
Bio-inspired techniques for pattern
recognition

a dissertation presented
by

Yathindu R. Hettiarachchige
to

The Faculty of Information Technology

Monash University
Melbourne, Victoria

April 2019

Supervised by:
Dr. Asad Khan

Dr. Srinivasan Bala
Dr. Muhammad A. Cheema

©2014 – Yathindu R. Hettiarachchige
all rights reserved.

Bio-inspired techniques for pattern recognition

Abstract

Intelligence as it occurs in nature demands a level of energy efficiency, speed, accu-
racy, and generalisability that current algorithms are not readily capable of emulating
independently. There are also application areas such as swarm robotics or wireless sen-
sor networks that rely upon relatively simple computational units to carry out complex
tasks. Such applications operate under similar constraints (energy efficiency, speed,
accuracy and generalisability) to biological organisms and can thus benefit from the
computational strategies employed by nature.

In biology the concept of sparse coding of sensory inputs has become popular with
strong experimental evidence to verify it. However, there appears to be two interpre-
tations of this concept in the literature. The more prominent interpretation is used in
neural networks and involves representing information with a set of functions that are
sparsely selected from a much larger set of possible functions. The other, less promi-
nent interpretation, uses large high dimensional sparse vectors to represent informa-
tion. One of the reasons the vector interpretation is less prominent is due to the diffi-
culty of encoding raw inputs into large sparse high dimensional vectors.

This thesis addresses the problems outlined above by focusing on information from
neuroscience and existing bio-inspired approaches. Particularly several approaches that
use the vector based interpretation of sparse coding (the less prominent interpretation)
were investigated. Additionally both interpretations of sparse coding were compared in
a unique bio-inspired test bed. Through these investigations 4 major contributions are
made:

First, the failure-case for a bio-inspired approach that uses sparse vector represen-
tations called Map Seeking Circuits (MSCs) was examined. Previous research and ex-
perimentation done in this thesis showed that accuracy of MSC is highly dependant
on the sparsity of the input vectors. Through the examination of this failure case four
encoding heuristics affect that accuracy where identified.

Second, a comparative study with a highly parallel bio-inspired pattern recognition
approach that uses the vector based interpretation of sparse coding and a non-bio-
inspired pattern recognition approach was carried out. This study showed that fine
grain parallelism, parallelism resulting from processing sparse vector representations,
allowed for gains in energy efficiency.

iii

Third, an extended version of a vector based sparse coding approach called Sequen-
tial Hierarchical Graph Neuron (SHGN) is presented. SHGN is based on an approach
known as Hierarchical Graph Neuron and makes performance improvements (im-
proving efficiency from O(n) to O(1)) and enables the processing of temporal informa-
tion. SHGN allows for much shorter training periods at the cost of a drop in accuracy.
Making it ideal for use cases where the data rapidly changes and frequent retraining is
necessary.

Finally, a comparison between the two interpretations of sparse coding was car-
ried out via a unique bio-inspired test bed. An extended version of an existing neural
network and the approach mentioned in the previous paragraph were used in the com-
parison. The test-bed was a tracking a swarm of simulated objects. The swarm used
a behaviour seen in prey animals as predator confusion. Predator confusion has been
shown to decrease the effectiveness of predators so it makes for a difficult computer
vision task. In this difficult task the results showed that the neural network not only
performed well but also maintained an average F1 score of 0.8 as the size of the swarm
increased.

iv

Contents

1 Introduction 1
1.1 Preamble . 1
1.2 Bio-inspired approaches . 3
1.3 Issues and Challenges in pattern recognition 4
1.4 Hypothesis . 6
1.5 Research questions . 7
1.6 Contributions . 8
1.7 Thesis Organization . 9

2 Background 11
2.1 Algorithmic approaches . 12

2.1.1 Support Vector Machines 13
2.1.2 Random Forests . 14
2.1.3 Algorithmic approaches to vision 14

2.1.3.1 Deformable Parts Model 14
2.1.3.2 Scene understanding 15
2.1.3.3 Multiple Object Tracking 16

2.1.4 Summery of algorithmic approaches 20
2.2 Pattern recognition in biology . 21

2.2.1 Sensory information . 22
2.2.1.1 Sparse Coding 23

2.2.2 Bio-inspired pattern recognition 26
2.2.2.1 Reservoir Computing 28
2.2.2.2 Deep Neural Networks 29
2.2.2.3 Sparse Distributed Memories 30
2.2.2.4 Vector Symbolic Architectures 31
2.2.2.5 Graph Neuron 32
2.2.2.6 Map Seeking Circuits 35

2.2.3 Energy Efficiency . 38
2.2.4 Summery of bio-inspired 39

2.3 Conclusions . 40

v

3 Sparse Coding 43
3.1 Introduction . 43
3.2 Map Seeking Circuits . 44

3.2.1 MSC algorithm . 46
3.3 MSC Accuracy . 51
3.4 Encoding Heuristics . 52
3.5 Tuning MSC . 58

3.5.1 Tuning MSC layers . 58
3.5.2 Encoding inputs . 63

3.5.2.1 Oriented edge encoding 63
3.6 Conclusion . 65

4 Energy efficiency via bio-inspired parallelism 67
4.1 Introduction . 67
4.2 Comparison of bio-inspired and algorithmic approaches 68

4.2.1 Speed . 69
4.2.1.1 Task and Data Parallelism 69
4.2.1.2 Multiple Target Detection 70

4.2.2 Accuracy . 73
4.2.3 Generalisability . 75

4.2.3.1 Object recognition 75
4.2.3.2 Articulated object recognition 76
4.2.3.3 Motor controls 77
4.2.3.4 High level path planning 78

4.2.4 Energy analysis . 78
4.3 Conclusions . 84

5 Exploiting temporal information for multi-object track-
ing 86
5.1 Introduction . 86
5.2 Swarms and Predator Confusion . 88
5.3 Recurrent Neural Network Tracker 89
5.4 Sequential Hierarchical Graph Neuron 91

5.4.1 One-shot Sequence Training 91
5.4.2 Improving HGN speed and memory usage 92

5.5 Experimental Results . 94
5.5.1 Data generation . 95
5.5.2 Training Data . 96

5.5.2.1 Training differences between RNN and SHGN . 96
5.5.3 Evaluation Data . 97
5.5.4 Findings . 97

vi

5.6 Conclusion . 98

6 Conclusion 104
6.1 Contributions of the research . 105
6.2 Future work . 106

References 128

vii

Listing of figures

2.1 A visualization of a hyperplane separating data points into two classes
in 2D space. The optimal hyperplane maximises the optimal margin. . 13

2.2 This is a high-level visualisation the approach described by Pauwels et al.
(2015). 20

2.3 Sub-figure (a) shows the structure of a GN network. Sub-figure (b) vi-
sualises the process of communication that enables the network to both
learn new patterns as well as recall learnt patterns. Each neuron essentially
learns the state of it’s neighbours and associates that state with a partic-
ular patten in order to learn that pattern. 34

2.4 To solve the problem of cross talk present in GN a hierarchy of GN net-
works (HGN) was introduced. 35

2.5 A simple visualisation of sparse vector superposition and the ordering
property. The green elements are non-zeros while the blue elements are
zero. Notice that: (Vi+1 + Vi) • Vk < Vi • Vk. What a dot product
would essentially do is give a measure of how much overlap there is be-
tween two pattern vectors. A superposition of vectors would have more
overlap with vectors that formed the superposition than vectors that did
not. 37

3.1 Diagram (a) visualizes the components of a typical MSC layer and their
interactions. The sequential order to view this diagram is to start with
the backward path (bin to bout) then the forward path (fin to fout). Di-
agram (b) shows the data flow of a single vector in a MSC layer, which
can be implemented to run in parallel to other 50

3.2 Four MSC layers are composed to form a visual MSC. Each layer searches
for a specific type of transformation. The input is a 2D image while the
memory is a 3D model. Since there is no inverse transformation for 3D
to 2D projection, the 3D model is projected into 2D at various azimuth
and elevation values and the resulting 2D images are used to create an az-
imuth/elevation layer that searches for the correct azimuth and elevation. 51

viii

3.3 The images shown here are made by overlaying input image with the su-
perposition produced by the backward pathway of the X and Y transla-
tion layer at several iterations of the MSC shown in Figure 3.2. The su-
perposition is highlighted in red. This particular run took 21 iterations
to converge. 53

3.4 The images shown here are made by overlaying input image with the su-
perposition (in red) produced by the backward pathway of the X and Y
translation layer at several iterations of the MSC shown in Figure 3.2. This
particular run took 18 iterations to converge but it converged to an incor-
rect solution. 54

3.5 This graph show the success rate of the ordering property when increas-
ing the number of vectors used to form the superposition. Vector with
a sparsity of 90% were used. As the number of vectors forming the su-
perposition increases, the larger the vector has to be to ensure that the or-
dering property is successful. The vector sizes vary from 4096 elements
to 50052 elements. 55

3.6 This shows the effect of decreasing the sparsity of the vectors (the percent-
age of zeros) and the number of vectors which form the superposition.
The success rate decreases dramatically as sparsity decreases and as more
vectors form the superposition. The vector size used for these tests is 50052
elements. 56

3.7 The distribution of non-zeros in (a) is such that all of the non-zero ele-
ments are distributed in 60% of the space as visualized in (c) while in (b)
the non-zero elements are distributed in 90% of the space as visualized
in (d). It is clear that the more uniformly distributed the non-zero elements
are, the more likely it’s that the Ordering Property is successful. 57

3.8 When presented with a scenario where two target objects are present a
MSC with a X and Y translation layer (like in Figure 3.2) simultaneously
detects multiple objects. Usually occurs in the first few iterations after
which the X/Y translations corresponding to objects producing lower dot
products would be eliminated. 60

3.9 These images show example fin, bout and q vectors. Notice the white dot
circled in red in (c), this dot is at (50,50); the offset that was applied to the
input image. This q vector is used as in the standard MSC to produce the
gating coefficients g. The g are used to create the superposition using FFT
as well as seen in Equation 3.7. 62

3.10 These images illustrates the process of producing oriented edges. (b) vi-
sualises the values for θ, the output of step 2. (b) is multiplied by the bi-
nary image produced at step 4 to produce the oriented edges (c). . . . 65

ix

4.1 This shows the backward superposition for the X/Y translation layer for
an input image with multiple objects. Notice that by iteration 2 the X/Y
layer is considering all objects in the scene. It would be ideal at this point
to stop the current MSC search and spawn parallel child MSC searches
corresponding to a predetermined number of the highest gi in the X/Y
translation layer. 71

4.2 The MSC backward superposition outputs for part of the dataset pro-
vided by Pauwels et al.Pauwels et al. (2013). Notice that because there is
no feedback between frames of MSC, nearby distractors often influence
the convergence. 74

4.3 The MSC backward superposition outputs for a simpler data-set. . . . 74
4.4 MSC consumes several orders of magnitude less energy than PBT. Fig-

ure 4.5 supports this result by showing that as parallelism increases, the
number of sub-processes increases and the number of instructions per
sub-process decreases. The percentage of parallel code in the two approaches
has different meanings. In (Pauwels et al., 2015) this meant the number
of pixels that were processed in parallel. In MSC it meant the number
of transformations that were processed in parallel. Either way a high level
of parallelism meant that each parallel process had less instructions to run
than lower levels of parallelism. 80

4.5 Sub-figures (a) and (b) support Figure 4.4 by showing that as parallelism
increases the number of sub-processes increases and the number of instruc-
tions per sub-process decreases. Sub-figure (c) shows that when power
is kept constant and percentage parallelism is varied MSC is slower than
PBT. 81

4.6 Due to the fine grain parallelism in bio-inspired techniques, such as MSC,
they scale better with increasing parallelism. 83

5.1 The 4-layer recurrent neural network. Layer 3 is used to transfer infor-
mation to t+1. Each cube represents a feature map. The “Input” layer
has two feature maps because the input volume is split into two channels.
A channel containing grid cells that are visible to the observer and a chan-
nel containing grid cells that are occluded to the observer. 90

5.2 The new training procedure associates the frame Sn with the frame Sn+1

creating a chain of association in its memory. 92
5.3 Several frames from the swarm simulation. It is colour coded by depth,

white is far from the camera and black in close to the camera. The swarm
converges onto a torus shape, this is documented behaviour in both sim-
ulated and natural swarms (Couzin et al., 2002). 95

x

5.4 The RNN is resistant to increasing swarm sizes but requires 200,000 train-
ing iterations over 190 sequences of data while the SHGN required just
1 training iteration over 80 sequences of data. This graph uses the Mean
Squared Error. 100

5.5 The RNN is resistant to increasing swarm sizes but requires 200,000 train-
ing iterations over 190 sequences of data while the SHGN required just
1 training iteration over 80 sequences of data. F1 for RNN and SHGN. 101

5.6 The neural network’s accuracy at different time horizons. The network
maintains an accuracy greater than 0.5 F1 for up to 2 seconds. 102

5.7 These are two frames of input and the respective output from the RNN
for a swarm size of 10,000. The probability of a cell being occupied is color
coded, bright yellow being high probability. 103

xi

List of Publications

Hettiarachchige, Y., Khan, A., & Barca, J. C. (2018). Multi-Object Tracking of
Swarms with Active Target Avoidance. In 2018 15th International Conference
on Control, Automation, Robotics and Vision (ICARCV) (pp. 1204–1209).
http://doi.org/10.1109/ICARCV.2018.8581176

Hettiarachchige, Y. R., Khan, A. I., & Barca, J. C. (2018). Improving energy
consumption of pattern recognition by combining processor-centric and bio-
inspired considerations. Biologically Inspired Cognitive Architectures, 23, 54–
63. http://doi.org/10.1016/J.BICA.2018.01.004

Hettiarachchige, Y. R. (2018) SHGN source code (Version 1.0)[Source Code].
https://bitbucket.org/yathindu_rangana/shgn

xii

Declaration

This thesis contains no material which has been accepted for the award of any other
degree or diploma at any university or equivalent institution and that, to the best of my
knowledge and belief, this thesis contains no material previously published or written
by another person, except where due reference is made in the text of the thesis.

..
Yathindu Hettiarachchige
April 16, 2019

xiii

Acknowledgments

First of all, I’d like to thank my supervisors Dr. Asad Khan, Dr. Srinivasan Bala and
Dr. Muhammad Cheema for their guidance throughout my candidature. I’d also like
to thank Dr. Jan Carlo Barca for his guidance throughout my project. I’d like to thank
my family for their love and support. And finally I’d like to thanks my office mates and
friends at the Swarm Lab for the interesting discussions and fun times.

xiv

1
Introduction

1.1 Preamble

Small insects such as honey bees have been shown to be able to recognize human faces

(Dyer et al., 2005) and even form abstract concepts (Avarguès-Weber et al., 2012, Giurfa

et al., 2001) all using their miniature brains. Even other small relatively simple creatures

such as molluscs show simple associative memory such as learning and avoiding unde-

1

sirable environments (Gelperin, 2013). Learning, recognizing and predicting patterns

are evidently vital functions in animal intelligence. Merriam-Webster defines pattern as

the natural or chance relative arrangement of parts or elements (Merriam-Webster.com,

2018). Therefore learning in the context of pattern recognition can be thought of as the

assignment of identity to relative arrangements. Recognition, the correct association

between a given arrangement and its corresponding identity. And prediction the asso-

ciation between arrangements. The act of learning in animals can be categorised into

three types (Zentall et al., 2014):

• Similarity-based where stimuli are categorised based of some physical similarity.

• Relational, where stimuli are categorised with relative to other stimuli.

• Associative, where stimuli become interchangeable with one another due to
association with other stimuli.

In computing there is a long history of taking inspirations from biology dating back

as early as the 1940s (Turing, 1950, Neumann, 1966). Entire fields of study such as ge-

netic algorithms which draw from biological evolution or emergent systems which

draw from the behaviours of groups of organisms have emerged from researchers incor-

porating ideas from biology. Broadly the term “bio-inspired” is used to describe such

approaches. However the term “bio-inspired” is imprecise in a subtle way: it fails to

capture how contributions made can feedback into the study of biology. For example

Neumann (1966) developed a self replicating machine called the universal construc-

tor in the 1940s, about 10 years before Watson & Crick (1953) discovered the molecular

structure of DNA.

2

1.2 Bio-inspired approaches

Bio-mimicry of various biological systems have become quite interesting because of

the fact that these systems operate in an energy constrained domain and appear to

be very effective in the tasks they have evolved to do. Neuromorphic computing is

being investigated by several research groups (Navaridas et al., 2013, P. Merolla et al.,

2011, Schemmel et al., 2010) with the goal of developing computing architectures that

allow brain-like computation within or less than brain-like energy constraints. Neu-

rogrid (Benjamin et al., 2014) is one such system which is able to simulate a million

neurons in real-time consuming 2.7 Watts (W). To add context, a personal computer

consumes a few hundred watts to simulate 2.5 million neurons but the brain has about

80,000 times more neurons than Neurogrid and consumes only about three times as

much power (Benjamin et al., 2014). The sensory inputs connected to the brain have

also been sources of inspiration for some researchers. Bartolozzi et al. (2011) present

an asynchronous neuromorphic vision circuit inspired by “frame-less” nature of the

mammalian vision. Instead of processing a sequence of video frames like a conven-

tional camera would, they propose using an event driven processing system. The sys-

tem responds to events such as motion, orientation and contrast. This reduces the time,

computation and energy cost of processing each frame of video.

There are application areas such as swarm robotics or wireless sensor networks that

rely upon relatively simple individuals to carry out complex tasks. In both cases energy

3

minimisation while maintaining processing speed and accuracy are important because

these devices operate on a tight energy budget. This research project focuses on how

information from neuroscience and existing bio-inspired approaches can produce ap-

proaches well suited to such applications.

1.3 Issues and Challenges in pattern recognition

Biology can also shine light on areas where current technology is lacking and where

development is needed.

Certain use cases such as robots or wireless sensor networks operate under a con-

strictive energy budget. Due to energy constraints making frequent communications

is undesirable. Therefore it is desirable to have some energy efficient pattern recogni-

tion on board to help reduce the need to communicate frequently. Of course savings

made due to energy optimizations can scale up to use cases like data centres too. Cur-

rent research into energy efficient implementations, such as neuromorphic computing,

focus on drastic changes to underlying hardware (Qiao et al., 2015). Exploring other

aspects of bio-inspired computing might yield energy efficiencies while maintaining

compatibility with contemporary hardware and software.

Part of the reason brains are energy efficient might be due to the way information is

represented (Attwell & Laughlin, 2001). In fact there are biological pressures to evolve

accurate, flexible and energy efficient representations for information. Sparse-coding

4

as an important mechanism in the sensory processing of the brain is supported by ev-

idence from a variety of experimental studies on an assortment of species (Vinje &

Gallant, 2002, DeWeese et al., 2003, Brecht & Sakmann, 2002, Perez-Orive et al., 2002).

The crux of this idea is that out of large populations of neurons only a relatively low

number of neurons would represent a particular piece of sensory information. A good

example is that of a neuron in the retina responds to any contrast while a neuron in the

cortex responds to a particular edge orientation (Olshausen & Field, 2004). This exam-

ple also demonstrates that information is represented more sparsely as it is transmitted

further down the processing chain. Experiments with neural networks in computer

vision have also showed that neural networks learn a sparse set of basis functions to

represent an input (Olshausen & Field, 2004). A different interpretation of sparse cod-

ing utilizes properties of High Dimensional Vectors and is called Sparse Distributed

Memories (SDM) (Kanerva, 1988, Gayler, 2003, Kanerva, 2014, Levy & Gayler, 2008,

Osipov et al., 2014). However SDMs are rarely used for visual pattern recognition with

only two approaches implicitly using the concept (D. W. Arathorn, 2002, Khan, 2002).

Both D. W. Arathorn (2002) & Khan (2002) present methods that increase in accu-

racy when input is encoded into sparse vectors however they do not connect their ap-

proaches with SDMs. Further study on the SDM interpretation of sparse coding is

required to better utilise approaches such as those presented by D. W. Arathorn (2002)

& Khan (2002) and enable SDMs to be applied to more practical problems.

One of the most crucial functions that animal intelligence requires is the ability to

5

store and integrate information across time and modality (Lewicki et al., 2014). Cur-

rent methods have very short memories compared to what we observe in animals. The

problem of information representation is related to this as it is evident that the repre-

sentation used by the brain does have a much greater capacity to integrate temporal

information.

