
Semi-Automatic Learning-based

Model Transformation

by

Kiana Zeighami

A thesis submitted for the degree of Master of Philosophy at

Monash University in 2019

Caulfield School of Information Technology

Supervisors:

Dr. Guido Tack

Prof. Maria Garcia de la Banda

Dr. Kevin Leo



ii



c© Kiana Zeighami 2019



Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Constraint Optimisation/Satisfaction Problems . . . . . . . . . . . . . . . . 7

2.3 Constraint Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.2 Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Learning Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Learning from Learning Solvers . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Connecting Clauses to Model Constraints . . . . . . . . . . . . . . . . . . . 17

2.7 Constraint Acquisition Systems . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7.1 The ConAcq Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 19

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Contextualising and Simplifying Clauses . . . . . . . . . . . . . . . . . . 21

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Renaming Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Simplifying Literals and Clauses . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Limitations of Renaming and Simplifying Clauses . . . . . . . . . . . . . . . 24

3.5 Connecting Clauses to the Constraints in the Model . . . . . . . . . . . . . 25

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Finding Patterns among Clauses . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Finding Patterns among Clauses . . . . . . . . . . . . . . . . . . . . . . . . 28

iv



4.3 Finding Patterns across Searches and Instances . . . . . . . . . . . . . . . . 32

4.4 Clustering the Clauses under each Pattern . . . . . . . . . . . . . . . . . . . 32

4.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Learning Facts for Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Finding Relevant Facts for each Pattern . . . . . . . . . . . . . . . . . . . . 36

5.3 Inferring Facts: A Percentage-based Approach . . . . . . . . . . . . . . . . . 38

5.4 Inferring Facts: A ConAcq-based Approach . . . . . . . . . . . . . . . . . 39

5.4.1 Generating Training Examples . . . . . . . . . . . . . . . . . . . . . 40

5.4.2 Inferring Facts using ConAcq . . . . . . . . . . . . . . . . . . . . . 42

5.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Experiments and Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.1 Experimental Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.4 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.4.1 Grid Colouring Problem . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.4.2 Time Changing Graph Colouring . . . . . . . . . . . . . . . . . . . . 52

6.4.3 Capacitated Concert Hall Problem . . . . . . . . . . . . . . . . . . . 54

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.2 Anti-Unification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.3 Inductive Logic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.4 Automated Constraint Acquisition . . . . . . . . . . . . . . . . . . . . . . . 60

7.5 Automated Model Transformation . . . . . . . . . . . . . . . . . . . . . . . 61

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

v



List of Tables

2.1 Taken from [68]: The most effective original learnt clauses in free pizza . . 15

2.2 Taken from [68]: The most effective learnt clauses in free pizza . . . . . . 15

4.1 The top pattern and its clusters for an instance of free pizza . . . . . . . . 34

5.1 Positive examples for pizzas . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Positive examples for the parameter price . . . . . . . . . . . . . . . . . . . 42

6.1 The top patterns and their associated facts . . . . . . . . . . . . . . . . . . 50

6.2 The execution time of different components of the framework . . . . . . . . 51

6.3 Efficiency of the renaming and simplifying method . . . . . . . . . . . . . . 52

6.4 Gecode’s solving times for different instances of the grid-colouring problem 53

6.5 Solving times for different instances of tcgc2 using different search strategies. 54

6.6 Chuffed solving times for different instances of concert-hall-cap using dif-

ferent search strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.7 Gecode solving times for different instances of concert-hall-cap using dif-

ferent search strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

vi



List of Figures

1.1 Overview of the framework developed by [68] . . . . . . . . . . . . . . . . . 3

1.2 Overview of our framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 A golomb ruler of length 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Search tree explored by Gecode for the golomb ruler problem . . . . . . . . 10

2.3 Implication graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 The free pizza model from [68] . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Overview of our method for finding patterns across searches and instances . 33

5.1 The free pizza model with the added pattern . . . . . . . . . . . . . . . . 41

5.2 MiniZinc model for inferring facts using ConAcq . . . . . . . . . . . . . . . 42

5.3 The rejects function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

vii



Semi-Automatic Learning-based

Model Transformation

Kiana Zeighami
Kiana.Zeighami@monash.edu

Monash University, 2019

Supervisor: Dr. Guido Tack
Guido.Tack@monash.au

Associate Supervisor: Prof. Maria Garcia de la Banda
Maria.GarciadelaBanda@monash.edu

Associate Supervisor: Dr. Kevin Leo
Kevin.Leo@monash.edu

Abstract

Combinatorial Optimisation/Satisfaction Problems (COPs/CSPs) are concerned with

making decisions from a set of possible choices. These problems arise in many areas of

our lives, and it is of great importance to solve them efficiently. Modern approaches to

solve these problems first specify a model of the problem that formally describes it, and

then compile this model for a particular solver which explores choices to find a solution.

Unfortunately, real-world problems often have an exponential number of possible choice

combinations, and solving them requires an extensive amount of time. There are also many

possible ways to model a problem, with different models exhibiting vastly different solving

time. It requires a great deal of expertise to develop a model that can be solved quickly.

Thus, it is important to develop techniques that can help modellers improve their models.

Recently, Shishmarev et al. [68] demonstrated how learning solvers can be used to improve

the model. These solvers learn from their mistakes by generating an explanation for why a

set of choices are incompatible, and Shishmarev et al. used these explanations to improve

the model. However, their method was mostly manual and sufferred from some limitations.

This thesis presents a framework that automates and improves the work of Shishmarev

et al. [68]. In particular, it first simplifies the explanations, which makes them easier

and more efficient to analyse later. Afterwards, it connects the explanations to the parts

of the model that were involved in creating them. It then groups the explanations into

more general patterns, making them easier to analyse. As a result, it provides information

and suggestions to the modellers that can help them improve the model. Our experiments

show that our method is practical, general for different types of problems, and can improve

performance for certain models.

viii



Semi-Automatic Learning-based

Model Transformation

Declaration

This thesis contains no material which has been accepted for the award of any other
degree or diploma at any university or equivalent institution and that, to the best of my
knowledge and belief, this thesis contains no material previously published or written by
another person, except where due reference is made in the text of the thesis.

Communication Skills

Over the last year I attended multiple conferences and seminars on behalf of Data61, the newly founded data
innovation business group of CSIRO. Last August, I went to the most important conference in my research area,
where I presented my research to a wide academic audience. I won the prize for the best poster at the conference
and I was able to add some vital members to my network. One of the other conference attendees introduced me to
a senior member of ABBs robotics research group in Stockholm, Sweden. ABB as a world leader in the industrial
manufacturing of robots and has a great interest in optimising their production processes and helping their customers
to improve their production chain.

As the first author of a peer reviewed paper, I had the pleasure to present my outcomes at the International Sympo-
sium on Intelligent Control in Sydney. This was a great opportunity to showcase my technical and communication
skills to an audience comprising of academic giants and leaders from different engineering disciplines. I received
excellent feedback from many attendees of the conference and some were quite surprised that English was not my
first language. I consider my ability to deliver technical presentations in fluent English to be a testament to my
adaptability and determination to not allow language to be a barrier to my success.

My Background

Several principles have been ingrained into my psyche from a young age. Since early childhood I saw what it takes to
run a business, as my father owns a small stone-mason company. My father taught me to be resourceful, adaptive,
loyal and to always act with integrity. From a business perspective I observed that hard work must be coupled with
strategic direction to be truly effective.

I was able to further develop my resourcefulness as a long serving leader in the Scouts. Leadership and pushing
boundaries always came quite naturally to me and at the age of Nineteen I decided to enlist in the Swiss Army
Corps to serve as a truck driver which required shouldering significant responsibility and dedication. My interest in
cycling; competing and winning ultra-marathons, is further evidence of my determination to overcome mental and
physical challenges. I am constantly looking to push my limits and find out what I am capable of achieving when I
am focused and determined to succeed.

My strong work ethic was further developed during my apprenticeship as an electrician. From just Fifteen years old I
learned the importance of focussing on customer satisfaction. After four years, I was ready to start my own company
but I decided to pursue a university degree to widen my horizons and opportunities. I felt that this was part of
working with a strategic perspective rather than a short term focus. My passion for business was however aroused
and years later in my penultimate year of Masters in Robotics, I faced another difficult decision. I was accepted
as a PhD student at Monash University, but was simultaneously asked by Daniel Jud, CEO of the Swiss company
OekoSolve, to start a spin-out with one of his prototypes. The decision was not easy for me, since the business idea
seemed exactly tailored to my skills but once again strategic direction dictated that further international experience
and development would serve me well in the long-term.

I am familiar with both the opportunities and challenges that may arise when working in teams composed of people
from culturally diverse backgrounds. I had the pleasure to work with people from all over the world whilst studying
a Masters in Robotics at the University of Bristol. I see cultural diversity as a catalyst for success and a valuable
opportunity for synergies to surface. In our globalised society, we have the chance to fuse different peoples talents
and approach problems from different perspectives.

I love travelling and after multiple journeys around the globe over the last decade I am sure that my quest to learn
more about different cultures will never be satiated. Observing different lifestyles and work cultures around the
world has taught me the value of self reflection as a precondition to personal growth.

I currently live with two Monash alumni with strong ties to Israel. My living situation has further fuelled my interest
and curiosity about Israel and its culture of innovation and diversity.

Thank you for considering me for the 2016 Program and I am confident that if given the opportunity to showcase
my talents, I will add value to the program and I will devote myself to achieving outstanding results.

Yours Sincerely,

David Hemmi

Kiana Zeighami
November 7, 2019

ix



Vita

Publications arising from this thesis include:

Zeighami, Kiana & Leo, Kevin & Tack, Guido & Garcia de la Banda, Maria. (2018).

Towards Semi-Automatic Learning-Based Model Transformation: 24th International

Conference, CP 2018, Lille, France, August 27-31, 2018, Proceedings. 403-419.

10.1007/978-3-319-98334-9 27.

Permanent Address: Caulfield School of Information Technology

Monash University

Australia

This thesis was typeset with LATEX 2ε
1 by the author.

1LATEX 2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of
the American Mathematical Society. The macros used in formatting this thesis were written by Glenn
Maughan and modified by Dean Thompson and David Squire of Monash University.

x



Acknowledgments

I owe many thanks to my supervisors, Maria, Guido and Kevin, for ceaselessly guiding

me throughout my research. Particularly, I’d like to thank Maria, for giving the utmost

attention to my research, and for providing me with precise feedback and advice, Guido,

for all the technical and research skills that he patiently thought me, and Kevin, for being

such a great source of motivation and encouragement, and for enthusiastically explaining

various concepts to me.

I’d like to thank my officemates for creating such a great working environment. In

particular, Maxim for all of our interesting discussions and his input and ideas in my

research, as well as Jip, Alex and David for making this journey more enjoyable.

Furthermore, I’d like to express my gratitude to my parents Mahnaz and Shaya, and

my brother Sepanta, for their overwhelming emotional support and encouragement.

Kiana Zeighami

Monash University

November 2019

xi



xii



CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Combinatorial Optimisation/Satisfaction Problems (COPs/CSPs) are concerned with mak-

ing decisions from a combination of choices that satisfy a set of constraints, while max-

imising or minimising an objective function (if any) [40]. A classic example of a COP

is the Travelling Salesperson Problem (TSP), where there are a number of cities that a

salesperson must visit for trading products. The problem is to plan the shortest route to

visit these cities, that satisfies the following constraints: each city must be visited once,

and the first and last city in the journey must be the origin city.

COPs/CSPs arise in many important areas of our lives, such as public transportation,

energy management and health care. Unfortunately, solving these problems is remarkably

difficult due to the exponential number of possible choice combinations. Thus, it is of

great importance to develop systems that can help solve these problems in a short period

of time.

A common approach to solve COPs/CSPs is to first model them in a high-level mod-

elling language, such as MiniZinc [44], OPL [76] or ESSENCE [32]. This model formally

describes the problem’s choices (in terms of decision variables), constraints and objective

function (if any). Then, the model is combined with problem-specific data (e.g. the num-

ber of cities and the distances between them in TSP problems) to form an instance of the

problem, which is a low-level (i.e. solver-level) program suitable for the particular solving

technique (solver) selected by the modeller.

Many sophisticated techniques are available for solving combinatorial problems, such

as Mixed Integer Programming (MIP) [1], Constraint Programming (CP) [65] and Boolean

Satisfiability (SAT) [49]. While this work mainly concerns itself with CP-solvers, the goal

is to improve solver-independent models which can, in turn, improve performance of other

kinds of solvers on the same model.

CP-solvers combine search and propagation. Given a COP/CSP, the set of possible

assignments of values to the decision variables from their domains is referred to as the

search space of the problem [63]. Initially, CP-solvers apply propagation to reduce the

search space, by removing values that are incompatible with respect to some constraints.

Then, they explore the search space, by making a decision, which involves selecting a

decision variable and assigning it a value from its domain.



CHAPTER 1. INTRODUCTION 2

Each time a decision is made, the CP-solver applies propagation to remove incompat-

ible values from the variable domains. After propagation, if all variables are successfully

assigned (having singleton domain) a solution has been found. However, if the domain

becomes empty, the search reaches failure. When failure occurs, search reverts a previous

decision and makes an alternative one [63].

There is a powerful class of CP-solvers called learning solvers. When the search fails,

learning solvers aim at learning from this failure by generating an explanation for this

failure, called a nogood. From this nogood, the learning solver generates and records a

clause, that is the negated form of a nogood, to ensure that the solver cannot repeat the

same mistake again. This can significantly reduce the amount of search space that needs

to be explored by the solver.

The development of a model for COPs/CSPs involves multiple stages, such as identify-

ing the problem constraints and objective function, modelling the variables of the problem

and expressing the constraints and objective function in terms of these variables, prepar-

ing the data for the problem, compiling the resulting instance, and solving and testing the

efficiency of the generated program. As a result, modellers will go through an iterative

development loop, which involves modifying the model and repeating the other develop-

ment stages iteratively. This can require a very large amount of time. In addition, there

are many possible ways to model a problem, and while some may lead to very fast solv-

ing, others can take orders of magnitude longer. Testing each possible model and going

through this iterative development loop again is not very practical. Thus, it is important

to develop techniques that can help us automate the procedure of modelling.

One of the main techniques to improve a model is to add an effective redundant con-

straint (i.e. implied constraint) to the model. Redundant constraints are implied by the

model constraints and, therefore, adding them to the model does not eliminate any solu-

tion [20]. However, adding redundant constraints can have a significant impact on solving

time allowing the solver to better exploit the structure of the problem, and reduce the size

of the search space.

While their addition help better exploit the structure of the problem and thus reduce

the search space [19], unfortunately, they also increase the computational cost due to

the need to handle the extra constraints. Hence, it is challenging to find an effective

redundant constraint where the time saved by reducing the search space outweighs the

increased computational burden.

Recently, Shishmarev et al. [68] demonstrated how the clauses learnt by a learning

solver can be used to improve the model. To achieve this, they executed the model us-

ing the learning solver Chuffed [21], and then replayed its search decisions (in the same

order) using the non-learning solver Gecode [67]. They then merged the two resulting

search trees, counted the number of nodes explored by Gecode that were not explored by

Chuffed, and assigned them to the learnt clause(s) that helped Chuffed fail before Gecode,

and this formed a ranking of all clauses based on the total search space avoided by each

clause, with the top-ranked clauses being the most effective for reducing the search space.

Also, since clauses refer to the solver-level variables in the low-level program obtained after



CHAPTER 1. INTRODUCTION 3

Figure 1.1: Overview of the framework developed by [68]

compilation, rather than to the model-level variables, they manually renamed variables in

these clauses, simplified them and connected them to the model constraints, with the aim

of identifying the constraints responsible for creating the clauses. Finally, they manually

inspected the most effective clauses and focused on the model constraints that were in-

volved in creating these clauses. The existence of clauses that contribute to a considerable

reduction in the size of the search space can indicate that the constraints associated to

the top clauses should be strengthened. To achieve this, they considered problem infor-

mation that could be relevant to the occurrence of the top clauses, and realised that some

problem information related to the clauses was not explicitly expressed in a model. Thus,

the solver could not take that fact into consideration when solving. This helped them

identify a redundant constraint that could be added to the model to explicitly express

that information, and to better exploit the structure of the target problem. Figure 1.1

provides an overview of their method.

While the work of [68] is very innovative and has great potential, the proposed tech-

nique is mostly manual, requiring modellers to manually analyse each nogood and connect

it to the model. In addition, the ranking of nogoods is done by considering a single in-

stance of a problem, which is more restricted and inaccurate representation of the whole

problem. This leads to the main question of this research:

Is it possible to analyse clauses automatically and connect them to the

model constraints in such a way that they better support the modelling of

combinatorial optimisation problems?

In answering this question I had to address the following sub-questions:

1. Can the learned clauses be automatically renamed, simplified and connected to the

model constraints that were involved in creating the nogoods?

2. Can the ranking of the clauses be improved by combining the clauses learnt using

different input data files and search strategies for a given model?

3. Can the ranked clauses be combined with model information that will help the

modellers detect the reasons behind the occurrence of the clauses in a way that can

help them modify the model?



CHAPTER 1. INTRODUCTION 4

Figure 1.2: Overview of our framework

This thesis presents a framework (summarised in Figure 1.2) that first automatically

renames the learned clauses to be expressed in terms of model variables rather than in

terms of their compiled version. Then, it simplifies these clauses to reduce their length, and

it identifies the model constraints that were involved in creating each of them. Afterwards,

the framework groups the clauses with similar structure into more general patterns, which

helps us obtain a more accurate ranking for each clause, and makes each clause easier to

understand. It then combines these patterns with the model information to learn facts

for each pattern. These facts serve as a condition for the occurrence of each pattern. The

patterns, their associated facts and constraints are presented to the modellers, with the

aim of guiding them to detect the potential constraints that should be reformulated or an

effective redundant constraint that can be added to the model. The generated patterns

and facts are not proven to be correct, and it is suggested to the modeller to prove them.

Thus, this step of our framework is manual, and our method is semi-automatic.

There are two areas of research that are closely related to this work: automated con-

straint acquisition and automated model transformation. These areas are concerned with

helping modellers better model their target problem so that it can be solved more ef-

ficiently. Automated constraint acquisition aims at automatically acquiring model con-

straints given a set of solutions, non-solutions, and a constraint library, while automated

model transformation deals with automatically improving a model using common tech-

niques, such as detecting global constraints, redundant constraints and symmetry breaking

constraints, which we will discuss later. These lines of research have a similar goal to our

work; however, their approach is different from ours and, although the developed systems

are powerful, they still suffer from some limitations, such as restrictions on the type of the

models that the system can process, and inability to take the clauses learnt by learning

solvers into consideration. Since previous research has shown us the clauses inferred by

learning solvers can be used to improve a problem model, our aim is to fill this research

gap.

In conclusion, COPs/CSPs appear in many different areas of our lives, and it is impor-

tant to improve the modelling of these problems to be able to solve them more efficiently. In

this thesis, I present our framework that, given a model and data, automatically analyses



CHAPTER 1. INTRODUCTION 5

the clauses learnt by learning solvers, and provides suggestions to the modeller regarding

how to improve the model.

The main contribution of this thesis is the automation of Shishmarev et al.’s manual

approach, and the improvement of some parts of their method. In achieving this, my work

resulted in the following contributions:

• The framework automatically renames and simplifies the learnt clauses. This in turn

reduces the time required by the framework to generate patterns and facts, and also

helps us detect more patterns, and rank them more accurately.

• The framework automatically connects the learnt clauses to the model and detects

the model constraints that were involved in creating them. The connection helps the

modeller detect model constraints that can be strengthened, or identify the need to

add a redundant constraint to the model that can help reduce the solving time.

• The framework automatically generalises groups of clauses into patterns. This helps

us obtain more accurate ranking for a group of clauses by accumulating the estimated

reduction in search space of the clauses associated to a pattern, and also it represents

the clauses in a form of a generic constraint, that later along with its associated fact

can be presented to the modeller.

• The framework takes the whole class of the problem into consideration rather than

one instance. This helps us improve the model rather than one instance.

• The framework considers multiple search strategies to obtain clauses that may not

be discovered by a certain search strategy. This improves the accuracy of the ranking

technique proposed by Shishmarev et al., and also helps detect more patterns.

• The framework automatically learns facts for each pattern. This combines the back-

ground information with the information present in the patterns, which may serve

as a condition for the occurrence of the patterns and, together with the patterns,

can be suggested to the modeller as a potential constraint to be added to the model.

• Our experiments show that the framework is practical and general for a variety

of models, and it improved four MiniZinc models. Importantly, the framework im-

proved a MiniZinc standard decomposition of a global constraint, which is commonly

used in a variety of models.

The structure of this thesis is as follows. Chapter 2 presents the background knowledge

required to understand the rest of the thesis. It describes how COPs/CSPs are modelled

and solved, and the basics of constraint programming and learning solvers. Also, the

method of Shishmarev et al. is described in more detail, since this work builds upon

it. Then, it discusses ConAcq which is the constraint acquisition algorithm we used in

our framework for learning facts from the patterns; Chapter 3 discusses our method of

contextualising and simplifying clauses; Chapter 4 presents our method for inferring pat-

terns from a set of clauses, then it discusses our method for considering multiple instances



CHAPTER 1. INTRODUCTION 6

and search strategies; Chapter 5 discusses our two methods for generating facts from the

patterns by considering model information; Chapter 6 presents the experiments that were

carried out to evaluate the efficiency and practicality of our framework. In addition, it

discusses four case studies where using our framework improved the model or the decom-

position of global constraints; Chapter 7 discusses the work related to our framework;

Chapter 8 concludes the thesis and presents some directions for future work.



CHAPTER 2. BACKGROUND 7

Chapter 2

Background

2.1 Introduction

This chapter provides the necessary background to understand the rest of the thesis. Sec-

tion 2.2 describes what Constraint Optimisation/Satisfaction Problems (COPs/CSPs) are

and how they are often modelled and solved. Section 2.3 explains the basics of Constraint

Programming (CP), which is one of the paradigms used to solve a variety of COPs/CSPs,

and it is the main focus of this research. More specifically, our focus is on a class of

CP-solvers called Learning solvers, which are described in Section 2.4, and they were used

by Shishmarev et al. [68] to propose a manual method to improve COP/CSPs models.

This method, which inspired our work, is described in Section 2.5. Section 2.6 describes

the toolchains developed by Leo et al. [42, 43] which are used by our method to connect

the model to the program that executes it. Lastly, Section 2.7 describes the constraint

acquisition systems, which are used by our method for learning facts for each pattern that

is described in Chapter 5.

2.2 Constraint Optimisation/Satisfaction Problems

Constraint Optimisation/Satisfaction Problems (COPs/CSPs) are concerned with finding

a combination of choices that satisfy a set of constraints, while maximising or minimising

an objective function (if any) [40]. A CSP P , is formally defined as a tuple of P=〈X,D,C〉,
where X is a set of n decision variables, and D is a tuple of n domains, where D(Xi)

maps the decision variable Xi to its domain. C represents a set of constraints, where Ci

describes a relation between a subset of variables (X). A solution to P is an n-tuple A,

where Ai ∈ D(Xi) and each Ci ∈ C is satisfied [63]. COPs are a tuple of P=〈X,D,C, F 〉,
where F is a function over the variables in X which is to be maximised or minimised, and

an optimal solution is a solution that maximises or minimises the objective function.

