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Abstract 

The formation of hydrothermal ore deposits, especially those large and giant in scale, are 

usually a result of extensive hydrothermal activities, where fluid-rock interactions play a key 

role in sourcing, transporting and depositing metals during hydrothermal fluid evolution. There 

are several aspects that affect the fate of metals during fluid-rock/mineral interaction, including 

metal solubility and aqueous speciation in fluids; partitioning behaviour of metals in mineral 

solid solutions; and mineral replacement via fluid-mediated dissolution-reprecipitation 

reactions. Moreover, multi-stage hydrothermal events are widely recognized in large to giant 

hydrothermal ore deposits. This complexity, combined with a lack of experimental data on 

metal solubility and speciation over the wide range of T-P conditions relevant for ore systems, 

however, make it hard to identify the key mechanisms that control ore formation. Hence, our 

understanding of fluid-rock interaction in hydrothermal ore forming processes is still limited, 

and this lack of knowledge limits our capability to identify the key factors and mechanisms 

that control mineralization and ore forming processes. 

In this thesis, several key aspects of fluid-rock interaction that are important for ore generation 

have been investigated using thermodynamic modelling and hydrothermal experiments. These 

include: (1) influence of fluorine on the solubility of Fe, U, and REE in fluids; (2) role of trace 

elements, i.e., Ce(III/IV), in affecting mechanism and efficiency of fluid-rock/mineral reaction; 

(3) partitioning behaviour of As between fluid and Fe(As)-sulfide solid solutions; and (4)

significance of multi-stage hydrothermal activities in forming high-grade ores. In case of 

hematite-rich IOCG deposits such as the Olympic Dam, the formation of high-grade Cu-Au-

U-REE ores is hotly debated. New results of this thesis show that F can increase the metal (U

and REE, but not Fe) carrying capacity of the fluids and help to dissolve silicates, which 

contributes to the large metal endowment in IOCG deposits. Furthermore, hydrothermal 

experiments show that trace amount of Ce(III) in fluids can significantly increase the porosity 

of hematite formed via replacement of magnetite, which increases the coupling between 

mineral reaction, fluid flow and element mass transfer, thus enhancing the ore forming 

processes. In general, these experiments provide the first evidence for the capacity of trace 

metals to act as a catalyst in promoting hydrothermal ore transport and deposition.

Extensive hydrothermal activities are thought to be important for the formation of many large 

and giant ore deposits. Remobilization and reprecipitation of metals may be crucial mechanism 

for generating high grade ores in many of these deposits. Results from reactive transport 
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modelling indicate that in the context of the Olympic Dam deposit, remobilization and 

reprecipitation of U, Cu and F can explain the formation of high-grade U-Cu (+fluorite) ores. 

Similarly, based on the newly developed solid solution model for As in pyrite and arsenopyrite, 

reactive transport modelling shows that similar scenario can also explain the formation of high 

grade As(-Au) pyrite in orogenic gold systems, where dilute solution can drive dissolution-

reprecipitation reactions and enrich As(-Au) in Fe sulfide minerals. 
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1.1 Fluid-rock interactions and the formation of hydrothermal ore deposits 

Hydrothermal ore deposit is one of the most important classes of ore deposits in the world. 

Formation of hydrothermal ore deposits relies heavily on the property of the ore fluids and the 

interactions between hydrothermal fluids and surrounding rocks in Earth’s crust (Heinrich and 

Candela, 2014; Seward et al., 2014). Three major processes have been summarized to describe 

the formation of a hydrothermal ore deposit: source, transport, and deposition (Fig. 1.1; 

Heinrich and Candela, 2014). During all these processes, fluid-rock interactions control the 

partitioning behaviour of metals between fluids and minerals. For example, the sourcing of 

metals can be described as preferential partitioning of metals into a fluid phase from a parent 

rock when they come into contact. Stable or relatively constant solubility of certain metals 

(normally in the form of their aqueous complexes) under specific geological conditions (e.g., 

P, T, wall rock) ensures that these metals are able to be transported and concentrated in space. 

Whenever changes in P-T, wall rock composition or mixing with other fluids disturbs the 

equilibrium state of the fluid itself (i.e., saturation state of minerals/metals dissolved in the 

fluid) or between fluid and the surrounding rock, metals will be deposited and thus form the 

mineralization. 

Fig. 1.1 Conceptual diagram showing processes during formation of hydrothermal ore 

deposits (modified from Brugger et al., 2010) 

Factors affecting fluid-rock interactions include fluid chemistry (e.g., pH, salinity, availability 

of ligands), rock composition, pressure and temperature. However, it is usually hard to figure 

out the key mechanisms that control metal releasing into fluids, or deposition to form 

enrichment, due to the complexity of fluid and rock composition, combined with limited 
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understanding on metal solubility in fluids as well as in mineral solid solutions under high 

temperature and pressure, and on mechanisms of the fluid-mineral interaction. These 

fundamentally limit our understanding of ore formation processes. 

The generation of large and giant ore deposits is usually a result of coincidental combination 

of common geological processes, or sometimes of unique processes (Richards, 2013). These 

factors include pressure and temperature change, mixing of different fluids, and interaction 

between ore fluids with certain wall-rocks. Particularly, some factors may play a fundamental 

role in contributing to the exceptional size of the hydrothermal ore deposit. For example, in 

orogenic gold deposits, pressure-drop controlled by seismic activity is a key factor for gold 

mineralization (Goldfarb et al., 2015). Pressure-drop induced boiling or phase separation of 

fluids changes the fluid composition and thus the saturation state of metals, i.e., Au, which 

interrupts the equilibrium of the original fluids and thus drives the gold precipitation. In IOCG 

deposits, permeability is often regarded as a key to controlling the metal endowment of the 

deposits (e.g., Davidson et al., 2007). This is because higher permeability of wall-rock or ore 

body will facilitate fluid penetration, increase fluid-rock interaction and also provide space for 

ore precipitation. 

Though certain factor may play a major role in controlling ore formation in different type of 

hydrothermal ore deposits, the equilibrium state of the ore fluids, which determines the metal 

solubility and precipitation of ore minerals, and the interactions between fluids and surrounding 

rocks are generally the essential factor that determines the mineralization.  

Specific mechanism that controls the accumulation of metal varies. However, in a common 

sense, fluid-rock interaction plays a fundamental role during hydrothermal mineralization 

processes. Therefore, a deeper understanding of fluid-rock interactions, regarding reaction 

mechanisms, solubility of metals in fluids and metal mobilization, and changes of ore or wall-

rock textures (e.g., porosity change in the wall rock), is important to help retrieve the ore 

forming history, generalize accurate deposit genesis model, guide exploration and provide 

important knowledge on mineral processing and metal extraction. 

It is important to note that multistage hydrothermal events and/or cyclic fluid flows have been 

emphasized by several studies for their contribution to the formation of large ore deposits (e.g., 

Brugger et al., 2000; Meffre et al., 2016). In fact, in many large and giant hydrothermal ore 

deposits, extensive or multistage hydrothermal events are observed in the formation of large to 

giant ore deposits (e.g., Haynes et al., 1995; Meffre et al., 2016; Fougerouse et al., 2017). 

Metals can be introduced and accumulated by each stage fluids, or are upgraded and refined 

through remobilization driven by hydrothermal fluids, although in many cases, key 
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mechanisms for metal enrichment in forming large ore deposits are still not clear, due to the 

complexity of ore fluids and nature of the wall rock, inaccuracy in determining the P-T 

conditions for mineralization, and the destruction of original features (e.g., porosity) by later 

stage alteration. 

In summary, the aim of this thesis is to investigate how fluid-rock interaction can affect the 

enrichment of metals and contribute to the formation of large to giant hydrothermal ore deposits. 

Several aspects of fluid-rock interaction including metal transport, metal partitioning during 

fluid-mineral equilibria, and mineral replacement reactions are investigated. Moreover, 

reactive transport modelling is performed to investigate the mechanisms of multi-stage 

hydrothermal events in contributing to the formation of large to giant hydrothermal ore deposits 

including Iron Oxide Cu-Au (IOCG) deposits and hydrothermal gold deposits. 

1.1.1 Iron Oxide Cu-Au deposits 

Iron Oxide Cu-Au (IOCG) deposits are one type of the most significant hydrothermal ore 

systems in the world, being usually low-grade but giant to supergiant in scale (Groves et al., 

2016). The defining features of IOCG deposits include (1) voluminous hematite and/or 

magnetite; (2) elevated concentrations of Cu, Au associated with Ag, U, REE and F in the ore; 

(3) intensive hydrothermal alteration of the host rock (Hitzman et al., 1992; Williams et al., 

2005). 

The Olympic Dam (OD) is a leading example of IOCG deposits, which is also one of the largest 

ore deposits in the world (Groves et al., 2016). The formation of OD has been a hot topic since 

its discovery, regarding the source of metals, hydrothermal evolution, host rock controls and 

genetic model (e.g., Haynes et al., 1995; McPhie et al., 2011). Though, key factors for 

generating the unique feature of OD, as well as the IOCG-type deposits, are still under debate. 

There are two subclass endmembers of IOCG deposits, which are the magnetite-rich deposits, 

such as Kiruna-type magnetite-apatite deposits, and the hematite-rich deposits, such as OD 

(Hitzman et al., 1992). The hematite-rich deposits usually have higher Cu-Au(±U±REE) 

content compared to the magnetite-rich deposits. However, the reason for elevated Cu-

Au(±U±REE) grade in hematite-rich ores in IOCG deposits is weakly understood (e.g., 

Bastrakov et al., 2007). It is suggested that permeability of the ore breccia is a key factor 

controlling metal endowments in IOCG deposits, with the fact that ore grade (Cu, Au), 

brecciation intensity and hematite:magnetite ratio being positively correlated among deposits 

from the Olympic Dam Cu-Au province (Gow et al., 1994; Davidson et al., 2007). This is 

supported by the result of Bastrakov et al. (2007), showing that hematite-stage alteration may 
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be responsible for the upgraded Cu-Au content in hematite-rich ores for sub-economic IOCG 

deposits. 

Fluorine (F) enrichment is an important feature of many IOCG deposits (Hitzman et al., 1992; 

Williams et al., 2005; Chen and Zhou, 2014; Montreuil et al., 2016). McPhie et al. (2011) 

pointed out that ore fluids that are responsible for OD should be F-rich. It is thought that F 

contributes to the generation of the ores because F may enhance metal mobility via formation 

of strong fluoride complexes (e.g., U, REE) in the ore-forming fluids (McPhie et al., 2011). 

Moreover, the F-rich nature of ore fluids is possibly inherited from the F-rich host granite 

and/or the regional silicic igneous rocks (McPhie et al., 2011), which may also reinforce the 

source link between host rock and the OD ore regarding U and REE. Furthermore, the 

enrichment of F in ore fluids is thought to form significant amount of HF(aq), which is very 

corrosive to silicate rocks and may help increase permeability and porosity of the wall rock 

and the breccia complex. 

The genetic model of IOCG deposits has long been discussed, including fluid mixing model 

and multi-stage hydrothermal upgrading model (e.g., Haynes et al., 1995; Bastrakov et al., 

2007; Schlegel et al., 2018). For many of the large IOCG deposits, the two-stage upgrading 

model can well explain the formation of elevated Cu-Au(±U±REE) ores in the hematite-rich 

deposits (e.g., Olympic Dam, Oak Dam, and Prominent Hill). It is suggested that the fluids in 

the hematite stage are able to drive remobilization of Cu-Au(±U±REE) and reprecipitate them 

to form upgrading (e.g., Bastrakov et al., 2007). Particularly, Bastrakov et al. (2007) modelled 

the formation of sub-economic IOCG deposits from the Olympic Dam Cu-Au province using 

thermodynamic methods and show that the oxidation of pre-existing low-grade Cu-Au ores is 

effective in enriching Cu and Au in the ores. The fluid mixing model where an oxidized Cu-

Au-bearing fluid mix with reduced fluids or interacting with ferrous iron-bearing minerals may 

explain some deposits such as the Prominent Hill (Schlegel et al., 2018), however, the 

extensively oxidized nature of OD and several other deposits (e.g., Emmie Bluff; Gow et al., 

1994) and the variation in the extent of oxidation in the ores of different IOCG deposits imply 

protracted hydrothermal evolution history and overlapping of several stages of oxidizing 

hydrothermal alteration. In this case, a general model regarding IOCG formation still need 

further investigation. By far, the two-stage model or multi-stage model seems more reasonable 

in explaining especially those large and giant IOCG deposits in general. 

1.1.2 Hydrothermal Gold deposits 

Key factors that control the formation of different types of hydrothermal gold deposits are 

usually different, regarding their tectonic settings, relation to magmatism, and source of metals 
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and ore fluids (Groves and Santosh, 2015; Groves et al., 2016). For example, tectonic settings 

have a first-order control on the formation of giant orogenic gold deposits, and there is 

generally no direct link to magmatism, compared to porphyry deposits or Carlin-type (Groves 

et al., 2016). 

The formation of large gold deposits can be attribute to either a single unusual event or a 

combination of several hydrothermal events (e.g., Meffre et al., 2016). However, large gold 

deposits usually show complex multi-stage mineralization events, compared to smaller ones, 

making it a common feature of the giant gold deposits (Sibson et al., 1975; Brugger et al., 2000; 

Bateman and Hagemann, 2004; Sung et al., 2009; Cockerton and Tomkins, 2012; Meffre et al., 

2016; Fougerouse et al., 2017). Examples of these deposits cover a wide range of types of 

deposits including Orogenic gold (Kalgoorlie in Western Australia, Obuasi in West Africa, 

Bendigo gold deposit in central Victoria in Australia, etc.; Muller, 2014; Fougerouse et al., 

2017; Thomas et al., 2011), Carlin-type (Nevada in USA; Cline et al., 2005), porphyry 

(Chuquicamata in Chile; Campbell et al., 2006; Silitoe, 2010) and IOCGs (Olympic Dam; 

Williams et al., 2005; Bastrakov et al., 2007). 

A better understanding of the evolution history of these gold deposits is of great practical 

significance to help with exploration. However, overprinting of early mineralization by later 

stage fluids usually makes it especially challenging to precisely quantify the contribution of 

metals during each mineralization stage based on textural and chemical analysis of ore samples. 

In case of orogenic gold and the Carlin-type deposits, especially those large in size showing 

complex ore forming histories, it is usually hard to quantify the gold mineralization in each 

stage due to the complexity of gold geochemical behaviour and varying P-T at each stage. 

Several elements have affinity to Au, such as As, Ag, Bi, Te and Sb (Deditius et al., 2014; 

Tooth et al., 2008; Saunders et al., 2014). These elements have the potential to be used as tool 

to reveal the mineralization history of Au (e.g., Tooth et al., 2008). Among these elements, the 

association of As and Au has been widely observed in gold deposits and the hydrothermal 

mobilization of As in fluids has been relatively well studied (Brugger et al., 2016). Pyrite and 

arsenopyrite are important gold-hosting minerals, with As and Au usually being closely 

associated in these minerals (Deditius et al., 2014). This coupled As and Au geochemistry in 

pyrite and arsenopyrite makes As a potential tool to look at Au mineralization history. However, 

the partitioning behaviour of As between pyrite, arsenopyrite and hydrothermal fluids remains 

poorly understood due to the lack of knowledge for As in solid solutions of iron sulfide 

minerals. Currently, rare experiments have been performed on the partitioning of As between 

fluids and Fe-sulfide minerals, and there is no solid solution thermodynamic model for As in 
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pyrite and arsenopyrite that can be used for accurately predicting As behaviour using 

thermodynamic modelling. 

1.2 Key aspects of fluid-rock interactions 

 1.2.1 Metal mobility in hydrothermal fluids 

The stability of metal complexes depends on pressure, temperature and fluid chemistry (e.g., 

pH, ƒO2). The basic understanding on how these factors control the stability of metal aqueous 

complexes is important predicting metal mobilization and deposition over the wide range of 

conditions relevant to hydrothermal ore systems. 

The solubility of metals in hydrothermal fluids is strongly affected by ligands in fluids (e.g., 

Brugger et al., 2016). Metals form complexes with ligands such as F-, Cl-, HS-, SO42- and CO32-. 

According to the soft-hard acid-base theory, hard ligands form strong complexes with hard 

metals while soft ligands form stable complexes with soft metals (Pearson, 1963). Therefore, 

fluids with specific ligands can selectively transport metals. 

Fluoride (F-) is classified as a hard ligand that can form strong complexes with hard cations 

such as Fe3+, REE3+ and U(IV/VI) (Bastrakov et al., 2010; Pearson, 1963; Seward and Barnes, 

1997). It has long been thought that F- is the ‘key’ ligand for REE hydrothermal transportation 

(Williams-Jones et al., 2000). Recently, however, Williams-Jones et al. (2012) shows that REE 

chloride complexes are indeed the most important complexes for the hydrothermal 

transportation of REE, due to the prevalence of chloride ions in natural fluids, whereas fluoride 

acts as a ‘precipitating ligand’ as a result of the low solubility of REE-F minerals at elevated 

temperatures (Migdisov et al., 2016), and the increasing concentration of F in fluids may give 

rise to the precipitation of REEs. For IOCG systems such as Olympic Dam, the source of F and 

its role in contributing to the extraordinary metal endowment in the deposit is still under debate, 

regarding whether the F-rich host granite could be good source of F and the role of F in 

transporting metals including Fe, U and REE. 

1.2.2 Fluid-mediated mineral replacement reaction 

Mineral replacement reactions are common in hydrothermal ore systems and the catalysing 

effect of hydrothermal fluids on the mineral replacement reactions has been emphasized by 

several studies (e.g., Fougerouse et al., 2016; Li et al., 2015; Putnis, 2009). Most fluid-driven 

mineral replacement reactions happen via a coupled dissolution-reprecipitation reactions (CDR) 

mechanism, which consists of dissolution of the parent mineral and reprecipitation of new 

minerals (Putnis, 2009). Effects from mineral replacement reactions on forming ore deposits 
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include porosity and texture change, and sequestration and upgrading of metals in minerals 

(e.g., Altree-Williams et al., 2015; Xia et al., 2009). Altree-Williams et al. (2015) pointed out 

that CDR reactions can cause remarkable change on mineral textures. This may cause 

significant change on the ore porosity, which may further affect the efficiency of fluid-rock 

interaction. 

For IOCG deposits, replacement of magnetite by hematite is an important reaction during the 

hematite stage alteration (Bastrakov et al., 2007). Generally, this reaction can happen via two 

pathways: redox pathway and non-redox pathway (Mücke and Cabral, 2005; Otake et al., 2007). 

These two mechanisms result in huge difference on the product volume: the redox reaction 

causes 1.66% volume increase whereas the non-redox reaction causes 32.22% volume decrease 

(Mücke and Cabral, 2005). 

It has long been proposed that in hematite-rich IOCG deposits, replacement of magnetite by 

hematite happens via oxidation reaction due to the oxidative nature of hematite stage fluids 

(e.g., Bastrakov et al., 2007; Schlegel et al., 2018). However, the increased brecciation intensity 

in hematite-rich ores (e.g., Olympic Dam, Ernest Henry, Oak Dam) indicates that the hematite-

stage alteration should introduce porosity, which is hard to explain by the oxidative reaction 

pathway (redox) that causes increased crystal volume. 

Increased ore porosity can facilitate fluid flow and thus boost alteration (Altree-Williams et al., 

2015). Therefore, apart from the possibility that hematite-stage fluids may introduce extra 

metals, the transformation from magnetite to hematite may also contribute to the Cu-Au 

mineralization by increasing porosity in the ore. By far, however, mechanisms of this particular 

transformation reaction are not well understood. Moreover, in IOCG hydrothermal systems, 

due to the existence of many redox sensitive components, such as Ce3+, the reaction may 

happen in a totally different way than idealized conditions (e.g., Mücke and Cabral, 2005). As 

different reaction mechanisms can result in huge difference on the product texture (e.g., Altree-

Williams et al., 2015), the nature of the fluids that are responsible for the observed reaction 

textures is hard to predict empirically with our current knowledge and requires further 

experimental and theoretical study. 

1.3 Thesis structure 

This thesis consists of six chapters, including the introductory chapter. The thesis is formatted 

as a thesis by publication. Chapter 2, 3, and 5 that have already been published in peer-reviewed 

journals and Chapter 4 is close to submission and has been formatted in the form of stand-alone 

journal articles. As such, there are some unavoidable repetitions in the introduction and 
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discussion sections of this thesis, mainly about the research background. Chapter 2 has been 

published in Chemical Geology in January 2019. Chapter 3 has been published in Geofluids in 

August 2018. Chapter 5 has been published in Geology in February 2019. Chapter 6 is the 

conclusion chapter that summarizes the main results of the thesis. 

Chapter 2 investigates the role of fluorine in mobilizing Fe, U and REE and its influence on 

the formation of IOCG deposits. In this chapter, we report the first results from in-situ 

synchrotron XAS experiments on Fe-F complexation up to 450 ºC. Combining the 

experimental data and thermodynamic calculations, we discussed the role of F in the formation 

of IOCG deposits in the following aspects: (1) transporting Fe, U and REE; (2) precipitation 

of Fe; (3) the source link between ore fluids and the host rocks; and (4) enhancing permeability 

of the breccia and the wall rocks. The results show that: (1) fluoride is not a good transporting 

ligand for Fe and U but can contribute to U and REE mobility by affecting fluid chemistry; (2) 

fluoride may help precipitate Fe in IOCG deposits; (3) HF(aq) is the predominant fluoride 

species in fluids at T>300 ºC and can help increase silicate solubility; (4) the F-rich host granite 

can provide F to the ore fluids through fluid-rock interactions. 

Chapter 3 reviews the thermodynamic properties of U(IV/VI)-F, U(IV/VI)-Cl, and U(IV/VI)-

OH aqueous complexes. Based on this, we calculate the solubility of uraninite and U3O8(s) in 

acidic F-bearing solutions (Cl:F = 100, ppm based) at 25-450 ºC, 600 bar, which aims to 

compare the relative importance of F and Cl in the hydrothermal transport of U. We further use 

reactive transport modelling to simulate the alteration of low-Cu-U magnetite-dominated ores 

by hematite-stable fluids. The results show that: (1) U(IV)-F complexes and U(VI)-F 

complexes are predominant at T<250ºC, whereas above 250ºC, U(IV/VI) chloride complexes 

are predominant; (2) extensive alteration of low-grade magnetite-chalcopyrite ores by low 

temperature, oxidized fluids is an effective mechanism for forming ore-grade Cu-U 

mineralization; (3) F plays a less important role in controlling metal endowments in IOCG 

deposits, and the co-enrichment of F and U in IOCG ores can be achieved via second stage 

alteration and upgrading processes. 

Chapter 4 investigates the transformation reaction of magnetite to hematite in acidic solutions 

under hydrothermal conditions (200 ºC). Trace amount of REE (La, Ce and Nd) are doped in 

the solution to see the possible effects from interconversion of Ce(III) and Ce(IV) on the 

replacement reaction. The results show that the presence of Ce increases the porosity of 

hematite formed in high-grade IOCG ores. Therefore trace amounts of Ce can increase the 

efficiency of the coupling between mineral reaction, fluid flow, and element mass transfer, 

catalysing and enhancing the ore formation process.  
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Chapter 5 presents the first thermodynamic model for arsenic in the solid solutions of pyrite 

and arsenopyrite and uses it to evaluate the partitioning behaviour of arsenic during fluid-

mineral equilibria. This model makes it possible to use arsenic as a proxy of gold in 

hydrothermal gold systems. Based on this model, we perform reactive transport modelling and 

for the first time show that the widely observed As-Au enrichment in the alteration rims of 

arsenian pyrite can be formed by protracted alteration of low-As-Au fluids, which drives 

dissolution and reprecipitation of pre-existing minerals and results in supersaturation of As-Au 

in a local scale. 

Chapter 6 summarizes the results and the findings of this thesis. Overall, this thesis integrates 

the findings from thermodynamic modelling and hydrothermal experiments and shows several 

aspects of fluid-rock interaction and how they contribute to the formation of large ore deposits. 

These include influence from F in metal mobilization, magnetite to hematite transformation 

reaction, arsenic in pyrite and arsenopyrite solid solutions, and remobilization and upgrading 

of metals by extensive hydrothermal fluid flows.  
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A B S T R A C T

The fluorine(F)-rich nature in iron oxide-copper-gold (IOCG) deposits has received much attention since it was
recognized that the giant Olympic Dam (OD) deposit contains> 2wt% fluorite. Yet, the significance of the F-U-
REE-Fe association remains poorly understood, with four existing hypotheses regarding the role of F: (i) fluoride
increases the solubility of metals by forming stable aqueous complexes; (ii) fluoride acts as a precipitating rather
than a transporting agent, due to the low solubility of some fluoride minerals; (iii) high F contents may simply
reflect the source of the ore fluids; and (iv) the presence of HF(aq) in acidic aqueous solutions may improve
leaching of metals and create fluid pathways. In this study, we investigated these hypotheses using thermo-
dynamic modelling, and performed complementary experiments to evaluate the nature and stability of Fe(II/III)-
F complexes at elevated temperature.

Our in-situ X-ray absorption spectroscopy (XAS) data show that at room temperature, the Fe(II/III) fluoride
complexes are more stable than corresponding Fe(II/III) chloride complexes, and the Fe(III) fluoride complexes
are important in F-only solutions at low temperature (≤100 °C). Increasing temperature causes precipitation of
Fe from F-only solutions, so that above 200 °C there was little detectable Fe left in the solution. In mixed F-Cl
solutions, the experimental data and the thermodynamic calculations show that Fe(III)-F complexes are im-
portant at low temperature (~≤150 °C) while Fe(II)-Cl complexes predominate at temperatures higher than
200 °C, causing an increase in Fe solubility.

We further investigated the potential of granitic rocks as a source for F and metals (Fe, REE and U) using
thermodynamic calculations (hypotheses (i), (ii) and (iii)). Our results show that U and La solubilities are mainly
controlled by temperature: U solubility is relatively high at T < 200 °C; La solubility is relatively high at
T > 250 °C. Fluoride significantly enhances the solubility of U and La compared to F-free system by affecting
fluid chemistry or forming stable complexes (La).

Our simulations also show that Si solubility is enhanced in F-bearing solutions (hypothesis (iv)), mainly
attributed to the increased solubility of H3SiO4

− and NaHSiO3(aq). Moreover, the solubility of Si-F increases
dramatically. These indicate that F may help breaking the SieO bond in silicates and releasing Si into fluids.
Therefore, fluorine may play a key role in enhancing the porosity of the wall rock and breccia, and in mineral
replacement reactions. Collectively, these would enhance fluid-rock reaction, and thus may help to drive metal
precipitation.

