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Abstract

With the era of precision cosmology upon us, and upcoming surveys ex-
pected to further improve the precision of our observations below the per-
cent level, ensuring the accuracy of our theoretical cosmological model is
of the utmost importance. Current tensions between our observations and
predictions from the standard cosmological model have sparked curiosity
in extending the model to include new physics. Although, some sugges-
tions include simply accounting for aspects of our Universe that are ignored
in the standard model. One example acknowledges the fact that our Uni-
verse contains significant density contrasts on small scales; in the form of
galaxies, galaxy clusters, filaments, and voids. This small-scale structure
is smoothed out in the standard model, by assuming large-scale homogene-
ity of the matter distribution, which could have a measurable effect due
to the nonlinearity of Einstein’s equations. This backreaction of small-scale
structures on the large-scale dynamics has been suggested to explain the
measured accelerating expansion rate of the Universe.

Current standard cosmological simulations ignore the effects of General
Relativity by assuming purely Newtonian dynamics. In this thesis, we take
the first steps towards quantifying the backreaction of small-scale struc-
tures by performing cosmological simulations that solve Einstein’s equa-
tions directly. Simulations like these will allow us to quantify potentially
important effects on our observations that could become measurable as the
precision of these observations increases into the future.

We begin by testing our computational setup to ensure our results are
trustworthy. We then present simulations of a realistic matter distribution
with initial conditions inspired by the early moments of our own Universe.
Analysing the averaged, large-scale evolution of an inhomogeneous uni-
verse in full General Relativity, we find negligible difference from small-
scale structures. However, we do find significant effects present on small
scales that could potentially influence future observations. While we sug-
gest improvements to our computational framework to validate our results,
we conclude that the backreaction of small-scale structures is unlikely to ex-
plain the accelerating expansion of the Universe.

Finally, we suggest future extensions to our analysis to improve the
quantification of General-Relativistic effects on our cosmological observa-
tions.
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Chapter 1

Introduction and Background

Einstein’s general theory of relativity (GR) is the most accurate descrip-
tion of gravity for the Universe. Rather than describing gravity as a force
between massive objects — as in Newton’s theory — gravity is a conse-
quence of geometry. The presence of mass curves spacetime, the “fabric”
of the Universe, which in turn affects the motion of passing matter. Ein-
stein’s theory has proven to better describe dynamics in the local Universe
than Newtonian gravity, successfully explaining the precession of the per-
ihelion of Mercury (Einstein, 1916; Clemence, 1947) and the bending of
light around the Sun (Dyson, Eddington, and Davidson, 1920). More re-
cently, the first detection of gravitational waves with the Laser Interferome-
ter Gravitational-Wave Observatory (LIGO; Abbott et al., 2016) marked yet
another prediction of GR to be confirmed correct. While small-scale physics
in our Universe is described with great precision using either the weak- or
strong-field limit of GR, the applicability to large-scale physics remains to
be thoroughly tested.

Early astronomical observations were limited to stars within our own
galaxy — which have small velocities — prompting scientists to believe that
the Universe was static: neither expanding nor contracting. Einstein’s first
application of GR to cosmology thus required the cosmological constant, Λ,
to be added into his field equations to counteract the expansion; resulting in
a static description of spacetime (Einstein, 1917). Aleksandr Friedmann and
Georges Lemaître independently derived expanding solutions to Einstein’s
equations with no need for the cosmological constant (Friedmann, 1922;
Friedmann, 1924; Lemaître, 1927). These solutions were largely dismissed
until the first observational evidence for an expanding Universe emerged in
1929. Edwin Hubble’s observations of extragalactic nebulae showed a pos-
itive, linear trend between distance and radial velocity; suggesting that the
Universe is expanding (Hubble, 1929). Einstein later accepted the notion
of an expanding Universe, deeming the cosmological constant unnecessary
(Einstein, 1931; Einstein and de Sitter, 1932; Straumann, 2002).

The basis for the current standard model of cosmology is the Friedmann-
Lemaître-Robertson-Walker (FLRW) solution to Einstein’s equations; de-
scribing an expanding, homogeneous, and isotropic spacetime. Application
of the FLRW model to our cosmological observations revealed that things
were not as expected; leading to an astounding discovery. Riess et al. (1998)
and Perlmutter et al. (1999) discovered the accelerating expansion of the
Universe using observations of Type 1a supernovae (SN1a). These SN1a
appear fainter than predicted by the FLRW model, implying the expansion
of spacetime is accelerating. The return of the cosmological constant Λ was
imminent, deemed “dark energy”; a mysterious negative pressure forcing



2 Chapter 1. Introduction and Background

the expansion of the Universe to accelerate at late times.
Early measurements of the first light after the Big Bang — the Cosmic

Microwave Background (CMB) radiation — indicate that the Universe has
globally flat geometry (Jaffe et al., 2001). Constraints that matter only ac-
counted for ∼ 27% of the total energy density of the Universe (Bennett et
al., 2003) require a smoothly-distributed energy to reconcile this result with
that of a flat geometry. These measurements fit perfectly with the cosmo-
logical constant, Λ.

The existence of “dark matter” — a type of invisible matter that interacts
only gravitationally — was first inferred from rotation curves of galaxies
(Freeman, 1970; Rubin and Ford, 1970; Rubin, Ford, and Thonnard, 1980).
Since then, measurements of the weak gravitational lensing of light (e.g.
Bacon, Refregier, and Ellis, 2000), and measurements of CMB anisotropy
(e.g. Bennett et al., 2003; Hinshaw et al., 2013; Planck Collaboration et al.,
2018) have strengthened the argument for the existence of dark matter (see,
e.g., Bertone and Hooper, 2018, for a review).

These discoveries each contributed to the current standard cosmologi-
cal model; the Λ Cold Dark Matter (ΛCDM) model, named after the main
constituents of the Universe.

To date, the ΛCDM model has successfully explained essentially all of
our cosmological observations. Notable successes include matching the
power spectrum of temperature fluctuations in the CMB (e.g. Planck Col-
laboration et al., 2018), the location of the peak separation of large-scale
structures — the baryon acoustic oscillation (BAO) peak — (e.g. Blake et
al., 2011), and the matter power spectrum of the large-scale structure at low
redshifts (e.g. Reid et al., 2010; Anderson et al., 2014).

Aside from its successes, there are some tensions between the ΛCDM
model and what we observe. Most notable are the lack of power at the
largest scales in the CMB power spectrum (Planck Collaboration et al., 2018);
the low-multipole “bump” visible in the power spectrum data, and the
recent 3.7σ tension between local measurements of the Hubble parame-
ter (Riess et al., 2018b; Riess et al., 2018a) compared to that inferred from
the CMB (Planck Collaboration et al., 2018). These tensions may be due to
insufficient precision, systematic errors in the measurements, or — more
excitingly — new physics (see Section 1.3.3).

Existing physics that is currently neglected in the standard model could
explain some of these tensions (e.g. Buchert et al., 2016). The basis of ΛCDM
is the assumption of a homogeneous, isotropic background spacetime with
expansion described by the FLRW model. Current state-of-the-art cosmo-
logical simulations model structures evolving under Newtonian gravity on
top of an a-priori assumed homogeneously expanding background space-
time (e.g. Springel, 2005; Kim et al., 2011; Genel et al., 2014; Potter, Stadel,
and Teyssier, 2017). These simulations are the primary comparison point
to our cosmological observations. Newtonian gravity has been shown to
be a good approximation for GR on small scales, however, it’s applicabil-
ity to cosmological scales remains uncertain, if only because it is based on
instantaneous action-at-a-distance (Buchert et al., 2016). Newtonian cos-
mological simulations thus ignore causality, which could have a significant
effect when considering cosmological scales.

The main argument for the assumptions of homogeneity and isotropy
underlying the standard model is that our Universe is homogeneous and
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isotropic on large scales. The Universe is inhomogeneous and anisotropic
on small scales, and it is not clear whether smoothing over this small-scale
structure has a measurable effect on the large-scale dynamics of the Uni-
verse. Buchert (2000) showed that the evolution of the average of an in-
homogeneous universe does not coincide with the evolution of a homoge-
neous universe, due to the non-commutation of averaging and time evolu-
tion in fully nonlinear GR. Extra mathematical terms contribute to both the
expansion of spacetime and the acceleration of the expansion of spacetime,
the significance of which has been the subject of much debate (e.g. Buchert
et al., 2015; Green and Wald, 2016).

Upcoming cosmological surveys using state-of-the-art telescopes such
as Euclid, the Large Synoptic Survey Telescope (LSST), and the Square Kilo-
metre Array (SKA) are expected to reach percent-level precision (Ivezic,
Tyson, Abel, et al., 2008; Maartens et al., 2015; Amendola, Appleby, Av-
goustidis, et al., 2016), at which small differences between Newtonian grav-
ity and GR on cosmological scales could be measurable. Drawing correct
conclusions from our observations first requires accurate cosmological sim-
ulations; simulations that include any potentially measurable GR effects.
The magnitude of the backreaction of structures on the large-scale dynam-
ics of the Universe can only be quantified with a full treatment of GR in a
cosmological simulation.

Numerical relativity (NR) allows us to solve Einstein’s field equations
numerically, often using a “3+1” decomposition. This involves splitting
our four-dimensional spacetime into three space dimensions and one time
dimension. The ADM formalism, named after its authors Arnowitt, Deser,
and Misner (1959), casts Einstein’s equations into a weakly hyperbolic form
for numerical evolution. This weak hyperbolicity means the system is un-
stable for long time evolutions. The Baumgarte-Shapiro-Shibata-Nakamura
(BSSN) formalism improves on this by instead forming a strongly hyper-
bolic system (Shibata and Nakamura, 1995; Baumgarte and Shapiro, 1999),
which allows for arbitrarily long, stable time evolutions. Pretorius (2005a),
Campanelli et al. (2006), and Baker et al. (2006) performed the first suc-
cessful long-term evolutions of a binary black hole system, including the
merger and emission of gravitational waves. Since then, the field of NR
has exploded and it is now widely used for simulations of binary mergers
of compact objects such as black holes (e.g. Baker et al., 2006; Campanelli
et al., 2006; Buonanno, Cook, and Pretorius, 2007; González et al., 2007;
Hinder, Kidder, and Pfeiffer, 2018; Huerta et al., 2019), neutron stars (e.g.
Baiotti, Giacomazzo, and Rezzolla, 2008; Paschalidis et al., 2011; Kastaun
and Galeazzi, 2015; Chaurasia et al., 2018), stellar collapse and supernovae
explosions (e.g. Duez, Shapiro, and Yo, 2004; Montero, Janka, and Müller,
2012), and more recently, for cosmology (Giblin, Mertens, and Starkman,
2016a; Giblin, Mertens, and Starkman, 2016b; Bentivegna and Bruni, 2016;
Giblin et al., 2017; Macpherson, Lasky, and Price, 2017; Macpherson, Price,
and Lasky, 2019; Macpherson, Lasky, and Price, 2018; East, Wojtak, and
Abel, 2018; Daverio, Dirian, and Mitsou, 2019; Barrera-Hinojosa and Li,
2019).

It is now possible to investigate GR effects on our cosmological obser-
vations, test the validity of the assumptions underlying the standard cos-
mological model, and ensure our cosmological simulations are sufficiently
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accurate for forthcoming precision cosmological surveys. These are the pri-
mary motivations behind this thesis.

We perform three-dimensional cosmological simulations of large-scale
structure formation that solve Einstein’s equations without approximation
using NR. Removing the assumptions underlying current cosmological sim-
ulations allows us to fully understand GR’s role, and validity, on cosmolog-
ical scales.

In the remainder of this Chapter we describe the basis of modern cos-
mology, including the mathematical background for the standard model,
observational tests of ΛCDM, the current status of state-of-the-art cosmo-
logical simulations, cosmological perturbation theory and its current use in
these simulations, current observational tensions with the standard model
and the resulting suggested extensions to ΛCDM.

In Chapter 2 we outline the methods used to perform our simulations
and main analysis. We include an introduction to NR and derive the equa-
tions of the BSSN formalism including a discussion of common coordinate
choices, a discussion of the workings of the EINSTEIN TOOLKIT — the open-
source NR code that we use to perform our simulations — and a description
of our post-processing analysis.

In Chapter 3 we describe our computational framework in detail, and
show results of two code tests to demonstrate the accuracy of our results.
We perform simulations of a homogeneous, isotropic FLRW spacetime and
compare to the analytic solution. Perturbing this FLRW spacetime with
initially small, simplified inhomogeneities, we show the growth of these
perturbations matches the analytic linear solution; but also surpasses this
solution into the nonlinear regime of growth where deriving analytic ex-
pressions in full GR is not possible.

In Chapter 4 we present NR cosmological simulations of a realistic mat-
ter distribution. We generate initial conditions drawn from the temperature
anisotropies in the CMB, using the Code for Anisotropies in the Microwave
Background (CAMB; Seljak and Zaldarriaga, 1996). We then evolve these
initially small inhomogeneities to redshift z ≈ 0, and from the resulting
cosmic web we calculate averaged quantities and draw comparisons with
an FLRW spacetime.

In Chapter 5 we analyse the effect of local inhomogeneities on an ob-
server’s measurement of the Hubble parameter (expansion rate) of the Uni-
verse. Our calculations are presented to approximate the expected variance
on the local H0 measurement from SN1a in Riess et al. (2018b) due to an
observer’s physical location in an inhomogeneous, anisotropic Universe.

A short summary is presented at the end of each chapter, and a full
summary with details of future work is presented in Chapter 6.

Throughout this thesis, we assume a metric signature (−,+,+,+) un-
less otherwise stated, and adopt the Einstein summation convention: im-
plied summation over repeated indices. Greek indices represent spacetime
indices and take values (0, 1, 2, 3), and Latin indices represent spatial in-
dices and take values (1, 2, 3).
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1.1 Einstein’s field equations

Einstein’s field equations of GR are

Gµν ≡ Rµν −
1

2
Rgµν =

8πG

c4
Tµν , (1.1)

where Gµν is the Einstein tensor, gµν is the metric tensor, G is the gravita-
tional constant, c is the speed of light, and Tµν is the stress-energy tensor of
matter. The four-dimensional Riemann curvature tensor is

Rαµβν ≡ ∂β (4)Γαµν − ∂ν (4)Γαµβ +(4) Γαλβ
(4)Γλµν −(4) Γαλν

(4)Γλµβ, (1.2)

where ∂µ ≡ ∂/∂xµ is the partial derivative with respect to coordinate xµ,
and the four-dimensional Christoffel symbols (or connection functions) as-
sociated with the metric gµν are defined as

(4)Γαµν ≡
1

2
gαβ (∂µgβν + ∂νgµβ − ∂βgµν) . (1.3)

We distinguish these four-dimensional objects from their spatial counter-
parts with (4) (see Section 2.1.1). The Ricci curvature tensor in Einstein’s
equations (1.1) is then the contraction of the Riemann tensor Rµν ≡ Rαµαν ,
and the Ricci scalar is the trace of the Ricci curvature tensor, R ≡ gµνRµν ,
where the inverse metric gµν is defined such that gµνgνα = δµα, with δµα the
Kronecker delta function. Indices of four-dimensional tensors are raised
and lowered using the metric tensor, i.e. Aµν = gαµAαν .

The Einstein equations (1.1) satisfy the contracted Bianchi identities (Voss,
1880),

∇µGµν = 0, (1.4)

which consequently implies the conservation of stress-energy,

∇µTµν = 0, (1.5)

from which the equations of General-Relativistic hydrodynamics are de-
rived (see Section 2.1.6). In the above,∇µ is the covariant derivative associ-
ated with the metric gµν , i.e.

∇αgµν = ∂αg
µν +(4) Γµαβg

βν +(4) Γναβg
µβ = 0, (1.6)

by construction.
The set of 16 equations (1.1) — which reduces to 10 due to symmetries in

the metric tensor gµν — describe how matter, Tµν , interacts with spacetime,
Gµν . Here, we approximate the matter content of the Universe as a perfect
fluid, which has stress-energy tensor

Tµν = ρ0hu
µuν + P gµν , (1.7)

where ρ0 and P are the rest-mass density and pressure, respectively, and
the specific enthalpy is h = c2 + ε + P/ρ0, with ε the internal energy. The
dimensionless four velocity of the fluid is defined as

uµ ≡ dxµ

d(cτ)
, (1.8)
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where xµ = (ct, xi) are the spacetime coordinates, and the four velocity is
normalised such that uµuµ = −1. The proper time, τ , is defined by

c2dτ2 ≡ −ds2, (1.9)

where ds is the infinitesimal distance between two nearby points in any
spacetime,

ds2 ≡ gµνdxµdxν , (1.10)

commonly referred to as the line element of a given spacetime.
Often Einstein’s equations are written including the cosmological con-

stant Λ, i.e.

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν , (1.11)

commonly adopted to describe dark energy; the driving force of the appar-
ent accelerating expansion of the Universe (see Section 1.3). Alternatively,
the cosmological constant can be absorbed into the stress-energy tensor as
an additional form of matter, using ρR → ρR + ρΛ, and P → P + PΛ, with
PΛ = −ρΛ. Here, ρR is the total mass-energy density as measured by an
observer comoving with the fluid, and is defined by projecting the stress-
energy tensor into the rest frame of the fluid, i.e.

ρRc
2 ≡ Tµνuµuν . (1.12)

Using (1.7), its relation to the rest-mass density ρ0 is therefore

ρRc
2 = ρ0huµu

µuνu
ν + Pgµνu

µuν , (1.13)

= ρ0c
2
(

1 +
ε

c2

)
. (1.14)

For the remainder of this thesis, we assume ρR contains all forms of energy-
density — potentially including a cosmological constant — unless other-
wise stated.

1.1.1 Foliation of spacetime

Einstein’s field equations describe the relation between spacetime and mat-
ter. In order to simulate the evolution of a four-dimensional spacetime
using numerical relativity, we split that spacetime into a series of three-
dimensional hypersurfaces (surfaces) that can be evolved in time. Choos-
ing the way the spacetime is split is done via the lapse function, α, which
describes the spacing between subsequent spatial slices in time, and the
shift vector, βi, which describes how the spatial coordinates are re-labelled
between slices. These are known as gauge choices. The surfaces each have
dimensionless normal vector

nµ ≡ −α∇µx0, (1.15)

which is normalised such that nµnµ = −1. We impose α > 0, so that nµ
is time like. In terms of the lapse and shift functions, the covariant and
contravariant normals are nµ = (−α, 0, 0, 0) and nµ = (1/α,−βi/α), re-
spectively. From (1.15) we define the spatial metric tensor induced on the
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surfaces
γµν ≡ gµν + nµnν , (1.16)

which is used to express four-dimensional objects, such as the Riemann
curvature, in terms of purely spatial objects by projecting them onto the
spatial surfaces.

The normal vector describes the motion of coordinate observers, and
the fluid four velocity describes the motion of observers comoving with the
fluid. The Lorentz factor between this pair of observers is

W ≡ −nαuα =
1√

1− vivi/c2
, (1.17)

where vi is the fluid three velocity with respect to an Eulerian observer,
which, in terms of the four velocity, lapse, and shift, is

vi

c
=

ui

αu0
+
βi

α
. (1.18)

In this three-dimensional split, the components of the contravariant four
velocity are

u0 =
dx0

d(cτ)
=
W

α
, (1.19)

ui =
dxi

d(cτ)
= W

(
vi

c
− βi

α

)
, (1.20)

and the covariant components are

u0 = W

(
viβi
c
− α

)
, (1.21)

ui = W
vi
c
. (1.22)

Indices of purely spatial objects are raised and lowered using the spatial
metric, i.e. vi = γijv

j . For four-dimensional objects this is not the case, i.e.
we have ui = giαu

α 6= giju
j in general. Full details of the 3+1 foliation and

the resulting equations commonly used in numerical relativity are given in
Section 2.1.

1.2 Friedmann-Lemaître-Robertson-Walker spacetime

The assumptions underlying the FLRW model are that the Universe is both
homogeneous — the same everywhere — and isotropic — the same in all
directions. This is the cosmological principle.

Applying the cosmological principle to Einstein’s equations in spherical
polar coordinates results in the line element

ds2 = −c2dt2 + a2(t)

[
dr2

1− kr2
+ r2

(
dθ2 + sin2θdφ2

)]
, (1.23)

where r is the comoving radial distance, and the curvature constant is k =
−1, 0, 1 if the universe has an open, flat or closed geometry, respectively.
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Assuming spatial flatness we can write the above line element in Cartesian
coordinates as

ds2 = −c2dt2 + a2(t)δijdx
idxj . (1.24)

In the above, a(t) is the spatially homogeneous scale factor describing the
size of the universe at any time.

1.2.1 About time

The coordinate time, t, in (1.24) is also known as the cosmic time; the proper
time for a clock with zero peculiar velocity in a vacuum FLRW spacetime.
The proper time τ , defined in (1.9), represents the proper time of any clock
moving along a general path ds, whereas the cosmic time represents the
proper time of a specific clock.

The conformal time, η, explicitly describes the time it would take for a
photon to travel back to the Big Bang, if the expansion were to suddenly
cease, at any time in the Universe’s history. For this reason, η is not a physi-
cally meaningful time, however, the particle horizon, defined as cη, measures
the maximum distance any information could have propagated since the
Big Bang (in an FLRW spacetime). This horizon is useful in determining
causality between different regions in the Universe, and identifying sim-
ilarities between regions separated by distances larger than cη (e.g. the
“horizon problem” in inflationary cosmology; see Dodelson, 2003). The
conformal time is widely used in cosmology, and is related to the cosmic
time via a(η)dη = dt. The FLRW line element (1.24) in terms of conformal
time is therefore

ds2 = a2(η)
(
−c2dη2 + δijdx

idxj
)
. (1.25)

1.2.2 Friedmann equations

With the metric (1.25), the components of the Einstein tensor Gµν are

G00 =
3

c2

(
a′

a

)2

, (1.26)

Gij =
1

c2

[(
a′

a

)2

− 2a′′

a

]
δij , (1.27)

G0i = 0, (1.28)

where a = a(η), and the ′ represents a derivative with respect to conformal
time, i.e. a′ ≡ ∂ηa ≡ ∂a/∂η. The trace of (1.27) is therefore

Gii = gijGij =
3

c2

[(
a′

a

)2

− 2a′′

a

]
. (1.29)

The assumption of isotropy underlying the FLRW solution implies the fluid
is at rest with respect to the FLRW coordinates, i.e. uµ = (1, 0, 0, 0), and the
assumption of homogeneity implies the density and pressure are functions
of time only. Assuming a perfect fluid, the components of the stress-energy
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tensor are,

T00 = ρRc
2a2, (1.30)

Tij = Pgij , (1.31)
T0i = 0, (1.32)

and the trace of the spatial components is

T ≡ T ii = 3P. (1.33)

Substituting the time-time components (1.26) and (1.30) into Einstein’s
equations (1.1) gives the first Friedmann equation(

a′

a

)2

=
8πGρRa

2

3
, (1.34)

and the traces (1.29) and (1.33), also with (1.34), gives the acceleration equa-
tion

a′′

a
= −4πGa2

3

(
ρR +

3P

c2a2

)
. (1.35)

From the time component of the conservation law for the stress-energy
tensor (1.5)

∇µTµ0 = ∂µT
µ0 +(4) ΓµαµT

α0 +(4) Γ0
αµT

αµ = 0, (1.36)

and using the metric (1.25) to calculate the connection functions (see Sec-
tion 2.3.1), we find

ρ′R = −3
a′

a

(
ρR +

P

c2

)
, (1.37)

which describes mass-energy conservation in an FLRW spacetime.

1.2.3 Friedmann solutions

Deriving the time evolution of the FLRW spacetime in most cases requires
solving (1.37) with (1.34), however, to close the system of equations we
must first specify an equation of state (EOS) relating the pressure, P , to
the mass-energy density, ρR.

The EOS we choose will depend on the cosmological era we want to de-
scribe. At early times in the Universe’s history, around the recombination
era, radiation dominated the total energy density, with pressure P = 1

3ρRc
2.

Substituting this in (1.37) gives a density ρR ∝ a−4, meaning the density
of radiation dropped off rapidly with time. At later times, matter there-
fore came to dominate the energy density, which is well approximated as a
“dust” fluid with P = 0. For matter domination the Friedmann equations
are

H2 =
8πGρRa

2

3
, (1.38a)

a′′

a
= −4πGρRa

2

3
, (1.38b)
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where we have defined the conformal Hubble parameter to be

H(η) ≡ a′

a
. (1.39)

In some cosmologies the sign of the Hubble parameterH is ambiguous,
e.g. in bouncing cosmologies (see e.g. Novello and Bergliaffa, 2008). To
derive the time evolution of the FLRW spacetime for these cases we must
instead solve (1.37) with the acceleration equation (1.35). For the remainder
of this thesis, we will only consider cosmologies with positive expansion,
i.e. H > 0, for all time.

Setting P = 0 in (1.37) gives

ρ′R
ρR

= −3
a′

a
, (1.40)

⇒ ρRa
3 = ρ∗ (1.41)

where ρ∗ ≡ ρR,inita
3
init is the conserved (constant) rest-frame energy-density,

ainit ≡ a(ηinit) and ρR,init ≡ ρR(ηinit) are the arbitrary initial values of the
scale factor and density, respectively. Substituting (1.41) into the Friedmann
equation (1.34) gives

a′√
a

=

√
8πGρ∗

3
, (1.42)

⇒ a(ξ) = ainitξ
2, (1.43)

where we have defined the dimensionless scaled conformal time

ξ ≡ 1 +

√
2πGρ∗

3ainit
η, (1.44)

and we have set ηinit = 0 in deriving the above. Using (1.43) in (1.41) we
find

ρR(ξ) =
ρR,init

ξ6
. (1.45)

According to observations of SN1a, the expansion of the Universe is cur-
rently accelerating. This implies a mysterious, negative pressure — known
as “dark energy” — now contributes∼ 70% of the total energy density, best
described via the cosmological constant Λ (see Section 1.3). The evolution
of the energy density and scale factor in this case is found using an EOS
with a combination of dust and dark energy, i.e. P = −ρΛ.

The FLRW spacetime forms the basis of the current standard cosmo-
logical model to describe the large-scale evolution of the Universe, and is
adopted in almost all current simulations of cosmological structure forma-
tion (see Section 1.3). The FLRW spacetime is also a common choice for
a background cosmology in perturbation theory — a method commonly
used to study the growth of structures in the Universe (see Section 1.4) —
and to estimate the size of General-Relativistic corrections to the standard
cosmological model (see Section 1.5.1).
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1.3 The Lambda Cold Dark Matter model

The ΛCDM model became the widely-accepted cosmological model after
the discovery of the accelerating expansion of the Universe (Riess et al.,
1998; Perlmutter et al., 1999). This model is the adaptation of the FLRW so-
lution of GR to our observable Universe, and is the concordance cosmology
supported by many cosmological observations. In this model, the Universe
has a flat geometry, a perfect fluid content, and a non-zero cosmological
constant Λ to explain the accelerating expansion of the Universe. In addi-
tion, the majority of matter in the Universe is observed to be a type of slow
moving (i.e. not relativistic) matter known as “cold dark matter”, which
only interacts gravitationally and is therefore well approximated as “dust”.

1.3.1 Cosmological parameters

Considering matter, curvature, and dark energy, the Friedmann equation is
derived from Einstein’s equations (1.11) with Λ 6= 0 and the metric (1.23),
with curvature k 6= 0 in general, giving(

a′

a

)2

=
8πGρRa

2

3
+

Λc2

3
− kc2

a2
. (1.46)

With the definition of the conformal Hubble parameter, (1.39), we can write
this equation equivalently as

1 = Ωm + ΩΛ + Ωk, (1.47)

where the dimensionless cosmological parameters are

Ωm ≡
8πGρRa

2

3H2
, (1.48a)

ΩΛ ≡
Λc2

3H2
, (1.48b)

Ωk ≡ −
kc2

a2H2
. (1.48c)

These describe the contribution to the total energy-density of the Universe
from matter, dark energy, and curvature, respectively.

Measuring the cosmological parameters using observations allows us
to determine the main components of the Universe, under the assumption
that the FLRW model is a valid description of our Universe on the scales
measured. We discuss the main observations constraining the values of the
cosmological parameters in the following sections.

1.3.2 Observations

The first discovery by Hubble (1929) that the Universe is expanding marked
the beginning of the standard cosmological model. Early work constraining
the energy-density of matter to be Ωm < 1 (e.g. Efstathiou, Sutherland,
and Maddox, 1990; Efstathiou, Bond, and White, 1992; Kofman, Gnedin,
and Bahcall, 1993; Ostriker and Steinhardt, 1995) paved the way for the
discovery of the accelerating expansion, implying ΩΛ > 0 (Riess et al., 1998;
Perlmutter et al., 1999).
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The first detection of the CMB radiation revealed a homogeneous and
isotropic background glow across the sky. Improvements in instrumenta-
tion and better understanding of systematic errors led to the discovery that
the CMB radiation was actually anisotropic, and even further improvements
now allow us to constrain these anisotropies to the percent level. Surveys
of SN1a can now constrain cosmological parameters to within ∼ 2% (Riess
et al., 2018b), and forecasts of upcoming cosmological surveys predict bet-
ter than percent-level precision (Ivezic, Tyson, Abel, et al., 2008; Maartens
et al., 2015; Amendola, Appleby, Avgoustidis, et al., 2016; Square Kilome-
tre Array Cosmology Science Working Group et al., 2018; Zhan and Tyson,
2018).

Currently, almost all of our cosmological observations are explained ex-
tremely well under the standard model. Including the power spectrum
of anisotropies in the CMB radiation, the large-scale clustering of galaxies,
and the values of the cosmological parameters. Aside from its success, the
ΛCDM model also has its fair share of “curiosities”, i.e. observations that
are not explained in the context of ΛCDM. These have driven explorations
into whether they could be caused by modifications of GR, if the assump-
tions underlying the standard model are flawed, or if some other exotic
physics could explain the discrepancies. We discuss some of these tensions,
and some extensions to ΛCDM proposed to alleviate them, in Section 1.3.3.

Type 1a Supernovae

The luminosity distance dL of an object is related to the luminosity flux
received by an observer, F , and the absolute luminosity of the object, L, via

F =
L

4πd2
L

. (1.49)

The flux received by an observer is dependent on dL, which itself depends
on the underlying cosmology; and therefore on the energy-density of dark
energy and curvature. Measurements of the luminosity distance are used
to determine the distance-redshift relation — i.e. the Hubble diagram —
and can therefore also be used to determine the cosmological parameters
defined in (1.48).

Phillips (1993) discovered that SN1a can be used as standardised mea-
sures of distances, or “standard candles”, due to their predictable light
curves. Combined with the fact that they have high intrinsic luminosities,
and therefore can be observed at large distances, SN1a are perfect candi-
dates for cosmological observation (see Leibundgut, 2000, for a review).
The High-z Supernova Search Team (Schmidt et al., 1998; Riess et al., 1998)
and the Supernova Cosmology Project (Perlmutter et al., 1999) took advan-
tage of this and measured the Hubble diagram out to redshift z ∼ 0.8 for
the first time. The magnitudes of the distant SN1a they found were ∼ 15%
dimmer than anticipated by a flat FLRW model with zero cosmological con-
stant, implying accelerating expansion with Λ > 0 in the context of FLRW.
Alternate explanations for this dimming include intrinsic evolution of the
SN1a light curves as a function of redshift (Drell, Loredo, and Wasserman,
2000) and extinction via extragalactic grey dust (Aguirre, 1999b; Aguirre,
1999a). Further observations of even higher-redshift SN1a, with z > 1,
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strongly disfavour these alternate explanations, and suggest that the Uni-
verse previously underwent an episode of deceleration, and therefore was
not always dark-energy dominated (Riess et al., 2001; Riess et al., 2004;
Riess et al., 2007).

SN1a are now widely used as cosmological probes, and many subse-
quent surveys align with the early results of Riess et al. (1998) and Perlmut-
ter et al. (1999), including the new Supernova Cosmology Project (Knop et
al., 2003), the Supernova Legacy Survey (Astier et al., 2006), the ESSENCE
supernova survey (Miknaitis, Wood-Vasey, and ESSENCE Team, 2006; Wood-
Vasey et al., 2007), the Sloan Digital Sky Survey II, (SDSS Kessler et al.,
2009), the Union2 compilation (Amanullah et al., 2010), the Supernova H0

for the Equation of State of dark energy (SH0ES) project (Riess et al., 2011;
Riess et al., 2016), the Dark Energy Survey Supernova Program (Abbott et
al., 2019), and combinations of different SN1a sample sets, for example, Su-
percal (Scolnic et al., 2015) and the Pantheon Sample (Scolnic et al., 2018).

If we wish to maintain the homogeneous, isotropic FLRW spacetime as
the base of the standard cosmological model, the dimming of SN1a can be
explained in one of two ways. First is that the Universe contains a sig-
nificant amount of dark, non-baryonic matter with an effective negative
pressure, called “dark energy”. This is often described as being smoothly
distributed through spacetime, as the cosmological constant Λ. Second is
that Einstein’s theory of GR breaks down on cosmological scales, and we
need an amended theory to explain our Universe on large scales (see Clifton
et al., 2012, for a review). The standard cosmological model assumes that
GR is the correct description of the Universe, and adopts the cosmologi-
cal constant, with observations currently constraining ΩΛ ≈ 0.7. Alterna-
tively, abandoning the assumptions of homogeneity and isotropy has, in
some cases, been able to explain the dimming without Λ (see Section 1.5).

Observations of SN1a also allows precise measurement of the expansion
rate locally via the Hubble parameter,H0. Using the distance modulus rela-
tion, and by calibrating the distances to SN1a using Cepheid variable stars
in their host galaxies, the most up-to-date measurement of H0 from SN1a
has reached 2.3% precision, with H0 = 73.48 km s−1 Mpc−1 and a 1σ uncer-
tainty of ±1.66 km s−1 Mpc−1 (Riess et al., 2018b). This measurement of the
local expansion rate is in 3.7σ tension with the model-dependent inferred
value using the latest CMB data from the Planck Collaboration et al. (2018),
with H0 = 67.4 km s−1 Mpc−1 and a 1σ uncertainty of ±0.5 km s−1 Mpc−1

We discuss this discrepancy more in Section 1.3.3, and investigate the role
of local inhomogeneities on the SN1a measurement in Chapter 5.

Cosmic Microwave Background

The discovery of the CMB radiation revealed a perfectly homogeneous and
isotropic background glow across the sky with temperature ∼ 3.5K (Pen-
zias and Wilson, 1965), providing the first evidence in favour of Big-Bang
cosmology (Dicke et al., 1965). Increasingly precise measurements of the
background radiation revealed tiny anisotropies in temperature (Smoot et
al., 1992), and recent measurements — using the Wilkinson Microwave
Anisotropy Probe (WMAP) and the Planck satellite — have uncovered im-
mense amounts of detail in the ∆T/T̄ ∼ 10−5 anisotropies around the mean
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T̄ ≈ 2.7K radiation (e.g. Komatsu et al., 2009; Planck Collaboration et al.,
2016).

The very early Universe was a dense, opaque plasma of baryons and
photons. Hot regions in this plasma expanded under high pressure and
consequently cooled. As they cooled, the outward pressure was eventu-
ally overcome by the gravitational potential, causing these regions to re-
collapse, again raising the temperature and pressure to the point at which
pressure dominated once again. This interplay between forces caused BAOs;
acoustic waves in the dense plasma. As the Universe expanded, less and
less Compton scattering occurred, and free electrons bound with protons
to form neutral hydrogen; this was the recombination era. These free elec-
trons bound in their highest energy state, immediately dropping in energy
and emitting the first photons that were able to freely travel through the
Universe; this was the photon decoupling era (see Durrer, 2008).

The small-scale anisotropies we measure in the CMB radiation today
are dominated by the acoustic oscillations created during recombination.
Measuring the location and amplitude of the resulting peaks in the angular
power spectrum allows us to constrain the geometry of the Universe, the
energy-density of baryons, and the energy-density of matter (Jungman et
al., 1996). Temperature anisotropies themselves can be related to perturba-
tions in the metric at recombination, consequently allowing us to constrain
the matter perturbations that gave rise to the large-scale structure we see
today.

Measurements of the CMB temperature power spectrum alone only con-
strain a small subset of the cosmological parameters, and so Planck Collab-
oration et al. (2018) combine the temperature power spectrum with mea-
surements of the polarisation power spectrum and the lensing signature
of the CMB. Since the CMB photons measured have travelled the entire
history of the Universe, they have passed by many massive objects along
their path, and therefore there will be a gravitational lensing signature in
the radiation we measure (Blanchard and Schneider, 1987). Measuring this
lensing spectrum requires assumptions about the geometry of the Universe,
the depth of gravitational potentials along the photon paths, the radial ex-
tent of the potentials, and the average number of potentials any one photon
may pass through. These assumptions are made under linear perturbation
theory (see Section 1.4.2), since on the ∼ 1 arcminute scales considered for
CMB lensing studies, weak lensing should be a valid approximation (Lewis
and Challinor, 2006).

Large-Scale Structure

The initially small temperature anisotropies in the CMB gave rise to the
large-scale distribution of galaxy clusters, filaments, and voids we see to-
day. Signatures of the anisotropy in the CMB radiation are therefore present
in the measured clustering of galaxies, e.g. the sound horizon introduced in
the previous section (Eisenstein et al., 1998; Eisenstein and Hu, 1998). The
sound horizon is measured at low redshift as a peak in the matter power
spectrum, and the location of this peak (and hence, physical size of the sepa-
ration) at different redshifts provides intuition into the method of structure
formation, a geometrical distance measure, and insight into the expansion
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history. SDSS (Eisenstein et al., 2005) and the 2-degree Field Galaxy Red-
shift Survey (2dFGRS; Cole et al., 2005) provided the first detections of the
predicted peak in the correlation function of the clustering of luminous red
galaxies, leading to precise measures of cosmological distance and strong
evidence in favour of dark energy. The discovery of the BAO peak also con-
firms that dark matter must have been present during the recombination
era, since the peak is predicted to be different in a baryon-only universe
(Eisenstein et al., 2005).

Cosmological N-body simulations (see Section 1.3.4) generally assume a
base-ΛCDM cosmology to simulate the growth of the large-scale structure
from initially small perturbations. These simulations predict a certain dis-
tribution and abundance of massive galaxy clusters at a given redshift (e.g.
Warren et al., 2006). The formation of the dark-matter haloes surrounding
these clusters should be dependent only on the geometry of the Universe
and the initial fluctuations that gave rise to the gravitational potentials to-
day (Haiman, Mohr, and Holder, 2001). The abundance of these clusters
will also be dependent on the growth rate of structure, determined from
the total energy density of matter, Ωm. Including analysis of the evolution
of the abundance of galaxy clusters can improve the constraints on cosmo-
logical parameters (Viana and Liddle, 1999). In addition, measuring the
weak gravitational lensing of light as it passes by massive clusters allows
another method of mapping the dark-matter distribution. This lensing dis-
torts images of distant galaxies lying behind massive clusters along our line
of sight, and the degree of this lensing allows us to constrain the mass of the
dark-matter halo of the cluster. As with the galaxy cluster abundances, this
allows constraints to be put on dark energy’s role in cosmological structure
formation (Frieman, Turner, and Huterer, 2008).

