Public Transport Planning
New Zealand Transport Agency
14 ${ }^{\text {th }}$ November 2019
Wellington New Zealand

Demand Forecasting 1 \& 2 TEST ANSWERS

Prof Graham Currie

Public Transport Research Group
Monash Institute of Transport Studies
Monash University

Now I would like you to make a forecast based on the information below

Example : The Transit Authority is introducing two extra tram trips per hour on a half hour service within the inner city - what share will the possible sources of demand have in the use of these services

Travel Behaviour Change Affecting Public Transport

Source of Demand
Generation
(New Trips)

Diversion

Mode Shift

- Existing Public Transport Users using new service rather than existing service
- Needs to be spatially adjacent
- Needs to be more attractive than existing
- Stop using car and use bus (very important to differentiate car drivers from car pax)
- Go from walking to using the tram
- People change where they live and work
- Very long term affect

Source of Demand

Growth = 30\%

Example : The Transit Authority is introducing a new cross corridor railway in the suburbs connecting two regional shopping centres - what share will the possible sources of demand have in the use of the service
Travel Behaviour Change Affecting Public Transport

Source of Demand	Key Points	Source of Demand
Generation (New Trips)	- New travel not currently made - E.g. entertainment travel (Off Peak) - Not Work Travel (Peak) - Includes induced demand	20%
Diversion	- Existing Public Transport Users using new service rather than existing service - Needs to be spatially adjacent - Needs to be more attractive than existing	54%
Mode Shift	- Stop using car and use bus (very important to differentiate car drivers from car pax) - Go from walking to using the tram	25%
Redistribution	- People change where they live and work - Very long term affect	10

Growth $=46 \%$

Analytical Problem - Forecasting Future Changes in Demand using the Willis model

PROBLEM			
Research Question: What is the usage of public transport going to be in 2020?			
Raw Data: Existing Population $=1.0 \mathrm{M}$			
2020 Population $=1.2 \mathrm{M}$ Existing PT Trips p.a $=60 \mathrm{M}$	Change in V	Quantified Elasticity	Explained Change in
	Variable to 2020	of Demand	Demand Caused by Variable
 Fare Increases 0% -0.25 $\mathbf{0}$ Change in Average			
Change in Real Car Fuel Costs	5\%	0.44	+2.2\%
Change in Public Transport Service Levels	5\%	0.81	+4.05\%
Change in Car Ownership	4\%	-2.94	-11.76\%
Change in Unemplyment	-3\%	0.01	-0.03\%
		Total	-3.34\%

SOLUTION

1. Population Impact

Base

- 60M pt trips p.a.
- \quad Population $=1.0 \mathrm{M}$
- Trips per capita $=60$

Option

- Population 1.2M
- At 60 trips per capita total trips $=\mathbf{7 2 M}$

2. Other Impacts

- Net Impact -3.34\%
- $\quad 72 \mathrm{M}$ trips $-3.34 \%=69.6 \mathrm{M}(+9.6 \mathrm{M} / 16 \%)$

SOME WORKING EXAMPLE TESTS - BENCHMARKING

Working Example No. 1

PROBLEM		SOLUTION

SOME WORKING EXAMPLE TESTS - BENCHMARKING

Working Example No. 2

Some simple working examples show how they may be applied

Proposal: Fares are to be increased by 10%
WHAT WILL HAPPEN
TO REVENUE?

Proposal: Tram Services Levels are to be cut from 1.0M
Vkms p.a. to 0.8 M vkms p.a.

Proposal: Bus Running Times are to increase as a result of traffic growth. It is expected that running time will, increase by 10%.

