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Abstract

Machine translation is an important task in natural language processing as it automates the

translation process and reduces the reliance on human translators. For any machine transla-

tion task, we are given a set of sentences in the source language and the goal is to generate

their translations in the target language. With the advent of neural networks, the transla-

tion quality surpasses that of the translations obtained using statistical techniques. How-

ever, most of the neural translation models still translate sentences independently, without

incorporating any extra-sentential information. This research aims to build efficient neu-

ral models for document-level translation, which incorporate global contextual information

when translating sentences. In this work, we focus on two use cases of document-level ma-

chine translation, monologue translation and dialogue translation, and endeavour to model

them efficiently followed by rigorous evaluation and analysis.

For monologue translation, we start off by formulating the document-level machine

translation problem as a structured prediction task to account for the correlations among

the possible output translations and also between the source sentences and their corre-

sponding translations. The resulting structured prediction problem is tackled with a neural

translation model equipped with two memory components, one each for the source and tar-

get side, to capture the documental interdependencies. We train the model end-to-end and

propose an iterative decoding algorithm based on block coordinate descent. After success-

fully formulating the problem, we narrow down our focus to better modelling of document

context. We do this by proposing a novel and scalable top-down approach to hierarchical

attention for document-context modelling which is able to selectively focus on relevant sen-

tences in the document context and then attend to key words in those sentences. We further

improve the model we proposed in the first phase and compare it to this approach. For both

works mentioned here, we perform quantitative and qualitative evaluation.
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Dialogue translation is another practical aspect of document translation but is under-

explored. We propose the task of translating bilingual multi-speaker conversations and

explore neural architectures that exploit both source and target-side conversation histories

for this task. We introduce datasets for this task extracted from Europarl v7 and Open-

Subtitles2016. Our experiments on public and in-house customer service data confirm the

significance of leveraging conversation history, both in terms of automatic and manual eval-

uation.

Ours is the first work to look at these two aspects of document-level machine translation,

and in general, the first work to use the document-wide context for improving machine

translation.
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Sameen Maruf, André F. T. Martins and Gholamreza Haffari (2018). Contextual

Neural Model for Translating Bilingual Multi-Speaker Conversations. In Proceedings

of the 3rd Conference on Machine Translation: Research Papers (WMT 2018), pages

101–112, Brussels, Belgium.

vii



Declaration

I, Sameen Maruf, hereby declare that this thesis contains no material which has been ac-

cepted for the award of any other degree or diploma at any university or equivalent insti-

tution and that, to the best of my knowledge and belief, this thesis contains no material

previously published or written by another person, except where due reference is made in

the text of the thesis. All main sources of help have been acknowledged where necessary.

Signature: Date: 12/11/2019

viii



Acknowledgements

First and foremost, I would like to express my deepest gratitude to my main supervisor,

Assoc. Prof. Gholamreza Haffari, for taking me under his wing for the length of my PhD

studies. I will always be thankful to him for introducing me to the field of NLP and deep

learning, challenging me to develop the critical thinking necessary to be a good researcher,

and motivating me to push myself when I needed it the most. If it were not for him, I would

not have had the chance to get acquainted and work with my external supervisor, Dr. André

Martins, who was added to my supervisory team in the second year of my PhD. André
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Chapter 1

Introduction

“Being that could be understood is language”

– Hans-Georg Gadamer

Machine translation (MT) is the process of automating translation between natural lan-

guages with the aid of computers. Translation, in itself, is a difficult task even for humans

as it requires a thorough understanding of the source text and a good knowledge of the

target language, hence requiring the human translators to have high degree of proficiency

in both languages. Due to the dearth of professional translators and the rapid need of

availability of multilingual digital content, for example, on the Internet, MT has grown

immensely over the past few decades for the purposes of international communication.

Up until a few years ago, MT was mostly formalised through statistical techniques, hence

very aptly named statistical machine translation (SMT), which involved meticulously craft-

ing features to extract implicit information from corpora of bilingual sentence-pairs (Brown

et al., 1993). These hand-engineered features were an intrinsic part of SMT and were one

of the reasons behind its inflexibility. MT has come a long way from there to the state-of-

the-art neural machine translation (NMT) systems (Sutskever et al., 2014; Bahdanau et al.,

2015; Vaswani et al., 2017) employed commercially today, which are based on neural net-

work black-box models requiring little to no feature engineering. The results obtained by

MT systems have seen rapid improvements in the past few years, and have added to their

popularity among the general public (Metz, 2016; Lewis-Kraus, 2016) and the research

community (Wu et al., 2016; Johnson et al., 2017; Dehghani et al., 2019).

Inspite of its success, MT has been based on strong independence and locality assump-

tions, that is either translating word-by-word or phrase-by-phrase (as done by SMT) or

1



CHAPTER 1. INTRODUCTION

translating sentences in isolation (as done by NMT). Text, on the contrary, does not consist

of isolated, unrelated elements, but of collocated and structured group of sentences bound

together by complex linguistic elements, referred to as the discourse (Jurafsky and Martin,

2009). Ignoring the inter-relations among these discourse elements, results in translations

which may be perfect at the sentence-level but lack crucial properties of the text hindering

understanding. One way to address this issue is to exploit the underlying discourse struc-

ture of a text by utilising the information in the wider-sentential context. This is not a novel

idea in itself and has been advocated by MT pioneers for decades (Bar-Hillel, 1960; Sen-

nrich, 2018), but was mostly ignored in the era of SMT due to computational efficiency and

tractability concerns by the MT community. Recently, with the increase in computational

power available to us and the wide-scale application of neural networks to machine transla-

tion, we are finally in a position to forego the independence constraints that have impeded

the progress in MT since long. The aim of this thesis is to explore different ways to leverage

the wider extra-sentential (aka document-wide) context thus improving upon the state-of-

the-art in NMT. We also endeavour to analyse the extent to which our context-dependent

models enhance translation quality of the text in comparison to their context-agnostic coun-

terparts.

1.1 Motivation and Goals

Neural machine translation has improved and in some cases even surpassed statistical MT

to the extent that it is employed in all commercial systems today. To take it a step further,

the next obvious action is to move from the sentence-based translation, which is plagued by

independence assumptions, to a context-based translation that exploits the inter-sentential

context. To illustrate the need for this and highlight the limitations of sentence-based trans-

lation, let us give a more concrete example of Chinese→English translation as provided by

Sennrich (2018):

Members of the public who find their cars obstructed by unfamiliar vehicles

during their daily journeys can use the “Twitter Move Car” feature to address

this distress when the driver of the unfamiliar vehicle cannot be reached.

2
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At first glance, it is difficult to distinguish this MT output from a human translation.

However, let us now provide a translation of the complete text as generated by an MT

system:

Members of the public who find their cars obstructed by unfamiliar vehi-

cles during their daily journeys can use the “Twitter Move Car” feature to

address this distress when the driver of the unfamiliar vehicle cannot be

reached. On August 11, Xi’an traffic police WeChat service number “Xi’an

traffic police” launched “WeChat mobile” service. With the launch of the

service, members of the public can tackle such problems in their daily lives

by using the “WeChat Move” feature when an unfamiliar vehicle obstructs

the movement of their vehicle while the driver is not at the scene. [. . .]

An obvious problem with the translated text is the inconsistent translation of the name

of the service “WeChat Move the Car”. In other words, although it seemed that the sentence-

based translation is adequate on its own, it still contained some ambiguous words which

were inconsistent with the rest of the text. Let us now look at another example translation

for Urdu→English generated by Google Translate.

My grandfathers legs have failed because of the fluid. He had another visit

today. Then his nature worsened. They can not speak for a few moments.

Even if we do not have access to the Urdu source text, we can concur that the English

target text has some prominent issues, including inconsistent usage of pronouns (he, they)

and ambiguous words (fluid, visit, nature), resulting in non-fluency and miscomprehension

of the target text. From the previous two examples, it must be clear that despite the suc-

cess of MT, it will never achieve human-level translation if it continues to be grounded on

sentence-independence or locality assumptions.

Past works in SMT (discussed in Chapter 2) have tried to address the locality constraints

of MT but they failed to produce significant improvements upon automatic evaluation. This
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was mostly due to the requirement of intensive feature engineering and the complexity of

the SMT pipeline. With the successful application of neural networks to MT and the avail-

ability of powerful computational resources (e.g., GPUs), we are now in a favourable posi-

tion to take advantage of its feature learning capacity and end-to-end training mechanism.

This would allow us to build richer parameterised models with almost no dependence on

explicit linguistic information. To this end, we formulate the primary goal of our research:

to explore effective methodologies that exploit the document-wide context information1 to im-

prove the quality of machine translation.

To employ neural networks for any task, the first step is to model the problem itself,

which involves representing the inputs and outputs (source and target text for NMT) with

real-valued vectors through millions of parameters. After we have come up with a neural

architecture, the next step involves learning the parameters of the model by optimising a

training objective given the training data. Once the model is trained, the last step is to

perform decoding (aka inference) to validate how well the model generalises to unseen

testing data. Keeping this workflow and our primary research goal in mind, we come up

with secondary goals for our research: we want (i) to model the document-wide context

in NMT such that we have (ii) a context-dependent but end-to-end training and decoding

framework not constrained by the sentence-independence assumption. The first part of this

thesis addresses these goals with respect to monologue translation, where monologues are

categorised as the discourse in which information flows in one language from a writer (or

speaker) and the goal is to translate it into another language for the reader (or hearer).

The second part of the thesis achieves the stated goals for the practical and under-explored

problem of dialogue translation, which consists of the scenario in which we have speakers

talking in their native language and the goal is to translate each speaker’s utterance for the

other non-native speakers to have an uninterrupted flow of information.

Our work in this thesis has been steered by a few desiderata, which we believe to be

salient given the task of document-level machine translation.2 The first of these is that, sim-

ilar to all MT models, our models are data-driven, however, we do not require any explicit

1We will use the words ‘document-wide’ and ‘global’ interchangeably in this thesis.
2The terms ‘document-level MT’ and ‘context-aware MT’ are both used interchangeably by the MT commu-

nity and by us for the purposes of this thesis.
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linguistic annotation. Having such annotation could indeed be an interesting research direc-

tion but it does not fall within the scope of this thesis. Our models do require the provision

of document boundaries in the datasets to be able to restrict the wider extra-sentential con-

text to that within a document. For this purpose, we have endeavoured to extract the data

used in this thesis from raw corpora available publicly and having document boundaries

in the form of metadata. In other words, we have used aligned document-pairs instead of

sentence-pairs (as done by classical MT) for training and decoding our models. The second

desiderata is related to the extent of context information used in our models. Prior work

mostly incorporates local context information coming from a few previous sentences, while

we consider the global context information coming from all the sentences in the document

whether they are on the source or target-side. This helps us in developing models which (i)

are generalisable to documents of any length, (ii) do not devoid sentences at the beginning

of a document of crucial information, and most importantly, (iii) can be thought of as hav-

ing access to infinite context, unlike prior work. Using the document-wide context may also

be crucial for the preservation of discourse phenomena from the source to the target text.

1.2 Thesis Statement and Contributions

Thesis Statement We claim that the performance of neural machine translation can be

improved by utilising document-wide context information. First, we aim to model the cor-

relations among the possible output translations and also between the source sentences and

their corresponding translations. Second, using our document-level model, we aim to make

joint predictions on the translations of a document given the source document for which

we require end-to-end training and an efficient decoding framework. Finally, we show the

efficacy of the previous three aspects by performing rigorous experimentation on data from

a variety of language-pairs and domains.

Modelling:

1. We develop a model that leverages both the global source and target document con-

texts to improve the performance of neural machine translation. We do this by com-

bining the generic sentence-based NMT model with external memory components and
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employing coarse attention over the sentences in the context.

2. We propose an efficient and scalable top-down hierarchical attention approach for

document-wide NMT which has the ability to focus on relevant sentences in the doc-

ument context (using sparse attention) and then attend to key words in those sen-

tences.

3. We design a contextual neural model for translating bilingual multi-speaker conver-

sations, where we incorporate the source and target-side conversation histories into a

sentence-based attentional model. We explore different ways of computing the source

context representation for this task. Furthermore, we present an effective approach

to leverage the target-side context, and also present an intuitive approach for incor-

porating both contexts simultaneously.

Learning:

4. We cast document MT as a structured prediction problem and introduce a pseudo-

likelihood based training objective which allows the document-level NMT model to

be trained end-to-end efficiently.

Decoding:

5. For decoding, we encumber the sentence-independence assumption by conditioning

a sentence translation on both source and target-side document-wide context and

proposing an iterative decoding algorithm based on block coordinate descent.

Experimental:

6. We experiment with our coarse attention approach using the proposed training and

decoding strategies in an offline document MT setting and show that our model is

effective in exploiting both source and target document contexts, and statistically

significantly outperforms the previous work in terms of BLEU and METEOR.

7. We experiment with our hierarchical selective attention approach in both offline (past

and future context) and online (only past) document MT settings and perform qual-

itative and quantitative analysis. Using sparse attention, instead of the standard soft

attention, allows to dig deeper into the interpretability of the contextual NMT model.
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8. We are the pioneer in dialogue translation and propose the task of translating bilin-

gual multi-speaker conversations, a popular use-case in customer service chat, extract

datasets for the said task and provide benchmark results. Our experiments on public

datasets for four language-pairs confirm the significance of leveraging conversation

history, both in terms of automatic and manual evaluation. Our models also achieve

promising results on in-house customer service chat datasets for English-French and

English-German.

1.3 Organisation of this Thesis

In this section, we provide an outline of the rest of the thesis. The primary contribution of

this thesis are three content chapters: Chapters 3, 4 and 5, where the first two fall in the

first part specific to monologue translation and the last falls in the second part for dialogue

translation. The outline and summary of each chapter are as follows:

• Chapter 2: Background This chapter provides a thorough overview of the founda-

tions for the research described in this thesis, including the state-of-the-art architec-

tures for sentence-based neural machine translation and a detailed description of prior

work in document-level machine translation. We also shed light on the evaluation ap-

proaches that are being used in this domain.

• Chapter 3: Document Context Modelling with Coarse Attention In this chapter,

we present our document-level NMT model, which takes both source and target doc-

ument context into account using memory networks, and a description of our train-

ing and decoding methodologies for the said model. Experimental results for three

language-pairs are reported showing drastic improvements when incorporating both

types of contexts.

• Chapter 4: Document Context Modelling with Hierarchical Attention We present

our novel and scalable top-down approach to hierarchical attention for context-aware

NMT and also present single-level attention approaches based on sentence or word-

level information in the context. Our approach not only significantly outperforms

context-agnostic baselines but also surpasses context-aware baselines in most cases.
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• Chapter 5: Translating Bilingual Multi-Speaker Conversations We introduce the

task of translating bilingual multi-speaker conversations, and explore neural architec-

tures that exploit both source and target-side conversation histories for this task. We

also introduce datasets extracted from Europarl v7 and OpenSubtitles2016. Our ex-

periments on four language-pairs in the public domain and two language-pairs in the

commercial domain confirm the significance of leveraging conversation history, both

in terms of BLEU and manual evaluation.

• Chapter 6: Conclusions This chapter summarises our findings and contributions in

this thesis and also highlights potential directions for future work.
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Chapter 2

Background

This chapter provides a thorough overview of the foundations for the research described in

this thesis, including sentence-based neural machine translation and document-level ma-

chine translation.

We start off by describing the evolution of sentence-based neural machine translation

systems in Section 2.1, where we state the basics of statistical machine translation, followed

by a detailed description of the state-of-the-art NMT architectures based on attention and

the Transformer model. These will be the cornerstones of our models described in later

chapters. We also describe how MT outputs are evaluated using automatic metrics.

Then, in Section 3.4, we shed light on prior and recent approaches that have tried

to model document-level and discourse information in both SMT and NMT, followed by a

detailed description of various evaluation strategies that have been proposed for document-

level MT to-date.

2.1 Neural Machine Translation (NMT)

Machine translation has been around for a long time and various approaches have been

proposed to make it on-par with human translation. The approach to MT which is strongly

correlated with the current state-of-the-art NMT models and worth mentioning here is sta-

tistical machine translation (SMT). SMT models the probability of a sentence translation in

one language given a source sentence in another language. This probability is determined

automatically by training a statistical model using a parallel corpus containing source and

target translation pairs. The advantages of SMT over its predecessors were that it was data-

driven and language independent and was considered a state-of-the-art technique up until
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the advent of neural-based approaches.

Mathematically, the goal of SMT (and NMT) is to find the most probable target sequence

ŷ given a source sentence, that is:

ŷ = arg max
y

P (y | x) (2.1)

Using Bayes’ rule, this conditional probability can be reformulated as follows:

ŷ = arg max
y

P (y)P (x | y) (2.2)

where P (y), aka the language model (LM) usually based on trigram probabilities and es-

timated using monolingual corpora, assigns a higher probability to fluent, grammatical

sentences and P (x | y), aka the translation model, assigns a higher probability to sentences

that have corresponding meaning. The translation model is parameterised using an align-

ment function which represents how a source word is aligned to a target word (Brown

et al., 1993). The more often two words occur together in different sentence-pairs, the

more likely they are aligned to each other and have equivalent meaning. These word-based

models were superseded by phrase-based models (Marcu and Wong, 2002; Koehn et al.,

2003) which used many-to-many alignments between the source and target words stored

in a phrase table (Och and Ney, 2004).

While SMT was successfully deployed in many commercial systems, it did not work

very well and suffered from two major drawbacks. First, translation decisions were local

as the translation was performed phrase-by-phrase and long-distance dependencies were

often ignored. Secondly and more problematically, the entire MT pipeline became increas-

ingly complex as many different components had to be tuned separately, e.g., translation

models, language models, reordering models, etc., which made it difficult to combine them

together and have a single end-to-end model. As a result, when the AI winter was over

and neural networks resurfaced as the new approach to solve natural language processing

(NLP) problems, it was seen as the next logical step to use them for machine translation as

well. NMT, even though quite recent (after 2014), has opened a new era in MT for both

research and commercial purposes.

NMT models, in general, are based on an encoder-decoder framework (Figure 2.1)

where the encoder reads the source sentence to compute a real-valued representation and
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Figure 2.1: A general overview of an encoder-decoder model.

the decoder generates the target translation one word at a time given the previously com-

puted representation. The initial model (Sutskever et al., 2014) used a fixed representation

of the source sentence to generate the target sentence. It was quickly replaced by the

attention-based encoder-decoder architecture which generated a dynamic context repre-

sentation (Bahdanau et al., 2015). These models were based on recurrent neural networks

(RNNs) (described shortly),1 which use recurrent connections to exhibit temporal dynamic

behavior over time, and were thus considerably suitable for modelling sequential informa-

tion. However, the major drawback of such sequential computation was that it hindered

parallelisation within training examples and became a bottleneck when processing longer

sentences. Most recently, a new model architecture, the Transformer, was proposed which

is based solely on attention mechanisms, dispensing with the recurrence entirely. It has

proved to achieve state-of-the-art results on several language-pairs (Vaswani et al., 2017).

In the rest of this section, we will be detailing the RNN-based attentional encoder-

decoder architecture (Bahdanau et al., 2015) (Section 2.1.1) and the Transformer architec-

ture (Vaswani et al., 2017) (Section 2.1.2) as our document NMT models are grounded on

1We do not mention convolution-based NMT architectures (Gehring et al., 2017a,b) here as we have not
used them in our research.
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either one of them, followed by a description of the popular automatic evaluation metrics

for MT (Section 2.1.5).

2.1.1 RNN-based Encoder-Decoder Architecture

Before we describe the attentional NMT model architecture, we will describe its key com-

ponent: the recurrent neural network (RNN).

2.1.1.1 Recurrent Neural Networks

Recurrent neural network (RNN) (Elman, 1990) is a powerful neural architecture which has

been used for a variety of sequence modelling tasks like language modelling (Mikolov et al.,

2010, 2011; Mikolov and Zweig, 2012), text summarisation (Rush et al., 2015; Nallapati

et al., 2016), and speech recognition (Graves and Jaitly, 2014), to name a few. Formally, an

RNN (Figure 2.2) takes as input a sequence of vectors x1, . . . ,xM one at a time, and for each

input xm, the RNN updates its hidden state using the output from previous hidden states as

additional inputs. The hidden state at timestep m can be thought of as a representation for

the partial sequence x1, . . . ,xm. Mathematically, at timestep m, a vanilla RNN computes

the hidden state hm as:

hm = RNN(hm−1,xm) (2.3)

= f(Whhhm−1 +Whxxm + bh)

where xm is the input at timestep m, hm−1 is the previous hidden state, f is a non-

linear activation function (Table 2.1) and {W , b} are parameters of the RNN shared across

timesteps. The initial state h0 is often set to the zero vector or is randomly initialised.

At each timestepm, the RNN (optionally) outputs a discrete symbol ym which is sampled

from a probability distribution via a softmax operation:

ym ∼ softmax(Wyhm + by) (2.4)

where the input (linear transformation of hm) is a score vector over the different output

classes, and the softmax function
(

softmax(z) =
exp(zj)∑K
k=1 exp(zk)

)
converts the score vector

into a probability vector.

The main advantage of using RNNs for sequence modelling tasks is that they have the

ability to capture long-range dependencies in sequences due to their recurrent connections.
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Figure 2.2: An overview of a recurrent neural network over timesteps.

Function Formula

Sigmoid (σ) f(z) =
1

1 + exp(−z)

Hyperbolic Tangent (tanh) f(z) =
exp(z)− exp(−z)
exp(z) + exp(−z)

Rectified Linear Unit (ReLU) f(z) = max(0, z)

Table 2.1: Commonly used non-linear activation functions.

Apart from running in a left-to-right fashion, vanilla RNNs suffer from two classic prob-

lems of exploding and vanishing gradients as described by Bengio et al. (1994), due to the

gradient-based learning methods with backpropagation. In short, due to the multiplicative

nature of the gradient updates, the gradients become exponentially large (exploding gradi-

ents) or move exponentially fast towards zero (vanishing gradients) as we backpropagate

over time, making learning unstable and resulting in a model that, in practice, is unable to

capture long-range dependencies in sequences.

To deal with the exploding gradients problem, gradient norm clipping (Pascanu et al.,

2012) is usually used where the gradient γ is clipped based on its norm ||γ||, that is if

the norm is greater than a threshold η, then γ ← ηγ
||γ|| . This method prevents exponential

increase in the norm of the gradients thus reducing the exploding gradient problem in

practice.