In a matter-dominated Universe, on scales where linear perturbation
theory is valid, the depth and size of the gravitational potentials are con-
stant in time. When dark energy dominates at later times, the potentials
decay due to the accelerated expansion, and photons are lensed as they
travel through these potentials. This is the late-time, integrated Sachs-Wolfe
effect (Rees and Sciama, 1968). Correlating the lensing signal of the CMB
with the position of super-voids and super-clusters (∼ 100 Mpc in size) —
as measured in the SDSS luminous red galaxies survey — supports a flat,
dark-energy dominated Universe. However, comparisons with ΛCDM N-
body simulations show a ∼ 2σ deviation from the observations (Granett,
Neyrinck, and Szapudi, 2008).

Concordance cosmology

Most cosmological observations only constrain certain parameters. For ex-
ample, the CMB radiation does not strongly constrain dark energy, since at
recombination the amount of dark energy was negligible compared to mat-
ter and radiation. Combinations of cosmological observations are therefore
necessary to build a complete picture of the cosmological model that best
describes our Universe. The Planck Collaboration et al. (2018) presented the
latest CMB data, making thorough comparisons to not only different kinds
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of CMB power spectra, but also to independent cosmological probes in-
cluding BAOs, SN1a, and galaxy clusters, all of which agree on a spatially-
flat ΛCDM cosmology with matter density Ωm = 0.315 ± 0.007, and dark-
energy density ΩΛ = 0.685± 0.007, where the dark energy equation of state
is P = −wρΛ with w = −1.03 ± 0.03 (consistent with a cosmological con-
stant). See Planck Collaboration et al. (2018) for the full parameter set de-
scribing the currently favoured standard model.

1.3.3 Curiosities in ΛCDM

The ΛCDM model has successfully predicted and explained most of our
cosmological observations. However, alongside its success are several ten-
sions (see, e.g. Bull et al., 2016; Buchert et al., 2016, for reviews). These
“curiosities” have sparked interest in investigating possible extensions or
alterations to the standard model, most of which are also strongly moti-
vated by the fact that inflation, dark matter, and dark energy — the main
components of the standard model — have largely eluded explanation to
date.

CMB power spectrum

The Planck Collaboration et al. (2018) measurements of the CMB anisotropy
constrain many of the ΛCDM model parameters to better than percent-
level precision, aligning with predictions of the lensing signal present in
the CMB radiation and the angular power spectrum at small scales. How-
ever, at the largest angular scales measured by the Planck satellite, there is
a suspicious “dip” in the power spectrum relative to the ΛCDM prediction,
which is also seen in CMB data from WMAP (Bennett et al., 2003; Hinshaw
et al., 2013). The fact that both satellites independently measure the same
dip at the same angular scale essentially rules out instrument systematic
errors or foreground structures as causes of the anomaly, instead pointing
towards a real feature in the CMB anisotropy (Planck Collaboration et al.,
2014). Since small angular-scale data fits the ΛCDM prediction so well,
there is less freedom to move away from the standard model. New physics
at the largest angular scales only could be required to explain this discrep-
ancy, however, must maintain the match to observations at small scales.

Hubble parameter

Arguably, the most significant tension with the latest CMB measurements
is that of the Hubble expansion at redshift zero, i.e. H0. The expansion rate
inferred from the CMB power spectrum is H0 = 67.4 ± 0.5 km s−1 Mpc−1,
a highly model dependent result, explicitly assuming a base-ΛCDM model
(Planck Collaboration et al., 2018). As discussed in Section 1.3.2, SN1a con-
tribute to the cosmic distance ladder at low redshift, providing a model-
independent measurement of the local expansion rate of H0 = 73.48 ±
1.66 km s−1 Mpc−1 (Riess et al., 2018b). This value is in 3.7σ tension with
the inferred expansion rate from Planck data.

The actual measured values of H0 have not changed significantly from
past measurements from SH0ES (Riess et al., 2011; Riess et al., 2016) and
earlier Planck data (Planck Collaboration et al., 2014; Planck Collaboration
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et al., 2016), rather the uncertainties on each respective value have tight-
ened considerably. Better understanding of systematic errors, and improve-
ment of distance calibration for SN1a using Cepheid variable stars, have
both contributed to tighter constraints, and hence, increasing tension. Sys-
tematic errors have been suggested as a cause of the tension, however, re-
analyses of the data have not shown any significant difference in the result
(e.g. Efstathiou, 2014). The model dependence of the Planck value has pro-
voked investigation into whether the standard model could be to blame for
the discrepancy. Effects from local structure and peculiar velocities have
not been shown to be significant enough to explain the tension, however
could be important for upcoming precision surveys (e.g. Ben-Dayan et al.,
2014; Camarena and Marra, 2018). Bolejko (2018b) showed that emerging,
globally negative curvature can successfully explain the Hubble tension —
while also reducing the amount of dark energy needed to explain the accel-
erated expansion — under the “silent universe” approximation (see Bruni,
Matarrese, and Pantano, 1995). In Chapter 5 (see also Macpherson, Lasky,
and Price, 2018) we use a fully General-Relativistic treatment to calculate
the variance on the local expansion rate in an inhomogeneous Universe.
While the approximations we use to calculate H0 need to be improved (see
Section 6.2.2), we found the effect was below the percent-level, and there-
fore not enough to explain the tension.

Low-redshift Universe

Lithium levels measured in metal-poor stars in our own galaxy are 4 − 5σ
lower than predicted by ΛCDM, suggesting a lower primordial abundance
than predicted in Big-Bang nucleosynthesis (Cyburt, Fields, and Olive, 2008).
This tension can be alleviated by assuming the existence of new particles
(Cyburt et al., 2013), and in some cases supersymmetric particles — yet
undetected — have also been shown to solve the problem (e.g. Jedamzik,
2004). Low-redshift clustering of luminous red galaxies on ∼Mpc scales
differs from ΛCDM predictions from cosmological simulations by up to 3σ
(Wiegand, Buchert, and Ostermann, 2014), and predictions of the growth
rate of structure — sensitive to Ωm — are significantly higher than those
measured with redshift space distortions (see Peacock et al., 2001). While
the standard model describes the early Universe extremely well, these dis-
crepancies suggest we may need alternative explanations at low redshift.
Suggested extensions include higher-order relativistic corrections to New-
tonian dynamics (see Section 1.5.1), or considering that small-scale dynam-
ics do contribute to the large-scale evolution of the Universe, and hence the
assumptions of homogeneity and isotropy underlying the standard model
are not valid (see Section 1.5.2).

Proposed extensions

Planck Collaboration et al. (2018) have investigated standard extensions to
the ΛCDM model, including primordial gravitational waves, non-zero spa-
tial curvature, dynamical (evolving) dark energy models (see also DES Col-
laboration et al., 2017), modifications to GR, and different neutrino masses
or primordial element abundances. No significant evidence in favour of
any of these extensions, as opposed to ΛCDM, was found.
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All of the tensions touched on here remain largely unexplained. Given
the increasing precision of cosmological observations — implying tighter
constraints on our systematic errors — we may instead need to turn to in-
herent flaws in the ΛCDM model, or new, exotic physics, to explain these
curiosities.

1.3.4 Cosmological simulations

As mentioned in the previous section, the small-amplitude anisotropies in
the CMB at recombination seeded the large-scale galaxy structure we see
today. As these anisotropies grow over time under the influence of gravity,
the dynamics of their evolution becomes increasingly more complicated.
While the amplitudes are small (linear), the evolution can be predicted an-
alytically (see Section 1.4). However, the nonlinear regime of structure for-
mation is only accessible via numerical simulation.

CMB measurements provide insight into the near-Gaussian anisotropies
at recombination, and large-scale galaxy clustering and BAOs measured at
different redshifts gives us an idea about the evolution of these perturba-
tions. Ensuring the standard cosmological model correctly predicts the evo-
lution of the large-scale structure, including the nonlinear dynamics at late
times, requires cosmological simulations.

These simulations generally adopt a background flat, FLRW spacetime
that expands according to the Friedmann equations (with Λ 6= 0) alongside
a purely-Newtonian description for gravity. Initially small perturbations to
the density field, based on measurements of the CMB, collapse over time to
form a large-scale distribution of galaxy clusters, filaments, and voids that
can then be compared to our observations.

In the early days, matter dynamics were completely approximated by a
collisionless, self-gravitating fluid using N-body particle methods — with
each particle of a certain mass representing a collection of physical dark
matter particles. While the majority of matter in the Universe is thought to
be cold dark matter, which is well approximated as dust, in order to mimic
our cosmological observations we need to also consider gas dynamics (e.g.
using smoothed particle hydrodynamics, see Monaghan, 1992).

The first N-body cosmological simulation was performed by Peebles
(1970), using 300 particles to simulate the formation of the Coma cluster.
Since then, advancements in both supercomputing power and improved
numerical techniques have allowed the particle number of such simulations
to skyrocket to billions (e.g. Springel et al., 2005; Kim et al., 2009; Kim et
al., 2011; Genel et al., 2014) and even trillions (e.g. Ishiyama et al., 2013;
Skillman et al., 2014; Potter, Stadel, and Teyssier, 2017) over Gpc volumes.

We need our cosmological simulations to sample both very large vol-
umes (of order Gpc or more), while also sampling down to the scales of
individual galaxies smaller than the Milky Way. Large-volume simulations
are appealing because of the recent rapid increase in sky area sampled by
cosmological surveys, and so we need equivalently large simulations to
compare with these observations. In addition, to be able to study the preva-
lence of very high-mass galaxy clusters in the Universe, we need to sample
a large enough volume so as to gain a statistically significant sample of
these rare objects. Sampling as small scales as possible, while still main-
taining a large volume, will allow a complete sampling of the matter power
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spectrum at a number of redshifts, with the benefit of also probing dynam-
ics on nonlinear scales (Kim et al., 2011).

N-body cosmological simulations have provided a wealth of knowledge
into the formation and evolution of large-scale structures, and constrained
many aspects of the standard cosmological model. However, a key issue
is their use of Newtonian gravity. When sampling small-scale dynamics,
Newtonian gravity has been shown to be a good approximation to GR in the
presence of a weak gravitational field. On cosmological scales, space-like
separated events can influence one another in Newtonian gravity, since in-
formation propagates instantly. In GR, however, information travels at the
speed of light, and therefore causality becomes important on sufficiently
large scales. In addition, the assumption of a homogeneously expanding
background spacetime, that evolves independently of the nonlinear struc-
ture formation taking place, is another potential issue with these simula-
tions. In Section 1.5.2 we discuss the effects on the global expansion rate
by small-scale inhomogeneities, the size of which can only be quantified
using cosmological simulations that solve Einstein’s equations directly (see
Chapters 3, 4, and 5).

1.4 Cosmological perturbation theory

The Universe is often approximated as being homogeneous and isotropic.
However, the mere presence of stars, planets, galaxies, and galaxy clusters
shows that in the early Universe there must have been small perturbations
that coalesced over time into larger and larger structures. Investigating
where these initially small perturbations came from, and how they grew
over time into the structure we see today, is a main goal of perturbation
theory in cosmology (Kodama and Sasaki, 1984). Perturbation theory uses
a background cosmological model — for example, the FLRW model — and
then uses Einstein’s equations of General Relativity to describe small per-
turbations around this background.

1.4.1 The gauge problem

Due to the complete coordinate freedom of GR, perturbations themselves
can be dependent on the chosen coordinates. Therefore, solutions to the
perturbed Einstein equations may include unphysical “gauge modes”, as in
the pioneering work of Lifshitz (1946) and Lifshitz and Khalatnikov (1963).
This means the density perturbation itself is gauge dependent. A physi-
cally meaningful perturbation should not be dependent on the coordinates
used, which is where the motivation for “gauge invariant” formulations
of perturbation theory originated. Bardeen (1980) wrote the perturbation
equations in a completely gauge-invariant way, and analysed the physi-
cal interpretation of the scalar, vector, and tensor perturbations. However,
even in Bardeen’s formulation, the density perturbation remains dependent
on the gauge, because it is defined as the difference between the real den-
sity and the background density, i.e. δρ ≡ ρ − ρ̄. In this definition, we
have implicitly defined a particular mapping from the true Universe (ρ) to
the fictitious background spacetime (ρ̄), and therefore the perturbations are
explicitly dependent on the background spacetime, and hence the chosen



20 Chapter 1. Introduction and Background

gauge. The gauge transformation of an arbitrary tensor field perturbation
δXα = Xα − X̄α is (Stewart and Walker, 1974)

δX ′α → δXα + LY X̄α, (1.50)

where LY is the Lie derivative with respect to the vector field inducing the
gauge transformation, Y (see Section 2.1.2). From (1.50) we can see that if
the Lie derivative of the background quantity X̄α vanishes, the perturba-
tion is gauge-invariant. Since the Lie derivative of the density in an FLRW
spacetime may not vanish (i.e. the time derivative is nonzero), the per-
turbation δρ is not gauge invariant. Ellis and Bruni (1989) address this by
describing the density distribution instead in terms of the density gradi-
ent, which is zero in the FLRW background, and therefore the variables are
gauge invariant in a perturbed-FLRW Universe (see also Bruni, Dunsby,
and Ellis, 1992).

1.4.2 Linear perturbation theory

Early in the Universe’s history, perturbations to the curvature and the stress-
energy tensor were small, allowing us to approximate their evolution using
linear perturbation theory. Considering perturbations to the background
metric tensor (indicated with an over bar) such that δgµν � ḡµν ,

gµν = ḡµν + δgµν , (1.51)

and taking the background cosmology as FLRW, the linearly-perturbed line
element in the longitudinal gauge is

ds2 = a2(η)

[
−
(

1 +
2ψ

c2

)
c2dη2 +

(
1− 2φ

c2

)
δijdx

idxj
]
, (1.52)

where ψ and φ are the first-order scalar perturbations to the metric, relevant
for galaxy clustering and light propagation, respectively. Vector and tensor
perturbations are subdominant in the linear regime, and so are usually ne-
glected in the context of linear perturbation theory (but see Section 1.4.3).
In this gauge, the scalar perturbations φ and ψ coincide with Bardeen’s
gauge-invariant potentials Φ and Ψ, respectively (Bardeen, 1980). These
small perturbations in the metric tensor are linked to perturbations in the
stress-energy tensor via the perturbed Einstein equations

Ḡµν + δGµν =
8πG

c4

(
T̄µν + δTµν

)
. (1.53)

Solving these equations in linear perturbation theory involves neglecting
terms second order or higher (see Section 2.2.4 for the derivation of the
equations used for initial conditions in this thesis). This method is com-
monly used to describe the high-redshift Universe — usually in generating
initial conditions for cosmological simulations — and the low-redshift Uni-
verse on sufficiently large scales such that fluctuations in the density field
are small.
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1.4.3 Weak field approximation

On small enough scales we measure density fluctuations that are δ � 1,
and therefore the assumption of linear perturbations is no longer appli-
cable. Usually, Newtonian dynamics is used to describe the small-scale
growth of structure, although cosmological N-body simulations adopting
Newtonian gravity also sample cosmological scales, at which point causal-
ity can become important (Rigopoulos and Valkenburg, 2015). However,
even though density contrasts may be large, the metric perturbation re-
mains small, with amplitude φ/c2 ∼ 10−6 − 10−5, from galactic up to cos-
mological scales.

Linear perturbation theory remains valid for large-scale perturbations
(but see Section 1.5.2 for a discussion of how small-scale nonlinearities could
still influence the large-scale dynamics), the dynamics of which are ex-
tremely well understood. To bridge the gap between linear perturbation
theory on large scales and Newtonian dynamics on small scales, the weak
field approximation was developed for cosmology (Green and Wald, 2011;
Green and Wald, 2012). Green and Wald consider a general background
metric that describes the averaged behaviour of the spacetime, and differ-
ences between the actual metric and the background metric are assumed
to be small everywhere, neglecting the effects of relativistic objects such
as black holes and neutron stars. This assumption does not imply that
any derivatives of δgµν must be small. Placing no limit on second deriva-
tives of the metric also implies that matter sources with δ � 1 are al-
lowed within this framework, as is commonly observed on galactic and
sub-galactic scales. The intention of this framework is to capture both small-
scale nonlinear dynamics and the large-scale, averaged evolution of the
Universe.

Adamek et al. (2013) applied the weak-field approximation to GEVOLU-
TION; a relativistic N-body code for simulations of cosmological structure
formation, by adopting the perturbed metric in the Poisson gauge (here in
units with c = 1)

ds2 = a2(η)
[
− (1 + 2ψ) dη2 − 2Bidx

idη + (1− 2φ) δijdx
idxj + hijdx

idxj
]
.

(1.54)
Here, Bi and hij are the vector and tensor perturbations, respectively, and
are kept to first order only since they are, in general, small relative to the
scalar perturbations φ and ψ. This is evident in the long-term success of
predictions from Newtonian cosmological simulations — which neglect Bi
and hij — and in the difficulty of observing these perturbations compared
to the scalar potentials (e.g. Everitt et al., 2011; Abbott et al., 2016).

The scalar perturbations themselves are also only kept to linear order,
except when their quadratic terms are multiplied with their spatial deriva-
tives (Adamek et al., 2016b; Adamek et al., 2016a). Higher derivatives of the
potentials, corresponding to density fluctuations, are kept to all orders, and
velocities are kept to second order. These simulations capture significantly
more relativistic effects than Newtonian N-body simulations, however, the
weak-field approximation still requires a background spacetime, and hence
an explicit description for the averaged evolution of the Universe. Potential
issues with this assumption are discussed in Section 1.5.2.
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1.5 Beyond the Standard Model

According to the standard cosmological model, approximately 95% of the
energy-density of the Universe is made up of the so-called “dark compo-
nents”, namely dark matter and dark energy. Neither of these have been
directly observed, and the very nature of them both remains a mystery.
Not only because of this, but also due to disagreement between some ob-
servations and predictions from the standard model, many extensions are
now being explored. These include modifications of GR on cosmologi-
cal scales (see Clifton et al., 2012, for a review), using relativistic pertur-
bation theory to include effects that are neglected in the standard model
(see Section 1.5.1), and others which question the validity of the underly-
ing assumptions. An example of the latter is discussed in Section 1.5.2,
where the assumptions of homogeneity and isotropy underlying the ΛCDM
model are called into question. Other assumptions that have been investi-
gated are the Gaussianity of the primordial fluctuations (see, e.g., Verde
et al., 2000) and the apparent fine-tuning of inflation (see, e.g., Branden-
berger, 2011). While some “standard” extensions have been shown to be
disfavoured compared to ΛCDM (see, e.g. Planck Collaboration et al., 2018),
there is still a huge amount to be explored.

1.5.1 General-Relativistic corrections

Large-scale galaxy surveys are interpreted based on cosmological simula-
tions that adopt purely Newtonian dynamics. The clustering of galaxies is
explained sufficiently in Newtonian gravity on small enough scales (Green
and Wald, 2012), however, there is skepticism regarding the applicability of
the Newtonian limit on (or close to) the Hubble scale (e.g. Yoo, Fitzpatrick,
and Zaldarriaga, 2009). Some have shown that the Newtonian limit pro-
vides the correct dynamics even on large scales (discussed below; see also
Matarrese and Terranova, 1996; Hwang and Noh, 2006; Chisari and Zal-
darriaga, 2011; Oliynyk, 2014). Regardless of this, there are still quanti-
ties in GR that simply do not exist in the Newtonian approximation (Bruni,
Thomas, and Wands, 2014). In addition, relativistic corrections to our ob-
servations arise because our observations take place on the past light cone,
not over a spatial slice (Bertacca et al., 2015). Assessing the size of the GR
corrections to the Newtonian limit for large-scale cosmological simulations
is therefore important, especially with the increasing precision of cosmo-
logical surveys.

General-Relativistic effects could be important not only in the nonlin-
ear evolution of the density field, but in the setting of initial conditions
for simulations. Primordial Gaussian perturbations in the metric tensor
are predicted from inflation (Maldacena, 2003), and N-body simulations
are usually initialised using a corresponding Gaussian distribution of den-
sity perturbations. This relation is valid based on the Poisson equation,
in which the density perturbation and gravitational potential are related
linearly. Bruni, Hidalgo, and Wands (2014) used the post-Friedmann ex-
pansion (Milillo et al., 2015) to show that Gaussian fluctuations in the met-
ric correspond to non-Gaussian density perturbations on large scales, due
to the nonlinearity of Einstein’s equations. Cosmological simulations sam-
pling initial conditions above the causal horizon therefore must include this
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correction to be consistent with GR (see also Rampf and Rigopoulos, 2013;
Christopherson et al., 2016).

Some have calculated GR corrections using linear perturbation theory
(e.g. Bonvin and Durrer, 2011), while others have extended to second order
and higher, including the effects from not only scalar but also vector and
tensor perturbations, in addition to primordial non-Gaussianity in some
cases (e.g. Green and Wald, 2011; Bertacca, Maartens, and Clarkson, 2014;
Villa and Rampf, 2016). These extensions are intended to be used for cor-
rections to Newtonian N-body initial conditions, but also for the evolution
itself, since they provide relativistic corrections to the particle trajectories.

To align particle positions from N-body simulations with observable co-
ordinates we must identify the simulations with a particular gauge (Malik
and Wands, 2009; Yoo, 2010; Challinor and Lewis, 2011). A natural choice is
the so-called conformal Newtonian gauge, i.e. a metric equivalent to (1.52).
Linearising Einstein’s equations for this metric yields a Poisson-like equa-
tion for the gravitational potential, i.e. not equivalent to the Poisson equa-
tion in purely Newtonian gravity (see (2.132a) in Section 2.2.4). This sug-
gests that N-body simulations are not solving the correct dynamics (Chis-
ari and Zaldarriaga, 2011). Fidler et al. (2015) defined the N-body gauge,
in which the density field calculated when counting particles in N-body
simulations aligns with the comoving density field defined in Einstein’s
equations. This gauge is therefore suggested as a useful gauge to interpret
N-body simulations (see also Fidler et al., 2016).

Aside from analysing the dynamic evolution in N-body simulations, and
assessing their relevance in GR, some relativistic effects are exactly zero
in the Newtonian limit, and so require a full GR treatment. The frame-
dragging potential, gravitational waves, and the difference between the
two potentials φ and ψ in the metric (1.52) are all examples of relativistic
effects that we know exist, but are zero in Newtonian gravity. Gravitational
waves have now been observed (Abbott et al., 2016), and the frame drag-
ging effect is present in cosmological perturbation theory (Bardeen, 1980)
and has also been measured in our own Solar System (Everitt et al., 2011).
The “gravitational slip” |φ − ψ| (see Chapter 3) can be measured from the
integrated Sachs-Wolfe effect, weak gravitational lensing, and in the matter
power spectrum (Daniel et al., 2010). It is zero at first order in GR, how-
ever becomes non-zero at higher orders in perturbation theory (and in some
modified gravity theories, see Daniel et al., 2008).

Post-Friedmann expansion provides an approximation for GR that cap-
tures both the small-scale nonlinear dynamics and the large-scale linear dy-
namics (Milillo et al., 2015). In the Newtonian limit of this expansion, there
is a non-zero vector potential, in addition to the usual scalar potential, in
the metric tensor (Bruni, Thomas, and Wands, 2014). This encapsulates
the frame-dragging effect, sourced by purely Newtonian terms, and there-
fore can be calculated from nonlinear N-body simulations. Bruni, Thomas,
and Wands (2014) performed the first calculation of the frame-dragging po-
tential from a purely Newtonian simulation, showing it has small enough
magnitude that N-body dynamics should be unaffected, however, could be
measurable in weak-lensing cosmological surveys (see also Thomas, Bruni,
and Wands, 2015b; Thomas, Bruni, and Wands, 2015a).
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1.5.2 Backreaction

Our Universe is approximated as homogeneous and isotropic on large scales,
however it is extremely inhomogeneous and anisotropic on small scales.
The process of smoothing over these small-scale structures to achieve large-
scale homogeneity is often referred to as the “averaging problem” (see Clark-
son et al., 2011; Wiltshire, 2011). Due to the nonlinearity of Einstein’s equa-
tions, when averaging an inhomogeneous fluid (e.g., the Universe on small
scales) over large scales, there are extra terms governing the evolution of
the averaged fluid compared to a homogeneous fluid. The theory of back-
reaction states that the globally-averaged expansion of an inhomogeneous,
anisotropic Universe does not coincide with the expansion rate of the homo-
geneous, isotropic model (Buchert, 2000). Extra terms appear in the equa-
tion for the acceleration of the expansion rate of the Universe, and therefore
have been suggested as alternate explanations for dark energy.

Quantifying the size of the backreaction effect ultimately requires sim-
ulations that solve Einstein’s equations using numerical relativity. The for-
malism for calculating cosmological averages is explicitly dependent on the
chosen slicing conditions, since the averages themselves must be taken over
a specified three-dimensional domain. The dependence of backreaction on
slicing has been explored in Adamek et al. (2019), and can show up to a
10% difference depending on which three-dimensional slices are chosen. It
is therefore important to specify a slicing condition that is physically inter-
esting and best represents our measurements of averages in the Universe.

Averaging comoving domains

The original formalism of Buchert (2000) is based on averaging over a spa-
tial surface that is comoving with the fluid flow. This is called the syn-
chronous, comoving gauge; a popular choice in relativistic cosmological
perturbation theory, both due to its simplicity and the parallels that can be
drawn with Newtonian Lagrangian coordinates (Bruni, Dunsby, and Ellis,
1992; Bruni et al., 2014). However, this spatial surface only exists if the fluid
is vorticity free (Ehlers, 1993). In this gauge, the proper time measured by a
comoving observer coincides with the coordinate time on the spatial slices
— i.e. a lapse function α = 1 — and the coordinate observers follow the
fluid flow — i.e. a shift vector βi = 0. The normal vector orthogonal to the
spatial slices in this case is therefore nµ = (1, 0, 0, 0), here coinciding with
the four velocity of the fluid uµ.

We want to study the averaged dynamics of inhomogeneous, anisotropic
dust. The kinematical quantities describing the expansion rate, shear, and
vorticity of this fluid are defined, respectively, by decomposing the four
velocity of the fluid,

Θ ≡ ∇µuµ, (1.55)

σµν ≡ bαµbβν∇(αuβ) −
1

3
Θbµν , (1.56)

wµν ≡ bαµbβν∇[αuβ], (1.57)

where in the comoving gauge wµν = 0. The projection tensor bµν ≡ gµν +
uµuν is purely spatial, and in this gauge is equivalent to the metric tensor
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γij describing the spatial surfaces. In the above, we use rounded and square
brackets around indices to denote the symmetric and antisymmetric parts
of a tensor, respectively, i.e.

A(ij) ≡
1

2
(Aij +Aji) , (1.58)

A[ij] ≡
1

2
(Aij −Aji) . (1.59)

When considering three-dimensional slices embedded in four-dimensional
spacetime, Einstein’s equations are split into the Hamiltonian and momen-
tum constraint equations, and a system of evolution equations for the met-
ric and extrinsic curvature of the slices (see Section 2.1.2). In terms of the
kinematical quantities above, the Hamiltonian constraint equation can be
written as (with Λ = 0)

1

2
R+

1

3
Θ2 − σ2 =

8πG

c2
ρ, (1.60)

where σ2 ≡ 1
2σ

ijσij , andR is the Ricci scalar describing the intrinsic curva-
ture of the surfaces. Here, the density ρ is the projection of the stress-energy
tensor into the spatial surfaces.

Raychaudhuri’s equation governs the evolution of the expansion scalar,
Θ, and is derived from the trace of the evolution equation for the extrinsic
curvature (Raychaudhuri, 1957; Matarrese and Terranova, 1996),

∂0Θ +
1

3
Θ2 + 2σ2 +

4πG

c2
ρ = 0, (1.61)

where ∂0 ≡ ∂/∂x0 = c−1∂t, with t the coordinate time (which in the comov-
ing gauge coincides with the proper time).

The average of a scalar χ, which here is a function of Lagrangian (co-
moving) coordinates and time, over some arbitrary domain D (lying on the
spatial slice) is defined as (Buchert, 2000),

〈χ(t, xi)〉b ≡
1

V b
D

∫
D
χ(t, xi)

√
b d3x, (1.62)

where b is the determinant of the projection tensor bij , the volume element
is dV =

√
b d3x, and the volume of the domain is defined as

V b
D ≡

∫
D

√
b d3x. (1.63)

The dimensionless, effective scale factor is defined from the volume,

abD ≡
(

V b
D(t)

V b
D(tinit)

)1/3

, (1.64)

and describes the expansion rate of the domain, where tinit is the initial
time. We can then write the expansion scalar in terms of the effective scale
factor,

〈Θ〉b =
∂0V

b
D

V b
D

= 3
∂0a

b
D

abD
. (1.65)
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To study the averaged dynamics of the fluid, we want to study the aver-
aged Raychaudhuri equation and Hamiltonian constraint. First taking the
time derivative of (1.62), we get

∂0〈χ〉b = ∂0

(
1

V b
D

)∫
D
χ
√
b d3x+

1

V b
D

∫
D

(√
b ∂0χ+ χ∂0

√
b
)
d3x, (1.66)

= −∂0V
b
D

V b
D
〈χ〉b + 〈∂0χ〉b +

1

V b
D

∫
D
χ∂0

(√
b
)
d3x. (1.67)

Using the evolution equation for the projection tensor bij (see Section 2.1.2),
we can show (see Buchert, 2000),

∂0

√
b = Θ

√
b, (1.68)

so (1.67) becomes

∂0〈χ〉b = −∂0V
b
D

V b
D
〈χ〉b + 〈∂0χ〉b + 〈Θχ〉b. (1.69)

From this, we substitute (1.65) and find the commutation rule to be

∂0〈χ〉b − 〈∂0χ〉b = 〈Θχ〉b − 〈Θ〉b〈χ〉b. (1.70)

Now taking the average of Raychaudhuri’s equation (1.61) by averaging
each individual term, i.e.

〈∂0Θ〉b +
1

3
〈Θ2〉b + 2〈σ2〉b +

4πG

c2
〈ρ〉b = 0, (1.71)

and using the commutation rule (1.70), we have

〈∂0Θ〉b = ∂0〈Θ〉b − 〈Θ2〉b + 〈Θ〉b2. (1.72)

Substituting the above, along with

∂0〈Θ〉b = 3 ∂0

(
∂0a

b
D

abD

)
, (1.73)

= 3
∂2

0a
b
D

abD
− 3

(
∂0a

b
D

abD

)2

, (1.74)

and (1.65), into (1.71) gives

−2

3
〈Θ2〉b +

2

3
〈Θ〉b2 + 3

∂2
0a

b
D

abD
+ 2〈σ2〉b +

4πG

c2
〈ρ〉b = 0, (1.75)

which we rearrange to get the averaged Raychaudhuri equation,

3
∂2

0a
b
D

abD
+

4πG

c2
〈ρ〉b = QD. (1.76)

Here, we have defined the kinematical backreaction term

QD ≡
2

3

(
〈Θ2〉b − 〈Θ〉b2

)
− 2〈σ2〉b, (1.77)
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which exists precisely because the commutation rule (1.70) does not vanish.
We now take the average of the Hamiltonian constraint (1.60) in the same
way,

1

2
〈R〉b +

1

3
〈Θ2〉b − 〈σ2〉b =

8πG

c2
〈ρ〉b, (1.78)

and substituting (1.77) and (1.65) quickly gives the averaged Hamiltonian
constraint,

3

c2

(
∂ta

b
D

abD

)2

− 8πG

c2
〈ρ〉b +

1

2
〈R〉b +

1

2
QD = 0. (1.79)

We define the effective Hubble parameter in the domain D from the
effective scale factor,

HD ≡
∂ta

b
D

abD
, (1.80)

and using this we can rewrite (1.79) to give

Ωm + ΩR + ΩQ = 1, (1.81)

where we have defined the dimensionless cosmological parameters,

Ωm ≡
8πG〈ρ〉b

3H2
D

, ΩR ≡ −
〈R〉bc2

6H2
D
, ΩQ ≡ −

QDc2

6H2
D
, (1.82)

describing, respectively, the matter, curvature, and backreaction content of
an averaged inhomogeneous Universe.

This system is analogous to the FLRW model discussed in Section 1.2,
however the cosmological parameters (1.82) are different to those in the
FLRW model (1.48) since here they are derived in full GR, rather than under
the assumptions of homogeneity and isotropy.

Averaging general foliations

While the synchronous, comoving gauge is a useful representation of ob-
servers following the fluid flow, in practice it presents computational dif-
ficulties (see Section 2.1.4). It is therefore useful to generalise the above
averaging formalism for any slicing condition, i.e. for any form of the lapse
function or shift vector.

Several generalisations of the Buchert (2000) averaging formalism to ar-
bitrary coordinates have been proposed (Brown, Robbers, and Behrend,
2009; Larena et al., 2009; Gasperini, Marozzi, and Veneziano, 2010), with
differences in these formalisms stemming mainly from the definition of the
Hubble expansion, HD. In the previous section, we defined the Hubble
parameter from the expansion scalar Θ, which measures the divergence
of the four velocity of the fluid. In the specific case of the synchronous,
comoving gauge, the four velocity of the fluid coincides with the normal
vector orthogonal to the spatial surfaces, i.e. uµ = nµ. In the case of
a general foliation, this may not be the case, and we will generally have
uµ 6= nµ. In Brown, Robbers, and Behrend (2009) and Gasperini, Marozzi,
and Veneziano (2010), the Hubble parameter is defined as the divergence
of the normal vector, HD ∝ ∇µnµ, representing the expansion of coordinate
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observers. Similarly, the volume element in these works is defined using the
spatial metric hµν ≡ gµν + nµnν , which is used to project four-dimensional
objects onto the spatial slices orthogonal to nµ (in the general case, hµν is
distinct from bµν used in the previous section). Larena et al. (2009) defines
the Hubble parameter from the divergence of the fluid four velocity, hence
analysing a more physically interesting expansion rate, since we, as ob-
servers, will measure the expansion rate of the fluid and not that of our
coordinates. For this reason, here, we follow the generalised averaging for-
malism of Larena et al. (2009).

In general coordinates, the normal vector orthogonal to the spatial sur-
faces is given by nµ = (1/α,−βi/α). The four velocity of the fluid is again
decomposed into its expansion rate, shear, and vorticity, respectively

θ ≡ hµν∇µuν , (1.83)

σµν ≡ hαµhβν∇(αuβ) −
1

3
θhµν , (1.84)

ωµν ≡ hαµhβν∇[αuβ]. (1.85)

We also decompose the normal vector and the Eulerian velocity vi in a sim-
ilar way, giving

Σµν ≡ hαµhβν∇(αnβ) +
1

3
Khµν , (1.86)

βµν ≡ hαµhβν∇(αvβ) −
1

3
κhµν , (1.87)

Mµν ≡ hαµhβν∇[αvβ], (1.88)

where

κ ≡ hαβ∇αvβ, (1.89)

K = −hαβ∇αnβ. (1.90)

Here, K is the trace of the extrinsic curvature of the spatial hypersurfaces
(see Section 2.1.2).

The Hamiltonian constraint can be written in terms of the above vari-
ables,

W 2R− 2σ2 − 2σ2
B +

2

3
(θ + θB)2 − 16πG

c2
W 2ρ = 0, (1.91)

where W is the Lorentz factor describing the motion between normal ob-
servers and observers comoving with the fluid, and we have used the fol-
lowing for convenience

θB ≡ −Wκ−W 3B, (1.92)

σBµν ≡ −Wβµν −W 3

(
B(µν) −

1

3
Bhµν

)
, (1.93)

where we have also defined

σ2 ≡ 1

2
σijσij , (1.94)

σ2
B ≡

1

2
σBijσ

ij
B + σijσ

ij
B . (1.95)
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We have also introduced the tensor

Bµν ≡
1

3
κ (vµnν + vµvν) + βαµv

αnν + βαµv
αvν

+Mαµv
αnν +Mαµv

αvν ,
(1.96)

and B = 1
3κv

µvµ + βµνv
µvν is its trace.

The averaging procedure for the non-comoving formalism is defined in
a similar way, however we define the volume element here instead using
the projection tensor hµν

V h
D ≡

∫
D

√
h d3x, (1.97)

where h ≡ det|hµν |, so that the average of a function χ is

〈χ(t, xi)〉h ≡
1

V h
D

∫
D
χ(t, xi)

√
h d3x. (1.98)

The effective Hubble parameter can then be defined from the expansion
scalar (1.83) (Larena et al., 2009; Umeh, Larena, and Clarkson, 2011),

HhD ≡
c

3
〈αθ〉h, (1.99)

which describes the expansion rate of the fluid as seen by an observer on
the hypersurface defined by hµν (Larena et al., 2009). The effective scale
factor defined in (1.64) describes the expansion of the volume element of
the domain, VD. In the case of a comoving slice, uα = nα, this expansion
corresponds to the expansion of the fluid flow. In this case, we have in
general uα 6= nα and so the effective volume scale factor here is

aVD ≡
(

V h
D(t)

V h
D(tinit)

)1/3

, (1.100)

which describes the expansion of the coordinate observers themselves. We
can also define the effective fluid scale factor from the Hubble expansion,
by setting

HhD =
∂ta

h
D

ahD
. (1.101)

In this general formalism, using the evolution equation for the metric hij
(see Section 2.1.2), we can show1

1√
h
∂0

√
h =

α

W
(θ + θB) +Diβ

i, (1.102)

1We note an error in equation (30) in Larena et al. (2009) — corresponding to our equation
(1.102) — and consequently (31) and (34) — our equations (1.104) and (1.105), respectively.
In the paper, the author has−κ in place of θB in our expressions. See Appendix F for details.
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which is equivalent to (1.68) in the case of a comoving formalism, i.e. α = 1,
W = θB = βi = 0. From (1.102), the rate of change of the volume is then

∂0V
h
D

V h
D

= 3
∂0a

V
D

aVD
, (1.103)

= 〈 α
W

(θ + θB) +Diβ
i〉h, (1.104)

and using this with (1.101), we can show the relation between the two ef-
fective scale factors is

ahD = aVD exp

(
− c

3

∫ t

tinit

〈 α
W

(θ + θB)− αθ +Diβ
i〉hdt

)
, (1.105)

see Appendix C for more details.
Averaging each term in (1.91), we find

〈W 2R〉h − 2〈σ2〉h − 2〈σ2
B〉h +

2

3
〈θ2〉h +

4

3
〈θθB〉h +

2

3
〈θ2
B〉h

− 16πG

c2
〈W 2ρ〉h = 0.

