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Abstract

Vision is a powerful tool in enabling intelligent robotic systems to safely and
effectively perform useful tasks. The learning of visual representations and
extraction of semantic information can facilitate an understanding of the en-
vironment. This understanding is an important precursor to well-considered
robotic action. There have been significant advances is the field of machine
learning for vision in recent years, but robotic considerations are rare. In
this thesis, several important problem domains for robotic vision are iden-
tified and explored. Learning methodologies are developed with the needs
of robotic applications in mind. Although motivated from a robotic vision
perspective, the proposed approaches have applications far beyond, with
advantages demonstrated over existing methods on conventional computer
vision problems.

Firstly, the problems of feature embedding learning and image classification
are addressed by the development of a novel deep metric learning method.
The proposed approach not only allows classification of new examples, but
also transfers to novel classes that are withheld during training. Open set
problems are then investigated, acknowledging that the true distribution of
data will differ from the training distribution. Novelty detection and open
set recognition using deep metric spaces is explored, allowing a classifier to
detect unknown examples, rather than silently failing with incorrect predic-
tions. Recognising that learning should not cease after initial model training,
open set active learning is then investigated. A novel approach is proposed
that allows a model to improve its understanding of the environment by effi-
ciently querying for labels of unknown observations. Finally, the problem of
semantic segmentation is explored. Identifying that object-level performance
is often more important than pixel-level performance for robotic applica-
tions, a novel semantic segmentation system is proposed that significantly
penalises false object detections. Thorough experimental evaluation of each
proposed method demonstrates significant advantages over existing base-
lines and state-of-the-art approaches in the domains of classification, transfer
learning, novelty detection, active learning and semantic segmentation.
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Chapter 1

Introduction

Vision is arguably our most dominant sense. The rich information provided
by sight allows us to safely navigate the world, understand our surround-
ings and interact with the environment. Much of our cognitive and motor re-
sponses are the direct result of inferring meaning from what we see. Research
suggests that vision plays a part in up to 80% of our perception, learning and
cognition [1]. Everyday actions such as walking down the street, driving a
car or picking items off a shelf are largely mediated and facilitated by sight.

Sensing and understanding the environment are key requirements for many
robotic applications. Given our reliance on the sense of vision, it is reasonable
to pursue robotic vision as a key technology in facilitating this sensing and
understanding. Complex robotic tasks such as driving a car [2], navigating
a corridor [3] or picking and placing items in a warehouse [4], require rich
information about the environment. This information includes the structure
of the environment, the surrounding terrain, any objects present in the scene
and the actions of dynamic objects such as humans, animals and vehicles. Vi-
sion provides a means to obtain and understand such information, enabling
robots to carry out complex tasks and be truly useful to humans.

Robotic vision begins with the sensor that captures the required informa-
tion. These sensors range from standard colour cameras to information rich
multi-spectral cameras and light-field cameras. Common sensor set-ups in-
clude those which provide depth information to the robot, in addition to
standard colour information [5, 6]. Passive stereo cameras allow depth to
be inferred using triangulation techniques between matched pixels. Low-
cost active depth sensors use structured light patterns to achieve the same
result. Another sensor type is an event camera, also known as a dynamic
vision sensor [7]. Unlike conventional cameras, which generally output a
per-pixel intensity value for each frame, dynamic vision sensors only output
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changes, or events, that occur at a given pixel location. In this thesis, vision is
used to refer to the processing of information obtained by a standard monoc-
ular, colour camera. The methodologies presented, however, have clear ex-
tensions to more complicated sensor arrangements, particularly those which
provide depth information.

Machine learning refers to the problem of enabling a machine to learn from
data, without being explicitly programmed for a specific task. The ability to
learn from visual data is an imperative step towards truly useful and reli-
able robotic vision. Visual data allows robots to navigate the environment
by building maps and localising itself within the map. This problem, known
as simultaneous localisation and mapping (SLAM), is incredibly useful in
robotics, but without the ability to learn from visual data, a robot’s under-
standing of the environment will be limited to structure and location. Ma-
chine learning facilitates a semantic understanding of the environment. In
this context, semantics refers to the meaning afforded to objects, structures
and actions in the physical world. Examples of this understanding include
the ability to detect and recognise objects, which are key in facilitating robotic
interaction with the environment. Further, a semantic understanding may in-
corporate the structure and terrain of the environment. This includes recog-
nising road, grass, carpet, water, walls and so on, which impact the robot’s
navigation and path planning. Learning from visual data also allows mean-
ingful interaction with humans, including the ability of a robot to recognise
faces, recognise human actions and predict what a human is likely to do next.
An additional ability facilitated by learning from visual data, is inferring
meaning about objects that the robot has never before observed. Humans
are very adept at this type of knowledge transfer. We are able to infer an un-
known object’s affordances by using knowledge of similar object categories.
This may be achieved through analysing the object’s attributes or by recog-
nising the parent category to which the unknown sub-category belongs.

There has been a significant research focus on learning from visual data in the
computer vision community. These works seldom make any considerations
for robotic applications. Robotic vision presents numerous challenges that
are not often addressed in pure computer vision solutions. An incomplete
list of example challenges that are present in robotic vision problems is as
follows:

• Robots operate in dynamic environments.
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• Intelligent robots need to complete several different tasks with limited
compute resources.

• Mistakes in predictions have real-world consequences and can trigger
undesirable robotic action.

• A robot needs to know when it doesn’t know, rather than silently fail.

• Robots operate in a temporal world and can remember things they have
seen before.

• A robot may need to recognise many classes with limited training data.

• Robots should be able to update their understanding on-the-fly, with-
out costly model refinement.

The research presented in this thesis aims to bridge part of the disconnect be-
tween computer vision and robotic applications. The computer vision prob-
lems approached are done so with robotic considerations in mind. This does
not mean that the contributions of this thesis are limited to the robotics com-
munity. In fact, it is found that approaching problems with robotic consider-
ations often leads to advantages beyond the application to robotics, improv-
ing on existing solutions in the wider computer vision field. All presented
methodologies are evaluated against standard computer vision approaches
on the conventional computer vision datasets. The application to robotic vi-
sion is the broad consideration of robotic needs that inspire and motivate
much of the work presented in this thesis.

It is infeasible to consider all possible robotic conditions. Key robotic consid-
erations that are not made in this thesis are mentioned here, so that readers
may give thought to how such considerations may be made in future work.
The work in this thesis considers only static images, not videos, and as such
the temporal element of robotics is not considered in this manner. Temporal
information is considered, however, in the sense that some of the proposed
approaches allow the learning model to remember previously observed in-
stances. The sensor used for all proposed methodologies is monocular, mean-
ing there are clear extensions to the incorporation of depth information. The
agency of robots, that is, the ability of a robot to poke or change the environ-
ment in which it operates, is not explored.

The remainder of this chapter gives a high-level introduction to the various
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(A) Initial, cost = 818.32. (B) Step 1, cost = 168.63. (C) Step 2, cost = 19.86.

(D) Step 3, cost = 6.91. (E) Step 4, cost = 3.64. (F) Step 5, cost = 3.60.

FIGURE 1.1: Simple linear regression machine learning exam-
ple. At each training step, a subset of data is sampled and the

parameters are updated such that the cost reduces.

problems considered in this thesis. Starting with a broad overview of ma-
chine learning for vision in Section 1.1, Sections 1.2-1.6 introduce and moti-
vate the specific areas of learning that are addressed in the subsequent chap-
ters. A summary of the contributions of this thesis is given in Section 1.7,
publications arising from the presented research are listed in Section 1.8 and
the remainder of the thesis is outlined in Section 1.9.

1.1 Machine Learning from Visual Data

Machine learning is based on the concept that machines should be able to
learn from data without being explicitly programmed for a specific learning
task. Algorithms for machine learning are data driven; a model is presented
with large amounts of data and its internal parameters are updated such that
some function is optimised. This function is often referred to as an objective,
cost or loss function. A simple example is shown in Figure 1.1. In this prob-
lem, the goal is to find a linear regression line that fits the global population
of data. An approximation to the best fit is found since it may not be feasi-
ble to achieve the exact solution with the available compute. The algorithm
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sub-samples data points and updates the parameters, which in this case are a
and b from the line equation y = ax+ b. After several updates the parameters
converge. The cost function is the squared difference between the predicted
values and the true values, that is, cost =

∑N
i=1(yi − (axi + b))2, where N is

the number of data points. If the model is well learned it should generalise
to data that was unseen during training. That is, given a new value of x, the
learned model should give a reasonable prediction of the associated value of
y.

In this thesis, the data of interest is images and the problems are more com-
plex than linear regression. An example problem is categorising images
based on the semantic information contained within. In this case, the images
are the inputs to the model and the semantic categories are the target val-
ues that the algorithm should learn to predict. Machine learning algorithms
can be broadly classified into three main categories: unsupervised learning,
supervised learning and reinforcement learning.

Unsupervised Learning comprises algorithms that learn from input data
only. In vision, this data may be a large collection of images or videos.
Unsupervised algorithms are given no target values; the input data is com-
pletely unlabelled. Common examples of unsupervised learning algorithms
are those that cluster data, such as k-means [8] and Gaussian mixture models.

Supervised Learning comprises algorithms that learn not only from input
data, but also target values associated with the inputs. Target values are often
referred to as labels and hence the inputs are referred to as labelled data. Exam-
ples of labels for images include image-level semantic categories, or classes,
as well as class labels for each pixel in an input image. Regression and classi-
fication are two key supervised learning problems. Supervised learning en-
compasses subcategories of learning algorithms including semi-supervised
learning, in which the model learns from both labelled and unlabelled data,
and weakly-supervised learning, in which the data labels are incomplete,
noisy or only partially representative of the desired target values.

Reinforcement Learning is a class of algorithms and models that attempt
to learn appropriate actions to take in order to maximise some reward. A
process of sequential decision making, reinforcement learning is useful for
problems in which training data is difficult or infeasible to acquire. This may
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include a robotic arm learning how to grasp objects or perform other dexter-
ous actions with the environment.

The research in this thesis focuses on supervised learning algorithms. In Sec-
tions 1.1.1 and 1.1.2, two common machine learning models are briefly intro-
duced. Detailed review and discussion follows in Chapters 2 and 3.

1.1.1 Neural Networks

A commonly used model in machine learning is the neural network, which
aims to very loosely model the behaviour of neurons in an animal’s brain.
Large numbers of artificial neurons [9], intended to vaguely emulate biolog-
ical neurons, are connected together by artificial synapses, which transfer
signals from one artificial neuron to another. An artificial neuron processes
a received signal in some manner and transmits a subsequent signal to be
processed by other artificial neurons. Generally in artificial neural networks,
connections are directed and the signal processing involves a simple opera-
tion such as multiplication with a learned model parameter. Non-linearity is
commonly introduced with activation functions that take the modified signal
and input it to a non-linear operation, such as a sigmoid function. Although
usually the case, an activation function is not required to be non-linear. Acti-
vation functions are loosely analogous to the level of action potential firing in
biological neural networks. The model parameters, or weights, are learned by
optimisation methods, involving the sampling of examples from a training
dataset. This is discussed in detail in Section 3.1.

By far the most commonly used machine learning model in computer vision
in recent years is the convolutional neural network (CNN) [10, 11]. The flex-
ibility of these powerful models have allowed them to be applied to a vast
array of machine learning problems. The structure of CNNs makes them
particularly suitable for visual data, such as images. In a simple layout, a
basic CNN consists of a series of convolutional filters that extract increas-
ingly high-level information from the input data. The convolution weights
are learned parameters of the model. As with standard artificial neural net-
works, the convolution outputs, or activations, are transformed by activation
functions. The outputs of the activation functions are then transmitted to
other convolutional layers for further processing. Activations are often re-
ferred to as features, as they should in some way describe the contents of
the input data. For images, shallow-layer features, that is, those early in the



Chapter 1. Introduction 7

network, generally describe structural and low-level elements in the image,
such as edges and colour. Deep-layer features, that is, those extracted after
several consecutive convolutions, often describe higher-level semantic infor-
mation. The deep, information rich features can be utilised for several useful
tasks, such as classifying the input image. Neural networks with many layers
are called deep neural networks and the relevant field of machine learning is
referred to as deep learning. A detailed discussed on the operation of convo-
lutional neural networks is carried out in Section 3.2.

1.1.2 Probabilistic Graphical Models

Another useful class of machine learning models are probabilistic graphical
models [12, 13]. These models represent conditional dependence between
random variables in a graph structure. As a result, they are useful for struc-
tured data, such as images, where contextual relationships exist between data
points. For example, a pixel has spatial based contextual relationships with
its neighbouring pixels. A contextual relationship also exists between pix-
els that are not neighbouring. These long range contextual relationships are
likely different to the close range relationships. In a video sequence, a frame
has a temporal contextual relationship with previous and subsequent frames.
Machine learning problems that involve predictions with structured target
data are known as structured prediction.

Perhaps the most useful probabilistic graphical model for images is a condi-
tional random field (CRF) [13]. These models provide a means to find the
state of random variables that approximately best satisfy a set of known con-
textual relationships, conditioned on the input data. The state of random
variables may be the predicted class labels for each pixel in an image. An
example contextual relationship that may be considered is a car is more likely
to be on the road than on the water. In practice, the contextual relationships are
often not hand crafted, but learned automatically from labelled data. Consid-
ering contextual relationships allows refinement of poor initial predictions.

1.2 Image Classification

A fundamental problem in supervised machine learning is classification.
This involves categorising a piece of data into one out of a set of predefined



Chapter 1. Introduction 8

Input

Target Screwdriver Coffee Mug Running Shoes Toaster

Input

Target California Gull Heermann Gull Herring Gull Western Gull

Input

Target Kitchen Bathroom Living Room Bedroom

FIGURE 1.2: Examples of different image classification prob-
lems. Top: Object recognition. Middle: Fine-grained recogni-

tion. Bottom: Scene recognition.

classes. For example, an animal classifier may be trained on a set of images
belonging to the classes of dog and cat. The machine learning model should
be trained such that it generalises to unseen examples of the predefined
classes. That is, the model should learn what makes a dog look like a dog in
a general sense, not what makes the dogs in images specific to the training
set look like dogs. If this is done successfully, the model will be able to
classify new examples of dogs that were not present in the training set.

