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Abstract

In mainstream programming languages such as Java, a common way to enable concur-
rency is to manually introduce explicit concurrency constructs such as multi-threading. In
multi-threaded programs, managing synchronization between threads is a complicated and
challenging task for programmers due to thread interleaving and heap interference that leads
to common concurrency problems such as data races and deadlocks. Access permissions are
abstract capabilities that model read and write effects of a reference on a referenced object, in
the presence or absence of aliases. With these considerations in mind, access permission-based
dependencies (contracts) have been investigated, as an alternative approach to verifying
the correctness of the already concurrent programs and to exploit the implicit concurrency
present in single-threaded (sequential) programs, without using explicit concurrency con-
structs such as multi-threading. However, significant annotation overhead can arise from
manually adding permission-based specifications in the source program, diminishing the
effectiveness of existing permission-based approaches. Moreover, given the intricacies in
creating permission-based contracts, it is very likely for a programmer to omit important de-
pendencies or to create misspelled specifications that may again lead to verification problems.
Therefore, the aim of this research is to free the programmers from the annotation overhead,
by automatically inferring access permission contracts from the source code of a program.

In this thesis, we present a permission inference approach that performs inter-procedural
static analysis of the source code to automatically reveal read/write accesses for sequential
Java programs and maps them in the form of access permission contracts. Moreover, the core
functionalities of the inference approach are implemented as a prototype tool, Sip4J, along
with its integration with, and extension of a permission-based model-checking tool, Pulse,
to automatically verify the correctness of the inferred specifications and to reason about
their concurrent behaviors. Our evaluation on widely-used benchmark and realistic Java
applications gives strong evidence of the correctness of the inferred annotations and their
effectiveness in automatically enabling concurrency for sequential programs and identifying
program properties such null references and code reachability.
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Chapter 1

Introduction

1.1 Thesis Goal

Multi-core architectures are ubiquitous and have become the norm due to the parallel ex-
ecution power made available by the multi-core processors in them. However, the software
industry has not yet been able to fully exploit the performance boost of multi-core systems,
principally due to inherent limitations of imperative and object-oriented programming lan-
guages such as Java. As Herb (Sutter and Larus, 2005) famously stated "The free lunch is

over" which means the applications written in these languages can no longer benefit from the
free ride (rapid performance improvements) unless programmers redesign the applications
or otherwise exploit the potential concurrency present in the system.

In imperative programs, there exist implicit dependencies between code and program
states which means two methods might be dependent on the same mutable state without the
caller knowing about it. This information is not revealed to the compiler and alternatively,
runtime system follows the execution order in which program is written, i.e., sequential and
cannot exploit potential concurrency present in these systems. Enabling concurrency for
imperative and object-oriented programs has become one of the grand challenges for the IT
industry today1.

In these languages, programmers introduce concurrency manually by using explicit
concurrency constructs, e.g., multi-threading-related classes such as Thread, Runnable in
Java. Unfortunately, the traditional multi-threading paradigm frequently results in dead-
locks or unwarranted race conditions, due to thread-synchronization and heap-interference,
that are hard to debug. Therefore, the correctness of such applications has always been at
stake. The main problem when programmers deal with concurrency in the imperative and
object-oriented languages is the shared states and the side effects (undesirable behavior due
to a change in some value outside the method scope), that methods can produce on each
other when executed in parallel.

The study of literature shows that symbolic permissions (Bierhoff and Aldrich, 2007;
Beckman et al., 2008), simply called access permission, is a novel abstraction that com-
bines the read, write and aliasing information of a referenced object. Symbolic permissions
represent and track the object’s accesses through the system using symbolic values such as

1UK Computing Research Committee, Grand Challenges in Computing Research, GCCR‘08 Final Report,
GC7: Journeys in Non-Classical Computation. http://www.ukcrc.org.uk/grand-challenge/.

1

http://www.ukcrc.org.uk/grand-challenge/.
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unique or immutable.
A group of CMU researchers led by Jonathan Aldrich manually wrote permission-based

typestate specifications on a number of Java APIs to model and reason about the correctness
of usage protocols in sequential and concurrent programs (Bierhoff and Aldrich, 2007, 2008;
Beckman, 2009; Bierhoff et al., 2009a) etc., and further parallelize the execution of these
programs in a typestate-oriented programming paradigm Plaid (Aldrich et al., 2011, 2012)
based on access permissions. Further, having the permission support in the Plaid infrastruc-
ture, the group worked in a joint research project, Æminium (Stork et al., 2009, 2014) and
presented a by-default concurrent programming paradigm, with its own formal language and
runtime engine, to parallelize execution of sequential programs based on access permissions.

Similarly, permission-based specifications have been used in many formal approaches to
address issues related to safe concurrency, security and verification of functional and domain-
specific properties (Leino and Müller, 2009; Leino et al., 2009; Wickerson et al., 2010; Jacobs
et al., 2011; Siminiceanu et al., 2012; Heule et al., 2013; Cataño et al., 2014; Boyland et al.,
2014; Juhasz et al., 2014; Müller et al., 2017; Jacobs et al., 2018) andmanymore. Furthermore,
inference of access notations in the form of fractional and quantified permissions has recently
been investigated by Peter Müller and his colleagues (Ferrara and Müller, 2012; Dohrau et al.,
2018) to verify class-based concurrent programs based on the abstract interpretations (Cousot,
1996). A detailed review of the state-of-the-art permission-based program verification and
parallelization approaches and their research challenges are given in Chapter 6.

Unfortunately, in order to benefit from access permissions, in all the relevant state-
of-the-art approaches, programmers need to manually add appropriate permission-based
specifications (e.g., annotations) as dependency information in the program. Not only do
programmers need to spend time becoming familiarised with the completely new specification
language(s) and runtime systems, they also need to manually identify and add specifications
at the code level which is laborious and error-prone. Given the intricacies in creating these con-
structs, it is very likely for a programmer to omit important dependencies or create misspelled
specifications that may again lead to problems such as race-conditions or deadlocks due to the
wrong specifications. Moreover, handling fractional permissions is challenging and creates a
complex reasoning overhead associated with tracking the concrete values in the system. These
issues have hindered the wider adoption of permission-based verification and parallelization
approaches. Ideally, it would be much easier and more effective for a programmer to not to
be concerned with identifying and manually specifying permission-based annotations in the
program, while still being able to exploit the benefits offered by such annotations.

Therefore, the aim of this research is to resolve the aforementioned issues by introducing
to the community a novel approach that automatically infers symbolic permissions for
the mainstream programming language Java. The goal is to free programmers from
the annotation overhead for manually adding permission-based dependencies in
the program, thereby solving the common problem faced by the existing access
permission-based approaches. The research presented in this thesis is built on our initial
idea (Sadiq et al., 2016) to extract the access permission rights from the source code of Java



§1.2 A Motivating Example 3

programs. The work presented in this thesis provides a more comprehensive approach and a
fully automated framework to infer and verify the inferred specifications for sequential Java
programs.

1.2 A Motivating Example

In the real world, most of the existing applications are still being written in sequential
programming paradigms, without using multi-threading, which cannot benefit from the
characteristics of multi-core machines. In order to benefit from modern multi-core systems,
there is a need to convert traditional sequential programs to parallel programs, so as to
improve the execution time of these programs and to free programmers from the low-level
ordering reasoning overhead about thread synchronization.

Unfortunately, in imperative languages such as Java, because of the implicit dependencies
between the code and shared states, methods dependant on the same mutable objects do not
specify their side effects to each other. It is hence non-trivial for programmers to manually
parallelize sequential programs without the fear of data races. Let us take Listing 1.1 as an
example.

Listing 1.1 illustrates a sequential Java programwith three user-defined classesObjectClass,
ArrayCollection and Client. These three classes contain eight methods and access two
shared collection objects (i.e., array1 and array2). As an example, the ObjectClass

composes theClient class andmanipulates itsmemberdatausingmethodmanipulateObjects().
To benefit from the modern multi-core facilities, certain methods of this sample program
can be executed in parallel so as to improve the overall performance. Indeed, if given
two methods do not write the same object at the same time, these two methods could
be parallelized. For example, methods computeState(array1), computeState(array2)
and manipulateObjects() could be potentially parallelized since they do not manipulate
(write) on the same shared objects. Oppositely, methods such as incrColl(array2) and
tidyUpColl(array2) cannot be parallelized as they modify the same object.

Unfortunately, manually identifying and tracking object accesses and the order in which
these accesses are made is a laborious and error-prone task for programmers. It is very likely
for a programmer to omit important dependencies or identify the wrong dependencies. The
situation becomes worse in the case of unrestricted aliasing in the program, the hallmark
feature of imperative programming models (Bierhoff et al., 2009b).

Listing 1.1: A sample Java program.
1 class ArrayCollection {
2 public Integer [] array1 ;
3 ArrayCollection (){
4 array1 = new Integer [10];
5 for(int i = 0; i < array1 . length ; i++)
6 array1 [i] = (int)(Math. random () * 10);
7 }
8 public void printColl ( Integer [] coll) {
9 for(int i = 0; i < coll. length ; i++){

10 System .out. println (" "+coll[i]) ;}
11 }
12 public void incrColl ( Integer [] coll) {
13 for (int i = 0; i < this . array1 . length ; i++){
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14 this . array1 [i] = this . array1 [i] + i; }
15 for (int j = 0; j < coll. length ; j++){
16 coll[j] = coll[j] + j; }
17 }
18 public static boolean isSorted ( Integer [] coll) {
19 boolean flag = false ;
20 int j = 0;
21 for (int i = 0; i < coll. length && j < coll. length ; i++,j++){
22 if(coll[i] > coll[j])
23 flag = true ;
24 else
25 flag = false ;
26 }
27 return flag;
28 }
29 public static Integer findMax ( Integer [] coll) {
30 int max;
31 max = coll [0];
32 for (int i = 1; i < coll. length ; i++){
33 if(coll[i] > max)
34 max = coll[i];}
35 return max;
36 }
37 public void computeStat ( Integer [] coll){
38 printColl (coll);
39 System .out. println (" Sorted = "+ isSorted (coll));
40 System .out. println ("Max = "+ findMax (coll));
41 }
42 public void tidyupColls ( Integer [] coll){
43 this . array1 = null ;
44 coll = null ;}
45 }
46 class ObjectClass {
47 public Integer [] array2 ;
48 public Client x,y,z,w;
49 ObjectClass (){
50 array2 = new Integer [10];
51 for(int i = 0; i < array2 . length ; i++){
52 array2 [i] = (int)(Math. random () * 10);
53 }
54 x = new Client (); y = new Client (); z = new Client (); w = new Client ();
55 }
56 public void manipulateObjects ( Client p1 , Client p2){
57 x = p1;
58 Client t = x;
59 y = t;
60 x.data = 10;
61 System .out. println ("z.data = "+p2.data);}
62 }
63 class Client {
64 Integer data = 100;
65 public static void main ( String [] a) {
66 ArrayCollection obj1 = new ArrayCollection ();
67 ObjectClass obj2 = new ObjectClass ();
68 obj1. incrColl (obj2. array2 );
69 obj1. computeStat (obj1. array1 );
70 obj1. computeStat (obj2. array2 );
71 obj1. tidyupColls (obj2. array2 );
72 obj2. manipulateObjects (obj2.w, obj2.z);
73 }
74 }

Indeed, analysis of method manipulateObjects() shows that it accesses four objects (x,
y, z, w) as its data members. Explicitly, it mutates only one object i.e. x by writing on its
data field but actually, it mutates objects y and w as well due to aliasing of the objects in this
method. These alias variables will create side effects for other methods accessing the same
objects when executed in parallel. Moreover, as the program size and complexity increases,
it becomes non-trivial for a programmer to identify the implicit dependencies between the
different program parts by just looking at the source code.

To exploit the potential concurrency present in a Java program, every method should
either avoid side effects or should explicitly mention them. This information can be used
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to compute the data dependencies at different levels of granularity within the code and
parallelize execution of the program to the extent permitted by these dependencies. Therefore,
a mechanism is required that can express the mutability and aliasing between shared objects
that can mitigate the undesirable effects to other methods in an expressive way, while also
allowing a safe execution order within the methods. The objective is to free programmers
from manually identifying and tracking the implicit dependencies present at the code level.

Access permissions provides a flexible control mechanism to track all the references to
a particular object and update state changes to all such references Furthermore, permission-
based specifications can express the implicit dependencies present in the system, while making
them explicit and pose their own ordering constraints, Access permission is hence suitable
for characterizing the way a shared resource is accessed by multiple references. Therefore,
access permissions can be used to perform method’s operations in a non-interfering manner
and parallelize code without using the low-level concurrency and ordering constraints.

1.3 Research Questions and Contributions

The main research question of this thesis is:

How can we avoid the annotation overhead for adding permission-based
specifications in a sequential program to help enable potential

concurrency present in it?

The objective is to free programmers from the annotation overhead for manually adding
permission-based implicit dependencies in the program.

The thesis research question is divided into sub-questions as follows:

RQ1: What technique is needed to automatically extract permission-based implicit depen-
dencies from the source code of a program?

The objective is to reveal the implicit dependencies present between the code and program
states in the form of access permissions.

RQ2: How can we validate the correctness of the inferred specifications?

The objective is to automatically identify the errors (missing or misspelled) in the inferred
specifications and to ensure that the specifications are semantically correct.

RQ3: How can we evaluate the effectiveness of the inferred specifications?

The objective is to demonstrate the effectiveness of the permission-based specifications in
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enabling concurrency from a sequential program.

RQ4: How effective is the permission inference technique itself?

The objective is to evaluate the effectiveness of the inference technique in-terms of avoiding
the annotation overhead and its scalability for realistic Java programs.

RQ5: How efficient is the permission inference technique?

The objective is to evaluate the performance of the inference mechanism in terms of its time
efficiency to analyze and generate the permission-based specifications from the source code.

Research Contributions

The overall contribution of this thesis is the automatic inference of access per-
mission rights in the form of symbolic permissions for the single-threaded (se-
quential) programs written in a highly popular language Java. To the best of
our knowledge, our work is the first attempt of its nature to infer access permissions at a
higher level of abstraction, without using any intermediate representations or method-level
specifications and for the mainstream programming language.

The main contributions are as follows:

Methodology: The first contribution is a permission inference approach, that reveals
implicit dependencies present between the code and the shared states in a un-annotated
sequential Java program, in the form of access permissions (to answer RQ1).
The permission inference approach performs static analysis of the source program to identify
and track the object’s accesses as data-flow and alias-flow information at the method level.
The approach performs flow-insensitive analysis of the source code which does not take into
account the control flow of the program. Our objective is to find out how the global states
of a program are affected by the execution of methods and to identify the method’s side
effects. The analysis is based on the Abstract Syntax Tree (AST) of the program code. The
approach follows a set of pre-defined syntactic and permission inference rules to support
the analysis and to generate five types of access permissions (unique, full, pure, share

and immutable) for the objects accessed at the method level. The permission contracts
are then generated, as pre- and post-permissions on the referenced objects to compute
dependencies between methods.
The technique to infer access permissions in this work, although focused on Java language
only, should also be applicable to other object-oriented programming languages such as .Net,
C#. Further, the application of flow-insensitive analysis to identify methods’s side-effects
and to discover their concurrent execution outweighs the approaches that are based on the
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flow-sensitive analysis and that does not always increase precision of the information dis-
covered and in most cases, flow-insensitivity is used as an approximation of flow-sensitivity
and is justified as a tradeoff that must be tolerated for achieving scalability (Khedker et al.,
2009; Hardekopf and Lin, 2011).

Implementation: We designed a permission inference framework and implemented the
inference approach as a prototype tool called Sip4J. Additionally, the core functionalities
of Sip4J are further integrated into Eclipse as a plugin. We integrated and extended the
Pulse tool, a model checking verification tool2, as a part of the framework to automate the
access permission checking mechanism and to reason about their concurrent behavior (to
answer RQ2 & RQ3).
The implementation of Sip4J framework has been published as an open source project
at https://github.com/Sip4J/Sip4J and a demo video of the tool can be found at https:
//youtu.be/RjMTIxlhHTg.
The Sip4J permission inference framework automatically infers access permissions for an
un-annotated sequential Java program at the object’s (class) field level. It automatically
generates Plural3 specifications (access permission contracts with typestate information
at the method level) for the same program. The inferred specifications can be used by
the users of Plural and Pulse (Siminiceanu et al., 2012) itself to verify program behavior
and by other permission-based parallelization approaches Plaid (Aldrich et al., 2012) and
Æminium (Stork et al., 2014), to perform their intended tasks without incurring extra work
on programmers. Further, the Sip4J framework performs a comprehensive concurrency
analysis of the input program by analyzing permission-based side effects at the method level.
The Sip4J concurrency analysis can be employed to parallelize the execution of sequential
programs written in the mainstream programming languages, without the fear of data
races.

Evaluation: We evaluated Sip4J and the inferred specifications on widely used benchmark
suites and real-world Java applications to demonstrate their efficacy and effectiveness (to
answer RQ4 & RQ5).
The experimental results have shown that Sip4J is indeed capable of inferring the re-
quired or safe permissions for all the methods in the input program in a correct and
efficient way. Further, we empirically evaluated the proposed technique itself in terms
of its scalability and effectiveness analysis to avoid the annotation overhead that exist-
ing permission-based approaches pose to programmers. Furthermore, with additional
experiments, we have shown that the inferred permissions are not only useful for enabling
concurrency for sequential Java programs. It is also able to perform the code reacha-
bility analysis of the underlying program and discover some of the syntactical errors in
a program such as null pointer references without actually compiling and executing the
2http://aeminium.dei.uc.pt/index.php/ToolsAndDownloads
3https://code.google.com/archive/p/pluralism/

https://github.com/Sip4J/Sip4J
https://youtu.be/RjMTIxlhHTg
https://youtu.be/RjMTIxlhHTg
http://aeminium.dei.uc.pt/index.php/ToolsAndDownloads
https://code.google.com/archive/p/pluralism/
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program.

1.4 Thesis Organization

The rest of the thesis is organized as follows:

Chapter 2 introduces different categories of access permission sharing models and provides
background information on symbolic permissions. Further, it briefly explains the permission-
based verification and parallelization approaches closely related to Java as we borrow the
syntax from and perform the evaluation of the inferred specifications using some of them.
The following chapters focus on permission inference approach and its evaluation:

Chapter 3 lays the theoretical background of the permission inference approach and the set
of graph abstractions and syntactic rules to support the analysis. It elaborates the inference
approach using a motivating example. Further, it explains and elaborates on the automated
permission checking mechanism through the permission-based model checking tool Pulse.

Chapter 4 discusses the detailed design and implementation of the permission inference
framework as a prototype Sip4J tool, along with its integration with and extension of the
Pulse tool. It further elaborates on the implications and limitations of the Sip4J framework
and its analysis in general, and on the potential improvements to the Sip4J.

Chapter 5 presents the evaluation of the Sip4J implementation. The evaluation is based on
several case studies from four benchmark suites and realistic Java applications that have been
widely used in the research community to evaluate program verification and parallelization
approaches. This chapter explains the results of the experiments based on the pre-defined cri-
teria for evaluation. It further elaborates on our experience with generating and verifying the
correctness of the inferred specification automatically and manually. Finally, it summarizes
the results of the evaluation to show the efficacy and effectiveness of the proposed framework.

Chapter 6 provides a study of the state-of-the-art in permission-based verification and
parallelization approaches, comparing and contrasting the existing approaches based on the
pre-defined criteria, followed by an insight into the usage of permission-based specifications
in the existing approaches and the research challenges.

Chapter 7 provides a reflection of the work presented in this thesis, on automatically
inferring permission-based specifications from the source program and their implications.
Finally, it concludes the thesis by discussing how access permission inference can be improved
and proposes some ideas for future work.



Chapter 2

Background

This chapter briefly introduces different categories of permission sharing models and how
different access permissions can co-exist with each other at the method level. It further
explains the access permission splitting and joining rules and how access permission contracts
can be written following the Design by Contract principle. As discussed previously, the aim
is this research is to automatically generate the access permissions for Java programs. This
chapter briefly discusses the permission-based verification and parallelization approaches that
are closely related to Java e.g., Plural, Pulse, Plaid and Æminium and the way they exploit
the permission-based specifications. Finally, this chapter revisits the motivation example
given in Listing 1.1 to elaborate on the efficacy and expressiveness of the permission-based
specifications in enabling concurrency for sequential programs.

2.1 Access Permissions: An overview

Access Permission is a novel abstraction that encodes the information regarding how an object
can be accessed through the current reference (method) as well as through possible other
references (methods) in the system i.e., it combines the read, write and aliasing information
of a referenced object.

There are three main categories of access permissions:
Fractional Permissions (Boyland, 2003). Fractional permission, fp , is a concrete mathe-
matical value that defines shared ownership of objects in a concurrent setting where the
share of each reference is between 0 and 1. The value 0 represents the absence of permission,
whereas 1 represents unique (exclusive read and write) permission and any value greater
than zero shows the read-only access for a shared object. Fractional permissions can be
used to split whole permission to a number of fractions and distribute these fractions among
multiple references at the same time. The fractional permissions can be split indefinitely.
The splitting function for a full permission, say fp, when divided between two references,
say fp1 and fp2, can be written as fp1 + fp1 = fp with each reference having a share
(fraction) of s in the range (0, 1).
Counting Permissions (Bornat et al., 2005). Counting permission is a special fractional
permission where s is an integer value between 0 and a maximum Integer constant value,
where zero represents the absence of permission and the maximum value represents full
permission on the referenced object o. The read-only access on the referenced object is

9
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represented by a non-zero integer value such that 0 <fp<=max.
Symbolic permissions (Bierhoff and Aldrich, 2007). Symbolic permission, simply called
access permission, is an extension of Boyland’s permission sharing model but instead of
using the fractional values to represent and split permissions among multiple references,
the symbolic permission represents and tracks permission flow through the system using
symbolic values such as unique or immutable.

There are five types of symbolic permissions that can be assigned to a reference x, for
a referenced object o, in the presence of its alias y.

unique(x): This permission provides reference x an
exclusive read-write access on the referenced object o at
any given time. No other reference (e.g. y) to the same
object can co-exist while x has unique permission on it.

x yo
r

w

unique

full(x): This permission grants reference x with both
read and write access to a referenced object o, and at
the same time, the object o may also be read, but not
written, by other references such as y.

x yo
r

w
r

full

share(x): This permission is the same as the full

permission, except that, in this case, other references
such as y can also write on the referenced object o.

x yo
r

w

r

w

share

pure(x): This permission gives reference x read but
not write access on a referenced object o. Moreover,
other references such as ymay have both read and write
access on the same object.

x yor
r

w

pure

immutable(x): This permission grants the non-
modifying access on the referenced object o to both
the current x and any other reference such as y.

x yor r

immutable

Figure 2.1: Five types of symbolic
permissions

Table 2.1 summarizes how access permissions for a referenced object o can be assigned
to this reference (x) and other reference (y) at the same time.

To generate five types of symbolic permissions from the source code of a Java program,
the permission approach generates a permission-based graph model as shown in Figure 2.1,
to represent the object’s accesses and their aliasing information at the method level. In the
generated model, x corresponds to the current method accessing a referenced object o and
y corresponds to other methods ("the rest of the world") accessing the same object except
the current method. The details of the permission inference and the graph construction
mechanism are further explained in Chapter 3.
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Table 2.1: Co-existing access permissions.

This Reference (x) Access Rights Other Reference (y)
unique read/write none
full read/write pure

share read/write share, pure
pure read full, pure, immutable
immutable read immutable, pure

2.1.1 Access Permission Splitting and Joining Rules

Linear logic (Girard, 1987) traditionally treats access permissions as resources that cannot
be duplicated (discarded). Once a method consumes its permissions they are no longer
available to other methods until this method returns the same permissions again. Access
permission contracts in Linear Logic are specified using Linear Logic implication connective
((). The connective (() operator is used to specify a method’s pre- and post-conditions.
As indicated by P ( Q, permissions in the pre-conditions P are consumed before a method
runs, and it produces Q as post-conditions when the method completes its execution.

Influenced by Boyland’s work in (Boyland, 2003), Plural presented the fractional analysis
of access permissions, hence, they can be split into one or more relaxed permissions i.e., frac-
tions of the original permission using fractional values in the range (0,1) and then merged back
into more restrictive or the original permission. The idea behind representing permissions as
fractions is to explain when write permissions conflict with other permissions. A write per-
mission requires to have the whole fraction (value 1) of the object permission to update state of
the underlying object, so two aliases (references) to an object cannot simultaneously modify a
memory location or read andwrite to it. However, two aliases of an object can coexist bothwith
the read permissions. Access permission splitting and joining rules are given inTable 2.2. With
fractional permission analysis, fractions keep tracks of the way the permissions were split and
joined back. This information can be used to verify programbehavior, based on specific criteria
and parallelize execution of the program by tracking the permission flow through the system.

In Table 2, let x represent current reference, o represent the referenced object and k
represent the fraction of permission assigned to a particular reference, where at least one of x1

and x2 is x, and k1 + k2 = k. The operator multiplicative conjunction (A
⊗

B) denotes simul-
taneous occurrence of permissions by multiple references, say x1, x2, on the same referenced
object o. The symbol⇐⇒ represents the two way operation of splitting and joining permis-
sions. For example, a unique access permission (Rule-I) having k fractions can be divided
into k1 fraction of full and k2 fraction of pure permission and then joined back accordingly.
Likewise, a unique access permission (Rule III) can be split into two share permissions but
cannot be split into a share and immutable permission as immutable cannot co-exist with the
share permission. Linearity of resources forces the unique permission to be replaced by two
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Table 2.2: Access permissions splitting and joining rules.

Splitting and joining Rules Rule #

unique(x;o;k)⇐⇒ full(x1;o;k1)
⊗

pure(x2;o;k2) Rule I

unique(x;o;k)⇐⇒ immutable(x1;o;k1)
⊗

immutable(x2;o;k2) Rule II

unique(x;o;k)⇐⇒ share(x1;o;k1)
⊗

share(x2;o;k2) Rule III

immutable(x;o;k)⇐⇒ pure(x1;o;k1)
⊗

immutable(x2;o;k2) Rule IV

immutable(x;o;k)⇐⇒ immutable(x1;o;k1)
⊗

immutable(x2;o;k2) Rule V

unique(x;o;k)⇐⇒ immutable(x1;o;k1)
⊗

immutable(x2;o;k2) Rule VI

full(x;o;k)⇐⇒ share(x1;o;k1)
⊗

pure(x2;o;k2) Rule VII

share(x;o;k)⇐⇒ full(x1;o;k1)
⊗

pure(x2;o;k2) Rule VIII

share(x;o;k)⇐⇒ share(x1;o;k1)
⊗

pure(x2;o;k2) Rule IX

share(x;o;k)⇐⇒ share(x1;o;k1)
⊗

share(x2;o;k2) Rule X

full(x;o;k)⇐⇒ full(x1;o;k1)
⊗

pure(x2;o;k2) Rule XI

share permissions which can be further split according to splitting rules and then joined back.

2.1.2 Access Permissions in the spirit of Design by Contract Principle

Contract-based specifications provide a good way to distinguish and convey to the readers,
the intended behavior of a software application in an abstract way. The use of abstract repre-
sentations hides the implementation details from the caller of the method thus maintaining
the information hiding principle. A contract is an abstraction to specify a method’s behavior.
In the Design by Contract principle (Meyer, 1988), contracts are obligations and rights of
the client and the implementing class itself. Contracts are specified using the requires and
the ensures clauses that represent a method’s pre and post-conditions respectively (Meyer,
1992; Leavens et al., 2006).

In the spirit of theDesign byContract principle, permission-based specifications atmethod
level represent contracts where permission-based obligations are defined as pre-conditions P
that client of a class must guarantee before calling methods of the class, and permission-based
rights represent post-conditions Q thatmust hold for both the client and the implementing class
after executing the specified method. The idea of specifying pre- and post-conditions as con-
tracts dates back to Hoare’s work (Hoare, 1969) on formal verification of software applications
and has recently been applied to permission-based verification and parallelization approaches
(Cataño et al., 2014; Stork et al., 2014; Huisman and Mostowski, 2015; Müller et al., 2017).
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2.2 Permission-basedProgramVerification inPlural andPulse

To the best of our knowledge, there are only two research tools that are directly related to Java-
based access permissions, namely Plural1(Bierhoff andAldrich, 2008) and Pulse2(Siminiceanu
et al., 2012).

It is worth mentioning here that the permission inference approach, presented in this
thesis, integrates the Pulse tool to perform the correctness and concurrency analysis of the
inferred specifications. The Pulse tool accepts a Java program annotated with the Plural
specifications i.e, access permission contracts and typestate information.

The goal of this section is to describe the syntax and semantics of access permissions
in the Plural specification language and explain the permission checking mechanism in the
Pulse tool. This is because the permission inference framework borrows the Plural’s syntax
to generate the Pulse translated version of the input Java program. It further extends the
existing concurrency analysis in the Pulse tool to check the potential for concurrency, in
a sequential Java program, based on five types of symbolic permissions. Therefore, it is
non-trivial for the readers of the automatic permission checking approach, in our proposed
framework, to understand the Plural specifications and their concurrency analysis in Pulse.

2.2.1 Plural

Plural (Permissions Let Us Reason about Aliases) (Bierhoff and Aldrich, 2007) is a formal
specification language and a tool originally developed to ensure protocol compliance in
typestate-based sequential programs such as Java APIs. The aim was twofold, firstly to
verify protocol conformance with actual program implementation in the presence of aliasing,
and secondly to check whether a client of the program obeys the specified protocol.

In Plural, programmers explicitly specify their design intents using permission-based
typestate contracts at the method level where access permissions represent the read and write
behavior of a method on the referenced objects and their aliasing information. The typestates
(Strom and Yemini, 1986) describe the set of valid object’s states a method can be called on.
Plural performs intra-procedural static analysis, called DFA (Diagram Flow Analysis) of the
annotated program to identify and track the specified pre- and post-permissions across all
the method calls for every program variable (parameter, receiver object, and local variable).
It checks each method separately and ensures that all the declared pre-conditions are met
at the call sites and issues warnings for protocol violations in the program.

The technique is implemented in a tool (Bierhoff and Aldrich, 2008), a permission-based
automated protocol checking and conformance tool implemented as a Java Eclipse plugin.
It supports five types of access permissions such as unique, immutable, full, pure and share
as parts of method specifications.

In a Plural program, the annotation @Perm is used to specify a permission contract,
1Pluralism: Modular Object Protocol Checking for Java, https://code.google.com/archive/p/pluralism/
2Pulse: A Model-checking tool to verify typestates and access permissions specifications of Java programs,

http://aeminium.dei.uc.pt/index.php/ToolsAndDownloads

https://code.google.com/archive/p/pluralism/
http://aeminium.dei.uc.pt/index.php/ToolsAndDownloads
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following the Design by Contract principle, where pre- and post-conditions are defined using
requires and ensures clauses respectively. A typestate in Plural is declared using @State
clause and multiple typestates are declared inside @ClassStates declaration. Typestate
‘Alive’ is a default global state an object can be in. The precondition (requires clause) in a
method contract specifies the type of access permissions (AP), amethod requires on a referenced
object this using notation AP(this) and the typestate (s), a referenced object should be
in before the method starts its execution. The permission (AP) on a parameter is represented
using notation AP(#i) where i is an integer that maps the position of a parameter in a
method declaration as 0→N−1 where N is the number of parameters in a method signature.
The post-condition (ensures clause) in a method contract specifies the permissions (AP′) that
the method should generate on the referenced object to return it back to the caller method
and the typestate (s′) an object should hold when the method exits. The symbol ∗ shows the
multiplicity (one ormore) of the referenced objects with permission annotations. The notation
ENDOFCLASS is used to distinguish between multiple classes in the Pulse input program.

Listing 2.1 shows a sample class Task taken from a case study MTTS with Plural an-
notations. MTTS is an industrial application in Java, developed by Novabase company3

and has been extensively been used in financial sectors to parallelise computational tasks
over multiple servers. The case study was verified using the Pulse tool (Cataño et al., 2014)
based on permission-based typestate contracts.

Listing 2.1: A sample code snippet for Plural annotated Java program in Pulse (Cataño
et al., 2014)
1 import edu.cmu.cs. plural . annot .*;
2 @ ClassStates ({
3 @ State (name= " Created "),
4 @ State (name= " Ready "),
5 @ State (name= " Filled "),
6 @ State (name= " Completed "),
7 @ State (name = " Alive ")})
8 public class Task {
9 private TaskData data;

10 @Perm( ensures = " unique (this) in Created ")
11 public Task (){ }
12 @Perm( requires = "full(this) in Created * pure (#0) in Filled ",
13 ensures = "full(this) in Ready * pure (#0) in Filled ")
14 public void setData ( TaskData d){ ... }
15 @Perm( requires = "pure(this) in Ready ",
16 ensures = "pure(this) in Ready ")
17 public TaskData getData (){ ... }
18 @Perm( requires = "full(this) in Ready ",
19 ensures = "full(this) in Completed ")
20 public void execute (){ ... }
21 @Perm( requires = "pure(this) in Alive ",
22 ensures = "pure(this) in Alive ")
23 public int getStatus ( ) { ... }
24 }
25 ENDOFCLASS

In MTTS program, the class Task captures all the information about a generic task in a
data structure (data) in Line 9. The specifications (Line 10) on the constructor method
Task() show that it does not require any permission on the receiver object this as there is no
‘requires’ clause, but it ensures, using the ensures clause, that a new task must be created
with unique permission, represented by unique(this) annotation in the Created state.

3http://www.novabase.pt/pt

http://www.novabase.pt/pt
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Likewise, the precondition of method setData() in Line 12 specifies that the method
requires full permission, in the Created state, on the receiver object this before updating
the value of its data object. It further specifies that the method needs pure permission
on parameter ‘d’ represented by pure(#0), in the Filled state. The post-condition of
method setData() (Line 13) specifies that the method should generate the same permissions
(full(this) & pure(#0)) on the referenced objects in their respective typestates, to return
the consumed permissions back to the caller of the method. The rest of the methods in
Listing 2.1 would be discussed, in the next section, to elaborate the correctness analysis of
the Plural specifications by Pulse.

2.2.2 Pulse

Pulse (Siminiceanu et al., 2012) is a formal verification approach and a tool, developed at
the University of Madeira, that verifies the correctness of the Plural specifications defined at
the method level. It accepts a Java program annotated with the Plural specifications. Unlike
Plural, it verifies the correctness of the input specifications itself, in isolation to the program
implementation. The goal was to help programmers write semantically correct specifications
to help verify the correctness of the program based on access permissions.

Figure 4.3 shows the workflow to verify Plural specifications through the Pulse tool.

Pulse Model Checker
(evmdd-smc )

Analysis report

.java

Java program 
with Plural 

Specifications

Figure 2.2: A high-level workflow of the Pulse tool.

To perform a comprehensive analysis of the input specifications, Pulse translates the
Plural specifications into a semantically equivalent abstract state-machine model. The model
captures the dynamic behavior of a program as a sequence of method calls obeying the access
permission semantics, and the typestate information associated with the referenced objects.
Pulse employs the evmdd-smc symbolic model-checker (Roux and Siminiceanu, 2010) to
verify the machine models.

The model checker ensures that the input specifications satisfy a set of core integrity
properties specified as Computation Tree Logic (CTL)(Huth and Ryan, 2000) formulae. CTL
models time in a tree structure commonly called a computational tree. Themodel checker iden-
tifies the a) absence of sink states (deadlocks), b) method’s satisfiability, c) access permissions
correctness, d) possible concurrency among methods, and e) possible transitions among type-
states, based on the input specifications, following the pre-defined CTL formulae given below.

The following sections briefly explain the step-by-step access permission encoding and
model checking mechanism in Pulse and elaborate it with the Plural annotated Java program
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given in Listing 2.1. The details of the approach can be found in (Siminiceanu et al., 2012;
Cataño et al., 2014).

Generating Abstract State-Machine Model for the Plural Specifications

Pulse generates the abstract state machine model of the Plural specifications to capture
the dynamic behavior of the object references in the input specifications. The model is
then checked against the method’s specifications (pre- and post-permissions, typestates and
typestate invariants, if any), irrespective of their implementation.

A. Abstract Model of the Plural Specifications

A Plural specification comprises a finite set of class declarations C={C1 , . . .,Cc} such that:
• Every class Ci, for 1≤ i≤ c, contains a set of typestate declaration tsi and set of methods
M as shown below.

• For every class Ci ∈ C, the approach identifies each object oi from the set of objects
O={ o1, . . ., on} in the specifications (including method’s parameters and class fields).

• All the objects oi∈O are mapped to their class declarations using an implicit mapping of
the form class_of :O→C.

• Further, to analyze a truly concurrent behavior of the system, for each object oi , 1 ≤
i ≤ n, the approach creates a number of instances of references to that object as
Ri = { r0

i , r1
i , r

j
i, . ., rK

i }, where K is a user-defined integer (parameter) that shows the
number of distinct aliases for each reference. For K = 0, there would be no concurrency
in the model. However, the value of K should strictly be a positive value (K>0) to allow
concurrency in the generate model.

The building block of the generated model is the state-machine of an object reference
rji , where h = class_of(i), which includes the following main components.

- An abstract program counter (pcji ), is the set of methods (constructors) defined for object oi,

pcji ∈ PCi={exe ,done}×({⊥}), Mh = {M1
h , M

2
h , . . ., M

mh
h } (2.1)

- The access permissions (apji ) associated with the reference rji are defined as

apji ∈ AP = {⊥,Unique, Full, Share,Pure, Immutable}. (2.2)

- A typestate tsi associated with each object 0i is defined as

tsi ∈ τsh =⊥ ∪ {t1h, t2h, . . . , tlhh } (2.3)

where li is the number of typestates for classCi, for 1≤ i≤c and the symbol⊥ represents the
undefined values for typestates, access permissions and methods in the input specifications.
The symbols exe and done are explained below.
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State Transition Rules

The approach defines state transition rules to allow a non-deterministic transition between
the two pre-defined states at the method level. A done local state specifies a local state for
method m with a program counter pcj

i = (done,m) while an exe local state is a local state
with the program counter represented as pcj

i = (exe,m).
• The model allows a transition from a done local state to any other exe local state if

the specifications respect a pre-defined guard formula (enabling conditions). The
guard formula with all the defined conditions (conjuncts) should hold for a transition to
be enabled for method m. It captures:
- the required or the compatible access permissions, following the access permission
splitting and joining rules given in Table 2.2, from the input specifications, and

- the required typestate to make the transition to the exe local state.
• From each exe local state i.e., (exe, m), a reference can only transition to its matching

done local state i.e, (done, m), capturing the completion of the method call for methodm.
Additionally, each transition is guarded by a post-condition and an update formula,

associated with the method specifications, that reflects the expected change in the access
permissions and associated typestate, after the execution of the method.