An area where energy efficiency, flexible information representation and effective

use of temporal information all play an important role is swarm robotics. Swarm

robotics involves the organisation of a group of robots into a swarm much like swarms

of birds or schools of fish. Visually tracking such a swarm is a difficult task due a phe-

nomenon known as predator confusion. Swarming prey animals have evolved be-

haviours to actively confuse the sensory systems of potential predators. This scenario

makes a challenging test-bed for the bio-inspired pattern recognition systems described

in this thesis.

1.4 Hypothesis

In order to tackle the challenges outlined above, the following is used to guide the work

described in this thesis:

We believe that deriving information from neuroscience and investigating bio-inspired

approaches will enable us to produce algorithms and computational frameworks that can:

• Minimise energy usage while maintaining processing speed.

• Maintain or increase accuracy.

6

• Readily generalise to novel scenarios.

Extant literature from both biological and computer science fields support this hy-

pothesis and indicate that the three goals are achievable. The core biological evidence

that lays the foundation for this hypothesis is the idea of sparse coding mentioned ear-

lier. Using the SDM interpretation of sparse coding, highly parallel implantations are

possible. Studies such as (Bartolozzi et al., 2011) have shown how asynchronous com-

putation can be more energy efficient. There is also evidence that the brain has evolved

under an energy constraint (Attwell & Laughlin, 2001) suggesting that sparse coding

might be energy efficient.

1.5 Research questions

This thesis explores the problem space described in §1.3 with respect to the hypothesis

described above. Below are the research questions being tackled in this project:

R1 Is energy minimisation an inherent property of parallel-distributed systems?

R2 Are sparse representations of information as relevant to machines as they are in
biology?

R3 How can temporal feedback be utilised in a pattern recognition system to improve
accuracy and speed?

Tackling R1, R2 and R3 provide the foundation to build more practical pattern

recognition systems based on the principals of SDMs. To test whether this combina-

tion works, a unique biological problem was selected.

7

Recognising and tracking swarms of animals utilizing predator confusion is a chal-

lenging visual problem because the targets are actively attempting confuse the observer.

Applying learnings from R1, R2 and R3 to track a swarm not only tests research out-

puts on a difficult test-bed but also sheds some light onto whether biological confusion

tactics are effective on modern computer vision techniques:

R4 Does the predator confusion affect computer vision in the same way it does biologi-
cal predictors?

1.6 Contributions

The contributions of this thesis are as follows:

• In order to answer R1, a comparative study with a highly parallel bio-inspired
pattern recognition approach and a non-bio-inspired pattern recognition ap-
proach was carried out. This study showed that fine grain parallelism, paral-
lelism resulting from numerous small tasks, allowed for significant gains in
energy efficiency. These result are published in (Y. R. Hettiarachchige et al.,
2018).

• As part of the implementation of the bio-inspired approach mentioned above
several experiments were carried out exploring the conditions under which
sparse coding is most effective. These experiments helped develop a set of
heuristics that produce good sparse representations for the bio-inspired ap-
proach. The experiments also answer R2, the sparse representation enabled
the massive parallelism in the bio-inspired approach which in turn enabled the
previously mentioned energy efficiency (Y. R. Hettiarachchige et al., 2018).

• In order to answer R3 and R4, two 3D tracking approaches both sharing com-
mon attributes of being bio-inspired, parallelisable and utilising temporal in-
formation were developed. The key differentiator between the two approaches

8

was the method by which patterns were learnt: One was a recurrent deep neural
network while the other was a one shot learning associative memory. These two
approaches were tested on a novel testbed involving the challenging problem
of tracking a swarm of objects taking advantage of predator confusion (Y. Het-
tiarachchige et al., 2018).

1.7 Thesis Organization

Chapter 2 presents the relevant literature covering topics such as computer vision,

SDMs and Sparse Coding in depth. The advantages of bio-inspired approaches are

described and challenges to do with energy efficiency, information representation and

temporal information is highlighted.

Chapter 3 investigates the information representation in the form of sparse coding

as it is using in a bio-inspired approach called Map Seeking Circuits. This is used to

explain the results discussed in Chapter 4 and produce heuristics to improve sparse

coding schemes.

Chapter 4 presents an experimental comparison between a bio-inspired approach

and a non-bio-inspired approach (which we refer to as “algorithmic”) to computer

vision. The insights gained are used show how bio-inspired approaches lend themselves

for greater energy efficiency via the use of sparse coding.

Chapter 5 applies learnings from the previous chapters regarding parallelism, energy

efficiency and sparse coding to the difficult visual problem of tracking a swarm of an-

9

imals. Two novel bio-inspired approaches are presented and applied to this problem.

The two approaches use different interpretations of sparse coding, so this chapter also

presents a comparison between different interpretations of sparse coding.

Chapter 6 summarises the contribution of this thesis and discusses future research

that can be done in the area.

10

2
Background

This project draws considerably from the behaviour of organisms and research inves-

tigating the biological mechanisms that create such behaviour. There is a wealth of

pattern recognition approaches that either explicitly attempt to mimic biological pro-

cesses or leverage core concepts from biological processes. On the other hand there

are also many approaches that have developed equivalent functions with purely engi-

11

neering considerations. This chapter presents literature in pattern recognition broadly

categorised into two main classes: bio-inspired and algorithmic or non-bio-inspired

approaches. Within these two classes, subjects such as the encoding of sensory infor-

mation, the role of temporal information, memory, pattern learning and the recog-

nition are of special interest. §2.1 presents a broad overview of non-bio-inspired ap-

proaches will be presented first, to provide context for the need for bio-inspired ap-

proaches. From here on non-bio-inspired approaches will be referred to as algorithmic

approaches. Then in §2.2 a broad selection of relevant bio-inspired approaches will be

presented and gaps within current bio-inspired pattern recognition research will be

highlighted. Finally, §2.3 presents the conclusions of the chapter.

2.1 Algorithmic approaches

There are many approaches to pattern recognition that are not bio-inspired. These

are often designed for specific purposes and perform very well in those domains. This

section goes through a broad range of such approaches initially. Support Vector Ma-

chines and Random Forests are presented because they form the basis for many non-

bio-inspired approaches to vision. Non-bio-inspired visual pattern recognition will be

covered towards the end, these approaches will provide contrast and context for the

bio-inspired approaches that will be presented in §2.2.

12

2.1.1 Support Vector Machines

Support Vector Machines (Cortes & Vapnik, 1995) (SVMs) are a type of supervised bi-

nary classifier. The approach works by transforming input vectors non-linearly such

that they map onto a high-dimensional feature space. Then a hyperplane is constructed

such that it maximises the distance to the nearest training data point for each class (see

Figure 2.1). Due to the flexibility of the approach SVMs have been applied to a very

wide range of applications. From face detection (Osuna et al., 1997) to bio-informatics

(Byvatov & Schneider, 2003). However in situations where multiple classes are con-

cerned or where labelled training data is not available, SVMs are difficult to apply.

Optimal
hyperplane

Optimal
margin

Figure 2.1: A visualiza on of a hyperplane separa ng data points into two classes in
2D space. The op mal hyperplane maximises the op mal margin.

13

2.1.2 Random Forests

Random forests (Breiman, 2001) are a type of ensemble method. The approach gets

it’s name from using the mean output of many decision trees. The approach is useful

for use-cases where the data set is large and there are many potential features. Each

tree separates the dataset differently so the ensemble approach reduce the risk of over-

fitting to the training set. However in recent years deep neural network approaches

have produced better accuracies (see §2.2.2.2).

2.1.3 Algorithmic approaches to vision

Approaches such as random forests and SVMs are general pattern recognition ap-

proaches that have been applied to vision tasks. There are other, more niche, approaches

that build upon a myriad of other techniques to build vision systems. This subsection

presents three non-bio-inspired approaches covering three important topics in com-

puter vision: object detection, scene understanding and object tracking.

2.1.3.1 Deformable Parts Model

Deformable Parts Model (DPM), first introduced by Felzenszwalb et al. (2010), has got-

ten very good results in the PASCAL dataset. Before the surge of deep neural network

based approaches, DPM was one the best performing object detection methods. DPM

is built on the intuition that objects can be represented in a hierarchy of parts. The

14

parts location is constrained by the structure of the object. So detecting the parts in a

valid configuration would mean that it is likely that the object has been found.

This hierarchy of parts is represented in DPM by a hierarchy of Dalal-Triggs detec-

tors/filters, which use histogram of oriented gradients (HOG) to represent an object

category. In (Felzenszwalb et al., 2010) this hierarchy is called the star model. A model

at a particular scale and position within the image is given a score. This score deter-

mines if there is a recognition of a object in that scale and position.

2.1.3.2 Scene understanding

Zia et al. (2014a, 2013) present a trainable multiple object pose detector. Their publica-

tions describe its use for the detection of vehicles and they apply it to semantic scene

understanding (Zia et al., 2014b). Their technique utilises 3D computer aided design

(CAD) models as training data. Principal component analysis is applied to simplified

versions of the CAD models to produce shape models. They also use the unsimplified

cad models to train part detectors. When detecting an object, DPM is used to localise

the object in 2D after which a sliding window applies the part detectors and generate

evidence for each of the previously trained parts. Then the shape model and 3D pose

that best explain this evidence is selected by exploring the possible object geometries

and 3D poses using the shape models and random sampling.

The use of a separate step to localize an object in 2D before applying their method is

a bottleneck in terms of accuracy; any false positive or false negative affects their overall

15

accuracy. In their tests the DPM 2D localiser only detected 52% of the objects. Out of

that 52% their method detected 96% of objects and estimate the pose of the object to

less than 1m 44% of the time. These results show that the 2D recognition of object is

a limitation on accuracy. The next approach we review simultaneously localises in 2D

and 3D.

2.1.3.3 Multiple Object Tracking

Pauwel et al. introduces a bi-ocular 3D object detector and pose estimator (Pauwels et

al., 2014, 2015). Pauwels et al. (2013) present an approach, which is referred to as Phase

Based Tracker (PBT), for use in a bi-ocular vision system. The system processes the

two input images such that a stereo disparity map and a optical flow map is created.

The disparity essentially gives each pixel a depth value. Since the pixels have been as-

signed depth values the image can now be thought of as a 3D point cloud. Like Zia et

al., Pauwel et al. assume that 3D models of target objects are available. The approach

has two interesting aspects: Firstly, the use of both sparse and dense information. Sec-

ondly, the feedback of results from the previous frame of video to initialise the tracker

with an approximate transformation in the next frame of video. This use of feedback

shrinks the search space of possible poses and positions the object can take. In the fol-

lowing paragraphs we will tersely describe the PBT approach, for more in depth infor-

mation refer to (Pauwels et al., 2013) and (Pauwels et al., 2015).

The system uses several kinds of information that is computed from the input im-

16

ages from the two cameras:

• Phase-based dense motion.

• Phase-based dense stereo.

• Scale Invariant Feature Transforms (SIFT)

All three sets for information is computed using GPU accelerated algorithms. We

will briefly discuss the phase-based stereo and motion as they are specific to Pauwel et

al.’s approach unlike SIFT.

Pauwels et al. refer to stereo disparity and motion information as “dense” meaning

that this information is per pixel. Stereo disparity maps would have added depth in-

formation per pixel and optical flow maps would have added optical flow vectors per

pixel.

Computing the disparity between the images from both cameras adds depth infor-

mation to the other wise 2D representation essentially making it a 3D point cloud.

Motion information or optical flow is the apparent motion of objects in a scene

relative to the observer, this is computed by a phased-based optical flow algorithm.

This motion is represented as a vector field.

Pauwel et al. feeds back the pose estimates produced to the first step of the process,

which is extracting stereo disparity and motion information. This is done by using

OpenGL to render the objects and limiting the preprocessing to the pixels belonging

to the object. Previous frame’s pose estimate is also used as a starting pose for pose

detection.

17

The three sets of information produced by prepossessing is used in pose detection

and tracking. The algorithm essentially searches for the 3D transformations that trans-

form the model as it was posed at frame f − 1 (the previous frame) to as it is posed in

the current frame f :

m′ = Rm+ t (2.1)

wherem′ is the model’s pose at frame f ,R is the 3D rotation matrix,m is the model’s

pose at frame f − 1 and t is the 3D translation vector. So identifyingR and t is the

problem here. Both stereo disparity and optical flow is used to jointly estimate the

translation and rotation by minimising the error between the estimated pose and the

observed pose. For more information see Equations 13 - 15 in (Pauwels et al., 2015).

Pose estimation for the stereo is done via a Iterative Closest Point (ICP) algorithm.

ICP matches the point cloud created from the disparity map of the current frame with

the pose estimate produced in the previous frame.

The use of motion information or optical flow is based on the concept of Structure

from Motion (often abbreviated to SfM). As the name suggests, structure can be esti-

mated given motion information. In PBT this notion is inverted, since the 3D memory

models describe the structure of the object, motion (3D translation and rotation) is

estimated based on structure. The current pose estimate is used to render the object

into the current frame and compute what is called augmented reality (AR) flow. This

is used to create error measure that represents the distances between the expected pixel

18

motion and observed optical flow. The AR optical flow is also used to create another

error measure that is the distance between the expected pixel motion and the AR opti-

cal flow.

By using these three error functions (one for disparity, three for motion) the rota-

tion and translation that produces the least error is found. To improve accuracy when

faced with large rotations (this will cause inaccuracies in ICP) an iterative M-estimation

scheme is used to gradually remove outliers from the estimation.

There is a second component to the pose estimation. A RANSAC-based pose esti-

mator is run in parallel. This is called sparse pose detection while the pose estimation

discussed above is called dense pose detection in Pauwels et al. (2013, 2015). The sparse

detector does not use information from the previous frame and so is independent of

previous pose estimates. The pose estimates produced in the sparse and dense detec-

tors need to be compared and the most correct estimate selected. This is done based

on which of the two estimates produce the largest proportion of valid AR optical flow

when their pose estimates are fed back into the preprocessing phase.

As mentioned earlier, Pauwel et al.’s approach has very positive results. In terms of

run time, parallelism is utilised to achieve 20Hz (20 frames of video per second or 50

milliseconds per frame) utilising a dual-core Nvidea GTX 590. In terms of accuracy

it’s minimum tracking success rate for noisy and occluded settings are 97% and 57% re-

spectively. However, it should be noted that the control test, having the tracker always

predict a static object located in the centre of the image, had an minimum accuracy of

19

Preprocess left & right
images

O
ptical Flow

D
isparity

S
IFT features

SfM RANSAC-based
detector

ICP

M-estimation

Compare AR-flow & select
final pose estimate

Pose
estimatePose

estimate

 Final pose estimate

 F
in

al
 p

os
e

es
tim

at
e

Figure 2.2: This is a high-level visualisa on the approach described by Pauwels et al.
(2015).

45% in both noisy and occluded tests.

2.1.4 Summery of algorithmic approaches

An overview of pattern recognition algorithms has been discussed. Various non-bio-

inspired approaches were presented including approaches that are vision specific. Im-

portant aspects such as object detection, scene understanding, object tracking and utilis-

ing temporal information was covered.

There are also bio-inspired methods to achieve similar results. The next section will

present approaches that tackle similar problems from a biological perspective.

20

2.2 Pattern recognition in biology

Pattern learning and recognition is a problem that is tackled by all animals. Small in-

sects such as honey bees have been shown to be able to recognise human faces (Dyer

et al., 2005) and even form abstract concepts (Avarguès-Weber et al., 2012, Giurfa et al.,

2001). Dyer et al. (2005) showed that bees can discriminate between faces and by doing

so they showed that the visual and neural systems are capable of learning to recognise

patterns even if the organism has no evolutionary history for recognising that pattern.

Avarguès-Weber et al. (2012) show that bees can be trained to form two abstract con-

cepts and apply them to form rules. Giurfa et al. (2001) discuss similar results. Bees as

well as other other animals have evolved this ability to carry out scene analysis.

In a recent paper, Lewicki et al. (2014) discuss the how a variety of animals carry

out scene analysis using different senses. They discuss how the jumping spider uses it’s

vision system to hunt prey, locate mates and navigate the environment. They explain

how songbirds analyse the acoustic scene to carry out functions such as mate attraction

and territorial defence. They also review how a type of fish called the mormyrid uses

electric sense to forage for food, navigate in darkness and to communicate. Lewicki

et al. (2014) conclude their review by identifying four common principles that enable

scene analysis in complex environments:

i The ability to utilise a priori knowledge to successfully extract scene properties
from raw inputs when there is insufficient sensory data to arrive at a unique
solution.

21

ii The ability to integrate and store information across different sensory modali-
ties and time.

iii Efficient recovery and representation of 3D scene structure.

iv Motor actions that guide the acquisition of further sensory information re-
quired to achieve behavioural goals.

Notice that in many ways these principles represent problems that are being tackled

in field of pattern recognition as discussed in the previous section.

Lewicki et al. (2014) also argue that problem of recognition has been defined too

narrowly in the field of computer vision. Indeed much of the attention in computer

vision has been to develop systems capable of assigning labels to pixels. But labels do

not capture enough information to account for natural behaviour. Lewicki et al. (2014)

cite the fact that many behaviours require the organism to have knowledge of things

such as the object’s 3D pose, location and geometric shape. Lewicki et al. (2014) go on

to argue that treating recognition as a categorization problem causes the issue of repre-

sentation to go unaddressed. They make the case that recognition in animals likely uses

some representation that encodes 3D object structure in a viewpoint invariant form.

They point out that current research that uses 3D models represent the 3D models in

Euclidean space which is unlikely in nature.

2.2.1 Sensory information

Looking at nature we see a wide spectrum of different sensory inputs being utilised

to aid the survival of different animals. We see that some senses that are common in

22

nature have evolved to a wide variety of sensitivities. For example Marshall & Arikawa

(2014) compare the range of colour perceived by different species; humans being able to

perceive wavelengths ranging 400nm-700nm while stomatopods(mantis shrimp) per-

ceive wavelengths ranging 300nm-750nm. We also see senses familiar to us such as sight

used in conjunction with senses such as magnetoception, which enables the animal to

perceive magnetic fields. There is much literature investigating magnetoception used

by homing pigeons to navigate (Schmidt-Koenig & Walcott, 1978, Keeton et al., 1974,

Lednor & Walcott, 1983).

Studies focussing on a variety of sensory systems in different species has found sim-

ilarities in neural activity suggesting a common mechanism for sensory coding. This

common mechanism has been called sparse coding.

2.2.1.1 Sparse Coding

The theory of sparse coding of sensory inputs states that given a large population of

neurons, information is represented by a relatively small number of simultaneously

active neurons (Olshausen & Field, 2004). A often cited example of this is fact that

the visual cortex of the cat has neurons tuned to specific edge orientations (Hubel &

Wiesel, 1962). The inputs that stimulate such a tuned neuron is called it’s receptive field

(Olshausen & Field, 1996) in sparse coding literature. The following paragraphs will

discuss evidence for sparse coding, and discuss how sparse coding is relevant to pattern

recognition.

23

There are several reasons to believe that sparse coding plays a central role in sensory

input processing. Firstly there are numerous experimental studies showing examples

of sparse coding in a variety of sensory systems. We have already mentioned results

from Hubel & Wiesel (1962) showing sparse coding in the visual cortex of the cat. In

the auditory cortex of the rat, DeWeese et al. (2003) report highly reliable single spike

response to tones at different frequencies. Vinje & Gallant (2002) present a study fo-

cused on the visual cortex of primates. Their results show that when shown sequences

of images resembling those that occur in nature, the response is sparse over time. Sug-

gesting that sparse code also plays a role in temporal information. Additionally, their

results showed that when the same neurons were stimulated by just their receptive

fields (input that when presented in isolation stimulates the neuron) the response was

actually dense over time meaning that context actually sparsifies the response. Sparse

coding is not limited to mammals, it has also been reported in insects. A recent study

focussing on the olfactory system of fruit flies (Lin et al., 2014) demonstrated that not

only was responses sparse but that when a particular feedback loop was disrupted re-

sponse sparsity decreases and also inhibits the discrimination of similar but not dissim-

ilar odours. What this shows is that the fruit flies ability to distinguish between similar

odours is dependant on sparsity.

There are also several advantages of sparse coding which theoretically should bias

evolution to converge upon it. These properties are also advantageous to the systems

we aim to build. One of the most convincing is that sparse coding is energy efficient.

