micelle centre of mass in Figure 4.18c. Similar calculations were 
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performed for the simulations with the SDS micelles to determine the angle between the two 

vectors, as described earlier for the simulations with DPC micelles and shown in Figures 4.18 

a–4.18c. The angular orientation of R7-U3.4 wt relative to the centre of SDS micelle was 

observed at 120° in Figure 4.18d, but at 145° for A7-U3.4 R7A. Similarly, for R7-U3.5 wt, an 

angle of 135° was observed with respect to the DPC micelle centre of mass in Figure 4.18e. 

However, an angular orientation of 150° was found for A7-U3.5 R7A. Further, in Figure 4.18f, 

angular values of 135° and 150° were noted for K7-U3.6 wt and A7-U3.6 K7A, respectively, 

relative to the DPC micelle centre of mass. Therefore, it could be noted that the seventh-

position residues of wild-type peptides and corresponding alanine variants demonstrate 

different angular orientations relative to the respective micellar centre of mass. It should be 

noted that while alanine has a small sidechain, both lysine and arginine have relatively longer 

sidechains. Hence, these positively-charged sidechains show greater fluctuations in the angular 

orientation values. 

 

Figure 4.18. Angular orientation of selected sidechain heavy atoms of the seventh-position 

residue of the peptide, with respect to the centre of mass of (a–c) DPC and (d–f) SDS micelles. 



  
 

131 
 

4.3.4. Secondary structure evolution 

Peptide secondary structure changes in these MD simulations, in the vicinity of micelles, are 

almost non-existent. In Figure 4.19, it is clear that the N- and C-termini amino acid residues 

are in a primarily coil secondary structure. Apart from these two terminal residues, the rest of 

the peptide is in a predominantly α-helical conformation throughout the simulation period. This 

trend was noted in simulations of both U3.5 wt and U3.5 R7A peptides near the DPC and SDS 

micellar environment. Quantification of the secondary structure content of these peptides, from 

the corresponding micelle simulations, demonstrated a similar pattern in Figure 4.20. The 

secondary structure composition is predominated by α-helical (88%) and coil content (12%), 

with occasional presence of 310-helix and turn structures being observed.  

 

Figure 4.19. Secondary structure composition of U3.5 wt and U3.5 R7A peptides across the 

peptide length, obtained from the simulations with (a–b) DPC and (c–d) SDS micelles. 
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The lack of secondary structure changes upon replacement of a cationic residue with alanine at 

the seventh-position could be due to the high propensity of alanine residue to be in α-helical 

conformation in AMPs36 despite the reduction of overall AMP amphipathicity, as discussed 

earlier for Figure 4.11. Moreover, the adjacent micellar molecules might restrict the degrees of 

freedom of these peptides, primarily due to the preferential interaction of the negatively-

charged head groups and aliphatic tails of the micellar lipids with basic and nonpolar amino 

acid residues of these AMPs, respectively, as noted in Figures 4.14–4.16. Moreover, α-helical 

conformation of an amphipathic peptide might result in stronger binding and greater insertion 

into both DPC and SDS micelles, compared to the peptides in a different secondary structure 

conformation, such as a β-strand37. 

 

Figure 4.20. Average secondary structure composition of U3.5 wt and U3.5 R7A peptides, 

obtained from the simulations with (a–b) DPC and (c–d) SDS micelles. 

4.3.5. Solvent-accessible surface area 

Solvent-accessible surface area (SASA) could be defined as the peptide surface area accessed 

by a rolling sphere-probe of radius 1.4 Å, representing the aqueous solvent environment. The 

search parameters could be tuned to exclude solvent-interaction with the remaining peptide 

when calculating the SASA value for a particular peptide residue. Whereas relatively higher 

SASA values indicate greater solvent interaction, lower SASA values correspond to greater 
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micellar interactions. From the SASA plots of peptide-DPC micelle and peptide-SDS micelle 

simulation systems in Figures 4.21 and 4.22, respectively, it is noted that all plots follow a 

similar trend and have similar SASA values, irrespective of the nature of the micelle. 

 

Figure 4.21. Solvent-accessible surface area (SASA) of individual residues of (a) U3.4 wt and 

U3.4 R7A, (b) U3.5 wt and U3.5 R7A, and (c) U3.6 wt and U3.6 K7A peptides, in complex 

with DPC micelle. 

In all the plots, it was noted that there is a substantial difference between the SASA values of 

the seventh-position cationic and alanine residues of the wild-type peptides and their 

corresponding variants, respectively. The seventh-position cationic and alanine residues 

preferentially interact with the surrounding ionic aqueous environment and micellar head 

groups, and the micellar core, respectively, as discussed in Figures 4.14–4.16. For wild-type 

and R7A variants of U3.4 and U3.5, local maxima were noted at V2 and K14 residues, and local 

minima were observed at G3 and N15 residues. Furthermore, for U3.4 wt and U3.5 wt peptides, 

a local maximum was observed at R7. Similarly, a local minimum was noted at A7 for the 
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respective R7A variants. A low-solvation region was noted at A9VAA12 segment of both U3.4 

wt and U3.4 R7A, indicating towards the critical role played by this nonpolar segment in 

peptide-micelle interaction. Likewise, for U3.5 wt and U3.5 R7A, relatively lower SASA 

values were observed in the predominantly hydrophobic A9VSVI13 region. Significantly, in a 

recent study, this region has been found to play a central role in the greater inter-peptide 

interaction of U3.5 wt, as a function of increasing NaCl concentration38.  

 

Figure 4.22. Solvent-accessible surface area (SASA) of individual residues of (a) U3.4 wt and 

U3.4 R7A, (b) U3.5 wt and U3.5 R7A, and (c) U3.6 wt and U3.6 K7A peptides, in complex 

with SDS micelle. 

