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Abstract

Non-Abelian topological excitations can be created under the breaking
of certain discrete symmetries. These excitations are characterised by
non-trivial topological interactions, which can be realised upon collision
or braiding of any two such excitations. In this thesis we use numerical
experiments, based on the Gross–Pitaevskii equation, to study these
fundamental topological interactions for non-Abelian vortices in a two-
dimensional spin-2 Bose–Einstein condensate, and demonstrate novel
applications to topological quantum information processing and storage,
as well as quantum turbulence.

To understand the fundamental properties of the topological interac-
tions, we study the collision dynamics of vortex pairs of both Abelian
and non-Abelian kind. In contrast to Abelian vortex pairs, which anni-
hilate or pass through each other, we observe non-Abelian vortex pairs
to undergo rungihilation, an event that converts the colliding vortices
into a rung vortex.

We observe that the braiding and collision dynamics of non-Abelian
vortices provide the essential characteristics of non-Abelian anyons.
The non-Abelian vortex anyon models, based on the quantum double
construction, are characterised by mapping the vortices to particle-
like excitations called fluxons and introducing additional H-charges.
To demonstrate the actions required to perform single- and two-qubit
unitary operations, a toy model of a topological qubit is suitably con-
structed.

We then move to a study of two-dimensional quantum turbulence. We
demonstrate a method based on three-source interference of condensate
fragments to deterministically generate lattices of vortices with fractional
mass and spin current circulation. By evolving these lattices states, we
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show that three-source interference is experimentally viable for realising
quantum turbulence in spinor condensates. Finally, we use vortex
imprinting to study turbulent states of vortices of either Abelian or
non-Abelian kind, and observe potential indicators of a new kind of
two-dimensional non-Abelian quantum turbulence.



v

Declaration

This thesis is an original work of my research and contains no material
which has been accepted for the award of any other degree or diploma at any
university or equivalent institution and that, to the best of my knowledge
and belief, this thesis contains no material previously published or written by
another person, except where due reference is made in the text of the thesis.

Signature:

Name: Thomas G. Mawson

Date: 21/10/19



vi



vii

Acknowledgements

I am indebted to a number of people without whose advice, support and friendship
this PhD would have been all the harder to complete. First and foremost, I’d like to
thank my supervisors, Tapio and Tim, for their selfless dedication to being fantastic
mentors. Thanks for always being available to discuss research or my career, and for
being constant sources of optimism, enthusiasm and new ideas. Mum and Dad, thanks
for putting up with my complaining when research was going poorly and my gloating
when it was going well. You probably ingested more second hand physics than is strictly
healthy. My brother Tim and his partner Liz, thanks for paving the way and passing on
your hard won knowledge. Thanks to all my friends Andrew, Vaishali, Shaun, Adelle,
Adam, Georgie, Keven and Gwen for being sources of support, both scientific and in life,
and for being a healthy distraction from work and unhealthy procrastination. I’d also
like to thank my collaborators, whose contributions greatly enhanced my research. Gary,
who provided much of the code base which underpins the numerics in this thesis. Joost,
for answering all those lingering and perplexing questions regarding the non-Abelian
vortex anyons. Thanks also to my Milestone panel advisers; Russ, Peter and Kris, and to
the whole BEC group, all of whom provided valuable discussions which helped shape this
thesis. Thanks finally to Jean, for her tireless support and advocacy for the entire PhD
cohort. This research was supported by an Australian Government Research Training
Program (RTP) Scholarship.



viii



Contents

1. Introduction 1
1.1. List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2. Theoretical framework 9
2.1. Bose–Einstein condensation . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2. Mean field theory of spin-2 Bose–Einstein condensates . . . . . . . . . . . 13
2.3. Superfluid phases and order-parameter manifolds . . . . . . . . . . . . . 17
2.4. Topological excitations in Bose-Einstein condensates . . . . . . . . . . . . 19
2.5. Non-Abelian vortices in the cyclic-tetrahedral phase . . . . . . . . . . . . 25
2.6. Vortex collision dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.7. Topological influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.8. Non-Abelian anyons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.9. Topological quantum computing . . . . . . . . . . . . . . . . . . . . . . . 39

3. Numerical implementation 43
3.1. Gross–Pitaevskii equation for spin-2 Bose–Einstein condensate . . . . . . 45
3.2. Preparation of initial states with non-Abelian vortices . . . . . . . . . . . 47
3.3. Detection and identification of vortices . . . . . . . . . . . . . . . . . . . 49

4. Collision dynamics of two-dimensional non-Abelian vortices in spin-2
Bose–Einstein condensates 55
4.1. Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2. Annihilation and pass through of Abelian vortices . . . . . . . . . . . . . 58
4.3. Rungihilation of non-Abelian vortices . . . . . . . . . . . . . . . . . . . . 60
4.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5. Braiding and fusing of non-Abelian vortex anyons 63
5.1. Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2. Non-Abelian vortex anyons . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3. Non-Abelian vortex anyon models . . . . . . . . . . . . . . . . . . . . . . 69

ix



x Contents

5.4. Topological qubit of non-Abelian vortices . . . . . . . . . . . . . . . . . . 74
5.5. Implementing two qubit unitary operations . . . . . . . . . . . . . . . . . 77
5.6. Universality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.7. Realising quantum superpositions of fluxons . . . . . . . . . . . . . . . . 80
5.8. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6. Two-dimensional quantum turbulence in spinor condensates 85
6.1. Quantum turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2. Initiating turbulence from multi-wave interference . . . . . . . . . . . . . 88
6.3. Collision of three scalar condensates . . . . . . . . . . . . . . . . . . . . . 89
6.4. Collision of three spinor condensates . . . . . . . . . . . . . . . . . . . . 92
6.5. Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.6. Vortex lattices from three-source interference in a spin-2 Bose–Einstein

condensate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.7. Towards two-dimensional non-Abelian quantum turbulence in a spin-2

condensate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.8. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7. Conclusions 109

A. Spin-2 rotation matrix 113

B. Cyclic-tetrahedral non-Abelian vortices 115

C. Representation theory 119

D. Biaxial nematic non-Abelian vortex anyons 125

E. Fusion rules of the tau vortex anyon model 131

Bibliography 133



Contents xi



Chapter 1.

Introduction

Topology has provided a rich perspective from which to characterise the physical properties
of condensed matter systems. In the early 1970s, Berezinskii [1, 2], Kosterlitz, and
Thouless [3, 4] applied topology to the study of phase transitions in two-dimensional
condensed matter systems. Their work determined new phases of matter distinguished
by phase transitions dictated by topology, with an absence of classical Landau type order
parameters or even-long range order [5, 6]. Indeed, the Berezinskii–Kosterlitz–Thouless
transition occurs via the unbinding of pairs of topological excitations. Nearly a decade
later, Thouless and colleagues again applied the framework of topology to account for the
robust quantised nature of the Hall conductance in the quantum Hall effect [7]. In recent
years topological phases of matter have seen a resurgence of interest in condensed matter
physics. The realisation of topological order has opened a new avenue for discovering
new materials, such as topological insulators and superconductors [8], with unique
properties dictated by topology. Further development of the these materials promises
future technological advancements potentially on par with the transistor revolution.

There is a wealth of interesting physics which occurs exclusively in two-dimensional
systems. One exciting potential application of two-dimensional topological phases of
matter is as a platform for quantum computing. The world’s ever growing hunger
for computing is testing the limits of Moore’s law, the prediction that the number of
transistors in an integrated circuit will double with each year. To keep up with demand,
digital computing components must continue to shrink in size, approaching the limit at
which quantum effects become non-negligible. Inevitably, quantum technologies will be
required to maintain the growth in computational power. Rather than a looming cliff,
this transition could be a fantastic opportunity. A quantum computer, based on unitary
operations applied to quantum states called qubits, leverages inherently quantum effects—
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2 Introduction

like superposition and entanglement—to potentially solve certain problems faster than
a classical (digital) computer [9]. Indeed, problems which are intractable on a classical
computer—those that, with increasing complexity, scale exponentially in the required
time or resources to solve—could be reformulated such that they are tractable using
a quantum computer, scaling polynomially rather than exponentially. Such quantum
algorithms could have significant implications for cryptography [10], the simulation of
many-body problems in chemistry [11], and studies of knotted proteins in biology [12].
As an example, quantum algorithms have been developed for prime factorisation (Shor’s
algorithm) [13], searches on unstructured databases (Grover search algorithm) [14], and
for the calculation of knot invariants [15,16]. Quantum computers entail an entirely new,
probabilistic, way of doing computations. Moreover, there is strong evidence that there
exists problems that may be solved on a quantum computer which cannot be solved on a
digital computer [17].

Recent advances in quantum computing have come from intense research focus on
qubits realised in a variety of systems, including trapped ions [18–20], spins in silicon
atoms [21] and superconducting circuits [22]. However, such systems must contend with
the accumulation of spontaneous errors due to the inherent interactions of the qubits
with their environment, so called “decoherence” [23,24]. Resilience against decoherence
can be achieved by encoding quantum information into the topologically protected
properties of certain two-dimensional topological phases of matter, a so called topological
quantum computer [25]. In particular, the qubits in a topological quantum computer are
constructed from the particle-like excitations—anyons—which have been predicted to
emerge in these phases [26,27]. Anyons are neither bosons nor fermions. When two anyons
are exchanged the system’s wave function may accumulate an arbitrary geometric phase
eiθ. For so called non-Abelian anyons the exchange phase may be expressed as a non-
commutative matrix, specifically a unitary operator and how such anyons fuse (combine)
when brought together depends on the history of their paths prior to the fusion. Encoding
information in the non-local fusion properties of non-Abelian anyons forms a tantalising
prospect for a realisation of a fault-tolerant quantum computer [28, 29]. Two promising
non-Abelian anyon platforms are the Fibonacci and Ising anyon models [25,30–33]. A
number of experiments have explored the potential realisation of such anyons in condensed
matter systems including Majorana zero modes [34–38,38] and quasiparticles in certain
fractional quantum Hall states [39–41]. Notwithstanding these experiments, the existence
of a physical system of non-Abelian anyons capable of universal quantum computation
remains an open question.
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Topological excitations and their dynamics provide a myriad of interesting physics
to study beyond their role in topologically ordered systems. Indeed, the study of these
excitations has deep connections with symmetries and the theory of finite groups. For
a detailed description of topological excitations see the review by Mermin in Ref. [42].
A topological excitation appears in an ordered medium as a spatial variation of the
system’s order parameter, one which cannot be removed by perturbations to the order
parameter. Such excitations may arise in systems with either continuous or discrete
broken symmetries and can be realised as point-like, line-like or planar-like objects, with
names like vortices, monopoles, domain walls, skyrmions and so forth. Each topological
excitation is characterised by a topological charge. Two topological excitations are of
different type if their charges differ by more than an isomorphism. The topological charges
are directly related to the broken symmetry of the order parameter. For systems where the
broken symmetry corresponds to some non-Abelian group, i.e. a group containing elements
that do not commute, it is possible to have so called non-Abelian topological excitations.
The non-Abelian property of these excitations realises interesting topological interactions
initiated upon fusion (collision) or under braiding of two excitations. It has been proposed
that the topological interactions of vortex-like non-Abelian excitations (‘fluxons’), along
with additional charge-like particles, in two-dimensional high energy discrete gauge
theories, provide the essential properties of a non-Abelian anyon model [43–45].

Topological excitations are ubiquitous in nature; notable examples are disclinations
in liquid crystals [46, 47]; magnetic fluxes in superconductors [48]; vortices in superfluids
[49,50]; phase vortices in coherent optical [51] and electron [52] wavefields; and cosmic
strings in high energy physics [53, 54]. Similarly, non-Abelian topological excitations are
proposed to exist in models of cosmology [55], biaxial nematic liquid crystals [56, 57],
neutron stars [58], d-wave Fermi condensates [59] and a number of discrete gauge theories
in high energy physics [60,61]. Topological excitations are also a burgeoning field of study
in Bose–Einstein condensate (BEC) physics. Bose–Einstein condensates are an attractive
system for studying topological excitations due to their high degree of controllability
and the variety of realisable excitations. Furthermore, since topological phenomena are
independent of the particular system characteristics, we can treat BECs as an emulator
of many of the aforementioned systems.

Bose–Einstein condensates are a phase of matter characterised by the realisation
of coherent long-range order in a gas of bosons, a manifestation of the quantum and
statistical behaviour of bosons. By the early 1920s, Bose [62] and Einstein [63] had
established the theoretical capacity of bosons to undergo condensation. However, it was
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not until 1995 that a BEC was achieved experimentally in gases of bosonic rubidium [64]
and sodium atoms [65] and later for lithium [66]. The experimental challenge was
confronting the need for relatively high particle densities of 1012-1015 atoms per cm3,
which are in fact dilute compared to air, and system temperatures on the order of nK. A
particularly attractive feature of atomic condensates is the remarkable control that can
be achieved over their properties. Feshbach resonances can be used to tune the particle
interaction strengths [67], and arbitrary trapping potentials can be constructed to alter the
dimensionality of the condensate [68]. Furthermore, there is an excellent correspondence
between experimental results and the dominant mean-field theory treatment of BECs,
allowing for accurate numerical simulation of BEC physics.

The prototypical topological excitation in a BEC is the quantum vortex. Spontaneous
symmetry breaking during the phase transition of a single spin-component BEC results
in a complex order parameter with phase symmetry. Onsager [69] and Feynman [70]
determined that the vorticity in a single-component BEC is quantised and confined to
topological excitations in the form of scalar quantum vortices characterised by 2π phase
dislocations in the condensate order parameter. In spinor Bose–Einstein condensates
the atoms are trapped optically in all internal spin-components such that the spin
degree of freedom results in a larger symmetry group of the pre-condensate state [71, 72].
Here, the BEC phase transition results in an array of different phases of matter with
different broken symmetries. As a result, spinor condensates exhibit a great variety
of topological excitations, where coreless vortices [73, 74], half-quantum vortices [75],
baby skyrmions [74, 76, 77], monopoles [78–81], skyrmions [82] and knot solitons [83]
have all been realised. Further phases of matter with potentially even more complicated
symmetries could be found from mixtures of condensates of different spin states [84], and
with the addition of spin-orbit coupling [85,86].

Importantly, certain symmetry-broken phases of spinor BECs of atoms with spin F ≥ 2
can host non-Abelian topological excitations, in the form of non-Abelian vortices [87–89].
The simplest of these systems is the F = 2 spinor condensate which supports two phases
with non-Abelian vortices, the cyclic-tetrahedral and biaxial nematic superfluid phases [90].
Pioneering work by Kobayashi et al. [88] and more recently by Borgh and Ruostekoski
[91] numerically demonstrated the collision dynamics of three-dimensional (3D) non-
Abelian vortex lines in the cyclic-tetrahedral and biaxial nematic phases, respectively.
Such collisions are topologically constrained to create a rung vortex bridging the two
vortices. Comparatively, Abelian vortex lines—for example the scalar vortices— undergo
reconnections in which the two colliding vortices separate after exchanging line sections
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[92,93]. Similarly, rung formation collision dynamics have also been numerically observed
for cosmic strings [55,94] and liquid crystal disclinations [56,57]. The dimensionality of the
vortices has a marked effect on the vortex collision dynamics. In a two-dimensional (2D)
condensate the reconnection event is replaced by vortex-antivortex annihilation [95–97].
Comparatively, the collision dynamics of two-dimensional non-Abelian vortices in spin-2
condensates remain unexplored.

Non-Abelian vortices in spinor condensates share many similarities with the fluxons in
the discrete gauge theories, which were demonstrated to be non-Abelian anyons [43–45].
In the case of two-dimensional non-Abelian vortices, the collision dynamics map onto the
anyon fusion rules. Furthermore, the non-trivial braiding dynamics is realised by a path
dependent topological interaction, called the topological influence, which non-trivially
permutes the topological charges of braided 2D non-Abelian vortices within their type [98].
Hence we may ask, are non-Abelian vortices in spinor condensates also non-Abelian
anyons and could they be employed as a potential platform for topological quantum
information storage and processing?

The chaotic fluid flow in a turbulent state is seeded by a disordered array of vor-
tices. Turbulence remains one of the great unsolved problems in physics, with analytical
approaches made intractable by the highly non-linear behaviour of the dynamics. How-
ever, characteristic properties of turbulent states can still be determined by looking
statistically at certain revealing observables like the kinetic energy. In this respect,
quantum turbulence, with its quantised vortices, is comparatively easier to visualise than
classical turbulence where the vortex eddies are all of varying circulation. The dynamical
evolution of the turbulent state is driven by the changing topology of the system due
to collisions between vortices. The particular collision dynamics of the vortices play an
important role in determining the properties of the turbulent state. For a 3D turbulent
state of scalar vortices, a Richardson cascade [99] is realised wherein reconnection events
transfer kinetic energy from large vortex loops to ever smaller vortex loops and eventually
into sound waves [100]. The result is a self-similar direct energy cascade, spanning a
broad range of length scales, characterised by the Kolmogorov −5/3 power law scaling
in spectra of the incompressible kinetic energy [101,102]. Comparatively, if we go to a
2D turbulent state of scalar vortices, vortex-antivortex annihilation is proposed to drive
an inverse kinetic energy cascade, also with a −5/3 power law scaling [103]. Physically,
the inverse cascade proceeds via the clustering of vortices with like circulation into so
called Onsager vortices [69,104,105], thereby transferring energy from the small length
scales of individual vortices towards the large length scales of the Onsager vortices [103].
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Altering the collision dynamics by changing the vortex algebra also results in turbulence
with characteristically different properties. Kobayashi et al. [106] recently numerically
demonstrated the potential existence of a novel topologically protected helicity cascade
in a three-dimensional non-Abelian turbulent state. From the above results, one could
infer that the novel collision dynamics of 2D non-Abelian vortices might also produce
characteristically different types of 2D non-Abelian quantum turbulence.

This thesis presents a computational and theoretical study of the topological interac-
tions of two-dimensional non-Abelian vortices in spin-2 Bose–Einstein condensates. The
remainder of the thesis consists of five chapters, which are organised as follows.

Chapter 2 provides the essential theoretical framework that undergirds the results of
this thesis. We provide an overview of spinor Bose–Einstein condensate theory, introducing
the mean-field theory description of the spin-2 BEC and the spin-2 Gross–Pitaevskii
equation, which forms the basis of the numerical simulations. The spin-2 BEC has a
number of different symmetry-broken superfluid phases whose order parameter manifolds
realise different types of quantised vortices. We detail the non-Abelian vortices in the
cyclic-tetrahedral phase, characterising all the vortex types and their topological charges.
The non-commuting algebra of the charges is realised in the non-trivial topological
interactions of the vortices. We describe the topological interactions of these vortices
by characterising the vortex collision dynamics and topological influence induced by the
adiabatic exchange of vortices. To end the chapter, we discuss non-Abelian anyons and
their applications in topological quantum computing

In Chapter 3 we provide the details of our numerical experiments. We detail the
non-dimensionalised 2D spin-2 Gross–Pitaevskii equation and discuss the implementation
of numerical algorithms to integrate it over a discrete field. We describe how initial states
of non-Abelian vortices are prepared and also the numerical methods employed to locate
and identify particular non-Abelian vortex types in our simulations.

Three results chapters are included, which characterise the topological interactions
of two-dimensional non-Abelian vortices and their applications to interesting physical
phenomena. While the investigations of each chapter are broadly self-contained, they
are arranged to facilitate a logical flow from simple to more complex realisations of the
topological interactions. Chapter 4 provides the foundational result used to motivate the
applications in the following chapters. Here we present numerical experiments detailing
the hitherto unexplored collision dynamics of vortices in the cyclic-tetrahedral phase of a
two-dimensional spin-2 condensate. We describe the annihilation and pass through events
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of Abelian spinor vortices and characterise a new collision event coined rungihilation,
which forms the 2D counterpart to rung formation of 3D non-Abelian vortices.

In Chapter 5 we show how our non-Abelian vortices may be non-Abelian anyons with
potential for use in topological information processing and storage. We characterise the
non-Abelian anyon models of these vortex ‘fluxons’, where the fusion and braiding rules
map almost directly from the vortex collision dynamics in Chapter 4 and the topological
influence in Sec. 2.7, respectively. Furthermore, we numerically demonstrate controlled
braiding and fusing of the anyons to realise single and two-qubit unitary operations. We
also present possible evidence of delocalised Cheshire charge in these systems.

Chapter 6 describes a method to controllably generate lattices of vortices with
fractional mass and spin current circulation by employing the three source interference
of spin-2 condensate fragments. Furthermore, we show that vortex lattices generated
with this method can be used to seed a quantum turbulent state. Additionally, we
artificially imprint many vortex initial states where the topological charges have either
Abelian or non-Abelian algebra. By evolving these initial vortex configurations into a
turbulent state, we reveal potential indicators of a new kind of 2D non-Abelian quantum
turbulence.

Finally, we summarise all our results in Chapter 7 and map out potential future
avenues of research.
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1.1. List of publications
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dynamics of two-dimensional non-Abelian vortices’, Physical Review A 96, 033623
(2017).

• Chapter 5—Ref. [108]: T. Mawson, T. C. Petersen, J. K. Slingerland, and T. Simula,
‘Braiding and fusion of non-Abelian vortex anyons’, Physical Review Letters 123,
140404 (2019).

• Chapter 6—Ref. [109]: T. Mawson, G. Ruben, and T. Simula, ‘Route to non-Abelian
quantum turbulence in spinor Bose–Einstein condensates’, Physical Review A 91,
063630 (2015).



Chapter 2.

Theoretical framework

In this chapter we outline the essential theoretical background of spinor Bose–Einstein
condensates (BECs) and their vortex topological excitations. We begin by introducing
the phenomenon of Bose–Einstein condensation and then provide the mean-field theory
description for a spinor BEC of spin-2 atoms, the system of focus for this thesis. A
description of the ground state phases of the spin-2 BEC and their broken symmetries
is given with particular focus on the non-Abelian cyclic-tetrahedral phase. We thereby
introduce a graphical representation of the spinor order parameter to elucidate trans-
formations of the spinor order parameter. Different order parameter symmetries realise
distinct types of topological excitations. Beginning from the simplest quantised vortices
in scalar condensates we provide a characterisation of the vortex types in the cyclic-
tetrahedral phase and their non-Abelian topological charges. Furthermore, we outline
the impact the algebra of the topological charges has on the topological interactions
which occur upon the collision or during the braiding of vortices. Finally, we provide an
abridged description of non-Abelian anyons and topological quantum computing, using
the Fibonacci anyon model as an example.

2.1. Bose–Einstein condensation

A wave function describing many indistinguishable particles accumulates a geometric
phase under the exchange of two particles within the ensemble. The particular phase
characterises the quantum statistics of the particles and specifies the elementary particle
types. For a pair of identical particles in three spatial dimensions, adiabatically moving
one particle on a full loop around the other is topologically equivalent to not moving the

9
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Figure 2.1: Two elementary particles (blue spheres) are adiabatically exchanged twice in
three spatial dimensions. The exchange path may be smoothly deformed to a single point
demonstrating the topologically trivial nature of exchanges in three dimensions.

particle at all, see Fig. 2.1. The accumulated geometric phase for such a path is e2πin,
where n is an integer. Consequently, after a single exchange the accumulated phase is
either e2πin = 1, corresponding to a wave function which is symmetric under exchange,
or e(2n+1)πi = −1, where the wave function is antisymmetric. These phases define two
elementary particles1; bosons, with integer spin, and fermions, with half-integer spin,
corresponding to the symmetric and anti-symmetric cases, respectively.

As a result of their different quantum statistics, bosons and fermions have distinct
state occupancy rules. Due to their symmetry, an arbitrary number of identical bosons
may simultaneously occupy the same state [62, 63]. However, fermions obey the Pauli
exclusion principle [110] and two such particles can not simultaneously occupy the same
state. Consequently, the respective many body states of bosons and fermions display
different statistical behaviour. Bosons may undergo Bose–Einstein condensation, a
quantum mechanical phase transition in which a macroscopic fraction of particles in a
non-interacting Bose gas condense to occupy the same single particle state [63]. The
condensate is a macroscopic quantum state identified by a complex order parameter
imbued with long-range phase coherence and U(1) phase symmetry. The Bose–Einstein
statistics impart a saturation value for the occupancy of the single particle excited states
of a Bose gas, while also allowing the ground state to accommodate any remaining
population. Saturation of the available excited energy states occurs at the BEC phase
transition temperature, Tc, and further decreasing the temperature leads to an increasing
fraction of the population occupying the single-particle ground state. For an ideal Bose
gas, one without interactions, in a 3D box the condensate fraction N0/N changes with

1Constraining the particles to two spatial dimensions leads to a situation of greater topological
complexity resulting in additional quasiparticles called anyons. We will discuss anyons further in
Sect. 2.8.
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temperature as [111]

N0

N
= 1−

(
T

Tc

)3/2
, (2.1)

where N and N0 are the particle number and condensate population, respectively, and
the power 3/2 stems from the dimensionality of the system. As T → 0, the condensate
fraction N0/N → 1, with the non-condensate population existing in a thermal cloud
which can be approximately described by classical Boltzmann statistics. An approximate
value for the transition temperature can be calculated from the thermal de Broglie
wavelength of the Bose gas, given by

λ = h√
2πMkBT

, (2.2)

where M is the particle mass, kB the Boltzmann constant and h is Planck’s constant.
The initiation of long-range coherence, heralding the formation of the condensate, occurs
approximately when the thermal de Broglie wave length is of the order of the inter-particle
spacing, n1/3, where individual bosons are rendered indistinguishable by the overlap of
their wave functions. According to this criterion the the transition temperature is

Tc ≈
h2

2πMkBn2/3 . (2.3)

In general, the particles interact and may be confined in different trapping potentials,
both of which are accounted for by corrections to Eq. (2.2) and Eq. (2.3) [112].

This thesis focuses on condensates of atomic gases. The fundamental building blocks
of atoms are fermions. For a neutral atom, with equal number of electrons and protons,
an integer total spin F is guaranteed by an even number of neutrons. The hyperfine
spin F = J + I corresponds to the sum of the spin angular momentum of the nucleus I
with the total angular momentum of the electrons J = L + S, where L and S are the
orbital and spin angular momentum, respectively. For zero magnetic fields the atoms
can exist in any of 2F + 1 internal spin states, corresponding to the projections of the
hyperfine spin. Experiments commonly consider gases of alkali atoms, typically sodium
or isotopes of rubidium. Alkali atoms are characterised by an even number of neutrons,
an odd number of protons, and a single electron in an unclosed shell with quantum
numbers L = 0 and S = 1/2. Hence, the total spin simplifies to F = I ± 1/2, where I is a
half-integer. More recently, experiments have considered higher spin atoms in the form of
chromium [113], a transition metal, and the lanthanides, erbium [114], ytterbium [115,116]
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and dysprosium [117]. These are many-electron atoms whose partially filled shells lead
to either large S or L quantum numbers and thus a high total spin.

Unlike ideal Bose gases, condensates of atomic gases involve interactions, the nature
of which has interesting consequences for the magnetic order and topological proprieties
of the system. For an overview of interactions between atoms, we refer to the standard
text of Pethick and Smith in Ref. [111]. While atomic gases are many-body systems, at
the comparatively low densities of BEC experiments, particle interactions predominately
occur via binary collisions which can be understood through basic two-body quantum
scattering theory. In quantum scattering, the initial and final states of the pair of atoms
are described by internal quantum numbers which define a channel. The important
quantum number is the total angular momentum of the pair Fpair = Lpair + Fpair, before
(Fpair,i) and after (Fpair, f) scattering, where Lpair is the orbital angular momentum of the
pair, and Fpair is their spin angular momentum. However, at ultracold temperatures it will
be found that, actually, only Fpair is relevant. To start with, we will focus on scattering
within a single channel, corresponding to collisions in which the spin of the atoms does not
change. For the alkali atoms commonly employed in BEC experiments, the dominant two-
body interaction, relevant to scattering, is due to the van-der Waals interaction2—caused
by the electric dipole-dipole interaction. The van der Waals interaction is rotationally
symmetric3 and thus conserves both orbital and spin angular momentum. However, it can
change the internal spin state of the atoms. At ultracold temperatures, collisions occur
with low energy and thus the scattering cross section is dominated by s-wave scattering
(Lpair = 0), wherein it can be assumed that the scattering amplitude approaches a
constant, a, the scattering length. Such interactions can be well described by an effective
interaction, or pseudopotential,

v (r, r′) = 4π~2a

M
δ (r, r′) , (2.4)

where the van der Waals interaction is simplified to a contact interaction in the form of a
Dirac delta function with coupling constant g = 4πa~2/M . Depending on the sign of the
scattering length the interactions can be either attractive, a < 0 or repulsive, a > 0. In
the former regime, the condensate may become unstable and can collapse [118]. Hence,
we only consider positive scattering lengths.

2The atomic species chromium, erbium and dysprosium each have large magnetic dipole moments
and hence Bose gases of these systems have an additional magnetic dipole-dipole interaction which
cannot be ignored.

3The rotational symmetry holds in the absence of external magnetic fields or other external sources
which may break the symmetry.
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Early atomic BEC experiments employed magnetic fields to confine the atoms, result-
ing in the trapping of only the weak-field-seeking internal spin state. As such, the first
atomic BECs were single component or scalar condensates, named with reference to the
condensate order parameter which is a complex scalar field. The subsequent development
of optical potentials allowed the trapping of atoms in all spin states and the realisation
of spinor BECs with full internal spin degrees of freedom. As a result, interactions in a
spinor condensate are a multi-channel process in which the spin of the colliding atoms
may change. These spin exchanging collisions are incorporated into the Hamiltonian as
additional spin interactions with the consequence that the Hamiltonian of a spinor BEC
is characterised by a larger symmetry group. Under the assumption that the condensate
particle density is spatially uniform4 and that there exists no external magnetic fields,
then the full symmetry group of a spinor condensate is U(1)× SO(3) [119], corresponding
to rotations of the phase and spin. As the spinor Bose gas condenses, spontaneous
symmetry breaking permits an array of phases with different broken symmetries, each
with distinct magnetic ordering and topological properties. The complexity and number
of these phases increases with higher spin. In this thesis we focus on the topological
properties of F = 2 spinor BECs.