Let us illustrate this by means of an example: the well-known golomb ruler optimi-

sation problem [44]. A golomb ruler has a set of marks, where each mark has a unique

value, and each pair of marks should have a unique distance, i.e. a distance different to

any other pair of marks. The objective of the golomb ruler problem is, given a number m

of marks, to minimize the final mark in the ruler. Figure 2.1 demonstrates an example of



CHAPTER 2. BACKGROUND 8

Figure 2.1: A golomb ruler of length 7

a golomb ruler. In this problem, the decision variables are marks and their differences.

The constraint is that each pair of marks should have a unique distance, and the objective

function is to minimise the longest mark in the ruler.

To model COPs/CSPs, modelling languages such as MiniZinc [44], OPL [76] and

ESSENCE [32] are used. Let me illustrate the modelling of an optimisation problem

in MiniZinc by means of the golomb ruler problem discussed before. A possible model is

as follows:

Example 1. Golomb ruler model

1 int: m; % number of marks

2 int: n; % upper bound of marks

3 int: d = m*(m -1)/2; % number of differences

4

5 array[1..m] of var 0..n: marks;

6 array[1..d] of var 0..n: differences =

7 [marks[j]-marks[i]| i in 1..m, j in i+1..m];

8

9 include "globals.mzn";

10 constraint alldifferent(differences );

11

12 solve minimize mark[m];

Lines 1 and 2 define the model parameters, which will later get instantiated with input

data. The parameter m indicates the number of marks, and the parameter n indicates the

upper bound of marks i.e. the largest possible mark. Line 3 defines d, which represents

the number of differences between marks.

Lines 5 to 7 define the decision variables. The decision variable marks is an array of

integer variables, representing the value associated to each mark on the ruler. In addition,

the decision variable differences contains the value associated to each difference between

the value of each pair of marks.

In line 9, the library of global constraints is included. Global constraints are pre-defined

structures that encapsulate a number of similar sub-problems that can be reused. Some

solvers utilise specialised algorithms for them [40]. One commonly used global constraints

is the alldifferent constraint, which is used in line 10. The alldifferent global constraint

ensures that all the elements of the array that are passed to it (differences), take unique

values, different from each other.



CHAPTER 2. BACKGROUND 9

Lastly, in line 12, an objective function is defined, which states that the goal is to

minimise the value assigned to the last element of the decision variable marks (the length

of the ruler).

Models provide a generic representation that can be used for solving specific instances

of a problem. Instance specific data is often separated from the model. For example,

for the golomb ruler model described before, each instantiation of parameters n and m,

represents an instance of the problem.

To solve COPs/CSPs, the model and its input data are compiled into a low-level

program that is passed to an arbitrary solver algorithm. Many sophisticated solver algo-

rithms are available to solve combinatorial problems, such as Mixed Integer Programming

(MIP) [1], Constraint Programming (CP) [65] and Boolean Satisfiability (SAT) [49]. The

focus of this research is mostly on CP-solvers which are described in Section 2.3.

2.3 Constraint Programming

Constraint Programming (CP) is a powerful and generic paradigm that can be used to

solve COPs/CSPs. There are many different solvers that implement CP, which are known

as CP-solvers such as Chuffed [21], Gecode [66] and Choco [58]. CP-solvers combine search

and propagation, which are discussed in this section.

2.3.1 Search

For a given COP/CSP the set of possible assignments of values to the decision variables

from their domains is referred to as the search space of the problem [63]. One of the most

common techniques to explore the search space of a COP/CSP used by CP-solvers is to

select a decision variable and assign it a value from its domain. We refer to a variable/value

assignment as a literal. For example, for the golomb ruler problem, the literal mark[4]=3

is a decision made by a solver. The solver repeats this procedure until all the variables

are assigned, or a failure is encountered. If a failure occurs, CP-solvers use a backtracking

search algorithm [24, 36] where search goes back to the previous decision, and makes an

alternative decision [63]. If all the variables could be assigned the solver has a solution.

The decisions that are made by a solver are often visualised in the form of a search

tree. As an example, the following figure demonstrates the search tree explored by Gecode

for the golomb ruler model provided in example 1 with instance data m=5.



CHAPTER 2. BACKGROUND 10

Figure 2.2: Search tree explored by Gecode for the golomb ruler problem

In the search tree above, each blue circle represents a decision variable picked by

Gecode, e.g. mark[4], and each branch represents a decision made by the solver (e.g.

mark[4]=3). The red squares indicate failures, the green diamond represents a solution,

and the green triangle represents a compact sub-tree for simplicity.

To improve the performance of the classical backtracking algorithm, there are a variety

of techniques such as backjumping, restarts and nogood recording (which are discussed

in Section 2.4). Also, to search more efficiently, there are various search strategies for

selecting a decision variable and assigning a value to it. One of the most common ones is

to select the variables that are more likely to be difficult to satisfy first, e.g. those with

the smallest domain [61].

To solve optimisation problems, CP-solvers combine backtracking search with a branch

and bound algorithm. When a solution is found by this algorithm, the value of objective

function is calculated, and a constraint is added to force the search to find solutions with

a better objective value. Branch and bound improves the solving time by reducing the

search space [63].

2.3.2 Propagation

One of the strengths of CP-solvers is constraint propagation. Constraint propagation aims

at reducing the search space by removing values from the variables’ domains that cannot

be part of any solution [40].

To achieve this, there are special algorithms designed for each constraint called propa-

gators. Every time the search makes a decision, the propagators associated to constraints

that contain the assigned variable are executed. These propagators may remove values

from the domain of any of its variables. These removals, may in turn trigger the activation

of more propagators. This continues until propagation reaches a fix point (when no more

values can be removed from the variable domains).

As an example, consider a CSP with variables x1 and x2, domains {1, 2, 3, 4} and {0,

1, 2, 3} respectively, and constraints:



CHAPTER 2. BACKGROUND 11

x2 = x1 (2.1)

x1 6= 3 (2.2)

Initially, the propagator for constraint 2.1 removes value 4 from the domain of x1,

and value 0 from the domain of x2. Hence, the new domains of will be: {1, 2, 3} and

{1, 2, 3}. Then, the propagator for constraint 2.2 further reduces the domains to {1, 2}
and {1, 2, 3}. Since the value of x1 has changed, the propagator for constraint 2.1 is

activated, removing 3 from the domain of x2, and leaving the domains as x1 ε {1, 2} and

x2 ε {1, 2}. At this stage, the propagation engine cannot remove any more values from the

variable’s domains and a fixed point is reached. Since the problem is not solved yet, the

search engine will try different combinations of values (depending on the search strategy)

in order to find one or more solutions.

2.4 Learning Solvers

Learning solvers [54, 30] are a powerful class of CP-solvers that analyse their failures to

learn from their previous mistakes by recording the reasons for each failure. To achieve

this, all propagators are instrumented to explain the domain changes they performed on

the domain of the variables in terms of equality (x = d for d ∈ D(x)), disequality (x 6= d)

or inequality (x > d or x < d) literals. An explanation for literal ` is an implication S → `,

where S is a set of literals (interpreted as a conjunction).

For example, the explanation for the propagator of the constraint x 6= y inferring literal

y 6= 5, given literal x = 5, is {x = 5} → y 6= 5. Each new literal inferred by a propagator

is recorded together with its explanation, forming an implication graph.

Example 2. Consider a Constraint Satisfaction Problem (CSP) with the following con-

straints:

¬x1 ∨ x2 (2.3)

¬x1 ∨ x3 ∨ x9 (2.4)

¬x2 ∨ ¬x3 ∨ x4 (2.5)

¬x4 ∨ x5 ∨ x10 (2.6)

¬x4 ∨ x6 ∨ x11 (2.7)

¬x5 ∨ ¬x6 (2.8)

x1 ∨ x7 ∨ ¬x12 (2.9)

x1 ∨ x8 (2.10)

¬x7 ∨ ¬x8 ∨ ¬x13 (2.11)



CHAPTER 2. BACKGROUND 12

Assume that the solver first makes the decision ¬x9, that is literal x9 = 0. Since x9 only

appears in Constraint 2.4 and, the decision does not cause domain changes to the variables

of this constraint, the search continues. Assume the next selection of decisions is ¬x10,
¬x11, x12 and x13. Sine none of these decisions cause the propagators of Constraints 2.6,

2.7, 2.9 and 2.11 to reduce the domains, the search continues, and we assume now that

the next decision is x1. This causes Constraints 2.9 and 2.10 to be satisfied, and causes

x2 to be true, as it is the only literal that is not assigned in Constraint 2.3. This

also causes the propagator of Constraint 2.4 to infer x3. This leads the propagator of

Constraint 2.5 to infer x4. Consequently, the propagator of Constraint 2.6 infers x5, and

that of Constraint 2.7 infers x6. This leads to failure because Constraint 2.8 cannot be

satisfied. Figure 2.3 demonstrates an implication graph for this example.

Figure 2.3: Implication graph

Each search decision and its consequences have an associated decision level [71]. The

implication graph above shows all the nodes in the last decision level, x1, that contributed

to the failure. The nodes x1, ¬x9, ¬x10 and ¬x11 are the decisions, while the other nodes

represent the implications.

Whenever the search reaches a failure, learning solvers use the implication graph to

compute a nogood N , that is, a set of literals (interpreted as a conjunction) that represents

the reason for the failure and cannot be extended to a solution. Then, they add a clause

that is, the negation of the nogood, ¬N , represented as a set of literals interpreted as their

disjunction as a new constraint, to ensure that search cannot fail for the same reasons.

The 1-UIP scheme is a popular method to generate nogoods. As you can see in

Figure 2.3, at the last decision level x1, any path that connects x1 to the failure passes also

through x4, we call such a node a Unique Implication Point (UIP). UIPs are important

because they are the single source of the failure [78], and the UIP that is closest to

the failure is called a 1-UIP. In this method, a nogood is generated by partitioning the

implication graph, in such a way that all the decision variables are separated from the

failure. The part of the graph that contains the decision variables is called the reason

side [78], and the other part is the failure side, such a partitioning is a cut. All the nodes

that have at least one edge to the failure side are the reasons for the failure, and a nogood

can be generated for any cut to describe the reasons. For example, for the red cut, the



CHAPTER 2. BACKGROUND 13

nogood ¬x10 ∧ x1 ∧ ¬x9 ∧ ¬ x11 can be generated, and for the green cut the nogood

¬x10 ∧ x4 ∧ ¬x11.

When failure occurs, instead of performing the traditional backtracking technique men-

tioned in Section 2.3.1, a backjumping technique is used. The aim of this technique is to

go back to the source of the failure [27] and avoid repeating the same mistake, as this

often prunes the search space. For example, in the implication graph above, the decisions

that contributed to the red cut, were made in the following order: ¬x9, ¬x10, ¬x11 and

x1. As you can see ¬x11 is the last decision before x1 which is the current decision. To

avoid repeating the same mistake, search backjumps to ¬x11, and tries x11. Another

technique that is usually combined with clause learning is restart : After a certain portion

of search space is explored, the search will be interrupted and started from the beginning,

while incorporating the learnt clauses [70]. This, together with backjumping, can result

in a large portion of the search space being avoided.

Learning solvers are powerful because they strengthen the propagation by adding the

learnt clauses, which helps them reduce the search space. Also, due to the backjumping

technique, they change the search order guiding search towards a more promising part of

the search space. However, adding propagation can increase the execution time, and it

is challenging to achieve a good trade-off. Thus, there are several techniques focusing on

filtering the learnt clauses, and keeping the ones with the highest impact.

2.5 Learning from Learning Solvers

Shishmarev et al. [68] demonstrated how the clauses learnt by a learning solver can be

used to improve the associated model. Their method can be summarised as follows: First,

they extracted the clauses that are potentially the most effective in improving the search.

Then, they executed the model using the learning solver Chuffed [21], replayed its search

decisions (in the same order) using the non-learning solver Gecode [67], and compared the

two resulting search trees. This comparison allowed them to estimate the effectiveness of

each clause in reducing the search space. To achieve this, for each clause, they calculated

the number of the nodes explored by Gecode that were not explored by Chuffed, and

assigned this number to each clause. This formed a ranking of all clauses based on the

total number of search nodes avoided by each clause, with the top-ranked clauses being

the most effective for reducing search. Afterwards, they manually inspected the 10 most

effective clauses to understand the reason behind each failure. For this purpose, first they

manually renamed the clauses, because when a MiniZinc model and data are compiled into

a low-level program (FlatZinc) the compiler modifies the variable names, and introduces

new variables. Thus, to understand the clauses, they manually renamed the clauses to

be expressed in the model-level variable names. They then manually linked each clause

to the model constraints and the model parameters that may be related to the clause.

This helped them learn extra information about the model that was not explicit in the

clauses learned by the solver. Because, clauses only contain information regarding instance

variables, even though their correctness may also require particular values for the instance

parameters which we call facts. They learnt such facts for each clause, and by linking each



CHAPTER 2. BACKGROUND 14

clause and its associated facts to the model constraint, they discovered constraints that

could be modified to reveal the same information explicitly. This model transformation

helped improve its solving time. In Example 3, we use the free pizza problem of [68] to

illustrate their manual process.

Example 3. In this problem customers get pizzas either by paying for them or by using

vouchers. Each voucher 〈a, b〉 allows customers to get b number of pizzas for free if they

pay for a number of pizzas, and none of the b pizzas are more expensive than the a ones.

A customer who has m vouchers and wants n pizzas aims to minimise the amount they

pay for the n pizzas. Figure 2.4 demonstrates their MiniZinc model.

1 int: n; % number of pizzas wanted

2 set of int: PIZZA = 1..n;

3 array[PIZZA] of int: price; % price of each pizza

4 int: m; % number of vouchers

5 set of int: VOUCH = 1..m;

6 array[VOUCH] of int: buy; % buy this many to use voucher

7 array[VOUCH] of int: free; % get this many free

8

9 set of int: ASSIGN = -m .. m; % i -i 0 (free/paid with voucher i or not)

10 array[PIZZA] of var ASSIGN: how;

11 array[VOUCH] of var bool: used;

12

13 constraint forall(v in VOUCH)(used[v]<->sum(p in PIZZA)(how[p]=-v)>=buy[v]);

14 constraint forall(v in VOUCH)(sum(p in PIZZA)(how[p]=-v) <= used[v]*buy[v]);

15 constraint forall(v in VOUCH)(sum(p in PIZZA)(how[p]=v) <= used[v]*free[v]);

16 constraint forall(p1, p2 in PIZZA )((how[p1] < how[p2] /\ how[p1]= -how[p2])

17 -> price[p2] <= price[p1]);

18 int: total = sum(price);

19 var 0.. total: objective = sum(p in PIZZA )((how[p] <= 0)* price[p]);

Figure 2.4: The free pizza model from [68]

Lines 1-7 introduce the parameters of the problems: Line 1 introduces n which repre-

sents the number of pizzas. Line 2, introduces the PIZZA set where the members represent

pizzas 1 to n. Line 2 defines the price array, which stores the prices of pizzas. In Line 4, m

represents the number of the vouchers, and Line 5 introduces the VOUCH set, which repre-

sents the vouchers 1 to m. Lines 6 and 7 introduce buy and free arrays s.t. 〈buy[i], free[i]〉
represents the ith voucher 〈a, b〉.

The next three lines define two arrays of decision variables: used[v], which is true iff

voucher v was used; and how[p], which is v if pizza p was free thanks to voucher v, is 0 if

p was paid for and not used in any voucher, and is -v if p was paid for and used to get

free pizzas with voucher v.

Constraints start in Line 13, which states that if voucher v was used, then the total

number of pizzas bought and assigned to v must be greater than or equal to the number

of pizzas required by it. Line 14 states similar information but in the opposite direction:

the total number of pizzas bought and assigned to voucher v must be less than or equal to



CHAPTER 2. BACKGROUND 15

used[v]*buy[v]. Together, they constrain the total number of pizzas bought for v to be

equal to v, if used. The constraint in Line 15 states that the total number of free pizzas

obtained thanks to voucher v must be smaller than or equal to the number of free pizzas

allowed by v if used (used[v]*free[v]). The last constraint states that if there are two

pizzas p1 and p2 assigned to the same voucher, with p2 being free and p1 being paid for

(given how[p1]<how[p2] and how[p1]=-how[p2]), then the price of p2 must be lower than

or equal to that of p1. Finally, the objective function is defined as the sum of the prices

of the pizzas that are bought.

Table 2.1: Taken from [68]: The most effective original learnt clauses in free pizza

Rank Reduction Clause

1 3425 X INTRODUCED 0 =-1 X INTRODUCED 1 =-1 X INTRODUCED 2 =-1
X INTRODUCED 3 =-1 X INTRODUCED 4 =-1 X INTRODUCED 0 =-2
X INTRODUCED 1 =-2 X INTRODUCED 2 =-2 X INTRODUCED 3 =-2
X INTRODUCED 4 =-2 X INTRODUCED 5 ≤0 X INTRODUCED 5 ≥3

2 2068 X INTRODUCED 6 ≤2 X INTRODUCED 6 ≥4 X INTRODUCED 0 6=-3
X INTRODUCED 0 ≥-2

3 1712 X INTRODUCED 3 6=3 X INTRODUCED 0 =-3 X INTRODUCED 1 =-3
X INTRODUCED 2 =-3 X INTRODUCED 3 =-3

4 1636 X INTRODUCED 4 6=-3 X INTRODUCED 2 6=3
5 1636 X INTRODUCED 7 6=-3 X INTRODUCED 2 6=3
6 1636 X INTRODUCED 8 6=-3 X INTRODUCED 2 6=3
7 1636 X INTRODUCED 9 6=-3 X INTRODUCED 2 6=3
8 1489 X INTRODUCED 5 ≤2 X INTRODUCED 5 ≥4 X INTRODUCED 1 6=-3

X INTRODUCED 1 ≥-2
9 1404 X INTRODUCED 4 6=-3 X INTRODUCED 3 6=3 X INTRODUCED 3 ≤2

10 1403 X INTRODUCED 9 6=-3 X INTRODUCED 3 6=3

Table 2.2: Taken from [68]: The most effective learnt clauses in free pizza

Rank Reduction Clause

1 3425 how[1]=-1 how[2]=-1 how[3]=-1 how[4]=-1 how[5]=-1
how[1]=-2 how[2]=-2 how[3]=-2 how[4]=-2 how[5]=-2

how[6]≤0 how[6]≥3
2 2068 how[7]≤2 how[7]≥4 how[1]6=-3 how[1]≥-2
3 1712 how[4]6=3 how[1]=-3 how[2]=-3 how[3]=-3 how[4]=-3
4 1636 how[5]6=-3 how[3]6=3
5 1636 how[8]6=-3 how[3]6=3
6 1636 how[9]6=-3 how[3]6=3
7 1636 how[10]6=-3 how[3]6=3
8 1489 how[6]≤2 how[6]≥4 how[1]6=-3 how[1]≥-2
9 1404 how[5]6=-3 how[4]6=3 how[4]≤2

10 1403 how[10]6=-3 how[4]6=3

Table 2.1 shows the original top clauses obtained by Shishmarev et al. As you can see, it

is difficult to understand them, as the clauses are expressed in terms of FlatZinc variables.

Thus, they first manually renamed each clause to be expressed in terms of model-level

variables, and as a result the clauses were translated into the ones in Table 2.2. In this

experiment the following data was used:



CHAPTER 2. BACKGROUND 16

1 n = 10;

2 m = 4;

3 price = [70, 10, 60, 65, 30, 100, 75, 40, 45, 20];

4 buy = [1, 2, 3, 3];

5 free = [1, 1, 2, 1];

Where each clause is interpreted as the disjunction of its literals. For example, the

clause ranked 4th, {how[5]6=-3, how[3]6=3}, states that pizza 3 cannot be obtained for free

using voucher 3 by paying for pizza 5 with that voucher. This might be easier to see in

its equivalent form ¬(how[5]=-3 ∧ how[3]=3).

After obtaining the clauses and their associated rankings, Shishmarev et al. manually

analysed the top clauses. They focused on the shorter clauses such as clause 4 {how[5]6=-3,

how[3]6=3}, because they are easier to understand. This clause can also be represented

in implication form how[5]=-3 → how[3]6=3, which means that if pizza 5 is bought by

voucher 3, pizza 3 cannot be obtained for free using voucher 3. Shishmarev et al. realized

that this clause occurs because of the fact that pizza 3 is more expensive than pizza 5

(price[3]>price[5]). More importantly, this clause shares a similar structure with the

clauses 5, 6, 7 and 10, because they share the same sequence of variable names {how[ ],

how[ ]}, and the same sequence of operators {6=, 6=}.
Since the relationship between prices of pizzas price[p2]<=price[p1] appear in the

constraint in line 12, Shishmarev et al. realized that some of the top clauses were direct

consequences of this single constraint. Hence, they reformulated this constraint with the

following constraint:

constraint forall(p1,p2 in PIZZA )((how[p2]>0/\how[p1]= -how[p2])->

price[p2] <= price[p1]);

This constraint reveals the same information but in a stronger way. In the original

constraint, the condition how[p1]<how[p2]/\how[p1]=-how[p2] implies 0<how[p2]/\

how[p1]=-how[p2], and to check if the condition how[p1]<how[p2]/\how[p1]=-how[p2] holds

for the pizzas p1 and p2, for any two pizzas that how[p2] is larger than how[p1], it checks

if how[p1]=-how[p2] also holds. For some pairs of pizzas where how[p1] and how[p2] are

both positive, the second condition how[p1]=-how[p2] will not be valid. Whereas, in the

reformulated constraint the second condition will only be checked if how[p2]>0, which

makes it more efficient, and, as a result, the solving time became faster compared to the

original model.

The top clause {how[1]=-1, how[2]=-1, how[3]=-1, how[4]=-1, how[5]=-1, how[1]=-2,

how[2]=-2, how[3]=-2, how[4]=-2, how[5]=-2, how[6]≤0, how[6]=3}, indicates that

pizza 6 cannot be obtained for free by voucher 1 or 2 ({how[6]≤0, how[6]=3}), by buying

pizzas 1, 2, 3, 4 and 5 using voucher 1 or 2. This happens because pizza 6 in the most

expensive pizza in the clause, therefore it can never be obtained for free by any voucher.

The opposite of this fact holds for the cheapest pizza: by buying the cheapest pizza us-

ing any voucher, no other pizza can be obtained for free using the same voucher (pizza

2 in this instance). Then, they realised that these facts about the most expensive and

the cheapest pizzas are not explicitly expressed in the model. Therefore, they added the

following redundant constraints to the model:



CHAPTER 2. BACKGROUND 17

% the most expensive pizza can never be bought with a voucher

constraint forall(p in PIZZA)

(if forall(o in PIZZA where o!=p)(price[p]>price[o])

then how[p]<=0 else true endif);

% the cheapest pizza can never be used with a voucher

constraint forall(p in PIZZA)

(if forall(o in PIZZA where o!=p)(price[p]<price[o])

then how[p]>=0 else true endif);

The aim of this thesis is to automate and improve Shishmarev et al.’s method. For

this purpose, our main steps can be summarised as follows:

1. Rename the learnt clauses to be expressed in terms of model-level variables (e.g.

transform the clauses in Table 2.2 into Table 2.1).

2. Simplify the learnt clauses to reduce their length, and detect more clauses with

similar structures which can help us perform the next steps more efficiently.

3. Connect the clauses to the model constraints to detect the constraint involved in

creating the clauses.

4. Detect the clauses with similar structures, and condensely generalise them into pat-

terns, this helps us improve their ranking technique, and also represent the clauses

in a form of a constraint that can be suggested to the user to be added to the model

5. Learn information for each pattern, that may serve as a condition to make each

pattern correct(e.g. the relationship between prices that was manually learnt by

Shishmarev et al.)