Classification of visual data is clearly of great importance in robotic applica-
tions. As humans, recognising objects is fundamental to our ability to inter-
act with our environment and understand its affordances. So much of our
daily life, such as driving, working, shopping and so on, relies on our ability
to classify objects. This includes recognising vehicles, reading street signs,
recognising our colleagues faces and finding products on the grocery store
shelf. For robots to be useful on our roads, in our factories and in our homes,
the ability to classify visual data is just as vital as it is to humans.

There are several subdomains of image classification. Perhaps the most com-
mon is coarse object classification. In these problems, a classifier is trained
to distinguish between different coarse object categories such as bird, car,
table, boat and so on. Fine-grained classification, on the other hand, aims
to distinguish between semantic classes that are very similar in appearance.
This includes facial recognition, classifying birds or flowers by species and
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classifying cars by make and model. Such fine-grained problems are chal-
lenging and can even be difficult for humans to master, but they have many
important application areas such as security, biodiversity analysis and robot-
human interaction. These problems require the machine learning model to
capture small visual differences between object categories that are often in-
distinguishable to an untrained eye. A third domain of image classification
is scene recognition, which aims to classify images into categories such as
kitchen, bathroom, lecture theatre, classroom and so on. This is clearly an
important problem in robotics, as it provides high-level context to the robot
and may greatly influence the robotic actions taken. Examples of these prob-
lems are shown in Figure 1.2.

Many existing approaches to image classification have drawbacks when it
comes to robotic applications. Most commonly used methods are limited in
their ability to improve knowledge on-the-fly. Generally, these approaches
require large amounts of new training data and costly model re-training and
refinement to improve the model’s understanding of the environment. In a
similar vein, often models that are trained for a specific classification set do
not transfer knowledge well to novel classes.

1.3 Dense Prediction and Semantic Segmentation

Image classification problems generally pair an input image with a single
target class label. Semantic segmentation on the other hand, aims to predict
a class label for each pixel in an input image. This divides the image up
into semantically meaningful regions. Pixels may be labelled with classes
pertaining to objects, such as human, car, table or chair, as well as amorphous
semantic classes such as floor, ceiling, grass and road. Example semantic
segmentations are shown in Figure 1.3.

Semantic segmentation is an important problem in robotics because it simul-
taneously provides the robot with information about objects and structure.
The labelling of object classes allows the robot to make decisions about in-
teractions with the environment, such as picking an object off a table or in-
teracting with a human. The labelling of amorphous, structural semantic
classes allows the robot to navigate the environment, for example, traversing
a specific terrain (such as the road or footpath) and avoiding another (such
as grass or water).
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Input Target

FIGURE 1.3: Semantic segmentation examples from Cityscapes
[14] (top), Pascal VOC [15] (middle) and NYU v2 [16] (bottom).

There is a significant discrepancy between the requirements of a semantic
segmentation system for robotic applications and the focus of semantic seg-
mentation systems in the computer vision community. Conventional models
for pixel labelling are optimised and evaluated on pixel-level performance.
This means that incorrect regions of labelling are penalised based on the size,
that is, the number of pixels that are incorrectly labelled. In robotic applica-
tions, however, the size of a detected object is not of great importance; the
presence or absence of any object is influential in a robotic scenario. Any ob-
ject detection can trigger some sort of costly robotic action, such as further
computation as the robot attempts to learn more about the detected object,
such as pose or instance label, or a physical action, such as the robot interact-
ing with the object or navigating over some terrain. For these reasons, object
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or region-level performance is more important in robotic applications than
pixel-level performance.

Since conventional semantic segmentation approaches are optimised at the
pixel-level, they are also evaluated on pixel-level performance. Such com-
monly used metrics as pixel accuracy and mean intersection-over-union do
not evaluate a system on the robotics-appropriate criteria outlined in this
section. This mismatch between conventional semantic segmentation system
optimisation and evaluation, and the requirements of a robotic implementa-
tion of such a system, is a strong motivator for part of this thesis.

1.4 Metric Learning

The problem of metric learning is the learning of a distance function between
two given inputs from a set of training examples. Throughout this thesis, the
distance metric is learned based on the semantic class of the associated train-
ing examples and as such, the learned metric is a measure of semantic sim-
ilarity. Given a trained model, the distance metric should be small between
two images of the same semantic class and larger between two images of
differing semantic class. It is also expected that the distance function will en-
code fine-grained semantic information, such as object attributes. For exam-
ple, a distance metric learned on a training set of different bird species may
return a smaller measure between two examples of different species from the
same genus than between two examples from different genera. A visualisa-
tion of an example mock metric space is shown in Figure 1.4. Although the
example is two-dimensional, metric spaces are generally high-dimensional.

Measuring the similarity between observations is an important problem in
robotics. For example, since a robot operates in a dynamic environment, it is
highly likely that it will observe examples of objects that are outside of the
training set distribution. A well learned distance metric allows the robot to
measure the similarity between an unknown observation and known objects,
enabling some sort of inference to be made. An example of this may be a do-
mestic robot that has the ability to recognise a subset of typical household
items. The robot may observe the pet rabbit, which is outside of the training
set distribution. However, since the training set did contain examples of cats
and dogs, the robot is able to infer that the rabbit is similar to these other
animals and should be treated as such. The ability of metric learning models
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FIGURE 1.4: Example metric space. Colour represents semantic
class, which in this example is the species of bird.

to transfer to unseen, out-of-distribution classes is a desirable property for
robotics. Further, metric learning approaches can also be useful in the do-
main of few-shot learning. In this problem, models are trained on impover-
ished datasets, with only a few examples of each class in the training set. This
is beneficial for robotics, as labelling data is labour intensive and requires hu-
man intervention. Additionally, unconstrained robots are unbounded in the
number of classes they may need to recognise. As such, being able to learn
from small amounts of training data is imperative for robots operating in
these dynamic environments. Other applications of metric learning include
ranking, retrieval, duplicate detection and weakly supervised learning.

Direct distance measures in the image domain are largely meaningless. That
is, it is not expected that the Euclidean distance between a pair of images
will be representative of the semantic similarity of the pair. Generally, met-
ric learning approaches learn a transformation from the image space into a
lower dimensional, semantically rich space. The goal is to learn the trans-
formation such that Euclidean distance (or another distance measure) in the
transformed space represents the notion of semantic similarity. Recently, the
transformation is commonly learned with convolutional neural networks [17,
18, 19, 20, 21, 22, 23, 21]. The learned space is often referred to as a metric
space, embedding space or feature space.
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Commonly used approaches to metric learning have some drawbacks. One
such drawback is that the classification performance of conventional metric
learning models, beyond few-shot classification, is poor compared to state-
of-the-art image classifiers. It is, however, desirable to have a single model
that can perform both tasks of metric learning and classification simultane-
ously. This is particularly true for robotic applications, in which both prob-
lems are of great importance. A robot should be able to classify observations
of known classes, as well as transfer knowledge to novel classes. As robots
are often limited in compute resources, a single model that performs well
in both domains is desirable. A second drawback of existing approaches is
that they can be limited in their ability to represent intra-class and inter-class
variations in the data.

1.5 Open Set Recognition

When applied to robotics, vision system outputs lead to decisions that have
real-world consequences. The detection of a particular object can trigger
robotic action that may be dangerous if that object detection is erroneous.
Robotic problems are open set; a robot operating in a dynamic environment
will undoubtedly encounter objects that are not represented in the training
set. Conventional classification systems are closed set by design and will
produce a prediction for any given input. In other words, the classifier will
silently fail by categorising a novel example into one of the known training
classes. Such silent failure is unacceptable in robotic applications.

A robot should be able to detect when it is observing an instance of a novel
class. A novel example is one that is not represented in the training set. The
problem of simultaneously classifying examples from known classes and de-
tecting examples from novel classes is referred to as open set recognition.
The difference between a closed set classifier and an open set classifier is il-
lustrated in Figure 1.5.

Further to avoiding costly classifier errors, the handling of open set problems
is important in robotics as it gives the robot the option of learning more about
out-of-distribution examples and improving its understanding of the envi-
ronment. Training data is designed to be a sample of the real-world distri-
bution of data that the robot will encounter in its environment. Invariably in
unconstrained environments, the training data distribution will differ from
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(A) Closed set classifier. (B) Open set classifier.

FIGURE 1.5: A closed set classifier will silently fail when ob-
serving an example from outside of the training set distribution
by incorrectly classifying the observation into a known class.
An open set classifier can flag out-of-distribution examples as

novel/unknown.

the real distribution, including missing semantic classes. Open set recogni-
tion and novelty detection provide a robotic vision system with the first step
required to improve its representation of the real-world distribution.

The applications of a vision system that will not silently fail when observing
out-of-distribution examples has reach far beyond robotics. Many real-world
examples exist in which the output of a vision system has the potential to
greatly impact users and the wider community, beyond simply attaching the
incorrect label to an image. These application domains include computer-
aided diagnosis in medicine, manufacturing, fraud detection and security.

1.6 Active Learning

The conventional pipeline for a machine learning task first involves gather-
ing and labelling training data. Labelling data requires human effort and can
be laborious for large datasets or pixel-level labels. Additionally, labelling
data often requires expert knowledge, for example in biodiversity datasets
or medical datasets. However, not all pieces of data are created equal. Some
training examples are more informative than others and human effort should
be focused on these examples before the less informative examples.

Active learning is the problem of automatically selecting the best unlabelled
pieces of data that should be labelled. Given a labelling budget of b, that
is, a human is able or willing to label b pieces of data, active learning aims
to select the b most informative examples. Doing so should result in greater
performance than randomly selecting b examples. This is illustrated with a
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(A) Example space.

(B) Random query selection. (C) Careful query selection.

FIGURE 1.6: Example two class linear decision boundary prob-
lem showing the importance of careful query selection in active

learning problems.

simple two class linear decision boundary problem in Figure 1.6. The process
of choosing examples for labelling is referred to as query selection. Random
query selection results in a substandard decision boundary (Figure 1.6B). Se-
lecting examples using an active learning methodology results in a superior
decision boundary (Figure 1.6C). This near-ideal decision boundary is found
by acquiring labels for only a fraction of the data. Active learning allows a
machine learning model to efficiently learn from far fewer training examples
than in a conventional learning pipeline.

A robotic vision system exploring the environment observes a wealth of new
information. As discussed in Section 1.5, a training distribution is an imper-
fect approximation of the true, real-world distribution. A robot is likely to
encounter examples of novel classes and novel examples of known classes.
The initial training of a robotic machine learning model should not be the
end of the robot’s endeavour to understand the environment. Knowledge
and understanding should be refined as the robot explores the world. This
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gives rise to the idea of open set active learning in robotics, which includes
incremental learning and online learning.

As a robot explores the environment and observes a plethora of new infor-
mation, it should be able to discern which observations are going to provide
it with the most novel information. In an active learning setting, the robot
ranks observations in terms of informativeness and queries a user to label as
many of the examples, in order, as the user permits. This allows the robot
to update and improve its understanding of the environment. Ideally, the
robot should favour selecting observations of novel examples that are not
represented in the original training set distribution. Such examples repre-
sent knowledge that is completely new to the model and as such, is highly
informative of the true distribution of data in the robot’s operating environ-
ment.

1.7 Contributions

In this thesis, novel techniques are presented on the broad topic of machine
learning for vision, with a focus on making considerations for robotic ap-
plications. Several target domain areas that are important for robotics, but
lacking in existing literature in terms of robotic considerations, are identified
and pursued. These include classification, metric learning, novelty detection
and open set recognition, active learning and semantic segmentation. The
contributions of this thesis are enumerated in the remainder of this section,
grouped according to the aforementioned target domains.

1.7.1 Metric Learning and Image Classification

In chapter 4, we propose a convolutional neural network-based metric learn-
ing approach that can be applied to both feature embedding learning prob-
lems and image classification. Our method centres a Gaussian kernel on
each training set feature embedding. During training, the kernels pull exam-
ples from the same class together and push examples from difference classes
apart. We show how to make training feasible by introducing periodic asyn-
chronous updates of the stored kernel centres (Section 4.7). The Gaussian
kernels can also be used to classify new examples by summing the influence
of nearby kernel centres (Sections 4.5.3 and 4.6.1). We introduce trainable
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per-kernel weights to allow the influence of important kernel centres to be
amplified (Section 4.5.3). Further, we show how to make training scalable by
leveraging fast approximate nearest neighbour search (Section 4.8).

Our proposed approach is first evaluated on feature embedding learning, or
distance metric learning, problems (Section 4.10.1). We investigate how well
the learned distance metric transfers to novel classes that are withheld during
training. Quantitative experimental results show that our method transfers
well to novel classes, outperforming state-of-the-art deep metric learning ap-
proaches (Section 4.10.1.5). Qualitatively, the feature embedding spaces are
visualised, showing that although the examples belong to novel classes that
are withheld during training, the feature embeddings are co-located based on
class and other semantic similarities (Section 4.10.1.6). Additionally, the im-
portance of the feature embedding dimensionality is explored, finding that
our approach is able to better take advantage of a larger embedding space,
compared to conventional metric learning approaches (Section 4.10.1.4).

Further experimental contributions are provided by evaluating the proposed
approach on the problem of image classification (Section 4.10.2). We show
that compared to conventional softmax-based convolutional neural net-
works, our approach results in better classification performance on several
datasets (Section 4.10.2.3). We also show that our approach has a significant
advantage over softmax networks when the number of training examples is
limited (Section 4.10.2.4). An ablation study is performed (Section 4.10.2.5),
as well as an analysis of local neighbourhoods during training (Section
4.10.2.6). Finally, we investigate how accurately attributes can be propagated
to nearby examples (Section 4.10.2.7).

1.7.2 Open Set Recognition and Novelty Detection

Open set problems are investigated in Chapter 5. We present a deep met-
ric space approach to novelty detection and open set recognition (Section
5.5). Rather than silently failing when presented with out-of-distribution
examples, our approach detects such examples as novel, while classifying
examples from known classes (Section 5.5.2). Several distance-based nov-
elty measures for deep metric spaces are investigated (Section 5.5.3). Our
approach works on the knowledge that deep metric spaces transfer well to
novel classes, allowing the detection of examples that differ from the training
distribution.
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Our approach is evaluated experimentally on several datasets (Section 5.7.2).
We compare the approach to appropriate baselines, as well as purpose built
novelty detectors and open set classifiers (Section 5.7.2.3). Results show that
our approach allows more reliable detection of novel examples than the com-
pared methods (Section 5.7.2.4). We also analyse how the open set classifica-
tion accuracy for both in-distribution and the combination of in-distribution
and out-of-distribution examples is affected by the novelty detection recall
(Section 5.7.2.4).