B. Access Permissions Translation Mechanism

To convert the Plural specifications into an abstract state machine model acceptable by the
evmdd model checker, the translation mechanism builds two components of a finite state
machine: the set of global states S and the transition relation between states i.e., R⊆S×S.
The potential state space is simply a cross product of the local state spaces of n objects
which includes the typestate information (common to all of the references of an object), the
program counter and the access permissions for each of the K+1 references.

S=
n∏
i=1
τsi×

K∏
j=0

(PCi×AP )

There are two local transitions, for each reference rji , corresponding to the start and
end of a method m. The notation (from-states, to-state) represents the pairs of states
in the transition relation where unprimed variables refer to from-state and the primed
variables refer to the to-state part of the relation.

The input for a transition relation is the calling reference rji itself, the method m, two
triples of the form Triple = (Reference, Typestate, AccessPermission) and the
global states i.e., an array of system’s local states. The two triples i.e., (rj0i0 , ts

k0
i0 , ap0),

(rj1i1 , ts
k1
i1 , ap1), encodes the requires (indexed i0) and the ensures (indexed i1) clauses

that basically represents the required and ensured information (typestate, reference, and
access permission) in the method’s specifications. The approach tracks and verifies the
state transition between the starting and ending of the method m, for each reference rji , by
following the guard formula. It further updates the changes in the values of the global
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states, if required, by following the update formula.
• For example, to start a method m for a reference rji , the approach checks if the reference
rji is not already executing method m, the global typestate associated with object i0 is the
required typestate tsk0

i0 , and the pre-permission of object i0 is compatible with the current
permission ap0, and the post-permission of object i1 is compatible with ap1. If all the
conjuncts of the guard formula hold for this transition, the approach updates the global state
and the program counter of reference rji to be "executing the method" i.e., (exe, m).

• Similarly, to end a method m by a reference rji , the approach checks if the method m
is the one currently executed if this condition holds, the approach updates the typestate of
reference rj1i1 to its ensured typestate, its pre-permissions to post-permission ap1, and the
status of the program counter, for the calling reference rji , to be "done" i.e., (done, m).

Access Permission Compatibility and Transformation

To check the permission compatibility and transformation of permissions in the two triples,
the approach employs the Boyland’s fractional permission model (Boyland, 2003) to explain
when the "write" permissions conflict with other permissions. A write (unique) permission,
represented by value 1, consumes the whole fraction of permission to write on a referenced
object, so two references cannot write on the same object or read/write on it at the same
time. However, two read permissions such as immutable, with a fraction value between 0 and
1, can coexist on the same object that allows other references to access the same object. The
approach follows the access permission splitting and joining rules in Table 2.2 where the whole
(fraction) permission is the sum of its fractions say k=k1+k2, across the references rj0i0 and rj1i1 .

The approach checks the permission compatibility, following the permission co-existence
rules given in Table 2.1, to decide if a permission ap0 can be downgraded or upgraded to
another permissions ap1 and uses this information to transform the permissions from ap0

to ap1 when and where required. For example, the full permission can be downgraded to
immutable permission, if it gives up its write access that can be used by the other references.
However, the share and immutable permission are not compatible with each other so they
cannot be transformed into each other.

Discrete State Semantics for Fractional Access Permissions

The approach generates the discrete state semantics for the input specifications. It considers
the access permissions as globally available resources (tokens), stored in a central bank B,
that can be divided among multiple references of the same object. Using the bank analogy,
a reference can take (borrow) a fraction of a token (permission) or all tokens, depending on
its pre-condition and it returns the consumed tokens to the bank once finished its processing.
The approach ensures that the total number of tokens for each object remains preserved,
with the unused fractions always in the bank, thereby maintaining a global invariant property
that no resources are created or lost for the individual objects.

The underlying approach defines the access permissions of a reference rji as a pair of
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fractions, (frji , fw
j
i ) in the range [0, 1], representing the read and write access to the

referenced object oi. The possible combinations of the fraction (permission) values, following
the permission semantics in Section 2.1, for the current (this) and other (O) reference is
defined as shown in Figure 2.3.
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Next AP Unique Full Share Immutable Pure ⊥

this O this O this O this O this O this O
Current AP rw rw rw rw rw rw rw rw rw rw rw rw

Unique ↔ ↓ ↓ ↓ ↓ ↓

== == == + = == ++ = − + = = − ++ −− ++

Full ↑ ↔ ↓ ↓ ↓ ↓

== − = == == == = + = − == = −= + −− = +

Share ↑ ↑ ↔


↓ ↓

== −− == = − == == = − = − = − == −− ==

Immutable ↑ ↑


↔ ↓ ↓

= +− = = + == = += + == == == = + − == +

Pure ↑ ↑ ↑ ↑ ↔ ↓

= + −− = += − = + == == = − == == − = ==

⊥ ↑ ↑ ↑ ↑ ↑ ↔

++ −− ++ = − ++ == + = = − + = == == ==

Fig. 6. Access permission transformations (downgrade/upgrade).

this Semantic Bank O
fr ji = 0 ∧ fwj

i = 0 null frBi ≥ 0 ∧ fwB
i ≥ 0 any

fr ji = 0 ∧ fwj
i > 0 no meaning - -

0 < fr ji < 1 ∧ fwj
i = 0 Immutable fwB

i = 1


l≠j fw
l
i = 0

0 < fr ji < 1 ∧ fwj
i = 0 Pure fwB

i < 1 ∀l ≠ j : fwl
i ≥ 0

0 < fr ji , fw
j
i < 1 Share 0 ≤ frBi < 1 ∧ 0 ≤ fwB

i < 1 ∀l ≠ j : 0 ≤ fr li , fw
l
i < 1

0 < fr ji < 1 ∧ fwj
i = 1 Full 0 ≤ frBi < 1 ∧ fwB

i = 0 ∀l ≠ j : fwl
i = 0

fr ji = 1 ∧ fwj
i = 0 Immutable frBi = 0 ∧ fwB

i = 1 ∀l ≠ j : fr li = 0 ∧ fwl
i = 0

fr ji = 1 ∧ fwj
i = 0 Immutable frBi = 0 ∧ fwB

i < 1 ∀l ≠ j : fr li = 0 ∧ fwl
i > 0

fr ji = 1 ∧ 0 < fwj
i < 1 no meaning - -

fr ji = 1 ∧ fwj
i = 1 Unique frBi = 0 ∧ fwB

i = 0 ∀l ≠ j : fr li = 0 ∧ fwl
i = 0

Fig. 7. A fractional permission model

formulas in the definition of certain access permissions without having to consult the actual values of the other references.
This has practical importance for model checking in particular, where event locality can impact the efficiency of the
analysis.

Our implementation uses the bounding assumption of maximum K coexisting references to translate this framework
into a fully discrete model, where we map fractions from the continuous interval [0, 1] to the set {0, 1, . . . , K + 1}, via the
abstraction

N : [0, 1] → {0, 1, . . . , K+1}, N(f ) =

 0, if f = 0
x ∈ {1, . . . , K}, if 0 < f < 1
K+1, if f = 1

We can define two functions for the required number of tokens needed for the next operation, Nr and Nw. There are
multiple ways to define this pair of functions, as there is still non-determinism in the abstraction from fractions to integer
values. The definition below corresponds to the most conservative approach in which references request the minimum
amount of resources required for their operation:

Nr : AP → {0, .., K+1} ,Nr(a) =

 0, if a = ⊥
1, if a ∈ {Full, Pure, Immutable, Share}
K+1, if a = Unique

Nw : AP → {0, . . . , K+1} ,Nw(a) =

 0, if a ∈ {⊥, Pure, Immutable}
1, if a = Share
K+1, if a ∈ {Unique, Full} .

To complete ourmodel, in addition to the field ap in the basicmodule, we introduce tkr and tkw, to represent the number
of read and write tokens for each reference q = r ji .

For example, if a method requires non-exclusive rights (Pure), the guard for starting the method checks whether the
reference has the one read token necessary (a) or it needs to ‘‘borrow’’ it (b). This results in two distinct types of transitions.

(a) If tkrBi + tkr ji ≥ 1, then tkr ′ji = 1 ∧ tkr ′Bi = tkrBi + tkr ji − 1.
(b) If tkrBi + tkr ji = 0 ∧ ∃h ≠ j : pchi = (done, ·) ∧ tkrhi ≥ 1, then tkr ′ji = 1 ∧ tkr ′hi = tkrhi − 1 (one read token transferred

from rhi to r ji ).

Figure 2.3: A fractional permission model in Pulse (Cataño et al., 2014).

The implementation generates a fully discrete model of the specifications by map-
ping the permission (fraction) values in the range [0, K + 1], As discussed previously,
K represents the maximum number of independent aliases for the object references be-
low:

• The fractions from the continuous interval [0, 1] are mapped to a set {0,1, . . . ,K
+ 1} using the abstraction in Equation 2.4.

N : [0, 1] → {0, 1, . . ., K+1}, N(f) =


0, if f = 0

x ∈ {1, . . ., K}, if f < 0 < 1

K+1, if f = 1

(2.4)

where f : f =0 represent no permission, the value < f < 1 represent the partial/share
permissions, and f = 1 shows the exclusive rights owned by reference rji to the object
0i.

• The required number of read and write tokens, Nr and Nw, are mapped, to represent
the minimum amount of resources required for the next operation, as follows:

Nr : AP → {0,1, . . ., K+1}, Nr(a) =


0, if a =⊥

1, if a ∈ {Full, Pure, Immutable, Share}

K+1, if a = Unique
(2.5)
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Nw :AP → {0,1, . . .,K+1}, Nw(a)=


0, if a ∈ {⊥, Pure, Immutable}

1, if a = Share

K+1, if a ∈ {Unique, Full}
(2.6)

• Further, the number of read and write tokens for each reference rji are represented as tkr
and tkw in the generated model, as follows. The unprimed variables refer to values before
the transition (from-state), while the primed variables represent the values after the
transition (to-state).

tkrBi + tkrji ≥ 1 → tkrji′ = 1 ∧ tkrBi′ = tkrBi + (tkrji −1) (2.7)

tkrBi + tkrji = 0 ∧ ∃h 6=j : pchi = (done,.) ∧ tkrhi ≥1,→ tkrji′ =1 ∧ tkrhi′ = tkrhi′−1
(2.8)

For example, if a method requires non-exclusive access rights, say pure permission on the
current reference rji to start its execution, the guard checks whether the current reference
already has one read token necessary for starting the method, (resulting in the transition
given in Equation 2.7), or if it needs to "borrow" it from some other reference rhi , which has
already completed its execution with (done, m) state, as is the case in the Equation 2.8.

D. Model Generation

The approach then encodes the generated discrete state semantics of the input specifications
to an abstract state machine model, in the input language of evmdd-smc model checker. For
which it first defines the abstract domain of the model and generates four sections a) variable
declarations, b) variable initializations, c) the transition relation, and d) a set of desired
properties.
a). Abstract Domain: The abstract domain is generated by declaring all the variables
in the input specifications as discrete (integer interval type) in the model as follows.
- Themethod’s identifiers domain (Equation 2.1) is mapped to [0,mi].

- The domain for the access permission types (Equation 2.2) is mapped to [0, 5], ranging
from none to the most restrictive permission i.e, unique

- The typestate domain (Equation 2.3) is mapped on the interval [0, hi]. The value 1 is
reserved to represent the Alive typestate, that is a root typestate. A transition is allowed
from any typestate to Alive typestate in the generated model.

- The read/write token domain for the variables is mapped to [0,K + 1] and,

- The domain for the type of local states (exe, done) is mapped to [0, 1] interval.

b). Variable Declaration: For each object oi, the approach declares two types of variables
in the model:
- The first category is for the actual object oi which includes three variables i.e., statei of
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the domain tsi, the read and write tokens (tkrBi and tkwBi ) in the bank of type [0,K+1].

- The second category is for the references rji to the object oi. It defines five variables
for each of the (K+1) references to the object i.e., program counter pcji of type [0, 1], the
methodji of type [0, mi], access permissions apji of type [0, 5], and read/write tokens tkrji
and tkwji of type [0, K + 1].
In total, the model contains c∗(3+5∗(K+1)) variables.

c). Variable Initialization: The approach initializes the model by defining initial values
for each object oi and each reference rji to the object in the following ways:
- For each object oi, initially, the typestate is defined in an unknown state as statei=⊥(0),
and all the read and write tokens are stored in the bank tkrBi =K + 1 and tkwBi =K + 1

- for each reference rji : for 0≤j≤K, the pcji =done(1) (i.e., reference is not executing
something else), apji =⊥ (0) (i.e., none permission), methodji =⊥ (0) and the read and
write tokens are set to zero as tkrji =0 and tkwji =0.

Figure 2.4 shows the variable declaration and initialization sections for reference r0
0, for the

TaskData class, given in Listing 2.1, in the generated model. The value of K, in this case,
is set as K=4.

(a) Variable declarations. (b) variable initializations.

Figure 2.4: The evmdd-smc model for variable declarations and initialization of the TaskData
class

c). Defining Transition Relations: The state transition rules are already explained
in the previous sections. The unprimed variables refer to values before the transition
(from-state), while the primedvariables represent the values after the transition (to-state).
There are four categories of transitions in the generated model described below:

Transitions:
1. A transition where the reference rji starts a constructor.

- The guard expression ensures that the object has not yet created
K∧
j=0

apji =⊥.

- The update expression is pcji′ = exe,∧ methodji′ = constructor ∧ apji′ =
Unique ∧ tkrBi′ = 0 ∧ tkwBi′ = 0 ∧tkrji′ =K+1 ∧ tkwji′ = K+1
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2. A transition where the reference rji starts a non-constructor method mk
i .

- The guard expression ensures that rji exists and
apji 6=⊥∧ pc

j
i = (done,.) ∧statei = thi ∧ tkrBi ≥ tkrki ∧ tkwBi ≥ tkwki

- The update expression is pcji′ = (exe, .) ∧ methodji′ = k ∧ apji′ = ap ∧ tkrBi′ =
tkrBi − tkrki ∧ tkwBi′ = tkwBi − tkwki ∧tkr

j
i′ = tkrji + tkrki ∧ tkw

j
i′ = tkwji + tkrki

3. A transition where the reference rji ends a non-constructor method mk
i .

- The guard expression ensures that rji exists and it is currently executing the method
mk
i . The guard is pcji = (exe,; .) ∧methodji′ = k

- The update expression is pcji′ = (done, .) ∧ tkrBi′ = tkrBi + tkrki ∧ tkwBi′ =
tkwBi + tkwki ∧tkr

j
i′ = tkrji − tkrki ∧ tkw

j
i′ = tkwji − tkrki .

4. A transition where the reference rji is a newly created alias.
- The guard expression ensures that rji is not previously created and statei 6=⊥
land apji =⊥ ∧ tkrBi ≥ 1

- The update expression is pcji′ = (done, .) , ∧methodji′ =⊥, ∧ apji′ = Pure

Figure 2.4 shows the evmdd-smc code for the constructor method TaskData(), in Listing
2.1, with its start and end transition and their guard and update formulae for reference
r0

0.

Figure 2.5: The evmdd-smc model for the Start and End Transitions of the Constructor
method in TaskData class

d). Properties: The model checker then verifies the correctness of input specifications
(access permissions and typestate information) for which the approach defines core set of
guarantees, as generic formulae in CTL, given in the next section.
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CTL Properties

This section explains the CTL formulae and elaborates the Pulse permission checking mecha-
nism through them, using the Plural annotated program given in Listing 2.1. CTL formulae
combine the temporal operators and path quantifiers from the Linear Temporal Logic
(LTL)(Pnueli, 1977), a formalism that describes a system as a sequence of state transitions.
It defines time in terms of temporal operators such as eventually and never to describe
the behavior of reactive systems. The term eventually specifies the desirable behavior of
a system and never is used to specify that something undesirable would not happen ever
(Grumberg and Veith, 2008).
Correctness of Access Permissions: The model checking approach enforces that access
permissions do not violate their intended semantics by defining a discrete state semantics
model for them, as explained in Section 2.2.2. In the CTL formula, the semantics are
expressed as:

∀ 1 ≤ i ≤ c, ∀m ∈ Mi, 0 ≤ j1 6=j2 ≤K :

unique(m) : EX(pcj1i = (m, exe) ∧ apj2i = ⊥) (2.9)

not_full(m) : EX(pcj1i = (m, exe) ∧ pcj2i =(., exe) ∧ tkwj2i > 0) (2.10)

For example, if a method requires unique permission on a referenced object (this), following
the discrete semantics for this permission, it requests all the tokens from the bank i.e.,
frji = 1,fwji = 1 , leaving no fraction for the other references to read or write on the same
object i.e., frBi = 0,fwBi = 0 and frli = 0,fwli = 0, represented by apjli = ⊥ in Equation
2.9. In this case, the program counter for the current reference rj1i would be in "executing"
(m, exe) state while the permission for other references would be none. Similarly, Equation
2.10 defines the CTL formulae in case of pure permission.

Methods Satisfiability Analysis: The predicate satisfiabilityi(m), represented as the
CTL property below, is used to check whether the pre-conditions (access permissions or
typestates) of a method m is met. Alternatively, this property checks if a method can
transition to the exe local state state. The unsatisfiability of the requires clause may be
because of the non-availability of the required access permissions or the typestates in the
input specifications which shows, that the method will never be called by another object.

∀ 1 ≤ i ≤c, ∀m ∈Mi : satisfiabilityi(m) : EX(pcji = (m, exe)) (2.11)

For example, the method satisfiability analysis of the MTTS program, given in Listing 2.1 by
the Pulse tool reports methods setData() and execute() as unsatisfiable. This is because
their pre-conditions are not met.
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The constructormethod produces an object with unique permission and in typestate Created.
According to the access permission splitting and joining rules 2.2, unique permission can
be split into full and pure permission. The full permission along with typestate Created
can satisfy the first part of the requires clause for method setData(). However, the second
part of the method cannot be satisfied, as no method transitions object (d) into the Filled
state, hence, this method remains unreachable. The unsatisfiability of method setData()

causes the unreachability of method getData() and execute(), due to the non-availability
of the typestate (Ready) required by both the methods.

Concurrency Analysis: The predicate concurrent(m1, m2), in the CTL formula given
below, is used to check whether two methods can be run in parallel, meaning that two
program counters for methodsm1 andm2 exist with the local state value exe. An empty set
of states satisfying the predicate concurrent(m1, m2) shows that methodm1 andm2 cannot
be executed in parallel.

∀ 1 ≤ i ≤ c, 0 ≤ j1 6=j2 ≤K, ∀m1 6=m2 ∈ Mi =

concurrenti(m1,m2) : EX(pcj1i = (m1, exe) ∧ pcj2i = (m2,exe)) (2.12)

Table 2.3 shows the pulse concurrency analysis for the MTTS program given in Listing 2.1.
It reveals that the constructor method Task() cannot be parallelized with any other method
as no other method can be in exe local state state at the time of object creation. Further,
it shows that the methods requiring modifying access (full) on the same object cannot
be executed in parallel. However, methods that require read pure access such as method
getData() and getStatus(), on the same object can safely be executed with other methods.

Table 2.3: Method concurrency matrix in MTTS

Task setData getData execute getStatus
Task ∦ ∦ ∦ ∦ ∦

setData ∦ ∦ ‖ ∦ ‖
getData ∦ ‖ ‖ ‖ ‖

getStatus ∦ ‖ ‖ ‖ ‖
execute ∦ ∦ ‖ ‖ ‖

Checking Sink states: The presence of states without the sink state may lead to a circular
wait for the next resource and eventually the deadlock. The presence of unreachable statesmay
arise due to a method’s unsatisfiable pre-conditions or the improper use of access permissions.
The sink states in the generated model are represented as CTL formula given below:

deadlock :∃EX(true) (2.13)
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The permission inference approach, presented in this research, integrates the Pulse tool
to perform the correctness, concurrency, and method satisfiability analysis of the access
permissions. However, inferring (verifying) the typestates information is not an immediate
objective of this research.

Chapter 3 presents the permission checking mechanism for the motivating example given
in Listing 4.2, along with the extension made by our approach, in the Pulse permission
checking mechanism, as a part of its concurrency analysis.

2.3 Permission-based Program Parallelization in Plaid and
Æminium

This section briefly explains the two permission-based programming paradigms e.g., Plaid
and Æminium that have been developed to parallelize execution of single-threaded programs
based on access permissions.

2.3.1 Plaid

Plaid (Aldrich et al., 2011, 2012) is a new permission-based programming paradigm, with
a new type and runtime system, developed to parallelize the execution of typestate-based
sequential programs. The aim was to extend the typestate-oriented programming (Aldrich
et al., 2009), that was originally designed to verify program behavior by tracking the state
of a reference object at runtime, with the first class states and access permissions.

Every type in Plaid is represented as tuples having a type structure and associated
permissions to express aliasing and mutability of the corresponding object’s typestate. Plaid
borrows its grammar and lexical structure from the Java Specification Language (JSL) but
it shows significant differences from Java to incorporate permission-based specifications
as part of the language. Everything in Plaid is an object, including the primitive types
in Java, which are mapped to their corresponding wrapper objects in Plaid. It does not
support Java modifiers. However, it provides interoperability with Java. Using Plaid, we
can call Java methods by developing wrapper methods in a Plaid program. Unlike Java, it
represents classes using keyword state and transitions between state are represented by a
state transition symbol « which distinguishes the pre-state from the post-state.

Plaid supports three types of access permissions: unique and immutable for individual ob-
jects, and share permissions for the collection objects. The keyword ’none’ is used to represent
the absence of permissions or when no permissions are required on a referenced object. In the
context of access permissions, the symbol « is used to specify permission contracts following
the syntax pre-condition « post-condition with the signature of a method to show how
a method changes the state of its arguments (receiver object). In the permission contract, the
part after « symbol can be omitted if the method does not change the permissions associated
with its referenced objects which means that the pre- and post-permissions are the same.
For example, the permission contract for the parameter amount in Listing 2.2 in Line 4 can be
written as immutable Amount amount without explicitly mentioning the post-permission.
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Listing 2.2 shows a samplemethod transfer(), for a BankAccount class, with permission-
based annotations in Plaid. The method transfer() handles deposit() and withdraw()

transactions to transfer a given amount between two bank accounts. The method first
withdraws the specified amount from the sender account in Line 6, and then deposits the
same amount into the receiver account (Line 7). The pre-permission (before the « symbol)
associated with the method’s signature (Line 2) states that it requires unique permission
on the sender and the receiver object representing the exclusive access on these objects.
The post-permission (after the « symbol) specifies that the method will return the same
permission back to the caller of the method when it completes its execution. The annotation
immutable on parameter amount, in Line 4, shows that other methods (aliases) can access
the amount variable but none of them can change it.

Listing 2.2: A sample method specification in the Plaid language (Stork et al., 2014).
1 state BankAccount {
2 method void transfer ( unique Account sender << unique sender ,
3 unique Account receiver << unique receiver ,
4 immutable Amount amount ) {
5 // sender : unique , receiver : unique , amount : immutable
6 withdraw (sender , amount );
7 deposit (receiver , amount );
8 }
9 }

2.3.2 Æminium

Having access permissions support in the Plaid infrastructure, Stork et al. (2014) proposed
a programming paradigm, Æminium to develop by-default concurrent applications based
on access permissions. Æminium supports fork/join and dataflow parallelism. It extends
Plaid’s compiler and runtime to support permissions as the first class language constructs.
Like Plaid, it supports three kinds of permissions i.e., unique, immutable and share but
unlike Plaid that uses access permissions to track the state of a typestate-based program,
Æminium uses access permissions to avoid side effects in a program to parallelize its execution.

In Æminium, programmers explicitly specify permission-based annotations in the source
program to express the read and write behavior of every object being accessed inside a
method. The unique and immutable permissions are used to specify exclusive and the
read-only access to the referenced object and the share permissions are used to specify
concurrent access to the shared objects.

Æminium runtime leverages permission flow through the system (for methods’ parameters
or receiver objects) by extending thePlaid type checker and generates a permission dependency
graph to computes data dependencies at the task level. Figure 2.6 shows the permission
flow graph of the transfer() method given in Listing 2.2 in Æminium. This information is
then used to parallelizes execution of the program to the extent permitted by the computed
dependencies.

For the transfermethod, the unique permission associated with receiver object flows
into deposit()method while the unique permission assigned to sender object is transferred
to the withdraw() method. However, the transfer method has only one immutable per-
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deposit(to, amount) winthdraw(from, amount)

transfer(to, from, amount) {

split 
(amount)

Join 
(amount)

to: unique
from : unique
amount : immutable

amount : immutable
to: unique

amount : immutable
from : unique

to: unique
amount : immutable

from : unique
amount : immutable

to: unique
from : unique
amount : immutable

}

Figure 2.6: The permission flow of the transfer method in Æminium (Stork et al., 2014)

mission associated with the amount object which is automatically split into two immutable
permissions by Æminium and fed into each of the method calls separately. In this way, both
methods can be executed in parallel because both read and write different bank accounts
i.e., sender and receiver and do not produce side effects on each other.

Æminium was able to achieve performance improvement over the sequential versions
of the program based on access permissions but at the cost of high annotation overhead.
Further, the performance gains in Æminium are limited due to the inherent performance
bounds imposed by the Plaid language itself and its sophisticated type system.

However, in all the approaches discussed above, manually adding permission-based
specifications in a program pose significant annotation overhead for programmers and that is
itself a tedious and error-prone task to undertake. Hence, automatic inference of permission-
based dependencies from the source code (the aim of the research presented in this thesis)
is highly desirable to increase the wider adoption of existing verification and parallelization
approaches and to employ them for the general-purpose program development and verification.



Chapter 3

Approach

This chapter explains the access permission inference approach in detail and elaborates the
permission inference mechanism using a motivating example. It further provides an overview
of the permission checking mechanism through the permission-based model checking tool
Pulse. It further explains the theoretical background of the extensions made in the Pulse
tool to perform a comprehensive concurrency analysis of sequential programs, based on the
inferred permissions. The inference of access permission contracts and its proof-of-concept
using the existing permission-based verification tool can be used to achieve implicit concur-
rency for the sequential programs, written in the imperative or object-oriented programming
languages such as Java, without the fear of data races.

3.1 Overview

The permission inference approach automatically generates five types of access permissions
for an un-annotated single-threaded Java program. Further, we integrate and extend the
Pulse tool as a part of the permission checking mechanism. The inference approach reveals
the implicit dependencies present between the code (methods) and the shared objects and
maps them in the form of access permissions using graph abstractions. The permission
checking mechanism in Pulse then verifies the correctness of the inferred specifications and
computes the potential for concurrency in the source program.

Permission
 Inference

Permission 
Checking
(Pulse)

integrate

Permission 
analysis report
    (output)

.java

Un-Annotated
Java program

(Input)

.java

Annotated Java 
program

Figure 3.1: A high-level workflow of the permission inference and checking mechanism.

The approach generates five types of symbolic permissions for the object’s (class) field
thereby, generating permissions at a more granular level that can be used to exploit the
maximum concurrency present in the code.

The permission inference and checking mechanism are explained in detail in Section 3.2
and Section 3.3, respectively.
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3.2 Permission Inference

To generate access permissions for the shared objects at the method level, following the access
permission semantics (Section 2.1), we need to identify the way (read or write) a referenced
object1 is accessed by the current method and, at the same time by its context ("the rest of the
world except the current method"). Moreover, we need to identify and track aliases of the refer-
enced objects (if any), to identify the correct dependencies and to maintain the integrity of the
data during analysis. For this purpose, the inference approach performs modular static analy-
sis of an un-annotated Java program based on its Abstract Syntax Tree (AST). The approach
uses a set of pre-defined syntactic rules to distinguish between different type of expressions in
the generatedAST and to support the read-write and alias-flow analysis of the objects accessed
in a method. The extracted (dependency) information is then used to generate access permis-
sions on the referenced objects, following the pre-defined access permission inference rules.
The permission inference approach takes the following steps or phases as shown in Figure 4.2:

.java

Un-Annotated
Java program

(Input)

3. Graph Traversal 

2. Graph Construction 

Syntactic Rules

Permission Inference 
Rules

1. Metadata Extraction

context information

data-flow information

alias-flow information

other required information

Data Storage

.java

Annotated Java 
program 

Pre- 
Permission

Post- 
Permission

Figure 3.2: The permission inference approach.
1The term reference variable and reference object has been interchangeably used throughout the thesis, to

represent an object accessed in a method.
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Metadata Extraction. It parses AST of the Java program to extract and maintain the
metadata (dependency) information as data-flow, alias-flow and context information, for
all the objects (fields) accessed in a method from its global environment (Section 3.2.1).

Graph Construction. For eachmethod, based on the extracted information, it constructs a
permission-based graphmodel, using graph notations and by following the pre-defined syntac-
tic rules (Section 3.2.2) that specifies the way to model object’s accesses in a graph structure.

Graph Traversal. It traverses the constructed graph for each method and generates sym-
bolic permissions for the object’s (class) fields accessed in a method using access permission
inference rules (Section 3.2.3).

The approach automatically generates five types of access permissions e.g., unique,
full, share, pure and immutable), as pre- and post-permissions on individual field
of an object (class) at the method level. It further generates an annotated version of the
input program with permission contracts following the Plural specifications (2.2.1) where
permission are defined on the (whole) referenced object. The pre-permissions are the permis-
sions that caller (client) of a method must provide on the referenced object(s) before invoking
a method or alternatively, the permissions that method requires on the referenced objects
(fields, parameters etc.) before being executed. The post-permissions are generated on
the referenced object(s) when the method completes its execution.

It is worth mentioning here that, following the Design by Contract principle, a method
is responsible to return either the consumed (same) permission back to the caller of method,
e.g., unique for unique or generate some restrictive permission such as full for immutable,
as post-permission, to avoid the data integrity problems when permissions are actually
used for verification or parallelization purpose. However, in certain cases, the pre- (post)
permission on a referenced object could be some special case e.g., the none permission.

For example, in a Java program, it can happen in three situations a) if a method (construc-
tor) instantiates the (global) referenced object in its local environment, b) if a method itself is
the main() method from where execution of the program starts, c) if a method (constructor)
creates a null reference or un-instantiates the (global) referenced object, or d) if amethod reads
an object that is not being accessed by other methods in any way. For the first two cases, the
approach generates none as pre-permission, showing the absence of permission, which means
that themethod does not require any permission on the referenced object to start its execution.
In the last case, the approach generates none as post-permission on the reference object.

Another special case is when a method reads a field an object (class) that is not shared
across other methods in any way, in this case, the pre- and post-permission for the referenced
object would be none. Moreover, no permission contract would be generated for a method
if it does not access any object’s (class) field from its global environment or if it manipulates
only the local references declared in it.

In the following sections, we will elaborate on each of the three phases of the above-
mentioned permission inference approach using the user-defined ArrayCollection program
shown in Listing 1.1 and some methods from the benchmark programs that are used for the
evaluation purpose.
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3.2.1 Metadata Extraction

The approach performs data-flow, alias-flow and context analysis2 of the source code to extract
and maintain the read, write, aliasing information for all the object’s (class) fields accessed in
the current method and their access by the other methods. The extracted information is then
used to compute the permission-based side effects at the method level. The analysis is based
on the type of expressions3 such as <FieldAccess> and <MethodInvocation> expressions
encountered in an expression statement 4. The analysis further depends on the type of
reference variable referring to an instance (class) field, a method’s parameter or a local
reference that is an alias of some global reference. The analysis ignores the method’s local
variables and parameters that do not refer to any global object, this is because manipulating
local variables does not affect the access rights of the current and the other methods.

Identifying Object’s Accesses in the Current method

The data-flow and alias-flow analysis work in a way that, for each method in the input
program, the technique parses the method’s signature and its body to identify and track the
object’s accesses as read, write and aliasing information in following ways:
Method Signature: The analysis parses a method’s signature with its name, return type,
visibility modifier,and formal parameters. The formal parameters are mapped with their
corresponding argument (aliases) objects by fetching the method invocations of the cor-
responding method. This information is then used to extract (maintain) the read, write
and aliasing information of the actual objects against parameters and to avoid the data
inconsistency problems while the same object is being accessed by other methods. For
example, in Listing 1.1 for method manipulateObjects() in Line 56, the technique maps
the formal parameters p1 and p2 with their actual objects i.e. w and z respectively and then
track them in the method body to identify their metadata information.

Method Body: In parsing a method, the technique parses each expression statement in the
AST of the method body. Each expression in an expression statement is iteratively parsed to
distinguish (fetch) the <read-only> and <read-write> expressions and this information is
recorded accordingly. Like parameters, the technique maps all the local references declared
in a method with their global references (aliases) if any, to extract and maintain the data-flow
and alias-flow information of the actual referenced objects during parsing.
The handling of the read and write expressions in an expression (statement) is as follows:
• The<read-only> expressions are characterized by expression nodes such as<FieldAccess>,
<QualifiedName>, <SimpleName>, <MethodInvocation> etc., in the AST and parsed to
extract all the object’s (class) fields accessed in the expression. This information is main-
tained in the system, as a part of data-flow (read access) analysis, for the referenced objects
2It is worth mentioning here that, in this thesis, the meanings of context analysis is different from the term

context-sensitive analysis. In our permission inference technique, context refers to other methods (except the
current method) accessing the same object as the current method.

3The expressions are characterized by a node of type <Expression> in the AST.
4The expression statements are characterised by a node of type <ExpressionStatement> in the AST.
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in the current method. For example, in Listing 1.1 in Line 61, the technique parses p2.data
expression as a read-only expression. The information is maintained as read access for
the actual object referenced by variable z in the current method manipulateObjects().

• The <read-write> expressions are characterized by <Assigment> expression in the AST.
The proposed technique performs flow-insensitive analysis of the source code, it ignores
the order of execution of statements. However, the analysis preserves the semantics of
assignment statements and precisely extracts the data-flow and alias-flow information of
the referenced objects in an assignment statement, by determining the type of a reference
on the left-hand side of an assignment statement based on its right-hand side expression.
During parsing, the assignment expressions are further categorized as <value-flow>,
<address-flow>, <object-creation>, <null-address-flow> or <self-address-flow>
expressions, based on the type of the right-hand side expression and handled accord-
ingly. For example, if the right-hand side expression yields a <Primtive> type or if it
is a <NumberLiteral> expression, the approach treats the assignment expression as a
<value-flow> expression. The <object-creation> expressions are characterized by the
<ClassInstanceCreation>, <ArrayCreation>, <ArrayInitializer> expressions present
on the right-hand side of an assignment expression. Similarly, If the right-hand side yields a
<ReferenceType> or a <NullLiteral>, the expression is categorized as a <address-flow>
or a <null-address-flow> expression respectively. The analysis recursively parses the
right and the left side of an assignment statement to identify the expression type and
extracts (maintains) the read, write and aliasing information of all the object’s (class) fields
accessed in each expression.
Let us take Listing 1.1 again as an example to elaborate on the metadata extraction
mechanism using different expression types.
- The assignment expression x = p1; in Line 57 in method manipulateObjects() is
categorized as an <address-flow> statement. This is because the right-hand side (p1) is
a reference type and an alias of object w which means x is an alias of w. This information
is maintained in the system as part of alias-flow analysis for object w, as any change in
the state of object x, made directly or indirectly through any reference can affect w and
its aliases. Further, the access for the referenced variable w is stored as read access by
the current method foo.

- Similarly, the expression Client t = x; in Line 58 in the same method is categorized as
<address-flow> statement for the local reference t that now refers to a global reference x.
The analysis tracks this information as a part alias-flow analysis between reference t and
x, as any change in reference t can affect the state of the referenced object against x and
vice versa. The access for the right-hand side operand i.e., x is handled as a <read-only>
expression.

- The expression y = t; in method manipulateObjects() in Line 59 is categorized as
an <address-flow> expression. The analysis maps the local reference t with its global
reference, as an alias of x. This information is maintained as a part of alias-flow analysis
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for the actual object referenced by the variable x as any change in the state of x made
directly or indirectly through t would change the state of its other aliases.

- The expression x.data = 10; in Line 60, is treated as a <value-flow> expression as
the right hand side of the expression is a <NumberLiteral> constant. The information
is updated as write access for the referenced object x in the current method. Further,
the analysis ensures that this change (write operation) should be propagated to all the
aliases of x i.e., reference y and w in this case, to ensure the integrity of data.

- The expression array1 = new Integer [10]; in the ArrayCollection() method in
Line 4, is an <object-creation> expression, following the right-hand side of the assign-
ment expression i.e., <ArrayCreation>. The analysis maps the array1 access as write
access in the current method being the left-hand side of the assignment statement.

- Similarly, the approach treats the expression this.array1 = null; in Line 43 as as an
<null-address-flow> statement and maps it as a write access for the referenced object.
Further, the analysis ensures that this change should be propagated to all the aliases
of reference array1 to maintain the integrity of the data during parsing, and to avoid
side effects when the method is actually parallelized based on the generated permissions.

• Further, the method calls in a method body are handled using <MethodInvocation>

and <SuperMethodInvocation> etc., expressions in the AST. As a part of the modular
analysis, the permission inference technique is recursively applied to every callee methods
(a non-recursive method call) in the caller method. For this purpose, the current state of
the caller method is saved and restored when all of its sub-methods have been parsed. The
analysis of the caller method will not complete until the metadata of all of its sub-methods
have been extracted and permission on their referenced objects have been generated.
For example, in Listing 1.1 in Line 38, the approach first parses method call expressions
printColl(), isSorted() and findMax() in the given order, to extract the read, write
and alias information on the object referenced by the parameter coll in the called methods.
The extracted information constitutes the metadata information for the caller method. The
approach then uses this information to generate the necessary permissions for the caller
methods.