This thesis presents the steps mentioned above in more details. In particular, steps 1

to 3 are discussed in Chapter 3, and steps 4 and 5 correspond to Chapters 4 and 5.

2.6 Connecting Clauses to Model Constraints

As mentioned in Section 2.5, Shishmarev et al. used the learnt clauses to identify the need

to strengthen the constraint in Line 16 of the model. This need was discovered by realising

that some of the top clauses were direct consequences of this single constraint. To do this,

Shishmarev et al. manually linked the learnt clauses (or more accurately, their literals)

to the model constraints they were derived from. Automating this method requires us to

automatically connect the clauses to the model constraints. This is more complex than it

initially appears due to the complex process performed in MiniZinc.

A MiniZinc model and its input data are compiled into a low-level model program

(FlatZinc). The FlatZinc file combines the information in the model with that contained

in the input data file and expresses it in a way that can be given as input to different solvers.

During compilation new variables are introduced, model constraints are decomposed and

loops are unrolled. Learning solvers refer to the flattened variables to generate clauses.

Thus, it is challenging to map the clauses learnt by the solver to the original model

constraints and variables.



CHAPTER 2. BACKGROUND 18

To achieve this, we will make use of the technique developed by Leo et al. [43], which is

described in this section. Leo et al. developed a technique to trace the model-level variables

and constraints through the compilation, and map them to their corresponding solver-level

variables and constraints. For this purpose, they assign a unique identifier to each variable

and constraint in the FlatZinc file, which they refer to as variable paths [42] and constraint

paths [43], respectively. Each identifier describes the path that the compiler took when

compiling a MiniZinc instance to FlatZinc, from the actual model to the point where

new variables or constraints are introduced. For example, the following is a (simplified)

constraint path:�� ��14:12-15:61 forall:p1=1,p2=6
�� ��14:36-15:60 ->

�� ��14:37-14:74 /\
�� ��14:37-14:74 clause

Each of its components has two parts: four numbers denoting the span of text in

the MiniZinc model that the expression came from (with format from line:column-to

line:column); and a textual description of what the expression represents. The above

path represents a clause that was inserted into the final FlatZinc, as a result of encoding

a negated (thus the clause part) conjunction /\ appearing in the left hand side of the

implication (->) that appears in the forall loop in line 17 of the free pizza provided

by Figure 2.4, with index variables p1=1 and p2=6. This corresponds to the expression

how[p1] < how[p2]. The path provided above refers to the iteration of the for loop in

which p1=1 and p2=6. As we see in Chapter 3, our aim is to relate each clause to the

model-level constraints not to the instances. Thus, we will need to generalise this path

to the model. For this purpose, one simply needs to remove the identifying information

that makes the path unique to an instance variable/constraint. In our example this can

be achieved by removing the concrete values 1 and 6 for p1 and p2, thus grouping all

iterations of the loop.

2.7 Constraint Acquisition Systems

As mentioned before, one of our steps to automate the work of Shishmarev et al. is to

combine model information with patterns to learn information that is not present in a

clause, which may serve as a condition for occurrence of the patterns. To achieve this,

we use two different methods, as you see in the Sections 5.3 and 5.4 of Chapter 5. In the

second method we used a constraint acquisition algorithm called ConAcq that can help

us learn facts for the patterns. In this Section, we briefly discuss the constraint acquisition

systems and describe the ConAcq algorithm.

Modelling a constraint problem can be challenging for non-expert users as there are

many possible ways to model a problem, and the different approaches can hugely impact its

solving time [14]. Constraint acquisition systems help non-expert users model their target

problems. Given a set of solutions, non-solutions and a constraint library, a constraint

acquisition system learns a constraint network that is consistent with the solutions and

non-solutions [12].

There are two main classes of constraint acquisition systems: passive and active. In

passive systems [39, 12], the user chooses the set of examples in advance and independently



CHAPTER 2. BACKGROUND 19

of the acquisition process, whereas active systems [14] assist the user to choose more helpful

examples to reduce the number of required examples.

As we see in Chapter 5, our method has a full set of examples and non-examples.

Thus, passive constraint acquisition systems are more suitable for our application. More

specifically, we chose ConAcq because it is simpler than most of the other algorithms,

and thus, easier to implement.

2.7.1 The ConAcq Algorithm

ConAcq [12] is an approach to constraint acquisition based on the SAT-solving and

version space learning [47] paradigms. Given a set of solutions (positive examples), non-

solutions (negative examples) and a constraint library (a set of binary constraints) provided

by the user. The system outputs a constraint network learnt from the library. The

ConAcq algorithm is as follows (from [12]):

Algorithm 1 The ConAcq algorithm from [12]

Input: examples(E+, E−) and a constraint library B
Output: a set of clauses K
K ← ∅

1: foreach e in examples do
2: Ke ← {bij ∈ B : e does not satisfy bij}
3: if e ∈ E− then K := K

∧
(
∨

bij∈Ke
bij)

4: if e ∈ E+ then K := K
∧

(
∧

bij∈Ke
¬bij)

5: if UnitPropagation(K) detects ⊥ then Return(”collapsing”)

The inputs of the algorithm are: a set of solutions (E+) and non-solutions (E−), and

a constraint library (B) that contains a set of binary constraints. Each constraint bij in

the library is a user-defined binary relation between two decision variables xi and xj , such

as xi < xj .

The algorithm outputs K that is a conjunction of clauses that are consistent with

solutions and non-solutions, where each literal in each clause is a binary constraint.

Initially K is empty. In Lines 1 to 5, the algorithm iterates through each example e,

and Line 2 builds Ke, which consists of all the constraints bij in the constraint library B

that reject e. Line 3 checks if e is a negative example, in that case, Line 3 builds a clause

as the disjunction of the constraints bij that reject the negative example, represented by

the expression: K := K
∧

(
∨

bij∈Ke
bij). This ensures that at least one of the constraints in

the learnt constraint network rejects the negative example. Line 4 checks if the example

is positive, if that is the case, Line 4 ensures that none of the constraints that reject

the positive example are valid constraints. The algorithm then builds a conjunction of

the negated constraints, that reject the example, represented by K := K
∧

(
∧

bij∈Ke
¬bij).

Line 5 calls the UnitPropagation() method which performs unit propagation on constraint

network K, which is a propagation technique commonly used by SAT-solvers (see [77]),

that is used here to detect if the constraint network K is satisfiable, if the network is

inconsistent the algorithm returns collapsing, otherwise, it returns K.



CHAPTER 2. BACKGROUND 20

Example 4. Consider a CSP with two decision variables x1 and x2 both with domain

D = {1, 2}, and the parameter a = [70, 20], which is indexed by x1 and x2. For example,

x1 = 2 refers to a[2]. The solutions, non-solutions and constraint library are as follows:

E+ = {(x1 = 1, x2 = 1), (x1 = 2, x2 = 1), (x1 = 2, x2 = 2)}
E− = {(x1 = 1, x2 = 2)}
B = {a[x1] ≥ a[x2], a[x1] < a[x2], a[x1] = a[x2], a[x1] 6= a[x2], x1 ≥ x2, x1 < x2, x1 = x2,

x1 6= x2}
Initially K is empty. The algorithm iterates through the four examples. Assume that

K+ij represents the expression
∧

bij∈Ke
¬bij in line 4 of the algorithm for the positive

example (x1 = i, x2 = j), and K−ij represents the expression
∨

bij∈Ke
bij for the negative

example (x1 = i, x2 = j) in line 4.

The following expressions are built for the examples:

K+11={¬(a[x1] < a[x2]) ∧ ¬(a[x1] 6= a[x2]) ∧ ¬(x1 < x2) ∧ ¬(x1 6= x2)}
K+21={¬(a[x1] ≥ a[x2]) ∧ ¬(a[x1] = a[x2]) ∧ ¬(x1 < x2) ∧ ¬(x1 = x2)}
K+22={¬(a[x1] < a[x2]) ∧ ¬(a[x1] 6= a[x2]) ∧ ¬(x1 < x2) ∧ ¬(x1 6= x2)}
K−12={a[x1] < a[x2] ∨ a[x1] = a[x2] ∨ x1 ≥ x2 ∨ x1 = x2}

As a result, the output will be: K := K+11 ∧ K+21 ∧ K+22 ∧ K−12. In this example,

the algorithm outputs x1 ≥ x2, since this is the only constraint from the constraint library

that satisfies all the expressions above. Note that ¬(a[x1] < a[x2]) ∧ ¬(a[x1] ≥ a[x2]) does

not represent false it simply represents the absence of those two constraints in the network

(and thus in the model).

The ConAcq algorithm is an important part of this thesis, since it is used in one of

our methods to generate facts that is described in Chapter 5.4.2. This algorithm helps us

detect the facts that are valid for a given pattern among a network of candidate facts.

2.8 Summary

In this Chapter we discussed the background knowledge required for the remaining chap-

ters. Section 2.2 described the basics of COPs/CSPs and how they are modelled and

solved. Section 2.3 discussed CP-solvers that are a powerful and generic technique to

solve COPs/CSPs, and this thesis focuses on them. Section 2.4 described learning solvers

that are a class of CP-solvers, which are very powerful and used in our method. Sec-

tion 2.5 summarised a technique developed by Shishmarev et al. that they show the

clauses learnt by learning solvers can be used to improve the model, and it then described

how our method automates and improves their method. Section 2.6 described a technique

developed by Leo et al. that connects the learnt clauses to the model constraint that

were involved in creating them. Their method is used in this thesis to connect the learnt

clauses to the model constraints. Section 2.7, described constraint acquisition systems. In

particular, the ConAcq algorithm which we used to learn facts for the patterns.



CHAPTER 3. CONTEXTUALISING AND SIMPLIFYING CLAUSES 21

Chapter 3

Contextualising and Simplifying

Clauses

3.1 Introduction

As mentioned in Chapter 2, a MiniZinc model and its associated data must be compiled

into a FlatZinc program before it can be given to a solver to be solved. During compilation

new variables are introduced, model constraints are decomposed and loops are unrolled.

Since solvers can only reason about the program they have been given, learned clauses will

be expressed in terms of the FlatZinc program. Shishmarev et al. manually renamed the

clauses, to be able to understand, and further analyse them. For example, for the free

pizza problem they transformed Table 2.1 into Table 2.2, provided in Chapter 2.

To obtain the clauses we used the same method as Shishmarev et al. as described

in 2.5. Our first step towards automation is to rename the clauses. For example, consider

the clause {X INTRODUCED 1 >1, X INTRODUCED 2 6=5, X INTRODUCED 3 >7} which is inferred

by Chuffed for the golomb ruler model of figure 1 with m=5. The variables X INTRODUCED 1 ,

X INTRODUCED 2 and X INTRODUCED 3 refer to the model-level variables mark[2], mark[3]

and mark[4]. Thus, the solver-level clause can be translated to: {mark[2]>1, mark[3] 6=5,

mark[4]>7}. This helps us in different ways: After renaming, our method will be able to

detect patterns, as you will see in Section 4.2. Also, it enables our method to connect

variables across instances, as you will see in Section 4.3. Furthermore, It enables us to

link the patterns to the model information to learn facts for them, which you will see in

Section 5.

Once variables are renamed, we simplify the clauses based on their semantics. Let us

have a look at one of the clauses for the free pizza problem (Table 2.2), {how[6]≤2,
how[6]≥4, how[1]6=-3, how[1]≥-2}, this can be simplified to {how[6]6=3, how[1]6=-3}.
This helps us reduce the length of the clauses, and also detect more clauses that share a

similar structure, which later helps us detect more accurate patterns, and more precise

ranking for each pattern.

After renaming and simplifying the clauses, our next step is to connect them to the

model constraints. This is achieved by tracing the origin of the FlatZinc-level constraints

that were responsible for introducing literals to the clause. This helps us improve the



CHAPTER 3. CONTEXTUALISING AND SIMPLIFYING CLAUSES 22

model, by either reformulating the model constraints or adding a redundant constraint to

the model to express the same information in a stronger way.

The structure of this Chapter is as follows: Section 3.2 describes our method that

renames the literals by mapping the solver-level literals to their corresponding model-level

literals. Section 3.3 discusses our method that simplifies the clauses. Section 3.4 discusses

the limitations of our methods for renaming and simplifying the clauses. Section 3.5

describes our method that detects the model constraints that were involved in creating

the clauses.

3.2 Renaming Literals

As mentioned before, the clauses inferred by learning solvers are expressed in terms of

solver-level variables rather than model-level variables. Consider the clauses for the

free pizza problem provided in Table 2.2, these clauses are already the result of sig-

nificant manual interpretation and analysis. For example, the 4th clause came from re-

naming (and simplifying) the solver-level clause {X INTRODUCED 4 6=-3, X INTRODUCED 2 6=3,

X INTRODUCED 2 ≤2}, where the names X INTRODUCED 4 and X INTRODUCED 2 were intro-

duced by the MiniZinc compiler for the model variables in array positions how[5] and

how[3], respectively.

Thus, our first step towards automation is to transform clauses to refer to model-level

variables and expressions. For simple renamings as in the example above, the MiniZinc

compiler already provides a mapping from solver-level to model-level names.

New variables may, however, also be introduced when flattening expressions. For

example, the compiler may introduce an auxiliary variable for the result of an interme-

diate addition, or for variables introduced by a let expression connecting such variables

back to model-level names is more complex. We propose to do this by using variable

paths [42] (defined and explained in Chapter 2.6). Consider, for example, the literal

X INTRODUCED 244 =true, which appears in one of the clauses generated by Chuffed for

free pizza. Since variable X INTRODUCED 244 does not correspond directly to any model-

level variable, we must use its path to help deduce its meaning. The path provided by the

MiniZinc compiler for this variable is:

�� ��14:12-15:61 forall:p1=1,p2=6
�� ��14:36-15:60 ->

�� ��14:37-14:74 /\�� ��14:37-15:74 clause
�� ��14:58-14:74 =

�� ��14:58-14:74 int lin eq

The final entry in the path shows the location in the model of the expression that cor-

responds to X INTRODUCED 244 : Line 14, columns 58–74, which has expression "how[p1]=

-how[p2]". The path also shows that the expression is located within the forall that

spans Lines 14:12-15:61, within the implication (->) that spans Lines 14:36-15:60, within

the conjunction (/\) that spans Line 14:37-14:75, within the clause that resulted from

encoding the negated conjunction, and within the = that spans Line 14:58-14:74. Since

the path ends with an int lin eq constraint (integer linear =), we can deduce that the

introduced variable is the Boolean control variable for the reified version of expression



CHAPTER 3. CONTEXTUALISING AND SIMPLIFYING CLAUSES 23

"how[p1]= -how[p2]" in the model. Since the path also records the values of loop vari-

ables p1 and p2, these can be automatically substituted, yielding "how[1]= -how[6]"=true.

3.3 Simplifying Literals and Clauses

The length of the clauses can be reduced, and patterns can be better detected by simpli-

fying their literals based on their semantics. We do this in two different ways. First, we

simplify literals whose variables were introduced by the compiler, and which correspond

to Boolean expressions in the model, as follows:

positive: if the right-hand side of a literal is true (e.g. =true, =1, >=1), and the

left-hand side is a Boolean expression of the form e1 op e2, where op is a binary

operator, then we can simply remove the right-hand side.

negative: if the right-hand side of a literal is false (e.g. =false, =0, <=0), and the

left-hand side is a Boolean of the form x op v, where x is a variable, op is a binary

operator and v is an integer value, then we can negate the left-hand side and remove

the right-hand side.

For example, literal "how[1]<how[6]"=true becomes how[1]<how[6], and literal

"how[1]=-1"<=0 (which comes from the sum of reified equality constraints in line 12 of the

model) becomes how[1]6=-1. Simplifying literals with more complex left-hand sides (i.e.,

arbitrary MiniZinc expressions), requires a deeper integration with the MiniZinc compiler

and is left for future work.

Second, we eliminate from each clause any literal that entails (i.e., logically implies)

other literals in the clause, since A ∨ B ∨ C is equivalent to A ∨ B, if C entails B. This

makes the clause easier to understand and, as shown in Section 4, makes it easier to

automatically detect clause patterns. We automatically simplify a clause by applying the

following rules to literals that operate on the same variable x:

6=: a literal of the form x 6= v is entailed by any other literal x = v′ such that v 6= v′, and

by any literal x ≤ v′ (x ≥ v′) such that v′ < v (v′ > v). Thus, those other literals

are eliminated. For example, clause {x = 1, x ≤ 1, x ≥ 4, x 6= 2, . . . } is simplified to

the equivalent clause {x 6= 2, . . . }.

≥ (≤): a literal of the form x ≥ v (x ≤ v) is entailed by any other literal x ≥ v′ (x ≤ v′)

s.t. v < v′ (v > v′). Thus, we only keep the literal with the lowest (highest) bound.

For example, clause {x ≤ 1, x ≤ 2, x ≥ 3, x ≥ 4, . . . } is simplified to the equivalent

clause {x ≤ 2, x ≥ 3, . . . }.

≤≥: if a clause contains two literals x ≤ v1 and x ≥ v2, s.t. v2 − v1 = 2, then these

two literals can be replaced by a single literal x 6= v2 − 1. For example, clause

{x ≤ 1, x ≥ 3, . . . } is simplified to the equivalent clause {x 6= 2, . . . }.



CHAPTER 3. CONTEXTUALISING AND SIMPLIFYING CLAUSES 24

Applying these rules to our clause {how[5]6=-3, how[3]6=3, how[3]≤2} yields the one

ranked 4th in Table 2.2: {how[5]6=-3, how[3]6=3}, since how[3]≤2 entails how[3]6=3, and is

thus eliminated by the 6= rule.

Note that all simplifications are done after renaming the introduced variables. This

is useful, as literals that reference different introduced variables may later become a sin-

gle literal. This happens often in free pizza as, for example, the sum function expects

integer variables, but in the model receives Booleans. Each Boolean variable is coerced

by the compiler to be integer by introducing a new integer variable and then posting

a bool2int predicate which equates the Boolean to the integer one. For the expression

sum(p in PIZZA)(how[p]=-v), both the original Boolean variables and the introduced inte-

ger variables refer to the expression "how[p]=-v" in the model. However, before renaming,

the literals may appear different (e.g., X INTRODUCED 45 =false and X INTRODUCED 53 <=0)

even though they mean the same thing (how[p]6=-v). By performing the simplification

after the renaming, both variables are known to be (or come from) a Boolean expression,

and are thus simplified to how[p]6=-v. Interestingly, if these simplifications had been ap-

plied to the clauses in Table 2.2, Shishmarev et al. would have realised that clauses 2, 8

and 9, can be further simplified to {how[7]6=3, how[1]6=-3}, {how[6]6=3, how[1]6=-3} and

{how[5]6=-3, how[4]6=3}.

3.4 Limitations of Renaming and Simplifying Clauses

One of the limitations of the approach described in the previous sections is that the recon-

struction of expressions is purely syntactic. As a result, if a path points to a span of text

that is in a user-defined function or predicate, the text will reference the parameters of this

function or predicate, rather than to the top-level model variables which were passed as ar-

guments. For example, a decomposition of the alldifferent(array[int] of var int: x)

predicate present in the MiniZinc library, will contain the expression x[i]6=x[j]. If the

model contains a call to this predicate, such as alldifferent(y), our purely textual ap-

proach is not able to rename x to y in any clauses resulting from this constraint. Therefore,

modellers will not be able to distinguish between different invocations of the same pred-

icate. To avoid this problem, for our current experiments, we manually hoisted these

variables into the model and replaced any calls to these functions or predicates with their

definitions in terms of these model-level variables. For the example above, the decompo-

sition of alldifferent(array[int] of var int: x) predicate for an array of integers is as

follows:

predicate all_different_int(array[int] of var int: x) =

forall(i,j in index_set(x) where i<j)(x[i]!=x[j]);

To be able to rename x to y, we can replace constraint alldifferent(y) in the model

with its decomposition, and obtain the following:

constraint forall(i,j in index_set(y) where i<j)(y[i]!=y[j]);

A second limitation of our approach is that, variable paths approach do not always

provide us with information about the expression types that are derived from the text



CHAPTER 3. CONTEXTUALISING AND SIMPLIFYING CLAUSES 25

in a function/predicate. For example, for the radiation1 problem, after renaming and

simplifying the clauses, the method obtains the following two literals: ’Q[2,6,2]’>=2,

Q[2,6,2]>=5. The quoted literal is directly obtained from the textual model and the type

of variable Q is unknown to the simplifier, even though a manual inspection can easily show

it refers to the decision variable Q, which is the same variable referred to by the second

literal in the clause. Since the current implementation cannot be certain that ‘Q[2,6,2]‘

is the same as Q[2,6,2], certain simplifications are unavailable and we cannot infer that

these two literals could be simplified to just Q[2,6,2]>=2.

These limitations could be mitigated by instrumenting the MiniZinc compiler to collect

and output more information about compilation. For instance, the mapping of the variable

y to the local variable x is explicit to the compiler in the example above, but the compiler

does not output it in the FlatZinc file. This relationship is not present in the variable

path. Extending the compiler to record extra information (such as the variable type, and

the mapping of a variable to a local variable in a function/predicate call) would make it

possible for us to obtain more accurate variable names and types.

3.5 Connecting Clauses to the Constraints in the Model

One of the main achievements of Shishmarev et al. was to use the learnt clauses to identify

the need to strengthen the constraint in line 12 of the model. This need was discovered

by realising that some of the top clauses were direct consequences of a single constraint;

the one in line 12. To do this, Shishmarev et al. manually linked the learnt clauses (or

more accurately, their literals) to the model constraints they were derived from.

To automate this step, we instrumented Chuffed to record the solver-level constraint

directly responsible for adding any literal to the clause database. That is, for each ex-

planation S → ` added by a constraint with identifier idc, we record that ` was directly

generated from idc. Then, when a clause Cl is generated, we obtain the constraint iden-

tifier of each literal ` in Cl , ask that constraint to provide us with the explanation S that

was used to generate `, and recursively apply the same method for all literals in S. This

allows us to trace back all constraints involved in generating the literals of Cl .

Consider, for example, {how[5]6=-3, how[3]6=3}, for which our method identifies a single

solver-level constraint as responsible for all literals. Using constraint paths, our method

can trace it back to the expression how[p1]=-how[p2] on line 14 of free pizza, with loop

variables p1=5 and p2=3. Thus, our automatic method successfully identifies the line in

which the constraint responsible for the clause appears.

3.6 Summary

This Chapter first discussed our method that renames the clauses to be expressed in terms

of model-level variables rather than solver-level. For this purpose, we developed a method

1https://github.com/MiniZinc/minizinc-benchmarks/tree/master/radiation



CHAPTER 3. CONTEXTUALISING AND SIMPLIFYING CLAUSES 26

that uses variable paths technique, developed by Leo et al. [42], which traces the model-

level variables throughout compilation and keeps track of the original variable names.