For U3.6 wt, local SASA maxima were noted at V2, K7K8 and K14 segments, and local solvation 

minima were found at A7A8 and N15 regions. Similarly, in the case of U3.6 K7A, local SASA 

maxima were observed at I3, K8 and K14 positions, and local solvation minima was noted at 

K14N15 region. Both U3.6 wt and U3.6 K7A peptides demonstrate low SASA values in 

V9VNVL13 region, primarily composed of nonpolar residues. Additionally, another low 
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solvation zone A5AA7, composed of three alanine residues, is observed in U3.6 K7A. This 

could explain the relatively stronger interaction of U3.6 K7A peptides with DPC and SDS 

micelles in Figures 4.7 and 4.9, respectively, relative to the other two alanine variants. Hence, 

when compared to U3.6 wt, the U3.6 K7A displayed slightly lower peptide-micelle interaction 

energies only. The other two wild-type - variant peptide pairs have appreciably greater 

difference in their interaction energies. Although as discussed earlier, the stronger charge-

distribution of arginine relative to lysine also needs to be considered here34. Therefore, the 

hydrophobic effect drives these predominantly nonpolar segments to play an important role in 

the interaction of these peptides with both DPC and SDS micelles39. However, it should be 

noted that the solvation values of different residues are also dependent on the primarily helical 

secondary structure of the peptide, apart from the influence of the neighbouring residues and 

the micelle, in complex with that particular peptide. 

4.4. Conclusions 

Amongst all uperin 3.x peptides and seventh-position variants, compared to the DPC micelle, 

preferential interaction towards the SDS micelle was observed. Moreover, substitution of a 

seventh-position cationic residue with alanine significantly diminished the peptide interaction 

towards both DPC and SDS micelles. U3.4 wt and U3.6 wt displayed the strongest and weakest 

interactions, respectively, with DPC micelle. Whereas U3.5 wt interacted most favourably with 

the SDS micelle, U3.4 wt had the least favourable interaction. For alanine variants, U3.6 K7A 

demonstrated the greatest affinity towards both types of micelles, and U3.4 R7A the least. 

However, remarkable secondary structure changes could not be observed in both wild-type and 

variant peptides, and the α-helical starting structure of the peptide was mostly maintained. As 

expected, segments of predominantly nonpolar amino acid residues were found to 

preferentially interact with the hydrophobic interior of the micelles, thereby playing a critical 

role in the peptide-micelle interaction. 
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Chapter 5 

Propensity of Uperin 3.x peptides towards beta-aggregation: 

Analysis of structurally-diverse conformers 

5.1. Introduction 

Amyloidogenic diseases are characterized by the transformation of certain peptides or proteins 

from their native soluble states to highly organized fibrillar aggregates1-2, typically marked by 

an extended arrangement of hydrogen-bonded β-sheets3. However, the intermediate protein 

oligomers or protofibrils, devoid of any fibrillar structure, are thought to be primarily 

responsible for the pathogenicity associated with these diseases2-3. Interestingly, many 

antimicrobial peptides (AMPs), such as indolicidin, magainin 2 and protegrin-1, also have the 

potential to generate amyloid-like fibrils4. The present study focuses on uperin 3.x peptides, 

known to have antimicrobial activity against Gram-positive bacteria5 and mammalian cell 

lines6. 

The Uperin (U) 3.5 wild-type (wt) has been of interest, as it is stable in water; and only 

aggregates on addition of salts6. Also, it was observed that U3.5 wt aggregates less than U3.5 

R7A variant7. Thus, the substitution of a positively-charged amino acid at the seventh-position 

with a nonpolar alanine residue has been found to increase fibril formation. Significantly, most 

pathogenic mutations, such as those observed in transthyretin and lysozyme amyloidosis, 

increase the aggregation-propensity of the target protein, either directly or indirectly3. 

Similarly, the K28A mutation of the Aβ21–30 fragment increases its intra-peptide hydrophobic 
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interactions8. Furthermore, for both p53251−257
9 and p53252−258

10 fragments of the tumour 

suppressor p53 protein, the I254R mutation, which substitutes the nonpolar isoleucine residue 

with the positively-charged arginine residue, acts as an aggregation-suppressor. Although the 

wild-type fragments generate β-sheet structures, the I254R mutants demonstrate a significantly 

lower rate of aggregation and remain in an unstructured state9-10. Similarly, the introduction of 

negatively-charged residues in A53E and G51D variants hindered α-synuclein assembly due to 

electrostatic repulsion11. Hence, these 17 amino acid residues long uperin 3.x peptides5 can 

serve as model peptides, and provide important insights into the effect of cationic to 

hydrophobic residue substitution on the manifestation of amyloidogenic diseases1, 3. 

Table 5.1. Amino acid sequences of uperin 3.x wild-type peptides5 and corresponding seventh-
position alanine variants. 

 Peptide 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 C-Ter 

1. U3.4 wt G V G D L I R K A V A A I K N I V -NH2 

2. U3.4 R7A G V G D L I A K A V A A I K N I V -NH2 

3. U3.5 wt G V G D L I R K A V S V I K N I V -NH2 

4. U3.5 R7A G V G D L I A K A V S V I K N I V -NH2 

5. U3.6 wt G V I D A A K K V V N V L K N L F -NH2 

6. U3.6 K7A G V I D A A A K V V N V L K N L F -NH2 

Uperin wild-type peptides from 3.x family, including U3.4 wt, U3.5 wt and U3.6 wt, were 

originally obtained from the skin secretions of Uperoleia mjobergii, and are found with C-

terminus amidation5. The amino acid sequences of these three wild-type peptides; and their 

seventh-position alanine variants, U3.4 R7A, U3.5 R7A and U3.6 K7A, are shown in Table 

5.1. Although, as mentioned earlier, experimental studies have demonstrated the greater 

aggregation of U3.5 R7A relative to U3.5 wt7, but mechanistic details, especially of the initial 

stages of self-aggregation of these  uperin 3.x wild-type peptides and their variants, are lacking. 