• It is worth mentioning that the analysis does not parse a method invocation expressions
with a recursive method call (eg. when a method calls itself in its body). This is because
a recursive method call does not change the way the caller method (itself) accesses its
referenced objects even through the recursive call expression, reducing the analysis time
and the infinite loop as well. For this purpose, the analysis performs on-the-fly call graph
analysis (Grove and Chambers, 2001; Lhoták and Hendren, 2003) to identify a direct or
indirect recursive calls in the caller method.
For example, Listing 3.1 shows a sample method seqFib() from the Æminium benchmark
program fibonacci. The method computes fibonacci of a given number n. For expression,
if(n <= 2) in Line 4, the approach extracts the metadata information of the referenced
object n passed as a parameter. The approach does not parse the caller method again
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when a recursive call seqFib(n - 1) and seqFib(n - 2) to itself encounters in Line 7 with
parameter n, as parsing the caller method again will not change the way (read or write)
object n is accessed in it.

Listing 3.1: A sample recursive method in Java.
1 public class SeqFibonacci {
2 Integer n = 5;
3 public static Integer seqFib ( Integer n){
4 if(n <= 2)
5 return 1;
6 else
7 return ( seqFib (n - 1) + seqFib (n - 2));
8 }
9 }

• Similarly, in case of infinite and chained recursion, (eg. when a method, say foo1()
calls another method foo2() that in-turn calls foo1() in its body), the analysis does not
parse method foo1() again, as a result of the second-level (indirect) recursive call, and analy-
sis terminates successfully. This is because the approach maintains the current state and the
metadata (at least signatures) of each method, say foo1(), before parsing a (sub-) method
called inside the caller method which helps to identify and skip the indirect recursive call to
the caller method itself. In this way, the analysis continues parsing from the next expression
in the caller method say foo2(), if any, without creating an infinite loop during parsing.
For example, Listing 3.2 shows a sample method phi() from a Java Grande benchmark
program (search). The method phi() declared in Line 3 invokes method Phi() in Line 4
that in-turn calls themethod phi() in Line 7. This is an example of indirect recursivemethod
call. The approach does not fetch the <MethodDeclaration> of the method phi() to parse
it again as it is currently being parsed (the parsing is already on its way). The approach only
extracts the dataflow information of the objects referenced by the class fields z, mu, sigma

in Line 7, being arguments in the method call phi(), as a read access by the current method
Phi() and control returns back to the caller method phi(). T here are no more statements
in method phi(), the analysis terminates without creating any loop during parsing.

Listing 3.2: A sample code snippet for indirect recursion and method overloading in Java.
1 public class Gaussian {
2 public static double z = 0.2 , mu = 0.3 , sigma = 0.4;
3 public static double phi( double z){
4 return Phi ((z - mu) / sigma ) / sigma ;
5 }
6 public static double Phi( double z){
7 return phi(z - mu) / sigma ) / sigma );
8 }
9 public static double phi( double x, double mu , double sigma ){

10 return Math.exp(-x * mu / sigma ) / Math.sqrt (2 * Math.PI);
11 }
12 }
13 // test client
14 public static void main ( String [] args){
15 Gaussian .phi(z);
16 Gaussian .phi(z, mu , sigma );

• However, the static method dispatching to multiple targets is straightforward and is
determined based on the method signature and the static type of the referenced object at
compile time.
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For example, in Listing 3.2, the approach maps the method call expression in Line 15
with the method signature phi(double z) in Line 3 to extract the object’s accesses in it.
Similarly, the method call in Line 16 is mapped with its method declaration phi(double

x, double mu, double sigma) in Line 9, to parse its body.

• The super method calls, in case of inheritance, are handled the same way (parsing
a method’s signature and its body) as other non-recursive method calls. These expressions
are captured using the <SuperMethodInvocation> or <SuperConstructorInvocation>
expression type in the method body and parsed accordingly.
For example, Listing 3.3 shows a parent-child class hierarchy from the montecarlo program
in the Java Grande benchmark. The child class ReturnPath calls the a parent method,
using expression super.dbgDumpFields(), in Line 4. The analysis parses the body of the
method dbgDumpFields() by fetching its <methodDeclaration> node. It extracts the
dataflow information for data members DEBUG and prompt in Line 10 which is then mapped
as read access for the current (child) method in Line 4. This information is then used to
generate access permission rights for the callee and caller method.

Listing 3.3: A sample code snippet to eleborate inheritance and super constructor (method)
calls in Java
1 public class ReturnPath extends PathId {
2 public boolean DEBUG = true ;
3 protected String prompt = " ReturnPath >";
4 public void dbgDumpFields (){ super . dbgDumpFields () ;} // super method call
5 }
6 public class PathId {
7 public boolean DEBUG = false ;
8 protected String prompt ="PathId >";
9 public void dbgDumpFields () {

10 System .out. println (" debug ="+ this . DEBUG +" prompt ="+ this . prompt );
11 }
12 }

• For library method calls, the approach generates the safe access, (write instead of read)
as a conservative approach, for the referenced object even if it is only read in the method
body to maintain the integrity of data if the state of the object is updated by the library
method call. This is because of the unavailability of the method’s definitions of the library
methods in the source code.
For example, in Listing 3.4, the class ExceptionalLabel declares a method getHascode()

in Line 3 and calls the hashcode() method of a reference type ITypeBinding in Line 5,
through the object reference exceptionType. Although, it only reads the object reference
exceptionType in Line 5. However, our approach maps the method’s operation, in this
case, as write operation to generate safe permissions afterward and to maintain the integrity
of the data.

Listing 3.4: A sample code snippet for a class library method call in Java
1 public class ExceptionalLabel implements ILabel {
2 private ITypeBinding exceptionType ;
3 public int getHascode () {
4 if( exceptionType == null ){ return 0; }
5 else { exceptionType . hashCode (); }
6 }



§3.2 Permission Inference 36

• Theconditional and dynamic structures in the source program such asswitch-cases,
if-else, and loops statements do not affect the permission inference mechanism as the
approach parses all expressions encountered in an expression statement, based on the type
of expression and the type of object accessed in it irrespective of its access location. The
analysis ensures to update the metadata of a reference variable every time it is accessed in
different expressions (including the conditional or dynamic structures), thereby extracting
the safe access and alternatively, generating the restrictive permissions.
For example, Listing 3.5 shows a samplemethodsetAliasPerObject in the classPulseSettings.
The method reads the reference variable aliasPerObject in Line 4 (if part) but it writes
on the referenced object in Line 6 (else part) of the if-else statement. The analysis
extracts the write access on the referenced object as safe access.

Listing 3.5: A sample code snippet for the conditional statements in Java
1 public class PulseSettings {
2 int aliasPerObject = 0;
3 public int setAliasPerObject (int x){
4 if (x <= 1){
5 return aliasPerObject ;}
6 else {
7 aliasPerObject = x;
8 }
9 return aliasPerObject ;

10 }
11 }

• Moreover, handling of the array data structures is the same for single- and multi-
dimensional arrays. This is because,at the moment, the approach does not generate
permissions on the individual elements (dimensions) in an array data-structure. It parses
the whole array object like an ordinary instance (class) object. The metadata analysis for
one-dimension arrays, using the ArrayCollection class shown in Listing 1.1, is already
explained in this chapter.
Listing 3.6 shows a bit complex example of the array data structures with aliasing between
arrays of different dimensions. The example method dgefa()5 is taken from the case study
lufact in the Java Grande benchmark. It manipulates a one- and two-dimensional array
using object’s fields ipvt and a. respectively, passed as parameters. The approach extracts
the data-flow and alias-flow information for both objects to generate permission contract
for the current method.
The approach first parses the method’s signature with its parameters a and ipvt and stores
this information as a part data-flow analysis (read access) for both the objects in the current
method. While parsing method body, the approach ignores the method’s local declarations
expressions in Line 3-6 as well as the local variables accessed in conditional and iterative
statement in Line 7 and 8, as none of those affects the way the method accesses object a
and ipvt. The expression (col_k = a[k];) in Line 9 is treated as an <address-flow>

statement. This is because the method’s local reference variable col_k starts pointing to
the object’s field a using its one dimension. This information is maintained as a part of
5We removed some of the code from the example method, while keeping all the operations intact, to focus

on the array objects in the method.
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alias-flow analysis for object a, as any change in the state of a through col_k should be
considered to identify the correct dependencies at the method level, and to maintain the
integrity of the data during parsing and afterward.

Listing 3.6: A sample (code snippet) to elaborate handling of the iterative structure and
two dimensional arrays in Java
1 public class Linpack {
2 final int dgefa ( double a[][] , int lda , int n, int ipvt []){
3 int k,kp1 ,l,nm1 ,t = -1;;
4 int info = -1;
5 nm1 = n - 1;
6 double [] col_k ;
7 if(nm1 >= 0){
8 for(k = 0; k < nm1; k++) {
9 col_k = a[k];

10 kp1 = k+1;
11 if( col_k [l] != 0){
12 t = -1.0/ col_k [k];
13 dscal (col_k ,n,t,kp1 ,1);
14 }
15 }
16 else {
17 ipvt[n -1] = n -1;
18 info = k;}
19 }
20 return info;
21 }
22 final void dscal ( double dx[], int n, double da , int dx_off , int incx){
23 if(incx != 1) {
24 for (i = 0; i < n; i++)
25 dx[i + dx_off ] *= da;
26 }
27 }

The analysis ignores the expression in Line 10 as manipulates the method’s local variables
only. The conditional expression and the mathematical statement following it in Line 11
and 12 are parsed as <read-only> expressions for reference object a. This is because the
approach maps the local reference (col_k) with its actual reference a.
In Line 13, the method call dscal() carries a reference to object a, using the reference
col_k as its argument and the control is transferred back to Line 22 where the reference
col_k is mapped with parameter dx, to be used by the method dscal(). The analysis
again ignores the conditional expression in Line 23 and the loop statement following it in
Line 24, as both manipulate method’s local variables.
Further, the expression (dx[i + dx_off] *= da;) in Line 25 is treated as a <value-flow>
expression following the <Assignment> expression in it. The approach updates this infor-
mation as write access for the object referenced by parameter dx i.e., a. There is no other
statement (expression) in method dscal, the control returns back to the method dgefa()

following the method invocation expression dscal() in Line 13. Similarly, the data-flow
information for the array object ipvt is updated as write access in the current method
following the <value-flow> statement in Line 17. The analysis ignores the read-write
operations on local variables in Line 18 to 20. The context analysis of the array objects a and
ipvt in this method depends on their read and write access by other methods in the program.
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Identifying Object’s Accesses in Other Methods

The context analysis of all the objects accessed in the current method is based on their
access by other methods in the program. There can be three possible contexts namely
Context-N (no access), Context-R (read-only access) or Context-RW (read and write access)
for a shared object. The Context-N is the most restrictive context as in this context, the
current method demands exclusive rights (both read and write) on the object; thus reducing
the chances to achieve maximum parallelism across methods. The read context (Context-R)
is less restrictive than Context-N as it allows some kind of read access to other references thus
providing the possibility to achieve more parallelism. Context-RW is the most flexible context
as other references would have both read and write access to the referenced object but the
possibility of parallelism is limited due to the expected (undesirable) effects, such as data races.

The approach automatically identifies the context information (read, write and none)
for all the shared objects following their data-flow and alias-flow information in the program.
It extracts the safe context (access by other methods), for the objects accessed in the current
method, by updating their accesses across other methods. For example, in Listing 1.1, for
method call printColl(coll) in Line 38, the approach generates Context-RW for the refer-
ence array1, if the method is called through the method call computeState(obj1.array1)
in Line 69, as a part of its context analysis. This is because the array object is being written
by other methods such as incrColl() and tidyupColl() in the program. The exceptions
to this rule are the objects accessed in expressions categorized as <object-creation> and
<null-address-flow> expression where current method (un)instantiates an object in its
body. In this case, the approach generates Context-N (no-access by other methods) for the
reference variable accessed on the left-hand side of an assignment expression, by following
the expression type of the right-hand side expression.

For example, in Listing 1.1, for expression (this.array1 = null ;) in Line 43, the
approach generates Context-N as its context information for array1. This is because the
current method un-instantiates the referenced object and it should have exclusive access to
create a null-reference (a reference variable that does not refer to any object) and update
this information to all of its alias(es).

Similarly, for the <object-creation> expression such as array1 = new Integer [10];

in Line 4 in Listing 1.1, the approach generates Context-N for array object array1, as
the current (constructor) method ArrayCollection() instantiates a new object and, at
this moment, no other method can access it. This information is then used to construct a
permission-based graph model of the current method and generate pre- and post-permissions
for the referenced objects accessed in it. The type of access permissions generated in each
context depends on the way (read or write) the current method accesses the shared object.

It is worth mentioning here that in a Java program execution starts from the mainmethod,
therefore execution of the main() method is independent of any context which means it
does not require any (pre-) permission to access the objects from its global environment.
The approach ensures to generate Context-N (none) for all the referenced variables accessed
in the main method. Following, the permission semantics (2.1), application of Context-N
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in-turn generates unique permissions the referenced objects.

3.2.2 Graph Construction

In this section, we elaborate the graph construction phase and how we map programming con-
structs in the form of permission-based graph model. The graph construction phase models
the read, write, aliasing and context information extracted in the metadata extraction phase
in the form of a graph structure using graph abstractions. The generated model is then used
to automatically reveal access permission-based dependencies in the source program. Figure
3.3i shows the permission-based graph model of method manipulateObjects() generated
in this phase.

I. Graph Notations
The approach defines some special nodes and edges to model the programming constructs

in a graph model which are described below:
Graph Nodes: The permission graph of each method is modelled using three types of graph
nodes:
• A variable node, depicted as a labelled circle, models a reference variable to represent
the object accessed by the current method and its context. For example, x represents
an object referenced in method manipulateObjects() in Figure 3.3i.

• Amethod node, this_m is an abstraction, a labelled rectangle, that represents the current
method accessing the referenced object. For example, method manipulateObjects()

in Listing 4.1 is labelled as this_m in Figure 3.3i.

• Amethod node, context is an abstraction, depicted as a labelled rectangle, that represents
other methods accessing the same object or collectively the current method’s global
environment.

Graph Edges: There are two types of edges that model the way (read, write, and alias), a
referenced object (o) is accessed in the current method (this_m) and by its context (other
methods).
• read/write edges are depicted as directed and solid edges labelled as ‘r’ or ‘w’. For

example, in Figure 3.3i, there exists a read and a write edge between method this_m and
variable node x. Similarly, objects (x, y, w, z) are read by the client method (main()) in
Listing 4.1, so a read edge with label ‘r’ is drawn from context to all the variable nodes.

• alias edge models an alias of a reference if any. The alias edge is depicted as a directed
and dotted edge labelled with the letter ‘a’ between two (reference) variable nodes. For
example, x is an alias of w in Figure 3.3i.
The nodes this_m and context have been introduced to make graph construction and

traversal process simpler.
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II. Rules for Modelling the Object’s Accesses in a Permission-based Graph
We mathematically specify syntactic rules to support the metadata analysis of the source

code and model the object’s accesses in a permission-based graph model to generate per-
missions on the referenced objects. The rules are based on the type of expressions encounter
in each expression statement. We have divided the rules into two main types depending on
their usage: a) Context rules, b) Statement rules, during the analysis. The statement rules,
for simplicity, are categorized as method call and non-method call rules depending on the
type of expression encountered. The statement rules are further categorized based on the
type of reference (variable) encountered in each expression statement.

For example, in the syntactic rules, the notation <grv> specifies a reference variable
(<grv>) that refers to a (global) object’s (class) field declared outside themethod body, or a pa-
rameter that is an alias of the <grv>, the notation <lrv> represents a method’s local reference
that is an alias of <grv> and <lv> represents a method’s local variable other than <lrv>.

Table 3.1 shows the conventions used to mathematically specify the graph modelling
rules. The notations <grv> and <this_m > are being used as an example to show how
specifications work to model a referenced object, <grv>, following its access (read, write and
alias) information in the current method this_m. These conventions are equally applicable to
model other methods (<context >) accessing the shared object and other types of reference
variables such as <lrv> and <lv>, encountered in an expression statement.

The rules follow the style of sequent calculus in Linear logic, with logic connectives and
implication (() operator, that considers rules as formulas (resources) and enforces their
constructive interpretation to extract and map the object’s accesses in a precise way.

Although the rules are self-explanatory, we explain some of them, to provide intuition
on mathematically specifying the rules and their role in supporting the permission inference
mechanism. A complete list of syntactic rules is given in Appendix 1.
A. Context Rules model the read, write behavior of other methods on the objects accessed

in the current method. The context rules specify different ways to add read and write edges
between the context and variable nodes. The rules are designed to follow the style of
sequent calculus, as shown in Equation 3.4, where the rule name itself shows the type of con-
text (Context-N, Context-R or Context-RW) applicable on the referenced object <grv>.

<reference-variable>

<Rule-Description>
(<Rule-Name>, <grv>) (3.1)

For example, the (Context-RW, <grv>) rule specifies that we need to add a read and a
write edge from context to variable (<grv>) node to show that the object (<grv>) accessed
in the current method is also updated by other methods. Similarly, the (Context-N, <grv>)

rule specifies the absence of context for a referenced object <grv> which means the current
method is the sole reference to <grv>. Therefore, we need to remove both read and write
edges, if they exist, from context to <grv> node.
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Table 3.1: Modelling Conventions.

Conventions Description
addReadEdge(this_m, <grv>) A function call to draw a read edge from the

current method (this_m) node to a variable node
(<grv>).

addWriteEdge(this_m,
<grv>)

A function call to draw a write edge from the
current method (this_m) node to a variable node
(<grv>).

removeReadEdge(this_m,
<grv>)

A function call to remove a read edge (if already
exists) from the current method (this_m) node
to a variable node (<grv>).

removeWriteEdge(this_m,
<grv>)

A function call to remove a write edge (if already
exists) from the current method (this_m) node
to a variable node (<grv>).

addAliasEdge(<grv>, <grv1>) A function call to add an alias edge from a <grv>
node to another variable <grv1> node.

removeAliasEdge(<grv>,
<grv1>)

A function call to remove existing alias edge from
a <grv> node to another <grv1> node.

aliasEdge(<grv>, <grv1>) A function call that checks if <grv> is an alias of
<grv1>.

aliasOf(<grv>) A function that returns all the aliases of an object
referenced by <grv>.

apply(<Rule-Name>, <grv>) This function specifies the application of a particu-
lar rule Rule-Name on reference variable (<grv>).

<Type> It represents the data type (both reference and
primitive types) of the referenced object unless
specified as a Primitive or a Reference type
using notations <REF_TYPE> or <PRIM_TYPE>.

<grv>
(Context-RW, <grv>)

addReadEdge(context,<grv>), addWriteEdge(context,<grv>)

<grv>
(Context-N, <grv>)

removeReadEdge(context,<grv>), removeWriteEdge(context, <grv>)

B. Statement Rules describe different ways (read and write) to add edges between a
variable node and the current method. The statement rules for non-method call expres-
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sions are designed to follow the style of sequent calculus, as shown below.

<Exp-Statement>

<Rule-Description>
(<Rule-Name>, <grv>) (3.2)

The antecedent <Expression-Statement> part in Equation 3.4 captures different types
of the expression statements (read-only, value-flow and address-flow) and the con-
sequent <Rule-Description> part specifies how to model the object’s accesses in the
current method and its context (if any).
The rule’s name (<Rule-Name>, <grv>) itself follows the type of expression encountered
during parsing and the type of reference variable (GR for <grv>, LR for <lrv> and L for
<lv>) accessed in each expression.
For example, the (GR-Read-Only, <grv>) rule models the read access of the current
method on the referenced object in case of a <read-only> expression. The rule states
that we should add a read edge from the current method this_m node to the <grv> node.

<grv> |super.<grv> |this.<grv> |<ClassName>.<grv> |<obj>.<grv>
(GR-Read-Only,<grv>)

addReadEdge(this_m, <grv>)

Similarly, the (GR-Val-Flow, <grv>) rule models the write access of the current method
(this_m) on the object referenced by <grv> in case of a <value-flow> statement. It
states that we should add a write edge from the current method this_m node to variable
(<grv>) node. It further ensures that this change should be propagated to all the aliases of
<grv> to maintain the integrity of data during parsing. Therefore, in the graph, we need
to add a write edge from the this_m node to all its alias(es) nodes, if any. All the objects
accessed on the right-hand side of an assignment statement are modeled as <read-only>
expressions following the appropriate syntactic rule.

[PRIM_TYPE] <grv> = <grv1> |<LITERAL>
(GR-Val-Flow,<grv>)

(addWriteEdge(this_m, <grv>)(∀a∈ aliasOf(<grv>) ( (addWriteEdge(this_m, a))),

apply(GR-Read-Only, <grv1>)

The (GR-Add-Flow, <grv>) rule models expression of the form <grv> = <grv1>. The
rule states that we should add an alias edge from <grv> to <grv1> node that shows a
pointer-pointee relationship between the underlying objects at the code level, and
should remove the existing alias edge from <grv> to <grv2> node (if any). This information
is maintained as a part of alias-flow analysis during parsing.

[<REF_TYPE>] <grv> = <grv1>
(GR-Add-Flow, <grv>)

(∃aliasEdge(<grv>, <grv2>)(removeAliasEdge(<grv>, <grv2>)

addAliasEdge(<grv>, <grv1>),apply(GR-Read-Only, <grv1>)

The (LR-Addr-Flow, <grv>) rule models <address-flow> expressions of the form
<lrv> = <grv>. The rule states that we should add an alias edge between a local reference
(<lrv>) node and the (global) reference (<grv>) node and should remove its existing alias
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edge with other nodes if any. The approach keeps track of the changes in the state of
<lrv>, as a part of the alias-flow analysis, that could affect the object referenced by <grv>
and its aliases. Further, we follow the (GR-Read-Only, <grv>) rule for the reference
<grv> on the right-hand side of the expression, to model its read access by the current
method.

[<REF_TYPE>] <lrv> = <grv>
(LR-Addr-Flow, <grv>)

(∃aliasEdge(<lrv>, <grv1>)(removeAliasEdge(<lrv>, <grv1>)),

addAliasEdge(<lrv>, <grv>),apply(GR-Read-Only, <grv>)

C. Method Call Rules capture the method invocation expressions in an expression state-
ment. Following modularity of the analysis, the approach ensures to extract and model
the access permission information for the called (sub) method, before completing the
inference mechanism for the caller method.
The method call rules specify the way to add read and write edges in the caller method
graph as a result of a method call. The type of edges added in the caller (method) graph
depends on the post-access permissions generated by the called method on its referenced
object(s). This is because, when actually parallelizing code based on permissions, the caller
method needs to provide the pre-permissions for all the object’s (class) fields accessed
in the called method, to execute it as a part of its body.
These rules are specified following the syntax given in Equation 5.2 where the antecedent
part represents a method call expression such as MCall([<args>]) with or without argu-
ment(s), and the consequent part describes the way to model the object’s accesses in the
caller graph. The <Rule-Name> itself shows the type of access permissions (<post-perm>)
generated by the called method on its referenced objects (<grv>).

<MCall-Expression>
<Rule-Description>

MCall(<post-perm>, <grv>) (3.3)

The MCall(<Pure>, <grv>) rule generates pure permission, as a post- permission, on
the object referenced by <grv>. It states that we should add a read edge from reference
variable (<grv>) node to this_m node, to represent its read access by the current method,
and we should apply (Context-RW, <grv>) rule to represent its read and write access
by other methods. Similarly, for a method call MCall([<args>]) that generates full
permission on the referenced object <grv>, where the argument (args) can be an alias of
<grv> or it can itself be the reference <grv>, as post-permissions. In this case, following
the semantics of full permission, we need to add both a read and write edge from the
called method (this_m) to the reference (<grv>) node, and should apply (Context-R,

<grv>) rule on <grv> to model its read access by other methods.
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MCall([<args>])|super.MCall([<args>])|super([<args>])
MCall(Pure, <grv>)

addReadEdge(this_m, <grv>), apply(Context-RW, <grv>)

MCall([<args>])|super.MCall([<args>])|super([<args>])
MCall(Full, <grv>)

addWriteEdge(this_m, <grv>), apply(Context-R, <grv>)

The method producing other kinds of permissions on the objects referenced by <grv>, are
represented similarly. Figure 3.3 shows the graphs generated for all the methods in Listing
1.1.

It is worth mentioning here that in the generated graph models, all the parameters are
mapped with their actual (global) references, using the method invocation expressions in
the program, to generate access permissions on the actual referenced objects afterward.

3.2.3 Graph Traversal

In the graph traversal phase, the approach traverses the graph model of each method to
generate access permissions on the objects accessed in a method. The access permission
inference rules generate five kinds of symbolic permissions and a special permission, i.e.,
nonewhere the type of access permissions generated depends on the type of edges between the
current method (this_m), and the reference variable nodes, and the presence (or absence)
of alias edges between the variable nodes in the constructed graph.

The access permission inference rules follow the style of sequent calculus, as shown
below, where the antecedent part (<Rule-Description>) describes the graph traversal steps
and the consequent part (<permission>, <grv>) shows the type of symbolic permissions
generated on the referenced object <grv>.

<Rule-Description>

(<permission>, <grv>)
(<Rule-Name>) (3.4)

• For example, the Pure rule guarantees that the shared object <grv> is only being read by
the current method (this_m), but other methods (context) may have read (write) access
on it, complying with the definition of the pure access permission given in Section 2.1. This
rule states that:

- There must not be a write edge from this_m to <grv> node; and

- There must exist a read and a write edge from context to <grv> node.

• Similarly, the Full inference rule states that the current method (this_m), can only write
on the referenced object <grv>, but other methods (context) can only read it. This rule
generates full permission on <grv> if:
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Figure 3.3: Permission-based graph models for the methods shown in Listing 1.1
.



§3.3 Permission Checking 46

- There must exist a read and a write edge from this_m to <grv> node.

- There must not be a write edge from context to <grv> node; and

∃readWriteEdge(this_m,<grv>) ∧ ∃readEdge(context,<grv>)∧ ¬∃writeEdge(context,<grv>)
(Full)

full(<grv>)

¬∃writeEdge(this_m, <grv>) ∧ ∃readEdge(context, <grv>) ∧ ∃writeEdge(context, <grv>)
(Pure)

pure(<grv>)

For example, Listing 3.7, line 1 & 2 shows the pre- and post-permissions generated for the
method manipulateObjects() by traversing its graph model in Figure 3.3i and by following
the full and immutable permission inference rules on the referenced objects.

Listing 3.7: The permission contract for the method manipulateObject() using the Plural
syntax
1 @Perm( requires ="full(x) * full(y) * full(w) * immutable (z)",
2 ensures ="full(x) * full(y) * full(w) * immutable (z)")
3 Client manipulateObjects ( Client p1 , Client p2){ ...}

The complete annotated version of the input program given in Listing 1.1 is shown in
Listing 4.1 in Plural format with permission contracts generated at the field level. A complete
list of access permission inference rules is given in Appendix A.3.

3.3 Permission Checking

The second part of the permission inference approach comprises a permission checking
mechanism. For this purpose, the approach integrates Pulse, a model-checking approach
implemented as Java Eclipse plug-in. Moreover, the permission inference approach extends
the Pulse tool to capture all possible side effects based on five types of access permissions and
to perform a comprehensive concurrency analysis of the input sequential programs, based
on the inferred specifications.

The details of the permission checking mechanism in Pulse are already explained in
Section 2.2.2. Pulse takes a Plural annotated program i.e., a Java program annotated with
access permission contracts and typestate information, as input. It automatically verifies
the correctness of the inferred specifications along with some of the program properties.
Moreover, it analyzes the input specifications for concurrent execution that can help enable
potential concurrency present in the sequential programs.

3.3.1 Correctness and Concurrency Analysis in Pulse

The permission checking approach in this research employs Pulse analysis to verify the
correctness of input specifications and to perform their concurrency analysis in following ways.
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Access permission Correctness. Pulse enforces that access permissions do not violate
their intended semantics, by defining a discrete state semantics of the input specifications
and by verifying the correctness of the input specifications, following the CTL formula given
in Equation 2.9 and 2.10. Further, Pulse performs method (un)satisfiability analysis of the
input specifications to identify missing specifications following the CTL formula defined in
Equation 2.11.

Method Satisfiability Analysis. The method satisfiability (reachability) analysis of a
method in Pulse is based on the requires clause (pre-permission) in amethod contract. Pulse
uses the satisfiabilityi(m) predicate in Equation 2.11 to check whether the pre-condition
of a method m is met. A method is satisfied (reachable) if all its pre-conditions are met or
if it gets enough (pre-) permissions to start its execution.
The presence of the unsatisfiable methods, due to the method’s unsatisfiable pre-condition,
indicates an error (misspelled or missing specifications) in the input specifications, or it can
be due to program error such as the use of null references. The presence of an unsatisfiable
method indicates that no possible client can fulfill the method’s contract i.e., the requires
clause and this method is not called under any circumstances; thus the method remains
unreachable.
The Pulse correctness and method satisfiability analysis for the example program given in
Listing 1.1, is shown in Section 4.3.1 that represents the efficacy of the proposed approach
in generating the correct specifications without any specifications errors.

Concurrency Analysis. Pulse computes the possible number of method pairs that can
be executed with each other in a program based on the access permission contracts. It does
not consider the control-flow dependencies between method calls therefore, it computes an
over-approximations (superset) of the number of methods that can be executed with at least
one other method, at the class level, by following the (pre-) permission contracts between
two methods.
The concurrency analysis of the input specifications in Pulse is based on the predicate
concurrent(m1,m2) as given in Equation 2.12. The concurrency analysis in Pulse identifies
whether twomethods can be executed in parallel including a method with itself, by identifying
the immutable methods, i.e., methods that require read-only access on the shared object
and the independent methods, i.e., methods that do not touch the same global object.

3.3.2 Extensions made to the Pulse Concurrency Analysis

The permission checking approach extends the Pulse analysis to perform a comprehensive
concurrency analysis of sequential Java programs. In Pulse, two methods are considered
parallel if both require pure (read access) as pre-permission on the referenced object. The
non-parallel behavior of the two methods is determined based on unique and full permis-
sions. In Pulse, the methods that require read-write (unique or full) access cannot be
parallelized with each other.

However, the Pulse tool itself is limited in three ways a) Pulse tool does not support
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overloaded methods (including constructors) even if the method is provided with the different
return type, parameters, and permission contracts, b) it does not consider all the possible side
effects comprising full and pure permissions as a part of its concurrency analysis, and c) it
does not support immutable and share permissions, as a part of its correctness and concur-
rency analysis, and consequently, the model-checker is not able to consider the method’s side
effects for following pairs of (pre-)permission contracts between two methods e.g., {(full,
pure), (pure, full), (share, pure), (share, share)}, and reports them to be con-
current. However, methods with these specifications, as a part of the method contract, if
allowed to execute in parallel can cause data races of the form <write-read>, <read-write>
or <write-write>. Table 3.2 shows the expected method-pair concurrency analysis that
should be performed for a sequential program to void data races when the program is actually
parallelized based on access permissions. The symbol ‖ indicates the parallel execution of
the two methods, whereas the symbol ∦ shows the fact that the specified methods should
be executed in parallel with each other.

Table 3.2: Expected method-pair concurrency analysis.

APs(m2)

unique full share immutable pure

A
Ps

(m
1)

unique ∦ ∦ ∦ ∦ ∦
full ∦ ∦ ∦ ∦ ∦

share ∦ ∦ ∦ ∦ ∦
immutable ∦ ∦ ∦ ‖ ‖

pure ∦ ∦ ∦ ‖ ‖

In Pulse, the model-checker does not perform concurrency analysis of the program using
pre-permission contracts of the form (immutable, immutable) and (pure, immutable)

between two methods. Table 3.3 shows the method-pair concurrency analysis performed by
the Pulse tool where the symbol X indicates the options where Pulse identifies the method’s
side effects correctly, whereas the symbol ? shows the option where either the Pulse too does
not support the permission annotations or performs incorrect analysis. For example, recall
the Pulse concurrency analysis for the MTTS program (Section 2.2.2 in Table 2.3), where
it reports method setData() and getData() to be concurrent but the parallel execution
of these methods can create a race condition of the form <read-write> or vice versa.

The immutable permission being the safe permission, if applicable, can support maximum
parallelism between methods without the fear of data races, and share permission being the
most flexible access can create side effects thereby, data races. Therefore, these specifications
should be considered, as a part of the concurrency analysis, for sequential programs to
parallelize their execution without the fear of data races.

Our permission inference approach extends the Pulse concurrency analysis by considering
all the possible side effects at the method level, based on five types of access permissions. The
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Table 3.3: Method-pair concurrency analysis in Pulse.

APs(m2)

unique full share immutable pure

A
Ps

(m
1)

unique X X ? ? X

full X X ? ? ?
share ? ? ? ? ?

immutable ? ? ? ? ?
pure X ? ? ? X

objective was to compute the potential for concurrency in a sequential program based on the
access permission contracts. The extended concurrency analysis can be used to parallelize the
execution of Java programs, to the extent permitted by the inferred dependencies, without
the fear of data races.

Recall the Pulse analysis in Section 2.2.2, Pulse first translates the input specifications
into a (semantically) equivalent discrete state semantics. It then encodes the generated
semantics in a state-machine model to be verified by the state-of-the-art evmdd-smc symbolic
model-checker (Roux and Siminiceanu, 2010). The model-checker then verifies the core
program properties such as the absence of deadlocks, missing specifications, the correctness
of specifications and concurrency among methods, by performing the reachability graph
analysis of the generated model, based on the pre-defined CTL formulae.

Our permission checking approach extends the Pulse concurrency analysis, to consider
the method’s side effects for five types of symbolic permissions, in the following ways:

1. Discrete State Semantics. The approach generates the discrete state semantics of the
input specifications where.

- It generates a permission (fractional) sharing model (given in Table 3.4) that defines new
token distribution for the current rji and other reference rli, in case of write tokens. The
objective is to make the side effects (the write access) of the current method explicit, in case
of unique, full, share, immutable and pure permissions, for other methods accessing
the same object. The new model modifies the permission sharing model in Pulse given in
Figure 2.3. The new model designed in a way that method requiring write access on the
shared object should always run in isolation.
In Table 3.4, the column f(this) represents the number of read-write tokens that the current
reference rji requires, to fire a transition corresponding to the start of a method. The column
f(bank)defines the number of tokens that should be present in the bank i.e., enabling condition
that should hold for a transition to fire, whereas f(bank′) shows the number of read-write token
in the back, corresponding to an (update expression), once the method has started its exe-
cution with reference rji and the corresponding transition is in exe state. The column f(other)
shows the number ofwrite tokens that other reference rlimayuse at that time. The approach en-
sures to restore all the consumed tokens back to the bank, when themethod ends its execution.
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Table 3.4: The token distribution model for the safe (concurrent) execution of methods.

f(this) Semantics f(bank) f(bank′) f(other)

0<frji <1 ∧ fwji = 1 Unique 0<frBi <1, fwBi =1 0<frBi <1, fwBi =0 ∀l 6=j :fwli=0

0<frji <1 ∧ fwji = 1 Share 0<frBi <1, fwBi =1 0<frBi <1, fwBi =0 ∀l 6=j :fwli=0

0<frji <1 ∧ fwji = 1 Full 0<frBi <1, fwBi =1 0<frBi <1, fwBi =0 ∀l 6=j :fwli=0

0<frji <1 ∧ fwji = 0 Immutable 0<frBi <1, 0<fwBi ≤1 0<frBi <1, 0<fwBi <1 ∀l 6=j :fwli<1

0<frji <1 ∧ fwji = 0 Pure 0<frBi <1, 0<fwBi ≤1 0<frBi <1, 0<fwBi <1 ∀l 6=j :fwli<1

- It generates the fully discrete model of the updated semantics model (Equation 3.5). For
which, it modifies the token distribution model given in Equation 2.5, for full and share

permission which shows that the methods requiring read-write access on the referenced
object would always consume all of the available (write) tokens in the bank.

Nw :AP → {0, 1, . . . ,K+1}, Nw(a)=

0, if a ∈ {⊥, Immutable, Pure}

K+1, if a ∈ {Unique, Full ,Share}
(3.5)

2. Model Generation.
It then encodes the generated semantics into an abstract state-machine model, acceptable
by evmdd-smc model checker in Pulse. For which, it generates (redefines) state transition
rules, for starting and ending the execution of a method, with immutable, share, pure and
full permission. The objective was to enable the model-checker to consider all possible
side effects and to automatically perform the comprehensive concurrency analysis of the
underlying program, based on the five types of inferred permissions.
For example, a transition where the reference rji starts a methodmk

i with pure or immutable
permission would be defined as.
- The guard expression first ensures that the reference rji exists and
apji 6=⊥∧ pc

j
i = (done,.) ∧statei = thi ∧ tkrBi ≤ 1 ∧ tkwBi > 0

- The update expression is pcji′ = (exe, .) ∧ methodji′ = k ∧ apji′ = 5 ∧ tkrBi′ =
tkrBi − 1 ∧ tkwBi′ = tkwBi − 1 ∧tkrji′ = tkrji + 1 ∧ tkwji′ = tkwji + 0

Atransitionwhere the reference rji ends a non-constructormethodmk
i with pure or immutable

permission would be then.
- The guard expression ensures that rji exists and it is currently executing the method
mk
i . The guard is pcji = (exe, .) ∧methodji′ = k

- The update expression is pcji′ = (done, .) ∧ tkrBi′ = tkrBi + 1 ∧ tkwBi′ =
tkwBi + 1 ∧tkrji′ = tkrji − 1 ∧ tkwji′ = tkwji − 0

The guard expression, for a starting a method with immutable permission checks whether
there are enough read tokens in the bank to fulfill the required permission of the current
reference rji . Further, it checks the number of write tokens in the bank to ensure that no
other reference, to the same object, is currently executing a method with write permission.
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The objective is to enforce the mutual exclusion mechanism between two methods accessing
the same object where at least one of them is writing on it.

3. Method-pair Concurrency Analysis. Finally, it parses the results of the model-checker
and computes the number (percentage) of method pairs that can be parallelised with each
other (comparing a method with itself e.g., concurrent(m1, m1)) over a state-space of (total
pairs) methods in the given program. For each class, it calculates the number of concurrent
(method) pairs following the binomial coefficient formula given below, choosing two (02)
methods from n methods. Further, it incorporates the results of extended (concurrency)
analysis in the Pulse generated report as explained in Section 4.3.(

n

2

)
+n= n!

k!(n−k)! +n

where n is the total number of methods having permission contracts.
Table 3.5 shows an adjacency matrix showing methods (pair) concurrency analysis after
extending the Pulse analysis. All the blue X symbols show the concurrency analysis that the
Pulse tool performs based on the permission compatibility and side effects analysis, and all
the red X symbols show the extended method pairs concurrency analysis of the underlying
program based on the permission-based side effect analysis of the methods.

Table 3.5: Extended method pair concurrency analysis.