For resolving the vanishing gradient problem, a variety of approaches have been pro-

posed, however, the most widely adopted ones include replacing the recurrent unit with a

13



CHAPTER 2. BACKGROUND

long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) or a gated recurrent

unit (GRU) (Cho et al., 2014a). The main idea is to use some or all of specific gating units

that control how much an RNN wants to reuse memory from previous timestep (forget gates

gfm), receive an input signal (input gates gim), and extract information (output gates gom) at

each timestep. All gates are computed as linear transformations of current input xm and

previous hidden state hm−1 followed by a sigmoid activation function:

gim = σ(Wihhm−1 +Wixxm + bi)

gfm = σ(Wfhhm−1 +Wfxxm + bf )

gom = σ(Wohhm−1 +Woxxm + bo)

and each gate has different parameters shared across timesteps.

The LSTM, in addition to using all the three gates, also defines a new cell state cm

to store the temporal information whose recurrence follows a linear scaling rather than a

multiplicative and non-linear update, while the GRU is a simplification using only input and

forget gates and does not have an intermediate cell state. The hidden state hm is computed

using LSTM as:

gm = σ(Wghhm−1 +Wgxxm + bg)

cm = gfm � cm−1 + gim � gm

hm = gom � tanh(cm)

and for GRU:

h̃m = tanh(Wh̃h(gfm � hm−1) +Wh̃xxm + bh̃)

hm = (1− gim)� hm−1 + gim � h̃m

where � denotes element-wise multiplication.

The stated modifications in LSTM and GRU make them more robust, capable of learning

long-range dependencies and have superior performance in comparison to the vanilla RNN

models (Cho et al., 2014a). Thus, these are the most popular choices today when using

recurrent neural networks for sequence modelling. In our work as well, we use either of

these two types of RNNs.

Now that we have become familiar with the basic working of an RNN, let us move on to

describe how RNNs are employed in NMT.
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2.1.1.2 Neural Machine Translation with RNNs

In NMT, we model the conditional probability P (y | x) using neural networks where x =

(x1, . . . , xM ) is the input (source) sequence and y = (y1, . . . , yN ) is the output (target)

sequence. To allow the model to cater to sequences with arbitrary lengths, special start-

of-sentence (<s>) and end-of-sentence (</s>) tokens are added at the beginning and end

of each sentence. All the source and target words in the parallel corpus constitute two

fized-size vocabularies, denoted by VS and VT respectively. Out-of-vocabulary words are

represented by a special token <unk> . The conditional probability of a target sentence y

given the source sentence x is decomposed as:

Pθ(y | x) =

N∏
n=1

Pθ(yn | y<n,x) (2.5)

where θ denote the learnable parameters of the neural network, yn is the current target

word and y<n are the previously generated words. Let us now describe the key components

of an NMT model, illustrated in Figure 2.3, that yield this conditional probability.

Word Embeddings The first step in any neural model is to convert the discrete words in

the input and output sequences to real-valued vector representations aka word embeddings.

We have two embedding tables, one for the source language ES (dimensions H×|VS |) and

one for the target language ET (dimensions H × |VT |) (where H is a pre-defined value,

and |VS | and |VT | are source and target vocabulary sizes respectively), which are learned

along with the other parameters in the model. For simplicity, we use the same H value for

the dimensions of both source and target embeddings and the size of the hidden unit in the

encoder and decoder.

Encoder It is a bi-directional (forward and backward) RNN whose hidden states represent

individual words of the source sentence. These representations capture information not

only of the corresponding word but also of other words in the sentence, i.e., the sentential

context. The forward and backward RNNs run over the source sentence in a left-to-right

and right-to-left direction:

−→
hm =

−−→
RNN(

−→
hm−1,ES [xm])

←−
hm =

←−−
RNN(

←−
hm+1,ES [xm])
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Figure 2.3: A detailed view of an RNN-based encoder-decoder model with attention when
generating the nth target word.

where ES [xm] is embedding of the word xm from the embedding table ES of the source

language, and
−→
hm and

←−
hm are the hidden states of the forward and backward RNNs for

current timestep m. Each word in the source sentence is then represented by the concate-

nation of the corresponding bidirectional hidden states, that is hm = [
−→
hm;

←−
hm].

Attentional Decoder An integral component of the NMT architecture is the attention

mechanism. This enables the decoder to dynamically attend to relevant parts of the source

sentence at each step of generating the target sentence. The dynamic context vector cn

is computed as a weighted linear combination of the hidden states produced by the bi-

directional RNNs in the encoder, that is:

cn =

M∑
m=1

αnmhm (2.6)
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The weight αnm of each representation hm is given by:

αnm =
exp(enm)∑M

m′=1 exp(enm′)

enm = v> tanh(Wahhm +Wassn−1)

and can be thought of as the alignment probability between a target symbol at position n

and a source symbol at position m. enm is the alignment score which tells how well the

inputs around position m and the output at position n match. It is calculated based on the

previous decoder state sn−1 and the representation hm of source word at position m and

referred to as additive attention.2 The parameter vector v is of size H while the matrices

Wah and Was are of size H × 2H and H ×H respectively.

The backbone of the decoder is a uni-directional RNN which generates words of the tar-

get translation one-by-one in a left-to-right fashion. The decoder hidden state is computed

as follows:

sn = RNN(sn−1,ET [yn−1], cn)

where sn−1 is the previous decoder state, ET [yn] is embedding of the word yn from the em-

bedding table ET of the target language, and cn is the dynamic context vector formulated

previously. The RNN in the decoder is similar to the one defined in Eq. 2.3 but with cn as an

additional input and a dedicated parameter matrix. The probability of generation of each

word yn is then conditioned on all of the previously generated words y<n via the state of

the RNN decoder sn, and the source sentence via cn as follows:

un = tanh(sn +Wuccn +WunET [yn−1])

Pθ(yn | y<n,x) = softmax(Wyun + by) (2.7)

yn ∼ Pθ(yn | y<n,x) (2.8)

whereW matrices and by vector are also parameters of the NMT model and the input to the

softmax (linear transformation of un) is a score vector over the target vocabulary. Hence,

we have formulated Eq. 2.5 using an RNN-based NMT model.

2Another variant called the dot-product attention, proposed by Luong et al. (2015), is defined as h>msn−1.
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2.1.2 Transformer-based Encoder-Decoder Architecture

RNN-based encoder-decoder architectures are prevalent in various NLP tasks and were a

popular approach for NMT up until two years ago. The limitations to NMT were mostly

due to its grounding on RNNs. The first limitation is the sequential nature of RNNs, that

is for processing each input token, the model has to wait until all previous input tokens

have been processed, which proves to be a bottleneck when processing long sequences. The

second limitation is learning long-range dependencies among the tokens within a sequence.

The number of operations required to relate signals from two arbitrary input or output

positions grows with the distance between positions, making it difficult to learn complex

dependencies between distant positions. The recent Transformer architecture, proposed by

Vaswani et al. (2017), circumvents these limitations by having a model that is still based

on the philosophy of encoder-decoder, but instead of employing recurrence, uses stacked

self-attention and point-wise, fully connected layers for both the encoder and decoder.

The model architecture is provided in Figure 2.4 and comprises the following compo-

nents:

Embeddings Similar to the attentional encoder-decoder model described previously (Bah-

danau et al., 2015), we have two word embedding tables, one each for the source and target

language (denoted by EwS and EwT respectively) to convert the discrete source and target

sequences to real-valued vectors. Now, the word embedding of a particular source sentence

is given by the set of vectors ES [x1], . . . ,ES [xM ] and for a particular target sentence by the

set of vectors ET [y1], . . . ,ET [yN ]. However, since the Transformer does not use any form of

recurrence, it needs to inject some positional information about the tokens in the sequence

so that the model is aware of the word-order. This is done by using separate positional

encodings for both the source and target sequences (denoted by EpS and EpT respectively)

and adding them to the corresponding word embeddings. Hence, the total embeddings of

a source and target sentence are given by:

E[x] : EwS [x1] +EpS [1], . . . ,EwS [xM ] +EpS [M ] (2.9)

E[y] : EwT [y1] +EpT [1], . . . ,EwT [yN ] +EpS [N ] (2.10)
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Figure 2.4: The Transformer - model architecture.

For the positional encodings, Vaswani et al. (2017) proposed to use a fixed sinusoidal

encoding, that is for a particular source sentence the positional encoding is given by the

set of vectors fp(1), . . . ,fp(M) and for a particular target sentence by the set of vectors

fp(1), . . . ,fp(N), where fp(pos) is a positional encoding vector at position pos in the se-

quence. These are computed based on sine and cosine functions of different frequencies
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forming wavelengths with a geometric progression from 2π to 10000×2π:

fp(pos) =


...

PE(pos, 2i)
PE(pos, 2i+ 1)

...


PE(pos, 2i) = sin

( pos

100002i/H

)
PE(pos, 2i+ 1) = cos

( pos

100002i/H

)
where i is the dimension and belongs to [0, . . . , H−1

2 ]. The advantages of sinusoidal po-

sitional encoding are that they do not add any parameters to the model and may handle

sequences of lengths longer than the ones encountered during training.

Another method, proposed by Gehring et al. (2017b), defines positional encodings using

additional weight matrices W p
S and W p

T of dimensions H × |xmax| and H × |ymax| respec-

tively, where |xmax| and |ymax| are the maximum source and target sequence lengths to be

chosen, and each column of the weight matrix at position pos corresponds to the encoding

for the token at that position. To further elaborate, for a particular source sentence the po-

sitional encoding is now given by the set of vectors W p
S [1], . . . ,W p

S [M ] and for a particular

target sentence by the set of vectors W p
T [1], . . . ,W p

T [N ], where M and N are the lengths of

the particular sequences and these parameters are learned jointly with the model.

Encoder The encoder stack is composed of L identical layers, each containing two sub-

layers. The first, a multi-head self-attention sub-layer (denoted by MULTIHEADself ), allows

each position in the encoder to attend to all positions in the previous layer of the encoder,

while the second sub-layer, a feed-forward network (denoted by FFN), uses two linear trans-

formations with a ReLU activation. Both of these will be described in detail shortly. Residual

connections (He et al., 2016) and layer normalisation (Ba et al., 2016) are employed around

both sub-layers.3 Hence, at the lth layer of the encoder stack, the output is given by:

X l = LayerNorm
(
X l
MHself + FFN(X l

MHself )
)

X l
MHself = LayerNorm

(
X l−1 + MULTIHEADself (X l−1)

)
(2.11)

where X0 is the output of the encoder embedding layer and l ∈ [1, . . . , L].
3Layer normalisation normalises the inputs across their neuron units within a hidden layer, thus stabilising

the interactions between sub-layers in the Transformer encoder and decoder.
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Decoder The decoder stack is also composed of L identical layers. In addition to the two

sub-layers in the encoder, the decoder inserts a third sub-layer, which performs multi-head

attention over the output of the encoder stack (denoted by MULTIHEADsrc). Masking is used

in the self-attention sub-layer to prevent positions from attending to subsequent positions

thus avoiding leftward flow of information. Hence, at the lth layer of the decoder stack, the

output is given by:

Y l = LayerNorm
(
Y l
MHsrc + FFN(Y l

MHsrc)
)

Y l
MHsrc = LayerNorm

(
Y l
MHself + MULTIHEADsrc(Y

l
MHself ,X

L)
)

Y l
MHself = LayerNorm

(
Y l−1 + MULTIHEADself (Y l−1)

)
(2.12)

where Y 0 is the output of the decoder embedding layer.

Similar to the RNN-based encoder-decoder architecture, the conditional probability of

generating a target word yn given the source sentence is computed as follows:

Pθ(yn | y<n,x) = softmax(WyY
L + by) (2.13)

where Y L is the final output from the decoder.

Multi-Head Attention (MULTIHEAD) In general, an attention function can be described

as the mapping of a query and a set of key-value pairs to an output, where the query, keys,

values, and output are all vectors. The output is computed as a weighted sum of the values,

where the weight assigned to each value is computed by a compatibility function of the

query with the corresponding key. The Transformer employs a variant of the dot-product

attention function (Luong et al., 2015), that is it computes the dot products of the query

with all keys, and divides each by a scaling factor
√
dk, followed by a softmax function to

obtain the weights on the values (Figure 2.5). This is referred to as scaled dot-product

attention:

ATTENTION(Q,K,V ) = V softmax
(K>Q√

dk

)
(2.14)

where the inputs are matrices and dk is the dimensions of the keys taken to be H here. An

advantage of using the dot-product attention, instead of the additive attention (Bahdanau

et al., 2015), is that the former is much faster and more space-efficient in practice since it

can be implemented using highly optimised matrix multiplications.
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Figure 2.5: Scaled dot-product attention.

The main innovation of the Transformer, however, is that instead of employing a single

attention function, the inputs are linearly projected H times. On each of these projected

versions of the inputs, the attention is performed in parallel, yielding the outputs, which

are then concatenated (row-wise) and again projected, resulting in the final values. This

allows the model to jointly attend to information from different representation subspaces

at different positions.

MULTIHEAD(Q,K,V ) = WOConcat(head1; ...;headH) (2.15)

where headh = ATTENTION(WQ
h Q,W

K
h K,W V

h V ), the projection matrices WQ
h , WK

h ,

W V
h are of size

dk
H
×H, WO is of size H×H and H is the total number of attention heads.

Please note that dk = dv = H and is the column-wise dimension for attention matrix of

each head. Due to the reduced dimension of each head, the total computational cost of

multi-head attention is similar to that of single attention with full dimensionality.

There are three ways in which multi-head attention is utilised in the Transformer:

• Multi-Head Self-Attention in Encoder This is the attention of the current encoder

layer to its input, denoted by MULTIHEADself (X l−1). Here, the keys, values, and

queries come from the same place, that is, the output of the previous encoder layer:

MULTIHEADself (X l−1) = MULTIHEAD(X l−1,X l−1,X l−1)
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• Multi-Head Self-Attention in Decoder This is the attention of the current decoder

layer to its input (denoted by MULTIHEADself (Y l−1)) by allowing each position in the

decoder to attend to all positions in the decoder up to and including that position (all

future inputs are masked out):

MULTIHEADself (Y l−1) = MULTIHEAD(Y l−1,Y l−1,Y l−1)

• Multi-Head Source Attention This is the attention of the current decoder layer to the

output of the encoder, mimicking the attention mechanism in RNN-based encoder-

decoder architecture. Here, the queries come from the multi-head self-attention sub-

layer in the current decoder layer and the keys, values come from the output of the

encoder:

MULTIHEADsrc(Y
l
MHself ,X

L) = MULTIHEAD(Y l
MHself ,X

L,XL)

Feed-Forward Network (FFN) Both encoder and decoder layers have a sub-layer con-

taining a position-wise fully connected feed-forward network (FFN), defined as two linear

transformations with a ReLU activation in between:

FFN(X) = Wff2ReLU(Wff1X + bff1) + bff2 (2.16)

where {W , b} are parameters defined specifically for each layer and ReLU is as defined in

Table 2.1.

2.1.3 Training and Decoding

Training All parameters in the encoder-decoder architecture (RNN-based or Transformer)

are jointly trained via backpropagation (LeCun, 1988; Rumelhart et al., 1986) to min-

imise the negative log-likelihood (conditional) over the training set. The conditional log-

likelihood is defined as the sum of the log-probability of predicting a correct symbol in the

output sequence yn for each instance x in the training set D. Thus, we want to find the

optimum set of parameters θ∗ as follows:

θ∗ = arg min
θ

∑
(x,y)∈D

− logPθ(y | x) (2.17)

= arg min
θ

∑
(x,y)∈D

|y|∑
n=1

− logPθ(yn | y<n,x) (2.18)
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The most common method to find θ∗ is the gradient descent (GD) algorithm which up-

dates the parameters in the opposite direction of the gradient of the objective function with

respect to the parameters (Ruder, 2016), that is, at each step i of the training:

θi+1 = θi − η∇θJ(θ) (2.19)

where J(θ)
∆
=
∑

(x,y)∈D − logPθ(y | x) is the objective function, and η is the learning

rate which determines the size of the steps that are taken to reach a (local) minimum.

Eq. 2.19 is referred to as the vanilla gradient descent or batch gradient descent (BGD). In

practice, BGD can be very slow and intractable since we need to calculate the gradients

for the whole dataset to perform just one update. To mitigate this issue, stochastic gradient

descent (SGD) is used which computes the parameter update for each training example, and

thus, is much faster. However, SGD performs frequent updates with a high variance that

cause the objective function to fluctuate heavily. Another variant of the gradient descent

algorithm, the mini-batch gradient descent, computes the training update for a small batch

of training examples and is able to reduce the variance of the parameter updates leading to

a more stable convergence. Mini-batch gradient descent is usually the algorithm of choice

when training any neural network and the term SGD is employed even when mini-batches

are used.

Vanilla mini-batch gradient descent, however, does not guarantee good convergence and

offers a few challenges. Firstly, choosing a good learning rate can be difficult. A learning

rate that is too small can lead to a very slow training process, while a learning rate that is

too large may cause the loss function to fluctuate heavily around the minimum and may

even result in divergence. Secondly, SGD is non-adaptive, that is, the learning rate is fixed

throughout the training process. Usually learning rate annealing needs to be employed so

as to reduce the learning rate according to a pre-defined schedule or when the change in

objective between epochs (one pass over the training set) falls below a certain threshold.

This is necessary to avoid getting trapped in suboptimal local minima.

Many GD-based methods have been proposed to address the shortcomings of SGD

(Ruder, 2016). Out of these, the most popular method that works well for training neural

sequence models is the Adaptive Moment Estimation (Adam) (Kingma and Ba, 2015). As
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will be mentioned in the subsequent chapters, we use SGD or Adam for training our NMT

models.

Decoding Having trained an NMT model, we need to be able to use it to translate or

decode unseen source sentences. The best output sequence for a given input sequence is

produced by:

ŷ = arg max
y

Pθ(y|x) (2.20)

Solving this optimisation problem exactly is computationally hard, and hence an approxi-

mate solution is obtained using greedy decoding or beam search.

The basic idea of greedy decoding is to pick the most likely word (having the high-

est probability) at each decoding step until the end-of-sentence token is generated. Beam

search, on the other hand, keeps a fixed number (b) of translation hypotheses with the

highest log-probability at each timestep. When the end-of-sentence token is appended to

a hypothesis, it is removed from the beam and added to the final candidate list. The algo-

rithm then picks the translation with the highest log-probability (normalised by the number

of target words) from the final candidate list. If the number of candidates at each timestep is

chosen to be one, beam search reduces to greedy decoding. In practice, the translation qual-

ity obtained via beam search (size of 4) is significantly better than that obtained via greedy

decoding (Chen et al., 2018b). However, beam search is computationally very expensive

(25%-50% slower depending on the base architecture and the beam size) in comparison to

greedy decoding. Thus, we resort to greedy decoding in this work.

2.1.4 Regularisation Techniques for Neural Architectures

Here we briefly describe the two regularisation techniques that have been employed in our

work.

Dropout This simple regularisation technique prevents a neural sequence-to-sequence

model from overfitting (Srivastava et al., 2014). The main idea is to ignore or drop (with

a probability p) certain hidden units, chosen at random, during the training of the model.

For the attentional RNN-based encoder-decoder model, dropout can be applied to either

the embedding layers, within the RNNs or to the output layer. The Transformer employs
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four types of dropouts (Chen et al., 2018a): (i) input dropout applied to the sum of token

embeddings and positional encodings, (ii) residual dropout applied to the output of each

sub-layer before adding to the sub-layer input, (iii) feedforward dropout applied to output

of the feed-forward sub-layer, and (iv) attention dropout applied to attention weights in

each attention sub-layer.

Label Smoothing This is another effective regularisation technique that prevents the

model from being over-confident on output labels (Szegedy et al., 2016). It means that

for a training example with ground-truth label y for a specific token, we slightly lower its

correctness from 1 to 1− ε, where ε is a pre-defined small value. More formally, if we have

a set of |VT | labels, then we replace the label distribution log p(y|x) with (1− ε) log p(y|x) +
ε

|VT |
∑

k log p(yk|x) by imposing the 1 and 0 target classification with targets of probabilities

1− ε and
ε

|VT |
, respectively.

2.1.5 Evaluation

Now that we have described some recent MT models, and their training and decoding strate-

gies, the final topic of discussion is how to evaluate the quality of the generated translations.

The first automatic evaluation metric we are going to describe is BLEU (Bilingual Evalua-

tion Understudy) (Papineni et al., 2002) which has been a de-facto standard for evaluating

translation outputs since it was proposed in 2002. The core idea is to aggregate the count

of words and phrases (n-grams) that overlap between machine and reference translations.

Mathematically, BLEU is calculated as:

BLEU = BP exp
( N∑
n=1

wn log pn

)
where N is the maximum length of n-grams (usually up to 4), wn are positive weights

summing to one (usually chosen uniformly), and BP is the brevity penalty used to penalise

translation outputs longer than translation references and is defined as:

BP =

{
1, if t > r.

exp(1−r/c), if t ≤ r.
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where t and r are the lengths of the translation output and reference, respectively, and pn

is the geometric average of the n-gram precisions defined as:

pn =

∑
C
∑

n-gram∈C Countclip(n-gram)∑
C′
∑

n-gram′∈C′ Count(n-gram′)

where Countclip(n-gram) = min(count, max ref count) and is used to truncate the total

count of each word in the output translation with its maximum count in the references.

The BLEU metric ranges from 0 to 1 where 1 means an identical output with the reference.

Although BLEU correlates well with human judgment (Papineni et al., 2002), it relies

on precision alone and does not take into account recall – the proportion of the matched

n-grams out of the total number of n-grams in the reference translation. METEOR (Baner-

jee and Lavie, 2005; Lavie and Agarwal, 2007) was proposed to address the shortcomings

of BLEU. It scores a translation output by performing a word-to-word alignment between

the translation output and a given reference translation. If more than one reference trans-

lation is provided, the translation is scored against each reference independently, and the

best scoring pair is used. The alignments are produced via a sequence of word-mapping

modules: (i) the exact module maps two words if they are exactly the same, (ii) the stem

module maps two words if they are the same after they are stemmed using the Porter stem-

mer, and (iii) the synonym module maps two words if they are synonyms of each other.

After the word-mapping modules have identified an initial set of possible alignments, the

largest subset of these word-mappings is identified such that the resulting set constitutes

an alignment. If more than one such set is found, the alignment for which the word order

in the two translations is most similar is selected. Now that a final alignment has been

produced, the METEOR score is calculated as follows:

METEOR = Fmean(1− Penalty)

where Penalty = 0.5
(#chunks

m

)3
and Fmean =

PR

0.9P + 0.1R
.