More specifically, substitution of the positively-charged residue at seventh position of these 

wild-type peptides with nonpolar alanine might alter the secondary structure evolution and the 

inter-peptide interactions of the respective variants. Tsigelny et al.12 self-docked a diversity of 

amyloid-beta (Aβ)42 peptide conformers to identify the ones capable of generating propagating 

structures. Using fully-atomistic (FA) molecular dynamics (MD) simulations, we employed a 

similar strategy to investigate the aggregation properties of the uperin 3.x (wt and R/K7A) 
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peptides, listed in Table 5.1, and to provide insight into the evolution of secondary structure of 

these peptides. 

5.2. Methods 

5.2.1. Simulation details 

The fully-atomistic (FA) molecular dynamics (MD) simulations were performed using the 

CHARMM36m force-field for proteins13 and TIP3P water14 in NAMD15. Periodic boundary 

conditions were applied along all three orthonormal directions. A switching function was 

implemented for the Lennard-Jones potential, with a smooth cut-off from 12 to 14 Å. Particle-

mesh Ewald summation16, with a grid spacing of 1 Å, was used for calculating electrostatic 

interactions. Simulations were performed using a 2 fs timestep and a Langevin thermostat, with 

a damping coefficient of 1 ps-1. A constant pressure of 1 atmosphere (1 atm = 1.01325 bar) was 

maintained using a Nosé-Hoover17 Langevin18 piston,  with a period of 100 fs and a decay time 

of 50 fs. The peptides were solvated with TIP3P water molecules. The physiological 

environment was modelled by adding Na+ and Cl- ions; to obtain an NaCl concentration of 0.15 

M. All systems were equilibrated for 1 ns in an NVT ensemble (T = 310 K), followed by further 

equilibration for 1 ns in an NPT ensemble (P = 1 atm and T = 310 K), with the peptide backbone 

restrained by a harmonic constraint of 10 kcal mol-1Å-2. After gradual removal of the backbone 

constraints, the peptides were allowed to equilibrate for a period of 2 ns in an NPT ensemble 

(P = 1 atm and T = 310 K). The resulting systems were then simulated in NPT ensemble (P = 

1 atm and T = 310 K). 

The molecular editors PACKMOL19 and VMD20 were used to create the simulation systems. 

Tachyon ray-tracer21, as incorporated in VMD, was used for visualization. Secondary structure 

was determined with the STRIDE program22 using DSSP definitions23, as implemented by the 

Timeline plugin24 in VMD. Data analyses were performed using VMD and in-house scripts. 

5.2.2. Simulating α-helix to coil transition 

The starting structure for U3.5 wt was based on the α-helical representation shown in Figure 

5.1b, determined by NMR, with the peptide present in aqueous sodium dodecyl sulphate (SDS) 

solution25. The peptide was unstructured in a pure aqueous environment, as measured with 

circular dichroism. Using SWISS-MODEL Workspace26, the initial structure of U3.4 wt was 

generated using the U3.5 wt as a template. These two peptides differ at only two amino acids 

in the eleventh and twelfth positions of their sequences, as indicated in Table 5.1. Not 
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surprisingly, the U3.4 wt also consisted of a primarily α-helical secondary structure (Figure 

5.1a). The U3.6 wt peptide has been shown to adopt a predominantly α-helical amphipathic 

structure by NMR in the membrane-mimicking TFE-aqueous environment27. Hence, an α-

helical structure was imposed on the U3.6 wt peptide sequence, as shown in Figure 5.1c, using 

the Protein Builder module28 in VMD20. In order to generate alanine variants for the three 

uperin 3.x wild-type peptides, the Mutator plugin of VMD was employed to execute a point 

substitution at the seventh-position of the wild-type peptides. Therefore, like the uperin 3.x 

wild-type peptides used as templates, the three alanine-containing uperin 3.x variants also 

consisted of α-helical secondary structures at the onset of the simulations, as shown in Figures 

5.1d–5.1f. Each of these six α-helical uperin 3.x (wt and R/K7A) peptides, shown in Figure 

5.1d–5.1f, were placed in an aqueous environment containing 0.15 M NaCl. All peptides 

showed a α-helix-to-coil transition, as shown for U3.5 wt in Figure 5.2.  

 

Figure 5.1. Molecular models of the uperin 3.x peptides in this study, represented as an α-helix. 

(a-c) shows the three uperin 3.x wild-type peptides and (d-f) their corresponding seventh-

position variants. Heavy (non-hydrogen) atoms of the seventh-position residues have been 

shown with stick representation. A brown sphere represents the N-terminus and a purple sphere 

represents the C-terminus of the peptides. 
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5.2.3. Clustering of peptide conformers 

A diversity of peptide conformers, with different backbone structures and secondary structure 

compositions, was observed during the simulations showing α-helix-to-coil transition for each 

of the uperin 3.x peptides and their corresponding alanine variants, as depicted for U3.5 wt in 

Figure 5.2. To achieve a better alignment, these peptide conformers were clustered into groups; 

based on their backbone structure, with RMSD (Root-Mean-Square-Deviation) relative to the 

backbone of the α-helical starting structure as reference. This RMSD fitting was performed 

with the RMSD Trajectory Tool of VMD.  

 

Figure 5.2. Secondary structure changes in U3.5 wt over the simulation period, represented by 

(a) peptide trajectory snapshots, and (b) a plot of variation of secondary structure elements with 

time. 



146 
 

After the RMSD fitting of the different peptide conformers, RMSD and Qres
29

 values were 

obtained for individual amino acid residues of each peptide conformer using the Multiseq 

plugin29 in VMD. Qres is a structural similarity parameter based on the Cα atom positions of 

the individual peptide residues. Using the RMSD and Qres values discussed earlier, 

conformational analyses were performed to sort the peptide conformers from each of the six 

peptide trajectories into different structural families. First, hierarchical clustering was 

performed using the furthest neighbour method, as employed in Origin30. After this initial 

clustering, 19 conformer families were selected, as shown in Figure 5.3a for U3.5 wt. The 

individual cluster centres of each of these families was used as an input for subsequent k-means 

clustering, as shown in Figure 5.3b. After this operation, the corresponding centroid 

conformers from each of the conformer families were used for further analyses. Centroid 

conformer can be defined as the conformer, which is closest to the cluster centre after k-means 

clustering. 