APs(m2)
unique full share immutable pure

A
Ps

(m
1)

unique X X X X X

full X X X X X

share X X X X X

immutable X X X X X

pure X X X X X

The implementation details of the permission checking mechanism and the results of the
extended concurrency analysis, for the example program given in Listing 1.1, are presented
in Chapter 4.3.



Chapter 4

Implementation

The goal of this chapter is to describe the detailed design and implementation of the Sip4J
tool along with its integration with the permission-based model checking tool Pulse. The
implementation is based on the permission inference and checking approach presented in
Chapter 3. The core functionalities of the proposed approach are implemented as a Java
Eclipse plugin and it is a freely available tool1. The Sip4J framework not only complements
the existing permission-based verification and parallelization approaches such as Plural
(Bierhoff, 2006; Bierhoff and Aldrich, 2007, 2008), Pulse (Cataño et al., 2014) , Plaid (Aldrich
et al., 2012), and Æminium (Stork et al., 2014) to perform their intended tasks without posing
extra work on programmers but can also be used to employ them for the general-purpose
program development and verification purpose.

This chapter provides a high-level system architecture of the tool and an overview of the
underlying approach. It first explains the requirements to integrate the Pulse tool as a part of
permission inference framework. Further, it elaborates the artifacts of permission inference
and checking mechanisms, by revisiting the motivating example given in Listing 1.1. Finally,
it presents the implications and limitations of the Sip4J framework and its analysis in general.

4.1 System Architecture and Overview

The high level system architecture of the Sip4J framework mainly consists of two modules:
(1) Permission Extractor and (2) Permission Checker as shown in Figure 4.1. The Sip4J
framework takes an un-annotated sequential Java program as input. It produces an annotated
version of the input program with access permission contracts defined at the method level.
It integrates Pulse, a permission-based model checking tool to automatically verify the
correctness of the inferred specifications and to reason about their concurrent behavior.

The framework produces the following artifacts:
• Five types of symbolic permissions, following the permission semantics 2.1, generated at
the object’s (class) field level thereby, generating permissions at a more granular level
that can be used to exploit the maximum concurrency present in the code.
• A Plural annotated version of the input Java program, following the Plural specifications
2.2.1, as acceptable by the Pulse tool.
1https://github.com/Sip4J/Sip4J

52

https://github.com/Sip4J/Sip4J


§4.2 Permission Extractor 53

Permission 
Extractor

 Permission 
inference & 
analysis report
     (.pdf)

Permission 
Checker
(Pulse)

extends

(.java) (.java)

Figure 4.1: A high-level work-flow depiction of the Sip4J framework

• An analysis report (in PDF with visualizations) comprising the correctness, concurrency
and, code reachability analysis of the inferred specifications through Pulse 2.2.2, along
with the Plural annotated version of the input Java program.
The permission extractor and checker are explained in more detail in Section 4.2 and

Section 4.3 respectively.

4.2 Permission Extractor

The permission extractor module in Sip4J reveals the permission-based implicit dependencies
present between the code (methods) and the global states in an un-annotated Java program
in the form of high-level abstractions i.e., symbolic permissions. The final output is the
annotated version of the input program (a .java file) with the Plural annotated version of
the input program where access permission contracts are generated on the receiver object
(this), using a single typestate i.e., ‘alive’, and following the Design by Contract principle
acceptable by the permission checker module.

The permission extractor consists of four modules: 1) Metadata Extractor; 2) Graph
Constructor; 3) Access Permissions Generator; and 4) Plural Annotations Generator as
shown in Figure 4.2.

Phase 1

The metadata extractor performs modular static analysis (data flow, alias flow, and context
analysis) of the input program based on its Abstract Syntax Tree (AST). The analysis
generates and traverses the AST of the source code using the AST visitor. For each method
in the input program, it parses the method’s signature and body, using the AST parser, to
extract (maintain) the object’s access as read, write and aliasing information in the method.

The analysis is based on the type of expressions encountered in an expression statement
such as <FIELD_ACCESS>, <ASSIGNMENT>, etc., and the type of reference variables accessed
in each expression (class fields, method’s local variables or parameters). The approach maps
the method’s local references and parameters with their global reference (alias) if any. This
information is then used to extract the read, write and aliasing information of the referenced
object against them, to maintain the integrity of data during parsing. The approach ignores
all the local references (and parameters) that are not aliases of any global references. This
is because manipulating local objects in a method does not affect the access rights of the
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Figure 4.2: The working process of the permission extractor module in Sip4J framework.

current and other methods. The approach performs flow-insensitive analysis of the source
code ignoring the order of execution of statements. It preserves the semantics of assignment
statements by determining the type of a reference variable on the left-hand side of an
assignment statement based on its right-hand side expression. This information is then used
to precisely extract the data-flow and alias-flow information of the referenced objects during
parsing. Further, the context analysis (access by the other methods) of an object accessed
in the current method is based on its data-flow and alias-flow analysis across other methods.

The output of this module is a data structure maintaining the data-flow, alias-flow and
context information for all the objects shared at the method level.

Phase 2

The graph constructor generates a permission-based graph model for each method, based
on the metadata extracted in phase 1. It first maps the extracted information (data-flow,
alias-flow and context information) in the form of pre-defined graph notations. The object’s
accesses are then modelled as read, write and alias edges between the variable (object) and
method nodes.

Phase 3

The permission generator module traverses the permission graph constructed for each method
in phase 2, by following the read, write and alias edges between the variable and method
nodes. The graph traversal is simple and computationally fast as it does not involve any
cycles and expensive steps like backtracking. The output is five types of symbolic permissions
such as unique, full, as pre- and post-permission, for the object’s (class) fields accessed in
a method. It also generates a special none permission to represent the absence of permission.
This happens when a method creates a null reference or when a method does not access
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a shared object.

4.2.1 Motivating Example Revisited: The Access Permission Contracts

Listing 4.1 shows the output of phase 3 for the un-annotated example program, given in Listing
1.1, with permission contracts defined at the field level following the Plural syntax (Section
2.2.1) without typestate information. As discussed previously in Section 2.2.2, the approach
adds the typestate (alive) information to perform the evaluation of the inferred specifications
by the Pulse tool, otherwise, inferring typestate is not objective of the research in this thesis.

In Listing 4.1, we refer parameters by using identifiers of the actual objects against them.
This is because the underlying approach maps the local references and formal parameters
with their global references (aliases), to extract the data-flow and aliasing information of
the actual objects, and to maintain the integrity of the data during parsing. For example, in
Listing 1.1 in Line 12, the parameter coll in method incrColl() is mapped with its actual
reference array2 against the method call, incrColl(obj1.array2) given in Listing 1.1 at
Line 68. The implication of generating access permission contracts on at the object’s field
level is discussed in Section 4.4.

Listing 4.1: Access permission contracts for the example program given in Listing 1.1
1 class ArrayCollection {
2 public Integer [] array1 = new Integer [10];
3 @Perm( ensures =" unique ( array1 )")
4 public ArrayCollection () {}

6 @Perm( requires ="pure( array1 )",
7 ensures ="pure( array1 )")
8 public void printColl ( Integer [] coll) {}

10 @Perm( requires =" share ( array1 ) * share ( array2 )",
11 ensures =" share ( array1 ) * share ( array2 )")
12 public void incrColl ( Integer [] coll) {}

14 @Perm( requires ="pure( array1 )",
15 ensures ="pure( array1 )")
16 public boolean isSorted ( Integer [] coll) {}

18 @Perm( requires ="pure( array1 )",
19 ensures ="pure( array1 )")
20 public Integer findMax ( Integer [] coll) {}

22 @Perm( requires ="pure( array1 )",
23 ensures ="pure( array1 )")
24 public void computeStat ( Integer [] coll){}

26 @Perm( requires =" unique ( array1 ) * unique ( array2 )",
27 ensures ="none( array1 )* none( array2 )")
28 public void tidyupColl ( Integer [] coll){}
29 }
30 ENDOFCLASS
31 class ObjectClass {
32 public Integer [] array2 = new Integer [10];
33 public Client x = new Client () , y = new Client ();
34 public Client z = new Client () ,w = new Client ();
35 @Perm( requires ="full(x) * full(y) * full(w) * immutable (z)",
36 ensures ="full(x) * full(y) * full(w) * immutable (z) ")
37 public void manipulateObjects ( Client p1 , Client p2){}
38 }
39 ENDOFCLASS
40 class Client {
41 Integer data = 100;
42 @Perm( requires ="none(obj1) * none(obj2)",
43 ensures =" unique (obj1) * unique (obj2) ")
44 public static void main ( String [] a) {
45 ArrayCollection obj1 = new ArrayCollection ();
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46 ObjectClass obj2 = new ObjectClass ();
47 obj1. incrColl (obj2. array2 );
48 obj1. computeStat (obj1. array1 );
49 obj1. computeStat (obj2. array2 );
50 obj1. tidyupColls (obj2. array2 );
51 obj2. manipulateObjects (obj2.w,obj2.z);
52 }
53 }
54 ENDOFCLASS

Consider the permission contract for method printColl() in Listing 4.1 at Line 6 & 7,
“@Perm(requires="pure(array1)", ensures="pure(array1)")”. The contract is gener-
ated following the method call expression obj1.computeStat(obj1.array1) in Listing 1.1
at Line 69. It states that the method needs pure permission, as pre-permission, on the object
referenced by variable array1. The post-permission specifies that the method guarantees
to return the consumed permissions, on the same object, to the caller of the method.

Phase 4

In phase 4, the Plural annotation generator produces a Plural annotated version of the
input Java program i.e., a Java program with access permission contracts and typestate
information. For this purpose, it encodes the specifications generated in phase 3 to the
Plural specifications, where permissions are defined on the receiver object (using the keyword
“this”) with a single typestate alive, acceptable by the permission checking module in Pulse.

To reconcile the differences between the phase 3 output and the Pulse acceptable program,
a number of characteristics of Pulse and Plural are worth noting.

Pulse Integration Requirements
• Firstly, Plural is a permission-based specification language where permission contracts

are defined at the object level using the keyword “this”. Pulse tool does not support
permission annotations at the field level e.g. pure(this.field) and pure(obj.field)

etc. However, the Sip4J tool generates permissions at the field level that can help enable
concurrency at a more granular level.

• Secondly, the Pulse tool does not support share and immutable permission as a part of its
analysis. This is because, referring to the permission coexistence semantics in Table 2.1,
a share permission cannot coexist with either unique, full and immutable permission
on the same object. Similarly, immutable permission cannot coexist with either share
or full permission. Hence, Pulse’s does not support share and immutable as a part of
its concurrency analysis.

• Thirdly, Plural follows the Design by Contract principle to specify permission contracts,
as pre- (P) and post- permissions (Q), where the relation P !=Q should hold i.e., the pre-
and post-conditions should be the same, to maintain the integrity of the specifications
and to perform program verification based on these specifications.
However, the situation can be different in reality. For example, in Listing 4.1 in Line 26
& 27, the permission extractor (phase3) generates different pre- and post-permission for
method tidyupColl(). This is because, in Listing 1.1 in Line 43, the method creates a
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null reference using the reference variable array1. In this case, the permission extractor
generates a special permission i.e. none, as post-permissions on array1, to represent that
new instance of the array object should be created with unique permission, for other
methods to access it without generating the null-pointer exception in the program.

• Fourthly, Pulse always requires a non-parameterized (default) constructor with unique

permission on the receiver object (this) to perform the permission correctness and con-
currency analysis of the non-constructor methods accessing the same object.

Generating Plural Annotations: The permission checker, in phase 4, generates the Pulse
translated version (Plural specifications) of the input Java program in the following ways.
• It always defines a non-parameterized (default) constructor, even if no explicit constructor

is defined in the class, to generate unique permission on the receiver object (this) (see
Listing 4.2, line 4).

• As mentioned previously in Section 3.3.2, Pulse does not support overloaded methods
(including constructors) as a part of its correctness and concurrency analysis. We need
to ignore the overloaded methods in the Plural annotated version of the input program.

• For all the non-constructor methods, the Plural annotation generator produces the
conservative or safe permissions on the receiver object i.e. (this) using the access
permissions contracts generated at the field level in phase 3. For this purpose, it maps the
five types of symbolic permissions on a scale 1 to 5 where value 1 represents themost relaxed
(immutable) permission and value 5 shows the most conservative i.e, unique permission.
It then computes the maximum of the pre- and post- permissions generated at the object’s
field level in phase3, to generate pre- and post-permissions of the associated object (this).
For example, for method manipulateObject(), in Listing 4.2 in Line 32 & 33, it generates
full permission on the receiver object (this), as a safe option, although in Listing 4.1
at Line 35 & 36, the required permission on some of the fields such as z is immutable.

• For non-constructor methods, it generates notation <AP>(#i) to represent pre- and
post-permissions for the parameters. For example, the parameter notations full(#0)
and pure(#1) (see Listing 4.2 in Line 32 & 33) are replacement of the actual references
(full(w) and pure(z)), given in Listing 4.1 in Line 35 & 36.

• For non-constructor methods, it generates permission contracts following the relation
P

!=Q where pre- (P) and post-conditions (Q) should be the same (see Listing 4.2, line 6 &
7) However, in reality this relation could be different, as explained in the previous section
using the access permission contract for method tidyupColl() in Listing 4.1 at Line 27.

• It automatically adds other required annotations as a part of the Plural annotated version
of the Java program such as:
– An import statement to support Plural annotations (Listing 4.2, line 1) as a part of

the Java program.

– It adds typestate ‘alive’ using @States statement at the class level (Listing 4.2 in
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Line 2).

– Typestate as a part of pre- and post- permission for the referenced object (Listing 4.2
in Line 6 and 7).

– The annotation ENDOFCLASS at the end of each class (Listing 4.2 in Line 27, 36 & 45).

4.2.2 Motivating Example Revisited: The Plural Annotations

Listing 4.2: A Plural annotated version of the Java program given in Listing 4.1
1 import edu.cmu.cs. plural . annot .*;
2 @ ClassStates ({@ State (name = " alive ")})
3 class ArrayCollection {
4 @Perm( ensures =" unique (this) in alive ")
5 ArrayCollection () { }
6 @Perm( requires ="pure(this) in alive * pure (#0) in alive ",
7 ensures ="pure(this) in alive * pure (#0) in alive ")
8 public void printColl ( Integer [] coll) {
9 }

10 @Perm( requires ="pure(this) in alive * pure (#0) in alive ",
11 ensures ="pure(this) in alive * pure (#0) in alive ")
12 public void computeStat ( Integer [] coll) {
13 }
14 @Perm( requires ="pure(this) in alive * pure (#0) in alive ",
15 ensures ="pure(this) in alive * pure (#0) in alive ")
16 boolean isSorted ( Integer [] coll) { }
17 @Perm( requires ="pure(this) in alive * pure (#0) in alive ",
18 ensures ="pure(this) in alive * pure (#0) in alive ")
19 Integer findMax ( Integer [] coll) { }
20 @Perm( requires =" share (this) in alive * share (#0) in alive ",
21 ensures =" share (this) in alive * share (#0) in alive ")
22 public void incrColl ( Integer [] coll) { }
23 @Perm( requires =" unique (this) in alive * unique (#0) in alive ",
24 ensures =" unique (this) in alive * unique (#0) in alive ")
25 public void tidyupColls ( Integer [] coll) { }
26 }
27 ENDOFCLASS
28 @ ClassStates ({@ State (name = " alive ")})
29 class ObjectClass {
30 @Perm( ensures =" unique (this) in alive ")
31 ObjectClass () { }
32 @Perm( requires ="full(this) in alive * full (#0) in alive * pure (#1) in alive ",
33 ensures ="full(this) in alive * full (#0) in alive * pure (#1) in alive ")
34 void manipulateObjects ( Client p1 , Client p2) { }
35 }
36 ENDOFCLASS
37 @ ClassStates ({@ State (name = " alive ")})
38 class Client {
39 @Perm( ensures =" unique (this) in alive ")
40 Client () { }
41 @Perm( requires =" unique (this) in alive ",
42 ensures =" unique (this) in alive ")
43 public static void main ( String [] args) { }
44 }
45 ENDOFCLASS

The annotations defined for the Pulse translated version in Listing 4.2 also shows the
minimum annotation overhead imposed by the existing permission-based verification ap-
proaches such as Plural and Pulse, to verify program behavior. Therefore, Sip4J framework,
by inferring access permission contracts from the source code of an input program, can help
existing permission-based approaches to perform their intended tasks, without posing extra
work on programmers.
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4.3 The Permission Checker

As the second module of the Sip4J framework, the permission checker aims at verifying the
correctness and effectiveness of the inferred specifications. For this purpose, it integrates
and extends Pulse, a permission-based model checking tool implemented as a Java Eclipse
plug-in, to automatically verify the correctness of the inferred specifications (i.e., annotation
in Java code). As discussed previously in Section 2.2.2, Pulse uses evmdd-smc model-checker
(Roux and Siminiceanu, 2010) to identify errors in the input specifications and to reason
about the program behavior in terms of its concurrency and code reachability analysis.

Figure 4.3 illustrates the working process of the permission checker module, where blue
rectangles with the dotted boundary show the Pulse modules (Model Generator and Parser),
modified by our approach to extend the Pulse concurrency analysis and to incorporate the
results of the analysis in the generated report.

Before elaborating the permission checker mechanism in the Pulse tool, we revisit the
extensions made by the Sip4J framework as a part of the Pulse concurrency analysis.

Call 
Model checker
(evmdd-smc )

Model Parser
(evmdd-smc) 

results

AST Visitor ANTLR Parser
Model 

Generator

model
(.stm)

(.java)

     
        Permission 

inference & analysis 
report
 (.pdf)

Figure 4.3: The working process of the permission checker module in Sip4J framework.

A Revisit of the Extensions made in the Pulse tool
The permission checker extends the permission checking mechanism in the Pulse tool in
following two ways.

Concurrency Analysis. As explained previously, the concurrency analysis in the Pulse
tool is limited and it does not support share and immutable permissions as a part of
its concurrency analysis. However, this information is necessary to explicitly show the
method’s side effects in the program, and to avoid the data races of the form <read-write>
and <write-write>, that can be created by the methods having share and immutable

permissions as a part of their permission contracts.



§4.3 The Permission Checker 60

For this purpose, the permission checker modifies the Model Generator in the Pulse
tool. It first generates the discrete state semantics, of the input specifications, for share,
immutable, pure and full permissions and encodes them into a state machine model,
in model.stm file, as acceptable by the evmdd-smc model checker. Further, it parses the
output of the model-checker, through the Model Parser module, to compute the number
of concurrent method pairs, based on the extended permission model.
The theoretical background of the extended concurrency analysis is already explained in
Section 3.3.2 which follows the permission encoding and model generation mechanism in
Pulse (Section 2.2.2).

Report Generation. The Sip4J framework extends the Pulse analysis report in two ways
a) by automatically adding the Plural annotated Java program and, b) by incorporating the
results of method pair concurrency analysis, for the input program, in the analysis report.
The complete analysis report for the example and other benchmark programs can be found
in the Sip4J project repository on GitHub2. The objective was to provide readers a quick,
explicit and an integrated view of the program with the inferred permissions (method-level
dependencies) along with its correctness, concurrency and code reachability analysis at one
place.

Now, we will elaborate on different phases of the permission checker module in the Sip4J
framework.

The permission checker, as the first step, uses the AST visitor to traverse input Java pro-
gram with annotations. It then parses the input program and feeds the relevant information
(annotations) to the ANTLR (ANother Tool for Language Recognition) parser. The ANTLR
parser uses a pre-defined grammar to parse the input specifications. It checks the misspelled
specifications (if any) in the input program.

The next step feeds the output of the ANTLR parser into the model generator module in
Pulse as input. The model generator then encodes the input specifications into (semantically
equivalent) discrete state semantics model and saves the translation results in a model.stm
(file), acceptable by the symbolic evmdd-smc model checker (Roux and Siminiceanu, 2010).

The evmdd-smc model-checker is inspired by the SAL (Symbolic Analysis Labora-
tory)(L. de Moura, 2003), its input language is similar to SAL; however, evmdd-smc is
more efficient than SAL for several reasons. Firstly, evmdd-smc is powered by an edge-valued
decision diagram (EVMDD) library, libevmdd3 that can be orders of magnitude faster than
the ubiquitous CUDD, especially for models that capture concurrency. Secondly, evmdd-smc is
free of the syntactic sugar provided by the SAL, which often poses tremendous pre-processing
overhead. The use of CTL formulae gives model-checker further freedom to perform veri-
fication tasks tailored to each application. The evmdd-smc model checker analyzes the core
integrity properties of the underlying program using the pre-defined CTL formulae generated
as the part of model in model.stm file.

There are four sections of the generated model in model.stm file, namely, Declarations,
2https://github.com/Sip4J/Sip4J
3http://research.nianet.org/radu/evmdd/.

https://github.com/Sip4J/Sip4J
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Initial States, Transitions and CTL Properties (the details of each section can be found in Sec-
tion 2.2.2). To generate the truly concurrent settings in themodel, the value ofK is set as k=4,
that creates four co-existing references (aliases) of a referenced object in the generated model.

For the sake of brevity, we present here all four parts of the generated model, for some of
the methods of the example program given in Listing in 4.2. The complete model (model.stm
file) of the example program, given in Listing 4.2, can be found in the Sip4J project repository
as mentioned above.

Figure 4.4 and Figure 4.5 show the variable declaration and initialization part of the
generated model for class ArrayCollection, with access permissions mapped in the range
[0, 5] and initialized as required. The code for the start and end of the transitions, for
method ArrayCollection() and incrColl() along with their guard and update formulae,
is shown in Figure 4.6 and 4.7 respectively. Figure 4.8 shows the CTL properties generated for
method ArrayCollection() and incrColl()while the concurrency analysis of method pairs
(ArrayCollection(), incrColl()) and (incrColl(), printColl() is shown in Figure
4.9.

Figure 4.4: Variable declarations for ArrayCollection class

At the next step, the model checker is invoked on the model.stm file, to verify the input
specifications based on the generated transitions, and the pre-defined CTL properties for
each method. The model checker generates an abstract state machine model of the annotated
program and performs a reachability graph analysis of the generated state-space. It identifies
the missing specifications and ensures that access permission contracts do not violate their
intended semantics, using the method requires clause satisfiability analysis. Moreover, it
identifies the concurrent method pairs by considering the method’s side effects based on the
input specifications.

Finally, the permission checker module parses the output of the model checker analy-
sis and generates a user-friendly (.pdf) report of the program comprising the correctness,
concurrency and code reachability analysis of the input specifications, along with the Plural
annotated version of the input program.
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Figure 4.5: Variable initializations for ArrayCollection class

Figure 4.6: The start and end transition for ArrayCollection() method

Figure 4.10 shows a screenshot of the Sip4J tool for the example program which is given
in Listing 1.1 along with its analysis report.

4.3.1 Motivating Example Revisited: Pulse Analysis

This section presents the results of the correctness and concurrency analysis, performed by the
Sip4J framework, for the Plural annotated version of the example program given in Listing 4.2.
Correctness Analysis. Figure 4.11 shows the results of the satisfiability of pre-conditions
(the requires clause ) for all the methods in Listing 4.2. The analysis shows that all the
methods got their required (safe) permissions to start their execution. In other words, there
is no unreachable method and no specification errors in the input program that can otherwise
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Figure 4.7: The start and end transition for incrColl() method

Figure 4.8: CTL model for the reachability (requires clause) analysis of ArrayCollection()
and incrColl() methods

Figure 4.9: CTL model for the concurrency analysis of ArrayCollection(), incrColl() and
printColl() methods
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Figure 4.10: Sip4J screenshot, with its generated report for the ArrayCollection class given
in Listing 1.1.

lead to unsatisfiability of the method contracts.

1 ArrayCollection

Table 2: Method’s Satisfiability(Code Reachabiity Analysis

Method Satisfiability
ArrayCollection

√

printColl
√

computeStat
√

isSorted
√

findMax
√
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√

tidyupColls
√
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ArrayCollection ∦ ∦ ∦ ∦ ∦ ∦ ∦
printColl ∦ ‖ ‖ ‖ ‖ ∦ ∦
computeStat ∦ ‖ ‖ ‖ ‖ ∦ ∦
isSorted ∦ ‖ ‖ ‖ ‖ ∦ ∦
findMax ∦ ‖ ‖ ‖ ‖ ∦ ∦
incrColl ∦ ∦ ∦ ∦ ∦ ∦ ∦
tidyupColls ∦ ∦ ∦ ∦ ∦ ∦ ∦
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(a) Methods of class ArrayCollection.

2 ObjectClass

Table 5: Method’s Satisfiability(Code Reachabiity Analysis

Method Satisfiability
ObjectClass

√

manipulateObjects
√

Table 6: State Transition Matrix
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ObjectClass ∦ ∦
manipulateObjects ∦ ∦
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(b) Methods of class ObjectClass.

3 Client

Table 8: Method’s Satisfiability(Code Reachabiity Analysis

Method Satisfiability
Client

√

main
√

Table 9: State Transition Matrix
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(c) Methods of class Client.

Figure 4.11: Method satisfiability analysis of the example program

State Transition Analysis. In Figure 4.12, the symbol ↑ shows the possible state transition
among typestates for all the methods in the example program. There is only one default type-
state alive in the input specifications so the result will always be true. This is because all the
typestates can transition to the root (alive) typestate. Alternatively, in the generated model,
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there cannot be any deadlock due to the wrong or improper transition between typestates.

3 Client

Table 8: Method’s Satisfiability(Code Reachabiity Analysis

Method Satisfiability
Client

√

main
√

Table 9: State Transition Matrix

al
iv

e

alive ↑

Table 10: Methods Concurrency Matrix

C
li

en
t

m
a
in

Client ∦ ∦
main ∦ ∦

5

Figure 4.12: Typestate state transition matrix

Concurrency Analysis.
Figure 4.13 shows results of the concurrency analysis, generated by the Pulse tool itself and
as extended by our approach to consider all possible side effects at the method level, for the
example program given in Listing 4.2. The symbol ‖ in the concurrency matrix (Figure 4.13)
indicates the possible parallel execution of the two methods, whereas the symbol ∦ shows
the fact that the specified methods cannot be executed in parallel with each other.
For example, for the ArrayCollection class, the analysis shows that 4 out of 7 (57%)
methods could potentially be executed, with at least one other method at the class level
(Figure 4.13a). It shows that the constructor method cannot be parallelized with any other
method. It further shows that methods that require full or share permission can not be
run in parallel with other methods due to the side effects they can produce on each other
when executed in parallel. Figure 4.13c shows a summary of the program with its extended
concurrency analysis by Sip4J framework. For example, the concurrency (method pair)
analysis of the ArrayCollection class shows that, in this class, 10 pairs (36%) of methods
from a state space of total

(7
2
)
+7=28 pairs can be executed in parallel.

4.4 Implications

We observe, that the Sip4J framework, by inferring access permission contracts not only helps
programmers to work at a higher level of abstraction letting them focus on the functional and
behavioural correctness of the program, but can also be used to automatically identify some
of the syntactical errors in the program, such as null-pointer references, without actually
compiling the program. Further, having contract-based specifications in an explicit way can
help programmers to analyze the program behavior in terms of its code reachability analysis,
without performing any code inspection.

We now revisit the motivating example, presented at the beginning of this section, to
demonstrate the efficacy and expressiveness of permission-based specifications in verifying
program behavior and enabling implicit concurrency present in a sequential program.
Null Pointers Analysis. With respect to the permission semantics, the null-pointer ex-
ceptions can arise in two ways in a program: (a) program error: reference to an object is a
null reference itself and, (b) permission inference error: no method generates the permission
required of a method, say unique, on the referenced object as its post-permission.
For example, in Listing 4.1, all the methods accessing the shared object, say array1, would
cause a null-pointer exception and would remain unsatisfied (unreachable), if the client
method, (in this case the constructor), does not generate the unique permission, by in-
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(a) The ArrayCollection class.
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(b) The ObjectClass class.
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(c) Summary of the extended concurrency analysis.
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(d) The Client class.

Figure 4.13: The extended concurrency analysis of the example program given in Listing 4.2

stantiating its object before using it. Similarly, the post-permissions (none(array1) and
none(coll) of method tidyupColl() indicate that object array1 and array2 should be
instantiated again, once the method tidyupColl() has been executed, for these objects to
be used by other methods and without generating the null-pointer exception.
Further, the inference of access permission contracts can be used to define the way (order),
these methods can be executed in parallel by considering their side-effects.

Method-level Dependencies Analysis. Furthermore, access permission contracts can
be used to compute the dependencies between methods and to automatically impose ordering
constraints.
For example, a close examination of the requires clause for method tidyupColl() in Listing
4.1 (Line 26), shows that the method can only be called if the objects array1 and array2

has unique permission as pre-permissions. This means it can either be called immediately
after the constructor methods ArrayCollection(array1) and ObjectClass(array2), as
both generate (unique) permission on array1 and arry2, or once all the methods accessing
the array1 and array2 object have completed their execution, and unique permission on
the referenced objects have been resumed, to be used by other methods.

Implicit Concurrency Analysis. Having such specifications (access permission contracts)
in an explicit way, one can compute the number of immutable (independent) methods i.e.,
the methods that do not change the state of a shared object or the methods that should
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always run sequentially. In this respect, access permission splitting and joining rules in Table
2.2 can play their role in splitting (tracking) the permission flows through the system and
in parallelizing the execution of sequential programs. This is also evident from the study
of the existing permission-based program parallelization approaches (Aldrich et al., 2012;
Stork et al., 2014), also note the permission flow graph (Figure 2.6) in Section 2.3.
Figure 4.14 shows the method call concurrency graph for the annotated program given in
Listing 4.1, following the access permission splitting and joining rules. The analysis reveals
that, in total, 11 out of 15 method calls across three classes can be executed in parallel, based
on the access permission contracts. It also shows the effectiveness of generating permissions
on the individual field of an object that can help achieve concurrency at a more granular
level than generating permissions on the whole object. Recall the Pulse concurrency analysis
for the same program in Section 4.3.1 that reports 4 out of 11 methods can be executed in
parallel. This is because in Pulse, the permission contracts are generated at the object level.
The constructor methods ArrayCollection() and ObjectClass() cannot be parallelized
with any other method, as no other method can use an object before it is being instanti-
ated with unique permission. However, constructors instantiating different objects can be
executed at the same time. The graph shows that the methods that require either read
permissions (pure or immutable) such as printColl(...) and findMax(...) on the same
(different) objects can be executed in parallel. However, methods that require full/share
(write) permission on a shared object e.g. incrColl(...) cannot be executed in parallel
with other methods. This is also evident from the extended concurrency analysis presented
in Section 4.3.1. Similarly, methods that require unique permission on the referenced objects
such as tidyupColls(...) should always run in isolation.

Document Generation. Moreover, the Sip4J framework automatically generates a user-
friendly report in the pdf format, comprising the correctness and concurrency analysis of
the inferred specifications with the annotated version of the input Java program. The report
can be used to provide developers a quick, abstract and explicit view of the implicit relations
(data flow and alias flow) between objects at the method level and its concurrent behavior
without looking at the source code. The generated report can be used by both novice and
expert programmers (verifiers) with equal ease to analyze program behaviour.

The automatic inference of access permission contracts and its concurrency analysis by the
Sip4J framework, along with its integration with the model checking tool, opened a new win-
dow for the program verifiers to automatically evaluate the desired behavior of large and com-
plex applications, without any extra effort (annotation overhead) while consuming less time.

4.5 Threats to Validity

The Sip4J framework statically extracts the access permission contracts from the source
code of a Java program. The objective is to make the implicit dependencies explicit thereby,
the side effects in the program. The computed dependencies are then used to verify program
behavior and automatically compute potential for concurrency in a sequential program.
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Figure 4.14: The method call concurrency graph of the example program given in Listing 4.1.

However, we identified some limitations of the Sip4J framework and threats to the validity
of the underlying permission extraction and checking mechanism itself.

Construct Validity. The permission extractor in Sip4J, at the moment, does not support
all the language constructs in Java Specification Language such as method overriding

(polymorphism), generics and lambda expressions. This is because the technique is
based on statically analyzing the source code. However, in the case of assignment statements,
the analysis determines the actual instance type (the type of the object on the right-hand
side) assigned to a reference of base type on the left-hand side of the assignment statement.
This information can eventually be used to determine which overridden method should
be parsed as a result of the method call, without executing the program. Moreover, our
evaluation (Chapter 5) on small to large sized benchmark programs validate that through
Sip4J, we have provided a succinct methodology to infer access permissions for realistic Java
programs, implementing rich constructs of Java Specification Language.

Internal Validity. In certain situations, the permission inference framework does not pro-
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duce the optimal (precise) solutions and generates safe (restrictive) permissions i.e., unique
or full instead of immutable or pure.
This happens when a) an object is accessed in a complex infix expression with nested pre-fix
or post-fix expressions or b) an object is accessed in a library method call expression. The
first case is because the analysis, as explained previously in Section 4.2, is based on the type
of expressions such as Field_Access and Assignment encountered in the AST of program,
therefore, the permission extractor does not individually parse complex infix-postfix

expressions as a part of the implementation. The second case is due to the unavailability
of method definitions (bodies) for the library methods.
We believe this is an engineering problem in the Sip4J tool and generating restrictive per-
missions will not affect the integrity of the program itself when actually used for program
verification or parallelization purpose. The restrictive permissions can be used to decide if
the method can be executed in parallel with other methods in a safe way.

External Validity. It is worth noting here that the Sip4J framework, at the moment, does
not automatically check the correctness of the inferred specifications for the overloaded
constructors (methods) and consequently, it does not include them as a part of its concurrency
analysis. We observe, the same is true for the parameter annotations, generated as a part
of the method’s signatures, in the Pulse translated version of the input program.

- This is because the Pulse tool does not support overloaded methods and parameter an-
notations as a part of its correctness and concurrency analysis. Consequently, the Sip4J
framework excludes the overloaded constructors (methods) from the Pulse translated version
of the program and analyzes them manually. However, the actual count of the concurrent
methods may be misleading (underestimated) for programs having overloaded methods.
In the case of parameters, the permission checking approach in the Sip4J framework, as
mentioned previously in Section 4.2, solves the problem by mapping all the parameters with
their actual referenced objects that are then automatically checked through the Pulse tool.

- It is worth mentioning here that concurrency analysis of the input specifications in the Pulse
tool is performed at the class level, whichmakes it difficult for theSip4J framework to check the
potential for concurrency at the project level. However, it does not invalidate the effectiveness
of our permission inference approach, in generating the correct specifications without
annotation overhead as the problem is due to the inherent limitation of the Pulse tool itself.
We believe all the problems discussed above are due to the inherent limitation of the Pulse
tool and are engineering problems that can be solved, by extending the Pulse analysis with
overloaded methods, and parameter annotations. However, in both cases, we manually check
the inferred specifications as explained in Chapter 5.

Termination Analysis. The termination of the permission inference analysis in the Sip4J
tool is based on the following characteristics.

- The analysis is based on the AST of the source code, a parse tree having a finite number of
nodes (sub-expressions) for an expression statement. Therefore, it takes a finite number of
steps to parse the generate tree with a finite number of expressions. Therefore, the proposed
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analysis always converges to an expression type, designated as the base case, or otherwise
terminates successfully.

- The presence of indirect or chained recursion, as explained previously in Section 3.2.1, can
cause indefinite (infinite) loops and consequently, the memory overflows. This is because we
save themeta-data (at-least its signature) of eachmethod, and its current state, before parsing
its body and switching the control to parse sub-method calls in it. This step helps to identify
the second level (indirect) recursive method call for the same method during parsing, and
ensures that analysis terminates successfully. Moreover, we validated through experiments,
using realistic benchmarks, that the proposed analysis always terminates successfully.

- Another threat for the successful termination can be the <self-address-flow> statements
(when a reference directly or indirectly starts pointing to itself creating a loop for analysis),
the technique identifies such expressions following the pre-defined syntactic rules, (Appendix
1) for code parsing and terminates successfully, without creating any loop or cycles in the
graph construction and traversal process eventually.

Soundness Analysis. In the context of permissions, the analysis is sound if it generates the
required or sufficient permissions for each memory location that a method needs to read or
write on during its execution.

- To validate that permission inference mechanism, the Sip4J tool always generates the
required or sufficient, we call it safe permission, permissions. The analysis is supported by
the pre-defined mathematically specified rules (Appendix 1), that try to capture all possible
expression types in the Java Specification Language

- Further, the underlying approach ensures to minimize the number of false positives, which
means that the Sip4J framework always generates permissions where required, by following
the same set of syntactic rules, and never generates unwanted permissions.

- Moreover, evaluation (Chapter 5) of the Sip4J framework on realistic Java applications
and its proof-of-concept by integrating the state-of-the-art model checking approach, Pulse,
demonstrates the soundness (at least precision) of the underlying approach in generating
the correct and required permissions.

4.6 Space and Computational Complexity Analysis

Space Complexity is the sum of the sizes of all the algorithm’s data types as a function of
input variables. It is expressed in terms of the function of input size and extra storage.

Let S(n)=max(input,extra−storage) denote the space complexity of permission
inference algorithm.

For a Java program with C number of classes and M number of methods, the space
complexity of M methods depends on the space complexity analysis of all the individual
methods, as shown in Equation 4.1.
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Space(M) =
∑

m ∈M
Space(m) (4.1)

The space complexity of each method m is the maximum space occupied by the local
and global references in a method and the extra space it uses to store the information in a
data structure, as shown in Equation 4.2.

Space(m)=max(LocalSpace(m)+GlobalSpace(m)+ExtraStorage(m)) (4.2)

Therefore, the space complexity of a methodm depends on the number of global reference
variables (RV (m)), it accesses from its global environment, the number of local reference
variables (LRV (m)) and the number of parameters (P (m)) in a method’s signature. It
further depends on the number of method calls (N) in each method. Further, it also considers
the total number of aliases (RA) against each reference variable in a method.

The space complexity of each method can be calculated as follows:
• LocalSpace(m) = O(LRV(m) + P(m)) = the space occupied by the local variables and

parameters.

• GlobalSpace(m) = for each i ∈RV (m), Space(i) =O(1) = the space occupied by the
global references = a single word of memory allocated in the stack frame.

• ExtraSpace(m) = 2 ∗(O(RV(m) ∗ RA)) + 2= the total storage in data structure.