Overall, the thermodynamic considerations suggest that the common F+ Fe+REE ± U association in
IOCGs may not only reflect the source of the metals, but also that F contributes to the metal endowment of some
IOCG deposits via a combination of processes, including increasing the metal (U and REE, but not Fe) carrying
capacity of the fluids; and dissolving silicates and enhancing the porosity of the breccia and the wall rocks, thus
contributing to increased fluid pathways and ore-forming reactions.
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1. Introduction

Fluorine is enriched in many hydrothermal mineralizing systems,
such as Iron Oxide-Copper-Gold (IOCG), Iron Oxide-Apatite (IOA) and
REE deposits (Chen and Zhou, 2014; Hitzman et al., 1992; Montreuil
et al., 2016; Pollard, 2000; Sillitoe, 2003; Smith and Henderson, 2000;
Williams et al., 2005). Generally, F is widely distributed within these
mineralized systems in the form of both fluorite and F-bearing minerals
such as apatite, chlorite and biotite. The scale of the association be-
tween F and IOCG deposits has been highlighted for the supergiant
Olympic Dam (OD) deposit (McPhie et al., 2011a), but extends to most
IOCG (e.g., Prominent Hill, South Australia; Fab IOCG system, Canada;
Lala deposit, South-West China; Chen and Zhou, 2015; McPhie et al.,
2011a; Montreuil et al., 2016; Oreskes and Einaudi, 1990; Skirrow
et al., 2007; Schlegel and Heinrich, 2015). At OD, the extracted ore
contains ~2.5 wt% fluorite, adding up to ~100Mt F (world production
of F is ~5Mt/year; McPhie et al., 2011a). Large amounts of F are also
present in hydrothermal alteration minerals at OD, such as chlorite,
sericite and apatite (Agangi et al., 2012; McPhie et al., 2011b). These
studies relaunched the debate on the role of F in the generation of IOCG
deposits. Similarly to OD, other IOCG, IOA (e.g., Grängesberg Mining
District, Sweden; Jonsson et al., 2013) and REE deposits (e.g., Bayan
Obo; Smith and Henderson, 2000; Ling et al., 2013) generally display
an association between REE and Fe mineralization and F-bearing mi-
nerals, suggesting a F-rich nature of the mineralizing fluids (Salvi and
Williams-Jones, 1996). Fluorine-bearing minerals such as bastnäsite-
(Ce) and florencite-(Ce) usually make up the major REE ore phases at
these deposits.

Although the association between F and REE is well established, the
significance of F for the genesis of IOCG, IOA and REE deposits is still a
subject of debate. Four main explanations have been proposed, which
may work individually or in combination (Keppler, 1993; McPhie et al.,
2011a; Williams-Jones et al., 2000).

(i) Fluoride (F−) can increase the solubility of metals by forming stable
coordination complexes. According to Hard-Soft Acid Base (HSAB)
theory (Pearson, 1963), F− is classified as a hard ligand that forms
strong complexes with hard cations such as Fe3+, REE3+ (Seward
and Barnes, 1997; Williams-Jones et al., 2000) and U(IV/VI)
(Bastrakov et al., 2010). In contrast, significant Cu(I)–F and Au(I)–F
complexation is not expected because Cu(I) and Au(I) are soft bases
that form stable complexes with soft acids such as HS−. Keppler and
Wyllie (1991) showed that U prefers to partition into the aqueous
fluids with increasing HF content by forming U-F complexes during
fluid-melt equilibrium. Furthermore, McGloin et al. (2016) revealed
the close association between U and F enrichment in the source
regions of orogenic U ores; they proposed that F-bearing saline
fluids are the key to forming U mineralization, since F helps to re-
lease U from a granitic batholith. Moreover, it has long been pro-
posed that F− is an important transporting ligand for REE (McPhie
et al., 2011a; Oreskes and Einaudi, 1990; Williams-Jones et al.,
2000), due to the theoretically predicted formation of strong REE-
fluoride complexes (Haas et al., 1995). Williams-Jones et al. (2000)
proposed that for F contents between 10−5 and 10−1 m (ca.
0.01 ppm – 0.2%), thought to be realistic ore fluids, REEs are pre-
dominantly transported in the form of fluoride complexes.

McPhie et al. (2011a) suggested that F-rich hydrothermal fluids are
responsible for the high metal contents at OD. This raises the possibility
that some base metals may also be transported as fluoride complexes.
For example, Fe3+ is a hard metal, and Fe2+ is classified as having
intermediate hard-soft character. Room-temperature (25 °C) formation
constants indicate that fluoride complexes are stronger than chloride
complexes for both Fe2+ and Fe3+ (Sverjensky et al., 1997; Tagirov
et al., 2000); however, this is yet to be confirmed at elevated tem-
peratures. There is no experimental data on the temperature

dependence of Fe(II/III)-F complexation.

(ii) Based on recent experimental data for REEs solubilities, Williams-
Jones et al. (2012) proposed a new paradigm for the role of F in
REE mineralization, by demonstrating that F acts as a precipitating
barrier rather and a transporting agent under conditions typical for
the formation of many hydrothermal REE deposits, such as the
Bayan Obo deposit. They also suggested that REE-chloride com-
plexes are the most important complexes for the hydrothermal
transportation of REE, as a result of the prevalence of chloride ions
in natural fluids, the high stability of the HF(aq) ion pair, and the
extremely low solubility of REE-fluoride minerals at elevated
temperature. This led Chen and Zhou (2014) to suggest a new
explanation for the correlation between fluorite and REE miner-
alization at the Lala Fe-Cu-(REE) IOCG deposit in southwest China.
Following Williams-Jones et al. (2012), they pointed out that in-
stead of helping REE transport, the elevated concentration of F in
fluids may be responsible for REE precipitation.

(iii) The high F contents of some deposits may reflect the source of the
ore-forming fluids. For many IOCG deposits, close spatial and/or
temporal connections are well established between felsic magmatic
events and ore generation (Hitzman et al., 1992; Williams et al.,
2005). For example, at OD, the Roxby Downs granite (RDG), which
is classified as A-type granite and enriched in U, REE and F, is a
potential source of U and REE (Ehrig et al., 2012; Johnson and
Cross, 1995; Kontonikas-Charos et al., 2017; Skirrow et al., 2007).
Recent U isotopic studies (δ238U) provide a direct evidence that at
least part of the U at OD is sourced from the RDG (Kirchenbaur
et al., 2016). An important feature is that these felsic wall rocks are
also rich in F, which led McPhie et al. (2011a) to link the high
concentration of F in the ores with fluids derived from the F-rich
Mesoproterozoic Gawler silicic large igneous province (GSLIP). In
the Lala deposit, it has been proposed that REE were derived from
surrounding volcanic rocks (felsic and mafic), and that the fluids
responsible for the main REE mineralization were all relatively
enriched in F and of magmatic origin (Chen and Zhou, 2012; Chen
and Zhou, 2015).

(iv) Fluorine may help dissolve silicates and create fluid pathways by
forming HF(aq) in acidic aqueous solutions (Keppler, 1993). It is
well known that HF(aq) is especially effective at breaking SieO
and M(metal)eO bonds in silicates and oxides (Kline and Fogler,
1981), which helps to dissolve silicates and oxides. In this case, the
interaction between F-rich fluids and rocks may explain the rugged
surface of the volcanic clasts in the OD breccia (McPhie et al.,
2011a, 2012), and contribute to extensive brecciation and por-
osity.

In this study, we examine the possible mechanisms that can explain
the association between F and base metal deposits, and in particular
IOCG deposits, and address two significant knowledge gaps with new
experimental data and thermodynamic modelling:

(1) To assess the role of F in metal transport in hydrothermal fluids,
reliable thermodynamic properties of fluoride complexes of these
metals, in particular Fe, REE, and U, are required (Brugger et al.,
2016). A number of recent experimental studies have resulted in
much improved thermodynamic properties for the transport of REE
in F-Cl hydrothermal fluids (review by Migdisov et al., 2016).
However, there are no experimental data available for hydro-
thermal Fe(II/III) fluoride complexation. Here, we provide the first
experimental evidence for the nature and stability of Fe(II/III)
fluoride complexes at elevated temperature (up to 450 °C) based on
in-situ X-ray absorption spectroscopy (XAS) measurements. These
experiments allow in-situ determination of stability and structural
information of the dominant metal complexes (Brugger et al., 2007;
Testemale et al., 2005).
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(2) The available thermodynamic studies on reactive transport model-
ling and the sourcing of metals for IOCG deposit formation did not
include F, REE or U (Bastrakov et al., 2007; Oliver et al., 2004).
Given the common assumption that granitic rocks are good sources
of U, REE and F, we conducted thermodynamic calculations to test
the influences of F on the solubility of Fe, REE and U in aqueous
solutions, and quantify the role of fluoride complexes in mobilizing
metals through fluid-rock interaction over a wide temperature re-
gime (50–450 °C). These calculations benefit from the new prop-
erties for Fe(II/III)-F complexes developed in the present study, and
from the improved thermodynamic properties of REE complexes
under hydrothermal conditions (Migdisov et al., 2016). Considering
that biotite solid solution is a major F buffer, we included the non-
ideal biotite mixing model of Zhu and Sverjensky (1992) in our
calculations. The new modelling allows us to discuss the efficiency
and likelihood of different processes that can explain the role of F in
the formation of IOCG deposits.

2. Materials and methodology

2.1. In-situ XAS experiments

2.1.1. Solutions preparation
Sample solutions (Table 1) were prepared by dissolving FeF2(s) and

FeF3(s) in acidified water (one drop of HCl/HBr/HClO4) to
~50–80mmol Fe concentration under nitrogen atmosphere. As O and F
have a similar number of electrons and have similar X-ray cross sec-
tions, they are difficult to distinguish using XAS. In view of this, control
experiments (e.g., Sols 2, 7, 11, 13, 16 and 18) were conducted with no
F added in the solution, to determine the effect of F− on the system via
direct comparison with the chloride and bromide systems.

2.1.2. XAS measurements
Fe K-edge (7112 eV) fluorescence X-ray absorption near edge

structure (XANES) and Extended X-ray absorption fine structure
(EXAFS) data were collected at the European Synchrotron Research
Facility (ESRF) in Grenoble, France, using beamline BM-30B (FAME)
and the FAME high P-T XAS cell, which enables collection of high
quality data on solutions up to supercritical conditions (Etschmann
et al., 2016; Testemale et al., 2005; Tian et al., 2014). The spectroscopic
autoclave consists of an external water-cooled high-pressure vessel
equipped with three 1.5mm thick beryllium windows enabling collec-
tion of fluorescence and transmission signals at a maximum pressure of
~600 bar. The sample was contained inside a glassy carbon tube with
an internal diameter of 4mm. The pressure was applied to the sample
by two glassy carbon pistons, using helium as a pressure medium. The
pressure is maintained within±0.2 bar during measurements using an
automated regulation device (Bruyère et al., 2008). The glassy carbon
tube was placed inside a small cylindrical resistive heater; the heater
and tube are then installed inside the high-pressure vessel.

Although the thermocouple sits near the sample, it is placed outside
the glassy carbon tube and not exactly at the beam position. The so-
lution temperature at the beam position was therefore calibrated by
measurements of the density of water as a function of the thermocouple
temperature at 600 bar (Etschmann et al., 2010, 2016; Liu et al., 2011),
based on the equation of state of pure water (NIST database; Lemmon
et al., 2000) and the X-ray mass attenuation coefficients tabulated by
Chantler (1995). Based on this calibration, temperature accuracy is
better that 3 °C. Temperature regulation maintains the temperature
stable (within ≤0.2 °C) during data collection.

2.1.3. XAS data analysis
XANES and EXAFS data were analysed with the DEMETER package

(Ravel and Newville, 2005), using FEFF version 8 (Rehr et al., 2009).
Sols 9 and 12 were fitted in two ways: (i) the sum of the ligands was
constrained to be between 4 and 6 (up to 200 °C) and to a maximum of
4.2 at 385 °C. However, this resulted in fits with four fluorine ligands at
35 and 93 °C. According to the thermodynamic modelling, there should
be a maximum of three fluorine ligands, so the fits were repeated with
the added constraint that the maximum number of fluorine ligands was
three. While the goodness of fit (gof) parameters were slightly higher
(but the difference was not statistically significant, Kelly et al., 2008), it
is important to note that with this second constraint, the Fe(III)eO bond
lengths (2.07 Å) were shorter than without this added constraint
(2.15 Å). Hence the model constrained to ≤3 fluoride ligands is phy-
sically more reasonable, as from crystal structures Fe(III)eO bond
lengths (2.05 Å for octahedral and 1.88 Å for tetrahedral geometry;
Melnik et al., 1997) are shorter than Fe(II)eO bond lengths (~2.13 Å;
Velbel, 1999).

XANES spectra of selected stoichiometries and geometries were si-
mulated using the FDMNES package (Joly, 2001), following the pro-
cedure outlined in Brugger (2007), Testemale et al. (2009a, b) and
Etschmann et al. (2010). The final states and resulting absorption cross-
sections were calculated using the Finite Difference Method (FDM) to
solve the Schrödinger equation. This method allows a totally free po-
tential shape, thus avoiding the limitations imposed by the Muffin Tin
(MT) approximation. Compared to methods that rely on the MT ap-
proximation, FDM is of particular interest for low symmetry and/or
non-dense structures, as in the case of the aqueous complexes con-
sidered here (Etschmann et al., 2010).

Iron was soluble at room-T in Sol9 and Sol12 (Table 1), but the
solubility decreased with increasing temperature. Iron concentrations
in these solubility-limited runs were measured using the Fe step height
in transmission (ΔμFe) (e.g., Pokrovski et al., 2005; Etschmann et al.,
2010), following

∆ = ∆μ σ lM m dFe Fe Fe Fe solution (1)

where ΔσFe is the change of the total absorption cross-section over the
Fe K-edge, taken from Chantler (1995); l is the optical path length
travelled by the x-ray beam in the solution, which was determined from
a measurement of a pure water sample; MFe is the atomic weight of Fe,
mFe is the Fe aqueous concentration, and dsolution is the density of the
solution, approximated by the density of pure water since this study's
solutions were relatively dilute.

2.2. Thermodynamic modelling

2.2.1. Software and source of thermodynamic properties
Most geochemical modelling was performed using the HCh package

(Shvarov and Bastrakov, 1999), with Geochemist's Workbench (Bethke,
2008) being used mainly for creating activity-activity diagrams. The
thermodynamic properties for minerals and aqueous species were
sourced from an updated version of the Unitherm database (Shvarov
and Bastrakov, 1999; Shvarov, 2008). Activity coefficients for charged
aqueous species were calculated using the b-dot equation, which ap-
plies to ionic strengths of ~1 with high accuracy, and up to ~4 with

Table 1
Composition of the solutions studied by XAS.

Sample Serial
number

Conditions

FeF3 (0.036m) in 0.061m HClO4 Sol9 35–400 °C, 600 bar
FeF3 (0.060m) in 0.099m HCl Sol12 35–400 °C, 600 bar
FeCl2 (0.050m) in 4.23m NaCl+ 0.073m

HCl
Sol2 35–400 °C, 600 bar

FeBr2 (0.106m) in 4.20m
NaBr+ 0.0023m HBr

Sol11 35–400 °C, 600 bar

FeCl3 (0.050m) in 0.011m HBr Sol7 35–400 °C, 600 bar
FeBr2 (0.070m) in 0.0024m HBr Sol13 35–400 °C, 600 bar
FeBr2 (0.071m) in 1.05m NaBr Sol18 35–450 °C, 600 bar
FeBr2 (0.116m) in 10.08m LiBr Sol16 200–450 °C, 600 bar
FeF2 (0.071m) in 0.157m HClO4 Sol14 35–200 °C, 600 bar
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reduced accuracy (Helgeson and Kirkham, 1974; Shvarov and
Bastrakov, 1999). HCh uses a Gibbs free energy minimisation approach
for calculating the equilibrium rock and fluid compositions, and can
handle solution density≥ 0.35 g/cm3 over a P-T range of 0–1000 °C
and up to 5000 bar following the limitations of the Helgeson-Kirkham-
Flowers (HKF) equation of state (Tanger and Helgeson, 1988).

In addition to the HKF formalism, the Unitherm database allows to
describe the P-T change in energetics of aqueous species using the
modified Ryzhenko–Bryzgalin (MRB) model (Borisov and Shvarov,
1992; Ryzhenko et al., 1985; Shvarov, 2015), which allows in-
corporation of species for which little information is available. MRB
parameters were fitted to available stability constants using the OptimC
program (Shvarov, 2015). The empirical MRB model describes the P-T
dependence of the dissociation constant (pK=−logK) of aqueous
complexes as:

= +°K K f T Pp (T, P) 298.15/T·p ( , )·(zz/a)298 C,1bar eff (2)

where pK298°C,1bar is usually derived from experiments; T is the absolute
temperature (K), P is pressure; f(T, P) is a species-independent function
that includes the dissociation constant of water; and (zz/a)eff is the
temperature-dependant effective property of the complex (Ryzhenko
et al., 1985; Shvarov, 2015). In the Unitherm database, (zz/a)eff is ex-
pressed as:

= +zz a A B T( / ) /eff (3)

where A and B are empirical constants and T is the temperature in
Kelvin (K).

The list of species used in the model and the source of thermo-
dynamic properties are given in the Supplementary Material (Appendix
1). Hereby we briefly describe the major sources of thermodynamic
data:

(i) We included the pure minerals, solid solutions, and aqueous spe-
cies (in particular Cu, Au, Fe complexes) selected by Zhong et al.
(2015a, b).

(ii) F-bearing endmembers of biotite and apatite are from Zhu and
Sverjensky (1991).

(iii) F− and HF(aq) properties are selected from Migdisov et al. (2016).
(iv) Properties for REE chloride, fluoride and hydroxide complexes are

selected from the recent review of Migdisov et al. (2016).
(v) Uranium minerals and aqueous species are based on the Nuclear

Energy Agency (NEA) review (Guillaumont et al., 2003) and the
recommended values of Bastrakov et al. (2010) and Xing et al.
(2018).

(vi) Stability constants for the formation of Fe(III) and Fe(II) fluoride
complexes were extrapolated in this study – see Section 3.1.

2.2.2. Biotite and apatite solid solutions
Biotite and apatite account for a major part of F in granites, and are

expected to play a significant role in buffering the F-Cl-OH contents of
the fluids through fluid-rock interactions (Zhu and Sverjensky, 1992).
We used an ideal mixing model to describe F-Cl-OH in apatite, fol-
lowing Zhu and Sverjensky (1992), who demonstrated good agreement
with natural samples using this approach. Ideality is not a valid as-
sumption for biotite, however, since nuclear magnetic resonance
spectroscopy indicates that hydroxyl (OH−) preferentially clusters
around Fe in one type of domain, and F clusters around Mg in another
type of domain (Munoz, 1984), resulting in the positive correlations
between (Mg/Fe) ratio and F observed in natural biotite (e.g., Finch and
Tomkins, 2017). In the present study, we modelled the biotite solid
solution considering the F-OH partitioning between its Fe-Mg end-
members (annite and phlogopite) based on the reciprocal solid solution
model described by Zhu and Sverjensky (1992). Note that Cl end-
members are not considered because of their very low concentration in
natural biotites. In this case, our modelled biotite solid solution consists
of annite, fluoroannite, phlogopite and fluorophlogopite (nomenclature

following Rieder et al., 1998). The excess Gibbs free energy of mixing
calculated using the equations of Zhu and Sverjensky (1992) were fitted
to an empirical Redlich-Kister model that is compatible with the HCh
free energy minimisation approach. Details of the implementation in
the HCh model are given in the Supplementary Material (Appendix 1).
The three endmembers for apatite solid solution are apatite-(CaOH),
apatite-(CaF) and apatite-(CaCl) (nomenclature following Pasero et al.,
2010).

2.2.3. REE minerals
Bastnäsite-(Ce) is the most abundant and widespread REE mineral

phase at OD (Oreskes and Einaudi, 1990). In fact, in many large REE
reserves, fluorocarbonate minerals, i.e., bastnäsite-(Ce), are usually the
predominant REE phase (Smith and Henderson, 2000; Williams-Jones
et al., 2012). Therefore, reliable thermodynamic properties of bastnä-
site-(Ce) and other REE fluorocarbonate minerals are required for ac-
curate modelling of REE and F mobility during fluid-rock interactions.
However, the thermodynamic properties for REE fluorocarbonate mi-
nerals are scarce. In the present study, properties used for bastnäsite-
(Ce) and parisite-(Ce) are estimated by Gysi and Williams-Jones (2015)
based on the results of differential scanning calorimetric experiments
conducted at 323–1022 K (Kelvin), 1 bar, which are the only reported
thermodynamic data for calculations of REE fluorocarbonate solubility
at elevated temperature. The stoichiometric formulae for bastnäsite-
(Ce) is Ce0.5La0.25Nd0.2Pr0.05CO3F, and for parisite-(Ce) is Ca-
Ce0.95La0.6Nd0.35Pr0.1(CO3)3F2.

2.2.4. Simulations of fluid-granite interaction
We modelled the fluid-rock interaction with the assumption that

hydrothermal fluids can leach metals from host felsic rocks and trans-
port them to form mineralization. We used the aliquot-type model to
calculate fluid-granite equilibrium (Oliver et al., 2004; Zhong et al.,
2015a; Fig. 1). This model provides an estimate of the equilibrium
composition of hydrothermal fluids and altered rocks under various P-
T-salinity conditions for fluid-rock interaction. In our modelling, we
reacted 1 kg of water (H2O) with ~1 kg granite (fluid/rock= 1). The
composition of the granite used for modelling (Table 2) is based on
reported whole rock geochemical data of the silicic Gawler Range
volcanics and RDG (Agangi et al., 2012; Ehrig et al., 2012). The fluid
salinity was controlled at 0–20wt% NaCl, i.e. 0–3.5m Cltot. Calcula-
tions were conducted at 50–450 °C with a fixed pressure of 3000 bar;
pressure has little effect on the model predictions as long as fluid

H2O+NaCl

Granite
SiO2

Al2O3

Fe2O3

FeO2

CaO
K2O
Na2O

P2O5

BaO
NaF
NaCl
UO2

La2O3

H2O
   F 
  Cl

Fe
U
REE

25-450 ºC

Altered rock

1 kg

1 kg
1 kbar

Equilibrated fluidInitial saline fluid

Fig. 1. Conceptual model used for geochemical simulation of fluid-rock inter-
action with HCh, which is simple aliquot-type mixing of 1 kg saline water with
granite to produce equilibrated composition of fluid and the altered rock.
Salinity of the initial fluid was controlled from 0 to 20 wt% NaCl equiv.
Equilibrated composition of fluid and rock were calculated from 25 to 450 °C at
a fixed pressure of 1 kbar.
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density remains>~0.8 g cm−3 (e.g., Liu et al., 2008). Moreover, to
investigate the effects of F, calculations were performed under both F-
bearing (with a normal RDG) and F-free (F removed from a normal
RDG) systems (Table 2).

3. Stability of Fe(II/III) fluoride complexes in hydrothermal fluids

We assessed the available thermodynamic data for Fe fluoride
complexes and extrapolated their properties to elevated temperatures.
In this section, we report our newly extrapolated properties of Fe
fluoride complexes, as well as the new experimental data to cross-check
the theoretical results.

3.1. Thermodynamic properties for Fe(II/III) fluoride complexes at room
temperature

Experimental studies on Fe(II/III)-F complexation are scarce, and to
date available only at room temperature. Formation constants for the Fe
(III)-F complexes including FeF2+, FeF2+, FeF3(aq) and FeF4− at 25 °C
from previous studies are listed in Table 3. We calculated the formation
constants reported by Soli and Byrne (1996) and Walker and Choppin
(1967) to zero ionic strength (logK at I=0; details in Appendix 1). The
calculated logK for Fe(III)F2+ constant based on Soli and Byrne (1996)
and Walker and Choppin (1967) are in good agreement (within 0.5 log

unit), and are also very close to values calculated with the HKF model
of Sverjensky et al. (1997) (Table 3). For Fe(III)F2+ and Fe(III)F3(aq),
the data presented by Soli and Byrne (1996) and (Soli and Byrne, 1996;
Walker and Choppin, 1967) are in excellent agreement (within 0.2 log
unit).

The recent NEA review (Lemire et al., 2013) concluded that Fe(II)
F+ is currently the only Fe(II) fluoride complex for which a reliable
formation constant can be selected, and recommended a value of
1.7 ± 0.2 for logKFeF+. This value is similar to Sverjensky et al.
(1997)’s value (logK=1.43). Higher order Fe(II) fluoride complexes
including FeF2(aq) and FeF3− were reported only by Wells and Salam
(1967). However, as argued by Lemire et al. (2013), the speciation
derived by Wells and Salam (1967) is likely to be in error, since (1)
their data analysis procedures are unclear; (2) the proposed tempera-
ture trends (increasing FeF3− stability at lower temperature) are in-
consistent with the observations on other divalent transition metal
complexes (e.g., Testemale et al., 2009a; Liu et al., 2011), and (3) their
results were not reproduced by the more recent study of Solomon et al.
(1983). Therefore, in the present study, Fe(II)F+ is the only stable Fe(II)
fluoride complexes considered.

In summary, for FeF2+, FeF2+, FeF3(aq) and FeF4−, we use the
calculated logK (at I= 0) at 25 °C based on Soli and Byrne (1996) for
our extrapolation to elevated temperatures. For Fe(II)F+, we use the
HKF model of Sverjensky et al. (1997) for our calculations.

3.2. Extrapolation of thermodynamic properties for Fe(III)-F complexes to
elevated temperature

There are no thermodynamic data for Fe(III)F2+, Fe(III)F3(aq) and
Fe(III)F4− at elevated temperatures. We used the one-term extrapola-
tion method (Gu et al., 1994) to predict the dissociation constants of
these Fe(III)-F complexes at elevated temperature. Gu et al. (1994)
observed that the change in free energy of a well-balanced iso-
coulombic reaction is nearly independent of temperature, hence the
temperature dependence of the free Gibbs energy of an unknown
complex can be derived by comparison with a related complex of si-
milar charge. In this case, we selected the Fe(III)-chloride complexes
(Liu et al., 2006), and the isocoulombic reaction is:

+ = +− − − − KFeF nCl FeCl nF (p )icn
3 n

n
3 n (4)

The properties for the dissociation of the Fe(III) fluoride complexes
(Reaction (5)) can then be derived from the known dissociation con-
stants for chloride complexes (Reaction (6)) via Eq. (7):

= +− + − KFeF Fe nF (p )dissFn
3 n 3 (5)

= +− + − KFeCl Fe nCl (p )dissCln
3 n 3 (6)

= +K K Kp p pdiffF ic dissCl (7)

Details of the extrapolation are described in Appendix 1.
We used the MRB formalism to add higher order Fe(III) fluoride

complexes in HCh. The MRB parameters for FeF2+, FeF3(aq) and FeF4−

optimized by the present study are listed in Table 4 and the extra-
polated logKs are shown in Table 5.

Table 2
Granite composition used in the simulation (based on Agangi et al., 2012; Ehrig
et al., 2012).

Components Granite with F (wt%) Granite with no F (wt%)

SiO2 69.60 69.60
Al2O3 13.37 13.37
Fe2O3 1.70 1.70
FeO 1.50 1.50
MgO 0.83 0.57
CaO 0.57 0.85
Na2O 3.40 3.40
K2O 5.53 5.53
P2O5 0.07 0.07
CO2 0.27 0.27
FeS2 0.094 0.094
CaF2 0.39 0
NaCl 0.057 0.057
H2O 2.00 2.00
La2O3 0.0117 0.0117
Ce2O3 0.025 0.025
Nd2O3 0.007 0.007
U3O8 1.30E-03 1.30E-03

Calculated mineralogical composition at 450 °C, 3 kbar: 29.7% Albite, 29.6%
Microcline, 27.8% Quartz, 4.3% Biotite, 3.9% Anorthite, 2.7% Magnetite, 1.7%
Muscovite, 0.2% Apatite, 0.1% Pyrrhotite.

Table 3
Equilibrium constants for the formation of Fe(III/II)-F complexes at 25 °C, 1 bar
(at zero ionic strength).