 

Figure 5.3. (a) Hierarchical clustering of U3.5 wt conformers, based on the RMSD and Qres 

values of individual residues. (b) k-means clustering using the initial cluster centres from 

hierarchical clustering, and output plotted as the average of all RMSD and Qres values for each 

conformer vs time. (c) An example of two of the non-propagating U3.5 wt conformers, and a 

propagating U3.5 wt conformer; with additional peptides docked to the dimer to generate an 

octamer aggregate structure. 
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5.2.4. Docking and propagation 

The centroid conformers were docked with another copy of themselves (self-docking) to 

generate a two-peptide aggregate (dimer); using shape complementarity and electrostatics 

interactions as parameters, as employed by the Hex program31. Using the rotation and 

translation parameters i.e. the three-dimensional transformation matrix generated after the Hex 

dockings, more copies of that particular conformer were added and docked to the dimer, until 

the propagating conformers were revealed, as shown in Figure 5.3c. Unlike the propagating 

conformers, non-propagating conformers, such as those shown in Figure 5.3c, produced 

molecular structures with steric clashes upon docking additional copies to the previously 

docked dimer. For the propagating conformers, those with greater docking favourability and   

higher turn-coil content were selected for further docking and simulations (please refer to the 

section 5.6.1. of the Appendix for details). The aggregates consisting of eight docked peptides 

(octamers) were simulated for 100 ns using the parameters mentioned in the simulation details. 

The stability of these octamers was quantified using the radius of gyration (Rg), and the 

secondary structure evolution was analysed over the entire simulation trajectory. 

5.3. Results 

5.3.1. α-helix-to-coil transition 

All the six peptides with α-helical starting structures were simulated till a complete loss of 

helical content was obtained. Here the sum total of α-helical and 310-helical content has been 

referred to as helical content. However, as observed in Figure 5.4, the rate of this α-helix-to-

coil transition differed for each peptide. Moreover, all six simulations were allowed to proceed 

further for approximately 100 ns; even after the completion of α-helix-to-coil transition, to 

obtain a greater diversity of peptide conformers for further analyses. As a result, the simulation 

periods varied between 200–450 ns. In initial stages of all these six simulations, the increase in 

coil content is accompanied by a corresponding decrease in helical content. Whereas U3.4 wt 

and U3.5 wt demonstrated a rapid loss of helical content in Figure 5.4, the other four peptides 

displayed a more gradual α-helix-to-coil transition. Interestingly, transient re-emergence of 

some helical content could be observed at later stages of most of these simulations, except for 

those of U3.4 wt and U3.4 R7A peptides. Furthermore, the proportion of turn structure becomes 

prominent only in the later stages of these simulations. Negligible β-content could be observed 

over the entire simulation period. Post α-helix-to-coil transition, the peptide is predominantly 
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composed of coil and turn secondary structure elements. The U3.4 wt α-helical structure is 

significantly more stable than that of U3.4 R7A. However, the α-helical structure of U3.5 R7A 

was found to be appreciably more stable than that of U3.5 wt. Interestingly, U3.6 wt and U3.6 

K7A α-helices demonstrate similar stability, with that of U3.6 wt being slightly higher. The 

following order of helical stability was noted amongst all the uperin 3.x peptides: U3.4 wt>U3.6 

wt>U3.6 K7A>U3.5 R7A>U3.5 wt>U3.4 R7A. 

 

Figure 5.4. Secondary structure variation in (a) U3.4 wt, (b) U3.5 wt and (c) U3.6 wt peptides, 

and corresponding (d) U3.4 R7A, (e) U3.5 R7A and (f) U3.6 K7A variants, over the simulation 

time period. 
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5.3.2. Octamer analysis 

As described earlier in section 5.2, the peptide conformers obtained during the α-helix-to-coil 

transition of the uperin 3.x peptides and variants were subjected to hierarchical; and then k-

means clustering. For the simulated octamers, generated from different propagating conformers 

of each of the six peptides, only one conformer was selected for extensive analyses for each of 

these peptides (selection criteria explained in section 5.6.1. of the Appendix). Significantly, 

these octamers in Figure 5.5c were composed of only turn and coil secondary structures, except 

for those of U3.6 wt and U3.6 K7A, where some isolated β-bridges can also be observed. Such 

unstructured aggregates might act as incipient nuclei for the structured amyloid fibrils, 

generally observed down the amyloidogenesis pathway1, 3. 

 

Figure 5.5. (a) Propagating conformers for all uperin 3.x peptides and variants, (b) the 

monomers are docked with another copy of themselves using Hex. (c) Transformation matrix, 

generated post Hex docking, used to dock further copies of the peptide conformer to the docked 

dimer to generate an octamer aggregate. 
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5.3.2.1. Octamer stability 

Analysis of the octamer aggregates was undertaken after 100 ns simulation period, using the 

overall Rg as a parameter of interest. Smaller Rg values indicate that the octamer is more 

compact than those with larger Rg values. Greater stability of an octamer might be due to the 

stronger inter-peptide interactions within that particular octamer. The relatively minor 

fluctuations in Rg values are probably due to the positional rearrangements within that octamer. 

The U3.4 wt octamer, in Figure 5.6a, has a larger Rg value towards the end of the simulation; 

than that of the U3.4 R7A octamer. Although the U3.5 wt octamer disintegrates into smaller 

fragments over the course of the simulation, as observed from the high Rg values in Figure 5.6b, 

but the U3.5 R7A octamer remained stable. The U3.6 wt octamer, in Figure 5.6c, has a 

marginally higher Rg value at 100 ns, compared to the U3.6 K7A octamer. Therefore, it could 

be noted that the octamers of R/K7A uperin 3.x peptides remained more stable over the course 

of the simulation, relative to the respective uperin 3.x wild-type octamers.  