(1.106)

The kinematical backreaction term adapted for this generalised foliation is

QhD ≡
2

3

(
〈θ2〉h − 〈θ〉h2

)
− 2〈σ2〉h, (1.107)

and the additional backreaction term due to the non-zero coordinate veloc-
ity is

LD ≡ 2〈σ2
B〉h −

2

3
〈θ2
B〉h −

4

3
〈θθB〉h. (1.108)

With these definitions in (1.106), we arrive at the averaged Hamiltonian
constraint

Ωm + ΩR + ΩQ + ΩL = 1. (1.109)

Here, the cosmological parameters are

Ωm ≡
8πG〈W 2ρ〉h

3HhD
2 , ΩR ≡ −

〈W 2R〉hc2

6HhD
2 , (1.110)

ΩQ ≡ −
QhDc2

6HhD
2 , ΩL ≡

LDc2

6HhD
2 , (1.111)

which describe the content of an averaged, inhomogeneous universe as cal-
culated by a general, non-comoving observer.

Improved general formalism

The above formalism describes the averaged cosmological dynamics of the
fluid, as seen by normal observers, by projecting properties of the fluid into
the hypersurfaces defined by hµν . However, the volume element (1.97) is
propagated along the normal vector to the hypersurfaces, rather than along
the fluid four-velocity vector. This means that matter is free to flow into and
out of the domain over time — implying mass is not conserved within the
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domain — and the evolution of the averaged quantities within the domain
is therefore dependent on the chosen coordinates and slicing.

Buchert, Mourier, and Roy (2018) propose a new, coordinate-independent
averaging scheme in which the volume element is mass preserving — by
propagating the averaging domain along the fluid flow lines. The aver-
aged quantities in this case are projections from the normal frame into the
fluid-comoving frame, and therefore represent the averaged dynamics of
the fluid as seen by comoving observers, rather than that seen by normal ob-
servers as in Larena et al. (2009) (and see also Brown, Behrend, and Malik,
2009; Gasperini, Marozzi, and Veneziano, 2010).

The proper volume element comoving with the fluid is defined in the
same way as V b

D in (1.63), and the averaging operator appears the same as
(1.62), however the domain D in this case lies in the non-comoving hyper-
surfaces, rather than the comoving hypersurfaces as in Buchert (2000). The
proper volume element is related to the Riemannian volume element V h

D
defined in (1.97), via

V b
D = 〈W 〉bV h

D . (1.112)

The averaged Hamiltonian constraint in this formalism is (for Λ = 0)

3H2
D

c2
− 8πG

c2
〈ρ̃〉b +

1

2
〈R̃b〉b +

1

2
Q̃D = 0 (1.113)

where the effective Hubble parameter is defined in (1.80). The tilde repre-
sents rescaled kinematic fluid variables,

ρ̃ ≡ α2

W 2
ρ, R̃b ≡

α2

W 2
Rb, (1.114)

Θ̃ ≡ α2

W 2
Θ, σ̃2 ≡ α2

W 2
σ2, w̃2 ≡ α2

W 2
w2, (1.115)

where w2 ≡ 1
2w

ijwij is the vorticity scalar, and the rescaled kinematic back-
reaction term in (1.113) is defined as

Q̃D ≡
2

3

(
〈Θ̃2〉b − 〈Θ̃〉b2

)
− 2〈σ̃2〉b + 2〈w̃2〉b. (1.116)

Here,Rb is distinct from the Ricci scalar of the spatial hypersurfaces,R, and
instead represents the fluid rest-frame spatial curvature (Buchert, Mourier,
and Roy, 2018).

Quantifying QD
The basic result that averaged properties of an inhomogeneous fluid do not
satisfy Einstein’s equations has sparked many investigations into the size
of the resultant effect. Some attempts have been able to completely explain
the accelerating expansion with Λ = 0, while others have shown that back-
reaction itself is a small effect, however, still can be relevant for upcoming
precision cosmological surveys. In contrast, some argue that whether or not
QD provides acceleration is irrelevant, and actual connection to observables
in the Universe is more important (Ishibashi and Wald, 2006; Green and
Wald, 2014). Because of these strikingly different results, the amplitude of
QD itself is still heavily debated (see, e.g. Buchert et al., 2015; Green and
Wald, 2015; Green and Wald, 2016).
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Wiltshire’s “timescape” cosmology considers virialised objects to be spa-
tially flat, and the void regions surrounding them to be negatively curved
(see Wiltshire, 2007a; Wiltshire, 2007b; Wiltshire, 2008; Wiltshire, 2009). In
the context of Buchert’s averaging scheme, observers located in the dense
“walls” surrounding virialised objects measure an apparent cosmic expan-
sion when the fraction of the total volume occupied by voids reaches ∼ 0.6.
The difference is largely due to the fact that the clocks of observers located
in dense regions will tick differently to the globally-averaged clock. The
timescape model has also been shown to fit SN1a light-curve data as well
as — or better than — ΛCDM in some cases (Dam, Heinesen, and Wiltshire,
2017; Smale and Wiltshire, 2011).

Backreaction as calculated from purely Newtonian simulations has also
been shown to be significant; in some cases explaining cosmic acceleration.
Roukema (2018) used peculiar velocity gradients from Newtonian N-body
simulations to calculate the backreaction parameter, and hence the differ-
ential expansion due to structure formation (see also Räsänen, 2006a). In
this model, an accelerating global expansion was found when considering
∼ 2.5Mpc/h averaging regions in calculating QD. Using a similar method,
Rácz et al. (2017) calculated the local expansion rate of smoothed regions
from N-body simulations using the Friedmann equations (i.e., not consider-
ing any relativistic quantities such as curvature or backreaction). With this
method, again on a certain coarse-graining scale, the modified simulations
provide an extremely close fit to the SN1a data, while also resolving the
tension between the locally-measured Hubble expansion and that from the
CMB. Both of these approaches have used purely Newtonian simulations to
find a global backreaction. However, the original Buchert and Ehlers (1997)
averaging scheme clearly showed that there can be no global backreaction
effect in Newtonian simulations with periodic boundary conditions, since
QD itself manifests as a pure boundary term in Newtonian dynamics (see
Buchert, 2018; Kaiser, 2017, for direct comments on these works). Backre-
action can still be studied in the context of these Newtonian simulations
on sub-periodicity scales, however in this case the measurement is of cos-
mic variance from peculiar velocities, rather than a pure GR effect (Buchert,
Kerscher, and Sicka, 2000; Buchert and Räsänen, 2012).

Studying backreaction in the context of perturbation theory is poten-
tially problematic since it still requires a background spacetime. Regard-
less, perturbation theory has still provided some constraints on the size of
the backreaction effect in this context. High-order terms in the perturbative
series get progressively smaller for the early Universe, however, at redshifts
z . 1 these high-order terms have been shown to have similar magnitudes
— i.e. the series does not converge — and therefore can contribute to ac-
celerating expansion (Räsänen, 2004; Notari, 2006). Second-order pertur-
bation theory has shown that super-horizon fluctuations generated at infla-
tion could be responsible for the apparent accelerating expansion (Barausse,
Matarrese, and Riotto, 2005; Kolb, Matarrese, and Riotto, 2006). However,
these works have been criticised since the higher-order terms neglected in
the perturbation series can be shown to cancel these second-order effects
(Hirata and Seljak, 2005).

Second-order analysis of the scale dependence of backreaction shows
that averaged curvature effects can reach ∼ 10% at 80 Mpc scales — just
below the homogeneity scale of the Universe — and fall to order 1% at
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∼ 200 Mpc scales, with QD becoming important inside ∼ 30 Mpc scales (Li
and Schwarz, 2007; Li and Schwarz, 2008). The weak-field approximation
improves on perturbation theory (as discussed in Section 1.4.3), in which
only the metric perturbations are assumed small. In the weak-field limit,
backreaction is small (Adamek et al., 2015; Adamek et al., 2019). How-
ever, relativistic effects in the Hubble diagram (Adamek et al., 2018) and
in redshift-space distortions on Gpc scales (Adamek, 2018) have been sug-
gested to be important.

Backreaction itself is an attractive explanation to the accelerating expan-
sion without introducing any new, exotic physics, but simply by consider-
ing Einstein’s GR in full. However, any suggestions that propose the stan-
dard cosmological model — which has been accepted as correct for decades
— as incorrect or flawed will be subject to a necessary amount of scrutiny.

1.5.3 Exact inhomogeneous cosmology

Exact solutions to Einstein’s equations have proven to be extremely use-
ful in analysing the behaviour and evolution of simple objects in astro-
physics, for example, black holes using the Schwarzschild (1916) and Kerr
(1963) solutions. For inhomogeneous cosmology, there are not many ex-
act solutions to choose from (see, e.g. Bolejko et al., 2009; Bolejko, Célérier,
and Krasiński, 2011, for reviews). Commonly adopted are the Lemaître-
Tolman-Bondi (LTB) model (Lemaître, 1933; Tolman, 1934; Bondi, 1947), a
spherically-symmetric dust solution, the Szekeres model (Szekeres, 1975), a
general non-symmetric dust solution, and “Swiss Cheese” models (e.g. Ein-
stein and Straus, 1945), which are often groups of LTB or Szekeres solutions
on a homogeneous background (Kai et al., 2007).

The LTB model has been used to suggest that a nearby, large-scale inho-
mogeneity is causing an apparent accelerating expansion. Measurements
by an observer located at the centre of such an inhomogeneity align with
the SN1a data without the need for dark energy (Célérier, 2000), while still
describing the position of the first peak in the angular power spectrum of
the CMB anisotropy (Alnes, Amarzguioui, and Grøn, 2006) and observed
BAO data (Garcia-Bellido and Haugbølle, 2008). Even though under-dense
regions of the correct radius have been detected (Frith et al., 2003), the mea-
sured density does not match the minimum requirement for accelerating
expansion (Alexander et al., 2009).

The LTB solution has proven useful as a toy model for inhomogeneous
cosmology, however, its inherent symmetries call for the use of more gen-
eral models to validate the results. Szekeres models are inhomogeneous,
exact solutions to Einstein’s equations for a dust fluid containing no grav-
itational radiation; a type of “silent” Universe (see Bruni, Matarrese, and
Pantano, 1995; Bolejko, 2018b). Ishak et al. (2008) used a Szekeres model
with zero curvature at large distances from the observer and negative cur-
vature nearby, alongside Λ = 0, to fit the SN1a data competitively with
ΛCDM, while still satisfying the requirement of spatial flatness at CMB
scales. Improving further on these models are “Swiss Cheese” models,
considering multiple LTB (e.g. Biswas and Notari, 2008) or Szekeres (e.g.
Bolejko, Célérier, and Krasiński, 2011) holes in a homogeneous background
cheese. In some cases these inhomogeneities have been shown to produce a
percent-level effect on our observations (Bolejko and Ferreira, 2012; Fleury,
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Dupuy, and Uzan, 2013). Apparent accelerating expansion only arises if ob-
servers are located in a large ∼ 500 Mpc void (Marra et al., 2007; Alexander
et al., 2009; Bolejko, Célérier, and Krasiński, 2011), which has been ruled
out with CMB constraints in the case of Swiss cheese models (Valkenburg,
2009). Moss, Zibin, and Scott (2011) found inconsistencies between LTB
void models and observational data, finding the approximate models have
very low expansion rates, Universe ages inconsistent with observations,
and much smaller local matter fluctuations than measured.

Another family of exact inhomogeneous cosmological models commonly
used to address backreaction are black-hole lattices (Lindquist and Wheeler,
1957). These models involve regular grids of Schwarzschild masses in an
otherwise vacuum spacetime (see Bentivegna et al., 2018, for a review).
Cosmological averaging in these spacetimes exhibits large backreaction ef-
fects for small numbers of masses, however the global expansion approaches
FLRW for large numbers of masses (e.g. Clifton, Rosquist, and Tavakol,
2012; Bentivegna and Korzyński, 2013). Regardless of their inherent large-
scale homogeneity and global FLRW expansion, some optical properties
measured in these spacetimes — such as the luminosity distance — do not
match the prediction from the FLRW model (Bentivegna et al., 2017). While
black-hole lattices are useful toy models to study exact inhomogeneous cos-
mology in the presence of strong-field objects, the mass distribution is ex-
tremely simplified and the solutions themselves are static; missing the dy-
namic aspect of inhomogeneous cosmology.

1.5.4 Numerical, General-Relativistic cosmology

Significant progress has been made towards quantifying the backreaction
effect in inhomogeneous cosmologies. In some cases described above, the
effect has been significant enough to explain the accelerating expansion,
and in other cases the effect is either percent level or completely negligi-
ble. All the methods described above have their own respective drawbacks,
be it due to simplifying assumptions or symmetries. In order to be able to
fully quantify the effect of backreaction in our own Universe, we must solve
Einstein’s equations in full for the complex, nonlinear matter distribution
we observe. Advances in numerical relativity and computational resources
over the past two decades (see Section 2.1) now allow for the stable simula-
tion of relativistic objects such as black holes and neutron stars. Application
of numerical relativity to large-scale, inhomogeneous cosmological simu-
lations has emerged over the past few years (Giblin, Mertens, and Stark-
man, 2016a; Bentivegna and Bruni, 2016; Macpherson, Lasky, and Price,
2017), and the field is rapidly advancing with new codes (Bentivegna, 2016;
Mertens, Giblin, and Starkman, 2016; Daverio, Dirian, and Mitsou, 2017;
East, Wojtak, and Abel, 2018), measurements of observables from fully rel-
ativistic simulations (Giblin, Mertens, and Starkman, 2016b; Giblin et al.,
2017), and the application of particle-based methods alongside numerical
relativity (as opposed to purely mesh-based codes; see Giblin et al., 2018;
Daverio, Dirian, and Mitsou, 2019; Barrera-Hinojosa and Li, 2019). As of
yet, no significant backreaction effect has been measured in full numeri-
cal relativity (Bentivegna and Bruni, 2016; Macpherson, Price, and Lasky,
2019), however, a lack of virialisation and periodic boundary conditions
may potentially explain these results (see Chapter 4).
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These recent advancements in cosmology with numerical relativity will
not only allow a full and final quantification of the backreaction effect, but
will in general significantly improve the accuracy of large-scale cosmolog-
ical simulations. This will allow us to assess and quantify all General-
Relativistic effects on our observations, test Einstein’s GR on cosmological
scales, and improve our understanding of the Universe.
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Chapter 2

Methods

In this Chapter, we outline the methods used for the simulations and anal-
ysis presented in this thesis. We introduce a brief history of numerical rel-
ativity, the formalism and system of equations, and how these are imple-
mented in CACTUS and the EINSTEIN TOOLKIT (ET); the numerical relativ-
ity code used in this thesis. We derive the system of equations used to de-
velop the initial conditions for our simulations, and the methods employed
in MESCALINE to perform post-simulation analysis.

2.1 Numerical Relativity

Solving Einstein’s equations numerically allows the study of dynamics of
strong-field gravitating objects, which are otherwise inaccessible with ana-
lytic methods. Binary black holes and neutron stars — or black hole, neu-
tron star pairs — and the resulting gravitational-wave emission and prop-
agation, tidal disruption of a star by a black hole, accretion disks around
spinning black holes, supernova explosions, and cosmological structure
formation are all examples of the highly nonlinear, relativistic phenomena
which can now be studied in detail due to the advancement of this field.

The pioneers of numerical relativity knew the importance of using nu-
merical techniques to study problems that were difficult to solve analyti-
cally. Hahn and Lindquist (1964) numerically evolved the merger of two
ends of a wormhole to study the two-body problem, Eppley (1977) created
initial data for evolving source-free gravitational radiation, and Smarr and
York (1978a) studied coordinate choices in the numerical evolution of Ein-
stein’s equations, relating these choices to different families of observers.

In the decades following development of the ADM formalism (Arnowitt,
Deser, and Misner, 1959, see the next section), the advancement of numerical-
relativity simulations was hindered both by the lack of computational power
and stability issues with the form of the evolution equations themselves.
Early works focused on the study of pure gravitational waves and stellar
collapse (Nakamura, Oohara, and Kojima, 1987), and inhomogeneous in-
flationary cosmology (Laguna, Kurki-Suonio, and Matzner, 1991).

The main obstacle standing in the way of long-term simulations of com-
pact objects was an efficient method for dealing with singularities. Many
singularity-avoiding coordinates were proposed, for example “maximal slic-
ing” (Smarr and York, 1978b, and see Section 2.1.4), in which time is stopped
in the vicinity of the singularity, but continues moving forward in other re-
gions. While this avoids issues in evolving the singularity itself, it induces
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strong gradients in the metric which generally cause the code to fail. In
some cases, these slices have been found to be successful in spherical sym-
metry (e.g. Bona et al., 1995) and for evolving brief periods of black-hole
mergers (Anninos et al., 1995; Bruegmann, 1999). Alternatively, bound-
ary conditions on the event-horizon edge can completely excise the singu-
larity from the simulation, while still evolving all observable regions (e.g.
Bardeen and Piran, 1983; Thornburg, 1987). This improved the situation,
although still only short-lived simulations were possible (e.g. Seidel and
Suen, 1992; Brandt et al., 2000; Alcubierre and Bruegmann, 2001; Thorn-
burg, 2004).

Simulations of the head-on collision of non-rotating black holes, includ-
ing the extraction of gravitational waves, were limited to axially-symmetric,
two-dimensional models (Smarr, 1977; Seidel and Suen, 1992; Anninos et
al., 1993; Bernstein et al., 1994). As computing power and memory con-
tinued to increase, parallelisation of codes became possible. Anninos et
al. (1995) used excision to perform the first fully three-dimensional simu-
lation in Cartesian coordinates of a single black hole, evolved for several
light-crossing times. The “puncture” method — i.e., placing the singular-
ity away from the points on the computational grid where the variables are
evaluated (Brandt and Bruegmann, 1997) — allowed for longer evolutions
of both distorted and colliding black holes without the need for excision
(Alcubierre et al., 2003).

Even with the improvement of stability via the BSSN formalism (Baum-
garte and Shapiro, 1999; Shibata and Nakamura, 1995), at this time, all bi-
nary black-hole and neutron-star (e.g. Oohara and Nakamura, 1999; Miller,
Suen, and Tobias, 2001) simulations adopted some kind of symmetry, usu-
ally to reduce the computational memory required. The first fully three-
dimensional, non-axisymmetric binary black-hole simulations — including
the merger and ring-down stages and the emission of gravitational waves
— were performed by Pretorius (2005a), Campanelli et al. (2006), and Baker
et al. (2006). Since this ground-breaking work, the field of numerical rela-
tivity has exploded.

These early works paved the way for more recent advancement in nu-
merical relativity, touching many aspects of relativistic astrophysics such as
black holes (e.g. Baker et al., 2006; Campanelli et al., 2006; Buonanno, Cook,
and Pretorius, 2007; González et al., 2007; Hinder, Kidder, and Pfeiffer, 2018;
Huerta et al., 2019), neutron stars (e.g. Baiotti, Giacomazzo, and Rezzolla,
2008; Paschalidis et al., 2011; Kastaun and Galeazzi, 2015; Chaurasia et al.,
2018), stellar collapse and supernovae explosions (e.g. Duez, Shapiro, and
Yo, 2004; Montero, Janka, and Müller, 2012), and more recently, for cos-
mology (e.g. Giblin, Mertens, and Starkman, 2016a; Bentivegna and Bruni,
2016; Macpherson, Lasky, and Price, 2017; East, Wojtak, and Abel, 2018;
Daverio, Dirian, and Mitsou, 2019; Barrera-Hinojosa and Li, 2019).

2.1.1 3+1 Foliation

In the 3+1 foliation of spacetime, Einstein’s four-dimensional equations
may be written in terms of purely spatial objects constructed from the three-
dimensional metric tensor of the embedded spatial hypersurfaces (surfaces),
which are then evolved forward in time. Foliations of this type began with
the ADM formalism (Arnowitt, Deser, and Misner, 1959).
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Evolutions using this formalism begin with the construction of an initial
Cauchy hypersurface — i.e. specifying the metric tensor gµν and its first
time derivative ∂tgµν at every point on the initial space-like surface. To then
evolve these surfaces forwards in time we thus need to specify the second
time derivatives ∂2

t gµν , which, due to the symmetry of the metric tensor gµν ,
implies we need ten equations in total to evolve the system. These second
time derivatives will be present in some components of the Ricci tensor Rµν
in the field equations (and hence the Einstein tensor Gµν), and so we need
to identify which components are relevant for time evolution.

The contracted Bianchi identities give

∇νGµν = ∂νG
µν +(4) ΓµναG

να +(4) ΓνναG
αµ = 0, (2.1)

⇒ ∂0G
µt = −∂iGµi −(4) ΓµναG

να −(4) ΓνναG
αµ, (2.2)

where the right hand side contains only second time derivatives (in the
Ricci tensor Rµν). This implies that Gµt cannot contain any second time
derivatives itself, and the four components of Einstein’s equations

Gµt =
8πG

c4
Tµt, (2.3)

therefore cannot contribute to the evolution of the metric tensor, and in-
stead act as constraint equations that must be satisfied on every surface
during the evolution. We now have only the remaining six components of
Einstein’s equations

Gij =
8πG

c4
T ij . (2.4)

Since we require ten equations in total to evolve the system, this leaves us
with four extra degrees of freedom for the evolution. The lapse function
α describes how much proper time elapses between surfaces, and the shift
vector βi describes how the spatial coordinates xi transform from one sur-
face at time t to the next at time t + dt. The remaining four degrees of
freedom for the evolution are in the second time derivatives ∂2

t α and ∂2
t β

i.
The initial data we must specify in gµν and ∂tgµν comprises in total

twenty independent choices. Using the constraint equations (2.3) these
choices are reduced to sixteen. Due to the coordinate invariance of GR,
any metric which satisfies Einstein’s equations in some coordinate system
xµ must also satisfy Einstein’s equations in some other coordinate system
xµ

′
. This means our choice of the coordinates xµ constrain the physical form

of the metric gµν , and therefore eliminate four degrees of freedom from our
choice of initial data. The evolution of our chosen coordinates is defined
via the lapse, α, and the shift, βi, including their first time derivatives ∂tα
and ∂tβ

i. Since α and βi form part of the metric tensor itself (see (2.12)
below), these eight gauge choices imply that overall, twelve of our total
twenty degrees of freedom in the initial conditions are purely coordinate-
based choices. Considering also the four constraint equations, we therefore
are left with only two physical degrees of freedom in the metric, and two in
its first time derivative.

We want to represent the four-dimensional Einstein equations in terms
of purely spatial objects that exist on the chosen surfaces. This is done by
defining projection operators using the spatial metric (1.16) induced on the
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surfaces and the normal vector (1.15). Raising one index of the spatial met-
ric, γµν , is useful for projecting four-dimensional tensors into the spatial
surfaces, while the normal projector −nµnν extracts the time-like part of a
tensor. Every free index of the tensor being projected must be contracted
with one of these projection operators. This projection is also used to define
the covariant derivative with respect to the spatial metric, by projecting the
four-dimensional covariant derivative into the surfaces, e.g. for a scalar χ,

Dµχ ≡ γ ν
µ ∇νχ, (2.5)

for a vector (one-form) F ν ,

DµF
ν ≡ γ ν

β γ α
µ ∇αF β, (2.6)

and for a tensor P νβ ,

DµP
ν
β ≡ γ ε

β γ
ν
δ γ

α
µ ∇αP δε, (2.7)

see Baumgarte and Shapiro (2010).
The Riemann curvature tensor associated with the spatial metric, i.e. the

curvature of the spatial surfaces, is

Rkilj = ∂lΓ
k
ij − ∂jΓkil + ΓkmlΓ

m
ij − ΓkmjΓ

m
il , (2.8)

where the spatial connection functions are

Γkij =
1

2
γkm (∂iγjm + ∂jγmi − ∂mγij) . (2.9)

Both (2.8) and (2.9) can therefore be constructed entirely from the spatial
metric and its spatial derivatives. The spatial Ricci curvature tensor and its
trace areRij ≡ Rkikj andR ≡ Rii, respectively.

The connection functions (2.9) differ from the spatial components of the
four-dimensional connection functions (1.3), denoted by (4)Γkij . The con-
travariant four-dimensional metric in the 3+1 foliation is (Baumgarte and
Shapiro, 2010)

gµν = γµν − nµnν (2.10)

=

[
−α−2 α−2βi

α−2βj γij − α−2βiβj

]
, (2.11)

and the covariant metric is

gµν =

[
−α2 + βkβ

k βi
βj γij

]
, (2.12)

from which we can see that gij = γij , however, in general gij 6= γij . This
implies the spatial components of (1.3) will not be equivalent to the spatial
connection functions (2.9), except in the case of βi = 0.

The curvature (2.8) does not contain all of the information about the
four-dimensional spacetime curvature, since its four-dimensional relative
(1.2) contains time derivatives, and Rkilj can be constructed purely from
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spatial derivatives of the spatial metric. It therefore describes only the cur-
vature of the embedded surfaces themselves, and contains no information
about how these surfaces are embedded in the four-dimensional manifold.
This information is encoded in the extrinsic curvature,Kij , which measures
the gradient of the normal vectors of the embedded surfaces, and hence de-
scribes how these surfaces are placed in the four-dimensional manifold. It
is defined as the gradient of the normal vector projected onto the surfaces,

Kµν ≡ −γ α
µ γ β

ν ∇αnβ, (2.13)

and in the 3+1 decomposition can also be related to the time derivative of
the spatial metric (see Section 2.1.2). The extrinsic curvature measures local
deviations in the direction of the normal vector, and thus describes how the
surfaces are deformed on each spatial slice.

2.1.2 ADM Formalism

The line element, in Cartesian coordinates, in the 3+1 decomposition is

ds2 = −α2c2dt2 + γij
(
dxi + βicdt

) (
dxj + βjcdt

)
. (2.14)

In the ADM formalism, Einstein’s equations are decomposed into four con-
straint equations and a set of evolution equations for the spatial metric and
the extrinsic curvature.

Constraint equations

The constraint equations are derived by relating the four-dimensional Rie-
mann tensor Rαµβν to its three-dimensional counterpart Rkilj , which lives
on the surfaces. This is done via the full spatial projection of the four-
dimensional Riemann tensor, i.e. γµaγνbγ

α
cγ
β
dRµναβ . Contracting the re-

sulting relation and eliminating the four-dimensional Riemann tensor us-
ing Einstein’s equations (1.1) results in the Hamiltonian constraint,

R+K2 −KijK
ij − 16πG

c2
ρ = 0, (2.15)

where the mass-energy density measured by an observer moving along the
normal to the surfaces is defined as

ρ c2 ≡ Tµνnµnν . (2.16)

Taking a spatial projection of the four-dimensional Riemann tensor with
one index projected in the normal (time) direction, i.e. γµaγνbγ

α
cn
βRµναβ ,

which is related to spatial derivatives of the extrinsic curvature, and con-
tracting the result gives the momentum constraint

DjK
j
i −DiK −

8πG

c3
Si = 0, (2.17)

whereK = γijKij is the trace of the extrinsic curvature, and the momentum
density is defined as

Si ≡ −γiµnνTµν . (2.18)
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For the full derivation of the constraint and evolution equations, see Baum-
garte and Shapiro (2010).

If the constraint equations are satisfied on this initial surface, and the
relevant evolution equations are also satisfied, then the constraint equations
will be satisfied exactly on any future surface. Numerical evolution of the
initial surface forwards in time will result in nonzero constraint violation
due to truncation errors. We discuss this further in Section 2.2.

Evolution equations

The evolution equation for the spatial metric is derived from the definition
of the extrinsic curvature (2.13), giving

d

dt
γij = −2αKij , (2.19)

where the time derivative is defined as

d

dt
≡ ∂

∂x0
− Lβ, (2.20)

and Lβ is the Lie derivative associated with the shift vector βi. The Lie
derivative describes the change in a tensor, vector, or scalar along a vector
congruence — in this case the shift vector βi — and is defined independent
of the metric on the surface. For example, the Lie derivative of a covariant
tensor Xij along βi is

LβXij ≡ βk∂kXij +Xik∂jβ
k +Xkj∂iβ

k, (2.21)

and for a contravariant tensor is

LβXij ≡ βk∂kXij −Xik∂kβ
j −Xkj∂kβ

i. (2.22)

So long as the connection functions associated with the spatial metric are
symmetric in their lower indices, i.e. Γijk = Γi(jk), then we can interchange
the partial derivatives in the Lie derivative with covariant derivatives to
obtain a coordinate-free expression (see Baumgarte and Shapiro, 2010).

A tensor is defined by its transformation law, however, if instead an ob-
ject transforms slightly differently, specifically by picking up a power of the
Jacobian during the coordinate transform, it is instead a tensor density, with
“weight” W equal to the power of the Jacobian in its coordinate transfor-
mation (see Baumgarte and Shapiro, 2010). In the above, ifXij were instead
a tensor density, we would have an extra termWXij∂kβ

k added to the re-
spective Lie derivative (this will be used in the next section).

We can write the evolution equation for the contravariant spatial metric
(which will be of use later), starting with the spatial metric

γijγ
ij = δii = 3, (2.23)

⇒ d

dt

(
γijγ

ij
)

= 0, (2.24)

γij
d

dt
γij = −γij

d

dt
γij , (2.25)
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from this we can substitute (2.19) into the left-hand side, and deduce that

d

dt
γij = 2αKij . (2.26)

The evolution equation for the extrinsic curvature is derived from a pro-
jection of the four-dimensional Riemann tensor, with two indices projected
along the normal direction, i.e. nµnαγβaγ

ν
bRµναβ , giving

d

dt
Kij = α

[
Rij − 2KikK

k
j +KKij

]
−DiDjα

− 8πG

c4
α

[
Sij −

1

2
γij(S − ρ c2)

]
,

(2.27)

where we have defined the spatial stress and its trace to be, respectively,

Sij ≡ γiµγjνTµν , S ≡ γijSij . (2.28)

For a system of equations to be “well posed”, when treated as a Cauchy
problem, the solution to such a system must be bounded by an exponential
function that is independent of the initial data. The solution must not be
able to grow unbounded. In terms of hyperbolic partial differential equa-
tions, such as Einstein’s equations, the system would be said to be weakly
hyperbolic if it were not well posed (see Alcubierre, 2008, for more detail).

Einstein’s equations in the ADM formalism are only weakly hyperbolic,
and are therefore not expected to remain well behaved for long time evolu-
tions (see Kidder, Scheel, and Teukolsky, 2001). The hyperbolicity is spoiled
by the presence of mixed second derivatives in the spatial Ricci tensor in
the right-hand side of the evolution equation (2.27). Without these terms,
the evolution equations could be written as a set of wave equations. To
strengthen the hyperbolicity of the system these mixed derivative terms
can be removed, as is done in the BSSN formalism (Baumgarte and Shapiro,
1999; Shibata and Nakamura, 1995). There are other methods of stabilising
the evolution of the ADM system, including abandoning the 3+1 foliation
altogether (see Baumgarte and Shapiro, 2010, and Sections 2.1.4 and 2.1.5
for more details of some of these alternatives).

2.1.3 The BSSN Formalism

The BSSN formalism (Shibata and Nakamura, 1995; Baumgarte and Shapiro,
1999) re-casts the ADM equations into a form that is strongly hyperbolic,
and hence allows for arbitrarily long, stable evolutions of Einstein’s equa-
tions.

Conformal decomposition

First, we define the conformal metric γ̄ij , defined by decomposing the spatial
metric into two parts using a conformal factor

γij = e4φγ̄ij , or, γij = e−4φγ̄ij . (2.29)

In general, conformal decompositions of the metric involve an arbitrary fac-
tor ψ. The BSSN formalism corresponds to setting ψ = e4φ, which turns out
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to be a convenient choice when deriving the evolution equations. Quanti-
ties written with an over bar are associated with the conformal metric γ̄ij ,
and those associated with the spatial metric γij are written without an over
bar. Indices of conformal quantities are raised and lowered with the confor-
mal metric. In Cartesian coordinates, we choose e4φ = det(γij)

1/3 ≡ γ1/3,
so that γ̄ = 1. This convenient choice makes the conformal factor φ a tensor
density of weightW = 1/6, implying the covariant conformal metric γ̄ij is
a tensor density of weightW = −2/3.

The traceless part of the extrinsic curvature is defined as

Aij ≡ Kij −
1

3
γijK, (2.30)

and the conformal traceless part of the extrinsic curvature is

Aij = e4φĀij , Aij = e−4φĀij . (2.31)

Substituting the conformal metric (2.29) into the definition of the spatial
connection functions (2.9) gives their conformal transformation

Γijk = Γ̄ijk + 2
(
δij∂kφ+ δik∂jφ− γ̄jkγ̄il∂lφ

)
, (2.32)

which we substitute into the contraction of (2.8) to get the conformal trans-
formation of the spatial Ricci tensor

R̄ij = Rij + 2
(
D̄iD̄jφ+ γ̄ij γ̄

lmD̄lD̄mφ
)

− 4
[
D̄i(φ)D̄j(φ)− γ̄ij γ̄lmD̄l(φ)D̄m(φ)

]
,

(2.33)

or
R̄ij = Rij − R̄φij , (2.34)

where R̄φij is the part of (2.33) that only depends on the conformal factor φ.
From (2.33) we can write the conformal transformation of the Ricci scalar to
be

R̄ ≡ γ̄ijR̄ij = e4φR+ 8e−φD̄2eφ, (2.35)

where we have used

D̄2eφ = eφ
[
γ̄ijD̄iD̄jφ+ γ̄ijD̄i(φ)D̄j(φ)

]
, (2.36)

and D̄2 ≡ γ̄ijD̄iD̄j is the conformal, spatial, covariant Laplacian.

Constraint equations

In the following section, we will slightly alter the form of the ADM evolu-
tion equations to strengthen the hyperbolicity of the system. We do not
need to do this for the constraint equations since they are not evolved.
However, see Section 2.1.5 for some formalisms that do evolve the con-
straint equations to restrict the violations in numerical-relativity simula-
tions. Here, we write the constraint equations in terms of the conformal
variables. For the Hamiltonian constraint (2.15) we first use (2.30), which
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gives

KijK
ij = AijA

ij +
1

3
K2 = ĀijĀ

ij +
1

3
K2, (2.37)

and using the conformal decomposition of the spatial Ricci scalar (2.35), we
can write (2.15) as

eφ

8
R̄ − D̄2eφ − e5φ

8
ĀijĀ

ij +
e5φ

12
K2 − 2πG

c2
e5φρ = 0. (2.38)

The first term in the momentum constraint (2.17), using (2.30), is

DjK
j
i = DjĀ

j
i +

1

3
D̄iK, (2.39)

since Aji = Āji, DiK = D̄iK, and K̄ = K. We now need to relate the
covariant derivative Di in the above to its conformal counterpart D̄i, which
we do using the relation between the conformal and non-conformal spatial
connection functions. First we expand the spatial covariant derivative

DjĀ
j
i = ∂jĀ

j
i + ΓjkjĀ

k
i − ΓkjiĀ

j
k, (2.40)

and now using (2.32) for the two right-most terms above, we find

DjĀ
j
i = D̄jĀ

j
i + 6ĀjiD̄jφ. (2.41)

Substituting this expression into (2.39), and then the result into (2.17) gives
the conformal momentum constraint

e−6φD̄k

(
e6φĀki

)
− 2

3
D̄iK −

8πG

c3
Si = 0. (2.42)

Evolution equations

Introducing the conformal factor φ in the BSSN formalism means we now
require an additional equation. We derive this by first substituting the con-
formal metric (2.29) into (2.19), giving

d

dt
γ̄ij + 4γ̄ij

d

dt
φ = −2αK̄ij , (2.43)

taking the trace gives

γ̄ij
d

dt
γ̄ij + 12

d

dt
φ = −2αK. (2.44)

We now use the identity (see Carroll, 1997)

d

dt
lnγ1/2 =

1

2
γij

d

dt
γij , (2.45)

which for the conformal metric is,

d

dt
lnγ̄1/2 =

1

2
γ̄ij

d

dt
γ̄ij = 0, (2.46)
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since γ̄ = 1 in Cartesian coordinates, and so (2.44) becomes

d

dt
φ = −1

6
αK. (2.47)

The evolution equation for the trace of the extrinsic curvature is found by
first taking the trace of (2.27), which results in

γij
d

dt
Kij = α

(
R− 2KijK

ij +K2
)
−D2α+

4πG

c4
α
(
S − 3ρc2

)
, (2.48)

where D2 ≡ γijDiDj is the covariant Laplacian associated with the spatial
metric. We then eliminateR using the Hamiltonian constraint (2.15), giving

γij
d

dt
Kij = −αKijK

ij −D2α+
4πG

c4
α
(
S + ρc2

)
. (2.49)

We can then expand the derivative of the trace of the extrinsic curvature to
give

d

dt
K =

d

dt
(γijKij), (2.50)

= γij
d

dt
Kij + 2αKijK

ij , (2.51)

where we have used (2.19). Substituting this into (2.49), and using (2.30),
we find

d

dt
K = α

(
ĀijĀ

ij +
1

3
K2

)
−D2α+

4πG

c4
α
(
S + ρ c2

)
. (2.52)

We can find the traceless part of the evolution equations by subtracting
(2.47) and (2.52) from the ADM evolution equations (2.19) and (2.27). These
are

d

dt
γ̄ij = −2αĀij , (2.53)

and

d

dt
Āij = e−4φ

[
−(DiDjα)TF + α

(
RTF
ij −

8πG

c4
STF
ij

)]
+ α

(
KĀij − 2ĀikĀ

k
j

)
,

(2.54)

where the superscript TF represents the trace-free part of a tensor. That is,
we define,

STF
ij ≡ Sij −

1

3
γijS, (2.55)

RTF
ij ≡ Rij −

1

3
γijR, (2.56)

(DiDjα)TF ≡ DiDjα−
1

3
γijD

2α. (2.57)

We can use the conformal decomposition of the Ricci tensor, (2.34), and the
Ricci scalar, (2.35), to relate the trace-free Ricci tensor (2.56) to its conformal
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counterpart,

R̄TFij ≡ R̄ij −
1

3
γ̄ijR̄. (2.58)

We find
RTFij = R̄TFij + R̄φij +

8

3
γ̄ije

−φD̄2eφ, (2.59)

where R̄φij is defined from (2.33).
Computing the Ricci tensor Rij in (2.54) would again introduce similar

mixed derivative terms which spoil the hyperbolicity of the ADM equa-
tions. To avoid this, we introduce the contracted conformal connection
functions

Γ̄i ≡ γ̄jkΓ̄ijk, (2.60)

where the Γ̄ijk are the connection functions associated with the conformal
metric. The conformal Ricci tensor in terms of these conformal connection
functions is then

R̄ij = −1

2
γ̄lm∂m∂lγ̄ij + γ̄k(i∂j)Γ̄

k + Γ̄kΓ̄(ij)k + γ̄lm
(

2Γ̄kl(iΓ̄j)km + Γ̄kimΓ̄klj

)
,

(2.61)
where Γijk ≡ γimΓmjk for both conformal and non-conformal connection
functions, and round brackets around indices denote the symmetric parts
of a tensor, defined in (1.58).

There are several ways to ensure the mixed derivatives in Rij are elim-
inated in the evolution equations. One of these is to make (2.60) a gauge
choice, and choose Γ̄i = 0 so that the mixed derivative terms vanish com-
pletely; the “Gamma-driver” condition (see Section 2.1.4). However, this
reduces the gauge freedom of the system, and may lead to undesirable co-
ordinates that could form coordinate singularities. Another method — used
in the BSSN formalism — is to evolve (2.60) as a new variable; which both
eliminates the mixed derivative terms and retains the gauge freedom of the
system via the lapse and the shift vector.