Aqueous
species

logK

FeF2+ 6 5.9 6.44
FeF2+ 11.03 11.2
FeF3(aq) 14.25 14.42
FeF4− 16.03
FeF+ 1.7 1.43
Reference Lemire

et al.,
2013

Sverjensky
et al., 1997

Calculated from
Soli and Byrne
(1996)

Calculated from
Walker and
Choppin (1967)

Note: logK values for high order Fe(II)-F complexes are reported by Wells and
Salam (1967), which are logKFeF2 = 2.30 (298.15 K) and logKFeF3− =2.72
(273.15 K). Details for logK extrapolation are described in the Supplementary
material.

Table 4
MRB parameters of Fe(III)-F species optimized in the present study.

Species pK(298 K) A(zz/a) B(zz/a)

FeF2+ 11.003 6.462 −1828
FeF3 (aq) 14.254 1.696 0
FeF4− 16.185 1.451 0
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3.3. In-situ XAS study of Fe(II/III) in F-bearing fluids

3.3.1. XANES analyses
XANES spectra reflect the oxidation state and local structure (co-

ordination number, geometry, nature of ligand) of the absorbing atom
(Bunker, 2010). The position (energy) of the “white line”, historically
defined as the most intense peak in the XANES spectrum, generally
shifts as a function of the formal oxidation state of the absorbing atom;
however, it can also shift as a function of the ligand and/or structure
(Bunker, 2010; Tromp et al., 2007). Therefore, XANES is an effective
tool to understand the oxidation state of Fe and the structure of the Fe
(II/III) species in F-bearing fluids (Brugger et al., 2016).

In this case, it is difficult to deconvolute the effects due to ligand,

geometry and oxidation state of the Fe(II/III)-F/Cl/Br complexes by
observing the normalized XANES spectra (Fig. 2A), and the first deri-
vative of the XANES spectra was found to better differentiate between
these (Figs. 2B and 3).

Fig. 2B shows the evolution of the first derivative of the XANES of
four acidic solutions as a function of temperature. We first compare Sols
7 (FeCl3 in 0.01m HBr) and 9 (FeF3 in 0.01m HClO4) to illustrate the
main features from the measurements. In both solutions, Fe(III) existed
in octahedral coordination in the initial solution. This Fe(III) complex
was reduced to an octahedral Fe(II) complex around 200 °C, which in
turn transformed into a tetrahedral Fe(II) complex around 400 °C. The
octahedral (6-coordinate) to tetrahedral-like (4-coordinate) transition
with elevated temperature or salt content is a well-established feature

Table 5
Comparison of equilibrium constants for the formation of selected Fe(II/III)-F and Fe(II/III)-Cl aqueous complexes at 25–450 °C, 1.0 kb.

Species 25 °C 50 °C 100 °C 150 °C 200 °C 250 °C 300 °C 350 °C 400 °C 450 °C

Fe(II)Cl+a −0.23 −0.16 0.1 0.45 0.86 1.32 1.81 2.34 2.91 3.53
Fe(II)F+a 1.35 1.40 1.61 1.9 2.25 2.65 3.09 3.57 4.09 4.66
Fe(III)Cl2+b 1.58 1.91 2.54 3.16 3.76 4.37 4.98 5.60 6.20 6.80
Fe(III)F2+a 6.03 6.38 7.07 7.74 8.40 9.07 9.74 10.41 11.05 11.64
Fe(III)Cl2+ 2.17 2.13 3.24 5.19 7.58 10.21 13.03 16.04 19.33 23.09
Fe(III)F2+ 10.89 10.19 9.99 10.78 12.17 13.98 16.16 18.76 21.87 25.67
Fe(III)F3(aq) 13.69 13.24 12.69 12.44 12.40 12.53 12.83 13.31 14.01 14.99
Fe(III)F4− 15.70 15.00 14.04 13.45 13.12 12.99 13.05 13.29 13.75 14.47

a Data from Sverjensky et al. (1997).
b Data from Tagirov et al. (2000), as recommended by Liu et al. (2006).
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Fig. 2. XANES spectra for solutions 2 (FeCl2 in 4.5 m NaCl), 7 (FeCl3 in 0.01m HBr), 9 (FeF3 in 0.1 m HClO4) and 13 (FeBr2 in 0.01 m HBr). (a) Normalized XANES
spectra. (b) The first derivative of the XANES. The first derivative of the principal peak position shifts as a function of oxidation state (Fe(II)= line5 and Fe
(III) = lines6 and 7; all in octahedral geometry), geometry (octahedral vs. tetrahedral: see lines 5–7 vs 1–3) and ligand (F+O in octahedral geometry= line7, only O
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second, smaller peak around line4. It does not make sense to look down line4 and assume that all the peaks there suggest the presence of some intermediate
geometry.
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of the hydrothermal geochemistry of divalent and trivalent first row
transition metals (Brugger et al., 2016; Liu et al., 2011). The other
prominent feature of the XAS data is the reduction of Fe(III) to Fe(II)
with increasing temperature. Such a reduction of Fe(III) aqueous
complexes has been observed previously by Testemale et al. (2016). As
reviewed in Brugger et al. (2016), the ionizing X-ray beam can have
complex effects on the oxidation state of transition metals in aqueous
solutions under hydrothermal conditions. In this case, the evidence
suggests that similarly to Cu(II/I) (Brugger et al., 2007; Fulton et al.,
2000), the reduction of Fe(III) reflects the lower thermodynamic sta-
bility of Fe(III) at higher temperature, the transformation being kine-
tically favoured by beam-induced radiolytic species such as H+, H, OH,
OH− and hydrated electron, e−aq (Jayanetti et al., 2001; Saffré et al.,
2011).

We illustrate the effects of the ligands, in this case chloride versus
bromide, by comparing the XANES spectra of Sols 2 and 13 at
35–400 °C (Fig. 2B). At 400 °C, both solutions contain tetrahedrally
coordinated Fe(II), however Sol 2 has predominantly Cl ligands
whereas Sol 13 has mainly Br ligands. The first derivative of the XANES
spectrum is shifted to lower energy for Sol 2 (FeCl2 in 4.5m HCl)
compared to Sol 13 (FeBr2 in 0.01m HBr). At 35 °C, Fe(II) is octahed-
rally coordinated in both solutions, and due to the difference of the
predominant ligand (Br− vs. Cl−), the main peak is also shifted to lower
energy for Sol 2. The effect of salt concentration can be seen by com-
paring Sols 2 and 7 (FeCl3 in 0.01m HBr) at 400 °C. Both solutions
contain Fe(II) tetrahedrally coordinated to predominantly Cl (Sol 2) and
a mixture of Cl+O (Sol 7); the principal peak in the first derivative is
higher, sharper and shifted to a lower energy for Sol 2 (labelled 3 in
Fig. 2B) compared to Sol 7 (labelled 2 in Fig. 2B).

The aim of this experiment was to assess qualitatively the extent and
nature of Fe(II/III)-F complexing. The effects of fluoride can be clearly
recognized by comparing Sols 7 and 9 at low temperatures (Fig. 2B).
The principal peak of the first derivative for Sol 9 (FeF3 in 0.1m HClO4)
is sharper and is shifted to higher energy compared with Sol 7 (FeCl3 in
0.01m HBr) (Fig. 2B, lines 6 and 7). Under these conditions, thermo-
dynamic calculations (Fig. 4) suggest that Sol 9 contains Fe(III)

octahedrally coordinated to F and O, whereas Sol 7 contains Fe(III)
octahedrally coordinated to only O. By comparing Sols 7 and 9 in
Fig. 2B (lines 6 and 7), it is possible to see that there is Fe(III)-F com-
plexing at 35 and 100 °C. The differences in the first derivative that
distinguish fluoride complexes reflect a splitting of the ‘white line’ into
two bands. XANES simulations (Fig. 3B) show that an octahedral Fe
complex, even with a slight distortion, displays only one band for the
white line (e.g., Testemale et al. (2009a) for Fe(II) chlorocomplexes).
However, in the case of Fe(III), the white line consists of two bands
(e.g., Liu et al., 2006). Calculations based on the [Fe(III)F2(H2O)4]
moiety found in the crystal structure of β-FeF3.3H2O(s) (Teufer, 1964),
shown in Fig. 3B, reveal that this duplication results from a strong
distortion in the geometry of the complex. In this structure, the two
fluoride ions form a linear moiety, and the four oxygens occur in a
plane (Fig. 3B). The F-Fe-O angle is about 120° in FeF3.3H2O(s), re-
sulting in a prominent splitting of the white line (octahedral would
have an angle of 90°). An angle of ~110° reproduces the splitting ob-
served in the solution. Such distortions are consistent with the large
electronegativity and small ionic radius of F− in comparison to Cl−,
differences which are expected to significantly affect the distortion of
the Fe(III/II) complexes.

There is also Fe(II)-F complexing at 200 °C; this can be seen more
clearly on Fig. 3A, a magnified section of Fig. 2B showing the first
derivative of the XANES spectrum of all the measured solutions at
200 °C. For the low salinity solutions, where the geometry is similar, the
effects due to F as opposed to Cl, Br or O can be clearly seen: both Sols 9
and 12 have two peaks close together, with both peaks having a similar
intensity. Sols 7, 13 and 18, which do not contain F, also have two
peaks, but with the peak located at lower energy being higher than the
second peak. It is interesting to see that when Sol 9 was cooled back to
200 °C (following heating to 400 °C), its spectrum resembled that of Sols
7, 13 and 18, implying that there was no longer any Fe-F complexing in
this solution; this reflects the fact that perchlorate breaks down at
200 °C, and shows that for Fe(II), chloride complexing is relatively
stronger compared to fluoride complexing. The high salinity solutions
are included merely to emphasise that the salt concentration has an
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Fig. 3. (a) First derivative of XANES spectra for all solutions at 193 °C. Comparing low and high salinity solutions to determine the effects of ligand and geometry.
Low salinity solutions have a similar geometry; thus, the variation is predominantly an effect of the ligand. At high salinity, the ligand affects the geometry in a more
pronounced manner – e.g., the transition from octahedral to tetrahedral occurs at a higher temperature for Br compared to Cl. (b) Convoluted calculation of XANES
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effect on the spectra, as it affects the temperature at which the octa-
hedral to tetrahedral transition occurs. For the solution with FeF2(s) as
the starting salt (Sol 14), the spectrum showed the feature of typical Fe
(II) octahedral structure at 35 °C and 100 °C (Fig. 3).

3.3.2. Solubility trend with increasing temperature
We plotted the calculated Fe concentrations with temperature cal-

culated from the XANES step heights for solutions 9 and 12 in Fig. 4.
For Sol 9 (FeF3 in 0.1 m HClO4 solution), the Fe concentrations are high
when T is below 100 °C. Above 100 °C, the Fe concentration decreases
quickly and reaches its lowest level at 250–300 °C. The Fe solubility
increases again above 300 °C. This solution illustrates well the chal-
lenges of studying Fe speciation. According to the XANES spectra, Fe
(III) is the main oxidation state of aqueous Fe up to 100 °C, but from
200 °C Fe(II) is the main Fe oxidation state (Table 6). The solubility
trend observed to 200 °C is well explained by equilibrium thermo-
dynamics assuming that Fe(III)-F complexes (FeFx3−x, x= 1,2,3) are
the predominant forms of Fe in solution. The steep increase in Fe so-
lubility above 300 °C is attributed to the breakdown of perchlorate

(ClO4
−; Henderson et al., 1971), releasing chloride ions, and hence

leading to the formation of Fe(II)-Cl complexes. Therefore, the solubi-
lity trends observed are a complex interplay between equilibrium and
kinetics, both thermodynamically and beam-induced.

For Sol 12 (FeF3 in 0.1m HCl solution), Fe solubility was high below
100 °C, in agreement with thermodynamic calculations (Fe solubility
controlled by hematite); FeF2+, FeF2+ and FeF3(aq) are predicted to be
the most important Fe(II) complexes in these Cl-bearing solutions.
Solubility starts to decrease from 100 °C and reaches its lowest level
around 200 °C; above 200 °C, the Fe(II) chloride complexes (e.g.,
FeCl2(aq)) become important and predominate in the solution at
300 °C, causing an increase of total Fe concentration. Beyond 300 °C the
Fe solubility was unstable, but seems to reach the initial values at
400 °C.

3.3.3. EXAFS results and comparison with thermodynamic model
The EXAFS spectra were analysed to determine the coordination

geometry of Fe-F/Cl/Br complexes. Note that even if the solutions are
not in thermodynamic equilibrium with respect to solubility, ligand
exchange reactions are fast for the halide complexes of interest (ps to
μs), so that the speciation in the aqueous phase will be at steady state.
The results of the fitting of the EXAFS spectra are shown in Table 6 and
Fig. 5. Because of the similarity in the scattering factors of O and F,
there are relatively large errors on the O/F ratios in the Fe complexes
studied here. To guide the discussion, we compare the results of EXAFS
fits with the prediction of the thermodynamic model. The aim of this
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Table 6
Results of fitting ESRF EXAFS data and reference for Fe(III)Cl3 and Fe(III)F3
structure.

T (°C) Main Fe oxidation
state

Ligand Nd R(Å) σ2(Å2) R-range

Sol 9, FeF3 in 0.1m HClO4

35 Fe(III) F 4.2(5) 1.94(2) 0.004(3) 0–6
O 1.8(4) 2.15(5) 0.004(3) 0–6

93 Fe(III) F 3.5(8) 1.91(3) 0–6
O 2.4(8) 2.13(4) 0–6

193 Fe(II) F 1.4(1.0) 1.93(7) 0.001(7) 0–6
O 3.5(1.0) 2.13(4) 0.001(7) 0–6

385 Fe(II) Cl 1.5(3) 2.24(2) 0–6
O 2.7(3) 2.12(2) 0–6

285 Fe(II) O 4.0(9) 2.16(3) 0–6
193 Fe(II) O 5.9(1.6) 2.10(4) 0–6
93 Fe(II) O 5.4(1.1) 2.17(3) 0–6

Sol 12, FeF3 in 0.1m HCl
35 Fe(III) F 4.2(9) 1.94(2) 0–6

O 1.8(9) 2.14(5) 0–6
93 Fe(III) F 4.0(1.0) 1.94(3) 0–6

O 2.0(1.0) 2.15(5) 0–6
193 Fe(III)+ Fe(II) F 1.3(7) 1.94(6) 0–6

O 2.9(8) 2.15(4) 0–6
285 Fe(II) O 4.4(8) 2.13(2) 0–6
385 Fe(II) Cl 1.4(2) 2.22(2) 0–6

O 2.6(3) 2.14(2) 0–6
437 Fe(II) Cl 2.1(2) 2.22(1) 0–6

O 2.1(2) 2.16(2) 0–6

FeCl3 in H2Oa

25 Cl 0.22(26) 2.26(6) 0.0002(1)
O 5.78(26) 2.00(1) 0.0036 (10)

FeF3 in solidsb

25 F 4 1.926

Sol9, simulatedc

25 F 3.05

a Liu et al., 2006.
b Teufer, 1964.
c Simulated using the thermodynamic properties in Soli and Byrne (1996).
d Determined from the XANES spectrum. Numbers in parentheses are 1-σ

errors.
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study is to provide a qualitative check of the predictions from the
thermodynamic model. We calculated the solubility of Fe minerals and
Fe speciation in experimental solutions at 25–400 °C, 600 bar according
to Table 1, and the results are shown in Figs. 4 and 6.

For Fe(III), it is predicted that Fe(III)F2+, Fe(III)F2+ and FeF3(aq)
are the predominant species in the F-bearing solution (Fig. 4A), even in
the presence of 0.1 m HCl (Fig. 4B). At 35 °C, the predominant F com-
plexes are predicted to be Fe(III)F2+ and FeF3 (aq), and at 100 °C the
predominant complexes are predicted to be Fe(III)F2+ and Fe(III)F2+.
The decrease in number of fluoride ligands is attributed mainly to the
decrease in the activity of the F− ion with increasing temperature due
to the increase in the association constant of HF(aq). The results of the
EXAFS fits are consistent with an octahedral Fe(III) complex containing
an average of 3 to 4 fluoride ions in solutions 9 and 12 at 35 and 100 °C
(Table 6), suggesting that fluoride complexing may be slightly stronger
than expected in Fe(III) solutions.

At 200 °C, Fe(III) is fully (Sol 9) or partially (Sol 12) reduced to Fe
(II) (Table 6). This is accompanied by a reduction of the number of F−

ligands in the complexes decreased to ~1, indicating predominance of
the Fe(II)F(H2O)5+ complex (Fig. 4). Above 200 °C, the EXAFS refine-
ment shows increased Fe-Cl interaction in both Sol9 and Sol12 solutions
(Table 6, Fig. 5). In particular, at highest temperature of 437 °C, Fe is
bonded with 2.1 Cl and 2.1 O atoms, indicating tetrahedral FeCl2(aq)

species.

3.4. Solubility and speciation of Fe in fluoride solutions – a summary

In summary, our new XAS data show that in both Fe(II) and Fe(III)
systems, Fe fluoride complexes are only important at low temperatures
(< 150 °C). With increasing temperature (35–200 °C), Fe solubility
decreases in fluoride-only systems. In Cl-bearing systems Fe solubility
increases when chloride is available at high temperatures (> 200 °C) in
the solutions. From the XANES data, it was evident that fluorine was no
longer bonded to Fe(II) above 200 °C (Fig. 2). The EXAFS results reveal
a decrease of coordination number of F in the Fe(III)-F complexes with
increasing temperature (Table 6), which may be the reason for the
decrease in Fe solubility.

Fe(II) fluoride complexes are more stable than Fe(II) chloride
complexes at T < 150 °C (Fig. 6B). Fe(II) chloride complexes (e.g.,
FeCl2(aq)) become increasingly stable at higher temperature and
dominate the solution from 200 °C and above when both F and Cl are
present, causing the retrograde Fe solubility at temperatures above
200 °C in mixed F-Cl solutions.

The above calculations show that the available data are able to
correctly predict the solubility of Fe fluoride minerals in F-bearing so-
lutions of our experiment, which provides us the confidence to model
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the role of F in transporting Fe in geological hydrothermal systems.

4. Thermodynamic modelling of fluid-granite interaction

Extensive hydrothermal alteration has been recognized across the
Olympic Dam breccia complexes (ODBC) and RDG (Ehrig et al., 2012).
It is generally thought that the majority of mineralization in ODBC was
produced by two main hydrothermal events: (1) a high temperature,
high salinity magnetite stage (> 400 °C, 20–45wt% NaCl equivalent),
and (2) a low temperature, low salinity hematite stage
(150–300 °C,< 10wt% NaCl equivalent) (Bastrakov et al., 2007;
Oreskes and Einaudi, 1992). The current mineralization also reflects a
long history of fluid-flow resulting in (at least) small-scale element
mobility (e.g., Kirchenbaur et al., 2016). Based on the thermodynamic
data summarized in Appendix 1, we modelled the mobility of REE, U,
Fe and F in hydrothermal fluids circulating in a typical granitic rock.
The results are shown in the following sections.

4.1. Fluorine concentration and speciation

Our calculations show that F concentrations increase with in-
creasing temperature and reach a maximum value of around 70 ppm at
around 450 °C. Higher salinity favours F dissolution at 50–350 °C
(Fig. 7A) but this effect becomes less significant above 400 °C. The Cl/F
ratio reflects the relative importance of Cl and F in the fluids, and
calculations show that it increases with increasing c[Cl] and decreasing
temperature (Fig. 7C).

The aqueous speciation of F is mainly controlled by temperature.
Fluoride ion (F−) is the predominant species at T < 200 °C while CaF+

dominates the solution at 200–300 °C. Above 350 °C, HF(aq) becomes
the predominant species (Fig. 7B). Fig. 7D shows the F-bearing mineral
assemblages versus temperature and fluid salinity. Biotite, apatite,
fluorite and REE fluorocarbonates (i.e., parasite-Ce and bastnäsite-Ce)
buffered F in the fluid. Note that biotite and apatite solid solutions are
named after the predominant components in each solid solution in the
figures. Fluorite is predicted to disappear from the assemblage at high
temperature, especially in high salinity fluids.

4.2. Iron solubility and speciation

Regardless of the presence of F, aqueous Fe concentrations were
found to increase with increasing temperature and salinity (Fig. 8A,B).
Specifically, Fe concentrations are predicted to be extraordinarily low
(< 1 ppm) at c[Cl] < 1m, and the overall Fe solubility can be up to
more than one order of magnitude lower in F-bearing fluids than in F-
free fluids at similar conditions, especially at high temperatures
(Fig. 8A,B). The differences in Fe solubility are explained by the higher
pH of the F-bearing fluids (Fig. 8F) and by the effect of F on the Fe-
mineralogy, which affects the redox state of the fluid. The fluid is more
reduced for F-bearing fluids, which also contributes to decreased Fe
solubility (Fig. 8C,D). The redox of the solution is mainly determined by
the Fe2+/Fe3+ ratio of the solution. The F-bearing solution is more
reduced than the Fe-free solution because F facilitates the precipitation
of hematite, which results in the decrease on Fe3+ concentration, and
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higher Fe2+/Fe3+ ratios in solution. The increased pH in the F-bearing
solution is caused by the formation of HF(aq).

The aqueous speciation of Fe is mainly controlled by temperature
while salinity is less important. The predominant Fe species is the Fe2+

aqua ion at T < 200 °C. Above 200 °C, Fe chloride complexes, i.e.,
FeCl2(aq) and FeCl42−, dominate the solution (Fig. 8C,D) due to their
increasing stability at higher temperatures, associated with the higher
affinity of tetrahedral complexes for Cl than water (Testemale et al.,
2009a; Mei et al., 2015). Note that the predominance of Fe(II) com-
plexes is expected, since recent experimental and theoretical studies
indicate that Fe(III) species are not stable at elevated temperatures
(Brugger et al., 2016; Liu et al., 2006; Testemale et al., 2009a, b).

4.3. Rare Earth elements solubility and speciation

We included La, Ce and Nd in our simulations, since those are
usually the most enriched REEs in IOCG deposits, i.e., the OD, as well as

RDG (Ehrig et al., 2012). For discussion, we choose La to represent the
REE group for the following reasons: (1) the chemical and thermo-
dynamical properties of all REE are similar and they usually share si-
milar geochemical behaviours; (2) compared to Ce, La has a single
oxidation state La(III), whereas Ce can form Ce(III) and Ce(IV).

Our calculations show that both temperature and salinity have
strong influence on La solubility in granite-buffered fluids (Fig. 9). The
concentrations of La are relatively high over 2 regimes: (1)
T=180–300 °C, c[Cl]< 0.5m; and (2) T > 300 °C, c[Cl] > 2m.
Comparing F-bearing and F-free systems, the overall concentration of
La is enhanced by 0.5 to ~2 orders of magnitude in the F-bearing
system relative to the F-free system (Fig. 9A,C).

The aqueous speciation of La is shown in Fig. 9B (F-bearing) and 9D
(F-free). Regardless of the presence of F, the predominant La species is
LaCO3

+ below 100 °C, and La hydroxyl species dominate the solution at
low salinity (c[Cl] < 1m, 100–400 °C). Note that these predictions
have low level of confidence, due to the limited experimental data on

-1
.8

-1.6

-1.4

-1.4

-1
.2

-1.2

-1

-1

-1

-1

-1

-0.8

-0.8
-0.8

-0.8

-0.6

-0.6
-0.6

-0.6
-0.4

-0.4

-0.4

-0
.4

-0.2
-0.2

0
-0

.7

-0.5
-0.3

-0.1

-0.1

0

0
0

0
.1

0
.1

0.1

0.2

0
.2

0.
2

0.2

0.
3

0
.3

0
.3

an
n+

hm
+p

y
hm

+m
gt

+p
y

m
gt

+p
y

m
gt

+p
y

m
gt

+p
y

m
gt

+p
y

m
gt

m
gt

po
+m

gt
po

+m
gtt g

m+op

m
gt

+p
y

hm
+m

gt
+p

y

an
n+

hm
+p

y

Fe

FeOH

Fe

FeCl  (aq)

FeCl

2+

FeCl  (aq)

FeCl

2+

+

FeOH+

Predominant Fe Species Predominant Fe Species

-1
-1

0

0
1

1

2
3

0.5

1

1.5

2

2.5

3

100 200 300 400

0.5

1

1.5

2

2.5

3

0

50

0

50 100 200 300 400

F-bearing F-Free

Cl
 [m

]
Cl

 [m
]

0.5

1

1.5

2

2.5

3

0

Cl
 [m

]

T [ºC]T [ºC]

5

5

6

6

pHF-bearing - pHF-free

F-bearing
Fe (log ppm) log (FeF-bearing / FeF-free)

(A)

(F)(E)

(D)

(B)

(C)

pH(P,T)

F-bearing

Fig. 8. Calculated Fe concentrations, speciation,
and pH as a function of salinity (Cl) versus T
(°C), in F-bearing and F-free model granite. (A)
Solubility of Fe in F-bearing fluids. (B)
Difference (expressed as log of ratio) in Fe-so-
lubility between F-bearing and F-free fluids. (C)
Predominant Fe complex in F-bearing and (D) F-
free model systems; the minerals controlling Fe
solubility are also shown (red lines). (E) pH of F-
bearing fluids. (F) pH difference for F-bearing
and F-free fluids. Note that the decreased Fe
solubility in the F-bearing fluids is caused both
by the increased pH and by the change in Fe-
mineralogy. Abbreviations: ann= annite,
hm=hematite, mgt=magnetite, po= pyr-
rhotite, py=pyrite. (For interpretation of the
references to colour in this figure legend, the
reader is referred to the web version of this ar-
ticle.)

Y. Xing et al. Chemical Geology 504 (2019) 158–176

168 -27



REE carbonate and hydroxide complexing (Migdisov et al., 2016). The
predictions diverge at higher T and salinity depending on whether F is
included in the model. Specifically, in F-bearing fluids, the predominant
species are LaCl2+ and LaCl2+ at 100–200 °C, while above 200 °C (or
100 °C when c[Cl]= 0.5–1.5m), LaF2+ is the predominant species. For
the F-free system, La chloride complexes dominate the fluid at
T > 100 °C and c[Cl] > 1m.

Hence, the higher La concentrations in the F-bearing simulations are
due in part to the formation of REE fluoride complexes. However, since
elevated concentrations are obtained even where La-fluoride complexes
are not predicted to be dominant, another process must account for the
increased mobility of REE in the F-bearing model. The dissolution of
monazite-(La), a widespread predicted mineral in F-bearing (Fig. 9B)
and the only one of the minerals in the F-free simulations, can be
written as:

+ + = +− + + −LaPO (s) F 2H LaF H PO4
2

2 4 (8)

As shown in Fig. 8E and F, pH is higher in the F-bearing than in the
F-poor simulations, resulting in a lowering of REE solubility. However,
a lowering of the aqueous phosphate content would cause an increase in

REE dissolution. Fig. 9E and F shows that phosphate concentrations are
higher by more than an order of magnitude in the F-free simulations.
This is the result of the control of phosphate solubility by apatite-
(CaOH) in the F-free simulations, and by apatite-(CaF) in the F-bearing
simulations, with the latter being less soluble than the former.