 

Figure 5.6. Rg plots of the octamers of (a) U3.4 wt and U3.4 R7A, (b) U3.5 wt and U3.5 R7A, 

and (c) U3.6 wt and U3.6 K7A, over the entire simulation period. 
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5.3.2.2. Beta-sheet content 

The β-sheet secondary structure elements are composed of individual β-strand segments within 

certain peptides, as observed in Figure 5.7. For the sake of clarity and easier comparison 

between the different octamer trajectory snapshots, we discuss the individual β-strands within 

an octamer. Lesser number of β-strands could be observed, over the simulation period, within 

the U3.4 wt octamer in Figure 5.7, as compared to the U3.4 R7A octamer. Similarly, a higher 

β-strand content was observed for the U3.5 R7A octamer in Figure 5.7, compared to the U3.5 

wt octamer. 

 

Figure 5.7. Trajectory snapshots of the uperin 3.x wild-type peptides and the corresponding 

seventh-position variants at the mid (50 ns) and end (100 ns) stages of the respective 

simulations. 

In stark contrast to U3.4 and U3.5, the U3.6 wt octamer, in Figure 5.8, displayed higher β-

strand content than the U3.6 K7A octamer. It should be noted that the U3.6 wt peptide has a 

vastly different amino acid sequence than those of the U3.4 wt and U3.5 wt (Table 5.1). Apart 

from the β-strands, appreciable number of isolated β-bridges, and significant turn and coil 

secondary structure content can be observed in Figure 5.8. Moreover, few 310-helix and α-helix 

segments can also be noted in some of the snapshots. Furthermore, greater number of β-strands 

were noted at 100 ns, compared to the 50 ns trajectory snapshots. This indicates towards certain 

level of β-sheet propensity among all these uperin 3.x (wt and R/K7A) peptides. 

The evolution of β-sheet content for the selected uperin 3.x octamers, over 100 ns simulation 

period, is shown in Figure 5.8a. The U3.4 R7A octamer contains 16% higher β-sheet content 
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than the U3.4 wt octamer; towards the end of the simulation. Likewise, a 16% higher β-sheet 

content can be observed for the U3.5 R7A octamer, relative to the U3.5 wt octamer. A similar 

observation was made by Martin et al. in their experiments with U3.5 wt and U3.5 R7A7. 

However, as noted earlier in Figure 5.7, the U3.6 wt octamer has 11% higher β-sheet content 

than the U3.6 K7A octamer.  The following order of β-sheet content was noted at the end of 

these 100 ns simulations amongst all the uperin 3.x peptides and variants: U3.4 R7A>U3.5 

R7A>U3.6 wt>U3.4 wt>U3.5 wt>U3.6 K7A. 

 

Figure 5.8. (a) The β-sheet content vs time dependence over the entire simulation period, and 

(b) the time-averaged β-sheet content of amino acid residues at different positions of the 

peptides within the octamers of uperin 3.x wild-type peptides and corresponding seventh-

position variants. 

To overcome any potential bias in the initial simulation setup, the β-sheet propensity of all 

uperin 3.x peptides and variants was calculated after discarding the initial 10 ns of the 100 ns 

simulation trajectories. A β-sheet content of 23% was observed in the R7KAV10 region of U3.4 

wt octamer in Figure 5.8b. Whereas, the L5IAK8 and I13KNI16 regions of U3.4 R7A octamer 

have a high β-sheet content of 47% and 48%, respectively. The β-sheet content of the A9VSVI13 
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region of U3.5 R7A octamer is 22% higher than that observed in the same region of the U3.5 

wt octamer. For the U3.6 wt octamer, a high β-sheet content of 34% was observed across the 

V10NVLKN15 region. However, for U3.6 K7A octamer, significant β-sheet content of 23% and 

22% was observed in the A6A7 and K14N15 regions, respectively. Once again, this is in contrast 

to the trends noted for the β-sheet content of the other two wild-type and variant octamer pairs, 

viz. U3.4 and U3.5, where the octamers of the seventh-position substituted peptides showed 

higher a β-sheet content in general across the entire peptide sequence. However, there is a good 

agreement with the observations made in Figures 5.7 and 5.8a. 

5.4. Discussion 

The different uperin 3.x wild-type peptides and corresponding seventh-position variants in 

Figure 5.1 uncoil at vastly different rates, as can be observed in Figure 5.4. The selected uperin 

3.x wild-type octamers remained less compact during the simulation than the corresponding 

seventh-position variants, as can be observed in Figure 5.6. Further, although the U3.5 wt 

octamer dissociated over the simulation period, but the U3.5 R7A octamer remained stable. 

Significantly, the effect of the seventh-position alanine substitution is similar to the 

introduction of salt (NaCl), as greater salt concentration leads to the formation of more stable 

aggregates32. Moreover, the enhanced inter-peptide interaction, observed at the A9VSVI13 

region of the U3.5 wt peptides at 0.50 M NaCl, is similar to the phenomenon of high β-sheet 

content observed in that region of the U3.5 R7A octamer, but not the U3.5 wt octamer; in 

Figure 5.8b. Interestingly, the selected octamers demonstrate a structural transition from 

predominantly turn and coil to β-sheet secondary structure compositions in Figures 5.7–5.8. 

The U3.4 wt and U3.5 wt octamers have a lower β-sheet content than the corresponding U3.4 

R7A and U3.5 R7A octamers, respectively. More favourable hydrophobic interactions and 

reduced electrostatic repulsions, due to the cationic to hydrophobic residue substitution at the 

seventh-position of the peptides in the R7A octamers, may contribute to this difference7, 10. The 

β-sheet content trends for U3.6 wt and U3.6 K7A octamers differ from those observed for the 

U3.4 and U3.5 wild-type and R7A peptide octamers, as shown in Figures 5.7–5.8. It should be 

noted that apart from the peptide sequence and structure of the peptide conformer, the rate of 