24

Sparse patterns expressed as sparse vectors have been demonstrated to be highly robust

representations for the purposes of pattern recognition (Kanerva, 1988, Olshausen &

Field, 1996). Attwell & Laughlin (2001) present a study in which they show that due

to energy constraints only 1/50th of cortical neurons could afford to be active. They

also show that sparse codings where less than 15% of neurons are simultaneously active

reduces energy consumption and allows greater computational power.

Due to both the experimental evidence and the theoretical advantages presented

above, sparse coding appears to be a plausible biological solution to represent sensory

input. The same properties that make sparse coding advantageous in biology also make

the it advantageous when applied to artificial pattern recognition.

Mathematically there appears to be two interpretations of sparse coding in the litera-

ture. The first and most prevelant is the interpretation presented by Olshausen & Field

(1996). It is based on representing an image via a sparse selection of basis functions out

of a large set of basis functions:

I(−→x) =
∑
i

aiϕi(
−→x) (2.2)

where I is a vector with the components−→x denoting a discrete spatial position in the

image. The selection of basis functions is denoted by ϕ. Olshausen & Field (1996) re-

fer to a as amplitude that needs to be computed per image. Viewing Equation 2.2 as

a weighted superposition allows this to related to another bio-inspired approach pre-

25

sented in §2.2.2.6.

The second interpretation is under-represented in the literature and was first pre-

sented by Kanerva (1988). Kanerva (1988) present sparse coding as the encoding of

information in large high dimensional binary vectors where only a few of the elements

are 1 and most are 0. This is discussed in more detail in §2.2.2.3.

2.2.2 Bio-inspired pattern recognition

Many bio-inspired approaches to pattern recognition have been based upon the sim-

plified model for biological neurons proposed by McCulloch & Pitts (1943). The Mc-

Culloch and Pitts model of neurons can have many binary inputs connected into it and

one binary output. A weighted sum of these inputs is used to determine if the neuron

fires, if the weighted sum is greater the neuron fires. These neurons can be connected

together in various configurations. For example some configurations can reproduce log-

ical functions. Such networks of neurons became known as Artificial Neural Networks

(ANN).

Hebbian theory (Hebb, 1949) has also had a great influence on the progress made in

ANNs. Hebb’s theory is:

When an axon of cellA is near enough to excite a cellB and repeatedly
or persistently takes part in firing it, some growth process or metabolic
change takes place in one or both cells such thatA’s efficiency, as one of
the cells firingB, is increased. (Hebb, 1949)

Hopfield networks (Hopfield, 1982) utilise both McCulloch and Pitt’s ANNs and

26

Hebb’s theory to create a trainable associative memory, i.e. a memory that can be ac-

cessed based on content. Hopfield networks are complete graphs with each neuron in

the network connected to every other neuron. An important deviation from the Mc-

Culloch and Pitts model is that Hopfield neurons are binary but use -1 and 1 instead of

0 and 1. It works by using a energy function such that the networks overall energy de-

creases and eventually reaches a local minimum; e.i. a result. However, as the number

of patterns committed to memory increases the accuracy of recall decreases Hopfield

(1982). This accuracy decrease is analogous to forgetting in human memories, some re-

fer to it as the “stability-plasticity dilemma” or “catastrophic forgetting” (Carpenter &

Grossberg, 2010). Recent work in ANNs have incorporated more complex models of

neurons and larger networks.

Spiking Neurons can be considered a more accurate model of a biological neuron.

Spiking neurons model the membrane potential of a biological neuron by using assign-

ing each neuron an potential (an activation level). A neurons potential at any point

in time is the sum of excitatory post-synaptic potentials (EPSPs) and inhibitory post-

synaptic potentials (IPSPs); which are caused by other connected neurons firing. When

potential is greater than a threshold, the neuron fires. This is known as “integrate-and-

fire”. The model is inherently temporal (Maass, 1997). Instead of encoding informa-

tion in the weights assigned to the inputs, information is encoded by sequences of

activations or “spikes”.

27

2.2.2.1 Reservoir Computing

Reservoir computing is a computational framework that utilises networks of randomly

and recurrently connected neurons. There are two very similar independently devel-

oped approaches to reservoir computing: Liquid State Machines (LSM) (Maass et al.,

2002) and Echo State Networks (ESL) (Jaeger & Haas, 2004). Both approaches share a

common structure. Inputs are fed into the system via a randomly connected network

of neurons called the reservoir layer. The dynamics of the reservoir layer maps the in-

put into a higher dimension. Since the two approaches are very similar we will only

discuss LSM is detail.

LSMs are an accepted model for brain-like computations (Maass et al., 2002). LSMs

offer a computational model which does not require a central “clock”, lending itself to

algorithms with high levels of parallelism. An analogy Maass et al. (2002) use to explain

the approach is puddle of water. External influences can cause perturbations with in

the puddle, which in time weaken and disappear. At any point in time the state of the

perturbed liquid encodes present and past states. The attenuation of perturbations

can be thought of as a fading memory. In LSM, inputs generate perturbations which

is used to map the desired output to the input. The anatomy of a LSM is quite simple

it is composed of five components: the input stream u(·), the output is some prede-

termined function y(·) that carries out some useful work on u(·), the liquid filterLM

that takes u(·) as input, the liquid state xM (t) at time t created by the liquid filter and

28

lastly the readout filter fM that transforms the liquid state xM (t) into y(·). The liq-

uid filter is a randomly connected network of neurons whose recurrent nature causes

the aforementioned perturbations. Unlike the liquid filter the readout filter is a popu-

lation of integrate and fire neurons which has been trained for a specific purpose. Since

many readout filters can operate on the same liquid filter and since the liquid state

enables each separate readout filter to sample the liquid at any time, LSMs are highly

asynchronous and parallel.

2.2.2.2 Deep Neural Networks

In recent years Deep Neural Networks (DNN) have become favourable. Inspired by

biological sparse coding, they attempt to reduce complexity by using hierarchical com-

positions of low level components to form high level components. The biological ana-

logue of this is the sparse-encoding discussed in previous sections. Indeed, the ability to

automatically learn a hierarchy of composable features is one of the major advantages

of DNNs.

Deep learning algorithms such as Convolutional Neural Networks (LeCun et al.,

2010) (ConvNets) have been widely adopted by the computer vision community be-

cause it has produced very good results in object recognition tasks (Krizhevsky et al.,

2012). Most of this progress has been driven by the commercial applicability of Con-

vNets and classification in general. Companies such as Google have used ConvNets to

censor faces and licence plates to protect privacy (Frome et al., 2009). The ability to

29

label images at the pixel level also has many applications and has attracted the attention

of researchers and companies interested in hardware implementations of ConvNets for

real-time uses such as robots (Farabet et al., 2011), self-driving cars and smart phones

(LeCun et al., 2010, 2015).

However DNNs remain expensive to train as they require many training iterations

over a large dataset. The need for a large training set is lessened by data augmentation

techniques (Lecun et al., 1998, Simard et al., 2003, Rebai et al., 2017) but may not be

enough in certain scenarios.

2.2.2.3 Sparse Distributed Memories

Research done on sparse coding (see §2.2.1.1) is complemented well by Kanerva’s Sparse

Distributed Memories (SDMs) (Kanerva, 1988). SDMs were developed as a mathemati-

cal model for long term memory. SDMs take advantage of statistical properties of high

dimensional (HD) binary spaces (Kanerva states that usually less than 10,000 dimen-

sions is sufficient). Each point in a HD space is addressed by a HD vector. In SDM a

piece of information is represented by a point within the binary HD space. The simi-

larity between different pieces of information is measured by their Hamming distance,

the minimum number of substitutions needed to change one binary HD vector to an-

other binary HD vector. The “sparse” in “Sparse Distributed Memories” comes from

the fact that it is assumed that the information points are distributed sparsely through-

out the space. Due to the high number of dimensions, any one point within a HD

30

space would be relatively far from other unrelated points. In fact if two points were

drawn randomly from such a space they are likely to be orthogonal. This also means

that information can be encoded into the HD vector imprecisely because accidental

overlap is unlikely. Features like imprecise information encoding an distributed rep-

resentation make SDM a biologically plausible model for memory. For example the

retina is very unlikely to receive the same inputs twice yet we are capable of identifying

specific objects.

As associative memories SDM has been shown to be able to replicate rather com-

plex behaviours exhibited by human memories such as the ability to “chain” different

concepts via related concepts (an example from (Kanerva, 1988): “apple”→ “red”→

“firetruck”) and “tip of the tongue” phenomenon described by Brogliato et al. (2014).

2.2.2.4 Vector Symbolic Architectures

A set of ideas very closely related the SDMs, that also utilise HD vectors, have been

given the umbrella term Vector Symbolic Architectures (VSAs)(Gayler, 2003, Kan-

erva, 2014, Levy & Gayler, 2008, Osipov et al., 2014). VSAs primarily aim to model

cognition, random binary HD vectors are used to represent concepts and vector op-

erations such as addition and multiplication are used to compose lower level con-

cepts into higher level concepts and form relationships between concepts. Because

all VSAs are based on vectors and operations carried out on vectors they are inher-

ently parallel. There are several different approaches to VSAs proposed. Binary Spatter

31

Codes(Kanerva, 1994), Holographic Reduced Representations(Plate, 1995) and MAP

(Multiply, Add, Permute) Coding (Gayler, 2003). The main differences between these

approaches are the values of the HD vectors and specific operations used. For example,

HRRs appear to fairly different compared to MAP and BSC because HRRs utilise real

valued vectors instead of binary vectors.

There has also been several papers proposing systems that utilise VSAs. Emruli et al.

proposes a VSA based solution to interoperability between devices in the “internet of

things” (Emruli et al., 2014). Their scheme uses BSC and SDMs to enable many differ-

ent devices to communicate via HD vectors and learn to predict state changes within

the network via an SDM. Osipov et al. (2014) propose a distributed associative memory

named Holographic Graph Neuron (Holo-GN), an improvement to an existing dis-

tributed scheme called Hierarchical Graph Neuron(HGN) (Nasution & Khan, 2008).

Holo-GN uses concepts from VSAs to lower the number of required computational

nodes in HGN. Due to the fact that VSAs and SDMs rely on vectors and vector oper-

ations, they are very suitable for distributed systems such as wireless sensor networks,

swarm robotics or the internet of things.

2.2.2.5 Graph Neuron

Graph Neuron (GN) is a distributed approach to associative memory and pattern

recognition (Khan, 2002). A GN network is composed of simple neurons which ac-

tivate in a binary fashion when input is received. Figure 2.3(a) visualises the network

32

and the way the neurons communicate to learn and recall patterns. The number of

rows in an GN network is equal to the number of possible values per position and that

the number of columns is equal to the pattern size. When a stimulus is received, for

example the pattern Y XY Y , each value of the pattern is sent to their corresponding

neuron column. Each neuron checks whether the incoming value is the same as their

value; if it is the neuron becomes activated, if not it remains in it’s idle state. Next, all

the activated GNs would send their row indices to each adjacent GN. Figure 2.3(b)

shows this process. By the end of the last step each neuron would have received the row

indices of it’s activated neighbours. These would be stored in a data structure known

as the bias array (Khan, 2002, Nasution & Khan, 2008). Each element in the bias array

contains the row indices of adjacent neurons activated in a particular pattern. Figure

2.3(c) shows an example of the bias array entries created when the network encoun-

ters the Y XY Y pattern for th first time. Note that if the same pattern is encountered

again no new bias array entries are required. This process is called collaborative compar-

ison learning(Muhamad Amin & Khan, 2009).

However the simple GN network presented above suffered from cross-talk between

stored patterns and new incoming patterns. Cross-talk is when GN reaches the con-

clusion that it had encountered the pattern before when in fact it had not. The cross-

talk problem arose because each neuron would only “know” about the states of it’s

immediate neighbours; therefore to solve the problem neurons would need way to

become aware of the state of more neurons. This is what the Hierarchical Graph Neu-

33

(a) Basic structure

(b) Communica on

(c) Bias array

Figure 2.3: Sub-figure (a) shows the structure of a GN network. Sub-figure (b) visu-
alises the process of communica on that enables the network to both learn new
pa erns as well as recall learnt pa erns. Each neuron essen ally learns the state
of it’s neighbours and associates that state with a par cular pa en in order to learn
that pa ern.

34

ron (HGN) (Nasution & Khan, 2008) does. HGN is composed of several simple GN

networks connected in hierarchical layers. This way each layer has knowledge of the

previous layer’s state. This is visualised in Figure 2.4.

Figure 2.4: To solve the problem of cross talk present in GN a hierarchy of GN net-
works (HGN) was introduced.

Although HGN solved the cross talk problem, it hierarchical structure had several

problems. Firstly, as input size increases the number of neurons required increases

exponentially. Secondly, information storage is no longer completely distributed. The

top layer of neurons would store all encounter patterns. Finally, if implemented in

a WSN or swarm of robots it would not be able to take advantage of all individual

devices in a swarm or WSN. To overcome these problems concepts from VSAs were

used recently to overcome these problems. The Holographic GN (Osipov et al., 2014)

enables the a flat GN network to have recall accuracy of HGN with out the hierarchy

of neurons.

2.2.2.6 Map Seeking Circuits

Map Seeking Circuit (MSC)(D. W. Arathorn, 2002) is a bio-inspired approach to solve

a broad range of problems that occur in nature called “transformation discovery prob-

35

lems”. Important problems that animals need to solve can be viewed as transforma-

tion discovery problems such as limb inverse kinematics, path planning and vision

(D. W. Arathorn, 2004). Looking at vision as an instance of a transformation discov-

ery problem, the animal has 3D representations of objects in it’s memory that when

transformed by a certain sequence of transformations closely matches some object in

the 2D projection of the world that the animal’s eyes perceive. Notice how recognition,

3D pose and position estimation are all solved at once. The concept of transformation

discovery can be abstracted to the search of correct mappings. Geometrical transforma-

tions are a type of mapping.

However seeking correct mappings is an expensive task; the number of possible

mappings is often huge (conceder the visual recognition and localisation of a object).

MSC tackles this problem by encoding inputs, memories and possible mappings as

large sparse vectors (like SDM or VSA) and exploiting a property of such vectors called

the ordering property of superpositions. The Ordering Property of Superpositions (or

simply the ordering property) states that for a superposition s =
n∑

i=1

vi formed by the

sum of sparse vectors vi ∈ V and another set of sparse vectors vk /∈ V , vi • s >

vk • s. Intuitively, this can be shown as in Figure 2.5. Because the vectors are sparse,

it is very unlikely that non-zero elements from several vectors will occupy the same

position within the vector. So when the dot product of vi and s is calculated, non-

zero elements in vi are guaranteed to multiply into corresponding non-zero elements

in s. Any mismatched elements will simply be ignored as they would get multiplied

36

into zero elements in either s or vi. If vi is not sufficiently sparse or vi is too numerous

with respect to the size of s then the ordering property may not hold. This is called

collusion and will be discussed later.

Figure 2.5: A simple visualisa on of sparse vector superposi on and the ordering
property. The green elements are non-zeros while the blue elements are zero. No ce
that: (Vi+1 + Vi) • Vk < Vi • Vk . What a dot product would essen ally do is give a
measure of how much overlap there is between two pa ern vectors. A superposi on
of vectors would have more overlap with vectors that formed the superposi on than
vectors that did not.

The ordering property is used along with competition between individual mappings

to allow MSC to search the space of possible mappings efficiently.

MSC has been applied to rigid object recognition(Overman & Hart, 2012, Mur-

phy et al., 2013), articulated object recognition(Arathorn, 2015), robot limb control

(Arathorn, 2015), path planning and navigation (Snider & Arathorn, 2006, D. W. Arathorn,

2004), and even solving the Rubik’s cube puzzle (Harker et al., 2007). There is also a

proposed neuromorphic implementation (D. W. Arathorn, 2002).

37

2.2.3 Energy Efficiency

Energy efficient computation has received considerable attention in recent years due to

the widespread use of mobile devices. Other applications such an robotics also require

high performance yet low energy computation.

Bio-mimicry of various biological systems has become quite interesting due to the

fact that these systems operate in a energy constrained domain. Neuromorphic com-

puting is being investigated by several research groups (Navaridas et al., 2013, P. Merolla

et al., 2011, Schemmel et al., 2010, Qiao et al., 2015) with the goal of developing comput-

ing architectures that allow brain-like computations within brain-like energy budget.

Neurogrid (Benjamin et al., 2014) is one such system which is able to simulate 983 040

neurons in real-time consuming 2.7 W. In this context, a personal computer requires

hundreds of watts to simulate 2.5 million neurons. A human brain has at least 80,000

times more neurons than Neurogrid and consumes only three times as much power.

Neuromorphic computing focuses on the development of analogue circuits that incor-

porate neurological architectures to perform computations. A recent paper, Qiao et

al. (2015), present a neuromorphic system capable of simulating 256 neurons operating

approximately on 4mW. Another good example of specialized hardware for vendor

specific neural networks such as the Tensor Processing Unit (Jouppi et al., 2017) which

achieved both energy efficiency (about 30X - 80X more effiecient than contemporary

GPUs and CPUs) and performance gains (about 15X - 30X faster). Algorithmic ap-

38

proaches to reduce the amount of computation is also a viable strategy to reduce energy

usage as shown by Jiao et al. (2018) who use a kind of dynamic programming approach

to avoid repeated computations for similar inputs when training neural networks. This

strategy resulted in 47.5% energy saving while only costing a 1% accuracy drop.

However, neuromorphic computing would require an overhaul of current software

engineering infrastructure. Applications such as robotics require both bio-inspired and

algorithmic approaches to carry out all the functions required of them. Energy opti-

misation with conventional Von Neumann architectures has also been pushed by the

prevalence of mobile devices. Studies at Intel (Grochowski & Annavaram, 2006, Shao

& Brooks, 2013) showed that in terms of energy per instruction (EPI), using multi-core

processors running at lower frequencies delivers high performance at an EPI that is

approximately four times lower than an equally performing single core processor. Mas-

sive parallelism with low frequency processors might be a compromise between energy

efficiency and staying compatible with existing software engineering infrastructure.

2.2.4 Summery of bio-inspired

In this section, pattern recognition with bio-inspired perspective was discussed. Sparse

coding was highlighted showing it’s prevalence in biology as well as the pattern recogni-

tion approaches that utilise mathematical interpretations of sparse coding to learn and

store patterns. Table 2.1 summarises the approaches discussed in §2.2.2. Additionally

the energy efficient properties of bio-inspired approaches were discussed.

39

Approach Key Points
Reservoir Computing Specialized hardware is required to exploit the

parallel nature of spiking neurons.
The reservoir layer is not trained, allowing for
quicker training.

Deep Neural Networks High accuracy across a number of domains.
Requires a large training corpus.

Sparse Distributed Mem-
ories & Vector Symbolic
Architectures

Easy to develop parallel implementations due to
the use of vectors.
Effective encoding schemes for images are difficult
to develop.

Graph Neuron Only requires a small training corpus.
Low generalisation ability.

Map Seeking Circuit Easily interpretable and fast.
Accuracy is dependant on input encodings.

Table 2.1: The key points from §2.2.2

2.3 Conclusions

This chapter reviewed the literature in the two main areas that comprise our project:

biology and pattern recognition. Throughout §2.2 the topic of sparse coding was re-

visited multiple times. The high dimensional vector based interpretation of sparse

coding lends itself to highly parallel implementations such as MSC (§2.2.2.6) and GN

(see §2.2.2.5). High parallel implementations may lead to energy efficiencies (See §2.2.3).

From this, the first research question arises:

R1 Is energy minimisation an inherent property of parallel-distributed systems?

If sparse coding enables this parallelism, it is important to ensure that the vector

based interpretation of sparse coding can be applied to practical problems because

40

approaches such as SDM (§2.2.2.3) and VSA (§2.2.2.4) are not applied to practical prob-

lems like computer vision. This is tackled by the second research question:

R2 Are sparse representations of information as relevant to machines as they are in
biology?

As disccused in both §2.1 and §2.2 temporal information forms an important compo-

nent of pattern recognition. The first of the principles of biological scene analysis listed

by Lewicki et al. (2014) in §2.2 is the “ability to utilise a priori knowledge to successfully

extract scene properties from raw inputs when there is insufficient sensory data to ar-

rive at a unique solution”. How a sparse vector based approach can utilise temporal

information is explored by the third research question:

R3 How can temporal feedback be utilised in a pattern recognition system to improve
accuracy and speed?