1.7.3 Open Set Active Learning

Continuing with the open set theme in Chapter 5, we proposed an approach
that enables the efficient active learning of observed novel classes (Section
5.6). Our approach allows a model to learn from novel observations, such
that its understanding of the true distribution of data in the environment
can be improved. We propose a query selection method that ensures ob-
servations that are both novel and representative of many observations are
favoured (Section 5.6.2). Synthetic data is used to demonstrate the behaviour
of the proposed approach. We show how to incorporate our query selection
method into an active learning algorithm (Section 5.6.3). Finally, we pro-
pose an approach that allows refinement of model parameters such that the
novel class representation is improved with a labelling budget of zero (Sec-
tion 5.6.4).

Quantitative experimental contributions includes a comparison to other
query selection approaches for metric spaces, as well as to a softmax net-
work approach (Section 5.7.3). Results show that our approach outperforms
the compared methods, with the advantage particularly large at small la-
belling budgets (Section 5.7.3.4). We further investigate the performance
when no fine-tuning of the network weights is allowed (Section 5.7.3.4).
Additionally, we investigate novel class discovery and the Kullback–Leibler
divergence as a function of the number of label queries (Section 5.7.3.4).
Qualitatively, we visualise the query selection process to investigate the be-
haviour of the proposed and compared methods (Section 5.7.3.5). Finally, the
zero labelling budget learning approach is evaluated quantitatively (Section
5.7.3.7) and qualitatively (Section 5.7.3.6), comparing the method to active
learning.
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1.7.4 Semantic Segmentation

The problem of semantic segmentation is addressed in Chapter 6. Recog-
nising that for robotic and other real-world problems, false object detections
are often more important than pixel-level performance, we propose a region-
level conditional random field model that significantly penalises such de-
tections (Section 6.5). We define semantically meaningful image regions as
nodes in the random field and show how to minimise the energy (Section
6.5.3) and learn the pairwise potentials (Section 6.5.4). Further, we propose a
hierarchical region-pixel conditional random field that allows pixel-level re-
finement to better localise object boundaries and fine-grained image features
(Section 6.6). We show how to define the pixel-level pairwise potentials such
that appearance consistency and local smoothness are enforced and propose
an approach to encourage semantically similar pixels to take the same class
label (Section 6.6.2.2).

Identifying the shortcomings of conventional pixel-level evaluation metrics
for semantic segmentation, we propose an object-aware evaluation metric
that places great significance on false positive and false negative object de-
tections (Section 6.7). We introduce an intersection-over-area term to our
evaluation metric that ensures the measure cannot be gamed by the erro-
neous growing of predicted regions (Section 6.7.2). Our proposed evaluation
measure is compared against conventional pixel measures with example seg-
mentations, illustrating how the shortcomings of the conventional measures
are overcome (Section 6.7.4).

Experimentally, our proposed conditional random field models are com-
pared to appropriate baselines (Section 6.8). Results show that our ap-
proaches achieve significantly fewer false positive detections at a given
number of false negatives (Section 6.8.3.2). Further, we show how our ap-
proach outperforms the compared methods in terms of both conventional
pixel evaluation metrics and our proposed object-aware metric (Sections
6.8.3.2 and 6.8.4.2). The importance of using semantically meaningful image
regions is also investigate by comparing to the use of structurally meaning-
ful image regions (Section 6.8.3.2). Finally, we compare our approach to the
baseline methods in a qualitative manner by visually inspecting example
segmentations (Sections 6.8.3.3 and 6.8.4.3).
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1.8 Publications

The material presented in this thesis is based on the following peer-reviewed
publications:

• Benjamin J. Meyer, Ben Harwood and Tom Drummond, “Deep Metric
Learning and Image Classification With Nearest Neighbour Gaussian
Kernels”, International Conference on Image Processing (ICIP), 2018
[24] c© 2018 IEEE.

• Benjamin J. Meyer and Tom Drummond, “The Importance of Metric
Learning for Robotic Vision: Open Set Recognition and Active Learn-
ing”, (to appear) International Conference on Robotics and Automation
(ICRA), 2019 [25] c© 2019 IEEE.

• Benjamin J. Meyer and Tom Drummond, “Improved Semantic Segmen-
tation for Robotic Applications with Hierarchical Conditional Random
Fields”, International Conference on Robotics and Automation (ICRA),
2017 [26] c© 2017 IEEE.

1.9 Thesis Overview

In this chapter, the importance of vision for robotics was introduced, with
a focus on learning from and understanding visual data. The difficulties of
robotic vision were discussed, along with the shortcomings of many conven-
tional computer vision approaches when viewed through a robotics lens. A
broad introduction to several subtopics of learning for vision was given, in-
cluding high-level motivations for the work carried out in this thesis. Finally,
the contributions of the research described in this thesis were enumerated
and the resultant publications were listed.

Relevant literature is reviewed in Chapter 2. This includes discussion on
machine learning models, with a focus on neural networks and probabilistic
graphical models. Problem specific literature is also reviewed, including im-
age classification, metric learning, open set recognition, active learning and
semantic segmentation. In an attempt to make this thesis as self contained as
possible, Chapter 3 details the fundamental theory, algorithms and practices
that are leveraged in the subsequent chapters.
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Chapter 4 details our proposed approach to image classification and met-
ric learning using nearest neighbour Gaussian kernels. Open set problems
are explored in Chapter 5. Beginning with open set recognition and novelty
detection, we present an approach that allows for the detection of out-of-
distribution observations using deep metric spaces. We then turn to the prob-
lem of open set active learning by investigating how a model can learn from
detected novel examples and improve its understanding of the environment.
The problem of semantic segmentation is investigated in Chapter 6. Condi-
tional random field models are proposed, as well as a robotics-appropriate
evaluation metric.

The thesis is concluded in Chapter 7. We again provide a summary of the key
contributions and insights of the presented research. Finally, future research
opportunities that expand on the contributions of this thesis are explored.
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Chapter 2

Background

This chapter provides context to the research presented in this thesis by re-
viewing relevant literature. Firstly, a brief overview of classical machine
learning approaches is given, as well as early artificial neural networks. Deep
learning is then reviewed, with a focus on the application to image classifi-
cation and semantic segmentation. Metric learning, including deep neural
network approaches, is then discussed. Classical and recent approaches to
novelty detection and active learning are reviewed, followed by a discussion
on probabilistic graphical models for semantic segmentation.

2.1 Classical Machine Learning

In this section, an overview of classical machine learning techniques is given.
Here, the term “classical” is used to refer to methods outside of deep learn-
ing. In the context of computer vision problems such as image classification,
these methods generally involve the extraction of hand-engineered features,
which are then input to a machine learning algorithm. This is unlike the
majority of deep learning approaches, which combine these two stages by
learning the model parameters that extract features directly from the input
data.

The discussion presented in this section is intended only as a brief overview
of classical machine learning approaches, it does not attempt to discuss the
vast amount of computer vision-based machine learning literature from the
past several decades. Rather, this section aims to provide context for the fol-
lowing discussion on deep learning literature that more closely relates to the
research presented in this thesis. A detailed review of classical approaches
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in the context of classification problems can be found in the survey by Kot-
siantis et al. [27].

2.1.1 Feature Descriptors

Machine learning algorithms and models, such as classifiers, often cannot
operate directly on the raw data. In the case of images, the data is high-
dimensional, redundant and extremely variable for a single semantic entity.
As such, it is difficult for models to directly analyse image data for problems
such as classification and recognition. Feature extraction refers to the process
of transforming the raw data into meaningful features. Practically, a feature
is a vector of numbers that in some way encodes the informative properties
of the data. Features are sometimes referred to as feature descriptors, as they
describe the useful information contained within the input data. In general,
a feature will have significantly lower dimensionality than the raw image.

A widely used feature extraction algorithm is the scale-invariant feature
transform (SIFT) proposed by Lowe [28]. The SIFT algorithm transforms
an image into a collection of feature descriptors that are invariant to scale
and rotation, and robust to changes in illumination and viewpoint. Scale
invariance is achieved by constructing a scale space that consists of resized
versions of the image, such as half size, quarter size and eighth size, each of
which are progressively blurred out by Gaussian filters with increasing scale
terms. Edges and corners contained within the original image are extracted
by approximating the second order derivatives of the blurred images by
computing the differences between blurred images at consecutive scales.
Keypoints are found by locating the minima and maxima in the difference
of Gaussian images and made rotation invariant by defining an orientation
based on the gradients in the blurred image. A descriptor for a keypoint
can be computed by analysing and encoding the gradients in sub-windows
surrounding the detected keypoint.

The ideas presented in [28] are made more computationally efficient in the
SURF features proposed by Bay et al. [29]. The improvement in execution
time is largely the result of further approximating the computation of the
second order derivatives by the use of box filtering. Wavelet responses are
used to compute feature descriptors for detected keypoints. A similar feature
descriptor to SIFT and SURF is the histogram of oriented gradients (HOG)
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[30]. The image gradient values are computed using Sobel filters and small
image regions are used to compute gradient orientation-based histograms.

Feature descriptors exacted from an image are often used to represent the
image as a bag-of-visual-words model [31]. In this method, each feature de-
scriptor is mapped to one of several “codewords”, which are used to repre-
sent similar features found in the image. A frequency histogram can be com-
puted from these mappings. The histogram summarises the salient features
of the image and can be used for classification and recognition problems.

2.1.2 Supervised Learning

Machine learning with labelled training examples is referred to supervised
learning. A commonly used supervised machine learning model is the deci-
sion tree [32], which can be used for both classification and regression prob-
lems. Data is split at each node in the tree, with an example eventually ar-
riving at a leaf node. In the case of classification, each leaf node is assigned
a class label or a probability distribution over class labels. In general, a de-
cision tree learning algorithm will attempt to identify the most informative
features and split the data accordingly. A data split should result in subsets
that are as homogeneous as possible, in terms of the target values. Example
decision tree learning algorithms include ID3 [33] and C4.5 [34].

The predictive power of machine learning algorithms can be improved by
employing multiple models to produce several hypotheses. Such approaches
are referred to as ensemble methods and operate on the premise that a set of
weak learners can be combined to form a strong learner [35]. Boosting is a
ensemble learning algorithm that iteratively trains weak learners and makes
predictions via weighted aggregation. Perhaps the most popular boosting
approach is Freund and Schapire’s AdaBoost algorithm [36]. Unlike other
boosting algorithms [35, 37], AdaBoost is adaptive in that subsequent learn-
ers will focus on examples that are misclassified by previously trained learn-
ers. A different ensemble learning approach is bootstrap aggregating, or bag-
ging for short [38]. Bagging algorithms train multiple learners in parallel on
different subsets of the data. The data subsets are sampled randomly and
with replacement. The predictions from each of the weak learners are aggre-
gated to produce the final prediction. A prominent example of bagging is
random forests [39], which combine multiple decision trees to form a strong
learner.
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Support vector machines (SVMs) [40] are another of the most popular su-
pervised machine learning models. The standard SVM model is most com-
monly used as a linear classifier for binary data, that is, data that belongs to
either one of two classes. A support vector machine aims to find the best
hyperplane that segregates input features based on class. This hyperplane
can then be used to classify new examples. Support vector machines can
be made non-linear classifiers by use of the kernel trick [41], which employs
kernel functions to transform the input data into a space in which the data is
linearly separable. A support vector machine is a binary classifier, however,
multi-class classification can be achieved with SVMs [42, 43]. For an n class
problem, n binary classifiers can be learned in a one-versus-all arrangement,
or n(n− 1)/2 binary classifiers in a one-versus-one arrangement.

A useful class of machine learning models are probabilistic graphical mod-
els, including Markov random fields [12] and conditional random fields [13].
These graphs allow the modelling of relationships between structured data,
such as images or speech. Problems that involve prediction with structured
objects are referred to as structured prediction. The popular conditional ran-
dom field model is particularly useful for images, as it allows direct con-
ditioning on an input, such as the pixels contained within an image. As
such, a conditional random field can model the structural, contextual and
appearance-based relationships that exist between pixels. A detailed discus-
sion on probabilistic graphical models for the problem of semantic segmen-
tation is given is Section 2.6.

2.1.3 Unsupervised Learning

Machine learning with unlabelled training examples is referred to unsuper-
vised learning. A notable domain area of unsupervised learning is clustering,
which involves assigning data points to groups, or clusters, such that exam-
ples within a group are more similar than examples from different groups.
Unsupervised clustering techniques aim to discover the intrinsic structure
of the underlying data. Common unsupervised clustering techniques in-
clude k-means [8], which assigns each data point to a single cluster, fuzzy
C-means [44, 45], which allows clusters to overlap, and Gaussian mixture
models, which take a probabilistic approach to clustering using expectation
maximisation [46].
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2.2 Early Artificial Neural Networks

The topic of deep learning has received great attention in the machine learn-
ing, computer vision and robotics fields in recent times. Deep learning refers
to use of artificial neural networks with many layers to model abstractions of
data that would be too high-level for traditional machine learning algorithms
to achieve. Advances in learning techniques for artificial neural networks, as
well as a vast increase in computing power, has allowed deep learning to be-
come the state-of-the-art method for tasks including image understanding,
speech recognition and natural language processing. In this section, early
artificial neural networks that were a precursor to the “deep learning revolu-
tion” are discussed.

2.2.1 Artificial Neurons

Deep learning finds its origins in the perceptron first described by Rosenblatt
[9]. The perceptron is a linear classifier that given an input feature vector, pro-
duces a binary output. A feature vector that in some way describes the data
is operated on by a weight vector via the dot product and shifted by a bias
term. The weights can be learned on a training set in a supervised manner
and will ideally then be able to classify unseen data. Many complex classifi-
cation tasks are non-linear, that is, the input data is not linearly separable and
therefore require more complicated, non-linear classifiers to perform well.