2.2. Mean field theory of spin-2 Bose–Einstein
condensates

An exact description of a Bose–Einstein condensate of N interacting spin-F atoms is
given, in second quantization, by the bosonic field operators ψ̂m for particles in an
eigenstate of F̂z, the z-component of the spin operator, indexed by the magnetic quantum
number m = −F, . . . , F . Exactly solving many-body problems is intractable for even
a modest number of particles. However, tractable and precise solutions to the many
body problem can be obtained for dilute condensates with weak interactions in the zero
temperature limit by considering the mean properties of bosons in a internal spin state
m and condensed in the same single particle state. These are the mean-field and single
mode approximations which replace the field operators with “classical” complex scalar
fields ψm = 〈ψ̂m〉 and which form the 2F + 1 components of a normalised spinor order

4For non-uniform condensates the magnitude of the spin is a further degree of freedom of the condensate
alongside the orientation of the spin.
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parameter,

Ψ (r, t) = 1√
n (r, t)

(ψF (r, t) , . . . , ψ−F (r, t))T , (2.5)

where n (r, t) = ∑F
m=−F |ψm (r, t)|2 is the total particle density and T denotes the

transpose. The order parameter Ψ is equivalently called the wave function of the
condensate, with the choice of language depending on whether the physics of phase
transitions or quantum mechanics are being invoked. In the context of BECs, the usual
interpretation of |ψm (r, t)|2 as the probability density is reinterpreted as the number
density of the mth internal spin state. As such the normalisation of the wave function is
N =

∫
|Ψ (r, t)|2 dr, for N particles.

A spin-2 Bose–Einstein condensate is described by a five component spinor order
parameter. The Hamiltonian density of the system is

H = H0 +Hint, (2.6)

where the single-particle part,

H0 =
2∑

m=−2
ψ∗m(r, t)[−~2∇2/2M + V(r, t)− pm+ qm2]ψm(r, t), (2.7)

contains the kinetic energy; where ~ = h/2π, ∇2 is the Laplacian operator and M is
the mass of an atom; an external potential V(r, t) and the linear, p, and quadratic,
q, Zeeman energies associated with a non-zero external magnetic field. Throughout
this thesis we consider the case of zero external magnetic fields (p = q = 0), unless
otherwise stated, which is sufficient to explore interesting non-commutative physics in
the cyclic-tetrahedral superfluid phase. The remaining term in the Hamiltonian density
describes the interactions. As discussed in Sec. 2.1, the interactions occur via s-wave
(Lpair, i = 0) scattering of two atoms in the channel F , which is simply characterised by
the scattering length aF . Applying restrictions due to the bosonic quantum statistics
enforces Lpair + Fpair to be even. Furthermore, neglecting spin-orbit coupling implies
Lpair and Fpair are separately conserved during scattering. As such Lpair, i = Lpair, f = 0
and thus F = Fpair. Hence, the channels correspond to collisions of atoms with even
total spin angular momentum, which for atoms with hyperfine spin F = 2, corresponds
to F = 0, 2, 4. Similar to Eq. 2.4, we can approximate the interactions with a Dirac
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delta pseudopotential [71, 72,120],

v (r, r′) = δ (r, r′)
4∑
F=0

4π~2aF
M

P̂F , (2.8)

where the operator P̂F projects a pair of atoms onto the state with even total spin Fpair.
Following Ref. [120], we can use the identity operator for two spin-2 particles,

Î1 ⊗ Î2 =
4∑
F=0

P̂F , (2.9)

= P̂0 + P̂2 + P̂4, (2.10)

where ⊗ is the tensor product, and the spin composition law,

F̂1 · F̂2 =
4∑
F=0

[1
2F (F + 1)− F (F + 1)

]
P̂F , (2.11)

= −6P̂0 − 3P̂2 + 4P̂4, (2.12)

to re-express Eq. 2.8 as,

Hint = c0

2 Î1 ⊗ Î2 + c1

2 F̂1 · F̂2 + c2

2 P̂0. (2.13)

The interaction strengths are specified by the effective coupling constants, c0 = 4π~2(4a2 +
3a4)/7M , c1 = 4π~2(a4 − a2)/7M and c2 = 4π~2(7a0 − 10a2 + 3a4)/7M [119, 120].
Converting the operators into second quantization form and then making the mean-field
approximation, the interaction term becomes,

Hint = c0

2 n(r, t)2 + c1

2 |F(r, t)|2 + c2

2 |A(r, t)|2. (2.14)

The interactions can be either spin-independent, depending on the total particle density
n(r), or spin-dependent, coupling the internal spin states via spin mixing collisions, which
change the m quantum numbers of the colliding particles while conserving their total
spin. There are two spin-dependent interactions. The first depends on the spin density
vector F(r) = (Fx, Fy, Fz), where Fν = ∑2

i,j=−2 ψ
∗
i (fν)ijψj and fν are the spin-2 Pauli
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matrices,

fx =



0 1 0 0 0
1 0

√
3
2 0 0

0
√

3
2 0

√
3
2 0

0 0
√

3
2 0 1

0 0 0 1 0


, fy =



0 −i 0 0 0
i 0 −i

√
3
2 0 0

0 i
√

3
2 0 −i

√
3
2 0

0 0 i
√

3
2 0 −i

0 0 0 i 0


, fz =


2 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 −2

 .

(2.15)

The second depends on the spin-singlet pair amplitude A(r) = (2ψ2ψ−2−2ψ1ψ−1+ψ2
0)/
√

5.
The interactions mediated by c1 and c2 couple states separated by ∆m = ± 1 and
∆m = ± 2, ± 4, respectively, with their relative strengths determining the dominant
channels.

Using a variational approach, the dynamics of the condensate at T = 0 are described
by

i~
∂ψm
∂t

= δE

δψ∗m
, (2.16)

where E =
∫
Hd3r is the energy functional. Inserting the Hamiltonian density of Eq. (2.6)

into Eq. (2.16) produces five coupled time-dependent Gross–Pitaevskii equations (GPE),

i~
∂ψ± 2

∂t
=
(
−~2∇2

2M + Vext∓ 2p+ 4q + c0n± 2c1Fz − µ
)
ψ± 2

+ c1F±ψ± 1 + c2√
5
Aψ∗∓ 2,

i~
∂ψ± 1

∂t
=
(
−~2∇2

2M + Vext∓ p+ q + c0n± c1Fz − µ
)
ψ± 1

+ c1

(√
6

2 F∓ψ0 + F±ψ± 2

)
− c2√

5
Aψ∗∓ 1,

i~
∂ψ0

∂t
=
(
−~2∇2

2M + Vext + c0n− µ
)
ψ0

+ c1

√
6

2 (F+ψ1 + F−ψ−1) + c2√
5
Aψ∗0, (2.17)
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where µ is the chemical potential, and F± and Fz are the total angular momentum
ladder operators and magnetisation, respectively, given by

F+ = F ∗− = 2(ψ∗2ψ1 + ψ∗−1ψ−2) +
√

6(ψ∗1ψ0 + ψ∗0ψ−1), (2.18)

Fz = 2(|ψ2|2 − |ψ−2|2) + |ψ1|2 − |ψ−1|2. (2.19)

These non-linear Schrödinger type equations can be solved numerically to provide a
remarkably accurate representation of the condensate dynamics. In Chapter 3 we provide
details of our procedure to numerically solve the GPE for a two-dimensional condensate.

2.3. Superfluid phases and order-parameter
manifolds

The symmetries of a BEC are given by a group of transformations operating on the
space of order parameters which leave the energy functional invariant. The full symmetry
group of a spinor BEC, assuming a spatially uniform system and the absence of external
magnetic fields, is G = U(1)× SO(3), an element of which can be written as g ≡ R =
eiφe−ifzαe−ifyβe−ifzγ , where φ is a phase angle and α, β, γ are Euler angles describing the
spin rotation. The condensate phase transition to a ground state phase with particular
order parameter Ψ is characterised by a spontaneous symmetry-breaking of G to a
subgroup H, the so called isotropy group of transformations that leave Ψ invariant.
Each phase is in fact described by a set of degenerate order parameters, called an orbit,
generated by acting with the elements of G on Ψ. The isotropy group of each point
Ψ′ = gΨ in the orbit is the group H ′ = gHg−1 formed from the conjugation of H. The
corresponding orbit of the isotropy group is given by the left cosets of H defined as
G/H = {gH | g ∈ G} and is used to define the order-parameter manifold M = G/H

of the corresponding state. The addition of external magnetic fields introduces further
symmetry breaking which may lift the degeneracy of order parameters sharing an orbit,
further splitting the ground state phase diagram [121].

The spin-2 condensate ground state phase diagram can be determined by minimising
the spin-dependent part of the spin-2 energy functional over the regime of c1 and c2

spin interaction strengths. The magnetic ordering of each phase is characterised by the
values of |F(r)| and |A(r)|. For zero external magnetic fields (p = q = 0), the phase
diagram, shown in Fig. 2.2(a), consists of three phases: ferromagnetic, nematic and
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Figure 2.2: Ground state phases of the spin-2 BEC for zero magnetic field. (a) Phase diagram
of the spin-2 condensate. A representative order parameter is shown for each phase using the
spherical harmonic representation. (b) Tetrahedral symmetry of the cyclic-tetrahedral ground
state phase wave function. Each symmetry axis is labelled by a spin-1/2 Pauli matrix and
phase angle, corresponding to the appropriate spin and phase rotation, for a choice of basis.

cyclic-tetrahedral [90,122–124]. Furthermore, we illustrate the order parameter of each
phase in Fig. 2.2(a) using the spherical harmonic representation [119] by decomposing
the order parameter in terms of a weighted sum of spherical harmonics,

Ψ(θ, φ) =
F∑

m=−F
ψmY

m
F (θ, φ), (2.20)

where Y m
F is a spherical harmonic function, and in this context θ is the polar angle

and φ the azimuthal angle of the spherical coordinate system. Explicitly, the shape of
the 3D spherical harmonic objects in Fig. 2.2 corresponds to an isosurface of |Ψ(θ, φ)|2,
while the colour is given by the phase of Ψ(θ, φ). We will make repeated use of this
representation throughout this thesis to explore the symmetries of order parameters and
their topological excitations.

The ferromagnetic phase, occurring for c1 < 0 and c2 > 4c1, is characterised by
non-zero |F(r)| and |A(r)| = 0. A ferromagnetic phase order parameter is given by
Ψferro = R (1, 0, 0, 0, 0)T, where the explicit spin-2 phase and spin rotation matrix, R, is
given in Appendix A. The isotropy group is H = SO(2)2φ, fz [125,126], which corresponds
to simultaneous continuous rotations of the phase and spin (about the axis fz) where
the phase rotation angle is twice that of the spin. Consequently, the order-parameter
manifold isM = SO(3)2φ, fz .
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The nematic phase, occurring for c1 > 0 and c2 < 4c1, is characterised by |F(r)| =
0 and non-zero |A(r)|. The nematic phase order parameter is given by Ψnematic =
(sin(ε)/

√
2, 0, cos(ε), 0, sin(ε)/

√
2)T, which depends on the parameter ε. At the mean

field level, there are three degenerate nematic phases with distinct order parameter
symmetries; uniaxial, for ε = 0; biaxial, for ε = π/6; and dihedral-2 [121], for all other
values. The degeneracy is lifted by quantum and thermal fluctuations, initiating a
phase transition between the uniaxial and biaxial phases which depends on the scattering
lengths [127,128]. The isotropy group for the uniaxial phase is the H = D∞ ∼= SO(2)oZ2

and the order-parameter manifold isM =
[
U(1)× S2

]
/Z2 [127,129], where ∼= denotes

an isomorphism and o is a semidirect product. The biaxial phase is symmetric under
H = D4, the dihedral group of order 8, with elements corresponding to joint U(1) and
SO(3) rotations. Hence, the order-parameter manifold isM = [U(1)× SO(3)] /D4 [127].

The cyclic-tetrahedral phase, occurring for c1 > 0 and c2 > 0, is characterised
by |F(r)| = 0, |A(r)| = 0 and broken time-reversal symmetry. An example order
parameter is Ψcyclic = R (i, 0,

√
2, 0, i)T/2 which has tetrahedral symmetry H = T , see

Fig. 2.2(b), as per the name5. The tetrahedral symmetry group T in this context is the
subgroup of U(1)× SO(3), not just SO(3), with both rotations of the phase and spin.
The corresponding order-parameter manifold isM = [U(1)× SO(3)] /T [87, 125]. The
tetrahedral symmetry group is non-Abelian, i.e. contains elements that do not commute
under the group operation. Thus, the cyclic-tetrahedral phase is denoted a non-Abelian
phase. Similarly, D4 is also a non-Abelian group and thus the biaxial nematic phase is
another non-Abelian phase. Such phases may host interesting topological excitations
called non-Abelian vortices, see Section 2.5.

2.4. Topological excitations in Bose-Einstein
condensates

Bose–Einstein condensates feature a number of excitations, among the richest of which
are the topological excitations. The possible types of topological excitations and their
characteristics depend on the symmetries of the superfluid phases. In this section, we

5The literature also commonly refers to the cyclic-tetrahedral phase as simply the cyclic phase, a name
inherited from the phases of the d-wave superconductor which have order parameters in one-to-one
correspondence with those of the spin-2 condensate [90].
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will detail some of the interesting varieties of topological excitations in scalar and spinor
condensates.

The archetypal topological excitation of a BEC is the quantum vortex in a scalar
condensate. In the hydrodynamic formulation the scalar order parameter may be written
in terms of the density n (r, t) and a phase θ (r, t) using the Madelung transformation
[130],

Ψ (r, t) =
√
n (r, t)eiθ(r, t). (2.21)

The mass current density is calculated as

j = ~
2Mi

[ψ∗ (r, t)∇ψ (r, t)− ψ (r, t)∇ψ∗ (r, t)] = ~
M
n (r, t)∇θ (r, t) , (2.22)

where the final expression is obtained after substitution of Eq. (2.21). The superfluid
velocity v is related to the mass current density by j = nv and thus to the condensate
phase as v = ~/M∇θ. By implication, the condensate is irrotational since the vorticity
ω = ∇×v = 0. This result holds when the velocity field is continuous but is no longer
valid when there is a discontinuity in the phase due to the presence of a vortex. The
characteristic mass current circulation of a vortex arises from the change in the phase
along a closed path Γ(s), for a curve parameter s, enclosing the vortex core; see the
schematic in Fig. 2.3(a). Due to the single-valuedness of the order parameter the phase
must rotate by an integer multiple of 2π along Γ(s). As such, the circulation,

∮
Γ
dl.v = ωκ, (2.23)

is quantised in integer multiples of the quanta of circulation κ = h/M , where the integer
ω is the winding number or topological charge of the vortex. By convention, positive
and negative winding numbers refer to vortices and anti-vortices, respectively. The
discontinuity in the phase, where the vortex velocity κωφ/r diverges and its vorticity
∇×v = κωδ(r − r′)z is localized, is dealt with by a zero in the order parameter due
to the vortex core. Here, δ(r − r′) is a Dirac delta function. A condensate containing
vortices is therefore topologically a multiply connected state.

A representative vortex solution of the GPE is the straight line vortex, aligned along
the z-axis, represented in cylindrical co-ordinates by

Ψ = f (r) eiφ, (2.24)
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where f (r) describes the density profile and φ the phase. In a uniform condensate f (r)
can be reasonably approximated as [111,131]

f (r) = r√
r2 + 2ξ2 , (2.25)

where ξ = ~/
√

2M |c0|n is the healing length, defined as the distance over which the
condensate “heals” back to the bulk value after some large perturbation. Within the
vortex core, when r < ξ, f (r) goes linearly to zero, while far from the vortex core
f (r)→ 1, the bulk value of the condensate. A more accurate approximation of the core
profile has been made by Bradley and Anderson in Ref. [132].

In general, quantum vortices are characterised by how their order parameter changes
along a closed path enclosing the vortex core. Consequently, the types of vortices that can
be excited in a BEC ground state phase are determined by the symmetries of the system’s
order parameter and are classified according to homotopy theory, see Mermin [42] for a
detailed review. For line excitations, the classification occurs by mapping each point on
the real path Γ(s) in the condensate to a path Ψ(Γ) in the corresponding order-parameter
manifold. Two paths in the order-parameter manifold are homotopic if they share a base
point x0 ∈M and can be smoothly deformed into each other. The homotopic paths form
equivalency classes, which are the elements of the fundamental group π1(M, x0), where
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Figure 2.3: Schematic illustrations of quantum vortices in a BEC. (a) A scalar vortex. The
vortex phase structure is given for a two-dimensional plane intersecting the vortex core denoted
by the grey cylinder. (b) A half quantum vortex in the polar phase of the spin-1 condensate.
The polar phase order parameter is represented using the spherical harmonic decomposition.
The half quantum vortex is then characterised by the rotation of the spherical harmonics
across the discrete points on the two-dimensional plane represented by the light grey disc. The
real space paths Γ(s), encircling the vortex cores, map to paths Ψ(Γ) in the respective order
parameter manifolds inset in each sub-figure.
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the subscript identifies that the map is from a one-dimensional loop in real space to
the order parameter manifold. Each element of π1(M, x0) corresponds to a topological
charge characterising a particular vortex. In the context of Chap. 5, the charges will
be referred to as fluxes. IfM = G/H is simply connected, and H is a discrete group,
then π1(M, x0) ∼= H. In this case, the topological charge can be equivalently defined as
the transformation in H that describes the change in the order parameter along a path
enclosing the vortex core. Revisiting the scalar vortex, the order parameter changes by
2πω along a closed path about the vortex core and thus the order parameter manifold is
U(1) ∼= S1, where S1 is the 1-sphere, or unit circle. As shown in Fig. 2.3(a), the closed
path Γ(s) in real space maps to a path Ψ(Γ) in the order parameter manifold equivalent
to a winding about the 1-sphere. The number of times the path covers the 1-sphere is
given by π1(S1) = Z, corresponding to ω, the integer winding numbers.

In spinor condensates, the additional spin degree of freedom, and thus the multitude
of different order-parameter manifolds, permits topological excitations that can not be
realised in the scalar condensate. In particular, condensates with order parameters with
discrete symmetry may permit vortices with fractional quanta of circulation [125,126].
Such fractional-charge vortices are characterised by a change in the order parameter by
a simultaneous phase and spin rotation. An illustrative example is the half quantum
vortex6 in the polar phase of the spin-1 condensate [75, 135]. The 3-component polar
superfluid phase order parameter may be represented as Ψ(1)

polar = (0, 1, 0)T [119]. A
general element of the corresponding orbit is characterised by a phase θ and vector
d = (cosα sin β, sinα sin β, cos β) with manifolds U(1) and S2, respectively. The polar
phase has a continuous SO(2) symmetry, consisting of rotations about d, and a discrete
Z2 symmetry [136], corresponding to operations which “invert” the order parameter via
composite rotations of the form (φ, d)→ (φ+π, −d). It follows that the order parameter
manifold isM = U(1)× S2/Z2. The half quantum vortex, a schematic representation of
which is shown in Fig. 2.3(b), arises from the discrete Z2 symmetry as a continuous π
spin rotation, inverting the d vector, and a concurrent π phase rotation to preserve the
single-valuedness. A representative half quantum vortex order parameter is

Ψ =
√
n ei

θ
2 e−i

θ
2 fz e−i

π
2 fy Ψ(1)

polar =
√
n

2


−1
0
eiωθ

 . (2.26)

6Sometimes also referred to as Alice vortices [133], a convention inherited from high energy physics [134].
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The topological charges are given by π1(U(1)× S2/Z2) = Z, corresponding to integer
winding numbers, same as the scalar vortices. However, unlike the scalar vortices,
the discrete symmetries of the half quantum vortex result in a mass current circulation∮

Γ dl.vHQ = h
2Mω, quantised in integer units of half the quanta of circulation. Furthermore,

the rotation of the d vector about the core characterises a spin texture with quantised
spin current circulation

∮
Γ dl.(vHQ

s )z = − h
2Mω, where (vHQ

s )z is the z-component of the
spin velocity

(vs)ν = ~
2Mni

2∑
m,m′=−2

(fν)m,m′ [Ψ∗m(∇Ψm′)− (∇Ψ∗m)Ψm′ ]. (2.27)

Although the half quantum vortex displays a singularity in superfluid velocity, the
vortex core is not empty. For the particular half quantum vortex in Eq. (2.26), the phase
discontinuity, and the associated zero in the order parameter, is present in the m = −1
component. As such, the vortex core is filled with atoms in the m = 1 component and
thus belongs to the ferromagnetic phase [137–139], an entirely different superfluid phase
to the condensate bulk. The size of the core is, thus, of the order of the spin healing
length ξi = ~/

√
2M |ci|n [138].

The other possible superfluid phase of a spin-1 condensate, in the absence of exter-
nal magnetic fields, is the ferromagnetic phase. A representative 3-component spin-1
ferromagnetic superfluid phase order parameter is Ψ(1)

ferro = (1, 0, 0)T characterised by a
continuous symmetry H = SO(2)φ, fz , where the subscripts denote the coupled nature
of the phase and spin rotations [119]. The corresponding order parameter manifold
is M = SO(3)φ, fz . The first homotopy group π1(SO(3)) is, in general, trivial except
for loops which map to paths in the order parameter manifold connecting antipodal
points [140]. As a result, π1(SO(3)) = Z2 and the corresponding integer charge vortices
are the SO(3) or polar core vortices [141], so named due to the m = 0 atomic population
residing in the vortex core. For a schematic representation of the polar core vortex we
refer to Fig. 24(a) in Ref. [119]. The spontaneous formation of polar core vortices was
observed by Sadler et al. [142].

The second homotopy group, π2, defined by a mapping from a closed surface in real
space to the order parameter manifold, classifies point type excitations, such as monopoles.
Homotopy groups beyond π1 are trivial for the scalar condensate, hence it only hosts
line type excitations. However, the spin-1 polar superfluid phase, where π2(S2) = Z, can
host topologically stable ’t Hooft-Polyakov monopoles [143,144] characterised by a radial
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or hedgehog texture d(r) = r/r [145]. The ’t Hooft-Polyakov monopole is energetically
unstable to decaying into an Alice ring, a half quantum vortex ring with both π1 and π2

charges [137]. The ’t Hooft-Polyakov monopole has been experimentally realised by Ray
et al. [80], using a quadrapole magnetic field to adiabatically generate the d vector texture,
equivalent to applying a spatially non-uniform spin rotation. The second homotopy
group is trivial for the spin-1 ferromagnetic superfluid phase and hence the phase does
not support topologically stable point type monopole excitations. However, Savage and
Ruostekoski [146] demonstrated that Dirac monopoles [147] can be realised in this phase.
Here, a hedgehog spin texture is generated at the terminating end of a doubly quantized
vortex line, analogous to the Dirac string, with the corresponding superfluid velocity
profile of the spin texture taking the characteristic form of the vector potential of a
Dirac monopole. As both monopoles and doubly quantised vortices are trivial topological
objects in the spin-1 ferromagnetic phase, the Dirac string prefers to untwine into two
singly charged vortices resulting in the Dirac monopole continuously transforming into a
non-singular spin texture [146]. Dirac monopoles have been experimentally realised using
synthetic gauge fields [78]. Furthermore, it has been experimentally demonstrated that
the ’t Hooft-Polyakov monopole can transform into a Dirac monopole during a transition
between the polar and ferromagnetic phases [79].

The second homotopy group also describes topologically stable non-singular soliton
excitations—excitations without a phase singularity. The spin-1 polar superfluid phase
hosts baby (2D) skyrmions, characterised by a fountain-like texture in the d vector,
where the d vector points upward in the centre of the condensate and downwards at
the boundary. We refer to Fig. 34(c) in Ref. [119] for a schematic representation of this
texture. A similar spin texture can be realised in the spin-1 ferromagnetic phase, where
the phase-spin rotation coupling means non-singular mass current flows can be realised
from spin textures [71, 148–151]. Such non-singular coreless vortices are characterised
by a spin texture where the order parameter transforms from (1, 0, 0)T, at the ‘core’,
to the doubly quantized vortex texture (0, 0, e2iθ)T, at the condensate boundary. For
a schematic representation of the ferromagnetic coreless vortex we refer to Fig. 24(c)
in Ref. [119]. The coreless vortex is similar to the Anderson-Toulouse and Mermin-Ho
vortices in superfluid 3He [152,153]. The coreless vortex is not topologically stable and
is homotopic to the vortex free Ψ(1)

ferro order parameter [154]. Both baby skyrmions and
coreless vortices have been experimentally realised [74,76] using the same techniques as
Ref. [80] to imprint the characteristic nematic or spin texture via a spatially non-uniform
adiabatic rotation of the spins.
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The third homotopy group π3 describes 3D skyrmion and knot solitons. For both the
spin-1 polar and ferromagnetic phases, π3(M) = Z, with topologically stable knots [83]
and 3D Shankar skyrmions [82] experimentally realised in these phases, respectively.

The superfluid phases apparent in spin-2 condensates similarly permit a number
of interesting topological excitations, with coreless vortices [119], fractional circulation
vortices [125] and Shankar skyrmions [155], all predicted by theory but yet to be pursued
in experiment. Furthermore, the spin-2 interaction parameters introduce condensates
with order parameter manifolds characterised by non-Abelian symmetry groups. The first
homotopy group of a non-Abelian symmetry group realises non-commutative topological
charges, with interesting consequences for the topological interactions of such non-Abelian
vortices. In section 2.5, we will describe in detail the fractional vortices of the non-Abelian
cyclic-tetrahedral phase [87,89,125,126] which form the basis of the studies in this thesis.

2.5. Non-Abelian vortices in the cyclic-tetrahedral
phase

The vortices explicitly described in the previous section are examples of Abelian vortices.
When the fundamental group is non-Abelian, i.e. contains some elements that do not
commute under the group operation, the corresponding topological excitations are called
non-Abelian vortices7. Since SO(3) is not simply connected, the topological charges of
spinor vortices are typically characterised in the simply connected covering group SU(2).
Of the possible subgroups of SU(2), the binary dihedral D∗n, binary tetrahedral T ∗, binary
octahedral O∗, and binary icosahedral Y ∗ groups are non-Abelian and correspond to
phases with non-Abelian vortices. Such phases occur for spin-F BECs, for F ≥ 2 [156–161].
Hence, non-Abelian phases are relatively common in spinor condensates.

The spin-2 condensate has two non-Abelian phases, the biaxial nematic and cyclic-
tetrahedral, which can host non-Abelian vortices. In this thesis we focus on non-Abelian
vortices in the cyclic-tetrahedral phase, since for zero external magnetic fields the
biaxial phase and the Abelian uniaxial nematic phase are degenerate. Though, for
the sake of completeness, a description of the vortices in the biaxial nematic phase
is given in Appendix D. A representative cyclic-tetrahedral phase order parameter
is given by Ψcyclic = (i, 0,

√
2, 0, i)T/2. The order-parameter manifold of the cyclic-

7Elsewhere in the literature non-Abelian vortices are defined to occur when; (1) the full symmetry
group G is non-Abelian, or (2) the isotropy group H is non-Abelian.
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tetrahedral phase isMcyc = U(1)× SU(2)/T ∗. Hence, the cyclic-tetrahedral phase order
parameter is invariant under the action of the 24 elements of the isotropy group H = T ∗,
which consists of discrete composite U(1) gauge and SU(2) spin rotations. As Mcyc

is simply connected and H is a discrete group, π1(Mcyc) ∼= T ∗ and each element of
T ∗ corresponds to a topological charge of a distinct vortex. Furthermore, each vortex
is categorised into a vortex type according to its equivalency class—the set of charges
Cl(γ) = {γ′ ∈ H | ∃ g ∈ H with γ = gγ′g−1}. The transformation gγg−1 here is the
equivalency relation or conjugation. There is no unique way to assign each topological
charge in an equivalency class to each vortex in the corresponding vortex type. Each
such assignment is related by an isomorphism corresponding to the the rotation of the
entire equivalency class by the equivalency relation for a group element g ∈ T ∗. As a
result, vortices with different charges in the same equivalency class are indistinguishable
and individual vortices are classified by the equivalency class alone.

For each winding number of the U(1) phase rotation, the cyclic-tetrahedral phase
vortices are categorised in seven equivalency classes I-VII [87,88,125,126]. The vortex
types are: (I) the vacuum state; (II) the integer spin vortex; (III) the half quantum spin
vortex; (IV) and (V) the 1/3 fractional vortices and (VI) and (VII) the 2/3 fractional
vortices. The charges of each class are [87]

(I) {(η, I)}

(II) {(η, −I)}

(III) {(η, iσν), (η, −iσν)}

(IV) {(η + 1/3, σ̃), (η + 1/3, −iσν σ̃)}

(V) {(η + 1/3, −σ̃), (η + 1/3, iσν σ̃)}

(VI) {(η + 2/3, −σ̃2), (η + 2/3, −iσν σ̃2)}

(VII) {(η + 2/3, σ̃2), (η + 2/3, iσν σ̃2)}, (2.28)

where the U(1) component is represented by a winding number η ∈ Z plus a class specific
constant, and the SU(2) part by the spin-1/2 Pauli matrices σν , for ν = x, y, z, and
σ̃ ≡ (I + iσx + iσy + iσz)/2.

We represent each topological charge with a shorthand notation ±Xν
η ≡ (η + aX, g

ν
X).