• If N is the total number of method calls inside a method, then
– for each i∈N, Space(i) = max(O(LRV (m) +P (m)), 2 *(O(RV (m) * RA)))

Therefore,
Space(m) = max(O(LRV + P(m)) + O(Space(N)),(2 ∗(O(RV(m) ∗RA)) + 2))

Hence, the space complexity ofM methods in a program is calculated as follows:

Space(M)=
∑

m ∈M
(max(O(LRV (m) + P (m)) + O(1) + O(Space(N)),(2 ∗(O(RV (m) ∗RA)))))

(4.3)

Similarly, the computation complexity analysis of an input program withM methods
depends on the total number computation steps it takes to perform the analysis. Therefore,
the computational complexity of our permission inference approach depends on the data-flow
and alias-flow analysis (DFAA(M)) and context analysis CA(M) of the source code, to fetch
all the referenced objects (RV ) accessed in (M) methods, along with their graph construction
(GC(M)) and graph traversal process (GT (M)) as shown in Equation 4.4.

CA-Perm(M) = DFAA(M) + CA(M) + GC(M) + GT (M) =
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∑
m∈M

((M + (P (m) ∗ (N ∗ A(n))) + RV (m))

+ (ES ∗ (LRV (m) + (RV (m) ∗ (P (m) + RA ))))

+DFAA(N)

+(RV (m)2)

+(RV (m)))

(4.4)

The detailed computational complexity analysis of the permission inference approach
presented in this thesis is given in Appendix 2.



Chapter 5

Evaluation

This chapter presents the evaluation of the Sip4J framework, along with its integration
with the Pulse tool to verify the correctness of the inferred permissions. The empirical
evaluation was performed on realistic Java applications using four benchmarks suites such as
Java Grande benchmark (jomp)1, Æminium2 and Plaid3 and Crystal4, together with Pulse5

itself. The evaluation confirms that the Sip4J framework is indeed capable of generating the
permission-based specifications from the source code of realistic Java programs in a correct
and efficient way. It further presents the efficacy and effectiveness of the proposed framework
by summarizing the results of the evaluations.

5.1 Evaluation Criteria

The evaluation of the permission inference framework and the inferred specifications is based
on the following criteria and experiments, where we:
1. validate the correctness of the inferred permissions in two ways (Section 5.4) by

• automatically checking the inferred specifications using the Pulse tool (Section 5.4.1)
and,

• manually generating the specifications by looking at the source code and comparing
them with the one inferred by the Sip4J as well as with the results produced by the
Pulse tool (Section 5.4.2).

2. demonstrate the effectiveness of the inferred permissions (Section 5.5) by performing
the concurrency analysis of the inferred specifications by the Sip4J framework as an
extension to the Pulse tool.

3. demonstrate the effectiveness of permission inference technique itself (Section 5.6)
by computing the number of annotations generated by the Sip4J to measure the
annotation overhead (effort saved) and its scalability for realistic programs.

4. perform the efficiency analysis of the permission inference technique by computing the
1https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/

java-grande-benchmark-suite
2https://github.com/AEminium/AeminiumBenchmarks/tree/master/src/aeminium/runtime/

benchmarks/.
3https://github.com/plaidgroup/plaid-lang.
4https://code.google.com/archive/p/crystalsaf/
5http://aeminium.dei.uc.pt/index.php/ToolsAndDownloads
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execution time of the permission inference analysis to automatically generate specifications
(Section 5.7).

5.2 Experimental Setup

All experiments were performed on MacBook Pro, Intel Core i7, (2.3GHz) processor (4
physical cores) and 16GB of RAM. The development environment includes Eclipse IDE 3.7.2,
JDK 1.7 and Antlr compiler 3.3 and TexLive 2015.

5.3 Datasets

The dataset for the evaluation consists of benchmark programs and realistic Java applications
widely used in the research community (Bull et al., 2000; Aldrich et al., 2011; Cataño et al.,
2014; Aldrich et al., 2012; Stork et al., 2014; Fonseca et al., 2016) to evaluate the permission-
based program verification approaches and to gain performance improvements in automatic
parallelization approaches. A brief characteristic of the benchmark programs is given below.
1. Java Grande Benchmark. It is a Java Grande benchmark suit (Bull et al., 2000). The
applications for evaluation are mainly picked from the simple Kernels (Section II) and Ap-
plications (Section III) section of the benchmark. The chosen programs are large scale data
and computation intensive programs such as montecarlo, moldyn, etc. aimed at testing the
performance improvement of sequential programs through the Java execution environment.
For example,
MonteCarlo is a financial simulation, using the Monte Carlo techniques to price products
derived from the price of an underlying asset. The code generates N sample time series with
the same mean and fluctuation as a series of historical data.

Moldyn is an N-body code modeling particles interacting under a Lennard-Jones potential,
in a cubic spatial volume with periodic boundary conditions. Performance is reported in
interactions per second. The number of particles is given by N. The computationally intense
component of the benchmark is the force calculation, which calculates the force on a particle
in a pair-wise manner.

Euler solves the time-dependent Euler equations for flow in a channel with a ’bump’ on
one of the walls. The structure employs an N ∗4N mesh, and the solution method is a finite
volume scheme using a fourth order Runge–Kutta method (Abdel Karim, 1966) with both
second and fourth order damping. The solution is iterated for 200 time steps. Performance
is reported in units of time steps per second.

Search solves a game of connect−4 on a 6∗7 board using an alpha-beta pruned search
technique. The problem size is determined by the initial position from which the game is
analysed. The number of positions evaluated, N , is recorded, and the performance reported
in units of positions per second.

Series computes the first N Fourier coefficients of the function f(x)=(x+1)x on the
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interval 0,2. This benchmark heavily exercises transcendental and trigonometric functions.

LuFact Solves an N * N linear system using LU factorization followed by a triangular solve.
This is a Java version of the well known Linpack benchmark (Dongarra, 1992).

SOR performs 100 iterations of successive over-relaxation on an N * N matrix. The perfor-
mance reported is in iterations per second.

Crypt performs IDEA (International Data Encryption Algorithm (Lai et al., 1991)) encryp-
tion and decryption on an array of N bytes. Performance units are bytes per second.

Matmultsparse uses an unstructured sparse matrix stored in compressed-row format with
a prescribed sparsity structure. This kernel exercises indirect addressing and non-regular
memory references. An N * N sparse matrix is multiplied by a dense vector 200 times.

2. Æminium Benchmark. All the programs in the Æminium benchmark consist of data
and computationally intensive applications that mostly solve problems using Arrays and
Collectiondata structures in Java such asde Columbian Health Care System andgaknapsack.
The applications were taken from different sources such as HPCC (High Performance Cluster
Computing)6, BOT (Barcelona OpenMP Tasks Suite)(Duran et al., 2009) and Java ForkJoin
framework (Lea, 2000). All the applications in this benchmark are part of Æminium7

project, a by-default concurrent programming paradigm, that has been used to evaluate
the performance of a single-threaded program on multi-core processors, by parallelizing its
execution based on access permissions. For example,
Gaknapsack solves the Knapsack problem with 500 items using a Genetic Algorithm, with
the population size of 10,000 generations, a probability of mutation and recombination of 20.

Health simulates de Columbian Health Care System (Das and Fujimoto, 1993). It uses
multilevel lists where each element in the structure represents a village with a list of potential
patients and one hospital. The hospital has several double-linked lists representing the
possible status of a patient inside it (waiting, in assessment, in treatment or waiting for real-
location). At each time step, all patients are simulated according to the several probabilities
(of getting sick, needing a convalescence treatment, or being reallocated to an upper-level
hospital). A task is created for each village being simulated. Once the lower levels have been
simulated synchronization occurs.

BlackScholes is aMonteCarlo simulation using the BlackScholes Formula with 10,000 points.

QuickSort sorts an array of 100000 random long numbers using quicksort algorithm.

3. Plaid Benchmark. The data-set common in the Æminium and Plaid benchmark mostly
consists of computationally intensive applications implementing recursive data structures
and divide-and-conquer algorithms such as.
FFT is an application (used for weather forecasting) that performs a Fast-Fourier

Transform on a large one-dimensional array of 1048576 random complex numbers using the
6https://icl.utk.edu/hpcc/
7http://aeminium.dei.uc.pt/index.php/AEminium

https://icl.utk.edu/hpcc/
http://aeminium.dei.uc.pt/index.php/AEminium
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generalized Cooley-Tukey algorithm8.

Integral is a computation-intensive application (library) developed by Æminium. It com-
putes the integral of a user-defined function. The integral is computed by dividing the
overall interval into infinitesimal small intervals, calculating the approximate area for all
the subintervals, and then all fractions added to compute the area of the whole integral.

Webserver is a client-server application for serving static web pages. In the Æminium
project, it was used to parallelize code by overlapping the computation and communication
over multiple pages to improve performance.

Fibonacci computes fibonacci of number 25.

ShellSort sorts an array of 100000 random long numbers using shellsort algorithm.

4. Pulse is a permission-based model checking tool, implemented as a Java Eclipse Plugin.
The tool was developed, as a part of the Æminium project 9, to automatically perform access
permission checking and verify program behavior based on the specifications. The motivation
behind using the Pulse tool itself as a case study was to evaluate the permission inference
technique on a real-time Java application of average size, in this case, its 7k plus SLOC.
Pulse is an object-oriented program that implements rich Java constructs such as classes,
inheritance, method overloading, regular expressions, and it extensively uses Java APIs,
especially the multi-level linked lists to perform static analysis of the source code with the
input specifications, to generate its abstract state-machine model that is then verified by
a symbolic model checker.

5. Crystal is a static analysis framework built as an Eclipse Plugin in Java, developed at
Carnegie Mellon University for teaching and research purposes. The static analyzer Crystal
is an object-oriented Java application, developed as a part of the Plural project 10. Plural
is a sound modular protocol checking tool that employs access permissions to allow a flexible
aliasing control mechanism to verify program behavior. Crystal performs branch-sensitive
data-flow and exceptional control-flow analysis of the Java source code. The data-flow
analysis is based on a "worklist" algorithm. The analysis extracts different information at
different program levels to perform program verification based on the input specifications.
The motivation behind using the Crystal applications is to evaluate the permission inference
mechanism on a realistic big case study, in this case, 17k plus lines of the source code, that
follows object-oriented concepts such as object encapsulation, object composition, object
aggregation, etc. Moreover, it implements rich Java Specification Language constructs
such as classes, anonymous classes, inner classes, enumeration classes, abstract classes,
method overloading, method overriding, multiple inheritance through interfaces, generics
and exceptional handling.

A brief statistics of the data sets are given in Table 5.1.
The results of the experiments on the benchmark programs are discussed below.

8https://sourceforge.net/projects/hpcc/
9http://aeminium.dei.uc.pt/index.php/AEminium

10https://code.google.com/archive/p/pluralism/

https://sourceforge.net/projects/hpcc/
http://aeminium.dei.uc.pt/index.php/AEminium
https://code.google.com/archive/p/pluralism/
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Table 5.1: A brief statistical view of the benchmark programs.

Statistics

Benchmark Program SLOC†† Classes Methods

Plural Crystal 17,512 212? 1,975
Pulse Pulse 7,671 40� 461

jomp

montecarlo 1,370 18 196
euler 1,080 7 51
search 666 7 50
moldyn 608 7 43
lufact 549 5 42
crypt 488 5 40
series 359 5 37
sor 354 5 34
sparsematmult 327 4 33

Æminium

gaknapsack 437 6 21
blacksholes 232 6 50
health 232 6 18

Plaid†

webserver 143 3 12
fft 91 4 11
quicksort 66 3 9
shellsort 58 2 7
integral 40 1 5
fibonacci 22 1 4

Example ArrayCollection 71 3 12
Total 32,376 350 3,111

†† The SLOC are computed using the SLOCCount tool, https://dwheeler.com/sloccount/
? It includes 22 anonymous classes plus 66 interfaces.
� It includes three inner classes.
† The .java version of the program common in the Æminium and Plaid benchmark.

5.4 Correctness analysis of the Inferred Specifications

The correctness analysis of the inferred specifications is performed in two ways a) automatic
analysis (Section 5.4.1) through the Pulse tool and b) manually generating the specifications
for all the benchmark programs.

5.4.1 Automatic Analysis

The automatic correctness analysis of the inferred specifications is performed by integrating
the Pulse tool as a part of Sip4J framework as explained in Section 4.3. Pulse verifies the
correctness of the input specifications by performing the method (un) satisfiability analysis
following the CTL formula given in Section 2.2.2.

https://dwheeler.com/sloccount/
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Evaluation Metrics

The automatic correctness analysis of the inferred specifications is based on the following
metrics in Pulse.
• #Satisfiable(M) shows the number of methods determined by the Pulse tool to be

satisfiable where a method is satisfiable if all its pre-conditions are met. The method
satisfiability analysis is performed using the requires clause in the input specifications.
In other words, method satisfiability analysis shows the reachable code (method). A
method is reachable if it obtained its required permissions.

• #UnSatisfiable(M) shows the number of methods that Pulse determines to be unsat-
isfied or unreachable. The presence of the unsatisfiable method is due to the method’s
unsatisfiable pre-conditions which either indicates an error in the generated specifications
or some missing specifications.
In other words, total methods are a sum of satisfiable and unsatisfiable methods for each

program.

Analysis

Table 5.2 shows the correctness analysis of the benchmark for the Pulse translated (Plural
annotated) version of each program. For every program (column Program) in the bench-
mark suit, we present the results for the correctness analysis (columns #Satisfiable(M),
#UnSatisfiable(M)) of each program withM methods.

The results confirm that our Sip4J framework successfully infers satisfiable (required
or safe) permissions, without any specification errors, for all methods in all the benchmark
programs with three exceptions: montecarlo, Pulse and Crystal. For the monetcarlo program,
11 of the 196 methods have been determined to be un-satisfiable. Upon manual analysis of
the montecarlo source code. We noticed that unsatisfiability of the methods is due to the
fact, as discussed previously in Section 4.5, that the Pulse tool does not support overloaded
methods (constructors) as a part of its permission checking mechanism, and that all these 11
methods are overloaded methods. For Crystal, the analysis shows unsatisfiability for 581 out
of 1,975 methods. Again, this is due to the presence of overloaded methods in the Crystal
framework. However, we manually analyzed the overloaded methods with their inferred
specifications and found them to be satisfiable.

5.4.2 Manual analysis

To check if the inferred specifications comply with the code, we a) generate access permissions
by looking at the source code for each program at the method level and, b) compare the
generated results with the specifications inferred by the Sip4J framework as well as with the
result produced by the Pulse tool automatically.

By manually generating the specifications from the source code, we were also able to
compute the number of safe approximations (e.g., full or unique permissions instead of
pure or immutable permission) made by the Sip4J tool, as required in certain cases (the
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Table 5.2: Correctness analysis of the inferred specifications.

Correctness analysis
Program #Satisfiable(M) #UnSatisfiable(M) #SafeApprox(M)

Crystal 1394 5817 2884

Pulse 451 107 13
montecarlo 185 117 10
euler 51 0 15
search 50 0 10
moldyn 43 0 10
lufact 42 0 10
crypt 40 0 10
series 37 0 10
sor 34 0 11
sparsematmult 33 0 11
blacksholes 50 0 0
gaknapsack 21 0 0
health 18 0 0
webserver 12 0 0
fft 11 0 0
quicksort 9 0 0
shellsort 7 0 0
integral 5 0 0
fibonacci 4 0 0
ArrayCollection 12 0 0
Total 2,509 602 398

7 It shows the number of overloaded methods (constructors) in the program.
4 It includes 83 safe approximations for generics (parameterized) methods in Java.

reasons are already explained in Section 4.5). However, while doing so, we observed that
identifying dependencies in a small program was quite easy for a human. However, as the size
and complexity of program grows, it became increasingly challenging to precisely identify
and track the dependency information in the program and that supports the main motivation
of the research presented in this thesis.

Evaluation Metrics

# SafeApprox(M) shows the number of safe approximations generated by the Sip4J, for
the Plural annotated version of each program for M methods. A non-zero number indicates
the situation where our Sip4J does not produce an optimal solution but generates restrictive
(full or unique) permissions as a safe option to avoid data integrity problems. The safe
permission guarantees that the method got sufficient permissions to start its execution and
this information can be used to identify the side effects methods produce on each other when
executed in parallel.
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Analysis

In Table 5.2, column # SafeApprox(M) shows the number of safe approximations (safe
permissions) made by the Sip4J framework for the Pulse translated version of each program
with M methods.

For example, in the case of Java Grande benchmark, all the programs use JGFInstrument
and JGFTimer class libraries from the Java Grande Framework, with ten (10) library methods
calls in each program for which Sip4J generates safe permissions. In the case of Crystal, the
count is 288 as the benchmark is heavily dependant on the Java class libraries. It includes
83 generics (parameterized) methods.

In total, Sip4J made 398 safe approximations for a total of 3,111 methods for the Pulse
translated version of 21 benchmark programs that is 4% of the total annotations (10,157)
generated by Sip4J. However, we observed that generating safe permissions does not affect
the integrity of the specifications and the program itself when actually used for verification
or parallelization purpose, and it does not invalidate the effectiveness of our technique in
automatically generating correct specifications.

Overall, the analysis shows the effectiveness of our proposed framework in automatically
identifying and tracking such subtle dependencies correctly.

5.5 Concurrency Analysis of the Inferred Specifications

The Sip4J framework computes the potential for concurrency in a sequential program by
integrating the Pulse tool and extending its concurrency analysis, based on five types of
inferred permissions, as explained in Section 3.3.2 and then implemented in Section 4.3. It
computes the number of method pairs that can potentially be parallelized with other methods
or the methods that should always run sequentially based on the generated specifications.
It is worth mentioning here that the concurrency analysis of the inferred specifications in
the Pulse tool is based on satisfiable methods.

Evaluation Metrics

For every program in the benchmark suite, it computes the percentage of the method (pairs)
that can run in parallel based on the following metrics,
• Concur(M)(%) shows the overall percentage of methods that could be parallelized with

at least one other method (including method with itself) in the program with M methods
whereas,

• Concur(MP)(%) is the percentage of the total number of method pairs that can be
parallelized (including method with itself) over all possible pairs of methods for Mmethods.

Analysis

Table 5.3 shows the concurrency analysis of all the benchmark programs. For example, for
the montecarlo program, the Concur(M)(%) analysis shows that 92 (49%) out of total 185
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satisfiable methods could potentially be executed in parallel with at least one other method
in the program.

The Concur(MP) ratio for the monetcarlo program is 20% for 185 methods. In other
words, 3404 (20%) pairs of methods, with a state space of

(185
2
)
+185=17,020 total pairs,

can be parallelized in 18 classes. Using Pulse source code itself as a case study, the Con-
cur(M)(%) ratio is 67% with 299 methods that can be run in parallel with other methods
and the Concur(MP) ratio, in this case, is 34% for 451 methods.

We exclude overloaded methods from the Plural annotated version of the input program
to perform its concurrency analysis, this is because the model-checking approach in the Pulse
framework reports overloaded methods to be unsatisfiable as the correctness analysis in Pulse
does not support overloaded methods (explained in Section 4.5). However, this limitation
of the Pulse tool does not invalidate the effectiveness of Sip4J framework in generating the
correct specifications. In this case, the results (count) of the concurrency analysis may be
misleading (under-estimated) for the programs having overloaded methods. We observed
that the exclusion of overloaded constructors, (e.g., 10 in the case of Pulse and 11 for the
monetcarlo program), does not affect the potential for the concurrency as constructors cannot
be parallelized with any other method during program execution.

In summary, the permission-based concurrency analysis in terms of the number of con-
current methods (Concur(M)%) vary from 35 to 62% for the Java Grande benchmark
programs, 5 to 66% for the Æminium and Plaid programs and the ratio is 67% for the Crystal
and Pulse itself when used as a case study.

5.6 Annotation Overhead

The permission inference approach avoids the annotation overhead in two ways by generating
a) five kind of access permissions at the object’s (class) field level and, b) permission contracts
(Plural specifications) to perform evaluation by the Pulse tool. We compute the annotation
overhead as a way to quantify the manual (annotation) effort by measuring (1) the amount
of annotations generated by Sip4J on individual fields of an object, (2) the number of
annotated lines of code (permission contracts) generated by the Sip4J framework for the
Pulse translated version of the programs and, (3) the number of individual annotations for
the Pulse translated version.

Evaluation Metrics

To compute the annotation overhead, we use the number of methods M, as the basis for
evaluation as access permissions (contracts) are generated at the method level.
1. #AnnLOC(M)P shows the annotated lines of code generated for the Pulse trans-

lated version forM methods in a program. It counts one line (a permission contract N)
for each method with a ‘requires’ and an ‘ensures’ clause, one line for each class, to
define the typestate information at the class level, and one line to import the package
to support the Plural annotations in a Java program. Therefore,
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Table 5.3: Concurrency analysis of the inferred specifications

Program Concur(M)(%)8 Concur(MP)(%)8

Crystal 944 (67%) 52%
Pulse 299 (67%) 34%
montecarlo 92 (49%) 20%
euler 18 (35%) 8%
search 18 (36%) 9%
moldyn 16 (37%) 10%
lufact 25 (59%) 17%
crypt 25(62%) 17%
series 21 (56%) 15%
sor 16 (47%) 11%
sparsematmult 16 (48%) 10%
blacksholes 9 (18%) 6%
gaknapsack 4 (19%) 6%
health 1 (5%) 1%
webserver 8 (66%) 55%
fft 5 (45%) 36%
quicksort 2 (22%) 11%
shellsort 2 (28%) 17%
integral 3 (60%) 20%
fibonacci 2 (50%) 30%
ArrayCollection 5 (41%) 33%
Total 1,531 (61%) -

8 It excludes concurrency analysis of the overloaded and parameterized methods.

#AnnLOC(M)P = N + C + 1 (5.1)

where N shows the number of annotated lines (permission contract) generated for M
methods in a program. The number of annotated lines (N) would be equal to the total
methods M if permission contracts are generated for all the methods in a program.

2. # Anns(M)P calculates the number of individual annotations generated as a part
of the permission contracts for M methods in the Pulse translated version of the program.
The number of annotations, in this case, depends on the presence (absence) of annotations
on the receiver object (this) and the number of parameters (aliases of the referenced
objects) accessed in a method.
For each non-constructor method accessing a field of the receiver object (this) it includes
two annotations to specify pre- and post-permission on the object.
For each non-constructor method, Anns(M)P counts two (as part of requires and
ensures clause) to add a typestate ‘alive’ as a part of pre- and post-permission for each
class field and parameter (if any) at the method level.
For each non-constructor method with parameters, Anns(M)P adds two (pre- and
post-permission) for each parameter.
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For each non-constructor method that returns a global object or alias of a global reference,
Anns(M)P adds two annotations as a part of ensures clause to specify the permission
generated by a method on the returned object (R). Finally,Anns(M)P counts one for the
annotation ENDOFCLASS to mark the end of each class in a program (as required by Pulse).
For each constructor method, there is only one permission annotation for receiver object
(this) and one typestate annotation. It can have only ‘ensures’ clause as part of the
permission contract in Pulse. There are no annotations for the parameters as Pulse does
not support overloaded constructors with parameters.
LetM be the set of methods,MC be the number of constructors,MF

NC be the number
of non-constructor methods that access some global (class) field directly or indirectly in a
method, MR

NC be the number of non-constructor methods that returns a reference object
(i.e.,M=MC+MF

NC) +MR
NC . AnnsP is defined as:

Anns(M)P = (1+1) ∗MC + (2 + 2)∗MF
NC +

∑
m∈M

(2 ∗ P (m)) + 2 ∗MR
NC + C

(5.2)
where P (m) denotes the number of parameters (aliases of some global object) accessed
in method m.

3. #Anns(M)F calculates the number of individual annotations generated as pre- and
post-permissions at the object’s (class) fields for M methods in a program. This includes
two annotations (generated as post-permission) on the returned object (R) by a non-
constructor method. Therefore, the number of permission-based annotations generated
at the field level forM methods is

Anns(M)F =
∑
m∈M

(2 ∗ F (m)) + 2 ∗MR
NC (5.3)

where F (m) is the number of individual fields and its aliases accessed in method m and
MR

NC be the number of methods that returns a referenced object.

Analysis

Table 5.4 shows the results (columns #AnnLOC(M)P , #Anns(M)P ) of the effectiveness
analysis of our technique for the benchmark programs Program).

For example, for the ArrayCollection example program given in Listing 4.1 with 3
classes and 12 methods, Sip4J generated 15 annotated lines of code (AnnLOC) with a total of
78 individual annotations for the Pulse translated version of the program, where permissions
are generated on the receiver object and 49 annotations when permissions were generated at
the field level. Likewise, for Crystal, Sip4J generated 2,188 annotated lines with a minimum
of 5,234 annotations, for 1,975 methods for the Pulse translated version of the program and
the count was 6,691 when permissions are generated at the field level.

We observe that the use of parameter annotations causes the state space explosion
problem for big programs such as Crystal. This is due to model checking the specifications
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Table 5.4: Effectiveness and efficiency analysis of the permission inference technique.

Annotation Overhead Performance
Program # AnnLOCP

9 # Anns(M)P
9 # Anns(M)F Time(M) (sec)

Crystal 2,188 5,23410 6,69110 1441.056
Pulse 513 1,764 4,850 41.84
montecarlo 204 948 1,360 17.95
euler 52 197 1,073 5.42
search 60 204 691 1.41
moldyn 52 205 901 1.40
lufact 50 325 437 1.13
crypt 46 163 385 0.98
series 43 143 207 0.56
sor 42 153 267 0.61
sparsematmult 36 156 316 0.51
blacksholes 56 250 694 1.92
gaknapsack 38 82 250 1.03
health 25 74 334 0.30
webserver 11 25 11 0.24
fft 16 56 44 0.43
quicksort 13 33 17 0.06
shellsort 10 32 44 0.06
integral 7 17 17 0.08
fibonacci 8 18 9 0.03
ArrayCollection 15 78 49 0.16
Total 3,485 10,157 18,647 1,517.47

9 The parameter notations were excluded for the Pulse analysis.
10 It includes 2,324 annotations for the 581 overloaded methods with at-least 4 annotations per
method.

in the Pulse tool that creates a big state space due to a large number of annotations. As
discussed previously in Section 4.5, we omit the parameter annotations, from the Pulse
translated version of the programs, to automatically verify the correctness of the inferred
specifications through the Pulse tool that also avoids the state space explosion problem due
to the presence of parameter annotations in the input specifications.

However, we manually counted the number of annotations for the parameters to quantify
the programmers’ effort, to manually add permission-based specifications in the program.
The amount of annotations generated shows the minimum annotation overhead, with a single
typestate, posed by the existing permission-based verification approaches such as Plural and
Pulse itself.

The analysis shows the effectiveness of the permission inference framework in automati-
cally generating the specifications which otherwise need to be manually identified and added
in the program.
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5.7 Performance Evaluation

We compute efficiency of the permission inference algorithm by measuring the average
execution time of the analysis in seconds, averaged over 10 independent runs on Java Virtual
Machine.

Table 5.4, column Time(M), shows the execution time (in seconds) of the analysis to au-
tomatically generate the permission-based dependencies from the source code for M methods
in a program. The result shows that it takes about 18 seconds to generate specifications for
the montecarlo program with 196 methods, and a fraction of a second for programs in the
Æminium and Plaid benchmarks being smallest in size. For Crystal, the biggest case study
we evaluated with 17K plus physical source lines of code, it took 1441.056 seconds (about
25 minutes) to generate 2,188 annotated lines of code, with a minimum of 5,234 annotations,
for 1,975 methods for the Pulse translated version of the program.

The results of analysis shows that the permission inference framework not only avoids the
developer’s (manual) effort in terms of annotation overhead, but saves their time to explicitly
specify permission-based specifications in the source program.

5.8 Evaluation Summary

All the experiments confirm that our inference approach is indeed capable of generating the
permission-based specifications from the source code of realistic Java programs in a correct
and efficient way.

The results of the correctness analysis show the potential of the Sip4J framework to
generate the required or safe permissions for all the benchmark programs. However, in some
cases, the framework does not produce the optimal (required) results but created the safe
permissions as explained in Section 4.5. One such situation was the handling of the library
methods where we don’t have the definition of themethod for which analysis generated the safe
(write instead of read) permissions on the referenced objects to ensure the integrity of the data.

Similarly, the concurrency analysis by the Sip4J framework confirms the potential in
the inferred specifications to enable concurrency for sequential programs, which was one of
the motivations of our work.

The annotation overhead analysis shows the effectiveness of the inference technique in
automatically generating the specifications which otherwise need to be manually identified
and added in the program and that pose a significant annotation overhead for the program-
mers. In total, Sip4J generated 18, 647 permission annotations at the field level, for 3, 111
methods in 350 classes for 21 programs and 3,485 annotated lines were generated for the
Pulse translated versions of the same programs, with 10, 157 minimum annotations in less
than 1,517 seconds (about 26 minutes).

If created manually, the above annotations may take time that could be multiples of
months, as in the case of Pulse Cataño et al. (2014) itself, where authors reported that they
took six months to manually identify dependencies and annotate a Java application, (14k



§5.8 Evaluation Summary 86

SLOC, 55 classes and 376 methods), with 546 lines of permission-based specifications to
verify its behavior. No doubt, the complexity and design of the input program does have
an impact on the annotations generation time. However, we expect that the execution
time of the inference process in the Sip4J can be a multiple of minutes, as in the case of
Crystal application (17k plus SLOC, 212 classes, 1,975 methods), or can be in hours in the
worse-case for really large applications, but not in months, thus showing the effectiveness
of our technique in generating permission-based annotations while saving time.



Chapter 6

Related Work

This chapter provides a review of the state of the art permission-based program verification
and parallelization approaches. The study explains the pragmatics of access permissions start-
ing from the Boyland’s fractional permission sharing model to all of its variants (counting and
symbolic permissions) while comparing and contrasting them in different approaches. How-
ever, in this research, our aim is to review the symbolic permissions with a special focus on their
usage in the existing approaches to verify the program behavior and parallelize their execution.

Correctness and reliability of software programs written in imperative and object-oriented
languages such as Java and C++ have always been a major challenge for the IT industry.
This is because of the implicit dependencies that exist between the code and program states.
In imperative programs different program parts may access the same mutable state, without
exposing this information to each other and, consequently, may cause unwanted interference
or inconsistent states. Preventing such errors is important to ensure the compliance of API
(Application Programming Interface) protocols in object-oriented programs and to verify
the correctness of increasingly ubiquitous multi-threaded applications.

Modern object-oriented programs are highly reliant on reusable APIs that often define
usage protocols i.e., the desired sequence of method calls that API clients must follow for un-
derlying objects to work properly. Typestates (Strom and Yemini, 1986) have been designed
to specify usage protocols and verify their behavior. A typestate abstractly defines an object’s
state at execution time. However, statically tracking object state is a non-trivial task because
of unexpected transitions between states during program execution. In multi-threaded
programs, managing synchronization between threads is a complicated and challenging task
for programmers due to thread interleaving and heap interference, which can lead to common
concureency problems such as deadlocks, data races. The situation becomes worse in the
presence of unrestricted aliasing, the hallmark feature of imperative and object-oriented
languages (Bierhoff et al., 2009b).

Earlier work on verifying correctness of sequential programs dates back to Hoare’s logic
(Hoare, 1969) that defines a set of axioms (calculus) and formal inference rules to specify
and verify desired properties and formulate static analysis technique (Floyd, 1993). Han-
dling thread non-interference for Java-like concurrent programs dates back to Owicki-Gries’
axiomatic method, (Owicki and Gries, 1976), and Jones’ rely-guarantee principle (Jones,
1983). These approaches are considered the traditional and general ways of performing
shared-memory program verification. Since the seminal work of Hoare (Hoare, 1969) and
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Floyd (Floyd, 1993), many logic-based verification approaches and type-effect systems have
been developed to avoid problems such as data races, deadlocks, atomicity violations in
shared-memory programs.

The commonly used verification approaches either perform deductive verification or
employ theorem proving techniques where formal correctness proofs are used to verify pro-
gram properties based on the input specifications ( (Huisman, 2001; Flanagan et al., 2003;
Abadi et al., 2006; OHearn, 2007; Villard et al., 2010; Caires and Seco, 2013)). Others
conduct dynamic analysis of the input program through model checking (Visser et al., 2003;
Chaki et al., 2004; Chaki and Gurfinkel, 2018) or perform static analysis (Boyapati et al.,
2002; Engler and Ashcraft, 2003; Voung et al., 2007; Naik et al., 2009; Dias et al., 2013) to
approximate runtime behavior of the program to verify its correctness.

However, in the last decades, static contract checking based on Hoare logic and the
development of advanced, simplified, automated program verifiers (Fähndrich and Logozzo,
2011; Pradel et al., 2012; Filliâtre and Paskevich, 2013; Carr et al., 2017) had been an active
areas of research for the verification of program behavior. Although these approaches are
usable and quite promising, the support for concurrency and aliasing is limited. As most
of the real-world applications are inherently multi-threaded, the next step was to develop
tools and techniques that can reason about shared-memory programs and control aliasing
in a sound and efficient way. To this end, permission-based program logics and tools became
influential. Access permission, a novel abstraction, provides strong reasoning mechanisms
to handle both aliasing and concurrency.

Access permission, formally called Boyland’s fractional permission (Boyland, 2003), is a
formalism inspired by Linear Logic (Girard, 1987) and Separation Logic (O’Hearn et al., 2001;
Reynolds, 2002). The former treats permissions as linear resources and the latter simplifies
the specifications and verification of shared-memory programs in an efficient way. Fractional
permissions were originally proposed to verify non-interference of the program states in
parallel programs, using either read or write accesses on the referenced objects. The formalism
was later extended by Bornat et al. (2005) to allow read sharing of the shared program states.
Bierhoff and Aldrich (2007) extended fractional permissions as symbolic permissions to model
both the read/write operations and aliasing information of a program state at one place.

A study of the literature shows that access permissions have been investigated to address
different concerns related to security, concurrency, and protocol verification. Notable threads
of research include Plural (Bierhoff and Aldrich, 2007, 2008; Beckman, 2009), Chalice (Leino
et al., 2009; Leino and Müller, 2009), VeriFast (Jacobs et al., 2011), VPerm (Le et al., 2012),
Pulse (Siminiceanu et al., 2012), Sample (Ferrara and Müller, 2012), Plaid (Aldrich et al.,
2012), Æminium (Stork et al., 2014), VerCors (Amighi et al., 2012, 2014), and Viper (Müller
et al., 2017), to name a few.

The state of the art is categorized along the following four dimensions:
1. Verification of API protocols in typestate-based sequential and concurrent programs.

2. Verification of common concurrency problems such as race conditions and deadlock etc.,
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in concurrent programs.

3. Automatic inference of access permissions from sequential and concurrent programs.

4. Access permission-based automatic parallelization of sequential programs.

Within each of the above categories, the existing approaches are compared and contrasted
based on the following criteria:
a) The type of underlying program (Prog) such as sequential or concurrent program.

b) The programming language (Language) used or developed as a specification language.

c) The realization of the proposed technique in the form of a tool (Tool ).

d) The type of analysis (Analysis) i.e. static or dynamic performed.

e) The kind of permission abstraction (Perm-Kind) such as fractional, counting or symbolic
permissions, supported as a part of specifications.

f) The access notations or contracts (Perm-Specs) specified as program annotations.

g) The permissions or access notations (Perm-Infer) inferred.

h) The annotation overhead (Anno) (if any) posed by the approach.

i) The functional or behavioral properties (Properties) verified, based on the permission-
based specifications.

The rest of this chapter is organized as follows. Section 6.1 briefly discusses the related
formal theories and type systems in the literature as seminal and background work to
permission-based program verification and parallelization work. Sections 6.2, 6.3, 6.4, 6.5
covers the four categories of the state of the art mentioned previously. Some of the approaches
are elaborated with sample programs to show how different types of permission annotations
are used at the code level. Further, in every section, a brief summary of the studied work
in chronological order (where possible), following the above mentioned criteria, is given in
the form. Finally, section 6.6 provides an insight into the use of access permission-based
specifications and the research challenges posed by the existing approaches.

6.1 Related Formalisms to Program Verification and Paral-
lelization

This section briefly presents other formal type theories for program verification and paral-
lelization. A type system can verify the desired interaction between system components as
types can classify program entities and the permissible results of the computations. The
beauty of type systems is the assurance that if a program is type-checked then it is guaranteed
to be free from errors.

Earlier work on type systems mainly focused on the results of a computation in a program
in terms of its correctness. Then the study of type discipline and concurrency theory inspired
the development of formal type systems that can statically formulate and verify the intended
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properties of a program behavior, along with the permissible results of the computations.

Behavioral Type

Behavioral type theory is one such formalism that was originally proposed to verify concurrent
programs based on process algebra (Nielson and Nielson, 1993, 1996). A behavioural type
system uses behavioral types, a type-based abstraction, to formally describe the software
entities such as communication protocols, interfaces, web services and contracts, as a sequence
of operations in a concurrent and distributed environment. Formally speaking, a behavioral
type system is a compositional type system that can directly model the interaction between
system components as a notion of choice, causality and resource usage. Session types and
behavioural contracts are two notions related to behavioural types.

Since the introduction of behavioral types, many type-based effect and proof systems,
using the concepts of behavioural types, session types, spatial logic and processes as types,
have been developed to study various correctness and behavioral properties such as unique
receptiveness, race freedom, deadlocks, livelocks in large-scale concurrent and distributed sys-
tems (Sangiorgi, 1999; Chaki et al., 2002; Igarashi and Kobayashi, 2005; Dezani-Ciancaglini
et al., 2005; Kobayashi and Sangiorgi, 2010). However, in these approaches, type-based
specifications are explicitly added to the model and verify the usage patterns of resources
and communication objects.

Recent work on behavioral separation in a distributed environment can be attributed
to Caires (2008) who developed a spatial-behavioural typing system, to model the resource
independence and synchronization in a distributed (concurrent) environment, based on the
Spatial logic (Caires and Cardelli, 2003, 2002). The type system using parallel and sequential
composition operators and resource ownership are handled using the type modality. Later,
Caires and Seco (2013) developed a behavioral separation programming language based on
λ-calculus to ensure the disciplined interference between resources in higher-order concurrent
programs having fork/join parallelism. The language is based on the behavioral type systems
(Honda et al., 1998; Chaki et al., 2002) that incorporates a behavioral view of the program
properties and employs Concurrent Separation Logic (Reynolds, 2002; OHearn, 2007), to
separate the dynamic behavior of run-time values rather than separating program states
itself. However, program effects are computed based on the explicitly specified assertions
to ensure the safety of concurrent programs.