Renaming literals have several advantages: First, it enables us to detect general patterns

from the clauses, because compiler introduces a new variable for each array position of a

decision variable (e.g. for the array positions how[5] and how[3], it introduces the variables

X INTRODUCED 4 and X INTRODUCED 5), thus without renaming we will not be able to detect

the model-level decision variables that are involved in each clause, and that is required

for our method to generate patterns, as you will see in Chapter 4.2. Also, renaming helps

us connect the variable names across different instances. This happens because, the same

model-level variable names may correspond to different solver-level variable names, and

without renaming we will not be able to match the same decision variables. This becomes

clearer in Chapter 4.3. Afterwards, we discussed our method for simplifying clauses. This

is achieved by applying some simplification rules on the clauses. The main purpose of this

step is to reduce the length of the clauses, which improves the efficiency of our framework

to generate patterns and infer facts, as you will see in Chapters 4 and 5, respectively. Also,

this helps us obtain more patterns, and a more accurate ranking for them. In addition,

since simplifications are performed after renaming the introduced variables, some of the

literals may later become a single literal. Lastly, we discussed our method for connecting

clauses to the model constraints that add any literal to the clause. To achieve this, we

instrumented Chuffed to record the solver-level constraint responsible for adding any literal

to each clause. If a single clause is responsible for the occurrence of the clause, it may

suggest that, this constraint is not propagating strongly, and we may reformulate it to

improve its propagation. However, if multiple clauses are responsible for the occurrence

of a clause, it may suggest that information is not explicitly expressed in the model, and

by adding effective redundant constraints, we may be able to fix this issue.



CHAPTER 4. FINDING PATTERNS AMONG CLAUSES 27

Chapter 4

Finding Patterns among Clauses

4.1 Introduction

As described in Chapter 3, our automatic method can make a clause clearer, simpler and

can visually connect it to the constraints it came from. However, a single clause may not

be worth exploring, even if it led to a considerable search reduction. This is because clauses

are in practice quite complex, even after renaming and simplification, and a single clause

might only appear in a particular instance or search. It would therefore be preferable for

the modeller to have stronger evidence before starting to explore the model constraints

that are responsible for creating the top clauses. The evidence can be much stronger

if several clauses with a similar pattern can be found to have significantly reduced the

search. For example, Shishmarev et al. [68] focused on clause 4 ({how[5]6=-3, how[3]6=3})
in Table 2.2 not only because it was one of the top clauses and it was short (and thus

easier to understand), but importantly, because it was part of several similar clauses in

the top 10 (which they identified as clauses 5, 6, 7, and 10).

It is easy to show that these five clauses share the same pattern: {how[A]6=-B, how[C]6=B},
where A and C are pizzas, and B is a voucher. For example, clause 4 can be obtained by

name/constant mapping {A/5, C/3, B/3}. In fact, with the simplification rules described

in Chapter 3, all clauses in Table 2.2 except 1 and 3 can be shown to share this pattern

and to come from the same constraint. Grouping clauses with the same pattern can help

modellers in two ways: (a) while individual clauses may not seem to contribute much to

the overall search reduction, a group of clauses with the same pattern may do so; and (b)

a pattern may identify a general constraint, i.e., something that is true for a whole range

of parameters, and may therefore suggest a redundant constraint that can be added to the

model.

To obtain the patterns that are more likely to apply to the whole model, not just

one instance, our method considers multiple instances of the problem. It also considers

multiple search strategies, as there may exist some clauses that have a high rank but can

only be discovered using a specific search strategy. After obtaining the patterns across

different searches and instances, our method further clusters the clauses under each pattern

based on the constraints responsible for creating them. This helps us detect whether all

the clauses in the cluster are coming from a single constraint or multiple ones. If one



CHAPTER 4. FINDING PATTERNS AMONG CLAUSES 28

constraint is responsible for the occurrence of a highly ranked cluster, it may suggest that

the constraint does not strongly propagate, and we may be able to fix this by reformulating

that constraint. However, if multiple constraints are associated to a cluster, it may be a

sign that information is not explicitly expressed in the model, and to fix this we can add

a redundant constraint to the model.

The structure of this chapter is as follows: Section 4.2 introduces our basic method

for automatically generating patterns. Section 4.3 discusses how to find patterns across

multiple search strategies and instances. Section 4.4 discusses the clustering of clauses

under each pattern, and Section 4.5 discusses the limitations of our approach and, lastly,

Section 6.5 provides a summary for this chapter.

4.2 Finding Patterns among Clauses

We say that clause c1 is more general than the clause c2 (c1 � c2) if and only if all the

clauses that are covered by c1 are also covered by c2 [25], and the most specific (or least)

generalisation (MSG) of a set of clauses is the least general clause that is more general

than all the clauses in the set [56]. We define a pattern as the MSG of a set of clauses. For

example, suppose we have a set of clauses, containing {X[2]6=X[3], X[2]=5}, {X[7] 6=X[8],

X[7]=9} and {X[1]6=X[4], X[1]=5}. The clauses {X[A] 6=X[B], X[D]=C} with mappings {A/2,

B/3, D/2, C/5}, {A/7, B/8, D/7, C/9} and {A/1, B/4, D/1, C/5}, and the clause {X[A]6=X[B],

X[A]=C} with mappings {A/2, B/3, C/5}, {A/7, B/8, C/9} and {A/1, B/4, C/5} are more

general than all the clauses in the set. To automatically obtain patterns, our method

first extracts the names of the model’s decision variables that appear in each clause. This

helps us detect the objects (constants and pattern variables) that appear in the clause.

For instance, assuming that we have the clause {how[8]=-3, how[3]=-2, used[3]=false},
our method first extracts the decision variable names {how, used}. In this example, the

clause refers to the pizzas 8 and 3, since the decision variable how is indexed by pizzas.

Also, vouchers 2 and 3 appear in this clause, because the decision variable how is a voucher

parameter (how[8] is assigned to voucher 3 in the first literal), and the decision variable

used is indexed by vouchers. We refer to the type of objects such as pizza and vouchers

as type.

To be able to automatically detect the decision variable names and the types that

appear in each pattern, For this purpose, we first manually modified the MiniZinc model

to express the actual type of decision variables (e.g. pizza, voucher) as enumerated types,

and we also instrumented the MiniZinc compiler to output information about decision

variables and parameters that appear in the model, we refer to this as type information.

Specifically, it outputs the enumerated type/types of the variables and parameters, and

also the types of their indices (e.g. it provides us the information that how is indexed by

pizzas, and its enumerated type is voucher). Using the type information, our method first

extracts the decision variable names that appear in the pattern, for our example it first

extracts {how, used}. From the type information our method detects that the decision

variable how is indexed by pizzas and its enumerated type is a voucher, and decision

variable used is indexed by vouchers, and its type is Boolean. Then, it extracts all the



CHAPTER 4. FINDING PATTERNS AMONG CLAUSES 29

pizza and voucher objects, for this example, the pizza objects are A and C, and the voucher

objects are B and D. Also, using the type information, it extracts all the model parameters

that are indexed by these objects (e.g. price is indexed by pizzas, price[1] represents

the price of pizza 1). Algorithm 3 describes our method of detecting the objects of the

same type, and the parameters that are indexed by these types, and how this information

is used to learn facts.

To be able to detect the decision variable names and the object types associated to

them, we need to first extract all the possible model decision variable names, the type

of their indices and the type of their domains. For this purpose, we first modified the

MiniZinc model to express the actual type of decision variables (e.g. pizza, voucher) as

enumerated types (manually). We also instrumented the compiler to output information

about the decision variables and parameters that appear in the model. Specifically, it

outputs the type/types of the variables and parameters themselves and also the type of

their indices. This type information can help us obtain correct patterns.

Example 5. Consider the clauses {how[8]=-3, how[3]=-2, used[3]=false} and

{how[6]=-4, how[4]=-2, used[4]=false}. Without knowing the type information, we could

obtain the pattern {how[A]=-B, how[B]=-2, used[B]=false}, with mappings {A/8, B/3}
and {A/6, B/2}. However, using type information, we know that the second B is a pizza,

whereas the first and third B are vouchers. They should therefore not be mapped to

B; instead we need to assign different variables for pizza and voucher objects, obtaining

the pattern {how[A]=-B, how[C]=-2, used[B]=false}, with mappings {A/8, B/3, C/3} and

{A/6, B/2, C/2}, where A and C are pizzas and B is a voucher.

After extracting the object types that appear in each pattern, our next step is to find

similar clauses that can form a pattern. To achieve this, our method sorts the literals in

each clause by variable name, operator and constant value. Finally, for all clauses with the

same length that have the same sequence of literal operators, and the same sequence of

variable names, it computes the MSG for all its subsets, based on the algorithm designed

by Plotkin et al. [57].

Example 6. Given the following two (renamed, simplified and sorted) clauses for our

free pizza instance:

{how[1]=-1, how[2]=-1, how[3]=-1, how[4]=-1, how[6]6=1} and

{how[1]=-2, how[2]=-2, how[5]=-2, how[7]=-2, how[6]6=2}, have the same sequence of

literal operators ({=, =, =, =, 6= }) and the same sequence of decision variable names

({how[ ], how[ ], how[ ], how[ ], how[ ]}). Thus, our method would compute the pat-

tern {how[1]=-A, how[2]=-A, how[B]=-A, how[C]=-A, how[6]6=A}, which can be mapped

back to the clauses by applying the mappings {A/1, B/3, C/4} and {A/2, B/5, C/7}, re-

spectively, where B, C are known to be pizzas and A a voucher. However, neither of these

clauses would form a pattern with {how[1]=-2, how[2]=-2, how[6]6=2}, as it has a differ-

ent number of literals, or with clause {how[1]=-1, how[2]=-1, how[3]=-1, used[1]=true,

how[6]6=1}, as it has a different sequence of variable names.



CHAPTER 4. FINDING PATTERNS AMONG CLAUSES 30

Formally, each clause cl is stored as a tuple 〈id, seq lits, red, cons〉 containing the

clause identifier id, its renamed, simplified and sorted sequence of literals seq lits, its

associated search reduction red, and the constraints cons that generated it. A pattern pt

is stored as a tuple 〈p id, p seq lits, maps, p red, p cons〉 containing the pattern identifier

p id, its sequence of literals p seq lits, a set maps of tuples of the form 〈map, id〉, where

applying map to p seq lits yields the sequence of literals in the clause identified by id,

the total search reduction p red achieved by its clauses (the sum of the red of each clause

identified by maps), and the set of constraints cons that generated any of its clauses (the

union of the cons of each of the clauses identified by maps).

Note that a clause may appear in many different patterns. In fact, this will often

be the case, as our algorithm can be seen as computing a pattern for each subset of the

set of (renamed, simplified and sorted) clauses that have the same sequence of (a) literal

operators and (b) variables types. The algorithm starts with the set of renamed, simplified

and sorted clauses computed for a given instance as described in previous sections, and

an empty set of patterns. Then, for every clause cl = 〈id, seq lits, red, cons〉 in clauses

it performs the following steps:

1. Transform cl into pattern pt = 〈pid, seq lits, {〈[], id〉}〉, where p id is a new

identifier.

2. Set new patterns to ∅

3. For each pattern pt′ = 〈p id′, p seq lits, maps, p reds, p cons〉 in patterns with the

same sequence of literal operators and variable types as seq lits:

(a) Find a most specific generalisation p seq lits′ for seq lit and p seq lits, with

associated mapping maps. Algorithm 2 shows our steps to compute the MSG.

(b) Add 〈pid′, p seq lits′, maps ∪ 〈map, id〉, p red+red, p cons∪cons〉 to new patterns

4. Merge patterns and new patterns. While the pattern pt is known to be different

from all others in patterns (since pt is essentially a clause and no two clauses are

identical), it is possible to have a pattern p 1 in new patterns with a sequence of

literals identical (up to variable renaming ren) to pattern p 2 in patterns. We can

detect this when merging patterns and new patterns in step 4, and simply merge

p 1 and p 2 (by first applying ren to them, and then computing the unions of their

mapping and constraint sets, and summing up their reductions).

5. Add pt to patterns.

Once all patterns are computed, our method ranks the results by the amount of reduc-

tion associated with each pattern and presents it to the modeller. This allows modellers

to notice clauses that may not result in significant search reductions when considered

individually, but do when considered together as a group in a pattern.

Algorithm 2 shows our method to compute the MSG, given a pattern and a clause.

The inputs of the algorithm are a sequence of literals seq lit corresponding to the clause



CHAPTER 4. FINDING PATTERNS AMONG CLAUSES 31

Algorithm 2 Finding MSG of a clause and a pattern

Input: seq lit, p seq lits

Output: p seq lits′

1: var ← "A"

2: var old ← ∅
3: p seq lits′ ← p seq lits

4: types ← get types(p seq lits)
5: rep maps ← ∅
6: objects1, objects2 ← ∅
7: foreach type ∈ types do
8: objects1←extract objects(seq lit, type)
9: objects2←extract objects(p seq lits, type)

10: length ← |objects1|
11: foreach index ∈ {0.. length} do
12: if objects1[index] 6= objects2[index] then
13: if 〈objects1[index], objects2[index]〉 6∈ rep maps then
14: rep maps ← rep maps ∪ {〈objects1[index], objects2[index]〉: var}
15: update(p seq lits′, index, var)
16: increment(var)
17: else
18: var old ← rep maps[〈objects1[index], objects2[index]〉]
19: update(p seq lits′, index, var old)

20: return(p seq lits′)

and p seq lits corresponding to the pattern, and the algorithm outputs p seq lits′ cor-

responding to the generated pattern. Line 1 introduces var which represents a pattern

variable and initialises it to "A". Line 2 introduces and updates var old, which repre-

sents an existing pattern variable. Line 3 introduces and initialises p seq lits′. Line 4

calls get types, which given a sequence of literals, extracts the types that appear in the

sequence. For example, assume p seq lits= {how[A]=B, how[C]=D, how[E]6=F}, get types

returns {pizza, voucher}, because the decision variable how is indexed by pizzas and

it represents vouchers itself. Line 5 introduces rep maps which maps a tuple to a pat-

tern variable. The first element in the tuple represents a constant number in seq lit

that is replaced by a variable in p seq lits′, and the second element represents a con-

stant number or a pattern variable in p seq lits that is replaced by the same vari-

able in p seq lits′. For example, assume seq lit={how[1]=5, how[1]=6, how[2]6=1} and

p seq lits = {how[A]=B, how[A]=7, how[2]6=C}, and the generated pattern is p seq lits′

= {how[A]=B, how[A]=C, how[2]6=D}, then rep maps will contain {〈1, "A"〉:"A",

〈5, "B"〉:"B", 〈6, 7〉:"C", 〈1, "C"〉:"D"}. This helps us replace the same tuple with the

same variable, for the example above, the tuples 〈1, "A"〉 are both replaced with the pat-

tern variable "A". Line 6 introduces objects1 and objects2, which contain the objects

that appear in seq lit or p seq lits, respectively.

Line 7 goes through each type in types. First, Line 8 calls extract objects that, given

a sequence of literals and a type, returns all the constants or pattern variables of that

type, and it updates objects1 to contain all the objects of the type type that appear in



CHAPTER 4. FINDING PATTERNS AMONG CLAUSES 32

the seq lits. Similarly, Line 9 updates objects2. Then, Line 10 updates length to the

length of objects1. Note that the length of the objects1 and objects2 are the same,

because we assumed that seq lit and p seq lits have a similar structure. Line 11 goes

through the indices of objects1 and objects2. Line 12 checks if objects1[index] and

objects2[index] are different, in that case they should be replaced by a variable in the

p seq lits′. Line 13 checks if the tuple 〈objects1[index], objects2[index]〉 does not exist

in rep maps. In that case, Line 14 maps the tuple to var and updates the rep maps, and

then Line 15 updates p seq lits′ by replacing the variable or constant at the index index

by var. Then, Line 16 calls the increment function that updates var to the next character

alphabetically. However, if the tuple exists in rep maps, Line 2 reads the value that the

tuple is mapped to, and updates var old. Line 19 updates the object at the index index

in p seq lits′ to var old.

4.3 Finding Patterns across Searches and Instances

Finding a pattern whose cumulative search reduction is significant for a given instance,

provides the modeller with some confidence regarding the importance of the pattern and

the possibility of generalising it to a model constraint. However, confidence will be much

stronger if clauses with the same pattern appear in different instances of the same model,

as this suggests the pattern and its associated information holds across different input

data and is, thus, more likely to be a general property of the model. Confidence would be

even stronger if the pattern significantly reduced the search across different searches, as

this would indicate the associated model modification may lead to speed-ups for all those

searches.

To achieve this we have implemented a simple algorithm demonstrated by Figure 4.1.

For each instance, the algorithm takes the union of all clauses obtained by the given set of

searches, and then computes the patterns associated to them. After finding the patterns

for multiple search strategies (search strategies 1 and 2 in the figure), our method computes

the intersection of patterns from different instances of problem. This helps us to rule out

the instance-specific clauses, and focus on the clauses that appear across instances, which

can be generalised to the model.

4.4 Clustering the Clauses under each Pattern

As explained in Section 2.5, Shishmarev et al. realised that some of the top clauses

are direct consequences of a single constraint in the model. This helped them manually

reformulate that constraint to express the learnt information in a stronger way. In other

case, they realised that the top clause results from multiple constraints in the model,

and, therefore the information associated with the clause is not explicitly expressed in the

model. This helped them to model a new redundant constraint that they then added to

the model to capture that information. To achieve this automatically, our method further

clusters the clauses under each pattern by the constraints they come from, that is, by



CHAPTER 4. FINDING PATTERNS AMONG CLAUSES 33

Figure 4.1: Overview of our method for finding patterns across searches and instances

placing the clauses that result from the same constraints into the same cluster. Afterwards,

it ranks the clusters based on the number of associated constraints, in ascending order.

Whenever a cluster of clauses is associated to a single constraint, the modeller might be

able to reformulate that constraint to improve its propagation and, consequently, improve

the solving time. If multiple constraints are responsible, the modeller might need to

add information that is not explicitly expressed in the model in the form of a redundant

constraint.

For example, Table 4.1, shows the top pattern and its clusters for the free pizza

problem with the following data:

1 n = 10;

2 price = [70, 10, 60, 65, 30, 100, 75, 40, 45, 20];

3 m = 4;

4 buy = [1, 2, 3, 3];

5 free = [1, 1, 2, 1];

The Reduction column represents the estimated search space saved by the pattern,

and the next column (Pattern) represents the pattern itself. Rows 2 to 4 represent 3

clusters under this pattern. The mappings associated to the clauses under each cluster

are provided in the column Maps, where each map corresponds to a single clause under

the pattern. Lastly the part of the constraint paths responsible for a cluster of clauses is

provided by the last column (Constraints). For example, 14.58-14.74 points at a location

in the model from line 14, column 58 to line 14, column 74, which is the expression

how[p1]=-how[p2].

Note that the first cluster, which has the largest contribution in reducing the search

space, is associated with a single constraint in line 14. This suggests that the constraint

in line 14 should be reformulated to improve the search.

4.5 Limitations

The current implementation of the most specific generalisation of a pattern is very limited,

as it (a) only matches sequences of literals that have the same sequence of operators and



CHAPTER 4. FINDING PATTERNS AMONG CLAUSES 34

Table 4.1: The top pattern and its clusters for an instance of free pizza

Reduction Pattern Maps Constraints

98053 how[A]6=B how[C]6=-B

89041 ”
1851:{A=3 C=5 B=3}
562:{A=10 C=4 B=2}

...
14.58-14.74

7850 ”
5632:{A=2 C=8 B=3}
2125:{A=1 C=6 B=3}

...

13.30-13.76
11.43-11.80
13.30-13.54
14.58-14.74

1162 ” 7941:{A=1 C=6 B=2}

13.33-13.76
11.43-11.80
17.27-17.65
13.33-13.57

variable types, and (b) only matches literals appearing in the same position in each pair

of clauses. Due to (a) we might miss a relationship between clauses that have different

numbers of literals but share a parametric pattern. For example, clauses {w[1]<3,w[2]<3},

{w[1]<3,w[2]<3,w[3]<3} and {w[1]<3,w[2]<3,w[3]<3,[w4]<3}, share the pattern {w[x]<3|

x ∈ 1..n}.

Due to (b) we might miss patterns that were obscured by the sorting or renaming of

literals. For example, for clauses {w[10]=1,w[20]=2} and {w[40]=2,w[50]=1} we currently

only find a pattern with sequence of literals {w[A]=B,w[C]=D}, and maps {A/10,B/1,C/20,

D/2} and {A/40,B/2,C/50,D/1}, while matching the first and second literal of each clause

would yield a more specific pattern with sequence {w[A]=1,w[B]=2} and maps {A/10,C/20}

and {A/50,C/40}. More sophisticated algorithms (such as the anti-unification of [38])

can handle different numbers of literals or matching any literals with the same operator.

However, given the computational cost, it might only be worth it for top-ranking clauses.

4.6 Summary

This chapter introduced our method for automatically computing patterns from the learnt

clauses, which helps us represent a large group of clauses concisely and rank the clauses

more accurately. Then, it discussed our method for finding patterns across searches and

instances, which can help us obtain more general patterns that are valid for the whole

model, rather than just an instance of the problem. Afterwards, this chapter discussed

our method for clustering the clauses under each pattern. Using our method, if a single

constraint is responsible for creating a cluster, this may suggest that the constraint should

be reformulated to improve the search. If multiple constraints are responsible for a clus-

ter, this may suggest that adding a redundant constraint to the model may improve its

execution. Then, it identified the limitations of our method, which cause it to miss some

patterns. To mitigate this problem and obtain more accurate patterns, more accurate

algorithms such as anti-unification, can be used in future.



CHAPTER 5. LEARNING FACTS FOR PATTERNS 35

Chapter 5

Learning Facts for Patterns

5.1 Introduction

Clauses only contain information regarding instance variables, even though their correct-

ness may also require particular values for the instance parameters which we call facts.

This information was manually obtained by Shishmarev et al. [69]. For example, for

clause {how[5]6=-3, how[3] 6=3} they considered the fact that pizza 3 is more expensive than

pizza 5, and for {how[1]=-1, how[2]=-1, how[3]=-1, how[4]=-1, how[5]=-1, how[1]=-2,

how[2]=-2, how[3]=-2, how[4]=-2, how[5]=-2, how[6]≤0, how[6]≥3} they obtained that

pizza 6 is more expensive than any other pizza in the clause.

When generalising a set of clauses to a pattern, these additional facts can serve as

conditions under which the pattern is indeed a valid (implied) constraint. For exam-

ple, let us again consider the pattern {how[A ]6=-B , how[C ] 6=B } or, in implication form,

how[A ]=-B → how[C ]6=B . This pattern is clearly not valid for arbitrary values of pattern

variables A, B, and C. However, for all clauses that contributed to the pattern (includ-

ing clauses 2, 4-10), it is true that pizza A is cheaper than pizza C. This yields a valid

constraint: if pizza A is cheaper than pizza C, then for any voucher B, if we use A with

voucher B, then we cannot get pizza C for free with voucher B. If we could automatically

infer this constraint, then we could present it to the user as a candidate to be added to

the model (expressed as the contrapositive of the statement above to make it more similar

to the original formulation):

constraint forall(A,C in PIZZA , B in VOUCH) ((how[A]=-B /\ how[C]=B)

-> price[C]<=price[A]);

In the free pizza model, the parameter price is indexed by pizzas, and the objects A

and C are pizzas. This suggests that by comparing the prices of the pizzas that appear in

the pattern, we may find a fact that is relevant to the pattern.

Thus, our first step towards automatically obtaining such facts is to detect, in each

pattern, the pattern variables of the same type. We then extract the model parameters

that are indexed by these objects whose relations may be relevant to the pattern. For

example, for pattern how[A ]=-B → how[C ] 6=D , where variables A and C are both pizzas,

and B and D are vouchers, our algorithm extracts A and C as objects of the same type

(since they are both pizzas), and similarly, it extracts B, D as vouchers. Then, it detects



CHAPTER 5. LEARNING FACTS FOR PATTERNS 36

the model parameters that are indexed by pizzas and vouchers, which are {price}, and

{buy, free}, respectively.