The X is a Roman numeral corresponding to the class number. The subscript η is the
winding number of the U(1) rotation, which appears in the topological charge along with
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Table 2.1: Explicit order parameters for a representative set of cyclic-tetrahedral phase
vortices. For each vortex, labelled ±Xνη , we provide the corresponding rotation R(θ; ±Xνη),
in terms of an angle θ, which acts on Ψcyclic to generate the order parameter Ψ(r; ±Xν

η ). In
some cases we apply an additional rotation S = exp(i cos−1(1/

√
3)fy) exp(iπfz/4) to obtain a

simpler order parameter structure.

±Xν
η R(θ; ±Xν

η) Ψ(r; ±Xν
η )

I0 I ( i2 , 0,
√

2
2 , 0, i

2)T

−II0 e−iθfz ( i2e
−2iθ, 0,

√
2

2 , 0, i
2e

2iθ)T

IIIz0 e−i
θ
2 fz ( i2e

−iθ, 0,
√

2
2 , 0, i

2e
iθ)T

IV0 S ei
θ
3 e
−i θ3

(fx+fy+fz)√
3 (0,

√
2
3 , 0, 0, 1√

3e
iθ)T

−V0 S ei
θ
3 e
−i 2θ

3
(−fx−fy−fz)√

3 (0,
√

2
3e
iθ, 0, 0, 1√

3e
−iθ)T

−VI0 S e−i
θ
3 e
−i θ3

(−fx−fy−fz)√
3 (0,

√
2
3 , 0, 0, 1√

3e
−iθ)T

VII0 S e−i
θ
3 e
−i θ3

(−fx−fy−fz)√
3 (0,

√
2
3e
−iθ, 0, 0, 1√

3e
iθ)T

a class specific constant aX. The superscript ν defines the axis of the σν Pauli matrix
generator of the class specific SU(2) rotation gνX, while the sign in gνX is determined
explicitly by the sign of the label. Example labels for the cyclic-tetrahedral phase vortices
are IIIx0 = (0, iσx), IV0 = (1/3, σ̃) and -VIx−1 = (−1/3, −iσxσ̃2). By the decomposition
of the spin rotation gXν = 1 cos(ΘX/2) + i(ω · σ) sin(ΘX/2), the charges can be mapped
onto the R transformations, written in the form R = eiφe−iΘω·F, where Θ is a spin rotation
angle about an axis ω and F is the spin density vector, as R(±Xν

η) = ei2π(η+aX) e−if·ωΘX .

The 24 lowest energy vortices, as fixed by the U(1) winding number, are represented
in Fig. 2.4 using the spherical harmonic decomposition of the order parameter to display
their characteristic rotations. In Table. 2.1, we provide explicit order parameters for a
representative set of these 24 vortices. For these order parameters we can characterise
the vortex core structures which are either |A| 6= 0, classes (II)-(III), or |Fz| 6= 0, classes
(IV)-(VII). Although, in general, the core structure will depend on the values of the spin
interaction parameters.
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Figure 2.4: Order parameter transformations of the lowest energy cyclic-tetrahedral phase
vortices. For each vortex, the cyclic-tetrahedral phase order parameter is discretely sample
at multiple points along a path enclosing the vortex core and represented using the spherical
harmonic decomposition. Order parameter traverses left (right) to right (left) for labels on the
left (right). The background colour of the vortex labels denotes the equivalency classes. See
Appendix B for a view of the rotations down the axis of the sequence.
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The interest in non-Abelian vortices stems from their non-commuting topological
charges. The composition of two charges is given by the group operation (±Xα

η )(±Yβ
ν ) =

(η + aX + ν + aY, g
α
Xg

β
Y), which homotopically is equivalent to successively traversing the

paths ΨX(ΓX) and ΨY(ΓY) enclosing each vortex. We can see the non-commutativity
for example with (−IVx

0) (−VIz0) = (IIIz0) which when reversed gives (−VIz0) (−IVx
0) =

(−IIIx0). Physically, the non-Abelian algebra results in novel non-trivial topological
interactions when vortices collide or are braided around each other. These interactions
have fascinating implications for new types of quantum turbulence and topological
quantum information processing and storage, concepts which we will explore further in
the following sections and chapters.

2.6. Vortex collision dynamics

Vortices in an infinite uniform superfluid move with the local superfluid velocity8. Thus,
the motion of the vortices is driven by the interactions between their mutual velocity
fields. In the vortex filament model, the dynamics of Nv infinitely thin vortex lines are
determined from the superfluid velocity field calculated from the Biot–Savart expression

v (r) = ω

4π

Nv∑
i

∫
Li

(r− r′)× dr′

|r− r′|3
, (2.29)

which consists of an integral over the points r′ on each vortex line Li in the system.
As the vortex line is free to contort away from the axially aligned orientation, the
velocity field also accounts for the complicated self-interactions of the vortex lines. Such
self-interactions may excite Kelvin waves [163], helical waves which propagate along the
vortex line with a frequency given by the dispersion relation [164]

ω(k) ≈ ~k2

2M log
(

1
|kξ|

)
, (2.30)

where k = 2π/λ is the wavenumber for a wavelength λ. During their motion, two vortices
may collide and interact in a manner which can alter the local topology of the system.
Compared with the GPE, topology is not modelled in the vortex filament model and
vortex collisions must be inserted by hand into the dynamics encompassed by Eq. (2.29).

8In non-uniform or finite systems the motion of the vortices is additionally affected by any boundaries
or density gradients in the system. [162]
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(a)

(b)

(c)

t

Figure 2.5: Results of numerical GPE experiments detailing the different collision dynamics
of cyclic-tetrahedral phase spinor vortex lines. (a) Reconnection event. The direction of the
circulation of each vortex is given by the arrows. The dotted circle denotes a local cancellation
of the circulation. (b) Rung formation event. The cyan and magenta dots mark the locations
of the two non-Abelian vortices. The red structure is the rung vortex. (c) Pass through event.
Data is presented as isosurfaces of |Fz|2 (blue surface) and |A|2 (red surface) which trace the
vortex cores.

A collision may result in one of three outcomes; a reconnection; the formation of a
rung vortex; or a pass through, depending on the topology and kinematics of the vortex
lines. In Fig. 2.5 we show the results of numerical GPE simulations detailing each of
these collision events for fractional-charge vortex lines in the cyclic-tetrahedral superfluid
phase of a uniform spin-2 condensate.

For scalar vortices, the dominant collision event is a reconnection [92,93], an example
of which is shown in Fig. 2.5(a). During a reconnection two segments of vortex line, with
opposing circulations, approach and connect at a cusp which annihilates by exchanging
the tails of each vortex. The energy released during the collision excites Kelvin waves
and the emission of sound in the form of density waves [100]. Vortex reconnections and
Kelvin waves have been directly observed experimentally in superfluid Helium [49,50]
and more recently in a trapped BEC [165,166].
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Figure 2.6: Schematic of collision dynamics of three-dimensional vortex lines. Left: Initial
state of vortex lines, with charges γ1 and γ2, intersecting a two-dimensional condensate plane,
grey-shaded disk, which intersects the collision cusp. Top and bottom rows correspond to the
two vortex collision geometries. Middle top: Vortices collide to form a rung vortex γ2γ1. Right
top: When γ2 = γ−1

1 the rung annihilates and a reconnection occurs. Middle bottom: The γ2
vortex line bends such that the collision forms the rung γ1γ

−1
2 . Right bottom: When γ2 = γ1

the rung annihilates and a reconnection occurs.

In general the collision outcome is constrained to preserve the total topological charge
of the two vortices at the collision cusp, equivalent to the group operation of their
individual charges. Hence, the collision outcomes are highly dependent on the algebra
of the vortex charges. However, certain topologically permitted interactions may be
energetically suppressed by the kinematics of the vortices. For the scalar vortices with
π1(S1) = Z, the topological charges are integers and the group operation is addition. As
the charges commute under addition the scalar vortices are Abelian. A scalar vortex pair,
axially aligned with the z axis, collides such that the topological charge of the cusp is γ2γ1,
see top row of schematic in Fig. 2.6. In the reconnection described above, the vortices
have opposite circulation and the charge of the cusp is trivial γ2γ1 = γ1γ

−1
1 = 1 +−1 = 0.

In comparison, for a vortex-vortex pair the charges add, γ2γ1 = γ1γ1 = 1 + 1 = 2. As a
result, the vortices would coalesce into a multiply charged rung vortex, which is drawn
out as a bridge between the colliding vortices [55, 167]. However, while rung formation is
topologically permitted for scalar vortices, the Coulomb-like repulsive interaction between
the mutual velocity field of the vortices induces an energetic barrier which inhibits a
collision. Instead, at low collision velocities, the vortices prefer to locally re-orientate so
that their initially parallel circulations become anti-aligned, see bottom row in Fig. 2.6.
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Figure 2.7: Schematic of pass through of Abelian vortex lines.

As such, the charge at the collision cusp becomes γ1γ
−1
2 = γ1γ

−1
1 = 1 + −1, and a

reconnection occurs instead.

For the cyclic-tetrahedral phase, and other non-Abelian phases, we may have vortex
pairs with either commuting or non-commuting topological charges. The algebra of the
charges has a marked effect on the possible collision dynamics. Abelian vortex pairs have
similar collision dynamics to the scalar vortices. A collision of a vortex with its antivortex
results in a reconnection. Similarly, for vortices with same charge, a reconnection will
preferentially occur following a local reorientation of the vortex lines. Unlike the scalar
vortices, it is also energetically possible for Abelian spinor vortices to pass directly
through each other without any apparent interaction. Pass through is only possible
for Abelian vortices as the topology, in terms of the total topological charge, does not
change throughout the collision, see Fig. 2.7. Under unusual energetic circumstances,
a rung might form during a collision of Abelian vortices. Comparatively, non-Abelian
vortex pairs are topologically constrained to only undergo rung formation [88, 91], as the
algebra of the vortex charges cannot be altered by rotations of the constituent vortex
lines. The rung formed from the collision may have charge γ2γ1 or γ1γ

−1
2 , depending on

the geometry of the collision, see top and bottom rows of Fig. 2.6, respectively.

In this thesis we focus on the topological interactions of 2D vortices. Two-dimensional
condensates may be achieved experimentally by tightly confining the condensate along
one axis. As a result the dynamics of the vortex line are constrained and vortices
behave effectively as point-like objects [168], with their collision dynamics changing
accordingly. In Chapter 4 we will thoroughly explore the collision dynamics of vortices in
two-dimensional condensates and present our results for the collisions of two-dimensional
fractional-charge vortices in the cyclic-tetrahedral phase of a spin-2 BEC.

In the following Chapters we will tease out the important role vortex collisions play
in quantum turbulence and how they act as a signifying property of non-Abelian vortex
anyons.
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2.7. Topological influence

There exists a long range topological interaction between non-Abelian vortices in the
form of a topological influence, the effect of which is a change in the topological charges
of adiabatically exchanged (braided) vortices [42, 98]. The topological influence depends
only on topology and has been previously explored for topological excitations in a variety
of condensed matter systems [169] including liquid crystals [170], cosmic strings [134]
and discrete gauge theories [44,45].

Consider two vortices with topological charges γ1 and γ2, defined according to the
loops in the top row of Fig. 2.8(a). By convention we will choose to measure the
topological charges by traversing the paths counter-clockwise (traversing clockwise would
correspond to the inverse charge). The total topological charge, obtained from the
path enclosing both vortices, is initially γtot = γ2γ1. Smoothly exchanging (braiding) γ1

γtot = γ2 γ1

⇐
⇒

γtot = γ2 γ1

ba

γ1 = γtotγ
−1
2

Figure 2.8: Topological influence of non-Abelian vortices. a, Counter-clockwise exchange of
two vortices, denoted by the blue and yellow circles, respectively. Each loop defines a charge.
All such loops begin at a base point, denoted by the black circular marker, and encircle either
a vortex or vortices in a counter-clockwise sense. Prior to the exchange the blue and yellow
vortices have charges γ1 and γ2, respectively. The loop around both vortices defines the total
charge γtot = γ2γ1. After the exchange the blue vortex has a new charge γ′1. b, The path
corresponding to the flux γ′1, top row, can be decomposed into the combined paths γ′1 = γtotγ

−1
2 ,

in the bottom row.
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anticlockwise about γ2, resulting in the configuration in the bottom row of Fig. 2.8(a),
enacts a topological influence which changes the charge γ1 to γ′1 while preserving γ2. In
a BEC the total topological charge is conserved, implying γtot = γ2γ1 = γ′1γ2. Hence,
γ1 transforms to γ′1 = γtotγ

−1
2 = γ2γ1γ

−1
2 corresponding to the path in Fig. 2.8(b). This

transformation is called a conjugation of γ1 by γ2. In total, the mutual topological
influence during a counter-clockwise elementary braid (exchange of a pair) of vortices
(γ1, γ2) converts the charges to (γ2, γ2γ1γ

−1
2 ). If γ1 and γ2 do not commute, this mapping

permutes the charge of the second vortex within its associated equivalency class according
to the equivalency relation. The topological influence also depends on the direction
in which the vortices are exchanged. Hence, the clockwise exchange realises the map
(γ1, γ2)→ (γ−1

1 γ2γ1, γ1). The topological influence really occurs as soon as the spatial
order of the vortices is reversed. This corresponds to the point in the braid when each
vortex crosses over an imaginary line extending vertically from its counterpart.

In Chapter 5, we perform numerical experiments to braid non-Abelian vortices and
demonstrate the non-trivial topological influence. We will see that the topological influ-
ence and collision dynamics of non-Abelian vortices provide the essential characteristics
of non-Abelian anyons.

2.8. Non-Abelian anyons

All elementary particles are classified by their quantum statistics as either bosons or
fermions. However, the quantum statistics of particles in a system constrained to two
spatial dimensions are notably different. Consider twice braiding two such particles,
corresponding to winding one particle about another and returning the particle to its
starting point. In 3D, this path can be lifted over the other particle and contracted
to a point, see Fig. 2.1. Comparatively, As shown in Fig. 2.9, in 2D this path can not
be smoothly deformed to a point without passing through the other particle. Hence,
after the exchange, the two-particle system does not necessarily return to the same
state, as occurs in 3D. In the simplest case, the system’s wave function is multiplied by
an arbitrary geometric phase factor, eiθ, which is not restricted to the specific values
corresponding to bosons (θ = 0) or fermions (θ = π). These particle-like excitations are
called anyons and are neither bosons or fermions. Anyons were first predicted to emerge
in certain two-dimensional materials by Leinaas and Myrheim [26] and Wilczek [27].
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Figure 2.9: Two elementary particles (blue spheres) are adiabatically exchanged twice in
two spatial dimensions. The exchange path can not be smoothly deformed to a single point
demonstrating the topologically non-trivial nature of exchanges in two dimensions.

The interesting physics of anyons are realised by braiding and subsequently fusing N
particles [25,31,33,171,172]. We shall imagine the particles arranged on a line. Exchanging
anyons can be pictured as a braid of their (2+1) dimensional space-time/world lines.
Group theoretically, such braids correspond to the elements of the braid group BN acting
on N lines. In general, the elementary counter-clockwise exchange of the ith and (i+ 1)th
line is denoted by the group element σi, while its inverse σ−1

i corresponds to a clockwise
exchange. In the case of B3, acting on three lines, the elementary braids are shown
in the braid diagrams in Fig. 2.10(a). A product of elementary braids is given by the
concatenation of the corresponding braid diagrams with the first element in the product
at the bottom and subsequent terms added on top, see Fig. 2.10(b). For the simplest
anyons each braid contributes a phase to the many-particle wave function. As the phases
commute, these are denoted Abelian anyons and the order of the braiding operations is
unimportant. There are also non-Abelian anyons characterised by non-Abelian braiding
statistics where the exchange phase may be expressed as a non-commutative matrix,
specifically a unitary operator, see Fig. 2.10(b). A particular state of N non-Abelian
anyons is just one element of a Hilbert space of degenerate ground states. The unitary
operator realised by the braiding may transform between these degenerate states. In
fact, at low energies the states are topologically protected such that braiding is the only
means to transform between different elements of the Hilbert space.

An anyon model has three essential aspects; (1) a list of particle types; (2) a set of
fusion rules that determine the types of particles formed after bringing together two such
particles; and (3) braiding rules that describe the effect of exchanging the positions of two
particles. As a way of example, let us consider the Fibonacci anyon model [31, 171–173],
one of the simplest and richest non-Abelian anyon models. The Fibonacci anyon model
contains two particles; the vacuum 1 and a particle τ . When two particles in a model are
brought together they may form a composite particle corresponding to another anyon
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1Figure 2.10: Braid diagram representation of the group B3. (a) The elementary braids σ1, σ2
and their inverses acting on the space-time world lines of three anyons. The arrowheads denote
the direction of time. (b) Concatenation of elementary braids to form a longer braid diagram.
For non-Abelian anyons the result of the braid is order dependent.

type in the model. The result of fusing two anyons, with labels a and b, is given by a
fusion rule,

a⊗ b =
∑
c

N c
ab c, (2.31)

where the sum is over the anyon labels of all possible fusion outcomes. Here, the symbol
⊗ simply refers to a composition of anyons rather than a direct product of vector spaces.
Similarly, the sum can be expanded using ⊕ symbols to give the explicit label set of
the anyons formed from the fusion. The fusion rules are symmetric. i.e. a⊗ b = b⊗ a.
The multiplicity, N c

ab, states how many distinguishable ways a particular c anyon can be
formed from the fusion of a and b anyons. For Abelian anyons, the fusion may result in
a single outcome with multiplicity N c

ab = 1. Comparatively, non-Abelian anyons have
multiple fusion channels. A fusion may result in either multiple different c particles, each
with multiplicities N c

ab 6= 0, or in a single particle formed N c
ab ≥ 2 different ways. For the

Fibonacci model, the vacuum is Abelian with fusion rules 1⊗ 1 = 1 and 1⊗ τ = τ . The
non-Abelian anyon is τ , with fusion rule τ ⊗ τ = 1⊕ τ . Hence, τ is its own antiparticle.
The N c

ab distinguishable ways that an anyon c can be formed from the fusion of anyons a
and b can be considered as orthornormal basis states of a Hilbert space V c

ab. The Hilbert
space is alternatively called the fusion space and we shall denote the basis states as fusion
paths.

The multiple fusion outcomes of a pair of non-Abelian anyons accounts for the
different degenerate ground states of N such particles. Consider the N anyons with labels
a1, a2, a3, . . . , an arranged in a line. The anyons are successively fused from left to right,
where a3 fuses with the outcome of fusing a1 and a2, and so on down the line. As each
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fusion has multiple different outcomes, the result is a branching tree of multiple different
fusion paths. The associated fusion space is

V c
a1a2a3...an =

⊕
b1,b2,b3,...bN−2

V b1
a1a2 ⊗ V

b2
b1a3 ⊗ V

b3
b2a4 ⊗ · · · ⊗ V

c
bn−2an , (2.32)

where ⊕ is a sum over all the different fusion outcomes. The dimension of the fusion
space,

Dim(V c
a1a2a3...an) =

∑
b1,b2,b3,...bn−2

N b1
a1a2N

b2
b1a3N

b3
b2a4 . . . N

c
bn−2an ∝ dN

a , (2.33)

grows exponentially with N, the number of anyons. The growth in the dimension of the
fusion space as new anyons are added to the system is the determined by the quantum
dimension da of the a anyon. The quantum dimension can be shown to satisfy the relation

dadb =
∑
c

N c
abdc, (2.34)

derived from the fusion rule in Eq. (2.31). Similarly, the quantum dimension is closely
linked with the probability of the different fusion outcomes. The probability of anyons a
and b fusing to c is given by

Pr(ab→ c) = N c
abdc
dadb

. (2.35)

In Fig. 2.11 we provide the fusion tree diagram for the fusion of N τ Fibonacci anyons.
The 1st anyon on the left is fused with its neighbour, leading to two possible outcomes -
annihilation to the vacuum or another τ anyon, with respective probabilities of ≈ 0.38
and ≈ 0.62. The process then continues, with the next leftmost τ anyon, fusing with
either the 1 or τ anyons, and so on. The number of paths from the fusion of N τ

anyons, Nn = Dim(V c
τn), follows the Fibonacci series, as per the name, with the recursion

relation Nn = Nn−1 +Nn−2. Thus the dimension of the Hilbert space grows as Nn ∝ ϕN ,
where the quantum dimension dτ = ϕ is the golden ratio ϕ = (1 +

√
5)/2. This can

also be calculated directly from the relation d2
τ = d1 + dτ , derived from Eq. (2.34).

Braiding anyons in the configuration enacts a unitary operator on the Hilbert space,
transforming between the different fusion paths. The braiding rules are determined from
the F and R-matrices. These matrices define sets of transformations which describe
isomorphisms between fusion spaces. The F , or fusion, matrix relates fusion spaces
V c
a1a2a3

∼=
⊕
b V

b
a1a2V

c
ba3
∼=
⊕
e V

e
a2a3V

c
ea1 , where the order in which the anyons are fused
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Figure 2.11: Fusion tree diagram of the Fibonacci anyon model. Top: The sequence of τ
anyons to be fused. Middle: The tree of fusion paths up to the 4th τ anyon. We also provide
the probabilities for the outcomes of the τ ⊗ τ and 1 ⊗ τ fusion rules. Bottom: Number of
fusion paths Nn after the fusion of the nth anyon. The numbers follow the Fibonacci recursion
relation.

is changed, introducing different intermediate fusion outcomes. Similarly, the R, or
braid, matrix allows us to transform between fusion spaces related by the exchange
operator B : V c

ab → V c
ba. The R and F -matrices are fixed by consistency relations called

the pentagon and hexagon equations. The details of how to solve the relations for the
Fibonacci anyon models can be found in Refs. [31, 171,173]. The R-matrix describing
the exchange of two τ anyons is,

Rττ =

e4πi/5 0

0 −e2πi/5

 , (2.36)

where the terms R1
ττ = e4πi/5 and Rτ

ττ = −e−2πi/5 are the phase accumulate after the
exchange of two τ anyons fusing to 1 and τ , respectively. The F -matrix, F τ

τττ , given by

F τ
τττ =

 ϕ−1 ϕ−1/2

ϕ−1/2 −ϕ−1

 , (2.37)

transforms between the two fusion spaces corresponding to the two different ways three
τ anyons can be fused to τ .

How anyons fuse when brought together depends on the history of their paths prior
to the fusion. Encoding information in the non-local fusion properties of non-Abelian
anyons forms a tantalising prospect for realisation of a fault-tolerant universal quantum
computer [28,29].
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2.9. Topological quantum computing

The path to topological quantum computing advances concurrently with research on
non-Abelian anyons. The procedure for quantum computing involves three steps [9]; (1)
initialise the computer in a known state |Ψi〉 of the systems Hilbert space; (2) evolve
the system according to some unitary operator which obtains the desired final state
|Ψf〉 = U(t)|Ψi〉; (3) read the output of the computer by making a measurement of the
final state. Repeating this procedure a great many times builds a statistical solution to
the problem. The typical elementary building blocks of a quantum computer are qubits
based on ‘two-level’ systems, i.e. systems described by a two dimensional Hilbert space.
While classical bits in a digital computer are either 0’s or 1’s, a qubit can be in the
state zero |0〉 or |1〉, or one of infinitely many superposition states α|0〉 + β|1〉, where
α, β ∈ C. A system of N qubits is described by a Hilbert space with 2N basis vectors,
each which is a possible computational state of the computer. Through unitary evolution
these computational states can superposed or entangled, equivalent to a quantum state
which can not be expressed as a product of the qubit states. Entangled qubits must
be considered apart of an inseparable whole, such that measuring the state of one
qubit determines the state of all others. The capacity to realise superposition and
entangled states in a quantum computer is the resource that promises the potential for
computational power beyond the reach of digital computers.

Qubits have been realised in a variety of systems, including trapped ions [18–20], spins
in silicon atoms [21] and superconducting circuits [22]. While progress has been made
towards realising quantum supremacy9 in these systems [175–179], they remain sensitive
to the accumulation of errors. For example, errors can occur in the information storage
of a quantum computer through decoherence, which causes entanglement between the
state of the computer and its environment. Since the state of the environment cannot be
measured accurately, information of the system is lost. While error correction can be
performed [173,180,181], it becomes computationally costly.

An intrinsically fault-tolerant quantum computer could be built from topological qubits
based on configurations of non-Abelian anyons in a spatially 2D system [25,29,33,182].
In these topological quantum computers, information is encoded non-locally in the
topological properties of the system, namely the fusion outcomes of the anyons. The
associated Hilbert space grows exponentially with increasing number of anyons, see

9Quantum supremacy refers to a demonstrated speed up of some quantum algorithm relative to a
digital computer [174].
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Figure 2.12: A schematic of a topological quantum computation. Time flows up the page. The
computer is initialised by pair creating anyons (black dots) from the vacuum, represented as the
cusps in the anyon worldlines. The anyons are labelled ai, where a denotes the type, i the pair
number counting from left to right, and a is an antiparticle. The anyon a2 is trivially braided
with the pair a3, a3 to form the initial state |Ψi〉 configured as two |0〉 qubits of three anyons
each. A unitary operation U is applied to the initial state as a braid in the anyon worldlines,
producing the final state |Ψf 〉 = U |Ψi〉. The knot tied in the worldlines physically ‘entangles’
the two qubits. The final state is measured by fusing the anyons giving the superposition
(α1|0〉+ β1|1〉)⊗ (α2|0〉+ β2|1〉).

Eq. (2.33), permitting a great number of computational states which can be entangled.
To unitarily evolve between states in the Hilbert space requires a non-local transformation
to the system realised by braiding the anyons. Therefore, the state of a topological
quantum computer is topologically protected from the types of local perturbations to
the system that result in decoherence in non-topological quantum computers.

The procedure for performing topological quantum computations is shown in the
schematic Fig. 2.12. The configuration of particles {a1, a1, a2, a2, a3, a3}, where a is
the antiparticle of the anyon type a, is initialised via pair creation and arranged into
|0〉 qubits, forming the initial state |Ψi〉. A unitary operation U , which realises the final
state |Ψf〉 = U |Ψi〉, is performed by dragging the anyons around each other to braid a
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topologically non-trivial knot in their worldlines. Since the unitary operation depends
only on the topology of the knot, which is contained entirely in the crossings, the outcome
of the braid is insensitive to any small wiggles in the paths. Strictly speaking, the braid is
an approximation to the desired unitary operation with the accuracy typically increasing
for variants containing more elementary braids [183,184]. Finally, a measurement of the
state is made by dragging the anyons together and fusing them.

Errors may still arise in a topological quantum computer in the form of processes
which alter the topology of the knot representing the unitary operation [25]. For example,
if two of the initialised anyons stray too close they may fuse, effectively cutting the knot.
Furthermore, thermal fluctuations may result in the pair creation of spurious anyons, so
called quasiparticle poisoning [32]. If one of the spurious anyons braids with an initialised
anyon and then re-fuses with its pair, the effect is to entwine the unitary knot with the
knot formed from the worldlines of the spurious anyons, thereby creating a topologically
non-trivial link10.

Not all anyon models are suitable for topological quantum computing. A universal
topological quantum computer is realised for anyon models where the braiding statistics
are such that any unitary operation can be approximated with arbitrary accuracy with
braiding alone [25,185–187]. This implies a minimum set of unitary operations from which
any other may be generated, for example the set might be, collectively, the single qubit
braids and a two-qubit braid like the controlled-NOT (CNOT) operation. A sequence of
braids that approximates the CNOT operation has been demonstrated for the Fibonacci
anyon model [183, 188, 189], and thus the Fibonacci anyons are capable of universal
topological quantum computing.

As a concrete example let us consider topological quantum computing with Fibonacci
anyons. The fusion space, V τ

τττ , has dimension Dim(V τ
τττ ) = 2 corresponding to the

two fusion paths ending in τ after fusing three τ anyons in Fig. 2.11. Hence, a qubit
can be constructed from three τ anyons, where the two states are |0〉 = |((•, •)1, •)τ 〉
and |1〉 = |((•, •)τ , •)τ 〉. The notation represents the fusion path of the τ anyons,
labelled by the circular markers, with the outcome of fusing the anyons that are enclosed
by the parentheses denoted by the adjacent subscript. The remaining fusion path
|N〉 = |((•, •)τ , •)1〉, is a non-computational state which is unreachable from any of the
computational states by only braiding the three anyons. Braids on a single qubit are

10A link is formed from entwined but non-intersecting knots, for example the Olympic rings.
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given by the elements of the braid group B3

ρ(σ1) = Rτ
ττ =

e4πi/5 0

0 −e2πi/5

 ,

ρ(σ2) = (F τ
τττ )

−1Rτ
ττF

τ
τττ =

−e−πi/5 − e−πi/10
√
ϕ

− e−πi/10
√
ϕ

− 1
ϕ

 , (2.38)

where we have used Eq. (2.36)-(2.37) and omitted the action of the braid on the state
|N〉 to obtain the 2× 2 matrices. Braiding on two qubits introduces a further error
in the form of ‘leakage’ into the non-computational states, i.e. a braid can result in a
superposition α|0〉+ β|1〉+ γ|N〉. However, it is possible to design braids such that the
leakage is minimised.

The inherent topological protection offered by non-Abelian anyons makes topological
quantum computers a very appealing platform for topological information storage and
processing. As such non-Abelian anyons are in great demand and are being intensively
searched for. In Chapter 5, we present results indicating the potential existence of
non-Abelian anyons in the form of non-Abelian vortex types in spinor Bose–Einstein
condensates. Furthermore, we outline a possible qubit for the non-Abelian anyons and
numerically perform controlled unitary operations on one- and two-qubit states.



Chapter 3.