Session Type

Session type, a notion of behavioral types, was originally introduced by Honda et al. (1998)
to ensure the disciplined interaction between two partners in a distributed environment and
later extended in the work of Honda (Honda et al., 2008) to incorporate the arbitrary number
of participants in the same environment.

Recently, session types were extended with formal type system to control aliasing and to
enforce usage protocols in concurrent environment for Java and Java-like languages, such as
SessionJ (Hu et al., 2008, 2010), Yak (Milito and Caires, 2009) and Mungo (Gay et al., 2015a),
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to name a few. Further, the linearity of resources is an important and recurring theme in
concurrency that studies behavioral type systems, for process calculi and as mentioned by
Honda (1993), Linear Logic can be considered as a source of inspiration for some aspects
of session types.

Recent work on Linear Logic-based session types includes the work of Caires and Pfenning
(2010), who proposed a Curry-Howard style interpretation of binary session types in intu-
itionistic Linear Logic, to expose a deep relationship between both concepts. Recently, with
this line of work, Gay and Vasconcelos (2010) and Wadler (2014) developed a new calculus
CP and a linear functional language GV, to establish a connection between session types
and the Linear Logic, that can yield a process calculus, free from data races and deadlocks.

Typestate

Yet another important formalism, a notion of behavioural types, is typestate. Typestate
was first defined by Strom and Yemini (1986) as a new programming language concept that
determines the operations permitted on objects in a given context. According to Garcia
et al. (2014) “typestate reflects how legal operations on objects can change at run-time as
their internal state changes”. Typestate associates state information with a variable of a
given type, which is then subsequently used to decide the valid operations to be called on an
instance of that type. Typestate is suitable to represent resources that follow state transition
systems that follow the ‘open then close’ semantics. For example, a database connection
can only execute a database command if it is in the open state.

Typestates were originally developed for imperative languages without the notion of
objects, but later extended with the behavioural-type discipline, to support verification of
object-oriented languages such as Vault (DeLine and Fähndrich, 2002), Fugue (DeLine and
Fähndrich, 2004). Further, typestates were integrated as a first-class language construct
in typestate-oriented language (Aldrich et al., 2009; Sunshine et al., 2011) to verify the
correctness of the usage protocols in state-based sequential programs. In the new language,
objects are being modeled not only as classes, but also the changing abstract states, where
the correctness of the program is determined by tracking state transitions between different
objects at execution time, thereby ensuring the correct usage of protocols.

Recent developments in state-based protocol checking and verification includes approaches
(Caires and Seco, 2013; Garcia et al., 2014; Militão et al., 2014b; Gay et al., 2015b), that
handle aliasing in a more robust way and verify communication protocols in distributed and
concurrent object-oriented languages. These approaches ensure the basic memory safety
conservatively, by associating typestate invariants with each referenced location and by
ensuring that the type invariants hold for every store of this location. However, all the
approaches discussed above focus on identifying violations of protocols but none of them
check the higher-level (behavioral) characteristics of the protocols themselves, for example,
their usage in practice and the complexity associated with their definition, that are vital
in verifying correctness of many program properties (Beckman et al., 2011).
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Ownership Type

Another stream of type-based systems is ownership type, a mechanism to express the sharing
of program references (Noble et al., 1998; Clarke et al., 2013), in the way that allows controlled
aliasing between objects by mitigating the undesirable effects to other objects.

Since its introduction, ownership types have been used in many formal approaches to pro-
vide safe aliasing control mechanisms (Boyapati and Rinard, 2001; Clarke andWrigstad, 2003;
Müller and Rudich, 2007; Cohen et al., 2009), and to control object deallocation explicitly
(Matsakis et al., 2014). However, in ownership-based verification approaches, programmers
define ownership invariants as locking or access information, to identify dependencies at the
object level and use this information to avoid data races.

Atomic Set

Atomic sets have been used to detect atomicity violation and to avoid data races in concurrent
programs. An atomic set defines a set of memory locations that share some consistency prop-
erty and needs to be updated atomically. The atomic set can be viewed as a generalization
of Hoare’s monitors (Hoare, 1974) to multiple objects. They can be better integrated into
the Java language.

Earlier work using atomic sets dates back to Vaziri et al. (2006)’s data centric pro-
gramming model that defines atomic set serializability. Atomic set serializability is
a disciplined interference criterion to avoid the problematic interleaving scenarios in the
shared-memory programs based on atomic sets. Vaziri extended his previous work to support
multiple object interference (Vaziri et al., 2010). Subsequent work used atomic sets to detect
atomicity violation statically (Kidd et al., 2011) and dynamically (Xu et al., 2005; Hammer
et al., 2008; Lai et al., 2010). The trend is followed by many local data-centric concurrency
control mechanism and type systems (Dolby et al., 2012; Marino et al., 2013), to verify
program behavior based on atomic sets.

Data-centric concurrency control is one alternative to the explicit locking mechanism.
In contrast to the control-centric synchronization approaches, (Artho et al., 2003; Lu et al.,
2008), where each program instruction is protected by synchronization constraints and then
changes to the program states are tracked for every execution path of the program flow. The
local data-centric approaches combine all fields of an object that require consistency, for all
the control flow paths of program execution, into an atomic set and updates them atomically
to avoid data races.

Contrary to data-centric concurrency control and the use of atomic sets, the development
of type systems (Flanagan et al., 2003; Abadi et al., 2006; Flanagan et al., 2008) has been influ-
ential to ensure the atomicity and data-race freedom in concurrent programs, and to reduce the
annotation overhead associatedwithmanually adding synchronization primitives at code level.
However, unlike atomic sets, in type systems, programmers provide explicit synchronization
primitives, as locking and guarded specifications at field or class level, required by the code.

Recently, the notion of atomic sets was replaced by atomic variables by Paulino et al.
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(2016). The objective was to handle the complexity associated with the use of memory
structures in atomic sets. The proposed approach applies a resource-centered view of the data-
centric concurrency control. However, in the proposed type system, programmers explicitly
define the synchronization primitives on the individual data items that require atomic
updates, to guarantee the progress of synchronization for all program execution scenarios.

Uniqueness and Immutability

Another area of interest has been the controlled sharing and interference of object references
in imperative object-oriented programs. Sharing is a situation when a piece of memory is
accessed by more than one reference, say x and y, so that a change to x affects y as well.
Therefore, changes to one object may leave other objects in an inconsistent state, causing
unwanted interference and subsequently, data races.

Work has been done to restrict the usage of references notably using access-based type
annotations such as uniqueness, immutability and read-only (Clarke andWrigstad, 2003;
Boyland, 2006, 2010; Gordon et al., 2012; Clebsch et al., 2015). The objective was to identify
isolated states that can be safely handled by one or more threads, thereby avoiding the
unwanted interference and alternatively data races. However, the type system infers sharing
effects such as uniqueness and immutability for the object references by computing an
equivalence relationship for a set of free variables by evaluating the input expression. The
inferred effects are then used to determine which part of the code can be safely shared between
multiple threads to maintain the integrity of the data.

Recent development in this area is the Giannini’s type and effect system (Giannini
et al., 2018a,b) that expresses sharing in imperative programs based on the pure calculus
(Capriccioli et al., 2016), where memory stores are modeled by rewriting the source code
terms rather than by modifying the auxiliary storage.

Rely-guarantee Protocols

The logic-based program verification that employs rely-guarantee reasoning has been another
active area of research that verifies the correctness of usage protocols and avoids inter-thread
interference in concurrent programs (Parkinson and Bierman, 2005; Vafeiadis and Parkinson,
2007; Dinsdale-Young et al., 2010). However, in these approaches, rely-guarantee specifi-
cations are explicitly added at the state or thread level to model and control the concurrent
interactions safely.

The most recent is a sub-structural type system (Militão et al., 2014a) that uses
rely-gurantee protocol abstraction to model the interfering interaction of aliases to the
shared states. The type system then ensures that the aliases always get a determined
value regardless of the potential changes made by the program context during interleaving.
However, the system explicitly assigns a separate role to each alias with a “rely⇒ guarantee”
relation between aliases. Later, Militão et al. (2016) extended the approach and developed
a composition procedure based on linear capabilities (Morrisett et al., 2005), to address the
decidability of protocol composition and its integration with the protocol abstraction.
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Separation Logic

Among other logic-based approaches for data race freedom, separation logic that is based on
Hoare logic, attained much attention for controlling aliasing and verifying program behavior.

Hoare’s logic for conditional critical regions (Hoare, 1972) and monitors (Hoare, 1974) was
widely adopted because of the simplicity and practicality of their use in Java-like programs.
Hoare’s logic limits thread interference to a few synchronization points. However, it cannot
syntactically enforce a safe monitor synchronization. This is because of the potential risk
of aliasing in a Java program where multiple threads can manipulate shared-memory data in
an unsafe manner. O‘Hearn (O’Hearn et al., 2001) and Reynolds (Reynolds, 2002) extended
the Hoare’s logic to Classic Separation Logic, a new program logic with new connectives
and separation conjunction (∗), to reason about the sequential programs that manipulates
pointer data structures.

Hoare logic uses triples {P}S{Q} where P and Q are predicates over program states that
define the required and ensured properties of an expression statement S. However, in Sepa-
rationLogic, the idea is to explicitly divide each program state, related to a currentmethod call,
into a heap and a store part, to allow explicit local reasoning about the heapmemory. In this ap-
proach, the heap h is divide into two disjoint parts sayh1 andh2 using separation formula of the
form φ1 ∗ φ2 where φ1 is a pointer valid for the part h1 and φ2 is a pointer valid for the part h2.
The conjunction ∗ operator combines two disjoint parts of the same heap. The idea of using sep-
aration formula to verify heap structure, dates back to the seminal work of Reynolds (Reynolds,
1978) who proposed a syntactic interference control mechanism to constrain the effects of in-
terference in Algol-like languages using the Separation Logic. The separation formula ensures
that two threads accessing the same location do not interfere to verify program behavior

Eventually, Separation Logic was realized as a new program logic called Concurrent
Separation Logic (CSL) (Brookes, 2004; OHearn, 2007) to reason about multi-threaded
programs, with an assumption that if two threads can operate on disjoint parts of the same
heap location without interfering with each other, they can be verified in a safe and isolated
way. CSL enforces correct synchronization of the shared-memory data logically, rather than
syntactically. The idea of CSL was then extended in several sub-structural type systems and
concurrent approaches (Gotsman et al., 2007; Appel and Blazy, 2007; Hobor et al., 2008). to
guarantee data race freedom in the shared-memory concurrent programs, and have recently
been applied in high-order imperative concurrent languages and type systems (Schwing-
hammer et al., 2011; Jensen and Birkedal, 2012). However, in the separation logics-based
approaches, the separation predicates are explicitly specified in the program to define the
access rights on the memory locations.

A Move to Permission-based Specifications

Among all formal approaches to the verification of shared-memory programs such as atomic
set, behavioral type, session-type, relay-guarantee reasoning and Separation Logic, is access
permission. Access permission is an abstract capability that combines type (effect) systems
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and, provides more advanced support for reasoning about the heap resources (Boyland, 2003).
The notion of access permissions is built on Linear Logic (Girard, 1987), that treats

permissions as linear resources, and the Separation Logic (O’Hearn et al., 2001) that performs
local reasoning of program behavior against specifications. However, Separation Logic does
not support the concurrent read access of a memory location by multiple references or threads.
Therefore, Boyland (2003) and Bornat et al. (2005) combined separation logic with abstract
capabilities, called access permissions, to allow concurrent reading of a program state.

Compared to classic verification methods such as Owicki-Gries (Owicki and Gries, 1976)
for concurrent programs, the permission-based Separation Logic ensures that: a) only one
reference (thread) can write on a particular location at any given time, thereby mutating
data in a safe way; b) if a location is read by a thread, all other threads can only have
read permission for that location, thereby implying data race freedom without the need to
explicitly check for the interference between threads in concurrent programs.

Plural (Bierhoff and Aldrich, 2007; Beckman et al., 2008), a permission-based program
verifier, was the next development phase where access permissions were combined with types-
tate abstractions to statically ensure the mutability of object’s states, following the separation
logic, and to verify protocol compliance in Java-like sequential and concurrent programs.

Access permission was then subsequently incorporated as first class language constructs
in permission-based programming paradigms (Stork et al., 2009; Aldrich et al., 2011), to
parallelize execution of sequential programs in a safe way.

6.2 Permission-based Verification of API Protocols

This section introduces the first dimension of the state of the art permission-based verifi-
cation approaches in detail. The focus is on the verification of API protocols for single- and
multi-threaded programs. Table 6.1 provides a summary of the permission-based protocol
verification approaches studied in this research.

6.2.1 Verification of API protocols in Single-threaded Programs

In object-oriented programs, objects define usage protocols. Usage protocols are constraints
on the order ofmethod invocations that the client of the protocolmust follow for the underlying
objects to work properly. Typestates have been used to specify usage protocols in many formal
approaches where state information is associated with a variable of a given type, which is
subsequently tracked to decide the valid operation sequence to be called on an instance of that
type. It is generally acknowledged that statically tracking object’s state is a challenging task in
the presence of unrestricted aliasing. This can be attributed to the improper and unexpected
state transition during program execution, and that can happen in situations such as a) when
a method uses a data structure having aliases deeply nested in the hierarchy and causes side ef-
fects, or b) when aliased parameters are passed to a method expecting non-aliased parameters.
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Table 6.1: Access permission-based protocol verification.

Reference Prog Lang Tool Analy Perm-
Kind

Perm-
Specs

Perm-
Infer

Anno Properties

Bierhoff and
Aldrich (2007)

Seq Plural
(NSL) Plural (St,D) Sym (U,S,F,P,I) N Y protocol verification

Beckman et al.
(2008)

Con Plural
(NSL) Plural St Sym (U,S,F,P,I) N Y

protocol verification,
race conditions
with atomic blocks

Beckman (2009) Con Plural
(NSL) Sync-or-SwimSt Sym (U,I,S,F,P) N Y

protocol verification
race conditions with
synchronized blocks

Militao et al.
(2010)

Seq - Plural St Sym (U,I,S,F,P) N Y race conditions

Bierhoff (2011) Seq Java-like
(NSL) JavaSyp St Sym (U,I) N Y CME exceptions

Aldrich et al. (2011)
Aldrich et al. (2012) Seq Plaid

(NSL) Plaid (St,
D)

Sym (U,S,I) N Y protocol verification

Naden et al.
(2012)

Seq&
Con

Plaid
(NSL) Plaid (St,D) Sym (U,S,I) N Y race conditions

Keys to the table: Seq = sequential, Con = concurrent, St = static, D = dynamic, Sym = symbolic, Fract = fractional, U = unique,
I = immutable, S = share, F = full, P = pure, NSL = new specification language, Z set of Integers, R set of Real numbers, N set of
positive Integers.

Access permissions provide a flexible aliasing control mechanisms to track all the refer-
ences of a particular object and update state changes to all such references. Therefore, access
permissions have been used, as part of formal specifications, to specify the intended design
and to verify the correctness of typestate-based usage protocols in many formal approaches
such as Plural (Bierhoff and Aldrich, 2007, 2008; Bierhoff, Kevin, 2009; Bierhoff et al., 2009b),
JavaSyp (Bierhoff, 2011) and Plaid (Aldrich et al., 2011, 2012) and other related techniques.

Typestate Verification using Linear Logic

Bierhoff, Kevin (2009) presented a formal specification language and a type system to soundly
and modularly verify API protocols in sequential programs based on access permissions. The
aim was twofold, firstly to verify protocol conformance with actual program implementation
in the presence of aliasing, and secondly to check whether the client of the program obeys
the specified protocol.

With this stream of work, Bierhoff (Bierhoff and Aldrich, 2007) presented a permission-
based modular protocol checking approach for a Java-like object-oriented language.

In this approach, programmers express their design intents, as a valid sequence of events
associated with a particular object, and the aliasing information using permission-based
typestate contracts, written in Linear logic-based specifications at the method level. The
system supports five kinds of symbolic permissions i.e., unique, immutable, full, share and
pure. The Linear logic operators are already explained in Section 2.1.1, except the additive
disjunction (⊕) that represents an alternative occurrence of multiple tasks.

Listing 6.1 shows a sample permissions-based typestate contract for a read-only iterator.
The aim is to avoid the concurrent modification of Collection object when the iterator
is in progress.
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Listing 6.1: Permission-based typestate specifications of a read-only Iterator
(Bierhoff and Aldrich, 2007).

1 interface Iterator <c : Collection , k : Fract > {
2 states available , end alive
3 boolean hasNext ():
4 pure ( this ) ( ( result = true

⊗
pure ( this ) in available )

5 ⊕ ( result = false
⊗

pure ( this ) in end)
6 Object next (): full ( this ) in available ( full ( this )
7 // other methods such as finalize () etc. can be written similarly
8 interface Collection {
9 // methods such as add () , size () , remove () , contains () etc. comes here

10 Iterator <this , k > iterator (): immutable (this , k)( unique ( result )}
11 }

According to the usage protocol, an iterator can be in one of the two states at any mo-
ment i.e. available or end. The state alive is a state inherited from the root Object type
(Line 2). In Line 11, an iterator object is created with unique permission in Collection

class. Importantly, it can be observed that when an iterator is created, it stores a reference to
a collection object being iterated in one of its fields. This reference should be associated with
the appropriate permission i.e., immutable to guarantee immutability of the Collection
object while iteration is in progress.

The pre-condition (pure(this)) in Line 4 specifies that method hasNext() requires pure
permission on the referenced object as it just tests or reads iterator’s state. As method next()
can change iterator‘s state, it needs full (this) (Line 6). The method hasNext() determines
whether another object is already present in the Collection object with available state,
or if the iteration has reached its end. The post-condition (Line 4 and 5) specifies if the
result is true. It is legal to call the next() method on the same object in the available
state, Otherwise, it is illegal. The post-conditions of both methods further show that they
return the consumed permission back on the referenced object when they exit. The system
leverages this information through method implementations to track state transition in the
presence of aliasing, to guarantee the absence of concurrent modifications, and to verify
whether program implementation follows the design intents.

This approach is realised in Plural (Bierhoff and Aldrich, 2008), a permission-based
automated protocol checking and conformance tool, implemented as a Java Eclipse plugin.
In Plural, a program is specified with permission-based pre and post-conditions at method
(parameter) level using JSR-175∗ annotations to check whether the client of the APIs follows
the specified protocol.

Plural performs intra-procedural static analysis, called DFA (Data Flow Analysis) of the
annotated code to identify and track specified pre- and post-permissions across method calls
for every program variable (parameter, receiver object, and local variable) and issues warning
for protocol violations in the program. As part of the analysis, it implements a Crystal analyzer
that performs dynamic state tests (branch-sensitive flow analysis) to track and report excep-
tions to the underlying objects. It further checks the structure of the provided specifications by
implementing anAnnotation analyzer. TheEffect checker inPlural identifieswhether amethod

∗https://jcp.org/en/jsr/detail?id=175

https://jcp.org/en/jsr/detail?id=175
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is immutable or whether it produces side effects. The Fraction analyser tracks the flow of per-
missions through the system to split and join permissions associatedwith a referenced object.

Later, Bierhoff et al. (2009b) extended the modular protocol checking approach to explore
the soundness and effectiveness of Plural in specifying large case studies for real APIs and
large third party open-source code bases, For example, Database Connectivity (JDBC) API
in Apache Beehive project† and PMD, a static code analyzer from DaCapo benchmark‡

that implements Java iterator API. The objective is to measure the precision in terms of
false positives, the computational cost and the annotation overhead associated in manually
specifying and verifying these APIs with Plural annotations.

The approach follows the Design by Contract principle to explicitly specify state invariants
at the method level. State invariants are permission-based typestate assertions with a valid
typestate that should holdwhen an object is in a specific state. The approach uses the concepts
of ‘capture’ and ‘release’ permissions to avoid inter-object dependencies at the method level.
Listing 6.2 shows a sample code snippet in Plural for Connection class in Java JDBC API.

Listing 6.2: A Java JDBC connection interface (fragment) with Plural specifications
(Bierhoff et al., 2009b).

1 @ States ({"open", " closed "})
2 public interface Connection {
3 @ Capture ( param = "conn")
4 @Perm( requires = " share (this , open)", ensures = " unique ( result ) in open")
5 Statement createStatement () throws SQLException ;
6 @Full( ensures = " closed ")
7 void close () throws SQLException ;
8 }

In Listing 6.2, @States annotation (Line 1) specifies concurrent typestates for a connection
object. The method createStatement() (Line 5) creates statements, in the Connection
interface, with unique permission in ‘open’ state. When connection object is closed it in-
validates all the statements created with it, leading to runtime errors if a programmer uses
invalidated statements. To avoid this error, the approach captures the dependent conn object,
using @Capture annotation in Line 3. The annotation @Perm in Line 4 with requires,
clause specifies share permission on the captured object as pre-permission with open state
guaranteed, and the ensures clause specifies that the method returns a new statement object
in open state with unique permission on it.

The permissions on the conn object are explicitly released (using @Release) when the
statement object is no longer in use or when the connection object is in closed state. The
method close() closes the conn object by calling method isClosed(), (not included in the
sample program due to brevity), that ensures the current state of the connection object to be
closed (using annotation @TrueIndicates (“closed")). The ensures clause in Line 6 specifies
that method returns Full permission back to the connection object in the closed state. The
analysis tracks these specifications in the system to verify protocol compliance with program
implementation and to verify correct usage of the protocol by the client program.

†http://beehive.apache.org/
‡http://dacapobench.org/

http://beehive.apache.org/
http://dacapobench.org/
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Typestate Verification using Plaid

Aldrich et al. (2011, 2012) developed a new permission-based programming language called
Plaid. The aim was to extend the previous typestate-oriented language (Aldrich et al.,
2009) with first class-states and access permissions. Plaid was originally designed to track
the typestate of a referenced object at runtime and to handle unrestricted aliasing using
permission-based typestate information. Typestate-oriented programming supports types-
tate as part of the language where typestate of an object is directly associated with its class
(type) and that class can change dynamically.

Every type in Plaid is represented as tuples having a type structure and associated per-
missions that express the aliasing and the mutability of the corresponding object’s typestate.
Plaid borrows its grammar and lexical structure from the Java Specification Language (JSL)
and provides interoperability with Java programs. Classes in Plaid are represented using the
keyword state and transitions between states are represented by the state transition symbol
‘�’ that distinguishes pre-state from post-state. Plaid supports three types of symbolic
access permissions i.e., unique, immutable and share in the specifications. The keyword ’none’
is used when no permissions are required to access an object.

Listing 6.3 shows an annotated code fragment for a buffer implementation in Plaid. A
buffer can be in one of the two states i.e. EmptyBuffer and FullBuffer (Line 1). The
method put() is associated with an empty buffer. The signature of the method put()

(Line 4) specifies that the state of the receiver object should change from EmptyBuffer to
FullBuffer when the buffer receives some element. The state FullBuffer requires a field
element elem that is passed as method parameter e. The permission-based contract (Line 4)
specifies that the passed element has unique permission in the Element state and the method
does not return any permission (none) to the caller of the method. This is because a field
reference with exclusive rights (unique) has been created for that element in FullBuffer state.
Otherwise returning permission back to a caller would cause a violation of the uniqueness
property. Likewise, the FullBuffer state has a single operation get() (not included here
due to brevity), that returns the current state of the object in reference elem and ensures
that the receiver object will go back to an EmptyBuffer state.

Listing 6.3: A buffer implementation (fragment) in Plaid (Aldrich et al., 2011).
1 state Buffer comprises EmptyBuffer , FullBuffer {}
2 ...
3 state EmptyBuffer caseof Buffer {
4 method void put( unique Element � none e) [ EmptyBuffer � FullBuffer ] {
5 this ← FullBuffer {elem = e};}
6 }

Plaid runtime leverages permission flow through the system along with associated typestate
information to ensure protocol compliance at runtime. The type system allows permis-
sion splitting, joining and type casting automatically (when and where required) using the
permission splitting and joining rules given in Table 2.2.

Naden et al. (2012) presented a type system and a flexible permission borrowing mech-
anism for unique, shared, and immutable permissions without using explicit fractions
of permissions. Permission borrowing is an extraction of permission from a source field,
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temporarily using the borrowed permission, and returning part or all of it to the source field.
The aim was to prevent the concurrent modifications of the shared objects based on symbolic
permissions.

The type system is based on the Plaid language. Like Plaid, it supports three types
of symbolic permissions i.e unique, immutable and share but Unlike Plaid that has weak
permission borrowing support and that reassign a field value to recover permission on it, and
where references are threaded explicitly from one call to an other, Naden’s system binds access
permissions with a reference and this permission is consumed once the reference is passed
to a function. The caller function then returns the original permission to the same reference.

Unlike other techniques (Boyland, 2003; Bierhoff and Aldrich, 2007; Jacobs et al., 2011;
Heule et al., 2011) that support permission borrowing, this approach provides a more intuitive
and natural abstraction to model and to reason about the permission flow through the system,
making permission tracking flexible and much easier for programmers. However, like Plaid,
it wants programmers to explicitly specify permissions-based state information as a part of
method specifications.

Typestate Verification using JML

Bierhoff (2011) combines symbolic permissions (Bierhoff and Aldrich, 2007), with JML
contracts (Leavens and Cheon, 2006) to reason about aliasing and to detect the absence
of Concurrent Modification Exceptions (CMEs) and other recurrent programming errors,
such as IndexOutofBoundsExceptions exceptions in realistic data structures such as Java
ArrayList.

Although JML specifications have been used to verify functional correctness and domain
specific properties of sequential and concurrent programs (Rodríguez et al., 2005; Araujo
et al., 2008; Kim et al., 2009; Cok, 2011), JML’s support for concurrency and aliasing is
rather limited. In contrast, access permission provides flexible aliasing control mechanism to
track all the references of a particular object and update state changes to all such references.
The presented approach defines permission-based class invariants as JML contracts.

The technique implements a permission tracking algorithm as a prototype tool called
JavaSyp§(Symbolic Permissions for efficient static program verification). In JavaSyp,
permission-based invariants are specified using Java annotations and tracked as part of
the type checking procedure, to ensure that the specified invariants hold as long as a the client
has permission to the referenced object and to control aliasing. In this approach, permission
tracking is straightforward as tracking symbolic values is much easier than tracking fractional
permissions. However, it only supports two kinds of permissions, i.e., unique and immutable
using annotations @Excl and @Imm respectively with the referenced object.

Listing 6.4 shows an annotated version of conventional Java ArrayList object a declared
with unique permission in Line 2. The list object maintains a list of elements in the order
placed originally. The method getElem() method returns the element on the given location
(index) with immutable permission on it (Line 6). The invariants (Line 4) for method

§http://code.google.com/p/syper.

http://code.google.com/p/syper.
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getElem() specifies that object a should be a non-null reference having at least one element
in it and the total number of elements in a should not exceed the declared size. The
annotation @requires in Line 5 specifies a pre-condition for method getElem() that, before
calling this method, the index parameter must be between 0 and size-1. JavaSyp performs
static analysis of the annotated code to generate verification conditions (VCs) based on the
specifications. The program is then verified against inferred conditions using the SMT solver
(C. Barrett A. Stump and Tinelli, 2010).

Listing 6.4: A Java array list (fragment) with permission-based JML contract in JavaSyp
(Bierhoff, 2011).

1 public class ArrayList <T> {
2 @Excl private T[] a;
3 private int size ;
4 // @invariant 0 <= size & a != null & size <= a. length ;
5 // @requires 0 <= index & index < size ;
6 @Imm public T getElem (int index ) {
7 imm: return a[ index ];}
8 }

6.2.2 Verification of API Protocols in Multi-threaded Programs

Beckman (2010) extended the Bieroff’s modular automatic protocol checking approach to
verify “if the object protocols work correctly even in the presence of concurrent modifications
by multiple threads”. This section discusses the use of permission-based specifications to
verify usage protocols in concurrent programs (Beckman et al., 2008; Beckman, 2009; Militao
et al., 2010) using different mechanisms.

Typestate Verification with Atomic blocks

Beckman et al. (2008) extended the permission-based modular protocol checking approach
(Bierhoff and Aldrich, 2007) to verify the correctness of usage protocols for a set of concurrent
programs such as JChannel¶ and Reservation Manager that use atomic blocks as synchro-
nization primitives. The objective was to enforce the correct use of typestates at runtime
and to verify API protocol compliance with its specifications. The approach uses five kinds
of symbolic permissions to identify aliasing and to approximate whether a referenced object
can be thread-shared or not.

Listing 6.5 shows a samplemethod isConnected() in a Connection class with permission-
based typestate specifications.

Listing 6.5: Permission-based typestate specifications for method isConnected() in a Con-
nection class (Beckman et al., 2008).
1 class Connection {
2 boolean isConnected (): share (this , ?) (
3 ( result == true

⊗
share (this , CONNECTED )) ⊕

4 ( result == false
⊗

share (this , IDLE )) {
5 atomic :{
6 return ( this . socket != null );}
7 }
8 }

¶http://www.cs.cmu.edu/~nbeckman/research/atomicver/

http://www.cs.cmu.edu/~nbeckman/research/atomicver/
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The pre-condition “share(this, ?)” in Line 2 asserts that the method needs share per-
mission on the receiver object, which needs to be in the unknown (?) state. Likewise, the
post-condition in Line 3 specifies that if the method returns true, the receiver object should
get the original permission back while in the CONNECTED state Otherwise, it would get the
same permission back but in the IDLE state in Line 4. Exclusive access to full, share and pure
references are maintained using atomic blocks in Line 5.

The approach is realised as part of the Plural tool. The analysis identifies the abstract
state of a referenced object before calling a method, and discovers the way it would be shared
with other objects. If the permission on a particular reference (thread) indicates that the
referenced object can be accessed simultaneously by other references (threads), as is the case
with full, share and pure permissions, it assumes that the object is thread-shared.

The analysis discards state information of the local variables having pure and share permis-
sions as the objects with these permissions can be modified by other threads and it is difficult
to track them statically through atomic blocks. The limitation of this work is the use of atomic
blocks as mutual exclusion primitives. Atomic blocks are associated with transactional mem-
ory systems and have limited usage in today’s applications. The current analysis generates
false positives for programs having synchronization primitives other than atomic blocks.

Typestate Verification with Synchronized blocks

Beckman (2009) extended the previous type system to perform typestate verification of
concurrent programs having synchronized blocks as mutual exclusion primitives.

In this approach, every program reference is associated with a permission kind (having
a permission type and an abstract state that is part of the reference type). Like Beckman
et al. (2008), the system distinguishes between thread-local and thread-shared objects based
on permission contracts. The approach is implemented in a tool called Sync-or-Swim for Java
that performs static analysis of the program (within a method). It identifies the references on
which the current thread is known to have synchronized and tracks the permissions associated
with references as they flow with method’s pre- and post-conditions, to ensure that an object
can be modified concurrently. The analysis discards state information for thread-shared
(modified by other references) objects unless it is statically known that the same references
have previously been synchronized.

Unlike other behavioral checkers for concurrent programs (Jacobs et al., 2005) that re-
quires lock-based specifications to identify the part of the heap to be protected, the proposed
approach can verify program behavior without requiring lock-based specifications. Like
other single-threaded typestate verification approaches, it only requires aliasing (permission)
and typestate information to verify the correctness of concurrent programs.

Typestate Verification with Views

Militao et al. (2010) expands on Bierhoff’s permission type system for Plural (Bierhoff and
Aldrich, 2007), by going beyond the five traditional types of permissions. The approach
introduces a new abstraction called View that is a projection of an object with a small set
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of access permissions associated with individual components (fields and/or methods) of an
object.

The type system combines view-based controlled aliasing with typestates and Boyland’s
fractional permissions to manage safe initialization of different sections of an object reference,
to track state information and to ensure safe access of the referenced objects in a unique-writer
and multiple-readers scenario. An immutable view can be shared with an inbound number
of copies and a write request merges all the readers back to a single writer using fractional
permissions. However, it does not support aliasing of the form where an object can be shared
between multiple writers with a state guarantee. In this approach, a view behaves as a state
except that it can be split, merged (recombined) using fractional permissions. Therefore,
it resembles the permission accounting model (Bornat et al., 2005) where views are treated
as accountable parts of a typestate thereby, allowing local reasoning of the shared-memory
programs.

The analysis of all the Plural-based verification approaches in Section 6.2.1 and 6.2.2
shows that Plural can identify common challenges for specifying and implementing usage
protocols in real-world case studies. It helps programmers to statically follow usage protocols
without actually executing the program.

However, Plural analysis is limited as it cannot identify errors in the specifications and
might use misspelled (non-existent) specifications. Moreover, there is no reachability analysis
support in Plural, which means that a programmer may write wrong specifications at the
method or class level and methods with these specifications will never be called by any client
code, resulting in unreachable (dead) states at the method level. Complementing the Plural
tool, research (Siminiceanu et al., 2012), has been done to verify the correctness of manually
added Plural specifications as well as verifying the program behavior. Further, it provides lim-
ited support to the verification of typestate invariants. It can only check invariants on boolean
properties, e.g. checking for non-nullness, However, it cannot verify invariants that involve
arithmetic predicates, e.g. x>0 (where x is an integer field). Moreover, it requires program-
mers to explicitly specify the design intents of the API protocols as permission-based typestate
specifications in the program which results in annotation overhead for the programmers.

In the same fashion, Plaid and related approaches forces a client program to follow the
desired sequence of method calls to verify the correctness of typestate-based programs, but
at the cost of adding permission-based annotations as a part of type declarations at the code
level. Moreover, Plaid does not support full and pure permission as for its analysis. In
Plaid, permission-based typestate specifications are added as a part of the program to verify
proper state transition between multiple objects during execution of a method.
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6.3 Verification of Race conditions and Deadlocks in Multi-
threaded Programs

In imperative and object-oriented programming languages, the biggest challenge has been the
correctness of multi-threaded programs in the presence of aliasing. Access permissions have
been used to characterize the way a shared resource can be accessed by multiple threads and
to handle aliasing in many verification approaches. The general idea is to assign permission
to program references to access memory locations and track the permission flow through
the system to enforce mutual exclusion mechanisms in shared-memory concurrent programs.

This section presents the second dimension of the review i.e., the use of permission-
based specifications for verification of domain specific problems such as deadlocks and race
conditions in multi-threaded programs.

6.3.1 Permission Sharing and Accounting Models

Permission sharing and accounting models (Boyland, 2003; Bornat et al., 2005; Parkinson
and Bierman, 2005; Appel and Blazy, 2007; Hobor et al., 2008; Dockins et al., 2009) facilitate
thread-local reasoning for shared-memory concurrent programs and to ensure race-free
sharing of heap locations.

The Boyland’s permission sharing model (Boyland, 2003) using fractional permissions,
defines shared ownership of resources in a concurrent environment. The model supports
rational number R in the range [0, 1]. The sharing policy maps permission quanta x to a value
to allow operations on a particular memory location. For example, 1 represents full (read
and write) ownership, 0 <x<1 represents read-only ownership while 0 means no ownership.

The fractional model has been used to handle problems that follow concurrent divide-
and-conquer algorithms where a shared (read) permission can be divided into multiple
shared permissions, to an unbounded depth, for any possible pattern of divide-and-conquer.
Although fractional share model is infinitely splittable, it does not satisfy the disjointness
property because rational numbers are not ideal for sharing, as shown by Parkinson and
Bierman (2005), who proposed a permission sharing model using subsets of natural numbers
N to formalize and verify single-threaded Java applications with separation logic. In this
model, resource invariants are defined using abstract predicates defined at the Object class
level with an empty footprint, (permissions associated with a memory location), that each
subclass extends to hold additional fields.

Bornat et al. (2005) proposed a permission accountingmodel and a light-weight verification
approach to handle the accounting problem associated with reader-writer locks in concurrent
programs. The approach extends separation relation 7→ in classic Separation Logic (Reynolds,
2002) and associates fractional permissions with each heap location to allow read sharing of
heap locations. In this approach, each heap location x is treated as a map having addresses
E with a permission value z, where z represents the level of permission carried by a heap
location, as shown in Formula 6.1).
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x 7→
z
E⇒0≤z≤1 (6.1)

The idea is to count the number of shared tokens using an integer counter say s. It is
incremented or decremented when a reader locks (receives a read token) or unlocks (returns
the share token) respectively, s>0 means there are outstanding read tokens but s=0 implies
the absence of outstanding readers, which means that a writer may acquire, hence ensuring a
race-free sharing of heap locations.

Appel and Blazy (2007) presented the operational semantics and developed a Sequential
Separation Logic to extend the C Minor language, a mid-level imperative programming lan-
guage as a machine independent-intermediate language. The approach evaluates expressions
as functions in Coq and provides an end-to-end machine-checked soundness proof of the
proposed logic in Coq (Leroy, 2006). Coq, a part of CompCert project‖, is a proof-correct
optimization compiler from a high-level intermediate language such as C Minor to assembly
language for Power PC architecture. Unlike the classical Separation Logic (O’Hearn et al.,
2001) where expressions are evaluated independent of heaps, the approach associates each
expression evaluation with a footprint.

“A footprint is a mapping from memory addresses (ν) to permissions” (Appel and Blazy,
2007). In the proposed semantics, footprint (φ) is considered as a set of fractional permissions
(Bornat et al., 2005) to verify non-interference of load and store operations in memory. A
memory store yields result only if reading or writing a chunk of memory type, say ch at
location ν is legal according to its footprint. For example, the semantics φ ` loadchν (or
φ`storechν) depicts that all the addresses from location ν to ν +|ch|−1 can be read (or write).
Loading memory outside the footprint yields exceptions and causes expression evaluation
to stop. The disjoint sum of two footprints φ0⊕φ1 =φ ensures the exclusive read/write or
read-only ownership of the underlying memory.

Hobor et al. (2008) extended the Appel and Blazy’s machine-checked soundness proof
and Leroy’s compiler-correctness proof in a concurrent setting, and developed a concurrent
C Minor language having shared-memory and first-class locks and thread. He proposed a
modular concurrent operation semantics as a generalization of Concurrent Separation Logic
(CSL) (OHearn, 2007) but it goes beyond CSL as it allows dynamic lock and thread creation.

