

Public Transport Planning New Zealand Transport Agency 14th November 2019 Wellington New Zealand

Demand Forecasting 1 & 2 TEST ANSWERS

Prof Graham Currie Public Transport Research Group Monash Institute of Transport Studies Monash University

Now I would like you to make a forecast based on the information below

Example : The Transit Authority is introducing two extra tram trips per hour on a half hour service within the inner city – what share will the possible sources of demand have in the use of these

services

Source of Demand	Key Points	Source of Demand
Generation (New Trips)	 New travel not currently made E.g. entertainment travel (Off Peak) Not Work Travel (Peak) Includes induced demand 	9%
Diversion	 Existing Public Transport Users using new service rather than existing service Needs to be spatially adjacent Needs to be more attractive than existing 	70%
Mode Shift	 Stop using car and use bus (very important to differentiate car drivers from car pax) Go from walking to using the tram 	20%
Redistribution	 People change where they live and work Very long term affect 	1%

Growth = 30%

Example : The Transit Authority is introducing a new cross corridor railway in the suburbs connecting two regional shopping centres – what share will the possible sources of demand have in the use of the service

Source of Demand	Key Points	Source of Demand
Generation (New Trips)	 New travel not currently made E.g. entertainment travel (Off Peak) Not Work Travel (Peak) Includes induced demand 	20%
Diversion	 Existing Public Transport Users using new service rather than existing service Needs to be spatially adjacent Needs to be more attractive than existing 	54%
Mode Shift	 Stop using car and use bus (very important to differentiate car drivers from car pax) Go from walking to using the tram 	25%
Redistribution	 People change where they live and work Very long term affect 	1%

Growth = 46%

Analytical Problem – Forecasting Future Changes in Demand using the Willis model

PROBLEM			SOLUTION	
Research Question: What transport going to be i Raw Data: Existing Population = 1.0M 2020 Population = 1.2M Existing PT Trips p.a = 60M Fare Increases Change in Average Wages Change in Real Car Fue Costs Change in Public Transport Service Levels Change in Car Ownership Change in Unemplyment	n 2020 Change in Variable to 2020 0% 2%	? Quantified Elasticity of Demand -0.25 1.10 0.44 0.81 -2.94	Explained Change in Demand Caused by Variable 0 +2.2% +2.2% +4.05% -11.76% -0.03%	1. Population ImpactBase- 60M pt trips p.a Population = 1.0M- Trips per capita = 60Option- Population 1.2M- At 60 trips per capita total trips = 72M2. Other Impacts- Net Impact -3.34%- 72M trips -3.34% = 69.6M (+9.6M /16%)

SOME WORKING EXAMPLE TESTS - BENCHMARKING

Working Example No. 1					
PROBLEM	SOLUTION				
Proposal: A bus operator wants to know how many passengers he is likely to get if he adds an extra trip each hour to route 101Existing Service Raw Data:Time PeriodHeadway1A.M. Peak (2 Hour)20min480 Off Peak (5 Hour)30min	 Base Peak Peak 3 trips/hr x 2 hours x 2 directions = 12 trips At 10 kms route length = 12 trips x 10 kms = 120 vkms 480 pax at 120 vkms = 4.0 vkms per hour (BVK) Base Off Peak Peak 2 trips/hr x 5 hours x 2 directions = 20 trips At 10 kms route length = 20 trips x 10 kms = 200 vkms 400 pax at 200vkms = 2.0 vkms per hour (BVK) 				
Route Length = 10kms	 Peak = +1 trip/hr * 2 hours * 2 directions * 10 kms = +40 kms At 4.0 BVK +40 peak vkms = +160 pax Off Peak = +1 trip/hr * 5 hours * 2 directions * 10 kms = +100 kms At 2.0 BVK +100 opk vkms = +200 pax 				
Note: ¹ Headway is the same in both directions	TOTAL 360 PAX				

SOME WORKING EXAMPLE TESTS - BENCHMARKING

Some simple working examples show how they may be applied

PROBLEM	SOLUTION	
Proposal: Fares are to be increased by 10% WHAT WILL HAPPEN TO REVENUE?	 E = -0.3 Change in Demand = E * Change in Fare %D = -0.3 * +10% %D = -3% 	
Proposal: Tram Services Levels are to be cut from 1.0M Vkms p.a. to 0.8M vkms p.a.	Fare Increase (+10%) - Patronage is 97% original size - Fare charged is 1.1 original value - 0.97 * 1.1 = 1.067 i.e. revenue increases by 6.7%	
Proposal: Bus Running Times are to increase as a result of traffic growth. It is expected that running time will, increase by 10%.	Fare Decrease (-10%) - Patronage is 1.03 original size (+3%) - Fare charged is 0.9 original value 1.03 * 0.9 = 0.927 i.e. revenue decreases by 7.3%	

SOME WORKING EXAMPLE TESTS - ELASTICITIES

SOME WORKING EXAMPLE TESTS - ELASTICITIES

SOME WORKING EXAMPLE TESTS - ELASTICITIES

A real world example: Should we run a shuttle train from Richmond Station to a new Station at the MCG during the footy?

SOME WORKING EXAMPLE TESTS – TGC Soft Variables