The Penalty takes into account longer matches by dividing the sequence of matched

words into the fewest possible number of “chunks” such that the matched words in each

chunk are adjacent (in both output and reference) and have the same word-order. Thus,

the longer the n-grams, the fewer the chunks, and in the extreme case, if the translation

output exactly matches the reference translation, there is only one chunk. Fmean is just the
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parameterised harmonic mean of unigram precision and recall (Rijsbergen, 1979), where

unigram precision P is the ratio of the number of mapped unigrams to the total number of

unigrams in the output translation (m/t), while unigram recall R is the ratio of the number

of mapped unigrams to the total number of unigrams in the reference translation (m/r).

METEOR has also demonstrated to have a high level of correlation with human judgment,

even outperforming that of BLEU (Banerjee and Lavie, 2005).

To make the results of the aforementioned MT evaluation metrics more reliable, a sta-

tistical significance test should be performed (Koehn, 2004) which indicates whether the

difference in translation quality of two or more systems is due to a difference in true system

quality. Although other MT evaluation metrics have been proposed, we only mention the

most popular BLEU and METEOR, as these are sufficient for the purposes of this thesis.

2.2 Document-level Machine Translation

By this point, it must be clear to the reader that all MT models are built on strong indepen-

dence assumptions whether it is based on locality assumptions within a sentence as done by

phrase-based models or that outside the sentence as done by even the most advanced NMT

models today. From a linguistics perspective, this assumption in practice is invalid, as any

piece of text is much more than just a single sentence and making this assumption means

ignoring the underlying discourse structure of the text (described shortly) and still hoping

that the translation would not fall short. Although the problem of machine translation it-

self has been around for decades, the works which have tried to address the problem of

discourse in MT are still just brushing the surface with more research yet to be undertaken.

In the rest of this section, I will describe the research on discourse in SMT (Section 2.2.1)

and NMT (Section 2.2.2) followed by a description of how to evaluate translation outputs

of larger pieces of text (Section 2.2.3).

2.2.1 Discourse in Statistical Machine Translation

A group of sentences that are contiguous, structured and exhibit coherency are regarded

as a discourse (Jurafsky and Martin, 2009). In terms of SMT, we will be mentioning re-

search which has tried to incorporate different aspects of discourse in SMT, beginning with

the document-level discourse structure and moving on to specific discourse phenomena like
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pronominal anaphora, lexical cohesion and consistency, coherence, and discourse connec-

tives.

2.2.1.1 Discourse and Document Structure

An initial work on discourse in MT by Marcu et al. (2000) (predating SMT) used a dis-

course transfer model to re-order the clauses and sentences of an input text (in Japanese)

to make it closer to the natural discourse structure of text in a target language (English) and

thus cater to the cross-lingual discourse shift. Almost a decade later, Foster et al. (2010)

presented an SMT system for translating the Canadian Hansard corpus (parliamentary pro-

ceedings) in which they change the language model to incorporate structural features at the

sentence-level (year, source language, speaker name, title, and section) without being ex-

plicity dependent on the content of the other sentences. Louis and Webber (2014) proposed

a structured model for translating Wikipedia biography articles using a cache to encourage

the use of article sub-structure (based on topics) by using words conforming to the smaller

topic segments in the article.

It is a challenge to include document structure when training an SMT model, but a more

challenging problem is to incorporate this information at the decoding stage. This is because

the decoding of phrase-based SMT models not only relies on the sentence-independence

assumption but is realised as a search for the highest-scoring translation in the space of

exponentially possible translations that could be generated by the model (Koehn et al.,

2003). A possible solution, proposed by Hardmeier et al. (2012, 2013a), is to start from an

initial translation generated from a baseline decoder like Moses (Koehn, 2005) and make

local changes to that translation via elementary operations (changing phrase translations

or word-order, and resegmentation) and transform it into a better translation. This de-

coder, referred to as Docent, was followed up by Stymne et al. (2013) who incorporated

readability constraints (including the ones to promote lexical consistency) into Docent to

produce simplified translations; however, this resulted in deteriorated performance based

on automatic evaluation.
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2.2.1.2 Cohesion

Cohesion is a surface property of the text and refers to the way textual units are linked to-

gether grammatically or lexically (Halliday and Hasan, 1976). The first form, grammatical

cohesion, is based on the logical and structural content, while the second, lexical cohesion,

is based on the usage of semantically related words. Most research on discourse in SMT has

focused on lexical cohesion while some has focused on grammatical cohesion in terms of

pronominal anaphora.

Pronominal Anaphora Pronominal anaphora is the use of a pronoun to refer to someone

or something mentioned previously in a text and is a challenging problem in MT due to

the variation of the usage and distribution of pronouns across languages. This can only be

dealt with access to inter-sentential context, specifically if the antecedent is not present in

the same sentence. For example, a neutral pronoun in a source language (English) may

have a gender-sensitive pronoun in the target language (German), requiring access to the

antecedent to resolve the gender.

Initial attempts to exploiting anaphora information for the improvement of SMT sys-

tems, by Hardmeier and Federico (2010) using a word-dependency model to incorporate

the output of a coreference resolution system in SMT, and by Le Nagard and Koehn (2010)

using a two-pass approach, that includes annotations from a coreference system in the sec-

ond pass, did not yield promising results. There have also been attempts to cross-lingual

pronoun prediction by Novák and Žabokrtský (2014) and Hardmeier et al. (2013b) where

the latter attempt to use anaphora links as latent variables in a neural network classifier.

Luong and Popescu-Belis (2016) proposed to use a pronoun-aware language model

that determines a target pronoun based on the number and gender of preceding nouns

or pronouns. Their method then re-ranks the translation hypotheses using the new LM and

showed improvements over the baseline for English→French shared task in DiscoMT 2015.

Luong and Popescu-Belis (2017) developed a fully probabilistic model that combines an

additional translation model for pronouns, based on morphological and semantic features,

with a Spanish→English SMT system to improve the translation of personal and possessive

pronouns in Spanish to English. Miculicich Werlen and Popescu-Belis (2017a) presented a

coreference-aware decoder for SMT based on similarity of coreference links in the source
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(Spanish) and target (English) texts. Their post-editing scheme resulted in significant im-

provements in the accuracy of pronoun translation (Miculicich Werlen and Popescu-Belis,

2017b), while the BLEU scores remained constant.

Lexical Cohesion Lexical cohesion has two forms: repetition and collocation. The for-

mer is achieved through synonyms and hyponyms (sometimes also referred to as lexical

consistency), while the latter uses related words that generally co-occur. There are three

lines of work that try to incorporate lexical cohesion in SMT, by employing: (i) cache-based

approaches, (ii) lexical chains, and (iii) two-pass approaches.

In terms of the first line of work, Tiedemann (2010) tried to promote lexical consistency

in SMT by using adaptive language and translation models that use an exponentially decay-

ing cache to carry over word preferences from one sentence to the next. Gong et al. (2011)

also used a cache-based approach in which they employ three types of caches: (i) a dynamic

cache (similar to Tiedemann (2010)) built using bilingual phrase pairs from the best trans-

lation hypotheses of previous sentences, (ii) a static cache which stores relevant bilingual

phrase pairs extracted from similar bilingual documents, and (iii) a topic cache which stores

the relevant target-side topic words. Their approach yielded significant improvements over

the baseline in terms of BLEU score.

Falling into the second line of work, Xiong et al. (2013a) proposed a model that looks

for lexical cohesion devices in the translation outputs of their MT system and then rewards

the model for their appropriate usage based on conditional likelihood and mutual informa-

tion. They reported significant improvements for Chinese→English SMT in terms of BLEU.

Xiong et al. (2013b) presented a framework that attempts to incorporate lexical cohesion

in the translations via lexical chains. The source document lexical chains are first identified

and then projected to the target-side using maximum entropy classifiers. Then, a lexical

cohesion based translation is generated from the target lexical chains by integrating their

cohesion models into a hierarchical phrase-based SMT system. Instead of relying on lexical

resources, the method proposed by Mascarell (2017) detects lexical chains in the source

and tries to preserve the semantic similarity among the words in their corresponding lexical

chains in the target via word embeddings. They integrated their model into Docent and
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through manual evaluation found that their model had a tendency to produce consistent

translations of words in the chain.

The last line of work is based on incorporating document contexts into an initial trans-

lation obtained from a baseline MT system. Xiao et al. (2011) first identified ambiguous

words in the source and then obtained a set of consistent translations for each word using

the distribution of its translation over the target document, after which the phrase table is

updated by removing inconsistent phrase-pairs and a second pass of decoding is performed.

The semantic document language model in Hardmeier et al. (2012) rewarded the use of

semantically related words (found based on latent semantic analysis) in the translation

output thus promoting lexical cohesion. Garcia et al. (2014) proposed a two-pass approach

to improve the translations already obtained by a sentence-level model. After the initial

translation is obtained, they detect incorrect translations in the target document based on

inconsistencies in meaning, gender and number disagreement among words, and suggest

possible corrections. Their method did not yield improvement based on automatic evalu-

ation which they claim to be due to the local changes made by their model. Garcia et al.

(2015) designed a document-level scoring feature for lexical consistency by measuring the

suitability of a word translation according to its context and its other possible translations

in the document based on word embeddings. They also extended Docent to incorporate a

new operation that guides the search process to yield consistent translations. Finally, Garcia

et al. (2017) made use of bilingual word vector models as the semantic language model in

Docent to enforce translation choices that are semantically similar to the context.

2.2.1.3 Coherence

As opposed to cohesion which is a surface property of the text, coherence refers to the

underlying meaning relation between units of text and its continuity (Jurafsky and Martin,

2009). It is a stronger requirement for a piece of text to meet than is required by cohesion,

and not only embodies cohesion, but other referential components like different parts of

text referring to the same entities (entity-based coherence), and relational components like

connections between utterances in a discourse via coherence relations (Hardmeier, 2014;

Smith, 2018). Hence, coherence governs whether a text is semantically meaningful overall

and how easily a reader can follow it.
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Coherence has been explored for monolingual text but not much for bilingual text, like

the one we deal with in MT. For SMT, the research in coherence mostly deals with studies

that try to extend previously proposed coherence models for monolingual text to translation

outputs (Smith and Specia, 2017; Smith, 2018). Smith et al. (2016) further extend these

models by proposing a new method to learn the syntactic patterns in a text.

2.2.1.4 Discourse Connectives

Discourse connectives, also referred to as discourse markers or cue words, are the words

that signal the existence of a specific discourse relation or discourse structure in the text.

These are mostly domain-specific and may be implicit or explicit depending on the lan-

guage. If implicit, these may be missed by the MT system in the translation although a

human translator may be able to introduce them explicitly in the translation (Hatim and

Mason, 1990). There have been studies that have tried to assess the ambiguity of discourse

connectives for MT and have reported that the mismatches between implicit and explicit

discourse connectives across languages result in deteriorated translation quality (Li et al.,

2014a,b). Even explicitly annotating the discourse markers in the source text has a limited

effect on translation quality for Chinese→English as reported by Yung et al. (2015) and

Steele and Specia (2016).

Meyer et al. (2011) proposed to use an automatic scheme which annotates words with

discourse sense by gathering informing from the different ways they are translated in their

correct translations, also referred to as translation spotting (Cartoni et al., 2013). The

impact of using this methodology was pretty low in terms of BLEU score for English-French

(Meyer and Popescu-Belis, 2012).

2.2.1.5 Conclusion

After going through related work for discourse in SMT, it must be clear that incorporating

discourse in SMT is a hard problem due to the various components in the SMT pipeline

and the reliance on well-crafted and intuitive hand-engineered features for the various dis-

course phenomena. Furthermore, SMT is not very good at handling sentence-level phenom-

ena such as syntactic reordering and long-distance agreement. Even if one can improve the

discourse characteristics of a MT system output (that frequently contains local grammatical
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mistakes) via a post-editing step, noise from local errors make such improvements difficult

to measure. These were the main reasons that for a long time the MT community was put

off to pursue valuable research in this area, mostly resulting in studies which highlighted

the importance of pursuing document-level MT but less hands-on work which actually at-

tempted to do it.

2.2.2 Discourse in Neural Machine Translation

Up until two years ago, there was no work in NMT that tried to incorporate any type of

discourse phenomena mentioned previously, but with most sentence-based NMT systems

achieving state-of-the-art performance compared to their SMT counterparts, this area of

research has finally started to gain the popularity it deserves. The main difference between

the research on discourse in NMT and SMT, apart from the general building blocks, is that

the works in NMT rarely try to model discourse phenomena explicitly. On the contrary, they

use sentences in the context directly via different modelling techniques and show how they

perform on automatic evaluation while sometimes measuring the performance on specific

test sets.

The first work that we mention here is by Jean et al. (2017) who augment the attentional

RNN-based NMT architecture with an additional attentional component over the previous

source sentence. The context vector generated from this source-context attention is then

added as an auxiliary input to the decoder hidden state. Through automatic evaluation and

cross-lingual pronoun prediction, they found that although their approach yielded moderate

improvements for a smaller training corpus, there was no improvement when the training

set was much larger. Furthermore, their method suffered from an obvious limitation: an

additional attention component meaning that their method could only incorporate limited

context. Around the same time, Tiedemann and Scherrer (2017) conducted a pilot study

in which they extend the translation units in two ways: (i) only extend the source sentence

to include a single previous sentence, and (ii) extend both source and target sentences to

include previous sentence in the corresponding context, without changing the underlying

RNN-based NMT model. They again reported marginal improvements in terms of BLEU for

German→English subtitle translation, but through further analysis and manual evaluation
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found output examples in which referential expressions across sentence boundaries could

be handled properly.

The first work that yielded significant improvements over a sentence-based NMT model

in terms of automatic evaluation was by Wang et al. (2017). They use a two-level hier-

archical RNN to summarise the information in three previous source sentences, where the

first-level RNNs are run over individual sentences and the second-level RNN is run over

the single output vectors produced from the first-level RNN over each sentence. The final

summary vector is then used to initialise the decoder, or added as an auxiliary input to the

decoder state directly or after passing through a gate. Their approach showed promising

results when using source-side context even though they found that considering target-side

history inversely harmed translation performance. We will show in Chapter 3 an effective

strategy to fruitfully incorporate the global target-side context in NMT.

There have also been two approaches that use cache to store relevant information from

a document and then use this external memory to improve the translation quality (Tu et al.,

2018; Kuang et al., 2018). The first of these approaches by Tu et al. (2018) uses a continu-

ous cache to store recent hidden representations from the bilingual context, that is the key

is designed to help match the query (current context vector produced via attention) to the

source-side context, while the value is designed to help find the relevant target-side infor-

mation to generate the next target word. The final context vector from the cache is then

combined with the decoder hidden state via a gating mechanism. The cache has a finite

length and is updated after generating a complete translation sentence. Their experiments

on multi-domain Chinese→English datasets showed the effectiveness of their approach with

negligible impact on the computational cost. The second approach by Kuang et al. (2018)

uses dynamic and topic caches (similar to the ones in Gong et al. (2011)) to store target

words from the preceding sentence translations and a set of target-side topical words se-

mantically related to the source document, respectively. As opposed to the cache in Tu

et al. (2018), their dynamic cache follows a first-in, first-out scheme and is updated after

generating each target word. At each decoding step, the target words in the final cache

are scored and a gating mechanism is used to combine the score from the cache and the

one produced by the NMT model. Their experimental results on the NIST Chinese→English
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translation task revealed that the cache-based neural model achieved consistent and signif-

icant improvements in terms of translation quality.

More recent works in NMT have started to use the new state-of-the-art Transformer ar-

chitecture (Vaswani et al., 2017) as the base model. Voita et al. (2018) change the encoder

in the Transformer to a context-aware encoder which has two sets of encoders, a source

encoder and a context encoder, with the first L− 1 layers shared. The previous source sen-

tence serves as input to the context encoder and its output is attended to by the Lth layer

of the source encoder, and then combined with the source encoder output using a gate.

The final output of the context-aware encoder is then fed into the decoder. Their experi-

ments on English→Russian subtitles data and analysis on the effect of context information

for translating pronouns revealed that their model implicitly learned anaphora resolution

which is quite promising as the model used no specialised features. Along similar lines,

Zhang et al. (2018) also use a context-aware encoder in the Transformer, however, instead

of training their model from scratch, like Voita et al. (2018), they use pre-trained embed-

dings from the sentence-based Transformer as input to their context encoder. In the second

stage of training, they only learn the document-level parameters and do not fine-tune the

sentence-level parameters of their model similar to Tu et al. (2018). They experimented

with NIST Chinese→English and IWSLT French→English translation tasks and reported

significant gains over the baseline in terms of BLEU score.

Inspired from Yang et al. (2016), Miculicich et al. (2018) use three previous sentences

as context by employing a hierarchical attention network (HAN) having two levels of ab-

straction: the word-level abstraction allows to focus on words in previous sentences, and

the sentence-level abstraction allows access to relevant sentences in the context for each

query word. They combine the contextual information with that from the current sentence

using a gate. The context is used during encoding or decoding a word, and is taken from

previous source sentences or previously decoded target sentences. Their experiments on

Chinese→English and Spanish→English datasets demonstrated significant improvements

in terms of BLEU. They further evaluated their model based on noun and pronoun transla-

tion and lexical cohesion and coherence, but did not report whether the gains achieved by

their model were statistically significant with respect to the baseline.
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Similar to the two-pass approaches in SMT, Xiong et al. (2019) use a two-pass decoder

approach to encourage coherence in NMT. In the first pass, they generate locally coher-

ent preliminary translations for each sentence using the Transformer architecture. In the

second step, their decoder refines the initial translations with the aid of a reward teacher

(Bosselut et al., 2018) which promotes coherent translations by minimising the similarity

between a sequence encoded in its forward and reverse direction. Their model improved

the translation quality in terms of sentence-level and document-level BLEU and METEOR

scores where the document-level scores were measured by concatenating sentences in one

document into one long sentence and then using the traditional metrics.

In conclusion, a lot of work remains to be done in the field of document-level NMT,

even though there is more promising work now than until a few years ago. In this thesis,

our contribution mainly falls in the category of modelling document-level context in NMT

for both monologues and dialogue, in contrast to previous work which has only focused on

monologue translation. We also present effective decoding methodologies for our models

which use the document-wide context as opposed to local context used in most previous

works.

2.2.3 Evaluation

MT outputs are almost always evaluated using metrics like BLEU and METEOR which use

n-gram overlap between the translation and reference to judge translation quality; however,

these metrics do not look for specific discourse phenomena in the translation, and thus may

fail when it comes to evaluating the quality of longer pieces of generated text. There has

been some work in terms of proposing new evaluation metrics for specific discourse phe-

nomena (described shortly), which may seem promising but there is no consensus among

the MT community about their usage. There are also those that suggest using evaluation

test sets or better yet combining them with semi-automatic evaluation schemes (Guillou

and Hardmeier, 2018). More recently, Stojanovski and Fraser (2018) propose to use oracle

experiments for evaluating the effect of pronoun resolution and coherence in MT.

Automatic Evaluation for Specific Discourse Phenomena There have been a few works

which have proposed reference-based automatic evaluation metrics for evaluating specific

37



CHAPTER 2. BACKGROUND

discourse phenomena. For pronoun translation, the first metric proposed by Hardmeier

and Federico (2010) measures their precision and recall directly. Firstly, word alignments

are produced between the source and translation output, and the source and the reference

translation. For each pronoun in the source, a clipped count (described in Section 2.1.5 for

BLEU (Papineni et al., 2002)) is computed, defined as the number of times the pronoun

occurs in the translation output, limited by the number of times it occurs in the refer-

ence translation. The final metric is then the precision, recall or F-score based on these

clipped counts. Miculicich Werlen and Popescu-Belis (2017b) proposed a metric that esti-

mates the accuracy of pronoun translation (APT), that is for each source pronoun, it counts

whether its translation can be considered correct. It first identifies triples of pronouns:

(source pronoun, reference pronoun, candidate pronoun) based on word alignments which

are improved through heuristics. Next, the translation of a source pronoun in the MT

output and the reference are compared and the number of identical, equivalent, or differ-

ent/incompatible translations in the output and reference, as well as cases where candidate

translation is absent, reference translation is absent or both, are counted. Each of these

cases is assigned a weight between 0 and 1 to determine the level of correctness of MT

output given the reference. The weights and the counts are then used to compute the final

score. Most recently, Jwalapuram et al. (2019) proposed a specialised evaluation measure

for pronoun evaluation which is trained to distinguish a good translation from a bad one

based on pairwise evaluations between two candidate translations (with or without past

context). The measure performs the evaluation irrespective of the source language and

is shown to be highly correlated with human judgments. They also present a targeted

pronoun test suite that covers multiple source languages and various target pronouns in

English. Both their test set and evaluation measure are based on actual MT system outputs.

For lexical cohesion, Wong and Kit (2012) extended the sentence-level evaluation met-

rics like BLEU (Papineni et al., 2002), METEOR (Banerjee and Lavie, 2005) and TER (Trans-

lation Edit Rate) (Snover et al., 2006) to incorporate a feature that scores lexical cohesion.

To compute the new score, they identify lexical cohesion devices via clustering based on

WordNet (Fellbaum, 1998) and repetition via stemming, and then combine this score with

the sentence-level one through weighted average. They claimed that this new scoring fea-

ture increases the correlation of BLEU and TER with human judgments, but does not have
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any effect on the correlation of METEOR. Along similar lines, Gong et al. (2015) augmented

a cohesion score, based on simplified lexical chain, and a gist consistency score, based on

topic model, with document-level BLEU or METEOR (concatenating sentences in one doc-

ument into one long sentence and applying the traditional metrics) using a weighted aver-

age. Their hybrid metrics could obtain significant improvements for BLEU but only slight

improvements for METEOR.

For discourse connectives, Hajlaoui and Popescu-Belis (2013) proposed new automatic

and semi-automatic metrics referred to as ACT (Accuracy of Connective Translation) (Meyer

et al., 2012). For each connective in the source, ACT counts one point if the translations

are the same and zero otherwise based on a dictionary of possible translations and word

alignments. The insertion of connectives is counted manually. The final score is the total

number of points divided by the number of source connectives. Guzmán et al. (2014) used

discourse structure for improving MT evaluation. They developed two discourse-aware

evaluation metrics, which first generate discourse trees for the translation output and ref-

erence using a discourse parser (lexicalised and un-lexicalised) followed by a similarity

measure between the two. This is based on the assumption that good translations would

have a similar discourse structure to that of the reference. Smith and Specia (2018) pro-

posed a reference-independent metric that assesses the translation output based on the

source text by measuring the extent to which the discourse connectives and relations are

preserved in the translation. Their metric combines bilingual word embeddings pre-trained

for discourse connectives with a score reflecting the correctness of the discourse relation

match. However, their metric depends on other lexical elements like a parser which may

miss some constituents or discourse relations.