Numerical implementation

In the previous chapter, we provided the theory framework for understanding non-
Abelian vortices in spin-2 Bose–Einstein condensates. Here we discuss the computational
practicalities for numerically simulating a two-dimensional spin-2 BEC in the cyclic-
tetrahedral superfluid phase. Where practical, our simulations are informed by experiment.
Spin-2 BECs have thus far been experimentally realised using 87Rb atoms, as such our
numerical condensate parameters are based on the 87Rb atom. The scattering lengths of
87Rb have been measured as a0 = 87.4± 1.0aB, a2 = 92.4± 1.0aB and a4 = 100.5± 1.0aB

[190–192], in units of the Bohr radius aB. These values suggest that the condensate lies
in the nematic phase, though sufficiently close to the phase boundary that uncertainties
do not preclude the experimental realisation of the cyclic-tetrahedral phase but likely
only in the presence of vanishing external magnetic fields. Another possible F = 2
atomic species is 23Na with a0 = 34.9± 1.0aB, a2 = 45.8± 1.1aB and a4 = 64.5± 1.3aB,
which also naturally supports the nematic phase [193]. While Feshbach resonances
can be used to alter the value of the spin-independent coupling constant c0, similar
techniques to tune c1 and c2 have not yet been experimentally demonstrated. Thus,
present experiments with spinor condensates are limited to superfluid phases accessible in
the presence of background magnetic field noise and with the natural scattering lengths
of available atomic species. However, it would be pessimistic to assume that techniques
to tune c1 and c2 could not be realised in the future. Indeed, Spielman et al. [194]
recently numerically demonstrated the dynamic alteration of the effective interaction
strengths of a two-component condensate via weak measurements and their feedback.
The measurements do not alter the raw scattering lengths of the condensate but can
stabilise spin textures in the system relative to an effective tuned c1 coupling constant. In
this work our focus is on studying the new physics around non-Abelian vortices in spinor
condensates. As such, we do not aim to model contemporary experiments. Thus, in our

43
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numerical simulations we are free to choose larger c1 and c2 coupling constants which
reveal the non-trivial topological properties of non-Abelian superfluid phases, values which
may well accord with the parameters available to future experiments. These coupling
constants are a theoretically justified choice to ensure that the condensate is deep in the
cyclic-tetrahedral phase, hence isolating topological effects of the vortex dynamics from
their energetics. Furthermore, the small spin healing lengths associated with this choice
of coupling constants allows us to simulate smaller systems with higher resolution. The
biaxial nematic phase also hosts non-Abelian vortices and is perhaps a better prospect
experimentally, since it may be realised in the presence of an external magnetic field and
could potentially be achieved with naturally occurring scattering lengths [91]. However,
as the non-Abelian physics is equivalent in both the cyclic-tetrahedral and biaxial nematic
phases, we choose to simulate the former phase which does not require increasing the
parameter space to account for different external magnetic field strengths.

Using optical potentials it is possible to experimentally realise arbitrary trap geometries
[68,195]. Two dimensional BEC systems are typically achieved in experiments by trapping
a three-dimensional gas in a harmonic potential which is tightly confined along one axis,
realising a quasi-two-dimensional condensate geometry. However, numerically simulating
all three spatial dimensions of a quasi-two-dimensional condensate is computationally
burdensome.As we are not aiming for exact quantitative correspondence between our
simulations and experiments, we can completely ignore the third spatial dimension and
instead simulate a true two-dimensional condensate.

Depending on the algebra of the vortices there are multiple techniques that can be
employed to generate fractional-charge vortices in the cyclic-tetrahedral superfluid phase.
Huhtamäki et al. [196] have shown numerically that a number of the techniques employed
for generating vortices in scalar and two-component condensates, can be extended to spin-
2 condensates to generate single 1/3 fractional vortices or corresponding lattices where all
the topological charges commute. These techniques include rotating the trap [197–200],
imprinting the vortex phase using Laguerre-Gauss beams [201] and using pulsed microwave
and laser fields to transform the population between the spin components [202]. Further
to these techniques, in Chapter 6 we demonstrate the controllable generation of lattices of
Abelian cyclic-tetrahedral phase vortices via the three-source interference of spin-2 BECs.
Imprinting vortices with non-commuting topological charges is more complicated. Borgh
et al. [91] describe a two-step procedure for imprinting vortex pairs with non-commuting
charges. The first vortex is prepared by phase imprinting, then a magnetic field is
applied changing the spinor to align with the axis of rotation of the second, which is then
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subsequently imprinted. In Sec. 3.2, we describe the numerical procedures employed to
create initial states of vortex configurations with either commuting or non-commuting
topological charges. These procedures are similar in principle to vortex phase imprinting
using Laguerre-Gauss beams.

3.1. Gross–Pitaevskii equation for spin-2
Bose–Einstein condensate

The numerical experiments are performed by solving the Gross–Pitaevskii equations, in
Eq. (2.17), in non-dimensional form. Simple harmonic oscillator units are used for the
numerical calculations

t→ τ

ω
, r → ρl, E → ε ~ω,

where τ and ρ are the dimensionless time and space co-ordinates, respectively, and ε is
the dimensionless energy. The angular frequency is given by ω and l =

√
~/2Mω. The

dimensionless operators for a two-dimensional system are thus

ψm →
φm
l
,

∇2(r)→ ∇
2(ρ)
l2

,

∂

∂t
→ ω

∂

∂τ
.

The focus of this thesis is two-dimensional condensates. In particular we shall consider
pure 2D systems, rather than strictly 3D condensates which have been tightly confined in
one dimension. To model a 2D condensate we have to replace the 3D scattering lengths
with effective 2D equivalents, the procedure for doing so is described in detail in Ref. [203].
The scattering lengths are reduced in dimension by assuming a condensate in a tight 3D
harmonic trap, such that the order parameter is separable as ψ(x, y, z) = ψ⊥(x, y)ψz(z).
The z-component is then treated independently and described by a wave function with a
Gaussian profile and characteristic length scale lz =

√
~/2Mωz, where ωz is the angular

frequency of the harmonic trap in the z-direction. Integrating over the z-direction
yields the dimensionless effective 2D scattering lengths aF → αF l

lz
. Substituting all the

dimensionless quantities into the GPE in Eq. (2.17) we obtain two-dimensional spin-2
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Gross–Pitaevskii equations

i
∂φ± 2

∂τ
=
(
−∇2(ρ) + Vext(ρ, τ) + c′0n

′± 2c′1F ′z
)
φ± 2

+ c′1F
′
±φ± 1 + c′2√

5
A′φ∗∓ 2,

i
∂φ± 1

∂τ
=
(
−∇2(ρ) + Vext(ρ, τ) + c′0n

′± c′1F ′z
)
φ± 1

+ c′1

(√
6

2 F ′∓φ0 + F ′±φ± 2

)
− c′2√

5
A′φ∗∓ 1,

i
∂φ0

∂τ
=
(
−∇2(ρ) + Vext(ρ, τ) + c′0n

′
)
φ0

+ c′1

√
6

2
(
F ′+φ1 + F ′−φ−1

)
+ c′2√

5
A′φ∗0, (3.1)

where we have used the prime notation to denote dimensionless constants and observables.
The dimensionless effective coupling constants are c′0 = 8πN

√
ωz/ω(4α2 + 3α4)/7, c′1 =

8πN
√
ωz/ω(α4 − α2)/7 and c′2 = 8πN

√
ωz/ω(7α0 − 10α2 + 3α4)/7, where we have

combined N , the effective particle number, into the interaction strengths. As discussed
in the introduction to this chapter, we simulate a condensate of 87Rb atoms. However,
following Kobayashi et al. [88], we choose c1 = c2 = 0.5 c0 in comparison to the typical
87Rb values of c1 ' 0.0103 c0 and c2 ' −0.0055 c0 [192]. The natural spin interaction
strengths of 87Rb place the ground state within the antiferromagnetic superfluid phase,
though close to the border with the cyclic-tetrahedral superfluid phase. By choosing
the amplified spin interaction strengths we assure that the condensate is unambiguously
within the cyclic-tetrahedral phase and correspondingly that the non-Abelian topology is
protected from energetic perturbations. All results presented in this thesis employ these
coupling constants.

There are many numerical schemes which can be implemented to model the evolution
of the GPE. Here we employ the XMDS2 [204] software package, which implements a
number of these schemes with high speed, mature code. Additionally, XMDS2 supports
easy paralellisation, allowing us to execute the code on a computer cluster. From the
many available options, we implement the fourth order adaptive Runge–Kutta algorithm
in the interaction picture. Being adaptive this algorithm provides improved resolution in
highly dynamic periods, which is important when studying vortex dynamics. Meanwhile,
the Laplacian operator in the GPE can be evaluated using a Fourier-operator method.
Hence, to enable the most efficient operation of the fast Fourier transform, we use
numerical grids with 2n× 2n grid points, where n is a positive integer.
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In general, the simulations begin from an initial state that we generate using the
methods discussed in Sec. 3.2. To anneal towards the ground state, with trapping
potential applied, we evolve the system in imaginary time by applying a Wick rotation,
τ → −iτ , to the GPE in Eq. (3.1) [205]. The wick rotation transforms the unitary
operator as exp(−iĤt/h) → exp(−Ĥt/h). The action of the resultant operator is to
cause an exponential decay of the energy of the system, with the high energy modes
decaying faster than the low energy counterparts. As a result, evolving in imaginary
time drives the system towards the local energy minimum. However, in the process the
norm decays and thus the order parameter needs to be re-normalised at each time-step.

3.2. Preparation of initial states with non-Abelian
vortices

A two-dimensional scalar vortex order parameter is represented, after a Madelung
transformation, as

Ψ(x, y) =
√
n(x, y)eiθ(x, y), (3.2)

where x and y are Cartesian co-ordinates, n(x, y) the density profile and θ(x, y) the
phase. Ignoring the density profile, the characteristic phase winding of a scalar vortex
is encapsulated in the representation φ(x, y) = (x + iy)/

√
x2 + y2 = eiθ(x, y), where

θ(x, y) = arctan(y/x) is the polar angle. Numerically, N scalar vortex phase windings,
with winding number ωj and position (xj, yj), can be imprinted into a wave function
Φ(x, y) by taking a product of φ(x, y) representations,

Φ(x, y) =
N∏
j=1

exp [iωjθj(x, y)], (3.3)

where θj(x, y) = arctan[(y − yj)/(x − xj)]. Evolving the state for a short period of
wick-rotated time deforms the non-physical constant density profile in the region of the
phase singularities, generating the vortex cores. If the system is evolved for too long in
imaginary time the vortices will be removed entirely, in an effort to further lower the
energy of the system, either by driving them out of the condensate or through vortex
annihilation.



48 Numerical implementation

For the fractional-charge vortices in spinor condensates, both the intra- and inter-
component relative phases of the order parameter are vital for characterising the different
vortex types. Similar to the scalar vortices, we can imprint N vortices with commuting
topological charges into a ground state spinor order parameter ΦGS via a product,

ΦS(x, y) =
 N∏
j=1

R(θj(x, y); ±X(j)νη)
ΦGS(x, y), (3.4)

where R(θj(x, y); ±X(j)νη) is the rotation corresponding to the topological charge X(j)νη
of the jth vortex located at (xj, yj) and ΦGS(x, y) is in our context the cyclic-tetrahedral
order parameter. Examples of R(θj ; ±Xν

η) rotations for cyclic-tetrahedral phase vortices
are presented in Table. 2.1. The scalar product state of Eq. (3.3) can be obtained from
Eq. (3.4) by choosing R(θj(x, y); ωj) = eiθj(x, y) and ΨGS(x, y) = eiφ, where φ is arbitrary
phase.

When the topological charges of the vortices do not commute the product state in
Eq. (3.4) cannot be employed as it does not preserve the local inter-component relative
phases of the vortices1. Instead, to prepare initial states containing non-Abelian vortices
we use a phase matching procedure. As an illustrative example we shall describe the
procedure for only two vortices, although it can be extended to systems of N vortices. For
two vortices the procedure operates by first creating two copies of the order parameter.
One of the vortices is imprinted in the first copy at (x1, y1), while the other vortex
is imprinted in the second copy at (x2, y2). These become the order parameters Φ1

and Φ2, respectively. A new order parameter, ΦS, is created by mapping the region
containing the vortex in Φ1 to the equivalent region in Φ2, overwriting the previous
details of Φ2. In Fig. 3.1, we show the phase structure of an example ΦS, created by
joining the two non-Abelian vortex order parameters Φ1(x, y) = Ψ((x, y); IV0) and
Φ2(x, y) = Ψ((x, y); −VIy−1). Along the boundary between Φ1 and Φ2, which in Fig. 3.1
corresponds to the vertical dotted line, ΨS is set as ψcyclic. Evolving ΦS in imaginary
time transforms the ψcyclic boundary wall in a manner which attempts to smoothly join
Φ1 and Φ2. To aid the imaginary time smoothing, we can apply a global phase rotation
to one or both of Φ1 and Φ2 to provide a better match between the phases across the
boundary. However, in many cases phase domain walls, like those in Fig. 3.1(b) and
(d), are unavoidable and cannot be removed by imaginary time evolution. Indeed, in
some instances the smoothing process may transform the phase such that an additional

1Small numbers of non-Abelian vortices can be imprinted using a variant of Eq. (3.4) where the rotations
are applied in a spatially non-uniform manner, i.e. the rotations take the form R = eiφe−iΘω(x, y)·F

[91].
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Figure 3.1: Phase matching procedure for non-Abelian vortices. (a)-(e) The phase θ of each
spin component m = −2, . . . , 2 for an initial state ΨS(x, y), prior to imaginary time evolution.
The initial state is constructed by juxtaposing the cyclic-tetrahedral non-Abelian vortex order
parameters Φ1(x, y) = Ψ((x, y); IV0) and Φ2(x, y) = Ψ((x, y); −VIy−1), which are defined in
the regions left and right of the white dotted line, respectively. Along the white dotted line the
order parameter is set as ψcyclic. A similar initial state is used for the numerical simulation of
non-Abelian vortex collision dynamics in Fig. 4.3.

vortex is generated at a point on the boundary. Additional magnetic or spin-singlet
pair amplitude domain walls may also form due to the order parameter superfluid phase
boundary. Such domain walls typically decay during real time evolution.

3.3. Detection and identification of vortices

A central part of analysing our numerical results involves locating and identifying the
vortices. Mathematically, the topological charge of a vortex can be deduced by considering
a closed path Γ (s) with curve parameter s around the vortex core in real space, which is
mapped to a closed path Ψ(Γ) in the order parameter space [42].

Numerically it is possible to algorithmically detect vortices from their associated
phase disclinations. This process is simple enough for scalar vortices, though becomes
more involved for the fractional-charge vortices in the spin-2 condensate. Detecting scalar
vortices is a matter of identifying regions in the numerical grid where the phase winds by
2πω. The detection algorithm considers the phase winding across all 2× 2 squares in the
grid. Following an anticlockwise path through the four points in each square, the phase
differences |∆θs| are calculated and summed ∑s |∆θs|, see Fig. 3.2. If |∆θs| > π, then
the phases at each of the points are unwrapped, such that the phase difference avoids any
branch cuts. The charge ω of the vortex is then found such that 2πω −∑ |∆θ| → ∆λ,
where ∆λ ∈ (−π, π]. Strictly, the phase winds about the intersection point of the 4 grid
points, rather than about any particular point in the 2 grid.
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Figure 3.2: Scalar vortex identification, considering the phase winding along the anti-clockwise
path, given by the arrows, through the (i, j) points of a 2× 2 square in the numerical grid.
The θi denote the phases at each of the points.

The minimal method to detect spinor vortices is via their core structures. We can
visually trace the vortex dynamics by plotting the spin-component densities |ψm(r)|2

total density n(r), the amplitude of the spin density vector |F(r)|2, the magnetization
density Fz(r) and the spin-singlet pair amplitude density |A(r)|2. Each of these quantities
are defined in Sec. 2.2. Additionally, it is possible to distinguish between certain vortex
types based on the core structure. However, the core structure of each class is not fixed
and depends on the spin interaction parameters [91].

By treating the spin-components of a spinor order parameter as if they were indepen-
dent scalar wave functions, we can apply the scalar vortex detection algorithm to also
locate the phase windings, across all spin-components, associated with any fractional-
charge vortices in a spinor condensate. However, the phase winding alone is insufficient to
identify the topological charge of most fractional-charge vortices. A proper identification
also requires a determination of the spin rotation of the unknown vortex. Furthermore,
there are vortex order parameters, in some bases, that lack any phase factors and thus
can neither be located or identified by the scalar vortex detection algorithm.

In Figure. 3.3 we describe an identification method for fractional-charge vortices in
a spinor condensate. The method operates as follows. In Figure 3.3(a), a vortex with
unknown charge is located somewhere in the numerical grid, either visually by its core
structure or using the scalar vortex detection algorithm. Once located, we discretely
sample the order parameter along a closed circular path centred on the core. The path
begins at an arbitrarily chosen base point and is traversed anti-clockwise. The order
parameter at each visited grid point is then stored as the measured series Ψ(Γ) and can
be represented in terms of the spherical harmonic decomposition, see Eq. (2.20). The
result is the series of geometric objects in Fig. 3.3(a), that reveals the identity of the
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Figure 3.3: A method to identify the topological invariant of a vortex. (a) The measured
spherical harmonics representation Ψ (Γ) of the vortex to be identified. (b) Ψ (Γ) and its
rotated form ΨR (Γ) = eiφe−iαfze−iβfye−iγfzΨ (Γ) for phase angle φ = 9π/7 and spin angles
α = π/2, β = 3π/10 and γ = 9π/7. The IV0, and IIIx,y,z0 vortices of the standard basis are
shown for comparison. (c) Overlap integral 〈ΨR (Γ) |Xν

η〉 for vortices Xν
η of the standard basis.

The correctly identified invariant is shaded green.

vortex and may be used for visualising the characteristic gauge and spin rotations of the
vortex. In Figure. 3.3(b) we find a non-unique rotation R, using a non-linear least squares
fitting, which transforms the order parameter at the base point to the cyclic-tetrahedral
phase order parameter Ψcyclic, defined in Sec. 2.3. The measured series Ψ(Γ) is then
transformed by R to the series ΨR(Γ), which should be approximately similar to a series
corresponding to one of the vortices Xν

η in a standard basis. An example standard basis
is given in Fig. 2.4 and B.1-B.2. The vortex is measured by comparing the transformed
series ΨR(Γ) with each of the series Xν

η in the standard basis. The comparison takes the
form of an overlap integral 〈ΨR (Γ) |Xν

η〉 performed at each point Γ(s) on the path, see
Fig. 3.3(c). Here, the ket |Xν

η〉 refers to a wave function Ψ(r; ±Xν
η ) containing a vortex

of type Xν
η , see for example Table. 2.1, with the vortex core aligned with the core of the

vortex in ΨR(r). In the idealised situation the overlap equals 1 at each point for the
correct vortex and less than 1 for all other vortices. We select the correctly identified
vortex, the one shaded green in Fig. 3.3, as the vortex where the sum of the overlap at
each point is greater than 0.8, after normalising to the number of points.

There is an important yet subtle point regarding our measurement of the topological
charges of vortices. In general, there is no unique way to assign a topological charge
to a vortex [42]. For scalar vortices, we arbitrarily fix a convention which states that a
counter-clockwise phase winding corresponds to a vortex, and the reverse to an anti-vortex.
Similarly, individual spinor vortices can only be determined up to their equivalency class,
as we are always free to apply a global equivalency transformation which cycles through
the charges in the class. This ambiguity appears in our identification method through
the non-unique R transformation, which can be chosen such that ΨR(Γ) approximates
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any series Xν
η , with fixed X but unfixed ν. Thus, when measuring single vortices we are

free to situate the base point anywhere within the condensate. Typically, for our circular
paths we will place the base point at s = 0, where the curve parameter s is the polar
angle. In condensates with multiple vortices, we could measure all the topological charges
individually using independent base points, so called freely homotopic paths [42], but
then we could only make a statement about the relative classes of the vortices. However,
if we use paths originating from a shared base point, then the actual charges can be
measured in a relative sense, i.e vortices that are measured to have distinct charges
remain distinct after a global equivalency rotation. In effect, we can measure the classes
and algebra of the topological charges of the vortices, even if we still can not make a
definite measurement of the charges from the rotations alone. Other consistency checks
like the total topological charge and vortex core structure may help to provide a more
definitive measurement of the topological charges of a pair of vortices. For the vortex
dipole systems in Chapter 4, the charges are measured with two circular paths sharing a
base point equidistant between the two vortices. The base point in such cases is located
at the curve parameters s1 = 0 and s2 = π for the path about the vortex on the left and
right of the base point, respectively.

The overlap protocol is a comparison measurement and is thus not an explicit
measurement of the topology. A topological measurement of the charge was considered,
using a non-linear least squares fit to measure the total rotation across all the spherical
harmonic objects in the rotated series ΨR(Γ). This method did not progress as the fit
failed to converge on a single overall rotation for the series. However, by sufficiently
increasing the spatial sampling, that is having sufficiently many grid points that the
order parameter barely changes between the points, the least squares method could
potentially function well. Computational algorithms are typically quite poor at tracking
the rotations of 3D objects. Comparatively, the human mind has evolved to do such
complex tasks innately. Hence, in those instances where the overlap procedure fails it is
possible to identify a vortex by visually inspecting its series Ψ (Γ) and comparing with
the standard basis. An example of a particular situation where the overlap measurement
might fail, is when trying to measure the total charge of multiple vortices which are
not sufficiently centred within the path. While the overall rotation of the corresponding
measured series does contain the correct topology, there will be local segments of the
series with distinctly different rotations, corresponding to sectors of the path that pass
closer to one particular vortex in the configuration. One solution is to use a circular path
with radius much larger than the intervortex spacing. However, this is difficult to achieve,
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for example, when studying turbulence in a trapped spinor BEC where the vortices are
roughly uniformly distributed throughout the finite domain of the condensate.

Unlike the scalar vortex detection method, which algorithmically locates and identifies
all vortices in the condensate, the method described above can only be used to identify
already located vortices. Ideally, the identification process would include an additional
initial step which exhaustively locates all spinor vortex types in the data, including those
without phase factors. However, it remains unclear how to solve the vortex detection
problem of fractional vortices for sparsely sampled order parameters.
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Chapter 4.

Collision dynamics of
two-dimensional non-Abelian
vortices in spin-2 Bose–Einstein
condensates

In Chapter 2, we noted that the the algebra of the topological charges of a pair of
vortices enacts different collision dynamics. Similarly, constraining the condensate to
two-dimensions results in point-like vortex excitations whose collision events differ from
those of vortex lines. In this chapter we study the hitherto unexplored collision dynamics
of fractional-charge vortices in the cyclic-tetrahedral phase of a 2D spin-2 BEC. A detailed
understanding of vortex collision dynamics is fundamental to characterising the behaviour
of multi-vortex configurations as occur in quantum turbulence.

Reconnections of scalar vortices were directly imaged in a series of superfluid Helium
experiments [49,50] and more recently in trapped BECs [165,166]. Similarly, the collision
dynamics of scalar vortex dipoles have been experimentally observed by the Anderson
group [95] for a 2D BEC formed in a highly oblate harmonic trap. In their experiment, a
vortex dipole is generated by translating the harmonic trap to push the condensate past
a repulsive barrier, in the form of a blue-detuned Gaussian laser beam, faster than the
superfluid flow critical velocity. In the condensate frame of reference this is equivalent
to dragging the laser through BEC. Simultaneously, the height of the barrier is linearly
ramped down to zero such that, after the sweep of the condensate, only the vortex dipole
remains. The mutual induction between the vortex velocity fields imbues the dipole with
linear momentum, propagating the vortices along mirrored periodic orbits through the
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condensate, see the schematic in Fig. 4.1(d). When the orbits approach one another
a collision event may occur. In 2D, vortex reconnnection becomes annihilation. The
annihilation is described topologically by the group operation of the two vortex charges,
giving the total charge γ2γ1 = I. However, in the experiment the vortices do not fully
annihilate, rather they coalesce into a topologically trivial rarefaction pulse, variously
named as a vortexonium [206], or as a Jones-Roberts soliton [207]. The formation of the
soliton has been confirmed theoretically in Ref. [96, 97]. As the soliton propagates its
momentum causes it to bend producing a characteristic bow structure. The soliton may
reform into a vortex-antivortex pair upon entering a region with lower particle density
due to the inhomogeneity of the harmonic trap. For a finite temperature condensate,
full annihilation of the vortices may be realised if the soliton has sufficient momentum
to leave the condensate [208]. Comparatively, at "zero" temperature annihilation is a
many-body process in which the soliton scatters off a third vortex dispersing its energy
into sound waves [206,209,210].

Similar collision experiments have been performed by the Shin group [135] for Abelian
half-quantum vortex dipoles in the polar phase of a spin-1 condensate. An external
magnetic field with quadratic Zeeman shift q > 0 is employed to initially place the
condensate in the the easy-axis polar phase with all atoms in the m = 0 spin component.
As in the Anderson experiment, a repulsive barrier is swept through the effectively
single-component condensate to generate a vortex dipole. Immediately after the vortex
generation a π/2 radio-frequency pulse inverts the quadratic Zeeman strength to q < 0
realising the easy-plane polar phase, corresponding to the order parameter Ψ(1)

polar in
Sec. 2.4, where the vortex dipole is unstable and splits into two half-quantum vortex
dipoles. The orbital motion of the half-quantum vortex dipoles was observed via their
ferromagnetic cores using in situ magnetisation imaging [211]. The annihilation of opposite
circulation vortices was observed post collision in these experiments and confirmed
numerically in Ref. [212], though the microscopic details, such as whether the annihilation
of fractional-charge vortices proceeds via an intermediate soliton state, remain unclear.

Non-Abelian vortices have not yet been realised experimentally, though the rung
formation collision dynamics of non-Abelian vortex lines in a spin-2 BEC were elucidated
numerically in the pioneering studies of Kobayashi et al. [88] for the cyclic-tetrahedral
phase, and later for the biaxial nematic phase by Ruostekoski et al. [91]. The reaction
dynamics of non-Abelian vortex pairs in 2D BECs have remained unexplored. Here, we
numerically simulate the vortex dipole collision experiments like those of the Anderson
and Shin groups, for both Abelian and non-Abelian vortex pairs in the cyclic-tetrahedral
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Figure 4.1: Schematic of vortex collision dynamics in two and three-dimensional condensates.
(a), (b) left: Initial state of vortex lines with charges γ1 and γ2 piercing a two-dimensional
condensate plane, grey shaded disk, that intersects the collision cusp. (a) right: Abelian vortices
pass through. (b) right top: Abelian vortices undergo a vortex reconnection. (b) right bottom:
Non-Abelian vortices form a rung vortex with charge γ2γ1. (c)-(e) Collision of vortices in a
two-dimensional condensate, corresponding to the dynamics of the vortex lines on the disk
in (a)-(b). Vortices are denoted by circles with colour representing the charge. (c) Passing
through, split circle denotes overlapping vortices. (d) Annihilation, white circle denotes absence
of vortices. (e) Rungihilation, green circle denotes the rung vortex.

phase of a 2D spin-2 Bose–Einstein condensate. The work presented here is based on
Ref. [107].

As in Sec. 2.6, we can use topology to infer the potential collision dynamics of two-
dimensional vortices. As shown in Fig. 4.1, the dynamics of vortices in 2D are expected
to correspond to the motion of the intersection sites between virtual 3D vortex lines and a
2D plane. In 3D systems two initially parallel vortex lines can locally change their relative
orientation to initiate a topological reaction such as a reconnection; there exists no such
freedom for point-like vortices. Therefore, in 2D, only γ2γ1 type topological reactions of
vortices γ1 and γ2 may occur with γ1γ

−1
2 events being suppressed by dimensionality and

topological charge conservation. As shown in Fig. 4.1(c), pass through remains unchanged
for point-like vortices. Vortex reconnection becomes vortex-antivortex annihilation where,
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as shown in Fig. 4.1(d), the collision leaves the condensate vortex free. For non-Abelian
vortex pairs we anticipate a new collision event, coined rungihilation. As shown in
Fig. 4.1(e), rungihilation is a 2D equivalent of rung formation dynamics of 3D vortices in
which two non-Abelian vortices collide and fuse into a non-trivial rung vortex with charge
γ2γ1. In following numerical experiments, we explore each of these collision outcomes for
representative vortex pairs.

4.1. Numerical experiments

We numerically simulate a condensate of 87Rb atoms with effective particle number
N = 75000 on a mesh with 2048× 2048 grid points. The condensate is trapped in a
harmonic potential with trap frequency ωtrap = 2π× 200 Hz. The dimensionless coupling
constant c′0 = c0N/~ωtrapl

2 = 0.231N , where c0 is specified by the experimentally
measured scattering lengths ai of 87Rb [190]. As per Chapter 3 the dimensionless spin
interaction strengths are chosen as c′1 = c′2 = 0.5 c′0. In the following we describe the
simulation results for vortex-antivortex annihilation, pass through, and rungihilation
for the given representative vortex pairs: the Abelian pair collisions; [IV0, −VI−1], and
[IV0, IV−1]; and a non-Abelian pair collision [IV0, −VIy−1]. As in the experiments by
the groups of Anderson [95] and Shin [135], the mutual induction field of the vortex
pair propels the vortices, inducing a collision event if the paths overlap. In contrast to
these experiments, in our simulations the vortices are created using the phase imprinting
methods described in Sec. 3.2.

4.2. Annihilation and pass through of Abelian
vortices

We first consider the vortex-antivortex annihilation for an Abelian vortex pair with
charges IV0 and −VI−1. The representative order parameters are

Ψ(r; IV0) = eiθ/3 e−iθ(fx+fy+fz)/3
√

3Ψcyclic (4.1)

and

Ψ(r; -VI−1) = e−iθ/3 e−iθ(−fx−fy−fz)/3
√

3Ψcyclic, (4.2)
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where θ is the polar angle. Each vortex has a magnetised core with Fz > 0, which is
useful for tracing the vortex paths shown in Fig. 4.2. The vortices, driven by their mutual
induction field, travel along paths which overlap at t̃ = 6.0 and undergo vortex-antivortex
annihilation. Our numerical experiments confirm that, Like the scalar vortices, the
annihilation is survived by a remnant magnetic “vortexonium” highlighted in Fig. 4.2(c).
The magnetic vortexonium is a generalisation of the Jones-Roberts soliton of scalar BECs.
Topologically, the magnetic vortexonium is equivalent to the trivial vortex I0. The vortex
pair is reformed when the vortexonium travels into the low density boundary region
of the condensate where vortex pair creation becomes energetically feasible. We have
confirmed, by measurement (Sec. 3.3), that the reformed vortices have charges IV0 and
−VI−1.