β-sheet formation would also depend on the initial Hex docking, i.e., the relative three-

dimensional inter-peptide orientation within the dimer, which gets extended to the octamer 

assembly. This is likely to be critical to the stability of the octamer, as those trajectories with 

lesser inter-peptide interactions, and unfavourable steric and electrostatic interactions, might 

be unstable or have slower transitions into β-sheet rich structures. Further, as could be noted 
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for the selected U3.6 wt octamer in Figure 5.5, structural transformation might be restricted for 

octamers with compact initial structures. Another factor is that the seventh-position lysine in 

U3.6 wt has a relatively weaker partial charge distribution, compared to the arginine at the 

seventh-position of the U3.4 wt and U3.5 wt peptides33. This means that the electrostatic 

repulsion between the adjacent cationic (lysine-rich) regions might be lesser in the U3.6 wt 

octamer, relative to the U3.4 wt and U3.5 wt octamers. However, from section 5.6.2. of the 

Appendix, it could be observed that computational analysis indicates towards greater 

aggregation in the N-terminal region of all uperin 3.x R/K7A variants, relative to the 

corresponding uperin 3.x wild-type peptides. Importantly, we have not included the amyloid 

growth kinetics in our simulations, but instead focused on the structural transition phenomena 

within a peptide aggregate of a certain size, peptide backbone structure and inter-peptide 

orientation. Moreover, the secondary structure composition and the transition into β-sheet rich 

structures would be also influenced by the choice of solvent, ionic concentration, and 

temperature, in the experiments. Significantly, as noted in section 5.6.1. of the Appendix, some  

peptide conformers might self-associate into α-helical fibrils, rather than forming unstructured 

or β-sheet rich aggregates34.  

5.5. Conclusions 

The propensity of uperin 3.x peptides and corresponding seventh-position variants towards β-

aggregation was studied using simulations with preformed peptide aggregates. It was observed 

that the peptides with turn and coil starting structures can undergo structural rearrangements to 

generate β-sheet rich structures. However, helix-rich octamers demonstrated negligible to low 

β-sheet propensity over the 100 ns simulation period. The R7A substitution in U3.4 wt and 

U3.5 wt peptides resulted in a significant increase in the β-sheet propensity, and even structural 

stability. However, a similar trend was not observed for K7A substitution of U3.6 wt in the 

simulations. Therefore, the structural transformations are not only dependent on the peptide 

sequence, but also defined by the initial peptide structure and inter-peptide orientation. This 

study provides important insight into the structural diversity of the initial peptide aggregates, 

and the role of amino acid substitution on the β-aggregation of the antimicrobial peptides. 

 

 

 



155 
 

5.6. Appendix 

5.6.1. Docking and propagation 

Table 5.A1. Hex docking energies and secondary structure composition of propagating 

conformers of (a) U3.4 wt, (b) U3.5 wt, (c) U3.6 wt, (d) U3.4 R7A, (e) U3.5 R7A, and (f) U3.6 

K7A peptides.  

#Propagating conformer obtained without OPLS energy minimisation after Hex docking.  
*Propagating conformer selected for further analyses in Figures 5.6–5.8. 

 
Conformer 
Family (CF) 

Docking 
energy 

Secondary structure composition 

(a) U3.4 wt 
10# -290.17 Turn, Coil 
10 -240.14 Turn, Coil 
13 -258.43 Turn, Coil 
17 -255.32 Turn, Coil 
20* -329.24 Coil 
21 -303.18 Coil 

(b) U3.5 wt 
19#, * -307.96 Turn, Coil 
11 -294.38 Turn, Coil 
19 -229.01 Turn, Coil 

(c) U3.6 wt 
08# -359.17 310-helix, coil 
06 -244.91 α-helix, turn, coil 
07 -255.04 α-helix, coil 
11* -287.41 Isolated β-bridge, coil 
17 -311.59 Turn, coil 
19 -278.43 310-helix, turn, coil 

(d) U3.4 R7A 
15# -389.84 β-sheet, isolated β-bridge, turn, coil 
04 -257.50 α-helix, turn, coil 
08 -261.32 α-helix, turn, coil 
14* -260.88 Coil 

(e) U3.5 R7A 
01# -271.78 α-helix, coil 
01 -225.75 α-helix, coil 
03 -296.28 α-helix, turn, coil 
04 -296.82 α-helix, turn, coil 
09 -342.35 Turn, Coil 
13 -276.75 α-helix, isolated β-bridge, turn, coil 
15 -308.53 Turn, Coil 
17 -323.68 α-helix, turn, coil 
21* -409.36 Turn, Coil 

(f) U3.6 K7A 
22# -467.28 Turn, Coil 
21* -257.29 Isolated β-bridge, turn, coil 
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After self-docking the centroid peptide conformers using the Hex program31, docking energy 

values were obtained. It should be noted that these unitless energy values are relative to a 

reference energy point, where the peptides are at a supposedly infinite separation or zero 

interaction, and negative scores represent a favourable docking35. Although these values are 

irrelevant on an absolute scale, but they provide a relative measure of docking favourability. 

After Hex docking, search for propagating conformers was carried out both without and with 

an intermediate post-processing step of OPLS energy minimisation (EM)36. The propagating 

conformers for each of the six uperin 3.x (wt and R/K7A) peptides are listed in Table 5.A1, 

and it could be noted that post OPLS minimisation, the docked conformers had a greater 

propensity to extend to propagating conformers, than without OPLS minimisation. 
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Figure 5.A1. (a) Propagating conformers of U3.4 wt, (b) self-docked using Hex. (c) 

Transformation matrix used to generate an octamer aggregate. 
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For the U3.4 wt propagating conformers in Figure 5.A1, the CF: 20 conformer has the lowest 

Hex docking energy, as noted in Table 5.A1a. Therefore, it was selected for further analysis. 

HD and MP denote Hex Docking and Matrix Propagation, respectively. 

 

Figure 5.A2. (a) Propagating conformers of U3.5 wt, (b) self-docked using Hex. (c) 

Transformation matrix used to generate an octamer aggregate. 