4.4. Uranium solubility and speciation

Calculations show that U solubility is mainly controlled by tem-
perature while salinity plays a minor role (Fig. 10A,C). The predicted
aqueous U concentrations are highest at T < 200 °C or T > 400 °C in
both F-bearing and F-free systems. Uranium solubilities are higher in F-
bearing fluids, especially at T≤ 150 °C and c[Cl] > 0.5 m (>10 times
more U in the F-bearing fluid). The reasons are complex, but the main
control appears to be pH, which affects the HCO3

− (predominant up to
~110 °C in F-free, and ~150 °C in F-bearing systems) – H2CO3(aq)
equilibrium. However, the calculated solubility of U is very low (up to
0.1 ppb) in the fluids equilibrated with a normal fresh granite
(Fig. 10A,C), which correlates with a relatively reduced mineral as-
semblage dominated by uraninite+magnetite+ pyrite
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(± anhydrite ± hematite). Under these conditions uraninite (UO2) is
the solubility-limiting U mineral, and the fluid has poor capacity for
mobilizing U, even if the recently discovered UCl4(aq) species
(Timofeev et al., 2018) is included in the model.

To explore the effect of the redox state of the granite, we modelled
the interaction of an oxidized fluid (with 0.1 wt% SO4

2−) and a
weathered (sulfide-free; all Fe as Fe2O3) granite. The results show that
U solubility is greatly enhanced (≫1 ppb) especially at low-T
(< 250 °C), and at high temperature-high salinity (> 400 °C,> 2.5m
Cl) (Fig. 10E,F). The U-limiting phases are mixed uranium oxides
(U3O8(s) and U4O9(s)), rather than stoichiometric uraninite. As ex-
pected, oxidized fluids are favourable for U mobilization and the redox
state of the fluid is essentially the key factor controlling U solubility
(Timofeev et al., 2018). However, there is no significant F complexation
in the calculated systems (Fig. 10B,D,F). Instead, U(VI) carbonate spe-
cies (i.e., U(VI)O2(CO3)34− and U(VI)O2(CO3)22−) are predominant at
T < 200–300 °C, while UO2Cl2(aq) dominates at high temperatures
(T > 400 °C). Xing et al. (2018) obtained similar results by modelling
equilibrium between an oxidized fluid with F-rich granite: U(VI) hy-
droxyl and chloride species are the predominant species (no carbonate

species included in their calculations) responsible for extracting U from
granite, while U(IV/VI)-F complexation plays a negligible role.

4.5. Silica solubility and speciation

Temperature is the main control on Si solubility (Fig. 11A,C): Si
concentrations increase with increasing temperature. Increasing Cl
concentration results in a small salting-out effect, but the addition of F
to the model results in higher Si solubility in F-bearing fluids (compare
Fig. 11A,C). The predominant aqueous Si species at 50–450 °C in both
F-bearing and F-free fluids with a salinity of 10 wt% NaCl equivalent
are shown in Fig. 11B and D as a function of temperature. For both
fluids, the predominant Si species are H4SiO4(aq), NaHSiO3(aq) and
H3SiO4

− under simulated conditions. Among fluoride complexes, the
concentration of Si(OH)2F2(aq) increases dramatically with tempera-
ture, but remains a minor species overall even above 350 °C (Fig. 11B).
In particular, the overall concentration of the NaHSiO3(aq) and
H3SiO4

− species are 1–2 magnitudes higher in F-bearing fluids than in
F-free fluids (Fig. 11B). These slightly elevated Si concentrations in F-
bearing fluids are related to the higher pH in these fluids, which
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increases the concentrations of the H3SiO4
− (reaction (9b)) and NaH-

SiO3(aq) (reaction (9c)) species while leaving H4SiO4(aq) unaffected
(reaction (9a)):

+ =SiO (s) 2H O H SiO (aq)2 2 4 4 (9a)

+ = +− +SiO (s) 2H O H SiO H2 2 3 4 (9b)

+ + = ++ +SiO (s) Na H O NaHSiO (aq) H2 2 3 (9c)

5. Discussion

5.1. Fluorine mobility during water-rock interaction in granite

Fluorine is widely distributed in many types of hydrothermal fluids,
for instance, sedimentary and basement formation waters, deep sea
vent fluids, metamorphic and magmatic fluids (e.g., Banks et al., 1994;
James et al., 2014; Seward et al., 2014; Yardley, 2005). Fluorine con-
centrations in these natural fluids vary over a large range from 20 to
5000 ppm and fluids with higher temperature tend to have higher F
content, i.e., magmatic fluids and metamorphic fluids (e.g., Yardley,
2005; Fig. 12). Our simulations show that in the case of equilibrium
granite-fluid interaction, the Cl/F ratio similarly increases with in-
creasing temperature over the range of temperature and fluid salinity
investigated, i.e., 50–450 °C, 0–3.5m Cl (0–20wt% NaCl equivalent)
(Fig. 12).

The Cl/F ratio of the calculated fluids is higher compared to the
magmatic and metamorphic fluids reported by Banks et al. (1994) and
Yardley (2005), which is caused by the lower temperature of our cal-
culated fluids (< 450 °C). Seawater has a higher Cl/F ratio than the
values resulting from fluid-granite interaction in our model (Fig. 12;
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Bruland, 1983). In general, seafloor magmatic hydrothermal systems
are dominated by seawater, and the Cl/F ratios in these fluids reflect
that source (see Fig. 12; review in James et al. (2014)). Variations in F
contents are attributed mainly to interaction with host rocks; host rocks
with higher acidity (i.e. dacitic rather than basaltic) tend to result in
higher F in fluids (James et al., 2014).

Low Cl/F ratios resulting from relatively high F concentrations in Cl-
poor waters have been reported for some low-temperature granite-
hosted hot springs (Brugger et al., 2005; Lottermoser and Cleverley,
2007; van Middlesworth and Wood, 1998). For Innot Hot Springs,
Queensland, fluorite controls F solubility instead of silicates or apatite-
(CaF), with F− and CaF+ the dominating F species in these fluids
(Lottermoser and Cleverley, 2007).

In our simulations, full equilibrium is assumed for the fluid-granite
interaction, which is increasingly valid with increasing temperature.
The calculated fluids in our modelling present F concentrations over
70 ppm at ~450 °C, with a decreased Cl/F ratio, indicating that F is
relatively more enriched in the fluids. Therefore, the modelling shows
that the extensive interaction between fluids and F-rich granite could be
a good mechanism generating F-bearing fluids, which contributes to the
F enrichment in the case of the OD deposits and many other F-rich IOCG
systems.

5.2. Fluoride as a transporting or precipitating ligand of Fe?

The F enrichment in many Fe-rich hydrothermal mineralization
systems and the ability of F to form strong complexes with Fe suggest
that F could contribute to Fe transport in hydrothermal fluids.
However, this hypothesis is not supported by our results: both in-situ
XAS experiments and thermodynamic studies give consistent results
that Fe(II/III)-F complexes become less important in fluids at higher
temperatures and the solubility of Fe decreases dramatically above
200 °C when F is the main ligand (Figs. 4 and 6).

We further tested the relative importance of F and Cl on complexing
Fe(III) with the activity-activity diagram in Fig. 13A, showing that Fe
(III)-F complexes are important at low temperature, whereas Fe(III)-Cl
species become increasingly important with increasing temperature.
Chloride is usually the predominant ligand in natural hydrothermal
fluids and is considered to be the main ligand responsible for Fe
transport (Brugger et al., 2016; Liu et al., 2006; Testemale et al.,

2009a). Our calculations confirm that Fe forms predominantly chloride
complexes above 200 °C regardless of the presence of F (Fig. 8C,D).
Therefore, F− is not a good ligand for the hydrothermal transport of Fe
at temperatures > 200 °C.

Instead, F may drive precipitation of Fe. In-situ XAS results show
that Fe solubility decreases at elevated T (typically> 200 °C) in F-rich
solutions (Fig. 4). In general, Fe solubility is low at high F activity and
high temperature. The fluid-granite interaction modelling also shows
that the overall solubility of Fe is lower in F-bearing fluids than F-free
fluids, as a result of the slightly higher pH of F-bearing fluids and the
resulting slight differences in mineral stability and its effect on the
redox state of the fluid (Fig. 8).

The effects of F activity and temperature are further illustrated in
Fig. 13B. In particular, Fe(II)F2(s) is predicted to precipitate as a result
of increasing temperature and F activity, following:

+ = +− − −FeCl 2 F FeF (s) n Cl ,n
2 n

2 (10)

The equilibrium constants (logK) of reaction (10) at 25–300 °C are
listed in Table 7. We also calculated the Cl/F ratio at equilibrium with
the assumption that FeCl2(aq) is the predominant Fe species in fluids
and aFeCl2 equal to 1 (Table 7). The Cl/F ratio is 2516 at 200 °C, and
increases with increasing temperature, reaching 42,015 at 300 °C. Ac-
cording to our simulation of fluid-granite equilibrium, the Cl/F ratio of
the fluid is especially low at low salinity (Cl/F < ~1200, c[Cl] <
0.5m; Figs. 7C, 12); this corresponds to a regime of very low Fe so-
lubility in the fluid (Fig. 8A). Iron solubility is also predicted to be
significantly lower in F-bearing fluids compared to F-free fluids at
T > 350 °C and c[Cl] < 1.5 m (Fig. 8B), which corresponds to a low
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Table 7
Equilibrium constant for reaction FeCl2(aq)+ 2 F−=FeF2(s)+ 2 Cl− and
Cl/F values at equilibrium at 25–300 °C, Sat.

T [°C] logK Cl/F

25 4.1217 115
60 4.6758 218
100 5.0521 336
150 5.9202 912
200 6.8014 2516
250 7.8646 8557
300 9.2468 42,015
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Cl/F area (Fig. 7A). Considering that natural magmatic F-rich fluids
have Cl/F ratios at 100–1000 (Fig. 12), mixing of a F-bearing/rich
magmatic fluid with granite-equilibrated fluids can be an effective
mechanism to cause Fe precipitation. However, FeF2(s) is not known as
a mineral. In IOCG deposits, e.g., OD, fluorite is the predominant F-
bearing mineral (Hitzman et al., 1992; Ehrig et al., 2012). The solubility
of CaF2(s) is much lower than FeF2(s), and in addition even if FeF2(s)
forms locally it can be easily transformed to CaF2(s) by Ca-bearing
fluids. The processes can be described as:

+ + + = +

+ +

+ −

+ −

FeF (s) Ca 0.125 SO H O CaF (s) 0.5 Fe O (s)

1.875H 0.125 HS ,
2

2
4

2
2 2 2 3

(11)

A positive correlation between Ca, Fe and the sulfide grade is re-
cognized in the OD hematite ores, and fluorite is also the main Ca-
bearing mineral phase (Ehrig et al., 2012). This phenomenon can be
well explained by reaction (11), with an oxidized Ca-bearing fluid
transforming FeF2(s) to fluorite and precipitating hematite.

5.3. Role of fluorine-bearing fluids on extracting REE and U from granite

For REEs, our calculations show that LaF2+ is the predominant La
species at T > 100 °C over a wide range in NaCl concentrations, with
La chloride complexes being the most important at medium T
(100–300 °C) in high salinity (> 2m) brines (Fig. 9B). Although the
calculated REE concentrations are rather low (< 1 ppm La), the pre-
sence of F does help increase REE solubility (compare Fig. 9A and C)
during fluid-granite interaction.

Recent experimental studies pointed out that the stability of REE
fluoride complexes had been overestimated by semi-empirical extra-
polations, and concluded that Cl rather than F is responsible for REE
transport in REE-rich (> 200 ppm) hydrothermal fluids (Migdisov
et al., 2009; Williams-Jones et al., 2012; Migdisov and Williams-Jones,
2014). In our simulations, the fluid has lower REE concentration
(< 1 ppm La in F-bearing fluids) than some natural REE ore-forming
fluids, which can contain over 200 ppm REE (Banks et al., 1994).
However, our calculated La concentrations are within the estimated
concentration limit of REE that can be transported as fluoride com-
plexes (< 1 ppm; Migdisov and Williams-Jones, 2014), and are con-
sistent with earlier modellings that suggest that high temperatures and
low pH are required to explain the high REE contents of some magmatic
brines (Williams-Jones et al., 2012). Assuming granite as one of the
possible sources of REEs at OD, the F-rich nature of the RDG granite will
be a key factor enhancing REE extraction and leaching efficiency
through fluid-rock interaction. Our modelling, however, suggests that
the extraction of REE from granite by medium-salinity brines cannot
produce highly enriched REE fluids such as those associated with hy-
drothermal REE mineralization at the Capitan Pluton, New Mexico
(Banks et al., 1994). Extreme salinity (~40 wt% at Capitan), presence of
additional ligands (e.g., sulfate), or low pH (i.e., more acidic than those
resulting from rock-buffering) may be key to increasing REE solubility
in these systems.

The transporting role of F on U is also a hot topic due to the common
U-F association in many hydrothermal U deposits, including IOCGs
(Hitzman and Valenta, 2005; Mark et al., 2000, 2006), volcanogenic U
deposits (Chabiron et al., 2003), orogenic U deposits (McGloin et al.,
2016) and vein-type deposits hosted in felsic rocks (Hu et al., 2008). It
has been proposed that F can help transport U (Peiffert et al., 1996;
McGloin et al., 2016) due to (1) the high stability of U(IV)-F and U(VI)
O2-F complexes relative to chloride complexes, resulting in higher U
solubility in NaF solutions than in NaCl solutions (Peiffert et al., 1996),
and (2) the increased partitioning coefficients between fluid and melt at
higher HF concentrations (Keppler and Wyllie, 1991). Xing et al. (2018)
show that U(IV/VI) fluoride complexes are the predominant species
below 200 °C in F-Cl bearing (Cl/F= 100) fluids under both reduced
and oxidized conditions. However, our calculations show that U(IV/VI)

fluoride species never predominate under the simulated conditions.
This is the result of the low F content (< 20 ppm) at lower T (< 300 °C)
and high Cl/F ratios (> 1000) at salinities≥ seawater (Fig. 7A,C) of the
calculated fluid.

Taking granite as the primary source of F, the equilibrium reaction
between fluids and granite is less likely to generate fluids with high F
content due to the strong buffering effects of the granite (i.e., biotite,
apatite and fluorite), which limits U-F complexation. In contrast, low
temperature and oxidized fluids are more efficient and more likely to be
the key in mobilizing U from the granite. Fluoride by itself may not be a
key factor boosting the mobilization of U through hydrothermal al-
terations in granite-buffered hydrothermal systems.

5.4. Fluorine and porosity generation

Large scale brecciation is regarded as a defining feature of IOCG-
type deposits since ores are usually hosted in breccias (Groves et al.,
2010; Hitzman et al., 1992; Williams et al., 2005). The extensive
brecciation has been attributed to the volatile fluids that are generated
by contemporaneous magmatism during the ore formation (Groves
et al., 2010; Williams et al., 2005). Our calculations show that HF(aq) is
the predominant F species in fluids at 300–450 °C (Fig. 7B). Therefore,
at OD, the high temperature and salinity magnetite-stage (Stage-I) mi-
neralizing fluids favour the formation of HF(aq). Evidence for mineral
dissolution from aggressive fluids can be found in the distinctively
ragged and irregular shapes of the breccia clasts at OD (McPhie et al.,
2011a, 2012).

The mechanism(s) responsible for the aggressive nature of the fluids
remains uncertain. Three main hypotheses can be presented:

(i) Fluorine-rich fluids, most likely high temperature magmatic fluids
similar for example to those plotted in Fig. 12, rise rapidly during
tectonic events, reaching high level of disequilibrium with the host
rock.

(ii) An aggressive fluid evolves via phase separation of a fluid that may
have had an initial composition similar to that calculated here for
fluid-granite interactions. Fig. 14 shows that a vapour evolving
from such a fluid would have fHF(g)/fHCl(g) > 1 and hence
would be highly aggressive. Phase separation is expected for
shallow hydrothermal systems, which is likely to have relevance at
OD given the large amounts of sediment clasts entrained at the top
of the breccia (Williams et al., 2005). However, evidence for these
vapours is expected to be limited, since they cause dissolution
rather than mineral precipitation, and would be directly followed
by fresh brines.

(iii) Our simulations show that fluids derived from the granite contain
small but significant concentrations of HF(aq) and cause a dra-
matic increase of Si-F complexation at elevated temperature
(Fig. 11). Therefore, even these relatively small amounts of dis-
solved F can help increase the permeability of the wall rocks by
breaking SieO bonds in silicates and releasing Si into fluids,
helping to open grain boundaries and thereby weakening the rock.
These could also possibly speed up mineral replacement kinetics,
as has been shown for magmatic environments (Snow and Kidman,
1991).

6. Conclusions

We aimed to evaluate the role of F in extracting, transporting, and
depositing metals in granite-related environments, with a special at-
tention to explaining the nature of the association between F, U, REE
and Fe found in typical IOCG deposits. As described in the introduction,
four types of explanations have been proposed to explain the links
between F, U, REE and Fe. The results of our thermodynamic modelling
and in-situ XAS studies provide quantitative constraints on the feasi-
bility and relative significance of each of these processes.
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(i) Fluoride increases the solubility of metals by forming stable co-
ordination complexes.

Fluoride complexing was found to be insignificant for Fe and U
transport. The modelling reveals that in the case of fluid-granite in-
teraction, fluoride complexes play a significant role only in the case of
REE (specifically, LaF2+ is the predominant species above 200 °C).
However, addition of F did affect the solubility of U, Fe, and REE, albeit
in a complex manner that is difficult to predict empirically. For ex-
ample, higher REE contents in F-bearing models are the result of the
difference in solubility of apatite-(CaOH) versus apatite-(CaF), which
affects the phosphate contents of fluids and hence the solubility of REE-
phosphate minerals such as monazite. The increased pH of the F-
bearing fluids is responsible for the elevated U solubility in the form of
uranyl carbonate complexes at low temperatures (< 250 °C).

(ii) Fluoride acts as a precipitating agent of Fe.

Our results show that F may act as a precipitating ligand for Fe
under hydrothermal conditions (> 200 °C), due to the predicted reverse
solubility of FeF2(s). Mixing of F-rich fluids with ore-forming fluids may
result in Fe precipitation due to the low solubility of Fe fluorides (re-
action (10)), which may account for the F enrichment in the iron oxide
ores in many IOCG deposits. In addition, fluoride appears to also reduce
Fe solubility in models of fluid-granite interaction indirectly. The lower
Fe solubility obtained in F-bearing compared to F-free models reflects
the higher pH of the F-bearing fluids, and its effects on Fe-mineralogy
and fO2(g).

(iii) High F contents reflect the source of the ore fluids.

Our calculations show that F concentrations in fluids equilibrated
with granite increase with increasing temperature, reaching a

maximum value of ~70 ppm at ~450 °C. These F-concentrations are
relatively low compared to F-concentrations in some magmatic fluids,
yet the simulations confirm that a significant amount of F can be ob-
tained by fluids via interaction with an assemblage of biotite, apatite-
(CaF) and fluorite. However, extensive hydrothermal activities are re-
quired for significant amount of F to be mobilized from felsic rocks to
form the large F endowment observed in some IOCG deposits (e.g., OD;
Lala).

Our results also indicate that different hydrothermal events should
be responsible for U (T < 200 °C) and REE (T > 250 °C) extraction,
respectively. For OD, the magnetite stage fluids may favour REE mo-
bilization from granite while the hematite stage fluids are preferential
for U mineralization. The characteristic U-REE-F co-enrichment feature
of the OD ore body may reflect the geochemical feature of the host
granite and the regional felsic volcanic rocks, indicating the source link
between genesis of IOCG deposits and hydrothermal alteration of re-
gional felsic rocks.

(iv) The presence of HF(aq) improves leaching of metals and creates
fluid pathways.

Our simulations show that the addition of F in the model results in a
small increase in Si solubility, as a result of the higher pH of F-bearing
fluids affecting the concentrations of H3SiO4

− and NaHSiO3(aq).
Thermodynamic calculations indicate that Si-F complexes do not con-
tribute significantly to solubility, even at 500 °C. However, even small
concentrations of these species in solution could contribute to the ef-
fectiveness of fluid-rock interaction and fluid flow by helping to break
SieO bonds in silicate minerals. With respect to breccia formation,
additional processes are required to create a large disequilibrium be-
tween fluids and rocks; this can be achieved by rapid flow of fluids
along faults during seismic events, or by phase separation generating a
HF-rich, highly aggressive vapour.
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Fig. 14. Composition of vapour in equilibrium with a hydrothermal fluid assuming activities of HCl(aq) of 10−4 and HF(aq) 10−3 (corresponding to conditions at
450 °C in our simulations of fluid:granite equilibrium for the solution containing 3.5 m Cltot; Fig. 7). (a) f HF(g); (b) f HF(g)/f HCl(g).
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Overall, our data suggest that the common F+Fe+REE ± U as-
sociation in many IOCG deposits may not only reflect the sourcing of
the metals, but also that F contributes to the huge metal endowment of
these deposits via a combination of processes, including changing the
fluid pH, redox and the mineralogy, which further increase the metal (U
and REE, but not Fe) carrying capacity of the fluids; and enhance the
porosity and permeability of the breccia and the wall rocks, thus con-
tributing to increased fluid pathways and ore-forming reactions. These
provide a better understanding on how the F enrichment, a defining
feature of IOCG deposits, is formed and the hydrothermal mineralizing
histories of the deposits.
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Uranium mineralization is commonly accompanied by enrichment of fluorite and other F-bearing minerals, leading to the
hypothesis that fluoride may play a key role in the hydrothermal transport of U. In this paper, we review the thermodynamics
of U(IV) and U(VI) complexing in chloride- and fluoride-bearing hydrothermal fluids and perform mineral solubility and
reactive transport calculations to assess equilibrium controls on the association of F and U. Calculations of uraninite and
U3O8(s) solubility in acidic F-rich (Cl : F = 100 [ppm-based]) hydrothermal fluids at 25–450°C, 600 bar, show that U(IV)-F
complexes (reducing conditions) and uranyl-F complexes (oxidizing conditions) predominate at low temperature (T < ~200°C),
while above ~250°C, chloride complexes predominate in acidic solutions. In the case of uraninite, solubility is predicted to
decrease dramatically as U(IV)Cl2

2+ becomes the predominant U species at T > 260°C. In contrast, the solubility of U3O8(s)
increases with increasing temperatures. We evaluated the potential of low-temperature fluids to upgrade U and F concentrations
in magnetite-chalcopyrite ores. In our model, an oxidized (hematite-rich) granite is the primary source of F and has elevated U
concentration. Hydrothermal fluids (15wt.% NaCl equiv.) equilibrated with this granite at 200°C react with low-grade
magnetite-chalcopyrite ores. The results show that extensive alteration by these oxidized fluids is an effective mechanism for
forming ore-grade Cu-U mineralization, which is accompanied by the coenrichment of fluorite. Fluorite concentrations are
continuously upgraded at the magnetite-hematite transformation boundary and in the hematite ores with increasing fluid : rock
(F/R) ratio. Overall, the model indicates that the coenrichment of F and U in IOCG ores reflects mainly the source of the ore-
forming fluids, rather than an active role of F in controlling the metal endowment of these deposits. Our calculations also show
that the common geochemical features of hematite-dominated IOCG deposits can be related to a two-phase process, whereby a
magnetite-hematite-rich orebody (formed via a number of processes/tectonic settings) is enriched in Cu±U and F during a
second stage (low temperature, oxidized) of hydrothermal circulation.

1. Introduction

1.1. The U-F Association. Many hydrothermal uranium (U)
ores are accompanied by high concentrations of fluorine (F)
in the form of fluorite and/or other F-bearing minerals such
as fluorapatite [1–4]. Such U-mineralizing systems include
IOCG, orogenic U deposits, and volcanogenic and vein-type
deposits hosted in felsic rocks [2, 5–7]. Examples of deposits
in which both U and F are enriched are listed in Table 1.

The enrichment of fluorine is an important feature of
many IOCG-mineralizing systems, including Olympic Dam
(OD) [6, 8] and Ernest Henry in Australia [9, 10]; Salobo

[11] and Igarape Bahia [8] in the Carajás district, Brazil; and
Lala [12, 13] in southwest China. This led to the hypothesis
that fluorine may play a key role in the leaching and transport
of metals for IOCG and in controlling the element association
found in this class [3, 11]. For example, in the Olympic Dam
deposit, which represents the world’s largest U resource
[14–17], themined ores contain about 2.5wt.%fluorite, which
adds up to 108 t of F from fluorite alone [3]. The Ernest Henry
in Cloncurry district, Australia, has a total reserve of
167Mt ores with up to 50 ppmU, and fluorite is one of
the main accessory phases closely associated with Cu-U-Au
mineralization [6, 10]. Similarly, fluorite is enriched in the
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stage III ore assemblages together with Cu-Mo sulfides in the
Lala deposit [18].

Fluorite is usually enriched in volcanogenic and vein-type
U deposits that are related to igneous rocks [4, 19–21]. For
example, fluorite veins are common at the Streltsovka caldera
U deposit in Russia. The deposit is hosted in F-rich rhyolite
(containing 1.4–2.7wt.% F) over a granitic basement, and
both rhyolite and granites are thought to be the source
of F and U mineralization [22]. Many vein-type U
deposits found in South China (e.g., Xiangshan, Xiazhuang,
Hechaokeng, and Wuqilin) are hosted by felsic intrusive or
volcanic rocks and formed from fluids (100–250°C) that
were enriched in F [7]. A close association between fluorite
and U has also been reported in some orogenic U deposits,
such as in the Mount Isa Inlier, Australia [2]. Again, felsic
rocks represent the source of U and F, with F assumed to
facilitate U hydrothermal transport.

In summary, these studies reveal a clear association
between F and U in the ores and sometimes in the likely
source region of fluids/metals. Many studies suggest that this
association is significant for understanding ore formation,
with explanations focusing mainly on two aspects: (i) F helps
extract U or (ii) the F-rich nature of the fluids reflects the
source of the metals. In the case of felsic melt-aqueous-
phase separation relevant for magmatic hydrothermal
deposits (e.g., Rijssing alaskites from Namibia [23] and
Kvanefjeld deposit in the Ilimaussaq intrusion [24]), high-
temperature experiments show that the partitioning coeffi-
cient of U between aqueous fluid and melt (KD= cfluid/cmelt)
strongly increases with increasing HF content at 750°C
[25], as does the solubility of uraninite in uraninite-melt-
fluid systems (up to twenty times more U than in chloride
solution with the same salinity at 770°C [26]). These experi-
mental studies demonstrate the role of complexing by fluoride

for the hydrothermal transport of U in high-temperature
(≥750°C) magmatic hydrothermal systems.

Several studies have investigated the mechanisms by
which hydrothermal fluids mobilize U to form high-grade
U mineralization from low- to medium-temperature hydro-
thermal fluids (≤400°C [22, 27, 28]). The current consensus
is that oxidized fluids are favorable for U mobilization, while
reduction is the key for U precipitation [27, 29–32]. In this
context, the role of F in controlling U transport remains
poorly understood. According to the hard-soft acid-base
theory, U(VI) and U(IV) are hard cations that form strong
complexes with the hard ligand F− [33] but weaker com-
plexes with the soft Cl− ligand. The stronger affinity of U
for F is balanced by the fact that in natural fluids, Cl : F ratios
are high (usually>~100 [34, 35]), because the solubility of
F is limited by the solubility of minerals such as fluorite,
fluorapatite, and F-bearing biotite. Hence, a quantitative
approach is required to estimate the role of fluoride as a
transporting agent for U in natural fluids.