A perceptron is a type of artificial neuron since the perceptron either “fires”
or does not based on the sum of several incoming signals. This is akin to a
biological neuron, where the multiplication of the input vector by the weights
is comparable to the biological dendrites, the summation portion of the dot
product is analogous to the soma and the firing based on comparing the dot
product to a threshold is akin to the axon, which samples the soma and sends
a pulse once a certain potential is measured.

2.2.2 Artificial Neural Networks

A popular model for learning complex and rich representations of data are
artificial neural networks. At their core they are a network of interconnected
artificial neurons. Typically, neurons are divided into layers: the first being
the input layer, the middle layers as hidden layers and the final as the output
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layer. The layers are made up of several artificial neurons, which take their
input from the output of the previous layer’s neurons, or the input vector in
the case of the input layer. This type of network is described as a feed forward
artificial neural network, as signals are only sent forward to the next layer.
This is as opposed to recurrent neural networks (RNNs), which may contain
loops. The perceptron has a step function as its activation function, which
means that a very small change in the input feature can result in a significant
change at the output. This is undesirable in many problems, for example
classification tasks, where non-identical data of the same class should be able
to be successfully classified. As such, other non-linear activation functions
are used in practice, such as the sigmoid function and the rectified linear unit
[47, 48]. Connecting multiple layers of artificial neurons together results in
a non-linear classifier that has strong representational power when designed
appropriately.

The first deep learning-like algorithm was described by Ivakhnenko and
Lapa [49]. The proposed network consists of multiple layers of perceptrons
with polynomial activation functions. Weights are trained layer by layer via
statistical means, where the best features are selected and forwarded to the
next layer until improvement ceases. An important breakthrough for deep
learning, as it is known today, was the development of the back propagation
of errors algorithm, which allows the training of large networks with many
parameters to be feasible. The importance of the algorithm was first noticed
by Rumelhart et al. [50] who noted that back propagation allows faster learn-
ing in neural networks than other techniques and opens the door to solve
problems that would otherwise have been infeasible with a neural network
model.

The algorithm works by finding the derivative of a cost function with respect
to all weights in the network by applying the chain rule of differentiation at
each layer of the network. Using classification as an example, an iteration
of training with the back propagation algorithm involves first performing a
forward pass through the network that has a training example as the input.
The target, or ground truth, value for the training example is then presented
and the error, that is, the difference between the predicted value and the ac-
tual value, is calculated. The gradient of the error with respect to the input
of each layer is then back propagated through the network to find delta val-
ues for each weight in the network. The delta values are used to find the
gradient of the error with respect to each neuron, allowing the weights to be
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updated using gradient descent. This process is repeated multiple times over
the training data until convergence is observed or the network’s performance
reaches an acceptable level. The work of LeCun et al. [11] is the first practical
use of back propagation in neural networks, in which a network is trained to
recognise handwritten U.S zip codes.

2.2.3 Convolutional Neural Networks

Perhaps the most commonly used class of model, convolutional neural net-
works (CNNs) are feed forward neural networks comprised of collections of
neurons arranged as 3D structures with a height, width and depth. When
presented with data (typically an image) or a feature map from a previous
layer, the 3D structures tile the activations by operating on each patch of the
input, creating an output feature map. In other words, the neurons form a
kernel or filter, which is convolved with the input to produce the output fea-
ture map. The output feature map is then fed to the next layer. A convolu-
tional layer of a convolutional neural network will typically be comprised of
a number of these filters, producing the equivalent number of feature maps
at the output of that layer.

Conventional CNNs consist of several layer types, four of which are intro-
duced in this section. Detailed discussion of layer types can be found in Sec-
tion 3.2.2. Convolutional layers perform a convolution with the input, produc-
ing a structured output feature map. Activation layers perform a non-linear
operation on the input features, typically a rectified linear unit. Pooling layers
downsample the data in a non-linear manner, such as taking the maximum
value within a specified window size. This is done to increase the network’s
tolerance to local spatial variations in features and, as a result, also reduces
overfitting. Fully connected layers are often placed after a series of convolu-
tional, activation and pooling layers. Neurons within a fully connected layer
are connected to each feature from the previous layer. Fully connected lay-
ers perform much of the high-level reasoning about the input data given the
features extracted in the previous layers. Conceptually, a CNN works by
learning higher-level features and data abstractions at each set of convolu-
tional and pooling layers. For example, convolutional filters in the first layer
will generally look for low-level features in image data such as edges, while
convolutional layers deeper in the network will use the downsampled lower-
level features to find semantically rich higher-level features.
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Fukushima [10] presented the first convolutional-type neural network, how-
ever, the important features were engineered by hand. Pioneering work by
LeCun et al. [11] uses convolutional neural networks for hand written char-
acter recognition and document analysis. Learning of the network is fully
automated by use of the back propagation of errors algorithm with gradient
descent. Although this work was promising, the most commonly studied
methods for many more years were conventional classifiers such as support
vector machines [40, 51, 41, 52] with hand engineered features including SIFT
[28, 53], histograms of oriented gradients [30], SURF [29], BRIEF [54] and
ORB [55].

A number of issues hindered the development of deep learning, including
the vanishing gradient problem, a lack of computational power and a lack
of training data. Diminishing or vanishing gradients is an exponential de-
cay of gradients during back propagation due to the chaining of derivatives.
Since the update to a weight is proportional to the gradient at that neuron,
the early layers in the network learn very slowly. A number of solutions
have been proposed, including long short term memory (LSTM) for recur-
rent neural networks [56] and pre-training for feed forward networks [57].
The pre-training in [57] is performed in an unsupervised manner and results
in much quicker supervised training than random initialisation of weights.

A great amount of computational power is required to train large neural
networks in a reasonable amount of time. An approach to combat this in-
volves training the networks in a distributed manner over tens of thousands
of CPU cores [58]. Advances in general purpose graphics processing units
(GP-GPUs) provide another solution as neural network training is suited to
the parallel nature of GPU processing. Work such as [59, 60] demonstrate
how GPUs can be used to train large networks in reasonable time frames.
This has the added benefit of also addressing the problem of vanishing gra-
dients, as the early layer weights can be learned faster.

2.3 “The Deep Learning Revolution”

Deep learning refers to machine learning techniques that make use of multi-
layer artificial neural networks. In this sense, depth refers to the cascading of
an often very large number of layers to extract high-level feature representa-
tions. Unlike classical machine learning techniques, which generally require
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hand crafted features, deep learning techniques extract features directly from
the input data. Network types used for deep learning include convolutional
neural networks, recurrent neural networks and belief networks. This re-
view focuses on the use of deep convolutional neural networks for computer
vision problems. However, deep learning has also applied to many other
problem domains, including natural language processing, fraud detection,
recommender systems and advertising.

The deep learning revolution is a term used to refer to the rise of deep learn-
ing algorithms to become the dominant field of research in machine learning.
The so-called “revolution” has been driven by the powerful compute from
general purpose GPUs, the abundance of data available on the internet and
an array of improvements to network architecture designs that have enabled
more efficient and stable training of deep models. These three factors have
allowed many of the key problems that had previously hindered the devel-
opment of artificial neural networks to be largely overcome.

2.3.1 Deep learning for Image Classification

Much of the eminent deep learning research is focused on the design of net-
work architectures and training algorithms for image classification and vi-
sual recognition. In this section, the importance of training data and the de-
velopment of several key advances in network architecture design are dis-
cussed.

2.3.1.1 Challenges

Organised challenges often inspire and spur on research in a particular field.
This has certainly been the case for image classification and the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) [61]. The ImageNet on-
line database [62] consists of several million images, labelled in a hierarchical
structure. The collection contains images belonging to tens of thousands of
synonym sets, named synsets. From this large database, just over 1.2 million
training images are selected for the ILSVRC challenge. Images belonging
1000 semantic classes are represented in the challenge dataset. Performance
is evaluated on both top-1 and top-5 classification error. Top-1 error only con-
siders a classifier’s top prediction per image, while top-5 evaluation allows
the classifier to provide its five best guesses. Due to its large size, ImageNet
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is often used as a pre-training step for deep convolutional neural networks
that are then fine-tuned on a different set of data. Pre-training is explained in
detail in Section 3.2.5.1.

ImageNet builds on top of another challenge that has spurred significant re-
search in the field: Pascal VOC [15]. A smaller dataset, Pascal VOC contains
images or objects belonging to only 20 semantic classes. In addition to object
labels, Pascal VOC also contains pixel-level class labels. As such, the dataset
is a common benchmark for semantic segmentation approaches.

2.3.1.2 AlexNet

One of the most seminal works of the so-called “deep learning revolution”
was that of Krizhevsky et al. [60]. The CNN architecture proposed has
since become known as AlexNet, named for the paper’s first author Alex
Krizhevsky. The AlexNet paper results in an error reduction of up to 10%
on the ImageNet challenge. Several key contributions from [60] are respon-
sible for this reduction in error. The AlexNet architecture consists of five
convolutional layers, the first of which contains 96 kernels of size 11× 11× 3.
Pooling layers follow the first, second and fifth convolutional layers. The fi-
nal pooling layer is followed by two sequential fully connected layers with a
4096-dimension output. A final fully connected layer outputs a vector with
the number of dimensions equal to the number of classes. This is then fed
into a softmax layer to produce a distribution across class labels.

A key element of [60] is the use of rectified linear units (ReLUs) as neuron ac-
tivation functions. Prior to this work, the most common activation function
was the hyperbolic tangent function. Such neuron models cause slow train-
ing time when using gradient descent optimisation. The use of ReLUs, which
are modelled as f(x) = max (0, x), result in networks that are significantly
faster to train. This allows networks to be deeper than otherwise possible
with saturating activation functions such as tanh. Derivatives for ReLUs are
simple to compute. The derivative is equal to 1 for x values greater than 0,
and 0 for negative values of x. Since the derivative is undefined at x = 0, it is
usually taken to be equal to 0. Due to the non-saturating nature of the func-
tion, ReLUs ease the vanishing gradient gradient problem experienced with
saturating activation functions. The problem of vanishing gradients is dis-
cussed in detail in Section 3.2.5.7. This property contributes to the facilitation
of deeper networks.
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Since ReLUs do not saturate as the input grows, input normalisation is not
required. The authors of [60] note, however, that local normalisation reduces
over-fitting and improves network generalisation. Activations at certain lay-
ers are normalised by a scaling term that considers spatially adjacent acti-
vations. This sort of normalisation is biologically inspired and results in
adjacent filters that compete for large activations. Including local response
normalisation reduces the ILSVRC top-1 error by 1.4%.

Pooling layers downsample feature maps by summarising local neighbour-
hoods of activations. This is commonly carried out with a max operation or
an average operation. Pooling reduces the size of feature maps to be com-
putationally feasible and introduces some translational invariance, which re-
duces a network’s proneness to over-fitting. Generally, pooling neighbour-
hoods do not overlap, but Krizhevsky et al. [60] find that some overlap
between adjacent neighbourhoods can be beneficial and reduce over-fitting
during training.

Over-fitting is the problem of a model learning the noise in the training set.
In other words, the model fits to the training examples so well that it does not
generalise to examples outside of the training set. This is discussed in detail
in Section 3.2.5.5. Over-fitting is further addressed in [60] by the use of data
augmentation. The training set is artificially enlarged by taking crops of the
input image, creating translations in both the horizontal and vertical direc-
tions. In addition, the inputs are horizontally mirrored, further augmenting
the training set. The final method of data augmentation implemented in-
volves altering the colour intensities of pixels, resulting in some invariance
to illumination changes.

Dropout [63] is used as an effective tool against over-fitting. It is undesirable
for network weights to co-adapt in a manner that results in neurons relying
on the presence of other specific neurons in order to be useful. By randomly
setting some activations to zero, or “dropping out” neurons, during training,
the neurons are not able to rely on the presence of any other given neuron.
This can also be thought of as randomly sub-sampling a different network
architecture at each iteration of training. The authors suggest dropping out
neurons with a probability of 0.5 at each training iteration. In the AlexNet
architecture, dropout layers follow the first two fully connected layers.

Due to memory limitations on the GPUs used to train the network, the au-
thors employ an interesting parallelisation scheme. Utilising two GPUs, half
the network weights are stored on one GPU and half on another. The split
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occurs at each layer, for example, half the the first convolutional layer kernels
are on one GPU and the second half on the other. Communication between
GPUs is only permitted at certain layers; some layers will take as input ac-
tivations from both GPUs, while others take as input activations from only
one GPU. Compared to a network trained on one GPU with half the number
of convolutional kernels per layer, the multiple GPU approach reduces top-
1 error by 1.7%. The GPUs described in the paper each have 3GB of RAM.
Though many GPUs have enough RAM to store the entire network on one
card, the parallelisation scheme presented remains applicable to larger mod-
els. The work in [64] improves on AlexNet performance by better selecting
hyperparameters and tweaking the convolutional layer sizes.

2.3.1.3 Subsequent Architectures

Simonyan and Zisserman [65] propose a network architecture that demon-
strates the importance of depth in convolutional neural networks. The pre-
sented architecture is similar to AlexNet [60], but consists of many more con-
volutional layers, with all convolutional kernels sized at 3 × 3. The authors
investigate four different networks: 11, 13, 16 and 19 weight layers. The
weight layers consist of convolutional layers and 3 fully connected layers (as
in [60]). A significant reduction of 4.1% in ILSVRC error rate is seen when
increasing the network depth from the shallowest to deepest depth consid-
ered. Increasing depth with this architecture appears to result in diminishing
returns beyond 16 weight layers. The most commonly used model variant
is the 16 layer version, generally dubbed VGG16 in the literature. Greater
network depth results in a large number of network parameters. The small
3× 3 convolutional filters, compared to up to 11× 11 in AlexNet, are used as
a means to reduce the number of parameters.