In case of the U3.5 wt octamers in Figure 5.A2, both CF: 19 octamers obtained without and 

with OPLS minimisation, were found to dissociate into smaller fragments. Therefore, the CF: 

19 octamer obtained without OPLS minimisation was selected, since it has a more favourable 

docking energy, as observed in Table 5.A1b. CF: 11 octamer was not considered as such 

extended conformations were found to be unstable (please refer to the discussion for Figure 

5.A7). 
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Figure 5.A3. (a) Propagating conformers of U3.6 wt, (b) self-docked using Hex. (c) 

Transformation matrix used to generate an octamer aggregate. 

Both CF: 08 and CF: 17 octamers of U3.6 wt in Figure 5.A3 were found to disintegrate over 

the course of respective 100 ns simulations. Therefore, the CF: 11 octamer was selected for 

further analysis, as it had the next most favourable docking energy, as noted in Table 5.A1c. 
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Figure 5.A4. (a) Propagating conformers of U3.4 R7A, (b) self-docked using Hex. (c) 

Transformation matrix used to generate an octamer aggregate. 

For propagating conformers of U3.4 R7A in Figure 5.A4, the CF: 11 octamer has large 

segments with pre-existing β-sheet content, and hence it possesses an inherent bias to 

conformations with high β-sheet content. Further, the CF: 04 and CF: 08 octamers have 

appreciable α-helical content, and therefore these octamers were not considered either 

(explained in detail for Figure 5.A8). Therefore, CF: 14 octamer was chosen for further 

analysis. 
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Figure 5.A5. (a) Propagating conformers of U3.5 R7A, (b) self-docked using Hex. (c) 

Transformation matrix used to generate an octamer aggregate. 



162 
 

In case of the U3.5 R7A conformers in Figure 5.A5, the CF: 21 one has the most favourable 

docking energy, as noted in Table 5.A1e. Hence, it was picked for further analysis. 

 

Figure 5.A6. (a) Propagating conformers of U3.6 K7A, (b) self-docked using Hex. (c) 

Transformation matrix used to generate an octamer aggregate. 

The CF: 22 octamer of U3.6 K7A, in Figure 5.A6, disintegrated over the 100 ns simulation 

period. Hence, the CF: 21 octamer, which remained stable, was selected. 

 

Figure 5.A7. (a) Trajectory snapshots of CF: 15 octamer of U3.5 R7A at the mid (50 ns) and 

end (100 ns) stages of the simulation, along with (b) Rg plot of that octamer over the entire 

simulation period. 

Extended octamer structures were found to disintegrate over the course of the 100 ns long 

simulations. For CF: 15 octamer of U3.5 R7A, as could be noted in the 50 and 100 ns trajectory 

snapshots in Figure 5.A7a, the constituent peptides move further apart as the simulation 

progresses. At 50 ns, only two peptides are separated from the aggregate. But this increases to 

four at 100 ns, with the remaining four peptides part of the aggregate. Moreover, Rg of the 

octamer increases over the course of the simulation and reaches a value of 60 Å at 100 ns; in 

Figure 5.A7b. 



163 
 

 

Figure 5.A8. (a) Trajectory snapshots of CF: 01 and CF: 03 octamers of U3.5 R7A (generated 

without and with OPLS minimisation, respectively) at the mid (50 ns) and end (100 ns) stages 

of corresponding simulations, along with (b) β-sheet content plot of these octamers over the 

entire simulation period. 

Octamers with noticeable α-helical content were found to demonstrate negligible or slower 

transition to β-sheet rich secondary structure elements. Peptides in CF: 01 octamer of U3.5 

R7A in Figure 5.A5 had a very high α-helical content at the onset. Hence, insignificant changes 

in the secondary structure composition could be observed in the trajectory snapshots in Figure 

5.A8a, and the β-sheet content plot over the simulation period in Figure 5.A8b. Furthermore, 

even octamers with some α-helical content at the onset were found to display a slower transition 

to β-sheet structure, than the ones with exclusively turn and coil secondary structure content. 

This could be clearly noted for the U3.5 R7A octamer of CF: 03 conformers in Figures 5.A5 

and 5.A8, and CF: 21 octamer in Figures 5.5cc, 5.7 and 5.8. For the CF: 03 octamer, only two 

β-strands were noted in Figure 5.A8a at 50 ns, along with two 310-helix segments and one α-

helix segment. Also, isolated β-bridge, turn, and coil structural elements can be observed too. 

Further, six β-strands and one α-helix segment were present at 100 ns, and the overall β-sheet 

content in Figure 5.A8b reached 12% towards the end of the simulation. Hence, the transition 

to β-sheet content observed for this particular octamer is significantly slower than that observed 
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for the CF: 21 octamer of U3.5 R7A. Therefore, as noted previously in Figure 5.5c and Table 

5.A1, the selected octamers of all uperin 3.x peptides predominantly consist of turn and coil 

secondary structure elements. However, intermediate conformers with α-helical signatures 

might play a crucial role in amyloid fibril formation34.  

5.6.2. Intrinsic residue solubility profiles 

Greater aggregation in the N-terminal region of uperin 3.x R/K7A variants, relative to the 

uperin 3.x wild-type peptides, can be observed in the intrinsic residue solubility profiles in 

Figure 5.A9, calculated using the CamSol method7, 37-38. A score is assigned to each residue of 

the peptide sequence, with residues having a score greater than 1 being highly soluble, and 

those with a score lower than -1 being poorly soluble in aqueous environments. Higher 

solubility indicates lower aggregation propensity, and vice versa. Therefore, cationic to 

hydrophobic residue substitution results in a clear reduction of the solubility of the uperin 3.x 

R/K7A peptides, relative to the corresponding uperin 3.x wild-type peptides. 