In Cartesian coordinates, where we have chosen γ̄ = 1, we can write
(2.60) as

Γ̄i = −∂j γ̄ij , (2.62)

using the identity (2.46). Taking the time derivative of the above gives

∂0Γ̄i = −∂j∂0γ̄
ij . (2.63)

Expanding the Lie derivative in (2.53) gives

2αĀij = ∂0γ̄
ij − Lβ γ̄ij , (2.64)

⇒ ∂0γ̄
ij = 2αĀij + βk∂kγ̄

ij − 2γ̄k(i∂kβ
j) +

2

3
γ̄ij∂kβ

k, (2.65)

and then substituting this expression into (2.63) we find

∂0Γ̄i = −2Āij∂jα− 2α∂jĀ
ij + βk∂kΓ̄

i − Γ̄k∂kβ
i

+
1

3
γ̄ij∂j∂kβ

k + γ̄kj∂k∂jβ
i +

2

3
Γ̄i∂kβ

k,
(2.66)

where we have used the definition (2.60) to simplify the expression. We
can eliminate the derivative term ∂jĀ

ij in the above with the momentum
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constraint (2.17), which along with (2.30) gives

∂jA
ij =

8πG

c3
Si +

2

3
γij∂jK − ΓijkA

kj − ΓjjkA
ik. (2.67)

We now substitute the conformal trace-free extrinsic curvature Āij and con-
formal metric γ̄ij into the above expression, and after some simplification
we find

∂jĀ
ij =

8πG

c3
γ̄ijSj + 4Āij∂jφ−

(
ΓijkĀ

kj + ΓjjkĀ
ik
)

+
2

3
γ̄ij∂jK. (2.68)

The only non-conformal objects remaining in this expression are the con-
nection functions, which we can relate to their conformal counterparts us-
ing (2.32), so that the connection function terms in (2.68) become

ΓijkĀ
kj + ΓjjkĀ

ik = Γ̄ijkĀ
kj + 10Āij∂jφ+ Γ̄jjkĀ

ik, (2.69)

and using (2.45) we can show that Γ̄jjk = 0. Substituting this expression
back into (2.68) gives

∂jĀ
ij =

8πG

c3
γ̄ijSj − 6Āij∂jφ− Γ̄ijkĀ

kj +
2

3
γ̄ij∂jK. (2.70)

Finally, to arrive at the evolution equation for the contracted connection
coefficients we substitute the above expression for ∂jĀij into (2.66), which
gives

d

dt
Γ̄i = −2Āij∂jα+ 2α

(
Γ̄ijkĀ

kj − 2

3
γ̄ij∂jK −

8πG

c3
γ̄ijSj + 6Āij∂jφ

)
+

2

3
Γ̄i∂jβ

j +
1

3
γ̄li∂l∂jβ

j + γ̄lj∂j∂lβ
i.

(2.71)
This equation, together with equations (2.47), (2.52), (2.53), and (2.54), form
the full BSSN system of evolution equations, summarised in Table 2.1. Evolv-
ing the contracted connection functions as independent functions means
that the definition (2.60) acts as a new constraint equation together with the
Hamiltonian (2.38) and momentum constraints (2.42).

The matter source terms ρ, Si, and Sij appearing in both the ADM and
BSSN formalisms above are projections of the stress-energy tensor into the
spatial surfaces. These quantities are distinct from those measured in the rest
frame of the fluid. From (2.16) we can relate ρ to the mass-energy density
measured in the fluid rest frame, ρR,

ρc2 ≡ Tµνnµnν , (2.72)
= ρ0huµn

µuνn
ν + Pgµνn

µnν , (2.73)

= ρRc
2W 2 + P

(
W 2 − 1

)
, (2.74)

where we have used nµn
µ = −1 and the definition of the Lorentz factor

(1.17).
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2.1.4 Coordinate choices

As mentioned in Section 2.1.1, there exist four degrees of freedom along-
side the evolution and constraint equations derived in Section 2.1.2 and
2.1.3. These freedoms are encompassed in choosing the lapse function and
the shift vector. The lapse function α describes the time slicing; the relation
between proper time and coordinate time between, and across, spatial sur-
faces. The shift vector βi describes the spatial gauge; describing how the
spatial coordinates are translated from one surface to the next. These func-
tions are traditionally chosen in ways that avoid (or prevent) coordinate or
physical singularities, with some coordinate choices made purely for sim-
plicity, and others developed to avoid numerical issues with these simpler
choices, a few of which we will discuss briefly below.

Geodesic slicing

Geodesic slicing is the simplest choice for the spatial gauge and time slicing,
in which we have α = 1 and βi = 0. The choice of zero shift implies that
coordinate observers coincide with normal observers, and the choice of α =
1 implies that these observer’s proper time coincides with the coordinate
time of the surfaces. While this choice simplifies the evolution equations, it
also can form coordinate singularities when evolving nonlinear problems.
To show this, we can take the trace of (2.27), which gives (see Smarr and
York, 1978a),

d

dt
K = −γijDiDjα+ α

[
KijK

ij +
4πG

c4
(ρc2 + S)

]
, (2.75)

and substituting the conditions for geodesic slicing, α = 1, βi = 0, gives

∂0K = KijK
ij +

4πG

c4
(ρc2 + S), (2.76)

and for a perfect fluid (using (1.7)) we can write the trace of the spatial stress
as

S ≡ γijSij = γijγiµγjνT
µν (2.77)

= γjµγjνu
µuν(ρc2 + P ) + γjµγjνg

µνP (2.78)

= (ρc2 + P )ujuj + 3P (2.79)

and in geodesic slicing we have uj = nj = 0, so we have

∂0K = KijK
ij +

4πG

c4
(ρc2 + 3P ). (2.80)

So long as the strong energy condition for a perfect fluid is satisfied,

ρc2 + 3P ≥ 0, (2.81)

then both terms on the right hand side are positive, implying that K will
increase without limit. From (2.13), we can write

K = −∇µnµ, (2.82)



50 Chapter 2. Methods

which shows that in geodesic slicing the normal vectors will therefore con-
verge and create caustics, and hence coordinate singularities. This is ex-
pected as these choices correspond to observers freely falling along geodesics
(i.e. with no acceleration), and geodesics will converge during gravitational
collapse. So long as we are not simulating nonlinear gravitational collapse,
e.g. simulating evolution of an FLRW spacetime, geodesic slicing is well
suited. However, in simulations of large-scale cosmological structure for-
mation, geodesics will cross once nonlinear structures begin to form.

Maximal slicing

Maximal slicing provides a condition that prevents the convergence of co-
ordinate observers seen in geodesic slicing (Smarr and York, 1978a). From
(2.82), an obvious choice to stop the focusing of normal observers is K = 0,
and choosing also ∂tK = 0 ensures this will be true on all subsequent time
slices. Equation (2.52) can then be simplified into an elliptic equation for
the lapse

D2α = αKijK
ij +

4πG

c4
α
(
S + ρ c2

)
. (2.83)

In practice, the maximal slicing condition will only be satisfied approxi-
mately, i.e. K 6= 0, due to truncation errors in the simulation. Even if
∂tK = 0 is enforced throughout, the maximal slicing condition will still be
violated. Instead, a condition is specified to drive K back towards zero,

∂0K = −mK, (2.84)

where m is a positive constant with dimensions of inverse length. Again
using (2.52) we find a new elliptic equation for the lapse,

D2α = α

[
KijK

ij +
4πG

c4

(
S + ρ c2

)]
+ βi∂iK +mK, (2.85)

which is essentially correcting (2.83) for violations of the maximal slicing
condition. The lapse function that satisfies (2.85) describes the maximal
slices. Elliptic equations are computationally expensive to invert in three
dimensions, so to make this equation cheaper to solve numerically, we con-
vert it into a parabolic form using a derivative of the lapse (i.e. similar
to relaxation methods for solving elliptic equations; Press, Flannery, and
Teukolsky, 1986). We introduce an arbitrary time coordinate λ = εt, where ε
is some constant with dimension L. We then set ∂λα equal to (2.85), which
gives a parabolic equation for the lapse

∂0α = εD2α− εα
[
KijK

ij +
4πG

c4

(
S + ρ c2

)]
− εβi∂iK − εmK, (2.86)

or, more simply
∂0α = −ε (∂0K +mK) , (2.87)

which is referred to as a “K-driver” condition (Balakrishna et al., 1996). The
maximal slicing condition is then satisfied in the limit ε → ∞, however a
very large ε would require an extremely small time step, which can signifi-
cantly increase the computational cost of the simulation.
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Harmonic coordinates and slicing

Writing Einstein’s equations in harmonic coordinates was first done to avoid
some of the computational issues associated with the ADM formalism (e.g.
Fischer and Marsden, 1973), by abandoning the 3+1 decomposition alto-
gether and keeping Einstein’s equations in a four-dimensional form. We
first define the four-dimensional contracted connection functions, similar
to in Section 2.1.3,

(4)Γ
α ≡ gµν (4)Γ

α

µν . (2.88)

If we choose for these contracted connection functions to vanish,

(4)Γ
α

= 0, (2.89)

then the coordinates themselves satisfy the wave equation, ∇α∇αxµ = 0,
and are therefore harmonic functions (e.g. York, 1979). As discussed in Sec-
tion 2.1.3, defining the contracted connection functions simplifies the form
of the Riemann — and hence Ricci — tensor by absorbing second deriva-
tives of the metric into first derivatives of the functions (2.88). The harmonic
coordinate choice (2.89) will obviously simplify this even further, and re-
duces Einstein’s equations to a set of nonlinear wave equations, which pro-
vides a mathematical advantage since the behaviour of equations of this
type is extremely well understood (Baumgarte and Shapiro, 2010).

An issue with harmonic coordinates arises because there is no strict re-
quirement for the time coordinate to remain time-like throughout the sim-
ulation, and this can cause numerical problems (Garfinkle, 2002). A way
around this is to introduce source functions to the wave equation for the co-
ordinates, i.e. ∇α∇αxµ = Hµ. The function Hµ can then be used to control
the behaviour of the coordinates in the simulation, known as “generalised
harmonic coordinates” (Pretorius, 2005b).

Using completely harmonic coordinates is not normally done in numer-
ical simulations because the choices of initial data and coordinates are not
as clear as in a 3+1 decomposition. Usually, the coordinates are chosen via
the lapse and shift, which both have a clear geometric interpretation in re-
lation to the spatial surfaces. In harmonic coordinates, Hµ encompasses the
coordinate choices, but does not have a clear geometric interpretation, mak-
ing it difficult to form a desirable coordinate system (Pretorius, 2005b). Be-
cause the spacetime is not split into a series of spatial surfaces when using
harmonic coordinates, this also makes the generation of initial data more
difficult. The regular 3+1 constraint equations, along with the evolution
equations, can instead be used to generate the initial data necessary for the
harmonic evolution equations; specifying the four-metric gµν and its time
derivative at some initial instant in time.

Harmonic slicing of the lapse is much more common in numerical sim-
ulations, and involves setting only the time component of the contracted
connection functions to be zero, i.e. (4)Γ

0
= 0. Alongside a zero shift vector,

this gives the evolution equation for the lapse to be

∂0α = −α2K, (2.90)
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which can be integrated by first substituting a contraction of the ADM evo-
lution equation (2.19), namely,

αK = Diβ
i − ∂0lnγ1/2, (2.91)

again with zero shift, which gives

∂0lnα = −∂0lnγ1/2. (2.92)

Solving the above gives the general form of the lapse function in harmonic
slicing to be

α = F (xi)γ1/2 (2.93)

where F (xi) is an arbitrary, dimensionless, purely spatial function.

Generalised slicing form

The appeal of the evolution of the lapse function using (2.93) is that there
is no need to invert an elliptic equation at each time step, as with maximal
slicing. However, the singularity avoidance of harmonic slicing is not as
strong as in maximal slicing (Shibata and Nakamura, 1995).

The Bona-Masso family of slicing conditions (Bona et al., 1995) are a
generalisation of the evolution equation for the lapse (2.90),

∂0α = −α2f(α)K, (2.94)

where f(α) is a positive, dimensionless, arbitrary function (which may be
a function of the lapse, or a constant). Choosing f = 1 reduces the slicing
condition to harmonic slicing, and f = 0 reduces it to geodesic slicing.
Another popular choice is f = 2/α, which results in the lapse

α = 1 + lnγ, (2.95)

known as “1+log” slicing, which has been proven to have better singularity
avoidance than maximal slicing (Alcubierre, 2008).

Gamma-driver condition

The Gamma-driver condition is related to the minimal distortion shift con-
ditions (see Baumgarte and Shapiro, 2010), which was developed to limit
the time evolution of the conformal metric in order to reduce spurious co-
ordinate modes in γ̄ij (Smarr and York, 1978a). We can limit the confor-
mal metric’s evolution by setting the time derivative of the conformal, con-
tracted connection functions to zero,

∂0Γ̄i = 0, (2.96)
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which, combined with (2.71), gives a set of coupled elliptic equations for
the shift vector,

βj∂jΓ̄
i − Γ̄j∂jβ

i +
2

3
Γ̄i∂jβ

j +
1

3
γ̄li∂l∂jβ

j + γ̄lj∂j∂lβ
i

= 2Āij∂jα− 2α

(
Γ̄ijkĀ

kj − 2

3
γ̄ij∂jK −

8πG

c3
γ̄ijSj + 6Āij∂jφ

)
.

(2.97)
As in Section 2.1.4, we want to drive away any potential violations of (2.96),
so we instead choose

∂0Γ̄i = −ηΓ̄i. (2.98)

We then convert (2.97) into parabolic form in the same way as in maximal
slicing, giving the “Gamma-driver” condition for the shift (Alcubierre and
Bruegmann, 2001; Duez et al., 2003)

∂0β
i = k

(
∂0Γ̄i + ηΓ̄i

)
, (2.99)

where k and η are arbitrary constants with dimensions length and inverse
length, respectively.

2.1.5 Constraint violation management

The constraint equations (2.15) and (2.17) are zero analytically, however, fi-
nite differencing errors introduce a non-zero constraint violation into the
evolution. In the ADM formalism, since the constraint equations are not
evolved, any local constraint violation remains where it is and can grow,
which may become unstable. In deriving the evolution equations for the
BSSN formalism, specifically the evolution equation for the contracted con-
nection functions (2.71), we brought the momentum constraint into the evo-
lution equations. This means that local violation of the momentum con-
straint can now propagate and move off the grid (if coupled with suitable
boundary conditions). This stabilises the evolution and damps the con-
straint violation in the simulation.

Z4 Formulation

In the original ADM formalism, the 3+1 decomposition of spacetime splits
Einstein’s equations into separate evolution and constraint equations, the
latter of which are only enforced on the initial data, and not constrained
during the simulation. Any resulting constraint violations are not invariant
under coordinate transforms, breaking the general covariance of the sys-
tem. The Z4 formulation (Bona et al., 2003) is a covariant extension to Ein-
stein’s equations, which involves introducing a new four-vector Zµ, such
that the field equations become

Gµν +∇µZν +∇νZµ =
8πG

c4
Tµν , (2.100)

with the constraint Zµ = 0 now acting as a numerical check on the accu-
racy of a simulation. A 3+1 decomposition of (2.100) results in a system of
equations with no static constraints, with Zµ evolved as a part of the sys-
tem, maintaining general covariance. The regular 3+1 constraint equations
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(2.15) and (2.17) can be solved to generate initial data for the Z4 system,
since the two formulations are equivalent in the case Zµ = 0. The extent to
which the solution is matching Einstein’s equations can then be monitored
via Zµ (Bona et al., 2003). The addition of this new four-vector is analogous
to the addition of the contracted connection functions in harmonic coordi-
nates, which also results in a general covariant system, however the two
systems share similar drawbacks, as discussed in Section 2.1.4 (Garfinkle,
2002; Pretorius, 2005b).

Damped Z4 system

The λ−system is a method of constraint-violation damping by adding dy-
namical variables into the system, which act as time derivatives of each
constraint expression (Brodbeck et al., 1999). Additional terms are brought
into the evolution equations of these extra variables such that the variables
themselves, and hence the constraints, are damped during the evolution.
The Z4 system is a λ−system with no damping terms; the Zµ four-vector
acts as the additional dynamical variables related to the constraints. The
“damped Z4 system” (Gundlach et al., 2005) takes advantage of this by
adding damping terms to (2.100),

Gµν +∇µZν +∇νZµ

+ κ1 [nµZν + nνZµ − (1 + κ2)gµνn
σZσ] =

8πG

c4
Tµν ,

(2.101)

where κ1, κ2 are free parameters to control the level of damping.

Conformal and covariant Z4 system

The conformal and covariant Z4 system (CCZ4; Alic et al., 2012) is an ex-
tension to the damped Z4 system, by performing a 3+1 decomposition of
(2.101) and casting the equations into conformal trace-free form, as in the
BSSN formalism. The aim is to combine the benefits of the BSSN and gen-
eralised harmonic formalisms. The BSSN formalism is appealing numer-
ically because of its gauge freedom in the form of the lapse function and
the shift vector, which allow for singularity avoidance without the need to
completely excise a region of spacetime from the simulation. In addition,
the conformal decomposition allows for potentially singular terms to be ab-
sorbed into the conformal factor, rather than the metric. The appeal of the
generalised harmonic formalism is the evolution of the constraints is in-
cluded, meaning initial data that satisfies the constraints will satisfy them
at all times (Pretorius, 2005b). In the case of initially small, inhomogeneous
constraint violations, the CCZ4 system will constrain the growth of these
violations during the simulation with appropriately chosen values for κi
(see Gundlach et al., 2005).

2.1.6 General-Relativistic Hydrodynamics

Many astrophysical (and general hydrodynamical) phenomena produce shock
waves, and the numerical modelling of these nonlinear waves poses sev-
eral issues. High resolution shock-capturing methods cast the evolution
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equations into conservative form to ensure that mass, momentum, and en-
ergy are conserved across the shock boundaries during the evolution of the
shock. This introduces difficulties of its own, since physically interesting
qualities of the fluid are described by the primitive variables; mass density,
pressure, velocity, and internal energy, while the conserved variables are the
ones used for evolution. In addition, the primitive variables themselves
may be required to calculate the source terms to evolve the conserved vari-
ables. Solving for the primitive variables from the conserved variables can
be difficult for particular systems, since a simple analytic relation between
the two may not exist. This must be performed at every time step, adding
significant computational time to the calculation.

The equations of General-Relativistic hydrodynamics are derived from
the conservation of rest-mass and energy-momentum (see Banyuls et al.,
1997)

∇µ(ρ0u
µ) = 0, ∇µTµν = 0. (2.102)

These equations can be written in flux-conservative form as

∂0U + ∂iF
i = S, (2.103)

where U = [D,Scj , τ
c] are the conserved variables, here defined in Eulerian

coordinates as (Wilson, 1972; Font, 2008)

D ≡ √γρ0W, (2.104a)

Sci ≡
√
γρ0hW

2 vi
c
, (2.104b)

τ c ≡ √γ
(
ρ0hW

2 − P
)
−Dc2. (2.104c)

Here, h = c2 + ε+P/ρ0 is the specific enthalpy, and ε is the specific internal
energy. The Lorentz factor, W , and the fluid three velocity, vi, are defined
in (1.17) and (1.18), respectively.

The vectors Fi and S in (2.103) are the fluxes and source terms, respec-
tively, defined by

Fi =
[
αDṽi, α

(
Scj ṽ

i + δijP
)
, α
(
τ cṽi + Pvi

)]
, (2.105a)

S =
[
0, Tµν

(
∂µgνj − (4)Γλµνgλj

)
, α
(
Tµ0∂µlnα− Tµν (4)Γ0

µν

)]
, (2.105b)

where

ṽi ≡ vi

c
− βi

α
. (2.106)

Defining an EOS for the fluid in question — i.e. a description of the pressure
of the fluid in terms of rest-mass density and internal energy — closes the
system.

While the conserved variables D,Scj , and τ c are the variables actually
evolved in the simulation, the primitive variables ρ0, P, v

i, and ε are re-
quired to calculate the source terms S for the evolution of the conserved
variables (via the stress-energy tensor). From (2.104) we can see that con-
verting primitive to conservative variables is straightforward analytically,
but the reverse is not. We discuss briefly a few different methods for con-
verting conservative to primitive variables in Section 2.2.3.
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2.2 The EINSTEIN TOOLKIT

The CACTUS code was first written in 1992 by Ed Seidel and his group at
the Max Planck Institute for Gravitational Physics (Albert Einstein Insti-
tute), initially to allow for a collaborative, parallel platform for numerical-
relativity simulations. The CACTUS framework consists of a central core,
“flesh”, and application modules, “thorns”, which communicate with each
other via the CACTUS flesh, allowing for thorns to be developed and main-
tained independently from one another. The CACTUS framework was later
generalised for other computational scientists requiring large-scale collab-
orative computing (Goodale et al., 2003), and the numerical-relativity capa-
bilities of the CACTUS code were collected into the EINSTEIN TOOLKIT (ET)
(Löffler et al., 2012).

The ET1 itself consists of about 100 thorns used for relativistic astro-
physics, including vacuum spacetime solvers (e.g. McLachlan), General-
Relativistic hydrodynamics (e.g. GRHydro), adaptive mesh refinement, anal-
ysis thorns, and thorns for different initial conditions. We briefly introduce
the main thorns used in this thesis, and discuss the relevant equations being
solved.

2.2.1 Base thorns

The main appeal of the ET’s structure is the ability to be used collabora-
tively, and for different parts of the code to be used in different ways. Main
evolution thorns (e.g. for the hydrodynamics and spacetime) are written
in a way such that supplementary thorns can be easily substituted in their
place. A large part of this structure being able to work is through the use of
several “base” thorns, which store the sets of variables common amongst
different methods for numerical evolution of particular systems, and there-
fore the variables that are common among different thorns. For example,
hydrodynamic evolution thorns communicate directly with the base thorn
HydroBase, which stores the primitive hydrodynamical variables (see Sec-
tion 2.1.6), and spacetime evolution thorns communicate with ADMBase,
which stores the variables evolved using a 3+1 decomposition of spacetime
(as discussed in Section 2.1.2 and 2.1.3). The base thorns HydroBase and
ADMBase also act as an interface to specify initial conditions, and for per-
forming analyses (see Zilhão and Löffler, 2013, for a detailed discussion of
CACTUS and ET structure).

Spacetime evolution thorns in the ET evolve only the left hand side of
Einstein’s equations and therefore must be sourced by the stress-energy ten-
sor if matter is present. However, calculating the stress-energy tensor (1.7)
requires both matter and spacetime variables. The thorn TmunuBase builds
the stress-energy tensor Tµν by communicating separately with the hydro-
dynamic and spacetime thorns, and can then feed it back into the relevant
spacetime evolution thorn. This means that the evolution of the hydrody-
namics and spacetime are completely independent, and so different thorns
can be easily substituted.

1http://www.einsteintoolkit.org

http://www.einsteintoolkit.org
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2.2.2 McLachlan

The McLachlan2 group of thorns is a code for solving the left hand side
of Einstein equations using a 3+1 conformal decomposition (Brown et al.,
2009). The code itself is generated by Kranc3 — a MATHEMATICA pro-
gram that converts a system of partial differential equations into CACTUS

code. While the code itself solves the vacuum Einstein equations, it can be
linked to seperate thorns that solve the hydrodynamical system coupled to
the spacetime, such as GRHydro, explained in the next section. The space-
time variables are discretised on a grid, with options for adaptive mesh
refinement via the Carpet driver thorn, which also handles memory, par-
allelisation, input and output, and time evolution (Schnetter, Hawley, and
Hawke, 2004).

The McLachlan code implements both the conformal trace-free BSSN
(as described in Section 2.1.3) and CCZ4 (as described in Section 2.1.5) for-
malisms, via two thorns ML_BSSN and ML_CCZ4. The variables evolved
in ML_BSSN are the conformal factor φ, the trace of the extrinsic curvature
K, the conformal metric γ̄ij , the conformal trace-free extrinsic curvature
Āij , and the contracted conformal connection functions Γ̄i (see Table 2.1 for
the full system). ML_CCZ4 extends this system with additional damping
terms related to the four-vector Zµ, as in (2.101), which are controlled using
the parameters κ1, κ2, and also by evolving the quantity ˆ̄Γi ≡ Γ̄i + 2γ̄ijZj ,
along with the projection of Zµ along the normal direction; nµZµ (see Alic
et al., 2012). Both thorns adopt a generalised Bona-Masso slicing of the
lapse function, using (2.94), and evolve the shift vector under the “Gamma-
driver” condition, using (2.99).

2.2.3 GRHydro

GRHydro is the main hydrodynamical evolution thorn in the ET, evolving
the equations of ideal General-Relativistic hydrodynamics (or magnetohy-
drodynamics), and was built from the public Whisky4 code (Baiotti et al.,
2005; Hawke, Löffler, and Nerozzi, 2005; Giacomazzo and Rezzolla, 2007;
Baiotti, Giacomazzo, and Rezzolla, 2008; Mösta et al., 2014). The method
of lines thorn MoL is used for time evolution, implementing a numerical
method for solving partial differential equations, in which spatial deriva-
tives are discretised and time derivatives are left continuous. This then al-
lows use of a regular numerical method for ordinary differential equations.

Discretising a fluid on a computational grid results in artificial disconti-
nuities in the fluid across cell boundaries. This is often dealt with by averag-
ing the primitive variables across a cell boundary in order to calculate the
flux of the fluid across the boundary, which in itself requires reconstruct-
ing the primitive variables between neighbouring cells. Performing this re-
construction at high accuracy can result in spurious numerical oscillations
when near a shock (according to Godunov’s theorem). To achieve mono-
tonicity, reconstruction methods such as total variation diminishing (TVD),
the piecewise parabolic method (PPM; Colella and Woodward, 1984), and
essentially non-oscillatory (ENO; Harten et al., 1987) methods are required;

2https://www.cct.lsu.edu/~eschnett/McLachlan/
3http://kranccode.org
4http://www.whiskycode.org/

https://www.cct.lsu.edu/~eschnett/McLachlan/
http://kranccode.org
http://www.whiskycode.org/
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each of which are implemented in GRHydro. Once the primitive variables
have been reconstructed on the cell boundaries, they are used as initial
conditions for the chosen Riemann solver in GRHydro, which may be the
Harten-Lax-van Leer-Einfeldt (HLLE; Harten, Lax, and Van Leer, 1983; Ein-
feldt, 1988), Roe (Roe, 1981), or Marquina (Marquina et al., 1992) solver.

The EOS of the fluid is specified and handled separately in the thorn
EOS_Omni, in which “Polytype” EOS, P = P (ρ0) (including a polytropic
EOS), or general EOS, P = P (ρ0, ε) (including a gamma-law and hybrid
EOS), are implemented (see Löffler et al., 2012, for full details of all those
available).

To simplify the calculations performed in GRHydro, time derivatives
of the spatial metric in the source terms S in (2.105b) are eliminated using
the evolution equation (2.19). Time components of the four-dimensional
connection functions are written in terms of spatial and time derivatives
of the spatial metric, lapse, and shift. The time derivatives of the lapse and
shift are specified in the chosen gauge, and explicit spatial derivatives of the
spatial metric are eliminated using its spatial covariant derivative, which is
zero by construction, i.e.

Diγ
jk = ∂iγ

jk + 2γlkΓjil = 0. (2.107)

Hence, spatial derivatives of γij can be written in terms of the connection
functions.

The conversion from primitive to conservative variables is simple ana-
lytically, as can be seen in (2.104), however the reverse is not as straightfor-
ward. In GRHydro this conversion is performed using a Newton-Raphson
iteration, however, the specific method is dependent on the user-chosen
EOS. In the case of a general EOS, i.e. P = P (ρ, ε), the root of the func-
tion f = P̄ − P (ρ̄, ε̄) is found using approximate guesses for P̄ , ρ̄, ε̄. In this
case the pressure is a function of both the density and internal energy, so
the derivatives dP/dρ and dP/dε (required to find the root) are supplied
from the relevant EOS thorn. In the case of a “Polytype” EOS, the root of
the function f = ρ̄W̄ −D/√γ is found using a similar method (see Löffler
et al., 2012, and the GRHydro documentation).

2.2.4 Initial data and FLRWSolver

The ET contains several thorns for initialising different setups in both space-
time and matter. These include binary neutron stars, binary black holes,
magnetised neutron stars, Minkowski and Kasner spacetimes, Kerr and
Schwarzschild spacetimes (in several coordinate systems), and linear grav-
itational waves. The ET is not used extensively for cosmology, with only
a few tests of exact cosmological spacetimes having being previously per-
formed (Vulcanov and Alcubierre, 2002).

We developed an initial-condition thorn for linearly-perturbed FLRW
spacetimes; FLRWSolver (see Macpherson, Lasky, and Price, 2017). Around
the same time, a group of thorns CTTHORNS (COSMOTOOLKIT) was re-
leased and added to the public release of the ET, to both initialise cosmo-
logical spacetimes and evolve them with a new hydrodynamic evolution
thorn for dust (see Bentivegna and Bruni, 2016).
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To set up initial data, FLRWSolver communicates directly with the
base thorns HydroBase and ADMBase, by filling the initial data for the
primitive hydrodynamic variables — the rest-mass density, pressure, veloc-
ity, and internal energy — and the spacetime variables — the spatial metric,
extrinsic curvature, lapse, and shift.

In FLRWSolver, we currently only consider small perturbations around
the flat, dust FLRW model, under the assumption that linear perturbation
theory is valid, i.e.,

|φ|
c2
,
|ψ|
c2
, |δ|, |v

i|
c
� 1, (2.108)

for the metric, density, and velocity perturbations, respectively.
From the linearly perturbed Einstein equations (1.53), we have

Ḡµν =
8πG

c4
T̄µν , (2.109)

and
δGµν =

8πG

c4
δTµν , (2.110)

solving (2.109) results in the Friedmann equations derived in Section 1.2.2.
In the following derivation, we solve (2.110) to find analytic evolution equa-
tions for the metric, density, and velocity perturbations. We neglect any
terms that are second order or higher. We use the resulting equations to
generate initial conditions for the cosmological simulations in Chapters 3,
4, and 5.

We use the Riemannian Geometry and Tensor Calculus (RGTC) pack-
age5 for MATHEMATICA to calculate the components of the Einstein tensor,
Gµν , for the metric (1.52). The time-time and time-space components are, to
linear order,

G00 =
3H2

c2
+

2 ∂2φ

c2
− 6Hφ′

c4
, (2.111)

G0i =
2

c

(
H∂iψ
c2

+
∂iφ
′

c2

)
, (2.112)

where ∂2 ≡ δij∂i∂j . The spatial components are

Gij =

[
1

c2

(
H2 − 2a′′

a

)(
1− 2ψ

c2
− 2φ

c2

)
+

2H
c2

(
ψ′

c2
+

2φ′

c2

)]
δij

+

(
2φ′′

c4
+
∂2ψ

c2
− ∂2φ

c2

)
δij −

∂i∂jψ

c2
+
∂i∂jφ

c2
.

(2.113)

For dust, i.e. using (1.7) with P = 0, and zero shift, the time-time compo-
nent of the stress-energy tensor is

T00 = ρRc
2W 2α2,

= ρRc
2W 2a2

(
1 +

2ψ

c2

)
,

(2.114)

5Written by Sotirios Bonanos, see: http://library.wolfram.com/infocenter/
MathSource/4484/

http://library.wolfram.com/infocenter/MathSource/4484/
http://library.wolfram.com/infocenter/MathSource/4484/
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where we have used (1.21). The time-space components are

T0i = −ρRc2W 2 vi
c
α,

= −ρRc2W 2 vi
c
a

(
1 +

ψ

c2

)
,

(2.115)

where we have used (1.22) and the linear approximationα = a
√

1 + 2ψ/c2 ≈
a(1 + ψ/c2). The spatial components are

Tij = ρRW
2vivj . (2.116)

Expanding the density and velocity in terms of the background and the
linear perturbations gives

ρR = ρ̄R(1 + δ), (2.117)

vi = v̄i + δvi, (2.118)

where we have introduced the fractional density perturbation δ ≡ δρ/ρ̄R =
(ρR − ρ̄R)/ρ̄R. For FLRW, v̄i = 0, so from here on we denote vi = δvi. The
Lorentz factor is W ≈ 1 to linear order, and with the above perturbations
the components of the stress-energy tensor become

T00 = ρ̄Rc
2a2 + ρ̄Rc

2a2

(
δ +

2ψ

c2

)
, (2.119)

T0i = −ρ̄Rc2a
vi
c
, (2.120)

Tij = 0. (2.121)

Linearly perturbed equations

The time-time component of (2.110) is, using (2.119) and (2.111),

2 ∂2φ

c2
− 6Hφ′

c4
=

8πG

c4

[
ρ̄Rc

2a2

(
δ +

2ψ

c2

)]
, (2.122)

which gives

∂2φ− 3H
(
φ′

c2
+
Hψ
c2

)
= 4πGρ̄Rδa

2. (2.123)

The time-space components of (2.110) are, using (2.120) and (2.112),

H∂iψ + ∂iφ
′ = −4πGρ̄Ravi. (2.124)

Now considering the spatial components, we first take the trace of (2.113)

Gkk =
3

a2c2

(
H2 − 2a′′

a

)(
1− 2ψ

c2
− 2φ

c2

)
+

6H
a2c2

(
ψ′

c2
+

2φ′

c2

)
+

6φ′′

a2c4
+

2

a2

(
∂2ψ

c2
− ∂2φ

c2

)
,

(2.125)
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then considering the perturbed part of this equation, with T = gijTij = 0,
we find

φ′′ +H(ψ′ + 2φ′) +

(
2a′′

a
−H2

)
(φ+ ψ) +

c2

3
∂2 (ψ − φ) = 0. (2.126)

Next, we consider the trace-free part of the spatial components by subtract-
ing the spatial trace (2.125) from the full spatial components (2.113), i.e. by
defining

GTF
ij ≡ Gij −

1

3
gijG

k
k = Gij −

1

3
a2δijG

k
k, (2.127)

TTF
ij ≡ Tij −

1

3
gijT = 0, (2.128)

which hold for an FLRW background, and solving

GTF
ij =

8πG

c4
TTF
ij . (2.129)

This gives

GTF
ij =

[(
∂i∂j −

1

3
δij∂

2

)
(φ− ψ)

]
= 0, (2.130)

⇒ ∂〈i∂j〉 (φ− ψ) = 0, (2.131)

where ∂〈i∂j〉 ≡ ∂i∂j − 1/3 δij∂
2. Equation (2.131) implies, in the linear

regime, the temporal and spatial perturbations of the metric are equal, i.e.
φ = ψ. Our full system of equations therefore simplifies to

∂2φ− 3H
(
φ′

c2
+
Hφ
c2

)
= 4πGρ̄Rδa

2, (2.132a)

H∂iφ+ ∂iφ
′ = −4πGρ̄Ravi, (2.132b)

φ′′ + 3Hφ′ = 0, (2.132c)

where we have used 2a′′/a−H2 = 0, which can be shown using the Fried-
mann equations (1.35) and (1.34) with P = 0.

Linearly perturbed solutions

For a flat, matter-dominated FLRW universe, the expansion rate follows
(1.43), giving the analytic form of H. This means we can solve (2.132c) to
arrive at an analytic expression for the metric perturbation,

φ(ξ) = f(xi)− g(xi)

5 ξ5
, (2.133)

where f, g are arbitrary, time-independent functions, and ξ is the scaled
conformal time defined in (1.44). We now substitute (2.133) into the Hamil-
tonian constraint (2.132a) to derive the analytic form for the fractional den-
sity perturbation, δ. We find

δ(ξ) = C1ξ
2∂2f − 2

c2
f − C1

5
ξ−3∂2g − 3

5 c2
ξ−5g, (2.134)
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where we have used the Friedmann equation (1.38a), and the solutions
(1.45) and (1.43), for the background density, ρ̄R, and scale factor, a, respec-
tively. We also define C1 ≡ ainit/(4πGρ

∗), as in Macpherson, Lasky, and
Price (2017).

We now substitute (2.133) into (2.132b) to derive the analytic form of the
velocity perturbation

vi =
C3

ainit
ξ−1∂if +

3C3

10 ainit
ξ−6∂ig, (2.135)

where C3 ≡ −
√
ainit/(6πGρ∗).

The system of equations (2.133), (2.134), and (2.135) describes the evo-
lution of linear perturbations to the FLRW metric, so long as our initial
assumptions about the magnitude of the perturbations themselves remain
valid.

The general evolution equation for the fractional density perturbation
(2.134) contains both growing and decaying modes. Since we are interested
in analysing the growth of structure in the Universe, we choose g = 0 and
extract only the growing mode. The analytic solutions governing the evo-
lution of the metric, density, and velocity perturbations in the linear regime
then become

φ = f, (2.136a)

δ = C1ξ
2∂2f − 2

c2
f, (2.136b)

vi =
C3

ainit
ξ−1∂if. (2.136c)

We therefore have φ′ = 0, i.e. the spatial distribution of the metric pertur-
bation is constant in the linear regime. These analytic solutions provide the
initial conditions in FLRWSolver, for different choices of f .

The fluid three velocity with respect to the Eulerian observer (2.136c),
defined in HydroBase via (1.18), implies here (for zero shift)

dxi

dt
= αvi. (2.137)

The velocity vi decays over time, as per (2.136c), whereas the coordinate
velocity dxi/dt ∝ ξ in the linear regime, when α ≈ a.

Single-mode perturbation

We can choose a simple form of φ to be a single-mode, sinusoidal perturba-
tion with dimensionless amplitude φ0 � 1,

φ

c2
= φ0

3∑
i=1

sin

(
2πxi

L

)
, (2.138)

where L is the wavelength of the perturbation with dimension of length.
With this form of the metric perturbation, the corresponding density and
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velocity perturbations (initially, i.e. ξ = 1) are then

δ = −
(

4π2c2C1

L2
+ 2

)
φ0

3∑
i=1

sin

(
2πxi

L

)
, (2.139)

vi

c
=

2πcC3

Lainit
φ0 cos

(
2πxi

L

)
. (2.140)

We evolve these initial perturbations in the ET in Chapter 3, Section 3.4, and
compare the numerical growth to the analytic solutions (2.136).

Multi-mode perturbations

We can analyse the growth of perturbations similar to those in our own
Universe by drawing our initial conditions from the spectrum of perturba-
tions in the CMB. The Code for Anisotropies in the Microwave Background
(CAMB; Seljak and Zaldarriaga, 1996; Lewis and Bridle, 2002)6 is a cosmol-
ogy code primarily used for generating linear power spectra of the fluctua-
tions in the CMB. CAMB is written in the synchronous (comoving) gauge,
i.e. α = 1, ∂tα = 0 and βi = 0, which differs to the longitudinal gauge,
as used in FLRWSolver. However, for the scales we currently sample, the
matter power spectra in the synchronous and longitudinal gauges are al-
most identical, and so we expect negligible difference in the generation of
initial conditions on . 5− 10 Gpc scales.