The second step is to develop a method to infer facts for each pattern. This method,

given the extracted objects and parameters, and a predefined set of relations such as

{≥, =, <}, computes the percentage of clauses under the pattern whose parameters

or objects satisfy that learned relation. For our example, it may infer facts such as

price[C]>price[A] for 100% of the learned clauses, and A>C for 50% of the clauses. Note

that since this method only uses the clauses learnt from the solver, it might miss clauses

(and thus facts) that are valid but not learned. To improve the accuracy of our method

we implemented a second method to learn facts based on the ConAcq algorithm [12]

described in Chapter 2.7. This method first extracts a full set of positive and negative

examples that satisfy or violate the pattern. Then, the full set of examples are passed to

our implementation of ConAcq, which generates facts.

The structure of this chapter is as follows: Section 5.2 provides an overview of both of

our methods and then discusses our method that, for each pattern, extracts the relevant

objects and model parameters that are indexed by these objects. Section 5.3 discusses

our percentage-based method to compute facts. Section 5.4 discusses our ConAcq-based

method to compute facts. Section 5.5 describes the limitations of our framework to com-

pute facts. Section 5.6 provides a summary of this chapter.

5.2 Finding Relevant Facts for each Pattern

To relate the background information to each pattern, our first step is to find objects of

same type. For example, assume we have a pattern {how[A]6=-B, how[C]>B, used[D]=false}
for the free pizza example 3, the objects A and C are pizzas, and the objects B and

D are vouchers. Then, our next step is to detect the parameters that are indexed by

the objects that appear in each pattern. For our example, pizzas and vouchers are the

objects that appear in the pattern, and pizzas are indexed by the parameter price, and

vouchers are indexed by the parameters buy and free. This suggests that the relationships

between {price[A] and price[B]}, {buy[B] and buy[D]} and {free[B] and free[D]}, may

be relevant facts for the pattern that explain its occurrence. In this section, we describe

our method that performs these two steps.

To automate this, as described in Chapter 4.2, we instrumented the MiniZinc compiler

to output type information that gives us information about decision variables and param-

eters that appear in the model. Specifically, it outputs the enumerated type/types of the

variables and parameters, and also the types of their indices. Using the type information,

our method first extracts the decision variable names that appear in the pattern, and the

associated types to each decision variable. Then, it extracts all the objects of that type.

Also, using the type information, it extracts all the model parameters that are indexed

by these objects. Algorithm 3 describes our method of detecting the objects of the same

type, and the parameters that are indexed by these types, and how this information is

used to learn facts.



CHAPTER 5. LEARNING FACTS FOR PATTERNS 37

Algorithm 3 Algorithm to find the relevant facts for each pattern

Input: pattern=〈p id, p seq lits, maps, p reds, p cons〉, model, data

1: variable names←extract variable names(p seq lits)
2: foreach variable name ∈ variable names do
3: types←get type info(variable name)
4: foreach type ∈ types do
5: objects←extract objects(p seq lits, type)
6: parameters←extract parameters(type)
7: facts%←infer facts%(objects, parameters, maps)
8: facts ConAcq←infer facts ConAcq(objects, parameters, pattern, model, data)

9: return(facts%, facts ConAcq)

The input of the algorithm is a MiniZinc model and a pattern as defined in Chapter 4,

that is, a tuple containing a pattern ID (p id), a sequence of pattern literals (p seq lits),

the maps under the pattern (maps), where each map represents a clause that matches

the pattern, the estimation of the reduction in search space associated with the pattern

(p reds) and the model constraints associated to the pattern p cons. Line 1 extracts the set

of variable names that appear in the pattern. For example, for the pattern {how[A]6=-B,

how[C]6=B}, the extract variable names function returns the set {"how"}. Line 2 goes

through each variable name, and Line 3 calls the get type info function that returns all

the types associated to variable name and stores them in types. For our example, the

decision variable "how" is indexed by pizza objects, and it represents a voucher object (e.g.

how[1]=2, the index 1 is a pizza and 2 is a voucher). Line 4 iterates through the types.

Then, Line 5 calls the extract objects function, which extracts all the objects of type

type that appear in p seq lits (i.e. pattern), and stores them in objects. For example,

for the pattern above in the first iteration the type is pizza, and the objects will be A

and C. Line 6 calls the extract parameters function that returns the parameters that are

indexed by type, and stores them in parameters. For example, for the type pizza, the

parameters will be set to {price}, and for the type voucher it will be set to {buy, free}.
Then, Line 7 calls the infer facts% function, which takes objects, parameters and maps

as input arguments, and returns the learned facts, which is stored in facts%. This method

corresponds to our percentage-based approach, which is described in Section 5.5. Line 8

calls the infer facts ConAcq function that takes objects, parameters, pattern and model

as input arguments, and returns the learned facts which are stored as facts ConAcq. This

corresponds to our ConAcq-based approach, which is described in Section 5.6.

After extracting the objects and parameters related to each pattern, we define the

relations that we are looking for, that may hold between these objects and parameters by

Definition 1. These relations are embedded into both of our methods.

Definition 1. The type of relation between objects and parameters of the same type that

our method considers to find relevant facts for each pattern:

• Unary relations X=0, X<0 or X=max(p), p[X]=0, p[X]<0 or p[X]=max(p): when there

is object X in the pattern, and model parameter P is indexed by X



CHAPTER 5. LEARNING FACTS FOR PATTERNS 38

• Binary relations X=Y, X6=Y, p[X]=p[Y], p[X]6=p[Y], p[X]≤p[Y], p[X]=-p[Y]: when

there are two objects X and Y of the same type in a pattern, and model parameter P

is indexed by X and Y

5.3 Inferring Facts: A Percentage-based Approach

As mentioned before, our aim is to discover facts that hold for all the clauses under

each pattern. However, since patterns may contain many clauses, the facts are unlikely to

always be true for all clauses. Consider the pattern {how[A ] 6=-B , how[C ]6=B }, from our free

pizza example. Our method infers the fact price[C]>price[A] for 100% of the clauses.

We therefore go through each pre-defined relation defined by Definition 1 and compute

the percentage of clauses in the pattern for which the fact holds, and only report facts for

which that percentage is above a certain threshold. Also, if two facts are complementary,

such as X 6=Y and X=Y, we report the fact with the higher percentage.

Algorithm 4 infer facts%

Input: objects, parameters, maps
Output: all facts

1: relations← {“ = “, “ > “, “ ≥ “}
2: fact, fact param, all facts ← ∅
3: fact p, fact param p ← ∅
4: foreach relation ∈ relations do
5: foreach 〈O1, O2〉 ∈ objects do
6: 〈fact, fact p〉←get fact(O1, O2, relation, maps)
7: all facts←〈fact, fact p〉 ∪ all facts

8: foreach param ∈ parameters do
9: 〈fact param, fact param p〉←get fact param(O1, O1, param, relation,

maps)

10: all facts←〈fact param, fact param p〉 ∪ all facts

11: return(all facts)

Algorithm 4 provides the infer facts% function, called from Algorithm 3. For sim-

plicity, in this algorithm we only describe our method of finding the binary relationships,

which can be generalised to other types of relations in a straight forward way. A similar

approach is used to find unary relationships, as briefly discussed below.

The inputs of the algorithm are objects, parameters and maps, described in Algo-

rithm 3. The algorithm returns a set of tuples (all facts), where each tuple is of the

form of 〈fact, fact p〉, fact is a relation between two objects or parameters (such as

price[C]>price[A] or A<C), and fact p is the percentage of the maps (clauses under the

pattern) for which that fact holds.

Line 1 defines the relations considered for the facts. In our implementation, we

consider the relations {=, >,≥}. The complement of these relations {6=,≤, <} can also be

learnt, which we will discuss below. Line 4 defines a nested loop that considers for every

relation in each iteration of the loop, every pair of object 〈O1, O2〉 and does the following.



CHAPTER 5. LEARNING FACTS FOR PATTERNS 39

In Line 6, the get fact function checks the percentage of the clauses (corresponding to

maps) for which O1 rel O2 is valid. If the percentage is above 50% it returns a tuple

consisting of the fact O1 rel O2 and its percentage (fact p). For example, 〈A > B, 60%〉.
If the percentage is less than 50% it returns the complement of that relation and its

percentage. The get fact function can be also used to infer unary relations with predefined

values such as ∅, max(p) or min(p) for a certain pattern p. Line 7 takes the union of the

new fact with all facts, and updates all facts.

Lines 8- 10 define another loop, that calls the get fact parameter function for each

parameter, but computes relations in the form of param[O1] rel param[O2], and their

associated percentage, and again updates all facts to include the new facts.

This is a very simple but incomplete method, and it will be interesting to pursue

further research into how more general facts can be extracted automatically in a reasonable

amount of time. To improve the completeness of our method, we have defined a second

method that is described in the next section.

5.4 Inferring Facts: A ConAcq-based Approach

The percentage-based approach defined above checks if a certain fact is valid for the

clauses inferred by the solver. This method is incomplete, because depending on the

search, Chuffed may infer different sets of clauses. Therefore, we do not have a complete

set of mappings that makes a pattern a valid constraint. To improve the completeness of

our technique, we defined a second method based on the ConAcq algorithm described in

Chapter 2.7. This method obtains a full set of mappings that are valid for a given pattern

given a set of data files. To clarify, in pattern {how[A]6=-B, how[C]6=B}, any combination

of A, B, C values that makes the pattern a valid constraint, i.e. a constraint that can be

added to the original problem without removing any solution, is considered as a positive

example or a valid mapping, while any possible combination of A, B, C that is not part

of the positive examples is a negative example. We refer to the combination of positive

and negative examples as training examples. Also, since the positive and negative exam-

ples are complementary, we only obtain positive examples, and then any example that is

not covered by the set of positive examples is considered as a negative example. After

generating the training examples, the next step is to infer facts for the objects or their

associated parameters (e.g. price).

To infer facts for each pattern, our algorithm is as follows:

Algorithm 5 provides the infer fact ConAcq function, called from line 8 of Algorithm 3

to infer a more complete set of facts. The inputs of the algorithm are objects, parameters,

MiniZinc model and pattern. The algorithm returns all facts, the set of facts (such as

A>B) learnt by the system.

Line 2 goes through each pair of objects 〈O1, O2〉, and Line 3 generates all training

examples for 〈O1,O2〉 with the input pattern, as described in Section 5.4.1. Line 4 calls

the run ConAcq function. The input argument of this method is training examples, and it

outputs a set of facts, which is stored in facts, this method is described in Section 5.4.2.

Line 5 updates all facts. Then, Lines 6-9, repeat the same procedure for each parameter



CHAPTER 5. LEARNING FACTS FOR PATTERNS 40

Algorithm 5 infer fact ConAcq

Input: objects, parameters, pattern, model
Output: all facts

1: all facts, facts← ∅
2: foreach 〈O1, O2〉 ∈ objects do
3: training examples ← generate training examples(〈O1, O2〉, pattern, model)
4: facts ← run ConAcq(training examples)
5: all facts ← facts ∪ all facts

6: foreach parameter ∈ parameters do
7: training examples param← generate training examples param(training examples,

parameter)
8: facts ← run ConAcq(training examples param)
9: all facts ← facts ∪ all facts

10: return(all facts)

to infer facts related to parameters associated to each pattern, and similarly, update

all facts. Line 10 returns all facts.

5.4.1 Generating Training Examples

To automatically obtain the training examples for each pattern, our method first obtains

all the positive examples for each pattern, then each example that is not covered by this

set is considered as a negative example. The positive examples are computed using all

the possible values to which the pattern’s variables can be mapped. For example, for the

pattern how[A]=B∨how[C]=-B, the positive examples of pattern variables A, B and C are the

mappings of A, B and C that are also partial solutions of the original model. To compute

this, we could add each pattern to the MiniZinc model and output all the solutions (i.e.

positive examples). However, to ensure that the substitution of each positive example

forms a valid constraint, we need to try each constraint individually and check if by

adding that constraint to the model we remove any solution. For example, let us consider

that we add the pattern how[A]6=B∨how[C] 6=-B to the free pizza model as a constraint

and one of the solutions is {A=4, C=1, B=3}. To check if this forms a valid constraint

how[4]=3∨how[1]=-3, we first count the number of solutions of the original model, and

then add the pattern how[A]6=B∨how[C]6=-B to the model and again count the number

of solutions to see if the added constraint removes any. If no solution was removed we

consider the mapping as a positive example. This approach has the disadvantage that it

requires counting all solutions.

An easier alternative is to add the negation of a pattern to the model (a nogood pattern)

and output all the mappings that are valid for (i.e. solutions to) the nogood pattern

(which are thus non-solutions of the original pattern). By doing this we can eliminate the

solution counting step. However, by adding the nogood pattern to the model, we obtain

the positive examples for the nogood pattern rather than the clause pattern. Therefore,

the facts learned by ConAcq should be later negated to be suggested to the modeller.

Example 7. To obtain all the positive examples of the pattern clause how[A]6=B∨how[C]6=-B

for two variables A and C (because they have the same type), we added its negation



CHAPTER 5. LEARNING FACTS FOR PATTERNS 41

how[A]=B∧how[C]=-B to the free pizza model provided in Chapter 2.5. Figure 7 provides

the modified model, and the changes are highlighted and can be seen in lines 15 to 20.

1 int: n; set of int: PIZZA = 1..n; % number of pizzas wanted

2 array[PIZZA] of int: price; % price of each pizza

3 int: m; set of int: VOUCH = 1..m; % number of vouchers

4 array[VOUCH] of int: buy; % buy this many to use voucher

5 array[VOUCH] of int: free; % get this many free

6 set of int: ASSIGN = -m .. m; % i -i 0 (free/paid with voucher i or not)

7 array[PIZZA] of var ASSIGN: how;

8 array[VOUCH] of var bool: used;

9 constraint forall(v in VOUCH)(used[v]<->sum(p in PIZZA)(how[p]=-v)>=buy[v]);

10 constraint forall(v in VOUCH)(sum(p in PIZZA)(how[p]=-v) <= used[v]*buy[v]);

11 constraint forall(v in VOUCH)(sum(p in PIZZA)(how[p]=v) <= used[v]*free[v]);

12 constraint forall(p1, p2 in PIZZA)((how[p1] < how[p2] /\ how[p1]= -how[p2])

13 -> price[p2] <= price[p1]);

14

15 var 1..n: A; % represents pizza 1

16 var 1..n: C; % represents pizza 2

17 var 1..m: B; % represents a voucher

18 constraint (how[A]=B /\ how[C]=-B); % pattern

19 solve :: int_search ([A, C], input_order , indomain_min , complete) satisfy;

20 output [show(A)++","++show(C)++"\n"];

Figure 5.1: The free pizza model with the added pattern

Lines 15 to 17 introduce the variables in the nogood pattern. The pattern is added

in line 18 as a constraint. Line 19 adds the solve item, where the first argument [A, C]

describes the variables affected by this search strategy, input order states that the variables

should be chosen based on the order specified by the first argument, indomain min indicates

that the smallest value in the domain should be chosen first, and lastly complete indicates

the search strategy to be performed.

Executing the model with every data file will output all the combinations of variables

A and C. For example, let us consider the following data file:

1 n = 5;

2 price = [17, 98, 76, 36, 69];

3 m = 8;

4 buy = [4, 4, 1, 4, 2, 1, 1, 3];

5 free = [2, 4, 1, 1, 4, 2, 3, 3];

Executing the model with this data will output all the combinations of A and C that

satisfy the pattern and model constraints, that is, all the combinations of pizza 1 (A) and

pizza 2 (C) that cannot be bought using the same voucher (B). Table 5.1 provides the

output.

Table 5.1: Positive examples for pizzas

A 1 1 1 1 3 4 4 4 5 5

C 2 3 4 5 2 2 3 5 2 3



CHAPTER 5. LEARNING FACTS FOR PATTERNS 42

All combinations not present in Table 5.1, are considered as negative examples. Note

that Table 5.1 is used to infer facts for two objects of the same type (e.g. A > C). We

are also interested in finding relations between the parameters that are indexed by these

objects, as described in Algorithm 5, line 7 (e.g. price[A] > price[C]). To achieve this, we

retrieve the parameter value of each of the table entries, and generate a new set of training

examples for each parameter. For instance, for the parameter price, for the objects in

Table 5.2 we generate the following table:

Table 5.2: Positive examples for the parameter price

A price[1] price[1] price[1] price[1] price[3] price[4] price[4] price[4] price[5] price[5]

C price[2] price[3] price[4] price[5] price[2] price[2] price[3] price[5] price[2] price[3]

5.4.2 Inferring Facts using ConAcq

To obtain facts for each pattern, we implemented ConAcq in MiniZinc based on the ConAcq

algorithm described in Chapter 2.7.1, and also we developed a MiniZinc model that passes

each set of pos examples, their corresponding domain and a set of constraint library to

the ConAcq model. This model is represented by Figure 5.2. Our framework first generates

all the tables of positive examples for each pattern, as described in Section 5.4.1. It then

iteratively runs the model provided in Figure 5.2 for each table. Assume that we are

interested in finding valid facts for two integer variables X and Y, which can represent two

objects of the same type that appear in the pattern (e.g. Table 5.1), or valid values of a

parameter corresponding to two objects of the same type (e.g. Table 5.2)

1 array[int] of int: domain; % domain of X and Y

2 array[int,int] of int: pos_examples;

3 enum BIAS = {X_LESS_Y , X_GREATEREQ_Y , X_EQ_Y , X_NEQ_Y }; % the constraint library

4 array[BIAS] of var bool: bias; % learnt constraint network

5

6 constraint ConAcq(pos_examples , domain , bias);

7

8 solve minimize sum(bias);

Figure 5.2: MiniZinc model for inferring facts using ConAcq

Parameter domain in Line 1 represents the domain of X and Y. Line 2 introduces the

pos examples parameter, which represents all the positive examples (all the valid combina-

tion of X and Y values). Line 3 introduces enum BIAS which represents the relations defined

by Definition 1: all the binary relations between X and Y (=, 6=, <, ≥). Note that the

relations ≤ and > are also covered by the bias, since ≤ can be represented as {< ∨ =},
and > as {6= ∧ ≥}.

The decision variable bias in line 4, indicates the learnt constraint network (output of

the ConAcq algorithm), which is indexed by the BIAS enum. If any of the elements of

bias is set to true, it indicates that the constraint is valid. The constraint in line 6, calls

the ConAcq predicate which we discuss below. Lastly, the solve item in line 8, minimizes



CHAPTER 5. LEARNING FACTS FOR PATTERNS 43

the number of learnt constraints. This helps us report the shortest learnt constraint net-

work which indicates the strongest fact. This is required because the ConAcq algorithm

outputs a conjunction of facts, and this conjunction is a condition that makes the pattern

a valid constraint, thus when there are fewer facts in the conjunction, it is easier to make

the pattern a valid constraint.

The ConAcq predicate is as follows:

1 predicate CONACQ(array[int,int] of int: pos_examples , int: domain , array[BIAS] of

var bool: bias) =

2 forall(i,j in {domain[n]|n in index_set(domain)}) (

3 let

4 {

5 bool: pos_example = exists (k in index_set_1of2(pos_examples))(

pos_examples[k,..] = [i,j]); % if (i, j) is a positive example ,

pos_example is set

6 set of BIAS: k = {b | b in BIAS where rejects(i,j,b)}; % stores

all the constraints in the bias that reject (i, j)

7 }

8 in if pos_example then

9 not exists (b in k) (bias[b]) % none of the constraints in the

bias (learnt constraint network) should reject a positive

example

10 else

11 exists (b in k) (bias[b]) endif % at least one of the constraints

in the bias (learnt constraint network) should reject the

negative example

12 );

The input arguments of ConAcq are: positive examples (pos examples), domain of the

variables corresponding to the pos examples (domain), and the decision variable bias. This

algorithm ensures that none of the constraints in the bias reject any of the positive ex-

amples, and that there is at least one constraint in the bias that rejects all the negative

examples.

Line 2 goes through each training example 〈i, j〉. If 〈i, j〉 is a positive example, Line 5

sets the pos example. Otherwise, it sets it to false. Line 6 goes through each constraint

b in BIAS, and calls the rejects function, which returns True if bias b rejects the example

〈i, j〉, otherwise it returns false. The reject function is provided by Figure 5.4.2, and

it is discussed later. Then, if the example 〈i, j〉 is positive (line 8), line 9 ensures that

none of the constraints in the bias (learnt constraint network), rejects the example 〈i, j〉.
Otherwise, if the example is negative, line 11 ensures that at least one of the constraints

in the bias (learnt constraint network), rejects the negative example.

1 test rejects(int: X, int: Y, BIAS: b) =

2 if b=X_LESS_Y then X >= Y

3 elseif b=X_GREATEREQ_Y then X < Y

4 elseif b=X_EQ_Y then X != Y

5 elseif b=X_NEQ_Y then X = Y

6 else abort("wrong bias") endif;

Figure 5.3: The rejects function



CHAPTER 5. LEARNING FACTS FOR PATTERNS 44

The input arguments are two integers X and Y, and a constraint b. The rejects function

returns a learnt constraint from the bias that rejects b.

An example of the input data for the ConAcq MiniZinc model is as follows, this is specific

for the free pizza problem, with the input data provided in Section 5.4.1, to learn facts

regarding to parameter price for two pizzas:

n = 5;

domain = [17, 98, 76, 36, 69];

pos_examples =[|

17,98|

17,76|

17,36|

17,69|

3,98|

4,98|

4,76|

4,69|

5,98|

5,76|

|];

As a result, the ConAcq instance outputs: X ≤ Y. By keeping a map from the name

of the model decision variables to the ConAcq parameters, say (X: price[A], Y:price[C]),

our method translates this to price[A] ≤ price[C].

5.5 Limitations

Incorporating background information into the learned clauses is challenging, and both of

the methods that were described in this chapter suffer from some limitations. Both of the

methods only consider a limited type of relations (unary and binary) to compute facts.

Hence, we may miss some important facts that can be obtained by considering other forms

of relations, such as linear constraints. Also, each of the methods have their benefits and

limitations, which we discuss in this section.

Percentage-based approach: This method only considers the clauses inferred by

Chuffed, and simply checking if a fact is valid for all the clauses under the pattern. Thus,

there may exist valid clauses that were not discovered by Chuffed, which reduces the

accuracy of the result. However, the main benefit of this approach over the ConAcq-

based approach is that it provides more facts to the modellers, because, it outputs any

fact that holds for a majority of the clauses. This may help modellers better understand

the pattern.

ConAcq-based approach: This method considers a complete set of examples to gener-

ate facts. ConAcq helps us obtain more accurate facts compared to the percentage-based

method, because it considers the negative examples also, and the output network of facts

(learnt constraint network) must reject all the negative examples and accept all the posi-

tive ones. However, our experiments show that, for most of the patterns we are unable to

infer facts using this method. Further, as described in Section 5.4.1, the generating train-

ing examples step is performed by adding each pattern to the model as a new constraint



CHAPTER 5. LEARNING FACTS FOR PATTERNS 45

automatically. This can be challenging, especially if a pattern contains literals that are

not derived from the model-level variables. As described in Chapter 3, during compilation

the compiler may introduce new variables, and there may not be an equivalent model-

level variable corresponding to those variables. For example, in one of our experiments

Chuffed inferred the clause {"XI:38|23|38|35:(i=8):builtins.mzn:365|39|365|53" ≤ 201,

x[1] ≤ -24, x[3] ≤ 45}. The literal {XI:38|23|38|35:(i=8):builtins.mzn:365|39|365|53}
indicates that a variable is introduced in line 38 of the model from column 23 to 35,

which is the expression abs(x1 - x2). This expression is located inside the function

approx distance, and (i=8) indicates that the function approx distance, is called within

a loop and the variable is introduced in the 8th iteration. builtins.mzn:365|39|365|53
points to the variable is defined var located inside builtins.mzn in line 365 from col-

umn 39 to 53, which is in the abs function definition. Since the first literal of this pattern

is not a model-level variable, our method is unable to add this pattern to the model. Thus,

the ConAcq-based approach does not process any pattern that contains such literals that

cannot be renamed.