Guillou and Hardmeier (2018) studied the performance of automatic metrics for pro-

nouns, proposed by Hardmeier and Federico (2010) and Miculicich Werlen and Popescu-

Belis (2017b), on the PROTEST test suite (Guillou and Hardmeier, 2016) of English→French

translations and explored the extent to which automatic evaluation based on reference

translations can provide useful information about an MT system’s ability to handle pro-

nouns. They found that such automatic evaluation can capture some linguistic patterns

better than others and recommend emphasising high precision in the automatic metrics

and referring negative cases to human evaluators. It has also been suggested that to take
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MT to another level, “the outputs need to be evaluated not based on a single reference

translation, but based on notions of fluency and of adequacy – ideally with reference to the

source text” (Sim Smith, 2017).

Evaluation Test Sets Inspired by examples from OpenSubtitles2016 (Lison and Tiede-

mann, 2016), Bawden et al. (2018) hand-crafted two contrastive test sets for evaluating

anaphoric pronoun translation and coherence and cohesion in English→French translation.

Models are then assessed on their ability to rank the correct translation of a sentence in the

test set higher than the incorrect translation. Müller et al. (2018) presented a contrastive

test suite to evaluate the accuracy with which NMT models translate the English pronoun it

to its German counterparts es, sie and er. Such an evaluation using test suites is feasible but

has a restricted scope since it is for specific language-pairs.

In conclusion, there is no consensus in the MT community about how to evaluate docu-

ments. A recent study contrasting the evaluation of individual sentences and entire docu-

ments with the help of human raters found that they prefer human translations over ma-

chine translated ones when assessing adequacy and fluency of translations (Läubli et al.,

2018). Hence, as translation quality improves, there is a dire need for document-level

evaluation since errors related to discourse phenomena remain invisible in a sentence-level

evaluation. For the purposed of this thesis, we still use automatic evaluation (BLEU and

METEOR) following prior work, but also validate the performance of our models through

extensive analysis as deemed necessary.
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Monologue Translation
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Chapter 3

Document Context Modelling with
Coarse Attention

For many years, document-level machine translation, similar to sentence-based statistical

machine translation (SMT), suffered from one major drawback: the use of hand-crafted fea-

tures. This resulted in models which were restrictive and failed to achieve desirable results

upon automatic evaluation. Thus, document-level MT was overlooked in MT research with

the works in this field being few and far between. Neural machine translation (NMT) elimi-

nates the need of hand-engineering complex features by having a single big neural network

(having millions of parameters) designed to model the entire MT process (Sutskever et al.,

2014; Cho et al., 2014b). Would the success of neural networks for sentence-level ma-

chine translation be enough to reinstigate the significance of document context for machine

translation?

In this chapter,1 we answer this question by augmenting the generic sentence-based

NMT model with two external memory components to capture the documental interdepen-

dencies in an offline setting (past and future context) for the task of monologue translation.

Our goal is to demonstrate that using both the source and target-side context is lucrative

for enhancing NMT performance. While this thesis was in preparation, there have been

a few works which use local context with promising results (Wang et al., 2017; Bawden

et al., 2018; Voita et al., 2018; Zhang et al., 2018; Miculicich et al., 2018) but ours is the

first work to successfully incorporate target context and global context, aka document-wide

information, in general.

1First presented in Maruf and Haffari (2018).
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This chapter serves a three-fold purpose: to demonstrate how global context informa-

tion can be incorporated into an otherwise context-agnostic NMT model, how to train the

model end-to-end and to propose an iterative decoding algorithm based on block coordinate

descent for the model.

3.1 Introduction

With the resurgence of neural networks, neural machine translation (NMT) has proven to

be powerful (Sutskever et al., 2014; Bahdanau et al., 2015). It is on-par, and in some cases,

even surpasses the traditional statistical MT (Luong et al., 2015) while enjoying more flex-

ibility and significantly less manual effort for feature engineering. Despite their flexibility,

most neural MT models still translate sentences independently. Discourse phenomena such

as pronominal anaphora and lexical consistency, depending on long-range dependencies go-

ing farther than a few previous sentences, are thus neglected in sentence-based translation

(Bawden et al., 2018).

There are only a handful of attempts to document-wide machine translation in statis-

tical and neural MT camps. Hardmeier and Federico (2010); Gong et al. (2011); Garcia

et al. (2014) propose document translation models based on statistical MT but are restric-

tive in the way they incorporate the document-level information and fail to gain significant

improvements. More recently, there have been a few attempts to incorporate source-side

context into neural MT (Jean et al., 2017; Wang et al., 2017; Bawden et al., 2018); how-

ever, these works only consider a very local context including a few previous source/target

sentences, ignoring the global source and target documental contexts. The latter two report

deteriorated performance when using the target-side context.

In this chapter, we present a document-level machine translation model which com-

bines sentence-based NMT (Bahdanau et al., 2015) with memory networks (Sukhbaatar

et al., 2015). We capture the global source and target document contexts with two memory

components, one each for the source and target-side, and incorporate it into the sentence-

based NMT by changing the decoder to condition on it as the sentence translation is gen-

erated. We conduct experiments on three language-pairs: French-English, German-English

and Estonian-English. The experimental results and analysis demonstrate that our model
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is effective in exploiting both source and target document context, and statistically signifi-

cantly outperforms the previous work in terms of BLEU and METEOR.

3.2 Preliminaries

Memory Networks (MemNets) Memory networks (Weston et al., 2015) are a class of

neural models that use external memories to perform inference based on long-range depen-

dencies. A memory is a collection of vectors M = {m1, ..,mK} constituting the memory

cells, where each cell mk may potentially correspond to a discrete object xk. The memory

is equipped with a read and optionally a write operation. Given a query vector q, the out-

put vector generated by reading from the memory is
∑K

k=1 pkmk, where pk represents the

relevance of the query to the kth memory cell defined as p = softmax(q>M). For the rest

of this chapter, we denote the read operation by MEMNET(M , q).

3.3 Document NMT as Structured Prediction

We formulate document-wide machine translation as a structured prediction problem. Given

a set of sentences {x1, . . . ,x|d|} in a source document d, we are interested in generating

the collection of their translations {y1, . . . ,y|d|} by taking into account interdependencies

among them imposed by the document. We achieve this by the factor graph in Figure 3.1,

which represents a conditional random field (CRF) (Lafferty et al., 2001) that models the

probability of the target document given the source document.

Our model has two types of factors:

• fθ(yj ;xj ,X−j) to capture the interdependencies between the translation yj , the cor-

responding source sentence xj and all the other sentences in the source document

X−j , and

• gθ(yj ;Y −j) to capture the interdependencies between the translation yj and all the

other translations in the document Y −j .

Hence, the probability of a document translation given the source document is given by

P (y1, . . . ,y|d||x1, . . . ,x|d|) ∝ exp
(∑

j

fθ(yj ;xj ,X−j) + gθ(yj ;Y −j)
)

(3.1)
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Figure 3.1: Factor graph for document-level MT

The factors fθ and gθ are realised by neural architectures (explained shortly) whose param-

eters are collectively denoted by θ.

Training It is challenging to train the model parameters by maximising the (regularised)

likelihood since computing the partition function of Eq. 3.1 is hard.2 This is due to the

enormity of factors gθ(yj ;Y −j) over a large number of translation variables yj ’s (i.e., the

number of sentences in the document) as well as their unbounded domain (i.e., all sen-

tences in the target language). Thus, we resort to maximising the pseudo-likelihood (Besag,

1975) for learning the parameters:

arg max
θ

∏
d∈D

|d|∏
j=1

Pθ(yj |xj ,Y −j ,X−j) (3.2)

where D is the set of bilingual training documents. We directly model the document-

conditioned NMT model Pθ(yj |xj ,Y −j ,X−j) using a neural architecture that subsumes

both the fθ and gθ factors (covered in the next section).

Decoding To generate the best translation for a document according to our model, we

need to solve the following optimisation problem:

arg max
y1,...,y|d|

|d|∏
j=1

Pθ(yj |xj ,Y −j ,X−j)

2The partition function is given by:
∑
yj exp

(∑
j fθ(y

j ;xj ,X−j) + gθ(y
j ;Y −j)

)
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which is hard (due to similar reasons as mentioned earlier). We hence resort to a block

coordinate descent optimisation algorithm. More specifically, we initialise the translation

of each sentence using the base neural MT model P (yj |xj). We then repeatedly visit each

sentence in the document and update its translation using our document-context dependent

NMT model P (yj |xj ,Y −j ,X−j) while the translations of other sentences are kept fixed.

3.4 Context-Dependent NMT with MemNets

We augment the sentence-level attentional NMT model (RNN-based) by incorporating the

document context (both source and target) using memory networks when generating the

translation of a sentence, as shown in Figure 3.2.

Our model generates the target translation word-by-word from left to right, similar to

the vanilla attentional neural translation model. However, it conditions the generation of

a target word not only on the previously generated words and the current source sentence

(as in the vanilla NMT model), but also on all the other source sentences in the document

X−j and their translations Y −j . That is, the generation process is as follows:

Pθ(yj |xj ,Y −j ,X−j) =
N∏
n=1

Pθ(yjn|y
j
<n,x

j ,Y −j ,X−j) (3.3)

where yjn is the nth word of the jth target sentence, yj<n are the previously generated words,

and X−j and Y −j are as introduced in the List of Notations.

Our model represents the source and target document contexts as external memories

and attends to relevant parts of these external memories when generating the translation of

a sentence. Let M [X−j ] and M [Y −j ] denote external memories representing the source

and target document context, respectively. These contain memory cells corresponding to

all sentences in the document except the jth sentence (described shortly). Let hj and sj be

representations of the jth source sentence and its current translation, from the encoder and

decoder respectively. We make use of hj as the query to get the relevant context from the

source external memory:

cj,src = MEMNET(M [X−j ],hj)

where MEMNET(.) is as defined in Section 3.2 and the attention is coarse since the values are

abstract representations of sentences in the document rather than of words. Furthermore,
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for the jth sentence, we get the relevant information from the target context as follows:

cj,tgt = MEMNET(M [Y −j ], sj +Wat · hj)

where the query consists of the representation of the translation sj from the decoder en-

dowed with that of the source sentence hj from the encoder to make the query robust

to potential noises in the current translation and circumvent error propagation, and Wat

projects the source representation into the hidden state space.

Now that we have representations of the relevant source and target document contexts,

Eq. 3.3 can be re-written as:

Pθ(yj |xj ,Y −j ,X−j) =

N∏
n=1

Pθ(yjn|y
j
<n,x

j , cj,tgt, cj,src) (3.4)

More specifically, the memory contexts cj,src and cj,tgt are incorporated into the NMT

decoder as:

• Memory-to-Context in which the memory contexts are incorporated when computing

the next decoder hidden state (Figure 3.2a):

sjn = RNN(sjn−1,ET [yjn−1], cjn, c
j,src, cj,tgt)

• Memory-to-Output in which the memory contexts are incorporated in the output

layer (Figure 3.2b):

yjn ∼ softmax(Wyu
j
n +Wysc

j,src +Wytc
j,tgt + by)

where Wys, and Wyt are the new parameter matrices. We use only the source, only the

target, or both external memories as the additional conditioning contexts. Furthermore, we

use either the Memory-to-Context or Memory-to-Output architectures for incorporating the

document contexts. In the experiments, we will explore these different options to investi-

gate the most effective combination. We now turn our attention to the construction of the

external memories for the source and target sides, M [X−j ] and M [Y −j ] respectively, of a

document.
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Figure 3.3: Hierarchical RNNs for source memory.

The Source Memory We make use of a hierarchical two-level RNN architecture to con-

struct the external memory of the source document. More specifically, for the first level, we

pass each sentence of the document through a sentence-level bi-directional RNN to get the

representation of the sentence, i.e., we run two RNNs - one in the forward and one in the

backward direction, and get the sentence representation by concatenating the last hidden

states of the forward and backward RNNs. We then pass these sentence representations

through a document-level bi-directional RNN to propagate sentences’ information across

the document as shown in Figure 3.3. We take the hidden states of the document-level

bi-directional RNNs as the memory cells of the source external memory.

The source external memory is built once for each mini-batch and does not change

throughout the document translation. To be able to fit the computational graph of the doc-

ument NMT model within GPU memory limits, we pre-train the sentence-level bi-directional

RNN using the language modelling training objective
(∏M

m=1 Pφ(xm|x<m)
)

on the original

and reverse sentence independently; in other words, we train them as RNNLMs. How-

ever, the document-level bi-directional RNN is trained together with other parameters of

the document NMT model by backpropagating the document translation training objective

(Eq. 3.4).

The Target Memory The memory cells of the target external memory represent the cur-

rent translations of the document. Recall from the previous section that we use coordinate

descent iteratively to update these translations. Let {y1, . . . ,y|d|} be the current transla-

tions, and let {s|y1|, . . . , s|y|d||} be the last states of the decoder when these translations

were generated. We use these last decoder states as the cells of the external target memory.
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#Documents #Sentences Document length Src/Tgt Vocab
French-English 1000/120/153 123K/15K/19K 123/128/124 25.1K/21K
Estonian-English 15K/1000/1776 209K/14K/25K 14/14/14 48.6K/24.9K
German-English 4871/87/110/160 191K/2K/3K/3K 39/23/27/19 45.1K/34.7K

Table 3.1: Training/development/test corpora statistics: number of documents and sen-
tences (K stands for thousands), average document length (in sentences) and source/target
vocabulary size (in thousands). For German-English, we report statistics of the two test sets
news-test2011 and news-test2016.

We could make use of hierarchical sentence-document RNNs to transform the document

translations into memory cells (similar to what we do for the source memory); however, it

would have been computationally expensive and may have resulted in error propagation.

We will show in the experiments that our efficient target memory construction is indeed

effective.

3.5 Experiments

3.5.1 Setup

Datasets We conducted experiments on three language-pairs: French-English, German-

English and Estonian-English. Table 3.1 shows the statistics of the datasets used in our

experiments. The French-English dataset is based on the TED talks corpus3 (Cettolo et al.,

2012) where each talk is considered a document. The Estonian-English data comes from

the Europarl v7 corpus4 (Koehn, 2005). Following Smith et al. (2013), we split the speeches

based on the SPEAKER tag and treat them as documents. The French-English and Estonian-

English corpora were randomly split into training, development and test sets. For German-

English, we use the News Commentary v9 corpus for training,5 news-dev2009 for devel-

opment, and news-test2011 and news-test2016 as the test sets. This corpus already has

document boundaries provided.

We pre-processed all corpora to remove very short documents and those with missing

translations. Out-of-vocabulary and rare words (frequency less than 5) are replaced by the

<unk> token, following Cohn et al. (2016).6

3https://wit3.fbk.eu/
4http://www.statmt.org/europarl/
5http://statmt.org/wmt14/news-commentary-v9-by-document.tgz
6For this work, we did not split words into subwords using byte-pair encoding (BPE) (Sennrich et al., 2016).

However, we will show later (Section 4.4) that our model can be extended to do that with minimum effort.
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Evaluation Measures We use BLEU (Papineni et al., 2002) and METEOR (Lavie and Agar-

wal, 2007) scores to measure the quality of the generated translations. We use bootstrap

resampling (Clark et al., 2011) to measure statistical significance, p < 0.05, upon compari-

son to the baselines.

Implementation and Hyperparameters We implement our document-level neural ma-

chine translation model in C++ using the DyNet library (Neubig et al., 2017), on top of

the RNN-based sentence-level NMT implementation in mantis (Cohn et al., 2016). For

the source memory, the sentence and document-level bi-directional RNNs use LSTM and

GRU units, respectively. The translation model uses GRU units for the bi-directional RNN

encoder and the two-layer RNN decoder. GRUs are used instead of LSTMs to reduce the

number of parameters in the main model. The RNN hidden dimensions and word embed-

ding sizes are set to 512 in the translation and memory components, and the alignment

dimension is set to 256 in the translation model.

Training We use a stage-wise method to train the variants of our document-context NMT

model. Firstly, we pre-train the Memory-to-Context/Memory-to-Output models, setting

their readings from the source and target memories to the zero vector. This effectively learns

parameters associated with the underlying sentence-based NMT model, which is then used

as initialisation when training all parameters in the second stage (including fine-tuning the

ones from the first stage). For the first stage, we make use of stochastic gradient descent

(SGD)7 with an initial learning rate of 0.1 and a decay factor of 0.5 after the fourth epoch

for a total of ten epochs. The convergence occurs in 6-8 epochs. For the second stage,

we use SGD with an initial learning rate of 0.08 and a decay factor of 0.9 after the first

epoch for a total of 15 epochs.8 The best model is picked based on minimum perplexity on

development set. To avoid overfitting, we employ dropout with a rate of 0.2 for the single

memory model. For the dual memory model, we set dropout for document RNN in source

memory to 0.2 and for the encoder and decoder to 0.5. Mini-batching is used in both stages

7In our initial experiments, we found SGD to be more effective than Adam/Adagrad; an observation also
made by Bahar et al. (2017).

8For the document NMT model training, we did some preliminary experiments using different learning rates
and used the scheme which converged to the best perplexity in the least number of epochs while for sentence-
level training we follow Cohn et al. (2016).
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to speed up training. For the largest dataset, the document NMT model takes about 4.5

hours per epoch to train on a single P100 GPU, while the sentence-level model takes about

3 hours per epoch for the same settings.

When training the document NMT model in the second stage, we need the target mem-

ory. One option would be to use the ground-truth translations for building the memory.

However, this may result in inferior training, since at test-time, the decoder iteratively

updates the translation of sentences based on the noisy translations of other sentences

(accessed via the target memory). Hence, while training the document NMT model, we

construct the target memory from the translations generated by the pre-trained sentence-

level model.9 This effectively exposes the model to its potential test-time mistakes during

the training, resulting in more robust learned parameters.

3.5.2 Main Results

We have three variants of our model, using: (i) only the source memory (S-NMT+SRC

MEM), (ii) only the target memory (S-NMT+TGT MEM), or (iii) both the source and tar-

get memories (S-NMT+BOTH MEMS). We compare these variants against the RNN-based

sentence-level NMT model (S-NMT). We also compare the source-memory variants of our

model to the local-context NMT models of Jean et al. (2017) and Wang et al. (2017),10

which use a few previous source sentences to generate a context representation, which is

augmented to the decoder hidden state (similar to our Memory-to-Context model).

Memory-to-Context We consistently observe +1.15/+1.13 BLEU/METEOR score improve-

ments across the three language-pairs upon comparing our best model to S-NMT (see Table

3.2), with the maximum improvement for Estonian→English (+1.9 BLEU and +1.69 ME-

TEOR). Overall, our document NMT model with both source and target memories has been

the most effective variant for all of the three language-pairs.

We further experiment to train the target memory variants using gold translations in-

stead of the generated ones for German→English. This led to −0.16 and −0.25 decrease11

9We report results for two-pass decoding, i.e., we only update the translations once using the initial transla-
tions generated from the base model. We tried multiple passes of decoding at test-time but it was not helpful.

10We implemented and trained the baseline local-context models using the same hyperparameters and train-
ing procedure that we used for training our memory models.

11Latter is statistically significant decrease with respect to the S-NMT+BOTH MEMS model trained on gener-
ated target translations.
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Memory-to-Context
BLEU METEOR

Fr→En De→En Et→En Fr→En De→En Et→En
NC-11 NC-16 NC-11 NC-16

S-NMT 20.85 5.24 9.18 20.42 23.27 10.90 14.35 24.65
+SRC MEM 21.91† 6.26† 10.20† 22.10† 24.04† 11.52† 15.45† 25.92†

+TGT MEM 21.74† 6.24† 9.97† 21.94† 23.98† 11.58† 15.32† 25.89†

+BOTH MEMS 22.00† 6.57† 10.54† 22.32† 24.40† 12.24† 16.18† 26.34†

Memory-to-Output
BLEU METEOR

Fr→En De→En Et→En Fr→En De→En Et→En
NC-11 NC-16 NC-11 NC-16

S-NMT 20.85 5.24 9.18 20.42 23.27 10.90 14.35 24.65
+SRC MEM 21.80† 6.10† 9.98† 21.50† 23.99† 11.53† 15.29† 25.44†

+TGT MEM 21.76† 6.31† 10.04† 21.82† 24.06† 12.10† 15.75† 25.93†

+BOTH MEMS 21.77† 6.20† 10.23† 22.20† 24.27† 11.84† 15.82† 26.10†

Table 3.2: BLEU and METEOR scores for the RNN-based sentence-level NMT baseline (S-
NMT) vs. variants of our document NMT model. bold: Best performance, †: Statistically
significantly better than the baseline.

in the BLEU scores for the S-NMT+TGT MEM and S-NMT+BOTH MEMS variants, which

confirms the intuition of constructing the target memory by exposing the model to its noises

during training time.

Memory-to-Output From Table 3.2, we consistently see +.95/+1.00 BLEU/METEOR im-

provements between the best variants of our model and the sentence-level baseline across

the three language-pairs. For French→English, all variants of document NMT model show

comparable performance when using BLEU; however, when evaluated using METEOR, the

dual memory model is the best. For German→English, the target memory variants give com-

parable results, whereas, for Estonian→English, the dual memory variant proves to be the

best. Overall, the Memory-to-Context model variants perform better than their Memory-

to-Output counterparts. We attribute this to a large number of parameters in the latter

architecture (Table 3.3) and limited amount of data.

Large datasets with document boundaries are hard to obtain, however, one can use

freely available sentence-level corpora for pre-training the document-level model. Hence,

we further experiment with more data when training the sentence-based NMT model to

investigate the extent to which document context is useful in this setting and to show that
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Memory-to-Context Memory-to-Output
Lang. Pair Fr→En De→En Et→En Fr→En De→En Et→En
S-NMT 42.5 66.8 58.4 42.5 66.8 58.5
+SRC MEM 48.8 73.1 64.8 68.7 107.1 88.7
+TGT MEM 43.8 68.1 59.8 53.8 85.1 71.8
+BOTH MEMS 50.1 74.4 66.1 80 125.4 102

Table 3.3: Number of model parameters (in millions).