This chapter also discussed several use cases researchers have been using to test vari-

ous pattern recognition approaches. The most challenging of these include detecting

multiple objects such as Zia et al. (2014b) in §2.1.3.2, Pauwels et al. (2015) in §2.1.3.3 or

Murphy et al. (2013) in §2.2.2.6. However looking at natural predictor prey interactions

we observe a much more challenging test scenario: groups of prey actively attempting

to confuse the predator via their movements. This is known at predator confusion and

swarming animals often display it (Milinski & Heller, 1978, Jeschke & Tollrian, 2007).

The final research question applies computer vision to the difficult problem of preda-

tor confusion:

41

R4 Does the predator confusion affect computer vision in the same way it does biologi-
cal predictors?

The next chapter further explains the Map Seeking Circuit algorithm that intro-

duced in §2.2.2.6 and how sparse encodings affect it’s accuracy. This goes towards

42

3
Sparse Coding

3.1 Introduction

Sparse coding as a biologically plausible method to represent information was discussed

in §2.2.1.1 and §2.2.2.3. Those two sections present two different interpretations of

sparse coding. The first was introduced by Olshausen & Field (2004) and uses a sparse

set of basis functions to represent information (see §2.2.1.1). The second was intro-

43

duced by Kanerva (1988) and uses high dimensional sparse vectors instead (see §2.2.2.3).

In particular §2.2.2.3 discussed the second interpretation and listed a number of ap-

proaches that use large sparse vectors. One of the approaches listed was Map Seeking

Circuits (MSC) (D. W. Arathorn, 2002). This chapter investigates sparse codings via

MSC, examines it’s performance and produces a set of heuristics that improve sparse

encoding. Additionally this chapter lays the foundation for Chapter 4 which examines

energy efficiency in highly parallel algorithms such as MSC.

3.2 Map Seeking Circuits

Map Seeking Circuits (MSC) (D. W. Arathorn, 2002) have been briefly discussed in

§2.2.2.6. This chapter will examine MSC in detail, particularly how it relates to sparse

coding.

As touched on in §2.2, Lewicki et al. (2014) present four common principles that

enable scene analysis of complex environments in animals:

i The ability to utilise a priori knowledge to successfully extract scene properties
from raw inputs when there is insufficient sensory data to arrive at a unique
solution.

ii The ability to integrate and store information across different sensory modali-
ties and time.

iii Efficient recovery and representation of 3D scene structure.

iv Motor actions that guide the acquisition of further sensory information re-
quired to achieve behavioural goals.

44

Lewicki et al. (2014) argues that problem of recognition has been defined too nar-

rowly in the field of computer vision. For example, object recognition is seen primarily

as mapping labels to pixels. In animals this insufficient information to drive behaviour.

Animal behaviours require additional information such as object’s 3D location, the

object’s context within the scene, it’s geometric structure and properties needed to in-

teract with the object. Lewicki et al. (2014) also point out how looking at recognition

as a labelling or categorization problem means the problem of representation does not

get tackled. Recent computer vision work (including the work presented in §5) uses 3D

scanners to construct point cloud representations. However, biological representations

are unlikely to use 3D point cloud representations. Sparse coding does offer a biolog-

ically plausible answer to the representation problem. The interpretation of sparse

coding presented by Olshausen & Field (2004) has been applied to vision (Wright et al.,

2010). However, the interpretation offered by Kanerva (1988) has not been applied to

vision. An approach that implicitly uses the Kanerva interpretation of sparse encoding

is Map Seeking Circuits.

Map Seeking Circuits (MSC) (D. W. Arathorn, 2002) addresses some of the prob-

lems Lewicki et al. had pointed out. MSCs solve a broad range of problems that occur

in nature called “transformation discovery problems”. Many problems that animals

need to solve such as limb inverse kinematics, path planning and vision (D. W. Arathorn,

2004) can be viewed as transformation discovery problems. Looking at vision as an in-

stance of a transformation discovery problem, the animal has 3D representations of

45

objects in it’s memory that when transformed by a certain sequence of transformations

closely matches some object in the 2D projection of the world that the animal’s eyes

perceive. By discovering the transformations required to map the 3D representation in

memeory to the 2D projection from the eyes, recognition, 3D pose and position estima-

tion are all solved at once. Furthermore, the concept of transformation discovery can

be abstracted to the search of correct mappings. Geometrical transformations being

one type of mapping.

One of the criticisms Lewicki et al. (2014) had was regarding representations. MSC

is built around the properties of sparse vectors like SDM and VSA, which makes it

biologically plausible. However in all current available work on MSC, information is

encoded in an euclidean form and uses transformations that operate in Euclidean space

so the representation problem remains partially unsolved.

3.2.1 MSC algorithm

Assuming an input pattern v and memory patternw the goal is to find the sequence of

mappings t ∈ T (T are the possible mappings) that map v ontow andw onto v. The

quality of a mapping is given by a correspondence functionC(t) = ⟨t(v), w⟩ (we use

the ⟨, ⟩ operator to denote inner product). Transformation discovery can be formally

defined as:

arg min
t

C (3.1)

46

In most problems T can be intractably large. MSC makes this computation tractable

by encoding inputs, memories and possible mappings as large sparse vectors (like

SDMs and VSAs) and exploiting a property of such vectors called the Ordering Prop-

erty of Superpositions (or simply the ordering property). The ordering property states

that for a superposition s =

n∑
i=1

vi formed by the sum of sparse vectors vi ∈ V and

another set of sparse vectors vk /∈ V , vi · s > vk · s. Because the vectors are sparse, it

is very unlikely that non-zero elements from several vectors will occupy the same posi-

tion within the vector. When vi · s is calculated, non-zero elements in vi multiply into

corresponding non-zero elements in s. Any mismatched elements will get multiplied

into zero elements in either s or vi (this is visualised in Figure 2.5). However, if vi is

not sufficiently sparse or the size of V is too large with respect to the size of s then the

ordering property may not hold. This is called collusion in MSC literature and will be

discussed later in §3.3. Revisiting Equation 3.1 we can see that the correspondence func-

tionC is a dot product. The dot product is most commonly used asC (D. Arathorn,

2001, D. W. Arathorn, 2002, Murphy et al., 2009, Martin et al., 2009) however dot

products are not the onlyC possible, for example in a binary space Hamming distance

would serve as an alternative.

The ordering property is used along with competition between individual mappings

to allow MSC to search the space of possible mappings efficiently. The superposition is

47

created by a weighted sum of the individual mappings:

s =

|T |∑
i=1

ti(v)× gi (3.2)

where s is a superposition, v is an input vector, T is a set of mappings, and gi ∈ g,

where g is a set of coefficients ranging from 0 to 1. The coefficients gi represent the

level of match between ti(v) and some stored memory vectorw. The level of match is

calculated by a dot product:

qi = ti(v) · w (3.3)

where qi ∈ q, where q is a set of dot products of ti(v) andw. The dot products can be

used in a competition function for the coefficients gi:

gi =

max(0, gi − k(1− qi

max(q)
)) , gi ≥ θ ∧ qi ≥ ξ

0 , gi < θ ∧ qi < ξ

(3.4)

where coefficient k controls the aggressiveness of the competition function, θ is the

lower threshold of gi, and ξ is the lower threshold for qi.

Equations 3.2, 3.3, and 3.4 are applied iteratively until only one coefficient gi > 0.

This remaining gi corresponds to the mapping ti that maps input vector v to stored

memory vectorw.

MSC implementations organize mappings into several layers such that a sequence of

48

mappings from input to stored memory is found and vice versa. For example, Figure

3.2 shows block diagram of a MSC for visual object detection. The mappings in this

case are geometric transformations. The possible transformations have been decom-

posed into four types of transformation, each with it’s own layer: X/Y translation, 2D

rotation, 2D scaling and 3D azimuth and elevation. Figure 3.1a visualizes a MSC layer.

Each layer is connected to the next layer via two reciprocal pathways; a backward path

and a forward path. The forward pathway searches for sequence of mappings T that

maps the input v to the stored memoryw while the backward path searches for the

inverse mappings T −1 which mapsw to v. Communication within the pathways is

done via the superpositions (Equation 3.2). Each layer l has a backward input superpo-

sition blin, a backward output superposition blout, and corresponding pair of forward

superpositions f l
in and f l

out. The layers are connected sequentially so blin = bl−1
out and

f l
in = f l+1

out . In terms of Equation 3.3, v = f l
in andw = blin. Figure 3.1a also visual-

izes, at a high level, the parallelism of MSC. Each line can be run in parallel to the other

lines. All the data flow lines, except those flowing fromEq 3.2 to g, actually represent

vectors. There is fine grain parallelism embedded within the data flow due to the use of

vectors. Each data flow line can have its own parallel data flow as shown by Figure 3.1b.

Figure 3.1b shows that the expensive operations such as dot products and Equation 3.4

can be done in parallel. Also note that all the operations can be parallelized themselves

at the per vector element/pixel level.

49

Backward path

fin

fout bin

bout

The weights gi
to gn

Equations 3.3
& 3.4

Transformations
ti to tn

Inverse
Transformations
t -1i to t -1n

Forward path

Weighted sum
via Equation 3.2

(a)

ti

fin

gi

qi

fout

bin

Other t

Eq. 3.3 max(q)

Eq. 3.4 Eq. 3.2

(b)

Figure 3.1: Diagram (a) visualizes the components of a typical MSC layer and their
interac ons. The sequen al order to view this diagram is to start with the backward
path (bin to bout) then the forward path (fin to fout). Diagram (b) shows the data
flow of a single vector in a MSC layer, which can be implemented to run in parallel to
other .

50

X and Y Translation In-plane 2D rotation In-plane 2D scaling 3D azimuth and
elevation

Forward pathway

Backward pathway

Input image
3D model
memory

Figure 3.2: Four MSC layers are composed to form a visual MSC. Each layer searches
for a specific type of transforma on. The input is a 2D image while the memory is a
3D model. Since there is no inverse transforma on for 3D to 2D projec on, the 3D
model is projected into 2D at various azimuth and eleva on values and the result-
ing 2D images are used to create an azimuth/eleva on layer that searches for the
correct azimuth and eleva on.

3.3 MSC Accuracy

The previous section discussed the ordering property of superpositions, how it is ex-

ploited in MSC and touched on the failure case known as collusion. To reiterate from

the previous section, collusion occurs when vectors in a superposition produce dot

products that are too similar and cause the algorithm to converge to incorrect map-

pings. Assuming the following:

• superposition s formed from a set of vectors V

• a vector a ∈ V which can be considered a correct mapping.

• a vector b /∈ V which can be considered an incorrect mapping.

Collusion occurs when:

a · s < b · s (3.5)

When the above is true the MSC algorithm will converge into the incorrect mappings.

51

Figure 3.3 illustrates a successful convergence of the MSC described in Figure 3.2

and Figure 3.4 shows the opposite, an incorrect convergence. Both examples show how

initially the superposition is composed of a wide range of possible locations and orien-

tations for the mug. Between iterations 1 and 3 the majority of potential mappings are

eliminated. This can be seen by the red overlay being localised to around the mug and

the monkey in both Figure 3.3 and Figure 3.4. Iteration 3 is when the two examples di-

verge. In Figure 3.3 the mappings positioning the mug over the monkey are eliminated

after iteration 10 and the correct position and orientation of the mug is found even-

tually. In the incorrect case (Figure 3.4) by iteration 5 the mappings positioning the

mug over the mug in the input image has been eliminated ensuring that the eventual

convergence would be incorrect. This inaccuracy is caused by collusion.

3.4 Encoding Heuristics

The previous section defined collusion. This section will explore the factors that make

collusion more likely and identify heuristics to avoid collusion.

The ordering property requires sparse vectors therefore controlling the sparseness of

the superpositions (bin, bout, fin and fout in Figure 3.1) as the MSC converges is crucial.

However, it is also a trade off between speed and accuracy. The sparsity of a vector is

the percentage of zeros in the vector. The sparseness of superpositions is influenced by

two things. The number of transformations/mappings in each layer and the encoding

52

(a) Input image (b) Itera on 1

(c) Itera on 3 (d) Itera on 8

(e) Itera on 10 (f) Itera on 21

Figure 3.3: The images shown here are made by overlaying input image with the
superposi on produced by the backward pathway of the X and Y transla on layer at
several itera ons of the MSC shown in Figure 3.2. The superposi on is highlighted in
red. This par cular run took 21 itera ons to converge.

of the input and memory patterns. If the required level of sparseness is not met, the

ordering property is likely to fail.

When collusion occurs a false transformation produces a dot product that is greater

than the correct transformation. A superposition with low sparsity makes collusion

more likely because a it is likely to falsely produce a high dot product with other vectors

presented to it. Some simple tests were carried out with sparse vectors to help explore

53

(a) Input image (b) Itera on 1

(c) Itera on 3 (d) Itera on 5

(e) Itera on 8 (f) Itera on 18

Figure 3.4: The images shown here are made by overlaying input image with the
superposi on (in red) produced by the backward pathway of the X and Y transla on
layer at several itera ons of the MSC shown in Figure 3.2. This par cular run took
18 itera ons to converge but it converged to an incorrect solu on.

the requirements in terms of vector size, vector sparsity and the number of vectors

participating in a superposition for the ordering property to remain true. The tests

consisted of randomly generating a number of vectors with specific size and sparsity.

The set of vectors is portioned into a set that will form the superposition (setA) and

a set that will not form the superposition (setB). After the superposition has been

created, dot products between the each vector in both sets and the superposition is

54

calculated. The percentage of dot products between the setA and the superposition

that yield values greater than any dot product between setB and the superposition is

the success rate of the ordering property. The results of this experiment is shown in

Figures 3.5 and 3.6.

Figure 3.5: This graph show the success rate of the ordering property when increas-
ing the number of vectors used to form the superposi on. Vector with a sparsity of
90% were used. As the number of vectors forming the superposi on increases, the
larger the vector has to be to ensure that the ordering property is successful. The
vector sizes vary from 4096 elements to 50052 elements.

The distribution of 1s and 0s within vectors also have an effect on the success of

the ordering property. The vectors used in our test were generated randomly and the

non-zero elements present within the vectors are uniformly distributed. This is ideal

55

Figure 3.6: This shows the effect of decreasing the sparsity of the vectors (the per-
centage of zeros) and the number of vectors which form the superposi on. The suc-
cess rate decreases drama cally as sparsity decreases and as more vectors form the
superposi on. The vector size used for these tests is 50052 elements.

and much like the random vectors involved in VSAs. However it is clear that natural

input images will not have non-zero elements uniformly distributed. Further tests that

showed that ideally the sparse vector should be uniformly distributed (Figure 3.7).

From the above results four heuristics to follow when selecting sparse encodings can

be derived:

• A high number of vectors in the superposition.

• A high cardinality of the vectors.

• A high sparsity of the vectors.

56

(a) (b)

(c) (d)

Figure 3.7: The distribu on of non-zeros in (a) is such that all of the non-zero ele-
ments are distributed in 60% of the space as visualized in (c) while in (b) the non-zero
elements are distributed in 90% of the space as visualized in (d). It is clear that the
more uniformly distributed the non-zero elements are, the more likely it’s that the
Ordering Property is successful.

• Distribution of non-zeros in the vectors should be closer to uniform.

However creating an encoding that maximises all four factors is difficult due to the

need to have coherent transformations and the nature of the input data. The next

section presents ways to tune the MSC along side the above encoding heuristics.

57

3.5 Tuning MSC

The previous section produced useful information on how to ensure that the ordering

property holds. There are many ways to tune MSC and the previous section’s results

can guide the tuning process. There are several aspects of MSC that can be tuned:

• Which types of layers are present.

• What mappings are in each layer.

• What the values for k and θ (see Equation 3.4) for each layer are. These two
variables are well explored in (Gedeon & Arathorn, 2007).

• How to best encode inputs.

This section will describe the above tunable aspects of MSC in detail.

3.5.1 Tuning MSC layers

Before individual MSC layers can be tuned, the correct layers need to be selected for

the task. For example for the task of detecting and locating a 3D object four layers are

needed:

i 3D azimuth and elevation layer - Has a rendered 2D images of the object at a
selection of different azimuth and elevation values.

ii In-plane 2D scaling layer - Has a selection of 2D scaling transformations.

iii In-plane 2D rotation layer - Has a selection of rotation transformations.

iv X and Y translation layer - Has a selection of translations along both X and Y.

58

The order of the layers is important because transformations are uncommunicative.

By placing the scaling and rotation layers before the translation layer, the superposi-

tion bin in the translation layer contains all the different rotations and scaling. This

enables the translation layer to search for the correct translation while the layers search

for other transforms. The order of layers in the list above is from the perspective of

the backward pathway (see Figure 3.1), the pathway that transform memory patterns

to the input pattern. The order would be reversed for the backward pathway as the

transforms would be inversed.

It is also possible to swap out some layers for other types of layers. The transforma-

tion layer for example can be split into two separate layers: X translation and Y trans-

lation. The major reason to add separate layers is to lower the number of mappings

in a layer because (as shown by the results presented in §3.4) fewer mappings increase

the chances of the ordering property holding. However, separating X/Y translation

layers means that the X/Y translation is not simultaneously converged upon. When a

layer that contains both X and Y translations converges onto a correct mapping it ac-

tually detects other similar objects in the scene simultaneously. Figure 3.8 shows such a

scenario. The advantage of this is that multiple objects can be detected in parallel.

Another type of translation layer uses fast Fourier transforms (FFT)(Arathorn,

2018). Standard MSC translation layer has a number of transformations translating

the input image along X and Y axis. For example, create a MSC translation layer that

searches from 120px to -120px along the X axis and 100px to -100px along the Y axis.

59

(a) Input image (b) Itera on 1

(c) Itera on 2 (d) Itera on 3

(e) Itera on 5

Figure 3.8: When presented with a scenario where two target objects are present a
MSC with a X and Y transla on layer (like in Figure 3.2) simultaneously detects mul -
ple objects. Usually occurs in the first few itera ons a er which the X/Y transla ons
corresponding to objects producing lower dot products would be eliminated.

60

This range of translations has to be discrete. So 5px increments can be used to discretise

the range of transformations. The smaller the increment the more transformation the

layer would have. It may seem that having a 1px increment would be perfect because all

transformations possible within the range can be considered. However there are two

disadvantages to doing so:

i The number of transformations required is very high. As these transformations
are applied to each black pixel in the input image this slows down the MSC.

ii As the number of mappings in the layer would be very high, the ordering prop-
erty has a high likelihood of failing (see §3.4).

The standard MSC translation layer can be modified to use FFT instead of having

to compute many transformations. FFT is used in two places in the MSC layer. To

calculate the dot product (q, see Equation 3.6) for each transformation and to create the

superpositions of those transformations (see Equation 3.7).

q = ifft(fft(fin)× fft(bout)) (3.6)

fout = ifft(fft(fout)× fft(g)) (3.7)

Using FFT to calculate q means that all the former dot product values can be cal-

culated without having to do a large number of 2D translations. Figure 3.9 intuitively

illustrates the how Equation 3.6 is applied to produce q.

61

(a)Original image (b) Image translated by 50,50

(c) The result of Equa on 3.6

Figure 3.9: These images show example fin, bout and q vectors. No ce the white
dot circled in red in (c), this dot is at (50,50); the offset that was applied to the input
image. This q vector is used as in the standard MSC to produce the ga ng coeffi-
cients g. The g are used to create the superposi on using FFT as well as seen in
Equa on 3.7.

62

3.5.2 Encoding inputs

While MSC layers can be tuned, it is also necessary to pay attention to how to encode

input patterns. This is a very difficult task because while maintaining the vector size,

sparsity and number of vectors it is also necessary that the encoding supports mean-

ingful transformations. So far the examples presented use an edge detection filter to

produce an encoding that is both sparse and preserves the spatial information. How-

ever when using MSC layers with a high number of transformation such as the FFT

based translation layer described above further thought on encoding is required.

Murphy et al. (2009) use MSC for vehicle detection in synthetic aperture radar im-

agery mention using oriented edges however they do not describe how those oriented

edges are computed. To elaborate, each pixel is associated with one of four orientations.

Each orientation put in it’s own channel much like RGB colour channels in images.