5.6 Summary

As patterns may not be valid constraints our aim is to infer facts that might be necessary

for each pattern. These facts can thus serve as a condition to make the pattern a valid

constraint. In this chapter we discussed two methods of inferring facts for each pattern.

Section 5.2 provided an overview of our methods to infer facts. Our method first extracts

all the objects of the same type that appear in the pattern, and also all the parameters that

are indexed by these objects, and then considers the binary and unary relations between

the objects and their associated parameters, as potential facts. Then, for each pattern it

passes these potential facts to both of our methods to infer facts. Section 5.3, described

our first method: a percentage-based approach. This approach goes through each of

the potential facts given as input and computes the percentage of the clauses under the

pattern that follow that relation. It then returns the facts with the highest associated

percentages. This method suffers from some limitations, such as only considering the

clauses that are inferred by Chuffed, which do not cover the full set of positive examples

for the pattern. Therefore, to mitigate this we developed a second method: based on

ConAcq. Section 5.4.2 described our ConAcq-based approach, which first generates a

full set of positive and negative example for each pattern for a given set of data files, and

it then passes these examples to ConAcq which infers the facts that accept the valid

examples and reject the invalid ones.

Section 5.5 discussed the limitations of both of our methods. Both of the methods only

consider a limited type of relations (unary and binary) to compute facts. Hence, we may

miss some important facts that can be obtained by considering other forms of relations,

such as linear constraints. Also, each of the methods has its benefits and limitations. The

percentage-based approach is less accurate than the ConAcq-based approach, but it is

also less strict. Thus, it can infer more facts that the ConAcq-based approach.



CHAPTER 6. EXPERIMENTS AND CASE STUDIES 46

Chapter 6

Experiments and Case Studies

6.1 Experimental Set-up

The overall performance, efficiency and effectiveness of the framework is demonstrated

using models from the annual MiniZinc challenge [2]. The chapter further demonstrates

the usefulness of our approach using three case studies. Our experimental set-up is as

follows. Our fully-automated framework is used to first infer clauses using Chuffed, with

a fixed search strategy, where the user-specified search in the original model is followed.

Then, it replays the same search using Gecode (ensuring it makes the same decisions

as Chuffed). Then it repeats the same steps using a free search strategy. To explain

this search strategy, first I will recapitulate the restart technique that is commonly used

by learning solvers, including Chuffed. In this technique, after a certain portion of the

search space is explored, search is interrupted and started from the beginning, while

incorporating the learnt clauses [70]. In Chuffed’s free search strategy, whenever the

search restarts it switches the search strategy between fixed search and an activity-based

search, where the decision variables with the highest activity are chosen first. At this

point, the framework has the clauses inferred by Chuffed for two search strategies it then

computes their associated ranking, by estimating the additional search space explored

by Gecode that was avoided by Chuffed thanks to learning that clause. Our method

then computes the union of the clauses inferred, simplifies and renames the clauses and

connects them to their corresponding model constraint, as described in Chapter 3. The

renamed and simplified clauses along with their associated constraints are then passed to

the method described in Chapter 4, for generating patterns. Then, the resulting patterns,

along with their associated attributes, are passed to the method described in Chapter 5,

for generating facts. Afterwards, the same procedure is repeated using a different instance

of the problem, which helps identify patterns that appear in multiple instances, and thus

be more generalisable to the model.

The structure of this chapter is as follows. Section 6.2 discusses the benchmarks used

in the experiments. Section 6.3 provides the results of our experiments which were carried

out to evaluate the performance and efficiency of our framework. In particular, we first

provide a few examples of the output of the framework. Then, we provide the execution

time of each component of the framework for various models. Afterwards, we discuss our



CHAPTER 6. EXPERIMENTS AND CASE STUDIES 47

experiments that evaluate the practicality and efficiency of our method for simplifying

clauses. Section 6.4 describes in detail the result of applying our framework in three case

studies that our method improved. Lastly, Section 6.5 provides the conclusions of this

chapter.

6.2 Benchmarks

This section discusses the benchmark models used in our experiments. We conducted

experiments on models from the MiniZinc challenge [2, 72, 73] years 2015 to 2018. These

models were selected because they are realistic examples of expert models. The models

summarised below are those in the minizinc-benchmarks1 as:

community-detection: A constrained community detection problem, where the aim

is to detect communities with maximum modularity value, that is communities where the

connection between the nodes in the community is dense, but the connections between the

nodes in different communities are sparse. Some of the vertices must be assigned to the

same community, and some cannot.

mario: A routing problem based on the world of Nintendo’s Super Mario, where Mario

plans to visit n houses, starting from his house and ending at his brother Luigi’s house.

There is a specific amount of gold in each house, and Mario has a certain amount of fuel

to consume for the entire trip. The aim is to find a route that will earn Mario maximum

amount of gold, without running out of fuel.

neighbours: In this problem, there is n × m number of people living in an n × m
grid. A natural number N (N ≥ 1) is assigned to each resident, in such a way that all the

numbers 1, 2, ..., N − 1 must be assigned to its neighbours. The aim is to maximise the

sum of the assigned numbers.

tpp: A grid-based asymmetric travelling purchaser problem, where there are n cities

on a grid and m products to purchase. The traveller must plan a route to visit cities to

purchase the products, as the products are offered at different prices in different cities.

Travel is only allowed between adjacent cities vertically or horizontally, and travel costs

are asymmetric. The objective is to minimise the total travel and purchase costs.

grid-colouring: A grid colouring is a colouring of an n × m grid x where no sub-

rectangle of the grid has all its corner cells assigned the same colour. This problem is

problem is the first of the three case studies, and is explained in more detail in Section 6.4.1.

tcgc2: A time changing graph colouring problem, where the given initial colouring

of a graph must be transitioned to a given final colouring. The transition requires a

certain number s of steps, each performing at most k modifications to the colours, while

maintaining a valid graph colouring. The aim is to first minimise the number of steps

required, and then the number of modifications. This problem is the second problem of

the three case studies, and is explained in more detail in Section 6.4.2.

concert-hall-cap: In the capacitated concert hall problem, there is a number of

concert halls, each with a certain capacity, and a number of event offers to be assigned

1https://github.com/MiniZinc/minizinc-benchmarks/tree/master/<model>



CHAPTER 6. EXPERIMENTS AND CASE STUDIES 48

to the concert halls, each requiring a hall larger than a certain capacity. Each event has

a specific start and end time and a price that will be gained by accepting its offer. The

organiser needs to assign events to the concert halls, in a way that concurrent events are

not assigned to the same hall, and the capacity of a hall assigned to an event is greater

than the capacity required by that event. The aim is to maximise the profit. This problem

is the last of the three case studies, and is explained in more detail in Section 6.4.3.

oc-roster: The on-call rostering problem is a scheduling problem, where there are N

staff members, and the problem is to assign a staff member to each day during a rostering

period. The staff members may not be available on some particular days, may require to

be on-call on some days, should not be on-call for more that two consecutive days, and

have certain preferences, for example, they prefer to work the same number of days during

the rostering period. The aim is to generate a rostering period that satisfies staff members

preferences, as much as possible.

opt-cryptanalysis: A cryptanalytic problem, a key differential attack against stan-

dard block cipher AES, which is further described in [35].

seat-moving: In the seat-moving problem there is a number of seats some of which

have a person has a goal seat. The problem is to move the persons to empty seats or

swap people until every goal seat is reached, and always ensuring certain restrictions on

swapping the people are satisfied. The aim is to reach the goal set positions in a minimum

number steps.

steiner-tree: Given a weighted graph, the aim of this problem is to detect a sub-graph

and is a tree with minimum weights that contains all the terminal nodes.

team-assignment: This problem tries to find an assignment of players to teams,

where each player has a rating. The aim is to distribute the players so that the teams are

balanced.

train: In this problem there are n trains moving along a track with m stations. There

is a constant flow of passengers arriving at all the stations, except the first and last one.

Trains cannot overtake preceding trains, but they can skip or wait longer in a station to

collect more passengers. The aim is to reschedule the trains when there is a delay in a

way that the average travel time of the passengers in minimised.

vrplc: In the vehicle routing problem with location congestion, vehicles depart a depot

to pickup and deliver products, and then they return to the depot. Delivery requests have

an associated weight, and each vehicle has a weight capacity. For each request, the product

must be delivered within that time frame. In addition, the number of requests that can

be served at any time is restricted. The aim is to traverse the route in a minimum amount

of time.

6.3 Experiments and Results

This section presents the results of our experiments using the set-up described in Sec-

tion 6.1. First, we present the output of the framework for a few models. Then, we provide

a table that shows the execution time of each component of the framework. Lastly, we

present a table that shows the effectiveness of our approach for simplifying the clauses.



CHAPTER 6. EXPERIMENTS AND CASE STUDIES 49

In Table 6.1 each row provides the top pattern and its associated facts inferred by our

framework for several MiniZinc models. For simplicity and readability, we only display

patterns with a small number of literals. The Model column shows the model names; the

Instance column shows the name of the instances for which the patterns were inferred;

the pattern column shows the top patterns inferred for each model; the F(%) column

shows the inferred facts and the percentage of clauses for which the fact is valid, using the

percentage-based approach described in Chapter 5.3, the F(ConAcq) column shows

the inferred facts using the ConAcq-based approach described in Chapter 5.4; the Cl

column shows the percentage of all inferred clauses that are captured by the pattern, and

Consts column shows the parts of the model constraints that are responsible for generating

the clauses. Each part is of the form StartLine.StartColumn-EndLine.EndColumn. For

example, 7.9-7.32 points to the part of the constraint that starts in line 7, column 9 and

ends in line 7, column 32.

The results in Table 6.1 demonstrate that the system can successfully discover and

expose interesting patterns and their corresponding facts. For example, the pattern for

grid-colouring covers 40% of the inferred clauses, while each clause under this pattern has

a relatively small contribution in reducing the search space, when considering all together

as a pattern, the importance of this clause becomes apparent. Note that this is not always

the case. For example, for the neighbours problem, the top pattern only covers 0.08%

of the clauses, which indicates that these few clauses have a high reduction themselves.

Another important observation is that our percentage-based approach to generate facts,

can often infer facts between the variables in the pattern. However, for all the models

except freepizza, the learned facts did not provide much insight for the occurrence of

the pattern. This motivates the search for a more powerful method. Unfortunately, the

ConAcq-based approach is not able to detect facts for most cases.

Table 6.2 shows the execution time of the framework for the MiniZinc 2018 benchmark

models together with different statistics regarding the execution that aim to provide insight

into the solving times. Note that for the MiniZinc 2018 benchmark models that are not

present in this table, the learned clauses inferred by Chuffed did not have a contribution

in reducing the search space in Gecode, and our framework associates zero reduction in

search space for these clauses, and the framework does not further analyse the clauses

that did not reduce the search space. In addition, the benchmark displayed in Table 6.2 is

different from that of Table 6.1. This is because, in Table 6.1 for simplicity and readability

we chose the benchmarks that the patterns are shorter, as their length can be very large.

But, in Table 6.2 we provided the results for all the MiniZinc 2018 benchmarks except

those where the clauses do not appear to reduce the size of the search space. The Model

and Instance columns show the name of the MiniZinc models and their corresponding

instance. The next four columns show Chuffed’s solving statistics, N is the number (in

Thousands) of the nodes explored by Chuffed, F the number (in Thousands) of failures, S

the number of solutions, and T the solving time in minutes. These figures are computed

by first obtaining the number of nodes, failures, solutions and solving time with fixed

search strategy, and then free search strategy, then taking the average of the average of



CHAPTER 6. EXPERIMENTS AND CASE STUDIES 50

Model Instance Pattern F(%) F(ConAcq) Cl Consts

community-
detection

dolphin-
.s62.k3
mexican-
.s26.k4

x[A] 6=x[B] x[C] 6=2 100%:A>B - 34% 49.33-49.57

mario

mario-
medium 1
mario-
medium 3

succ[A] 6=B succ[B]=C
succ[B] 6=D succ[B]=E
succ[B]≥F succ[B]≤G

100%:D<F
100%:D>G
100%:E<F,
...

- 7%
6.47-6.58
31.3-31.73
45.23-45.37

neighbours neighbours1
x[A,B]≤2 x[C,D]≤2
x[neigh[E,1],neigh[E,2]]=F
x[neigh[E,1],neigh[E,2]]=G

100%:B>F
100%:D>G
75%:F<G,
...

- 0.08%
170.13-
170.25

tpp

tpp-
4 5 20 1
tpp-
5 3 30 1

purchaseLoc[A] 6=B
succ[B] 6=B

100%:A>B - 22%
3.47-6.58
31.3-31.73

freepizza pizza6 how[A] 6=-B how[C]6=B
100%:
pp[C]>pp[A]

pp[C]>pp[A] 12% 14.37-14.74

concert-
hall

concert-
cap02
concert-
cap03

assign[A]=0
assign[B] 6=C
assign[D] 6=C

100%: D<C
66.66%:
pp[D]>pp[C]
...

- 12% 7.9-7.32

tcgc2
k2 42
k5 05

a[A,B] 6=a[C,B]
a[A,B]=D
a[C,B]6=D

100%:A>B
...

- 6% 51.66-51.83

grid-
colouring

4 8
4 11

x[A,B] 6=x[C,D]
x[E,F] 6=x[G,H]
x[A,I] 6=J x[K,L] 6=J
x[M,N] 6=J

100%:A<M
94.73%:G=M, ...

- 40% 51.66-51.83

Table 6.1: The top patterns and their associated facts

the results. The next four columns provide information regarding the input size of the

data processed by our framework: The Cl column shows (up to a maximum of 50 top

clauses for each instance); the Lits column shows the average number of literals in the

clauses; the Vars column shows the average number of variables in the pattern that have

the same type; the Pars column shows the average number of parameters that are indexed

by the same type. The next three columns represent show the execution time of different

components of the framework in seconds: P shows how long it takes to generate patterns;

F1 shows how long it takes to generate facts using the percentage-based approach; F2

shows how long it takes to generate facts using the ConAcq-based approach. Also, we

did not show the execution time required to rename and simplify the clauses, because it

is negligible in all benchmarks.

The results in Table 6.2 showed us that the framework is often very fast, typically

performing its functions in less than a second. However, for oc-roster with data 2s-200d,

and team-assignment with data data1 6 24, the execution time for generating patterns are

14.2s and 11.2s, respectively. This is because the number of clauses that share the same

patterns are quite high for these cases.

Table 6.3 displays the efficiency of our method for simplifying and renaming the literals

and clauses. We present the results in two categories of fixed and free search. The Model

and Instance columns are as before. The next four columns show, for Fixed search,

the following information: Avg., Min and Max show the average, minimum and maximum

number of literals, respectively, reduced for each clause due to the simplification; and Cl

shows the percentage of clauses for which all literals were successfully renamed. For some



CHAPTER 6. EXPERIMENTS AND CASE STUDIES 51

Model Instance Solving details Input size Time(s)
N F S T Cl Lits Vars Pars P F1 F2

concert-hall-
cap

02 452K 437K 34 3 50 20.1 0.4 8.0 0.3 0 0.2

concert-hall-
cap

03 390K 364K 20 3 50 17.4 0.3 6.7 0.2 0 0

oc-roster 2s-200d 197K 3K 0.5 1.5 50 99.6 1.9 4.3 14.2 0.1 0
oc-roster 4s-100d 822K 68K 0 3 50 64.3 1.4 5.1 5.1 0.1 0
opt-
cryptanalysis

r6 26K 18K 4 3 10 190.3 0 1 0.1 0 0

opt-
cryptanalysis

r8 15K 11K 5 3 49 581.2 2.9 1.8 2.9 0 0

seat-moving
sm-10-
12-00

232K 154K 3.5 3 50 13.6 0.2 1.1 0 0 0

seat-moving
sm-10-
20-05

117K 141K 14.5 1.5 50 17.4 0.5 1.3 0.2 0 0

steiner-tree 10 3K 3K 2.5 0.1 50 16.3 0.1 1.8 0.5 0 0.4

steiner-tree
es10fst03.
stp

2K 2K 5.5 0.1 50 14.9 0.1 1.9 0.4 0 0.4

team-
assignment

data1 6 24 9K 3K 22 3 50 363.1 0.4 2 11.2 0 11.6

team-
assignment

data2 4 15 32K 261K 52 3 50 38.9 0.1 2.2 2 0 0.8

train instance.4 103K 78K 9 3 36 18.2 0.1 3.1 0.1 0 0.1
train instance.5 229K 63K 1,050 3 50 11.5 0.1 3.5 0.1 0 0.3

vrplc
vrplc9 5
10 s1

78K 33K 2.5 3 50 42.4 0.1 6.0 0.1 0 0

vrplc
vrplc9 5
10 s3

80K 74K 5 3 50 11.5 0.1 3.5 0.1 0 0.3

Table 6.2: The execution time of different components of the framework

of our models the entry for column Cl is 0, because there was no clause contributed in

reducing the search space. Thus, our system did not process them, and the next four

columns show the same information in free search.

The results from Table 6.3 show that our method for simplifying clauses is practical,

and is able to reduce the length of the clauses in most cases. Interestingly, in the fixed

search category it reduced 63 literals of a clause for seat-moving with data sm-10-12-00,

and in the free search category 71 literals. As the length of these clauses were significantly

reduced, this further reduced the execution time of our framework to process them.

6.4 Case Studies

This section discuss in more detail these case studies where the framework helped improve

the models.

6.4.1 Grid Colouring Problem

The method allowed us to discover a redundant constraint that can be added to the

model of the grid-colouring problem. A simplified version of the MiniZinc model for

this problem is presented below. The loop on lines 4 − 8 enumerates all sub-rectangles

of the grid, and states that at least one pair of orthogonally adjacent corners must be

assigned distinct colours. Looking at the clauses produced for instances of this problem,

we found a frequent, high-ranking pattern with literals {x[A,B] 6=x[A,C],x[A,B] 6=x[D,B],

x[A,C]6=E,x[D,B] 6=E,x[D,C] 6=E}. Note that this pattern is different from the one provided



CHAPTER 6. EXPERIMENTS AND CASE STUDIES 52

Model Instance Fixed Free
Avg. Min Max Cl Avg. Min Max Cl

concert-hall 02 0 0 1 100 0 0 10 47.3
concert-hall 03 6.3 0 9 67 6 0 10 67.7
oc-roster 2s-200d 0.1 0 3 0.6 0.1 0 3 0.0
oc-roster 4s-100d 0.5 0 5 8.8 0.6 0 5 9.0
opt-cryptanalysis r6 0 0 0 0 0 0 0 0
opt-cryptanalysis r8 1.3 0 5 0 1.3 0 5 0
seat-moving sm-10-12-00 12.4 0 63 62.8 12.4 0 63 62.8
seat-moving sm-10-20-05 0 0 0 0 12.7 0 71 100
steiner-tree 10 0 0 0 0 0 0 16 5.3
steiner-tree es10fst03.stp 0 0 18 2 0 0 18 2
team-assignment data1 6 24 3.4 0 14 0 3.4 0 14 0
team-assignment data2 4 15 3.8 0 11 39.8 3.7 0 11 37
train instance.4 0.8 0 2 100 0.7 0 3 100
train instance.5 0 0 0 0 0 0 3 100
vrplc vrplc9 5 10 s1 1.5 0 19 1.75 1.5 0 19 1.7
vrplc vrplc9 5 10 s3 0.9 0 7 0 0.9 0 7 0

Table 6.3: Efficiency of the renaming and simplifying method

1 int: n; int: m; % Width and height of grid

2 array[1..n,1..m] of var 1.. min(n,m): x; % Colour in each cell

3
4 constraint forall(i in 1..n, j in i+1..n, k in 1..m, l in k+1..m)(

5 ( x[i,k]!=x[i,l] \/ x[i,l]!=x[j,l]

6 \/ x[j,k]!=x[j,l] \/ x[i,k]!=x[j,k]) );

7
8 solve minimize max(x); % Number of colours used

in Table 6.1, because this is not the pattern with the highest rank, but we could not

improve the model based on the pattern provided in Table 6.1. One interpretation of the

pattern states that if corner x[A,B] has the same colour as x[A,C] and x[D,B], then one of

x[A,C],x[D,B] or x[D,C] must be assigned a different colour. Upon manual examination

of the model, it became clear that the constraints in the model only indirectly compared

diagonally adjacent corners. To address this weakness, we added the following redundant

constraints:

constraint forall(i in 1..n, j in i+1..n, k in 1..m, l in k+1..m)

((x[i,l]=x[j,k] /\ x[i,l]=x[j,l]) -> (x[i,k]!=x[i,l]))

These constraints did not improve Chuffed’s performance but did improve Gecode’s

significantly. Table 6.4 shows Gecode’s solve time (in seconds) and the node count for

several instances of the original model and the modified one. While the number of extra

constraints result in Gecode spending more time at each node , the added propagation

leads to faster solve times. Note that the experiments were performed within the time

limit of 5 minutes, and ∞indicates that solving was not completed with the time limit.

6.4.2 Time Changing Graph Colouring

Our framework helped us discover redundant constraints that helped improve the solving

time. The following shows an extract from the MiniZinc model used. The model takes

as input, among others, the maximum number k of transformations per step, and sets

the maximum number of steps max_s to 10. It has an array of decision variables, where

a[i,n]=j represents the colour j of node n in step i, and a decision variable s representing



CHAPTER 6. EXPERIMENTS AND CASE STUDIES 53

the final number of steps. The constraint displayed states that in every non-final step i,

the sum of all transformations must be less or equal to k.

int: k; % maximum colour changes per step

int: max_s = 10; % maximum number of steps

array [STEPS ,NODES] of var COLORS: a; % Colours of nodes at each time step

var 2.. max_s: s; % final number of steps

...

51 constraint forall(i in 1..max_s -1)

52 (i < s -> sum (n in NODES) (
�� ��a[i,n] != a[i+1,n] ) <= k);

53 ...

Our method identified pattern {a[A,B]6=a[A+1,B], a[A,B]=C, a[A+1,B]6=C} as inter-

esting, since its clauses are highly ranked across different searches of different instances

and, when combined, are responsible for a large search reduction. Note that this pattern

is different from the one provided in Table 6.1, because this is not the pattern with the

highest rank, however, we could not improve the model based on the highest ranked pat-

tern provided in Table 6.1. Further, the pattern is short (and thus easy to understand)

and all its clauses come from a single model constraint (which often indicates lack of ex-

pected propagation by the constraint). Upon manual examination, we felt the pattern

stated something so simple it should have already been captured by the propagation of

the model constraints. The first literal, derived from the expression highlighted on line 52,

represents the result of a reified not-equals constraint (a reified constraint introduces a

boolean variable to represent the truth value of a constraint [63]). The literal is true when

the variables a[i,n] and a[i+1,n] take different values. If this is false, the remaining

literals state that either the variables both take the value C or they take some other value.