In the semantics, a world w corresponds to a footprint φ as in the work of Appel and
Blazy (Appel and Blazy, 2007). A world specifies permissions for the current thread but this
semantic deals with load (store) operations for multiple threads. The need was to evaluate
an expression with a guarantee that footprints (φ) of different threads are disjoint. For this
purpose, the approach defines permission-based lock invariants to grant or restrict ownership
for the accessed memory by extending the classic separation relation 7→ as follows:

e 7→
π
R (6.2)

‖http://coq.inria.fr

http://coq.inria.fr
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The relation shows an expression e maps to a memory address with resource invariant R.
Every expression acquires a lock before its evaluation. Each lock is associated with a resource
invariant R, where each invariant is supported by a unique set of memory addresses and
worlds that inform the lock ownership π acquired or lost by each thread. The approach
implements Parkinson’s (Parkinson and Bierman, 2005) permission sharing model to define
ownership. A 100% share represents full ownership and a non-empty ownership (0 <π<
100%) represents read-only access. Any access without ownership means the program has
no semantics and the evaluation stops.

Dockins et al. (2009) proposed a tree share permission accounting model that is more
powerful than Bornat’s token accounting model. It rectifies the problems with Parkinson’s
permission model. Tree share is a boolean-labelled binary tree that supports both splitting
and token accounting for the shared reading of resources in concurrent settings. Although
Boyland’s fractional share model is infinitely splittable, it does not satisfy the disjointness
property and may pose read/write and write/write race conditions. Similarly, in Bornat’s
token accounting model, a central authority lends out the total permission into shares in
the form of permission tokens when and where required. It counts the outstanding tokens
to verify permission accounting. These models satisfy positivity of resources but not the
disjointedness.

Unlike previous share accounting models, Dockins et al. (2009) defines heaps as partial
functions from memory locations (L) to values (V ) with pairs of non-unit shares (S). The
token factories are represented using non-negative integers and the tokens themselves are
represented using negative integers. When a token is pushed back into the factory, the
integers are added. The token factory’s share becomes zero when it gets all its tokens back.
The extended points-to operator relation is given below:

l 7→
s, n
v (6.3)

The relation specifies that memory location l contains a value v with a non-unit share
s that is indexed by an integer n. If n is zero, the share s is full. If n is positive, it means that
n tokens are missing over s in the token factory, and the negative value for n depicts that
token factory has size−n shares. The extended model supports and satisfies all the required
properties such as disjointedness, cross, and infinite splitting in permission sharing models.

6.3.2 Permission-based Verification Techniques and Tools

This section describes and discusses the permission-based verification approaches and
tools such as Fluid (Zhao, 2007), Chalice (Leino et al., 2009; Leino and Müller, 2009),
Verifast(Jacobs et al., 2010, 2011), Pulse(Siminiceanu et al., 2012; Cataño et al., 2014; Ahmed
andCataño, 2018), Heap-Hop (Villard et al., 2010), HIP/SLEEK (Hobor andGherghina, 2012;
Jacobs and Piessens, 2011), HJp (Westbrook et al., 2012), Vercors (Amighi et al., 2012, 2014;
Huisman and Mostowski, 2015; Amighi et al., 2015) and Viper (Juhasz et al., 2014; Müller
et al., 2017) that have been developed to resolve concurrency problems in concurrent programs.
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Table 6.2 provides a summary of the existing permission-based verifications tools and
related approaches to verify common concurrency problems.

Fluid

Zhao (2007) developed a permission-based language and a type system to enforce fixed locking
order mechanism in Java-style multi-threaded programs having unstructured parallelism
and synchronization.

The technique was realised as a prototype tool in the Fluid project (Greenhouse and
Scherlis, 2002; Greenhouse, 2003). In their approach, a program is explicitly annotated with a
method’s effects and lock invariants. The method’s effect specifies the read or write operation
on the current object this or any of its field, e.g. reads(this.x) and writes(this.x) in
Listing 6.6, in Line 2 and 4 respectively. The lock invariant specifies the synchronized access
of a referenced object inside the method body using the requires (this) clause in Line 7,
that a method call for deposit() should be inside a synchronized block to acquire a lock

on the receiver object this.

Listing 6.6: Code segments showing read, write and lock usage annotations in Fluid.
1 class Account {
2 read ( this .x)
3 void getBalance (){ x; }
4 writes ( this .x)
5 void setBalance (int newX) { x = newX; }
6 void deposit (int x){
7 requires ( this ) { balance = balance + x; }
8 }

The system then translates high level access annotations into low-level (fractional) permis-
sions to distinguish the read and write effects of a method on the referenced objects. The
system assigns unique permission with a referenced object if it is being written in the method
body and a value less than 1 is assigned for read operation. The type system uses this
information to ensure that a given expression can be executed with assigned permissions
but it does not verify program behavior based on input specifications.

Further, Zhao et al. (2008) proposed a synchronization policy to avoid the unnecessary
synchronization effects in the previous approach. The system uses “permission nesting" to
interpret the safe and correct usage of lock-based specifications associated with a field.

Chalice

Leino and Müller (2009) presented a permission-based verification method to prevent
problems such as deadlocks and race conditions, that arise due to dynamic locking orders
in multi-threaded programs. The approach ensures concurrent sharing and un-sharing of
objects among multiple threads based on Boyland’s fractional permissions (Boyland, 2003).
The system uses permission percentages (between 0 and 100) instead of permission fractions.
A permission percentages is a fractional permission with a definite size that splits a field
permission among several monitors or threads. A thread can access a shared object, (heap



Table 6.2: Permission-based verification of race conditions and deadlocks.

Reference Prog Language Tool Analy Perm-
Kind

Perm-Specs Perm-
Infer

Anno Properties

Boyland (2003) Con PSM - - Frac [0, 1]∩R N - race conditions
Bornat et al. (2005) Con PSAM - - Count [0, 1]∩Z N - race conditions

Parkinson and Bierman (2005) Seq Java-like
(NSL) - - Counting total

read∗ N -
modular reasoning about
abstract datatypes and
information hiding

Appel and Blazy (2007) Seq CMinor
(PSAM) Coq - Counting [0,1]∩N N -

race conditions and
machine-checked correctness
proof.

Zhao (2007)
Zhao et al. (2008) Con Java Fluid† St Frac read

write∗ N Y race conditions

Hobor et al. (2008) Con CMinor
(PSAM) Coq - Counting [0, 100]% N -

race conditions and
machine-checked correctness
proof of CSL.

Dockins et al. (2009) Con CMinor Coq Frac - (s, n)
where n ∈ Z - Y

provides a strong CSL semantics that
fully supports both permission
splitting and token counting problems

Leino and Müller (2009) Con Chalice Chalice D Frac
full
some
no

N Y race conditions and deadlock

Leino et al. (2009) Con Chalice Chalice D Frac acc(x)
rd(x)‡

access
pure Y race conditions and deadlock

Villard et al. (2010) Con NSL Heap-Hop SFEA - x 7→ C N Y
race conditions, deadlocks
absence of memory leaks
protocol verification protocols

Jacobs et al. (2010, 2011) Seq&
Con

C and
Java-like
(NSL)

VeriFast D Frac
Count

read
write∗ N Y

race conditions
Divided by zero error,
NullPointer and
ArrayIndexOutOfBoundsExceptions

Jacobs and Piessens (2011) Con NSL VeriFast D Frac
Count [0, 1]∩R N Y fine-grained synchronization

mechanism to avoid race conditions

Hobor and Gherghina (2012) Con NSL HIP/SLEEK D Frac (0, 1]∩R N Y race condition using barriers
in Pthread library

Westbrook et al. (2012) Con HJ HJp St Frac {0, 1, ε} N Y race conditions

Siminiceanu et al. (2012)
Cataño et al. (2014)

Seq&
Con Plural Pulse St

RGA Sym (U,I,S,F,P) N Y
deadlocks and race conditions
correctness of the Plural specifications
identifies Null-Pointer references.

Blom et al. (2014) Con OpenCL Vercors D Frac Perm(x,π)
π∈ {rd, rw} N Y race conditions for heap locations and

functional correctness of GPGPU program.
Continued on next page
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Table 6.2 – continued from previous page
Reference Prog Language Tool Analy Perm-

Kind
Perm-Specs Perm-

Infer
Anno Properties

Amighi et al. (2014) Con Java Vercors D Frac Perm(x, π)
π∈ (0, 1]∩R N Y race conditions for heap locations and

functional correctness of Java program.

Huisman andMostowski (2015) Con Java
(PSM)

KeY and
PVS D - readPerm(x,Perm)

writePerm(x,Perm)αN Y
race conditions for heap locations.
avoids reasoning overhead associated
with concrete fractions

Amighi et al. (2015) Con Java Vercors St Frac
Count (0, 1]∩R N Y race conditions for heap locations.

Müller et al. (2017) Seq Silver Viper St Frac acc(x)
acc(x, rd) N Y race conditions

for heap locations.

Ahmed and Cataño (2018) Seq&
Con JML Pulse St Sym (U,I,S,F,P) N Y correctness of JML specifications

and verifying race conditions.

Sadiq et al. (2016) Seq Java - St Sym - (U,I,S,F,P) N avoids annotation overhead
by inferring symbolic permissions

Keys to the table: Seq = sequential, Con = concurrent, St = static, D = dynamic, Sym = symbolic, Fract = fractional, U = unique, I = immutable, S = share, F = full, P = pure,

Z = set of Integers, R set of Real numbers, N set of positive Integers, NSL = new specification language, PSM = permission sharing model, PSAM = permission sharing and accounting

model, x heap location, rd read access, C = session type contract, α a permission slice. ∗ permissions are read and write accesses, † implemented in the Fluid project, ‡ shows accessibility

predicates.
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location), if it has permission to do so. The approach defines three types of permissions based
on their percentages: ‘Full’, ‘Some’ and ‘No’.

The technique was realized in Chalice (Leino et al., 2009), a concurrent program verifier
that supports programs with fork/join parallelism, monitors invariants and automatically
verifies the absence of deadlocks and data races. In Chalice, programmers annotate pro-
grams with permission-based contracts using access predicates for each heap location. The
annotation acc(o.f) represents ‘Full’ permission (100%) on a field of object o that shows
that a thread has exclusive access on o.f. A fractional permission having n percentage of the
actual permission is represented as acc(o.f, n). A non-zero (‘Some’) permission depicts
read-only access to location o.f, denoted as rd(o.f).

Listing 6.7 shows a sample method specifications in Chalice. The pre-condition of the
method Clone() in Line 4 specifies that the caller of the method must possess non-zero
(read) permission on location this.val before calling this method. Following the Design by
Contract principle, the post-condition in Line 5 specifies that the callee should generate Full
permission on result.val field and return the input (read) permission to location this.val.
Otherwise, the system will not be able to recover Full permission on it and in turn the location
would remain immutable forever.

Listing 6.7: A sample program with accessibility predicates in Chalice (Leino and Müller,
2009).
1 class Cell {
2 int val ;
3 Cell Clone ()
4 requires rd( this .val);
5 ensures acc( result .val) ∧ rd( this .val);{
6 Cell tmp := new Cell ;
7 tmp.val := this .val ;
8 return tmp ;}
9 }

The annotated program is analyzed to verify whether the code respects the permission
contract for every thread schedule, as permissions flow between threads and monitors or
between multiple threads. The analysis verifies that the sum of permissions for all threads
remains less than or equal to 100% to ensure thread non-interference.

VeriFast

Jacobs et al. (2010, 2011) developed a sound, modular automatic program verification tool
VeriFast to verify single- and multi-threaded programs written in C and Java. To enable
verification, the programmer defines lemma functions in the program. Lemma functions
are like ordinary C functions, except that lemma functions and calls of lemma functions are
written within annotations. In VeriFast, lemma functions are interactively specified in the
program following the Separation Logic style of specifications. They serve as proofs to ensure
that a method terminates without producing any side effects in the system.

The approach simulates shared variables as heap locations and associates a permission
coefficient using Boyland’s fractional permission to each heap location to represent its access
rights. The coefficient lies within (0,1] where 1 represents exclusive rights to manipulate a par-
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ticular heap location and any value smaller than 1 represents a shared (read) access bymultiple
threads. The analysis works in a way that eachmethod is symbolically executed based on other
methods’ contracts to verify its calls. The logic-based specifications are tracked through the
system to detect exceptions such as NullPointer and ArrayIndexOutOfBoundsExceptions
exceptions in the program, and to verify the domain specific problems in a program such as
race conditions. The system does not support permissions for the program’s local variables.

Heap-Hop

Villard et al. (2010) developed a program prover Heap-Hop∗ based on Hoare’s monitors
and copyless message-passing mechanism, an alternative to lock-based parallelism where
only pointers to a message content in memory are transferred. The objective was to verify
deadlocks, data races and to ensure the absence of memory leaks in heap manipulating
concurrent programs, particularly those that involve communication protocols with list and
tree structures. The approach uses channels as synchronization mechanisms where each
channel consists of two endpoints, say e and f , dynamically allocated on the heap.

Heap-Hop requires programmers to specify pre- and post-conditions and loop invariants
using separation logic (Reynolds, 2002). The communications between endpoints are gov-
erned using a contract C, a form of session types (Takeuchi et al., 1994), which specifies a
valid sequence of message m passing on a channel. In Heap-Hop, ownership of cell to a heap
location is represented using the notation x 7→ and the point-to relation e 7→C{a} specifies
a contract C in the state a with respect to a particular endpoint e.

Listing 6.8: A sample method with permission-based contracts in Heap-Hop
1 contract C {// session type contract
2 initial state a { !m 7→ b; !m 7→ c; }
3 state b {}
4 final state c {}
5 }
6 foo () { (e,f) = open (C); send (m,e); receive (m,f); close (e,f); }

The approach generates verification conditions based on the input specifications. It performs
symbolic (forward) execution analysis of the generated conditions to determine what input
(conditions) will cause each part of a program to execute and verifies the intended behavior
of a program. The approach ensures that message sending never fails, and message reception
should be blocked until the right message is received.

HIP/SLEEK

Hobor and Gherghina (2012) developed a Hoare-style concurrent separation logic that verifies
Pthreads-style synchronization mechanism called barriers. Pthreads (POSIX Threads) is an
API for threaded programming that manages various procedure calls for thread creation,
destruction and synchronization (Butenhof, 1997). A common use of barrier calls is to manage
a pool of threads in a pipeline. In Pthreads, barriers are used to redistribute ownership (as
read and write access) of resources (memory cells) simultaneously between multiple threads.

∗http://www.lsv.fr/Software/heap-hop/

http://www.lsv.fr/Software/heap-hop/
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At barrier calls, every thread gives up its write access to the portion of memory allocated to
it, and gets back the read-only access to the entire memory.

The approach extends the concept of permission shares in DSA (Dockins at al., 2009) and
assigns positive share to each thread to access a particular location. A full share is required
to modify a particular location. A full share can be split into multiple partial shares that are
merged back to get back the full share. The idea is to ensure that if a thread has a partial
share for a particular location, no other thread has full share (permission) for that location.

Unlike previous Concurrent Separation Logics (OHearn, 2007; Hobor et al., 2008) that
focuses on programs with critical sections, locks, and channels respectively, the approach uses
barriers to model resource redistribution, and verifies if barriers are accessed safely in a concur-
rent environment. The idea is to associate some positive (fractional) share of the barrier itself
as a pre-condition and to ensure that the sum of all preconditions entails full share of the barrier.

For example, the assertion barrier(bn, π, cs) defines a pre-condition that specifies a
barrier bn with a positive share π having a state cs that holds before entering a barrier. The
state of barrier changes as threads are released from the barrier, and the next stage will follow
based on the post-condition barrier(bn, π, ns), when the state transitions to a new state ns.
A full permission ensures that no thread has a ’stale’ view of the barrier state to ensure
thread non-interference. The approach extends HIP/SLEEK tool set (Gherghina et al., 2011;
Nguyen and Chin, 2008) to verify concurrent programs with barrier calls. SLEEK is based
on separation logic and HIP applies Hoare’s rules to program verification.

Further, Jacobs and Piessens (2011) in their work on fine-grained concurrency, verified
some of the program examples from HIP/SLEEK project. The objective was to discover a
general mechanism that can implement barriers as locks, to reason about their correctness
using the VeriFast tool. However, compared to HIP/SLEEK tool, Verifast poses annotation
overhead. It is reported that “for 30-line example program, more than 600 lines of annotation
are required in VeriFast” as user input to verify program behavior.

Pulse

Pulse (Siminiceanu et al., 2012) is an automatic formal verification approach and a tool that
verifies the correctness of Plural (permission-based typestate contracts) specification itself,
rather than the program implementation and its behavior. The goal was to write semantically
correct specifications in order to verify program behavior based on these specifications. It
supports five kinds of symbolic permissions: unique, full, share, pure and immutable in method
specifications.

In Pulse, programmers specify design intents as permission-based typestate invariants
and lock-based specifications at the code level to avoid deadlocks and data races. State
invariants are used to enforce the properties that should hold true during program execution
and to handle the design level inconsistencies in a program such as Null pointer references.
Cataño et al. (2014) evaluated the efficacy and expressiveness of Plural specifications on
a multi-threaded application called Multi-threaded Task Server (MTTS), to evaluate its
design and verify its behavior using Pulse.
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The Listing 6.9 shows lock-based typestate contracts in MTTS using Plural specifications.

Listing 6.9: Lock-based typestate contracts using access permissions in MTTS (Cataño et al.,
2014).
1 @Perm( requires ="Full(this) in NotAcq ", ensures ="Full(this) in Acq")
2 public abstract void acquire ( ) { }
3 @Perm( requires ="Full(this) in Acq", ensures ="Full(this) in NotAcq "
4 public abstract void release ( ) { }
5 }

Pulse defines lock-based specifications to ensure mutual exclusion to a critical section.
The annotations ‘Acq’ and ‘NotAcq’ are used to represent the state of a lock i.e., to be
acquired or not-acquired respectively. The locks are acquired using method acquire() in
Line 2 and released using method release() in Line 3. The permission contract in Line 1,
dictates that the acquire()method needs Full permissions, as pre-permission on the mutex
(lock) object while acquiring a lock, and transitions it from ‘NotAcq‘ into ‘Acq’ typestate.
Similarly, the specification in Line 3 shows that the release() method, before releasing the
lock, needs Full permissions on the lock object that is in ‘Acq’ state and transitions it from
‘Acq’ into ‘NotAcq’ typestate.

The code of the critical section is then enclosed between a call to method acquire()

and a call to method release() to ensure mutual exclusion. The typestate transition in the
given specification ensures that non-nested calls to method acquire() will always happen
after a call to release() method. The permission contract ensures that if a thread has
acquired a lock, it needs to be released before being used by other threads. However, as
discussed previously, Plural does not support the reachability analysis of input specifications
and cannot verify the absence of deadlocks caused by the input specifications. Pulse avoids
deadlocks by using try-catch-finally statement in the code and enclosing call to method
release() in a finally block to ensure that method release() is always called regardless
of the termination status of the method.

Additionally detects violations of intended semantics using the model checking power
of evmdd-smc (Roux and Siminiceanu, 2010) symbolic model checker. It helps programmers
write semantically correct specifications and find possible concurrency at the method level,
but to exploit the full potential of the Pulse tool, the programmers need to manually add
permission-based typestate specifications in the source program, resulting in annotation
overhead for the programmers. Moreover, the use of model checker can create state-space
explosion problems even for a program of average size.

Ahmed and Cataño (2018) proposed an automatic translation technique that encodes
JML-encoded Finite State Machine (FSM) specification of a Java program into Plural
specifications (permission-based typestate contracts). The encoded specification was fed
into Pulse to find problems such as unreachable states, unreachable methods and sink states
(deadlocks) in the input specifications, and to reason about the correctness of the underlying
program before it is implemented.
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HJp

Westbrook et al. (2012) proposed a permission-based type system that supports task par-
allelism, array parallelism, and object isolation. The system called ‘Habanero Java with
permissions (HJp)’ is an extension of their previous work on the Habanero Java (HJ) lan-
guage. “HJ itself is a task-parallel extension of Java language” (Cavé et al., 2011). The
system provides a practical solution to prevent data races for non-trivial parallel programs
implementing multiple synchronization primitives, and parallel patters instead of just one.

The type system extends the Boyland’s fractional permissions with two new permission
types: aliased write and storable permission. Unlike previous approaches (Bierhoff and
Aldrich, 2007) where write (unique) permission is only supported for non-aliased objects
at any one time, the aliased write permission supports write operations on aliased objects.
In the system, multiple threads can write on multiple objects without actually having unique
permissions on them, as long as the permissions are not passed to other threads. The storable
permission provides a new and simple way for expressing transitive permission in complex
objects such as linked list. Storable permission associates permission to a ‘whole tree of
objects’ instead of associating it to a single object This feature makes the technique different
from existing approaches that require more technical machinery, and sound approximations,
to manage permission transitivity in complex objects.

VerCors

Blom et al. (2014) proposed a simplified version of Kernel Programming Language (Betts
et al., 2012) and a permission-based Separation Logic to reason about the correctness of the
GPU kernel written in OpenCl†. As the GPU kernel extensively uses threads to support
parallelism, the objective is to verify the functional correctness of GPU programs and to
ensure data race freedom in the underlying architecture.

The work follows an earlier work of Haack and Hurlin (2008) on verification of the
muti-threaded programs in which a thread can only access or update a particular memory
location if it has permission to read or write. Multiple threads with read permissions can
access the same location but only one thread can hold write permission at a time to change
its content. The same idea was applied to delegate permissions across work groups and then
to distribute permissions over threads. The approach was validated using VerCors‡ (Amighi
et al., 2012), based on permission-based Concurrent Separation Logic (Haack et al., 2008),
and uses Silicon (Juhasz et al., 2014) as a back-end verification tool which natively supports
an expressive permission model.

TheVerCors verification approach (Amighi et al., 2014) supportsmultiple synchronization
primitives and exploits the verification capability of JML (Leavens et al., 2006), to reason about
the functional correctness of the underlying program. It extends JML specifications with frac-
tional permissions and uses the conjunction operator ∗ in separation logic to define permission-
based contracts as JMLcomments in a Java program. Permissions on a particular field are spec-

†Khronos OpenCL Working Group, The OpenCL specification, http://www.khronos.org/opencl/
‡https://fmttools.ewi.utwente.nl/redmine//projects/vercors-verifier/wiki/Puptol/

http://www.khronos.org/opencl/
https://fmttools.ewi.utwente.nl/redmine//projects/vercors-verifier/wiki/Puptol/
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ified using propositional formula Perm(e.f, π) where π represents fractional permission in
the range (0, 1] assigned to the particular field f of object e. This permission is then transferred
between threads at synchronization points and analyzed with the execution of the program.

Listing 6.10 shows a sample Java class point in 2D. A state predicate state(frac p)

in Line 2 specifies that p permission is required on disjoint locations, this.x and this.y

in memory. These predicates are then used to specify permission contract for the same
locations at method level. For example, the pre-condition state(1) of method set() in
Line 5 specifies that the method requires full (write) permission on locations x and y, and the
post-condition ensures state(1) ensures that the method returns the same permission on
the corresponding locations when it exits. The invariant clause, in Line 4 specifies a functional
property that both points should be in the first or third quarter of its cartesian space.

Listing 6.10: A Java class Point example in (Amighi et al., 2014).
1 public class Point {
2 //@ resource state (frac p) = Perm(this.x, p) ∗ Perm(this.y, p);
3 private int x, y;
4 //@ invariant (x >= 0 && y >= 0) (x <= 0 && y <= 0);
5 //@ requires state (1); ensures state (1);
6 public void set(int xv , int yv){ this .x = xv; this .y = yv; }
7 //@ given frac p; requires state (p); ensures state (p);
8 public void plot () {}
9 //@ given frac p; requires state (p); ensures state (p);

10 public int getQuarter () {}
11 }

The contracts of methods plot() and getQuarter() in Line 8 and Line 10 respectively,
specify that both methods require read permission p on locations x and y, which means that
they can be executed simultaneously by multiple threads without the fear of data races. This
is because the the pre-conditions of both are disjoint with respect to memory. This is not
true for the method set() as it requires full permission on the same locations.

Instead of simply defining the amount in fractions of permission transferred, Huisman
and Mostowski (2015) extended the previous fractional permission model in VerCors by
having symbolic expressions which include the kind of transfer applied to permission, and
the owner of the transferred permission. The approach facilitates high-precision, complex
synchronization scenarios in concurrent data structures, and supports permission tracking
at a high level of abstraction as compared to the previously mentioned approaches such as
Veri-Fast (Jacobs et al., 2011) and Chalice (Leino et al., 2009).

In the approach, the program is annotated with symbolic (permission) expressions using
JML annotations in the functional style. The analysis then tracks the owners using permission
expressions and checks their permission return paths to reason about their behavior. The
system identifies permission owners using object references and manages a list of owners.
Whenever permissions are assigned to some owner, it is being added in the list and when
an owner returns permissions, it is removed from the list. Each owner is considered as a
permission slice. If all slices refer to the same owner, it means that the owner would have
full permission. Otherwise, access is partial (read).

The proposed permission theory was formalized in the KeY tool (Beckert et al., 2007),
an interactive verifier for Java that is based on dynamic logic. The system extends KeY tool
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with permission accounting to verify program properties that are based on purely first-order
reasoning. The general properties that require structural induction proofs are validated
using the PVS tool (Owre et al., 1992), because of its automated deduction and theorem
proving capability.

Amighi et al. (2015) proposed a variant of OHearn’s Concurrent Separation Logic
(OHearn, 2007) to perform practical reasoning of Java-like concurrent programs having
main concurrency primitives such as dynamic thread creation, thread joining, wait-notify
scenarios and lock reentrant mechanism. It combines Parkinson’s share model with Boyland’s
fractional permissions to avoid data races.

Like Parkinson’s share model, access for a particular heap location is maintained using
a resource’s invariant property, where 1 represents full (exclusive) permission to a heap
location, and a fractional value in the interval (0, 1) defines the concurrent read access of
a particular location. The idea is that a thread having partial permission is not allowed to
write on a heap location and the total permission to access a heap location cannot exceed
1. Like the OHearn’s approach, when a thread acquires a lock, it gets access to part of a
heap location specified as a resource’s invariant property. Upon unlocking, it transfers access
of the same resource back to lock, to re-establish the resource’s invariant property. The
permissions are transferred between threads at the time of thread creation, thread joining
and at lock entrances and reentrance points.

Viper

Müller et al. (2017) developed a verification infrastructure called Viper that encodes per-
mission reasoning in an intermediate language. The infrastructure includes two back-end
verifiers and four front-end tools for Chalice, Java, Scala, and OpenCL that was developed
as a part of VerCors project (Blom and Huisman, 2014). It targets a sequential, object-based
intermediate language also called Viper. A Viper program does not have classes and an
object can access every field declared in a program. Moreover, there is no implicit receiver
object for methods and functions.

In a Viper program, a programmer defines accessibility predicate (Cousot and Cousot,
1977) to specify permission-based pre- and post-conditions and loop invariants for heap
structures. A method can access a particular heap location if the appropriate permissions
are held by that location and permissions are then transferred between method execution
and the loop body to verify program behavior based on the specifications.

Listing 6.11 shows a sample sorted integer list data with access predicates in a Viper
program, to verify its functional behavior. The macro sorted(s) in Line 2 sorts input list s
in ascending order. The insert method adds a new element elem in the Ref list and returns
the index idx where the new element was inserted.

Listing 6.11: A sorted integer list and its specifications in Viper (Müller et al., 2017).
1 field data: Seq[Int]
2 define sorted (s) forall i: Int , j: Int :: 0 <= i && i < j && j < s
3 ==> s[i] <= s[j]
4 method insert ( this : Ref , elem: Int) returns (idx: Int)
5 requires acc( this .data) && sorted ( this .data)
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6 ensures acc( this .data) && sorted ( this .data)
7 ensures 0 <= idx && idx <= old(this.data)
8 ensures this .data == old( this .data)[0.. idx] ++
9 Seq(elem) ++ old( this .data)[idx ..]{

10 idx := 0
11 while (idx < this.data && this .data[idx] < elem)
12 invariant acc( this .data , 1/2)
13 ...
14 { idx := idx + 1 }
15 ...
16 }

The pre-condition of method insert() in Line 5 specifies that the method requires full
permissions on the object list this.data and it should be sorted. The post-condition in
Line 6 guarantees that when the method exits it returns the sorted list to the caller with
the consumed permission. The second post-condition in Line 7 constrains and thus validates
the index, while the third post-condition in Line 8 relates the current state of the list with
the method’s pre-state, using an old expression.

The insert()method iterates over data list to determine where to insert the new element
elem in Line 11. The loop invariant (Line 12) specifies that loop body needs a half (read)
permission on the list, while the second half permission would be held by method execution to
ensure that the loop body does not modify the list. The Viper’s front-end tools then encode
the annotated program into an intermediate language acceptable by the by the back-ends
tools, to verify its behavior.

6.4 Automatic Inference of Access Permissions

Permission-based access notations have been generated as means for program verification
in many approaches (Bierhoff et al., 2009a; Leino et al., 2009; Ferrara and Müller, 2012; Le
et al., 2012; Heule et al., 2011, 2013; Sadiq et al., 2016; Dohrau et al., 2018). The generated
specifications are either in the form of read/write accesses, fractional or symbolic permissions.
The overall goal of these approaches was to relieve programmers from specification overhead
resulting from manually adding permission-based annotations in a source program for ver-
ification purpose. Table 6.3 shows a summary of the work done to infer permission-based
specification in sequential and concurrent programs.

Table 6.3: Access permission inference for sequential and concurrent programs.

Reference Prog Lang Tool Analy Perm-
Kind

Perm-
Specs

Perm-
Infer

Anno Properties

Bierhoff et al.
(2009a)

Seq Plural
(NSL) Plural (St,D) Sym (U,I,S,F,P) Frac Y protocol

verification

Leino et al.
(2009)

Con NSL Chalice D Frac acc(x)
rd(x)‡

access
pure Y race conditions

& deadlocks

Heule et al. (2011)
Heule et al. (2013)Con - Chalice St Frac acc(x, 1)

acc(x, rd)
full
read Y race conditions

Le et al. (2012) Con NSL VPerm D Frac @full[ν]
@value[ν]φ

full
zero Y race conditions.

Ferrara and
Müller (2012)

Con Scala Sample St -
acc(x, p)
p ∈ (0, 1] ∩R
p ∈(0,1] ∩Z,
p ∈ (0, 100]%

Frac
Count
Chalice

Y race conditions.

Continued on next page
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Table 6.3 – continued from previous page
Reference Prog Lang Tool Analy Perm-

Kind
Perm-
Specs

Perm-
Infer

Anno Properties

Dohrau et al.
(2018)

Con Viper Scala St Frac [0,1]∩R read
and
write

Y race conditions

Sadiq et al.
(2016)

Seq Java Sip4J§ St Sym - (U,I,S,F,P)N -

Keys to the table: Seq = sequential, Con = concurrent, St = static, D = dynamic, Sym = symbolic, Fract = fractional, U =

unique, I = immutable, S = share, F = full, P = pure, Z = set of Integers, R set of Real numbers, NSL new specification language, x heap

location, ν represents a non-heap location. rd for the read access. ‡ accessibility predicates.

6.4.1 Inference of Read & Write Accesses

Chalice (Leino et al., 2009), a concurrent programming language uses autoMagic, a command-
line option, to infer the read andwrite accesses for the heap locations specifiedwith accessibility
predicates as previously explained in Section 6.2. The inferred notations are in the form of
pure and access notations that represent read-only and full permission respectively for
the specified heap locations.

Le et al. (2012) proposed a new permission system to avoid data races in multi-threaded
applications having fork/join parallelism. The objective was to ensure the absence of data
races for program variables that are not actually heap variables but can be accessed by
multiple threads.

The scheme infers variable permissions at themethod level using procedure specifications.
However, in the procedure specification, a programmer explicitly specifies state changes (if
any) for the referenced variable accessed by the current thread, using permission-based state
invariants without actual variable permission. The generated permissions are in the form
of notations such as full or zero where full represents exclusive rights on the referenced
variable and zero represents the absence of permission. The proposed technique then tracks
permission flow between threads to ensure safe access to the shared variables.

Listing 6.12 shows an example procedure specification example in a sample fork-join
program. The method creator() takes two variables x and y as reference parameters. The
requires clause in Line 2 specifies that the method needs full permission on the referenced
variables x and y as pre-permissions when the method is called. The ensures clause specifies
that the method should generate the same permissions as post-permissions on the same refer-
enced variables when it exits (Line 3). The state changes are represented using prime ′ notation.
For example, the specification “y′ = y + 2" in Line 3 specifies state changes for the referenced
variable y that should hold after the method completes its execution. These specifications are
then tracked in the system to generate actual variable permissions for the referenced variables.

Listing 6.12: A fork/join program fragment with procedure specifications (Le et al., 2012).
1 int creator (ref int x, ref int y)
2 requires @full [x, y]
3 ensures @full [y] ∧ y′ = y + 2 ∧ res = tid and @full[x] ∧ x′ = x + 1 ∧ thread =

tid ;{

§https://github.com/Sip4J/Sip4J

https://github.com/Sip4J/Sip4J
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4 int tid = fork(inc , x, 1);
5 inc(y, 2);
6 return tid;
7 }

The proposed scheme was realized in a concurrent program verifier called Vperm¶ that
verifies the correctness of concurrent applications written in C/C++ language. The approach
does not handle phased access to a shared variable by multiple threads, in which case a
translation algorithm is used to simulate the affected variables as pseudo-heap locations.

6.4.2 Inference of Fractional Permissions

Bierhoff et al. (2009a) proposed a deterministic algorithm to infer permission flow through
the program while verifying usage protocols. The objective was to avoid the permission
tracking overhead associated with splitting and joining the fractional permission during
verification.

The algorithm is implemented in the Plural tool (Bierhoff and Aldrich, 2008) that per-
forms dataflow analysis of the program with in and out permissions as developer-provided
annotations. The system collects linear constraints over fractional variables by tracking the
flow of permissions in the program. The analysis then ensures the satisfiability of constraints
in a modular fashion. The approach supports polymorphism over fractions that not only
facilitates modular reasoning of the program, but also avoids imprecision in loops by allowing
permission consumption inside loops. Furthermore, the technique automatically infers loop
invariants in a program.

Ferrara and Müller (2012) proposed a permission inference technique to infer fractional
and counting permissions for heap locations in a class-based language having threads and
monitors. The technique performs static analysis of the source program and inference is
based on abstract interpretations (Cousot and Cousot, 1977), a theory for defining and
soundly approximating the semantics of a program. The approach firstly computes symbolic
values (approximations) for each heap location using the pre- and post-conditions and lock
invariants defined at the method and class level respectively. It then infers constraints over
these symbolic values to reflect permission-based intermediate representation for the heap
locations. Finally, it generates specifications in the form of fractional (value between 0 and
1) and counting (value between 0 and Integer:MAX_VALUE) permissions for each heap
location in the program.

The symbolic permissions (AV ) for each heap location are calculated as “the summation
of symbolic values si multiplied by integer coefficients ai (to represent how many times the
permission is consumed or returned) and an integer constant c” (see Formula 6.4). The
integer constant c represents full permission that is inhaled when an object is created.

AV =
∑
i

ai∗si+c,where ai,c∈R,si∈SV (6.4)

¶http://loris-7.ddns.comp.nus.edu.sg/project/vperm/.

http://loris-7.ddns.comp.nus.edu.sg/project/vperm/.
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For example, the expression 1 ∗ Pre(C,m,c:f) + 1 ∗ MI(C,c:f) + 0 represents sym-
bolic permissions computed for each heap location (c:f) in method m() of class C where
Pre(C,m,c:f) represents the symbolic value (si) assigned to location (c:f), as pre-condition
before acquiring a lock, and the notation MI(C;c:f) represents monitor (MI) acquired on
location c:f. Further, the notation Post(C,m,c:f) represents a symbolic value assigned to
a heap location,as post-condition, to get the original permission back on it when the monitor
is released. The technique then infers constraints over these symbolic values to generate
actual permissions as fractional permissions.

The inference technique is implemented in Sample (Static Analyzer of Multiple Program-
ming LanguagEs)‖ that supports programs written in Scala (Odersky et al., 2004). Listing
6.13 shows the OwickiGries (Owicki and Gries, 1976) program fragment as an input program.
In the example, all expressions are self explanatory except the old expression old (c.c1),
in Line 4, that allows post-conditions to refer back to the pre-state of a referenced variable
and its associated predicates.

Listing 6.13: The OwickiGries program (fragment) with method level specifications in
(Ferrara and Müller, 2012)

1 class W1 {
2 var c : Cell;
3 method Inc ()
4 ensures c.c1 == old(c.c1) + 1{
5 acquire c;
6 c.c1 := c.c1 + 1;
7 release c;
8 }
9 }

In method Inc(), between acquire c and release c clauses (Line 5 and 7), the current
thread is assigned with a symbolic permission 1 ∗Pre(W1,Inc,c :c1)+1∗MI(Cell,c :c1) for
location c :c1. When method exits (Line 9), is gets the symbolic permission 1 ∗Pre(W1,Inc,c :
c1) = 1∗Post(W1,Inc,c : c1) as post-condition since the monitor of c is released. Solving
constraints over these symbolic values, the system generates full (1) as fractional permission
for location c:c1 when method completes its execution and control is passed to Line 8.

The system works very well for Chalice lattice domain. However, teh analysis based on
fractional specifications is challenging and sometimes, the system converges the generated
permissions back to zero to explicitly terminate analysis. Moreover, it provides limited
support to infer permission contracts for programs having recursive data structures. The rate
of inferring permission contracts for such programs is at minimum 36% and 68% at maximum.

In an extended work of Ferrara and Müller’s permission inference, Dohrau et al. (2018)
proposed a static analysis to infer permission-based contracts for array manipulating con-
current programs. The technique is based on Separation and related logics (Reynolds, 2002;
Smans et al., 2009). The idea is to explicitly associate a separate (fractional) permission for
each array element to specify its accessibility by parts of the program. The value 1 represents
full access while rd, a positive fraction of permission, represents the concurrent (read)
access to a memory location. The analysis then infers read and write accesses for the specified

‖http://www.pm.inf.ethz.ch/research/sample.html

http://www.pm.inf.ethz.ch/research/sample.html
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memory locations to generate permission contracts at the method-level and within loop.
For example, the approach associates each array element say qa[qi] with a fraction of

permission using a conditional expression of the form qa = array ∧ qi = index ? 1 : 0
that specifies full permission (1) for element array[index] and no permission for all other
elements. The permission required for each loop iteration is computed using a maximum

expression that calculates the maximum of permission required by each referenced variable
changed in a particular loop iteration. The whole (complete) loop execution depends on
the maximum of all the fractions over all loop iterations. It is used to infer read and write
specifications for all indices of an array, for the whole loop.