Each channel can be thought of as a vector and since each channel is processed sepa-

rately the vector superpositions are sparser.

Since Murphy et al. (2009) did not describe how they computed edge orientations, a

method based of the Canny filter (Canny, 1986) was developed.

3.5.2.1 Oriented edge encoding

The Canny edge detector can be modified to output oriented edges. There are four

steps in the Canny edge detector:

63

i Smoothing – blurring the image to remove noise

ii Calculating gradients – pixels on edges have large magnitudes

iii Non-maximum suppression – Only local maximums are edges

iv Edge tracking by hysteresis - Final edges are determined by suppressing all edges
that are not connected to a very certain (strong) edge

It is step 2 that is relevant because the gradient directions are calculated there. Two

sobel filters, one for each axis, is used to produce two filtered images. Equation 3.8 is

how Canny calculates the gradient direction at any pixel location.

θ = arctan

(
|Gy|
|Gx|

)
(3.8)

Gy andGx are the values produced by the two Sobel filters at a pixel. To calculate

θ, the magnitude of the two gradients at a particular pixel are treated like the opposite

and adjacent sides of a triangle and θ is the angle between them.

In step 3 the θ values are rounded to the nearest 45◦ and used to select the pixels to

compare for non-maximum suppression. The output of step 4 is a binary image where

the edge pixels are 1. By step 4 all the information needed to create an oriented edge

map is present. By multiplying θ and the binary image produces the gradient directions

for the edge pixels and nothing else. Figure 3.10 visualises this process.

64

(a)Original image (b) θ

(c) End result

Figure 3.10: These images illustrates the process of producing oriented edges. (b)
visualises the values for θ, the output of step 2. (b) is mul plied by the binary image
produced at step 4 to produce the oriented edges (c).

3.6 Conclusion

This chapter described the Map Seeking Circuit algorithm in detail. In §3.3 the failure

case known as collusion and how it depends on the success of the ordering property

was discussed. Exploring this failure case further, the experimental results presented in

§3.4 produced four heuristics for MSC input encoding:

• Number of vectors in the superposition.

• Cardinality of the vectors.

• Sparsity of the vectors.

• Distribution of non-zeros in the vectors.

Motivated by these heuristics a methods to tune the MSC layers was presented in

65

§3.5. And finally, a encoding method derived from the Canny edge detection algorithm

was presented in §3.5.2. This is the encoding scheme used in the experiments that will

be presented in the next chapter.

66

4
Energy efficiency via bio-inspired

parallelism

4.1 Introduction

In §2.2.3 research into using bio-inspired techniques to produce energy efficient pattern

computation was reviewed. One of the characteristics of biological brains that lends to

67

it’s energy efficiency might be the way information is represented (Attwell & Laughlin,

2001), in the form of sparse encodings. The previous chapter examined an approach

called Map Seeking Circuits (MSC) that utilised sparse encodings and the highly par-

allel vector calculations that accompany it. This chapter compares the bio-inspired

MSC to a non-bio-inspired approach. The non-bio-inspired approach, referred to as

Phase Based Tracker (PBT) (Pauwels et al., 2013), was discussed in §2.1.3.3. PBT makes

for a good comparison as it is also a tracking approach that is capable of tracking mul-

tiple objects and is implemented in a highly parallel manner; making use of Graph-

ics Processing Units (GPUs). This chapter presents a comparison of a highly parallel

bio-inspired approach and a non-bioinspired approach. The two approaches are com-

pared across several aspects: speed, accuracy, generalisability and energy efficiency. The

results regarding energy efficiency presented towards the end of this chapter is partic-

ularly interesting as it shows how massive parallelism could lead to brain like energy

efficiency.

4.2 Comparison of bio-inspired and algorithmic approaches

There are several aspects through which the bio-inspired MSC and the algorithmic

PBT can be compared. This section analyses the two approaches in terms of speed,

accuracy, generalisability and energy efficiency.

68

4.2.1 Speed

Both MSC and PBT must take advantage of parallelism to achieve suitable speeds. Fig-

ure 3.1 and Figure 2.2 represent the flow of the two algorithms. It is clear that both

algorithms have processes that can take advantage of task parallelism and that these

tasks are data parallel (see Figure 3.1 for an example of this), forming a hierarchy of par-

allelism. The extent to which this hierarchy of parallelism can be exploited will have

a significant impact on the overall run-time of the algorithm. For example, the imple-

mentation of MSC is completely sequential, and averages 6 seconds per frame when

run against 196 frames of video from the test data provided by Pauwels et al. (2015).

This is several orders of magnitude slower than PBT, which runs at 50 milliseconds per

frame.

4.2.1.1 Task and Data Parallelism

In MSC each transform t or t−1 may be viewed as separate tasks untilmax(q) needs to

be computed where all the qi values would need to be gathered form the parallel tasks.

Aftermax(q) has been computed, updating the g vector (Equation 3.4) as well as the

scaling of the transformed input superposition by gi can be done in parallel. This pro-

cess is visualized in Figure 3.1. What Figure 3.1 does not show is the data parallelism that

exists within that task. Since the input is a vectorized image and all the operations are

vector operations, the task represented in Figure 3.1 can take advantage of per pixel (per

69

vector element) parallelism; which modern GPUs are optimized to do. Some MSC

layers such as the X/Y translation layer can have thousands of transformations. While

theoretically all of these transformations may be considered in parallel, limitations of

the GPU hardware would mean that very powerful GPUs are required to fully take

advantage of parallelism in some MSCs.

PBT makes heavy use of data parallelism but does not have task parallelism to the ex-

tent MSC has. Task parallelism exists in the sparse detector (labeled RANSAC detector

in Figure 2.2), which runs in a separate GPU. Data parallelism is used to speed up the

most demanding portions of the dense tracker, which is in the preprocessing stage.

4.2.1.2 Multiple Target Detection

Both PBT and MSC have been extended to detect multiple targets. The more recent

PBT paper (Pauwels et al., 2015) discusses multiple target tracking in detail. There is

only one paper (Murphy et al., 2013) that describes a multiple object MSC.

In PBT the dense detector processes multiple objects in parallel and independently

of each other (interactions are not considered) causing PBT to scale well with the num-

ber of objects considered (Pauwels et al., 2015). When the number of tracked objects

was increased from one object to 160 objects, the largest change in run-time was approx-

imately 10ms.

Murphy et al. (2013) detail the mechanism they used to detect multiple targets with

MSC. They exploit the way a MSC with a combined X/Y translation layer (as opposed

70

to two separate layers handling X and Y translation) converges to a single target. Figure

4.1 shows the backward superpositions produced by the X/Y translation layer as it

converges. The most likely X/Y coordinates are found within the first few iterations. In

Figure 4.1, the MSC may be stopped at iteration 2 or even 1 and parallel “child” MSC

searches commenced using a limited selection of transforms corresponding to the three

highest gi in the X/Y translation layer. In MSC the first few iterations are the most

expensive, as all the transformations in each layer need to be computed so the “child”

MSC searches can run quite quickly.

(a) Input

(b) Itera on 1 (c) Itera on 2

(d) Itera on 3 (e) Itera on 5

Figure 4.1: This shows the backward superposi on for the X/Y transla on layer for
an input image with mul ple objects. No ce that by itera on 2 the X/Y layer is con-
sidering all objects in the scene. It would be ideal at this point to stop the current
MSC search and spawn parallel child MSC searches corresponding to a predeter-
mined number of the highest gi in the X/Y transla on layer.

71

Due to the use of superpositions, MSC searches for multiple types of objects si-

multaneously without having parallel processes dedicated to each type of object being

searched for. The MSC implementation by Overman & Hart (2012) is reported to scale

linearly in run-time with increasing numbers of different models in memory. How-

ever it must be noted that as the number of objects considered is increased Overman

et al.’s MSC scales quite poorly compared to PBT. When the number of objects is in-

creased from 1 to 30 the difference in run-time was approximately 280ms. Overman et

al. do not discuss implementation details so it is unclear to what extent the inherent

parallelism, discussed in the previous section, was implemented.

One of the main reasons for the difference in amount of computation required

between MSC and PBT is number of per pixel operations that needs to be performed.

MSC requires much more computation per pixel. This is most prominent in the X/Y

translation layer which has the most transformations to compute; the range of X/Y

shifts needs to encompass the full width and height of the input image at a fine enough

increment that objects are not missed. In PBT most per pixel operations occur in the

preprocessing stage where low level dense visual cues are extracted. The preprocessing

stage in PBT requires a total of 5010 instructions per pixel (Pauwels et al., 2012) while a

count of the instructions for computing the X/Y translations in MSC yielded a total of

98 instructions per pixel per translation considered; the MSC implementation had 525

transformations so this would total 51450 instructions per pixel of input image.

Both MSC and PBT trade speed for accuracy. In MSC the number of transforma-

72

Table 4.1: The average error in 3D transla on (exT ,e
y
T ,e

z
T) and rota on (exR,e

y
R,e

z
R)

from ground truth in MM and Degrees.

MSC PBT
exT 5.117 0.2
eyT 5.599 0.2
ezT 190.039 1.1
exR 32.432038 0.3
eyR 39.426942 0.7
ezR 1.800000 0.6

tions that each layer has, controls this trade-off. In PBT the memory model complexity

and the number of iterations of the M-estimation scheme controls this trade off.

4.2.2 Accuracy

PBT papers (Pauwels et al., 2013, 2015) show that PTB is very accurate in fairly clut-

tered environments. MSC papers (D. W. Arathorn, 2002, 2014, Overman & Hart, 2012,

Murphy et al., 2013) show that MSC can perform well in noisy conditions. However

the published MSC experiments are mainly targeted towards recognizing vehicles and

it is assumed that the target would always be within certain limited azimuth and eleva-

tion values. These values are restricted such that full 6DOF is not considered. When

applied to the 6DOF dataset used by Pauwels et al. (2013) tests showed that accuracy is

quite low as Table 4.1, Figure 4.2 and Figure 4.3 shows.

To extend the restricted MSCs (D. W. Arathorn, 2002, 2014, Overman & Hart, 2012,

Murphy et al., 2013) to handle 6DOF target movement the range of azimuth/elevation

would need to be increased. The MSC azimuth/elevation layer does not have the set

73

Figure 4.2: The MSC backward superposi on outputs for part of the dataset pro-
vided by Pauwels et al.Pauwels et al. (2013). No ce that because there is no feed-
back between frames of MSC, nearby distractors o en influence the convergence.

Figure 4.3: The MSC backward superposi on outputs for a simpler data-set.

74

of transformations t that the other MSC layers have. Instead it has a mapping where

the 3D memory model is rendered into 2D oriented edge preprocessed images. The

increased number of mappings in the azimuth/elevation layer are the likely cause of

these inaccuracies.

Another cause for the inaccuracy is the difficulty in developing an effective sparse

encoding scheme as discussed in §3.4.

4.2.3 Generalisability

Bio-inspired algorithms are often designed with generalisability in mind. While PBT

performs very well in the domain it is designed for, MSC can be applied to a wide vari-

ety of problems.

4.2.3.1 Object recognition

Object detection in 3D point-clouds is a very similar problem to the detection of ob-

jects in 2D images. PBT generalizes much better into this application area owing to the

fact that when applied to 2D images PBT generates a point cloud through the stereo

disparity. MSC has been applied to LIDAR data (Overman & Hart, 2012) which re-

quires that MSC works completely in 3D space.

It is possible to adapt MSC to many different types of data. All that needs to be

considered is a sparse super-imposable representation for the data and a set of MSC

layers that decompose the set of possible mappings required to be searched. Overman

75

& Hart (2012) describe a MSC based sensor agnostic object recognition tool where

the central MSC circuit operates in 3D and several encoders convert different types of

sensory input into a form that the central MSC can operate on. They provide results

for high range resolution (HRR) radar data (1D), electro optical (EO) imagery (2D)

and LIDAR data (3D).

4.2.3.2 Articulated object recognition

Both MSC and PBT have been applied to detect articulated objects. The difference be-

ing that whilst PBT requires an extension, MSC only needs an additional MSC circuit.

Pauwels et al. (2014) extends the PBT algorithm for articulated objects. They achieve

this by using structural constraints such as hinges or slides. They introduce a new com-

ponent called the rigidization framework that attaches the object parts such that the

constraints are satisfied. The template model is a set of sub-models of the objects parts

and an associated kinematic structure.

MSC has been applied to detect people and estimate the pose of their limbs from

2D images. This is implemented by using two MSC circuits, a visual MSC and a inverse

kinematic MSC. The visual MSC remains as previously described, except that the 3D

memory model it is matching to is constrained by the outputs of the kinematic MSC.

The kinematic MSC uses a kinematic structure as its memory model. This kinematic

structure is essentially a “skeleton” as used in 3D animation, where each limb is defined

by the set of connected vectors (or “bones”) in 3D space. These vectors are organised

76

into several “chains”, each arm would be a chain for example. The kinematic MSC (K-

MSC) is composed of sub-K-MSCs for each of the chains in the model. The K-MSC

for an arm, for example, would have three layers. An arm can be thought of as three

connected vectors (upper arm, fore arm and hand) so three MSC layers would be used.

Each layer searches for 3D transformations.

4.2.3.3 Motor controls

Articulated object detection is at its core is a inverse kinematics problem, the same type

of problem that animals need to solve for limb control. K-MSC has been used to con-

trol a physical 6DOF robotic arm reaching a target location in the presence of obstacles

(Arathorn, 2015).

K-MSC has also been applied to the motor control of a robotic snake exploring a

previously unknown area (Snider & Arathorn, 2006). The novelty of the approach, de-

scribed by Snider & Arathorn (2006) when comparing with other MSC papers, is that

the input is used to adjust the transformations available to the MSC layers. The snake

robot has tactile sensors along its body. These sensors allow the robot to detect obsta-

cles whilst touching them. When a obstacle is detected, the set of transformations in

each MSC layer is biased so that transformations that take the limb into unobstructed

space are ignored.

77

4.2.3.4 High level path planning

The previous section touched on the ability to bias the transformations considered by

MSC with additional information, as a way to fuse information from different sources.

D. W. Arathorn (2004) examines how a small pack of wolves stalking a herd of elk. An

MSC solution to this problem is quite similar to the robot snake experiment described

by Snider & Arathorn (2006). The internal representation of the space being navigated

is biased by the perceived probability of detection by the elk. So transformations that

take the wolf through a gully, for example, would be converged upon.

4.2.4 Energy analysis

One of the main differences between bio-inspired and processor centric approaches is

the high level of parallelism present in bio-inspired approaches. To examine the differ-

ences in energy consumption, how energy efficiency varies with parallelism was exam-

ined. Focusing on the most time-consuming components of each algorithm. In PBT

this is the preprocessing stage with 5010 instructions per pixel (Pauwels et al., 2015). In

the MSC implementation the most time consuming stage is computing the transforma-

tions in the X/Y transformation layer with 51450 instructions per pixel (98 instructions

per pixel per translation with 525 translations).

To model the relationship between number of instructions and energy efficiency

a measure for energy per instruction (EPI) is needed. Shao & Brooks (2013) and Gro-

78

chowski & Annavaram (2006) introduce such a measure:

EPI =

p× c

f

N
(4.1)

where p is the power consumed, c is the number of cycles taken, f is the processor

frequency andN is the number of instructions. We simplify this further by deriving

the time taken t from
c

f
:

EPI =
p× t

N
(4.2)

When computing the total power consumed for parallel computations, the sum

of the p for each sub-process is taken. The simulations show that the most expensive

stage of MSC is more energy efficient than the most expensive stage in PBT (Figure

4.4). It also confirmed that MSC performs worse in terms of speed due to the number

of per pixel per transformation operations that are required (Figure 4.5). For these

simulations both approaches had a equal and constantEPI . N and t depended on

the percentage of parallel instructions.

The experimental evidence shown in Figure 4.4 relies upon a property of Equation

4.2:

Property 4.1. Given two processors, where the time to process N instructions is greater

for one processor than the other (t1 < t2) and the EPI for the faster processor is greater

(EPI1 > EPI2) the slower processor will require less power (p2 < p1).

79

Figure 4.4: MSC consumes several orders of magnitude less energy than PBT. Fig-
ure 4.5 supports this result by showing that as parallelism increases, the number of
sub-processes increases and the number of instruc ons per sub-process decreases.
The percentage of parallel code in the two approaches has different meanings. In
(Pauwels et al., 2015) this meant the number of pixels that were processed in paral-
lel. In MSC it meant the number of transforma ons that were processed in parallel.
Either way a high level of parallelism meant that each parallel process had less in-
struc ons to run than lower levels of parallelism.

80

(a) Number of instruc ons per subpro-
cess

(b) Number of subprocesses

(c) Compute Time

Figure 4.5: Sub-figures (a) and (b) support Figure 4.4 by showing that as parallelism
increases the number of sub-processes increases and the number of instruc ons per
sub-process decreases. Sub-figure (c) shows that when power is kept constant and
percentage parallelism is varied MSC is slower than PBT.

81

Proof of property 4.1. To prove the following: If processor 1 is faster than processor

2, the slower processor will require less power. Assume that both processors will run

N instructions, thatEPI1 > EPI2 and t1 < t2. These assumptions are based

on the information reported in Grochowski & Annavaram (2006). Processor 1 can be

described by:

EPI1 =
p1 × t1

N

Processor 2 can be described by:

EPI2 =
p2 × t2

N

p1 × t1
EPI1

=
p2 × t2
EPI2

p2t2
p1t1

=
EPI2
EPI1

Since we assumeEPI1 > EPI2:

p2t2
p1t1

< 1,
p2
p1

<
t1
t2

Since we assume t1 < t2:

p2
p1

< 1, p2 < p1

The power required by processor 2, the slower processor, is less than the faster proces-

82

Figure 4.6: Due to the fine grain parallelism in bio-inspired techniques, such as MSC,
they scale be er with increasing parallelism.

sor 1.

Amdahl’s law (Amdahl, 1967) can be used to show that numerous low power low

frequency processors are ideal to run massively parallel applications, such as bio-inspired

algorithms. Using pseudo-code representations of both algorithms to estimate the pro-

portion of parallelizable operations, Amdahl’s law can be applied to show that the fine

grain parallelism present in the bio-inspired MSC allows for greater scalability (Figure

4.6).

However, the scalability that bio-inspired approaches provide may not be attainable

with conventional hardware. A study on the energy characteristics of the Intel Xeon

83

Phi processor (Shao & Brooks, 2013) showed that when varying the number of parallel

cores from 1 to a maximum of 60 there is little energy efficiency gains after 10 cores.

This was due to the energy overhead of the additional memory accesses.

Non-Von Neumann architectures like neuromorphic processors have been designed

specifically for bio-inspired approaches operate at very high levels of parallelism very

energy efficiently. IBM TrueNorth, for example, consumes 63mW run visual object

detection and classification at 30 frames per second (P. A. Merolla et al., 2014). Further

research into neuromorphic architectures would also expose more the generalisability

inherent in bio-inspired approaches.

4.3 Conclusions

This chapter shed some light onto why in vivo computations, such as those occurring

in the brain, are highly energy efficient while maintaining their ability to generalise to

a wide variety of problems. The comparison has shown that although the bio-inspired

approach has much more inherent parallelism, it generally runs slower than the al-

gorithmic approach owing to not all inherent parallelism being exploited. The bio-

inspired approaches such as MSC are composed of loosely coupled low-complexity

sub-processes, which makes it attuned to massive parallelism. Such a parallel implemen-

tation will have high CPU-based scalability. The study is also supported by previous

studies which showed that in terms of energy per instruction (EPI) using multi-core

84

processors running at lower frequencies delivers higher performance at an EPI that is

approximately four times lower than an equally performing single core processor. Since

the complexity of each sub-process in the bio-inspired algorithm is low, many low fre-

quency processors would provide a fast implementation in an energy efficient manner.

Other bio-inspired schemes such as LSM (Maass et al., 2002) show that an on-demand

model of computation facilitates much higher levels of parallelism and lowers complex-

ity, by providing a way to re-use previously computed solutions on-demand.

This chapter also shows that bio-inspired approaches yield better prospects for

adapting computation to changing environmental requirements. For example, MSC

may be applied to a variety of different problems by replicating circuits and changing

the mappings within the circuits.