1.2. Uranium Remobilization and Upgrading: the Olympic
Dam Example. The main U minerals at the Olympic Dam
are coffinite, brannerite, and uraninite-pitchblende, with
minor to trace amounts of U hosted in hematite, thorite-
uranothorite, thorianite, crandallite, xenotime-(Y), zircon,
REE-group minerals, pyrite, chalcopyrite, bornite, and chal-
cocite [36]. At the deposit scale, the average proportions of
Uminerals are 56% coffinite, 31% brannerite, and 13% urani-
nite; however, individual samples show large variations ([36];
see Figure 1).

The relative timing of U versus Cu mineralization at OD
has received much attention recently. Macmillan et al. [15]
divided OD uraninite into four groups based on textural
and compositional characteristics. Class 1 uraninite has a

Early U RX7267: urn 89%; cof 8%; brn 3% (1293 ppm U)

(a)

Remobilized U RX7253: urn 6%; cof 91%; brn 3% (21,326 ppm)

(b)

Remobilized U RX7261: urn 1%; cof 5%; brn 94% (387 ppm)

Fe

UCu2 mm

(c)

Figure 1: Contrasting U-Cu distribution in three samples from the Olympic Dam IOCG deposit, South Australia, illustrated by synchrotron-
micro-XRF imaging of selected samples described in detail by Macmillan et al. [15]. Mineralogical and grade data are taken from Macmillan
et al. [15]. The RGBmaps show Cu (blue), U (green), and Fe (red) distribution (colour scale at the bottom right). In (a) (uraninite-dominated
ore), Cu and U distribution mirror each other, suggesting coprecipitation of the two metals. Mineralogy is dominated by uraninite. In
(b) and (c), themainUminerals are coffinite and brannerite, andUdistribution is diffuse and overprints the ore textures, suggesting a secondary
origin. The maps were collected at the XFM beamline, Australian Synchrotron. See Li et al. [40] for details of data collection and processing.
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cubic-euhedral habit and relatively high Pb and ΣREY con-
centrations, as well as up to 7.42wt.% ThO2; this indicates
precipitation from magmatic or high-temperature (>350°C)
hydrothermal fluids. In contrast, other uraninite classes
show low ThO2 contents, suggesting precipitation from
lower-temperature (<250°C) hydrothermal fluids [37]. The
late, massive, Class 4 uraninite has the lowest Pb and
ΣREE+Y, and Macmillan et al. [15] suggest that it evolved
from earlier-formed uraninites (Classes 1–3). X-ray maps
of U and Cu distribution in ores from OD (Figure 1) illus-
trate the importance of secondary U mobility at OD. In a
sample where most U is hosted in uraninite, the Cu and U
distributions mirror each other, suggesting coprecipitation
(Figure 1(a)). In contrast, U and Cu distributions differ
markedly in a sample containing abundant coffinite; U
mineralization is overprinting the ore textures, as well as
occupying late fractures (Figure 1(b)). Similarly, in samples
dominated by brannerite, U distribution appears to overprint
early ore textures (Figure 1(c)); this is consistent with textural
observations by Macmillan et al., [38] indicating a secondary
origin for the majority of coffinite and brannerite. A pro-
tracted U mobility at OD is further supported by the U and
Sm isotope study ofKirchenbaur et al. [39], which adds to geo-
chronological evidence for gradual addition of U in several
stages over 1000Ma at elevated temperatures. Kirchenbaur
et al.’s [39] data also indicate that U is sourced primarily
from upper crustal (likely igneous) lithologies.

1.3. Aims.WecalculatedU(IV/VI) speciation in the simplified
U-F-Cl-H2O-fO2 system at 25–450°C to compare the relative
importance of F and Cl on U transport based on our current
understanding of U thermodynamics. We have updated the
thermodynamic properties of relevant U minerals and com-
plexes, in particular U chloride and fluoride species compiled
and reviewed by Bastrakov et al. [30] with the latest published
data, and briefly discussed the choice of the key properties in
ourmodel.We then conducted reactive transport simulations
to model the fluid-ore/rock interactions to help understand
the hydrothermal mobilization of U and U-Fe-Cu-F associa-
tion in IOCG systems, taking Olympic Dam as an example
with well-described geological and mineralogical features.

2. Methods and Strategies for
Thermodynamic Modelling

2.1. Mineral Solubility Calculations Using the Aliquot-Type
Model. We use the aliquot-type equilibration model [44] to
calculate the solubility of U minerals and the aqueous U
speciation under simple P-T-x conditions for the H2O-U-
NaCl-NaF-HCl-HF system (Figure 2(a)). In these models,
one kilogram of acidic saline water with fixed Cl : F ratio of
100 (solution compositions, see Table 2) was reacted with
uraninite (60mmol) and U3O8(s) (20mmol) to investigate
the relative effects of fluoride and chloride. This Cl : F ratio
reflects the composition of F-rich fluids in nature, which
usually have Cl : F ratios of 100–200 [34, 35]. The salinity of
the fluids was fixed at 15wt.% NaCl equivalent (2.56 molal),
which is similar, for example, to the hematite stage fluids at
Olympic Dam [16, 45].

2.2. Step-Flow-Through Reactor Model. The aliquot equilibra-
tion model is not well suited to investigate the deposition and
remobilization processes of U during fluid-rock interaction,
because many reactions take place at different times and loca-
tions. The step-flow-through reactor model is the simplest
model that can simulate progressive alteration as a function
of increasing fluid : rock (F/R) ratio. In this model, the rock
is laid out as a one-dimensional column divided into a num-
ber of compartments labelled “steps” in Figure 2(b). Initially,
each step has the same mass and composition. A batch of

1 kg brine

Uraninite
or U3O8

(a)

1 2 3 ii − 1

i − 1

i − 1

Rock columns

Steps
... ...

Steps
... ...

Steps
... ...

Wave 1 Fluids

1 2 3 i

Remaining solids
Wave 2 Fluids

1 2 3 i

Remaining solids
Wave N

...

Fluids

(b)

Granite Low-grade U-Cu orebody

0

0

0

Figure 2: Diagram for models used for thermodynamic calculation: (a) aliquot model; (b) step-flow-through reactor model.

Table 2: Simulated system for U-Cl-F-H2O equilibrium.

Reduced fluid Oxidized fluid Units

H2O 1 1 kg

Uraninite 60 0 mmol

U3O8(s) 0 20 mmol

HCl 0.5 0.5 mol

HF 0.5 0.5 mol

NaCl 150 150 g

NaF 1.5 1.5 g

O2 0 1 g
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fluid (wave) is equilibrated with the first compartment (step
1); minerals are allowed to precipitate and dissolve, changing
the composition of the rock and fluid at step 1. The equili-
brated fluid is then extracted and allowed to react with the sec-
ond compartment (step 2) and so on until the fluid exits the
rock column. Repeating this process with fresh batches of
fluids (waves 2 to N) allows to simulate increasing F/R ratio.
Hence, the number of waves represents the integrated effec-
tive F/R ratio, whereas the steps at each value of N represent
a profile from the fluid source towards fresh rock (i.e., condi-
tions buffered by fluids to conditions buffered by the rock).

In ourmodel, we use an idealized composition for the pro-
toores at Olympic Dam and a granite composition derived
from published data of the Roxby Downs Granite (Table 3),
which is the direct host for the ore-bearing hematite breccia
at theOlympicDam [36, 45]. The protoores consist ofmagne-
tite and contain low-grade U and Cu mineralization. The cal-
culationswere conducted at 200°C, 3000 bar. The temperature
reflects the lower end of the hematite stage at OD [16, 45] and
was selected because of the high uncertainties in the extrapo-
lated logKs for critical U complexes at higher temperatures.
Note that variation of pressure has little effect on the results
in this temperature range, and test runs show that higher tem-
peratures (to 300°C) are unlikely to change the fundamental
results of the simulations.

3. Selection of Thermodynamic Properties for
Aqueous U Chloride and Fluoride Complexes,
Uraninite, and Coffinite

Thermodynamic calculations were conducted using the HCh
package developed by Shvarov and Bastrakov [46]. Proper-
ties for minerals and aqueous species are mainly adopted
from an updated version of the UNITHERM database
[46, 47], and we also included minerals and aqueous spe-
cies (mainly Cu and Fe complexes) selected by R. Zhong

et al. [48] and R. Zhong et al. [49]. In particular, the ther-
modynamic properties of uranium minerals and aqueous
species used for the calculations are listed in the supple-
mentary material (Appendix, Table S1). Some plots were
also drawn using Geochemist Workbench v.11 [50], with
a customised thermodynamic database consistent with that
of HCh. Here, we discuss the sources of properties for impor-
tant U complexes and minerals. In general, we use the prop-
erties of U complexes selected by Bastrakov et al. [30], which
are mainly based on the NEA (Nuclear Energy Agency)
review of Guillaumont et al. [51]. Noticeable exceptions
include uranyl chloride complexes, where we use the new
properties obtained recently by Migdisov et al. [52]. We also
use the one-term extrapolation method of Gu et al. [53] to
propose new T-dependence for uranyl fluoride complexes
based on the new knowledge of uranyl chloride complexes
and U(VI) chlorides based on the knowledge of U(IV) fluo-
ride complexes. Since the simulations indicated that some
uranyl hydroxide complexes may be important as well, we
also review the sources and reliability of these complexes.

3.1. U(IV) Aquo Complex. Despite the importance of low-
oxidation state U in the nuclear energy industry, there is
surprisingly little information about the nature and stability
of U(IV) aquo complexes under hydrothermal conditions
[30]. As reviewed by Brugger et al. [54], U(IV) forms a spher-
ical cation surrounded by 9-10 water molecules in the first
coordination sphere in acidic solutions at room temperature
[55–58]. The thermodynamic properties of the U4+ aqua ion
are taken from Shock et al. [59].

3.2. U(IV) Fluoride Complexes. The U(IV) fluoride com-
plexes UFn4−n with n = 1 – 6 were included in this study.

For the complexes with n = 1 – 4, there is relatively good
agreement at room temperature. Bastrakov et al. [30] selected
the formation constants reported by Guillaumont et al. [51],
which are the unweighted average values reported by
Grenthe et al. [60], Noren [61], Kakihana and Ishiguro
[62], Choppin and Unrein [63], and Sawant et al. [64]. These
values are also close to those selected by Grenthe et al. [65]. In
the absence of high-temperature data, Bastrakov et al. [30]
used the van’t Hoff equation to calculate the T-dependence
of the complex to 100°C and then the modified Ryzhenko-
Bryzgalin (MRB) model [46] to extrapolate these properties
to higher temperature and pressure.

TheMRBparameters forUF5
− andUF6

2− are based on the
free Gibbs energy of formation at 25–150°C reported by
Barsukov and Borisov [66]. This provides a conservative esti-
mate of the stability of high-order U(IV) fluoride complexes
compared to the values selected by Guillaumont et al. [51].
The formation constants for the reactions U4

+ + 5F− = UF5−
andU4

+ + 6F− = UF62− at 25°Care 25.0 and 27.6, respectively,
lower than the values calculated by Guillaumont et al. [51]
based on the solubility data of Savage and Browne [67], which
are 27.73± 0.74 for UF5− and 29.80± 0.7 for UF62−.

3.3. U(IV) Chloride Complexes. Hennig et al. [68] observed
the complexes [U(H2O)8Cl]

3+, [U(H2O)6-7Cl2]
2+, and

[U(H2O)5Cl3]
+ with [Cl−] increasing from 0 to 9M at room

Table 3: System composition used in the step-flow reactor model.

Fluid Granite Protoore Units

H2O 1 0 0 kg

O2 0.1 0 0 mol

NaCl 15 0 0 wt.%

Quartz 0 250 0 g

K-Feldspar 0 300 0 g

Albite 0 300 0 g

KAl3Si3O12H2 0 50 0 g

KFe3Si3O12H2 0 30 0 g

KMg3Si3O12H2 0 30 0 g

Fluorite 0 15 0 g

Magnetite 0 10 994 g

Pyrite 0 1 3 g

Chalcopyrite 0 0 3 g

Uraninite 0 0 0.02 g

U3O8(s) 0 0.013 0.02 g
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temperature in acidic (pH25°C 0.24–1.61) HCl +LiCl solu-
tions via in situ EXAFS spectroscopy. The average number
of chloride increased from 1.0± 0.2 (Cltot = 3M) to 2.3± 0.4
(Cltot = 6M) and to 2.9± 0.5 (Cltot = 9M). We use the
speciation information from these spectroscopic results as a
benchmark to check the available thermodynamic properties
for U(IV) chloride complexes.

The theoretical study of Shock et al. [69] uses UCl3+,
UCl2

2+, UCl3
+, and UCl4(aq), although HKF parameters or

property sources are not listed. Shock et al.’s [69] model pre-
dicts high stability of U(IV) chloride complexes above 100°C
at low pH; for example, UCl2

2+ can account for up to 8%
dissolved U in the solution with a pH below 2, and UCl3

+

and UCl4(aq) dominate above 250°C at pH=1.
Bastrakov et al. [30] included just UCl3+ and UCl2

2+ in
their model. The temperature dependence of the UCl3+

complex was extrapolated using the entropy and enthalpy
values selected by Guillaumont et al. [51], and the properties
for UCl2

2+ were taken from Barsukov and Borisov [66], who
report free Gibbs energy of formation from the elements
for UCl2

2+ at 25–150°C. Fitting to the MRB model provided
extrapolation beyond 150°C [30]. However, including UCl2

2+

resulted in unrealistically high predicted U concentrations,
which led Bastrakov et al. [30] to ignore UCl2

2+ for calcu-
lations at T> 200°C. However, the UCl2

2+ clearly needs to
be included based on the average ligand number obtained
from the study of Hennig et al. [68].

In order to attempt to obtain more realistic estimates for
the stability of U(IV) complexes, we take advantage of the
fact that U(IV)-F complexation is better constrained by
experimental studies, which results in more reliable thermo-
dynamic properties for U(IV)-F aqueous species at room
temperature. We used the one-term isocoulombic extrapola-
tion method developed by Gu et al. [53] to extrapolate
thermodynamic properties for UCl3+ and UCl2

2+ to higher
temperatures based on the properties of UF3+ and UF2

2+.
Then we fitted the properties with the OptimC program
[70] and estimated new parameters of the MRB model for
UCl3+ and UCl2

2+. Note that the fitted logK data are based
on the theory behind the isocoulombic approach [53] and
that the MRB fitting is only a parameterisation of the logK
data to be suitable for HCh database format. This is also the
case for uranyl fluoride complexes discussed in Section 3.6.
The newly fitted MRB parameters are listed in Table 4, and
the extrapolated formation constants for UCl3+ and UCl2

2+

are compared with the extrapolations using Bastrakov
et al.’s [30] parameters in Figure 3. The newly extrapolated
formation constants (logK) for UCl3+ are higher than

those of Bastrakov et al. [30], while the logKs of UCl2
2+ are

lower than those from Bastrakov et al. [30] and Barsukov
and Borisov [66].

We calculated the average numbers of chloride ligands
using our thermodynamic model for the 3M and 6M Cltot
solutions analysed by Hennig et al. [68] to be 0.6 and 0.7,
respectively. This indicates that the predicted chlorination
numbers in our model are lower than the experimental ones
(1.0(2) and 2.3(4)) and that the model will tend to underesti-
mate U concentrations in reduced brines. Although the
properties of U(IV) chloride complexes at hydrothermal con-
ditions clearly require more experimental evidence, the in
situ XAS study of Hennig et al. [68] shows that UCl2

2+ is
important in chloride brines and needs to be included in
the speciation model. The proposed extrapolation in this
study appears to provide realistic estimates of U(IV) solubil-
ity in chloride brines.

3.4. Uranyl Oxycation (UO2
2+). Uranium (VI) is present in

the form of the uranyl (UO2
2+) ion, which forms a wide range

of complexes with inorganic ligands such as hydroxide,
halides, carbonate, or sulfate [54]. In the absence of these
ligands, the uranyl ion is hydrated by 5 to 6 water molecules,
located on an equatorial plane relative to the two axial uranyl
oxygens; the hydration number decreases with temperature,
to ~4 at 300°C, 250 bar [54]. The thermodynamic properties
of UO2

2+ used in this study are compiled from Shock et al.
[59], with HKF parameters based on regression of the exper-
imental data of Hovey et al. [71] and Grenthe et al. [65]. As
reviewed by Shock et al. [69], the predicted U solubility
values show good consistency up to 200°C. However, it is
difficult to evaluate the reliability of the thermodynamic
properties at T > 200°C due to the lack of experimental data.

3.5. Uranyl Chloride Complexes.The formation ofUO2Cln
2 − n

complexes is described by the following equation:

UO2
2+ + nCl− = UO2Cln2−n, 1

The existence of UO2Cl
+, UO2Cl2(aq), and UO2Cl3

−

has been reported in several studies [68, 72, 73], and the
nature and stability of uranyl chloride complexes under
hydrothermal conditions were the focus of two recent
experimental studies. Dargent et al. [74] reported the exis-
tence of UO2Cln

2 − n (n = 0 – 5) in 0.3–12M LiCl solutions
at 21–350°C based on in situ Raman spectroscopy data.
They suggest that highly charged uranyl chloride complexes,
that is, UO2Cl4

2− and UO2Cl5
3−, are especially important at

high temperature (>250°C). The recent in situ UV-Vis study
of Migdisov et al. [52] was unable to confirm this result in
relatively dilute (<1.5M) NaCl solutions; the discrepancy
could be due to the highly concentrated nature of LiCl solu-
tions in the Dargent et al. [74] work or to deviations from
the Beer-Lambert law caused by the wide range in ionic
strengths investigated by Dargent et al. [74] (e.g., [75]).

Bastrakov et al. [30] calculated the logKs for reaction (1)
(n = 1, 2) at 25, 50, 75, and 100°C using the van’t Hoff equa-
tion with ΔHr (enthalpy change of the reaction) and ΔSr
(entropy change of the reaction) at 298.15K recommended

Table 4: Parameters of the MRB model for U(IV/VI) aqueous
species fitted in the present study.

Species pK(298) Azz/a Bzz/a
UCl3+ 1.72 1.628 0

UCl2
2+ 1.22 3.082 0

UO2F
+ 5.144 0.7 0

UO2F2(aq) 8.83 2.673 −884.6
UO2OH

+ 8.616 1.045 181.1
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by NEA [51], and they fitted the calculated logKs to the MRB
equation for high-temperature extrapolations.

We compare the logKs of reaction (1) (n = 1, 2) from
Migdisov et al.’s [52] UV-Vis study and MRB model, and
the values calculated using the van’t Hoff equation based on
NEA [51] and the extrapolated values using Bastrakov
et al.’s [30] MRB equation in Figure 4. The formation con-
stants for UO2Cl

+ fromMigdisov et al. [52] show good agree-
ment with the values calculated from the van’t Hoff equation
and Bastrakov et al.’s [30] MRB at T < 100°C. However,
above 100°C, the logKs from Migdisov et al. [52] become
much higher than the values extrapolated using Bastrakov
et al.’s [30] MRB model, indicating higher stability of
UO2Cl

+. For UO2Cl2(aq), the logKs from Migdisov et al.
[52] are larger than the values calculated using the NEA
values [30]. Overall, Migdisov et al.’s [52] experimental study
shows higher stability of UO2Cl

+ and UO2Cl2(aq) at elevated
T (>100°C) compared with recommendations from NEA
[51] used by Bastrakov et al. [30].

In our model, we chose to include only the complexes
that were characterised by Migdisov et al. [52], namely,

UO2Cl
+ and UO2Cl2(aq). The UO2Cl3

− complex was present
only in small quantities in Migdisov et al.’s [52] experiments
and is therefore not included in our model.

3.6. Uranyl Fluoride Complexes. Guillaumont et al. [51]
provided the formation constants of UO2Fn

2 − n complexes
with n = 1 to 4 (log β1 = 5 16 ± 0 06, log β2 = 8 83 ± 0 08,
log β3 = 10 90 ± 0 10, and log β4 = 11 84 ± 0 1) at 25°C
and zero ionic strength by reinterpreting the experimental
study of Ferri et al. [76]. These values are in good agreement
with data reported by Grenthe et al. [65]. There is no exper-
iment for uranyl fluoride complexes at elevated temperature.
For UO2F

+ and UO2F2(aq), we extrapolated properties to
350°C using the one-term extrapolation method of Gu et al.
[53] based on the properties of UO2Cl

+ and UO2Cl2(aq)
reported by Migdisov et al. [52]. The new parameters of
MRB model are listed in Table 4.

We compare the formation constants based on our new
estimations with the values calculated from Bastrakov
et al.’s [30] MRB parameters based on the NEA compilation
[51] in Figure 3. The formation constants extrapolated by

This study

Bastrakov et al. [30]

−2

0

2

4

6

8

10
lo

gK

350150 200 25010050 300
Temperature (°C)

(a) UCl3+

Bastrakov et al. [30]
Barsukov and Borisov [66]

This study

350150 200 250 30010050
Temperature (°C)

0

10

20

30

40

50

60

lo
gK

(b) UCl2
2+

This study

Bastrakov et al. [30]

350150 200 250 30010050
Temperature (°C)

4

5

6

7

8

9

lo
gK

(c) UO2F
+

This study

Bastrakov et al. [30]

6

8

10

12

14

16

lo
gK

350150 200 25010050 300
Temperature (°C)

(d) UO2F2(aq)

Figure 3: Formation constants (logK) for UCl3+, UCl2
2+, UO2F

+, and UO2F2(aq) extrapolated by this study and the values calculated based
on Bastrakov et al.’s [30] estimation.
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our new estimation are lower than those from Bastrakov
et al.’s [30] estimation, indicating lower stability of uranyl
fluoride species. For UO2F3

− and UO2F4
2−, we use the

extrapolations proposed by Bastrakov et al. [30]; these two
species do not appear to play a significant role in U transport
in geochemical systems.

3.7. Uranyl Hydroxide Complexes. Experiments have iden-
tified several uranyl hydroxide complexes under acidic
conditions. These include the mononuclear species
UO2OH+, UO2(OH)2(aq) (also written as UO3(aq)),
UO2(OH)3

−(HUO4−), and UO2(OH)4
2−(UO4

2−) and poly-
nuclear species such as (UO2)2(OH)2

2+, (UO2)3(OH)4
2+,

(UO2)3(OH)5
+, (UO2)3(OH)7

−, and (UO2)4(OH)7
+

[30, 77–79]. Under basic conditions, UO2(OH)3
− and

UO2(OH)4
2− are important. These features are illustrated

in Figure 5, which shows the calculated solubility of
metaschoepite and Na2U2O7·H2O(cr) together with the
measurements of Altmaier et al. [77].

In Bastrakov et al.’s [30] compilation, the thermody-
namic properties for UO2OH

+ and UO2(OH)2(aq) are
expressed using the MHKF model based on Shock et al.
[69] and NEA [51] data, while the properties of the polynu-
clear species are refitted with MRB equations based on the
extrapolations of Plyasunov and Grenthe [80], which use
the room-T thermodynamic data compiled by Grenthe
et al. [65] and recommended by NEA [51]. Note that due
to the effect of entropy, the stability of polynuclear complexes
decreases with increasing temperature [81]. The recent
experimental studies of Zanonato et al. [79] and Altmaier
et al. [77] confirmed the reliability of the thermodynamic
data for the polynuclear species recommended by NEA
[51]. Therefore, in this study, we use the MRB model fitted
by Bastrakov et al. [30] for (UO2)2(OH)2

2+, (UO2)3(OH)4
2+,

(UO2)3(OH)5
+, (UO2)3(OH)7

−, and (UO2)4(OH)7
+.

Zanonato et al. [79] reported new hydrolysis constants,
ΔHr and ΔSr for UO2OH

+ based on a temperature-
dependent (10–85°C) potentiometric study. Predictions based
on these values (van’t Hoff equation to 100°C, fitted to MRB
model) are compared to the NEA recommended values and
to the extrapolations of Bastrakov et al. [30] in Figure 6(a).
We also show the predictions based on the reviews of
Nikolaeva [82] and Berto et al. [78]. In general, the new data
of Zanonato et al. [79] are close to the NEA-selected values
and those of Nikolaeva [82]. Berto et al. [78] underestimates
the formation constant and is excluded from this discussion.
We selected the new extrapolation based on the latest data of
Zanonato et al. [79] for our calculations (Table 4).

For UO2(OH)2(aq), Berto et al. [78] and Nikolaeva [82]
provide higher formation constants than the NEA review
(Figure 6(b)). Since Altmaier et al. [77] showed that the prop-
erties for UO2OH

+ and UO2(OH)2(aq) from NEA agree well
with their experimental studies, we retain the extrapolation
of Bastrakov et al. [30] based on the NEA properties.

3.8. Coffinite, Uraninite, and UO2 + x Oxides. Coffinite is one
of the most common minerals in sandstone-hosted U
deposits. Based on new solubility measurements, Szenknect
et al. [83] obtained a free Gibbs energy of formation of
coffinite (ΔfG

0
298K) of −1867.6± 3.2 kJmol−1, close to the

−1883.6 kJmol−1 recommended by NEA [51]. We used
Szenknect et al.’s [83] value in this study. In the absence of
experimental data, Bastrakov et al. [30] estimated the heat
capacity (Cp) parameters of coffinite by assuming a ΔCp ~ 0
for the reaction ZrSiO4 (zircon) +UO2 (uraninite) =USiO4
(coffinite) +ZrO2(s). We use the same approach, with heat
capacity parameters for uraninite, zircon, and ZrO2(s) taken
from Robie and Hemingway [84].

The thermodynamic properties for crystalline U oxides
(listed in Appendix, Table S1) are taken from Guillaumont
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Figure 4: Comparison of values of formation constants of UO2Cl
+ (reaction (1), n = 1) and UO2Cl2(aq) (reaction (1), n = 2) from Migdisov

et al.’s [52] experimental study and their fitted MRB models, values calculated using van’t Hoff equation using ΔHr and ΔSr recommended by
NEA [51] and predicted values from Bastrakov et al.’s [30] MRB model.
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et al. [51]. The Cp parameters are collected from Grenthe
et al. [65] and are valid at 250–600K. These values are close
to those reported by Fink [85] so that within the temperature
range of our calculations, these values are reliable.

4. Results

4.1. Comparison of U-F and U-Cl Complexation. The effects
of Cl and F on U complexation were compared by calculating

the speciation of U in solutions containing up to 60mmol U
present as uraninite (Figure 7(a)) or U3O8(s) (Figure 7(c)).
Figure 7(a) shows the speciation of U(IV) aqueous species
in reduced fluids. At T < 170°C, U(IV)F4(aq) is the pre-
dominant species while U(IV)F3

+ and U(IV)F2
2+ are less

important. Above 170°C, the concentrations of U-F species
decrease quickly and U(IV)Cl2

2+ becomes predominant at
T > 260°C. As shown in Figure 7(b), the free chloride ion
(Cl−) dominates and its concentration remains relatively

0.51 Cltot

Metaschoepite, UO3•2H2O Na2U2O7•H2O

Experimental data from Altmaier et al. [77]
Calculated U(VI) solubility in this study
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Figure 5: Uranium solubility in 0.51 molal NaCl solutions in equilibrium with metaschoepite or Na2U2O7·H2O(cr) at 298.15K plotted as a
function of pH. (a) Uranium solubility calculated with the thermodynamic model used in this study, compared to the solubility data of
Altmaier et al. [77]. (b) Distribution of species for the simulation in (a); predominant species are highlighted.
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stable with changing temperature, while the concentration of
the free fluoride ion (F−) decreases quickly with increasing
temperature at the expense of forming the HF(aq) ion pair.
Figure 7(c) shows the solubility of U3O8(s) in oxidized
fluids, with U(VI) species accounting for most of U in
solution. U(VI)-F complexes (U(VI)O2F2(aq), U(VI)O2F

+,
U(IV)O2

2+, and U(VI)O2F3
−) predominate at T < ~170°C.