To generate the CMB-like initial conditions for FLRWSolver we use
parameters consistent with Planck Collaboration et al. (2016). We use the
matter power spectrum output from CAMB as the spectrum of initial fluc-
tuations in the density perturbation δ. We invert (2.136b) in Fourier space to
solve for the corresponding metric perturbation φ, from which we specify
the velocity field vi. The full method of generating the initial conditions is
discussed in Chapter 4, Section 4.3.2.

2.2.5 Setup for this thesis

For the work presented in this thesis, we use our thorn FLRWSolver to
initialise several cosmological spacetimes, described in detail in Chapters 3
and 4. Aside from this thorn, we use McLachlan, specifically ML_BSSN, to
evolve the spacetime variables using the BSSN formalism, with shift vector
βi = 0 and the generalised slicing condition (2.94) with f(α) = 1/3, i.e.,

∂0α = −1

3
α2K, (2.141)

which for FLRW gives the conformal time parameterisation, i.e. α = a.
For the evolution of the hydrodynamical variables we use GRHydro, with
PPM reconstruction (Colella and Woodward, 1984) and the HLLE Riemann
solver (Harten, Lax, and Van Leer, 1983; Einfeldt, 1988). In EOS_Omni we
use the “Polytype” equation of state, specifically a polytrope with pressure
defined by

P = Kpolyρ
2
0, (2.142)

6https://camb.info

https://camb.info
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since GRHydro currently cannot handle P = 0 (dust). We choose Kpoly =
0.1, which sufficiently satisfies P � ρ0. For this EOS, the internal energy is
not evolved, and is instead set directly from the rest-mass density, i.e. ε =
ρ0. We use periodic boundary conditions on a regular Cartesian mesh (i.e.,
no adaptive mesh refinement), and use Runge-Kutta fourth order (RK4)
time integration in the thorn MoL, with the condition ∆t = 0.5∆x, where
∆t,∆x are the time step and grid spacing, respectively. We expect second-
order convergence of our solutions, since the spatial order of GRHydro is
second order. The full system of equations solved in our simulations is
summarised in Table 2.1.

Using initial conditions describing a flat, dust, FLRW spacetime, and
seperate initial conditions describing small perturbations to this spacetime
(see Section 1.4), in FLRWSolver and evolving with the above setup, we
matched the analytic evolution for the homogeneous scale factor and den-
sity to within 10−6, and linear perturbations to the density, velocity, and
metric to within 10−4. We tested the convergence of our errors with increas-
ing resolution, including the Hamiltonian and momentum constraints, and
saw the expected fourth-order convergence for FLRW (only time deriva-
tives) and second-order convergence for the linear perturbations (both time
and space derivatives). For more details of the computational tests per-
formed for this setup, see Chapter 3 (and Chapter 4 for more complex per-
turbations).

2.3 Post-processing analysis: MESCALINE

The ET has some built in thorns specifically for analysis, which calculate
quantities such as the trace of the extrinsic curvature, the Ricci scalar, the
determinant of the spatial metric, the metric and extrinsic curvature in dif-
ferent coordinates, while some thorns include routines for locating black
hole horizons and calculating constraint violation (Löffler et al., 2012; Zil-
hão and Löffler, 2013). While these thorns are useful for generating out-
put of physically interesting quantities while the simulation is running,
to analyse General-Relativistic effects in inhomogeneous cosmology, there
are many more quantities that we are interested in. MESCALINE is a post-
processing analysis code to read in three-dimensional CACTUS data in HDF5
format and calculate quantities such as the spatial Ricci tensor and its trace,
the trace of the extrinsic curvature, the expansion rate and shear of the
fluid, and spatially-averaged quantities over both the entire volume and in
sub-domains within the volume. In MESCALINE we adopt geometric units,
G = c = 1, and so for this section we present all equations in these units.

2.3.1 Key calculations

Ricci tensor and connection functions

The spatial Ricci tensor is the contraction of the spatial Riemann curvature
tensor of the spatial surfaces, (2.8),

Rij = Rkikj = ∂kΓ
k
ij − ∂jΓkik + ΓklkΓ

l
ij − ΓkjlΓ

l
ik. (2.143)
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BSSN Equations Eq. number

d

dt
φ = −1

6
αK (2.47)

d

dt
K = α

(
ĀijĀ

ij +
1

3
K2

)
−D2α+

4πG

c4
α
(
S + ρ c2

)
(2.52)

d

dt
γ̄ij = −2αĀij (2.53)

d

dt
Āij = e−4φ

[
−(DiDjα)TF + α

(
RTF
ij −

8πG

c4
STF
ij

)]
+ α

(
KĀij − 2ĀikĀ

k
j

) (2.54)

RTF
ij = R̄ij −

1

3
γ̄ijR̄+ R̄φij +

8

3
γ̄ije

−φD̄2eφ (2.59)

R̄ij = −1

2
γ̄lm∂m∂lγ̄ij + γ̄lm

(
2Γ̄kl(iΓ̄j)km + Γ̄kimΓ̄klj

)
+ γ̄k(i∂j)Γ̄

k + Γ̄kΓ̄(ij)k

(2.61)

d

dt
Γ̄i = −2Āij∂jα+ 2α

(
Γ̄ijkĀ

kj − 2

3
γ̄ij∂jK

)
+

2

3
Γ̄i∂jβ

j

− 2α

(
8πG

c3
γ̄ijSj + 6Āij∂jφ

)
+

1

3
γ̄li∂l∂jβ

j + γ̄lj∂j∂lβ
i

(2.71)

Gauge conditions Eq. number

βi = 0 N/A

∂0α =
1

3
α2K (2.94)

Equations of Hydrodynamics Eq. number

∂0D + ∂i
(
αDṽi

)
= 0 (2.104a), (2.105)

∂0S
c
j + ∂i

[
α
(
Scj ṽ

i + δijP
)]

= Tµν
(
∂µgνj − (4)Γλµνgλj

)
(2.104b), (2.105)

∂0τ
c + ∂i

[
α
(
τ cṽi + P ṽi

)]
= α

(
Tµ0∂µlnα− Tµν (4)Γ0

µν

)
(2.104c), (2.105)

TABLE 2.1: System of equations solved in our cosmological
simulations using the EINSTEIN TOOLKIT.
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In MESCALINE we calculate Rij directly from ET output using the spatial
metric and its spatial derivatives — via the spatial connection functions —
with either a second-order or fourth-order approximation of the derivative.
The Ricci scalar is then the trace of the Ricci tensor, R ≡ γijRij . We cal-
culate the trace of the extrinsic curvature K ≡ γijKij using direct output
of Kij from the ET. When calculating the trace, we assume the rank-2, co-
variant tensor in question is symmetric in its indices; true for all cases in
MESCALINE.

It is useful to write the time components of the four-dimensional con-
nection functions in terms of purely spatial objects, some of which we use
to calculate the expansion scalar θ. These are

(4)Γ0
00 = −1

3
αK, (4)Γ0

0i =
1

α
∂iα,

(4)Γ0
ij = − 1

α
Kij , (2.144a)

(4)Γi00 = αγij∂jα,
(4)Γi0k = −γijαKkj , (2.144b)

and the spatial components of the four-dimensional connection functions
are here equal to the spatial connection functions, since gij = γij (always),
and g0i = 0, g0i = 0, and gij = γij for βi = 0.

Constraint violation

We calculate the violation of the Hamiltonian and momentum constraint
equations via (2.15) and (2.17), respectively. The violation in the Hamilto-
nian constraint is

H ≡ R+K2 −KijK
ij − 16πρ, (2.145)

where ρ is the total mass-energy density projected into the normal frame,
which we can relate to the rest-mass density (as output from the ET, and
therefore read into MESCALINE) via (2.74), which for dust gives,

ρ = ρRW
2 = ρ0 (1 + ε)W 2, (2.146)

where we have used (1.14). For our chosen EOS we have ε = ρ0 (see Sec-
tion 2.2.5), and so

ρ = ρ0W
2 + ρ2

0W
2, (2.147)

≈ ρ0W
2, (2.148)

since (in code units) we set ρ0 ≈ 6×10−9, and so ρ2
0 ≈ 10−17 (see Chapter 3).

The violation in the momentum constraint is

Mi ≡ DjK
j
i −DiK − 8πSi, (2.149)

where the momentum density is defined in (2.18), which we can write as

Si = −γijn0T
0j , (2.150)

since ni = 0 and γi0 = 0. Using (1.7) with P = 0, and four velocity (1.19)
and (1.20), we find

Si = γijv
jW 2ρR, (2.151)

where ρR is the projection of the stress-energy tensor into the rest frame
of the fluid (1.12), and is related to the rest-mass density via (1.14). The
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magnitude of the momentum constraint violation is M2 ≡ γijMiMj , and
for both violations we calculate the L1 error at each time,

L1(H) =
1

N

N∑
a=1

|Ha|, (2.152)

L1(M) =
1

N

N∑
a=1

|Ma|, (2.153)

where N is the total number of grid cells, and Ha,Ma are the Hamiltonian
violation and magnitude of the momentum violation at grid cell a, respec-
tively. The above L1 errors quantify the raw constraint violation in each
case, but to calculate the relative violation we define the “energy scales”
as the sum of the squares of the individual terms in each violation (as in
Mertens, Giblin, and Starkman, 2016), i.e.

[H] ≡
√
R2 + (K2)2 + (KijKij)2 + (16πρ)2, (2.154)

[M ] ≡
√(

DjK
j
i

)(
DjK

ji
)

+Di (K)Di (K) + (8π)2 SiSi, (2.155)

and calculate the relative L1 violations as

L1 (H/[H]) =
1
N

∑N
a=1 |Ha|

1
N

∑N
a=1[H]a

, (2.156)

and

L1 (M/[M ]) =
1
N

∑N
a=1 |Ma|

1
N

∑N
a=1[M ]a

. (2.157)

Expansion scalar

We implement the generalised averaging scheme described in Section 1.5.2
(Larena et al., 2009; Umeh, Larena, and Clarkson, 2011). To calculate the
backreaction terms QhD (1.107) and LD (1.108), and hence the cosmological
parameters, we first must calculate the expansion scalar, θ, the shear tensor
σµν , as well as the additional scalars and tensors related to the divergence
of the peculiar velocity field vi, at every coordinate point in the domain.

The expansion scalar is defined as the divergence of the fluid four ve-
locity projected into the surface defined by hµν ,

θ ≡ hµν∇µuν , (2.158)

= hij∇iuj , (2.159)

since hµν is purely spatial and so h00 = 0 and h0i = 0. Expanding the
covariant derivative gives

θ = hij
(
∂iuj −(4) Γαijuα

)
(2.160)

= hij
(
∂iuj −(4) Γ0

iju0 − Γkijuk

)
(2.161)
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since ∇i is the spatial component of the covariant derivative associated
with the metric gµν , the connection functions involved are still the four-
dimensional connection functions, and hence we have a term involving the
time component (4)Γ0

ij , which we substitute from (2.144a). The expansion
scalar is then

θ = hij∂iuj −WK − hijΓkijuk, (2.162)

where we have also used (1.21).

Shear tensor

The definition of the shear tensor is

σµν ≡ hαµhβν∇(αuβ) −
1

3
θhµν , (2.163)

⇒ σij = ∇(iuj) −
1

3
θhij , (2.164)

i.e., it is purely spatial. Expanding the covariant derivative, and again using
(2.144a), we find

σij = ∂(iuj) −WKij − Γkijuk −
1

3
θhij , (2.165)

where we have again substituted (4)Γ0
ij from (2.144a). We then calculate the

rate of shear as σ2 ≡ 1
2σijσ

ij .

Other tensors

To be able to form the cosmological parameters we also need to calculate the
scalars σ2

B (1.95) and θB (1.92). The scalar θB is built from the divergence of
the peculiar velocity, κ (1.89), and the trace of the tensor Bij (1.96), which
itself depends on the tensor βij (1.87). From their definitions, we can write
these quantities as

κ = hij∂ivj − hijΓkijvk, (2.166)

βij = ∂(ivj) − Γkijvk −
1

3
κhij , (2.167)

B =
1

3
κviv

i + βijv
ivj , (2.168)

where we have used the fact the peculiar velocity is purely spatial, i.e. v0 =
0. The scalar θB is then

θB = −Wκ−W 3B. (2.169)

To calculate σ2
B we first must calculate the tensor σBij using (1.93), which

we can write as

σBij = −Wβij −W 3

(
B(ij) −

1

3
Bhij

)
(2.170)

where we have

Bij =
1

3
κvivj + βkiv

kvj + ∂(kvi)v
kvj . (2.171)
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Effective scale factors

We calculate the volume scale factor aVD using (1.100) and the definition of
the volume element (1.97). To find the scale factor describing the expan-
sion of the fluid, ahD, we follow Larena (2009) and use the expressions for
the Hubble parameter (1.101) and (1.99), along with the evolution of the
volume element (1.104), to get

∂ta
V
D

aVD
− ∂ta

h
D

ahD
=

1

3
〈A〉h, (2.172)

where A ≡ α
W (θ − κ)− αθ for simplicity7. This implies

∂tln

(
aVD
ahD

)
=

1

3
〈A〉h. (2.173)

Using a second-order approximation for the time derivative, we have

ln
aVD
ahD

∣∣∣
n
− ln

aVD
ahD

∣∣∣
n−2

2∆t
≈ 1

3
〈A〉h|n−1 (2.174)

where n, n−1, and n−2 represent times t, t−∆t, and t−2∆t, respectively.
We therefore calculate the fluid scale factor from the volume scale factor
using

ahD
aVD

∣∣∣∣
n

≈ exp

(
−2∆t

3
〈A〉h|n−1

)
ahD
aVD

∣∣∣∣
n−2

. (2.175)

2.3.2 Averaging

As discussed previously, we calculate the expansion scalar and shear ten-
sor at every cell in the computational domain. However, to investigate the
effect of inhomogeneities on the global evolution of the expansion rate and
cosmological parameters, we must calculate averages of these quantities.
The averaging domain D is entirely arbitrary, and choosing it depends on
the physical problem we are interested in. See Chapter 4 to see the results
of averaging an inhomogeneous cosmological simulation with numerical
relativity using MESCALINE.

Global averages

The simplest choice of the averaging domain is the entire computational
grid. This is useful to study the large-scale (global) effects of backreaction,
and to look into the potential for these effects to explain the accelerating
expansion of the Universe; i.e. to explain dark energy (see Section 1.5.2).
Global averages, however, can be susceptible to boundary problems since
the boundary is included in the averaging process. It has not yet been
studied how the use of periodic boundary conditions affects the size of the

7We note an error in Larena (2009) in this relation, which is corrected with −κ → θB
in A. We have not corrected it here since we use this form in our analysis, however, see
Appendix F for a re-analysis with the error fixed.
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backreaction effect measured globally in full GR simulations. In Newto-
nian simulations with periodic boundary conditions, the global backreac-
tion vanishes identically (see Buchert and Ehlers, 1997; Buchert, 2018). We
discuss this more in Chapter 6.

Subdomain averaging

Rather than studying the global dynamics, we can analyse the average
properties on smaller scales using subdomains located within the compu-
tational domain. This will largely remove any spurious boundary effects,
simply by not including the boundary in the averaging. In MESCALINE

we perform this subdomain averaging using an arbitrary number, N , of
randomly placed spherical domains of an arbitrary radius, rD, within the
global domain. The number of spheres and each sphere’s radius (where
all N spheres are given the same radius) are specified by the user before
compiling. From these, we randomly generate N sets of xi = (x, y, z) co-
ordinates lying within the computational grid, representing the origins of
each individual sphere. These origins are generated such that the edge of
the outermost sphere is not allowed to exit the computational domain, and
the spheres are allowed to overlap with one another.

An issue with the averaging formalism used here, briefly discussed in
Section 1.5.2, is that the domain D does not conserve mass during evolu-
tion. That is, if we choose to calculate averages within subdomains as a
function of time, the mass contained within these domains is free to move
into and out of the sphere itself. This issue is present in the averaging in
MESCALINE because the coordinate positions of the sphere’s origins stay
fixed during the evolution, and are not propagated along with the fluid
flow. In order to address this, not only the origin of the sphere but the edges
of the sphere also need to be propagated along the fluid four-velocity vec-
tor, i.e., we would need to allow the sphere to deform as the fluid evolves.
The computational overhead of this propagation is outside the scope of this
thesis, and so long as the velocities in the simulation are vi � c (as is the
case here), the approximation of stationary origins is sufficiently valid.

2.3.3 Assumptions

In writing MESCALINE we have adopted a few key assumptions to simplify
the code, namely:

1. Regular Cartesian grid,

2. Zero shift vector,

3. Periodic boundary conditions,

4. Matter-dominated fluid, i.e. P = 0,

5. Geometric units, i.e. G = c = 1,

each of which are common choices in cosmological simulations with nu-
merical relativity (see e.g. Bentivegna and Bruni, 2016; Giblin, Mertens, and
Starkman, 2016a; Macpherson, Lasky, and Price, 2017). The assumption
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of a regular Cartesian grid is implemented when defining the grid spac-
ing, specifically for computing spatial derivatives using a finite difference
approximation, i.e. using (for fourth-order derivatives)

∂f

∂xi
≈ −f(xi + 2∆xi) + 8f(xi + ∆xi)− 8f(xi −∆xi) + f(xi − 2∆xi)

12∆xi
(2.176)

where we set ∆xi = ∆x = ∆y = ∆z.
Assuming a zero shift vector, i.e. βi = 0, simplifies the expressions for

the time components of the four-dimensional connection functions, and the
time derivative (2.20), since for βi = 0 we have Lβ = 0 and hence d

dt = ∂t
(both used in calculating the backreaction terms). It also simplifies (1.20)
relating the four velocity and the Eulerian three velocity, the latter of which
is output from the ET. In addition, adopting a zero shift affects the way
we raise and lower indices of four-dimensional objects, i.e. for the spatial
components of the four velocity,

ui = giµu
µ, (2.177)

= gi0u
0 + giju

j , (2.178)

= giju
j . (2.179)

Periodic boundary conditions are implemented in our approximation of
spatial derivatives only, and are the most reasonable choice for cosmologi-
cal simulations without needing to simulate the entire past light cone of an
observer.

In MESCALINE we assume the matter content is dust (P = 0) in relating
densities ρ and ρ0 measured in the normal frame and fluid rest-frame, re-
spectively, and in calculating the momentum density, Si, for the momentum
constraint violation. However, since GRHydro is not equipped for P = 0,
we instead use P � ρ in the simulations themselves (see Section 2.2.5),
which we found to be sufficient to match the dust evolution for FLRW and
small perturbations to this background (see Chapter 3).
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Chapter 3

Inhomogeneous cosmology
with numerical relativity

Published in:
Macpherson, Lasky, and Price (2017). Physical Review D, 95.6, 064028.

Abstract

We perform three-dimensional numerical relativity simulations of homo-
geneous and inhomogeneous expanding spacetimes, with a view towards
quantifying non-linear effects from cosmological inhomogeneities. We demon-
strate fourth-order convergence with errors less than one part in 106 in
evolving a flat, dust Friedmann-Lemaître-Roberston-Walker (FLRW) space-
time using the EINSTEIN TOOLKIT within the CACTUS framework. We also
demonstrate agreement to within one part in 103 between the numerical
relativity solution and the linear solution for density, velocity and metric
perturbations in the Hubble flow over a factor of ∼ 350 change in scale
factor (redshift). We simulate the growth of linear perturbations into the
non-linear regime, where effects such as gravitational slip and tensor per-
turbations appear. We therefore show that numerical relativity is a viable
tool for investigating nonlinear effects in cosmology.

A note on notation

We have altered the notation throughout this chapter, including Appendix A,
to be consistent with Chapters 1 and 2, unless explicitly stated otherwise.
For these exceptions, we maintain the notation of the publication for consis-
tency with figures in their published form. Aside from these changes, this
chapter is consistent with the accepted version of Macpherson, Lasky, and
Price (2017).
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3.1 Introduction

Modern cosmology relies on the cosmological principle — that the Universe
is sufficiently homogeneous and isotropic on large scales to be described by
a Friedmann-Lemaître-Robertson-Walker (FLRW) model. Cosmological N-
body simulations (e.g. Genel et al., 2014; Springel et al., 2005; Kim et al.,
2011) encode these assumptions by prescribing the expansion to be that of
the FLRW model, governed by the Friedmann equations, while employing
a Newtonian approximation for gravity.

The transition to cosmic homogeneity begins on scales∼ 80h−1 Mpc e.g.
Yadav, Bagla, and Khandai, 2010; Scrimgeour et al., 2012, but is inhomoge-
neous and anisotropic on smaller scales. Upcoming cosmological surveys
utilising Euclid, the Square Kilometre Array (SKA) and the Large Synop-
tic Survey Telescope (LSST) (Amendola, Appleby, Avgoustidis, et al., 2016;
Maartens et al., 2015; Ivezic, Tyson, Abel, et al., 2008) will reach a precision
at which nonlinear General-Relativistic effects from these inhomogeneities
could be important. A more extreme hypothesis (Räsänen, 2004; Kolb et
al., 2005; Kolb, Matarrese, and Riotto, 2006; Notari, 2006; Räsänen, 2006b;
Räsänen, 2006a; Li and Schwarz, 2007; Li and Schwarz, 2008; Larena et al.,
2009; Buchert et al., 2015; Green and Wald, 2016; Bolejko and Lasky, 2008) is
that such inhomogeneities may provide an alternative explanation for the
accelerating expansion of the Universe, via backreaction (see Buchert, 2008;
Buchert and Räsänen, 2012, for a review), replacing the role assigned to
dark energy in the standard ΛCDM model (Riess et al., 1998; Perlmutter
et al., 1999; Parkinson et al., 2012; Samushia et al., 2013).

Quantifying the General-Relativistic effects associated with nonlinear
structures ultimately requires solving Einstein’s equations. Post-Newtonian
approximations are a worthwhile approach (Matarrese and Terranova, 1996;
Räsänen, 2010; Green and Wald, 2011; Green and Wald, 2012; Adamek et al.,
2013; Adamek et al., 2016b; Adamek et al., 2016a; Sanghai and Clifton, 2015;
Oliynyk, 2014; Noh and Hwang, 2004), however the validity of these must
be checked against a more precise solution since the density perturbations
themselves are highly nonlinear.

An alternative approach is to use numerical relativity, which has en-
joyed tremendous success over the past decade (Pretorius, 2005a; Campan-
elli et al., 2006; Baker et al., 2006).

Cosmological modelling with numerical relativity began with evolu-
tions of planar and spherically symmetric spacetimes using the Arnowitt-
Deser-Misner (ADM) formalism (Arnowitt, Deser, and Misner, 1959), in-
cluding Kasner and matter-filled spacetimes (Centrella and Matzner, 1979),
the propagation and collision of gravitational wave perturbations (Cen-
trella, 1980; Centrella and Matzner, 1982) and linearised perturbations to a
homogeneous spacetime (Centrella and Wilson, 1983; Centrella and Wilson,
1984). More recent work has continued to include symmetries to simplify
the numerical calculations (e.g. Rekier, Cordero-Carrión, and Füzfa, 2015;
Torres et al., 2014).

Simulations free of these symmetries have only emerged within the last
year. Giblin, Mertens, and Starkman (2016a) studied the evolution of small
perturbations to an FLRW spacetime, exploring observational implications
in (Giblin, Mertens, and Starkman, 2016b). Bentivegna and Bruni (2016)
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showed differential expansion in an inhomogeneous universe, and quan-
tified the backreaction parameter from (Buchert, 2000) for a single mode
perturbation. These works all indicate that the effects of nonlinear inhomo-
geneities may be significant.

In this work, we perform a feasibility study of numerical solutions to
the full Einstein equations for inhomogeneous cosmologies by simulating
the growth of structure in a model three-dimensional universe and com-
paring to known analytic solutions. Our approach is similar to Giblin,
Mertens, and Starkman (2016a), Bentivegna and Bruni (2016), and Giblin,
Mertens, and Starkman (2016b), with differences in the generation of initial
conditions and numerical methods. We use the freely-available EINSTEIN

TOOLKIT, based on the CACTUS infrastructure (Löffler et al., 2012; Zilhão
and Löffler, 2013). We benchmark our three-dimensional numerical imple-
mentation on two analytic solutions of Einstein’s equations relevant to cos-
mology: FLRW spacetime and the growth of linear perturbations. We also
present the growth of perturbations into the nonlinear regime, and analyse
the resulting gravitational slip (Daniel et al., 2008; Daniel et al., 2009) and
tensor perturbations.

In Section 3.2 we describe our numerical methods, including choices of
gauge (3.2.1) and an overview of the derivations of the linearly perturbed
Einstein equations used for our initial conditions (3.2.2). In Section 3.3 we
describe the setup (3.3.1) and results (3.3.2) of our evolutions of a flat, dust
FLRW universe. The derivation of initial conditions for linear perturba-
tions to the FLRW model are described in 3.4.1, with results presented in
3.4.2. The growth of the perturbations to nonlinear amplitude is presented
in 3.5, with analysis of results and higher order effects in 3.5.1 and 3.5.2 re-
spectively. In this chapter, we adopt geometric units with G = c = 1, Greek
indices run from 0 to 3 while Latin indices run from 1 to 3, with repeated
indices implying summation.

3.2 Numerical Method

We integrate Einstein’s equations with the EINSTEIN TOOLKIT, a free, open-
source code for numerical relativity (Löffler et al., 2012). This utilises the
CACTUS infrastructure, consisting of a central core, or “flesh”, with appli-
cation modules called “thorns” that communicate with this flesh (Goodale
et al., 2003). The EINSTEIN TOOLKIT is a collection of thorns for com-
putational relativity, used extensively for simulations of binary neutron
star and black hole mergers (e.g Kastaun and Galeazzi, 2015; Radice, Rez-
zolla, and Galeazzi, 2015; Baiotti et al., 2005). Numerical cosmology with
the EINSTEIN TOOLKIT is a new field (Bentivegna and Bruni, 2016). We
use the McLachlan code (Brown et al., 2009) to evolve spacetime using
the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formalism (Shibata and
Nakamura, 1995; Baumgarte and Shapiro, 1999), and the GRHydro code
to evolve the hydrodynamical system (Baiotti et al., 2005; Giacomazzo and
Rezzolla, 2007; Mösta et al., 2014); a new setup for cosmology with the EIN-
STEIN TOOLKIT.

We use the fourth-order Runge-Kutta method, adopt the Marquina Rie-
mann solver and use the piecewise parabolic method for reconstruction
on cell interfaces. GRHydro is globally second order in space due to the
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coupling of hydrodynamics to the spacetime (Hawke, Löffler, and Nerozzi,
2005; Mösta et al., 2014). We therefore expect fourth-order convergence of
our numerical solutions for the spatially homogeneous FLRW model. Once
perturbations are introduced to this model we expect our solutions to be
second-order accurate.

We have developed a new thorn, FLRWSolver, to initialise an FLRW
cosmological setup with optional linear perturbations. We evolve our sim-
ulations in a cubic domain on a uniform grid with periodic boundary con-
ditions with xi in [-240,240]. Our domain sizes are 203, 403 and 803, respec-
tively using 70 (8 cores), 380 (8 cores) and 790 (16 cores) CPU hours.

3.2.1 Gauge

The gauge choice corresponds to a choice of the lapse function, α, and shift
vector, βi. The metric written in the (3 + 1) formalism is

ds2 = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt), (3.1)

where γij is the spatial metric. Previous cosmological simulations with
numerical relativity adopt the synchronous gauge, corresponding to α =
1, βi = 0 (Giblin, Mertens, and Starkman, 2016a; Bentivegna and Bruni,
2016). We instead utilise the general spacetime foliation of Bona et al. (1995),

∂tα = −α2 f(α)K, (3.2)

where f(α) > 0 is an arbitrary function, and K = γijKij . We set the shift
vector βi = 0. Harmonic slicing uses f = const., while f = 1/α corresponds
to the “1+log” slicing common in black hole binary simulations. We choose
f = 0.25 to maintain the stability of our evolutions, as in Torres et al. (2014).
This allows for longer evolutions for the same computational time, com-
pared to “1+log” slicing, due to the increased rate of change of the lapse.
We adopt this gauge for numerical convenience, and acknowledge possible
alternative methods include using synchronous gauge with adaptive time-
stepping.

We use (3.2) for evolution only. We scale to the gauge described in the
next section for analysis.

3.2.2 Perturbative Initial Conditions

Bardeen’s formalism of cosmological perturbations (Bardeen, 1980) was de-
veloped with the intention to connect metric perturbations to physical per-
turbations in the Universe. This connection is made clear by defining the
perturbations as gauge-invariant quantities in the longitudinal gauge.

The general line element of a perturbed, flat FLRW universe, including
scalar (Φ,Ψ), vector (Bi) and tensor (hij) perturbations takes the form

ds2 = a2(η)[−(1 + 2Ψ)dη2 − 2Bidx
idη

+ (1− 2Φ)δijdx
i dxj + hijdx

i dxj ],
(3.3)

where η is conformal time, a(η) is the FLRW scale factor and δij is the iden-
tity matrix. We derive initial conditions from the linearly perturbed Ein-
stein equations, implying negligible vector and tensor perturbations (Adamek
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et al., 2013). This is valid as long as our simulations begin at sufficiently
high redshift that the Universe may be approximated by an FLRW model
with small perturbations. Considering only scalar perturbations the metric
becomes

ds2 = a2(η)[−(1 + 2Ψ)dη2 + (1− 2Φ)δijdx
idxj ], (3.4)

where Φ and Ψ here coincide with Bardeen’s gauge-invariant scalar poten-
tials1 (Bardeen, 1980). Here we see that Ψ, the Newtonian potential, will
largely influence the motion of non-relativistic particles; where the time-
time component of the metric dominates the motion. The Newtonian po-
tential plays the dominant role in galaxy clustering. Relativistic particles
will also be affected by the curvature potential Φ, and so both potentials
influence effects such as gravitational lensing (Bertschinger, 2011; Bardeen,
1980).

The metric perturbations are coupled to perturbations in the matter dis-
tribution via the stress-energy tensor. We approximate the homogeneous
and isotropic background as a perfect fluid in thermodynamic equilibrium,
giving

Tµν = (ρ+ P )uµuν + P gµν , (3.5)

where ρ is the total energy density2, P is the pressure and uµ is the four-
velocity of the fluid. We assume a dust universe, implying negligible pres-
sure (P � ρ), and we solve the perturbed Einstein equations,

δGµν = 8π δTµν , (3.6)

using linear perturbation theory. From the time-time, time-space, trace and
trace free components of (3.6), we obtain the following system of equations
(Sachs and Wolfe, 1967; Adamek et al., 2013)

∂2Φ− 3H
(
Φ′ +HΨ

)
= 4πρ̄ δa2, (3.7a)

H∂iΨ + ∂iΦ
′ = −4πρ̄ a2δijδv

j , (3.7b)

Φ′′ +H
(
Ψ′ + 2Φ′

)
=

1

3
∂2(Φ−Ψ), (3.7c)

∂〈i∂j〉 (Φ−Ψ) = 0. (3.7d)

Here H ≡ a′/a is the Hubble parameter, ∂i ≡ ∂/∂xi, ∂2 ≡ ∂i∂i, ∂〈i∂j〉 ≡
∂i∂j−1/3 δij∂

2, and ′ represents a derivative with respect to conformal time,
η. The quantity |Φ−Ψ| is known as the gravitational slip (Daniel et al., 2008;
Daniel et al., 2009; Bertschinger, 2011), which is zero in the linear regime
and in the absence of anisotropic stress. At higher orders in perturbation
theory, the gravitational slip is non-zero, and Φ 6= Ψ (see e.g. Ballesteros
et al., 2012).

1These perturbations are equivalent to φ and ψ used in Chapter 1 and Section 2.2.4.
2The energy-density ρ used throughout this Chapter is the total rest-frame energy-density,

and is equivalent to ρR used in Chapters 1 and 2.



78 Chapter 3. Inhomogeneous cosmology with numerical relativity

We perturb the density and coordinate three velocity3 by making the
substitutions

ρ = ρ̄ (1 + δ), (3.8a)

vi = δvi, (3.8b)

where ρ̄ represents the background FLRW density, and v̄i = 0. We de-
rive the relativistic fluid equations from the components of the energy-
momentum conservation law,

∇αT α
µ = 0, (3.9)

where ∇α is the covariant derivative associated with the 4-metric. The re-
sulting continuity and Euler equations are,

∂tδ = 3∂tΦ− ∂ivi, (3.10a)

Hvi + ∂tv
i = −∂iΨ. (3.10b)
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FIGURE 3.1: Comparison between our numerical simula-
tions (magenta) and the exact solutions (black) for a dust
FLRW universe. Top: evolution of the scale factor, a (left)
and the density, ρ (right), relative to their initial values ainit
and ρinit, as a function of conformal time η. Bottom: errors
in the FLRW scale factor (left) and density (right) at domain

sizes 203, 403 and 803.

3.3 FLRW spacetime

We test our thorn FLRWSolver together with the EINSTEIN TOOLKIT on
two analytic solutions to Einstein’s equations relevant to cosmology. Our
first and simplest test is the flat, dust FLRW model. Here we initialise
a homogeneous and isotropic matter distribution and spatial metric, and
evolve in the gauge outlined in Section 3.2.1. While the EINSTEIN TOOLKIT

3The velocity used throughout this Chapter is vi ≡ dxi/dt, which differs from the veloc-
ity used in Chapter 2 via (2.137).
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straint (right). N refers to the number of grid points along
one spatial dimension. Filled circles indicate data points
from our simulations, dashed lines join these points, and

black solid lines indicate the expected N−4 convergence.

has been previously tested on FLRW and Kasner cosmologies (Löffler et
al., 2012; Vulcanov and Alcubierre, 2002), this is an important first test of
FLRWSolver and its interaction with the evolution thorns.

3.3.1 Setup

The line element for a spatially homogeneous and isotropic FLRW space-
time is given by

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2

(
dθ2 + sin2θdφ2

)]
, (3.11)

where k = −1, 0, 1 if the universe is open, flat or closed respectively. As-
suming homogeneity and isotropy Einstein’s equations reduce to the Fried-
mann equations (Friedmann, 1922; Friedmann, 1924),(

a′

a

)2

=
8πρ a2

3
− k, (3.12a)

ρ′ = −3
a′

a
(ρ+ P ) . (3.12b)

In the remainder of this chapter we assume a flat spatial geometry, sup-
ported by combined Planck and Baryon Acoustic Oscillation data (Planck
Collaboration et al., 2016). The flat (k = 0), dust (P � ρ) solution to (3.12)
is

a

ainit
= ξ2,

ρ

ρinit
= ξ−6, (3.13)

where ainit, ρinit are the values of a, ρ at η = 0 respectively, and we have
introduced the scaled conformal time coordinate

ξ ≡ 1 +

√
2πρ∗

3ainit
η, (3.14)
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where ρ∗ = ρ a3 is the conserved (constant) comoving density for an FLRW
universe. The familiar t̂2/3 solution for the scale factor arises in the Newto-
nian gauge with ds2 = −dt̂2 + γijdx

idxj (for a flat spacetime; see Appendix
A).

We initialise a homogeneous and isotropic matter distribution by speci-
fying constant density ρinit = 10−8 and zero velocity in FLRWSolver, with
ainit = 1. The EINSTEIN TOOLKIT then initialises the stress-energy ten-
sor, coupled to our homogeneous and isotropic spacetime, characterised
by the spatial metric, γij = a2(η)δij , and extrinsic curvature, also set in
FLRWSolver. We define the extrinsic curvature via the relation

d

dt
γij = −2αKij , (3.15)

where d/dt ≡ ∂/∂t − Lβ , and Lβ is the Lie derivative with respect to the
shift vector. Since we choose βi = 0, we have d/dt = ∂/∂t. The extrinsic
curvature for our FLRW setup is therefore

Kij = −∂t(a)a

α
δij . (3.16)

We evolve the system until the domain volume has increased by one mil-
lion, corresponding to a change in redshift of ∼ 100.

To analyse our results we scale the time from the metric (3.1) to the lon-
gitudinal gauge (3.4) using the coordinate transform t = t(η). This gives

dt

dη
=
a(η)

α(t)
, (3.17)

which we integrate to find the scaled conformal time in terms of t to be

ξ(t) =

(√
6πρinit

∫
α(t) dt+ 1

)1/3

, (3.18)

where we numerically integrate the lapse function α using the trapezoidal
rule. This coordinate transformation allows us to simulate longer evolu-
tions for less computational time, while still performing our analysis in the
longitudinal gauge to extract physically meaningful results.

3.3.2 Results

Figure 3.1 compares our numerical relativity solutions with the exact so-
lutions to the Friedmann equations. The top panels show the time evo-
lution of a and ρ (dashed magenta curves) relative to their initial values,
which may be compared to the exact solutions, aFLRW and ρFLRW (black
solid curves). The bottom panels show the residuals in our numerical so-
lutions at resolutions of 203, 403 and 803. The error can be seen to decrease
when the spatial resolution is increased. The increase in spatial resolution
causes the time step to decrease via the Courant condition. To quantify this,
we compute the L1 error, given by (e.g. for the scale factor)

L1(a) =
1

n

n∑
i=1

∣∣∣∣ a

aFLRW
− 1

∣∣∣∣ , (3.19)
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where n is the total number of time steps. As outlined in Section 3.2, we
expect fourth-order convergence due to the spatial homogeneity. Figure 3.2
demonstrates this is true for the scale factor (left), density (middle) and the
Hamiltonian constraint (right),

H ≡ R+K2 −KijK
ij − 16πρ = 0, (3.20)

where R is the 3-Riemann scalar and K = γijKij
4. For the FLRW model

this reduces to the first Friedmann equation (3.12a).
The results of this test demonstrate that the EINSTEIN TOOLKIT, in con-

junction with our initial-condition thorn FLRWSolver, produces agreement
with the exact solution for a flat, dust FLRW spacetime, with relative errors
less than 10−6, even at low spatial resolution (803).
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FIGURE 3.3: Comparison between our numerical relativity
solutions and exact solutions for the linear perturbations to
a dust FLRW model. We show the conformal time (η) evo-
lution of the fractional density perturbation (top left) and
the velocity perturbation (top right) computed from one-
dimensional slices along the x axis of our domain. Bottom:

relative errors for calculations at 203, 403 and 803.

3.4 Linear Perturbations

For our second test we introduce small perturbations to the FLRW model.
The evolution of these perturbations in the linear regime can be found by
solving the system of equations (3.7). We use these solutions (derived be-
low) to set the initial conditions.