The power of network depth is further demonstrated by Szegedy et al. [66].
In honour of the pioneering LeNet [11] architecture, the network proposed
in [66] is named GoogLeNet. This network introduces a network-in-network
type architecture, where each layer itself is a network-like structure. The
layers consider local correlations in images by concatenating 1 × 1 convolu-
tions to cover very local correlations with 3 × 3 and 5 × 5 convolutions to
cover more spread out correlations. Such a structure allows the network to
better deal with different scales of salient objects in an input image. These
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network-in-network layers are named Inception modules and the architec-
ture presented contains nine such modules. Although the network is very
deep, consisting of 22 weight layers in total, the small convolutions result in
a significantly reduced number of parameters. In fact, despite being made
up of 14 more weight layers that AlexNet, GoogLeNet contains tens of mil-
lions fewer parameters. Due to the great depth of the network, the vanishing
gradient problem is prevalent. In order to ease this effect, auxiliary losses are
introduced at different stages in the network. The auxiliary losses fork off the
main network after given inception modules and attempt to perform classi-
fication from these shallower parts of the network. The total loss is the sum
of the main loss at the end of the network and any auxiliary losses included.
The authors use two auxiliary losses, following the third and sixth inception
modules.

GoogLeNet is often referred to as Inception v1, with subsequent updates to
the architecture dubbed Inception v2 through Inception v4. The first improved
architecture, Inception v2 [67], rethinks the inception module with the aims
of reducing computational complexity and limiting the representational bot-
tleneck that results from subsequent convolutions reducing the feature map
dimensions. The former is achieved by refactoring larger convolutions as
multiple smaller convolutions. For example, a 5 × 5 convolution is replaced
with two 3×3 convolutions. Additionally, 3×3 convolutions are replaced by
a 1×3 convolution followed by a 3×1 convolution, further reducing the com-
putational complexity. The representational bottleneck is eased by perform-
ing some convolutions in parallel, rather than sequentially. In other words,
rather than making the network deeper, it is made wider. The Inception v3
architecture [67] makes small improvements on the second version, includ-
ing better regularisation with label smoothing, which reduces the network’s
proneness to over-fitting. Another incremental improvement, Inception v4
[68] simplifies the third version by introducing a more uniform architecture.

He et al. [69] propose a residual neural architecture, ResNet, which surpasses
human performance in the top-5 ILSVRC error rate, with an error of 3.57%.
Again, the importance of network depth is shown, with 50-layer, 101-layer
and 152-layer variants of the architecture presented. The key contribution of
[69] is the skip connections between layers. The training of very deep net-
works is troublesome as the vanishing gradient problem is prevalent. Often,
naively stacking additional layers in a network will degrade performance.



Chapter 2. Background 35

The skip connections used by He et al. [69] act as an identity mapping be-
tween layers and as such, adding more layers should not increase the train-
ing loss. Bypassing layers during training makes the initial stages of learning
easier. This can be thought of as collapsing the large network into a more
compact architecture. As learning progresses, the network weights will learn
to mute the activations from the skip connections and focus on those from the
now well learned adjacent layers. He et al. improve the architecture by refin-
ing the residual block in order to allow easier, unimpeded propagation of er-
rors through the skip connections in [70]. This architecture allows very deep
networks to be trained successfully, without performance degradation. For
example, a 1001-layer variant is successfully trained. The Inception-ResNet
network [68] combines ideas from the inception architectures with those from
ResNet architectures.

The idea of residual blocks is extended by Huang et al. [71] to include skip
connections between layers and all subsequent layers in the network. This
densely connected architecture, dubbed DenseNet, allows further improved
propagation of information, compared to the architecture in [70]. In addi-
tion to making network training easier, this network configuration explic-
itly preserves information from earlier in the network. This is compared to
standard networks, which must learn to preserve relevant information. The
explicit preservation provides the classifier with information extracted from
both shallow layers and deep layers of the network. Further study in [72]
finds that many layers contribute only a small amount of new information.
This means that in order to ease computational complexity during training,
layers can be randomly removed, or “dropped out”, at any given training
iteration. The authors find that this not only reduces training time, but also
improves test performance.

The networks described in this section and Section 2.3.1.2 all use a fully con-
nected layer and softmax layer to obtain a distribution over class labels in or-
der to perform classification. Cross-entropy loss is used to drive the learning.
However, the base network architectures are often used with other classifiers
and loss functions. This includes using the networks as off-the-shelf feature
extractors [73, 74], as base networks for metric learning (discussed in Section
2.4.2) and base networks for the method proposed in Chapter 4.
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2.3.2 Deep Learning for Dense Prediction

The networks described in Section 2.3.1 downsample the input image with
consecutive convolutions and pooling operations, followed by one or many
fully connected layers. The end result, for classification problems, is a single
vector representing the softmax distribution over class labels. In these net-
works, all spatial information from the input is lost. This is by design, as the
networks aim capture information about the salient semantic entities present
in the input image, regardless of the location or scale of the semantic entities.
For problems that require spatial information to be preserved, for example
when carrying out per-pixel prediction, such networks are not suitable. Per-
haps the most common example of a per-pixel prediction problem is seman-
tic segmentation, which aims to label each pixel in an input image. Some
approaches, such as [75], are able to produce a bounding box surrounding an
object prediction. However, this coarse object localisation is not sufficient for
many applications requiring a pixel-level labelling.

One method to tackle the problem of dense prediction with CNNs is patch
classification [76], wherein a patch of pixels surrounding a centre pixel is
passed through a conventional CNN, resulting in a prediction for that centre
pixel. Such an approach is inefficient as many forward passes through the
network are required to obtain a pixel-wise segmentation. Other approaches
[77, 78, 79] involve first generating region proposals, extracting features from
the proposed regions and then performing classification. However, the re-
mainder of this section focuses on methods that extract features for all pixels,
or downsampled pixel neighbourhoods, rather than proposal-based segmen-
tation approaches.

2.3.2.1 Fully Convolutional Networks

An influential work is the fully convolutional network (FCN) presented by
Long et al. [80]. As the name suggests, the fully convolutional network does
away with the fully connected layers from AlexNet [60] and VGG [65] ar-
chitecture types, which discard any notion of spatiality. The fully connected
layers are replaced by convolutions of 1 × 1 spatial extent. For example, the
4096-dimension fully connected layers in VGG are replaced with 1×1×4096

convolutional layers. This means that dimensions of activations at the input
to the layer are preserved in the output activations. Rather than resulting
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in a single softmax distribution vector, such an approach can output an ar-
ray of activations of size h′ × w′ × n, where h′ is the downsampled height
of the input, w′ is the downsample width and n is the number of classes.
This array of activations contains coarsely spaced softmax distributions. In
other words, some spatial information is preserved, though the output space
is downsized and coarse compared to the input. Removal of the fully con-
nected layers also means that the network can handle arbitrary input size,
above a minimum height and width. This is unlike the networks described
in Section 2.3.1, which require inputs of a specific size.

The coarse distributions produced by the fully connected network must be
upsampled and projected onto the original image resolution. A simple ap-
proach is to simply perform bilinear interpolation. Long et al. [80] sug-
gest the more generalised solution of performing a series of deconvolutions.
This means that the upsampling operation can be learned along with other
network parameters. This type of network configuration is known as an
encoder-decoder network. The encoder network takes the image as input
and extracts semantic information, downsampling to coarse feature maps.
The decoder network upsamples the extracted semantic information to the
original image resolution. Deconvolution is also often called upconvolution.
One way to think of deconvolution is as convolution with a stride of less than
one. The stride of an image convolution is the number of pixels the convolu-
tional kernel is shifted between each operation.

An important feature of these networks is that the encoder portion can be
pre-trained on large image classification datasets, such as ImageNet [61], us-
ing the standard AlexNet or VGG implementations. Image-level labels are
much easier to obtain than pixel-level labels, so the ability to leverage large
image classification datasets for the purpose of pre-training is desirable.

2.3.2.2 Improved Encoder-Decoder Networks

Even after upsampling with deconvolutions, the segmentation produced by
FCN is coarse. The down-sampling that occurs in the encoder potion of the
network means that fine-grained information, such as object boundaries, is
lost. In order to incorporate fine-grained information in the final output,
Long et al. [80] introduce skip connections into the network. The skip con-
nections allow higher resolution feature maps from shallower portions of the
network to be incorporated in the final decision of the classifier. The best
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performing network variant incorporates information from feature maps at
three different scales.

The SegNet architecture [81, 82] mirrors the encoder network with a full de-
coder network. A key element of this architecture is the use of the encoder
max-pooling indices in the decoder network. The pooling indices are used in
the upsampling layers of the decoder in order to more accurately project fea-
ture maps onto the pixel space. As these upsampling layers essentially undo
the pooling operations, they are often referred to as unpooling layers. Com-
pared to simple bilinear upsampling, unpooling layers result in improved
object boundary delineation.

Although the skip connections in the fully convolution network from [80] al-
low some fine-grained information to incorporated, the network struggles to
segment objects of various scales. For example, small objects are often missed
by this approach. Similarly, other fine-grained details are overly smoothed
by the FCN architecture due to the coarseness of the starting point for the
upsampling. These issues are addressed by Noh et al. [83] by learning a
full decoder network. Similar to SegNet, this work mirrors the encoder net-
work and uses unpooling layers to better project the feature maps to a larger
resolution. The network operates on individual object proposals, allowing
fine-grained details to be captured. This is because unlike FCN, the receptive
field is not of a fixed-size.

Another similar encoder-decoder structure is proposed by Ronneberger et al.
called U-Nets [84]. This network is applied specifically to biomedical image
segmentation. In this application, there are commonly fine details in the in-
put medical image that must be preserved. A second challenge in biomedical
image segmentation is the scarcity of training data. Ronneberger et al. [84]
perform large-scale data augmentation with elastic image deformations. The
authors find that their approach responds well to data augmentation, while
Long et al. [80] note that data augmentation results in limited improvement.

The success of ResNet [69] and DenseNet [71] for image classification nat-
urally leads to these ideas being incorporated in dense prediction networks
[85, 86]. The work of Drozdzal et al. [85] incorporates residual blocks in
an encoder-decoder architecture. As with ResNet, the skip connections al-
low for easier training of deeper networks. Ideas from DenseNet, namely
connecting each layer’s activations to all subsequent layers, are incorporated
into the work proposed in [86]. The skip connections allow information from
all scales to be used in the reconstruction of the high resolution output.
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Lin et al. [87] also address the problem of a obtaining a high resolution out-
put with fine-grained information preserved. The authors use a ResNet style
architecture as the encoder network. So-called RefineNet blocks are placed at
each upsampling stage of the decoder network. These blocks fuse together
features from the encoder network and upsampled features from the previ-
ous step in the decoder network. The RefineNet blocks contain local and
long-range skip connections, allowing training to be carried out efficiently.

Peng et al. [88] note that semantic segmentation is comprised of two contra-
dictory tasks: classification and localisation. Classification should be invari-
ant to spatial changes in the input space, while localisation must be sensitive
to such spatial changes. As with other approaches discussed in this section,
the authors utilise a fully convolutional encoder network to preserve spatial-
ity. This addresses the localisation half of the problem. For the classification
half, the authors suggest that large convolutional kernels be used. Exper-
iments are carried out with convolutional kernel sizes ranging from 3 × 3

(the standard size for ResNet), up to 15 × 15. The larger kernel sizes result
in a performance improvement over the smaller kernels. Due to the added
computational complexity introduced with large convolutions, an approxi-
mation similar to that in Inception v2 [67] is carried out. This approxima-
tion involves refactoring the convolutions as a sum of simpler convolutions,
where a dimension of the kernel is set to a size of 1.

2.3.2.3 Dilated and Atrous Convolution

Pooling operations in the encoder network expand the receptive field, allow-
ing more context to be incorporated into the construction of feature maps.
The downside of pooling is that the resolution of the output space is signif-
icantly reduced compared to the original input image resolution. One so-
lution to the problem of removing pooling operations but retaining a large
receptive field is dilated convolutions. A normal convolutional kernel is
densely arranged such that the kernel operates on all neighbouring under-
lying pixels. Dilated convolutions introduce a dilation rate that specifies the
sparsity of the convolutional kernel. The spacing between kernel parameters
are dilated by this amount, such that the kernel operates on more sparsely
spaced pixels in the underlying image. This can be thought of as an approx-
imate alternative to simply increasing the kernel size that does not increase
the number of parameters. Another way to think about dilated convolutions
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is as convolution with holes in the kernel. For example, a 5× 5 convolutional
kernel with 16 regularly spaced holes is equivalent to a 3×3 kernel with a di-
lation rate of 2. Dilated convolutions result in a large receptive field without
the decrease in resolution introduced by pooling.

Yu and Koltun [89] use dilated convolutions in their proposed architecture.
The final two pooling layers of VGG are removed and dilated convolutions
are used for all following convolutional layers. Earlier convolutional layers
are unmodified, allowing initialisation with weights pre-trained on a tradi-
tional VGG architecture. This approach produces higher-dimensional feature
maps than with pooling, at 64 × 64, but the maps are still of a significantly
lower resolution than the input image. The authors also propose a context
module designed to aggregate contextual information from multiple scales.
The module stacks a series of dilated convolutions with differing dilation
rates and takes feature maps from the encoder as input. Results show that
the context module improves segmentation performance.

Dilated convolutions are also explored in the DeepLab segmentation pipelines
[90, 91, 92, 93]. The first and second versions of DeepLab incorporate CRFs
and these elements are discussed in Section 2.6. In this section, only the con-
volutional neural network portion of the pipeline is reviewed. DeepLab v1
[90] and v2 [91] incorporate dilated convolutions into the network architec-
ture in a similar way to [89]. Dilated convolutions are referred to as atrous
convolutions in this work, following the naming convention in [94]. In the
second version [91], the authors also address the problem of different scales
in the input space. One proposed solution involves parallel networks that
each take as input a differently scaled version of the same image. Weights
are shared between the parallel networks. As in [89], the network used in
DeepLab v2 results in a higher resolution feature map than if dilated convo-
lutions were not used. However, the resolution is still less than the original
input space and bilinear interpolation is used to upsample the features to the
correct resolution. A second solution involving atrous (or dilated) convolu-
tions is also proposed named atrous spatial pyramid pooling. This approach
inputs a feature map to parallel atrous convolutional layers, each with differ-
ent dilation rates. This allows information from varying spatial scales to be
incorporated into the extraction of semantic information.