While pass through is topologically permissible for Abelian vortices, its occurrence
depends on the vortex kinematic details. For example, for scalar vortex-vortex (antivortex-
antivortex) pairs a pass through event is hindered by the Coulomb-like repulsive interac-
tion arising from the energy barrier associated with the superflow mass currents. In spinor
BECs the superflow mass currents of the two vortices may be associated with different
spin-components. Consequently, the repulsive energy barrier may not exist thereby
allowing the vortices to pass through. Figure 4.2(e)-(g) shows a pass through event for
two Abelian vortices with charges IV0 and IV−1. To generate such vortex wave functions
we consider a second cyclic-tetrahedral ground state Ψ′ = e−icos−1(1/

√
3)fy e−iπfz/4 Ψcyclic.
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Figure 4.2: Collision dynamics of vortex pairs with Abelian algebra. (a)-(d) Annihilation of
IV0 and −VI−1 vortices. (a) Motion of the vortices through the condensate traced by their
magnetised cores. The figure is a composite created by overlaying the normalised sum of F̃z at
eleven different times. (b)-(d) Vortices at times t̃ prior, during and post the collision event.
(e)-(g) Pass through of IV0 and IV−1 vortices. The locations of the vortices are represented
by the circles surrounding the magnetic vortex cores and the normalisation constant of the
magnetisation is provided in each frame (b)-(g).
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By applying appropriate gauge and spin rotations to Ψ′ we obtain vortex wave functions

Ψ(r; IV0) = eiθ/3 eiθfz/3Ψ′ (4.3)

and

Ψ(r; IV−1) = e−i2θ/3 eiθfz/3Ψ′, (4.4)

with magnetised cores of Fz = −
√

2/3 and Fz = 2/
√

3, respectively. The superfluid mass
currents of the vortices are in the m = 2 and m = −1 spin states, respectively. Thus, the
vortices are driven towards each other by the interactions with their respective image
vortices. The vortices overlap at t̃ = 11.0 and then pass through each other. During
the overlap the topology is identified by the total charge given by IV0IV−1 = VII−1. A
clean pass through was observed in simulations with initial states having identically zero
population in the unpopulated components of Ψ(r; IV0) and Ψ(r; IV−1).

4.3. Rungihilation of non-Abelian vortices

The non-Abelian vortex pair IV0 and −VIy−1 are initialised with order parameters

Ψ(r; IV0) = eiθ/3 e−iθ(fx+fy+fz)/3
√

3Ψcyclic (4.5)

and

Ψ(r;−VIy−1) = e−iθ/3 eiθ(−fx−fy+fz)/3
√

3Ψcyclic, (4.6)

respectively. Both vortices have a core structure with Fz > 0 as shown in Fig. 4.3(a).
While the vortex pair is not a strict vortex dipole, the opposing superfluid velocities
interact to produce the orbital motion. The vortex pair collides forming a rung vortex
with Fz = 0 and non-zero |A| core highlighted in Figs. 4.3(b) and (e). The rung has a
topological charge −VIy−1IV0 = IIIy0. Since an isolated rung vortex can only be classified
up to its class, a particular topological charge is ascribed according to the result of γ2γ1,
where γ1 and γ2 are the measured charges of the vortices before their collision. The rung
exists for t̃ = 5.0 time units before breaking up into a secondary pair of non-Abelian
vortices with different topological charges. The non-Abelian rungihilation and subsequent
pair-creation process not only changes the vortex charges but is also accompanied by the
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|F̃z| = 1.0 ⇥ 10�3

|F̃z| = 1.0 ⇥ 10�3

|F̃z| = 8.9 ⇥ 10�6
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Figure 4.3: Rungihilation of IV0 and −VIy−1 vortices with non-Abelian algebra. (a)-(f) Vortices
at times t̃ prior, during and post the collision event. (a)-(c) The normalised magnetisation
density F̃z. (d)-(f) The normalised spin-singlet amplitude |Ã|2. The locations of the vortices
are represented by the circles, the rung is highlighted by the ellipses, and the normalisation
constants |F̃z| and |Ã|2 are provided for each frame.

reversal of the direction of the magnetised core structure, cf. Figs. 4.3(a) and (c), such
that the new vortices have cores with Fz < 0, providing an experimentally detectable
signal of this unconventional topological reaction. The newly spawned vortices are
measured to have charges −VIz−1 and −IVz

0, where we have used conservation of charge,
(−VIz−1)(−IVz

0) = IIIy0, and the sign of the core magnetisation to refine the measurement
beyond the equivalency class. If the pair-created −VIz−1 and −IVz

0 vortices are allowed to
complete a full orbit they will also collide to form a IIIy0 rung vortex which subsequently
spawns the initial vortex pair IV0 and −VIy−1, with the corresponding magnetisation
reversal.

4.4. Summary

We have investigated the collision dynamics of vortex pairs in the cyclic-tetrahedral state
of two-dimensional spin-2 Bose–Einstein condensates. We have shown using numerical
experiments that the collision of a pair of vortices may result either in annihilation,
passing through, or rungihilation of the two vortices. We have identified the rungihilation
event as the two-dimensional counterpart to rung formation of three-dimensional non-
Abelian vortices [88,91]. As these results are grounded in the topology, they apply equally
to non-Abelian vortices in higher spin condensates [113, 117, 158], where non-Abelian
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collision dynamics are likely a common occurrence, and to non-Abelian topological
excitations in other physical systems.

Experimentally, it is relatively simple to extend the procedures used by the Anderson
[95] and Shin groups [135] to demonstrate the collision dynamics of non-Abelian vortices
in two-dimensional spin-2 condensates. The major limitations are the accessibility of
the cyclic-tetrahedral superfluid phase and phase-imprinting non-Abelian pairs, see the
discussion in Chap. 3. Nonetheless, it may be possible to create Abelian vortex pairs
capable of annihilation by dragging a repulsive barrier through a BEC in the cyclic-
tetrahedral phase. However, unless |F(r)| 6= 0, which may be the case experimentally,
the barrier is likely to shed a pure gauge vortex pair, with charges I1 and I−1, rather
than fractional-charge vortices [213]. Measuring topological charges of vortices in an
experiment is not sufficiently feasible at present. Thus, we depend on characteristic
signatures in other physical observables to identify the collision dynamics. Imaging
the spin-singlet pair amplitude, useful for characterising the rung vortices, remains
an experimental challenge. However, the rungihilation could possibly be inferred by
the associated reversal of the vortex core magnetisation using the same magnetisation
sensitive imaging techniques [211] employed in the Shin experiment.

There are a number of interesting applications where the topological interactions
of non-Abelian vortices play a central role in the characteristics of the system. Rung
formation has opened a new research area of three-dimensional non-Abelian quantum
turbulence typified by a novel helicity cascade [106]. Similarly, The rungihilation of
two-dimensional non-Abelian vortex pairs is anticipated to have interesting ramifications
for energy flow in 2D quantum turbulent states involving vortices with non-commuting
topological charges. The properties of 2D non-Abelian quantum turbulence will be
further explored in Chapter 6.

In the following Chapter 5, we will map the vortex collision dynamics onto the
fusion rules of types of non-Abelian vortex anyons. Vortices with topological charges in
the same equivalency class are indistinguishable and the class defines a particle type.
These particles are similar to the fluxon anyons described in Sec. 2.8. The resultant
uuparticles formed from the composition of two anyons are given by a fusion rule. For
our non-Abelian vortices the collision dynamics are completely defined by the fusion
rules of the non-Abelian vortex anyons.



Chapter 5.

Braiding and fusing of non-Abelian
vortex anyons

A number of experiments have explored the potential realisation of non-Abelian anyons
in condensed matter systems including Majorana zero modes in nanowires [34–37] and
quasiparticles in certain fractional quantum Hall states [39–41]. Other non-Abelian anyon
models have been proposed to utilise ‘fluxons’ in non-Abelian toric code models [29]
or discrete gauge theories [44, 45, 60, 61]. Notwithstanding, the existence of a physical
system of non-Abelian anyons capable of universal quantum computation remains an
open question.

Discrete gauge theories share many similarities with spinor Bose–Einstein condensates
and their non-Abelian topological excitations. These theories are characterised by the
spontaneous symmetry breaking of a two-dimensional system, with a continuous gauge
symmetry group, to a broken symmetry phase described by a finite subgroup, the stabiliser
or isotropy group H. In the symmetry-broken phase, “vortex-like” topological excitations
arise in the form of fluxons carrying a magnetic flux corresponding to an element of the
non-Abelian finite group H. In the context of this chapter we shall refer to all topological
charges as fluxes. In addition to fluxons, there are H-charges or chargeons, labelled
by the complete set of unitary irreducible representations of H [173], and charge-flux
composites known as dyons [214–217]. The full spectrum of excitations is labelled using
the quantum double of the symmetry group. While interesting, the full details of the
quantum double algebra are not necessary to understand the physics of fluxon excitations
presented here, however Refs. [60] and [61] review the relevant details of the quantum
double in the context of discrete gauge theories in high energy physics.
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Our discussion of non-Abelian vortex anyons will focus primarily on the fluxon type
excitations. In our system, the fluxons map onto the non-Abelian vortices and more
specifically the low-energy Bogoliubov quasiparticle eigenstates localised within a vortex
core [164]. The fluxons are defined in a very similar way to our non-Abelian vortices.
Using homotopy theory, a specific fluxon can be represented by a particular flux or
by any of its conjugates within this group. The conjugate fluxes form an equivalency
class in H. There is no invariant way to assign fluxes in a given class to the associated
fluxons and, as such, each class defines a distinguishable fluxon type with multiple
corresponding indistinguishable fluxes. This degeneracy becomes important during the
adiabatic counterclockwise exchange of two fluxons. For fluxons with non-commuting
fluxes γ1 and γ2, respectively, the exchange realises a non-trivial monodromy, which
transports the fluxes within their equivalency classes according to the map (γ1, γ2) to
(γ2, γ2γ1γ

−1
2 ) [44,45]. The monodromy interaction between fluxons acts in an identical

manner to the topological influence between our non-Abelian vortices. Similarly, the
result of fusing two fluxons is given by an ordered product of their fluxes. The fusion
of two fluxons, a and b of same or different type, may result in multiple fluxon types
c, corresponding to a fusion rule with multiple non-zero multiplicities N c

ab 6= 0. These
characteristics collectively identify fluxons as non-Abelian anyons.

The chargeons are also non-Abelian anyons. They are labelled by unitary irreducible
representations of H, see Appendix C. When H-charges are braided around fluxes, the
result is analogous to the Aharonov-Bohm effect, see Fig. 5.1. The flux γ will act on the
charge α by the matrix α(γ) that represents the element γ ∈ H, which labels the flux, in
the representation α of H, which labels the charge. When the group H is commutative,
this matrix reduces to a simple scalar phase factor, the usual Aharonov-Bohm phase. A
similar result is obtained when braiding dyons, although in this case the acting group
is a centralizer subgroup CH(γ) = {γ′ ∈ H | γγ′ = γ′γ} of H. Even if no particles with
charge are present, charges can still play a role in braiding, since fusion of fluxes may
yield anyons with non-trivial charge. For example, two particles (fluxons) each carrying
a pure flux may fuse in such a way that the two fluxes annihilate but nevertheless result
in a non-trivial H-charge. Even if such fluxes are kept apart, they act as carrying a
single delocalized charge when a third flux is braided around such a pair of fluxes. The
delocalized charge associated with the flux pair is the elusive Cheshire charge, so named
after the Cheshire cat, which could disappear, but leave its grin visible [218–220]. In our
system, the chargeon particles may be viewed as Bogoliubov ‘zero’ modes, such as those
associated with a phonon, a magnon or a soliton, which are organised into multiplets
under the action of H (which leaves the state of the condensate invariant). It may also
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Figure 5.1: Effective Aharonov-Bohm effect between a charge and flux. Braid of a fluxon pair
with Cheshire charge α, denoted by the dotted red ellipse, about a fluxon with flux γ. The total
flux of the fluxon pair commutes with γ. After the braid the charge acquires a non-Abelian
Aharonov-Bohm phase α(γ).

be possible for these systems to exhibit completely delocalized Cheshire charges, though
it remains unclear how the Cheshire charge physically manifests in this context.

Here we demonstrate that the topological interactions of the non-Abelian fractional
vortices in spinor Bose–Einstein condensates contain the essential aspects of a non-Abelian
‘fluxon’ anyon model and are potentially useful for applications in topological quantum
information processing and storage. The most compelling aspect of these non-Abelian
vortex anyons is their capacity to tangibly demonstrate the principles of topological
quantum computing, particularly at the fluxon level were the anyons consist of easy to
grasp vortex excitations. A key aspect of this tangibility stems from the controllability
of spinor condensates which permits simple experimental procedures to controllably
enact the braiding and fusion of the vortex anyons [221,222]. Anderson et al. [222] have
experimentally demonstrated the capacity to deterministically create, pin and translate
vortex dipoles in a highly oblate scalar condensate. The procedure employs two external
pinning potentials in the form of blue-detuned Gaussian lasers beams which puncture
holes in the condensate density. The location of the focus point of each beam can be
controlled and freely translated through the condensate. In what is called the ‘chopstick’
technique, the laser beams are propagated, from their initially overlapping positions,
along diverging linear paths at a constant speed, substantially slower than the speed
of sound and the critical velocity necessary for vortex nucleation. The motion of the
separating beams displaces the fluid such that two opposite circulation vortices are
created localised to the pinning potentials. From here, the beams were manipulated to
bring one vortex back to the starting point. After a short hold time the beams were
linearly ramped down, revealing the presence the vortices at the prior locations of the
pinning sites and demonstrating the capacity to controllably transport vortices around
the condensate. The the rate at which the beams are ramped down must be sufficiently
fast that the vortices do not escape too early, complicating the imaging, but slow enough
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that the change in the density profile does not generate collective excitations of the
condensate, e.g. a sloshing motion or sound waves. It was also demonstrated that both
beams could be brought together to fuse the vortices together, resulting in an observed
annihilation of the vortices. Additionally it is entirely feasible that the beams could be
translated to braid the vortices about each other. The same techniques can be employed
in a spin-2 condensate to manipulate vortex anyons. The controlled braiding and fusion
operations required for topological information processing are therefore possible.

In the following classical mean-field theory numerical experiments, we simulate the
braiding and fusion of non-Abelian vortex anyons by employing such external pinning
potentials to manipulate the states of topological qubits constructed from such non-
Abelian vortex anyons.

5.1. Numerical experiments

The numerical experiments are performed for a condensate with effective particle number
of either N = 3× 105, for the experiments in Fig. 5.2 and 5.6, or N = 1.75× 105, for
the single qubit experiment in Fig. 5.4, on a spatial mesh of 10242 grid points. The
numerical results are presented in non-dimensionalised units where ω = 2π× 5 Hz. The
dimensionless coupling constant c′0 = c0N/~ωl2 is determined from the experimentally
measured scattering lengths of 87Rb [190–192]. As per Chapter 3 the dimensionless spin
interaction strengths are chosen as c′1 = c′2 = 0.5 c′0.

We consider a quasi-uniform condensate in a trapping potential Vext = A tanh[(x/a)6 +
(y/b)6], where A = 50 ~ω, a = (86, 59, 120) µm and b = (52, 45, 52) µm, for each of the
numerical experiments in Figs. 5.2-5.4 and Fig. 5.6, respectively. The pinning potentials
used for moving the vortices are modelled as Gaussian laser beams [223]

Vpin(r, t) = P√
2πσ2

e−
(x−x0)2+(y−y0)2

2σ2 , (5.1)

where (x0, y0) is the location of the focus point, P = 63 ~ω and σ = 0.5l. Upon braiding
the pinning potentials are moved with an orbital angular frequency ωpin = π2/2 rad
s−1. The vortices are fused by bringing pinning potentials together until they overlap
whereupon their amplitudes P are linearly ramped down over a time period of ≈ 127ms.



Braiding and fusing of non-Abelian vortex anyons 67

5.2. Non-Abelian vortex anyons

Physically, vortices with non-commuting topological fluxes are characterised by the
non-trivial, path dependent, topological influence. Figure 5.2 shows the outcome of a
numerical experiment that demonstrates the exotic braiding and fusion dynamics of
non-Abelian vortices. The system is initialised at time t = 0 in Fig. 5.2a by creating four
non-Abelian vortices in the BEC by phase-imprinting two vortex-antivortex pairs, one
on the left and one on the right hand side of the rectangular condensate. Using pinning
potentials that model an array of Gaussian–shaped laser beams that repel atoms, the
vortices can be pinned and controllably moved around, forming a braid in their space-time
world lines as shown in Fig. 5.2a. A plat closure of the braid is realised by the initial
pair-creation and final fusion of the vortex pairs. The full braid and fusion of the vortices
realises the link L6a2 in the Thistlethwaite Link Table, which is accessible at Ref [224].
The effects of braiding the vortices are observed at different dimensionless times t̃ after
alternatively, (i) releasing the pinning potentials and measuring the properties of the
four vortices, see lower rows in Fig. 5.2(b-f), or, (ii) fusing the two vortex pairs first
and then measuring the result after releasing the pinning potentials, see upper rows in
Fig. 5.2(b-f). The vortex locations are visualised via their core structure, which may
have non-zero spin-singlet pair amplitude, |A|2, and/or non-zero magnetisation, Fz.

A detailed understanding of the observed dynamics comes from labelling the flux
of each vortex in Fig. 5.2(b-f), using our vortex identification method described in
Sec. 3.3. Prior to fusion at each time step, the fluxes are measured using four paths in
the condensate, each originating from a shared base point located in the centre of the
condensate. Each of the inner vortices are measured directly by a loop enclosing their
vortex core giving fluxes γi. The outermost fluxes are determined from the total fluxes
measured using loops enclosing the left and right hand vortex pairs, respectively. As an
example, for the leftmost pair with unknown charges γ1 and γ2, the charge γ1 is inferred
from γ1 = γ−1

2 γTL, where γ2 and γTL are the measured fluxes of the inner vortex and the
pair, respectively. Measurements at different time steps do not share a common base
point. Therefore, consistency between the measured fluxes at different times must be
enforced by hand. From left to right, the initial fluxes are chosen as IIIx0 , −IIIx0 , IV0

and −VI−1. In each segment of the braid diagram in Fig. 5.2(a) only two vortices are
braided leaving two fluxes unchanged. Thus, an unambiguous assignment of fluxes can
be made at each time step via a conjugation of form gγig

−1 applied to each measured
flux, γi for a unique g ∈ H which enforces the consistency of the unchanged fluxes.
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Figure 5.2: Braiding and fusion of non-Abelian fractional vortices. a, The paths of vortices
embedded in a two-dimensional Bose–Einstein condensate trace out world lines that form a
braid whose plat closure yields a link L6a2. The total condensate density is shown for the
initial (t̃ = 0) and final (t̃ = 132) states. b, Spin-singlet pair amplitude (left column) and
magnetization (right column) with vortex locations marked using circles and labelled by the
vortex (anyon) types. The upper rows correspond to the system state just after the vortices
have been fused pairwise and the lower rows correspond to the state just before the fusion. The
field of view of each of the four frames in b-f corresponds to the dashed rectangle shown in a
where the inter-vortex separation is 27µm. The dimensionless times t̃ = tω of measurement of
states b-f are marked in a.

Underpinning the braiding dynamics is the long-range topological influence between
non-Abelian vortices [44, 45, 98]. As we determined in Sec. 2.7, for an anti-clockwise
elementary braid (exchange of a pair) of vortices with non-commuting fluxes (γ1, γ2) their
mutual topological influence converts their fluxes to (γ2, γ2γ1γ

−1
2 ), while the clockwise

exchange realises the map (γ1, γ2) → (γ−1
1 γ2γ1, γ1). Braiding may also enact a local
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unitary transformation on the wave function, which reverses the sign of the vortex core
magnetisation, turning a red core into a blue core, and vice versa, without changing
the value of their fluxes, as shown in Fig. 5.2e and 5.2d. The result of the fusion
of each vortex pair is is equivalent to the collision dynamics described in Chap. 4. A
measurement of the fluxes of each remnant excitation after the fusion is performed using
two separate loops with shared base point in the centre of the condensate. These fluxes
are then transformed by an equivalency rotation to be consistent with the total flux of
the pre-fusion vortex pairs.

The initial vortex-antivortex pairs in Fig. 5.2f (lower row) consist of three particle
types; two vortices of same type (III0) with non-zero |A|2, green cores, and two of different
types (IV0 and VI−1) with Fz > 0, red cores. Initially, both pairs annihilate upon being
fused (Fig. 5.2f, upper row), by construction. An exchange of the two vortices in the
middle leads to the state measured at t̃ = 20, shown in Fig. 5.2e. The braid swaps the
positions of two vortices, which trivially changes the pairwise fusion dynamics as neither
the green and red, or green and blue, cored vortices can annihilate. The braid between
t̃ = 60 and t̃ = 100 consists of two exchanges (elementary braids) of the two middle
vortices resulting in the state shown in Fig. 5.2c. Importantly, although this braiding
preserves the ordering of the vortex types by returning them to their original pre-braiding
positions at t̃ = 60, the types of vortices formed after fusion are different before (V0

and VII−1 at t̃ = 60) and after (IV0 and VI−1 at t̃ = 100) the braiding. Such vortex
metamorphosis due to braiding is a hallmark of non-Abelian anyons. The final exchange
of the middle two vortices results in the state at t̃ = 132, shown in Fig. 5.2b, where the
two non-Abelian vortex anyon pairs again annihilate.

5.3. Non-Abelian vortex anyon models

Through a characterisation of all the particle types and their fusion and braiding rules,
we can outline a complete anyon model for the non-Abelian vortex anyons in the cyclic-
tetrahedral phase of a spin-2 BEC. A complete anyon model for the biaxial nematic
phase non-Abelian vortex anyons is also provided in App. D. The cyclic-tetrahedral phase
supports 6 non-trivial fluxons and one vacuum state corresponding to the 7 equivalency
classes of T ∗, labelled as Iη - VIIη. In addition to the fluxons there are chargeons that
carry a H-charge. The centralizers for the fluxon types are T ∗ (I, II), Z4 (III), and Z6 (IV
- VII) with 7, 4, and 6 irreducible representations, respectively. For a given U(1) winding
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number, there are 6 non-trivial pure charges (no flux), the same as the 6 pure fluxes.
In addition, there are a further 29 dyons (charge-flux composites). Thus in total, the
cyclic-tetrahedral phase anyon system has one vacuum state and 41 non-trivial particles
comprising 6 fluxons, 6 chargeons, and 29 dyons. Additional fluxons and chargeons are
introduced when the U(1) number is accounted, though many of these particles will
behave identically under braiding. The quantum dimension of each anyon is given by a
product of the order of the associated equivalency class of its flux with the dimension
of the irreducible representation of its charge. The quantum dimension as defined here
similarly satisfies the relation in Eq. (2.34). In this work, unless otherwise stated, our
focus is only on the fluxons of the theory and their fusion and braiding dynamics.

The fusion outcomes of the lowest energy fluxons are determined by the group algebra
of H = T ∗, following the composition rule (±Xα

η )(±Yβ
ν ) = (η+aX +ν+aY, g

α
Xg

β
Y). As a

result, their flux-level fusion rules can be determined directly from the fusion table, which
is presented in Figure 5.3. Although the type IVη - VIIη vortices are non-Abelian anyons,
their fusion rules do not preserve the winding number η of the anyons, complicating their
potential use for topological quantum computation. However, restricting to the set of
three fluxons I0, II0 and III0, hereafter referred to as 1, σ, and τ , respectively, results in
a concise non-Abelian anyon model. For example, the fusion of two fluxes of the τ (III0)
anyon can produce a flux of the 1 (I0), σ (II0), or τ (III0) anyon and hence

τ ⊗ τ = N1
ττ1⊕Nσ

ττσ ⊕N τ
τττ. (5.2)

The multiplicities are determined as the number of distinct factorizations of the fluxes of
each outcome into products of τ anyon fluxes, equivalent to considering the reverse process
where an anyon c splits into anyons a and b in Nab

c = N c
ab ways. Hence, the multiplicities

are N1
ττ = 6, Nσ

ττ = 6, and N τ
ττ = 4. The fusion rules for all the cyclic-tetrahedral

phase non-Abelian vortex anyons are given at the flux-level in Table 5.1. The remaining
flux fusion rules of this anyon model are; τ ⊗ σ = τ , σ ⊗ σ = 1 and x⊗ 1 = x, where
x ∈ {1, σ, τ}. The anyons 1 and σ are Abelian with quantum dimensions d1 = dσ = 1,
respectively. The τ anyon is the non-Abelian (fluxon) anyon of the theory with a quantum
dimension, dτ = 6, larger than both the Fibonacci and Ising anyon models.
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Figure 5.3: Fusion table for the topological charges of the cyclic-tetrahedral phase non-Abelian
vortex anyons. The product A·B is ordered with A corresponding to the top row and B to the
first column. The thick cell borders divide the regions of each anyon fusion rule. The background
colour of each cell signifies the anyon type with the intensity of the shading highlighting the
winding number η.

Table 5.1: Fusion rules a ⊗ b at flux level for the non-Abelian vortex anyons in the cyclic-
tetrahedral phase. The concise anyon model discussed in the text is highlighted.

I0 II0 III0 IV0 V0 VI−1 VII−1

1 = I0 I0 II0 III0 IV0 V0 VI−1 VII−1

σ = II0 II0 I0 III0 V0 IV0 VII−1 VI−1

τ = III0 III0 III0 6I0 ⊕ 6II0 ⊕ 4III0 3IV0 ⊕ 3V0 3IV0 ⊕ 3V0 3VI−1 ⊕ 3VII−1 3VI−1 ⊕ 3VII−1

IV0 IV0 V0 3IV0 ⊕ 3V0 3VI0 ⊕VII0 VI0 ⊕ 3VII0 4I0 ⊕ 2III0 4II0 ⊕ 2III0

V0 V0 IV0 3IV0 ⊕ 3V0 VI0 ⊕ 3VII0 3VI0 ⊕VII0 4II0 ⊕ 2III0 4I0 ⊕ 2III0

VI−1 VI−1 VII−1 3VI−1 ⊕ 3VII−1 4I0 ⊕ 2III0 4II0 ⊕ 2III0 3IV−1 ⊕V−1 IV−1 ⊕ 3V−1

VII−1 VII−1 VI−1 3VI−1 ⊕ 3VII−1 4II0 ⊕ 2III0 4I0 ⊕ 2III0 IV−1 ⊕ 3V−1 3IV−1 ⊕V−1
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The multiplicities are accounted for by the H-charges, resulting in richer fusion rules.
Considering the τ fluxon anyon model summarised in Table 5.1 the charge inclusive
fusion rules are:

1(1)
T0 ⊗ 1(1)

T0 = 1(1)
T0, 1(1)

T0 ⊗ σ
(1)
T0 = σ

(1)
T0 , 1(1)

T0 ⊗ τ
(1)
Z0 = τ

(1)
Z0 , (5.3)

σ
(1)
T0 ⊗ σ

(1)
T0 = 1(1)

T0, σ
(1)
T0 ⊗ τ

(1)
Z0 = τ

(1)
Z0 , (5.4)

and

τ
(1)
Z0 ⊗ τ

(1)
Z0 =1(1)

T0 ⊕ 1(1)
T1 ⊕ 1(1)

T2 ⊕ 1(3)
T3⊕

σ
(1)
T0 ⊕ σ

(1)
T1 ⊕ σ

(1)
T2 ⊕ σ

(3)
T3⊕

2τ (1)
Z0 ⊕ 2τ (1)

Z2 , (5.5)

where in the above anyon notation τ (d)
c the subscript denotes the H-charge of the anyon

and the superscript denotes the quantum dimension of the charge. Here Zi and Ti refer to
the irreducible representations of the centralizers Z4 and T ∗, respectively. The particles
1(1)

T0 , σ
(1)
T0 and τ (1)

Z0 are equivalent to the fluxons I0, II0 and III0, respectively. The physical
content of Eq. (5.5) is thus that the fusion of two τ type fluxons on the left may result
in an annihilation to a true vacuum, in either of the two fluxons, one of three chargeons
or one of six dyons. It is implicitly understood that charge conservation is maintained in
the fusion rules by the presence of Cheshire charge as a delocalized property of initial
τ fluxon pair. The Cheshire charge states given by the Ti chargeons (eigenstates) in
Eq. (5.5) may be expressed in terms of a quantum superposition of τ flux eigenstates as

|T0,1〉 = 1√
6

[τxτx̄ + τx̄τx + τyτȳ + τȳτy + τzτz̄ + τz̄τz],

|T1,1〉 = 1√
6

[τxτx̄ + τx̄τx + θ(τyτȳ + τȳτy) + θ∗(τzτz̄ + τz̄τz)],

|T2,1〉 = 1√
6

[τxτx̄ + τx̄τx + θ∗(τyτȳ + τȳτy) + θ(τzτz̄ + τz̄τz)],

|T3,1〉 = 1√
2
{(τxτx̄ − τx̄τx), (τyτȳ − τȳτy), (τzτz̄ − τz̄τz)}, (5.6)

where 1 is the total flux, θ = ei2π/3 and the notation τxτx̄ is a flux eigenstate corresponding
to a spinor hosting two vortices, IIIx0 and -IIIx0 . The flux eigenstates represent true
macroscopic quantum superposition states of a spinor Bose–Einstein condensate, which
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can not be constructed as a superposition of the usual classical mean-field theory spinor
wave functions. Equation (5.6) can similarly describe the σ dyons after trivially replacing
the τ vortex pair fluxes with those fusing to II0. The Cheshire charges of the τ dyons are

|Z0, τ〉z = 1√
2
{τxτȳ + τx̄τy},

1√
2
{τyτx + τȳτx̄},

|Z2, τ〉z = 1√
2
{τxτȳ − τx̄τy},

1√
2
{τyτx − τȳτx̄}, (5.7)

where τxτȳ corresponds to a spinor hosting two vortices, IIIx0 and -IIIy0, which fuse to the
vortex IIIz0. Each Cheshire charge is described by two different basis states. One relatively
simple way to infer these Cheshire charge states, without employing the quantum double
D(H), is to consider the action of braiding a fluxon pair with Cheshire charge, represented
by a superposition of flux eigenstates, with the fluxes corresponding to the elements of
the centralizer group of the total charge of the fluxon pair. This action is represented in
Fig. 5.1. As an example, consider the τ fluxon pair fusing to the vacuum flux, represented
by the superposition of flux eigenstates in Eq. (5.6). The centralizer is T ∗ and thus
the braid conjugates each flux in the fluxon pairs by the particular element γ ∈ T ∗.
This action is equivalent to the flux γ acting on the charge (Cheshire) α by the matrix
α(γ), which is the group element γ in the irreducible representation α. For the charge
|T0, 1〉, corresponding to the trivial representation of T ∗, α(γ) = 1 for every γ ∈ T ∗.
Hence, the superposition must contain only trivial phases. Comparatively, for the charge
|T1, 1〉, which is one of the non-trivial one-dimensional representations of T ∗, the α(γ)
can be determined directly from the character table, see App. C, as α(I, II, III) = 1,
α(IV, V) = θ and α(VI, VII) = θ∗; where the γ are given in terms of their flux type.
Hence, the |T1, 1〉 superposition must contain the non-trivial phase θ and its conjugate.