3.4.1 Setup

In the absence of anisotropic stress we have Ψ = Φ. Equation (3.7c) then
becomes purely a function of Φ and the FLRW scale factor a. Solving this

4The density in (3.20) is technically the density observed in the normal frame, equivalent
to ρ in Chapter 2. However, for dust in FLRW and linear perturbation theory, we have
ρ = ρR, see (2.74).
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convergence.

gives

Φ = f(xi)− g(xi)

5 ξ5
, (3.21)

where f, g are functions of only the spatial coordinates. We substitute (3.21)
into the Hamiltonian constraint, Equation (3.7a), to give the fractional den-
sity perturbation δ ≡ δρ/ρ̄, in the form

δ = C1 ξ
2 ∂2f(xi)− 2 f(xi)

− C2 ξ
−3 ∂2g(xi)− 3

5
ξ−5g(xi),

(3.22)

where we have defined

C1 ≡
ainit

4πρ∗
, C2 ≡

ainit

20πρ∗
. (3.23)

Using the momentum constraint, Equation (3.7b), the velocity perturbation
δvi is therefore

δvi = C3 ξ ∂
if(xi) +

3

10
C3 ξ

−4 ∂ig(xi) (3.24)

where we have

C3 ≡ −
√
ainit

6πρ∗
. (3.25)

Equation (3.22) demonstrates both a growing and decaying mode for the
density perturbation (Bardeen, 1980; Mukhanov, Feldman, and Branden-
berger, 1992). We set g(xi) = 0 to extract only the growing mode, giving
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Φ = f(xi), (3.26a)

δ = C1 ξ
2 ∂2f(xi)− 2 f(xi), (3.26b)

δvi = C3 ξ ∂
if(xi), (3.26c)

from which we set our initial conditions. We choose

Φ = Φ0

3∑
i=1

sin

(
2πxi

L

)
, (3.27)

where L is the length of one side of our computational domain. We require
the amplitude Φ0 � 1 so that our assumptions of linearity are valid, and so
we set Φ0 = 10−8. This choice then sets the form of our density and velocity
perturbations, as per (3.26b) and (3.26c). At η = 0 (ξ = 1) these are,

δ = −
[(

2π

L

)2

C1 + 2

]
Φ0

3∑
i=1

sin

(
2πxi

L

)
, (3.28)

δvi =
2πC3

L
Φ0cos

(
2πxi

L

)
, (3.29)

and the choice of Φ0 results in amplitudes of δ ∼ 10−5 and δvi ∼ 10−7.
We set these matter perturbations in FLRWSolver, implementing negligi-
ble pressure and again using (3.15) to define the extrinsic curvature. For a
linearly perturbed FLRW spacetime with Ψ = Φ and Φ′ = 0 we have

Kij = −∂t(a)a

α
(1− 2Φ)δij . (3.30)

We evolve these perturbations in the harmonic gauge until the volume of
the domain has increased by 125 million, (∆a)3 ∼ 1.25×108, corresponding
to a factor of 500 change in redshift.

3.4.2 Results

Dashed magenta curves in Figure 3.3 show the conformal time evolution
of the fractional density perturbation, δ ≡ δρ/ρ̄ (top left), and the velocity
perturbation, δv (top right). Solid black curves show the solutions (3.26b)
for δexact and (3.26c) for δvexact. Bottom panels show the relative errors
for three different resolutions. Figure 3.4 shows the L1 error as a function
of resolution, demonstrating the expected second-order convergence. Fig-
ure 3.5 shows the Hamiltonian (top), and momentum (bottom) constraints
as a function of conformal time at our three chosen resolutions. The Hamil-
tonian constraint was defined in Equation (3.20). For our linearly perturbed
FLRW spacetime this reduces to Equation (3.7a). The momentum constraint
is

Mi ≡ DjK
j
i −DiK − Si = 0, (3.31)

where Dj is the covariant derivative associated with the 3-metric, and the
matter source Si = −γiαnβTαβ , with nβ the normal vector (Baumgarte and
Shapiro, 1999). For linear perturbations this constraint reduces to Equation
(3.7b).
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constraints in a linearly perturbed FLRW spacetime. We
show evolution over conformal time η at resolutions 203,

403 and 803.

Figure 3.5 shows a better preservation of the Hamiltonian constraint
with increasing resolution. The momentum constraint shows the opposite.
We attribute this to the momentum constraint being preserved to of order
the roundoff error, which will become larger with an increase in resolution.
Even at the highest resolution the momentum constraint is preserved to
within 10−15.

This second test has demonstrated a match to within ∼ 10−3 of our nu-
merical relativity solutions to the exact solutions for the linear growth of
perturbations, while exhibiting the expected second-order convergence.

3.5 Nonlinear evolution

In order to evolve our perturbations to nonlinear amplitude in a reason-
able computational time, we increase the size of our initial perturbations
to Φ0 = 10−6, which in turn gives δ ∼ 10−3 and δvi ∼ 10−5. The linear
approximation remains valid.

We choose the starting redshift to be that of the cosmic microwave back-
ground (CMB). That is, we set z = 1000, such that our initial density pertur-
bation is roughly consistent with the amplitude of temperature fluctuations
in the CMB (∼ 10−5) (Bennett et al., 2013). We emphasise that this redshift,
and all redshifts shown in figures, should not be taken literally; its purpose
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of the one-dimensional slices shown in Figure 3.6.

is to assign an approximate change in redshift, calculated directly from the
FLRW scale factor.

3.5.1 Results

Figure 3.6 shows a series of one-dimensional slices through the origin of the
y and z axes at four different times. Dashed magenta curves show solutions
for the density (top row) and velocity (bottom row) perturbations, which
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may be compared to the black solid curves showing the analytic solutions
for linear perturbations. At η = 0 and η = 1.9 × 104 (first and second
columns respectively) the solutions are linear, while at η = 6.2 × 104 (third
column) both the density and velocity perturbations deviate from linear
theory. The perturbations are nonlinear at η = 1.3 × 105 (fourth column)
where matter collapses towards the overdensity, indicated by the shift in
the maximum velocity.

The final column shows an apparent decrease in the average density.
This is simply an artefact of taking a one-dimensional slice through a three-
dimensional box. Figure 3.7 shows the column-density perturbation, δcol,
computed by integrating the density perturbation along the z axis. Panels
show η = 0 and η = 1.3×105 respectively. The right panel shows an increase
of ∼ 3000 times in the column-density perturbation at x, y ≈ −120, 120. A
corresponding void can be seen in the lower right of Figure 3.7, explaining
the underdensity along the y axis seen in the final column of Figure 3.6.

Figure 3.8 shows the maximum value of the density (left) and velocity
(right) perturbations as a function of time. Dashed magenta curves show
the numerical solutions, which may be compared to the black curves show-
ing the linear analytic solutions. Perturbations can be seen to deviate from
the linear approximation at η ≈ 3 × 104, when δρ/ρ̄ ≈ 0.1. At η ≈ 105,
the maximum of the density and velocity perturbations have respectively
grown 25 and 2 times larger than the linear solutions.

3.5.2 Gravitational slip and tensor perturbations

Gravitational slip is defined as the difference between the two potentials Φ
and Ψ (Daniel et al., 2008; Daniel et al., 2009), which is zero in the linear
regime, see equation (3.7d), but nonzero in the nonlinear regime (see e.g.
Ballesteros et al., 2012).

We reconstruct Φ and Ψ from the metric components, although we note
the interpretation of these potentials becomes unclear in the nonlinear regime.
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From (3.3) the spatial metric is

γij = a2 [(1− 2Φ)δij + hij ] , (3.32)

and we adopt the traceless gauge condition δijhij = 0 (Green and Wald,
2012; Adamek et al., 2013). The potential Φ is then

Φ =
1

2

(
1− δijγij

3 a2

)
, (3.33)

which holds for all times the metric (3.3) applies. The potential Ψ is more
complicated: our gauge choice implies lapse evolution according to (3.2),
where we have set f(α) = 1/4, and

K = −3
∂ta

aα
, (3.34)

in the linear regime, which gives

∂tα =
3

4

∂t(a)α

a
. (3.35)

Integrating this results in a lapse evolution of

α

αinit
= D(xi)

(
a

ainit

)3/4

, (3.36)

where D(xi) is a function of our spatial coordinates. According to the met-
ric (3.4), and with αinit = ainit = 1 this implies

α =
√

1 + 2Ψ a3/4, (3.37)

from which we reconstruct the potential Ψ to be

Ψ =
1

2

[( α

a3/4

)2
− 1

]
, (3.38)

valid in the linear regime. Our gauge choice βi = 0 implies that in the
nonlinear regime we expect additional modes to be present in this recon-
struction of Ψ.

We use an FLRW simulation for the scale factor a in (3.33) and (3.38),
from which we calculate the gravitational slip |Φ − Ψ|. This is potentially
problematic once the perturbations become nonlinear, as the gauges of the
two simulations will differ. Figure 3.9 shows one-dimensional slices of the
gravitational slip at the same times as was shown in Figure 3.6. Dashed
curves show the numerical results, with black lines showing the linear solu-
tion; zero gravitational slip. In the fourth panel (η = 1.3×105) we see a posi-
tive shift of the gravitational slip to≈ 4×10−6 for this one-dimensional slice,
with the maximum value in the three-dimensional domain being 6.5×10−6

at this time. The Newtonian potential Ψ has a positive average value at
η = 1.3 × 105, due to the majority of the domain being underdense (see
Figure 3.7), and the potential Φ takes a negative average value. This can be
interpreted as an overall positive contribution to the expansion, from the
metric (3.3).
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Relativistic corrections to one-dimensional N-body simulations in (Adamek
et al., 2013) resulted in a gravitational slip of 4 × 10−6. We show a gravi-
tational slip of the same amplitude, including the full effects of General
Relativity in a three-dimensional simulation, for a time when our density
perturbation is comparable in size to that of Adamek et al. (2013). Gravita-
tional slip is a measurable effect that can be quantified by combining weak
gravitational lensing and galaxy clustering (Bertschinger, 2011). Our sim-
ulations show tentative evidence for the importance of gravitational slip
due to nonlinear gravitational effects. However, robust predictions require
higher resolution simulations with more realistic initial conditions.

In our initial conditions we neglected vector and tensor perturbations
in the perturbed FLRW metric (3.3), since in the linear regime the scalar
perturbations dominate. These higher order perturbations appear in the
nonlinear regime. The tensor perturbation can be extracted from the off-
diagonal, spatial components of the metric,

γij = a2hij for i 6= j, (3.39)

however, details of these tensor modes may be dependent on the choice of
gauge. We calculate hij using the value of a as per the scalar perturbations.

Figure 3.10 shows a two-dimensional cross-section of the xy component
of the tensor perturbation hij . All other components are identical. The
cross-section is shown at η = 1.3× 105, corresponding to the right panel of
Figures 3.6, 3.7 and 3.9. While the maximum amplitude of the tensor pertur-
bation is small (∼ 2× 10−6), an asymmetry develops in hxy, corresponding
to the location of the overdensity in Figure 3.7. We also see a diffusion of
the tensor perturbation in the void, indicating the beginning of growth of
higher order perturbations.
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FIGURE 3.10: Two-dimensional slice of the xy component of
the tensor perturbation hij at η = 1.3× 105. We use (3.39) to
calculate hxy using the off-diagonal metric component gxy .
All quantities are shown in code units for our 403 simula-

tion.

3.6 Discussion and Conclusions

We have demonstrated the feasibility of inhomogeneous cosmological sim-
ulations in full General Relativity using the EINSTEIN TOOLKIT. The overall
approach is similar to other recent attempts (Giblin, Mertens, and Stark-
man, 2016a; Bentivegna and Bruni, 2016), with the main difference being
in the construction of initial conditions which allows us to simulate a pure
growing mode, instead of a mix of growing and decaying modes (see Dav-
erio, Dirian, and Mitsou, 2017). We also use a different code to (Giblin,
Mertens, and Starkman, 2016a), allowing for independent verification. As
with the other studies we were able to demonstrate the evolution of a den-
sity perturbation into the nonlinear regime.

As this is a preliminary study, we have focused on the numerical ac-
curacy and convergence, rather than a detailed investigation of physical
effects such as backreaction. Our main conclusions are:

1. We demonstrate fourth-order convergence of the numerical solution
to the exact solution for a flat, dust FLRW universe with errors∼ 10−5

even at low spatial resolution (403).

2. We demonstrate second-order convergence of the numerical solutions
for the growth of linear perturbations, matching the analytic solutions
for the cosmic evolution of density, velocity and metric perturbations
to within ∼ 10−3.
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3. We show that numerical relativity can successfully be used to follow
the formation of cosmological structures into the nonlinear regime.
We demonstrate the appearance of non-zero gravitational slip and
tensor modes once perturbations are nonlinear with amplitudes of
∼ 4× 10−6 and ∼ 2× 10−6 respectively.

The main limitation to our study is that we have employed only low-
resolution simulations compared to current Newtonian N-body cosmologi-
cal simulations (e.g. Genel et al., 2014; Springel et al., 2005; Kim et al., 2011),
and used only simple initial conditions rather than a more realistic spec-
trum of perturbations (but see Giblin, Mertens, and Starkman, 2016a). Rep-
resenting the density field on a grid means our simulations are limited by
the formation of shell-crossing singularities. The relative computational ex-
pense means that General-Relativistic simulations are unlikely to replace
the Newtonian approach in the near future. However, they are an impor-
tant check on the accuracy of the approximations employed.
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Einstein’s Universe:
Cosmological structure
formation in numerical
relativity

Published in:
Macpherson, Price, and Lasky (2019). Physical Review D, 99.6, 063522.

Abstract

We perform large-scale cosmological simulations that solve Einstein’s equa-
tions directly via numerical relativity. Starting with initial conditions sam-
pled from the cosmic microwave background, we track the emergence of a
cosmic web without the need for a background cosmology. We measure the
backreaction of large-scale structure on the evolution of averaged quantities
in a matter-dominated universe. Although our results are preliminary, we
find the global backreaction energy density is of order 10−8 compared to the
energy density of matter in our simulations, and is thus unlikely to explain
accelerating expansion under our assumptions. Sampling scales above the
homogeneity scale of the Universe (100−180h−1Mpc), in our chosen gauge,
we find 2− 3% variations in local spatial curvature.

A note on notation

We have altered the notation throughout this chapter, including Appen-
dices B, C, D, and E, to be consistent with Chapters 1 and 2, unless ex-
plicitly stated otherwise. For these exceptions, we maintain the notation of
the publication for consistency with figures in their published form. Aside
from these changes, this chapter is consistent with the accepted version of
Macpherson, Price, and Lasky (2019).
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4.1 Introduction

Modern cosmology derives from the Friedmann-Lemaître-Robertson-Walker
(FLRW) metric — an exact solution to Einstein’s equations that assumes
homogeneity and isotropy. The formation of cosmological structure means
that the Universe is neither homogeneous nor isotropic on small scales. The
Lambda Cold Dark Matter (ΛCDM) model assumes the FLRW metric, and
has been the leading cosmological model since the discovery of the acceler-
ating expansion of the Universe (Riess et al., 1998; Perlmutter et al., 1999).
Since then it has had many successful predictions, including the location of
the baryon acoustic peak (e.g. Kovac et al., 2002; Eisenstein et al., 2005; Cole
et al., 2005; Blake et al., 2011; Ata et al., 2018), the polarisation of the cosmic
microwave background (CMB) (Planck Collaboration et al., 2016; Hinshaw
et al., 2013), galaxy clustering, and gravitational lensing (e.g. Bonvin et al.,
2017; Hildebrandt et al., 2017; DES Collaboration et al., 2017). Despite these
successes, tensions with observations have arisen. Most notable is the re-
cent 3.8σ tension between measurements of the Hubble parameter, H0, lo-
cally (Riess et al., 2018a) and the value inferred from the CMB under ΛCDM
(Planck Collaboration et al., 2016).

The assumptions underlying the standard cosmological model are based
on observations that our Universe is, on average, homogeneous and isotropic.
However, the averaged evolution of an inhomogeneous universe does not
coincide with the evolution of a homogeneous universe (Buchert and Ehlers,
1997; Buchert, 2000). Additional “backreaction” terms exist, but their sig-
nificance has been debated (e.g. Räsänen, 2006b; Räsänen, 2006a; Li and
Schwarz, 2007; Li and Schwarz, 2008; Larena et al., 2009; Clarkson and
Umeh, 2011; Wiltshire, 2011; Wiegand and Schwarz, 2012; Green and Wald,
2012; Buchert and Räsänen, 2012; Green and Wald, 2014; Buchert et al.,
2015; Green and Wald, 2016; Bolejko and Korzyński, 2017; Roukema, 2018;
Kaiser, 2017; Buchert, 2018).

State-of-the-art cosmological simulations currently employ the FLRW
solution coupled with a Newtonian approximation for gravity (Springel
et al., 2005; Kim et al., 2011; Genel et al., 2014). These simulations have
proven extremely valuable to furthering our understanding of the Uni-
verse. However, General-Relativistic effects on our observations cannot be
fully studied when the formation of large-scale structure has no effect on
the surrounding spacetime. Whether or not these effects are significant can
only be tested with numerical relativity, which allows us to fully remove
the assumptions of homogeneity and isotropy. Initial works have shown
emerging relativistic effects such as differential expansion (Bentivegna and
Bruni, 2016), variations in proper length and luminosity distance relative to
FLRW (Giblin, Mertens, and Starkman, 2016a; Giblin, Mertens, and Stark-
man, 2016b), and the emergence of tensor modes and gravitational slip
(Macpherson, Lasky, and Price, 2017). A comparison between Newtonian
and fully General-Relativistic simulations found sub-percent differences in
the weak-field regime (East, Wojtak, and Abel, 2018), in agreement with
post-Friedmannian N-body calculations (Adamek et al., 2013; Adamek, Dur-
rer, and Kunz, 2014).

In this work, we present cosmological simulations with numerical rela-
tivity, using realistic initial conditions, evolved over the entire history of the
Universe. Here we use a fluid approximation for dark matter, however, this
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is one more step along the road to fully relativistic cosmological N-body cal-
culations. We focus on the global backreaction of cosmological structures
on averaged quantities, including the matter, curvature, and backreaction
energy densities, and how these averages vary as a function of physical
size of the averaging domain. We test the global and local effects on the
expansion rate, including the potential for backreaction to contribute to the
accelerating expansion of the Universe. In a companion paper we examine
whether local variations in the Hubble expansion rate can explain the dis-
crepancy between local and global measurements of the Hubble constant
(see Macpherson, Lasky, and Price, 2018, and Chapter 5).

In Section 4.2 we describe our computational setup, in Section 4.3 we de-
scribe the derivation and implementation of initial conditions drawn from
the CMB, in Section 4.4 and 4.5 we describe our choice of gauge and aver-
aging scheme respectively, and in Section 4.6 we present our simulations
and averaged quantities. We discuss our results in Section 4.7 and con-
clude in Section 4.8. Unless otherwise stated, we adopt geometric units
with G = c = 1, where G is the gravitational constant and c is the speed of
light. Greek indices take values 0 to 3, and Latin indices from 1 to 3, with
repeated indices implying summation.

4.2 Computational Setup

4.2.1 CACTUS and FLRWSolver

To evolve a fully General-Relativistic cosmology we use the open-source
EINSTEIN TOOLKIT (Löffler et al., 2012), a collection of codes based on the
CACTUS framework (Goodale et al., 2003). Within this toolkit we use the
ML_BSSN thorn (Brown et al., 2009) for evolution of the spacetime variables
using the BSSN formalism (Shibata and Nakamura, 1995; Baumgarte and
Shapiro, 1999), and the GRHydro thorn for evolution of the hydrodynamics
(Baiotti et al., 2005; Giacomazzo and Rezzolla, 2007; Mösta et al., 2014). In
addition, we use our initial-condition thorn, FLRWSolver (Macpherson,
Lasky, and Price, 2017), to initialise linearly-perturbed FLRW spacetimes
with perturbations of either single-mode or CMB-like distributions.

We assume a dust universe, implying pressureP = 0, however GRHydro
currently has no way to implement zero pressure for hydrodynamical evo-
lution. Instead we set P � ρ, with a polytropic equation of state,

P = Kpolyρ
2, (4.1)

where Kpoly is the polytropic constant, which we set Kpoly = 0.1 in code
units. We have found this to be sufficient to match the evolution of a homo-
geneous, isotropic, matter-dominated universe. Deviations from the exact
solution for the scale factor evolution, at 803 resolution, are within 10−6 (see
Macpherson, Lasky, and Price, 2017).

We perform a series of simulations with varying resolutions, 643, 1283,
and 2563, and comoving physical domain sizes, L = 100 Mpc, 500 Mpc,
and 1 Gpc, to study different physical scales. We simulate all three domain
sizes at 643 and 1283 resolution, and only the L = 1 Gpc domain size at 2563

resolution due to computational constraints. During the evolution we do
not assume a cosmological background, and for convenience, since we have
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not yet implemented a cosmological constant in the EINSTEIN TOOLKIT, we
assume Λ = 0.

Post-processing analysis is performed using the MESCALINE code, which
we introduce and describe in Section 4.5.2.

4.2.2 Length unit

We choose the comoving length unit of our simulation domain to be 1 Mpc,
implying a domain of L = 100 in code units is equivalently L = 100 Mpc.

In geometric units c = 1, and so we can relate our length unit, l = 1
Mpc, and our time unit, tc, via the speed of light (in physical units)

tc =
l

c
. (4.2)

To find our background FLRW density we use H(z = 0) = H0, with units
of s−1. This implies

H0,code ×
1

tc
= H0,phys, (4.3)

where H0,code and H0,phys = 100h km s−1 Mpc−1 are the Hubble parameter
expressed in code units and physical units, respectively. We use (4.2) to-
gether with (4.3) and the Friedmann equation for a flat, matter-dominated
model

H =
ȧ

a
=

√
8πρ̄

3
, (4.4)

where an overdot represents a derivative with respect to proper time, ρ̄ is
the homogeneous density, a is the FLRW scale factor, and we have G = 1 in
code units. We find the background FLRW density, evaluated at z = 0, in
code units, to be

ρ̄0,code = 1.328× 10−8 h2. (4.5)

For computational reasons we adopt the initial FLRW scale factor ainit =
a(z = 1100) = 1, whilst the usual convention in cosmology is to set a0 =
a(z = 0) = 1. The density (4.5) was calculated using the Hubble parameter
H0,phys evaluated with a0 = 1. The comoving (constant) FLRW density
is ρ∗ = ρ̄ a3 = ρ̄0 a

3
0, and so (4.5) is the comoving density ρ∗. We choose

h = 0.704, and our choice ainit = 1 implies our initial background density
is the comoving FLRW density.

4.2.3 Redshifts

Simulations are initiated at z = 1100 and evolve to z = 0. We quote red-
shifts computed from the value of the FLRW scale factor at a particular
conformal time,

a(η) =
zcmb + 1

z(η) + 1
, (4.6)

where zcmb = 1100. Since we set ainit = 1, we have a0 = 1101. The evolution
of the FLRW scale factor in conformal time is

a(η) = ainit ξ
2, (4.7)

where ξ is the scaled conformal time defined in Section 4.3.1. Importantly,
the redshifts presented throughout this chapter are indicative only of the
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amount of coordinate time that has passed, and are not necessarily indica-
tive of redshifts measured by observers in an inhomogeneous universe.

4.3 Initial conditions

4.3.1 Linear Perturbations

We solve the linearly-perturbed Einstein equations to generate our initial
conditions. Assuming only scalar perturbations, the linearly-perturbed FLRW
metric in the longitudinal gauge is

ds2 = −a2(η) (1 + 2ψ) dη2 + a2(η) (1− 2φ) δijdx
idxj . (4.8)

In this gauge the metric perturbations φ and ψ are the Bardeen potentials
(Bardeen, 1980). These are related to perturbations in the matter distribu-
tion via the linearly perturbed Einstein equations

Ḡµν + δGµν = 8π
(
T̄µν + δTµν

)
, (4.9)

where an over-bar represents a background quantity, and δX represents a
small perturbation in the quantity X , with δX � X . A matter-dominated
(dust) universe has stress-energy tensor

Tµν = ρ uµuν , (4.10)

where ρ is the mass-energy density1, uµ = dxµ/dτ is the four-velocity of the
fluid, and τ is the proper time. Assuming small perturbations to the matter
we have

ρ = ρ̄+ δρ = ρ̄(1 + δ), (4.11)

vi = δvi, (4.12)

where the fractional density perturbation is δ ≡ δρ/ρ̄, and vi = dxi/dt is the
three-velocity2, with t the coordinate time.

Solutions to (4.9) are found by taking the time-time, time-space, trace
and trace-free components, given by

∂2φ− 3H
(
φ′ +Hψ

)
= 4πρ̄ δa2, (4.13a)

H∂iψ + ∂iφ
′ = −4πρ̄ a2δijv

j , (4.13b)

φ′′ +H
(
ψ′ + 2φ′

)
=

1

3
∂2(φ− ψ), (4.13c)

∂〈i∂j〉 (φ− ψ) = 0, (4.13d)

respectively, where we have assumed all perturbations are small such that
second-order (and higher) terms can be neglected. Here, ∂i ≡ ∂/∂xi, ∂2 =
∂i∂i, ∂〈i∂j〉 ≡ ∂i∂j − 1/3 δij∂

2, a ′ represents a derivative with respect to
conformal time, and H ≡ a′/a is the conformal Hubble parameter. Solving

1The density ρ used throughout this Chapter is the total rest-frame mass-energy density,
and is equivalent to ρR used in Chapters 1 and 2.

2The velocity used throughout this Chapter differs from the velocity used in Chapter 2,
they are related via (2.137).
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these equations, we find

ψ = φ = f(xi)− g(xi)

5 ξ5
, (4.14a)

δ = C1 ξ
2 ∂2f(xi)− 2 f(xi)− C2 ξ

−3 ∂2g(xi)− 3

5
ξ−5g(xi), (4.14b)

vi = C3 ξ ∂
if(xi) +

3

10
C3 ξ

−4 ∂ig(xi), (4.14c)

where f, g are arbitrary functions of spatial position, we introduce the scaled
conformal time coordinate

ξ ≡ 1 +

√
2πρ∗

3 ainit
η, (4.15)

and we have defined

C1 ≡
ainit

4πρ∗
, C2 ≡

ainit

20πρ∗
, C3 ≡ −

√
ainit

6πρ∗
. (4.16)

Equations (4.14) contain both a growing and decaying mode for the density
and velocity perturbations. We choose g = 0 to extract only the growing
mode of the density perturbation, and our solutions become

ψ = φ = f(xi), (4.17a)

δ = C1 ξ
2 ∂2f(xi)− 2 f(xi), (4.17b)

vi = C3 ξ ∂
if(xi), (4.17c)

implying φ′ = 0 in the linear regime.

4.3.2 Cosmic Microwave Background fluctuations

We use (4.14) along with the Code for Anisotropies in the Microwave Back-
ground (CAMB; Lewis and Bridle, 2002) to generate the matter power spec-
trum at z = 1100, with parameters consistent with Planck Collaboration
et al. (2016) as input. Figure 4.1 shows the matter power spectrum from

CAMB (grey curve), as a function of wavenumber |k| =
√
k2
x + k2

y + k2
z . We

use the Python module c2raytools 3 to generate a 3-dimensional Gaus-
sian random field drawn from the CAMB power spectrum. This provides
the initial density perturbation. The magenta curve in Figure 4.1 shows
the region of the matter power spectrum sampled in our highest resolu-
tion (2563), largest domain size (L = 1 Gpc) simulation. The smallest k
component sampled represents the largest wavelength of perturbations —
approximately the length of the box, L — and the largest k component
sampled represents the smallest wavelength of perturbations — two grid
points. To relate the initial density perturbation to the corresponding ve-
locity and metric perturbations, we transform (4.14) into Fourier space. Ini-
tially, ξ = 1 which gives a density perturbation of the form

δ(k) = −
(
C1|k|2 + 2

)
φ(k), (4.18)

3https://github.com/hjens/c2raytools
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FIGURE 4.1: Matter power spectrum of our initial condi-
tions. Grey dashed curve shows the power spectrum pro-
duced with the Code for Anisotropies in the Microwave
Background (CAMB). We show the power as a function

of wavenumber |k| =
√
k2x + k2y + k2z . The magenta curve

shows the section of the power spectrum we sample when
using a domain size of L = 1 Gpc with resolution 2563.

where k = (kx, ky, kz), so we can define an arbitrary function δ(k), and
construct the metric perturbation and velocity, respectively, using

φ(k) = − δ(k)

C1|k|2 + 2
, (4.19a)

v(k) = C3 ikφ(k), (4.19b)

where i2 = −1. With the Fourier transform of the Gaussian random field
as δ(k), we calculate the velocity and metric perturbations in Fourier space
using (4.19), and then use an inverse Fourier transform to convert the per-
turbations to real space. The density perturbation δ is already dimension-
less, and we normalise by the speed of light, c, to convert vi and φ to code
units. Figure 4.2 shows initial conditions at 2563 resolution for box sizes
L = 1 Gpc, 500 Mpc, and 100 Mpc in the left to right columns, respectively.
The top row shows the density perturbation δ, the middle row shows the
normalised metric perturbation φ/c2, and the bottom row shows the mag-
nitude of the velocity perturbation normalised to the speed of light |v|/c.
These initial conditions are sufficient to describe a linearly-perturbed FLRW
spacetime in FLRWSolver.

We assume a flat FLRW cosmology for the initial instance only. Simula-
tions begin with small perturbations at the CMB, and so the assumption of
a linearly-perturbed FLRW spacetime is sufficiently accurate.



98 Chapter 4. Einstein’s Universe

FIGURE 4.2: Initial conditions drawn from the cosmic mi-
crowave background power spectrum. Here we show ini-
tial conditions for the density (top row), metric (middle
row), and velocity (bottom row) perturbations for three dif-
ferent physical domain sizes. Left to right shows domain
sizes L = 1 Gpc, 500 Mpc, and 100 Mpc. We show a two-
dimensional slice through the midplane of each domain.
All initial conditions shown here are at 2563 resolution, and
all quantities are shown in code units – normalised by the
speed of light for the metric and velocity perturbations. The

magnitude of the velocity is |v| =
√
v2x + v2y + v2z .
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4.4 Gauge

The (3+1) decomposition of Einstein’s equations (Arnowitt, Deser, and Mis-
ner, 1959) results in the metric

ds2 = −α2dt2 + γij
(
dxi + βidt

) (
dxj + βjdt

)
, (4.20)

where γij is the spatial metric, α is the lapse function, βi is the shift vector,
and xi are the spatial coordinates. The lapse function determines the rela-
tionship between proper time and coordinate time from one spatial slice to
the next, while the shift vector determines how spatial points are relabelled
between slices. In cosmological simulations with numerical relativity the
comoving synchronous gauge (geodesic slicing) is a popular choice (e.g.
Bentivegna and Bruni, 2016; Giblin, Mertens, and Starkman, 2016a; Giblin,
Mertens, and Starkman, 2016b; Giblin, Mertens, and Starkman, 2017; Gib-
lin et al., 2017), which involves fixing α = 1, βi = 0, and uµ = (1, 0, 0, 0),
or uµ = (1/a, 0, 0, 0) for conformal time, throughout the simulation. This
gauge choice can become problematic at low redshifts when geodesics be-
gin to cross, and can form singularities. We choose βi = 0 and evolve the
lapse according to the general spacetime foliation

∂tα = −f(α)α2K, (4.21)

where f(α) is a positive and arbitrary function, and K = γijKij is the trace
of the extrinsic curvature. We choose f = 1/3, and use the relation from the
(3+1) ADM equations (Shibata and Nakamura, 1995)

∂t ln(γ1/2) = −αK, (4.22)

where γ is the determinant of the spatial metric. Integrating (4.21) gives

α = C(xi) γ1/6, (4.23)

where C(xi) is an arbitrary function of spatial position.
For our initial conditions we have γij = a2(1 − 2φ)δij , implying γ1/6 =

a
√

1− 2φ. We therefore choose

C(xi) =

√
1 + 2ψ√
1− 2φ

, (4.24)

on the initial hypersurface, so that α = a
√

1 + 2ψ, as in the metric (4.8).

4.5 Averaging scheme

We adopt the averaging scheme of Buchert (2000) generalised for an arbi-
trary coordinate system (Larena, 2009; Brown, Robbers, and Behrend, 2009;
Brown, Behrend, and Malik, 2009; Clarkson, Ananda, and Larena, 2009;
Gasperini, Marozzi, and Veneziano, 2010; Umeh, Larena, and Clarkson,
2011) 4. The average of a scalar quantity ψ(xi, t) is defined as

4During the review of this paper, Buchert, Mourier, and Roy (2018) raised some concerns
regarding the averaging formalism of Larena (2009). We aim to investigate the proposed
alterations in a later work (see Sections 1.5.2 and 6.2.1).
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〈ψ〉 =
1

VD

∫
D
ψ
√
γ d3x, (4.25)

where the average is taken over some domainD lying within the chosen hy-
persurface, and VD =

∫
D
√
γd3x is the volume of that domain. The normal

vector to our averaging hypersurface is nµ = (−α, 0, 0, 0), corresponding to
the four-velocity of observers within our simulations. These observers are
not comoving with the fluid, implying nµ 6= uµ, and the tilt between these
two vectors results in additional backreaction terms due to nonzero pecu-
liar velocity vi. As in Larena (2009), Clarkson, Ananda, and Larena (2009),
and Brown, Latta, and Coley (2013), we define the Hubble expansion of a
domain D to be associated with the expansion of the fluid, θ,

HD ≡
1

3
〈θ〉, (4.26)

where
θ ≡ hαβ∇αuβ, (4.27)

is the projection of the fluid expansion onto the three-surface of averaging,
with the projection tensor hαβ ≡ gαβ +nαnβ . In our case, this represents the
expansion of the fluid as observed in the gravitational rest frame (Umeh,
Larena, and Clarkson, 2011).

Averaging Einstein’s equations in this frame, with P = Λ = 0, gives the
averaged Hamiltonian constraint

6HD2 = 16π〈W 2ρ〉 − RD −QD + LD, (4.28)

whereW is the Lorentz factor,RD is the averaged Ricci curvature scalar,QD
is the kinematical backreaction term, and LD is the additional backreaction
term due to nonzero peculiar velocities in our gauge. For definitions of
these terms, see Appendix B.

We define the effective scale factor, aD5, describing the expansion of the
fluid, via the Hubble parameter

HD =
a′D
aD

. (4.29)

This is related to the effective scale factor describing the expansion of the
coordinate grid (volume)

aVD ≡
V ′D
VD

=

(
VD(η)

VD(ηinit)

)1/3

, (4.30)

via

aD = aVD exp

(
−1

3

∫
〈 α
W

(θ − κ)− α θ 〉 dη
)
. (4.31)

See Appendix C for details6.

5The fluid scale factor aD here is equivalent to ahD used in Chapter 1 and Section 2.3.
6After the publication of this paper, we noticed an error in (4.31) from Larena (2009). In

Appendix F we show this error makes negligible difference to our results.
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z= 1099 z= 9. 87 z= 2. 00

z= 1. 01 z= 0. 503 z= 0. 0

500 Mpc

FIGURE 4.3: Evolution of a fully General Relativistic cos-
mic web. Here we show a 2563 simulation, in an L = 1
Gpc domain. This simulation has evolved from the cos-
mic microwave background (z = 1100; top left) until today
(z = 0; bottom right). Each panel shows a two-dimensional
slice of the density perturbation in the midplane of the do-
main. We can see the familiar web structure of modern
cosmological N-body simulations using Newtonian gravity,
however this cosmic web contains all of the corresponding
General-Relativistic information. The standard deviations
of the fractional density perturbation δ for each panel (pro-
gressing in time) are σδ = 0.0026, 0.15, 0.6, 1.11, 1.89, and

3.92, respectively.



102 Chapter 4. Einstein’s Universe

z= 0. 0

500 Mpc

z= 0. 0

250 Mpc

z= 0. 0

50 Mpc

FIGURE 4.4: Scale dependence of the cosmic web. Three
separate simulations computed at a resolution of 1283 (left
to right) with domain sizes L = 1 Gpc, 500 Mpc, and 100
Mpc, respectively. All snapshots show a two-dimensional
density slice in the midplane of the simulation domain at

redshift z = 0.

4.5.1 Cosmological parameters

The dimensionless cosmological parameters describe the content of the Uni-
verse. From (4.28) we define

Ωm =
8π〈W 2ρ〉

3HD2 , ΩR = − RD
6HD2 , (4.32a)

ΩQ = − QD

6HD2 , ΩL =
LD

6HD2 , (4.32b)

giving the Hamiltonian constraint in the form

Ωm + ΩR + ΩQ + ΩL = 1. (4.33)

We require this to be satisfied at all times. Here, Ωm is the matter energy
density, ΩR is the curvature energy density, ΩQ + ΩL is the energy den-
sity associated with the backreaction terms; a purely General-Relativistic
effect. For a standard ΛCDM cosmology, these cosmological parameters
are Ωm = 0.308 ± 0.012, |ΩR| = |Ωk| < 0.005, ΩQ = 0, and ΩL = 0 (Planck
Collaboration et al., 2016).

4.5.2 Post-simulation analysis

The Universe is measured to be homogeneous and isotropic on scales larger
than ∼ 80− 100h−1Mpc Scrimgeour et al., 2012. Above these scales it is un-
clear whether the evolution of the average of our inhomogeneous Universe
coincides with the FLRW (or ΛCDM) equivalent. In attempt to address this,
we calculate averages over our entire simulation domain, but also over sub-
domains within the simulation to sample a variety of physical scales. We
measure averages over spheres of varying radius rD embedded in the total
volume, from which we calculate the dimensionless cosmological param-
eters (4.32), the Hubble parameter (4.26), and consequently the effective
matter expansion aD.
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FIGURE 4.5: General-Relativistic attributes of an inhomoge-
neous, anisotropic universe. Panels (left to right) show the
matter expansion rate θ, the spatial Ricci curvature R, and
the shear σ2, respectively, each relative to the global Hubble
expansion Hall. Each panel shows a two-dimensional slice
at z = 0 through the midplane of the L = 1 Gpc domain at

2563 resolution.

The spatial Ricci tensorRij is the contraction of the Riemann tensor. We
calculate this directly from the metric using

Rij = ∂kΓ
k
ij − ∂jΓkik + ΓklkΓ

l
ij − ΓkjlΓ

l
ik, (4.34)

where the spatial connection coefficients are

Γkij ≡
1

2
γkl (∂iγjl + ∂jγli − ∂lγij) . (4.35)

We use our analysis code MESCALINE, written to analyse three-dimensional
HDF5 data output from our simulations. The code reads in the spatial met-
ric γij , the lapse α, the extrinsic curvature Kij , the density ρ, and the veloc-
ity vi from the EINSTEIN TOOLKIT three-dimensional output. From these
quantities we calculate the spatial Ricci tensor Rij from the spatial metric,
and hence the Ricci scalar viaR = γijRij . We take the trace of the extrinsic
curvature K = γijKij and with the set of equations defined in Appendix B
we calculate averages and the resulting backreaction terms. We also use
MESCALINE to calculate the Hamiltonian and momentum constraint viola-
tion, discussed in Appendix D. We compute derivatives using centred finite
difference operators, giving second order accuracy in both space and time,
the same order as the EINSTEIN TOOLKIT’s spatial discretisation.

4.6 Results

Figure 4.3 shows time evolution of a two-dimensional slice of the density
ρ through the midplane of the L = 1 Gpc domain at 2563 resolution. We
show the growth of structures from z = 1100 (top left) through to z = 0
(bottom right). The 1σ variance in δ evolves from σδ = 0.0026 (top left) to
σδ = 3.92 (bottom right).