Smaller Corpus Larger Corpus
10

11

12

13

14

10.9

12.12

11.52

12.94

11.58

12.55

12.24

13.56

S-NMT S-NMT+SRC S-NMT+TGT S-NMT+BOTH

(a) Memory-to-Context

Smaller Corpus Larger Corpus
10

11

12

13

14

10.9

12.12

11.53

12.48

12.1

13.21

11.84

12.99

(b) Memory-to-Output

Figure 3.4: METEOR scores on German→English (NC-11) while training S-NMT with
smaller vs. larger corpus.

the improvements obtained with our model are not due to data size bias. We randomly

choose an additional 300K German-English sentence-pairs from WMT’14 data12 to train the

base NMT model in stage 1. In stage 2, we use the same document corpus as before to

train the document-level models. As seen from Figure 3.4, the document MT variants still

benefit from the document context even when the base model is trained on a larger bilingual

corpus. For the Memory-to-Context model, we see massive improvements of +0.72 and

+1.44 METEOR scores for the source memory and dual memory model respectively, when

compared to the baseline. On the other hand, for the Memory-to-Output model, the target

memory model’s METEOR score increases significantly by +1.09 compared to the baseline,

slightly differing from the corresponding model using the smaller corpus (+1.2).

12https://nlp.stanford.edu/projects/nmt/
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BLEU METEOR
Fr→En De→En Et→En Fr→En De→En Et→En

NC-11 NC-16 NC-11 NC-16

Jean et al. (2017) 21.95 6.04 10.26 21.67 24.10 11.61 15.56 25.77
Wang et al. (2017) 21.87 5.49 10.14 22.06 24.13 11.05 15.20 26.00
S-NMT 20.85 5.24 9.18 20.42 23.27 10.90 14.35 24.65
+SRC MEM 21.91† 6.26♣ 10.20 22.10♠ 24.04† 11.52♣ 15.45♣ 25.92♠

+BOTH MEMS 22.00† 6.57♦ 10.54♣ 22.32♦ 24.40♦ 12.24♦ 16.18♦ 26.34♦

Table 3.4: Our Memory-to-Context source-memory NMT variants vs. S-NMT and source-
context NMT baselines. bold: Best performance, †, ♠, ♣, ♦: Statistically significantly better
than only S-NMT, S-NMT & Jean et al. (2017), S-NMT & Wang et al. (2017), all baselines,
respectively.

Local Source Context Models Table 3.4 shows a comparison of our Memory-to-Context

model variants to local source-context NMT models (Jean et al., 2017; Wang et al., 2017).

For French→English, our source memory model is comparable to both baselines. For

German→English, our S-NMT+SRC MEM model is comparable to Jean et al. (2017) but

outperforms Wang et al. (2017) for one test set with respect to BLEU, and for both test sets

with respect to METEOR. For Estonian→English, our model outperforms Jean et al. (2017).

Our global source-context model has only surface-level sentence information and is oblivi-

ous to the individual words in the context since we do offline training to obtain the sentence

representations (as previously mentioned in Section 3.4). However, the other two context

baselines have access to that information, yet our model’s performance is either better or

quite close to those models. We also look into the unigram BLEU scores to see how much

our global source-memory variants lead to improvement at the word-level. From Table 3.5,

it can be seen that our model’s performance is better than the baselines for the majority of

cases. The S-NMT+BOTH MEMS model gives the best results for all three language pairs,

showing that leveraging both source and target document context is indeed beneficial for

improving MT performance.

3.5.3 Analysis

Using Global/Local Target Context We first investigate whether using a local target con-

text would have been equally sufficient in comparison to our global target memory model

for the three datasets. We condition the decoder on the previous target sentence representa-

tion (obtained from the last hidden state of the decoder) by adding it as an additional input
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BLEU-1
Fr→En De→En Et→En

NC-11 NC-16

Jean et al. (2017) 52.8 30.6 39.2 51.9
Wang et al. (2017) 52.6 28.2 38.3 52.3
S-NMT 51.4 28.7 36.9 50.4

+SRC MEM 53.0 30.5 39.1 52.6
+BOTH MEMS 53.5 33.1 41.3 53.2

Table 3.5: Unigram BLEU for our Memory-to-Context document NMT models vs. S-NMT
and source-context NMT baselines. bold: Best performance.

to all decoder states (PREV TGT) similar to our Memory-to-Context model. From Table 3.6,

we observe that for French→English and Estonian→English, using all sentences in the tar-

get context or just the previous target sentence gives comparable results. We may attribute

this to these specific datasets, that is documents from TED talks or European Parliament

Proceedings may depend more on the local than on the global context when using coarse

context information. However, for German→English (NC-11), the target memory model

performs the best showing that for documents with richer context (e.g., news articles) we

do need the global target document context to improve MT performance.

Qualitative Analysis Figure 3.5 illustrates the attention matrices for an example test doc-

ument in Estonian→English (provided in Appendix A), inferred by the variants of Memory-

to-Context model. The attention matrices for the single memory models (Figures 3.5a, 3.5b)

are quite different, majorly because both focus on different sentences in the source and tar-

get documents. Upon further inspection, it was found that these sentences were key in

delivering the gist of the text. For the dual memory model (Figure 3.5c), we see that the

attention matrix for the source document is still mostly focused around the same sentences

as the source-only one, except that now it also attends to the first sentence which introduces

BLEU METEOR
Lang. Pair Fr→En De→En Et→En Fr→En De→En Et→En
S-NMT 20.85 5.24 20.42 23.27 10.90 24.65

+PREV TGT 21.75 5.93 22.08 24.03 11.40 25.94
+TGT MEM 21.74 6.24 21.94 23.98 11.58 25.89

Table 3.6: Analysis of target context model.

56



3.5. EXPERIMENTS

(a) S-NMT+SRC MEM (b) S-NMT+TGT MEM

(c) S-NMT+BOTH MEMS

Figure 3.5: Inferred attention weights by Memory-to-Context models for an Et→En test
document. The horizontal axis gives the position of the sentence being generated and the
vertical axis gives the position of the sentence in the source or target documents. Darker
shades denote higher values.

the topic; while the attention matrix for the target memory has a more granular and guided

attention spread out over the sentences.

To better understand the dual memory model, we look at the first sentence example in

Table 3.7. It can be seen that the source sentence has the noun ‘Qimonda’ but the sentence-

level NMT model fails to attend to it when generating the translation. On the other hand,

the single memory models are better in delivering some, if not all, of the underlying infor-

mation in the source sentence but the dual memory model’s translation quality surpasses

them. This is because the word ‘Qimonda’ was being repeated in this specific document,

providing a strong contextual signal to our global document-context model while the local-

context model by Wang et al. (2017) is still unable to correctly translate the noun even
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Source qimonda täidab lissaboni strateegia eesmärke.
Target qimonda meets the objectives of the lisbon strategy.
S-NMT <unk> is the objectives of the lisbon strategy.
+SRC MEM the millennium development goals are fulfilling the

millennium goals of the lisbon strategy.
+TGT MEM in writing. - (ro) the lisbon strategy is fulfilling the

objectives of the lisbon strategy.
+BOTH MEMS qimonda fulfils the aims of the lisbon strategy.

Wang et al. (2017) <unk> fulfils the objectives of the lisbon strategy.
Source ... et riigis kehtib endiselt lukašenka diktatuur,

mis rikub inim- ning etnilise vähemuse õigusi.
Target ... this country is still under the dictatorship of

lukashenko, breaching human rights and the rights
of ethnic minorities.

S-NMT ... the country still remains in a position of lukashenko
to violate human rights and ethnic minorities.

+SRC MEM ... the country still applies to the brutal dictatorship of
human and ethnic minority rights.

+TGT MEM ... the country still keeps the <unk> dictatorship that
violates human rights and ethnic rights.

+BOTH MEMS ... the country still persists in lukashenko’s dictatorship
that violate human rights and ethnic minority rights.

Wang et al. (2017) ... there is still a regime in the country that is
violating the rights of human and ethnic minority
in the country.

Table 3.7: Example Estonian→English sentence translations (Memory-to-Context) from two
test documents.

when it has access to the word-level information of previous sentences.

We resort to manual evaluation as there is no standard metric that evaluates document-

level discourse information like consistency or pronominal anaphora. By manual inspection,

we observe that our models can identify nouns in the source sentence to resolve coreferent

pronouns, as shown in the second example of Table 3.7. Here the topic of the sentence is

‘the country under the dictatorship of Lukashenko’ and our target and dual memory models

are able to generate the appropriate pronoun/determiner as well as accurately translate the

word ‘diktatuur’, hence producing much better translation as compared to both baselines.

Apart from these improvements, our models are better in improving the readability of sen-

tences by generating more context appropriate grammatical structures such as verbs and

adverbs.

Furthermore, to validate that our model improves the consistency of translations, we

58



3.6. RELATED WORK

look at five documents (roughly 70 sentences) from the test set of Estonian→English, each

of which had a word being repeated in the gold translation. Our model is able to resolve

the consistency in 22 out of 32 cases as compared to the sentence-based model which only

accurately translates 16 of those. Following Wang et al. (2017), we also investigate the

extent to which our model can correct errors made by the baseline system. We randomly

choose five documents from the test set. Out of the 20 words/phrases which were incor-

rectly translated by the sentence-based model, our model corrects 85% of them while also

generating 10% new errors.

3.6 Related Work

At the time of this research, most of the works in document-level MT were based on the

conventional SMT approaches relying on hand-engineered features. These have been ex-

tensively covered in Section 2.2.1. Here, we will only briefly mention the works which have

been used as baselines in this chapter.

Jean et al. (2017) extend the vanilla attention-based neural MT model (Bahdanau et al.,

2015) by conditioning the decoder on the previous sentence via an additional attention

over its words. Extending their model to consider the global source document-context

is challenging due to large size of the computation graph as a result of having different

attentional components for the individual sentences in the source document. Wang et al.

(2017) employ a two-level hierarchical RNN to summarise three previous source sentences,

and then feed the summary vector as an additional input to the decoder hidden state. Both

these works consider a very local source context and completely ignore the global source

and target document contexts.

3.7 Summary

In this chapter, we have presented a document-level neural MT model that captures global

source and target document context via coarse attention over the sentences in the source

and target documents. Our model augments the vanilla RNN-based sentence-level NMT

model with external memories to incorporate documental interdependencies on both source
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and target sides. We train the model end-to-end and propose an iterative decoding algo-

rithm based on block coordinate descent. We show statistically significant improvements in

the translation quality over the context-agnostic baseline for three language-pairs. We also

compare our model to recent local source-context baselines, where our model outperforms

them in terms of automatic evaluation metrics BLEU and METEOR.
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Chapter 4

Document Context Modelling with
Hierarchical Selective Attention

In the previous chapter, we demonstrated the significance of using document-wide con-

text for neural machine translation via a simple approach (coarse attention). Despite not

having explicit extra-sentential word-level information, our model was able to outperform

other context-aware baselines on three language-pairs. Having proposed and tested effi-

cient training and decoding strategies for document-wide neural machine translation, now

we can focus on developing better modelling strategies for the document context. One

effective and scalable approach that uses explicit word-level information is hierarchical at-

tention, which has gained popularity in NLP tasks of text summarisation (Nallapati et al.,

2016), document/sentiment classification (Yang et al., 2016; Li et al., 2018) and reading

comprehension (Zhu et al., 2018), to name a few. Miculicich et al. (2018) successfully ap-

ply a bottom-up hierarchical attention mechanism to model word-level and sentence-level

abstractions for local-context NMT.

Keeping scalability and efficiency in mind, this chapter1 presents a novel and scalable

top-down approach to hierarchical selective attention for document-wide NMT which uses

sparse attention to selectively focus on relevant sentences in the document context and

then attends to key words in those sentences. For completeness, single-level attention ap-

proaches based on sentence and word-level information in the context are also proposed.

Our experiments on English→German monologue datasets in both offline (past and future)

and online (only past) settings show that our selective attention approach not only signif-

icantly outperforms context-agnostic baselines but also surpasses context-aware baselines

1First presented in Maruf et al. (2019).
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in most cases. We also conduct an extensive analysis to evaluate our models in terms of

its ability to translate pronouns, adequacy and fluency of generated translations, model

complexity, and interpretability of hierarchical selective attention.

4.1 Introduction

Neural machine translation has grown immensely in the past few years, from the simplistic

RNN-based encoder-decoder models (Sutskever et al., 2014; Bahdanau et al., 2015) to the

state-of-the-art Transformer architecture (Vaswani et al., 2017). Most of these models rely

on the attention mechanism as a major component, which involves focusing on different

parts of a sequence to compute new representations, and has proven to be quite effective in

improving the translation quality (Vaswani et al., 2017). However, all of these models share

the same inherent problem: the translation is still performed on a sentence-by-sentence

basis, thus ignoring the long-range dependencies which may be useful when it comes to

translating discourse phenomena.

More recently, context-aware NMT has been gaining significant traction from the MT

community with the majority of works coming out in the past two years. Most of these

focus on using a few previous sentences as context (Jean et al., 2017; Wang et al., 2017; Tu

et al., 2018; Voita et al., 2018; Zhang et al., 2018; Miculicich et al., 2018) and neglect the

rest of the document. Our work (Maruf and Haffari, 2018) in the previous chapter is the

only one to have considered the full document context, thus proposing a more generalised

approach to document-level NMT. However, the model is restrictive as the document-level

attention computed is sentence-based and static (computed only once for the sentence being

translated). A more recent work (Miculicich et al., 2018) proposes to use a hierarchical

attention network (HAN) (Yang et al., 2016) to model the contextual information in a

structured manner using word-level and sentence-level abstractions; yet, it uses a limited

number of past source and target sentences as context and is not scalable to the entire

document.

In this work, we propose a selective attention approach to first selectively focus on rel-

evant sentences in the global document-context and then attend to key words in those
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sentences, while ignoring the rest.2 Towards this goal, we use sparse attention, enabling an

efficient and scalable use of the context. The intuition behind this is the way humans trans-

late a sentence containing ambiguous words. They may look for sentences in the whole

document which contain similar words and just focus on those for the translation. This

attention, which we refer to as hierarchical attention, is computed dynamically for each

query word. Furthermore, we propose a flat attention approach that is based on either

sentence or word-level information in the context. We integrate the document-level con-

text representation, produced from these attention modules, into the encoder or decoder

of the Transformer model depending on whether we consider monolingual (source-side) or

bilingual (both source and target-side) context.

Our contributions are as follows: (i) we propose a novel and efficient top-down ap-

proach to hierarchical attention for context-aware NMT, (ii) we compare variants of se-

lective attention with both context-agnostic and context-aware baselines, and (iii) we run

experiments in both online (only past context) and offline (both past and future context)

settings on three English→German datasets. Experiments show that our approach improves

upon the Transformer by an overall +1.3, +2.1 and +1.2 BLEU for TED talks, News-

Commentary and Europarl, respectively. It also outperforms two recent context-aware base-

lines (Zhang et al., 2018; Miculicich et al., 2018) in the majority of cases.

4.2 Preliminaries

Sparsemax Transformation The softmax function, we previously described, is strictly

positive; meaning that it forces all of its inputs to receive some probability mass, thus dis-

couraging sparsity. It is also convenient to use as it is simple to compute and differentiate.

Sparsemax, on the other hand, has the distinctive property that it can return sparse pos-

terior distributions, that is, it may assign exactly zero probability to some of its output

variables (Martins and Astudillo, 2016), and also preserves the appealing properties of the

softmax. Mathematically, the sparsemax transformation is defined as:

sparsemax(z) = arg min
α∈∆dz−1

||α− z||2 (4.1)

2The term “selective attention” comes from cognitive science and is defined as the act of focusing on a
particular object for a period of time while simultaneously ignoring irrelevant information that is also occurring
(Dayan et al., 2000).

63



CHAPTER 4. DOCUMENT CONTEXT MODELLING WITH HIERARCHICAL SELECTIVE ATTENTION

where ∆dz−1 := {α ∈ Rdz |α ≥ 0,
∑

dz
αdz = 1} is the dz − 1 dimensional probability sim-

plex. In simpler terms, sparsemax is the Euclidean projection of the scores z onto the prob-

ability simplex. Since these projections are likely to hit the boundary of the simplex, this

yields a sparse probability distribution. We rely on this transformation to identify the rele-

vant sentences and words in a document as required by our hierarchical attention model.

4.3 Proposed Approach

The main goal of this work is to have a document-level NMT model which is memory-

efficient, scalable, and capable of listening to the entire document. To achieve this, we

augment a sentence-level NMT model (the Transformer (Vaswani et al., 2017)) with an

efficient hierarchical attention mechanism which has the ability to identify the key sentences

in the document context and then attend to the key words within those sentences. As

mentioned previously (Section 3.3), we want to maximise the probability of a document

translation given the source document, that is Pθ(Y |X) =
∏|d|
j=1 Pθ(yj |xj ,D−j), where yj

and xj denote the jth target and source sentence, respectively, and D−j = {X−j ,Y −j} is

the collection of all other sentences in the source and target documents. In this chapter, we

take D−j to be either the monolingual source or bilingual source and target-side context in

two settings: offline—the context comes from both past and future, and online—the context

comes from only the past.

In this section, we show how to represent the document-level context using our Context

Layer, how to regulate the information at the sentence and document-level using context

gating and finally we present our integrated model.

4.3.1 Document-level Context Layer

The context D−j is modeled via a single Document-level Context Layer (Figure 4.1) com-

prising of two sub-layers: (i) a multi-head context attention sub-layer, and (ii) a feed-

forward sub-layer, where the former consists of either a top-down hierarchical attention

module or a flat attention module (both explained shortly), and the latter is similar to the

feed-forward network (FFN) in the original Transformer architecture. Each sub-layer is
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4.3. PROPOSED APPROACH

Figure 4.1: Document-level Context Layer.

followed by layer normalisation.3

Let us now describe the attention modules which independently form the multi-head

context attention sub-layer.

4.3.1.1 Hierarchical Attention

Our hierachical attention module H-ATTENTION(Qs, Qw, Ks, Kw, Vw) (Figure 4.2) is a

reformulation of the scaled dot-product attention by Vaswani et al. (2017) described in

Section 2.1.2. For our module, we have five inputs consisting of two types of keys and

queries, one each for the sentences and the words, while the values are based only on

words in the context. The hierarchical attention module has four operations:

1. Sentence-level Key Matching: This is performed on a set of queries simultaneously,

packed together into a matrix Qs. The sentence-level keys are also packed into a

matrix Ks. We will describe in Section 4.3.3 how Qs and Ks are computed. The

sentence-level attention weights are computed as:

αs = sparsemax
(K>s Qs√

dk

)
(4.2)

where dk is the dimension of the keys and αs has dimensions equal to the total num-

ber of sentences in the document. We propose to use sparsemax (Martins and As-

tudillo, 2016), instead of softmax, as this gives us the intended selective attention
3We do not have residual connections after sub-layers in our Document-level Context Layer as we found

them to have a deteriorating effect on the translation scores (also reported by Zhang et al. (2018)).
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Figure 4.2: Hierarchical context attention module.

behavior, that is identifying the key sentences that may potentially be relevant to the

current sentence, hence making the model more efficient in compressing its memory.

A softmax attention, on the other hand, can still assign low probability to sentences,

forming a long-tail and absorbing significant probability mass, and it cannot fully

ignore those sentences. An additive mask is used (before the sparsemax operation)

based on whether we train for offline or online setting by masking out only the cur-

rent sentence or current and future sentences, respectively.

2. Word-level Key Matching: Here the query and key matrices, Qw and Kw, are word-

level. We perform a word-level key matching for each sentence j in the document:

αjw = sparsemax
(Kj>

w Qw√
dk

)
(4.3)

where αjw is the word-level attention vector for jth sentence.4 We can also use soft-

max, instead of sparsemax, for a coarser key matching. We explore the two variants

in our experiments.

4This can be done for only the sentences with non-zero probabilities (obtained from the sentence-level key
matching), however, we found it to be computationally expensive, as it required breaking down the batched
matrices.
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3. Re-scaling attention weights: The word-level attention is further re-weighted by the

corresponding sentence-level attention (Nallapati et al., 2016) such that the probabil-

ity of jth sentence in a document is given by:

αjhier = αs(j)α
j
w (4.4)

where αs(j) is the attention weight for the jth sentence obtained via Eq. 4.2 and αjw

is as in Eq. 4.3. The re-weighting, thus, produces a scaled attention vector αhier =

Concat(α1
hier; . . . ;α

|d|
hier), each entry of which corresponds to the attention weight of

a specific word in the document.

4. Value Reading: The set of word-level values is packed together into a matrix Vw

and the matrix of outputs is given by Vwαhier. This multiplication, combined with

sparsemax attention, allows to prune the hierarchy.

We further extend the MULTIHEAD attention function proposed by Vaswani et al. (2017)

for our hierarchical attention module as:

H-MULTIHEAD(Qs,Ks,Qw,Kw,Vw) = WOConcat(head1; ...;headH)

where headh = H-ATTENTION(WQs
h Qs,W

Qw
h Qw,W

Ks
h Ks,W

Kw
h Kw,W

Vw
h Vw),W ’s are

parameter matrices and all (five) inputs5 are transformed using separate linear layers.

4.3.1.2 Flat Attention

Another way to model the context D−j is via single-level attention by directly re-using the

scaled dot-product attention in Vaswani et al. (2017):

ATTENTION(Q∗,K∗,V∗) = V∗softmax
(K>∗ Q∗√

dk

)
(4.5)

where the subscript ∗ corresponds to s or w depending on whether the attention is on

sentence or word-level. The attention6 is sentence-level ifKs, Vs are computed for sentences

in the document, and word-level if Kw, Vw are computed for words in the document.7

The former module is similar to our Memory Networks architecture in Chapter 3 (Maruf

5To re-emphasise, the only difference between Qs and Qw is that the queries (from words in current source
or target sentence) are transformed using separate linear layers.

6Investigation into sparse flat attention is left for future work.
7Here Qs, Ks, Qw, Kw and Vw are equivalent to the ones computed for hierarchical attention.
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and Haffari, 2018) in that it uses sentence-level information. However, there are two key

differences, here: (i) we use MULTIHEAD attention as in the Transformer architecture, and

(ii) our context attention is dynamic such that we have a separate attention for each query

word.

4.3.2 Context Gating

As mentioned previously, the multi-head context attention sub-layer (employing either the

hierarchical or flat attention module) is part of the Document-level Context Layer (Fig-

ure 4.1), the output of which is fed into the Transformer architecture through context gating

(Tu et al., 2018). For ith word in the jth source or target sentence:

γji = σ(Wrr
j
i +Wdc

j,d
i ) (4.6)

r̃ji = γji � r
j
i + (1− γji )� c

j,d
i (4.7)

whereW ’s are parameter matrices, rji is the output of encoder or decoder stack for ith word

in jth sentence, cdi is the output from the Document-level Context Layer for ith word in jth

sentence and r̃ji is the final hidden representation for the same.