With increasing temperature, the stability of U(VI)-F com-
plexes decreases, while U(VI)O2Cl

+ and U(VI)O2Cl2(aq)
become predominant above 200°C. In contrast to the
reduced system (Figure 7(a)), the solubility of U3O8(s)
remains relatively high with increasing temperatures.

An important feature in both U(IV)- and U(VI)-
dominated aqueous systems is that fluoride complexes are
stable at low temperatures and chloride complexes at high
temperatures. This is further illustrated in a temperature ver-
sus log fO2(g) diagram (Figure 8(a)) and is a result of the
strong association of the hydrofluoric acid (HF(aq) ion pair)
at elevated temperature compared to HCl(aq). Figure 8(b)
shows that lowpH favors uranyl chloride overfluoride species.

4.2. Mobilization and Precipitation of Uranium with
Increasing Fluid: Rock Ratio in Magnetite-Rich Protoores.
Results of the step-flow reactor model are shown in
Figures 9 and 10. The dominant feature is the development
of a sharp reaction front as a result of the replacement of
magnetite in the protoore by hematite. Uranium and Cu con-
centrations are elevated in the ore at the hematite-magnetite
transformation boundary (Figures 9(a) and 9(b)). Similar
results were obtained by Bastrakov et al. [45] for Cu and
Au enrichment at the hematite-magnetite reaction front
and indicated that the oxidizing fluids remobilize redox-
sensitive elements and (re-)precipitate them due to the

changes in redox and pH conditions at the reaction front. A
key result from our model is that fluorine is enriched in the
form of fluorite at the reaction front. Fluorite concentrates
together with Cu within the hematite zone ahead of the
reaction front.

With increasing F/R ratio, the reaction front moves
further into the protoore (Figures 9(a) and 9(c) versus
Figures 9(b) and 9(d)). This is accompanied by the contin-
uous upgrading of U, Cu, and F near the reaction front
(Table 5). The calculated mineralogy of the ores at two F/R
ratios is listed in Table 5. For a F/R ratio of 10 : 1, the
uraninite concentration at the reaction front reaches
0.6wt.%, which is 150 times higher than the weakly
reacted ores (0.004wt.% uraninite +U3O8(s)). At F/R=15,
the uraninite content at the reaction front increased to
0.92wt.%. The model predicts that UO2OH

+ is the pre-
dominant aqueous species; significant amounts of U are
also carried as uranyl fluoride and chloride complexes
(Figures 9(c) and 9(d)). Most U precipitated at the reaction
front due to the destabilization of uranyl species caused by
changes in pH and log fO2 (Figure 10). The predominant sul-
fur species are SO4

2− and HSO4
− at the reaction front, but

their concentration drops quickly towards the magnetite side.
In contrast, HS− and H2S(aq) become more important across
the reaction front (Figures 10(a) and 10(b)). The pH
decreases at the reaction front and increases dramatically as
the fluid equilibrates with the protoore (Figures 10(c) and
10(d)); this is accompanied by a dramatic decrease in the
oxygen fugacity of the fluids (Figures 10(e) and 10(f)).
The main Cu minerals at/near the reaction front are born-
ite (±chalcocite) and chalcopyrite, with bornite usually
more abundant than chalcopyrite (Table 6). Uranium is pre-
dicted to precipitate as uraninite. The simulations show the

UO2
2+ + H2O = UO2OH+ + H+
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Figure 6: Equilibrium constants for the hydrolysis of UO2OH
+ and UO2(OH)2(aq).
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following mineral zonation at the reaction front: chalcopyrite
and fluorite are usually enriched towards the magnetite side,
while bornite (±chalcocite) and uraninite are towards hema-
tite ore side (Figure 9).

From these results, the predominant reaction is the oxi-
dation of magnetite, which is coupled with the reduction of
sulfate (and oxygen) and an increase in pH:

8magnetite + SO4
2− +H+ = 12 hematite + HS− 2

The oxidized fluids (low reduced S contents) cause the
transformation of chalcopyrite into Cu sulfides with higher
Cu : S ratios, for example,

5 chalcopyrite + 6H2O = bornite + 6H2S aq + 2 hematite
3

The redox front associated with the reduction of sulfate
promotes the reduction of U as well; the deposition of urani-
nite can be expressed for example as

4 UO2
2+ OH + + H2S aq = 4 uraninite + SO4

2− + 6H+

4

4.3. Microenvironments Control the Mineralogy of U. We
note that at Olympic Dam, the main Umineralogy in the ores
is dictated by microenvironments. Coffinite and brannerite
are both more abundant than uraninite (the only U mineral
predicted to precipitate in our model). Figure 11 illustrates
that (i) coffinite is not predicted to form above ~300°C, since
it requires dissolved silica (SiO2(aq)) concentrations that are
oversaturated even with respect to amorphous silica, and (ii)
at lower temperatures, coffinite will most likely form in
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Figure 7: Calculation of U solubility and speciation in acidic F−- and Cl−-bearing solutions at 25–450°C (see Table 2 for system composition).
(a) Solubility of UO2(s) under reduced conditions. Below ~260°C, U(IV)-F complexes predominate over U(IV)-Cl complexes. The overall
solubility of UO2(s) decreases with increasing temperature. (b) Speciation of the chloride and fluoride ligands for the simulation in (a).
(c) Solubility of U3O8(s). The predominant species below ~170°C are U(VI)O2F2(aq) and U(VI)O2F

+; uranyl chloride complexes become
predominant at T > 170°C. These calculations were performed in a closed system, with pH and redox self-buffered. The system contains
60 mmolal U, and calculations are isobaric at 3 kbar.
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microenvironments containing elevated (above quartz solu-
bility) dissolved silica contents [30, 86].

These geochemical constraints are consistent with the
textural observations of Macmillan et al. [38]. Brannerite
similarly appears to be a late mineral, forming at least in part
via interaction of U-bearing fluids with preexisting Ti
minerals [38]. Hence, precipitation of coffinite and branner-
ite versus uraninite are controlled by temperature and by the
presence of suitable microenvironments [87]. Our equilib-
rium model does not account for these microenvironments,
but the results would be very similar if coffinite/brannerite
were to precipitate rather than uraninite.

5. Discussion

5.1. Fluorite Enrichment with Cu-U Mineralization. A
correlation between U and F enrichment has been found
in the OD ores [15, 36, 38]. The U-F concentrations for
Cu-unmineralized (Cu< 300 ppm), weakly mineralized
(Cu=300–1000 ppm), moderately mineralized (Cu=1000–
3000 ppm), and mineralized OD samples (Cu≥ 3000 ppm)
are plotted in Figure 12. Independently from Cu grade,
U concentrations are generally positively correlated with
F content, except for ores containing>60wt.%hematitewhere
fluorite concentrations drop down but U3O8 concentrations
maintain an upward trend, especially for samples contain-
ing ≥1000 ppm Cu (Figures 12(c) and 12(d)). Macmillan
et al. [15] reported that the highest U grades are often con-
tributed by massive uraninite found in hematite breccia,
and these uraninites are closely intergrown with Cu sulfides.

Our calculations show that U and Cu enrichment at the
hematite-magnetite reaction front is associated with F

enrichment (Figure 9; Table 5). Fluorine concentration in
the hematite ores also increases with continuous hydrother-
mal alteration (Table 5). It is important to note that these
enrichments result from interactions with fluids that are
not particularly F-rich: the starting composition of fluid in
each wave is in equilibrium with granite, and its F content
is relatively low (F=~80 ppm, Cl : F=~1800) compared to
natural F-rich fluids that can contain in excess of 300 ppm
F (magmatic-derived fluids at the Capitan Pluton [34, 35]).
In the step-flow reactor model, we assume there is no F in
the protoores and the granite is the only unit that contributes
F (Table 3). Therefore, F in the hematite ores originates from
the granite and is transported by the fluids. For each wave of
fluid, the F concentration dropped by about 9.5 ppm (12% of
the total F in the fluid) at the hematite-magnetite reaction
front, indicating that F kept being precipitated at the reaction
front (up to 0.09wt.% for a F/R ratio of 15). In general, the
predicted F grades are lower than the observed grades. This
reflects the fact that the protoore in our model does not con-
tain F or Ca. Higher F grades would result in the protoore
containing Ca in particular.

A typical textural relationship for uraninite, bornite, and
chalcocite is illustrated in Figure 13 based on the observa-
tions of Macmillan et al. [15]. Bornite and chalcocite are
more likely to be precipitated at the same stage while fluo-
rite is overprinted by uraninite, bornite, and chalcocite
(Figure 13). The formation of this texture indicates that fluo-
rite formed earlier than uraninite and Cu sulfides; this is con-
sistent with our simulations (Figure 9). The processes to form
this bornite-uraninite-fluorite association are further illus-
trated in Figure 14. According to the model, fluorite precipi-
tates several steps earlier than uraninite and Cu sulfides along
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the flow direction of fluids. This results in the local zonation
from fluorite to uraninite and Cu sulfides upon increasing
F/R ratio, as early formed fluorite is overprinted by the later
formed uraninite – bornite± chalcocite assemblage with the
influx of new fluids. Hence, the F-U base metal association
in this case does not reflect an active role of F as a transport-
ing and/or precipitating ligand but rather results from condi-
tions at the reaction front affecting F (via pH change), U, and
Cu (pH and redox changes).

Therefore, the association of F and U-Cu enrichment
may simply be formed by the coprecipitation of fluorite due
to the similar local physical-chemical traps rather than the

breakdown of U-F complexes, but it does not reflect the
F-rich nature of the ore-bearing fluids, since the calculated
F concentration in fluids indicates only low-F fluids, and
the predominant U species is a uranyl hydroxyl complexes
(UO2OH

+) (Figures 9(c) and 9(d)), with contributions from
chloride and fluoride complexes.

5.2. Uranium Transport in Cl-F-Bearing Fluids. A popular
explanation of the F enrichment in U mineralization is that
fluoride helps extract and mobilize U by forming stable
U(IV/VI) fluoride complexes [2, 25]. However, our calcula-
tions show that fluoride may contribute to considerable U
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Figure 9: Results of the step-flow-through reactor model. (a-b) Ore mineralogy after 500 waves and 1000 waves, which represent the fluid/
rock ratio at 10 : 1 and 20 : 1, respectively. The direction of the reaction front of magnetite replaced by hematite is indicated by the arrows in
(a) and (b). Uraninites and Cu sulfides (Ccp and Bn) are precipitated at the reaction front, accompanied by fluorite coprecipitation. Fluorites
are enriched in the fully reacted ores (hematite> 95%). Zonation is found at the reaction front, with chalcopyrite and fluorite enriched near
the magnetite side and bornite (±chalcocite) and uraninite enriched at the hematite side. (c-d) Main aqueous U species.
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aqueous complexation only at relatively low temperature
(50–200°C) while at elevated temperature (>200°C), the rela-
tive stability of U(IV/VI)-F complexes drops dramatically
and U(IV/VI)-Cl complexes become more important in
fluids (Figures 7 and 8). Uranyl hydroxide complexes also
appear to be important even slightly acidic pH associated

with silicate-buffered fluids; our simulations suggest that a
mixture of hydroxide, chloride, and fluoride complexes
transported U at OD (Figures 9 and 10).

As a hard ligand, fluoride forms strong complexes
with cations such as Fe3+, U(VI)O2

2+, and REE3+, which
makes it a promising ligand for transporting these metals

Table 5: Ore mineralogy after different waves.

Mineralogy in wt.%, gold in ppm
Steps Description Uraninite Fluorite Chalcopyrite Chalcocite Bornite Hematite Magnetite

F/R = 10 Wave 500

Step 13 Fully reacted 0 0.0008 0 0 0 99.990 0

Step 24 Reaction front 0.599 0 0 2.004 0.912 96.474 0

Step 30 Reaction front 0.037 0.069 0.309 0 0 76.233 20.379

Step 35 Weakly reacted 0 0 0.300 0 0 0 99.399

F/R = 15 Wave 750

Step 27 Fully reacted 0 0.0017 0 0 0 99.988 0

Step 35 Reaction front 0.920 0.002 0 0.237 3.456 98.830 0

Step 36 Reaction front 0.000 0.000 0 0 4.796 93.957 0

Step 44 Reaction front 0 0.057 0 0 0 95.927 0

Step 45 Reaction front 0 0.033 0.302 0 0 18.555 80.154
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Figure 10: Main sulfur species, pH, and ƒO2 in the solution for results from the step-flow-through reactor model at F/R = 10 (a, c, e) and
15 (b, d, f).
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[2, 33, 88–90]. Consequently, it has long been proposed that
F may play a key role for U transport in hydrothermal fluids
[2, 25]. Comparing F and Cl, our calculations show that the
fluoride complexes of both U(IV) and U(VI) dominate in
fluids only at relatively low temperatures (<~200°C). At ele-
vated temperatures (>200°C), U-F complexation is not
important.WhenT is above 200°C, uranyl chloride complexes
dominate in acidic oxidized fluids (Figures 7 and 8). As illus-
trated in Figure 15, U(IV/VI) fluoride complexes are much
stronger than the corresponding chloride complexes; the
difference in formation constants decreases with increasing
temperature but remains significant at 300°C. The increasing
importance of chloride versus fluoride complexes hence
reflects the stability of the HF(aq) ion pair at high tem-
perature, which competes with the formation of fluoride

complexes. Another important factor is that the availability
of the fluoride ion in ore fluids is very much limited by
extremely low solubility of many fluoride minerals. For
example, the solubility of fluorite (CaF2) is very low
(Ksp = 6 6 × 10−8 at 200°C), but CaCl2 is very soluble, thus
causing the high Cl : F ratio in the fluid. In summary, the
transport of U by fluoride may only be of significance in
fluids with T < 200°C while at elevated temperature, U-F
complexes are not stable and contribute little to U transport.

5.3. Remobilization and Upgrading of Uranium by
Hydrothermal Fluids. At OD, large-scale hydrothermal
activity was responsible for ore formation, and the hydro-
thermal history of the deposit was complex and protracted
[36, 39, 91–93]. As discussed before, our calculations show
that U is highly enriched at the magnetite-hematite trans-
formation front (Figure 9). The relative enrichment of U
depends on the F/R ratio. According to our calculations,
the major U and Cu minerals at the reaction front are
uraninite, chalcopyrite, bornite, and chalcocite (Table 5;
Figure 9). The relative enrichment of U compared to pro-
toore (Ureaction front/Uprotoore) is 150 at F/R= 10 and 225
at F/R= 15. Similarly, the Cu contents increase rapidly with
increasing F/R, resulting in a zoning of chalcopyrite-bornite
(±chalcocite) around the reaction front (Figure 9). In detail,
the model predicts that bornite (±chalcocite) is usually
accompanied by uraninite enrichment, while chalcopyrite
is accompanied by fluorite enrichment. Li et al. [94] demon-
strated experimentally that reactions among sulfide minerals
create microenvironments that result in efficient scavenging
of U from solution and provide evidence that kinetic factors
also favor the enrichment predicted by the equilibrium
thermodynamic calculations [95].

Results from the step-flow reactor model are consistent
with mineralogical observations from OD. Deposit-scale
bornite-chalcopyrite zonation is a well-established feature
of the deposit, and the highest Cu mineralization is also
found along this boundary [91, 96]. Uraninite is often locally
enriched near the chalcopyrite-bornite interface, accompa-
nied by fluorite enrichment [16]. Therefore, continuous
alteration by oxidized fluid will cause the local dissolution
and reprecipitation of the U-Cu ores, which keeps upgrading
the U-Cu grade around the bornite-chalcopyrite interface, at
deposit but also at the local scale (Figures 9 and 16).

5.4. Sourcing and Deposition of U by Hydrothermal Fluids.
The sourcing processes of U to form deposits have long been

Table 6: Maximum U, Cu, and F at reaction front.

Wave number F/R ratio

Maximum U, F, and
Cu content at reaction

front (g/kg)

Maximum contents
of Cu sulfides (g/kg)

Main Cu and U phases
in protoore (g/kg)

Uraninite Cu Fluorite Chalcopyrite Bornite Chalcocite Chalcopyrite Uraninite U3O8

100 2 1.20 2.95 0.16 3.09 7.62 0.00

3.00 0.20 0.20
300 6 3.60 7.20 0.47 3.03 21.09 0.00

500 10 5.99 11.42 0.69 3.09 9.12 20.04

750 15 9.20 17.28 0.90 3.02 49.96 2.37
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Figure 11: Stability of coffinite versus uraninite as a function of
silica activity and temperature compared to the solubility of quartz
and amorphous silica.
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a controversial topic [2, 39]. The relationship between U
solubility, fluid salinity, and pH has been investigated by
Richard et al. [32] on natural fluid inclusions and with

experiments. Their results show that acidic (pH = 2 5 – 4 5)
saline solution caused more U to be dissolved, indicating that
chloride and acidic conditions are important for U transport.
However, as indicated by our calculations, fluoride is impor-
tant for U mobilization only at relatively low temperatures
(<250°C). Hence, the F-rich nature of Olympic Dam and
other U deposits may not necessarily reflect a F-rich nature
of the ore-forming fluids but more likely reflects the nature
of source rocks or circulation pathways of fluids. This is fur-
ther supported by the case of the Oak Dam IOCG deposit,
where F is absent in the Cu-U ores [97], as a result of the
absence of a F-rich igneous unit in the region.

An interesting outcome of the model is the importance of
the U(IV) complexes at high temperature under reduced
conditions (Figure 7(a)). As discussed in Section 4 and
highlighted by Bastrakov et al. [30], confirming these results
requires new experimental data, although the room tempera-
ture properties are well established. Aside from confirming
the stability of U(IV) halide complexes at elevated T, experi-
mental studies need to assess the role of mixed halide-
hydroxide-aquo complexes at elevated P-T. Ferri et al. [76]
found no evidence for such ternary complexes at room
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Figure 12: Uranium versus F concentrations in the Olympic Dam ores, as a function of Fe (mainly hematite) content and Cu grades. (a) Cu
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Figure 13: Conceptual textural relationship for uraninite, fluorite,
bornite, and chalcocite for ore samples with highest U content at
the Olympic Dam. The diagram is abstracted based on Macmillan
et al. [15]. U: uraninite; Cc: chalcocite; Bn: bornite; Fl: fluorite.
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temperature. However, in the case of Zr(IV), Migdisov et al.
[98] showed that 8- or 6-coordinated fluoro-aqua com-
plexes predominate at low temperature and tetrahedral
hydroxyl-fluoro complexes predominate at high tempera-
ture. Such complexes could further increase U(IV) mobility
at elevated temperature.

In conclusion, the dissolution and precipitation of U
are controlled by T-pH-ƒO2, as well as the ligand type

(F, Cl, and hydroxide are investigated in this study). The
dissolution of uraninite can be described by the following
equation:

U IV O2 uraninite + 0 5O2 + 2H+ + x F, Cl, OH −

= U VI O2 F, Cl, OH x
2−x +H2O

5

The precipitation of uraninite via reduction of uranyl
complexes can proceed with bisulfide (see (4)) or magnetite
(Fe2+) as reductants.

Accordingly, increased ƒO2 and [H]+ will enhance urani-
nite dissolution, while a decrease will result in uraninite pre-
cipitation (Figure 8(b), U precipitates towards higher pH).
Richard et al. [32] postulated that acidic brines with pH
between 2.5 and 4.5 are required to maintain high U concen-
trations in basinal fluids. In addition, the ligand type is also
important for U dissolution. By forming strong complexes
with [UO2]

2+, hard ligands such as F−, CO3
2+, and SO4

2−

may be essential in helping uraninite dissolution. Also note
that because of the strong association of F at low temperature,
F is likely to be significant as a ligand only at T < 200°C.

6. Final Word: the Geochemistry of
IOCG Deposits

IOCG deposits are an increasingly important source of eco-
nomic Fe, Cu, Au, and U since the discovery of the giant
Olympic Dam Cu-U-Au deposit in South Australia in 1975
[99]. What constitutes an IOCG deposit has been initially
formulated based on the Olympic Dam discovery; that is,
IOCG had no formal genetic meaning, and the formal
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definition of IOCG remains a point of controversy to this day.
Generally, the attempt of Groves et al. [99] is considered the
most authoritative. Our calculations show that as a class, the
common geochemical features of IOCG deposits as described
by Groves et al. [99] can be related to the two-phase process
we modelled, whereby a magnetite-hematite-rich orebody
(formed via a number of processes under different tectonic
settings) is enriched in Cu±U,F through a second stage of
hydrothermal circulation. Groves et al. [99] outline the fol-
lowing features as being necessary for an IOCG sensu stricto
deposit such as Olympic Dam: (i) Cu and Au as economic
metals, (ii) hydrothermal features and structural controls
(e.g., breccias), (iii) abundant iron oxides (hematite, magne-
tite), (iv) LREE enrichment and low S sulfides like chalcopy-
rite and bornite, and (v) lack of abundant syn-sulfide quartz
veins. Groves et al. [99] also note that the formation of
OD-style IOCGs involved mixing of crustal and meteoric
fluids with higher temperature magmatic/metamorphic
fluids. In our model, the magmatic stage is not modelled
but can correspond to the formation of the magnetite-rich
protoore. Furthermore, a temporal (not spatial) relationship
with magmatism is a key feature of IOCG deposits according
to Groves et al. [99]. This feature is outside the scope of our
geochemical model, although it can relate to the heat source
driving hydrothermal fluids or to a geodynamic setting
conductive to large fluid flow.

Our modelling also indicates that the coenrichment of
F and U in IOCG ores most likely reflects the source of
the ore-forming fluids and does not reflect an essential role
of F in controlling the metal endowment of these deposits.
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Abstract 

The formation of giant ore deposits reflects the optimal conjunction of otherwise common 

physical and chemical processes. Positive feedbacks that link mass transfer and ore deposition 

can be the key difference between an average size deposit and a giant. The supergiant Olympic 

Dam (South Australia) Iron Oxide Copper-Gold-(uranium, silver) (IOCG) deposit and the giant 

Bayan Obo (Inner Mongolia, China) REE-Fe deposit are associated with large amounts of 

magnetite (Fe3O4) and hematite (Fe2O3). The formation of high-grade ores at Olympic Dam 

has been linked to overprinting of low-grade magnetite assemblages by hematitization. 

Similarly, at Bayan Obo, magnetite is commonly found replaced by hematite in the main-stage 

ores. Here, we show experimentally that the presence of a minor element, cerium (Ce), 

increases the porosity of hematite formed via fluid-induced replacement of magnetite. The 

catalytic effect of Ce increases the efficiency of the coupling between magnetite replacement 

reaction, fluid flow, and element mass transfer, thus enhancing ore formation and ultimately 

contributing to the size and grade of the ore deposits. At a fundamental level, our work 

demonstrates that trace elements can be actively involved in the redox cycles of fluid-mediated 

mineral replacement reactions. In that way, trace elements can have a first order effect on the 

kinetics, texture, and composition of the products of mineral-fluid reactions. 

The Olympic Dam deposit contains the world’s largest uranium resource, fifth largest copper, 

and third largest gold resource 1, and may be the largest, most valuable, supergiant deposit 

globally 2. The most notable feature of IOCGs is that voluminous hematite and/or magnetite 

are associated with enrichments in Cu, Au, ± U, ± Ag. These ores are also enriched in light rare 

earth elements (LREE); Olympic Dam averages 5,000 ppm SREE in hematite-rich ores 3, 

although these are not currently recovered 4, 5. 

IOCG deposits include two major sub-classes: magnetite-rich deposits, such as Kiruna-type 

magnetite-apatite deposits, and hematite-rich deposits, such as Olympic Dam 4. Compared to 

the magnetite-rich endmembers, the hematite-rich deposits usually have elevated Cu-Au-U-

REE concentrations and the ores are hosted in breccia 6. The hydrothermal origin of Cu-Au-U-

Ag-(REE) mineralization in IOCG deposits is widely accepted, although the key processes 

regarding the formation of high-grade ores are still under debate. A two-stage process is 

favored at Olympic Dam: early-magnetite stage ores formed at high temperatures (>400ºC), 
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and later flow of lower temperature (<300 ºC), presumably oxidizing fluids resulted in 

formation of the characteristic hematite-rich Cu-Au-Ag-U ores 7, 8. 

One of the key factors controlling metal endowments in IOCG deposits is breccia 

permeability 7, 9. Previous studies pointed out that ore grade, brecciation intensity and 

hematite:magnetite ratio are positively correlated in deposits from the Olympic Dam province 7. 

Mineralized samples usually show increased porosity in hematite compared to magnetite 10, 

suggesting that hematitization introduces porosity. 

The replacement of magnetite by hematite is one of the most important reactions associated 

with the formation of high-grade Cu-Au(±U) ores at Olympic Dam and in the other large 

deposits of the province (e.g., Oak Dam and Prominent Hill) 7, 8, 11, because of the 

predominance of iron oxides in these ores. This reaction is often considered to reflect influx of 

oxidizing fluids. However, pure oxidation of magnetite to form hematite (Reaction [1])) results 

in an increase in volume (1.66%) 10, which one would expect to decrease breccia porosity and 

permeability, limit fluid flow, and thus suppress precipitation of ore minerals. 

Cerium(Ce) is usually the most enriched REE in iron-oxide ores 1, 3, 4. Its main form in 

hydrothermal fluids is Ce(III) 3, but a coupling between the Ce(III/IV) and Fe(II/III) redox 

cycles is well established at low temperature 12, so we conceived that Ce(III/IV) may affect the 

magnetite to hematite transformation under hydrothermal conditions. Hence, we performed 

hydrothermal experiments for the magnetite to hematite transformation in both Ce-bearing and 

Ce-free (La-, and Nd-bearing) solutions. 

Cerium influence on ore texture 

Fluid redox is an essential factor controlling the magnetite to hematite transformation 13, 14. 

Two different pathways have been recognized for the replacement of magnetite by hematite, a 

reaction that proceeds via the coupled dissolution-reprecipitation mechanism (ref. 15): 

Oxidative pathway: 2 Fe3O4(mt) + ½ O2(aq) = 3 Fe2O3(hm) ; DV= 1.66%    [1] 

Non-redox pathway: Fe3O4(mt) + 2 H+ = Fe2O3(hm) + Fe2+(aq) + H2O; DV= -32.22% [2] 

Samples from our oxidative runs (proceeding predominantly via Reaction [1]) show little 

reaction regardless of the presence of Ce (Table S1, Fig. S1a). The reacted magnetite grains in 

these experiment products have smooth surfaces, and the pores are usually isolated and small 

(<1-10 µm) (Fig. S1b). Sample porosity is a necessary feature of coupled dissolution-

reprecipitation reactions, as it allows chemical exchange between the reaction front and the 

bulk fluid. The slow rate of the pure oxidation reaction (Table S1) and smooth grain surfaces 
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of these experiments (Fig. S1) indicate that simple oxidation via Reaction [1] may block fluid 

pathways due to the volume increase which reduces the porosity. 

Synchrotron X-ray fluorescence mapping combined with µ-XANES imaging shows that Ce(IV) 

is predominant in the newly formed hematite phase of the oxidative experiments, whereas only 

minor amounts of Ce(III) are present (Fig. S2). Hence, we conclude that under highly oxidizing 

conditions, Ce(III) is nearly fully oxidized to Ce(IV), at least partly within the solution itself 

via reaction with O2(aq)/H2O2(aq). 