Figure 4.4 shows two-dimensional slices through the midplane of three
1283 resolution simulations with domain size L = 1 Gpc, 500 Mpc, and 100
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Mpc (left to right), at redshift z = 0. As we sample smaller scales we see a
more prominent web structure forming. Our fluid treatment of dark matter
implies over-dense regions continue to collapse towards infinite density,
rather than forming virialised structures. This should, in general, yield a
higher density contrast on small scales than we expect in the Universe.

Figure 4.5 shows (left to right) the matter expansion rate θ, the spatial
Ricci curvature R, and the shear σ2, respectively, at z = 0. Each quantity is
normalised to the global Hubble expansion Hall. The curvature and shear
panels are normalised to correspond to the respective density parameters:
ΩR defined in (4.32), and Ωσ = 〈σ2〉/(3H2

all) defined in Montanari and Räsä-
nen (2017). We calculate θ using (4.27), σ2 using (B.6) and (B.5), andR using
the definitions (4.34) and (4.35). Each panel shows a two-dimensional slice
through the midpoint of the L = 1 Gpc domain at 2563 resolution. Our
relativistic quantities can be seen to closely correlate with the density dis-
tribution at the same time, shown in the bottom right panel of Figure 4.3.

4.6.1 Global averages

Figure 4.6 shows the global evolution of the effective scale factor, aD. The
blue curve shows aD calculated over the whole L = 1 Gpc, 2563 resolution
domain with (4.31). The purple dashed curve in the top panel shows the
corresponding FLRW solution for the scale factor, aFLRW, found by solv-
ing the Hamiltonian constraint for a flat, matter-dominated, homogeneous,
isotropic Universe in the longitudinal gauge,

a′

a
=

√
8πGρ̄ a2

3
, (4.36)

giving the solution (4.7). The bottom panel of Figure 4.6 shows the residual
error between the two solutions, which remains below 10−3 for the evolu-
tion to z = 0.

Analysing the cosmological parameters as an average over the entire
simulation domain we find agreement with the corresponding FLRW model
in our chosen gauge. Globally, at z = 0, we find Ωm ≈ 1, ΩR ≈ 10−8, and
ΩQ + ΩL ≈ 10−9. Systematic errors on these values are discussed in Ap-
pendix E.

4.6.2 Local averages

Cosmological parameters

Figure 4.7 shows cosmological parameters calculated within spheres of var-
ious averaging radii, rD, within an L = 1 Gpc domain at 2563 resolution.
Left to right panels correspond to increasing time (decreasing z), showing
z = 9.9, 1.1, and 0, respectively. Black points show the mean value over
1000 spheres at the corresponding averaging radius, showing filled circles
for Ωm, filled squares for ΩR, and crosses for ΩQ + ΩL. Over these 1000
spheres we also show the 68%, 95%, and 99.7% confidence intervals for Ωm

and ΩR as progressively lighter blue and purple shaded regions, respec-
tively. The same confidence intervals for the contribution from the backre-
action terms, Ωm + ΩL, are shown as dashed, dot-dashed, and dotted lines
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FIGURE 4.6: Globally, our expansion coincides with that
of FLRW. The blue curve in the top panel shows the effec-
tive scale factor aD, calculated over the entire L = 1 Gpc
domain. The dashed magenta curve shows the equivalent
FLRW solution (with Ωm = 1), as a function of redshift. The
bottom panel shows the residual error for this 2563 resolu-

tion calculation.
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FIGURE 4.7: Growing inhomogeneity in matter, curvature,
and backreaction. Here we show the cosmological param-
eters for spheres with various radii rD, randomly placed
within an L = 1 Gpc domain at 2563 resolution. Black
points show mean values over 1000 spheres at each radius,
progressively lighter blue and purple shaded regions show
the 68%, 95%, and 99.7% confidence intervals for Ωm and
ΩR, respectively. Crosses show the mean contribution from
backreaction terms ΩQ + ΩL, while dashed, dot-dashed,
and dotted lines show the 68%, 95%, and 99.7% confidence
intervals, respectively. Left to right panels are redshifts

z = 9.9, 1.1, and 0.0, respectively.
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FIGURE 4.8: We approach homogeneity when averaging
over larger scales. Here we show the right-most panel of
Figure 4.7 extending to averaging radius rD = 250 Mpc.
Black points show the mean Ωm, ΩR, and ΩQ + ΩL over the
1000 spheres at each radius. Progressively lighter blue and
purple shaded regions show the 68%, 95%, and 99.7% con-
fidence intervals for Ωm and ΩR, while dashed, dot-dashed,

and dotted lines show these for ΩQ + ΩL.
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FIGURE 4.9: Inhomogeneous expansion as a function of
time, showing the effective scale factor aD calculated in
spheres of radius 100 Mpc as a function of global expansion
aD,all. We calculate aD in an L = 500 Mpc simulation at
1283 resolution. Blue curves show overdense regions with
δ ≥ 0.1, while purple curves show underdense regions with
δ ≤ −0.1. The black dashed line shows the mean expansion

over the whole domain.

respectively. Figure 4.8 shows the same calculation of the cosmological pa-
rameters at z = 0, extending averaging radii to rD = 250 Mpc.

At redshift z = 0, considering averaging radii corresponding to the
approximate homogeneity scale of the Universe (Scrimgeour et al., 2012),
80 < rD < 100h−1Mpc, we find Ωm = 1.01 ± 0.09, ΩR = −0.006 ± 0.06,
and ΩQ + ΩL = −0.004 ± 0.04. These are the mean values over all spheres
with rD = 80 − 100h−1Mpc; 3000 spheres in total. Variations are the 68%
confidence intervals of the distribution.

Below the measured homogeneity scale, with rD < 100h−1Mpc, we use
13 individual radii each with a sample of 1000 spheres. We find Ωm =
1.1+0.12
−0.31, ΩR = −0.08+0.21

−0.06, and ΩQ + ΩL = −0.03+0.11
−0.06.

Considering scales above this homogeneity scale, we use 100 < rD <
180h−1Mpc with a total of 11 radii sampled and 1000 spheres each. On
these scales we find Ωm = 0.997± 0.05, ΩR = 0.005± 0.03, and ΩQ + ΩL =
0.003± 0.02.

Systematic errors in all quoted cosmological parameters here are dis-
cussed in Appendix E.
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FIGURE 4.10: Relation between the fractional density per-
turbation, δ, and the deviation in the Hubble parameter,
δHD/Hall, for averaging radii rD = 20, 40, and 80 Mpc (left
to right), respectively. Points in each panel represent indi-
vidual spheres of 1000 sampled at each radius, and the solid
line of the same colour is the best-fit linear relation, with
slope indicated in each panel. The black dashed line is the

prediction from linear theory.

Scale factor

Figure 4.9 shows the evolution of the effective scale factor calculated within
spheres of rD = 100 Mpc, relative to the global value aD,all, which we use
as a proxy for time. The dashed line shows the global average, blue curves
show aD for overdense regions with δ ≥ 0.1, and purple curves for un-
derdense regions with δ ≤ −0.1. In total, we sample 1000 spheres with
randomly placed (fixed) origins within an L = 1 Gpc, 2563 resolution sim-
ulation. Underdense regions with δ ≤ −0.1 expand 4 − 5% faster than the
mean at z = 0, while overdense regions with δ ≥ 0.1 expand 2− 8% slower.

Hubble parameter

Figure 4.10 shows the relation between the density, δ, of a spherical do-
main and the corresponding deviation in the Hubble parameter δHD/H̄D =
(HD−H̄D)/H̄D; the expansion rate of that sphere. We show the density and
variation in the Hubble parameter for averaging radii rD = 20, 40, and 80
Mpc, (left to right) respectively. Points in each panel show individual mea-
surements within 1000 randomly placed spheres of the same radius. The
solid line of the same colour in each panel is the linear best-fit for the data
points, with slope indicated in each panel.

Linear perturbation theory predicts the relation between the average
density, 〈δ〉, of a spherical perturbation and the deviation from the Hubble
flow of that spherical region, δHD/Hall, to be (Lahav et al., 1991)

〈δ〉 = −3F
δHD
Hall

, (4.37)

where F = Ω0.55
m is the growth rate of matter (Linder, 2005), which for our

global average Ωm ≈ 1 is F = 1. This in turn implies that the growth rate
of structures in our simulations is larger than in the ΛCDM Universe where
Ωm ≈ 0.3 (e.g. DES Collaboration et al., 2017; Bonvin et al., 2017; Planck
Collaboration et al., 2016; Bennett et al., 2013). The black dashed line in
each panel of Figure 4.10 is the relation (4.37), a slope of -3. On 20 Mpc



4.7. Discussion 109

scales the line of best fit is 10% larger than this prediction, on 40 Mpc scales
it is 2.2% larger, and on 80 Mpc scales is 0.9% smaller.

4.7 Discussion

We have presented simulations of nonlinear structure formation with nu-
merical relativity, beginning with initial conditions drawn from the CMB
matter power spectrum. These simulations allow us to analyse the effects
of large density contrasts on the surrounding spacetime, and consequently
on cosmological parameters. We calculate the cosmological parameters Ωm,
ΩR, ΩQ, and ΩL, together describing the content of the Universe, for spher-
ical subdomains embedded within a 2563 resolution, L = 1 Gpc simulation.
We vary the averaging radius between 20 ≤ rD ≤ 250 Mpc, representing
scales both below and above the measured homogeneity scale of the Uni-
verse.

Our results were obtained using simulations sampling the matter power
spectrum down to scales of two grid points. Quantifying the errors in such
a calculation is difficult because structure formation occurs fastest on small
scales, implying different physical structures at different resolutions. This
is a known problem in cosmological simulations, not unique to General
Relativistic cosmology (see e.g. Schneider et al., 2016). To correctly quantify
such errors, we must maintain the same density gradients between sev-
eral simulations at different computational resolution. This becomes diffi-
cult when the perturbations themselves are nonlinear. Even with identical
initial conditions, we see a different distribution of structures at redshift
z = 0 when sampling nonlinear scales at different resolutions. To approx-
imate the errors on our main results, we instead analyse a set of test sim-
ulations in which we simulate a fixed amount of large-scale structure (see
Appendix E). This allows for a reliable Richardson extrapolation of the so-
lution to approximate the error in our main results at redshift z = 0.

Regardless of this, the main result of this chapter is that we find Ωm ≈ 1
in all simulations we analyse here. Any unquantified errors are unlikely
to significantly shift this result, and all global effects of backreaction and
curvature are likely to remain small with an improved sampling of small
scales.

4.7.1 Global averages

We find global cosmological parameters consistent with a matter-dominated,
flat, homogeneous, isotropic universe, and therefore no global backreac-
tion. The evolution of the effective scale factor aD, evaluated over the whole
domain, coincides with the corresponding FLRW model, as shown in Fig-
ure 4.6. The < 10−3 discrepancy between the two solutions does not cor-
relate with the onset of nonlinear structure formation, indicating that this
difference is most likely computational error.

We find a globally flat geometry in our simulations with ΩR ≈ 10−8.
This could be a result of our treatment of the matter as a fluid. We can-
not create virialised objects and so any “clusters” will continue to collapse
towards infinite density. In reality, a dark matter halo or galaxy cluster
would form, be supported by velocity dispersion, and stop collapsing. The
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surrounding voids would continue to expand and potentially contribute to
a globally negative curvature (see e.g. Bolejko, 2017; Bolejko, 2018b). With-
out a particle description for dark matter alongside numerical relativity we
cannot properly capture this effect.

Any contribution from backreaction,QD or LD, is due to variance in the
expansion rate and shear. The left panel of Figure 4.5 shows the matter ex-
pansion rate θ, where collapsing regions (yellow, orange, and red) balance
the expanding regions (green) due to our treatment of matter. While we see
spatial variance in θ, there is no global contribution from backreaction un-
der our assumptions. Therefore, in our chosen gauge and under the caveats
described in Section 4.7.3 below, backreaction from structure formation is
unlikely to explain dark energy.

4.7.2 Local averages

We find strong positive curvature on scales below the homogeneity scale
of the Universe. Variations in measured cosmological parameters are up
to 31% based purely on location in an inhomogeneous matter distribution.
Our result is similar to that of Bolejko (2017) on small scales, but with larger
variance in ΩR because of increased small-scale density fluctuations due to
our fluid treatment of dark matter.

On the approximate homogeneity scale of the Universe we find mean
cosmological parameters consistent with the corresponding FLRW model
to ∼ 1%. Aside from this, we find the parameters can deviate from these
mean values by 4-9% depending on physical location in the simulation do-
main. This implies that, although on average these coincide with a flat,
homogeneous, isotropic Universe, an observers interpretation may differ
by up to 9% based purely on her position in space.

As we approach larger averaging radii within a 1 Gpc3 volume, we be-
gin to move away from independent spheres, and each sphere begins to
overlap with others; effectively sampling the same volume. Due to this, the
confidence intervals contract, and eventually at rD ≈ 400 Mpc most spheres
become indistinguishable from the mean. The beginning of this is evident
in Figure 4.8 as we approach rD = 250 Mpc. This transition appears to be
due to overlapping spheres, although could in part be due to the statistical
homogeneity of the matter distribution at these scales.

Local observations of type 1a supernovae generally probe scales of 75−
450h−1Mpc (Wu and Huterer, 2017). Nearby objects are excluded from the
data in an effort to minimise cosmic variance on the result (Riess et al., 2016;
Riess et al., 2018b; Riess et al., 2018a). In this work, we cannot meaningfully
sample scales above 250 Mpc because our maximum domain size is only 1
Gpc3. In order to sample all scales used in nearby SN1a surveys, we would
need a domain size of L & 10h−1Gpc, with a resolution up to 10243. Cur-
rent computational constraints, and the overhead of numerical relativity,
currently restrict us to domain sizes and resolutions used in this work. To
address scales as similar as possible to those used in local surveys, we con-
sider 75 < rD < 180h−1Mpc. On these scales we find Ωm = 1.002 ± 0.06,
ΩR = 0.002 ± 0.04, and ΩQ + ΩL = 0.001 ± 0.02, where variances are the
68% confidence intervals due to local inhomogeneity. This implies based on
an observers physical location, measured deviations from homogeneity on
these scales could be up to 6%. We expect this variance to decrease when
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including the full range of observations; including radii up to 450h−1Mpc.
We investigate this further, including extrapolation to larger scales, in our
companion paper Macpherson, Lasky, and Price (2018).

While the global effective scale factor demonstrates pure FLRW evolu-
tion, we find inhomogeneous expansion within spheres of 100 Mpc radius.
Figure 4.9 shows the expansion rate differs by 2 − 8% depending on the
relative density of the region sampled. These differences agree with lin-
ear perturbation theory, to within 1%, on & 80 Mpc scales, with smaller
scales showing differences of up to 10%. These differences are most likely
due to the nonlinearity of the density field on these scales, although, in
addition, could involve General-Relativistic corrections. To properly test
this we would require an equivalent Newtonian cosmological simulation
to compare this relation at nonlinear scales, which we leave to future work.

4.7.3 Caveats

1. Our treatment of dark matter as a fluid is the main limitation of this
work. Under this assumption, we are unable to form bound struc-
tures supported from collapse by velocity dispersions. In cosmologi-
cal N-body simulations, particle methods are adopted so as to capture
the formation of galaxy haloes, and local groups of galaxies as bound
structures. Adopting a fully General-Relativistic framework in addi-
tion to particle methods would allow us to adopt a proper treatment
of dark matter in parallel with inhomogeneous expansion.

2. We take averages over purely spatial volumes. In reality, an observer
would measure her past light cone, and hence the evolving Universe.
Our results can thus be considered an upper limit on the variance due
to inhomogeneities, since any structures located in the past light cone
will be more smoothed out.

3. Our results are explicitly dependent on the chosen averaging hyper-
surface. The result of averaging across different hypersurfaces has
been investigated (Adamek et al., 2019; Giblin et al., 2018), and the re-
sults can show significant differences. It is clear the physical choice of
hypersurface can be important for quantifying the backreaction effect.

4. We assume Λ = 0, and begin our simulations assuming a flat, matter
dominated background cosmology with small perturbations. Through-
out the evolution, on a global scale, we find the average Ωm ≈ 1;
consistent with this model. It is extremely well constrained that our
Universe is best described by a matter content Ωm ≈ 0.3 (e.g. DES Col-
laboration et al., 2017; Bonvin et al., 2017; Planck Collaboration et al.,
2016; Bennett et al., 2013). The growth rate of cosmological structures
in our simulations will therefore be amplified relative to the ΛCDM
Universe.

5. Given our limited spatial resolution, we underestimate the amount of
structure compared to the real Universe. In addition, we resolve struc-
tures down to scales of two grid points, which means these structures
may be under resolved.
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4.8 Conclusions

We summarise our findings as follows:

1. We find no global backreaction under our assumptions. Over the en-
tire simulation domain we have Ωm ≈ 1, ΩR ≈ 10−8, and ΩQ + ΩL ≈
10−9, in our chosen gauge; consistent with a matter-dominated, flat,
homogeneous, isotropic universe.

2. We find strong deviation from homogeneity and isotropy on small
scales. Below the measured homogeneity scale of the Universe (rD .
100h−1Mpc) we find deviations in cosmological parameters of 6−31%
based purely on an observers physical location.

3. Above the homogeneity scale of the universe (100 < rD < 180h−1Mpc)
we find mean cosmological parameters coincide with the correspond-
ing FLRW model, with potential 2 − 5% deviations due to inhomo-
geneity.

4. We find agreement with linear perturbation theory within 1% on≥ 80
Mpc scales for the relation between the density of a spherical region
and its corresponding deviation from the Hubble flow. However,
these few percent deviations on smaller scales may prove important
in forthcoming cosmological surveys.

While we find no global backreaction in our cosmological simulations, our
numerical relativity calculations show significant contributions from cur-
vature and other nonlinear effects on small scales.
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The Trouble with Hubble:
Local versus Global Expansion
Rates in Inhomogeneous
Cosmological Simulations with
Numerical Relativity

Published in:
Macpherson, Lasky, and Price (2018). The Astrophysical Journal Letters
856, L4.

Abstract

In a fully inhomogeneous, anisotropic cosmological simulation performed
by solving Einstein’s equations with numerical relativity, we find a local
measurement of the effective Hubble parameter differs by less than 1%
compared to the global value. This variance is consistent with predictions
from Newtonian gravity. We analyse the averaged local expansion rate on
scales comparable to Type 1a supernova surveys, and find that local vari-
ance cannot resolve the tension between the Riess et al. (2018a) and Planck
Collaboration et al. (2018) measurements.

A note on notation

We have altered the notation throughout this chapter to be consistent with
Chapters 1 and 2, unless explicitly stated otherwise. For these exceptions,
we maintain the notation of the publication for consistency with figures in
their published form. Aside from these changes, this chapter is consistent
with the accepted version of Macpherson, Lasky, and Price (2018).
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5.1 Introduction

Recently, the tension in the locally measured value of the Hubble parame-
ter, H0 (Riess et al., 2011; Riess et al., 2016) and that inferred from the cos-
mic microwave background (CMB; Planck Collaboration et al., 2018) has
reached 3.6σ (Riess et al., 2018b; Riess et al., 2018a). This tension has both
motivated the search for extensions to the standard cosmological model,
and for the improvement of our understanding of systematic uncertainties
(e.g. Efstathiou, 2014; Addison et al., 2016; Dhawan, Jha, and Leibundgut,
2018). The higher local expansion rate (Riess et al., 2018b; Riess et al., 2018a)
suggests we may live in a void (Cusin, Pitrou, and Uzan, 2017; Sundell,
Mörtsell, and Vilja, 2015), consistent with local ∼ 20 − 40% underdensites
that have been found in the supernovae Type 1a (SN1a) data (Zehavi et al.,
1998; Jha, Riess, and Kirshner, 2007; Hoscheit and Barger, 2018).

In an attempt to address this tension, we perform cosmological simu-
lations of nonlinear structure formation that solve Einstein’s equations di-
rectly with numerical relativity. In this letter we quantify local fluctuations
in the Hubble parameter based purely on physical location in an inhomo-
geneous, anisotropic universe. Further details of our simulations are given
in Macpherson, Price, and Lasky (2019, see Chapter 4), including a quantifi-
cation of backreaction of inhomogeneities on globally averaged quantities.

Local fluctuations in the expansion rate due to inhomogeneities have
been analysed using Newtonian and post-Friedmannian N-body cosmolog-
ical simulations (e.g. Shi and Turner, 1998; Wojtak et al., 2014; Odderskov,
Hannestad, and Haugbølle, 2014; Odderskov, Koksbang, and Hannestad,
2016; Adamek et al., 2019), second-order perturbation theory (Ben-Dayan et
al., 2014), and exact inhomogeneous models (e.g. Marra et al., 2013). These
approaches predict local fluctuations in the Hubble parameter of up to a
few percent. Inhomogeneities have also been proposed to have an effect on
the globally measured expansion rate (e.g. Buchert et al., 2015; Roy et al.,
2011), with analytical approaches showing this can contribute to an acceler-
ated expansion (e.g. Räsänen, 2006a; Räsänen, 2008; Ostrowski, Roukema,
and Buchert, 2013). Under the “silent universe” approximation, a globally,
non-flat geometry has been shown to fully alleviate the Hubble tension
(Bolejko, 2017; Bolejko, 2018a). These works are important steps towards
fully quantifying the effects of inhomogeneities on the Hubble expansion,
although simplifying assumptions about the inhomogeneities themselves
limit the ability to make a strong statement.

Considering a fully inhomogeneous, anisotropic matter distribution in
General Relativity allows us to analyse the effects of inhomogeneities with-
out simplifying the structure of the Universe. Simulations of large-scale
structure formation with numerical relativity have been shown to be a vi-
able way to study inhomogeneities (Giblin, Mertens, and Starkman, 2016a;
Bentivegna and Bruni, 2016; Macpherson, Lasky, and Price, 2017; Giblin,
Mertens, and Starkman, 2017; East, Wojtak, and Abel, 2018), although fluc-
tuations in the Hubble parameter have not yet been considered. In this
work we attempt to quantify the discrepancy between local and global ex-
pansion rates using cosmological simulations performed without approxi-
mating gravity or geometry.

We present our computational and analysis methods in Section 5.2, and
outline our method for calculating the Hubble parameter in Section 5.2.2.



5.2. Method 115

We present results in Section 5.3 and discuss them in Section 5.4.
Redshifts quoted throughout this chapter are based purely on the change

in conformal time, and are stated as a guide to the reader, rather than cor-
responding to an observational measurement. We adopt geometric units
with G = c = 1, unless otherwise stated. Greek indices run from 0 to 3, and
Latin indices run from 1 to 3, with repeated indices implying summation.

5.2 Method

We have simulated the growth of large-scale cosmological structures us-
ing numerical relativity. Our initial conditions were drawn from temper-
ature fluctuations in the CMB radiation, using the Code for Anisotropies
in the Microwave Background (CAMB; Lewis and Bridle, 2002). The ini-
tial density perturbation is a Gaussian random field drawn from the matter
power spectrum of the CMB1, and the corresponding velocity and space-
time perturbations were found using linear perturbation theory. We use the
free, open-source EINSTEIN TOOLKIT along with our thorn FLRWSolver
(Macpherson, Lasky, and Price, 2017) for defining initial perturbations. In
a previous paper we benchmarked our computational setup for homoge-
neous and linearly perturbed cosmological solutions to Einstein’s equa-
tions, achieving precision within∼ 10−6 (see Macpherson, Lasky, and Price,
2017). We refer the reader to Chapter 4 for full details of our computational
methods (see also Section 2.1), including generation of initial conditions
and derivations of the appropriate equations (see also Section 2.2.4), and
details of gauge conditions (see also Section 2.2.5).

We evolve Einstein’s equations in full, with no assumed background
cosmology, beginning in the longitudinal gauge from z = 1100, through to
z = 0. Since we have not yet implemented a cosmological constant in the
EINSTEIN TOOLKIT, we assume Λ = 0, and a matter-dominated (P � ρ)
universe. This implies the age of our model universe will differ from the
Universe where Λ 6= 0. We simulate a range of resolutions and domain
sizes, detailed in Macpherson, Price, and Lasky (2019). Here we analyse
a 2563 resolution, L = 1 Gpc simulation, where the total volume is L3.
Length scales are quoted under the assumption h = 0.704 (see Macpherson,
Price, and Lasky, 2019), and we use periodic boundary conditions in all
simulations. The right panel of Figure 5.1 shows the density distribution
at z = 0, showing a two-dimensional slice through the midplane of the
domain, normalised to the global average density, 〈ρ〉all

2. We evolve the
matter distribution on a grid, treating dark matter as a fluid. This implies
we cannot form virialised structures, and any dense regions will continue
to collapse towards infinite density. This is a current limitation of any fully
General-Relativistic cosmological simulation, since numerical relativity N-
body codes for cosmology currently do not exist3.

1To create a Gaussian random field following a particular power spectrum, we use the
Python module c2raytools: https://github.com/hjens/c2raytools

2The energy-density ρ used throughout this Chapter is the total rest-frame energy-density,
and is equivalent to ρR used in Chapters 1 and 2.

3Since the publication of this Letter, several codes for N-body numerical-relativity cos-
mology have been developed. See Giblin et al. (2018), Daverio, Dirian, and Mitsou (2019),
and Barrera-Hinojosa and Li (2019)
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FIGURE 5.1: Expansion rate and density of an inhomoge-
neous, anisotropic universe. Left panel shows the deviation
in the Hubble parameter relative to the global mean Hall.
Right panel shows the density distribution relative to the
global average, 〈ρ〉all. Both panels show a slice through the
midplane of a 2563 resolution simulation with L = 1 Gpc.

5.2.1 Averaging

It is common to compare the evolution of global averages in an inhomoge-
neous, anisotropic universe (Buchert and Ehlers, 1997; Buchert, Kerscher,
and Sicka, 2000) to the evolution of a homogeneous, isotropic universe.
However, the correct choice of averaging time-slice remains ambiguous
due to the presence of nonlinearities. We adopt the averaging scheme of
Buchert, Kerscher, and Sicka (2000), generalised to any hypersurface of av-
eraging (Larena, 2009; Brown, Robbers, and Behrend, 2009; Brown, Behrend,
and Malik, 2009; Clarkson, Ananda, and Larena, 2009; Gasperini, Marozzi,
and Veneziano, 2010; Umeh, Larena, and Clarkson, 2011). The average of a
scalar function ψ over a domainD, located within the chosen hypersurface,
is

〈ψ〉 =
1

VD

∫
D
ψ
√
γ d3x, (5.1)

where VD =
∫
D
√
γ d3X is the volume of the domain, with γ the determi-

nant of the spatial metric γij . We define our averaging hypersurfaces by
observers with four-velocity nµ = (−α, 0, 0, 0), where α is the lapse func-
tion, and we set the shift vector βi = 0. The four-velocity of these observers
differs from the four-velocity of the fluid uµ ≡ dxµ/dτ , where τ is the proper
time.

5.2.2 Measuring the Hubble parameter

The local expansion rate of the fluid projected onto our averaging hyper-
surface is

θ ≡ γµν∇µuν , (5.2)
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where γµν ≡ gµν +nµnν , and∇µ is the covariant derivative associated with
the metric tensor gµν . We define the effective Hubble parameter in a domain
D to be

HD ≡
1

3
〈θ〉. (5.3)

In a Friedmann-Lemaître-Robertson-Walker spacetime, (5.3) reduces to the
usual conformal Hubble parameter H = a′/a, where ′ represents a deriva-
tive with respect to conformal time.

The local expansion rate is not necessarily what the observer measures.
Observations of SN1a (Riess et al., 2018b; Riess et al., 2018a) measure the
distance-redshift relation, and it is unclear how this relates to the local ex-
pansion rate. Recreating what an observer measures in an inhomogeneous
Universe ultimately requires ray tracing (see Giblin, Mertens, and Stark-
man, 2016b; East, Wojtak, and Abel, 2018), which we leave to future work.

5.2.3 Averaging in subdomains

In order to quantify HD on different physical scales, we calculate averages
over spherical subdomains placed randomly within the volume shown in
Figure 5.1. This allows us to analyse the effect of inhomogeneities indepen-
dent of boundary effects. We calculate θ for each grid cell, and calculateHD
by averaging over subdomains of various radii rD.

Observations of SN1a in the local universe span a redshift range of
0.023 . z . 0.15 (Riess et al., 2011; Riess et al., 2016; Riess et al., 2018b;
Riess et al., 2018a), corresponding to distances of 75 . rD . 450h−1 Mpc
(Wu and Huterer, 2017; Odderskov, Hannestad, and Haugbølle, 2014). Lo-
cal SN1a with z . 0.023 are excluded from the analysis in attempt to min-
imise cosmic variance; their inclusion results in a 3% higher H0, suggesting
we are located in a void (Jha, Riess, and Kirshner, 2007).

We approximate a measurement of the Hubble expansion using SN1a
by calculating the average local expansion rate over a variety of scales. We
sample spherical regions with radii up to rD = 250 Mpc to ensure indi-
vidual spheres are sufficiently independent within our L = 1 Gpc domain.
We therefore calculate HD on scales 75 < rD < 180h−1Mpc, correspond-
ing to an effective survey range of 0.023 . z . 0.06. The reduced range
is due to the computational overhead of numerical relativity currently lim-
iting us to domain sizes and resolutions of this order. We extrapolate to
rD = 450h−1 Mpc to estimate the variance over the full range adopted in
Riess et al. (2018b) and Riess et al. (2018a). We perform this extrapolation
by fitting a function of the form δHD/Hall ∝ 1/rD using our calculated vari-
ance at rD ≥ 150 Mpc, to minimise the effect of small-scale fluctuations (see
lower panel of Figure 5.2). To properly test the full range of observations, a
larger simulation volume and resolution would be required.

5.3 Results

The left panel of Figure 5.1 shows deviations in the Hubble parameter, rel-
ative to the global mean Hall, at z = 0. We show a two-dimensional slice
through the midplane of the L = 1 Gpc domain. Green regions are ex-
panding (θ > 0), while yellow to red regions are collapsing (θ < 0). This
expansion is strongly correlated with the density field shown in the right
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FIGURE 5.2: A General-Relativistic measurement of HD at
z = 0. Top panel is the fractional deviation measured in
any one sphere from the average over the whole domain,
Hall, as a function of averaging radius rD. Progressively
lighter blue shaded regions are the 68%, 95% and 99.7% con-
fidence intervals, respectively. The red line is the measure-
ment from Riess et al. (2018a), and the shaded region rep-
resents the 1σ uncertainty. Dashed curves represent 68%,
95%, and 99.7% confidence intervals for the same sample
of spheres weighted as a function of redshift in accordance
with the SN1a sample used in Riess et al. (2018b) and Riess
et al. (2018a) (Wu and Huterer, 2017; Camarena and Marra,
2018). Bottom panel shows the variance extrapolated to the
full sample range (Riess et al., 2018b; Riess et al., 2018a).
Progressively lighter blue curves are the extension of the

68%, 95%, and 99.7% confidence intervals, respectively.
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panel, which displays filaments, voids, knots, and clusters. Due to our fluid
treatment of dark matter, collapsing regions will continue to do so towards
infinite density, implying all regions in the left panel of Figure 5.1 will av-
erage to the corresponding homogeneous expansion.

The top panel of Figure 5.2 shows the deviation in the Hubble parameter
as a function of averaging radius rD. Crosses represent the radii at which
our calculations were done, and progressively lighter blue shaded regions
represent the 65%, 98%, and 99.7% confidence intervals over 1000 randomly
placed spheres with the corresponding radius rD. The red line and shaded
region show the mean and 1σ deviation of the Riess et al. (2018a) measure-
ment from the Planck Collaboration et al. (2018) measurement, respectively.
The bottom panel of Figure 5.2 shows the 68%, 95%,and 99.7% confidence
contours (dark to light blue curves, respectively) extrapolated to the full
redshift range used in Riess et al. (2018b) and Riess et al. (2018a).

Considering our averaging spheres as a survey volume including SN1a
at redshifts 0.023 . z . 0.06, and assuming an isotropic distribution of
objects across the sky with equal numbers of SN1a at all redshift, we es-
timate the expected variance in a local H0 measurement due to inhomo-
geneities as the variance in HD. We calculate the ±1σ variance in a mea-
surement as the 84th and 16th percentiles of the full distribution of spheres
sampled over the effective survey range, and similarly for the 2 − 3σ vari-
ance. Sampling all scales in the top panel of Figure 5.2, including local SN1a
with z . 0.023, results in a 1σ variance of ± 2.1%. Excluding these local
SN1a the variance drops to (+1.2,-1.1)%. We extrapolate to the full survey
range 0.023 . z . 0.15 (bottom panel of Figure 5.2) by fitting a function
δHD/Hall ∝ 1/rD to each confidence contour in Figure 5.2. While not in-
tended to be a precise measure of the variance at large scales, we estimate a
1σ variance of (+0.8,-0.4)%.

The blue distribution in Figure 5.3 shows the local deviation in the Hub-
ble parameter relative to the global mean, versus the fraction of total spheres
with that deviation, Nsph/Ntot. We show the full sample of spheres in the
range 0.023 . z . 0.06, with the corresponding 1σ variations shown as
dashed lines. The blue line and shaded region represent the Planck Collab-
oration et al. (2018) measurement and 1σ uncertainties, respectively, while
the red line and shaded region shows the Riess et al. (2018a) measurement
and the 1σ uncertainties, respectively.

The Supercal SN1a compilation (Scolnic et al., 2015), used by Riess et
al. (2016), does not contain equal numbers of SN1a at all redshifts; a larger
number of objects are sampled at low redshifts. Weighting our results in
line with the redshift distribution of the sample (as shown in Wu and Huterer,
2017; Camarena and Marra, 2018) we find the variance in the Hubble pa-
rameter increases to (+1.5,−1.6)% over our reduced redshift range. Dashed
curves in the top panel of Figure 5.2 show the variance as a function of av-
eraging radius for the weighted sample. We proceed using the weighted
sample for further analysis.

Extending to the 3σ variance over 0.023 . z . 0.06 we find a local
Hubble constant can be up to 6.2% larger than the mean. Taking the Planck
Collaboration et al. (2018) measurement of 67.4 ± 0.5 km s−1Mpc−1 as the
global mean expansion rate, this implies that if an observers position in the
cosmic web is relatively underdense, she may measure a Hubble parameter
up to 4.2 km s−1Mpc−1 larger. Hence a local measurement using SN1a
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FIGURE 5.3: Local deviations in the Hubble parameter due
to inhomogeneities. We show the full distribution of all
spheres in the range 75 < rD < 180h−1 Mpc in blue.
The dashed blue lines represent the 1σ deviation of the in-
homogeneous distribution. The blue shaded region repre-
sents the 1σ uncertainties on the Planck Collaboration et al.
(2016) measurement, while the solid red line and shaded re-
gion represent the mean and 1σ deviation in the Riess et al.

(2018a) measurement, respectively.

could reach H0 = 71.6 ± 1.62 km s−1Mpc−1, assuming the same statistical
uncertainties as Riess et al. (2018a). This measurement would then be in
2.5σ tension with Planck Collaboration et al. (2018).

In order to completely resolve the tension between a local measurement
and the global value, we must restrict our sample range to 60 < rD <
180h−1 Mpc, or 0.02 . z . 0.06. Over these scales, our 3σ variance in the
Hubble parameter implies a local H0 measurement could be up to 8.7%,
or 5.9 km s−1Mpc−1, larger than the global expansion. Again taking the
Planck Collaboration et al. (2018) value as the global expansion, a local mea-
surement could reach H0 = 73.3 ± 1.62 km s−1Mpc−1 purely based on the
observers location in an inhomogeneous universe. This is consistent with
the Riess et al. (2018a) measurement within 1σ.

5.4 Discussion

The variance in the effective Hubble parameter shown in Figure 5.2 cannot
resolve the tension between the Planck Collaboration et al. (2018) and Riess
et al. (2018a) measurements. Excluding local SN1a with z . 0.023 we find
the variance in the Hubble parameter due to inhomogeneities is (+1.5,-1.6)%
over a reduced redshift range. We find an observer can only measure a local
Hubble parameter up to 8.7% higher than the global value when further
reducing the survey range to 0.02 . z . 0.06. The restricted range required
for such a measurement emphasises that it is unlikely to completely resolve
the tension by local variance in expansion rate. Extrapolating our results to
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the full survey range results in an expected variance below percent-level,
however, as the precision of cosmological surveys continues to improve,
variations of this size can be significant.

In Chapter 4 and Macpherson, Price, and Lasky (2019), we analysed
the effects of inhomogeneities on globally averaged quantities. We found
global averages coincide with the equivalent homogeneous, isotropic model,
with negligible backreaction effects on the global expansion. These results
are subject to several caveats, which we outline below.

In our simulations we treat dark matter as a fluid, implying we cannot
form virialised structures. Any structures that should have formed dark
matter haloes will continue to collapse to a single point, eventually grow-
ing towards infinite density. Ideally, a particle method would be used for
simulating dark matter as dust. We cannot directly compare our simula-
tions to Newtonian N-body simulations due to this difference, in addition
to gauge differences, however we can check for consistency of results. On
scales rD = 50, 75 and 100h−1Mpc we find variations of ± 4.3%, ± 2.4%,
and (+1.1,−0.6)%, respectively. These are consistent with Newtonian pre-
dictions, also sampling observers randomly located in space, from Wojtak et
al. (2014) and Odderskov, Koksbang, and Hannestad (2016) to within . 1%.
However, to address whether this difference is due to General-Relativistic
effects or computational differences, we ultimately require a particle treat-
ment of dark matter alongside numerical relativity.

Our results may be considered an upper limit for the variance in the
Hubble parameter over the scales we sample for several reasons. We as-
sume averages over a purely spatial volume, when in reality an observer
would measure their past light cone. As we look back in time, structures
are more smoothed out, which would reduce the overall variance. In ad-
dition, we evolve our simulations assuming Λ = 0; a matter-dominated
universe at the initial instance. We do not fix Ωm = 1 over the course of
the simulation, however, globally we find Ωm = 1 to within computational
error for all time (Macpherson, Price, and Lasky, 2019). This implies the
growth rate, f , of structures in our simulation will be larger than in ΛCDM,
since f = Ω0.55

m (Linder, 2005), resulting in a larger density contrast in gen-
eral. This will also increase our variance in the Hubble parameter relative
to that measured in the Universe where Ωm ≈ 0.3 is well constrained (e.g.
DES Collaboration et al., 2017; Bonvin et al., 2017; Planck Collaboration et
al., 2018; Bennett et al., 2013).