The result of fusing two chargeons is determined from the tensor product of their
representations, which can be calculated from the character table as described in App. C.
The fusion of dyons is more complex as it involves the centralizer groups of the fluxes.
Nevertheless, all fusions can be calculated using the tensor product decomposition of the
representations of the quantum double D(H) of H. This can be done efficiently using
the characters of D(H) [225]. The fusion rules of the remaining chargeons and dyons in
the τ anyon model are presented in Appendix E.

In addition to the cyclic-tetrahedral phase τ anyon model, the biaxial nematic phase
additionally supports two concise non-Abelian anyon models, for the full details see
Appendix D.
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5.4. Topological qubit of non-Abelian vortices

As discussed in Sec. 2.8, the different fusion outcomes of anyons define a fusion path,
equivalent to a set of topologically distinct states, which can be used for encoding quantum
information. Furthermore, in Sec. 2.9 we explored the construction of a topological qubit
using the non-Abelian anyons in Fibonacci anyon model. In that case the fusion paths of
three Fibonacci τ anyons define a two-level system, corresponding to the two states in the
fusion space V τ

τττ , plus one non-computational state. Comparatively, the fusion of three
of our τ fluxons results in some 52 distinct fusion paths in which information could be
stored, a result of the H-charges in the system. This is significantly larger than number
of states in the Fibonacci anyon model case. Nevertheless, for the sake of demonstration,
we consider braiding operations with three fluxons that involve only a subset of the many
states in the full fusion space V τZ0

τZ0τZ0τZ0 and may therefore be conveniently discussed in
terms of effective qubits. A natural choice for the zero state corresponds to the creation
of two pairs of τ fluxons from the true vacuum. The rightmost of the four anyons will
not be part of the qubit and will not take part in any braiding processes we consider.
Therefore its flux will not be mentioned explicitly in the qubit’s state. The zero state of
the qubit is then |0〉 = 1

6
∑
γ1, γ2∈III |γ1, γ

−1
1 , γ2〉, corresponding to three τ anyons with

fluxes γ1, γ
−1
1 and γ2 respectively. A convenient choice for the second qubit state is

|1〉 = 1
6
∑
γ1, γ2∈III |γ1, γ1, γ2〉, corresponding to the fusion of the leftmost τ fluxon pair to

the σ fluxon.

Figure 5.4 demonstrates the action of manipulating the state of such a topological
qubit by controllable braiding of the anyons. Initially, the fluxons are prepared in such a
way that the first two of them are guaranteed to annihilate upon fusion, as in the |0〉
state, which in practice could be achieved by nucleating two vortex-antivortex pairs that
introduces a fourth, surplus, anyon which is disregarded in this numerical experiment
without consequence.

A unitary operation, encoded by the braid in Fig. 5.4a, is applied to the fluxons by
moving the vortices with the pinning potentials to exchange the second and third anyons
within the qubit structure twice. Once the braiding has been completed, a measurement
of the state is made by fusing the first and second anyons from the left of the condensate
and observing the remaining core structures shortly after the pinning potentials have
been withdrawn. Prior to the fusion the three τ anyons are identified by the green |A|2

cores, as shown in Fig. 5.4b and e, where in Fig. 5.4b-d we have applied thresholding to
represent a binary measurement protocol. After the braiding, the measurement outcome
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Figure 5.4: Single qubit braiding operation. a, The paths of the three τ anyons trace out
braided world lines enacting a unitary operation on the initial state. Time flows upward. The
total condensate density is shown for the initial state. The overlayed concentric ellipses denote
the orientation of the qubit as a graphical representation of the bracket notation used in the
text. b, Spin-singlet pair amplitude of the qubit just before the fusion. The rounded rectangle
marks the boundary of the condensate and the vortex locations are denoted by the circles, the
inter-vortex separation is 27µm. c, a fusion outcome corresponding to the annihilation of the
first two anyons as in the |0〉 state. d, a fusion outcome corresponding to the non-annihilation
of the first two anyons as in the |1〉 state. Data in b-d are thresholded relative to half the
maximum value in b and any maxima within the vortex location markers are mapped to the
solid green circles. e-g, Raw data for b-d without thresholding. The specific fluxes of the three
initial state vortices in (c) are (IIIx0 ,−IIIx0 , IIIx0) and in (d) they are (IIIx0 ,−IIIx0 , III

y
0).

depends on the topological influence between the exchanged anyons. The braid maps the
|0〉 state to a superposition

∑
γ1, γ2∈III
γ1γ2=γ2 γ1

|γ1, γ
−1
1 , γ2〉

2
√

3
+

∑
γ1, γ2∈III
γ1γ2 6=γ2 γ1

|γ1, γ1, γ2〉
2
√

6
, (5.8)

where the two sums contain the combinations of fluxes which braided with trivial and
non-trivial topological influence, respectively. The probability p that a measurement
would record complete annihilation p(0) = 1/3 or the formation of a σ fluxon p(1) = 2/3
after the braiding is obtained by projecting the braided superposition state onto the two
qubit basis states |0〉 and |1〉. Prior to the fusion measurement the two possibilities are
indistinguishable by any local observation. In general, braiding with respect to this basis
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Figure 5.5: Signatures of a Cheshire charge. Frames (a)-(c) show the x-component of the
magnetization density of the condensate at the end of the simulation of Fig. 5.4(c). The time
interval between the frames is δt ≈ 16ms. The circular markers denote the locations of the
vortex pinning sites. The expanding ring shaped magnetic soliton structure is emitted due to
the fusion of two fluxons.

would introduce significant leakage into the non-computable fusion paths even for the
case of a single qubit. However this is not a real problem as we only restricted to a two
dimensional space for illustrative purposes. Any realistic implementation would use the
full fusion space for computations.

The numerical experiments are based on classical mean-field theory and thus can not
simulate true quantum superpositions. As such, we simulate two specific components of
the |0〉 state, those with fluxes (IIIx0 ,−IIIx0 , IIIx0) and (IIIx0 ,−IIIx0 , III

y
0) and the braid acts

on these basis states in a deterministic manner. In the first case the exchanged anyons
commute so the braid realises a trivial topological influence and the fusion measures
the |0〉 state, shown in Fig. 5.4c, characterised by a single green core. However, in the
latter case they do not commute so the non-trivial topological influence changes the
signs of the anyons and the fusion measures the state |1〉 of the topological qubit. Such a
measurement of the |1〉 state is illustrated in Fig. 5.4d and corresponds to the observation
of two green vortex cores, with the additional filled core corresponding to a σ anyon
formed in the fusion of the two τ anyons.

We have discussed the topological qubit at the fluxon level, ignoring the H-charges.
However, the states considered in the single qubit simulations are τ flux eigenstates,
which correspond to charge superposition states. Here the charge arises as Cheshire
charge [219,220,226], which may be revealed when the vortices are annihilated causing
the delocalized Cheshire charge to appear. Representations for the four pure (Cheshire)
H-charge states that may result from the annihilation of two type τ fluxons are given
in Eq. (5.6). After a Cheshire charge localises to a H-charge, it could reform as a pair
of Alice vortices or a propagating Alice ring [220]. In our single qubit simulations we
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have observed a propagating ring-shaped soliton structure in the magnetisation density
of the condensate, Fig. 5.5(a-c), which may have been emitted from a potential Cheshire
charge. The magnetic soliton may be an observable signature of Cheshire charge in our
system. Cheshire charge has also been noted to arise in spinor condensates in the context
of a monopole point-defect decaying to a half-quantum vortex ring, also known as an
Alice ring [137,227]. After the decay the monopole charge is conserved as a form of a
delocalized topological charge associated with the Alice ring.

5.5. Implementing two qubit unitary operations

It is straightforward to extend the creation and manipulation of single flux qubits to
multiple topological qubits. Figure 5.6 demonstrates the action of a unitary braiding
operation on two topological qubits comprising six τ anyons. We consider a initial state
|00〉 = 1

12
∑
γ11, γ21, γ12, γ22∈III |γ11, γ

−1
11 , γ21; γ12, γ

−1
12 , γ22〉, corresponding to both qubits

starting in the |0〉 state. The full braid, shown in Fig. 5.6a, causes an intertwining of
the two qubits by tying a topologically non-trivial link in their anyon world lines. The
topologically trivial operations in Fig. 5.6a (greyed out) only alter the relative orientation
of the two qubits and will have no effect on the fusion outcome. The braid maps the |00〉
state to a superposition

∑
γ11, γ21, γ12, γ22∈III
γ11 γ12=γ12 γ11

|γ11, γ
−1
11 , γ21; γ12, γ

−1
12 , γ22〉

12
√

3
+

∑
γ11, γ21, γ12, γ22∈III
γ11 γ12 6=γ12 γ11

|γ11, γ11, γ21; γ12, γ12, γ22〉
12
√

6
,

(5.9)

where the two sums contain the combinations of fluxes which braided with trivial and
non-trivial topological influence, respectively. The probability p that a measurement
would record complete annihilation p(00) = 1/3 or the formation of two σ fluxons
p(11) = 2/3 after the braiding is obtained by projecting the braided superposition state
onto the states |00〉 and |11〉.

The numerical experiment shown in Fig. 5.6b simulates the action of the topologically
non-trivial subsection of the braid on two of the states contributing to |00〉, those
with fluxes (IIIz0,−IIIz0, III

y
0; IIIz0,−IIIz0, III

y
0) and (IIIx0 ,−IIIx0 , III

y
0; IIIz0,−IIIz0, III

y
0). The

outcomes of measurements corresponding to the first case (d) or second case (e) are
shown. Before fusion (c) all anyons have green cores. Upon counting anyons from left
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to right, when the second and third (in qubit one), and fourth and fifth (in qubit two)
anyons are fused, both pairs may either annihilate (d) or leave a green anyon behind (e).
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Figure 5.6: Two qubit braiding operation. a, Braid diagram for a unitary operation applied
to an initial |00〉 state where the topologically trivial operations are greyed out. Coloured
strands are used to distinguish the measurement anyons of each qubit. b, The paths of the six
τ anyons trace out the topologically non-trivial braid shown in a. Time flows upward. The
total condensate density is shown for the initial state. The overlayed concentric ellipses denote
the orientation of the qubits as a graphical representation of the bracket notation used in the
text. c, Spin-singlet pair amplitude of the qubits just before the fusion. The rounded square
marks the boundary of the condensate and the vortex locations are denoted by the circles. The
inter-vortex separation is 27µm. d, a measurement outcome corresponding to the annihilation
of the second and third, and fourth and fifth anyons, counting left to right, as in the |00〉 state.
e, a fusion outcome corresponding to non-annihilation as in the |11〉 state. Data in c-e are
thresholded relative to half the maximum value in c and any maxima within the vortex location
markers are mapped to the solid green circles. f -h, Raw data for c-e without thresholding. The
specific fluxes of the six vortices in (d) are (IIIz0,−IIIz0, III

y
0; IIIz0,−IIIz0, III

y
0) and in (e) they are

(IIIx0 ,−IIIx0 , III
y
0; IIIz0,−IIIz0, III

y
0).
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5.6. Universality

In Section 2.9, we defined a universal topological quantum computer as one for which
any unitary operator can be approximated, up to a phase, to arbitrary accuracy by only
braiding the anyons. This implies the existence of a minimum set of unitary operations
from which any other may be generated. Mathematically, universality is defined as the
existence of a dense mapping of the braid group of the anyons onto SU(2). The Fibonacci
anyon model does provide such a dense mapping and is thus universal [183, 188, 189].
However, universality is not the case for all anyon models. Indeed, there is a conjecture
that a non-Abelian anyon model is universal by braiding alone if, and only if, the square
of the quantum dimension is not an integer [228]. For example, Ising anyons [171], which
are associated with Majorana zero modes [32], are not universal. The quantum dimension
for the non-Abelian anyon in the Ising model is

√
2, which is evidently an integer when

squared. However, the Ising anyon model can be made universal by supplementing the
topologically protected braids with a non-topologically protected π/8 phase gate [229,230].
While the non-topologically protected phase gate introduces greater susceptibility to error,
the lack of an experimentally realisable platform based on Fibonacci anyons makes Ising
anyons still a promising potential platform for realising topological quantum computing.

Similar to the case of Ising anyons, the pure fluxons considered here are not capable
of universal quantum computation by braiding alone. Indeed, the quantum dimension
of the τ anyons, due to the finite group structure, is integer. It is the underlying finite
group structure which fundamentally limits the computational power of fluxons. Consider
a single fluxon qubit |0〉 = |γ1, γ

−1
1 , γ2〉 and apply sequences of elementary braids σ1

(clockwise braid of the the first two anyons; see Fig. 2.10(a)) and/or σ2 (clockwise braid
of the second and third anyons). Such a sequence is called a braid word. We define
the state of the qubit by the configuration of the fluxes, of which there are a finite
number (4× 3 = 12). There is a finite set of braid words corresponding to the operations
which produce each configuration in the shortest combination of braids. The longest
braid word which does not repeat a configuration of the fluxes is eight braids long. The
same general result is obtained whether we choose |0〉 = |γ1, γ

−1
1 , γ1〉, or if the qubit is

in the |1〉 = |γ1, γ1, γ2〉 state, or with the inclusion of the inverse braids. Hence, the
fluxon qubits are periodic under braiding and the braid group provides a finite or ‘sparse’
mapping onto SU(2).

In a series of papers, Mochon [231,232] outlined the capacity of certain finite groups
to support universal topological quantum computation. For non-solvable finite groups, it
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is possible to achieve universal topological quantum computing by only braiding fluxons.
In short, the quantum gate operations are constructed by braiding the qubits with ancilla
fluxon pairs with predetermined fluxes [231]. Moreover, for finite groups that are solvable
but not nilpotent, universality is achieved by employing the full quantum double to
introduce additional non-topological operations involving the chargeons. Specifically,
the additional operations entail non-destructive probabilistic projective measurements
of the qubits made by braiding them with ancilla chargeon pairs, with predetermined
charges that fuse to the vacuum. The measurement is completed by a subsequent fusing
of the chargeon pair which will, in a probabilistic fashion, either result in the vacuum or
a remnant particle. It is not clear how to experimentally generate and then store the
large reservoir of ancilla chargeons required for these gate operations. As the binary
tetrahedral symmetry group satisfies the criteria of being solvable and not nilpotent, we
can use chargeon braiding to escape the periodic nature of the fluxon braiding described
above.

5.7. Realising quantum superpositions of fluxons

The initial state of a fluxon quantum computer is a flux eigenstate corresponding to
some superposition of vacuum flux states. The non-Abelian anyons exist as topological
states in the coherent macroscopic spinor wave function describing many condensate
atoms. Hence, the ability to perform quantum information processing in this context
relies on the capacity to create and maintain true quantum superpositions with a
macroscopic number of atoms in a Bose–Einstein condensate. This is a challenging
prospect. Macroscopic quantum superposistions, in the form of cat states1, have been
experimentally investigated in the context of superconducting quantum interference
devices (SQUIDS) [233–235]. Here, electron Cooper-pairs form a macroscopic coherent
quantum state with dissipationless supercurrent flow about the superconducting ring.
By careful tuning of the magnetic flux through the ring, it is proposed that cat states
are realised such that prior to a measurement the Cooper-pairs are in a superposition
state of clockwise and anticlockwise flow. Cat states have, similarly, been theoretically
proposed for number states of BECs [236–239], in effect realising a superposition state
of two internal states of the condensate atoms. Moreover, there have been attempts to
realise SQUID analogues with persistent superfluid currents in toroidal BECs [240,241].

1Cat states take the form (|0〉+ |1〉)/
√

2 and are named for the well known Schrödinger cat thought
experiment



Braiding and fusing of non-Abelian vortex anyons 81

Superposition states of counter-flowing superfluid currents, analogous to the flux cat states
in SQUIDs, have been considered for these toroidal BECs [242–244]. Such macroscopic
cat states are highly sensitive to decoherence, with the atoms realising a definite pure
number/supercurrent state rather than a superposition. Furthermore, it is not clear
whether an actual cat state is realised in these systems or whether an effective spinor
structure is achieved with half the atomic population existing in one state and the other
half in the other state.

Similarly, it might be expected that an N -atom superposition state realising a
particular fluxon could decohere, for example to a state where the atoms realise a definite
flux state instead of a superposition of fluxes. In that case, the length of the coherence
time will determine whether useful computational operations can be performed. However,
while the SQUID and toroidal BEC experiments represent superposition states of orbital
angular momentum, our τ fluxon anyons are pure spin vortices and the flux eigenstates
are superpositions of different projections of spin angular momentum. As such, the τ flux
eigenstates may exhibit longer coherence times. Furthermore, considering the limit of
very small condensate atom numbers may promote longer lived superpositions but also
the mean-field description of the bosonic condensates becomes inapplicable. Ultimately,
answering the question of fluxon decoherence is beyond the scope of this thesis and the
classical mean-field theory techniques employed therein.

5.8. Summary

We have demonstrated that certain non-Abelian fractional vortices in spinor Bose–Einstein
condensates may be non-Abelian anyons and have shown how such vortex anyons could
be braided and fused using guiding laser beams. Mochon showed [232] that anyons based
on finite groups that are solvable but not nilpotent are capable of universal quantum
computation. Since the binary tetrahedral group does satisfy these criteria, it may be
a fruitful platform for developing a universal quantum computer. Although, similar to
the case of Ising anyons [32, 171], the pure fluxons considered here are not capable of
universal quantum computation by braiding alone and additional operations involving
chargeons will be required to achieve universality [231, 232].However, even non-universal
anyons may be capable of being used as a quantum memory and even performing certain
quantum algorithms with full topological protection, such as a specific Grover search
algorithm [14] and a calculation of the Jones polynomial at a specific root of unity [33].
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To realise such vortices experimentally a series of engineering challenges must be
confronted. The foremost experimental challenge for the realisation of non-Abelian vortex
anyons is preparing a Bose–Einstein condensate in a stable non-Abelian ground state
phase. Presently, experiments with spinor condensates are limited to phases accessible in
the presence of background magnetic field noise and with the natural scattering lengths
of available atomic species, since the spin-dependent coupling constant c2 cannot be
independently modified using standard Feshbach resonance techniques, see Chap. 3. The
biaxial nematic phase also hosts non-Abelian vortex anyons and is perhaps a better
prospect experimentally, since it may be realised in the presence of an external magnetic
field and could potentially be achieved with naturally occurring scattering lengths [91].
Furthermore, experimental searches for non-Abelian vortices are not limited to spin-2
condensates with many other non-Abelian phases having been predicted for higher spin
BEC systems [156–161]. Indeed, the spin-6 condensate, recently realised with erbium
atoms [114], has a phase that is symmetric under the non-solvable non-Abelian binary
icosahedral group [161] and is therefore an attractive prospect for realising universal
topological quantum computation employing only fluxons [231].

As discussed in the introduction to this chapter, vortices in Bose–Einstein condensates
can be manipulated using dynamical pinning potentials generated by focused laser beams
[221, 222]. This enables controlled braiding and fusion of vortex anyons. Condensates
containing a few hundred vortices can realistically be achieved using current experimental
technologies and it may be possible to control them using laser fields morphed with
high resolution digital micro-mirror devices (DMDs) [68]. Hence, the creation of 100
high quality topological qubits is a plausible prospect. A potential drawback is the
adiabatic speed limit of massive vortices [245,246], in turn limiting the clock speed of
such a BEC vortex topological quantum abacus. This issue could perhaps be overcome
if robust synthetic non-Abelian fluxons could be created using artificial gauge field
techniques [247–249]. Furthermore, if the system is not sufficiently 2D, i.e. more oblate
than pancake, bending of the vortices could become a source of decoherence.

While challenges remain for realising non-Abelian vortex anyons capable of topolog-
ical information processing and storage, non-Abelian vortices in spinor Bose–Einstein
condensates hold promise for a tangible demonstration of the underlying principles of
topological quantum computation and should be pursued further. Naturally, the degree
of interest in non-Abelian vortex anyons will be tempered by any progress on realising
topological quantum computing in Majorana fermion or fractional quantum Hall plat-
forms. Regardless of the implications for quantum computation, there are still a number
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of fascinating details that merit further exploration, notably the transmutation of fluxes
under the topological influence with the attendant change in the vortex fusion dynamics.
The potential existence of Cheshire charge as a delocalised property of non-Abelian vortex
pairs similarly warrants further investigation. Indeed, detecting Cheshire charge in an
explicit condensed matter system is of interest in its own right [250]. Optimistically, dur-
ing these investigations new experimental procedures may be discovered which overcome
some or all of the stated challenges. similarly, a deeper understanding of non-Abelian
vortices in few atom condensates, from a theory standpoint, may resolve any potential
issues with creating flux superposition states.
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Chapter 6.

Two-dimensional quantum
turbulence in spinor condensates

In this chapter we explore the properties of two-dimensional quantum turbulent flows
formed from disordered arrays of fractional-charge vortices, of both Abelian and non-
Abelian algebra, in a spinor Bose–Einstein condensate. This entails first modelling
protocols for initiating turbulence through the interference of condensate fragments. The
chapter concludes with an analysis of turbulent dynamics and examines the prospects
for uncovering new stochastic phenomena which might arise from prevailing non-Abelian
interactions.

6.1. Quantum turbulence

The important characteristics of a turbulent state are; (I) an entangled array of quantum
vortices producing a disordered fluid flow; (II) a non-linear interaction of the vortices
of the kind (v.∇)v, present in the Euler equation; (III) a distribution of kinetic energy
across a number of length scales and a corresponding self-similar cascade of the energy
from one length scale to another.

Quantum turbulence contains all three of these characteristics. Quantum turbulence
manifests as a disordered tangle of quantised vortices [251,252]. The non-linearity of the
fluid flow is evident in the Gross–Pitaevskii equation due to the interaction terms, which
can be re-written in a form similar to the non-linear term in the Euler equation. The
important length scales for a turbulent state of a trapped Bose–Einstein condensate are
the system size L, the inter-vortex separation l and the vortex core size ξ. Depending

85
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on the length scale at which energy is injected into the turbulent state there can either
exist a turbulent state with large quasi-classical flows (> l) or without (< l) [253]. These
two states are Kolmogorov type, or Vinen type turbulence, respectively. We should also
distinguish between driven turbulence, where energy is constantly injected and dissipated,
and decaying turbulence, where the fluid is stirred then left to equilibriate. In this thesis,
we focus exclusively on the latter type of turbulence.

One useful observable for characterising turbulent flows is the incompressible kinetic
energy. Using the Helmholtz decomposition [132], the velocity field v can be decomposed
into its incompressible, vi, and compressible, vc, components as v = vi+vc. By definition,
∇ · vi = 0 and ∇×vc = 0. Hence, the incompressible and compressible components can
be thought of as arising from the velocity fields associated with the vortices and sound
waves, respectively. The kinetic energy,

Ek(t) =
∫ ~

2Mn(r, t)dr, (6.1)

can be similarly decomposed into its incompressible and compressible contributions,
respectively, as

Ei
k(t) = M

2

∫
n(r, t)(V i)2

Ec
k(t) = M

2

∫
n(r, t)(V c)2. (6.2)

Experiments on Kolmogorov type quantum turbulence in three-dimensional superfluid
helium suggest the existence of a k−5/3 scaling law in the spectra of the incompressible
kinetic energy, where k is the wavevector, over the intermediate length scales between
L and l [254, 255]. Numerical simulations using the Gross–Pitaevskii equation have
also obtained spectra consistent with this result [251, 256]. This spectrum, consistent
with classical turbulence [101,102], outlines a distribution of the incompressible kinetic
energy predominately in large scale vortex structures with a direct energy cascade toward
small scale vortex structures. This Richardson cascade proceeds in the k−5/3 inertial
scaling region via the scale invariant transport of energy from large to small vortex loops
via reconnections [257]. However, a self-similar energy cascade requires a mechanism
for dissipating energy at the smallest scales. In a superfluid, without true viscosity, it
remains unclear what mechanism causes dissipation at the smallest scales. There is some
support in numerical studies for the existence of a Kelvin wave cascade for length scales
l < k < 2π/ξ [258,259]. Here, the energy is transported from long to short wavelength
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Kelvin waves, which are excited during the reconnections, until a point is reached that
the energy is transferred to the compressible kinetic energy via the shedding of sound
waves [260].

Two dimensional (2D) turbulence can occur in nature for systems where the transverse
extent is significantly greater than the depth, for example, ocean or atmospheric currents
and soap films. As discussed in Chap. 3 it is possible to achieve a two-dimensional
condensate by tightly confining the gas along one direction [168]. In two-dimension,
vortices become point-like objects and their vortex collision dynamics change accordingly.
As we saw in Chap. 4, the collision dynamics of two-dimensional Abelian vortices are
dominated by vortex-antivortex annihilation. The change in the collision dynamics is
predicted to result in characteristically different turbulence. Spectra of the incompressible
kinetic energy are proposed to show three regions corresponding to (1) k < 2π/ξ with
power law k−3, (2) 2π/ξ < k < 2π/l with Kolmogorov scaling k−5/3 and (3) k > 2π/l
with scaling k [132]. Unlike in the three dimensional system, the Kolmogorov scaling
apparent in 2D turbulence is thought to correspond to an inverse energy cascade with
the energy aggregating within large negative temperature vortex structures [261, 262].
The inverse cascade proceeds via the clustering of liked sign vortices into large fluid flow
structures called Onsager vortices [206,263,264]. The inverse energy cascade is usually
paired with a direct cascade in the enstrophy, defined as the total squared vorticity. The
k−5/3 power law has been observed in some numerical simulations [264–266], though
seems to be dependent on the particular configuration of the vortices [132]. The regime
of 2D quantum has been attained in recent BEC experiments [104,105,208,267], which
provide a realisation of the negative-temperature Onsager vortex clusters [104,105], and
potential evidence of the k−5/3 power law [105,267].

Recent experiments have also explored turbulence in a two-dimensional spin-1 con-
densate [135, 268, 269] where the spin degree of freedom permits a new kind of spin
turbulence [270–272]. The characteristics of spin turbulence depend on the superfluid
phase of the condensate. For a condensate in the ferromagnetic phase, after excitation
into the turbulent state, the spins are spatially disordered but remain temporally frozen
allowing a description using a spin glass order parameter [273]. Comparatively, in the
polar phase the spins have small oscillations [271]. In both the ferromagnetic and polar
phases the spin turbulence is characterised by a k−7/3 scaling law in the spin interaction
energy spectra.

Spinor condensates may also host vortices with non-commuting topological charges
whose collisions result in the formation of a rung vortex. The prospect of a turbulent
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state of non-Abelian vortices which cannot reconnect presents the possibility of a new
kind of non-Abelian quantum turbulence. Kobyashi et al. [106] numerically simulated a
three-dimensional quantum turbulent state of non-Abelian vortices. Injecting energy at
large length scales was observed to result in a unique k−7/3 power law in spectra of the
incompressible energy. The power law is directly connected with a cascade in helicity,
v.(∇.×v), associated with the large-scale vortex network formed as a result of the rung
formation collision dynamics.

The existence of the novel rungihilation collision event, see Chap. 4, presents the
possibility of a new kind of two-dimensional non-Abelian quantum turbulence, the
properties of which we will explore in Sec. 6.7.