 

Figure 5.A9. Intrinsic residue solubility profiles of (a) U3.4 wt and U3.4 R7A, (b) U3.5 wt and 

U3.5 R7A, and (c) U3.6 wt and U3.6 K7A peptides, calculated using the Camsol method37-38. 
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Chapter 6 

Conclusions and Future Perspectives 

6.1. Conclusions 

In this thesis, we studied the uperin 3.4–3.6 peptides belonging to the uperin 3.x family, 

along with their corresponding seventh-position alanine variants. Uperin 3.x peptides 

are relatively small amyloidogenic antimicrobial peptides, and therefore ideal for 

understanding the effect of electrolyte concentration and cationic to hydrophobic 

residue substitution on the amyloid formation process and the associated secondary 

structure changes. Furthermore, the interaction of these uperin 3.x peptides and variants 

with bilayer analogues is also investigated. Hence, both fully-atomistic (FA) and 

coarse-grained (CG) molecular dynamics (MD) simulations were used in this study to 

examine the aggregation and lipid interaction properties of the uperin 3.x wild-type (wt) 

peptides and their alanine variants. 

Both FA and CG simulations were employed to delve into the effect of NaCl salt on the 

initial stages of self-aggregation of uperin (U) 3.5 wt peptide; and the associated 

secondary structure transitions. The aggregation propensity of U3.5 wt increases with 

an increase in NaCl concentration and is primarily driven by interactions along the 

predominantly hydrophobic AVSVI stretch (residues 9–13) of the peptide. Chloride 

(Cl�) ions of the NaCl salt screen the positively-charged R7, K8 and K14 residues, 

encompassing the A9VSVI13 region, and therefore reduce the electrostatic repulsion 

between U3.5 wt peptides, leading to their aggregation. Moreover, peptide aggregation 
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in the presence of NaCl is marked by a conformational transition to an increased α-

helical content. 

To elucidate the effect of cationic to hydrophobic residue substitution on the micellar 

interaction of uperin 3.x peptides, FA simulations were performed on the respective 

peptide-micelle systems. All uperin 3.x peptides and seventh-position alanine variants 

demonstrate a preferential interaction towards the bacterial membrane-mimic, anionic 

sodium dodecyl sulphate (SDS) micelle, compared to the eukaryotic membrane-mimic, 

zwitterionic dodecyl phosphatidylcholine (DPC) micelle. Furthermore, alanine 

substitution at seventh-position significantly diminished the peptide interaction towards 

both DPC and SDS micelles. While the seventh-position cationic residues were more 

proximate to the phosphate and sulphate head groups of the DPC and SDS micelles, 

respectively, the alanine residues preferably interacted with the aliphatic carbon tails of 

both DPC and SDS micelles. Segments of primarily nonpolar amino acid residues, such 

as the A9VSVI13 region of U3.5 wt and U3.5 R7A, preferentially interacted with the 

hydrophobic interior of the micelles, thereby playing a critical role in the peptide-

micelle interactions. 

Ultimately, we focused upon the conformational diversity, self-aggregation 

phenomena, and structural evolution of uperin 3.x wild-type peptides and variants. In 

the FA simulations performed, apart from U3.6 K7A, the U3.4 R7A and U3.5 R7A 

variants demonstrated a higher β-aggregation propensity, when compared to the 

corresponding wild-type peptide aggregates. Also, the β-sheet content of the A9VSVI13 

region of the U3.5 R7A aggregate was found to be substantially higher than that of the 

U3.5 wt aggregate. Furthermore, apart from coil and turn containing propagating 

conformers, which demonstrated high β-aggregation propensity, propagating 

conformers with very high α-helical content were also observed. 

6.2. Significant contributions towards thesis objectives 

 Aggregation of U3.5 wt is facilitated by NaCl salt due to the screening of 

charges and secondary structure transitions to α-helical intermediates.  

 Uperin 3.x peptides and alanine variants demonstrate greater interaction with 

the anionic SDS micelle, than with the zwitterionic DPC micelle. 
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 Substitution of a cationic residue with nonpolar alanine diminishes the 

interaction of uperin 3.x wild-type peptides with both DPC and SDS micelles. 

 The predominantly nonpolar segments within peptides stabilize the peptide-

micelle interaction. 

 Peptide conformers with only coil and turn structures have higher β-aggregation 

propensity than those with helical signatures. 

 Alanine substitution at the seventh-position generally increases the β-

aggregation propensity of the uperin 3.x wild-type peptides, although it would 

depend on the initial structural content of the peptide conformers and the three-

dimensional inter-peptide orientation at the onset. 

6.3. Suggestions for future research work 

 In our study with U3.5 wt, we observed increased peptide aggregation with 

increasing NaCl concentration, marked by structural transitions to α-helical 

intermediates1. This study can be extended to analyse the effect of NaCl and 

other monovalent and divalent salts on aggregation of the other uperin 3.x wild-

type and variant peptides, and similar amyloidogenic peptides. Furthermore, the 

interaction of the antimicrobial peptide magainin with palmitoyloleoyl 

phosphatidylcholine lipid bilayers was observed to be stronger at lower NaCl 

concentration, with reduced interaction noted at higher NaCl concentration due 

to the denser packing of the lipids2. Likewise, the effect of increased salt 

concentration on the interaction of the uperin 3.x peptides and alanine variants 

with different bilayers can also be studied using MD simulations.  

 The U3.6 wt exhibits greater antimicrobial activity against Gram-positive and 

Gram-negative bacterial cultures, compared to the U3.6 K7A variant3. 

Therefore, further antimicrobial testing can be performed with the uperin 3.x 

wild-type and variant peptides, and the results could be compared with those 

obtained from the peptide-micelle simulations in this thesis; to corroborate the 

findings.  

 After obtaining the initial multi-peptide aggregates post 100 ns or longer FA 

MD simulations1, replica exchange MD simulations can be performed to obtain 
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well-equilibrated peptide aggregates4 of the uperin 3.x wild-type peptides and 

corresponding alanine variants. Then, the interaction of these multi-peptide 

aggregates with different bilayer models and analogues can be studied with 

either a combination of, or standalone FA and CG MD simulations5. 

 The search for propagating conformers can be extended to other amyloidogenic 

peptides and variants, using a similar methodology as used in our studies, or the 

one used by Tsigelny et al. to find the propagating conformers of Aβ42
6. 

Furthermore, the stability and structural transitions of the multi-peptide 

aggregates thus generated can also be analysed using FA MD simulations. 
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