SOLUTION

- $E=-0.3$
- Change in Demand $=E$ * Change in Fare
- $\% \mathrm{D}=-0.3^{*}+10 \%$
- $\% \mathrm{D}=-3 \%$

Fare Increase (+10\%)

- Patronage is 97% original size
- Fare charged is 1.1 original value
-0.97 * $1.1=1.067$
i.e. revenue increases by 6.7%

Fare Decrease (-10\%)

- Patronage is 1.03 original size (+3\%)
- Fare charged is 0.9 original value 1.03 * $0.9=0.927$
i.e. revenue decreases by 7.3\%

SOME WORKING EXAMPLE TESTS - ELASTICITIES

Working Example No. 1

PROBLEM

SOLUTION

Proposal: A fare increase of $\mathbf{2 0 \%}$ has been called for peak (white collar) passengers. What will the demand and revenue implications be.
Existing Service Raw Data:
Total demand is 200M boardings p.a.

$$
\begin{aligned}
& \text { Change } D=\text { Change C *E } \\
& \quad=+20 \% \text { * }-0.2 \\
& =-4 \% \\
& \begin{aligned}
200 \mathrm{M}
\end{aligned} \\
& \begin{aligned}
\text { Base Revenue } 0.96 & =192 \mathrm{M}(-8 \mathrm{M})
\end{aligned} \\
& \begin{aligned}
\text { Option Revenue }= & 190 \mathrm{M} * \$ 1.20=\$ 240 \mathrm{M} \\
& =192 \mathrm{M} * \$ 1.44 \\
& =\$ 276.48 \mathrm{M}(+36.48 \mathrm{M})
\end{aligned}
\end{aligned}
$$

Current average peak fare per boarding is $\$ 1.20$

SOME WORKING EXAMPLE TESTS - ELASTICITIES

Working Example No. 2

SOLUTION

Proposal: The tram operator has had a vehicle returned to service after a road accident. They can deploy it on either route 777 or route 999. They want to deploy it where demand impacts will be greatest. Which route should they put it on?
Existing Service Raw Data:
Route 777:
Current dedicated fleet = 4 trams/hr
Base demand is 4M p.a.
Route 999:
Current dedicated fleet $=10$ trams $/ \mathrm{hr}$
Base demand is 30M p.a.

SOME WORKING EXAMPLE TESTS - ELASTICITIES

Working Example No. 3

PROBLEM

Proposal: The Government has been forced to increase fares by 20%. As recompense, at the cost of $\$ 4 \mathrm{M}$, the operator has been allowed to increase service levels by 10%. Does this make economic sense?
Existing Service Raw Data:
Total demand is 30M boardings p.a.
Current average fare per boarding is $\$ 1.00$

A real world example: Should we run a shuttle train from Richmond Station to a new Station at the MCG during the footy?

Shuttle Train from Richmond Station					Direct Walk	
	Actual Time (mins)	Perceptual Weightings	Perceived Time (mins)	Actual Time (mins)	Perceptual Weightings	Perceived Time (mins)
Access Walk	2 Mins	2.0	4.0	10 Mins	2.0	20m
Expected Wait	4 Mins	2.0	8.0			
Transfer Time ${ }^{1}$		$\begin{array}{\|l\|} \hline 5 \text { min } \\ \text { transfer penalty } \\ \hline \end{array}$	5m			
In-Vehicle Travel	2 Mins	1.0	2m			
Egress Walk	3 Mins	2.0	6 m			
		Total	25 Mins		Total	20 Mins
Total Gene	sed Cost (/hr 0.1667/mi	\$ 4.17	Total	eralised Co	\$ 3.334

Note: ${ }^{1}$ Includes transfer penalty only

SOME WORKING EXAMPLE TESTS - TGC Soft Variables

Working Example No. 1 Av. Existing Rail Traveller

Total Generalised Cost (at \$10/hr \$0.1667/min) \$15.1692

Research Question

- 5.6 Million passengers use Uglyville station each year
- Uglyville is appropriately named because it's a very dirty station
- The transit authority are thinking of spending $\$ 80,000$ p.a. on a cleaning contractor to ensure the station is clear at all times
- What would the demand impact of this be?
- Is it a financially sensible thing to do?

Value of amenity benefit -0.4 In Vehicle Minutes At VOT $=\$ 0.1667 / \mathrm{min}$ this is worth $\$ 0.07$
$\$ 0.07$ is a 0.005% decline in total generalised cost
TGC Elasticity is -1.0
Change D = Change Cost * E

$$
=-0.005 \% \text { * }-1.0
$$

$$
=+0.005 \%=0.028 \mathrm{M} \text { or } 28,000 \text { p.a. }
$$

Change Revenue $=28,000 * \$ 2.50=+\$ 70,000$ p.a. i.a., a net $\$ 10,000$ shortfall p.a.