The effects of inhomogeneities can be dependent on the choice of ob-
servers. Adamek et al. (2019) used weak-field relativistic N-body simu-
lations to study variance in the Hubble parameter in the comoving syn-
chronous gauge and the Poisson gauge. In the comoving gauge the vari-
ance in the Hubble parameter reached 10% at z = 0, while the Poisson
gauge remained below 0.01%. A direct comparison to this work is not pos-
sible due to different definitions of the local expansion, however it outlines
the importance of carefully choosing the averaging hypersurface. The co-
moving gauge is often used to represent observers on Earth, however this
gauge breaks down at low redshifts due to shell crossings, and so it has
been suggested the Poisson gauge — similar to the gauge used here — is
better suited to study the effects of inhomogeneities in the nonlinear regime
with simulations (Adamek et al., 2019).
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5.5 Conclusions

We have investigated the effects of inhomogeneities on local measurements
of the Hubble parameter. Using numerical relativity we have simulated the
growth of density fluctuations drawn from the CMB through to z = 0. We
have calculated the expansion rate of dark matter within randomly placed
spheres of various radii from a 2563 resolution simulation with domain size
L = 1 Gpc. Our conclusions are:

1. We measure a (+1.5,-1.6)% variance in the local expansion rate due to
inhomogeneities over 0.023 . z . 0.06 with a weighted sample of
averaging spheres.

2. Estimating an extension to our results over 0.023 . z . 0.15 reduces
the variance to (+0.8,-0.4)%. This is consistent with predictions from
Newtonian N-body simulations.

3. Our 3σ variance in the Hubble parameter of 6.2%, over 0.023 . z .
0.06, could reduce the tension between a local and global measure-
ment to 2.5σ.

4. When restricting the survey range to include more nearby SN1a, the
tension is resolved. Over scales 0.02 . z . 0.06, a local calculation of
HD can be up to 8.7% larger than the global value. However, since the
Riess et al. (2018b) and Riess et al. (2018a) measurement considers a
significantly wider survey range, we conclude that the tension cannot
be explained by local inhomogeneities under our assumptions.



123

Chapter 6

Conclusions

In this thesis, we have presented simulations of cosmological structure for-
mation that solve Einstein’s equations of GR directly. In Chapter 1 we out-
lined the current status of cosmological theory and observations, including
the standard cosmological model; the ΛCDM model, cosmological pertur-
bation theory, and proposed extensions to ΛCDM based on some current
tensions with observational data. In Chapter 2 we derived the 3+1 foli-
ation of Einstein’s equations, specifically the BSSN formalism, for evolv-
ing arbitrary spacetimes numerically. We also discussed several common
coordinate choices and an improvement to the BSSN formalism in terms
of constraint violation management via the CCZ4 formalism. We then de-
scribed the EINSTEIN TOOLKIT; the computational framework used for the
numerical-relativity simulations presented in this thesis, along with our
initial-condition thorn FLRWSolver, and detailed MESCALINE; the post-
processing analysis code used to extract our results from these simulations.

In this final chapter we summarise the main findings from Chapters 3,
4, and 5, and suggest directions for future work to further investigate and
build on these results.

6.1 Summary

In Chapter 3 we presented two important code tests to ensure the validity
of our computational setup. We initialised a homogeneous, isotropic FLRW
metric with FLRWSolver, and evolved the flat, dust spacetime with nu-
merical relativity using the EINSTEIN TOOLKIT. We evolved over a change
in the scale factor (and hence redshift) of ∆a ≈ 100, and matched the an-
alytic solutions to the Friedmann equations for the scale factor (1.43) and
density (1.45) to within 10−6 in a simulation with 803 grid cells. We demon-
strated the expected fourth-order convergence, for the time integrator, of
the L1 error in our solutions, in addition to the violation in the Hamilto-
nian constraint. Next, we initialised small perturbations to the background
FLRW spacetime in the density, velocity, and metric. We chose a single-
mode, sinusoidal form for the metric perturbation, and related this to the
corresponding density and velocity perturbations using the solutions found
in linear perturbation theory, (2.136b) and (2.136c), respectively. We chose
Φ0 = 10−8 � 1, with corresponding amplitudes of the density and veloc-
ity perturbations of 10−5 and 10−7, respectively, so that our assumption of
linear perturbations was valid for the initial conditions. We evolved over a
change in scale factor of ∆a ≈ 500, and found agreement with linear theory
to within 10−3 for the growth of the density and velocity perturbations. We
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demonstrated the expected second-order convergence, for the spatial inte-
grator, of the L1 error of these solutions. Beginning with slightly larger per-
turbations, Φ0 = 10−6, we simulated the growth of these perturbations into
the nonlinear regime, and found the gravitational slip — the difference be-
tween the temporal and spatial metric perturbations — was nonzero, with
an amplitude of ∼ 4 × 10−6 at z ≈ 2. We found the tensor perturbation,
zero in linear theory, grew in the over-dense region of the simulation and
was smoothed out in the under-dense region. This work was an impor-
tant proof-of-concept test that cosmological simulations into the nonlinear
regime of structure formation — inaccessible with analytic methods — is
possible using numerical relativity, specifically with the open-source EIN-
STEIN TOOLKIT.

The main aim of this thesis was to complete the first steps towards a
full investigation of GR effects in our own Universe. In Chapter 4 we there-
fore extended the work performed in Chapter 3 to a more realistic mat-
ter distribution. We drew a spectrum of Gaussian density perturbations
from the anisotropies in the CMB using the matter power spectrum from
CAMB (Seljak and Zaldarriaga, 1996), and found the corresponding metric
and velocity perturbations using linear perturbation theory. We generated
these initial conditions at a number of different resolutions and physical
box sizes, with the main results presented for a 1 Gpc3 domain with 2563

grid points. The simulations were each evolved over a total change in scale
factor of ∆a ≈ 1100, i.e. from the CMB to z ≈ 0. We used Buchert averag-
ing for a general foliation (Larena et al., 2009) in this simulation to compute
the global contributions to the total energy-density from matter, curvature,
and backreaction, and compared with the equivalent FLRW model. We
also calculated these contributions within sub-domains in the simulation to
assess the affects from curvature and backreaction on small scales. Glob-
ally, we found the effect from curvature and backreaction to be negligible,
with ΩR ≈ 10−8 and |ΩQ + ΩL| ≈ 10−9, respectively, with the contribution
from matter dominating; a match to the equivalent FLRW model. On small
scales, we found the contribution from backreaction and curvature could
be significant, anywhere between ∼ 1% on ≥ 80 Mpc scales, up to ∼ 30%
on . 100 Mpc scales. These results showed that, while backreaction from
structures is unlikely to explain the accelerating expansion rate (under our
assumptions), percent-level effects are possible, and could be relevant in
upcoming precision cosmological surveys.

In Chapter 5 we used the simulations presented in Chapter 4 to inves-
tigate the effect of local inhomogeneities on a measurement of the Hubble
parameter. Our aim was to address the recent tension between locally mea-
sured values of H0 using SN1a (Riess et al., 2018a), and that inferred from
the CMB (Planck Collaboration et al., 2018), which has been suggested to
be caused by local inhomogeneities (see Section 1.3.3). We defined the ef-
fective Hubble parameter within a chosen domain to be the averaged ex-
pansion rate of the fluid within that domain, and calculated the variance
as a function of domain size. From this we estimated the expected vari-
ance on a local measurement of H0 using SN1a within a particular red-
shift interval, purely due to an observers physical location in an inhomoge-
neous universe. Due to computational limits on resolution, and therefore
the physical box size of our simulations, we could not sample the full red-
shift range, 0.023 . z . 0.15, used for the local SN1a measurement in Riess
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et al. (2018a). We instead extrapolated our smaller-scale results out to the
full range, and found the variance to be (+0.8,−0.4)%; not sufficient to ex-
plain the current 3.7σ tension. It is therefore unlikely that the tension can
be explained purely due to local inhomogeneities. This result is subject to
several caveats — and the importance of these remains to be investigated —
including periodic boundary conditions, the fluid treatment of dark matter,
and the validity of using averaging to approximate a measurement of the
Hubble parameter. Even small variances on our measurements could be
important in upcoming precision survey data, and therefore investigation
into the effect of these caveats is necessary.

6.2 Future work

Understanding the role of GR on our observations is imperative as we move
into the era of precision cosmology. Upcoming surveys are expected to pro-
duce data at percent-level precision, and to ensure we correctly interpret
these data we must first validate the accuracy of the underlying assump-
tions of our cosmological model. The work presented in this thesis was
a step towards this goal, providing essential tests of the required compu-
tational framework and early quantifications of the effect of structure for-
mation on the large-scale evolution of the Universe. This truly is only the
beginning of this field, and many aspects of the work presented here can be
improved on to solidify and extend our results.

6.2.1 Improved general foliation averaging

Recently, Buchert, Mourier, and Roy (2018) pointed out some potential is-
sues in the averaging formalism of Larena et al. (2009), which we used
to analyse our simulations in Chapters 4 and 5. Similar issues are also
present in the averaging procedures of Brown, Behrend, and Malik (2009)
and Gasperini, Marozzi, and Veneziano (2010) (see also Umeh, Larena, and
Clarkson, 2011).

The main issue with these formalisms is that the domain of averaging
is non-conservative; the fluid is free to flow into and out of the domain
of averaging because it is propagated along the normal to the hypersur-
faces, rather than the fluid normal. These averaging schemes are therefore
based on an “extrinsic approach” of studying the averaged fluid quantities
as seen by observers located in the spatial hypersurfaces defined by the nor-
mal vector (which does not coincide with the fluid four velocity). Instead,
Buchert, Mourier, and Roy (2018, and in a forthcoming publication) de-
rive a coordinate-independent averaging formalism for general foliations
of spacetime to study average fluid quantities as seen by fluid observers;
an “intrinsic approach”, which we outlined in Section 1.5.2. The domains
of averaging in this formalism are mass conserving, since they are propa-
gated along the fluid four velocity vector.

Including the lapse function in the definition of HhD, e.g. in (1.99), is
technically arbitrary (see Umeh, Larena, and Clarkson, 2011), however, in-
cluding it ensures a covariant expression for the Hubble parameter. Since
the effective fluid scale factor is subsequently defined from this, a transfor-
mation of time will therefore give a vastly different scale factor if α is not
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included in the definition (recently pointed out by Buchert, Mourier, and
Roy, 2018, and in a forthcoming publication via private communication).
We include the lapse in the relation between the fluid and volume scale fac-
tors for the analysis presented in Chapter 4. However, we do not include
it when calculating the Hubble parameter or the cosmological parameters.
We do not expect this to significantly affect the magnitude of the cosmologi-
cal parameters, although the inhomogeneous nature of the lapse could have
an effect on the kinematic backreaction term itself.

It is important to verify the effect of including the lapse in all averages
on the cosmological parameters, kinematic backreaction, and average cur-
vature. We leave this investigation, along with a general improvement of
our averaging scheme to the newly suggested intrinsic approach, to future
work.

6.2.2 Ray tracing

While the averaging procedures outlined in Section 1.5.2 are useful for study-
ing the large-scale evolution of our Universe compared to the homoge-
neous, isotropic equivalent, they are explicitly dependent on the chosen
averaging domain. Adamek et al. (2019) showed backreaction can differ
by 3-5 orders of magnitude depending on the spatial hypersurface chosen
for averaging. However, whether the authors are actually measuring back-
reaction here, as opposed to cosmic variance, is a point of contention (see
Buchert, Mourier, and Roy, 2018).

Connecting the results of averaging to our observations is not so clear,
since for cosmology, the fact that our observations are made along our past
light cone — and not on a purely spatial hypersurface — can become impor-
tant (see e.g. Buchert and Räsänen, 2012). While the global expansion rate
will affect the redshift and distance of objects, we really must study the past
light cone in an inhomogeneous Universe to determine the full, measurable
effect.

Light propagation in inhomogeneous cosmology is not a new field (e.g.
Zel’dovich, 1964; Tomita, 1998; Rose, 2001; Kostov, 2010; Bolejko, 2011;
Fleury, Dupuy, and Uzan, 2013), however, application of this work to nu-
merical simulations has only recently emerged. Giblin, Mertens, and Stark-
man (2016b) studied the effects on the Hubble diagram in their inhomoge-
neous cosmological simulations (see Mertens, Giblin, and Starkman, 2016,
for details), and found overall agreement with FLRW. The structures con-
sidered in Giblin, Mertens, and Starkman (2016b) are of large wavelengths
only (with small amplitudes), and therefore the lensing effects are well
approximated by perturbation theory, with no significant deviations from
FLRW. Extending this work to more realistic matter distributions, i.e. in-
cluding small-scale structures that can have large amplitudes — and there-
fore result in significant lensing — is essential to determine the expected
scatter on the Hubble diagram we measure. This scatter has been esti-
mated in the context of N-body simulations adopting the weak-field ap-
proximation (Adamek et al., 2013; Adamek et al., 2016b), and was found
to be small. In addition, a percent-level bias was found on the measured
curvature parameter due to relativistic effects (Adamek et al., 2018). These
simulations are however dependent on the weak-field approximation, and
perhaps more importantly on the assumption of a background, flat FLRW
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cosmology, and so it is important to verify these results in the context of full
GR for a complex matter distribution.

The results presented in Chapter 5 approximated a local measurement
of the Hubble parameter as the averaged expansion rate within the spatial
volume encompassed by the SN1a measured. To validate the main findings
of this chapter, we must re-perform this analysis by ray tracing. We can
create synthetic observations of SN1a within the redshift range considered
by Riess et al. (2018b) to place a better constraint on the expected variance
under a full treatment of GR.

6.2.3 N-body simulations with numerical relativity

Throughout this thesis we have adopted a fluid approximation for the mat-
ter content of the Universe, as in most numerical-relativity simulations.
This approximation usually presents no issue in the context of most as-
trophysical phenomena in GR (see, e.g. Font, 2008), however, it can be
problematic for cosmology. The reason for this is the common adoption
of the comoving gauge in theoretical relativistic cosmology, which is now
used in numerical-relativity simulations (Giblin, Mertens, and Starkman,
2016a; Bentivegna and Bruni, 2016). Simulations of nonlinear structure for-
mation in this gauge will fail because shell-crossing singularities form as
the structures collapse; since the coordinates coincide with the fluid flow
lines (see Section 2.1.4). These singularities can be avoided with the ad-
dition of a small amount of pressure (e.g. Bolejko and Lasky, 2008), or by
simply adopting a different gauge for cosmological simulations (Macpher-
son, Lasky, and Price, 2017; East, Wojtak, and Abel, 2018). However, the
assumption of a continuous fluid itself also means we cannot properly cap-
ture the process of structure formation. As a galaxy or galaxy cluster col-
lapses, it will reach a point at which its internal velocity dispersion prevents
further collapse; and the structure becomes virialised. This is an important
aspect of structure formation in the Universe which cannot be captured nat-
urally in the case of a continuous fluid.

An effective virialisation technique was implemented in Bolejko (2018b),
where regions were no longer evolved once they began to collapse, i.e.
when they had Θ < 0. In this case, voids continue expanding and an over-
all, global negative curvature arises, which has been shown to explain the
dimming of SN1a observations and the tension in the Hubble parameter
(Bolejko, 2018a). This suggests that virialisation is an important aspect of
inhomogeneous cosmology (see also Roukema, 2018).

Discretising the fluid with particles, as is done in Newtonian cosmo-
logical simulations (see Section 1.3.4), allows virialised objects to form nat-
urally. Early work adopting collisionless particles in numerical-relativity
simulations focused on stellar collapse and black-hole or singularity for-
mation (Shapiro and Teukolsky, 1985; Shapiro and Teukolsky, 1986; Shapiro
and Teukolsky, 1991; Shibata, 1999). More recent applications include black-
hole formation from gravitational waves (Pretorius and East, 2018) and
non-spherical gravitational collapse (Yoo, Harada, and Okawa, 2017).

In a cosmological context, a particle description of matter has been adopted
in the weak-field limit (Adamek et al., 2013; Adamek, Durrer, and Kunz,
2014), and also recently incorporated into numerical-relativity simulations
(Giblin et al., 2018; Daverio, Dirian, and Mitsou, 2019; Barrera-Hinojosa and
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Li, 2019, with each of these codes in the active development and testing
phase). Ensuring we have a collection of independent codes with which to
perform comparisons and validate results is essential for the advancement
of this field. Extending already widely-used, open-source software, such as
the EINSTEIN TOOLKIT, for this purpose will allow for contribution to this
field from the wider community.

6.2.4 Further code tests

In this work we used the BSSN formalism of Einstein’s equations for our
cosmological simulations. As discussed in Section 2.1.5, there are alterna-
tive formalisms that have been developed to damp the growth of constraint
violation by evolving the constraint variables themselves. Any constraint
violating modes can therefore be propagated off the grid. The conformal
and covariant Z4 system (CCZ4; Alic et al., 2012) is an example we dis-
cussed in Section 2.1.5. This has been implemented in the numerical rela-
tivity formalism of Giblin et al. (2018) used for cosmological simulations,
and in the GRCHOMBO numerical relativity package (Clough et al., 2015);
used for simulations of inflationary cosmology (see, e.g. Clough et al., 2017).
Comparing the BSSN formalism and the CCZ4 system for the simulations
presented here is beyond the scope of this thesis. However, future work
comparing the amplitude and evolution of constraint violations in the EIN-
STEIN TOOLKIT for both of these formalism is important in choosing the
best evolution system for cosmological simulations.

The use of periodic boundary conditions is common in cosmological
simulations in Newtonian gravity (e.g. Boylan-Kolchin et al., 2009; Genel
et al., 2014; Potter, Stadel, and Teyssier, 2017), and in the case of numer-
ical relativity (e.g. Giblin, Mertens, and Starkman, 2016a; Bentivegna and
Bruni, 2016; Macpherson, Lasky, and Price, 2017; Daverio, Dirian, and Mit-
sou, 2017; Barrera-Hinojosa and Li, 2019). Choosing boundary conditions
inherently defines the topology of the domain, with periodic boundary con-
ditions corresponding to a three-torus in Cartesian coordinates. In 2+1 di-
mensional GR the chosen topology sets the averaged curvature evolution,
and in the case of periodic boundaries the averaged curvature will always
tend towards zero; and hence towards a homogeneous, FLRW expansion.
However, in 3+1 dimensional GR the connection between topology and cur-
vature remains unclear (see, e.g. Buchert and Räsänen, 2012). The globally
zero curvature and homogeneous expansion seen in Chapter 4 could be
a consequence of our chosen topology. To properly test this, a numerical
relativity code utilising a different coordinate system, e.g. spherical coordi-
nates, must be used.
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Appendix A

Newtonian Gauge

Throughout Chapter 3 we work in the longitudinal gauge. For complete-
ness, we show here the equivalent background and perturbation equations
in the Newtonian gauge. In this Appendix we use geometric units with
G = c = 1. The flat FLRW metric is

ds2 = −dt̂2 + a2(t̂)dxidxjδij , (A.1)

which gives the Friedmann equations for a dust (P � ρ)1 universe to be(
ȧ

a

)2

=
8πρ

3
, (A.2a)

ρ̇ = −3
ȧ

a
ρ, (A.2b)

where a dot represents d/dt̂. Solutions to these equations give the familiar
time dependence of the scale factor,

a

ainit
= s2/3,

ρ

ρinit
= s−2, (A.3)

where
s ≡ 1 +

√
6πρ∗t̂. (A.4)

We match our numerical evolution to this alternative set of solutions by
instead making the coordinate transform t = t(t̂). With this we see the ex-
pected fourth-order convergence and maximum errors in the scale factor
and density of ∼ 10−7 for our highest resolution (803) simulation. Fig-
ure A.1 shows the convergence of the scale factor (left), density (middle)
and Hamiltonian constraint (right) for analysis performed in this gauge.

The linearly perturbed FLRW metric in this gauge, including only scalar
perturbations, is

ds2 = −(1 + 2ψN )dt̂2 + a2(t̂)(1− 2φN )δijdx
idxj , (A.5)

where ψN , φN are not the usual gauge-invariant Bardeen potentials (which
are defined in the longitudinal gauge). Solving the perturbed Einstein equa-
tions (3.6) in this gauge using the time-time, time-space, trace and trace free

1As in Chapter 3, the density ρ here is the total rest-frame energy-density, and is equiva-
lent to ρR used in Chapters 1 and 2.
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FIGURE A.1: Fourth-order convergence of the FLRW solu-
tions analysed in the Newtonian gauge. We show L1 error
as a function of resolution for the scale factor (left), den-
sity (middle), and Hamiltonian constraint (right). N refers
to the number of grid points along one spatial dimension.
Filled circles indicate data points from the simulations, and

black solid lines indicate the expected N−4 convergence.

components gives

∂2φN − 3aȧ

(
φ̇N +

ȧ

a
ψN

)
= 4πρ̄ δa2, (A.6a)

ȧ

a
∂iψN + ∂iφ̇N = −4πρ̄ a2δijδv̂

j , (A.6b)

φ̈N +
ȧ

a

(
ψ̇N + 3φ̇N

)
=

1

3a2
∂2(φN − ψN ), (A.6c)

∂〈i∂j〉 (φN − ψN ) = 0, (A.6d)

in the linear regime. Solving these equations we find the form of the poten-
tial φN to be

φN = f(xi)− 3

5
s−5/3 g(xi), (A.7)

where f, g are functions of the spatial coordinates. From this we find the
density and velocity perturbations2 to be, respectively,

δ = C1 s
2/3 ∂2f(xi)− 2 f(xi) (A.8a)

+ 3C2 s
−1 ∂2g(xi)− 9 a3

init

5
s−5/3 g(xi),

δv̂i = C3 s
−1/3 ∂if(xi) + 3C4 s

−2 ∂ig(xi), (A.8b)

where the Ci were defined in (3.23) and (3.25). We set g(xi) = 0 to extract
only the growing mode of the density perturbation, giving exact solutions
to be

φN = f(xi), (A.9a)

δ = C1 s
2/3 ∂2f(xi)− 2 f(xi), (A.9b)

δv̂i = C3 s
−1/3 ∂if(xi). (A.9c)

We note that these solutions give equivalent initial conditions to those found
in Section 3.4.1 since, initially, s = ξ = 1.

2The velocity here is v̂i ≡ dxi/dt̂, which differs from the velocity used in Chapter 3.
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We compare our numerical relativity solutions to the exact solutions for
linear perturbations in this gauge using the coordinate transform t = t(t̂).
We find the expected second-order convergence with maximum errors in
the density and velocity perturbations of ∼ 10−3 for our highest resolution
(803) simulation. Figure A.2 shows the convergence of the density (left) and
velocity (right) perturbations when analysed in the Newtonian gauge.
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FIGURE A.2: Second-order convergence of the numerical
solutions for a linearly perturbed FLRW spacetime, anal-
ysed in the Newtonian gauge. We show L1 errors in the
density (left) and velocity perturbations (right). N refers
to the number of grid points along one spatial dimension.
Filled circles indicate data points from our simulations, and

black solid lines indicate the expected N−2 convergence.
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Appendix B

Averaging in the non-comoving
gauge

Averaging Einstein’s equations in a non-comoving gauge results in the av-
eraged Hamiltonian constraint

6HD2 = 16π〈W 2ρ〉 − RD −QD + LD, (B.1)

where we define

RD ≡ 〈W 2R〉, (B.2)

QD ≡
2

3

(
〈θ2〉 − 〈θ〉2

)
− 2〈σ2〉, (B.3)

LD ≡ 2〈σ2
B〉 −

2

3
〈θ2
B〉 −

4

3
〈θθB〉. (B.4)

Here, W = 1/
√

1− vivi is the Lorentz factor, R ≡ γijRij is the three-
dimensional Ricci curvature of the averaging hypersurfaces, with Rij the
spatial Ricci tensor. In this Appendix we work in geometric units with
G = c = 1. Here

σ2 =
1

2
σijσ

j
i, (B.5)

where σij is the shear tensor, defined as

σµν ≡ hαµhβν∇(αuβ) −
1

3
θhµν . (B.6)

As in (Umeh, Larena, and Clarkson, 2011), we introduce for simplification

σ2
B =

1

2
σiBjσ

j
Bi + σijσ

ij
B (B.7a)

σBij ≡ −Wβij −W 3

(
B(ij) −

1

3
Bhij

)
(B.7b)

θB ≡ −Wκ−W 3B (B.7c)

βµν ≡ hαµhβν∇(αvβ) −
1

3
κhµν (B.7d)

Bµν ≡
1

3
κ(vµnν + vµvν) + βαµv

αnν + βαµv
αvν (B.7e)

+Mαµv
αnν +Mαµv

αvν , (B.7f)
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where we also define

κ ≡ hαβ∇αvβ, Mµν ≡ hαµhβν∇[αvβ], (B.8a)

B =
1

3
κvαvα + βµνv

µvν . (B.8b)

For a given tensor Aµν we adopt the notation A(µν) = 1
2(Aµν + Aνµ) and

A[µν] = 1
2(Aµν −Aνµ).
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Effective scale factors

The effective expansion of an inhomogeneous domain can be defined by

∂η a
V
D

aVD
≡ 1

3

∂ηVD
VD

, (C.1)

⇒ aVD =

(
VD(η)

VD(ηinit)

)1/3

, (C.2)

where VD(η) is the volume of the domain D at a given conformal time. The
physical interpretation of this scale factor depends on the chosen hyper-
surface of averaging. If we choose the averaging surface to be comoving
with the fluid; a surface with normal uµ, then the scale factor aVD describes
the effective expansion of the fluid averaged over the domain. We define
the averaging surface to be comoving with a set of observers with normal
nµ; not coinciding with uµ. In this case, aVD describes the expansion of the
volume element, not of the fluid itself.

We define the Hubble parameter as the expansion of the fluid projected
into the gravitational rest frame; the frame of observers with normal nµ.
From this we define the effective scale factor of the fluid, aD1 in (4.29). We
can relate the two scale factors by first considering the rate of change of the
volume (with βi = 0) in the (3+1) formalism (Larena, 2009)2,

∂ηVD
VD

= 〈 α
W

(θ − κ) 〉. (C.3)

Now, with ∂ηaD/aD = ∂ηln(aD), we can write

∂ηln(aD) =
1

3
〈αθ〉, (C.4)

∂ηln(aVD) =
1

3
〈 α
W

(θ − κ) 〉, (C.5)

subtracting (C.5) from (C.4) we arrive at the relation

aD = aVD exp

(
−1

3

∫
〈 α
W

(θ − κ)− αθ 〉 dη
)
. (C.6)

Here, aVD is found by calculating the volume of the domain relative to the
initial volume. Figure 4.6 shows the evolution of (C.6) (blue solid curve)

1The fluid scale factor aD here is equivalent to ahD used in Chapter 1 and Section 2.3.
2After the publication of this paper, we noticed an error in (C.3), (C.5), and (C.6) from

Larena (2009). In Appendix F we show this error has negligible effect on our results.
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as a function of redshift for a 2563 simulation over an L = 1 Gpc domain,
relative to the equivalent FLRW solution (purple dashed curve).
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Constraint violation

In numerical relativity, the error can be quantified by analysing the viola-
tion in the Hamiltonian and momentum constraint equations, defined by

H ≡ R+K2 −KijK
ij − 16πρ = 0, (D.1a)

Mi ≡ DjK
j
i −DiK − 8πSi = 0, (D.1b)

respectively, where Si ≡ −γiαnβTαβ andDi represents the covariant deriva-
tive associated with the three-metric γij . We define the magnitude of the
momentum constraint to be M =

√
MiM i. In this Appendix we adopt ge-

ometric units with G = c = 1. An exact solution to Einstein’s equations
will identically satisfy (D.1). Since we are solving Einstein’s equations nu-
merically, we expect some non-zero violation in the constraints. We use the
MESCALINE code, described in Section 2.3 and 4.5.2, to calculate the con-
straint violation as a function of time.

For the simulations we present in this work, we do not expect (in gen-
eral) to see convergence of the constraint violation. At each different resolu-
tion we are sampling a different section of the power spectrum, and hence
a different physical problem. In order to see convergence of the constraints
at the correct order, we must analyse a controlled case in which the gradi-
ents are kept constant between resolutions. We perform three simulations
at resolutions 323, 643, and 1283 inside an L = 1 Gpc domain. We gener-
ate the initial conditions for the 323 simulation using CAMB; restricting the
minimum sampling wavelength to be λmin = 10∆x32 = 312.5 Mpc. We use
linear interpolation to generate the same initial conditions at 643 and 1283.

Figure D.1 shows the violation in the Hamiltonian (top panels) and mo-
mentum (bottom panels) constraints, for the set of simulations with a con-
trolled number of physical modes, as a function of effective redshift. Left
panels show the raw L1 error for the violation, which for the Hamiltonian
constraint we define as

L1(H) =
1

N

N∑
a=1

|Ha|, (D.2)

where N is the total number of grid cells, and Ha is the Hamiltonian con-
straint violation at grid cell a, and similarly for the momentum constraint.
To quantify the "smallness" of this violation, we normalise the constraint
violations to their relative "energy scales". Similar to Mertens, Giblin, and
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constraint violation as a function of effective redshift calcu-
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tions for the simulations with a controlled number of phys-
ical modes. Top panels show the Hamiltonian constraint vi-
olation, and bottom panels show the momentum constraint
violation. Colours show different resolutions as indicated
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Starkman (2016) and Giblin, Mertens, and Starkman (2017), we define

[H] ≡
√
R2 + (K2)2 + (KijKij)2 + (16πρ)2, (D.3a)

[M ] ≡
√

(DjK
j
i)(DkKki) + (DiK)(DiK) + (8π)2SiSi. (D.3b)

Right panels in Figure D.1 show the relative L1 error for each constraint
violation, which we define as

L1(H/[H]) =
1
N

∑N
a=1 |Ha|

1
N

∑N
a=1[H]a

, (D.4)

where [H]a is the energy scale calculated at grid cell a, and similarly for the
momentum constraint. We take the positive root of both [H]a and [M ]a.

Figure D.2 shows the raw L1 error for the same set of simulations, for
the initial data (z = 1100; top two panels) and for the data at z = 0 (bot-
tom two panels). The left panels show the L1 error for the Hamiltonian
constraint, and the right panels show the L1 error for the momentum con-
straint. We see the expected second order convergence for the EINSTEIN

TOOLKIT, with the exception of the N = 128 simulation’s violation in the
momentum constraint. Our initial speculation was that this was roundoff
error, given the smallness of the quantities involved. The top panels of Fig-
ure D.2 show that this issue is not due to the non-convergence of our initial
data. Whether or not this is roundoff error remains unclear, and cannot be
clarified without re-performing our simulations in quad precision.

For the simulations with a controlled number of modes, at z = 0 for res-
olutionN = 128 the relative Hamiltonian constraint violation isL1(H/[H]) =
1.3 × 10−3, the momentum constraint is L1(M/[M ]) = 2.3 × 10−2. For the
simulations with full power spectrum sampling, at z = 0 and resolution
N = 256 we find L1(H/[H]) = 4.4× 10−1, and L1(M/[M ]) = 5.4× 10−2.
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Convergence and errors

In Appendix D we discussed the convergence of the constraint violation,
which for the main simulations presented in Chapter 4 we do not expect to
reduce with resolution, since the physical problem is changing. Regardless
of this, we expect the power spectrum of fractional density fluctuations, δ,
to be converged in these simulations. Coloured curves in Figure E.1 show
the z = 0 power spectrum of the fractional density fluctuations for resolu-
tions 643, 1283, and 2563, each within an L = 1 Gpc domain. The dashed
curve shows the linear power spectrum at z = 0 calculated with CAMB.
The pink shaded region shows one-dimensional scales of 100 − 150 Mpc,
roughly corresponding to scales which are converged. Below these scales
we therefore underestimate the growth of structures, and hence underesti-
mate the contribution from curvature and backreaction in our calculations.

Figure E.2 shows the global cosmological parameters as a function of
redshift for simulations sampling the full power spectrum (left panel), and
for those with a restricted sampling of the power spectrum; our controlled
case discussed in the previous section (right panel). Dotted, dashed, and
solid curves show different resolutions as indicated in each seperate leg-
end. Blue curves show the density parameter Ωm, green curves show the
curvature parameter |ΩR|, and purple curves show the backreaction param-
eters |ΩQ + ΩL|. As resolution increases in the left panel — as we add more
small-scale structure — the contributions from curvature and backreaction
increase, however still remain negligible relative to the matter content, Ωm,
and are unlikely to grow large enough to be significant when reaching a re-
alistic resolution. In the right panel, we have kept the physical problem con-
stant and varied only the computational resolution, and so we see all global
parameters converged towards a single value. Comparing the left panel to
the right panel, the value of the curvature and backreaction parameters dif-
fer by almost an order of magnitude. This is due to the restricted power
spectrum sampling for the simulations in the right panel, in which we only
sample structures down to λmin = 10∆x32 = 312.5 Mpc. These simulations
should therefore not be considered the most realistic representation of our
Universe. From this comparison we see that adding more structure results
(in general) in a larger contribution from curvature and backreaction.

We calculate the errors in the cosmological parameters using a Richard-
son extrapolation, which requires the gradients between resolutions to re-
main the same. This is not the case for the simulations with full power
spectrum sampling, however it is the case for the controlled simulations
with a restricted mode sampling. We therefore use the controlled simula-
tions to approximate the errors for our main calculations. Figure E.3 shows
the values of the globally averaged cosmological parameters at z = 0 for the
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resolution controlled simulation, as a function of averaging
radius rD. Blue points show the percentage error for Ωm,

green points for ΩR, and purple points for ΩQ + ΩL.
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controlled simulations. Coloured points show Ωm (left panel), |ΩR| (middle
panel), and |ΩQ + ΩL| (right panel) at resolutions N = 32, 64, and 128. We
use the function curve_fit as a part of the SciPy1 Python package to fit
each set of points with a curve of the form Ωi(N) = Ωinf +E ×N−2, where
Ωinf is the value of the relevant cosmological parameter at N → ∞, and
E is a constant. Black dashed curves in each panel of Figure E.3 show the
best-fit curves.

The best-fit value for Ωinf provides an approximation of the correct value
of each cosmological parameter for this set of test simulations. The residual
between our calculations and Ωinf gives the error in our calculations. For
the controlled simulation with 1283 resolution, the errors in the global cos-
mological parameters are 10−8, 4 × 10−12, and 7 × 10−11 for Ωm, ΩR, and
ΩQ + ΩL, respectively. Expressed as a percentage error, these are 10−6%,
0.27%, and 1.9%.

We follow the same procedure to estimate the errors on the cosmological
parameters calculated within subdomains. Figure E.4 shows the percentage
error in each parameter as a function of averaging radius of the subdomain,
rD, for the controlled simulation with 1283 resolution. Blue points show the
error for Ωm, green points show ΩR, and purple points show ΩQ + ΩL. The
jump in errors evident at ∼ 200 Mpc in ΩR and ΩQ + ΩL is due to a change
in sign of the curvature and backreaction parameters.

1https://scipy.org
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Effective scale factors part 2:
investigation into an error

In Section 1.5.2 we introduced the averaging formalism of Larena (2009) for
general foliations of spacetime. Here, we detail an error in Larena’s equa-
tion (30) for the rate of change of

√
h, subsequently carried through into

equation (31) for the rate of change of the volume, and equation (34) relat-
ing the fluid and volume scale factors — used for our analysis in Chapter 4.
Here we re-analyse the simulations presented in Chapter 4 and find the er-
ror makes a difference of ≈ 10−8 globally, and ≈ 10−10 on 100 Mpc scales,
both at z ≈ 0. In this Appendix, we work in units with c = 1.

Expressing the evolution equation for the spatial metric (2.19) in terms
of the fluid variables defined in Section 1.5.2, we arrive at equation (24) in
Larena (2009),

W

α
∂thij =

2

3
(θ + θB)hij + 2 (σij + σBij) +

2W

α
D(iβj), (F.1)

and taking the trace of this results in an evolution equation for
√
h

1√
h
∂t
√
h =

α

W
(θ + θB) +Diβ

i, (F.2)

where we have used (2.45) and the fact that both σij and σBij are traceless.
The equivalent to equation (F.2) in Larena’s paper, equation (30), reads

1√
h
∂t
√
h =

α

W
(θ − κ) +Diβ

i. (F.3)

Comparing (F.2) and (F.3) we can see there is a difference of θB → −κ. In
Larena (2009), this error is propagated into equation (31) for the evolution
of the volume, and subsequently into equation (34) for the relation between
the effective volume and fluid scale factors, which reads

aVD = ahD exp

(∫ t

tinit

〈 α
W

(θ − κ)− αθ +Diβ
i〉hdt

)
. (F.4)

We find this relation, instead using the evolution of the volume derived
from (F.2), to be

aVD = ahD exp

(
1

3

∫ t

tinit

〈 α
W

(θ + θB)− αθ +Diβ
i〉hdt

)
, (F.5)

see Section 1.5.2 for the derivation.
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We used (F.4) for our analysis in Chapter 4, however, only the calculation
of the fluid scale factor is affected, and all other analysis remains valid.
We also note the missing factor of 1/3 in the exponential in (F.4) that was
corrected in our analysis in Chapter 4.

Starting from the definition of θB in (1.92), and using the trace of Bµν
(1.96) as B = 1

3κv
ivi + βijv

ivj , we find

θB = −Wκ− W 3

3
κviv

i −W 3βijv
ivj , (F.6)

= −Wκ−W 3vivj∇ivj , (F.7)

where we have substituted βij from (1.87). Even for small velocities, with
W ≈ 1, it is not clear that θB ≈ −κ since the gradient of the velocity may
not be small, and so the second term in (F.7) is not obviously negligible.
It is therefore important to verify whether this makes a difference to the
calculation of the fluid scale factor.

We perform the same analysis outlined in Chapter 4, on the same sim-
ulations, but instead using (F.5) to calculate the effective fluid scale factor,
ahD

1, from the volume scale factor, aVD. We average over the whole domain
as well as within subdomains, i.e. we reproduce the calculations in Fig-
ures 4.6 and 4.9, respectively, and compare the evolution with and without
the error.

The top panel of Figure F.1 shows ahD calculated over the entire domain
as a function of effective redshift, for ahD(−κ) (error present; solid black
curve), and ahD(θB) (error corrected; dashed red curve). The bottom panel
shows the relative difference, i.e.

ahD(−κ)/ahD(θB)− 1, (F.8)

which remains below 10−8, even at z ≈ 0.
Each curve in Figure F.2 shows the relative difference (F.8) for an indi-

vidual sphere of radius rD = 100 Mpc as a function of effective redshift. We
have coloured the curves depending on their averaged density contrast at
z ≈ 0, with over-dense regions in blue and under-dense regions in purple.
The curves differ from one another because each sphere contains differ-
ent structures, and therefore will contain different velocity gradients. Fig-
ure F.3 shows the relative difference (F.8) for all 1000 spheres sampled with
rD = 100 Mpc at three different redshifts z = 0.0, 2.1, and 4.9, as a function
of the averaged density contrast. At high redshift, we see the spread in δ is
less, implying smoother structures and therefore smaller velocity gradients.
At z ≈ 0 the maximum difference still remains below 4× 10−10.

We have detailed an error we found in the derivation of Larena’s gen-
eralised averaging formalism, which was used in our calculation of the
fluid scale factor. We found maximum differences between the globally-
averaged and subdomain-averaged fluid scale factors, with and without
the error fixed, of 10−8 and 4 × 10−10, respectively. These differences are
negligible compared with our estimated errors (see Appendix E).

1We note that in Chapter 4 we denote the fluid scale factor by aD , equivalent to ahD in
this Appendix, and in Chapter 1.
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