6.2. Initiating turbulence from multi-wave
interference

There are many ways to create vortices in a Bose–Einstein condensate including rotating
traps [197–200], stirring with a repulsive laser [274], imprinting of phase using Laguerre-
Gauss beams [201] and rapid quenches through phase transitions [275]. In this chapter
we focus on vortex production based on multi-wave interference to achieve a controllable
and repeatable technique to generate quantum turbulence. This concept is illustrated in
the schematic Fig. 6.1. The destructive interference of two wave packets produces dark
stripe solitons, each of which may subsequently disintegrate due to non-linear interactions
into rows of alternating vortices and antivortices [276–279]. However, the destructive
interference of three waves may produce lattices of vortices and antivortices in predictable
regular honeycomb lattice structures [280–284]. BECs are coherent matter waves which
can interfere. Scherer et al. used such a method and by colliding three Bose–Einstein
condensate fragments they observed quantised vortices in the system [285]. In their
experiment an external potential was used for separating the condensate initially into
three condensate fragments. Adiabatic removal of the separating potential provided a
statistical prediction of the presence or absence of a vortex in the resulting condensate,
depending on the random relative phases of the initial condensate components. In
contrast with this experiment, under sufficiently rapid non-adiabatic removal of the
separating potential, three colliding condensate fragments have been predicted and
demonstrated to form a honeycomb vortex-antivortex lattice, equivalent to two interleaved
non-rotating honeycomb Abrikosov vortex lattices—one of vortices and the other of anti-
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Figure 6.1: Schematic of our numerical experiment showing the total particle density at three
different times of evolution. (a) The five hyperfine states behind the total density images of the
F = 2 Bose–Einstein condensate are initially confined in a species-independent triple-well trap,
superposed with a global harmonic potential. (b) Upon removal of the triple-well potential,
the three condensate fragments expand and interfere in the central portion of the harmonic
trap. The multi-wave interference of the condensate fragments produces transient honeycomb
vortex-antivortex lattices in each of the occupied hyperfine spin states. (c) At later times the
system transitions to quantum turbulence.

vortices [282, 286, 287]. Similar honeycomb vortex lattices could also be produced by
using aberrated matter wave lensing technique [288,289]. Moreover, the Kjærgaard group
has developed a versatile optical tweezer based collider for cold atoms [221]. Possible
adaption of this experimental set-up for 2D confinement could enable generic multi-wave
condensate collisions with controllable initial momentum vectors of the wave packets. For
a two-component pseudo-spin system, three-wave collisions lead to condensate pseudo-
spin textures [283]. In the following sections we detail the theoretical framework of
three-wave interference, first for a scalar condensate in Sec. 6.3 and then extending to
an F = 2 spinor BEC in Sec 6.4 with the motivation of devising an experimentally
controllable method to produce lattices of fractional-charge vortices.

6.3. Collision of three scalar condensates

We will first consider a collision of three single-component scalar condensates and
thereafter extend the results to the multi-component spinor condensates. While the
condensate fragments are modelled as three symmetrically arranged wave packets of
equal initial population and shape, on a local scale their interference may be modelled as
that of three plane waves. This approximation is represented by a wave function

ψ (r) =
3∑
j=1

eiζj(r), (6.3)
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Figure 6.2: Structure of vortex lattices with black and white circles corresponding to the
locations of vortices and antivortices, respectively. (a) A honeycomb lattice structure due to
three-plane-wave interference in a single spin state of a condensate. (b) AB stacking of two
honeycomb lattices. (c) ABC stacking of three honeycomb lattices.

where ζj (r) = kj · r + φj. The kj are momentum vectors of equal magnitude |k| of the
three colliding condensate fragments and φj specifies the phase of the jth condensate
fragment at the origin. For the rest of this section φ1 = 0.

The quantised vortices are nodal lines of the complex valued wave function and are
identified as singularities of the phase function arg(ψ). For destructive three-plane-wave
interference the locations of the vortices, r+

n,m, and antivortices, r−n,m, are given by the
simple geometric relations

r+
n,m = 4π

3|k| (n+m/2 + 1/2π (φ2 + φ3)) êx

+ 2π√
3|k|

(m+ φ2/π) êy,

r−n,m = 4π
3|k| (n+m/2 + 1/2π (φ2 + φ3) + 1/2) êx

+ 2π√
3|k|

(m+ φ2/π + 1/3) êy (6.4)

describing a honeycomb lattice, as illustrated in Fig. 6.2(a). The êi are Cartesian basis
vectors. In comparison, by treating the colliding wave packets as Gaussian functions the
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interference is described by the wave function [282,290]

ψ (r, t) =

√√√√√ π−
1
2 ∆p

~

1 + i (∆p)2t
m~

×
3∑
j=1

exp

−
(

∆p
~

)2
|r− rj|2

2
[
1 + i (∆p)2t

m~

] + iφj

 , (6.5)

where ∆p defines the momentum uncertainty or the width of the initial condensate
fragments and |r− rj| is the distance between the centre of the jth Gaussian and an
observation point. The subsequent vortex and antivortex locations, derived in detail by
Ruben et al. [282], are respectively

r′
+
n,m =1

2

(
r − βM (m)

r

)
êx

+ 1
2
√

3

(
r − β [2N (n)−M (m)]

r

)
êy,

r′
−
n,m =1

2

(
r − βM ′ (n)

r

)
êx

+ 1
2
√

3

(
r − β [2N ′ (m)−M ′ (n)]

r

)
êy, (6.6)

where r is the separation between the centres of each condensate fragment and β =
2
[
(~t)2 +m2 (~/∆p)4

]
/3m~t. The integers n and m index the lattice points via the

functions

M (m) = 2π
[
1 + 3

(
m− φ2

2π

)]

N (n) = 2π
[
2 + 3

(
n− φ3

2π

)]

M ′ (n) = 2π
[
2 + 3

(
n− φ2

2π

)]

N ′ (m) = 2π
[
1 + 3

(
m− φ3

2π

)]
.

(6.7)
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Interestingly, also the Gaussian wave packet model, Eq. (6.6), produces a uniform
honeycomb vortex lattice and hence the vortex lattice vectors of Eq. (6.4) and Eq. (6.6)
can be mapped onto each other at any time.

6.4. Collision of three spinor condensates

Within the weak interaction approximation of three-source interference of spinor conden-
sates, where the kinetic energy of the system dominates over the particle interactions, the
structure of the vortex lattice formed in each internal spin component is independent of
influence from the condensate particles in other spin states. The vortex lattice structure
in each spin component is thus equivalent to that produced by three source interference
in a scalar condensate. Hence the semi-analytical three-plane-wave interference model
can be extended to a spinor wave function by modelling each spinor component as a
scalar wave function. The spinor wave function describing the lattice structure local to
the trap centre is then

Ψ (r) =
3∑
j=1



|ψ2 (r)| eiζ2j(r)

|ψ1 (r)| eiζ1j(r)

|ψ0 (r)| eiζ0j(r)

|ψ−1 (r)| eiζ−1j(r)

|ψ−2 (r)| eiζ−2j(r)


, (6.8)

where |ψi (r)| is constant and ζij (r) = kj · r + φij. The phase at r = 0 of the jth
condensate fragment in the ith spin component is denoted by φij. While the magnitude
of the momentum vector kj determines the vortex lattice spacing and is used as a
free parameter for matching the semi-analytical description and the numerical results.
Similarly to the scalar case, the phases φij determine the positions of the vortices
nucleated in the spinor condensate [see Eq. (6.7)].

In spinor systems the vortex lattice produced during the interference can be thought
of as a composition of vortex-antivortex lattices in each of the internal spin states, see
Fig. 6.2. Hence there are three possible alignments of each vortex-antivortex lattice; (I)
vortex in one component aligns with a vortex in the other component; (II) antivortex
aligns with vortex in the other component or (III) vortex (antivortex) aligns with a
region of non-zero condensate density in the other component. The relative position of



Two-dimensional quantum turbulence in spinor condensates 93

the vortices in different spin states determine which spinor-vortex types are generated in
the spinor condensate. By controlling the spinor phases during preparation of the initial
condensate any desired alignment of the vortex lattices in different spin states may be
achieved [283]. The various ways these vortex lattices may be stacked is analogous to
those in multilayer graphene structures [291]. Figure 6.2(a) shows a honeycomb vortex
lattice structure in a single component scalar (spin-0) condensate. Frame (b) shows an
AB stacking of two honeycomb lattices and frame (c) shows an ABC stacking of three-
layer honeycomb lattices. Both (b) and (c) yield three different kinds of antisymmetric
vortices in the global order parameter and the same is true for ABA and BAB stackings.
Unshifted stackings such as AA and AAA all result in two different kinds of vortices
only, which are equivalent to the scalar condensate vortices and antivortices shown in (a).
Populating 4 or all 5 spin components further increases the complexity and the variety
of possible vortex states.

As shown in the case of colliding scalar condensate fragments, the outcome is a
honeycomb vortex lattice irrespective of the initial phases of the condensate fragments.
In such a case the collision itself acts as a measurement process determining the relative
phases between the condensate fragments [292]. Similarly for a spinor case the collision
will result in a vortex lattice but this time the vortex types nucleated in the lattice
will depend on the phase structure of the full spinor wave function. In the numerical
simulations the initial phases φij can be set explicitly without loss of generality. In
experiments, the relative phases within a given spin state could be controlled using
Laguerre–Gauss laser modes to imprint any order vortex phase winding [73, 293]. It
is feasible that the different diffraction orders of a single Laguerre–Gauss beam could
potentially be used to control each φij. However, to determine the vortex positions it is
sufficient to fix only the relative winding numbers between the spin components. This
is because the relative phases between the spin states cause a local rotation of the spin
but leave the alignment of the vortex lattices unchanged. Alternatively, suitable initial
states could be generated by imprinting the desired spin textures using spin-engineering
techniques similar to those used in Refs. [74,77,78].
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6.5. Numerical experiments

We numerically simulate a condensate of 87Rb atoms with effective particle number
N = 5.0× 104. The dimensionless coupling constant c′0 = c0N/~ωl2 is determined from
the experimentally measured scattering lengths of 87Rb [190–192]. As per Chapter 3 the
dimensionless spin interaction strengths are chosen as c′1 = c′2 = 0.5 c′0, which specify the
cyclic-tetrahedral phase.

The three-source interference simulations are performed on a Cartesian numerical grid
with 2048× 2048 points. The trapping potential is a combination of a harmonic oscillator
potential with a frequency ω = 2π× 4.9 Hz and a sum of three localised Gaussian terms.
This produces a triple-well potential, Vext = mω2r2/2 + ∑3

i=1 P exp
(
−1

2(r − ri)2/σ2
)
,

where P = 300 ~ω and σ = 18.8 l are the potential height and standard deviation of
the Gaussian potentials centred at positions ri. The initial-state spinor is chosen to
represent either a biaxial nematic or cyclic-tetrahedral vortex state. The vortex phase
windings are initialised by setting the phases φij as described in Sec. 6.4. An example
phase structure, corresponding to the biaxial nematic half quantum vortex case, is shown
in Fig. 6.3. Similar initial particle densities and phase maps of the other vortex states
are shown in the Supplemental Material of Ref. [109].

We also perform simulations of initiating turbulence from disordered arrays of vortices,
with both commuting and non-commuting topological charges, created using the phase

1

0

mF = +1mF = �1

π

0

-π

(c) (d)

(a) (b)

Figure 6.3: Initial state of the biaxial nematic half quantum vortex. (a)-(b) show the
probability densities in the m = 1 and m = −1 spin states normalised to the maximum density.
(c)-(d) show the phases of the two spin states. In all figures in this section, the range of the
colourbar is from the minimum to maximum value of the observable in arbitrary units. The
field of view of each frame is (23.4× 23.4) l.
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imprinting methods discussed in Sec. 3.2. These simulations are performed on a numerical
grid with 512× 512 grid points. To realise a uniform condensate density, we use a hard-
wall trapping potential Vext = r8/4, with a radius Rhw ≈ 58µm.

6.6. Vortex lattices from three-source interference
in a spin-2 Bose–Einstein condensate

In the following, we present simulation results for three representative initial states with
spinor structures corresponding to a biaxial nematic half quantum vortex, a cyclic spin
vortex, and a cyclic one third vortex. We use the destructive three-plane-wave interference
in Eq. (6.8) as an analytical model for comparison with the numerical results. While the
values of our coupling constants preference the cyclic-tetrahedral phase, their strenghts
are unimportant in determining the initial lattice structure. However the particular spin
interaction strengths will play an important role in determining the subsequent turbulent
state.

We initialise the biaxial nematic half quantum vortex state
√

2 (0, 1, 0, exp (iθ) , 0) /2
by setting the phases φ−1j = 0 and φ1j = 0, 2π

3 ,
4π
3 for the j = 1, 2, 3 condensate

fragments, respectively, with the other spin components empty. The semi-analytical
model of Eq. (6.8) is initialised similarly. The initial probability density and phase map
for the two non-zero population spin components are presented in Fig. 6.3 showing the
2π phase winding across the three condensate fragments in the m = +1 spin component.
In all figures in this section, the range of the colourbar is from the minimum to maximum
value of the observable in arbitrary units. Additionally, in this section we use the jet
and copper colourmaps to represent the magnetization and spin-singlet pair amplitude
densities, respectively. Both the magnetization and spin singlet pair amplitude density
are initially zero.

After the triple-well component of the external potential is switched off, the three
condensate fragments collide and a honeycomb lattice is formed in the condensate interior
of each spin state, Fig. 6.4(a-d), while the exterior regions, where initially only two of
the three condensate fragments have collided, are dominated by interference fringes. An
expanded view of the honeycomb lattices in each spin component is provided in Fig. 6.5.
The full and expanded views of the vortex lattices of the other vortex states can be found in
the Supplemental Material of Ref. [109]. The vortex lattice consists of the three fractional
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Figure 6.4: The lattice for the half quantum vortex initial state from a Gross–Pitaevskii
simulation. (a)-(d) show the probability density of them = −1 andm = 1 spin states normalised
to the maximum density and the corresponding phases. (e)-(g) show the total particle density,
magnetization density and the spin singlet pair amplitude density. The field of view of each
frame is (23.4× 23.4) l and the images are for a time τ = 0.55 1/ω after the triple-well trapping
potential is switched off.

vortex types, which are measured by visually inspection of the order parameter rotations,
as discussed in Sec. 3.3. The vortices are two 3π/2 half quantum vortices; −VIIbx0
with Ψ(r,−VIIb) =

√
2(0, 1, 0, e−iθ, 0)/2 and −VIIbx−1, and an integer spin vortex

−IIb0. The order parameters of these vortices are Ψ(r,−VIIbx0) =
√

2(0, 1, 0, e−iθ, 0)/2,
Ψ(r,−VIIbx−1) =

√
2(0, eiθ, 0, 1, 0)/2, and Ψ(r,−IIb0) =

√
2(0, e−θ, 0, eiθ, 0)/2. Here

we use the letter b in the vortex label to distinguish the biaxial nematic vortices from
their cyclic-tetrahedral counterparts. For a description of these vortices see Appendix D.
The topological charges of the lattice vortices all commute, hence their topological
interactions are Abelian. The total particle density n(r), magnetization density Fz(r)
and the spin singlet pair amplitude density |A(r)| are shown in Fig. 6.4(e-g), respectively.
The densities in the two populated spin components develop prominent spiral arms with
opposite chirality, preserving the three-fold symmetry in the total density.

Figure 6.6(a-c) shows an expanded view of Fig. 6.4(e-g) local to the trap centre.
These frames should be compared with the respective frames Fig. 6.6(d), (e) and (f)
showing the corresponding densities calculated using the semi-analytical model. From
such comparison it is evident that the semi-analytical non-interacting model is in good
agreement with the full Gross–Pitaevskii simulation, as far as the predicted lattice
structure is concerned, with the produced vortex types being identical.
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Figure 6.5: Enhanced view, local to the trap centre, to the lattice for the half quantum
vortex initial state from a Gross–Pitaevskii simulation. (a)-(d) show the particle probability
densities in the m = −1 and m = 1 spin states, normalised to the maximum density, and the
corresponding phases. The locations of the −VIIx0 , −VIIx−1 and −II0 lattice vortices are denoted
by coloured dots of pink, red, and green, respectively. While the white and black dots denote
quantum vortices and antivortices, respectively, in each spin component. The field of view
of each frame is (2.3× 2.3) l and the images are for a time τ = 0.55 1/ω after the triple-well
trapping potential is switched off.
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Figure 6.6: An expanded view, local to the trap centre, of the lattice for the half quantum
vortex initial state. (a)-(c) The results from a Gross–Pitaevskii simulation showing the total
particle density, magnetization density and the spin singlet pair amplitude density for a time
τ = 0.55 1/ω after the triple-well trapping potential is switched off. (d)-(f) The corresponding
observables calculated from the semi-analytical spinor in Eq. (6.8) where φ−1j = 0 and
φ1j = 0, 2π

3 ,
4π
3 for j = 1, 2, 3, with the other spin components empty. The locations of the

−VIIx0 , −VIIx−1 and −II0 lattice vortices are denoted by coloured dots of pink, red, and green,
respectively. The field of view of each frame is (2.3× 2.3) l.
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The biaxial nematic phase initial state contains equal population of atoms in both spin
states m = ± 1. The particle density is non-zero in the cores of the half quantum vortex
types. Therefore the half quantum vortices have magnetic cores with a magnetization
of equal magnitude but opposite sign as shown in Fig. 6.6(b). The spin vortex has a
zero particle density core structure and consequently zero magnetization and spin singlet
amplitude. The magnetization density in Fig. 6.6(b) shows a honeycomb pattern of
maxima and minima, coinciding with the locations of the −VIIx0 and −VIIx−1 vortex
cores, respectively. From both the magnetization and the spin singlet pair amplitude we
note that the cores of the half quantum type vortices have a triangular core structure
in comparison to the circular structure of the −II0 spin vortex. The spin singlet pair
amplitude density in Fig. 6.6(c) displays distinctly different lattice structure when
contrasted with the particle and magnetization densities.

Consider next a condensate with three spin components populated with condensate
particles, which leads to the ABC stacking of vortex lattices. For this we initialise the
cyclic-tetrahedral phase spin vortex state

(
i
2 exp (−2iθ) , 0,

√
2

2 , 0, i
2 exp (2iθ)

)
by setting

the phases φ−2j = 0, 8π
3 ,

4π
3 , φ0j = 0 and φ2j = 0, 4π

3 ,
8π
3 for the j = 1, 2, 3 condensate

fragments, respectively, with the other spin components empty. The semi-analytical
model of Eq. (6.8) is initialised similarly.

The vortex lattice, formed after the condensate collision, contains the spin vortex −II0,
with order parameter Ψ(r,−II0) = (ieiθ, 0,

√
2, 0, ie−iθ)/2, and two vortices with order

parameters Ψ(r,A1) = (i, 0,
√

2e−iθ, 0, ieiθ)/2 and Ψ(r,A2) = ie−iθ, 0,
√

2eiθ, 0, i)/2,
respectively, which can not be described as any of the cyclic-tetrahedral vortices. We
shall refer to these vortices with the labels A1 and A2, respectively. The core of the II0
vortex has Fz = 0 and non-zero particle density. The remaining vortices have normalised
magnetised cores with Fz = 1 and Fz = −1, respectively, and both have a non-zero
particle density at the vortex core.

An expanded view of the lattice is shown in Fig. 6.7. As shown in Fig. 6.7(b), non-
zero magnetisation density emerges due to the nucleation of vortices with magnetic core
structures, which changes the topology of the condensate. The total particle density, see
Fig. 6.7(a), does not vanish anywhere although the magnetisation density remains nearly
identical to that in Fig. 6.6(e). The spin singlet pair amplitude density in Fig. 6.7(c)c)
reveals the asymmetry between the initial state vortices and those spawned by the
condensate collision.
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Figure 6.7: An expanded view, local to the trap centre, of the lattice for the spin vortex initial
state. (a)-(c) The results from a Gross–Pitaevskii simulation showing the total particle density,
magnetization density and the spin singlet pair amplitude density for a time τ = 0.55 1/ω
after the triple-well trapping potential is switched off. (d)-(f) The corresponding observables
calculated with the semi-analytical spinor in Eq. (6.8) where φ−2j = 0, 8π

3 ,
4π
3 , φ0j = 0 and

φ2j = 0, 4π
3 ,

8π
3 for j = 1, 2, 3, with the other spin components empty. The locations of the

−II0, A1, and A2 vortices are denoted by coloured dots of green, yellow and purple respectively.
The field of view of each frame is (2.3× 2.3) l.

Comparing Fig. 6.7(a-c) with Fig. 6.7(d-f), the −II0, A1, and A2 vortices have
nucleated in the spinor wave function in complete agreement with our semi-analytical
model. The triangular structure of the spin singlet pair amplitude density differs from
the semi-analytical prediction of a snow-flake pattern illustrating the sensitivity of the
spin singlet pair amplitude to relative phase differences between the spin components.
The total particle and magnetisation densities are not similarly sensitive to these relative
phases. By altering the relative phase differences in the semi-analytical model it is
possible to obtain the same level of agreement between the numerical and semi-analytical
spin singlet pair amplitude densities as is apparent between Fig. 6.6(c) and (f). The
different spin singlet pair amplitude density patterns could be a potential means to
measure the phase structure of the spinor order parameter.

We initialise the one third vortex state
(
0,
√

2
3 , 0, 0, 1√

3 exp (iθ)
)
by setting the phases

φ−1j = 0 and φ2j = 0, 2π
3 ,

4π
3 for the j = 1, 2, 3 condensate fragments, respectively,

with the other spin components empty. The semi-analytical model of Eq. (6.8) is
initialised similarly. The AB stacking produces lattice vortices measured as, IV0, IV−1

and −V0. The vortex order parameters are Ψ(r, IV0) = 1√
3(eiθ, 0, 0,

√
2, 0), Ψ(r, IV−1) =



100 Two-dimensional quantum turbulence in spinor condensates

1

0 �1
1

0

1

�1

1

(a)

(c)

(b)

(d)

Figure 6.8: An expanded view, local to the trap centre, of the lattice for the one third vortex
initial state. (a)-(b) The results from a Gross–Pitaevskii simulation showing the total particle
density and magnetization density for a time τ = 0.55 1/ω after the triple-well trapping potential
is switched off. (c)-(d) The corresponding observables calculated with the semi-analytical spinor
in Eq. (6.8) where φ−1j = 0 and φ2j = 0, 2π

3 ,
4π
3 for j = 1, 2, 3, with the other spin components

empty. The locations of the IV0, IV−1 and −V0 lattice vortices are denoted by coloured dots
of cyan, yellow and brown respectively. The field of view of each frame is (2.7× 2.7) l.

1√
3(1, 0, 0,

√
2e−iθ, 0), and Ψ(r,−V0) = 1√

3(e−iθ, 0, 0,
√

2eiθ, 0). The topological charges
of these vortices commute and hence they obey Abelian collision dynamics.

The particle densities at the cores of the IV0, IV−1 and −V0 vortices are n = 2
3nmax,

1
3nmax and 0 respectively, where nmax is the peak total particle density. Thus the −V0

vortex has a zero particle density core while the IV0, IV−1 vortex cores have dimensionless
magnetizations −2

3 and 2
3 , respectively. An expanded view of the lattice structures present

in the total particle density and magnetization density is shown in Fig. 6.8(a-b), while
the spin singlet pair amplitude density is zero across all space. Note that the vortex cores
in both of the non-zero observables have a prominent triangular structure. The vortex
lattices and the total density and magnetization density structures are indistinguishable
from those predicted by the semi-analytical model.

Based on these three examples, it is clear that the multi-wave interference technique
can be used to deterministically produce desired vortex lattice topologies in spinor
Bose–Einstein condensates.
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6.7. Towards two-dimensional non-Abelian quantum
turbulence in a spin-2 condensate

As shown in the previous section, the one-third vortex initial states can be used for
generating vortex lattices of Abelian vortices and antivortices. Keeping the global
harmonic trapping potential turned on and only switching off the triple-well potential
will cause the condensate to undergo breathing mode oscillations in the harmonic trap.
Figure 6.9(a)-(e) shows snapshots of such a simulation and the frames (f)-(k) show the
enlarged images zoomed to the trap centre. Despite the initial three-fold symmetry,
the chaotic dynamics of the vortices rapidly leads to the loss of such symmetry and a
transition to 2D Abelian quantum turbulence as shown in (c)-(d). The vortex dynamics
during the break down of the lattice are dominated by the instability of the −V0. After
τ = 0.55 1/ω, the −V0 vortex splits into an antivortex and a vortex in the m = 2 and
m = −1 spin-components, respectively. The uncoupled antivortex typically annihilates
with the IV0 vortex, though both vortices may later reform and produce scalar vortex
bound states with the IV−1 and the uncoupled vortex, respectively, see Fig. 6.9(g). The
decoupling of the −V0 vortex replaces the interleaved triangular lattice with a hexagonal
lattice of scalar vortices.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6.9: Emergence of non-Abelian two-dimensional quantum turbulence showing a
selection of snapshots from the one third initial state simulation. (a)-(e): The total probability
density of the condensate including the initial state, lattice and turbulent regime. The field of
view of each frame is (29.2× 29.2) l. (f)-(k): The same frames in (a)-(e) but with a field of
view of (2.92× 2.92) l. The coloured dots of blue, red, green and yellow denote the vortices
(blue/green) and antivortices (red/yellow) in the m = 2 and m = −1 spin states, respectively.
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The collective excitations, such as the breathing mode, excited after the collisions
of the condensate fragments, obscure the vortex dynamics in the turbulent state. Thus,
rather than using three source interference, in a harmonic trap, we can instead phase
imprint the initial vortex configuration into a 2D uniform trap, as used in the recent
scalar 2D quantum turbulence experiments [104, 105]. By suppressing the collective
excitations and smoothing the condensate density profile, we obtain a cleaner system to
visualise the topological interactions. Furthermore, by phase imprinting the vortices, we
can control the algebra of their charges, allowing for the potential realisation of both
Abelian and non-Abelian 2D quantum turbulence.

Initial states of disordered arrays of vortices are imprinted using the techniques
outlined in Sec. 3.2. Abelian vortex initial states, where the topological charges of all
the vortices commute, are created directly from the product states in Eq. (3.4). In
Figure 6.10, we provide an initial state of IV0 and −VI−1 vortices, which seeds an
Abelian quantum turbulent state. Initial states of non-Abelian vortices are realised by
using the phase matching technique to construct a cell of four vortices, two of each
charge, which are then tiled across the condensate to imprint many non-Abelian vortices.
Figure 6.11(a)-(e), shows such a phase structure for the non-Abelian vortices IV0 and
−VIx−1. The boundaries between the different vortex order parameters introduce domains
walls, as evidenced by the observable densities in Fig. 6.11(g)-(h). The decay of these
domain walls is a source of noise, in the form of sound waves, magnons and spurious
vortices. However, the energy released from the decaying domain walls could be beneficial,
by stimulating the onset of turbulent dynamics.

Evolving the initial states in Figs. 6.10 and 6.11 produces a turbulent state. Each
system is evolved for a period of dimensionless time τ = 2000, where τ = tω′ and the
angular frequency ω′ = 2π× 10 Hz. To make a preliminary characterisation of these
turbulent states we consider the vortex number decay, see Fig. 6.12 and spectra of the
incompressible kinetic energy, see Eq. (6.2), shown in Figs. 6.13 and 6.14. A thorough
analysis of the turbulent states would perform ensemble averaging over many simulations
with different initial state vortex configurations.

Our identification methodology for spinor vortices, see Sec. 3.3, fails for many-vortex
systems in which the vortices are both irregularly and densely distributed, as is the case
in these turbulent states. In such situations, the measured spherical harmonic series of
a vortex is perturbed by the order parameter transformations of neighbouring vortices
outside the measurement loop, prohibiting accurate overlap measurements. Furthermore,
measurements of the total rotation of the order parameter across the measured series
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Figure 6.10: An initial state of 95 Abelian vortices with topological charges IV0 (42) and
−VI−1 (53). (a) The phase θ of the m = −2 spin component which contains the phase windings
of the IV0 and −VI−1 vortices. (b) The total density, |Ψ|2. (c) The magnetization density,
Fz. The locations of the IV0 and −VI−1 vortices are denoted by the magenta and cyan circles,
respectively. The radius of the hard-wall trapping potential is Rhw ≈ 58µm.
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Figure 6.11: An initial state of 100 non-Abelian vortices with topological charges IV0 (50)
and −VIx−1 (50). (a)-(e) The phases θ of the m = −2, . . . , 2 spin components. (f) The total
density, |Ψ|2. (g) The magnetization density, Fz. (h) The spin-singlet pair amplitude, |A|2.
The locations of the IV0 and −VIx−1 vortices are denoted by the magenta and cyan circles,
respectively, corresponding to the phase windings in the m = −2 spin component. The radius
of the hard-wall trapping potential is Rhw ≈ 58µm.
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⌧ ⌧

N

(a) (b)

Figure 6.12: Vortex number decay curves for quantum turbulent states of, (a) Abelian
vortices, and (b) non-Abelian vortices. The magenta and cyan curves give the number N; of
IV0 and −VI−1 vortices in (a), respectively; and IV0 and −VIx−1 vortices in (b), respectively.
In each subfigure, we provide a reference exponential decay curve, dashed black line, of form
B1e

−t/B2 , with parameters B1 = {40, 50} and B2 = {1243, 256}, for the curves in (a) and (b),
respectively.

are hampered by insufficient spatial sampling of the order parameter. Thus, rather than
performing a direct count of the vortex types, we locate and count the correlated phase
windings, which are typically present in only one component of the order parameter.
To avoid counting spurious vortices, which can be excited via pair creation in regions
with near-zero density, we smooth the phase by transforming the order parameter into
Fourier space and thresholding the high energy modes. Counting the phase windings
in the m = −2 spin component, we obtain effective vortex number decay curves for the
IV0 and −VI−1 vortices in the Abelian turbulent state, see Fig. 6.12(a), and for the IV0

and −VIx−1 vortices in the potentially non-Abelian turbulent state, see Fig. 6.12(b). As
the turbulence progresses, there is a notably steeper decay in the number of the initial
state vortices left in the system in the non-Abelian case in comparison to the Abelian
state. By comparing the curves in each turbulent state to an exponential decay B1e

−t/B2

we obtain mean lifetimes of B2 = {1242, 256} for the Abelian and non-Abelian cases,
respectively. Indeed, by τ = 1000 for the non-Abelian case, it appear as if there are few
or no vortices left in the system at all. However, the collisions of the non-Abelian IV0

and −VIx−1 vortices induce rungihilation events that spawn rung vortices of kind class III.
Since the order parameters of the class III vortices do not necessarily contain explicit,
and thus locatable, phase windings, the rung vortices are absent from the count.
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Figure 6.13: Spectra of the incompressible kinetic energy Ei(k) for the quantum turbulent
state of Abelian vortices. The wavevector is scaled with respect the density healing length to ξ.
As a guide to the eye, we provide the green and blue dotted lines corresponding to the k−5/3

and k−7 power laws, respectively.