4.3.3 Integrated Model

The context can be integrated into the encoder or decoder of the NMT model depending on

if it is monolingual or bilingual.8

Monolingual context integration in Encoder We add the Document-level Context Layer

alongside the encoder stack as shown in Figure 4.3. The Encoder Context Encoding block

stores the sentence and word-level keys and values produced from the pre-trained sentence-

level NMT model. The word-level keysKw and values Vw are composed of vector represen-

tations of source words (from last encoder layer) in the document, while the sentence-level

keysKs and values Vs are composed of vector representations of sentences in the document

where the vector representation of each sentence is an average of the word representations

in that sentence.9 The queries Qw, Qs are linear transformations of the output of the

8We do not integrate context into both encoder and decoder as it would have redundant information from
the source (the context incorporated in the decoder is bilingual), in addition to increasing the complexity of the
model.

9Vs is only used in the sentence-level flat attention.
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Figure 4.3: Encoder-side context integration.

Lth encoder layer (for each query word in the current sentence) which are then matched

with the corresponding keys and values stored in the Encoder Context Encoding block just

described.

Bilingual context integration in Decoder We again add the Document-level Context

Layer alongside the decoder stack as in Figure 4.4. However, instead of choosing the keys

and values to be computed from the encoder, we follow Tu et al. (2018) in choosing the

keys to match to the source-side context, while designing the values to match to the target-

side context. To elaborate, the keys (in the Decoder Context Encoding block) are composed

of context vectors from the Source Attention sub-layer in the last decoder layer, while the

values are composed of the hidden representations of the target words output from the last

decoder layer. Again the keys Kw and Ks are either for individual target words or target

sentences, and the same goes for Vw and Vs. The queriesQw, Qs for the Context Layer are

linear transformations of the output from the Source Attention sub-layer (for each query

word) in the Lth layer of the decoder (Figure 4.4).
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Figure 4.4: Decoder-side context integration.

4.4 Experiments

4.4.1 Setup

Datasets We conduct experiments for English→German translation on three different do-

mains: TED talks, News Commentary and Europarl. These datasets are chosen based on

their variance in genre, style and level of formality:

• TED This corpus is from the IWSLT 2017 MT track (Cettolo et al., 2012) and con-

tains transcripts of TED talks aligned at sentence-level. Each talk is considered to

be a document. We combine tst2016-2017 into the test set and the rest is used for

development.

• News Commentary We obtain the sentence-aligned document-delimited News Com-

mentary v11 corpus for training.10 The WMT’16 news-test2015 and news-test2016

are used for development and testing, respectively.
10
www.casmacat.eu/corpus/news-commentary.html
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4.4. EXPERIMENTS

Domain #Documents #Sentences Document length Sentence length
TED 1698/93/23 0.21M/9K/2.3K 120.89/96.42/98.74 20.3/19.7/19.6
News 6069/81/155 0.24M/2K/3K 38.93/26.78/19.35 25/21.6/21.5
Europarl 118K/240/360 1.67M/3.6K/5.1K 14.14/14.95/14.06 27.7/28/28

Table 4.1: Training/development/test corpora statistics: number of documents and sen-
tences (K stands for thousands and M for millions), average document length (in sentences)
and average sentence length for English (in tokens).

• Europarl This dataset is extracted from Europarl v7 (Koehn, 2005). The source and

target sentences in each session are aligned using the links provided by Tiedemann

(2012). Following our previous work (Maruf and Haffari, 2018), we use the SPEAKER

tag as the document delimiter. Documents longer than 5 sentences are kept and the

resulting corpus is randomly split into training, dev and test sets.

The corpora statistics are provided in Table 4.1. All datasets11 are tokenised and true-

cased using the Moses toolkit (Koehn et al., 2007), and split into subword units using a

joint BPE model with 30K merge operations (Sennrich et al., 2016).

Models and Baselines For offline document MT, we have two context-agnostic baselines:

(i) a modified version of RNNSearch (attentional RNN-based NMT model) (Bahdanau et al.,

2015), which incorporates dropout on the output layer and improves the attention model by

feeding the previously generated word, and (ii) the state-of-the-art Transformer architec-

ture. We also compare to our document-wide NMT model with coarse attention (Maruf

and Haffari, 2018). For the online case, we again have the Transformer as a context-

agnostic baseline and two recent context-aware baselines (Zhang et al., 2018; Miculicich

et al., 2018).

All models are implemented in C++ using DyNet (Neubig et al., 2017). For RNNSearch,

we modify the sentence-based NMT implementation in mantis (Cohn et al., 2016). The en-

coder is a single layer bi-directional GRU (Cho et al., 2014a) and the decoder is a two-layer

GRU with embeddings and hidden dimensions set to 512. The dropout rate for the output

layer is set to 0.2. For the Transformer, we use Transformer-DyNet implementation12 and

extend it for our context-aware NMT model.The hidden dimensions and feed-forward layer

11The data is available at https://github.com/sameenmaruf/selective-attn.
12
https://github.com/duyvuleo/Transformer-DyNet
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size is set to 512 and 2048 respectively. We use 4 layers13 each in the encoder and decoder

with 8 attention heads and employ label smoothing with a value of 0.1. We also employ

all four types of dropouts as in the original Transformer with a rate of 0.1 for the sentence-

based model and 0.2 for our context-aware model. For all models, we use separate source

and target embeddings.

For training all models, we use the default Adam optimiser (Kingma and Ba, 2015) with

an initial learning rate of 0.0001 and employ early stopping. For our context-aware NMT

model, we use a two-stage training strategy, similar to the one described in Section 3.5,

that is we pre-train the sentence-level NMT model14 followed by optimising the parameters

of the whole model, i.e., both the document-level and the sentence-level parameters. For

inference, we use iterative decoding only when using the bilingual context. All experiments

are run on a single Nvidia P100 GPU with 16GBs of memory.15

Evaluation Metrics For evaluation, we use BLEU (Papineni et al., 2002) and METEOR

(Lavie and Agarwal, 2007) scores on tokenised text, and measure statistical significance

with respect to the baselines, p < 0.05 (Clark et al., 2011).

4.4.2 Main Results

We divide our experiments into two parts: offline and online document MT, and report

results for our models (and the context-aware baselines) depending on whether the context

is integrated into encoder or decoder.

Offline Document MT From the scores of the two context-agnostic baselines in Table 4.2,

we can see that the Transformer beats the RNNSearch model in all cases by at least +2.5

BLEU and +2.1 METEOR scores showing that our hyperparameter choice for the Trans-

former is indeed effective. Our document-wide NMT model with coarse attention outper-

forms RNNSearch in majority cases but is unable to beat the Transformer as it still extends

the RNN-based encoder-decoder architecture.
13We found this configuration to be much more stable than using 6 layers with almost no difference in

performance as reported by Xia et al. (2018).
14We have used the same sentence-level parameters as warm-start for all context-aware models and baselines.
15The experiments can also be run on GPUs with 10-12GBs of memory by reducing the batch size at the

expense of increased computational cost.
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CHAPTER 4. DOCUMENT CONTEXT MODELLING WITH HIERARCHICAL SELECTIVE ATTENTION

For the Encoder Context integration with monolingual context, our hierarchical atten-

tion models perform the (near) best for News and Europarl datasets with +2 and +1 BLEU

and +2 and +0.8 METEOR improvements with respect to the Transformer. For TED talks,

however, we find the flat attention based models (sentence and word-level) to be the best

with +1.3 BLEU and +1.1 METEOR improvements.16 For Decoder Context integration with

bilingual context, we find the hierarchical attention to be the best in the majority of cases

both in terms of BLEU and METEOR.

Online Document MT From Table 4.3, all our models significantly outperform the context-

agnostic baseline and are significantly better than Zhang et al. (2018) in majority cases.17

For Encoder Context integration, the HAN encoder18 Miculicich et al. (2018) is the best

for TED and News datasets, however, the results are statistically insignificant with respect

to our best model. For Europarl, our hierarchical attention model performs significantly

better than Miculicich et al. (2018) with a gain of +1.2 BLEU and +1.1 METEOR. For

Decoder Context integration, our hierarchical attention models are the winner in majority

cases and our best models beat Miculicich et al. (2018)’s HAN decoder19 for all datasets

based on BLEU and METEOR. The main conclusion we draw from these results is that ef-

ficiently using the context information at hand is crucial when it comes to improving the

performance of context-aware NMT. Furthermore, shorter pieces of text (e.g., the ones

in Europarl) benefit more from using global context because their sentences may exhibit

higher interdependency than those in a longer piece of text.

Offline vs. Online Document MT Let us compare the overall results for the offline and

online document MT settings. For all datasets and model variants, we find the best BLEU

and METEOR scores in Tables 4.2 and 4.3 (highlighted in bold) to be quite close to each

16Please note that the sentence-level flat attention model is similar to the model presented in Chapter 3
but is different in that it computes a separate attention for each query word (as previously mentioned in
Section 4.3.1.2).

17The major difference between our models and Zhang et al. (2018) is that they use the context representa-
tion from only two previous source sentences to integrate into the encoder or decoder, where the embeddings
of these context sentences are the original embeddings (word+positional) while we use their abstract repre-
sentations (as described in Section 4.3.3) in our models. Furthermore, they fix the sentence-level paramaters
when training their context-aware model while we fine-tune the sentence-level parameters as well.

18This refers to their model which integrates context from three previous source sentences into the encoder.
19This refers to their model which integrates context from three previously decoded target sentences into the

decoder. They do not propose a model which integrates bilingual context into the decoder.
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other with those for the online setting slightly better. This is quite self-explanatory, because,

in essence, the experimental datasets comprise of talks, speeches or commentaries, which

are in fact produced in an online manner and hence we do not see drastic improvements

in terms of BLEU and METEOR when conditioning on the future context. This, in our

opinion, does not mean that we should never look into the future, but just that NMT models,

in general, are highly subjective to data, and whether context-aware models benefit from

future context is also dependant on that.

To summarise our experiments, if one wants to choose an optimal configuration between

the flat and hierarchical attention models, then the latter is a clear winner provided the base

model is trained on large datasets. This is also evident from our follow-up work (Maruf

and Haffari, 2019), where we demonstrate the hierarchical attention to outperform the

sentence-level attention (based on ensembling multiple independent runs) in the majority

of cases for both translation directions of the English-German language pair.

4.4.3 Analysis

Evaluation on Contrastive Pronoun Test Set It has been argued that evaluation met-

rics that quantify the overall translation quality are somewhat ill-equipped to assess how

well models translate inter-sentential phenomena such as pronouns. Hence, we use a test

suite of contrastive translations designed to measure the accuracy of translating the English

pronoun it to its German counterparts es, er and sie (Müller et al., 2018). The test set is

automatically created from the OpenSubtitles corpus (Lison and Tiedemann, 2016) using

the publicly available scripts.20 It contains 4000 randomly sampled instances of each of

the three translations of it under consideration. For each sentence pair in the resulting test

set, a contrastive translation is introduced where the correct pronoun is replaced with an

incorrect one, such that on its own the contrastive translation is grammatically correct if

the antecedent is outside the current sentence. The trained model is then used to provide a

score (the negative log-probability) for the reference and contrastive translation. The num-

ber of times the model scores the reference translation higher than the contrastive one is

reported as accuracy. The test set is used to evaluate our models trained on TED talks. We

20https://github.com/ZurichNLP/ContraPro
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Model antecedent distance
0 1 2 3 >3

Offline document MT
RNNSearch 0.415 0.310 0.424 0.440 0.647
Maruf and Haffari (2018) 0.424 0.302 0.418 0.443 0.665
Transformer 0.586 0.308 0.437 0.48 0.642
+ATTENTION, sentence 0.677 0.314 0.439 0.478 0.697

word 0.686 0.347 0.464 0.511 0.679
+H-ATTENTION, sparse-soft 0.676 0.308 0.440 0.480 0.686

sparse-sparse 0.652 0.303 0.435 0.471 0.701
Online document MT

Zhang et al. (2018) 0.622 0.321 0.450 0.485 0.658
Miculicich et al. (2018) 0.722 0.326 0.451 0.471 0.661
Transformer 0.586 0.308 0.437 0.48 0.642
+ATTENTION, sentence 0.732 0.340 0.460 0.485 0.661

word 0.690 0.317 0.444 0.487 0.683
+H-ATTENTION, sparse-soft 0.692 0.329 0.446 0.464 0.656

sparse-sparse 0.711 0.317 0.437 0.489 0.692

Table 4.4: Accuracy on the contrastive test set with regard to antecedent distance (in sen-
tences) on TED talks. Antecedent distance 0 means the pronoun occurs in the same sentence
as the antecedent.

are interested to see if our global document-context models surpass the local context-aware

baselines.

The first obvious thing we notice from Table 4.4 is that both context-agnostic base-

lines perform roughly the same when the antecedent is in a different sentence than the

reference. Interestingly, for antecedent distance greater than three, we see our previous

architecture with coarse attention (Maruf and Haffari, 2018) to outperform both context-

agnostic baselines. In general, Table 4.4 shows that not only our global-context models are

quite effective but our hierarchical attention model is most useful when the antecedent is

farther than three previous sentences. We also conclude that models for offline MT perform

better when antecedent distance is greater than two.

Subjective Evaluation We also conduct a subjective evaluation to validate the benefit of

exploiting document-level context. Three native German speakers were asked to choose the

better (with ties allowed) of two translations for each of 18 documents (randomly sampled

from Europarl test set). The two translations, one produced by the Transformer and the

other by our hierarchical attention model, were evaluated in terms of: adequacy (Which
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Model #Params Speed (words/sec.)
Training Decoding

Zhang et al. (2018) 59.5M 3300 84.94
Miculicich et al. (2018) 54.8M 1650 76.90
Transformer 50M 5100 86.33
+ATTENTION, sentence 53.7M 3750 83.84

word 53.7M 3100 81.38
+H-ATTENTION 54.2M 2600 74.11

Table 4.5: Model complexity of Encoder Context integration models for News Commentary
dataset. The training speed is for batched training with 900 tokens in each mini-batch and
decoding speed is for greedy decoding without batching. It should be mentioned that al-
though the presented speed is for the online setting, the offline setting exhibits comparable
performance.

translation expresses the meaning of the source text more adequately?) and fluency (Which

text has better German?) (Läubli et al., 2018). Let a, b be number of ratings in favour of

Transformer or our model, respectively, and t be number of ties, then number of successes

x = b + 0.5t and trials n = a + b + t. We test for statistically significant preference of our

model over the Transformer by means of two-sided Sign Tests and find that our model is

better than the Transformer both in terms of document-level adequacy (x = 39, n = 54, p

= 0.0015) and fluency (x = 38, n = 54, p = 0.0038).

Model Complexity Model complexity is reported in Table 4.5. Our context-aware models

introduce only 8% more parameters to the original Transformer model. In comparison to

the Transformer, our hierarchical attention model is slow in training, dropping the speed

by almost 50%,21 but it is still almost 40% faster than Miculicich et al. (2018). At decod-

ing time, our hierarchical attention model is almost equivalent to Miculicich et al. (2018)

and only 13% slower than Zhang et al. (2018). Hence, attending to the whole document

(instead of a few previous sentences) does not add to the time complexity of the model on

average. It should be noted that the speed of our hierarchical attention model is slower

than the word-level attention model because it has two levels of abstraction, but unlike the

word-level attention model which may fail due to the large size of computation graph, our

hierarchical attention model has the capability to scale to long documents.

21DyNet implementation of sparsemax is CPU-based and only operates on column vectors. We believe a
GPU-based matrix implementation would bring the speed much closer to our word-level attention model.
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Src: my thoughts are also with the victims.
Tgt: meine Gedanken sind auch bei den Opfern.
Transformer: ich denke auch an die Opfer.
Zhang et al. (2018): ich denke auch an die Opfer.
Miculicich et al. (2018): ich denke auch an die Opfer.
Our Model: meine Gedanken sind auch bei den Opfern.

Head 2: Attention to related words sympathy, support, hope
sj−2: ( FR ) Madam President, many things have already been said , but I would like
to echo all the words of sympathy and support that have already been addressed to
the peoples of Tunisia and Egypt .
sj+4: it must implement a strong strategy towards these countries .
sj−1: they are a symbol of hope for all those who defend freedom .

Table 4.6: Example of noun disambiguation. Source context sentences are ordered in de-
creasing probability mass. The intensity of color corresponds to the attention given to a
specific word before rescaling.

Qualitative Analysis To analyse the effect of using sparse attention on both the sentence

and word-level, we looked at the attention weights computed by sparsemax. Table 4.6 shows

an example where our model helped generate a correct translation of the noun “thoughts”

(highlighted in bold). The context sentences shown in the bottom box had the highest

attention weights as assigned by sparsemax. It seems that this particular attention head

focuses more on phrases like “words of sympathy”, “support’, “symbol of hope” which are

related to the query “thoughts”. Another example in Table 4.7 shows how our model cor-

rectly translates the pronoun “their”. Upon looking at the words in the context sentences, it

seems that this particular attention head focuses on words related to the antecedent “Croa-

tia’s Serbian population” with most of the weight concentrated around neighbouring words

in sentence sj−1. It is evident from both examples that word-level sparsity is more prevalent

in longer sentences in the context; the same holds for sparsity at sentence-level.

4.5 Related Work

Our work builds upon the research in document-level MT, broadly classified into conven-

tional MT (refer to Section 2.2.1 for details) and neural MT, and the research in sparse

attention for NLP.
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Src: Croatia is their homeland, too.
Tgt: Kroatien ist auch ihre Heimat.
Transformer: Kroatien ist auch seine Heimat.
Our Model: Kroatien ist auch ihr Heimatland.

Head 8: Attention to words related to the antecedent.
sj−1: to name but a few, these include cooperation with the Hague Tribunal , efforts
made so far in prosecuting corruption , restructuring the economy and finances and
greater commitment and sincerity in eliminating the obstacles to the return of
Croatia ’s Serbian population .
sj−4: by signing a border arbitration agreement with its neighbour Slovenia , the
new Croatian Government has not only eliminated an obstacle to the negotiating
process , but has also paved the way for the resolution of other issues .

Table 4.7: Example of pronoun disambiguation. Context sentences are ordered in decreas-
ing probability mass.

Document-level Neural MT We look at previous works from the perspective of the type

of context they use, that is online—use previous context only, or offline—use both past and

future contexts. Most works fall into the former category, with those that (i) use only a sin-

gle previous sentence in the source by having a separate attention over it (Jean et al., 2017;

Voita et al., 2018) or concatenating it with the current source sentence (Tiedemann and

Scherrer, 2017); (ii) use a single previous sentence both in source and target via a multi-

encoder model (Bawden et al., 2018); (iii) use more than one previous source sentence

by having a two-level hierarchical RNN over three previous source sentences (Wang et al.,

2017) or having a separate context encoder over concatenation of two previous source sen-

tences (Zhang et al., 2018); and (iv) use a few previous source and target sentences by

having a hierarchical attention network over three previous sentences (Miculicich et al.,

2018). Apart from fixing the context length, there are few works that use cache-based

memories to store contextual information from preceding sentences (Tu et al., 2018) and

also store topical words in a cache (Kuang et al., 2018) to improve the MT system per-

formance. A recent work (Maruf et al., 2018) reports promising results when using the

complete history for translating online conversations.

For the offline setting, however, there is only one work that effectively uses the full

document-context on both source and target-side using memory networks (Maruf and Haf-

fari, 2018). The debate in document-level NMT today is mostly about how much of the

previous context to use and there has been no comparison between the online and offline
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setting except using only one previous and following sentence (Voita et al., 2018). Our

hierarchical selective attention approach is most similar in concept to the one by Miculi-

cich et al. (2018) but outperforms it in terms of translation performances across different

domains (Table 4.3) and is more efficient in training (Table 4.5).

Sparse Attention Sparse attention and its constrained variants have been used to address

the coverage problem in NMT (Malaviya et al., 2018) by limiting the amount of attention

that each source word can receive. Apart from NMT, sparse attention has been shown to

yield promising results for NLP tasks of textual entailment (Martins and Astudillo, 2016)

and summarisation (Niculae and Blondel, 2017).

4.6 Summary

In this chapter, we have presented a novel, scalable and efficient approach to hierarchical

attention for context-aware NMT, which uses sparse attention to selectively focus on rele-

vant sentences in the document context and then attend to key words in those sentences.

We also present single-level attention approaches based on sentence or word-level infor-

mation in the context. The document-level context representation, produced from these

attention modules, is integrated into the encoder or decoder of the Transformer architec-

ture depending on whether we use monolingual or bilingual context. Experiments and

evaluation on three English→German datasets in offline and online document MT settings

show that our approach surpasses context-agnostic and recent context-aware baselines. The

qualitative analysis shows that the sparsity at sentence-level allows our model to identify

key sentences in the document context and the sparsity at word-level allows it to focus on

key words in those sentences allowing for efficient compression of memory and is a step

towards better interpretation of document-level NMT models.
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Chapter 5

Translating Bilingual Multi-Speaker
Conversations

5.1 Introduction

In the previous chapters, we presented two approaches to model the document-wide context

for monologue translation. We demonstrated that using document-wide source and target

context is crucial for achieving performance gains over context-agnostic NMT models and

most context-aware NMT baselines for several language-pairs. Looking at current and past

work in the field, we made a salient observation: all previous research in context-aware

NMT has focused on improving the performance of translation models for the traditional

task of monologue translation. This prompted us to consider other practical avenues of MT

that could greatly benefit from context information. One application that instantly comes

to mind is dialogue where context is crucial to achieve an uninterrupted and eloquent

exchange of information.

The ultimate aim of all machine translation systems for dialogue is to enable a multi-

lingual conversation between multiple speakers. However, translation of such conversations

is not well-explored in the literature, even though translating such conversations online is

ubiquitous in real life, e.g., in the European Parliament, United Nations, and customer ser-

vice chats. This scenario involves leveraging the conversation history in multiple languages.

The goal of this chapter1 is to propose and explore a simplified version of such a setting, re-

ferred to as bilingual multi-speaker machine translation (Bi-MSMT), where speakers’ turns

in the conversation switch the source and target language. To illustrate the significance of

1First presented in Maruf et al. (2018).
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Figure 5.1: An example English-Portuguese conversation in a customer service chat. Turn
denotes the set of sentences from a single speaker.

using conversation history in this scenario, let us consider the example in Figure 5.1 show-

ing a customer service chat. Assume that we want to translate the response by the agent in

English to Portuguese for the client. It should be noted that the referent determiner of boss

(highlighted in blue) in English is gender-insensitive and it is impossible to disambiguate

the gender given the English source sentence alone. Hence, we require the Portuguese

source sentence (first sentence in Turn 1), which has explicit mention of the gender of the

boss (a minha chefe), to accurately translate the English response by the agent. In general,

we may also require the English source or translations to capture anaphoric information or

discourse connectives, and the Portuguese translations to maintain lexical coherence. The

Bi-MSMT task is thus challenging as the conversation history consists of utterances in both

languages.