One important difference between PBT and MSC is how PBT uses temporal infor-

mation. In fact, it is one of the reasons why MSC accuracy is lower than PBT. Tempo-

ral information is also important in animal intelligence. The next chapter develops two

approaches to tackle temporal data as well as other problems highlighted in this chap-

ter such as encoding. Additionally, the approaches introduced in the next chapter are

applied to a difficult bio-inspired test-bed.

85

5
Exploiting temporal information for

multi-object tracking

5.1 Introduction

In nature many animals such as zebra, herring and starling form swarms. Swarming

behaviour has evolved because of the advantages it provides to important functions

86

such as energy efficient foraging and defence against predators. The defensive aspect

of swarming falls into two categories (Jeschke & Tollrian, 2007), namely the dilution

effect and the confusion effect. The dilution effect is essentially the idea of “safety in

numbers”. The risk of predation to the swarming animals is diluted because a predator

only attacks a limited number of animals in a group. The confusion effect hinders a

predator’s ability to select individual targets out of a dense swarm of moving prey by

overwhelming the predator’s sensory capabilities (Milinski & Heller, 1978, Jeschke &

Tollrian, 2007). The confusion effect presents a challenging problem to tackle with

computer vision because the swarm is actively trying to decrease tracking accuracy.

There are important practical problems that require tracking solutions that tackle

the confusion effect. For example, the use of swarms of Micro Air Vehicles (MAVs) is

highly desirable in many scenarios such as search and rescue or exploration. There is a

need to detect and track swarms of MAVs for the purposes of determining the swarms

topology. This swarm topology can then be used for such tasks as determining “holes”

in the swarm’s coverage of an area or determining the swarm’s underlying communica-

tion structure. However to arrive at a swarm topology, the relative positions of all the

visible individuals needs to be determined. Accurate tracking is difficult for this task as

swarm members can go behind each other, in and out of the view of the camera or the

camera it self may get occluded for some time.

This chapter incorporates the learnings from previous chapters such as the sparse-

encoding heuristics presented in Chapter 3, the need to maximise parallelism to exploit

87

the energy efficiency gains described in Chapter 4 and the importance of temporal

information as shown by the comparison in Chapter 4. These learnings are applied

to the bio-inspired test-bed provided by the task of tracking swarms. Two potential

solutions to the problem were developed. Both utilise sparse encoding but each uses

the two different interpretations of sparse coding that was discussed in §2.2.1.1, §2.2.2.3

and §3. This provides an interesting comparison between the two interpretations. Both

approaches are highly parallel so the energy efficiency gains highlighted in Chapter 4

can be exploited. Additionally both approaches can be used for temporal tasks such as

tracking.

5.2 Swarms and Predator Confusion

Biologists have been studying the various aspects of swarming on predator-prey rela-

tionships. Predator confusion in nature is composed of four factors:

i Number of individuals in a swarm (Ruxton et al., 2007, Jeschke & Tollrian,
2007).

ii Homogeneity of individuals also known as the oddity effect (Ruxton et al.,
2007, Landeau & Terborgh, 1986).

iii Swarm density, it is unclear from the literature whether this is a factor. One ex-
periment supports this (Olson et al., 2013) while another concluded that density
is not a factor (Ruxton et al., 2007).

iv Prey agility (Jeschke & Tollrian, 2007).

Out of these four factors the number of individuals in a swarm appears to affect the

predator the most (Ruxton et al., 2007, Jeschke & Tollrian, 2007, Olson et al., 2013).

88

For example, Landeau & Terborgh (1986) showed that when bass hunt minnows the

percentage of trails that end in the bass capturing a minnow increases from 11% to

100%when the number of minnow is decreased from 15 to 1. Therefore, experiments

should focus on the effect of swarm size on accuracy.

One factor that is universal in any tracking problem even instances simpler than a

swarm utilising predator confusion is the temporal nature of tracking. The next two

sections introduce two approaches that are temporal and can track a swarm.

5.3 Recurrent Neural Network Tracker

Ondrúška & Posner (2016) introduced a deep recurrent neural network (RNN) based

system for tracking multiple objects under occlusion from raw laser scanner data. In

this section a 3D RNN derived from the 2D RNN presented by Ondrúška & Posner

(2016) is proposed. The network aims to model:

P (yt|x1:t) (5.1)

where yt ∈ RN is a discrete time stochastic process modelling the world around the

camera and xt ⊆ yt are sensor readings of the world visible to the camera. Ondruska

et al. developed their solution for the scenario where a robot equipped with a planar

laser scanner is in a busy area with people moving all around it. The network takes

a 2D occupancy grid of the scene at t as input and predicts a 2D occupancy grid for

89

t + 1. Since the ground truth for input at t is the frame at t + 1, training can be fully

unsupervised. The RNN is composed of four 2D convolutional layers. The third layer

is kept between timesteps .

To apply this RNN to the task of tracking a swarm in 3D the original 2D network

needs to be changed to process a 3D occupancy volume instead of a 2D occupancy

grid. Figure 5.1 shows the 3D RNN that was developed for this purpose. Like the 2D

version it has four layers with the third layer being retained between timesteps. The

number feature maps in the second and third layers was halved due to the increased

computational cost of 3D convolutions.

Input (t)

t-1

Prediction (t+1)

t+1

Input

Encoder

Belief
Tracker

Decoder/Output

Figure 5.1: The 4-layer recurrent neural network. Layer 3 is used to transfer informa-
on to t + 1. Each cube represents a feature map. The “Input” layer has two feature

maps because the input volume is split into two channels. A channel containing grid
cells that are visible to the observer and a channel containing grid cells that are oc-
cluded to the observer.

90

In §2.2.1.1 & §2.2.1.1 the two different interpretations of sparse coding were intro-

duced. A neural networks such as RNN represents the second interpretation of sparse

coding. The one presented by Olshausen & Field (1996), where information is rep-

resented by a sparse set of basis functions. The next section introduces an approach

that uses the other interpretation of sparse coding and also has a completely different

method of training to a neural network.

5.4 Sequential Hierarchical Graph Neuron

This section describes two novel improvements to HGN (see §2.2.2.5) that enable pro-

cessing of sequential data. This new HGN is referred to as Sequential HGN (SHGN).

Firstly, a novel training procedure that allows for sequences of memories is presented.

Secondly, an optimization to the bias arrays that improves both time complexity and

memory usage is presented.

5.4.1 One-shot Sequence Training

Given a sequence of data S, it can be assumed that Sn is associated to Sn+1 if the data

is temporal. Since SHGN is an associative memory the memory of Sn can be associated

with Sn+1. That way sequences of patterns can be recalled. Figure 5.2 illustrates this

new approach.

91

SHGN

Figure 5.2: The new training procedure associates the frame Sn with the frame Sn+1

crea ng a chain of associa on in its memory.

5.4.2 Improving HGN speed and memory usage

The original HGN is composed of rows of neurons structured such that one row is

required for each unique input symbol. When implemented as a multi-threaded pro-

gram that structure is expensive and has redundant neurons. In the original version

Nasution & Khan (2008) the bias array is a linked list which would have a complex-

ity ofO(n) to search. A hash based method can be introduced to improve both these

aspects of HGN. Several changes to the HGN algorithm were required:

The first change is instead of having one row of GNs in each layer for each unique

input symbol, only a single row is ever used. The number of neurons in each layer is

equal to the size of the input pattern for that layer.

The second change is instead of sending/receiving the row numbers of activated

92

GNs the input symbols of neighbouring GNs is sent/received.

The third change is an improved implementation of the bias array. Using a Hash

Map as the data structure for the bias array is at the core of this improvement. The

key to the map is the hash of the nodes input symbol and the input symbols of the

each neighbour. The value is the current size of the hash map minus one. By using a

hash map the bias array look up is improved fromO(n) toO(1). Additionally using

a hash of each nodes symbol and neighbouring symbols eliminates the need for addi-

tional rows of GN neurons. Furthermore this approach enables the introduction of

additional input symbols without needing to change the SHGN structure. The new

algorithm for each GN is described in Algorithm 5.1.

Algorithm 5.1: The algorithm for each neuron in SHGN.
Data: input symbol
Result: the pattern index to be passed to the higher layer

1 Send input symbol to neighbours;
2 Receive neighbours input symbols;
3 key = Create a hash of the neighbouring symbols and input symbol;
4 index = access bias array with key;
5 if In training mode AND index == NULL then
6 Create a new bias array entry with key and current size of bias array +

1;
7 Send index to GN in next layer;

The last change pertains to the last step in the HGN algorithm, a method of count-

ing the retrieved indices of all the GN’s in the HGN to produce a final overall result. In

previous work this was done via a simple voting scheme (Muhamad Amin & Khan,

93

2009) or simply trusting the highest level GN with a non-zero recall (Nasution &

Khan, 2008). However those works apply HGN to the task of recognizing letters of

the alphabet, the use case being explored here is very unlikely to produce data closely

matching the training data. Therefore simply taking the recall of the highest level GN

would produce false positives. A simple voting scheme is also unsatisfactory because

the higher levels of HGN have a higher importance since they are processing higher

level features. To facilitate fuzzy recalling a weighted voting scheme is required:

s =

L∑
l=1

1

lnumNeurons
(5.2)

Equation 5.2 is how a score is calculated for any particular recalled pattern index. In

Equation 5.2,L is the total number of layers and lnumNeurons is the number of graph

neurons in the layer l. This ensures that recalls from neurons higher in the hierarchy

contribute more to the total score. The indices recalled at different levels of the hierar-

chy can be scored and sorted by the score. This is particularly useful when not all GNs

produce a recall, which is highly likely when tracking a swarm.

5.5 Experimental Results

This section will present the experiments done to evaluate both the 3D RNN and

SHGN. Before covering the experiments and their results , the data generation process

and training processes will be described.

94

5.5.1 Data generation

For the purposes of the experiments presented in this chapter the possibility of ob-

taining depth footage of swarming animals such as fish was investigated. However, no

datasets were available and collection of depth footage is expensive. In lieu of real depth

footage, simulations were used. In particular an aggrigation model (Couzin et al., 2002)

that embodies key principles believed to underpin the confusion-effect such as high

number of individuals Jeschke & Tollrian (2007) and visual homogeneity of individu-

als Landeau & Terborgh (1986) was used to produce both test data and training data.

The simulation is rendered at 23 frames per second as a point cloud and then con-

verted into an 31x31x31 occupancy grid. The simulation can be run with varying num-

ber of swarm members. Figure 5.3 shows a few frames from this simulation. The simu-

lation was restarted with a different starting state every 1000 frames to ensure that the

complex behaviour created by the interacting swarm members was captured.

Figure 5.3: Several frames from the swarm simula on. It is colour coded by depth,
white is far from the camera and black in close to the camera. The swarm converges
onto a torus shape, this is documented behaviour in both simulated and natural
swarms (Couzin et al., 2002).

95

5.5.2 Training Data

The simulation described above was used to produce 3D occupancy grids of various

swarm sizes. Sizes ranging from 10 to 120 were used. The RNN consumes 100 frames

at a time and 190 sequences (a little over 19,000 individual frames) were produced. The

network was trained until the error plateaued which was about 200,000 iterations over

the data.

The training data for SHGN is slightly different due to it being an associative mem-

ory and not in anyway generative like the RNN. Being generative allows the RNN to

generalise to different swarm sizes better than SHGN. The swarm sizes ranged from

1000 to 10,000 which were the swarm sizes used in our evaluation data. The data con-

sisted of 801 frames sampled from 8016 frames by taking every tenth frame; essentially

reducing the frames per second. This sampling was done because experimentation

showed that the Mean Squared Error (MSE) between each frame in our data was quite

low and sampling improved SHGN’s accuracy. SHGN consumed 10 frames at a time.

5.5.2.1 Training differences between RNN and SHGN

It is important to compare the differences in training procedure for the two approaches.

The RNN required 200,000 iterations over the training data, taking 170 hours on a

Nvidia K20 . Due to the one shot nature of SHGN it only requires one pass over the

training data so training only took 3.6 hours on a Intel Xeon Phi.

96

5.5.3 Evaluation Data

Evaluation data for both approaches consisted of a range of swarm sizes: 1000 to 10,000

in increments of 1000 with 5010 frames for each swarm size. Every 1000 frames the

simulation was restarted with a different random initial state. As mentioned above, for

SHGN this data was sampled by taking every tenth frame.

5.5.4 Findings

Research studying biological swarms Jeschke & Tollrian (2007) suggested that increas-

ing swarm size would lead to decreased tracking accuracy. The experiment’s results

showed that this is not true for RNNs while it is true for SHGNs. Swarm size does neg-

atively affect accuracy but it does not have a great impact on the accuracy of the RNN.

Figure 5.4 & Figure 5.5 shows the accuracy for RNN and SHGN as swarm size increases.

The RNN is fairly resistant to increasing swarm size, maintaining a F1 score of approx-

imately 0.8. It is clear from Figure 5.4 & Figure 5.5 that SHGN is heavily affected by

increasing swarm size. An interesting trend can be seen in Figure 5.5 where the accuracy

of SHGN mirrors the accuracy of natural predators as reported in Jeschke & Tollrian

(2007)(Refer to Figure 1 in Jeschke & Tollrian (2007)).

The RNN’s predictive accuracy is shown in Figure 5.6. The RNN is capable of main-

taining an accuracy above 0.5 F1 upto 2 seconds into the future. The output generated

by the RNN is visualized in Figure 5.7.

97

RNN SHGN
Training data size 190 sequences 80 sequences
Training iterations 200,000 1
Runtime per frame 0.03 sec (GPU) 0.07 sec (Xeon Phi)
Total training time 170 hours 3.6 hours

Table 5.1: Due to the temporal sub-sampling of data and one-shot learning SHGN
in a much shorter me period and the run me of both approaches is comparable.
However as Figure 5.4 & Figure 5.5 shows the RNN performs be er in terms of
accuracy.

In terms of speed both SHGN and RNN maintain constant runtime even as swarm

size increases. SHGN was not implemented with GPU support so SHGN takes 0.07

seconds per frame of data on an Intel Xeon Phi. RNN takes 0.03 seconds per frame on

a Nvidea K20 GPU. Table 5.1 summarises the differences in runtime and training time

for the two approaches.

5.6 Conclusion

This chapter ties concepts touched on in previous chapters together. The two ap-

proaches examined use different interpretations of the idea of sparse coding that was

discussed in chapter 3. Both approaches are highly parallel and take advantage of the

energy efficiency discussed in chapter 4. This chapter makes four contributions: an ex-

isting recurrent neural network was extended for 3D data, performance improvements

were made to an existing associative memory, that associative memory was extended

to process sequences of data, and the two approaches were applied to a swarm using

98

the confusion effect. Experimentation showed that the while the associative memory

trained much faster the neural network performed better in terms of accuracy. The

experiments also showed that the method using the high dimensional vector interpre-

tation of sparse coding (SHGN) had a similar reaction to increasing swarm sizes as

real predators. This highlights the need for a strategy for robust tracking in situations

where training data is lacking or the time cost of retraining is too high.

99

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Swarm Size

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

M
e
a
n
 M

S
E

 S
c
o
re

RNN

SHGN

Figure 5.4: The RNN is resistant to increasing swarm sizes but requires 200,000
training itera ons over 190 sequences of data while the SHGN required just 1 train-
ing itera on over 80 sequences of data. This graph uses the Mean Squared Error.

100

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Swarm Size

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
e
a
n
 F

1
 S

c
o
re

RNN

SHGN

Figure 5.5: The RNN is resistant to increasing swarm sizes but requires 200,000
training itera ons over 190 sequences of data while the SHGN required just 1 train-
ing itera on over 80 sequences of data. F1 for RNN and SHGN.

101

0 0.5 1 1.5 2 2.5

Prediction time horizon [sec]

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

M
e
a
n
 F

1
 S

c
o
re

Swarm Size=2000

Swarm Size=4000

Swarm Size=6000

Swarm Size=8000

Swarm Size=10000

Figure 5.6: The neural network’s accuracy at different me horizons. The network
maintains an accuracy greater than 0.5 F1 for up to 2 seconds.

102

(a) Input and output from
the RNN for frame 1.

(b) Input and output from
the RNN for frame 14.

Figure 5.7: These are two frames of input and the respec ve output from the RNN
for a swarm size of 10,000. The probability of a cell being occupied is color coded,
bright yellow being high probability.

103

6
Conclusion

Looking at animal behaviour it can be observed that many complex actions are driven

by a nuanced perception of the environment. This advanced perception is very reliant

on how information is represented in the animal’s brain. A type of representation that

is considered biologically plausible is Sparse Coding (or Sparse Representation). There

are two main interpretations of sparse coding in literature. Both interpretations rely on

104

the redundancy afforded by the numerous neurons in the brain. Both interpretations

also lend themselves to highly parallel implementations.

A problem faced by many use cases is energy minimisation. For example in minia-

ture devices such as Wireless Sensor Networks (WSNs), making frequent communica-

tions is undesirable due to the associated energy cost. Therefore it is desirable to have

energy efficient pattern recognition onboard to help reduce the need to communicate

frequently.

6.1 Contributions of the research

The contributions of this thesis are as follows:

• Chapter 3 examined a bio-inspired approach that uses sparse vector representa-
tions called Map Seeking Circuits (MSCs). Previous research and experimenta-
tion showed that accuracy of MSC is highly dependant on the sparsity of the
input vectors. Through further exploration of this failure case four encoding
heuristics affect that accuracy where identified.

• Chapter 4 presented a comparative study with a highly parallel bio-inspired pat-
tern recognition approach and a non-bio-inspired pattern recognition approach.
This study showed that fine grain parallelism, parallelism resulting from pro-
cessing sparse vector representations, allowed for significant gains in energy
efficiency. These result are published in (Y. R. Hettiarachchige et al., 2018).

• Chapter 5 applied the two interpretations of sparse coding to the bio-inspired
problem of tracking a swarm of objects that are actively attempting to confuse
the viewer through a phenomena known as the confusion effect. This work had
five contributions:

– Several improvements were made to the HGN approach making it faster
while lowering the memory requirement.

105

– The improved HGN was extended to process sequences of data.

– An existing RNN was extended to handle 3D data.

– The work introduced swarms and the confusion effect as a challenging
test-bed for computer vision. The chapter also examined how computer
vision techniques fare in this test-bed. It showed that RNN’s (which
use the basis function interpretation of sparse coding) is fairly resistant
to increasing swarm size, maintaining a F1 score of approximately 0.8.
On the other hand HGNs (which use the sparse vector interpretation)
actually decreased in accuracy with increasing swarm size in a similar way
to what is observed in natural predators.

– The work also acts as a comparison between the two interpretations of
sparse coding. In terms of training HGN proved to require much fewer
training samples and so trained faster. However the neural network per-
formed better in terms of accuracy.

6.2 Future work

The research discussed in this thesis focused on applying bio-inspired representations

to pattern recognition problems and exploiting the parallelism afforded by using such

representations. Through the course of the research several avenues for future work

was also identified:

• The results from Chapter 3 showed that Map Seeking Circuits an approach that
utilizes sparse vectors for information representation is highly reliant on how
the input data is encoded. Chapter 3 also described 4 heuristics that an ideal
encoding should follow. Future research should investigate the possibility of
developing an automatic procedure to generate encoding schemes. This task

106

would benifit from a neural network encoding layer feeding input into a MSC.
The MSC’s accuracy on the resulting encoding can be the metric for trainig
the encoding nerual network. The advantage of this approach would be the
interpretability that MSC offers.

• The discussion regarding energy efficiency in Chapter 4 showed that the par-
allelism afforded by sparse coding actually leads to energy efficiency. Future
research can focus on answering the question of whether implementing such a
system in hardware is feasible.

• Chapter 5 applied two approaches that use sparse representations to the bio-
inspired problem of tracking a swarm of objects that are actively attempting
to confuse the viewer. The simulation used only varied the size of the swarm
and didn’t involve the predator interacting with the swarm. In the future more
realistic experiments could be developed or, if possible, real data gathered.

• Building from the previous point, the RNNs approach discussed in Chapter 5
is perfectly suited to apply an adversarial training scheme. Exposing the param-
eters that control the swarm simulation to a separate trainable system would
allow for further improvement of the detector as well as further exploration of
the confusion effect.

• In addition to the item above, the results in Chapter 5 also highlighted how dif-
ferent the the two interpretations of sparse coding were. Future work should
investigate methods to improve the accuracy of SHGN while maintaining the
relatively small training data size. This is a challenging problem as it excludes
straight forward solutions such as incorporating a neural network encoding
layer that would optimise on the heuristics identified in Chapter 3. This is be-
cause a neural network encoding layer would require more training data.