Atrous convolution for semantic segmentation is revisited in DeepLab v3
[92]. The authors investigate the efficacy of a cascade of atrous convolu-
tions, with varying dilation rates. The approach is similar to that proposed in
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[89], but instead of operating on softmax distributions, it operates on feature
maps. Additionally, the parallel atrous spatial pyramid pooling from [91]
is revisited with the inclusion of image-level features. These features cap-
ture long-range information and incorporate global context into the network,
similar to ideas presented in [95, 96]. The authors also note the importance
of batch normalisation [97] for training the model. Batch normalisation is
explained in Section 3.2.2.5. Further improvements are made with DeepLab
v3+ [93], which includes a decoder network to help refine object boundaries.
An interesting feature of this work is that a user can make trade-off decisions
between segmentation accuracy and run-time. This is achieved through user
control of the artous convolution parameters, which set the resolution of the
feature maps produced by the encoder network.

Zhao et al. [96] combine local and global features to incorporate short-range
and long-range contextual information. Global context is considered by us-
ing a pyramid pooling module that extracts representations from the input
feature maps at different scales. These representations are upsampled and
concatenated with the original feature maps and pixel-level predictions are
made. The authors make use of an auxiliary loss in addition to the primary
loss, in order to help network training. This is similar to the auxiliary losses
in GoogLeNet [66], but with a ResNet-style base network [69].

2.3.2.4 Weakly Supervised Dense Prediction

Obtaining pixel-level labels for training data is a tedious and laborious task.
Weakly supervised approaches for segmentation [98, 99, 100] ease this bur-
den by learning only from bounding box or image-level ground truth labels.
Image-level labels are used as the only supervisory signal in [98]. The ap-
proach works off the knowledge that at least one pixel in the image will have
a ground truth label matching the image-level label. Convolutional neural
network features are aggregated, allowing the model to weight pixels that are
important for classification higher than those that are less important. This ap-
proach teaches the model to discriminate the salient pixels from background
pixels, allowing dense classification at test time. The BoxSup framework [99]
uses bounding box object labels to iteratively generate proposal segmenta-
tion regions, which are then used to update the CNN parameters. As the
network weights are updated, the proposed regions are improved, provid-
ing better supervision for the next updates to the CNN. The authors of [100]
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treat weak supervision as a form of input label noise. The de-noising strat-
egy proposed is a recursive training scheme that uses previous training stage
predictions as supervisory signals in the current training stage.

2.4 Metric Learning

The ability to determine how similar given inputs are is an important prob-
lem in robotics and beyond. Metric learning aims to allow this by learning
a distance function over inputs. In this thesis, the focus is on image data
and the distance function learned should be a measure of the semantic sim-
ilarity between given images. Distance measures in the image space, such
as the Euclidean distance between pixel intensities, are largely meaningless
in terms of high-level semantic information. As such, metric learning algo-
rithms generally learn a transformation from the image space into a semanti-
cally meaningfully metric space. Standard distance measures, such as the Eu-
clidean distance, between examples in the transformed metric space should
be a measure of the semantic similarity between examples. In this section,
commonly used loss functions are described, followed by a discussion on
relevant metric learning models and algorithms.

2.4.1 Siamese Networks and Contrastive Loss

Seminal works in the domain of metric learning include those that use
Siamese networks [101] and contrastive loss [102, 103]. Siamese networks
consist of parallel networks that share weights. For example, a pairwise
Siamese network is made up of two parallel networks that each take a single
image as input. In practice, this is achieved by passing the pair of images
through the same network. The objective of contrastive loss is to minimise
the distance between pairwise examples of the same class and to penalise
pairwise examples that belong to different classes by pushing them apart.
Such contrastive loss-based metric learning methods have been applied to
face verification [103] and dimensionality reduction [102].
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2.4.2 Deep Metric Learning

This section discusses metric learning approaches that make use of deep con-
volutional neural networks.

2.4.2.1 Pairwise Networks

Deep pairwise Siamese methods [104, 105] operate on both positive input
pairs (examples from the same class) and negative input pairs (examples
from differing classes). In general, the pairwise loss function aims to min-
imise the distance between examples in positive pairs and to push apart ex-
amples from negative pairs, up to the some distance margin. Yuan et al. [105]
propose a cascaded embedding approach that enables the sampling of differ-
ent levels of hard image pairs. A hard pair is one that is not yet well learned
by the model and will result in informative updates to the network weights.
A cascade of networks with different complexities is used to perform the
sampling at different levels of hardness.

Pairwise CNNs are often difficult to train. Such networks operate on abso-
lute distance and require the selection of a fixed margin for negative pairs.
This makes it difficult for pairwise networks to model variations for differ-
ent classes. Loss functions that operate on relative distance, such as triplet
loss (see Section 2.4.2.2), are generally easier to train and result in better per-
formance.

2.4.2.2 Triplet Networks

Deep metric learning approaches that make use of a triplet-based loss are
perhaps the most common in the literature [17, 106, 18, 19, 20, 21, 107, 108].
A triplet is a trio of examples, generally selected such that two of the exam-
ples are of the same class and the third is of a different class. One of the
positive examples is referred to as the anchor. The loss function aims to pull
the anchor and the other positive example nearer than the anchor and the
negative example, by some margin. A hinge function is generally used such
that the loss becomes zero when that condition is met. Deep triplet-based
approaches share similarities with classical large margin nearest neighbour
(LMNN) [109] metric learning methods, which aim to minimise the distance
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between training examples and selected target neighbours, while increasing
the distance to nearby examples from different classes.

Random selection of triplets and performing a single distance comparison
per sampled training example result in inefficient model training. If a triplet
is selected that returns a zero loss from the hinge function, no update to the
network weights can be made. The process of selecting difficult triplets, that
is, triplets for which the negative example is significantly closer to the an-
chor than the positive example, is called hard negative mining. Semi-hard
negative mining is carried out in the work by Schroff et al. [18]. Rather than
mining for hard examples over the entire training set, which is computation-
ally expensive, Schroff et al. mine for hard examples within a mini-batch.

Song et al. [19] propose a lifted structured embedding that allows for efficient
calculation of the dense distance matrix within a mini-batch. This enables
the best, or hardest, negative example within the mini-batch to be utilised for
each sampled pair of positive examples. Another intra-batch method, named
N-pair loss, is proposed by Sohn [20]. This loss function is a generalisation of
triplet loss that allows comparisons to multiple negative examples for a given
positive pair. These intra-batch methods significantly increase the efficiency
of the updates made to the network weights during training, compared to
random sampling of triplets from the training set.

A smart mining method is proposed by Harwood et al. [21] that mines for
triplets over the entire entire training set. This is made computationally fea-
sible by use of a fast approximate nearest neighbour graph [110] that enables
efficient approximate nearest neighbour search over large datasets in high
dimensional space. The work proposed by Kumar et al. [23] suggests that the
inclusion of a global loss term, together with triplet loss, can be beneficial to
the overall performance of the model. Wang et al. [108] constrain the angle at
the negative example point of the triangle formed by the triplet, resulting in
a scale invariant loss function. The proposed method also has the advantage
of better convergence during training.

2.4.2.3 Quadruplet Networks

Methods that sample four examples are referred to quadruplet approaches
[111, 112, 113, 114]. In general, these approaches sample a positive pair and a
negative pair, with the loss function comparing the difference between these
data pairs. The Qwise framework proposed by Law et al. [111] allows the
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incorporation of knowledge from complex or semantically rich class labels.
This enables application to challenging problems such as relative attribute
learning and class hierarchy metric learning. An example of the former prob-
lem is ranking images of faces in terms of how much the the person in the
image is smiling. The latter problem involves learning a metric space that
obeys class hierarchy, such that examples from sibling classes, that is, exam-
ples with the same higher-level class label, are located nearer by than exam-
ples from non-sibling classes.

Histogram loss [112] considers information from all quadruplets formed
within a training mini-batch. The loss function aims to minimise the overlap
of two distributions: one formed by the similarities of positive pairs and one
formed by the similarities of negative pairs. The distributions, or histograms,
are approximated in a simple, non-parametric fashion, enabling easy op-
timisation of the model. Chen et al. [113] apply metric learning to person
re-identification problems by recognising that quadruplet networks achieve
better generalisation than triplet networks. The proposed work employs an
online, margin-based hard negative mining method for efficient training of
the model. Huang et al. [114] introduce a position-dependent deep metric unit
that enables the learning of a distance metric that is adaptive to the local
structure of the feature space. The hard quadruplet sampling technique
results in both faster model convergence and improved performance.

2.4.2.4 Other Approaches

Cross-entropy loss is the standard loss function used for classification prob-
lems. The work proposed by Sun et al. [115] trains a model jointly with
contrastive loss and cross-entropy loss for face recognition problems. Ex-
perimental results show that the combination of supervisory signals results
in features with larger inter-personal variations and smaller intra-personal
variations, compared to training with one loss function alone.

In contrast to Siamese network metric learning approaches that focus on only
the local structure of data, Song et al. [22] consider the global structure of
the feature embedding space by directly optimising a clustering metric. This
approach avoids the potentially costly data pre-processing steps of arranging
examples into pairs, triplets or quadruplets.
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A different metric learning approach is proposed by Rippel et al. [116] that
maintains a model of the distributions of semantic classes in the feature em-
bedding space. Class discrimination is achieved in the feature embedding
space by a loss function that penalises overlap in class distributions. The
proposed loss function is easier to train than triplet-based deep metric learn-
ing approaches and converges in significantly fewer training iterations.

2.4.2.5 Pixel-wise Metric Learning

Though the vast majority of metric learning approaches extract a single fea-
ture embedding per input image, some methods have been developed for
learning dense feature embeddings for images [117, 118, 119, 120]. These
methods extract more than one feature embedding per image, such as one
per pixel or one per downsampled image region. Harley et al. [117] pro-
pose an architecture that learns pixel-level feature embeddings, where the
distance between different pixel embeddings is relative to the likelihood that
those pixels belong to the same image region or object. The model is used
together with a CNN trained for semantic segmentation to improve per pixel
classification accuracy. Rather than standard semantic segmentation, Fathi et
al. [118] use metric learning to perform instance segmentation, wherein each
instance of an object is segmented separately. The loss function aims to min-
imise the distance between pixel embeddings belonging to the same object
instance and to push apart embeddings belonging to different instances.

Pixel-wise metric learning is used by Chen et al. [119] to perform object-
of-interest segmentation in video sequences. A modified version of triplet
loss is proposed that adapts the conventional loss function for the problem
domain. The authors argue that not all positive pairs of pixels belonging to
an object should be pulled close together, since an object may be composed
of various parts of differing visual appearance. As such, the triplet loss is
modified so that only the positive and negative examples that are nearest
the anchor pixel are considered. Li et al. [120] perform unsupervised object
segmentation in video frames by transferring the knowledge from a pixel
embedding network [118] that groups together pixels belonging to the same
instance. The model is trained only on static images, but is deployed on video
sequences.
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2.4.2.6 Unsupervised Representation Learning

Similarity learning with Siamese networks has also been used for training
networks in an unsupervised manner [121]. Unsupervised learning refers to
the use of training data that is unlabelled. A supervisory signal can be gener-
ated by using other relationships in the data. Wang and Gupta [121] use tem-
poral information from videos to create this supervisory signal. An image
patch containing an object is extracted from a given video frame and treated
as the anchor image. The object is tracked through subsequent frames and
another image patch surrounding the object is extracted as the positive exam-
ple. Positive pairs are selected such that there has been sufficient movement,
meaning that the anchor and the positive example will show the same object
from different poses. A negative patch, that is, one that doesn’t contain the
anchor object, is also extracted. Triplet loss is used to pull the anchor and the
positive patch nearer than the anchor and the negative patch. Results show
that training a network in this unsupervised manner is an effective tool for
model pre-training for problems such as object detection and surface normal
estimation.

2.5 Open Set Problems

In real-world classification problems, the output of the classifier is not the
end goal. For example, in robotic problems a prediction is used to enable
robotic action. Further, many real-world problems are open set; it cannot be
assumed that all observed data will be from the known training distribution.
As such, it is important that the confidence with which predictions are made
can be measured. This facilitates important functions such as the detection of
examples that are from outside of the training set distribution. It also enables
the ability to learn from difficult or novel examples in an active manner, such
that the true distribution of data can be understood. In this section, literature
relating to the problems of novelty detection, open set recognition and active
learning are reviewed.
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2.5.1 Novelty Detection

The task of detecting examples that belong to classes that are outside of
the training set distribution is known as novelty detection. This is an im-
portant problem in many real-world applications, in which silently failing
when observing unknown data is not acceptable. These applications include
robotics [122], medical diagnostics [123], video surveillance [124] and natu-
ral scene analysis [125]. Novelty detection is closely related to the problems
of anomaly detection and outlier detection. The three terms are often used
interchangeability in the literature. In this thesis, novelty detection is used
to refer to the detection of examples belonging to novel or unknown seman-
tic classes. These novel classes are not necessarily anomalies or outliers in
the true distribution of data, but are outside of the known training set dis-
tribution. On the other hand, anomaly and outlier detection are the prob-
lems of detecting examples that are in some way inconsistent with typical
or expected data. This has applications in fraud and intrusion detection in
electronic systems [126]. Categories of novelty detection methods include
probabilistic approaches, distance approaches, domain approaches and information-
theoretic approaches

2.5.1.1 Classical Novelty Detection

Probabilistic approaches to novelty detection [127, 128] often aim to estimate
the probability density function of expected data. Boundaries separating ex-
pected data from novel or unknown data can be calculated using the density
functions. Probabilistic methods used in this category of novelty detection
approaches include mixture models [129, 130], non-parametric kernel den-
sity estimation [131, 132] and negative selection [133, 134]. Probabilistic ap-
proaches have the advantage of being based on well-grounded mathematics.
However, such approaches tend to struggle in sparsely populated feature
spaces that occur when the dimensionality is high or the training data is lim-
ited [135].

Novelty detection based on distance approaches [136, 137] assume that novel
data will be located far from known data in the feature space. Such ap-
proaches also generally assume that examples belonging to known classes
will be tightly clustered in the feature space. Example techniques include
those based on neighbours [137, 138] and clustering [139]. Distance-based
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novelty detection methods require meaningful distance metrics in order to
measure the similarity of examples.

Domain approaches define a decision boundary based on the known data.
The decision boundary is used to perform classification of examples as
known or novel. In other words, domain approaches treat novelty detection
as a binary classification problem. Perhaps the most common technique
used to achieve classification of novel examples is a support vector machine
[140, 141, 142, 124]. A detailed discussion on support vector machines can be
found Section 2.1.2.