In contrast, extensive replacement of magnetite by hematite was observed when the reaction 

was conducted in oxidant-free solutions (i.e., Reaction [2]; Fig. 1a,b; Table S1). Furthermore, 

under these conditions the textures of the products formed from Ce-doped solutions were 

different to those reacted in Ce-free solutions (Fig. 1). In Ce-doped solutions, magnetite was 

replaced by hematite rims, with 5-10 µm wide gaps usually developed at the hematite-

magnetite phase boundary (Fig. 1a). Secondary Electron (SE) imaging shows that the 

magnetite grains have rough surfaces, through formation of 1 to >5 µm hematite crystals 

(Fig. 2a). For experiments using La- or Nd-doped solutions, hematite in the products usually 

formed thin lamellae, commonly in close contact with magnetite grains (Fig. 1c); SE images 

show that hematite crystals are closely stacked on the magnetite surfaces and generally have a 

homogenous morphology with a narrow size distribution (~5 µm; Fig. 2b).  

In order to get more information of the transformation process, we performed Electron 

Backscattered Diffraction (EBSD) analysis to get orientation and crystal statistics (e.g., single 

grain shape and size distribution) of hematite and magnetite grains. EBSD data were analysed 

using TSL OIM software (details in Methods section) and we reconstructed recrystalized 

hematite grains in the newly formed hematite phase in both sets of samples (Figs. 1b,1d and 

Fig. 4). The results show that in Ce-doped solutions, hematite grain can generally grow larger 

than those in La- or Nd-doped solutions. This difference in the size of recrystalized hematite 

grains indicate that different transformation reaction happened for magnetite to hematite when 

difference REEs are doped (i.e., Ce, La and Nd). 
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Fig. 1 | Optical reflected light micrographs and EBSD orientation maps showing 

magnetite replaced by hematite. (a-b) Magnetite reacted in an oxidant-free Ce-bearing 

solution; (a) hematite replaces magnetite along the rim; gaps develop at the hematite-magnetite 

phase boundary; large (5-30 µm) pores occur within hematite; (b) EBSD inversed pole figure 

(IPF) with orientation and reconstructed grain boundary for hematite in the grain illustrated 

in (a). (c-d) Magnetite reacted in an oxidant-free Nd-bearing solution; (c) hematite replaces 

magnetite from one side of the parent magnetite grain. Hematite forms lamellae that are in 

close contact with magnetite, with no visible pores at the boundary. Small (<1-10 µm) pores 

are present within the hematite domains; (d) EBSD IPF figure for (c), with orientation and 

reconstructed grain boundary for hematite. 
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Fig. 2 | SE image of the surface of magnetite grains replaced by hematite, for reactions in 

oxidant-free conditions and in presence of either (A) Ce(III) and (B) Nd(III) in solution. 

Reaction mechanism 

Magnetite replacement produced textures typical of interface-coupled dissolution-

reprecipitation (ICDR) reaction mechanism 13. The difference in porosity (size and distribution) 

and crystal habit of the hematite produced in Ce-bearing versus Ce-free runs indicates that 

different dissolution-reprecipitation processes operated (e.g., ref. 16). 

The dissolution of magnetite in the oxidant-free experiments can be described by: 

Fe3O4 (mt) + 8 H+ = Fe2+(aq) + 2 Fe3+(aq) + 4 H2O(l), logK200ºC = -3.84  [3] 

which results in an Fe2+/Fe3+ ratio of 0.5 in solution at the reaction front. When Ce3+ is present 

in the solution, the following reaction may occur: 

Fe3+ + Ce3+ + 2 H2O(l) = CeO2(cerianite) + Fe2+ + 4 H+, logK200ºC = 0.93. [4] 

For Reaction [4], logK is 0.93 at 200 ºC. Assuming that the fluid has 200 ppm Ce3+ and pH ~4, 

the fluid will have an equilibrium Fe2+/Fe3+ value of 1013 at 200 ºC. Therefore, the presence of 

Ce3+ may dramatically increase the Fe2+/Fe3+ ratio in the local solution, as well as the solution 

acidity, promoting local magnetite dissolution. 

Hematite precipitation can happen via the following reactions: 

2Fe3+(aq) + 3 H2O(l) = Fe2O3(hm) + 6 H+, logK200ºC = 8.53 [5] 

2Fe2+(aq) + 3H2O(l) = Fe2O3(hm) + 4 H+ + H2(g), logK200ºC = -12.30 [6] 

Reactions [5] and [6] show that hematite solubility increases with increasing pH and under 

reducing conditions (high Fe(II)/Fe(III) ratio in solution) 17. These conditions are realized at 
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the reaction front: both Reactions [5] and [6] increase pH, and an increase in Fe2+/Fe3+ results 

from local Ce3+ oxidation (Reaction [4]). Hence the increase in Fe solubility at the reaction 

front in the presence of Ce3+ decreases the hematite nucleation rate. 

The presence of Ce(IV) in the hematite product in our experiments was confirmed by XANES 

imaging (Fig. S2); these micro-spectroscopic results, however, show that only small amounts 

of Ce(IV) are preserved in the hematite product, with Ce(III)/Ce(IV) ratios >>1. Cerium(IV) 

is poorly soluble in hydrothermal fluids, precipitating as cerianite-(Ce) (CeO2). However, 

cerianite-(Ce) is not reported as a hydrothermal phase in IOCG ores; we suggest that this nano-

mineral decomposes to form Ce3+ via the following reaction: 

CeO2(s) + 3 H+ + 0.5 H2(g) = 2 H2O(l) + Ce3+, logK200ºC = 9.49 [7] 

This reaction is facilitated by the pH decrease at hematite precipitation sites via Reactions [5] 

and [6] (Fig. 3), and the locally reducing conditions at the hematite – magnetite interface (e.g., 

fH2(g) = 10-3 at 200 ºC, Psat for the hematite-magnetite buffer). 

Fig. 3 | Schematic diagram showing Fe(III)-Fe(II) and Ce(III)-Ce(IV) reaction cycles 

during ICDR processes of magnetite to hematite transformation. 

Nature of reaction-induced porosity 

Reaction-induced porosity is a necessary feature for mineral replacement reactions proceeding 

via coupled dissolution-reprecipitation mechanism 18. This porosity, which is often transient, 

i.e., not preserved as the system undergoes further fluid-rock interaction or annealing, has

recently been argued to be important in ore-forming, metamorphic and metasomatic
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environments 19. The amount of porosity is controlled by relative mineral solubilities, which in 

turn is controlled by fluid parameters such as pH, Eh, and solution composition 20. 

Rather than fine pores distributed throughout the hematite (e.g., Fig. 1c), the oxidant-free Ce-

bearing experiments produced coarser porosity located predominantly at the magnetite-

hematite phase boundary (Fig. 1a). These are key changes that enhance fluid access to the 

reaction front, thereby facilitating fluid-mineral interaction. Cerium does this by increasing the 

Fe2+/Fe3+ ratio in the reaction front fluid via Reaction [4], which allows formation of larger 

hematite crystals with concomitantly larger spaces between crystals by suppressing hematite 

nucleation. This is confirmed by EBSD data that hematite grew larger in Ce-doped solutions 

than in Nd-doped solutions (Fig. 4). By comparison, the absence of Ce results in fast hematite 

nucleation and finer hematite crystals, and more homogeneously distributed smaller pores 

(Figs. 2 and 4). The closer proximity of magnetite and hematite in this case (Fig. 1c) makes 

fluid access to the mineral reaction front less efficient. 

Fig. 4 | Grain size distribution of hematite formed in Ce-bearing and in Nd-bearing 

solutions from non-oxidative runs. The lines show the integral probability of the hematite 

grains. 
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The making of giant ore deposits 

Specific positive feedbacks that increase the efficiency of a given mineralization process, but 

require a set of highly specific conditions to become active, may be important in explaining 

the size, distribution, and rarity of giant ore deposits. Permeability is a key factor controlling 

metal endowment in hydrothermal ore deposits. In the case of Olympic Dam, regional faults 

are the primary control of the formation of breccia complex 7, 9. The primary brecciation 

processes introduced the major fluid conduits in the system. However, hydrothermal alteration 

can moderate the brecciation process by increasing or decreasing porosity. This helps the fluid 

to penetrate into wall rocks along fluid pathway and form pervasive alteration. Previous studies 

have linked the F-rich nature of many IOCG deposits to enhanced permeability of IOCG ore 

bodies because HF(aq) is a highly corrosive acid 21. However, recent experimental and 

theoretical data show the amount of F in fluids is strongly limited by mineral solubility, which 

further limits the aggressive character of these fluids 17, 22. 

Fig. 5 | Ores from the Olympic Dam IOCG province. (A) Massive iron oxide ores from 

Torrens Dam (drill core TD 2), with hematite replacing magnetite. Hematite is porous with 

large pores. Pores are usually developed at the hematite-magnetite phase boundary and filled 

with quartz. (B) Hematitized rock from Emmie Bluff (drill core SAE 7). Hematite replacing 

magnetite along grain rims, with significant porosity developed at magnetite-hematite 

boundaries. Hematite is porous and usually display a hole (filled by quartz) around the core, 

with magnetite relicts in the core. 

The replacement textures seen in our Ce-bearing experiments (Fig. 1a) are similar to those 

observed in ore textures from several deposits of the Olympic Dam Cu-Au province (e.g., 
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Torrens Dam and Emmie bluff), with the same increased porosity in hematite, and the 

discontinuity usually existing at the hematite-magnetite boundary (Fig. 5; ref 10). For these 

deposits, it is thought that oxidized fluids are responsible for the hematitization of the 

magnetite-rich assemblage (i.e., Reaction [1]) and formation of high-grade Cu-Au 

mineralization 11. However, the redox state of the ore fluid, source of oxidant, and the reaction 

mechanisms for magnetite replacement are poorly constrained. Because magnetite replacement 

by hematite can happen through a redox or a non-redox pathway (Reactions [1] and [2]), it is 

misleading to simply use the mineral assemblages to infer the fluid redox. We have shown that 

the oxidation reaction of magnetite to form hematite (Reaction [1]) inhibits generation of high-

grade hematite-associated ores in IOCG deposits, because the volume increase of the ore results 

in permeability loss, thereby limiting fluid-mineral interaction, fluid-mixing, and precipitation 

of new minerals (ore) 9. Instead, Ce-catalyzed non-oxidative hematitization of magnetite 

significantly enhances the syn-mineralization porosity (Fig. 3), and thus makes formation of 

giant ore deposits more likely. 

We suggest that similar trace element-induced catalyzation of mineral replacement may play a 

key role in ore genesis in other deposit types and hydrothermal ore-forming systems where 

such redox-sensitive trace element exists. For example, in the world’s largest REE deposit, 

Bayan Obo, Ce-rich REE mineralization is accompanied by significant amounts of iron oxides 

(i.e., magnetite and hematite). The formation of Bayan Obo has been explained by multi-stage 

hydrothermal events, where cyclic fluid circulation drove dissolution-reprecipitation reactions 

and REE remobilization 23. As at Olympic Dam and in the experiments, magnetite is typically 

replaced by porous hematite in the main stage ores 24, implying that the same Ce-catalyzation 

occurred. The fluids involved do not need to be oxidizing, and evolve from Ce-rich sources 

such as felsic magmas or carbonatites. 

Unpredictable consequences – for now 

This is the first time that a trace element has been demonstrated to act as a catalyst for an ICDR 

reaction (Fig. 3). Such effects are difficult to predict empirically, because they arise from a 

complex interplay between mineral solubility, nucleation, growth, and mass transfer at nano- 

to micro-scales. Although it is challenging to predict empirically which elements may play a 

similar role in porosity enhancement in a large range of hydrothermal systems, such effects are 

likely to affect a number of important geological reactions, including hydrous metamorphism, 
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metasomatism, and sodic/potassic alteration. However, their recognition requires a large 

experimental effort. 

Acknowledgments 

This study is supported by funding from the Australian Research Council (ARC) to Joël 

Brugger (DP140102765) and the McKinstry Fund from the Society of Economic Geologist 

(SEG) to Yanlu Xing (SRG_17-31). We thank Dr. Kan Li for his help with sample collection. 

We also acknowledge beamtime at the Australian Synchrotron, part of ANSTO (proposal 

AS181/XFM/12890). We are grateful to reviewers for suggestions that help to improve the 

manuscript. 

References 

1. Ehrig K, McPhie J, Kamenetsky V. Geology and mineralogical zonation of the Olympic
Dam iron oxide Cu-U-Au-Ag deposit, South Australia. Economic Geology 2012,
Special Publication(16): 237-267.

2. Groves DI, Goldfarb RJ, Santosh M. The conjunction of factors that lead to formation
of giant gold provinces and deposits in non-arc settings. Geoscience Frontiers 2016,
7(3): 303-314.

3. Oreskes N, Einaudi M. Origin of Rare Earth Element-Enriched Hematite Breccias at
the Olympic Dam Cu-U-Au-Ag Deposit, Roxby Downs, South Australia. Economic
Geology 1990, 85: 1-28.

4. Hitzman M, Oreskes N, Einaudi M. Geological characteristics and tectonic setting of
Proterozoic iron oxide (Cu-U-Au-REE) deposits. Precambrian Research 1992, 58:
241-287.

5. Williams PJ, Barton M, Johnson D, Fontbote L, Haller A, Mark G, et al. Iron Oxide
Copper-Gold Deposits: Geology, Space-Time Distribution , and Possible Modes of
Origin. Economic Geology 2005, 100th Anniversary Volume: 371-405.

6. Haynes D, Cross K, Bills R, Reed MH. Olympic Dam Ore Genesis: A Fluid-Mixing
Model. Economic Geology 1995, 90: 281-307.



-74-

7. Gow PA, Wall VJ, Oliver NHS, Valenta RK. Proterozoic iron oxide (Cu-U-Au-REE)
deposits: Further evidence of hydrothermal origins. Geology 1994, 22(7): 633-636.

8. Bastrakov EN, Skirrow RG, Davidson GJ. Fluid Evolution and Origins of Iron Oxide
Cu-Au Prospects in the Olympic Dam District, Gawler Craton, South Australia.
Economic Geology 2007, 102: 1415-1440.

9. Davidson GJ, Paterson H, Meffre S, Berry RF. Characteristics and Origin of the Oak
Dam East Breccia-Hosted, Iron Oxide Cu-U-(Au) Deposit: Olympic Dam Region,
Gawler Craton, South Australia. Economic Geology 2007, 102: 1471-1498.

10. Gow PA. Geological evolution of the Stuart Shelf and Proterozoic iron oxide-associated
mineralization: Insights from regional geophysical data. PhD thesis, Monash University,
1996.

11. Schlegel TU, Wagner T, Walle M, Heinrich CA. Hematite Breccia-Hosted Iron Oxide
Copper-Gold Deposits Require Magmatic Fluid Components Exposed to Atmospheric
Oxidation: Evidence from Prominent Hill, Gawler Craton, South Australia. Economic
Geology 2018, 113(3): 597-644.

12. Bau M, Koschinsky A. Oxidative scavenging of cerium on hydrous Fe oxide: Evidence
from the distribution of rare earth elements and yttrium between Fe oxides and Mn
oxides in hydrogenetic ferromanganese crusts. Geochemical Journal 2009, 43(1): 37-
47.

13. Zhao J, Brugger J, Pring A. Mechanism and kinetics of hydrothermal replacement of
magnetite by hematite. Geoscience Frontiers 2019, 10(1): 29-41.

14. Otake T, Wesolowski DJ, Anovitz LM, Allard LF, Ohmoto H. Mechanisms of iron
oxide transformations in hydrothermal systems. Geochimica et Cosmochimica Acta
2010, 74(21): 6141-6156.

15. Mücke A, Cabral AR. Redox and nonredox reactions of magnetite and hematite in rocks.
Chemie der Erde - Geochemistry 2005, 65(3): 271-278.

16. Xia F, Brugger J, Chen G, Ngothai Y, O’Neill B, Putnis A, et al. Mechanism and
kinetics of pseudomorphic mineral replacement reactions: A case study of the
replacement of pentlandite by violarite. Geochimica et Cosmochimica Acta 2009, 73(7):
1945-1969.



-75-

17. Xing YL, Etschmann B, Liu WH, Mei Y, Shvarov Y, Testemale D, et al. The role of
fluorine in hydrothermal mobilization and transportation of Fe, U and REE and the
formation of IOCG deposits. Chemical Geology 2019, 504: 158-176.

18. Putnis A. Why Mineral Interfaces Matter. Science 2014, 343(6178): 1441-1442.

19. Jonas L, John T, King HE, Geisler T, Putnis A. The role of grain boundaries and
transient porosity in rocks as fluid pathways for reaction front propagation. Earth and
Planetary Science Letters 2014, 386: 64-74.

20. Altree-Williams A, Pring A, Ngothai Y, Brugger J. Textural and compositional
complexities resulting from coupled dissolution–reprecipitation reactions in
geomaterials. Earth-Science Reviews 2015, 150: 628-651.

21. McPhie J, Kamenetsky V, Allen S, Ehrig K, Agangi A, Bath A. The fluorine link
between a supergiant ore deposit and a silicic large igneous province. Geology 2011,
39(11): 1003-1006.

22. Xing Y, Mei Y, Etschmann B, Liu W, Brugger J. Uranium Transport in F-Cl-Bearing
Fluids and Hydrothermal Upgrading of U-Cu Ores in IOCG Deposits. Geofluids 2018.

23. Smith MP, Campbell LS, Kynicky J. A review of the genesis of the world class Bayan
Obo Fe-REE-Nb deposits, Inner Mongolia, China: Multistage processes and
outstanding questions. Ore Geology Reviews 2015, 64: 459-476.

24. Huang XW, Zhou MF, Qiu YZ, Qi L. In-situ LA-ICP-MS trace elemental analyses of
magnetite: The Bayan Obo Fe-REE-Nb deposit, North China. Ore Geology Reviews
2015, 65: 884-899.

 Methods 

Hydrothermal experiments 

Natural magnetite from Itabira District, Minas Gerais, Brazil (SA Museum sample G32618) 

was used as the starting material. The material was crushed and grains ranging in size from 

150-250 µm were selected for the experiment. The initial magnetite was analyzed using

powder X-ray diffraction (XRD) and the results show >99% Fe3O4. The solution was prepared

with an acetic acid - sodium acetate buffer, to get a calculated pH of 4 at 25 ºC. The salinity of

the buffer was controlled by addition of 0.5M NaCl. For each run, the solution was doped with
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200-300 ppm La(III), Ce(III) and Nd(III), respectively. Samples were reacted at 200 ºC for 8-

14 days. Control experiments were conducted for two sets of solutions to quantify the effects

from solution redox: (1) non-oxidative solutions by bubbling with N2 gas, for which hematite

and magnetite buffer the ƒO2(g); (2) oxidative solutions by addition of 0.5 g 30% H2O2 solution.

Details of our experiments are summarized in Table S1 in the supplementary material.

Textural and morphological characterization 

Polarized optical microscopy was conducted using an Olympus BX51 microscope. Secondary 

Electron (SE) imaging and Electron Backscattered Diffraction (EBSD) were conducted with a 

FEI Quanta 3D Field Emission Scanning Electron Microscope (FESEM) at the Monash Centre 

of Electron Microscope (MCEM) at Monash University, Australia. Samples for SE imaging 

and EBSD were embedded into epoxy resin, polished and then coated with thin carbon film 

(~2-4 nm). The accelerating voltage for SE was maintained at 15 kV. EBSD patterns were 

collected at 15 kV, 11 nA with TSL OIM EBSD system. EBSD data was analyzed using TSL-

OIM 8 software and Matlab MTEX toolbox. Crystallographic data for hematite and magnetite 

were taken from American Mineralogist Crystal Structure Database (AMCSD). 

Powder X-ray Diffraction (XRD) 

Powder X-ray diffraction patterns were collected on a Bruker D8 Advance Cobalt Machine 

(Co-K𝛼1 radiation, 𝜆 = 1.78892 Å) at the Monash X-ray Platform at Monash University, 

Australia, using 40 kV and 25 mA, and a 0.6 mm slit. Phase identification was conducted using 

Bruker EVA software. Phase fractions (i.e., hematite and magnetite) were determined via 

Rietveld refinement 25 using Bruker TOPAS package. Crystal structure data of magnetite and 

hematite were taken from ICDD PDF-4+ database. 

Synchrotron XFM 

Elemental distribution of Ce, La and Nd were mapped at the X-ray fluorescence spectroscopy 

(XFM) beam line 26 at the Australian Synchrotron, Melbourne, Australia. The incident beam 

energy was set at 18.5 keV using a Si(111) monochromator with an energy resolution of ΔE/E 

of ~2.8 × 10−4. The beam was focused to a ~2x2 µm2 spot size using Kirkpatrick-Baez mirrors. 

Fluorescence data were collected using the Maia model D384 detector array, which has an 

energy resolution of 240 eV and can detect elements down to atomic number 15 

(phosphorous) 27, 28. Samples were mapped using scanning speeds ranging from 2–5 mm/s, 

corresponding to dwell times of 0.3 to 1.75 ms/pixel. Standard foils (Pt, Mn, Fe) were used to 

constrain the detector geometry and efficiency; and to translate ion chamber counts to flux. 
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The data were analyzed with the GeoPIXE software package 29, 30, which utilizes the Dynamic 

Analysis method 31, 32, 33 to subtract background, unfold overlapping fluorescence peaks and 

then project elemental images from full fluorescence spectra (as opposed to just region-of-

interest data). 

The oxidation state of Ce was mapped using the XANES imaging technique, as described in 

Etschmann, Ryan 34, Etschmann, Donner 35. XANES stacks were measured by collecting SXRF 

maps at 109 irregularly spaced monochromator energies that spanned the Ce-L3 edge, with 

0.5 eV steps across the edge. A separate Dynamic Analysis matrix was used for each beam 

energy when processing the stack, in order to track the changing energy of the scatter peaks. 

The intensities of the Ce La peak at each pixel in the SXRF map, at each monochromators 

energy, were extracted and used to construct XANES spectra at each pixel and integrated over 

regions in the map selected based on Ce La intensity ratios at different energies or on sample 

composition. 
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ABSTRACT
Arsenic (As) and gold (Au) are closely associated in many gold deposits, both being hosted 

in Fe-sulfide minerals (pyrite, marcasite, and arsenopyrite), partly because As geochemistry 
controls Au accumulation. Yet, the partitioning behavior of As between pyrite, arsenopyrite, 
and hydrothermal fluids remains poorly understood. Here, we introduce solid-solution models 
for As in pyrite and As in arsenopyrite into a thermochemical model of fluid-rock interaction, 
and use it to evaluate the effects of temperature, redox state, and fluid-flow dynamics on As—
and Au by association—partitioning. We find that As concentrations in pyrite decrease with 
increasing temperature, despite the widening of the solid-solution composition range. This 
is related to the preferential partitioning of As into fluids at higher temperatures. Simula-
tions of infiltration of rock-buffered H2O-CO2-As fluids into low-As pyrite (As:S = 0.01) ores 
reveal a continuous enrichment of As in pyrite with increasing fluid:rock ratio. The model-
ing suggests that upgrading of early-formed low-grade ores by multistage hydrothermal 
events can generate large gold deposits. In this scenario, an anomalously Au-rich fluid is not 
needed, but instead, prolonged fluid-rock interaction enriches pyrite in As, which promotes 
gold sequestration.

INTRODUCTION
The association between Au and As in 

Fe(-As) sulfides (pyrite [FeS2], marcasite [FeS2], 
and arsenopyrite [FeAsS]) is a well-recognized 
characteristic of most Au deposits. Hence, 
the correlation between Au and As makes As 
in pyrite a good proxy for Au mineralization. 
This As-Au coupling also may reflect a partial 
control of Au accumulation by As geochemistry 
in hydrothermal gold systems (Deditius et al., 
2014). Yet, the behavior of As in fluid-rock sys-
tems remains poorly understood, due to limited 
understanding of the solid solution of As in iron-
sulfide minerals (Reich and Becker, 2006).

Thermodynamic reactive transport modeling 
is an important tool for understanding complex 
fluid-rock interactions, element mass transfer, 
and the potential of fluids to carry economic 
amounts of metals (Seward and Barnes, 1997). 
To date, our capacity to model As mobility under 
hydrothermal conditions has been severely 
limited by the absence of a thermodynamic 
model for As-in-pyrite and As-in-arsenopyrite 
solid solutions. Consequently, most available 

models overestimate As mobility in hydrother-
mal  fluids, because As remains in solution until 
an As-domi nant mineral such as arsenopyrite 
or löllingite precipitates (Zhong et al., 2015).

Here, we build a model of As solid solution 
in pyrite-marcasite and in arsenopyrite, and use 
it to calculate the partitioning of As between 
pyrite-marcasite, arsenopyrite, and fluids under 
conditions typical for Au deposition (Phillips 
and Evans, 2004). We find that the model pro-
vides important insights into the role of fluid-
rock interaction in Au mineralization. We show 
that the empirically well-established retrograde 
As solubility in pyrite with increasing tempera-
ture, T (Deditius et al., 2014), is a result of pro-
grade As solubility in fluids. We further show 
that recurring fluid flow can enrich As in pyrite 
and arsenopyrite through extensive fluid-mineral 
interactions, which results in gold incorporation, 
generating high-grade gold resources.

THERMODYNAMIC MODELING OF 
THE FeS2-FeAs2 BINARY

The FeS2-FeAs2 binary (Fig. 1) is modelled 
using three phases: pyrite-marcasite solid solu-
tion [Fe(S,As)2], arsenopyrite solid solution 

(FeAs1–xS1+x), and löllingite (FeAs2). Löllingite 
is assumed to be stoichiometric, in view of the 
limited S solubility in this mineral (Fleet and 
Mumin, 1997; Reich and Becker, 2006).

Arsenopyrite is modeled as a solid solution 
between the fictional end members FeS1.2As0.8 
and FeS0.8As1.2. Pyrite-marcasite is described as 
a solid solution between marcasite (FeS2) and 
a fictional (fic) löllingite (Lö, FeAs2), which is 
defined such that ΔfGLo

fic = ΔfGLo + 10 kJ/mol 
(where ΔfG is the Gibbs free energy of formation 
from the elements to the subscripted species) so 
that löllingite is the stable mineral on the As-rich 
side of the diagram. This pyrite-marcasite model 
assumes that As1– is substituting for sulfur in 
the disulfide anion, S2

2–, which is the predomi-
nant substitution mechanism in pyrite-marcasite 
(Qian et al., 2013). Due to the nature of As-S 
interactions, non-ideal contributions need to be 
incorporated for realistic modeling of the FeS2-
FeAs2 binary (Reich and Becker, 2006). Because 
of experimental difficulties (non-homogenous 
As distributions and nanoscale inclusions of 
As-rich phases), we use the theoretical ener-
gies of mixing derived from first principles by 
Reich and Becker (2006) to calibrate the excess 
free-energy models for pyrite-marcasite and 
arseno pyrite (Redlich-Kister formalism; Redlich 
and Kister, 1948). Reich and Becker (2006)’s 
calculations indicate that pyrite-marcasite can 
hold a maximum of ~6 wt% As in solid solution 
(Fig. 1); natural pyrite contains up to 19 wt% 
As, but many such As-rich pyrites have been 
shown to contain nanometer-size inclusions of 
As-rich phases (Deditius et al., 2014; Reich and 
Becker, 2006).