107

References

Amdahl, G. M. (1967, Apr). Validity of the single processor approach to achieving

large scale computing capabilities. In Proceedings of the April 18-20, 1967, spring joint

computer conference on - AFIPS ’67 (Spring) (p. 483). New York, New York, USA:

ACM Press. Retrieved from http://dl.acm.org.ezproxy.lib.monash.edu

.au/citation.cfm?id=1465482.1465560 doi: 10.1145/1465482.1465560

Arathorn, D. (2001, February). Recognition under transformation using su-

perposition ordering property. Electronics Letters, 37(3), 164-165. Retrieved

from http://ieeexplore.ieee.org.ezproxy.lib.monash.edu.au/

articleDetails.jsp?arnumber=902790 doi: 10.1049/el:20010123

Arathorn, D. W. (2002). Map-Seeking Circuits in Visual Cognition: A Computational

Mechanism for Biological and Machine Vision. Stanford University Press.

Arathorn, D. W. (2004). From Wolves Hunting Elk to Rubik’s Cubes: Are the

Cortices Composition/Decomposition Engines? Proceedings AAAI Symposium on

108

http://dl.acm.org.ezproxy.lib.monash.edu.au/citation.cfm?id=1465482.1465560
http://dl.acm.org.ezproxy.lib.monash.edu.au/citation.cfm?id=1465482.1465560
http://ieeexplore.ieee.org.ezproxy.lib.monash.edu.au/articleDetails.jsp?arnumber=902790
http://ieeexplore.ieee.org.ezproxy.lib.monash.edu.au/articleDetails.jsp?arnumber=902790

Connectionist Compositionality. Retrieved from http://www.aaai.org/Papers/

Symposia/Fall/2004/FS-04-03/FS04-03-001.pdf

Arathorn, D. W. (2014). Map-Seeking Circuit (MSC): A Computational Mechanism

for Object Recognition under Transformation with Digital and Analog Implementa-

tions. http://nice.sandia.gov/videos2014.html.

Arathorn, D. W. (2015, March). A System View of the Recognition and Interpreta-

tion of Observed Human Shape, Pose and Action. arXiv e-prints, arXiv:1503.08223.

Arathorn, D. W. (2018). General Intelligence Corp MSC implementation. http://

www.giclab.com/implementation.html. (Accessed: 2018-05-01)

Attwell, D., & Laughlin, S. B. (2001, October). An energy budget for signaling in

the grey matter of the brain. Journal of cerebral blood flow and metabolism : Official

Journal of the International Society of Cerebral Blood Flow and Metabolism, 21(10),

1133–1145. Retrieved from http://dx.doi.org/10.1097/00004647-200110000

-00001 doi: 10.1097/00004647-200110000-00001

Avarguès-Weber, A., Dyer, A. G., Combe, M., & Giurfa, M. (2012, May). Simulta-

neous mastering of two abstract concepts by the miniature brain of bees. Proceedings

of the National Academy of Sciences of the United States of America, 109(19), 7481–

7486. Retrieved from http://www.pnas.org/content/109/19/7481 doi:

10.1073/pnas.1202576109

109

http://www.aaai.org/Papers/Symposia/Fall/2004/FS-04-03/FS04-03-001.pdf
http://www.aaai.org/Papers/Symposia/Fall/2004/FS-04-03/FS04-03-001.pdf
http://nice.sandia.gov/videos2014.html
http://www.giclab.com/implementation.html
http://www.giclab.com/implementation.html
http://dx.doi.org/10.1097/00004647-200110000-00001
http://dx.doi.org/10.1097/00004647-200110000-00001
http://www.pnas.org/content/109/19/7481

Bartolozzi, C., Rea, F., Clercq, C., Fasnacht, D. B., Indiveri, G., Hofstatter, M., &

Metta, G. (2011, June). Embedded neuromorphic vision for humanoid robots. In

CVPR 2011 workshops (pp. 129–135). IEEE. doi: 10.1109/CVPRW.2011.5981834

Benjamin, B. V., Gao, P., McQuinn, E., Choudhary, S., Chandrasekaran, A. R., Bus-

sat, J.-M., … Boahen, K. (2014, May). Neurogrid: A Mixed-Analog-Digital Mul-

tichip System for Large-Scale Neural Simulations. Proceedings of the IEEE, 102(5),

699–716. Retrieved from http://ieeexplore.ieee.org/lpdocs/epic03/

wrapper.htm?arnumber=6805187 doi: 10.1109/JPROC.2014.2313565

Brecht, M., & Sakmann, B. (2002, August). Dynamic representation of whisker

deflection by synaptic potentials in spiny stellate and pyramidal cells in the barrels and

septa of layer 4 rat somatosensory cortex. The Journal of Physiology, 543(Pt 1), 49–70.

Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi

?artid=2290465&tool=pmcentrez&rendertype=abstract

Breiman, L. (2001, Oct 01). Random forests. Machine Learning, 45(1), 5–

32. Retrieved from https://doi.org/10.1023/A:1010933404324 doi:

10.1023/A:1010933404324

Brogliato, M. S., Chada, D. M., & Linhares, A. (2014, January). Sparse distributed

memory: understanding the speed and robustness of expert memory. Frontiers in hu-

man neuroscience, 8, 222. Retrieved from http://www.pubmedcentral.nih.gov/

110

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6805187
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6805187
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2290465&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2290465&tool=pmcentrez&rendertype=abstract
https://doi.org/10.1023/A:1010933404324
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4009432&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4009432&tool=pmcentrez&rendertype=abstract

articlerender.fcgi?artid=4009432&tool=pmcentrez&rendertype=

abstract doi: 10.3389/fnhum.2014.00222

Byvatov, E., & Schneider, G. (2003). Support vector machine applications in

bioinformatics. Applied bioinformatics, 2(2), 67–77. Retrieved from http://

www.ncbi.nlm.nih.gov/pubmed/15130823

Canny, J. (1986, Nov). A Computational Approach to Edge Detection. IEEE

Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(6), 679–698.

doi: 10.1109/TPAMI.1986.4767851

Carpenter, G., & Grossberg, S. (2010). Adaptive resonance theory. CAS/CNS

Technical Report Series, 1–23. Retrieved from http://digilib.bu.edu/ojs/

index.php/trs/article/view/92

Cortes, C., & Vapnik, V. (1995). Support-Vector Networks. Machine Learning,

20(3), 273–297. Retrieved from http://link.springer.com/10.1023/A:

1022627411411 doi: 10.1023/A:1022627411411

Couzin, I. D., Krause, J., James, R., Ruxton, G. D., & Franks, N. R. (2002, Sep). Col-

lective Memory and Spatial Sorting in Animal Groups. Journal of Theoretical Biology,

218(1), 1–11. Retrieved from http://linkinghub.elsevier.com/retrieve/

pii/S0022519302930651 doi: 10.1006/jtbi.2002.3065

111

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4009432&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4009432&tool=pmcentrez&rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/15130823
http://www.ncbi.nlm.nih.gov/pubmed/15130823
http://digilib.bu.edu/ojs/index.php/trs/article/view/92
http://digilib.bu.edu/ojs/index.php/trs/article/view/92
http://link.springer.com/10.1023/A:1022627411411
http://link.springer.com/10.1023/A:1022627411411
http://linkinghub.elsevier.com/retrieve/pii/S0022519302930651
http://linkinghub.elsevier.com/retrieve/pii/S0022519302930651

DeWeese, M. R., Wehr, M., & Zador, A. M. (2003, August). Binary Spiking in

Auditory Cortex. J. Neurosci., 23(21), 7940–7949. Retrieved from http://www

.jneurosci.org.ezproxy.lib.monash.edu.au/content/23/21/7940

Dyer, A. G., Neumeyer, C., & Chittka, L. (2005, December). Honeybee (Apis

mellifera) vision can discriminate between and recognise images of human faces.

The Journal of Experimental Biology, 208(Pt 24), 4709–14. Retrieved from

http://jeb.biologists.org/content/208/24/4709.abstract doi:

10.1242/jeb.01929

Emruli, B., Sandin, F., & Delsing, J. (2014, July). Vector space architecture

for emergent interoperability of systems by learning from demonstration. Bi-

ologically Inspired Cognitive Architectures, 9, 33–45. Retrieved from http://

www.sciencedirect.com/science/article/pii/S2212683X14000474 doi:

10.1016/j.bica.2014.06.002

Farabet, C., Martini, B., Corda, B., Akselrod, P., Culurciello, E., & LeCun, Y.

(2011, June). NeuFlow: A runtime reconfigurable dataflow processor for vi-

sion. In CVPR 2011 workshops (pp. 109–116). IEEE. Retrieved from http://

ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5981829

doi: 10.1109/CVPRW.2011.5981829

Felzenszwalb, P. F., Girshick, R. B., McAllester, D., & Ramanan, D. (2010, Septem-

112

http://www.jneurosci.org.ezproxy.lib.monash.edu.au/content/23/21/7940
http://www.jneurosci.org.ezproxy.lib.monash.edu.au/content/23/21/7940
http://jeb.biologists.org/content/208/24/4709.abstract
http://www.sciencedirect.com/science/article/pii/S2212683X14000474
http://www.sciencedirect.com/science/article/pii/S2212683X14000474
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5981829
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5981829

ber). Object detection with discriminatively trained part-based models. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 32(9), 1627–1645. Re-

trieved from http://www.ncbi.nlm.nih.gov/pubmed/20634557 doi:

10.1109/TPAMI.2009.167

Frome, A., Cheung, G., Abdulkader, A., Zennaro, M., Bissacco, A., Adam, H., …

Vincent, L. (2009, September). Large-scale privacy protection in Google Street View.

In 2009 IEEE 12th International Conference on Computer Vision (pp. 2373–2380).

IEEE. Retrieved from http://ieeexplore.ieee.org/articleDetails.jsp

?arnumber=5459413 doi: 10.1109/ICCV.2009.5459413

Gayler, R. W. (2003, July). Vector Symbolic Architectures answer Jackendoff’s chal-

lenges for cognitive neuroscience. In Proceedings of the ICCS/ASCS International

Conference on Cognitive Science (13-17 July 2003) (p. 133-138).

Gedeon, T., & Arathorn, D. (2007, Nov). Convergence of Map Seeking Cir-

cuits. Journal of Mathematical Imaging and Vision, 29(2-3), 235–248. Retrieved

from http://link.springer.com/10.1007/s10851-007-0028-3 doi:

10.1007/s10851-007-0028-3

Gelperin, A. (2013). Associative Memory Mechanisms in Terrestrial Slugs and

Snails. In Handbook of Behavioral Neuroscience (Vol. 22, pp. 280–290). Elsevier.

Retrieved from http://www.sciencedirect.com/science/article/pii/

113

http://www.ncbi.nlm.nih.gov/pubmed/20634557
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=5459413
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=5459413
http://link.springer.com/10.1007/s10851-007-0028-3
http://www.sciencedirect.com/science/article/pii/B9780124158238000228http://linkinghub.elsevier.com/retrieve/pii/B9780124158238000228
http://www.sciencedirect.com/science/article/pii/B9780124158238000228http://linkinghub.elsevier.com/retrieve/pii/B9780124158238000228

B9780124158238000228http://linkinghub.elsevier.com/retrieve/

pii/B9780124158238000228 doi: 10.1016/B978-0-12-415823-8.00022-8

Giurfa, M., Zhang, S., Jenett, A., Menzel, R., & Srinivasan, M. V. (2001, April). The

concepts of ’sameness’ and ’difference’ in an insect. Nature, 410(6831), 930–3. doi:

10.1038/35073582

Grochowski, E., & Annavaram, M. (2006). Energy per instruction trends in Intel

microprocessors. Technology@ Intel Magazine. Retrieved from http://support

.intel.co.jp/pressroom/kits/core2duo/pdf/epi-trends-final2.pdf

Harker, S. R., Vogel, C. R., & Gedeon, T. (2007, August). Analysis of Constrained

Optimization Variants of the Map-Seeking Circuit Algorithm. Journal of Mathemat-

ical Imaging and Vision, 29(1), 49–62. Retrieved from http://link.springer

.com/10.1007/s10851-007-0024-7 doi: 10.1007/s10851-007-0024-7

Hebb, D. O. (1949). The Organization of Behavior (1st ed.). Psychology Press.

Hettiarachchige, Y., Khan, A., & Barca, J. C. (2018, Nov). Multi-Object Tracking

of Swarms with Active Target Avoidance. In 2018 15th International Conference on

Control, Automation, Robotics and Vision (ICARCV) (pp. 1204–1209). doi: 10.1109/

ICARCV.2018.8581176

Hettiarachchige, Y. R., Khan, A. I., & Barca, J. C. (2018, Jan). Improving en-

ergy consumption of pattern recognition by combining processor-centric and bio-

114

http://www.sciencedirect.com/science/article/pii/B9780124158238000228http://linkinghub.elsevier.com/retrieve/pii/B9780124158238000228
http://www.sciencedirect.com/science/article/pii/B9780124158238000228http://linkinghub.elsevier.com/retrieve/pii/B9780124158238000228
http://support.intel.co.jp/pressroom/kits/core2duo/pdf/epi-trends-final2.pdf
http://support.intel.co.jp/pressroom/kits/core2duo/pdf/epi-trends-final2.pdf
http://link.springer.com/10.1007/s10851-007-0024-7
http://link.springer.com/10.1007/s10851-007-0024-7

inspired considerations. Biologically Inspired Cognitive Architectures, 23, 54–63. Re-

trieved from https://www.sciencedirect.com/science/article/pii/

S2212683X17300361 doi: 10.1016/J.BICA.2018.01.004

Hopfield, J. J. (1982, April). Neural Networks and Physical Systems with Emergent

Collective Computational Abilities. Proceedings of the National Academy of Sciences,

79(8), 2554–2558. Retrieved from http://www.pnas.org.ezproxy.lib.monash

.edu.au/content/79/8/2554.short doi: 10.1073/pnas.79.8.2554

Hubel, D. H., & Wiesel, T. N. (1962, January). Receptive fields, binocular interaction

and functional architecture in the cat’s visual cortex. The Journal of Physiology, 160(1),

106–154. Retrieved from http://doi.wiley.com/10.1113/jphysiol.1962

.sp006837 doi: 10.1113/jphysiol.1962.sp006837

Jaeger, H., & Haas, H. (2004, April). Harnessing nonlinearity: predicting chaotic

systems and saving energy in wireless communication. Science (New York, N.Y.) ,

304(5667), 78–80. Retrieved from http://www.sciencemag.org/content/304/

5667/78 doi: 10.1126/science.1091277

Jeschke, J. M., & Tollrian, R. (2007). Prey swarming: which predators become

confused and why? Animal Behaviour, 74(3), 387–393. doi: 10.1016/j.anbehav.2006

.08.020

115

https://www.sciencedirect.com/science/article/pii/S2212683X17300361
https://www.sciencedirect.com/science/article/pii/S2212683X17300361
http://www.pnas.org.ezproxy.lib.monash.edu.au/content/79/8/2554.short
http://www.pnas.org.ezproxy.lib.monash.edu.au/content/79/8/2554.short
http://doi.wiley.com/10.1113/jphysiol.1962.sp006837
http://doi.wiley.com/10.1113/jphysiol.1962.sp006837
http://www.sciencemag.org/content/304/5667/78
http://www.sciencemag.org/content/304/5667/78

Jiao, X., Akhlaghi, V., Jiang, Y., & Gupta, R. K. (2018, March). Energy-efficient neural

networks using approximate computation reuse. In 2018 design, automation test in

europe conference exhibition (date) (p. 1223-1228). doi: 10.23919/DATE.2018.8342202

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., … Yoon,

D. H. (2017). In-datacenter performance analysis of a tensor processing unit. In

Proceedings of the 44th annual international symposium on computer architecture

(pp. 1–12). New York, NY, USA: ACM. Retrieved from http://doi.acm.org/

10.1145/3079856.3080246 doi: 10.1145/3079856.3080246

Kanerva, P. (1988). Sparse Distributed Memory. MIT Press.

Kanerva, P. (1994). The Spatter Code for Encoding Concepts at Many Levels. In

M. Marinaro & P. Morasso (Eds.), ICANN ’94 SE - 52 (pp. 226–229). Springer

London. Retrieved from http://dx.doi.org/10.1007/978-1-4471-2097-1

_52 doi: 10.1007/978-1-4471-2097-1_52

Kanerva, P. (2014, September). Computing with 10,000-bit words. In 52nd Annual

Allerton Conference onCommunication, Control, and Computing (Allerton) (pp. 304–

310). doi: 10.1109/ALLERTON.2014.7028470

Keeton, W. T., Larkin, T. S., & Windsor, D. M. (1974). Normal fluctuations in the

earth’s magnetic field influence pigeon orientation. Journal of Comparative Phys-

116

http://doi.acm.org/10.1145/3079856.3080246
http://doi.acm.org/10.1145/3079856.3080246
http://dx.doi.org/10.1007/978-1-4471-2097-1_52
http://dx.doi.org/10.1007/978-1-4471-2097-1_52

iology, 95(2), 95–103. Retrieved from http://link.springer.com/10.1007/

BF00610108 doi: 10.1007/BF00610108

Khan, A. (2002). A peer-to-peer associative memory network for intelligent in-

formation systems. In ACIS 2002 Proceedings. Melbourne. Retrieved from

http://aisel.aisnet.org/acis2002/6/

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with

Deep Convolutional Neural Networks. In F. Pereira, C. J. C. Burges, L. Bottou,

& K. Q. Weinberger (Eds.), Advances in Neural Information Processing Systems 25

(pp. 1097–1105). Curran Associates, Inc. Retrieved from http://papers.nips

.cc/paper/4824-imagenet-classification-with-deep-convolutional

-neural-networks.pdf

Landeau, L., & Terborgh, J. (1986). Oddity and the ‘confusion effect’ in predation.

Animal Behaviour, 34(5), 1372–1380. doi: 10.1016/S0003-3472(86)80208-1

LeCun, Y., Bengio, Y., & Hinton, G. (2015, May). Deep learning. Nature, 521(7553),

436–444. Retrieved from http://www.nature.com.ezproxy.lib.monash

.edu.au/nature/journal/v521/n7553/full/nature14539.html doi:

10.1038/nature14539

Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86 (11), 2278–2324. doi:

117

http://link.springer.com/10.1007/BF00610108
http://link.springer.com/10.1007/BF00610108
http://aisel.aisnet.org/acis2002/6/
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://www.nature.com.ezproxy.lib.monash.edu.au/nature/journal/v521/n7553/full/nature14539.html
http://www.nature.com.ezproxy.lib.monash.edu.au/nature/journal/v521/n7553/full/nature14539.html

10.1109/5.726791

LeCun, Y., Kavukcuoglu, K., & Farabet, C. (2010). Convolutional networks and

applications in vision. In Proceedings of 2010 IEEE International Symposium on

Circuits and Systems (ISCAS) (pp. 253–256). doi: 10.1109/ISCAS.2010.5537907

Lednor, A., & Walcott, C. (1983, January). Homing pigeon navigation: The ef-

fects of in-flight exposure to a varying magnetic field. Comparative Biochemistry

and Physiology Part A: Physiology, 76 (4), 665–671. Retrieved from http://

www.sciencedirect.com/science/article/pii/0300962983901275 doi:

10.1016/0300-9629(83)90127-5

Levy, S. D., & Gayler, R. W. (2008). Vector Symbolic Architectures: A New Building

Material for Artificial General Intelligence. In Proceedings of the First Conference on

Artificial General Intelligence (AGI-08) (pp. 414–418). Retrieved from www.cs.wlu

.edu/~levy/pubs/agi_2008_levy_gayler.pdf

Lewicki, M. S., Olshausen, B. A., Surlykke, A., & Moss, C. F. (2014, April). Scene

analysis in the natural environment. Frontiers in Psychology, 5, 199. Retrieved

from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=

3978336&tool=pmcentrez&rendertype=abstract doi: 10.3389/fpsyg.2014

.00199

118

http://www.sciencedirect.com/science/article/pii/0300962983901275
http://www.sciencedirect.com/science/article/pii/0300962983901275
www.cs.wlu.edu/~levy/pubs/agi_2008_levy_gayler.pdf
www.cs.wlu.edu/~levy/pubs/agi_2008_levy_gayler.pdf
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3978336&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3978336&tool=pmcentrez&rendertype=abstract

Lin, A. C., Bygrave, A. M., de Calignon, A., Lee, T., & Miesenböck, G. (2014,

April). Sparse, decorrelated odor coding in the mushroom body enhances learned

odor discrimination. Nature neuroscience, 17(4), 559–68. Retrieved from

http://link.galegroup.com.ezproxy.lib.monash.edu.au/apps/doc/

A366082643/AONE?sid=googlescholar&linkaccess=fulltext doi:

10.1038/nn.3660

Maass, W. (1997, December). Networks of spiking neurons: The third generation of

neural network models. Neural Networks, 10(9), 1659–1671. Retrieved from http://

www.sciencedirect.com/science/article/pii/S0893608097000117 doi:

10.1016/S0893-6080(97)00011-7

Maass, W., Natschläger, T., & Markram, H. (2002). Real-time computing with-

out stable states: a new framework for neural computation based on perturbations.