The information content of data is analysed by information-theoretic ap-
proaches to novelty detection [143, 144]. The assumption is that the infor-
mation content of the dataset is significantly changed by the presence of
novel data. An example approach is computing the entropy of all data, then
finding the subset of examples whose removal from the dataset results in the
greatest drop in entropy [135]. Such approaches are computationally expen-
sive and can perform poorly if the number of out-of-distribution examples is
significant.

2.5.1.2 Novelty Detection with Deep Learning

A simple novelty detector for deep convolutional neural networks can be
formed by thresholding on the confidence with which the softmax classifier
makes a prediction [145]. However, the performance of such an approach
is limited, as softmax classifiers have poor confidence calibration [146] and
tend to make high confidence predictions, regardless of whether or not those
predictions are correct. Since the average confidence of a softmax CNN is
often greater than the average accuracy, it can be difficult to discern novel
examples by analysing the softmax scores.

An open set version of the closed set softmax classifier is proposed by Ben-
dale and Boult [147]. The proposed approach, named OpenMax, argues that
spatial relationships in the class activation space can be used as a measure
of novelty. Training set class activation vectors from the output of the final
fully connected layer in a CNN are recorded. The correctly classified training
examples are used to compute a per class mean activation vector. Due to a
lack of uniformity across classes, distances between an example activation
vector and mean activation vectors cannot be simply thresholded to detect
novelty. The proposed method fits a per class meta-recognition model on the
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distances between the mean vectors and the furthest away training exam-
ples that were correctly classified. The per class models are used to measure
novelty and refine the activation vector by revising class activations and in-
troducing a pseudo-activation representing novel and unknown classes.

An out-of-distribution detector for convolutional neural networks, named
ODIN, is proposed by Liang et al. [148]. The approach aims to push the soft-
max scores of a pre-trained CNN from known and novel classes apart. This
allows easier detection of novel examples by thresholding on softmax confi-
dence scores. This is achieved through two methods: softmax temperature
scaling and input pre-processing. The former involves scaling the softmax
scores by a constant prior to normalisation, which has been shown to result
in better confidence calibration [146]. The latter method involves using the
gradients of the softmax scores to make small perturbations to the input im-
age. The authors find that in general, these perturbations result in greater
change in the resultant softmax scores for known class examples than for
novel class examples.

Other deep learning approaches to novelty detection include a density-based
confidence score [149], rather than one based on softmax scores. Novelty de-
tection via metric learning with contrastive loss has also been investigated
[150]. A downside of this approach is that the classification performance
of the model is poor, meaning that on its own, the model isn’t suitable for
open set recognition or simultaneous classification and novelty detection.
Kliger and Fleishman [151] use a generative model to generate examples
from known and novel distributions, which are used to train a multi-class
discriminative model.

A related to problem to novelty detection is classification with abstention
[152, 153, 154, 155, 156, 157]. In this problem, a classifier is able to abstain
from making a prediction if it believes that prediction is likely to be incorrect.
In other words, the classifier is able to say “I don’t know”. This is important
in applications where classifier mistakes can be costly, such as robotics and
medical diagnostics. In these fields, it is often more desirable for a classifier
to make no prediction than an incorrect prediction.
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2.5.2 Active Learning

The process of actively querying a user or oracle for class labels is known as
active learning. Compared to a conventional supervised learning setting, in
which the starting point is generally a dataset of labelled training examples,
in an active learning the starting point is often a large dataset of unlabelled
examples. It is assumed that acquiring a label for a piece of data is costly
and as such, only the most informative examples should be labelled. In this
thesis, active learning is considered an open set problem. This is because
the proposed work is concerned with learning the unknown and novel dis-
tribution of data in the environment, following initial model training and
deployment.

The primary problem for active learning algorithms is the method of select-
ing examples to be labelled. This process is referred to as query selection. In
active learning problems, the aim is to learn from as few labelled examples as
possible. As such, the selection of the best and most informative examples for
querying is vital. The definition of “best” or “most informative” depends on
the query selection approach used. In general, unlabelled examples that have
high uncertainty and are representative of many other unlabelled examples,
are good candidates for query selection.

A common class of query selection approaches are known as uncertainty
methods [158]. These algorithms favour the selection of examples that when
classified by the existing model, are done so with high uncertainty or low
confidence. The rationale behind such query selection approaches is that
acquiring labels for examples that are already well classified is wasteful; ex-
amples that the model does not currently know how to classify will be more
informative to the model when labelled. This simple approach can be an ef-
fective method of query selection and is arguably the most common in the
literature [159]. However, there are drawbacks to uncertainty methods. Such
approaches assume that the confidence with which a prediction is made is
relative to the probability of that prediction being correct. In other words,
uncertainty methods assume that the classifier has good confidence calibra-
tion. However, this is not always the case [146]. Further, uncertainty ap-
proaches do not consider how informative an example is to other unlabelled
examples. It may be that a highly uncertain example is an outlier and not
representative of the distribution of “normal” data. Such an example may
not be particularly informative.
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The most simple uncertainty-based method of query selection is to select the
example that has the least confidence [158, 160]. In other words, the example
with the smallest maximum class probability is selected for labelling. This
approach only considers a single class probability for each example, ignor-
ing all other available informative in the probability distributions. Margin-
based uncertainty methods [161] consider more information by finding the
difference in probability between the most likely and second most likely class
label. The example with the smallest margin is selected for querying. All in-
formation in the probability distribution is considered by approaches that
query examples based on the Shannon entropy [162]. Examples that have
the largest entropy are selected for querying.

Another class of query selection algorithms are those based on decision-
theoretic methods. Rather than simply selecting examples for querying
based only on their individual class probabilities, decision-theoretic ap-
proaches consider the expected change if a given example is labelled. An
example decision-theoretic query selection algorithm is one based on the ex-
pected gradient length [163]. Such an approach aims to measure the expected
change to the model that will imparted by a given label query. A labelling
that results in a large training gradient has caused a significant change in the
model and is likely informative. Another approach is to select the example
that results in the largest reduction in the expected error [164]. However, this
type of query selection is computationally expensive [159], requiring both
estimation of the expected error of the unlabelled examples and iterative
retraining of the model. This makes such approaches unsuitable for many
problem domains, including robotics.

Several recent works have investigated active learning in the context of deep
learning [165, 166, 167, 168, 169]. Wang et al. [165] propose a dual labelling
approach named cost-effective active learning (CEAL). As with conventional
active learning, a small number of the most informative examples are se-
lected for labelling. Additionally, the CEAL algorithm automatically assigns
labels to examples that are classified with high confidence by the CNN. This
allows the training algorithm to fine-tune to network weights using a larger
number of labelled examples than would otherwise be available.

Fang et al. [168] propose a novel active learning approach for natural lan-
guage processing problems. The query selection process is framed as a rein-
forcement learning problem. The policy learned by the reinforcement learn-
ing model is a decision policy that determines which examples should be
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selected for labelling. A generative-adversarial approach to active learning
is proposed by Zhu and Bento [167]. Unlike conventional active learning ap-
proaches, which use the outputs of a learner to select queries from a pool of
unlabelled data, the generative-adversarial active learning approach gener-
ates new examples for labelling. The synthesised examples should be infor-
mative, as they are adapted to the current state of the model.

Sener and Savarese [169] propose a query selection approach based on core-
set methods. The algorithm aims to find a small subset of examples that al-
low the model to be trained such that it is competitive over the entire dataset.
As the labels of the dataset are unknown, an approximation to the k-centre
(facility location) problem is used to find the subset. Stark et al. [166] ap-
ply active learning to the special case of CAPTCHA recognition with CNNs.
The proposed approach requires no human input during label querying, as
it takes advantage of the automatically generated signal received by solving
a CAPTCHA.

2.6 Structured Prediction with Probabilistic

Graphical Models

Although deep learning methods are able to achieve very impressive results
on semantic segmentation challenges, they have limited ability to incorpo-
rate higher-levels of context into the inference process. The topic of struc-
tured prediction aims to include information about the structure of the data
into learning and inference algorithms. This is useful for prediction tasks in
which the output is not a single scalar but a structured object. One example
of structured data is speech. In order for a machine to recognise and under-
stand a sentence spoken by a human, it is important to consider the structure
of the sentence and the relationship between the phonemes and the word
they make up, as well as between the words and the sentence they produce.
Recognising speech on a phoneme by phoneme basis ignores all context of
the speech and results in poorer recall. In a similar vein, considering only a
local patch in a image in order to determine to which semantic class a pixel
belongs, ignores the natural structure of an image and all context of where
the information in that pixel sits in the real-world.

Probabilistic graphical models are an approach to structured prediction
wherein the data and outputs are arranged in a graph structure and nodes
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of the graph represent either measurable quantities from the data or random
variables defined over the output space. Edges connect nodes in cases where
the interaction between the nodes is considered valuable to the prediction.
Each edge in the graphical model has a cost associated with it, defining
the importance of that particular interaction. The job of the probabilistic
graphical model’s inference algorithm is to find a prediction that minimises
the cost, or energy, of the entire graph. For example it may be known that
neighbouring nodes often have the same desired output value as each other,
in which case the cost for short edges will be greater than that of longer
edges to non-neighbouring nodes. The inference algorithm will attempt
to minimise the energy (cost) of the system by encouraging neighbouring
nodes to take the same output value. Minimising the energy is equivalent
to maximising the probability, as the probability is formulated as the result
of the natural exponential function with the negative energy taken as input.
This is discussed in detail in Section 3.3.1. Common probabilistic graphical
models are the Markov random field (MRF) [12], which models the joint
probability, and the conditional random field (CRF) [13], which is an MRF
formulated to model the conditional probability of an output given observed
data.

A common graph structure is a pairwise graphical model, which considers
only two energy types: unary and pairwise. The unary terms represent the
belief at a node when considering no interactions with other nodes. These
initial per-node beliefs can be provided by some other classifier, such as a
CNN. In the case of semantic segmentation, a pairwise term considers the
energy of assigning labels to nodes that are connected by an edge.

2.6.1 Model Inference

Probabilistic graphical model inference refers to the process of finding the
output state that minimises the defined energy function. In the case of se-
mantic segmentation, it involves converging on a particular pixel-wise la-
belling for which the energy is a minimum, that is, the maximum a posteriori
labelling. This is a non-trivial problem. For example, a VGA sized image
with 307,200 pixels that can each take one of 20 semantic labels has 20307200

different possible labellings. Energy minimisation is further complicated by
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loops found in graphs that are not linear chains. As such, exact energy min-
imisation is often intractable and a number of different inference algorithms
have been development for approximate energy minimisation.

The first class of energy minimisation to consider is based on graph cuts.
Ford and Fulkerson [170] propose a method to find the maximal flow in a net-
work that is far simpler than the naive linear programming approach. Graph
cut approaches for energy minimisation that are useful for computer vision
problems were introduced by Boykov et al. [171]. Two graph cut-based meth-
ods that provide a fast and approximate solution are proposed: α-expansion
and αβ swap. In an iteration of α-expansion, a particular label α is able to
gain nodes, that is, non-α nodes are able to change their labels to α. The ex-
pansion move that results in the greatest decrease in energy is calculated via
graph cuts. Since only α and non-α labels are considered at a given iteration,
the optimisation is a binary problem. The αβ swap algorithm allows only
nodes currently labelled as α or β to swap their labels to the other, at a given
iteration. This algorithm can be used when pairwise terms are not metric,
but it provides no guarantees about closeness to an optimal solution.

Messaging passing methods are another popular form of energy minimisa-
tion for random field models [172, 173, 174]. One of the simplest and most
popular message passing algorithms is belief propagation [173], which has
two similar variants: sum-product belief propagation [175] and max-product
belief propagation [176]. The former works to find the best labelling at each
node, while the latter works to find the best labelling globally. In belief prop-
agation, messages are passed between nodes via edges. Nodes pass mes-
sages to other nodes with information about what that node believes about
its state based on its own unary terms, connections with other nodes and pre-
vious messages received. Messages are passed over a number of iterations
until convergence, at which point the belief for each node can be determined
from the unary term and the converged incoming messages. Belief propaga-
tion will find an exact solution for graphs with no loops and an approximate
solution for graphs with loops. When loops are present in the graph, the
algorithm is named loopy belief propagation [177].
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2.6.2 Conditional Random Fields

A class of probabilistic graphical models that are extremely useful for predic-
tion problems and are widely applied to semantic segmentation are condi-
tional random fields (CRFs) [13]. These random fields model the conditional
probability of the output random variables conditioned on the input, or ob-
served data. In general, edges in a conditional random field are undirected.
This formulation, comprised of separate sets of nodes relating to the output
and observed variables, lends itself well to vision problems. This is because
arbitrary functions defined over the observed variables, such as the input im-
age, can be easily incorporated. The CRF framework allows properties such
as pixel location, colour and texture to be directly included in the model.

2.6.2.1 Adjacency CRFs

Conventional CRFs for semantic segmentation are of a grid or adjacency-
type structure, wherein nodes are connected only to nearby or neighbouring
nodes [178, 179, 180, 181]. This has the effect of enforcing local smoothness in
labellings. Shotton et al. [178] use a CRF model where every pixel is a node
with edges arranged in a four-connected grid. A pixel is connected by edges
to the four adjacent pixels in the horizontal and vertical directions. Along
with the pairwise connections, the CRF model incorporates texture, colour
and location cues to obtain an accurate segmentation.

2.6.2.2 Fully Connected CRFs

The adjacency structure conditional random fields of [178] do well in find-
ing a smooth local labelling, however, they do not incorporate high-levels of
contextual information from long range connections in the image. A fully
connected conditional random field [182, 183, 184] aims to incorporate this
information by having an edge between every pair of pixels in the image.
That is, every pixel is connected to every other pixel. Such a model incor-
porates both short range information to enforce local smoothness and long
range contextual information to correct erroneous labellings and better de-
lineate object boundaries.