This becomes clear when presented in implication form:

{a[A,B]=a[A+1,B] ∧ a[A,B]6=C → a[A+1,B]6=C} and {a[A,B]=a[A+1,B] ∧ a[A+1,B]=C

→ a[A,B]=C}.
To improve the propagation, we manually modified the model to add the following

information:

1 array[1.. max_s -1,NODES] of var bool: aa;

2 constraint forall (i in 1..max_s -1, n in NODES)

3 (aa[i,n] <-> forall (c in COLORS) (a[i,n]=c <-> a[i+1,n]=c));

4 constraint forall (i in 1..max_s -1)

5 (i < s -> sum (n in NODES) ( (not aa[i,n] ) ) <= k);

6 . . .

Line 1 introduces the decision variable aa is a two dimensional boolean array, where

the first dimension 1..max s-1 represents the steps and the second one NODES, represents

Original Modified
n m time (s) nodes time (s) nodes

5 5 0.10 34,987 0.07 5,452
5 6 0.13 35,223 0.09 5,468
6 6 0.55 131,661 0.29 16,773
6 7 1.53 9,484,042 0.77 37,727
7 7 65.47 11,565,900 23.15 904,148

Table 6.4: Gecode’s solving times for different instances of the grid-colouring problem



CHAPTER 6. EXPERIMENTS AND CASE STUDIES 54

Fixed Free Alternate
Instance Original Modified Original Modified Original Modified

k5 5 48.48 40.54 83.68 86.20 66.65 86.62
k9 39 ∞ ∞ ∞ ∞ 262.28 295.16

k10 31 ∞ ∞ ∞ ∞ 78.35 63.81
k10 34 23.66 21.18 80.65 91.60 77.57 69.59
k10 41 1.67 1.99 17.80 19.60 3.15 3.25

Table 6.5: Solving times for different instances of tcgc2 using different search strategies.

the nodes. For example, a[i,n]=True represents that node n in step i is assigned to True.

This indicates that the colour of node n did not change from step i to i+1. Line 3 ensures

that for each node n at each step i, if a[i,n]=a[i+1,n] for all the colours, aa[i,n] is set

to True. Line 5 ensures that for each step i, if i is not the final step, the number of the

nodes that their colour did not change from step i to i+1 (not aa[i,n]), should be less

than the maximum number of colour changes allowed in each step (k).

Table 6.5 shows the solve times for instances of the original and modified model.

Three different search strategies with a 5 minute time limit were executed. The strategies

were the fixed strategy defined in the model, Chuffed’s free search strategy, and, one that

alternated between the two. The results show the constraint can improve Chuffed’s solving

performance on some (but not all) instances of the problem. For a traditional CP solver

with a domain consistent reified not-equals constraint, these extra constraints will slow

down propagation, and an annotation indicating the need for domain propagation would

be preferred. This shows the strong need for the modeller’s input.

6.4.3 Capacitated Concert Hall Problem

Our framework helped us strengthen a model constraint in the concert-hall-cap model

and, more importantly, helped us improve a MiniZinc global constraint. In this case study,

our focus is on the first constraint which ensures concurrent events can not be assigned to

the same hall. The MiniZinc implementation of this constraint is provided below:

1 include "globals.mzn";

2 int: num_offers;

3 int: num_halls;

4 set of int: Offer = 1.. num_offers;

5 set of int: Hall = 0.. num_halls;

6 array [Offer] of int: start;

7 array [Offer] of int: end;

8 array [Offer] of int: price;

9 set of int: Time = min(start)..max(end);

10 array [Offer] of var Hall: assign;

11 function bool: overlaps(Offer: o, Time: t) = start[o] <= t /\ t < end[o];

12 array [Offer] of set of Offer: cliques = [{p|p in Offer where overlaps(p, start[o])

}|o in Offer];

13 function bool: clique_is_maximal(set of Offer: c) = forall (d in cliques where card

(d) > card(c)) (not (c subset d));

14 %% Overlapping events cannot share a hall.

15 constraint forall (clique in cliques where clique_is_maximal(clique)) (

alldifferent_except_0 ([ assign[o] | o in clique ]));



CHAPTER 6. EXPERIMENTS AND CASE STUDIES 55

Line 1 includes the MiniZinc library of global constraints. Lines 2 and 3 introduce the

num_offers and num_halls parameters, respectively. Line 4 defines a set that represents

the offers, with domain 1..num_halls. Similarly, to represent the halls line 5 defines the

Hall set with domain 0..num_halls, where 0 indicates no hall. Lines 6, 7 and 8, introduce

the start, end and price parameters, which represent the starting time, ending time and

price of each event, respectively. Line 9 introduces the Time set, which represents the time

from when the earliest event starts to the time the last event ends. Line 10 introduces

the decision variable Hall. Line 11 defines the overlaps function, which takes as input

the arguments Offer O and Time t, and checks if the offer o overlaps with Time t. This

happens if Offer O starts before Time t (start[o]<=t) and it ends after Time t

(t<end[o]). Line 12 introduces cliques which maps each offer to a set of offers that overlap

that offer. To compute this, it iterates through Offer (o in Offer) and for each offer o,

it again iterates through the offers (p in Offer), and checks if offer p overlaps offer o.

This forms a clique that maps each offer to its overlapping offers. Line 13 defines the

clique_is_maximal function. The input argument of this function is a clique c, which is a

set of Offer. It goes through all the cliques that have more members than clique c (card

(d)>card(c)), and if there is a clique d that clique c is subset of, the function returns

false. Otherwise, if there is no clique that is a subset of clique c it will return true,

indicating that clique c is maximal. Line 15 goes through each clique that is maximal,

and imposes the alldifferent_except_0 global constraint. This constraint takes an array

as an input argument and ensures that all the elements in the array are different from one

another, except the ones that are zero. [assign[o] | o in clique] creates an array of the

assign decision variables that are indexed by Offer o in a clique, which are basically the

overlapping offers. The alldifferent_except_0 ensures that these overlapping offers are

either unassigned (assigned to 0), or they are assigned to different halls.

One of the top patterns that our method identifies is: {assign[A]≥B, assign[A]≤C,

assign[D]≥B, assign[D]≤C, assign[E]≥B, assign[E]≤C}, and it comes from the

alldifferent_except_0 constraint in line 15. By inspection, we discovered the fact: B-D

=3. Our automated method was not able to discover this fact because, as mentioned in

Chapter 5, our method for inferring facts is limited, and it does not consider summation

and subtraction relations. Hence, this pattern states that if we have a range of two values

between B and C, and 3 variables assign[A], assign[D] and assign[E], at least one of them

should be assigned to a value outside of this range, which is trivial since we only have two

values.

From this experiment, we realised that the relation described by the pattern above

is not explicitly expressed in the model. Therefore, we added the following redundant

constraint:

1 constraint forall(c in index_set(cliques) where clique_is_maximal(cliques[c]))(

2 forall(h in Hall) (

3 sum(o in Offer where o in cliques[c])(assign[o]=h) <=1 )

4 );



CHAPTER 6. EXPERIMENTS AND CASE STUDIES 56

Line 1 goes through each cliques[c] if its maximal. Line 2 goes through each hall h.

Line 3 ensures that the number of the offers in cliques[c] that are assigned to the hall h

must be at most one.

However, adding this constraint did not have a significant effect in the execution time

of either Gecode or Chuffed. The trade off of adding redundant constraints to the model

is that it increases the computational costs, and even though our method might indicate

that a pattern contributes to a large reduction in search space, it does not guarantee that

the time would be saved by adding that pattern to the model. Therefore, we decided to

try modifying the constraint in line 15. For this purpose, we referred to the MiniZinc

implementation of the alldifferent_except_0 global constraint, which is provided below:

1 predicate alldifferent_except_0(array[int] of var int: vs) =

2 forall(i, j in index_set(vs) where i < j) (

3 (vs[i] != 0 /\ vs[j] != 0) -> vs[i] != vs[j]

4 );

The alldifferent_except_0 predicate accepts an array as an input argument. It then

goes through each pair of the elements in the array, represented by i and j, and if both

of the elements are not 0, it ensures that they have different values. To obtain faster

propagation, we modified the implementation of alldifferent_except_0 is as follows:

1 predicate modified_alldifferent_except_0(array[int] of var int: vs) =

2 forall(i, j in index_set(vs) where i < j) (

3 (vs[i] != 0) -> (vs[i] != vs[j])

4 /\ (vs[j] != 0) -> (vs[i] != vs[j])

5 );

Both implementations are logically equivalent, but in the original implementation both

of the conditions vs[i]!=0 and

vs[j]!=0 must hold to activate the propagation of constraint vs[i]!=vs[j], while, in our

modified version, if any of the conditions vs[i]!=0 and vs[j]!=0 holds, the constraint

propagates, which helps reduce the search space. This improved the propagation of

alldifferent_except_0. Further, improving alldifferent_except_0 can help us improve

solving time for a variety of models. Afterwards, to further improve the performance, we

replaced the alldifferent_except_0 in line 15 with the following constraint:

1 constraint forall (c in index_set(cliques) where clique_is_maximal(cliques[c])) (

2 forall(h in Hall) (

3 sum(o in Offer where o in cliques[c])(assign[o]=h) <= 1

4 )

5 );

This constraint goes through each maximal clique cliques[c], and then goes through

each hall h, and ensures that at most one of the overlapping offers can be assigned to

the hall h. This constraint is logically equivalent to the alldifferent_except_0 global

constraint. However, instead of imposing a constraint on each pair of elements in each

maximal clique, it imposes a single constraint on all the elements in the clique. Hence, it

has a global view of all the elements in each maximal clique. This did not have a significant

effect on Gecode solving time, but improved the solving time of Chuffed, comparing to

the original model. However, the solving time is still slower than our modified version of

alldifferent_except_0.



CHAPTER 6. EXPERIMENTS AND CASE STUDIES 57

Fixed(s) Free(s) Alternate(s)
Instance Org Mod1 Mod2 Org Mod1 Mod2 Org Mod1 Mod2

concert-cap-2 120.2 0.4 15 240.3 0.5 25.10 22.72 0.4 12.3

concert-cap-3 ∞ 0.4 240 ∞ 0.4 440.1 ∞ 15 240.4

concert-cap-6 ∞ 0.7 ∞ ∞ 0.6 ∞ ∞ 0.9 ∞
concert-cap-148 ∞ 0.4 ∞ 37 0.3 24 ∞ 0.4 ∞

Table 6.6: Chuffed solving times for different instances of concert-hall-cap using different
search strategies.

Fixed(s) Free(s)
Instance Org Mod1 Mod2 Org Mod1 Mod2

concert-cap-2 49.8 0.4 60.1 41 0.5 49.8

concert-cap-3 ∞ 0.5 ∞ ∞ 0.3 ∞
concert-cap-6 ∞ 0.5 ∞ ∞ 0.5 ∞

concert-cap-148 ∞ 0.4 ∞ ∞ 0.3 ∞

Table 6.7: Gecode solving times for different instances of concert-hall-cap using different
search strategies.

Tables 6.6 and 6.7 indicate the solving time of Chuffed and Gecode for a variety of

instances of concert-hall-cap, respectively. For Chuffed we considered fixed, free and

alternate search strategies, but for Gecode only fixed and free search strategies, because

Gecode is not able to perform alternate search strategy. For each search strategy there

are three columns: Org shows the solving time of the original model; Mod1 shows the

solving time of the model with the replacement of the alldifferent_except_0 with the

modified_alldifferent_except_0; Mod2 shows the solving time of the model with the re-

placement of the alldifferent_except_0 with the summation constraint. From the tables,

it is clear that Mod1 gives a significant improvement for both of the solvers, while, Mod2

only improves Chuffed.

6.5 Summary

This chapter discussed the results of the experiments carried out to determine the efficiency

and effectiveness of the framework. In these experiments given a model and instance,

our method automatically infers the clauses, renames and simplifies them, detects the

patterns in the clauses, and learns facts for each pattern. Our experiments showed that

the framework is capable of helping users improve their models and is not prohibitively

time-consuming to run. The case studies that arose from these experiments demonstrate

how the framework can not only improve constraints in a user’s model, but can also be

used to improve the MiniZinc’s standard decomposition of global constraints.



CHAPTER 7. RELATED WORK 58

Chapter 7

Related Work

7.1 Introduction

This chapter discusses the literature relevant to the framework we have presented in this

thesis. Section 7.2 discusses the area of anti-unification, which is concerned with auto-

matically obtaining the Most Specific Generalisation (MSG) of a group of clauses. This is

related to the approach we use for generating patterns from a set of clauses, as discussed

in Chapter 4. Section 7.3 discusses Inductive Logic Programming (ILP), which is focused

on learning first-order clausal theories from a set of examples and background knowledge

by inductive inference [52]. This is related to the approach we used for inferring facts from

a set of clauses, presented in Chapter 5. Section 7.4 describes and compares the existing

techniques of automated constraint acquisition, while Section 7.5 describes the existing

techniques in the area of automated model transformation. Since our goal is to automat-

ically learn redundant constraints or reformulate model constraints, the two mentioned

areas of automated constraint acquisition and model transformation have similar goals,

but different approaches. Lastly, Section 7.6 provides a conclusion for this chapter.

7.2 Anti-Unification

As mentioned in Chapter 4, our approach for generating patterns from a set of clauses

is concerned with finding the Most Specific Generalisation (MSG) of a group of clauses.

This lies within the anti-unification line of research [57]. As descussed in Chapter 4.2,

the clause c1 is said to be more general than the clause c2 (c1 � c2) if and only if all the

examples that are covered by c1 are also covered by c2 [25], and the most specific (or least)

generalisation (MSG) of a set of clauses is the least general clause that is more general

than all the clauses in the set [56]. The anti-unification problem is concerned with finding

the MSG of a set of clauses.

Plotkin et al. [57] and Reynolds et al. [62] independently introduced the concept of

MSG and provided algorithms to compute it. In these algorithms, the MSG is unique up

to renaming and always exists for two given clauses [18], this is the algorithm that we

implemented to compute patterns, as discussed in Chapter 4.2. One of the limitations of

their algorithms is that they could only obtain MSGs for clauses with a fixed number of



CHAPTER 7. RELATED WORK 59

literals. To mitigate these limitations and expand anti-unification to different threories and

applications, several algorithms have been developed, such as these in [3, 4, 7, 18, 6, 28].

As in-depth discussion of many methods and applications of anti-unification is out scope

for this thesis. Instead, we focus on one of the recent methods of anti-unification developed

by Kutsia et al. [38], which can be incorporated in our method for generating patterns.

Kutsia et al. developed a technique which performs anti-unification for clauses with

different numbers of literals. For example, for clauses {w[1]<3,w[2]<3}, {w[1]<3,w[2]<3,

w[3]<3} and {w[1]<3,w[2]<3,w[3]<3,[w4]<3}, the MSG {w[x]<3| x ∈ 1..n} can be ob-

tained. Also, in their system they can match a literal in a certain position in the first

clause to a literal in a different position in the second clause. For example, for clauses

{w[10]=1,w[20]=2} and {w[40]=2, w[50]=1}, their system can yield {w[A]=1,w[B]=2}. Our

method for generating patterns is not able to match clauses with different numbers of

literals, and cannot match the literals that are in different positions in the clauses ei-

ther. However, this technique has a high computation cost. It would be interesting to

explore how to incorporate anti-unification to generate patterns, while keeping the cost

low, perhaps by only considering the top ranking ranking clauses.

7.3 Inductive Logic Programming

In Chapter 5 we discussed our method for learning relevant facts for a set of clauses.

This is related to research performed in the area of Inductive Logic Programming (ILP).

ILP bridges a gap between machine learning and logic programming [50]. It is a discipline

concerned with learning first-order clausal theories from a set of examples and background

knowledge by inductive inference [52]. ILP is powerful compared to the classical machine

learning systems because it mitigates the difficulties that some of the machine learning

systems face in incorporating background knowledge in the learning process [50].

The ILP algorithms often explore a search space consisting of a set of hypotheses using

a divide and conquer approach [39]. They search for a hypothesis that covers part of the

examples, and separates positive and negative examples. Then, they repeatedly search for

the examples that are not covered and assign them to a hypothesis, until all the examples

are covered by at least one hypothesis [39].

There are two main ILP approaches: top-down and bottom-up. In the top-down

approach used for example by the Foil [60], Claudien [26] and Mobal [37] systems, the

search starts with the most general hypothesis and tries to specialise it with respect to the

background knowledge. Search continues until all positive examples are covered by the

hypothesis, and none of the negative ones. The bottom-up approach, implemented by the

Golem [53], Cigol [51] and Marvin [64] systems, starts with the most specific hypothesis,

and further generalises it with respect to the background knowledge [74].

Both approaches suffer from some drawbacks: bottom-up approaches can be inefficient

and time-consuming at the beginning of the search when the background knowledge is

large [74], while top-down approaches might spend time exploring areas that cover no

positive example. If the search space is large and unstructured both of these strategies fail.

Hence, hybrid approaches have emerged to address these issues, such as those of [74, 39].



CHAPTER 7. RELATED WORK 60

One of the most recent ILP techniques was developed by Lallouet et al. [39]. Their work

is at the intersection of CP and ILP. Their goal is to automatically acquire a constraint

model, given solutions and non-solutions of related problems. To achieve this, they devel-

oped a constraint acquisition framework based on ILP, which has two main components:

First, given solutions, non-solutions and background information, their framework learns

theories that cover the solutions and reject the non-solutions. Second, it reformulates the

learned theories into a CSP. For the ILP part they developed a hybrid ILP algorithm

by combining bottom-up and top-down approaches to achieve a good trade-off, and also

their system is tailored for CSP problems. This was required because, most of the ILP

techniques handle Disjunctive Normal Form (DNF), however, CSP problems are expressed

in Conjunctive Normal Form (CNF), and the second component of their framework is out

the scope of this thesis.

As mentioned before, our current method for learning relevant facts misses some of

these facts. Thus, it would be interesting to explore how ILP can be blended into our

method to help us learn more relevant facts. However, one of the challenges is that the

research in ILP has been slowed down, and to the best of our knowledge the existing

frameworks are no longer maintained.

7.4 Automated Constraint Acquisition

Correctly articulating the constraints of a problem can be challenging [55]. Thus, many

techniques have been implemented to automate the acquisition of the constraints for CSP-

s/COPs. Given a set of solutions, non-solutions and a constraint library, a constraint

acquisition system learns a constraint network that is consistent with the solutions and

non-solutions [12]. Although this area is related to this research, it tackles the problem of

automated constraint acquisition from a very different perspective to ours: while our aim

is to improve an already existing model. However, we can use their technology to infer

conditions for our clauses, as we did in Chapter 5.4.

In particular, constraint acquisition systems acquire the target model from scratch,

however, in our case an initial model is given to the system, and we aim at improving this

model.

There are two main classes of constraint acquisition systems: passive and active. In

passive systems [13, 12, 17, 10, 39], the modeller chooses the set of examples in advance

and independently of the acquisition process, whereas active systems [31, 17, 14] assist the

user to choose more helpful examples, with the aim of reducing the number of examples

required.

One of the earliest passive constraint acquisition systems is ConAcq [12], which we

discussed in Chapter 2.7.1. ConAcq is implemented based on version space learning [48]

and SAT-solving [29]. While powerful, it is not efficient when the size of the constraint

library is large, and it also focuses on an instance of the problem, rather than on the

model. Another limitation is that the user needs to provide a full set of solutions. To

mitigate these limitations, Bessiere et al. [14] improved ConAcq by developing an active

query-driven constraint acquisition system was reduced. Thus, a user does not need to



CHAPTER 7. RELATED WORK 61

have all the solutions in advance, and they reduced the number of queries required during

the acquisition process. The method of Bessiere et al. also detects the model parameters

from the solutions. Although their work has great potential, the main limitation is that

it requires an exponential number of queries to acquire constraints [16].

As we described in Section 7.2, Lallouet et al. [39] developed a passive constraint

acquisition system with the aim of mitigating some of the limitations of ConAcq. Their

system can acquire the constraints of a CSP model from the solutions and non-solutions

of a different instance of the problem. Their method learns rules from the solutions and

non-solutions of a previously solved problem with different parameters, and then the rules

are rewritten as CSP specifications. Thus, the modeller does not need to have solutions

and non-solutions of the problem in advance. As described in Section 7.2, it might be

interesting to incorporate their technique into our method for learning facts to obtain

more facts.

One of the most recent constraint acquisition systems is QuAck [11], an active con-

straint acquisition system that aims at reducing the number of queries required to converge

to the target model. Their method asks partial queries that the user should identify as a

solution or non-solution. If the user classifies a partial query as a solution, the constraints

that are violated by this solution are eliminated. If the user classifies it as a non-solution,

QuAck asks partial queries to identify the scope of the violated constraint to learn that

constraint. The advantage of their method is that the problem does not need to be previ-

ously solved, and the number of queries required for convergence is significantly reduced.

However, the number of queries can still be exponential. A more efficient system is Mul-

tiAcq [5], which learns multiple constraints from negative examples, and only require

a number of queries linear to the size of the problem. However, the required time for

generation of queries is large. To compromise between QuAck and MultiAcq, MAcq-

Co combines these systems to learn multiple constraints from a negative example, while

requires less time to generate queries than MultiAcq. In addition, it generates shorter

queries, which are easier to answer [5]. Another state of the art system is QuAck [75]

which improved QuAck and MultiAcq by generating fewer queries (logarithmic in the

size of input) in a shorter amount of time.

Our method that we described in Chapter 5.4 uses ConAcq to infer facts. The reason

is that passive constraint acquisition systems are more suitable for our technique, because

our method is automatic, and thus we aim at minimising the need for user supervision,

and also the ConAcq algorithm is easier to implement. However, in future it would be

interesting to implement more recent passive constraint acquisition systems.

7.5 Automated Model Transformation

As mentioned before, our aim is to automatically improve the models by adding effective

redundant constraints or reformulating the model constraints by learning from the clauses

learnt by a learning solver. There are several techniques that could help modellers improve

their model. This subsection focuses on the most popular techniques and their associated

systems. One of the most popular techniques is to add effective redundant constraints.



CHAPTER 7. RELATED WORK 62

Redundant constraints are implied by the model constraints and adding them to the

model does not eliminate any of the solutions. Adding redundant constraints can help

better exploit the structure of the problem and reduce the search space [19]. However, it

can also increase the computational cost due to the propagation of the added constraint.

Hence, the challenge is to find an effective redundant constraint, that is, one where the

time saved by reducing the search space, outweighs the increased computational burden.

Another popular technique used to improve models is to detect symmetries and add

symmetry breaking constraints to the model. Symmetries, in the context of CSP, are

solutions that are equivalent to each other [34]. Thus, breaking symmetries in the model

can improve solving and prevent similar search space being explored over and over. A

popular method for breaking symmetries is to add constraints (known as static symmetry

breaking constraints) to the model.

Replacing some of the model constraints with an equivalent global constraint can of-

ten help improve the model by providing a better view of the structure of the problem.

Global constraints are pre-defined structures that encapsulate common sub-problems that

can be reused, and many solvers utilise specialised algorithms and efficient propagators

for them [40]. Hence, substituting a group of constraints with a global constraint can

reduce the search space and improve the model [15]. There are different works to au-

tomatically transform models by adding redundant constraints [33], symmetry breaking

constraints [46] and global constraints. The following discusses a few example of some of

these methods.