As previously mentioned, there has been work focusing on using the discourse or docu-

ment context to improve NMT, in an online setting, by using the past context (Jean et al.,

2017; Wang et al., 2017; Bawden et al., 2018; Voita et al., 2018), and in an offline set-

ting, using the past and future context (Maruf and Haffari, 2018). In this chapter, we

design and evaluate a conversational Bi-MSMT model, where we incorporate the source

and target-side conversation histories into a sentence-based attentional model (Bahdanau

et al., 2015). 2 Here, the source history comprises of sentences in the original language

(either English or Foreign), and the target history consists of their corresponding transla-

tions. We experiment with different ways of computing the source-context representation

2The Transformer architecture (Vaswani et al., 2017) was not a well-established baseline when this work
was initiated. The ideas presented here are not specific to any base model and can easily be extended to the
Transformer architecture.
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for this task. Furthermore, we present an effective approach to leverage the target-side con-

text and also present an intuitive approach for incorporating both contexts simultaneously.

To evaluate this task, we introduce datasets extracted from Europarl v7 and OpenSubti-

tles2016, containing speaker information. Our experiments on English-French, English-

Estonian, English-German and English-Russian language-pairs show improvements of +1.4,

+1.2, +1.8 and +0.3 BLEU, respectively, for our best model over the context-free baseline.

We also perform experiments on English-French and English-German customer service chat

data yielding promising results. The results show the impact of conversation history on the

translation of bilingual multi-speaker conversations and can be used as a benchmark for

future work on this task.

5.2 Preliminaries

5.2.1 Problem Formulation

We are given a dataset that comprises parallel conversations, and each conversation con-

sists of turns. Each turn is constituted by sentences spoken by a single speaker, where the

sentences are denoted by x or y if in English or Foreign language, respectively. The goal is

to learn a model that is able to leverage the mixed-language conversation history in order

to produce high-quality translations.

5.2.2 Data

Standard machine translation datasets are inappropriate for the Bi-MSMT task since they

are not composed of conversations or the speaker annotations are missing. In this section,

we describe how we extract data from raw Europarl v7 (Koehn, 2005) and OpenSubti-

tles20163 (Lison and Tiedemann, 2016) for this task.4

Europarl The raw Europarl v7 corpus (Koehn, 2005) contains SPEAKER and LANGUAGE

tags where the latter indicates the original language of utterance used by the speaker. The

individual files (referred to as episodes in the corpus) are first split into conversations (re-

ferred to as chapters). The data is tokenised (using scripts by Koehn (2005)), and cleaned

3http://www.opensubtitles.org/
4The data is publicly available at https://github.com/sameenmaruf/Bi-MSMT.git.
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Europarl Subtitles
En-Fr En-Et En-De En-Ru

#Conversations 6997/140/209 4394/88/132 3582/70/108 23126/462/694
#Sentences 246.5K/4.9K/7.8K 174K/3.2K/5.2K 109K/2.1K/3.3K 291.5K/5.9K/9K

Table 5.1: General statistics for training/development/test sets (K stands for thousands).

Europarl Subtitles
En-Fr En-Et En-De En-Ru

#Sentences (English) 139.8K 130.6K 55.5K 157.9K
Mean Statistics per Conversation

#Sentences 36.24 40.65 31.50 13.60
#Turns 4.77 4.85 4.79 7.12
Turn Length 7.12 7.92 6.16 1.68

Table 5.2: Statistics for training set.

(headings and single token sentences removed). Conversations are divided into smaller

ones if the number of speakers is greater than 5.5 The corpus is then randomly split into

train/dev/test sets with respect to conversations in ratio 100:2:3. The English-side of the

corpus is set as reference, and if the language tag is absent, the source language is English,

otherwise Foreign. The sentences in the source-side of the corpus are kept or swapped with

those in the target-side based on this tag.

We perform the aforementioned steps for English-French, English-Estonian and English-

German, and obtain the bilingual multi-speaker corpora for the three language-pairs. Be-

fore splitting into train/dev/test sets, we remove conversations with sentences having more

than 100 tokens for English-French, English-German and more than 80 tokens for English-

Estonian respectively,6 to limit the sentence-length for using subwords with BPE (Sennrich

et al., 2016). The data statistics are given in Tables 5.1 and 5.2.7

Subtitles There has been recent work to obtain speaker labels via automatic turn seg-

mentation for the OpenSubtitles2016 corpus (Lison and Meena, 2016; van der Wees et al.,

2016; Wang et al., 2016). We obtain the English-side of OpenSubtitles2016 corpus anno-

5Using the conversations as is or setting a higher threshold further reduces the data due to inconsistencies
in conversation/turn lengths in the source and target-side.

6Sentence-lengths of 100 tokens result in longer sentences than what we get for the other two language-
pairs.

7Although the extracted dataset is small but we believe it to be a realistic setting for a real-world conversation
task, where reference translations are usually not readily available and expensive to obtain.
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tated with speaker information by Lison and Meena (2016).8 To obtain the parallel corpus,

we use the OpenSubtitles alignment links to align foreign subtitles to the annotated English

ones. For each subtitle, we extract individual conversations with more than 5 sentences

and at least two turns. Conversations with more than 30 turns are discarded. Finally, since

subtitles are in a single language, we assign language tags such that the same language

occurs in alternating turns. We thus obtain the Bi-MSMT corpus for English-Russian, which

is then divided into training, development and test sets.

5.3 Conversational Bi-MSMT Model

Before we delve into the details of how to leverage the conversation history, we identify the

three types of context we may encounter in an ongoing bilingual multi-speaker conversa-

tion, as shown in Figure 5.2. It comprises: (i) the previously completed English turns, (ii)

the previously completed Foreign turns, and (iii) the ongoing turn (English or Foreign).

We propose a conversational Bi-MSMT model that is able to incorporate all three types

of context using source, target or dual conversation histories into a context-agnostic base

model. The base model caters to the speaker’s language transition by having one sentence-

based NMT model (Bahdanau et al., 2015) for each translation direction, English→Foreign

and Foreign→English. We now describe our approach for extracting relevant information

from the source and target bilingual conversation history.

5.3.1 Computing Representations of Source and Target-side Histories

Suppose we are translating an ongoing conversation having alternating turns of English

and Foreign. We are currently in the 2k + 1th turn (in English) and want to translate its

jth sentence using the source and target-side conversation histories, represented by context

vectors osrc (dimensions H) and otgt respectively (also dimensions H).

The simplest way to utilise the dual conversation history is to incorporate both context

vectors osrc and otgt as additional inputs into the base model, referred to as Dual Context

Src-Tgt. Let us now describe how we compute the source and target-side histories.

8The majority of sentences still have missing annotations (Lison and Meena, 2016) due to changes between
the original script and the actual movie or alignment problems between scripts and subtitles. As for Wang et al.
(2016), their publicly released data is even smaller than our En-De dataset extracted from Europarl.
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Figure 5.2: Illustration of an ongoing conversation while translating jth sentence in 2k + 1th

turn. XTi and Y Ti contain the sentences in previously completed English and Foreign turn
respectively, and xj,i denotes the jth sentence in ongoing English turn i. The shaded turns
are observed, i.e., source (the speaker utterances), while the rest are unobserved, i.e., the
target translations or the unuttered source sentences for the current turn.

Figure 5.3: Operational overview of the model when using source-side conversation history.
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Figure 5.4: English and Foreign language Turn-RNNs to produce representations of com-
pleted and ongoing turns.

5.3.1.1 Source-Side History

A high-level view of the individual operations that are involved in computing the source (or

target) conversation history is shown in Figure 5.3. Let us assume that we already have the

representations of previous source sentences in the conversation. We pass the source sen-

tence representations through Turn-RNNs, as shown in Figure 5.4, where the Turn-RNNs are

composed of language-specific bi-directional RNNs irrespective of the speaker (one each for

English and Foreign). We concatenate the last hidden states of the forward and backward

Turn-RNNs to get the final turn representation ri, where i denotes the turn index.

The individual turn (or sentence) representations from the Turn-RNNs9 are then com-

bined in several possible ways (described shortly) to obtain context vectors oen and ofr,

which are further amalgamated using a gating mechanism so as to give differing importance

to each element of the context vector:

oen,fr = α� oen + (1−α)� ofr (5.1)

α = σ(Uenoen +Ufrofr + bg)

where σ is the logistic sigmoid function defined in Table 2.1, U ’s are parameter matrices

and bg is a parameter vector. Finally, since oen,fr is of dimensions 2H, we perform a

9For this work, we define the turns based on language and do not use the speaker information as for real-
world chat scenarios (e.g., agent-client in a customer service chat), we do not have multiple speakers based on
language. We leave this for future exploration.
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dimensionality reduction to obtain:

osrc = tanh(Wotoen,fr + bo) (5.2)

This final source-context vector osrc can then be incorporated into the corresponding encoder-

decoder module in the base model (English→Foreign in this case).

Let us now provide a description of how the language-specific context vectors oen and

ofr are computed.10 In the remainder of this section, {W ,U , b} are language-specific

learned parameters.

Direct Transformation The simplest approach is to combine turn representations using a

language-specific dimensionality reduction transformation:

oen = tanh
(

[Wen, . . . ,Wen]

 r1

...
r2k+1

+ ben

)

ofr = tanh
(

[Wfr, . . . ,Wfr]

 r
2

...
r2k

+ bfr

)
Here ri’s are concatenated to form a column vector,W ’s are matrices of dimensionsH×2H

and b’s are vectors of size H. This is followed by Eq. 5.1 to get a single context representa-

tion. Since output vectors are already of size H, there is no need to perform dimensionality

reduction (Eq. 5.2).

Hierarchical Gating We propose a language-specific exponential decay gating based on

the intuition that the farther the previous turns are from the current one, the lesser their

impact may be on the translation of a sentence in the ongoing turn, similar in spirit to the

caching mechanism by Tu et al. (2018):

oen = gen(gen(. . . gen(gen(r1, r3), r5) . . .), r2k−1), r2k+1)

where

gen(a,b) = γ � a + (1− γ)� b

γ = σ(U1,ena +U2,enb + ben)

ofr is computed in a similar manner, followed by Eqs. 5.1 and 5.2.
10It should be mentioned that oen and ofr are computed so as to lie in the target language space (assumed

to be Foreign here).

89



CHAPTER 5. TRANSLATING BILINGUAL MULTI-SPEAKER CONVERSATIONS

Language-Specific Attention The strongest of our approaches is to combine the English

and Foreign turn representations (obtained from the Turn-RNNs) separately via attention

so as to allow the model to focus on relevant turns in the English and the Foreign context.

Computing the attention over the English turns is straightforward, however, the same can-

not be said for the Foreign turns as they come from a different language space than the

current source sentence being translated (assumed to be in English). To circumvent this

issue, we perform a cross-language non-linear projection on the query (from the current

English sentence) prior to computing attention weights over the Foreign turn representa-

tions (shown pictorially in Figure 5.5). We perform a similar projection when computing

the attention-weighted output for the English history oen. Mathematically:

pen = softmax
(

[r1, . . . , r2k+1]>hj
)

(5.3)

pfr = softmax
(

[r2, . . . , r2k]>(tanh(Wenh
j + ben))

)
oen = tanh

(
Wen([r1, . . . , r2k+1]pen) + ben

)
ofr = [r2, . . . , r2k]pfr

Here ri’s are concatenated column-wise, hj is the concatenation of last hidden state of

forward and backward RNNs in the encoder (dimensions 2H) for current sentence j in turn

2k + 1 and {Wen, ben} transform the language space to that of the target language.

To evaluate the significance of a more fine-grained context, we also propose to use

the sentence information explicitly via a sentence-level attention, that is, we replace the

turn representations with their sentence-level counterparts. This variant is referred to as

Language-Specific Sentence-level Attention. The sentence-level representations are ob-

tained by concatenating the corresponding hidden states of forward and backward Turn-

RNNs and getting a matrix [r1,1, . . . , r|t1|,1, . . . , r1,2k+1, . . . , rj−1,2k+1] for all the previous

English sentences, and another matrix [r1,2, . . . , r|t2|,2, . . . , r1,2k, . . . , r|t2k|,2k] for all the pre-

vious Foreign sentences.11

Another special case of the Language-Specific Attention is to project all turn representa-

tions into the target language space prior to computing the attention, referred to as Com-

bined Attention. Since this is a language-independent attention, it is not followed by

11rj,i is the representation of source sentence j in turn i computed by the bi-directional Turn-RNN.
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Figure 5.5: Computing source-side context representation osrc using Language-Specific
Attention.

any context gating. The hypothesis here is to verify if the model actually benefits from

Language-Specific attention or not.

pen,fr = softmax
(

[r1
en, r

2, . . . , r2k+1
en ]>(tanh(Wenh

j + ben))
)

oen,fr = [r1
en, r

2, . . . , r2k+1
en ]pen,fr

Here r2k+1
en = tanh(Wenr

2k+1 + ben).

5.3.1.2 Target-Side History

Using target-side conversation history is as important as that of the source-side since it

helps in making the translation more faithful to the target language. This becomes crucial

for translating conversations where the previous turns are all in the same language.

Let us again assume that we already have the representations of previous target sen-

tences in the conversation. Instead of using Turn-RNNs, we directly combine the target rep-

resentations using the Language-Specific Sentence-level Attention approach to obtain context

vectors oen and ofr. Specifically, let Ren be the matrix comprising of the target sentence

representations in Foreign language for the English source sentences andRfr be the matrix
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of target sentence representations (in English) for the previous Foreign turns. Here each

target sentence representation has dimensions H. Then,

pen = softmax(R>en tanh(Wtr,enh
j + btr,en))

pfr = softmax(R>fr(Wdim,enh
j + bdim,en))

oen = Renpen

ofr = tanh(Wtr,en(Rfrpfr) + btr,en)

where {Wtr,en,btr,en} are for both dimensionality reduction and changing the language

space of the query vector hj and the context vector, while {Wdim,en,bdim,en} are only for

dimensionality reduction.

The context vectors oen and ofr are further combined using a gating mechanism as in

Eq. 5.1 to obtain the final target context vector otgt (dimensions H).

5.3.2 Mixing Source and Target-side Histories along the Language axis

As already mentioned, the Dual Context Src-Tgt adds both context vectors osrc and otgt

as auxiliary inputs into the base model. Another intuitive approach, as evident from Fig-

ure 5.2, is to separately model English and Foreign sentences using two context vectors

oen,m and ofr,m, where each is constructed from a mixture of the original source or target

translations, is language-specific and possibly contain less noise. We refer to this as the Dual

Context Src-Tgt-Mix. Suppose Ren,m contains the mixed source/target representations for

English (the dimensions for source representations have been reduced to H) and Rfr,m

contains the mixed source/target representations for Foreign language. Then,

pen,m = softmax(R>en,m(Wdim,enh
j + bdim,en))

pfr,m = softmax(R>fr,m tanh(Wtr,enh
j + btr,en))

oen,m = tanh(Wtl,en(Ren,mpen,m) + btl,en)

ofr,m = Rfr,mpfr,m

where Wdim,en, Wtl,en and Wtr,en are for dimensionality reduction, changing the lan-

guage space and both, respectively, and oen,m, ofr,m are used as auxiliary inputs in the

base model instead of osrc, otgt.

92



5.3. CONVERSATIONAL BI-MSMT MODEL

5.3.3 Incorporating Context into Base Model

The final representations osrc and otgt (or oen,m and ofr,m), can be incorporated together

or individually in the base model by:

• InitDec Using a non-linear transformation to initialise the decoder, similar to Wang

et al. (2017): sj0 = tanh(Uoj + bs), where j is the sentence index in current turn

2k + 1, {U , bs} are encoder-decoder specific parameters and oj is either a single

context vector or a concatenation (followed by non-linear transformation) of the two.

• AddDec As auxiliary inputs to the decoder (similar to Jean et al. (2017); Wang et al.

(2017); Maruf and Haffari (2018)):

sjn = RNN(sjn−1,ET [yjn−1], cjn,o
j,src,oj,tgt)

• InitDec+AddDec Combination of previous two approaches.

5.3.4 Training and Decoding

The model parameters are trained end-to-end by maximising the sum of log-likelihood of

the bilingual conversations in training set D. That is, for a conversation having turns of

both English and Foreign language, the log-likelihood is the sum of log of the conditional

probability of producing the target translations given the source and conversation history:

∑
i∈odd

|ti|∑
j=1

logPθ(yj,i|xj,i,oj,i) +
∑

i′∈even

|ti′ |∑
j′=1

logPθ(xj
′,i′ |yj′,i′ ,oj′,i′)

where j, j′ denote sentences belonging to odd or even turns respectively, and o(.) is a

representation of the conversation history (single or dual).

The best output sequence for a given input sequence for the jth sentence at test time,

aka decoding, is produced by:

arg max
yj

Pθ(yj |xj ,oj)
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5.4 Experiments on Public Data

Implementation and Hyperparameters We implement our conversational Bi-MSMT model

in C++ using the DyNet library (Neubig et al., 2017). The base model is built using mantis

(Cohn et al., 2016) which is an implementation of the generic sentence-level attentional

NMT model in DyNet.

The base model has single layer bi-directional GRUs in both encoders and two-layer

GRUs in the decoders.12 The hidden dimensions and word embedding sizes are set to 256,

and the alignment dimension (for the attention mechanism in the decoder) is set to 128.

Models and Training As already mentioned, the base model consists of two encoder-

decoder architectures, one translating from English and the other to English. We do a

stage-wise training for this model, i.e., we train the English→Foreign architecture followed

by the Foreign→English architecture, using the full sentence-level parallel corpus. Both

architectures have the same vocabulary13 but separate parameters to avoid biasing the em-

beddings towards the architecture trained last. The contextual model is pre-trained similar

to training the base model. The best model is chosen based on the minimum overall per-

plexity on the bilingual dev set.

For computing the source-context representations, we use sentence representations gen-

erated by two bi-directional RNNLMs (one each for English and Foreign) trained offline,

which are then fed as input to the Turn-RNNs in our source-context models. For the tar-

get sentence representations, we use the last hidden states of the decoder generated from

the pre-trained base model.14 At decoding time, however, we use the last hidden state of

the decoder computed by our conversational model (not the base) as the target sentence

representations.

For the base model, we make use of stochastic gradient descent (SGD)15 with an initial

learning rate of 0.1 and a decay factor of 0.5 after the fifth epoch for a total of 15 epochs.

12We follow Cohn et al. (2016) and Britz et al. (2017) in choosing hyperparameters for our model.
13For each language-pair, we use BPE (Sennrich et al., 2016) to obtain a joint vocabulary of size ≈30k.
14Even though the parameters of the base model are updated, the target sentence representations are fixed

throughout training. We experimented with a scheduled updating scheme in preliminary experiments but it did
not yield significant improvement over the current strategy.

15In our preliminary experiments, we tried SGD, Adam and Adagrad as optimisers, and found SGD to achieve
better perplexities in lesser number of epochs (Bahar et al., 2017).
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For the contextual model, we use SGD with an initial learning rate of 0.08 and a decay

factor of 0.9 after the first epoch for a total of 30 epochs. To avoid overfitting, we employ

dropout and set its rate to 0.2. To reduce the training time of our contextual model, we

perform the computation of one turn at a time, for instance, when using the source context,

we run the Turn-RNNs for previous turns once and re-run the Turn-RNN only for sentences

in the current turn.

Evaluation We evaluate generated translations from all neural models using BLEU (Pa-

pineni et al., 2002). We also apply bootstrap resampling (Clark et al., 2011) to measure

statistical significance, p < 0.05, of our models compared to the base model.

5.4.1 Results

Firstly, we evaluate the three strategies for incorporating context: InitDec, AddDec, Init-

Dec+AddDec, and report the results for source context using Language-Specific Attention in

Table 5.3. For the Europarl data, we see decent improvements with InitDec for En-Et (+1.1

BLEU) and En-De (+1.6 BLEU), and with InitDec+AddDec for En-Fr (+1.2 BLEU). We also

observe that, for all language-pairs, both translation directions benefit from context, show-

ing that our training methodology was indeed effective. On the other hand, for the Subtitles

data, we see a maximum improvement of +0.3 BLEU for InitDec+AddDec.16 We narrow

down to three major reasons: (i) the data is noisier when compared to Europarl, (ii) the

sentences are short and generic with only 1% having more than 27 tokens, and finally (iii)

the turns in OpenSubtitles2016 are short compared to those in Europarl (see Table 5.1),

and we show later (Section 5.4.2) that the context from current turn is the most important.

The next set of experiments evaluates the five different approaches for computing the

source-side context. It is evident from Table 5.3 that for English-Estonian and English-

German, our model indeed benefits from using the fine-grained sentence-level information

(Language-Specific Sentence-level Attention) as opposed to just the turn-level one.

Finally, our results with source, target and dual contexts are reported. Interestingly,

just using the source context is sufficient for English-Estonian and English-German. For

16We saw almost double the improvement if we used separate BPE vocabularies/embeddings for English and
Russian. However, we don’t report those results since the overall BLEU score for the base model was lower
(18.2) than that of the current one.
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Europarl Subtitles
En-Fr En-Et En-De En-Ru

Prev Sent 38.2 21.7 26.1 19.1
Our Model 38.5† 21.8 26.5† 19.1

Table 5.4: BLEU scores for the bilingual test sets. bold: Best performance w.r.t. two decimal
places, †: Statistically significantly better than the contextual baseline.

English-French, on the other hand, we see significant improvements for models using the

target-side conversation history over using only the source-side. We attribute this to the base

model being more efficient and able to generate better translations for En-Fr as it had been

trained on a larger corpus as opposed to the other two language-pairs. Unlike Europarl,

for Subtitles, we see improvements for our Dual Context Src-Tgt-Mix over the Src-Tgt one

for En→Ru, showing this to be an effective approach when the target representations are

noisier.

To summarise, for the majority of cases our model with Language-Specific Sentence-level

Attention is a winner or a close second. Using the target context is useful when the base

model generates reasonable-quality translations; otherwise, using the source context should

suffice.