However, it is generally acknowledged that tracking concrete fractional values is a cum-
bersome task for programmers especially when fractions continue to decrease indefinitely
for a particular scenario (Heule et al., 2013). Moreover, the use of fractional permissions
makes the specifications too low-level which can be tedious to add manually and harder to
reuse and adapt for programmers.

6.4.3 Inference of Symbolic Permissions

Heule et al. (2011, 2013) proposed a technique to automatically convert fractional permissions
into abstract read/write permissions for shared-memory concurrent programs. The objective
was to specify concurrent constructs such as fork/join threads, locks/monitors with abstract
permissions to avoid the complex reasoning overhead associated with fractional shares.

The abstract read permissions allow programmers to reason at a high-level of abstraction
than using the fractional values for reading. The objective was to avoid the complex rea-
soning overhead associated with handling concrete values in fractional permissions during
verification. The proposed methodology is implemented in Chalice. The system generates
two kinds of permissions i.e., full and read. Like Chalice, it takes a program annotated
with accessibility predicates such as acc(x.f,1) and acc(x.f, rd) at method level. The
value 1 is mapped to represent the full (read and write) permission and rd represents the
shared read permission (a part of permission that is not full) for the referenced object x.f.
Moreover, the system automatically computes read (rd) permission instead of programmers
having to compute this value explicitly.

6.5 AccessPermission-basedParallelization of Sequential Pro-
grams

Pure functional programming is a paradigm where languages are suitable to develop con-
current applications as they do not allow side effects. This means that two parts of the code
(methods) cannot access the samemutable states and therefore do not interfere with each other.
To avoid side effects because of shared states, pure functional languages create copies of objects
whenever there is a change in an object’s state, thus creating immutable objects. Therefore, for
these languages, the compiler freely parallelizes execution of the programwithout causing side
effects (Hughes, 1989). Although pure functional languages make concurrent programming
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more deterministic, cleaner and safer, but for complexmutable objects (reference types), these
languages have historically low performance and results in excessive memory consumption.

In the real world where most of the realistic applications have already been written in
non-pure (traditional) imperative programming paradigms, the challenge is to exploit the
implicit concurrent behavior of the underlying program, having mutable states and complex
objects. With this consideration in mind, research projects such as Concurrency Made Easy
∗∗ and UPScale †† are still investigating ways to make concurrent programming more straight
forward and more reliable. In the past few years, some permission-based programming
languages, compilers, and runtime systems have been developed (Jones, 2003; Aldrich et al.,
2011, 2012; Stork et al., 2009, 2014; Rafael et al., 2014; Fonseca et al., 2016).

Table 6.4 shows a summary of the related work studies in this research that automatically
parallelize the execution of sequential programs based on access permission rights.

Table 6.4: Access permission-based program parallelization.

Reference Prog Lang Tool Analy Perm-
Kind

Perm-
Specs

Perm-
Infer

Anno

Jones (2003) Seq Haskell - st read
write monads N Y

Aldrich et al. (2011)
Aldrich et al. (2012) Seq Plaid

NSL Plaid st Sym (U,I,S) N Y

Stork et al. (2009)
Stork et al. (2014) Seq Æminium

(NSL)
java2
aeminium st Sym (U,I,S) N Y

Rafael et al. (2014)
Fonseca et al. (2016) Seq Java J2Par st - read

write N Y
Keys to the table: Seq = sequential, St = static, Sym = symbolic, U = unique, I = immutable, S = share, F = full, P = pure, Z = set
of Integers, R set of Real numbers, NSL = new specification

Haskell is a pure functional programming language that provides constructs to deal
with mutable states and side-effects (Jones, 2003). In Haskell, all side effects are explicitly
mentioned in the method’s signature. While accessing a shared resource, Haskell uses the
concept of access permissions to assign access privileges for functions. For instance, if a
function wants to perform an I/O operation, it requires an I/O monad which is a global
permission that specifies access to all the global states of a system. In Haskell, I/O monads
are used to avoid race-conditions and parallelize the execution of functions but the system has
only one type of permission for the entire system, which may create performance bottleneck
for highly complex and concurrent applications.

Aldrich et al. (2011) developed a new permission-based programming language, a type
system and a runtime system called Plaid, that leverages the flow of permissions through
the system, to support automatic parallelization of typestate-based sequential programs.
The aim was to extend the typestate-oriented programming (Aldrich et al., 2009) with first
class-states and access permissions. Plaid was originally designed to track the typestate of
a reference object at runtime and to handle unrestricted aliasing using permission-based
typestate information.

However, in Plaid, programmers explicitly add permissions-based typestate information
∗∗Concurrency Made Easy, http://cme.ethz.ch/.
††UpScale, https://upscale.project.cwi.nl/

http://cme.ethz.ch/.
https://upscale.project.cwi.nl/
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(pre- and post-state) to show how a method changes the state of a receiver object, using
state transition operator (‘�’). The syntax and semantics of the Plaid language are already
explained in Section 2.3.

Figure 6.14 shows a sample code fragment for the buffer implementation, with permission-
based typestate annotations, inPlaid. Abuffer canbe in one of the two states i.e. EmptyBuffer
and FullBuffer (Line 1). The method put is associated with the empty buffer. The signa-
ture of the put() method (Line 4) specifies that state of receiver object should change from
EmptyBuffer to FullBuffer when buffer receives some element. The state FullBuffer

requires a field element elem that is passed as a method parameter e. The permission-based
contract (Line 4) specifies that the passed element has unique permission in Element state,
and the method does not return any permission (say none) to the caller, because a field
reference with exclusive rights (unique) was created for that element in the FullBuffer state.
Otherwise returning permission back to the caller would cause a violation of the uniqueness
property. Likewise, FullBuffer state has a single operation get() (not included in the exam-
ple due to brevity), which returns the current value of the object represented by the reference
variable elem, and ensures, that the receiver object goes back to the EmptyBuffer state.

Listing 6.14: A buffer implementation (fragment) in Plaid (Aldrich et al., 2011).
1 state Buffer comprises EmptyBuffer , FullBuffer {}
2 ...
3 state EmptyBuffer caseof Buffer {
4 method void put( unique Element � none e) [ EmptyBuffer � FullBuffer ] {
5 this ← FullBuffer {elem = e};
6 }
7 }

The Plaid type checker then leverages the access permission flow through the system along
with the associated typestate information to ensure protocol compliance at runtime. ThePlaid
type system allows permission splitting, joining and type-casting automatically (when and
where required) using access permission splitting and joining rules given in Table 2.1. Plaid
follows the Design by Contract principle in general, to verify permission-based contracts at the
method level. Further, Plaid’s runtime dynamically verifies the typestate usage, and checks
permission-based dependencies to parallelize execution of the underlying program accordingly.

The limitation of Plaid is the need to manually annotate program with permission-based
typestate information, which creates annotation overhead for the programmers. Moreover,
it is mentioned that “the current implementation of type checker does not support type
checking at every program place”. Hence, the type checker needs to be enhanced for better
results. Further, the inclusion of other access permissions such as full and pure in the type
system is highly desirable.

Incorporating a language runtime support for permissions in Plaid, Stork et al. (2009,
2014) developed a permission-based programming paradigm called Æminium to develop
by-default concurrent applications. In Æminium, to achieve implicit concurrency, the idea is
to to make implicit dependencies explicit based on access permissions, thereby avoiding side
effects in the system and parallelizing the code to the extent permitted by permission-based
dependencies. However, like Plaid, it requires programmers to explicitly specify permission-
based annotations in the source program but unlike Plaid that uses access permissions to
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track the states of the referenced objects, Æminium uses access permissions to avoid side
effects in a program. A unique and immutable permission specifies the ‘exclusive’ and
‘read-only’ access on a referenced object respectively whereas a share permission specifies
concurrent access for the shared objects. In Æminium every mutable (shared) object is
assigned a data group (e.g., α). “A data group represents an abstract collection of objects”
(Leino et al., 2002). Æminium defines three types of permissions for a data group collectively
called data-group permissions i.e., ‘exclusive’, ‘shared’ and ‘protected’. Access to a
data group (α) is handled using atomic and share blocks as mutual exclusion primitives.

Æminium performs static analysis of a permission annotated program using the Plaid
compiler. It tracks permission flow through the system (for methods’ parameters and receiver
objects) to compute data dependencies at the task-level. This information is then used to
parallelize execution of a sequential program on top of Æminium runtime.

Æminium provides concrete design and semantics of the proposed by-default concurrent
paradigm, however, the advantage of automatic parallelization without data races comes
at the cost of high annotation overhead and a sophisticated type system. This annotation
overhead becomes even more significant as the program size increases. Therefore, automatic
inference of permissions-based annotations (the goal of this thesis) is highly desirable.

Inspired from permission-based automatic parallelization of sequential Java programs
in Æminium, Rafael et al. (2014) and Fonseca et al. (2016) developed a technique and a
tool called JPar to perform instruction-level automatic parallelization of sequential Java
programs, based on the Æminium compiler (Stork et al., 2014), the Æminium runtime and
ÆminiumGPU (Fonseca and Cabral, 2013). The aim was to improve fine-grained automatic
parallelization of sequential programs and improve performance on multi-core architecture
while consuming less memory.

The JPar compiler uses data group abstraction (Leino et al., 2002) to check side effects in
the program. In JPar, data groups represent the memory sections shared between different
parts of the code. The proposed approach performs static analysis of the source code based
on the application’s Abstract Syntax Tree (AST). It extracts the instruction’s signatures
which represent the data and control dependencies (read, write, control flow information,
etc.) on data groups. Each Abstract Syntax Tree node is then annotated with the inferred
dependencies. The permissions on data groups are depicted as read(dg), write(dg) or
control(dg), where dg represents a particular data group.

Listing 6.15 shows a Fibonacci program with instruction-level signatures and with data
and control dependencies, as data group permissions, in JPar.

Listing 6.15: A Fibonacci method with instruction-level data and control dependencies in
JPar (Fonseca et al., 2016).
1 int f(int n) {
2 if (n < 2) // read(n), control (f)
3 return n; // write ( return ), control (f)
4 int a = f(n - 1); // call(f), read(n), write (a)
5 int b = f(n - 2); // call(f), read(n), write (b)
6 return a + b; // read(a), read(b), control (f), write ( return )
7 }
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The annotation read(n) in Line 2 shows that the AST node reads the memory location
n. Likewise, the annotation write(a) in Line 4 depicts that the subtree writes on reference
a. The annotation control(f) denotes the control flow of other operations in the method f.
This is generally the case for return, continue, break, switch, selection and iterative

statements (Line 3 & 6). The annotation call(f) represents a method call for method f

(Line 4 & 5). To achieve task-level parallelism, the proposed approach generates task-based
Java code from the sequential Java version, where each task respects the inferred read, write
and control dependencies in the program. However, instead of inferring access permission-
based dependencies from the source program, the approach infers the dependencies as read,
write and control flow information for each task and task parallelism is achieved using the
ÆminiumGPU runtime system, a new programming paradigm.

6.6 Research Challenges

The study of existing permission-based approaches shows that although access permissions
have been used to provide a sound reasoning mechanism to verify program behavior and
achieve concurrency, the existing permission-based approaches, in the literature, are still
limited in their support due to the following reasons.
Permission Annotation Overhead. The common problem with all the permission-based
verification approaches is the annotation overhead associated with the need to manually
add permission-based dependencies (invariants, contracts, assertions, etc.) or other ac-
cess notations, to explicitly specify state changes and grant or restrict access to multiple
references (threads), on the shared memory locations. It is generally acknowledged that
manually annotating programs is laborious, challenging and time-consuming.
Permission Verification Overhead. Given the intricacies in creating manual permission-
based specifications, programmers are very likely to omit important dependencies or create
misspelled specifications that may again lead to problems such as data races and deadlocks
and may in turn pose verification overhead. There is no guarantee that the written
specifications are correct. Although some existing approaches presented a solution to this
problem, by identifying the misspelled (missing) specifications and by verifying that, the
specifications follow the intended semantics, the techniques themselves are limited in ensuring
whether the program implementation complies with the input specifications and vice versa.
Furthermore, although, access permissions support modular reasoning of a program be-
havior without analyzing the entire program analysis, certain program properties such as
global invariants and liveness, are hard to verify.
Permission Tracking Overhead. Existing verification and parallelization approaches
use different forms of permission types such as fractional permissions, based on their ex-
pressiveness and to facilitate the ease of analysis. The runtime systems then analyzes the
permission flow through the system to verify program behavior against the specification
and computes the data dependencies in the system based on the specification.
In particular, fractional permissions use fractional style to express the access rights for
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a reference in the range (0,1] but its analysis is challenging for programmers, due to the
overhead associated with tracking the splitting and the joining of concrete values. It is
generally acknowledged that tracking fractional values in a program is a cumbersome task
for programmers. The situation becomes more serious when fractions are split into multiple
levels, which may create concerns relating to the proper termination of the analysis and
affects the soundness of the technique itself.
Counting permissions are complementary to fractional permissions but they do not support
all types of synchronization primitives. Symbolic permissions combine the access rights
and aliasing information of a reference and have been used to allow programmers to reason
about the program correctness, against specification at a higher level of abstraction than
fractional or counting permissions. Therefore, automatic inference of permission-based
specifications in the form of symbolic values is desirable to free the programmers from
the low-level analysis overhead associated with adding and tracking concrete values in the
program.

In addition to the specification overheads and related problems discussed above, the fol-
lowing factors may also hinder the wider adoption of existing permission-based verification
approaches.
Languages and Tools. Existing permission-based verification andparallelization approaches
are mostly based on formal specification languages and type systems to support access
permission as part of the language. It can be challenging for most programmers who may
not be adept at the new syntax and semantics in order to exploit their functionalities.
Furthermore, most of these approaches are either research prototypes or developed in
languages that are not commonly used for general-purpose software development. These
factors could limit the adoption of the existing approaches to verify programs written in
mainstream programming languages such as Java.
Program Constructs. Existing verification approaches have limited support for synchro-
nization constructs such as fork-join parallelism, atomic blocks or semaphores. There is
also limited support for the recursive data structures. Most of the approaches support
verification of heap locations, while investigation on non-heap locations has not been as
prevalent. These limitations restrict their ability to verify real-world applications.
Program Analysis. Existing approaches either perform static and dynamic program anal-
ysis or employ model-checking techniques to verify program properties. All have their
own pros and cons that affect the scalability of these approaches when analyzing program
constructs and verifying the program behavior. For example, the techniques employing
model checkers may face state-space explosion problems even for a program of average size.
Properties. Most verification tools focus on certain aspects of the program behavior, such
as verifying the correctness of API protocols or avoiding synchronization issues such as data
races are just two aspects. Some tools can address a combination of issues, but none of
them cover all aspects of a program behavior.
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The study shows that existing permission-based approaches individually cannot provide
a complete solution to program verification or parallelization, without incurring additional
cost to programmers or verifiers. Overall, given the number of different permission-based
formal type theories and programming models that received remarkable attention over the
last decade in the research community, there is an impending need to make these approaches
adoptable and adaptable for general-purpose program development, and verification using
mainstream programming languages such as Java, C++ and .Net.

The common problem in all the existing approaches is the annotation overhead associated
with the need to manually add the permission-based specifications in the source program.
Therefore, the automatic inference of permission-based specifications from the source pro-
gram (the goal of this thesis) can be the first step to exploit the verification and parallelization
power of these approaches, without posing any extra burden on programmers, to enhance
their applicability in the IT industry.

These requirements are addressed by our permission inference framework Sip4J, by
inferring access permissions without using any method level specifications as well as making
the technique suitable for mainstream programming languages.

The next step can be an integration of the most widely used permission-based verification
tools such as Plural, Pulse, Verifast and VerCors, that at least support a common program-
ming models such as Java, and employ the concurrency-by-default approaches such as Plaid
and Æminium, to parallelize execution of programs written in mainstream programming lan-
guages. The ideal solution to all the above challenges can be the integration of the commonly
used abstractions such as typestates and access permissions, as first-class language constructs
in the mainstream programming models, to develop a complete, sound, modular, automated
and economically feasible framework for everyday program development and verification.



Chapter 7

Conclusion

It has been predicted and observed thatMoore’s Lawwill continue to hold for only another five
to ten years. As a response, the focus of modern processor design has shifted from increasing
clock speed of individual physical cores to increasing the number of cores, hence increasing
the potential for parallel execution of application software. To exploit parallelism offered by
multi-core processors, mainstream programming languages such as Java typically make use
of explicit concurrent programming constructs such as threads and locks to explicitly specify
the side effects and define the synchronization strategies. However, such constructs give rise
to significant code complexity and synchronization errors. Therefore, access permissions
(Aldrich et al., 2011; Stork et al., 2014), as an alternative mechanism, to achieve implicit
concurrency present in single-threaded applications.

The study of the literature (Chapter 6) shows that access permissions are powerful
mechanisms that represent and combine the read and write behavior of a referenced object
as well as its aliasing information thereby the side effects. Access permission sharing and
accounting models (Boyland, 2003; Bornat et al., 2005; Bierhoff and Aldrich, 2007) attained
considerable attention in the research community in the last few decades, because of their
rich expressiveness and sound reasoning capabilities, to specify and verify the correctness
of shared-memory concurrent programs. Furthermore, as access permissions can perform
method (read and write) operations in a non-interfering manner, they have been used to
achieve the implicit concurrency from sequential programs without explicitly introducing
the concurrency constructs in the program.

However, to exploit the benefits of access permissions, all the existing approaches pose
programmerswith the annotation overhead formanually adding permission-based dependency
information in the program. These approaches not only requires programmers to be adept
to completely new formal type theories and programming paradigms, but they also need
to identify and add specifications in the source program which is a time consuming and error-
prone task. Given the intricacies in creating these constructs, it is very likely for a programmer
to omit important constraints or create misspelled specifications that may again lead to
problems such as race-conditions or deadlocks due to the wrong dependencies. These issues
have hindered the wider adoption of the existing approaches for the general-purpose program
development and verification purpose. Ideally, it would be much easier and more effective for
a programmer to not to be concerned with manually specifying permission-based annotations
in the program, while still being able to exploit the benefits offered by such annotations.

128
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7.1 Thesis Contributions and Reflection

This thesis aims to free programmers from the annotation overhead for manually adding
permission-based dependencies in the source program The objective is to develop a fully
automated permission inference and checking framework, to infer access permission contracts
from the source code of single-threaded Java programs in a correct and efficient manner.

To the best of our knowledge, the work presented in this thesis is the first attempt to infer
symbolic (access) permission contracts for programs written in a mainstream programming
language. The core functionalities of the proposed approach have been realized in a prototype
tool, Sip4J, along with its integration with a permission-based model checking tool Pulse.
The empirical evaluations have shown the benefits of the proposed approach and the Sip4J
framework itself for the permission-based research community and as a whole to the IT
industry.

The main contributions of this thesis are as follows.
1. A permission inference methodology that reveals the access permission-based de-

pendencies from the source code of a Java program and maps them in the form of access
permission contracts (RQ1).

The permission inference approach (Chapter 3) performs modular static analysis of an
un-annotated Java program to automatically reveal the method’s side effects and maps
the object’s accesses, in the form of five types of symbolic permissions (Section 2.1),
at the field level. The generated specifications are then automatically mapped in the
form of access permission contracts, as pre- and post-permissions, following the Plural
specifications (Section 2.2.1).
The approach generates permissions contracts at a higher-level of abstractions and without
using any intermediate representations or method-level specifications. The inference
of access permissions at the field level further shows the effectiveness of the proposed
approach in enabling implicit concurrency at the more granular level. The generated
specifications can be used to parallelize the execution of sequential programs written in
the mainstream programming languages such as Java. The permission inference approach
in this work, although focused on Java language only, should also be applicable to other
object-oriented programming languages.

2. A permission inference and verification framework, Sip4J, implemented as a
Java Eclipse plugin∗, that automatically infers access permission contracts for single-
threaded Java programs. It automatically verifies the correctness of the inferred spec-
ifications by integrating the existing permission-based model checking tool, Pulse, and
performs a comprehensive concurrency analysis of the input program by extending the
Pulse tool, to consider all possible side effects based on the inferred contracts (RQ2 &
∗https://github.com/Sip4J/Sip4J

https://github.com/Sip4J/Sip4J


§7.1 Thesis Contributions and Reflection 130

RQ3).

The Sip4J framework (Chapter 4) automatically generates the Plural specifications for a
Java program which shows its benefits to the existing permission-based approaches such
as Plural and Pulse itself, to perform their intended task without posing extra work on pro-
grammers. Moreover, the use of flow-insensitive approach to identify method’s side-effects
and to discover their concurrent execution outweighs other approaches that are based on the
flow-sensitive analysis that does not always increase precision of the information discovered.
Further, the approach computes the potential for concurrency in a sequential program by
exploiting the model-checking power of the Pulse tool (Section 2.2.2). This information
can be used to parallelize the execution of Java programs without the fear of data races.
Furthermore, the tool automatically generates a user-friendly (Pdf visualization) report
describing the behavior of the underlying program in terms of its correctness and con-
currency analysis. The generated documentation can be used by both novice and expert
programmers (verifiers), with equal ease, to analyze program behavior and take design
decisions without having any code inspections.

3. Empirical evaluation of the permission inference approach and the Sip4J framework,
itself in terms of its scalability, efficacy and effectiveness analysis for realistic Java appli-
cations and benchmark suites (RQ 4 & RQ5).

Experiments were performed on 21 programs with 3,111 methods from four benchmark
suites, widely-used in the permission-based approaches, Java Grande, Æminium, Plaid,
Crystal and the Pulse tool itself to evaluate the Sip4J framework.
The results of the evaluation (Chapter 5) have shown that the framework is indeed
capable of inferring the required or safe permissions for the realistic Java programs in a
correct and efficient way, without any specifications errors. The concurrency analysis of
the inferred specifications has shown the effectiveness of the inferred specifications and
the proposed technique itself in enabling the potential concurrency (up to 61%) from
sequential programs. Further, the empirical analysis has shown that our inference tech-
nique provides reasonable support in avoiding the annotation overhead that is otherwise
laborious. Furthermore, the results have shown that the framework is capable of inferring
the annotations efficiently, averaging 2 seconds for annotating a single method.
The evaluation further reveals that Sip4J framework is also able to identify program
behavior in terms of its code reachability and null-pointer analysis that can help program-
mers to find syntactical errors and dead code in the program without actually compiling
the code.

Moreover, our experiments have also revealed some limitations of the Pulse tool itself,
in terms of its concurrency analysis to consider all possible side effects based on the inferred
specifications and its support for the Java Specification Language constructs. For the first
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case, we have extended the concurrency analysis in the Pulse tool as explained in Section 4.3
but for the second case, we planned to extend its analysis to incorporate more Java language
constructs.
However, all the experiments demonstrated the feasibility and benefits of our permission
inference approach and the framework to the existing permission-based verification such as
Plural and Pulse, to perform their intended tasks without posing extra work on programmers.
We believe that the inferred permissions can be used by other programming paradigms such as
Æminium and Plaid, that capture the concepts of typestates, permissions, and concurrency, to
perform their intended task without posing extra work on programmers and alternatively, to
employ these approaches for general-purpose program development and verification purpose.

7.2 Future Work

The permission inference framework, Sip4J, by inferring access permissions contracts from
the source code and by making their automatic analysis through the state-of-the-art model
checking tool, Pulse, can help programmers a) identify some of the syntactical errors in the
program such as null-pointer references without actually compiling the program, b) verify
certain aspects of a program behavior such as code reachability analysis without performing
any code inspection, and c) reason about the concurrent behavior of sequential programs
as elaborated in Section 4.4 and demonstrated using realistic Java programs in Chapter 5.

Our experience with the inference of access permissions suggests that the inference of
access permission contracts can further be used to automatically compute the dependencies
between methods while making the side effects explicit. As access permissions pose their own
ordering constraints, the computed dependencies can be used to define and automatically
infer the synchronization primitives (locking and ordering constraints) from the source code
of a sequential program. The generated specifications can then be used to enforce the locking
policy to different program parts at different levels of granularity (method, instruction or
task). The permission-based locking policy can automatically parallelize program execution
for the mainstream programming languages such as Java, to the extent permitted by the
computed dependencies, without using any new programming language and runtime system
to support access permissions. The permission-based parallelization can free the program-
mers from the low-level synchronization and reasoning overhead associated with handling
multi-threading in sequential programming paradigms.

In addition to supporting the race-free sharing of the heap or non-heap locations in sequen-
tial programs, the inference of permission-based synchronization constructs (such as acquire
and release locks with permission invariants) can be used to verify the behavior of concurrent
programs, that have already been written using multi-threading, without imposing extra work
on the programmer side. The general idea is to define different pre- and post-permissions for
the acquire and release locks and associate the permission informationwith the program ref-
erence (thread) to access a particular memory location and track the permission flow through
the system in a way, that no two threads can enter simultaneously in a critical section and only
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acquired lock can be released (pre-condition), to enforce the mutual exclusion mechanisms.
In summary, the inference of permission contracts can be used to automatically enforce

mutual exclusion mechanisms in sequential programs, written in imperative programming lan-
guages such as Java, and to parallelize their execution without using the explicit concurrency
constructs such as multi-threading and without imposing extra work on programmers.

To this end, we have envisaged a number of future directions relevant to the proposed
permission inference framework. We plan to
a) extend the inter-procedural static analysis and combine it with dynamic analysis of

the source code to incorporate more and complex Java language constructs such as
polymorphism, generics, lambda expressions, and others.

b) infer access permissions at a more granular level, such as individual permissions for the
members of a collection or array.

c) develop an online system that can automatically crawl a code base and generate access
permissions, to encourage the wider adoption of the proposed technique,

d) automatically infer the permission-based locking and ordering constraints to develop
by-default concurrent applications.

e) extend the Pulse analysis to overcome its current limitations and provide a comprehensive
support for Java.

f) integrate the existing permission-based verification tool such as Plural with the permis-
sion inference framework Sip4J, to develop a comprehensive fully automated program
verification infrastructure, for mainstream programming languages such as Java.
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Appendix 1

Syntactic Rules
for Modelling Object Accesses

A.1 Modelling Object Accesses in the Current Method

This section presents the syntactic rules that capture expression statements in a method and
that have been used to support the data-flow and alias-flow analysis of the source code during
the metadata extraction phase of the permission inference approach, as explained in Section
3.2.1. The rules are being divided into twomain types depending on their access by the current
method and other methods: a) Statement rules, and b) Context rules, during the analysis.
The rules are further categorized according to the type of expressions such as FieldAccess,
Assignment or MethodInvocation, encountered during each expression statement and the
type of reference variable (<grv>, <lrv>, <lv>) accessed in each expression. During parsing,
each expression is recursively parsed to fetch the type of expressions designed as based cases.
The extracted dependencies are then mapped in the form of a permission-based graph model
as explained previously in Section 3.2.2.

The rules follow the style of sequent calculus in Linear logic, with connectives and im-
plication (() operator, to enforce the strong and constructive interpretation of the specified
rules as formulas, to support the analysis.

A complete list of the modelling rules is given below.
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I. Statement Rules for the Global References

<Type> <grv>
(GR-Decl, <grv>)

<do-nothing>

<grv> |super.<grv> |this.<grv> |<ClassName>.<grv> |<obj>.<grv>
(GR-Read-Only, <grv>)

addReadEdge(this_m, <grv>)

[PRIM_TYPE] <grv> = <grv1> |<LITERAL>
(GR-Val-Flow,<grv>)

addWriteEdge(this_m, <grv>)(∀a∈ aliasOf(<grv>) addWriteEdge(this_m, a)),(apply(GR-Read-Only, <grv1>)

[<Type>] <grv> = new <Type>(<grv2>)|<Number_Literal>
(GR-New-Obj, <grv>)

(addWriteEdge(this_m,<grv>) ( apply(Context-N,<grv>)),(apply(GR-Read-Only, <grv2>)

[<REF_TYPE>] <grv> = <grv1>
(GR-Add-Flow, <grv>)

(∃aliasEdge(<grv>, <grv2>) ( removeAliasEdge(<grv>, <grv2>)), addAliasEdge(<grv>, <grv1>)
apply(GR-Read-Only, <grv1>)

[<REF_TYPE>] <grv> = <lrv>
(GR-Addr-Flow, <lrv>)

(∃aliasEdge(<lrv>, <grv1>)(addAliasEdge(<grv>, <lrv>))

(∃aliasEdge(<grv>, <grv2>)(removeAliasEdge(<grv>, <grv2>)),apply(GR-Read-Only, <grv1>)

[<REF_TYPE>] <grv> = <lv>
(GR-Addr-Flow, <lv>)

(∃aliasEdge(<grv>, <grv1>)(removeAliasEdge(<grv>, <grv1>))

<Type> <grv> = <Null_Literal>|MCall(<post-perm>,<grv1>)
(GR-NullAddr-Init, <grv>)

<do-nothing>|MCall(<post-perm>,<grv1>)

<grv> = <Null_Literal>|MCall(<post-perm>,<grv2>)
(GR-NullAddr-Flow, <grv>)

addWriteEdge(this_m, <grv>)(∃aliasEdge(<grv>, <grv1>)(removeAliasEdge(<grv>, <grv1>)
apply(Context-N, <grv>)),(∀ a ∈ aliasOf(<grv>),apply(<GR-NullAddr-Flow>, a)))
,apply(MCall(<post-perm>, <grv1>))

<grv> = <lrv>
(GR-SelfAddr-Flow, <lrv>)

(∃aliasEdge(<lrv>, <grv>)(<do-nothing>)

<grv> = <grv>
(GR-SelfAddr-Flow, <grv>)

<do-nothing>
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II. Statement Rules for the Local References
<lrv>

(LR-Read-Only, <lrv>)
(∃aliasEdge(<lrv>, <grv>)((apply(GR-Read-Only(<grv>))

<lrv>.<grv1> = <Number_Literal>
(LR-Val-Flow, <lrv>)

(∃aliasEdge(<lrv>, <grv>)(apply(GR-Val-Flow, <grv1>))

[<REF_TYPE>] <lrv> = <grv>
(LR-Addr-Flow, <grv>)

(∃aliasEdge(<lrv>, <grv1>)(removeAliasEdge(<lrv>,<grv1>)),addAliasEdge(<lrv>,<grv>))

apply(GR-Read-Only, <grv>)

[<REF_TYPE>] <lrv> = <lrv1>
(LR-Addr-Flow, <lrv>)

(∃aliasEdge(<lrv>,<grv>)(removeAliasEdge(<lrv>,<grv>)),

(∃aliasEdge(<lrv1>,<grv1>)(addAliasEdge(<lrv>,<lrv1>),apply(GR-Read-Only, <grv1>))

[<REF_TYPE>] <lrv> = <lv>
(LR-Addr-Flow, <lv>)

(∃aliasEdge(<lrv>, <grv>)(removeAliasEdge(<lrv>,<grv>))

<lrv> = new <[<REF_TYPE>]>(<grv2> |<Number_Literal>
(LR-New-Obj, <lrv>)

(∃aliasEdge(<lrv>,<grv1>)(removeAliasEdge(<lrv>,<grv1>)

(apply(GR-Read-Only,<grv2>))

<lrv> = <Null_Literal>|MCall(<post-perm>,<grv>)
(LR-NullAddr-Flow, <lrv>)

(∃aliasEdge(<lrv>, <grv>)(removeAliasEdge(<lrv>, <grv>),

(∀ a ∈ aliasOf(<lrv>),apply(<GR-NullAddr-Flow>, a)),apply(MCall(<post-perm>,<grv>))

<Type> <lrv> = <Null_Literal>|MCall(<post-perm>,<grv>)
(LR-NullAddr-Init, <lrv>)

<do-nothing>)|MCall(<post-perm>,<grv>)

<lrv> = <grv>
(LR-SelfAddr-Flow, <lrv>)

(∃aliasEdge(<lrv>,<grv>) ( <do-nothing>

<lrv1> = <lrv1>
(LR-SelfAddr-Flow, <lrv>)

<do-nothing>

III. Statement Rules for Method Calls
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MCall([<args>])|super.MCall([<args>])|super([<args>])
MCall(Immutable, <grv>)

addReadEdge(<grv>, this_m) apply(Context-R, <grv>)

MCall([<args>])|super.MCall([<args>])|super([<args>])
MCall(Pure, <grv>)

addReadEdge(this_m, <grv>), apply(Context-RW, <grv>)

MCall([<args>])|super.MCall([<args>])|super([<args>])
MCall(Full, <grv>)

addWriteEdge(this_m, <grv>), apply(Context-R, <grv>)

MCall([<args>])|super.MCall([<args>])|super([<args>])
MCall(Share, <grv>)

addWriteEdge(this_m, <grv>) apply(Context-RW, <grv>)

MCall([<args>])|super.MCall([<args>])|super([<args>])
MCall(Unique, <grv>)

addWriteEdge(this_m, <grv>), apply(Context-N, <grv>)

MCall([<args>])|super.MCall([<args>])|super([<args>])
MCall(None, <grv>)

<do-nothing>

A.2 Modelling Object Accesses through Other Methods

As discussed previously in Section 3.2.2, the context rules model the read, write behavior
of other methods on the shared objects accessed in the current method.

I. Context Rules for the Global References
<grv>

(Context-R, <grv>)
addReadEdge(context, <grv>)

<grv>
(Context-RW, <grv>)

addReadEdge(context, <grv>), addWriteEdge(context, <grv>)

<grv>
(Context-N, <grv>)

removeReadEdge(context, <grv>), removeWriteEdge(context, <grv>)

II. Context Rules for the Local References
<lrv>

(Context-R, <grv>)
(∃aliasEdge(<lrv>, <grv>) ( apply(Context-R, <grv>))

<lrv>
(Context-RW, <grv>)

(∃aliasEdge(<lrv>, <grv>) ( apply(Context-RW, <grv>))

<lrv>
(Context-N, <grv>)

(∃aliasEdge(<lrv>, <grv>) ( apply(Context-N, <grv>))
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A.3 Access Permission Inference Rules

This section lists the access permission inference rules used to generate five types of symbolic
permissions on the objects referenced in a method, as explained previously in Section 3.2.3.

¬∃readEdge(context,<grv>) ∧ ¬∃writeEdge(context, <grv>)∃readEdge(this_m, <grv>) ∧ ∃writeEdge(this_m, <grv>)
(Unique)

unique(<grv>)

¬∃writeEdge(this_m,<grv>) ∧ ∃readEdge(<grv>,this_m) ∧ ¬∃writeEdge(context,<grv>) ∧ ∃readEdge(<grv>,context)
(Immutable)

immutable(<grv>)

∃readWriteEdge(this_m,<grv>) ∧ ¬∃writeEdge(context,<grv>) ∧ ∃readEdge(<grv>,context)
(Full)

full(<grv>)

∃writeEdge(this_m,<grv>) ∧ ∃readEdge(<grv>,this_m) ∧ ∃writeEdge(context,<grv>) ∧ ∃readEdge(<grv>, context)
(Share)

share(<grv>)

¬∃writeEdge(this_m,<grv>) ∧ ∃readEdge(<grv>,context) ∧ ∃writeEdge(context,<grv>)
(Pure)

pure(<grv>)

¬∃writeEdge(this_m,<grv>) ∧∃readEdge(<grv>,this_m) ∧¬∃writeEdge(context,<grv>) ∧¬∃readEdge(<grv>,context)
(None)

none(<grv>)



Appendix 2

Computational
Complexity Analysis of
the Permission Inference Approach

This section presents the computational complexity analysis of the permission inference
approach presented in this thesis. The inference approach consists of three main tasks: code
parsing, graph construction and graph traversal. Therefore, the computation complexity
analysis of the inference approach depends on these three tasks.

For a Java program with C number of classes and M number of methods, the com-
putation complexity (CA-Perm(M)) for the first task (code parsing) depends on the
data-flow and alias-flow analysis (DFAA(M)) of M methods, to extract the read and
write information of the referenced objects (RV ) in each method, along with the context
analysis (CA(M)) of M methods to fetch the read and write access of referenced objects
(RV ) by other methods. The computational complexity of the second phase depends
on the number of computation steps to model the extracted information in the form of
permission-based graph model forM methods. It further depends on the graph traversal
(GT (M)) phase to generate access permissions on the referenced object (RV ) forM methods.
The computation complexity of the proposed approach depends on the following parame-
ters.

M= No. of methods to be parsed
N= No. of method calls in a program
ES= No. of expression statements in a method
M= No. of methods already stored in a data structure
P= No. of parameters in a method
P= No. of parameters already stored in a data structure
RV= No. of the reference variable in a method
RV= No. of reference variable already stored in a data structure
LRV= No. of local reference variables in a method
RA= No. of aliases against each reference variable in a method
RA= No. of aliases already stored in a data structure
Arg(N)= No. of arguments in N method calls

156



157

The number of computation steps are shown below by detailing the tasks in each
phase.

CA -Perm = DFAA(M) + CA(M) + GC(M) + GT(M)

DFAA(M)=parseMethods(M)

parseMethods(M)=M ∗ parseMethod(m)

parseMethod(m) = createMethod(m) + parseMParams(m) + parseMStatements(m)

createMethod(m)=M

parseMParams(m)=P ∗(N ∗Arg(N))+P+RV)

parse-MStmts(m)=parse-RO-exprs(exp)+parse-MC-exprs(exp)+parse-ASS-exprs(exp)

parse-MStmts(m)=(ES∗(RV (

(parse-RO-exprs(exp))=(P+(RV∗RA)) ∧

(parse-MC-exprs(exp))=parseMethods(m) ∧

(parse-ASS-exprs(exp)))=
(2∗(P+(RV∗RA))) ||(P+2∗(RV∗RA)+DFAA(N)) ||
(P+2∗(RV∗RA))||(P+(RV∗RA))
=2∗(P+(RV∗RA))+DFAA(N)

DFAA(M)=M ∗(M+(P ∗((N ∗Arg(N))+P+RV))+(ES∗(RV ∗(P+(RV∗RA))+2∗(P+
(RV∗RA)))+DFAA(N)))

CA(M)=(M ∗(RV2))

GC(M)=(M ∗RV)

GT(M)=(M ∗RV)

Hence, CA -Perm = DFAA(M) + CA(M) + GC(M) + GT(M) =
M ∗ ((P ∗ (N ∗ Arg(N))) + (ES ∗ 2 ∗ (RV ∗ (RV ∗ RA))) + (RV 2)) +
DFAA(N))
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