Miguel et al. developed CGRASS [33], a rule-based system that automatically gen-

erates redundant and symmetry breaking constraints for CSP models. The focus of this

system is on improving the instances rather that the model itself. Further, the method

can only detect alldifferent global constraints and it is thus not general. Colton et

al. [23] developed a system that first solves small instances of the model, and then passes

the solutions to an automated theorem formation system(HR [22]), to learn and output

redundant constraints, while their method is powerful, however it is semi-automatic and

the modeller has to analyse and prove the correctness of the output generated by HR and

translate it for the modelling language [23]. To tackle these limitations Charnley et al. [19]

developed a fully automated method based on the system of Colton et al., which uses the

Otter theorem prover [45] to prove the correctness of the constraints learned by HR and

then translates them to the Essence constraint language. Although their technique is fully

automated, it has significant restrictions: their model can only be parametrised by a single

integer and must be expressed in first-order logic. The reason for these restrictions is that

proving the correctness of the redundant constraints imposes restrictions on the generality

and efficiency of their approach. This is one of the reasons we do not prove the correctness

of the constraints learnt by our method; As a result, our method is very generic and can

be applied to any COP/CSP model.

The automated detection of both symmetry and global constraints are in a different

line of research, but share some similarity with our work: They use instances to infer

model information, and require the user to prove that the generated information is correct.



CHAPTER 7. RELATED WORK 63

However, it is worth mentioning some of the work in this area. The system developed by

Mears et al. [46] is an example of model transformation by automatically adding symmetry

breaking constraints. Their method detects symmetries in instances of a problem, finds

the possible symmetries and then generalizes them to the model. While they achieved

great results in their evaluation, one of the issues with the proposed method is that it only

discovers known symmetries. Another contribution in this area is the work of Puget et

al. [59], which constructs a graph for a given CSP problem. Afterwards, the symmetries

are found using a graph automorphism algorithm. The proposed method is powerful,

but fails to detect some of the existing symmetries in the graph, and is only focused on,

instances rather the whole problem class. This method provides automatic proving for

a certain class of symmetries, thus it would be interesting to explore incorporating their

technique into our framework, to automatically prove the correctness of some of our the

constraints (facts combined with patterns) that our system generates.

An example of constraint acquisition systems that detects global constraints present

in the model are Constraint Seeker and Model Seeker, both developed by Beldiceanu et

al. [8, 9]. Given positive examples to the Constraint Seeker system, the systems arrange

them as a matrix and detect the global constraints, and ranks these constraints. Model

Seeker learns an entire model, given positive examples. This system uses Constraint Seeker

to acquire problem constraints, it then simplifies the generated candidate constraints and

transform them into a model. Another work in this area is the system developed by Leo

et al. [41], given a constraint model as input, suggests global constraints to replace parts

of the model. For this purpose, the original model is divided into sub-models consisting of

different structures of the model. Then, the sub-models are compared with the library of

global constraints. Global constraints with a similar solution space to the sub-models are

considered as candidate global constraints. Afterwards, they present a ranking technique

that filters and ranks the candidate global constraints to find the most accurate ones.

These are then suggested to the user. However, there are some global constraints that the

system is unable to detect. In addition, some of the complex structures in the model are

not processed. This system considers an entire model rather than a problem instance, but

it does not prove the correctness of the learned global constraints.

Although several techniques exist to automate the modelling of CP problems, none of

them is taking the learnt clauses into consideration. As mentioned in Section 2.4, there

is a possible relationship between model constraints and clauses that can help with the

process of automated model reformulation, and in this thesis our aim is to explore this

research gap. In addition, most of the above mentioned techniques improve the instances

rather than the model of the problem, but our method aims at improving the entire model.

7.6 Summary

This Chapter discussed and compared works related to our method. Firstly, Section 7.2

discussed an existing anti-unification technique that can be incorporated into our method

to learn more accurate patterns. Then, Section 7.3 presented some available ILP tech-

niques, which can be blended into our method for generating facts from a set of clauses,



CHAPTER 7. RELATED WORK 64

as our system currently suffers from some limitations that prevent it from learning useful

facts for some of the patterns. Afterwards, Section 7.4 discussed the area of automated

constraint acquisition, and compared the existing works in that area. While automated

constraint acquisition shares some goals with our method, their focus is on acquiring the

whole model from a set of solutions and non-solutions, rather than on inferring effective

redundant constraints. Lastly, Section 7.5 discussed the related works in the area of model

transformation, which aims to improve the model by automatically detecting information,

such as global constraints, symmetry breaking constraints and redundant constraints, that

can be used to transform the model. While there exist powerful techniques in the area of

model transformation, none of them take learnt clauses into account, which is the main

novelty in the approach presented in this thesis.



CHAPTER 8. CONCLUSIONS 65

Chapter 8

Conclusions

COPs/CSPs appear in many different areas of our lives, such as public transportation,

health care and management. Unfortunately, modelling and solving these problems is quite

difficult and consumes significant amount of time. Further, there are many possible ways

in which a problem can be modelled and the associated solving time can dramatically

vary from one model to the next. Therefore, a great deal of expertise is required to

develop a model that can be solved quickly. Recently, Shishmarev et al. [68] discovered

that the clauses learnt by learning solvers can be used to improve the models. However,

their method was mostly manual and suffered from certain limitations, such as they only

considered one instance of the problem which restricted the applicability of their results.

This thesis presented a framework that automates and improves the work of Shish-

marev et al. [68]. In particular, we have shown how the literals in the clauses learned by

the solver for a set of instances can be automatically renamed, simplified and tied back to

the parts of the model they originated from. Then, we presented a method that groups

the renamed and simplified clauses into generic patterns. We then described a method

that combines the background information with patterns to derive relevant facts for these

patterns. Then, we presented our experiments and results that were carried out to eval-

uate the practicality and efficiency of the framework. In this section, we summarise the

contributions of this thesis, and discuss the potential future work.

Our main contribution is the definition and implementation of a framework that au-

tomates Shishmarev et al.’s manual approach, and improves some parts of their method.

The main contributions of this framework can be divided into the following contributions:

• The framework automatically renames and simplifies the learnt clauses. Renaming

the clauses is achieved by using the variable paths technique developed by Leo et

al. [42], which traces the model variables during compilation and connects them to

their original name in the model. This helps us increase the accuracy of later steps

(such as simplification and pattern generation) Then, our method simplifies the

learnt clauses by applying simplification rules that reduce the length of the clauses.

This in turn reduces the time required by the framework to generate patterns and

facts, and also helps us detect more patterns, and ranking them more accurately.



CHAPTER 8. CONCLUSIONS 66

• The framework automatically connects the learnt clauses to the model and detects

the model constraints that were involved in creating them. This is achieved by

instrumenting a learning solver (Chuffed) to record the solver-level constraint directly

responsible for adding any literal to the clause database. The connection helps the

modeller detect model constraints that can be strengthened, or identify the need to

add a redundant constraint to the model that can help reduce the solving time.

• The framework automatically generalises groups of clauses into patterns. This helps

us obtain more accurate ranking for a group of clauses by accumulating the estimated

reduction in search space of the clauses associated to a pattern, and also it represents

the clauses in a form of a generic constraint, that later along with its associated fact

can be presented to the modeller.

• The framework takes the whole class of the problem into consideration rather than

one instance. This is achieved by generating patterns across instances and intersect-

ing them. This helps us improve the model rather than one instance.

• The framework considers multiple search strategies to obtain clauses that may not

be discovered by a certain search strategy. This improves the accuracy of the ranking

technique proposed by Shishmarev et al..

• The framework automatically learns facts for each pattern. This combines the back-

ground information with the information present in the patterns, which may serve

as a condition for the occurrence of the patterns and, together with the patterns,

can be suggested to the modeller as a potential constraint to be added to the model.

• Our experiments show that the framework is practical and general for a variety

of models, and it improved four MiniZinc models. Importantly, the framework im-

proved a MiniZinc standard decomposition of a global constraint, which is commonly

used in a variety of models.

Future work There are still several areas left to be explored. First, in our method for

renaming the literals in the clauses, presented in Chapter 3, the reconstruction of path

expressions is purely syntactic. If a path points to a span of text that is in a user-defined

function or predicate, the text will reference the parameters of this function or predicate,

rather than the top-level model variables which were passed as arguments. Secondly, the

variable path approach does not always provide us information about the expression types

that are derived from the text in a function/predicate. These two limitations could be

mitigated by instrumenting the MiniZinc compiler to collect and output more information

during compilation. Also, our method for generating patterns, presented in Chapter 4, can

be further improved by incorporating anti-unification techniques, such as the one proposed

by Kutsia et al. [38], to obtain more accurate patterns and detect some of the patterns

that are currently missed. While this might be time consuming, we might be able to

achieve a good trade-off by applying anti-unification only to the top clauses. Our method

to infer facts from the patterns can also be improved. Our current implementation is not



CHAPTER 8. CONCLUSIONS 67

able to infer facts for some of the patterns, as demonstrated in Chapter 6.3. While this

area is very challenging, one possible solution is to embed Inductive Logic Programming

(ILP) techniques, such as the one proposed by Lallouet et al. [39], into our framework to

potentially learn more facts.



References

[1] Gurobi optimizer reference manual. http://www.gurobi.com/documentation/, 2013.

accessed: 1-03-2019.

[2] The MiniZinc challenge. https://www.minizinc.org/challenge.html, February 2014.

accessed: 28-05-2019.

[3] Maŕıa Alpuente, Santiago Escobar, José Meseguer, and Pedro Ojeda. A modular equa-

tional generalization algorithm. In International Symposium on Logic-Based Program

Synthesis and Transformation, pages 24–39. Springer, 2008.

[4] Maŕıa Alpuente, Santiago Escobar, José Meseguer, and Pedro Ojeda. Order-sorted

generalization. Electronic Notes in Theoretical Computer Science, 246:27–38, 2009.

[5] Robin Arcangioli, Christian Bessiere, and Nadjib Lazaar. Multiple constraint aqui-

sition. In IJCAI: International Joint Conference on Artificial Intelligence, pages

698–704, 2016.

[6] Eva Armengol and Enric Plaza. Bottom-up induction of feature terms. Machine

Learning, 41(3):259–294, 2000.

[7] Franz Baader. Unification, weak unification, upper bound, lower bound, and gener-

alization problems. In International Conference on Rewriting Techniques and Appli-

cations, pages 86–97. Springer, 1991.

[8] Nicolas Beldiceanu and Helmut Simonis. A constraint seeker: Finding and ranking

global constraints from examples. In International Conference on Principles and

Practice of Constraint Programming, pages 12–26. Springer, 2011.

[9] Nicolas Beldiceanu and Helmut Simonis. A model seeker: Extracting global con-

straint models from positive examples. In International Conference on Principles

and Practice of Constraint Programming, pages 141–157. Springer, 2012.

[10] Christian Bessiere, Remi Coletta, Eugene C. Freuder, and Barry O’Sullivan. Lever-

aging the learning power of examples in automated constraint acquisition. In Inter-

national Conference on Principles and Practice of Constraint Programming, pages

123–137. Springer, 2004.

68



REFERENCES 69

[11] Christian Bessiere, Remi Coletta, Emmanuel Hebrard, George Katsirelos, Nadjib

Lazaar, Nina Narodytska, Claude-Guy Quimper, and Toby Walsh. Constraint ac-

quisition via partial queries. In Twenty-Third International Joint Conference on

Artificial Intelligence, 2013.

[12] Christian Bessiere, Remi Coletta, Frédéric Koriche, and Barry O’Sullivan. A sat-

based version space algorithm for acquiring constraint satisfaction problems. In João

Gama, Rui Camacho, Pavel B. Brazdil, Aĺıpio Mário Jorge, and Lúıs Torgo, editors,

Machine Learning: ECML 2005, pages 23–34, Berlin, Heidelberg, 2005. Springer

Berlin Heidelberg.

[13] Christian Bessiere, Remi Coletta, Frédéric Koriche, and Barry O’Sullivan. A sat-based

version space algorithm for acquiring constraint satisfaction problems. In European

Conference on Machine Learning, pages 23–34. Springer, 2005.

[14] Christian Bessiere, Remi Coletta, Barry O’Sullivan, and Mathias Paulin. Query-

driven constraint acquisition. In IJCAI, volume 7, pages 50–55, 2007.

[15] Christian Bessiere, Remi Coletta, and Thierry Petit. Learning implied global con-

straints. In IJCAI, pages 44–49, 2007.

[16] Christian Bessiere and Frédéric Koriche. Non learnability of constraint networks

with membership queries. Technical report, Technical report, Coconut, Montpellier,

France, 2012.

[17] Christian Bessiere, Frédéric Koriche, Nadjib Lazaar, and Barry O’Sullivan. Constraint

acquisition. Artificial Intelligence, 244:315–342, 2017.

[18] Jochen Burghardt. E-generalization using grammars. Artificial intelligence, 165(1):1–

35, 2005.

[19] John Charnley, Simon Colton, and Ian Miguel. Automatic generation of implied

constraints. In ECAI, volume 141, pages 73–77, 2006.

[20] BMW Cheng, Jimmy Ho-Man Lee, and JCK Wu. Speeding up constraint propagation

by redundant modeling. In International Conference on Principles and Practice of

Constraint Programming, pages 91–103. Springer, 1996.

[21] Geoffrey G. Chu. Improving combinatorial optimization. PhD thesis, The University

of Melbourne, 2011.

[22] Simon Colton. The HR program for theorem generation. In Andrei Voronkov, editor,

Automated Deduction—CADE-18, pages 285–289, Berlin, Heidelberg, 2002. Springer

Berlin Heidelberg.

[23] Simon Colton and Ian Miguel. Constraint generation via automated theory formation.

In Principles and Practice of Constraint Programming—CP 2001, pages 575–579.

Springer, 2001.



REFERENCES 70

[24] Martin Davis, George Logemann, and Donald Loveland. A machine program for

theorem-proving. Communications of the ACM, 5(7):394–397, 1962.

[25] Luc De Raedt. Logical and relational learning. Springer Science & Business Media,

2008.

[26] Luc De Raedt and Maurice Bruynooghe. A theory of clausal discovery. In IJCAI,

volume 10581063, page 1994, 1993.

[27] Rina Dechter and Daniel Frost. Backjump-based backtracking for constraint satisfac-

tion problems. Artificial Intelligence, 136(2):147–188, 2002.

[28] Arthur L. Delcher and Simon Kasif. Efficient parallel term matching and anti-

unification. Journal of Automated Reasoning, 9(3):391–406, 1992.

[29] William F. Dowling and Jean H. Gallier. Linear-time algorithms for testing the

satisfiability of propositional horn formulae. The Journal of Logic Programming,

1(3):267–284, 1984.

[30] Thibaut Feydy and Peter J. Stuckey. Lazy Clause Generation Reengineered. In

Ian P. Gent, editor, Proceedings of the 15th International Conference on Principles

and Practice of Constraint Programming, volume 5732 of Lecture Notes in Computer

Science, pages 352–366. Springer, 2009.

[31] Eugene C. Freuder and Richard J. Wallace. Suggestion strategies for constraint-

based matchmaker agents. In International Conference on Principles and Practice of

Constraint Programming, pages 192–204. Springer, 1998.

[32] Alan M. Frisch, Matthew Grum, Christopher Jefferson, Bernadette Mart́ınez

Hernández, and Ian Miguel. The design of essence: A constraint language for speci-

fying combinatorial problems. In IJCAI, volume 7, pages 80–87, 2007.

[33] Alan M. Frisch, Ian Miguel, and Toby Walsh. Cgrass: A system for transforming

constraint satisfaction problems. In International ERCIM Workshop on Constraint

Solving and Constraint Logic Programming, pages 15–30. Springer, 2002.

[34] Ian P. Gent and Barbara M. Smith. Symmetry breaking in constraint programming.

In Proceedings of the 14th European conference on artificial intelligence, pages 599–

603. IOS press, 2000.

[35] David Gerault, Marine Minier, and Christine Solnon. Using constraint programming

to solve a cryptanalytic problem. In IJCAI 2017-International Joint Conference on

Artificial Intelligence-Sister Conference Best Paper Track, page 5, 2017.

[36] Solomon W. Golomb and Leonard D. Baumert. Backtrack programming. Journal of

the ACM (JACM), 12(4):516–524, 1965.

[37] Jörg-Uwe Kietz and Stefan Wrobel. Controlling the complexity of learning in logic

through syntactic and task-oriented models. In Inductive logic programming. Citeseer,

1992.



REFERENCES 71

[38] Temur Kutsia, Jordi Levy, and Mateu Villaret. Anti-unification for unranked terms

and hedges. Journal of Automated Reasoning, 52(2):155–190, 2014.

[39] Arnaud Lallouet, Matthieu Lopez, Lionel Martin, and Christel Vrain. On learning

constraint problems. In Tools with Artificial Intelligence (ICTAI), 2010 22nd IEEE

International Conference on, volume 1, pages 45–52. IEEE, 2010.

[40] Kevin Leo. Making the Most of Structure in Constraint Models. PhD thesis, Monash

University, 2018.

[41] Kevin Leo, Christopher Mears, Guido Tack, and Maria Garcia de la Banda. Glob-

alizing constraint models. In International Conference on Principles and Practice of

Constraint Programming, pages 432–447. Springer, 2013.

[42] Kevin Leo and Guido Tack. Multi-pass high-level presolving. In Qiang Yang and

Michael Wooldridge, editors, Proceedings of the Twenty-Fourth International Joint

Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-

31, 2015, pages 346–352. AAAI Press, 2015.

[43] Kevin Leo and Guido Tack. Debugging unsatisfiable constraint models. In Domenico

Salvagnin and Michele Lombardi, editors, CPAIOR 2017, volume 10335 of Lecture

Notes in Computer Science, pages 77–93. Springer, 2017.

[44] Kim Marriott, Peter J. Stuckey, Leslie De Koninck, and Horst Samulowitz. A minizinc

tutorial, 2014.

[45] William McCune. Otter 2.0. In International Conference on Automated Deduction,

pages 663–664. Springer, 1990.

[46] Christopher Mears, Maria Garcia de la Banda, Mark Wallace, and Bart Demoen. A

method for detecting symmetries in constraint models and its generalisation. Con-

straints, 20(2):235–273, 2015.

[47] Tom M. Mitchell. Generalization as search. Artificial intelligence, 18(2):203–226,

1982.

[48] Tom M. Mitchell. Generalization as search. Artificial intelligence, 18(2):203–226,

1982.

[49] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad

Malik. Chaff: Engineering an efficient sat solver. In Proceedings of the 38th annual

Design Automation Conference, pages 530–535. ACM, 2001.

[50] Stephen Muggleton. Inductive logic programming. New generation computing,

8(4):295–318, 1991.

[51] Stephen Muggleton and Wray Buntine. Machine invention of first-order predicates by

inverting resolution. In Machine Learning Proceedings 1988, pages 339–352. Elsevier,

1988.



REFERENCES 72

[52] Stephen Muggleton and Luc De Raedt. Inductive logic programming: Theory and

methods. The Journal of Logic Programming, 19:629–679, 1994.

[53] Stephen Muggleton and Cao Feng. Efficient induction of logic programs. In New

Generation Computing. Academic Press, 1990.

[54] Olga Ohrimenko, Peter J. Stuckey, and Michael Codish. Propagation = Lazy Clause

Generation. In Christian Bessiere, editor, Proceedings of the 13th International Con-

ference on Principles and Practice of Constraint Programming, volume 4741 of Lecture

Notes in Computer Science, pages 544–558. Springer, 2007.

[55] Barry O’Sullivan. Automated modelling and solving in constraint programming. In

AAAI, pages 1493–1497, 2010.

[56] Gordon D. Plotkin. A note on inductive generalization. Machine intelligence,

5(1):153–163, 1970.

[57] Gordon D. Plotkin. A further note on inductive generalization. Machine intelligence,

6(101-124):248, 1971.

[58] Charles Prud’homme, Jean-Guillaume Fages, and Xavier Lorca. Choco documenta-

tion. TASC, INRIA Rennes, LINA CNRS UMR, 6241, 2014.

[59] Jean-François Puget. Automatic detection of variable and value symmetries. In In-

ternational Conference on Principles and Practice of Constraint Programming, pages

475–489. Springer, 2005.

[60] J. Ross Quinlan and R. Mike Cameron-Jones. Foil: A midterm report. In European

conference on machine learning, pages 1–20. Springer, 1993.

[61] Philippe Refalo. Impact-based search strategies for constraint programming. In In-

ternational Conference on Principles and Practice of Constraint Programming, pages

557–571. Springer, 2004.

[62] J. Reynolds. Transformational systems and the algebraic structure of atomic formulas.

Machine intelligence, 5(1):135–151, 1970.

[63] Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of constraint program-

ming. Elsevier, 2006.

[64] Claude Sammut and Ranan B. Banerji. Learning concepts by asking questions. Ma-

chine learning: An artificial intelligence approach, 2:167–192, 1986.

[65] Christian Schulte, Mikael Lagerkvist, and Guido Tack. Gecode. Software download

and online material at the website: http://www. gecode. org, pages 11–13, 2006.

[66] Christian Schulte, Guido Tack, and Mikael Z. Lagerkvist. Modeling and programming

with gecode. Schulte, Christian and Tack, Guido and Lagerkvist, Mikael, (2015), 2010.



REFERENCES 73

[67] Christian Schulte, Guido Tack, and Mikael Z. Lagerkvist. Modeling and programming

with Gecode, 2016.

[68] Maxim Shishmarev, Christopher Mears, Guido Tack, and Maria Garcia de la Banda.

Learning from learning solvers. In Michael Rueher, editor, Proceedings of the 22nd

International Conference on Principles and Practice of Constraint Programming, Lec-

ture Notes in Computer Science, pages 455–472. Springer, 2016.

[69] Maxim Shishmarev, Christopher Mears, Guido Tack, and Maria Garcia de la Banda.

Learning from Learning Solvers, pages 455–472. Springer International Publishing,

Cham, 2016.

[70] Maxim Shishmarev, Christopher Mears, Guido Tack, and Maria Garcia de la Banda.

Visual search tree profiling. Constraints, 21(1):77–94, Jan 2016.

[71] Niklas Sörensson and Armin Biere. Minimizing learned clauses. In International Con-

ference on Theory and Applications of Satisfiability Testing, pages 237–243. Springer,

2009.

[72] Peter J. Stuckey, Ralph Becket, and Julien Fischer. Philosophy of the MiniZinc

challenge. Constraints, 15(3):307–316, 2010.

[73] Peter J. Stuckey, Thibaut Feydy, Andreas Schutt, Guido Tack, and Julien Fischer.

The MiniZinc challenge 2008–2013. AI Magazine, 35(2):55–60, 2014.

[74] Lap Poon Rupert Tang. Integrating top-down and bottom-up approaches in inductive

logic programming: applications in natural language processing and relational data

mining. PhD thesis, 2003.

[75] Dimosthenis C. Tsouros, Kostas Stergiou, and Panagiotis G. Sarigiannidis. Efficient

methods for constraint acquisition. In International Conference on Principles and

Practice of Constraint Programming, pages 373–388. Springer, 2018.

[76] Pascal Van Hentenryck, Laurent Michel, Laurent Perron, and Jean-Charles Régin.

Constraint programming in opl. In PPDP, volume 1702, pages 98–116. Springer,

1999.

[77] Hantao Zhang and Mark E. Stickely. An efficient algorithm for unit propagation.

Proc. of AI-MATH, 96, 1996.

[78] Lintao Zhang, Conor F. Madigan, Matthew H. Moskewicz, and Sharad Malik. Effi-

cient conflict driven learning in a boolean satisfiability solver. In Proceedings of the

2001 IEEE/ACM international conference on Computer-aided design, pages 279–285.

IEEE Press, 2001.