Local Source Context Model Most of the previous works for online context-based NMT

consider only a single previous sentence as context (Jean et al., 2017; Bawden et al., 2018;

Voita et al., 2018). Drawing inspiration from these works, we evaluate our model (trained

with Language-Specific Sentence-Level Attention) on the same test set but using only the pre-

vious source sentence as context. This evaluation allows us to hypothesise what proportion

of the overall gain can be attributed to only the previous sentence. From Table 5.4, it can

be seen that our model surpasses the local-context baseline for Europarl showing that the

wider context is indeed beneficial if the turn lengths are longer. For Subtitles (En-Ru), it

can be seen that using the previous sentence is sufficient due to short turns (see Table 5.1).

5.4.2 Analysis

Ablation Study We conduct an ablation study to validate our hypothesis of using the

complete context versus using only one of the three types of contexts in a bilingual multi-

speaker conversation: (i) current turn, (ii) previous turns in the current language, and
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Type of Context BLEU
No context (Base Model) 24.7
Current Turn 26.4
Current Language from Previous Turns 26.2
Other Language from Previous Turns 26.3
Complete Context (Our Model) 26.5

Table 5.5: BLEU scores for English-German bilingual test set.

I II III
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24.7

28.2

29.8

26.3

29.4
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B
LE

U

Base MT BaseMT+SrcContext

Figure 5.6: BLEU scores on En-De test set while training (I) smaller base model with smaller
corpus (previous experiment), (II) smaller base model with larger corpus, and (III) a larger
base model with larger corpus.

(iii) previous turns in the other language. The results for English-German are reported in

Table 5.5. We see a decrease in BLEU for all types of contexts with significant decrease

when considering only the current language from previous turns. The results show that

the current turn has the most influence on the overall translation of a sentence, and we

conclude that since our model is able to capture the complete context, it is generalisable to

any conversational scenario.

Training base model with more data To analyse if the context is beneficial even when

using more data, we perform an experiment for English-German where we train the base

model with additional sentence-pairs from the full WMT’14 corpus17 (excluding our dev/test

sets and filtering sentences with more than 100 tokens). For training the contextual model,

we still use the same bilingual multi-speaker corpus. We observe a significant improvement

17https://nlp.stanford.edu/projects/nmt/
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En→Fr les; par; est; a; dans; le; en; j’; un; afin; question; entre; qu’; être; ces; également;
y; depuis; c’; ou

Fr→En this; of; we; issue; europe; by; up; make; united; does; what; regard; s; must;
however; such; whose; share; like; been

En→Et eest; vahel; üle; nimel; ja; aastal; aasta; neid; ainult seepärast; nagu; kes;
komisjoni; tehtud; küsimuses; sisserände; liikmesriigi; mulla; liibanoni; dawit

Et→En for; this; of; is; political; important; culture; also; as; order; are; each; their; only;
gender; were; its; economy; one; market

En→De daß; auf; und; werden; nicht; müssen; aus; mehr; können; einem; rates; eines;
insbesondere; wurden; habe; mitgliedstaaten; ist; sondern; europa; gemeinsamen

De→En that; its; say; must; some; therefore; more; countries; an; favour; public; will;
without; particularly; hankiss; much; increase; eu; them; parliamentary

Table 5.6: Most frequent tokens correctly generated by our model when compared to the
base model.

of +1.1 BLEU for the context-based conversational model (Figure 5.6 II) over the base MT

model, showing the significance of conversation history in this experiment condition.18

We perform another experiment where we use a larger base model, having almost dou-

ble the number of parameters than our previous base model (hidden units and word embed-

ding sizes set to 512, and alignment dimension set to 256), to test if the model parameters

are being overestimated due to the additional context. We use the same WMT’14 corpus

to train this larger base model and achieve significant improvement of +1.5 BLEU for our

context-based model over the larger baseline (Figure 5.6 III).

How is the context helping? The underlying hypothesis for this work is that discourse

phenomena in a conversation may depend on long-range dependency and these may be

ignored by the sentence-based NMT models. To analyse if our contextual model is able

to accurately translate such linguistic phenomena, we come up with our own evaluation

procedure. We aggregate the tokens correctly generated by our model and those correctly

generated by the baseline over the entire test set. We then take the difference of these

counts and sort them.19 Table 5.6 reports the top 20 tokens where our model is better than

the baseline for the Europarl dataset. Figure 5.7 gives the density of counts obtained using

18It should be noted that the BLEU score for the base model trained with WMT does not match the published
results exactly as the test set contains both English and German sentences. It does, however, fall between the
scores usually obtained on WMT’14 for En→De and De→En.

19We do not normalise the counts with the background frequency as it favours rare words. Thus, obscuring
the main reasons of improving the translation performance (BLEU score).
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Figure 5.7: Density of token counts for En→Fr illustrating where our model is better (+ve
x-axis) and where the base model is better (-ve x-axis).

our evaluation for English→French.20 Positive counts correspond to correct translations by

our model while the negative counts correspond to where the base model was better. It can

be seen that, for the majority of cases, our model supersedes the base model. We observed

a similar trend for other translation directions. In general, the correctly generated tokens

by our model include pronouns (that, this, its, their, them), discourse connectives (e.g.,

‘however’, ‘therefore’, ‘also’) and prepositions (of, for, by).

Table 5.7 reports an example where our model is able to generate the correct discourse

connective ‘however’ using the context. If we look at the context of the source sentence in

French, we come to the conclusion that ‘however’ is indeed a perfect fit in this case, whereas

the base model is at a disadvantage and completely changes the underlying meaning of the

sentence by generating the inappropriate connective ‘nevertheless’.

Table 5.8 gives an instance where our model is able to generate the correct pronoun

‘their’. It should be noted that in this case, the current source sentence does not contain

the antecedent and thus the context-free baseline is unable to generate the appropriate

pronoun. On the other hand, our contextual model is able to do so by giving the highest

attention weights to sentences containing the antecedent (observed from the attention map

in Figure 5.8).21 Figure 5.8 also shows that for translating majority of the sentences, the

20Outliers and tokens with equal counts, for our model and the baseline, were removed.
21For this particular conversation, all previous turns were in Estonian.
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Context nous sommes également favorables au principe d’un système de collecte des
miles commun pour le parlement européen, pour que celui-ci puisse bénéficier
de billets d’avion moins chers, même si nous voyons difficilement comment ce
système pourrait être déployé en pratique.
enfin, nous ne sommes pas opposés à l’attribution de prix culturels par le
parlement européen.

Source néanmoins, nous sommes particulièrement critiques à l’égard du prix pour le
journalisme du parlement européen et nous ne pensons pas que celui-ci puisse
décerner des prix aux journalistes ayant pour mission de soumettre le
parlement européen à un regard critique.

Target however, we are highly critical of parliament’s prize for journalism, and do
not believe that it is appropriate for parliament to award prizes to journalists
whose task it is to critically examine the european parliament.

Base Model nevertheless, we are particularly critical of the price for the european union’s
european alism and we do not believe that it would be able to make a price
to the journalists who have been made available to the european parliament
to a critical view.

Our Model however, we are particularly critical of the price for the european union’s
democratic alism and we do not believe that it can give rise to the prices for
journalists who have been tabled to submit the european parliament to a
critical view.

Table 5.7: Example En-Fr sentence translation showing how the context helps our model in
generating the appropriate discourse connective.

Figure 5.8: Attention map when translating a conversation from the En-Et test set.
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Context (1) see raport juhib tähelepanu krediidireitingute sektori äärmiselt olulistele
probleemidele, sealhulgas konkurentsi puudumisele, oligopolidele tüüpilistele
struktuuridele ning vastutuse ja läbipaistvuse puudumisele , eriti riigi
võlakohustuse hindamisel.
(3) oleks hea, kui reitinguagentuurid vastutaksid tulevikus enda tegevuse eest
rohkem.
...
(14) kirjalikult. - (it) kiites heaks wolf klinzi raporti, mille eesmärk on
reitinguagentuuride tõhus reguleerimine, võtab parlament järjekordse sammu
finantsturgude suurema läbipaistvuse suunas.
...
(18) mul oli selle dokumendi üle hea meel, sest krediidireitingute valdkonnal on
palju probleeme, millest kõige suuremad on oligopolidele tüpilised struktuurid
ning konkurentsi, vastutuse ja läbipaistvuse puudumine.

Source (24) selles suhtes tuleb rõhutada nende tegevuse suuremal äbipaistvuse põhirolli.
Target in this respect, it is necessary to highlight the central role of increased

transparency in their activities.
Base Model in this regard it must be emphasised in the major role of transparency in which

these activities are to be strengthened.
Our Model in this regard, it must be stressed in the key role of greater transparency in

their activities.

Table 5.8: Example English-Estonian translation showing how the wide-range context helps
in generating the correct pronoun. The antecedent mentions and correct pronouns are
highlighted in blue. The numbers at the start of the Estonian sentences give their position
in the conversation.

model attends to wide-range context rather than just the previous sentence, hence strength-

ening the premise of using the complete context for our conversational Bi-MSMT model.

5.5 Experiments on Real-world Customer Service Data

Dialogue translation is an important task for companies providing multilingual services to

customers. I had the opportunity to test my models on the in-house customer service chat

data of an airline company provided to me during an internship at Unbabel.22

Datasets The datasets consist of conversations between agents and clients for two language-

pairs: English-French and English-German. As is clear from the data statistics in Table 5.9,

the size of the datasets is even smaller than the data we extracted from public resources

and is one of the challenges that we face in the real-world setting.

22https://unbabel.com/
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5.5. EXPERIMENTS ON REAL-WORLD CUSTOMER SERVICE DATA

En-Fr En-De
#Conversations 2116/70/80 1717/96/81
#Sentences 46.5K/1.5K/1.7K 38.9K/2.1K/2.1K

Table 5.9: General statistics for training/development/test sets for customer service data.

Models and Training In a commercial setting, there is usually a generic model trained

on an extremely large dataset, followed by a step of domain adaptation to adapt the model

given the data from a specific domain. Keeping the time constraints in mind, we trained

a generic model on the sentence-parallel Europarl v7 corpus (Koehn, 2005) which has ap-

proximately 2M sentence-pairs, followed by domain adaptation using the sentence-level

chat data.

The target sentence representations are computed in same manner as in the previous set

of experiments in Section 5.4. For the source-context representations, we use the sentence

representations from the encoder of the NMT model instead of separate RNNLMs. This

allows us to re-use those learned parameters thus saving time and resources which are both

critical in a commercial setting.

The base model has single layer bi-directional GRUs in both encoders and two-layer

GRUs in the decoders while the hidden dimensions and word embedding sizes are set to

256, and the alignment dimension (for the attention mechanism in the decoder) is set to

128 (similar to our base model in the previous section). For the generic model, we again

make use of stochastic gradient descent (SGD) with an initial learning rate of 0.1 and a

decay factor of 0.5 after the fifth epoch for a total of 15 epochs. For the domain adaptation

and contextual model, we use SGD with an initial learning rate of 0.08 and a decay factor

of 0.9 and use early stopping. To avoid overfitting, we employ dropout and set its rate to

0.2.

5.5.1 Results

The main results are reported in Table 5.10. In our preliminary experiments, we found the

configuration of AddDec to work best for these datasets and thus we report results only for

this specific configuration. We only use the Language-Specific Sentence-level Attention model

as it was previously found to be the best among the different approaches for computing the

context.
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CHAPTER 5. TRANSLATING BILINGUAL MULTI-SPEAKER CONVERSATIONS

En-Fr En-De
Overall En→Fr Fr→En Overall En→De De→En

Base Model w/ Domain Adaptation 55.6 65.5 36.5 46.7 60.1 30.4
+Source Context 57.6† 68.3† 36.8 51.2† 66.5† 32.6†

+Target Context 57.4† 68.1† 36.6 50.5† 67.1† 30.9†

+Dual Context Src-Tgt 57.7† 68.3† 37.3 51.5† 66.8† 32.9†

+Dual Context Src-Tgt-Mix 57.2† 67.6† 36.9 50.4† 66.3† 31.4†

+Source Context from
Current Turn 57.6† 68.3† 37.1 50.9† 66.5† 32.0†

Current Language from Previous Turns 57.5† 68.2† 37.0 51.4† 66.1† 32.9†

Other Language from Previous Turns 57.8† 68.6† 37.0 50.2† 66.0† 32.9†

Complete Context 57.6† 68.3† 36.8 51.2† 66.5† 32.6†

Table 5.10: BLEU scores for the bilingual test sets. Here all contexts are incorporated as
AddDec. bold: Best performance w.r.t. two decimal places, †: Statistically significantly
better than the base model, based on bootstrap resampling (Clark et al., 2011) with p <
0.05.

For these experiments, we are more interested to see how the different types of context,

that is source, target and dual, compare to each other. Across the board, we see the Dual

Context Src-Tgt to outperform its counterpart and the models which use only a single type of

context, reiterating the importance of using both source and target-side conversation history

for this task. Our second set of experiments is similar to the ablation study we conducted

in Section 5.4. For English-French, the overall and direction-specific BLEU scores are quite

similar for the different conversational contexts. For English-German, however, we find the

context from the same language (current and previous turn) to be the main contributing

factors for improving the BLEU scores.

To summarise, we experimented with in-house customer service chat data for two language-

pairs and found that translating multi-speaker conversations is an interesting avenue of

research to pursue and that it greatly benefits from using source and target-side conversa-

tional histories.

5.6 Related Work

Our research builds upon prior work in the field of context-based language modelling and

context-based machine translation.
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5.7. SUMMARY

Language Modelling There have been few works on leveraging context information for

language modelling. Ji et al. (2016) introduced a document context language model

(DCLM) which incorporates inter and intra-sentential contexts. Hoang et al. (2016) made

use of side-information, for instance, metadata, and Tran et al. (2016) utilised inter-document

context to boost the performance of RNN language models.

For conversational language modelling, Ji and Bilmes (2004) proposed a statistical

multi-speaker language model (MSLM) that considers words from other speakers when pre-

dicting words from the current one. By taking the inter-speaker dependency into account

using a normal trigram context, they reported significant reduction in perplexity.

Machine Translation For related work on context-based MT, the reader is encouraged

to look at Section 3.4, where this topic has been covered in depth. To the best of our

knowledge, there has been no work on dialogue translation or its variation to date.

5.7 Summary

In this chapter, we have investigated the challenges associated with translating multilin-

gual multi-speaker conversations by exploring a simpler task referred to as bilingual multi-

speaker conversation MT. We processed Europarl v7 and OpenSubtitles2016 to obtain an

introductory dataset for this task. Compared to models developed for similar tasks, our

work is different in two aspects: (i) the history captured by our model contains multiple

languages, and (ii) our model captures ‘global’ history as opposed to ‘local’ history cap-

tured in most previous works. Our experiments on both public and real-world customer

service chat data demonstrate the significance of leveraging the bilingual conversation his-

tory in such scenarios, in terms of BLEU and manual evaluation. Furthermore, the analysis

shows that using wide-range context, our model generates appropriate pronouns and dis-

course connectives in some cases. We hope this work to be a first step towards translating

multilingual multi-speaker conversations. A natural extension of this work is employing

our hierarchical attention model, introduced in the previous chapter (chronologically per-

formed after this work), to the turns/sentences in the conversation history. We leave this

for future exploration.

105



Chapter 6

Conclusions

6.1 Summary of the Thesis

The primary contribution of this thesis is using global context information to build efficient

neural models for document-level machine translation.

Chapter 3 We presented the first work which views document-level translation as a struc-

tured prediction problem with interdependencies among the observed and hidden variables,

i.e., the source sentences and their unobserved target translations in the document. The re-

sulting structured prediction problem was tackled with a neural translation model equipped

with two memory components, one each for the source and target-side, to capture the doc-

umental interdependencies. We trained the model end-to-end using a pseudo-likelihood

based training objective and proposed an iterative decoding algorithm based on block coor-

dinate descent. We demonstrate improvements in the translation quality of three language-

pairs with respect to context-free and local context-aware baselines.

Chapter 4 We proposed a novel approach based on hierarchical attention for document-

level NMT using sparse attention, which is both scalable and efficient. Experiments and

evaluation on three English→German datasets in offline and online document MT settings

show that our approach surpasses context-agnostic and two recent context-aware baselines.

The qualitative analysis indicates that the sparsity at sentence-level allows our model to

identify key sentences in the document context and the sparsity at word-level allows it to

focus on key words in those sentences allowing for efficient compression of memory. Using
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6.2. FUTURE DIRECTIONS

sparse attention may lead to better interpretability of the context-aware NMT models in

general.

Chapter 5 We looked into the problem of dialogue translation by investigating the chal-

lenges associated with translating bilingual multi-speaker conversations. To initiate an eval-

uation for this task, we introduced datasets extracted from Europarl v7 and OpenSubti-

tles2016. The history captured by our models contains multiple languages and is global.

Our experiments demonstrate the significance of leveraging the bilingual conversation his-

tory in such scenarios. Furthermore, the analysis reveals that, using wide-range context,

our model can generate appropriate pronouns and discourse connectives in some cases.

6.2 Future Directions

This section briefly mentions a few of the possible research directions and insights gained

from this thesis.

Document-aligned Datasets While there are many popular datasets for MT, all of them

consist of aligned sentence-pairs without any metadata. Hence, the first problem that we

and other researchers working on the problem of document-level machine translation en-

counter is to curate datasets for this purpose. Furthermore, it is not necessary that the

discourse phenomena we aim to observe actually exist in the current public datasets. This

problem further exacerbates when one tries to translate dialogues since datasets, like subti-

tles, lack speaker annotations. It is high time that the MT community starts investing their

efforts in creating such resources so that the research process can be standardised with

respect to the datasets used.

Explicit Linguistic Annotation We mentioned in Chapter 1 that using linguistic annota-

tion is outside the scope of this thesis. However, if this process could be automated and we

could obtain annotations of, for instance, entities in the discourse, it could directly impact

the translation of their mentions thus improving lexical cohesion. The translation could

also be conditioned on the evolution of entities as they are introduced in the source and

target text (Ji et al., 2017). We believe annotation of discourse phenomena, for example,
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CHAPTER 6. CONCLUSIONS

coreference or discourse markers, could be beneficial by having better quality translation

outputs more faithful to the source text.

Document-level MT Evaluation From Chapter 2, it is evident that there is no consen-

sus among the MT community when it comes to the evaluation of document-level MT.

Reference-based automatic evaluation metrics, like BLEU and METEOR, which look at the

overlap of MT output with a reference, are insensitive to the underlying discourse structure

of the text (Läubli et al., 2018). These are still being used to evaluate MT outputs as they

have been the de-facto standard in the community for more than a decade. The proposed

document-level automatic metrics (detailed in Section 2.2.3) have their own flaws and are

not widely accepted. A middle ground should be found between automatic and manual

evaluation for MT that could make the process of manual evaluation cheaper and would

still be better than the current automatic metrics at evaluating discourse phenomena. Eval-

uation test sets only resolve a part of the problem as they are mostly hand-engineered for

specific language-pairs. Comparison to a single reference translation is also not a good

way to evaluate translation output as it has its own shortcomings. To actually progress in

document-level MT, we not only need models that address it but also evaluation schemes

that have the ability to correctly gauge their performance.

To conclude, the contributions made in this thesis have tried to eliminate the sentence-

independence assumption made by the state-of-the-art MT systems. The previous works in

document-level NMT rely on context information in only a few local sentences, where the

deciding factor for choosing the number of sentences is usually the model’s BLEU score on

a validation set. This assumption makes the model subjective to the dataset and lacking in

generalisability. Hence, these works do not conform to our definition of incorporating global

document context. Furthermore, this thesis also shows that conditioning on the global

context is not computationally expensive in comparison to local-context models provided

the training and decoding algorithms are efficient. We hope this work invigorates research

in this domain with a greater inclination towards designing better training and decoding

schemes, in addition to modelling, for monologue and dialogue translation.
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Appendix A

Estonian→English Test Document

Source Document Target Document
qimonda on praeguse ülemaailmse finants- ja qimonda is a paradigm case in the current context
majanduskriisi kontekstis paradigmaatiline juhtum. of global financial and economic crisis.
see on ettevõte, mis kasutab tipptehnoloogiat, on it is a company that uses cutting-edge technology,
palganud kõrge kvalifikatsiooniga töötajaid ning employs highly qualified workers and promotes
edendab teadusuuringuid. research.
qimonda täidab lissaboni strateegia eesmärke. qimonda meets the objectives of the lisbon strategy.
portugali valitsus on teinud kõik võimaliku, et leida the portuguese government has been doing
lahendus asjaomase ettevõtte elujõulisena hoidmiseks, everything to find a solution that makes this
kuid lahendus sõltub saksamaa föderaalvalitsuse company viable, but the solution is also dependent
ning baierimaa ja saksimaa riiklike valitsuste on the involvement of the german federal
sekkumisest. government and the state governments of bavaria

and saxony.
portugali valitsus on juba otsustanud eraldada the portuguese government has already decided to
sellel eesmärgil 100 miljonit eurot. make eur 100 million available for this purpose.
nagu ma juba ütlesin, on portugali valitsus juba as i said, it has been doing and will continue
praeguseks teinud ning kavatseb ka edaspidi teha to do everything it can, as was, in fact, recognised
kõik endast oleneva, nagu võisid tegelikult ka by qimonda’s german workers during the recent
qimonda saksamaa töötajad portugali presidendi official visit by the president of the portuguese
hiljutise ametliku visiidi ajal tõdeda. republic.
euroopa komisjon ja liikmesriigid on võtnud the european commission and the member states
õigustatult kasutusele meetmeid mitmete pankade have been taking steps - and rightly so - to save
päästmiseks ja teatud tööstusharude, nagu näiteks many banks and to support certain industries
autotööstuse toetamiseks. such as, for example, the automotive industry.
miks siis mitte toetada ka qimondat? why not also support qimonda?
qimonda saatuse hooleks jätmisel saavad olema väga leaving qimonda to its fate will have extremely
tõsised tagajärjed. serious consequences.
lisaks sellele, et saksamaal ja portugalis kaotavad not only will thousands of workers in germany and
tuhanded töötajad oma töö, läheb kaduma ka portugal lose their jobs, but invaluable european
euroopa intellektuaalomand ning palju qimondasse intellectual property and a lot of community funds
investeeritud ühenduse rahalisi ressursse. that were invested in qimonda will also be lost.
qimonda tegevuses hoidmine saksamaal ja portugalis keeping qimonda going in germany and in portugal
on euroopa jaoks nii suure strateegilise tähtsusega, et is of such strategic importance for europe that
euroopa liidu toetus oleks igati õigustatud. european union support is well justified.
volinik, me peame olema sihikindlad, sest nii teeme commissioner, we must be consistent and, if we are
me kõik võimaliku, et qimondat päästa. to be consistent, we will do everything to save

qimonda.
qimonda ei ole lihtsalt mingi tavaline ettevõte! qimonda is not just any company!
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