Thermodynamic calculations were con-
ducted using the HCh software (http:// www1 
.geol .msu .ru /deps /geochems /soft /index _e .html), 
which employs a Gibbs free-energy minimi-
zation algorithm (Shvarov, 1999, 2008). Fig-
ure 1 illustrates the good agreement between 
the HCh model and the theoretical phase 
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diagram. Details of the calculation procedure 
and thermo dynamic properties are provided in 
GSA Data Repository1.

ARSENIC SOLUBILITY IN PYRITE-
MARCASITE AND ARSENOPYRITE

Fluid-rock equilibria are calculated in the Fe-
As-S-Na-Cl-K-Al-Si-H-O system (25–600 °C, 
fixed pressure of 200 MPa) for two conditions: 
an oxidized system buffered by pyrite + hema-
tite, and a reduced system buffered by pyrite + 
pyrrhotite + magnetite. Fluid pH is buffered by 
K-feldspar + muscovite + quartz. Under these
rock-buffered conditions, aqueous As concen-
trations increase with increasing temperature—
from parts per billion to thousands of parts per
million in the case of hematite-bearing assem-
blages (Fig. 2A). In arsenopyrite-absent assem-
blages, for a given As content of the simulated
system, pyrite composition is largely tempera-
ture independent up to ~200 °C for the oxidized 
system, and 400 °C for the reduced system
(Figs. 2C and 2D). Then As concentrations in
pyrite decrease rapidly with increasing tem-
perature, despite the fact that in the water-free
system As solubility in pyrite increases slightly 
with temperature (Fig. 1).

The model predictions tally with the empirical 
observations that As contents of pyrite decrease 
as a function of increasing ore-formation 

temperature, from ~200 to ~500 °C (Deditius 
et al., 2014). To understand the cause of the 
retrograde As contents of hydrothermal pyrite, 
it is useful to express the equilibrium between 
pyrite and fluid in terms of the Nernst partition 
coefficient, Dpy/f = XAs(py) / XAs(f), where XAs(py) 
and XAs(f) are the mass fractions of As in pyrite 
and fluid, respectively. The hydrothermal fluids 
responsible for the world’s major gold produc-
tion (e.g., “orogenic gold”; Carlin-type gold; 
Witwatersrand goldfields) share common fea-
tures: T >200 °C, CO2-rich (0.05–0.25 mol%), 
S-bearing, and low salinity (Phillips and Evans, 
2004; Mikucki 1998). In these fluids, As exists
predominantly in the form of [As3+(OH)3](aq)

(James-Smith et al. 2010; Kokh et al. 2017), and 
As solubility controlled by pyrite is described by

 As(OH)3(aq) + ½FeS2(py) + 2.5H2(g) = 

 ½FeAs2(py) + HS− +H+ + 3H2O , (1)

where (aq) and (g) refer to aqueous and gaseous 
species, respectively.

Writing the equilibrium constant (logKP,T, 
at fixed pressure [P] and temperature [T ]) and 
rearranging produces:
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where γ is activity coefficient; a is activity; 
and f is fugacity. Equation 2 indicates a strong 
dependence of the partitioning upon local fluid 

conditions, including pH, redox [ fH2(g)], and sulfur 
concentration, expressed as activity of the bisul-
fide ion, aHS−. The low As contents of pyrite at 
high temperature are due to low logDpy/f (Figs. 2C 
and 2D), which results mainly from the prograde 
S solubility (Fig. DR2 in the Data Repository) 
and prograde As solubility in fluids (encapsu-
lated by logKP,T in Equation 2). The strong redox 
dependence of As incorporation into pyrite is due 
to the fact that As3+ is the main oxidation state of 
As in aqueous fluids, whereas As1− is predominant 
in pyrite: the As fraction is higher in pyrite that 
formed under reduced conditions compared to 
oxidized conditions (Figs. 2C and 2D). The calcu-
lated As partitioning coefficients between pyrite 
and solution for oxidized conditions (Fig. DR3) 
correspond well with the experimental and natu-
ral data reported by Kusebauch et al. (2018).

The As content of arsenopyrite (FeAsS) has 
been proposed as a geothermometer in gold 
systems, based on phase diagrams in the water-
free Fe-As-S system (Kretschmar and Scott, 
1976; Sharp et al., 1985). Figure 2 shows that 
in As-undersaturated systems (i.e., native As 
absent, corresponding to the vast majority of Au 
 deposits), arsenopyrite coexisting with pyrite has 
decreasing As content with increasing tempera-
ture, although the composition change is small 
and not suitable for a geothermometer (Figs. 2C 
and 2D). In As-rich systems where arsenopyrite 
and löllingite coexist, the concentration of As 
in arsenopyrite increases with increasing tem-
perature and can be used as a geothermometer. 
Where arsenopyrite and pyrrhotite coexist, the 
main control on arsenopyrite composition is the 
bulk system composition.
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Figure 2. Results of mod-
eling in HCh software 
(http:// www1 .geol .msu 
.ru /deps /geochems /soft 
/index _e .html) of As in 
pyrite and arsenopyrite in 
oxidized (left) and reduced 
(right) fluids as function 
of temperature (°C, x-axis) 
and As fraction in the 
rocks. Simulations apply 
to rock-buffered systems, 
where pH is buffered by 
K-feldspar + muscovite +
quartz, fugacities fO2(g) and
fS2(g) (g—gaseous species) 
are controlled by Fe-min-
eral assemblage, and As 
solubility is controlled by 
Fe-As sulfides. A,B: Solu-
bility of As (in log parts 
per million) in fluids; 
thick solid lines repre-
sent phase bound aries 
for Fe-oxide minerals. 
C,D: Rock mineralogy 
(colored fields); yellow 
isolines represent As fraction in pyrite at equilibrium (XAs(py), in weight percent), red isolines 
represent As mass fraction in arsenopyrite (XAs(asp), in weight percent), and grey dotted isolines 
are calculated partitioning coefficient of As between pyrite and fluid (Dpy/f). Asp—arsenopyrite; 
Hm—hematite; Lö—löllingite; Mt—magnetite; Po—pyrrhotite; Py—pyrite.

Figure 1. FeS2-FeAs2 phase diagram. Crosses 
represent theoretical diagram derived by 
Reich and Becker (2006) on basis of first-
principle quantum mechanical computations, 
and colored fields are phase diagram pre-
dicted from thermodynamic data derived in 
this study.
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1GSA Data Repository item 2019114, descrip-
tion of the fundamental assumptions for the thermo-
dynamic model of Fe-As-S minerals; details of the 
fitting procedure and Redlich-Kister formalism used, 
and the mixing parameters derived in this study; sup-
porting information for the thermodynamic model of 
fluid-rock interaction, including sulfur concentrations 
and partitioning coefficients of arsenic between pyrite 
and solution for simulations in Figure 2; and starting 
compositions for the model in Figure 3, is available 
online at http:// www .geosociety .org /datarepository 
/2019/, or on request from editing@ geosociety .org.
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ARSENIC ENRICHMENT BY MULTI-
STAGE HYDROTHERMAL FLUIDS

Several studies have highlighted the impor-
tance of multistage hydrothermal events and/or 
cyclic fluid flows to the formation and refine-
ment of gold deposits (Sibson et al., 1975; 
Brugger et al., 2000; Bateman and Hagemann, 
2004; Sung et al. 2009; Cockerton and Tomkins, 
2012; Meffre et al., 2016). This repeated infil-
tration provides the extremely high fluid:rock 
ratios apparently required to form high-grade 
ore zones (Meffre et al., 2016; Mikucki, 1998; 
Thébaud et al., 2008). Indeed, the concentrations 
of As and Au in ore-forming fluids are usually 
relatively low (1–100 ppb Au, 0.10–100 ppm 
As; Mikucki, 1998; James-Smith et al., 2010; 
Goldfarb and Groves, 2015). This contrasts with 
the fact that As-rich zones in arsenian pyrite can 
contain up to ~2400 ppm Au and 20 wt% As 
(Reich et al., 2005), which is hard to reconcile 
with a single mineralization step for each zone.

A key aspect of any multistage As enrich-
ment model is the efficiency of As scavenging 
from the fluid by reaction with the ores depos-
ited in earlier stages. Hence, we model the infil-
tration of H2O-CO2-As fluids into pyritic rocks 
using the step-flow-reactor technique with HCh 
(Shvarov, 1999), in a manner similar to that of 
the model of Phillips and Evans (2004). The 
ore fluid is first equilibrated with basalt, which 
results in an As concentration of ~20 ppm in 
the fluid. Next, each batch of the fluid is reacted 
with As-poor pyritic rocks (As:S = 0.01, which 
is ~0.6 wt% As) at 350 °C, 200 MPa. Details of 
the modeling and fluid and rock composition 
are in the Data Repository.

The modeled pyrite and arsenopyrite com-
positions are plotted as a function of fluid:rock 
ratio in Figure 3A. Arsenic concentrations 
in pyrite gradually increase with increasing 
fluid:rock ratio and reach a maximum value of 
5.7 wt% at a fluid:rock ratio of 80. Arsenopyrite 
forms when the fluid:rock ratio is >80, with As 
concentrations increasing steeply and reaching 
a maximum of 48.3 wt% at fluid:rock = 100.

DISCUSSION
The positive correlation between As and Au 

contents in arsenian pyrite has been well estab-
lished in many gold systems, including Carlin-
type (Cline, 2001; Reich et al., 2005), orogenic 
(Large et al., 2009; Morey et al., 2008), vol-
cano genic massive sulfide (Wagner et al., 2007), 
porphyry Cu-Au (Reich et al., 2013), and epi-
thermal deposits (Deditius et al., 2014). Hence, 
As in pyrite is a good proxy for Au in many 
deposits. Equilibrium thermodynamic model-
ling of Au coprecipitation with Fe sulfides is not 
practical because the scavenging mechanisms 
remain controversial and mostly involve local 
conditions: for example, arsenic may enhance 
Au chemisorption on the surface of Fe sulfides, 
or local dissolution of Fe-As-S minerals may 
cause ultra-local reducing conditions, leading to 
precipitation of Au1+ aqueous complexes at the 
mineral surface (Pokrovski et al., 2014). Fur-
thermore, Au concentrations in arsenian pyrite 
range across multiple orders of magnitude up 
to a solubility limit (Reich et al. 2005); this 
implies that most arsenian pyrites form from 
Au-undersaturated fluids. Indeed, in many gold 
deposits, native gold is a paragenetically late 

phase, resulting from recrystallisation of Fe-As 
sulfides (Fougerouse et al., 2016).

Complex As-Au zoning in pyrites character-
ized by both oscillatory zoning and secondary 
dissolution, reprecipitation, and recrystallisation 
textures is common in, and indeed characteristic 
of, Au deposits (Large et al., 2009). These varia-
tions are usually interpreted in terms of changing 
fluid sources or temperatures. For example, the 
As:Au ratio of As-Au–rich hydrothermal rims in 
pyrite is widely used to indicate fluid source, and 
further used to distinguish different stages of ore 
fluids (Thomas et al., 2011; Morishita et al., 2018). 
Pyrites from the Bendigo gold deposit (Aus tralia) 
share similar As:Au ratios, suggesting that As-Au 
may be leached and transported together from the 
diagenetic and recrystallized metamorphic pyrite 
in the sediments (Thomas et al., 2011). However, 
thermodynamic constraints on the partitioning of 
As between hydrothermal fluid and pyrite indicates 
that the formation of these As-Au–rich rims via 
direct precipitation from the parent hydrothermal 
fluid requires fluids that are extremely enriched in 
As, which are unlikely to be found in nature. In par-
ticular, such fluid cannot be produced by leaching 
or by pyrite-to-pyrrhotite conversion of diagenetic 
and recrystallized metamorphic pyrite, which is sig-
nificantly lower in As and Au (Thomas et al., 2011).

Mikucki (1998) estimated that high fluid:rock 
ratios (>100–1000) are required to form lode-
gold deposits, assuming that Au is precipitated 
from fluids with Au concentration of 1–100 ppb 
at T <400 °C. Our modeling shows that  fluids 
with relatively low As concentrations at T 
<300 °C are able to produce As-rich pyrite via 
protracted fluid flows. The upgrading model in 
Figure 3 indicates that As (and Au) enrichment 
in arsenian pyrite likely results from a refinement 
process; low-As fluids can effectively enrich As 
in pyrite through ongoing hydrothermal altera-
tion. This mechanism may also explain the ele-
vated As-Au content in pyrite associated with 
quartz veins at Bendigo, compared to diagenetic 
pyrite and metamorphic hydrothermal pyrite 
(Thomas et al., 2011), due to the higher local 
fluid:rock ratio required to form quartz veins and 
reefs. This progressive enrichment of As in pyrite 
is accompanied by a decrease in pyrite volume 
(Fig. DR4), which we suggest would serve to 
generate porosity in individual pyrite crystals and 
enhance Au sequestration (see Fig. 3).

In conclusion, our results show that the As 
concentration in pyrite is controlled by tem-
perature, fluid composition, and redox, in addi-
tion to the As concentration in the parent fluid. 
Fluids with low As concentrations are able to 
form high-As arsenian pyrite and arsenopyrite 
through extensive hydrothermal alteration, thus 
forming the As(-Au) enrichment in ores. Exter-
nally derived As(-Au)–rich fluids are not neces-
sarily required for forming high-grade pyritic 
gold ores. Instead, our thermodynamic model 
shows that dilute fluids can drive remobilization 
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Figure 3. A: Upgrading of As in pyrite and arsenopyrite. Initial fluids have 100 ppm As and 
10 mol% CO2. Fluids were equilibrated with sulfur-bearing basalt before reacting with pyrite 
ores (initial pyrite As:S ratio of 0.01). Solid line represents As concentrations in pyrite, and 
dashed line, As concentrations in arsenopyrite. Maximum amount of Au for corresponding 
As concentrations in pyrite are plotted based on empirical solubility limit of Reich et al. 
(2005). B,C: Backscatter electron (BSE) images of complex growth and recrystallization tex-
tures in arsenian pyrite from Au deposits. In these images, lighter shades indicate higher As 
contents. B: As-rich rims and replacement of As-poor pyrite by As-rich pyrite (Hishikari ore 
deposit, Japan; image from Morishita et al., 2018; yellow circles and numbers are locations 
of analyses). C: Recrystallization of arsenian pyrite into porous zone of pyrite (white) with 
increased As-Au content (Sunrise Dam gold deposit, Western Australia; Au concentrations 
are shown for three points; image and analyses from Sung et al., 2009).
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and reprecipitation of As, forming As enrichment 
in localized high-grade domains, which would 
further facilitate Au accumulation. This is con-
sistent with the evidence for high fluid:rock ratio 
and complex growth and/or dissolution and/or 
recrystallization textures of pyrite in gold ore 
zones. The solid-solution model for As in pyrite 
and arsenopyrite presented here makes it possible 
to precisely predict As solubility in pyrite and 
arsenopyrite under temperature- and redox-con-
trolled conditions, which is an important tool for 
understanding and quantifying Au mobilization 
and enrichment in hydrothermal gold systems.
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Fluid-rock interactions are key to controlling metal mobility from source to sink in 

hydrothermal ore systems. This thesis investigated several aspects that affect fluid-rock 

interaction, including metal hydrothermal mobilization, metal partitioning during fluid-mineral 

equilibria, and mechanisms of fluid-mediated mineral replacement reactions. Furthermore, we 

discussed the influence of these factors on the formation of large hydrothermal ore deposits. In 

this chapter, the results of the thesis are briefly summarized and based on this, an overview is 

given on how these new results contribute to understanding the formation of giant ore deposits. 

6.1 Role of F in formation of IOCG deposits 

Fluoride is widely thought to be able to form strong aqueous complexes with Fe, U and REE. 

However, its role in transporting metals is questioned since the recent discovery of low 

solubility of REE fluorides (Migdisov et al., 2016). IOCG deposits are one of the most notable 

hydrothermal systems that usually show elevated F concentrations in the ore and host rocks 

(Hitzman et al., 1992; McPhie et al., 2011). 

In chapter 2, results from in-situ XAS experiments show that Fe(II/III)-F complexation is less 

important than previously thought and F tends to cause Fe precipitation at T>200ºC, in 

agreement with the predicted reversed solubility of FeF2(s). Modelling of fluid-granite 

equilibria shows that fluoride complexing is insignificant for Fe and U transport, whereas it 

plays an important role on REE transport. Calculations show that fluid-granite interaction is 

able to form fluids with up to ~70 ppm F at 450 ºC. This F concentration is relatively low 

compared to some magmatic fluids, in which case extensive hydrothermal activities are 

required to form the large F endowment observed in some IOCG deposits (e.g., Olympic Dam). 

Including F in the model can help to increase solubility of silicates, as it not only affects Si-F 

complexing, but also bulk fluid pH which results in increased concentrations of H3SiO4- and 

NaHSiO3(aq). Overall, although the transporting role of F is less important than previously 

thought, presence of F is able to affect pH, redox and the mineralogy. These will therefore 

increase the metal carrying ability of the fluids and also the permeability of the breccia and 

wall rock, which are essential for the formation of giant ore deposits. 

6.2 Uranium transport and formation of U-F association 

The association between U and F is common in hydrothermal uranium deposits including 

IOCG deposits, orogenic U deposits, and volcanogenic and vein-type deposits hosted in felsic 

rocks (Cuney and Kyser, 2009; Hu et al., 2008; McGloin et al., 2016). This co-enrichment of 

U and F has long been attributed to the transporting role of F for U(IV/VI) in fluids. In Chapter 
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3, we thoroughly reviewed the available thermodynamic properties for U(IV/VI)-F complexes, 

and compared the stability of U(IV/VI) fluoride complexes with chloride and hydroxide 

complexes under hydrothermal conditions. We show that fluoride is overestimated for U 

hydrothermal transport, especially at elevated temperatures (T>250 ºC). Formation of the U-F 

co-enrichment in the Olympic Dam ores reflect that U and F may come from a same source 

(e.g., Roxby Down granite) and are enriched via the same hydrothermal processes, rather than 

reflecting an essential role of F in U transportation or controlling the metal endowment of these 

deposits. 

6.3 The catalysing role of Ce on magnetite to hematite transformation 

reaction 

In IOCG deposits, the replacement of magnetite by hematite is widely observed and is thought 

to be important during the second stage hematite-alteration, which is closely associated with 

high-grade ore genesis. Chapter 4 investigates the product textures for magnetite to hematite 

transformation under both oxidative and non-oxidative conditions in the presence of La, Ce 

and Nd. The results show that the reaction is actually much less efficient in oxidative fluids 

compared to non-oxidative fluids. Moreover, it is the first time showing that trace amount of 

Ce(III) can catalyse magnetite to hematite transformation by enhancing the syn-mineralization 

porosity. In fact, Ce(III) may actually be the key factor for generating the observed ore textures 

(e.g., Emmie Bluff, Torrents Dam), which can facilitate fluid penetration in hematite ores and 

thus greatly boost the fluid-rock interaction. Therefore, it shows that trace amounts of Ce may 

play a key role in the formation of a giant ore deposit such as Olympic Dam. 

6.4 Arsenic behaviour in hydrothermal gold systems 

In Chapter 5, we present the first thermodynamic model for solid solutions of arsenian pyrite 

and arsenopyrite. This model makes it possible to accurately evaluate the partitioning 

behaviour of As during the formation of pyritic gold ores, and to use As concentration in pyrite 

and arsenopyrite as a geothermometer. Furthermore, reactive transport modelling show that the 

high As concentration in pyrite can be achieved via circulation of fluids with low As content, 

which requires high fluid:rock ratio. This result is consistent with field observations that high-

grade gold ores usually have pyrite with complex growth and/or dissolution/reprecipitation 

textures, indicating complex growth/alteration history. Therefore, because of the coupled 

geochemistry of As and Au, the new solid solution model presented here makes As a good tool 

to look at the ore forming history in hydrothermal gold systems. 
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6.5 Concluding remarks 

The formation of large and those giant ore deposits is usually a combination of many geological 

processes (Richards, 2013). Understanding specific factors that have a major contribution to 

the formation of those giant ore deposits help us build accurate genesis models, which are 

important for guiding exploration targeting. Regardless of types of deposits, some factors have 

common effects that are crucial for the formation of the deposits. For example, the transporting 

role of F for metals such as Fe, U and REE under the P-T-x range studied here is not only 

applicable to IOCGs, but also any other systems where such combination exists under similar 

conditions. 

It is also should be noted that the explanation of some phenomena recognized in hydrothermal 

systems may result from different fluid-rock interactions, which requires caution and good 

understanding of the reaction mechanisms and the ore textures that observed in nature. As we 

show in this thesis that permeability is an essential factor that controls the formation of most 

hydrothermal ore forming systems. Mineral-scale porosity change has significant influence of 

the overall permeability of the whole system but explanation of the porosity change in different 

minerals or rocks could be very different. This can be seen from the F induced porosity change 

in silicate minerals/rocks compared to magnetite to hematite transformation induced porosity 

change. In the case F, it helps dissolve silicate minerals but it has no significant influence on 

the porosity of iron-oxide ores (i.e., magnetite and hematite), for which some other trace 

element may actually be the key, such as Ce, to affecting the reaction and generating porosity. 

Therefore, when considering the effects of certain fluid-rock interactions on ore formation, or 

influence from some specific elements, the overall geological background is important to 

consider (such as composition and property of wall-rock) when building up the genesis model 

for ore deposits. 

Fluid-rock interaction is one of the essential processes that happens throughout the ore forming 

history. Understanding the formation of hydrothermal ore deposits, especially those 

economically large and giant deposits, requires good knowledge on mechanisms and influence 

of fluid-rock interaction. In summary, this thesis investigates fluid-rock interaction and its 

influence on ore formation through three perspectives: (1) metal mobilization in fluids 

containing specific ligands (i.e., F and Cl); (2) mineral replacement reaction mechanisms; (3) 

remobilization and enrichment mechanisms of metals through multi-stage hydrothermal 

activities and cyclic fluid flows. However, there are still several aspects that require further 

investigation: 
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(1) The transporting role of F for U requires further experimental study on U-F complexation

at hydrothermal conditions (e.g., T>200ºC). This is because the current thermodynamic

properties of several U(IV/VI)-F species are extrapolated based on room temperature or low

temperature experimental data. In this case, there are uncertainties for these properties when

using them to do calculations and modelling at higher temperatures.

(2) The coupled geochemistry enables As to be a good proxy for Au. However, it is still not

clear about why As can help Au absorption in pyrite and the mechanisms for As and Au

sequestration. Understanding of these requires more experimental studies.

(3) The catalysing role of Ce on magnetite to hematite transformation reactions for the first

time shows that trace elements can play an essential role in changing reaction mechanism for

mineral replacement and defining the ore textures, which further affects the hydrothermal

circulation in the ore forming systems and contributes to the formation of a giant ore deposit.

This provides a thoroughly new perspective to investigate the mechanisms of mineral

replacement reactions in the presence of specific trace elements, apart from the common

‘important’ factors such as temperature, salinity, pH, ƒO2, etc.

Investigation of these problems requires more experimental and theoretical efforts but their 

understanding will contribute to more accurate genesis models of hydrothermal ore formation, 

which are still at the centre of the study of mineral ore deposits and essential for future 

exploration. 
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Chapter 2 

Supplementary materials include: Appendix 1. Details on thermodynamic modelling; 

Appendix 2. XANES spectra. 

These can be found on online at  

https://doi.org/10.1016/j.chemgeo.2018.11.008. 

Refer to  

Xing, Y. L., Etschmann, B., Liu, W. H., Mei, Y., Shvarov, Y., Testemale, D., Tomkins, A., 

and Brugger, J., 2019, The role of fluorine in hydrothermal mobilization and 

transportation of Fe, U and REE and the formation of IOCG deposits: Chemical 

Geology, v. 504, p. 158-176. 

Chapter 3 

Appendix 3. This can be found online at 

https://doi.org/10.1155/2018/6835346 

Refer to 

Xing, Y., Mei, Y., Etschmann, B., Liu, W., and Brugger, J., 2018, Uranium Transport in F-

Cl-Bearing Fluids and Hydrothermal Upgrading of U-Cu Ores in IOCG Deposits: 

Geofluids. 

Chapter 4 

Appendix 4. 

https://doi.org/10.1016/j.chemgeo.2018.11.008
https://doi.org/10.1155/2018/6835346
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Appendix 4 

Trace cerium catalyzes formation of giant ore 

deposits 

Yanlu Xing1, Joël Brugger1*, Barbara Etschmann1, Andy Tomkins, and Xiya Fang2, 

1. School of Earth, Atmosphere and Environment, Monash University, Clayton,

Melbourne, Victoria, Australia

2. Monash Centre for Electron Microscopy, Monash University, Clayton, Melbourne,

Victoria, Australia

Corresponding author: yanluxxing@gmail.com; joel.brugger@monash.edu  

Table S1 Summary of reaction conditions in batch Teflon reactors 

Run T (ºC) pH S/F (g/L) Oxidant NaCl/ M Filling gas Time /days REE (ppm) REE Products 

MH38 200 4 Acetate acid buffer 0.5 N2 8 250.6 La hem 23.4, mag 76.6 

MH39 200 4 Acetate acid buffer 0.5 N2 8 203.1 Ce hem 54.1, mag 45.9 

MH40 200 4 Acetate acid buffer 0.5 N2 8 168.5 Nd hem 22.7, mag 77.3 

MH41 200 4 Acetate acid buffer 0.2g H2O2 0.5 N2 8 202.0 La hem 15.8, mag 84.2 

MH42 200 4 Acetate acid buffer 0.2g H2O2 0.5 N2 8 237.0 Ce hem 11.5, mag 88.5 

MH43 200 4 Acetate acid buffer 0.2g H2O2 0.5 N2 8 180.0 Nd hem 12.1, mag 87.9 

MH44 200 4 Acetate acid buffer 0.5 N2 14 255.8 Ce hem 60.5, mag 39.6 

MH45 200 4 Acetate acid buffer 0.5 N2 14 321.7 La hem 22.8, mag 77.3 

MH46 200 4 Acetate acid buffer 0.2g H2O2 0.5 Air 14 267.1 Ce hem 12.7, mag 87.3 
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Textures for samples reacted in oxidative solutions 

Figure S1. Optical microscopy and SE image of samples reacted in oxidative solution. (A) 

Little replacement of magnetite replacement along the rim or cracks. (B) Surface of the grain 

is smooth, with little porosity developed. 

Figure S2. XFM mapping for Ce(III) and Ce(IV) of samples from oxidative (A, C) and 

non-oxidative(B, D) solutions. (A) Ce(III) and (C) Ce(IV) distribution for sample run under 

oxidative condition. (B) Ce(III) and (D) Ce(IV) distribution for sample run under non-oxidative 

condition. 



-98-

Figure S3. XANES energy distribution of Ce for samples from oxidative and non-

oxidative solutions. (A) Sample reacted in oxidative solution. The mapping shows a slim, 

single tail with less low energy points, indicating that the energy for Ce is concentrated and 

Ce4+ is the predominant species. (B) Sample reacted in non-oxidative solution. Mapping shows 

two tails and more low energy points, indicating that Ce distribution is more separated, 

compared to samples reacted in oxidative solutions; Ce3+ and Ce4+ are both important while 

Ce3+ is the predominant. 
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Chapter 5 

Appendix 5. This can be found online at 

http://www.geosociety.org/datarepository/2019 

Refer to 

Xing, Y., Brugger, J., Tomkins, A., and Shvarov, Y., 2019, Arsenic evolution as a tool for 

understanding formation of pyritic gold ores: Geology, v. 47, no. 4, p. 335-338. 

http://www.geosociety.org/datarepository/2019
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