In Figures. 6.13 and 6.14, we provide spectra of the incompressible kinetic energy at
multiple timesteps during the evolution of the turbulent states of Abelian and non-Abelian
vortices, respectively. In the Abelian case, in the region Kξ > 1 there appears to be some
tendency towards the Kolmogorov k−5/3 power law, which appears in some numerical
[264–266] and experimental [105] studies of scalar 2D Abelian quantum turbulence
[132]. While the spectra for the Abelian and non-Abelian cases are initially similar,
see Figs. 6.14(a)-(b), for τ > 1000 an unusual “flat” spectrum develops. The exact
mechanism driving the flatness of the spectra is unclear. However, a possible connection
may be the transference of kinetic energy in the mass current circulations of the IV0

and −VIx−1 vortices to the spin current circulation of the rung vortices. In both the
Abelian and non-Abelian spectra, the scaling in the region kξ < 1, associated with the
vortex core, is distinctly different to the k−3 power law in scalar 2D quantum turbulence,
perhaps associated with the populated spinor vortex core structures.
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Figure 6.14: Spectra of the incompressible kinetic energy Ei(k) for the quantum turbulent
state of non-Abelian vortices. The wavevector is scaled with respect the density healing length
to ξ. As a guide to the eye, we provide the green and blue dotted lines corresponding to the
k−5/3 and k−7 power laws, respectively.
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6.8. Summary

We have studied computationally the generation of quantised vortex lattices and quantum
turbulence in spin-2 spinor Bose–Einstein condensates by simulating collisions of three
condensate fragments. We have shown that the structure of the resulting honeycomb
vortex lattices can be predicted by modelling each of the spinor wave function components
independently in terms of linear superposition of three waves. The lattice states thus
produced, correctly predict the structure of fractional-vortex lattices observed in full
simulations of the spinor Gross–Pitaevskii equation.

We have shown that using realistic initial state preparation, honeycomb lattices of
fractional-charge vortices with commuting topological charges can be produced using a
three wave interference technique. It remains to be seen if initial phase configurations
can be realised which produce lattices of non-Abelian vortices. The generated vortex
lattices are robust even in the presence of fairly large phase fluctuations because any such
uncertainties would only act to translate the vortex positions in each spin component
and small shifts in the vortex positions are not sufficient to destroy the topology of
the vortices. This technique is anticipated to open a route to experimental studies of
quantum turbulence in spinor Bose–Einstein condensates. Despite the relatively short
life-times of the F = 2 Bose–Einstein condensates, the dynamical method presented for
creating the honeycomb vortex lattices and their subsequent decay to turbulence should
allow sufficiently long time scales for observations of quantum turbulence to be made.
The resulting vortex configurations could potentially be observed using the vortex sign
detection methods [105,294,295] in combination with Stern–Gerlach imaging.

We studied turbulent states of vortices, with either commuting or non-commuting
topological charges, by directly phase imprinting disordered configurations of vortices into
a uniform condensate. Noticeable differences were observed between the two turbulent
states regarding the rate of vortex number decay and the kinetic energy spectra. Such
differences act as a potential indicator that the non-Abelian algebra manifests a different
kind of 2D non-Abelian quantum turbulence. There remain many open questions
in this context; what mechanism is causing the non-Kolmogorov power law in the
incompressible kinetic energy spectra of the non-Abelian turbulent state?; can evaporative
heating of fractional vortices lead to the emergence of Onsager vortices of non-Abelian
kind [261, 263]?; and does magnetization cascade emerge in these systems alongside
incompressible kinetic energy and enstrophy cascades? These important questions are
left as topics for further studies.
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Chapter 7.

Conclusions

In this thesis we presented an investigation into the topological interactions of non-Abelian
vortices in spin-2 spinor Bose–Einstein condensates. We studied these interactions in
increasingly complex systems, starting with two vortex collisions, then extending to few
vortex explorations of the braiding and fusion dynamics of non-Abelian vortex anyons,
and finally modelling chaotic many-vortex dynamics of quantum turbulence.

In Chapter 4, we discussed the topological interactions of spinor vortices by character-
ising the collision dynamics of vortex dipoles with both commuting and non-commuting
topological charges. Abelian vortices were found to undergo annihilation, mediated by a
magnetic soliton state, and pass through. For non-Abelian vortices we discovered a new
collision event—rungihilation—in which a vortex pair collides forming a rung vortex and
subsequently decays forming a further non-Abelian vortex pair with different topological
charges. The observed collision dynamics were mapped onto, and explained in terms of
the fusion rules, of the corresponding vortex anyons.

In Chapter 5 we observed that the topological influence between non-Abelian vortices
results in braiding and fusion dynamics that are characteristic of non-Abelian anyons.
We developed and characterised non-Abelian vortex anyon models based on the quantum
double construction, where the vortices were mapped to particle-like excitations called
fluxons and additional H-charges were introduced. Beginning at the fluxon level, We
derived the fusion rules for these anyons by mapping between the flux fusion rules and
the vortex collision dynamics discussed in Chap. 4, and subsequently including the
H-charge property. We constructed a toy-model for a topological qubit and demonstrated
the actions required to perform a single qubit superposition operation and a two-qubit
entangling operation. While our non-Abelian vortices were demonstrated to have the
potential to yield non-Abelian anyons, we noted that this may be compromised by the
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substantial challenge of creating and maintaining true quantum superpositions of fluxon
eigenstates necessary to create useful qubit states in real superfluid systems.

Finally, in Chapter 6 we demonstrated the use of three-source interference of spin-2
condensate fragments to deterministically generate lattices of Abelian fractional-charge
vortices. Furthermore, we showed that three-source interference is a potential route to
quantum turbulence in spinor condensates. We performed preliminary studies of quantum
turbulent states of vortices with either commuting or non-commuting topological charges,
observing potential indicators of a new kind of non-Abelian quantum turbulence.

In this work we obtained answers to a number of questions regarding the basic
topological interactions of non-Abelian vortices, their potential applications to quantum
computation and the expanding knowledge of quantum turbulence phenomena. As the
research progressed a number of tantalising unexplored avenues were revealed.

Vortex-antivortex annihilation was observed, in Chapter 4, to be mediated by the
formation of a magnetic Jones-Roberts soliton, with true annihilation likely requiring some
many-body scattering process. The specific details of this annihilation process may help
reveal the mechanisms underlying the properties of 2D Abelian quantum turbulence in
spinor condensates. In three dimensions, our vortex dipole orbits map to co-propagating
elongated axisymmetric vortex lines. It has been demonstrated that such motion for
scalar vortex lines seeds a Crow instability [296,297], where the mutual induction field
of the dipole excites Kelvin waves along the vortex lines which grow in amplitude until
the vortices reconnect to form many vortex rings. It would be interesting to explore
whether the crow instability exists for non-Abelian vortices, where rung formation might
instead lead to a chain of linked vortex rings. Our results in Chapter 5 provide a number
of avenues for further research. Foremost, is a thorough investigation of the potential
to create and maintain true flux superposition states in a BEC with a macroscopic
number of atoms. Such superpositions may be more readily realised in condensates in
the few-atom limit. Supposing fluxon superpositions could be realised, it would be up
to experiments to determine their decoherence time. We postulate that the H-charges
would correspond to Bogoliubov ‘zero’ modes realised on a given vortex order parameter
background. These excitations could be characterised, by solving the Bogoliubov–de
Gennes equation for the spin-2 BEC [119], and mapped onto the H-charges by comparison
with the representation theory. There is also great potential to explore Cheshire charge
in these systems. We have already begun an investigation into the magnetic soliton
structure, revealed in our single qubit simulations, and its potential connection to the
Cheshire charge. For the three-source interference technique in Chapter 6, realising initial
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phase configurations which result in vortex lattices with non-Abelian vortices remains an
open problem. Our preliminary turbulence results point towards a number of interesting
research opportunities. Exhaustive numerical simulations could provide more accurate
power laws in the spectra of the incompressible kinetic energy. Similarly, amending the
vortex detection method, such that it can robustly detect and identify vortices of all
types in dense vortex configurations, would permit a more accurate measure of the vortex
number decay. The analysis could also be expanded to calculate spectra of the spin
interaction energy. There are also rich connections that could be made to coarsening
dynamics [298], particularly in the magnetisation, and to non-thermal fixed points [299].

Topology in physics is presently undergoing a resurgence, to which this thesis makes
a contribution. The novel topological interactions of non-Abelian vortices provide
the possibility of uncovering fascinating new physics in 2D spinor condensate systems;
potentially including non-Abelian vortex anyons and a new kind of non-Abelian quantum
turbulence. Quantum turbulence and quantum computation may appear to be quite
disparate systems, yet in the context of this thesis they are connected via the non-
Abelian vortex anyons. Indeed, the chaotic braiding and fusions of vortices in a quantum
turbulent state could be viewed as a form of stochastic quantum computation. Even
if the vortices would not turn out to be true non-Abelian anyons, they still (even at
mean-field level) have the unusual topological influence and rung formation dynamics.
These interesting topological interactions alone are a major motivation for further studies
to pave the way for future experimental verification. We hope that this work contributes
toward encouraging the experimental realisation of these exciting non-Abelian topological
structures.
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Appendix A.

Spin-2 rotation matrix

The 5× 5 matrix representation of the phase and spin rotation of the spin-2 BEC order
parameter is

R = eiφ
e−2i(α+γ)C4 −2e−i(2α+γ)C3S

√
6e−2iαC2S2 −2e−i(2α−γ)CS3 e−2i(α−γ)S4

2e−i(α+2γ)C3S e−i(α+γ)C2(C2 − 3S2) −
√

3
8 e
−iα sin(2β) −e−i(α−γ)S2(S2 − 3C2) −2e−i(α−2γ)CS3

√
6e−2iγC2S2

√
3
8 e
−iγ sin(2β) 1

4 (1 + cos(2β)) −
√

3
8 e
iγ sin(2β)

√
6e2iγC2S2

2ei(α−2γ)CS3 −ei(α−γ)S2(S2 − 3C2)
√

3
8 e
iα sin(2β) ei(α+γ)C2(C2 − 3S2) −2ei(α+2γ)C3S

e2i(α−γ)S4 2ei(2α−γ)CS3 √
6e2iαC2S2 2ei(2α+γ)C3S e2i(α+γ)C4

,
(A.1)

where C = cos(β2 ) and S = sin β
2 [119].
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Appendix B.

Cyclic-tetrahedral non-Abelian
vortices
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Figure B.1: Order parameter transformations of the cyclic-tetrahedral phase vortices in
Fig. 2.4 viewed along the axis of the sequence. Order parameter traverses out of the page for
the given labels and into the page for their inverses.
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Figure B.2: Order parameter transformations of the cyclic-tetrahedral phase vortices in
Fig. 2.4 viewed along the axis of the sequence. Order parameter traverses out of the page for
the given labels and into the page for their inverses.
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Appendix C.

Representation theory

The unitary representations of a finite group H correspond to homomorphisms α :
H → GL(V ) which map the group elements onto a set of unitary linear operators
(matrices) on a vector space V , for a detailed description see Ref. [300]. For a particular
representation, the identity element e is mapped onto the identity operator, α(e) = I,
and the group operation is carried over into the multiplication of the unitary operators,
α(γ1)α(γ2) = α(γ1γ2). The dimension of the associated vector space defines the dimension
of the representation.

We define a subspace W ⊂ V as invariant if α(γ)w ∈ W for all γ ∈ H and w ∈ W .
A representation is defined to be irreducible if the only invariant subspaces are trivial,
e.g. the vector space V or the set {0}. The irreducible representations of a group are in
one-to-one correspondence with the equivalency classes of the group. Hence, the number
of irreducible representations is the same as the number of equivalency classes of the
group.

A useful way to look at the representations of a group is through their characters.
The characters χα of a representation α are defined as the traces of the corresponding
unitary operators

χα(γ) ≡ Trα(γ) =
∑
i

[α(γ)]ii. (C.1)

The nonequivalent irreducible representations have different sets of characters, however the
character table does not determine the representations up to isomorphism. Additionally,
since the trace is unaffected by the action of an equivalency operation on the group
elements, each element of an equivalency class shares the same character. The characters
also provide a simple way to decompose a tensor product of representations into a direct
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sum of irreducible representations, i.e. α1 ⊗ α2 = ⊕
iNiαi, where Ni is a multiplicity.

A representation constructed from a tensor product or a direct sum of irreducible
representations α1 and α2 has characters χα1⊗α2 = χα1χα2 or χα1⊕α2 = χα1 + χα2 ,
respectively. Thus to determine the decomposition of the tensor product we need to find
the sum of characters with non-zero multiplicities, such that χα1χα2 = ∑

iNiχαi .

As an example consider the representations of the group T ∗, the corresponding
character table is given in Table C.1. Every group has the trivial representation, α(γ) = 1
for all γ ∈ H, represented here as T0. The characters of the trivial representation are
evidently χT0(γ) = 1. The group has two further one-dimensional representations T1
and T2, with the former case defined directly from the characters as α(I, II, III) → 1,
α(IV,V) → θ, α(VI,VII) → θ∗, where θ = ei2π/3. Since T ∗ is a non-Abelian group
it must have some representations where the elements are matrices, in particular the
representations T3− T6. Of these matrix representations, T3 is three-dimensional and
defined as

α(I, II)→


1 0 0

0 1 0

0 0 1

 , α(IIIx0 , −IIIx0)→


1 0 0

0 −1 0

0 0 −1

 ,

α(IIIy0, −IIIy0)→


−1 0 0

0 1 0

0 0 −1

 , α(IIIz0, −IIIz0)→


−1 0 0

0 −1 0

0 0 1

 ,

α(IV0,−V0)→


0 1 0

0 0 1

1 0 0

 , α(-IVx
0 ,Vx

0)→


0 1 0

0 0 −1

−1 0 0

 ,

α(-IVy
0,Vy

0)→


0 −1 0

0 0 1

−1 0 0

 , α(-IVz
0,Vz

0)→


0 −1 0

0 0 −1

1 0 0


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α(−VI0,VII0)→


0 0 1

1 0 0

0 1 0

 , α(−VIx0 ,VIIx0)→


0 0 1

−1 0 0

0 −1 0

 ,

α(−VIy0,VIIy0)→


0 0 −1

1 0 0

0 −1 0

 , α(−VIz0,VIIz0)→


0 0 −1

−1 0 0

0 1 0

 . (C.2)

The representation corresponding to the tensor product T3 ⊗ T3 has the characters
shown in the table below:

Class I II III IV V VI VII
T3⊗ T3 9 9 1 0 0 0 0

The above characters are equivalent to those obtained from the sum χT0+χT1+χT2+2χT3,
where the multiplicity NT3 = 2. Thus the tensor product is decomposed as T3⊗ T3 =
T0⊕ T1⊕ T2⊕ 2T3.

We similarly provide the character table of D∗4, which is the isotropy group of the
biaxial nematic phase, and of the centralizer groups Z4 (T ∗, D∗4), Z6 (T ∗), Z8 (D∗4), in
Tables C.2-C.5, respectively.
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Class I II III IV V VI VII
T0 1 1 1 1 1 1 1
T1 1 1 1 θ θ θ∗ θ∗

T2 1 1 1 θ∗ θ∗ θ θ

T3 3 3 -1 0 0 0 0
T4 2 -2 0 -1 1 1 -1
T5 2 -2 0 −θ∗ θ∗ θ −θ
T6 2 -2 0 −θ θ θ∗ −θ∗

Table C.1: Character table of the binary tetrahedral group T ∗ [301], which is isomorphic to
SL(2, 3). The 3rd root of unity is denoted by θ = ei2π/3.

Class I II III IV V VI VII
D0 1 1 1 1 1 1 1
D1 1 1 -1 1 1 1 -1
D2 1 1 1 1 -1 -1 -1
D3 1 1 -1 1 -1 -1 1
D4 2 -2 0 -2 0 0 0
D5 4 -4 0 0 2

√
2 −2

√
2 0

D6 4 -4 0 0 −2
√

2 2
√

2 0

Table C.2: Character table of the binary dihedral-4 group D∗4 [302] which is isomorphic to
the dicyclic-4 group Dic4.

Class x0 x1 x2 x3

Z40 1 1 1 1
Z41 1 1 −1 −1
Z42 1 −1 −i i

Z43 1 −1 i −i

Table C.3: Character table of the group Z4 which is a centralizer group of T ∗ and D∗4.
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Class x0 x1 x2 x3 x4 x5

Z60 1 1 1 1 1 1
Z61 1 −1 1 1 −1 −1
Z62 1 1 ω4 ω2 ω2 ω4

Z63 1 −1 ω4 ω2 ω5 ω

Z64 1 1 ω2 ω4 ω4 ω2

Z65 1 −1 ω2 ω4 ω ω5

Table C.4: Character table of the group Z6 which is a centralizer group of T ∗. The 6th root
of unity is denoted by ω = ei2π/6.

Class x0 x1 x2 x3 x4 x5 x6 x7

Z80 1 1 1 1 1 1 1 1
Z81 1 1 1 1 −1 −1 −1 −1
Z82 1 −1 i −i ζ7 ζ5 ζ3 ζ

Z83 1 1 −1 −1 −i i −i i

Z84 1 −1 −i i ζ5 ζ7 ζ ζ3

Z85 1 −1 i −i ζ3 ζ ζ7 ζ5

Z86 1 1 −1 −1 i −i i −i
Z87 1 −1 −i i ζ ζ3 ζ5 ζ7

Table C.5: Character table of the group Z8 which is a centralizer group of D∗4. The 8th root
of unity is denoted by ζ = ei2π/8.
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Appendix D.

Biaxial nematic non-Abelian vortex
anyons

The biaxial nematic phase also permits non-Abelian vortex anyon models. The representa-
tive biaxial nematic order parameter ΨBN = (1, 0, 0, 0, 1)T/

√
2, has an order parameter

manifold G/H = U(1)× SU(2)/D∗4, where D∗4 is the sixteen-element non-Abelian binary
dihedral-4 group. The vortex types of the biaxial nematic phase have been characterised
by Borgh and Ruostekoski [91]. Similar to the cyclic-tetrahedral phase, the topological
charges are classified into seven equivalency classes. The vortex types are: (I) the
vacuum state; (II) the integer spin vortex; (III)-(IV) the half quantum vortices; (V)
a half quantum vortex with π/2 spin rotation; (VI) a half quantum vortex with 3π/2
spin rotation and (VII) a half quantum vortex with π spin rotation. The corresponding
charges are

(I) {(η, I)}

(II) {(η, −I)}

(III) {(η, ± iσx), (η, ± iσy)}

(IV) {(η, iσz), (η, −iσz)}

(V) {(η + 1/2, σ̃), (η + 1/2, −iσzσ̃)}

(VI) {(η + 1/2, −σ̃), (η + 1/2, iσzσ̃)}

(VII) {(η + 1/2, ± iσxσ̃), (η + 1/2, ± iσyσ̃)}, (D.1)

(D.2)

where σ̃ ≡ (I + iσz)/
√

2. It is noted that the vortices of equivalency classes I-IV are
the same as those in equivalency classes I-III of the cyclic-tetrahedral phase. The 24
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Figure D.1: Order parameter transformations of the lowest energy biaxial nematics phase
vortices. For each vortex, the biaxial nematic phase order parameter is discretely sample at
multiple points along a path enclosing the vortex core and represented using the spherical
harmonic decomposition. Order parameter traverses left (right) to right (left) for labels on the
left (right). The background colour of the vortex labels denotes the equivalency classes.

lowest energy vortices, as fixed by the U(1) winding number, are represented in Fig. D.1
using the spherical harmonic decomposition of the order parameter to display their
characteristic rotations. In Table. D.1, we provide explicit order parameters for classes
V-VII, while the order parameters for classes I-III were previously presented in Table. 2.1
for the cyclic-tetrahedral superfluid phase.
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Table D.1: Explicit order parameters for a representative set of biaxial nematic phase vortices.
For each vortex, labelled ±Xνη , we provide the corresponding rotation R(θ; ±Xνη), in terms of
an angle θ, which acts on ΨBN to generate the order parameter Ψ(r; ±Xν

η ).

±Xν
η R(θ; ±Xν

η) Ψ(r; ±Xν
η )

V0 ei
θ
2 e−i

θ
4 fz ( 1√

2 , 0, 0, 0, 1√
2e
iθ)T

−VI0 ei
θ
2 e−i

3θ
4 fz ( 1√

2e
2iθ, 0, 0, 0, 1√

2e
−iθ)T

VIIx0 ei
θ
2 e
−i θ2

fx+fy√
2 ei

θ
2√
2 (cos( θ2), e−iπ4 sin( θ2), 0, e−iπ4 sin( θ2), cos( θ2))T

Similar to the cyclic-tetrahedral phase, the biaxial nematic phase supports 6 non-
trivial fluxons and one vacuum state corresponding to the 7 equivalency classes of D∗4,
labelled as Iη - VIIη. The H-charges correspond to irreducible representations of the
centralizer groups of D∗4. The centralizers are D∗4 (I, II), Z4 (III, VII), and Z8 (IV - VI)
with 7, 4, and 8 irreducible representations, respectively. In total, for a given η, the
biaxial nematic phase anyon system has one vacuum state and 45 non-trivial particles
comprising 6 fluxons, 6 chargeons, and 33 dyons. The fusion rules of the 16 lowest energy
fluxons are determined from the group multiplication table in Fig. D.2 and are presented
in Table D.2. The biaxial nematic phase supports two concise non-Abelian anyon models.
These models consist of the restricted sets of particles {I0, II0, IV0} and {I0, II0, III0,
IV0}, respectively. In both models, the anyons I0 and II0 are Abelian with quantum
dimensions dI0 = dII0 = 1, while III0 and IV0 are non-Abelian anyons with quantum
dimensions dIII0 = 4 and dIV0 = 2, respectively. We shall refer to these anyons as 1, σ,
τ and ξ, for I0-IV0, respectively. As with the full fusion rules of the cyclic-tetrahedral
anyon models, such as Eq. (5.5), incorporating the H-charges will result in a greater
number of distinguishable anyons in the model. The charge inclusive fusion rules for
these models are:

1(1)
D0 ⊗ 1(1)

D0 = 1(1)
D0, 1(1)

D0 ⊗ σ
(1)
D0 = σ

(1)
D0 , 1(1)

D0 ⊗ τ
(1)
Z40 = τ

(1)
Z40, 1(1)

D0 ⊗ ξ
(1)
Z80 = ξ

(1)
Z80 (D.3)

σ
(1)
D0 ⊗ σ

(1)
D0 = 1(1)

D0, σ
(1)
D0 ⊗ τ

(1)
Z40 = τ

(1)
Z40, σ

(1)
D0 ⊗ ξ

(1)
Z80 = ξ

(1)
Z80, (D.4)

ξ
(1)
Z80 ⊗ ξ

(1)
Z80 =1(1)

D0 ⊕ 1(1)
D1⊕

σ
(1)
D0 ⊕ σ

(1)
D1 , (D.5)
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τ
(1)
Z40 ⊗ ξ

(1)
Z80 =τ (1)

Z40 ⊕ τ
(1)
Z42, (D.6)

and

τ
(1)
Z40 ⊗ τ

(1)
Z40 =1(1)

D0 ⊕ 1(1)
D3 ⊕ 1(2)

D4

σ
(1)
D0 ⊕ σ

(1)
D3 ⊕ σ

(2)
D4

ξ
(1)
Z80 ⊕ ξ

(1)
Z81 ⊕ ξ

(1)
Z83 ⊕ ξ

(1)
Z86, (D.7)

where Z4i, Z8i and Di refer to the irreducible representations of the centralizers Z4, Z8

and D∗4. The particles 1(1)
D0, σ1(1)

D0, τ
(1)
Z40 and ξ(1)

Z80 refer to the fluxons I0, II0, III0 and IV0,
respectively. The Cheshire charge states corresponding to the Di chargeons in Eq. (D.5)
and (D.7) may be expressed in terms of a superposition of ξ or τ flux eigenstates,
respectively, as

|D0,1〉 = 1√
2

[ξzξz̄ + ξz̄ξz]

= 1
2[τxτx̄ + τx̄τx + τyτȳ + τȳτy],

|D1,1〉 = 1√
2

[ξzξz̄ − ξz̄ξz],

|D3,1〉 = 1
2[τxτx̄ + τx̄τx − τyτȳ − τȳτy],

|D4,1〉 = 1√
2
{(τxτx̄ − τx̄τx), (τyτȳ − τȳτy)}. (D.8)

Equation (D.8) can similarly represent the σ dyons after replacing the ξ and τ vortex
fluxes with their counterparts fusing to II0. The Cheshire charges of the τ dyons in
Eq. (D.4) are

|Z40, τ〉x = 1√
2

[ξzτy + ξz̄τȳ],

|Z42, τ〉x = 1√
2

[ξzτy − ξz̄τȳ], (D.9)
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while the Cheshire charges of the ξ dyons in Eq. (D.7) are

|Z80, ξ〉z = 1
2[τxτȳ + τyτx + τx̄τy + τȳτx̄],

|Z81, ξ〉z = 1
2[τxτȳ − τyτx + τx̄τy − τȳτx̄]

|Z83, ξ〉z = 1√
2
{τxτȳ + τx̄τy},

1√
2
{τyτx + τȳτx̄},

|Z86, ξ〉z = 1√
2
{τxτȳ + τx̄τy},

1√
2
{−τyτx − τȳτx̄}. (D.10)

The full set of fusion rules can be calculated using the tensor product decomposition
of the representations of the quantum double D(H) of H.
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Table D.2: Fusion rules a⊗ b for the non-Abelian vortex anyons in the biaxial nematic phase.
The concise anyon models discussed in the text are highlighted.

I0 II0 III0 IV0 V0 VI0 VII0

I0 I0 II0 III0 IV0 V0 VI0 VII0

II0 II0 I0 III0 IV0 VI0 V0 VII0

III0 III0 III0 4I0 ⊕ 4II0 ⊕ 4IV0 2III0 2VII0 2VII0 4V0 ⊕ 4VI0

IV0 IV0 IV0 2III0 2I0 ⊕ 2II0 V0 ⊕VI0 V0 ⊕VI0 2VII0

V0 V0 VI0 2VII0 V0 ⊕VI0 2I1 ⊕ IV1 2II1 ⊕ IV1 2III1

V0 VI0 V0 2VII0 V0 ⊕VI0 2II1 ⊕ IV1 2I1 ⊕ IV1 2III1

VII0 VII0 VII0 4IV0 ⊕ 4V0 2VII0 2III1 2III1 4I1 ⊕ 4II1 ⊕ 4IV1

Figure D.2: Fusion table for the topological charges of the biaxial nematic phase non-Abelian
vortex anyons. The product A·B is ordered with A corresponding to the top row and B to the
first column. The thick cell borders divide the regions of each anyon fusion rule. The background
colour of each cell signifies the anyon type with the intensity of the shading highlighting the
winding number η.



Appendix E.

Fusion rules of the tau vortex anyon
model

The fusion rules of form 1Ti⊗ 1(1)
Tj , 1Ti⊗ σTj , σTi⊗ σTj can be determined trivially from

the tensor products of the irreducible representations of T ∗ using the approach described
in App. C. The 1Ti ⊗ τZj fusion rules are

1(1)
T0 ⊗ τ

(1)
Zi = 1(1)

T1 ⊗ τ
(1)
Zi = 1(1)

T2 ⊗ τ
(1)
Zi = τ

(1)
Zi ,

1(3)
T3 ⊗ τ

(1)
Zi = τ

(1)
Zi ⊕ 2τ (1)

Z(2i+1) mod 4

1(2)
T4 ⊗ τ

(1)
Zi = 1(2)

T5 ⊗ τ
(1)
Zi = 1(2)

T6 ⊗ τ
(1)
Zi = τ

(1)
Z(i−i) mod 4 ⊕ τ

(1)
Z(i+i) mod 4, (E.1)

where the σT0 ⊗ τZi rules are defined equivalently by replacing 1Ti with σTi. Finally, the
τZi ⊗ τZj fusion rules are

τ
(1)
Z0 ⊗ τ

(1)
Z0 = τ

(1)
Z2 ⊗ τ

(1)
Z2 =1(1)

T0 ⊕ 1(1)
T1 ⊕ 1(1)

T2 ⊕ 1(3)
T3⊕

σ
(1)
T0 ⊕ σ

(1)
T1 ⊕ σ

(1)
T2 ⊕ σ

(3)
T3⊕

2τ (1)
Z0 ⊕ 2τ (1)

Z2 ,

τ
(1)
Z1 ⊗ τ

(1)
Z1 = τ

(1)
Z3 ⊗ τ

(1)
Z3 =1(1)

T0 ⊕ 1(1)
T1 ⊕ 1(1)

T2 ⊕ 1(3)
T3⊕

2σ(3)
T3⊕

2τ (1)
Z0 ⊕ 2τ (1)

Z2 ,
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τ
(1)
Z(even) ⊗ τ

(1)
Z(odd) =1(2)

T4 ⊕ 1(2)
T5 ⊕ 1(2)

T6⊕

σ
(2)
T4 ⊕ σ

(2)
T5 ⊕ σ

(2)
T6⊕

2τ (1)
Z1 ⊕ 2τ (1)

Z3 ,

τ
(1)
Z0 ⊗ τ

(1)
Z2 =21(3)

T3⊕

2σ(3)
T3⊕

2τ (1)
Z0 ⊕ 2τ (1)

Z2 ,

τ
(1)
Z1 ⊗ τ

(1)
Z3 =21(3)

T3⊕

σ
(1)
T0 ⊕ σ

(1)
T1 ⊕ σ

(1)
T2 ⊕ σ

(3)
T3⊕

2τ (1)
Z1 ⊕ 2τ (1)

Z3 . (E.2)
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