Neural Computation, 14(11), 2531–2560. doi: 10.1162/089976602760407955

Marshall, J., & Arikawa, K. (2014, December). Unconventional colour vi-

sion. Current Biology : CB, 24(24), R1150–4. Retrieved from http://www

.sciencedirect.com/science/article/pii/S0960982214013013 doi:

10.1016/j.cub.2014.10.025

Martin, S., Rodriguez, P., & Murphy, P. (2009, October). The application of sim-

ulated annealing to a map seeking circuit. In IEEE International Conference on

119

http://link.galegroup.com.ezproxy.lib.monash.edu.au/apps/doc/A366082643/AONE?sid=googlescholar&linkaccess=fulltext
http://link.galegroup.com.ezproxy.lib.monash.edu.au/apps/doc/A366082643/AONE?sid=googlescholar&linkaccess=fulltext
http://www.sciencedirect.com/science/article/pii/S0893608097000117
http://www.sciencedirect.com/science/article/pii/S0893608097000117
http://www.sciencedirect.com/science/article/pii/S0960982214013013
http://www.sciencedirect.com/science/article/pii/S0960982214013013

Systems, Man and Cybernetics (pp. 3830–3835). IEEE. Retrieved from http://

ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5346615

doi: 10.1109/ICSMC.2009.5346615

McCulloch, W. S., & Pitts, W. (1943, December). A logical calculus of the ideas

immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115–

133. Retrieved from http://link.springer.com/10.1007/BF02478259 doi:

10.1007/BF02478259

Merolla, P., Arthur, J., Akopyan, F., Imam, N., Manohar, R., & Modha, D. S. (2011,

September). A digital neurosynaptic core using embedded crossbar memory with

45pJ per spike in 45nm. In IEEE Custom Integrated Circuits Conference (CICC) (pp.

1–4). IEEE. Retrieved from http://ieeexplore.ieee.org/lpdocs/epic03/

wrapper.htm?arnumber=6055294 doi: 10.1109/CICC.2011.6055294

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J., Akopyan,

F., … Modha, D. S. (2014, Aug). A million spiking-neuron integrated circuit

with a scalable communication network and interface. Science, 345(6197), 668–673.

Retrieved from http://science.sciencemag.org/content/345/6197/

668.abstract

Merriam-Webster.com. (2018). Definition for ”pattern”. https://www.merriam

-webster.com/dictionary/pattern. (Accessed: 2018-05-01)

120

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5346615
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5346615
http://link.springer.com/10.1007/BF02478259
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6055294
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6055294
http://science.sciencemag.org/content/345/6197/668.abstract
http://science.sciencemag.org/content/345/6197/668.abstract
https://www.merriam-webster.com/dictionary/pattern
https://www.merriam-webster.com/dictionary/pattern

Milinski, M., & Heller, R. (1978, Oct). Influence of a predator on the optimal forag-

ing behaviour of sticklebacks (Gasterosteus aculeatus L.). Nature, 275(5681), 642–644.

Retrieved from http://www.nature.com/doifinder/10.1038/275642a0 doi:

10.1038/275642a0

Muhamad Amin, A., & Khan, A. (2009). Collaborative-Comparison Learning for

Complex Event Detection Using Distributed Hierarchical Graph Neuron (DHGN)

Approach in Wireless Sensor Network. In A. Nicholson & X. Li (Eds.), Ai 2009:

Advances in artificial intelligence (Vol. 5866, pp. 111–120). Springer Berlin Heidelberg.

Retrieved from http://dx.doi.org/10.1007/978-3-642-10439-8_12 doi:

10.1007/978-3-642-10439-8_12

Murphy, P. K., Rodriguez, P. A., & Martin, S. R. (2009, October). Detection and

recognition of 3D targets in panchromatic gray scale imagery using a biologically-

inspired algorithm. In IEEE Applied Imagery Pattern Recognition Workshop (AIPR)

(pp. 1–6). IEEE. Retrieved from http://ieeexplore.ieee.org.ezproxy.lib

.monash.edu.au/articleDetails.jsp?arnumber=5466310 doi: 10.1109/

AIPR.2009.5466310

Murphy, P. K., Rodriguez, P. A., & Peterson, C. K. (2013). Detection and Recog-

nition of 3-D Targets in Panchromatic and in Synthetic Aperture Radar Imagery

Using a Map-Seeking Circuit Algorithm. John Hopkins APL Technical Digest, 31(3),

121

http://www.nature.com/doifinder/10.1038/275642a0
http://dx.doi.org/10.1007/978-3-642-10439-8_12
http://ieeexplore.ieee.org.ezproxy.lib.monash.edu.au/articleDetails.jsp?arnumber=5466310
http://ieeexplore.ieee.org.ezproxy.lib.monash.edu.au/articleDetails.jsp?arnumber=5466310

234–253. Retrieved from http://www.jhuapl.edu/techdigest/TD/td3103/

31_03-Murphy.pdf

Nasution, B. B., & Khan, A. I. (2008). A Hierarchical Graph Neuron Scheme for

Real-Time Pattern Recognition. IEEE Transactions on Neural Networks, 19(2), 212–

229. doi: 10.1109/TNN.2007.905857

Navaridas, J., Furber, S., Garside, J., Jin, X., Khan, M., Lester, D., … Yang, S. (2013,

November). SpiNNaker: Fault tolerance in a power- and area- constrained large-

scale neuromimetic architecture. Parallel Computing, 39(11), 693–708. Re-

trieved from http://www.sciencedirect.com/science/article/pii/

S0167819113001051 doi: 10.1016/j.parco.2013.09.001

Neumann, J. V. (1966). Theory of self-reproducing automata. Champaign, IL, USA:

University of Illinois Press.

Olshausen, B. A., & Field, D. J. (1996, June). Emergence of simple-cell receptive field

properties by learning a sparse code for natural images. Nature, 381(6583), 607–609.

Retrieved from http://www.nature.com.ezproxy.lib.monash.edu.au/

nature/journal/v381/n6583/abs/381607a0.html doi: 10.1038/381607a0

Olshausen, B. A., & Field, D. J. (2004, August). Sparse coding of sensory inputs.

Current Opinion in Neurobiology, 14(4), 481–7. doi: 10.1016/j.conb.2004.07.007

122

http://www.jhuapl.edu/techdigest/TD/td3103/31_03-Murphy.pdf
http://www.jhuapl.edu/techdigest/TD/td3103/31_03-Murphy.pdf
http://www.sciencedirect.com/science/article/pii/S0167819113001051
http://www.sciencedirect.com/science/article/pii/S0167819113001051
http://www.nature.com.ezproxy.lib.monash.edu.au/nature/journal/v381/n6583/abs/381607a0.html
http://www.nature.com.ezproxy.lib.monash.edu.au/nature/journal/v381/n6583/abs/381607a0.html

Olson, R. S., Hintze, A., Dyer, F. C., Knoester, D. B., & Adami, C. (2013). Predator

confusion is sufficient to evolve swarming behaviour. Journal of The Royal Society

Interface, 10(85).

Ondrúška, P., & Posner, I. (2016). Deep tracking: Seeing beyond seeing using recur-

rent neural networks. In Proceedings of the Thirtieth AAAI Conference on Artificial

Intelligence (pp. 3361–3367). AAAI Press. Retrieved from http://dl.acm.org/

citation.cfm?id=3016100.3016374

Osipov, E., Khan, A. I., & Amin, A. (2014, June). Holographic graph neuron. In

International Conference on Computer and Information Sciences (ICCOINS) (pp. 1–

6). IEEE. Retrieved from http://ieeexplore.ieee.org/lpdocs/epic03/

wrapper.htm?arnumber=6868350 doi: 10.1109/ICCOINS.2014.6868350

Osuna, E., Freund, R., & Girosit, F. (1997, Jun). Training support vector machines:

an application to face detection. In Proceedings of IEEE Computer Society Conference

on Computer Vision and Pattern Recognition (p. 130-136). doi: 10.1109/CVPR.1997

.609310

Overman, T. L., & Hart, M. (2012, May). Sensor agnostic object recognition using

a map seeking circuit. In SPIE Defense, Security, and Sensing (pp. 83910N–83910N–

12). International Society for Optics and Photonics. Retrieved from http://

123

http://dl.acm.org/citation.cfm?id=3016100.3016374
http://dl.acm.org/citation.cfm?id=3016100.3016374
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6868350
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6868350
http://proceedings.spiedigitallibrary.org.ezproxy.lib.monash.edu.au/proceeding.aspx?articleid=1354632
http://proceedings.spiedigitallibrary.org.ezproxy.lib.monash.edu.au/proceeding.aspx?articleid=1354632

proceedings.spiedigitallibrary.org.ezproxy.lib.monash.edu.au/

proceeding.aspx?articleid=1354632 doi: 10.1117/12.917640

Pauwels, K., Rubio, L., Diaz, J., & Ros, E. (2013, June). Real-Time Model-Based

Rigid Object Pose Estimation and Tracking Combining Dense and Sparse Visual

Cues. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 2347–

2354). IEEE. doi: 10.1109/CVPR.2013.304

Pauwels, K., Rubio, L., & Ros, E. (2014, June). Real-Time Model-Based Articulated

Object Pose Detection and Tracking with Variable Rigidity Constraints. In IEEE

Conference on Computer Vision and Pattern Recognition (pp. 3994–4001). IEEE. doi:

10.1109/CVPR.2014.510

Pauwels, K., Rubio, L., & Ros, E. (2015). Real-time Pose Detection and Tracking of

Hundreds of Objects. IEEE Transactions on Circuits and Systems for Video Technol-

ogy, PP(99), 1–1. doi: 10.1109/TCSVT.2015.2430652

Pauwels, K., Tomasi, M., Diaz Alonso, J., Ros, E., & Van Hulle, M. M. (2012, July).

A Comparison of FPGA and GPU for Real-Time Phase-Based Optical Flow, Stereo,

and Local Image Features. IEEE Transactions on Computers, 61(7), 999–1012. doi:

10.1109/TC.2011.120

Perez-Orive, J., Mazor, O., Turner, G. C., Cassenaer, S., Wilson, R. I., & Laurent, G.

(2002, July). Oscillations and sparsening of odor representations in the mushroom

124

http://proceedings.spiedigitallibrary.org.ezproxy.lib.monash.edu.au/proceeding.aspx?articleid=1354632
http://proceedings.spiedigitallibrary.org.ezproxy.lib.monash.edu.au/proceeding.aspx?articleid=1354632

body. Science (New York, N.Y.) , 297(5580), 359–65. Retrieved from http://www

.ncbi.nlm.nih.gov/pubmed/12130775 doi: 10.1126/science.1070502

Plate, T. A. (1995, May). Holographic reduced representations. IEEE Transactions on

Neural Networks, 6 (3), 623–641. doi: 10.1109/72.377968

Qiao, N., Mostafa, H., Corradi, F., Osswald, M., Stefanini, F., Sumislawska, D., &

Indiveri, G. (2015). A reconfigurable on-line learning spiking neuromorphic processor

comprising 256 neurons and 128K synapses. Frontiers in Neuroscience, 9(August). doi:

10.3389/fnins.2015.00141

Rebai, I., BenAyed, Y., Mahdi, W., & Lorré, J.-P. (2017, Jan). Improving speech recog-

nition using data augmentation and acoustic model fusion. Procedia Computer Sci-

ence, 112, 316–322. Retrieved from https://www.sciencedirect.com/science/

article/pii/S187705091731342X doi: 10.1016/J.PROCS.2017.08.003

Ruxton, G. D., Jackson, A. L., & Tosh, C. R. (2007, Mar). Confusion of predators

does not rely on specialist coordinated behavior. Behavioral Ecology, 18(3), 590–596.

Retrieved from https://academic.oup.com/beheco/article-lookup/doi/

10.1093/beheco/arm009 doi: 10.1093/beheco/arm009

Schemmel, J., Briiderle, D., Griibl, A., Hock, M., Meier, K., & Millner, S. (2010,

May). A wafer-scale neuromorphic hardware system for large-scale neural modeling.

In Proceedings of IEEE International Symposium on Circuits and Systems (pp. 1947–

125

http://www.ncbi.nlm.nih.gov/pubmed/12130775
http://www.ncbi.nlm.nih.gov/pubmed/12130775
https://www.sciencedirect.com/science/article/pii/S187705091731342X
https://www.sciencedirect.com/science/article/pii/S187705091731342X
https://academic.oup.com/beheco/article-lookup/doi/10.1093/beheco/arm009
https://academic.oup.com/beheco/article-lookup/doi/10.1093/beheco/arm009

1950). IEEE. Retrieved from http://ieeexplore.ieee.org/lpdocs/epic03/

wrapper.htm?arnumber=5536970 doi: 10.1109/ISCAS.2010.5536970

Schmidt-Koenig, K., & Walcott, C. (1978, May). Tracks of pigeons homing with

frosted lenses. Animal Behaviour, 26 , 480–486. Retrieved from http://www

.sciencedirect.com/science/article/pii/0003347278900659 doi:

10.1016/0003-3472(78)90065-9

Shao, Y. S., & Brooks, D. (2013, September). Energy characterization and instruction-

level energy model of Intel’s Xeon Phi processor. In International Symposium on Low

Power Electronics and Design (ISLPED) (pp. 389–394). IEEE Press. Retrieved from

http://dl.acm.org.ezproxy.lib.monash.edu.au/citation.cfm?id=

2648668.2648758

Simard, P., Steinkraus, D., & Platt, J. (2003). Best practices for convolutional neural

networks applied to visual document analysis. In Proceedings of Seventh International

Conference on Document Analysis and Recognition (Vol. 1, pp. 958–963). IEEE Com-

put. Soc. Retrieved from http://ieeexplore.ieee.org/document/1227801/

doi: 10.1109/ICDAR.2003.1227801

Snider, R. K., & Arathorn, D. W. (2006). Terrain discovery and navigation of a

multi-articulated linear robot using map-seeking circuits. In Proc. SPIE (Vol. 6229,

126

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5536970
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5536970
http://www.sciencedirect.com/science/article/pii/0003347278900659
http://www.sciencedirect.com/science/article/pii/0003347278900659
http://dl.acm.org.ezproxy.lib.monash.edu.au/citation.cfm?id=2648668.2648758
http://dl.acm.org.ezproxy.lib.monash.edu.au/citation.cfm?id=2648668.2648758
http://ieeexplore.ieee.org/document/1227801/

pp. 62290H–62290H–11). Retrieved from http://dx.doi.org/10.1117/12

.663721 doi: 10.1117/12.663721

Turing, A. M. (1950). Computing Machinery and Intelligence. Mind, 59(236), pp.

433–460. Retrieved from http://www.jstor.org/stable/2251299

Vinje, W. E., & Gallant, J. L. (2002, April). Natural stimulation of the nonclassical

receptive field increases information transmission efficiency in V1. The Journal of

Neuroscience : The Official Journal of the Society for Neuroscience, 22(7), 2904–15.

Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11923455 doi:

20026216

Watson, J. D., & Crick, F. H. C. (1953, Apr). Molecular Structure of Nucleic Acids: A

Structure for Deoxyribose Nucleic Acid. Nature, 171, 737. Retrieved from http://

dx.doi.org/10.1038/171737a0http://10.0.4.14/171737a0

Wright, J., Mairal, J., Sapiro, G., & Huang, T. S. (2010, Jun). Sparse Representation

for Computer Vision and Pattern Recognition. Proceedings of the IEEE, 98(6), 1031–

1044. Retrieved from http://ieeexplore.ieee.org/xpl/articleDetails

.jsp?arnumber=5456194 doi: 10.1109/JPROC.2010.2044470

Zentall, T. R., Wasserman, E. A., & Urcuioli, P. J. (2014, Jan). Associative concept

learning in animals. Journal of the Experimental Analysis of Behavior, 101(1), 130–

127

http://dx.doi.org/10.1117/12.663721
http://dx.doi.org/10.1117/12.663721
http://www.jstor.org/stable/2251299
http://www.ncbi.nlm.nih.gov/pubmed/11923455
http://dx.doi.org/10.1038/171737a0http://10.0.4.14/171737a0
http://dx.doi.org/10.1038/171737a0http://10.0.4.14/171737a0
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5456194
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5456194

151. Retrieved from http://doi.wiley.com/10.1002/jeab.55 doi: 10.1002/

jeab.55

Zia, M. Z., Stark, M., Schiele, B., & Schindler, K. (2013, November). Detailed 3D

representations for object recognition and modeling. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 35(11), 2608–2623. Retrieved from http://

www.ncbi.nlm.nih.gov/pubmed/24051723 doi: 10.1109/TPAMI.2013.87

Zia, M. Z., Stark, M., & Schindler, K. (2014a, June). Are Cars Just 3D Boxes? Jointly

Estimating the 3D Shape of Multiple Objects. In IEEE Conference on Computer

Vision and Pattern Recognition (pp. 3678–3685). IEEE. Retrieved from http://

ieeexplore.ieee.org/articleDetails.jsp?arnumber=6909865 doi:

10.1109/CVPR.2014.470

Zia, M. Z., Stark, M., & Schindler, K. (2014b, Nov). Towards Scene Understanding

with Detailed 3D Object Representations. International Journal of Computer Vision.

Retrieved from http://link.springer.com/10.1007/s11263-014-0780-y

doi: 10.1007/s11263-014-0780-y

128

http://doi.wiley.com/10.1002/jeab.55
http://www.ncbi.nlm.nih.gov/pubmed/24051723
http://www.ncbi.nlm.nih.gov/pubmed/24051723
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6909865
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6909865
http://link.springer.com/10.1007/s11263-014-0780-y

	Introduction
	Preamble
	Bio-inspired approaches
	Issues and Challenges in pattern recognition
	Hypothesis
	Research questions
	Contributions
	Thesis Organization

	Background
	Algorithmic approaches
	Support Vector Machines
	Random Forests
	Algorithmic approaches to vision
	Deformable Parts Model
	Scene understanding
	Multiple Object Tracking

	Summery of algorithmic approaches

	Pattern recognition in biology
	Sensory information
	Sparse Coding

	Bio-inspired pattern recognition
	Reservoir Computing
	Deep Neural Networks
	Sparse Distributed Memories
	Vector Symbolic Architectures
	Graph Neuron
	Map Seeking Circuits

	Energy Efficiency
	Summery of bio-inspired

	Conclusions

	Sparse Coding
	Introduction
	Map Seeking Circuits
	MSC algorithm

	MSC Accuracy
	Encoding Heuristics
	Tuning MSC
	Tuning MSC layers
	Encoding inputs
	Oriented edge encoding

	Conclusion

	Energy efficiency via bio-inspired parallelism
	Introduction
	Comparison of bio-inspired and algorithmic approaches
	Speed
	Task and Data Parallelism
	Multiple Target Detection

	Accuracy
	Generalisability
	Object recognition
	Articulated object recognition
	Motor controls
	High level path planning

	Energy analysis

	Conclusions

	Exploiting temporal information for multi-object tracking
	Introduction
	Swarms and Predator Confusion
	Recurrent Neural Network Tracker
	Sequential Hierarchical Graph Neuron
	One-shot Sequence Training
	Improving HGN speed and memory usage

	Experimental Results
	Data generation
	Training Data
	Training differences between RNN and SHGN

	Evaluation Data
	Findings

	Conclusion

	Conclusion
	Contributions of the research
	Future work

	References