Inference with conventional graph cut or belief propagation methods be-
comes intractable when so many edges exist in the CRF. Krähenbühl and
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Koltun [182] propose a mean field approximation approach to efficient infer-
ence in a fully connected CRF. Efficient message passing is achieved through
filtering over high-dimensional simplexes, which aims to minimise the KL-
divergence between the true energy and an approximate distribution. The
CRF includes two pairwise terms: a local spatial term to encourage nearby
pixels to take the same label and an appearance term that includes pixel
colour information, thereby encouraging pixels with similar appearance to
take the same label. In order for the efficient message passing algorithm to
work, however, the potentials are constrained to be Gaussian. Campbell et al.
[184] relax this constraint by learning non-parametric potentials directly from
the training data and encoding the desired potentials as Gaussian kernels.

2.6.3 Joint CNN and CRF Models

There has been great interest in combining the strong representational power
of a deep convolutional neural network with the context and structure-aware
models of conditional random fields [90, 91, 185, 186, 187, 188, 189]. Chen et
al. [90, 91] refine the segmentation produced by a fully convolutional neural
network by use of a conditional random field as a post-processing step. The
pixel-wise beliefs from the CNN are used as the unary terms in the CRF, re-
sulting in better object boundary detection and the removal of some spurious
labellings. A fully connected, dense CRF [182] approach is taken, wherein
each pixel is connected by an edge to every other pixel in the image. The rea-
son for this implementation is that grid or adjacency graphical models have
a smoothing effect on the segmentation, which is only desirable when the
unary terms contain local variability. Unary terms from deep convolutional
networks, however, are generally already smooth. As such, the purpose of
the CRF is to include longer range contextual information to aide with ob-
ject boundary refinement and the correction of larger regions of erroneous
classifications.

Similar work by Zheng et al. [185] directly incorporates the fully connected
CRF as layers in the convolutional neural network architecture, rather than
applying the CRF as a post-processing step. The mean field inference algo-
rithm of [182] is formulated as a recurrent neural network, the layers of which
are connected to the conventional CNN layers.
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The work of [185] is extended in [187] to include higher order potentials in
the system. Two types of higher order potentials are used: one to help re-
fine object boundaries and another to assist in scenarios where the unary
terms are too poor for a pairwise CRF to be useful. The former is achieved by
over segmenting the image into superpixels [190] and defining a higher order
clique over each superpixel in the CRF. In other words, since it is likely that
all pixels within a superpixel belong to the same semantic object, the CRF
encourages pixels belonging to same superpixel to take the same class label.
This is implemented only as a soft constraint, as there may be errors in this
assumption. In order to improve regions with poor unaries, a state-of-the-art
object detector is used to generate object proposals and a rough foreground
segmentation of these proposals is obtained via the GrabCut method [191].
These proposals are incorporated into the CRF as higher order cliques, which
encourage the underlying pixels to take the label of the object proposal when
the detection is deemed to be correct. This process results in an improve-
ment in terms of segmentation performance when compared to the unary
and pairwise model of [185]. However, this approach does not address the
underlying issues that cause the original spurious results, but rather utilises
an additional state-of-the-art recognition model to form an ensemble learn-
ing system.

A slightly different approach to joint deep CNN and CRF models is taken by
Lin et al. [186]. Context is employed in the CRF in a patch-to-patch and patch-
to-background manner. The former is concerned with the interaction of two
image patches, while the latter is concerned with the relationship between
an image patch and an area of background. Unlike other work, the pairwise
potentials are learned directly via the CNN, which attempts to model the
relationships between semantic image patches. These general pairwise po-
tentials complicate the joint learning of the CNN and CRF parameters. As
such, an approximate piecewise training methodology is used for the sake of
efficiency.
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Chapter 3

Fundamentals

In order to make this thesis as self contained as possible, this chapter details
the fundamental concepts, algorithms and models that are used in the sub-
sequent chapters. Firstly, optimisation algorithms for machine learning are
presented. This is followed by a detailed discussion on convolutional neural
networks, including network architectures and training procedures. Finally,
the details of conditional random fields for the problem of semantic segmen-
tation are presented.

3.1 Optimisation for Machine Learning

Machine learning models are trained using optimisation algorithms by up-
dating the model parameters such that a loss function, also known as a cost
function or error function, is minimised. Due to the use of complex non-
linear models with a large number of parameters, as well as large training
datasets and complex target domains, the loss functions generally cannot be
minimised using direct methods. As such, iterative optimisation approaches
are used to minimise the loss. Figure 3.1 illustrates the operation of an itera-
tive optimisation algorithm. Beginning at some parameter initialisation, the
model samples training data and computes an error term, the optimisation
algorithm uses this error to compute the updates to the model parameters.
After updating the parameters, data is once again sampled and the process
repeats until the error converges. The state of the model at each iteration of
the algorithm can be considered an approximate solution. Ideally, each iter-
ation will yield an approximate solution that is closer to an optimal solution
than at the previous iteration.
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FIGURE 3.1: Overview of iterative optimisation algorithms.

FIGURE 3.2: Gradient descent with a single parameter model.

The remainder of this section focuses on the gradient descent algorithm,
which is a commonly used first-order optimisation method. The algorithm
is first-order as it takes the first-derivatives of the objective function. This is
compared to higher-order methods that take higher-order derivatives, such
as the second-order Newton’s method.

3.1.1 Gradient Descent

The most popular iterative optimisation algorithm in machine learning is
gradient descent. This algorithm minimises a loss function by taking steps
in the direction of the steepest negative gradient. In other words, the partial
derivatives of the loss function with respect to the parameters are used to
update the parameters such that the loss moves in the direction of steepest
descent. This is illustrated in Figure 3.2 with a simple one parameter ex-
ample. When minimising a loss function J , the updates made to the model
parameters θ are given by the formula in Equation 3.1. The subscript of the



Chapter 3. Fundamentals 61

(A) Learning rate too large. (B) Learning rate too small.

FIGURE 3.3: The importance of careful selection of the learning
rate for the gradient descent algorithm.

parameters θ denotes the time step of the iterative algorithm. For example,
the gradient of the function with respect to the parameters at time step t is
denoted as ∇J(θt). The size of the step taken is proportional to the gradient
and the learning rate α ∈ R>0.

θt+1 = θt − α∇J(θt) (3.1)

Appropriate selection of the learning rate α is vital to the performance of the
algorithm. If the learning rate is set too large, the loss may bounce around
and diverge. Conversely, if the learning rate is too small, the algorithm will
require a large number of iterations and training of the model will take too
long. Both of these scenarios are illustrated in Figure 3.3 with simple one
parameter functions. Of course, machine learning models such as convolu-
tional neural networks may have millions of trainable parameters.

Note that the examples shown in Figures 3.2 and 3.3 are convex functions,
meaning that taking a step in the direction of the negative gradient moves the
solution towards the global minimum. Realistic optimisation spaces are not
convex and contain local minima. This means that the direction of movement
and final location of convergence is highly dependent on the current state of
the parameters. This is illustrated in Figure 3.4.
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(A) Ideal convex space. (B) Typical non-convex space.

FIGURE 3.4: In a convex space, any step in the direction of the
steepest negative gradient will be towards the global minimum.
In a non-convex space, the direction of a step and the final so-

lution are dependent on the current location.

3.1.2 Variants of Gradient Descent

Iterative optimisation objective functions often decompose as the sum over
errors of individual training examples. This allows for flexibility in how of-
ten, in terms of the amount of data that has been sampled, updates are made
to the parameters. Three commonly used variants of the gradient descent al-
gorithm are discussed in this section: batch gradient descent, stochastic gradient
descent and mini-batch gradient descent.

3.1.2.1 Batch Gradient Descent

The standard version of the algorithm is batch gradient descent, which makes
updates to the weights only after the entire training set has been sampled and
contributed to the loss. The advantages of this approach are that the updates
made are very stable, meaning that model convergence is consistent. How-
ever, this stability also makes the approach susceptible to becoming stuck in
local minima. The approach can also be costly in terms of training time, as
only a single update is made per pass over the training set. For large datasets
and computationally complex models, such an approach is unsuitable.

3.1.2.2 Stochastic Gradient Descent

On the other side of the spectrum to batch gradient descent, stochastic gra-
dient decent performs an update to the parameters from the sampling of a
single training example. Training data is generally shuffled after each data
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sampling or after the entire set has been sampled. For a model that can pro-
cess one training example at a time and for a dataset containing n training
examples, stochastic gradient descent makes n times more updates to the pa-
rameters in the same time period. This can result in significantly faster model
training. However, computing gradients based on a single training exam-
ple can result in noisy parameter updates, causing the loss to jump around.
In general, stochastic gradient descent will require more update steps than
batch gradient descent to converge. The trade-off between the required num-
ber of updates and the time taken to perform an update will depend on the
task and the model.

3.1.2.3 Mini-Batch Gradient Descent

A middle ground approach between batch gradient descent and stochastic
gradient descent, mini-batch gradient descent performs an update after sam-
pling a subset of β training examples. A subset is referred to as a mini-batch,
or often simply a batch. If β is equal to one, the approach is the same as
stochastic gradient descent. If β is equal to the size of the training set, it is
equivalent to batch gradient descent. Batch sizes are usually selected to be
small relative to the training set size. For example, a batch size of 50 for a
training set size of 10000 would be reasonable. As with stochastic gradient
descent, the training data is generally shuffled after sampling one mini-batch,
or after the entire training set has been sampled. The stochastic nature of both
stochastic gradient descent and mini-batch gradient descent means that it can
be possible to jump out of local minima.

Mini-batch gradient descent provides a balance between the frequency of pa-
rameter updates and the stability of gradients used to compute the updates.
As such, it is arguably the most widely used method, particularly for larger
datasets. The parallel nature of convolutional neural networks trained with
GPUs allows all examples in an appropriately sized mini-batch to processed
simultaneously, making mini-batch gradient descent an efficient and appro-
priate approach for such models.

3.1.3 Momentum

Stochastic and mini-batch gradient descent result in noisy updates to param-
eters and jumpy steps in the loss space. The momentum method considers
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(A) Without momentum. (B) With momentum.

FIGURE 3.5: Momentum can dampen oscillations in the up-
dates and reduce the number of iterations required. A two-

dimensional parameter space is shown as a contour plot.

the direction of movement from previous steps in the calculation of the next
step. A linear combination of the previous update and the current gradient
is used to find the next parameter update. Including momentum in the op-
timisation algorithm dampens oscillations and can reduce the time take to
reach convergence. This is shown in Figure 3.5 with a two parameter exam-
ple. It can also be useful in avoiding becoming stuck in local minima, as the
momentum from previous updates pushes the solution beyond the cusp of
the local minimum. This is shown with a single parameter example in Figure
3.6. The gradient descent formula from Equation 3.1 can be extended to in-
clude momentum by breaking it into two parts: the update calculation step
(Equation 3.2) and the parameter update step (Equation 3.3). The momen-
tum factor γ, where 0 ≤ γ < 1, is treated as another hyperparamerer, similar
to the learning rate α. The formula for gradient descent is sometimes written
with the omission of the γ − 1 term and with the learning rate scaled by that
amount in Equation 3.2.

φt = γφt−1 + (γ − 1)∇J(θt) (3.2)

θt+1 = θt − αφt (3.3)

3.1.4 Learning Rate Adaptation

It is common practice to reduce the learning rate during training. This allows
the optimisation algorithm to take large steps towards the solution at the
early stages of training when the loss is far away from minima and smaller
steps at later stages when it is nearer the solution. In other words, the op-
timisation algorithm should slow down as a good solution is approached.
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(A) Without momentum. (B) With momentum.

FIGURE 3.6: Momentum can help the gradient descent algo-
rithm avoid becoming stuck in local minima.

The simplest method is to step down the learning rate by some factor at a
set interval. For example, the learning rate may be multiplied by a factor of
0.1 every η training iterations. The AdaGrad algorithm [192] adjusts the base
learning rate for each parameter separately at each time step. The previous
gradients are summed for each parameter and used to attenuate the learning
rate for frequent parameters and increase the learning rate for sparse param-
eters. Other approaches include AdaDelta [193] and RMSprop [194], which
instead of accumulating all previous gradients, compute an exponentially
decaying average. Adam [195] extends these approaches by incorporating a
running average of the second moments of the gradients.

3.2 Convolutional Neural Networks

Deep learning with convolutional neural networks (CNNs) is all about the
extraction of useful features from input data. Unlike other machine learning
models that require features to be hand-crafted, CNNs extract features di-
rectly from the data by learning the feature extraction parameters simultane-
ously with the classifier parameters, in an end-to-end fashion. The bulk of the
feature extraction work is carried out by convolutional filters that are organ-
ised into layers, which are stacked one after the other. A convolutional layer
extracts features from the outputs of previous convolutional layers. Features
extracted in the shallow layers of the network, such as the first layer that op-
erates directly on the image, are generally low-level structural features, such
as edges. The deeper into the network, the more high-level the extracted
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FIGURE 3.7: Black box model of a CNN. The network performs
a transformation from the image space to a transformed space.

features become. The parameters of these layers, that is, the convolutional
filters, are learned during network training.

A convolutional neural network can also be thought of as black box oper-
ation that performs a non-linear transformation from the image space into
a reduced feature space, as shown in Figure 3.7. Depending on the problem
domain, the transformed space may be a class activation space, in which each
dimension corresponds to the likelihood of the input belonging to a partic-
ular class. Alternatively, the transformation could be to a more semantically
rich space that encodes semantic relationships between different images.

High-level overviews of example convolutional neural networks are shown
in Figure 3.8. The network in Figure 3.8A is the type of architecture used for
classification problems. A series of convolutional layers extract increasingly
meaningful features from the input image. The feature maps are downsam-
pled throughout the network until all spatial information is lost. The final
feature is passed into a classifier, which predicts a class label for the input
image. The disposal of spatial information is by design; a CNN for image
classification should be able to extract semantic information from the salient
object in the image, regardless of where that object is located in the image.
However, this loss of spatial information is not suitable for segmentation
problems, which require the localisation of objects in the image.

Figure 3.8B shows the type of architecture used for segmentation problems.
The input dimensions are restored in the output by following the downsam-
pling section of the network with an upsampling section. These network
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(A)

(B)

FIGURE 3.8: High-level overviews of network architectures for
classification (top) and segmentation (bottom).

sections are known as the encoder and decoder, respectively. The nature of
convolutions and the need to include some downsampling operations for
memory efficiency and spatial invariance, means that some spatial informa-
tion will always be lost in the encoder network. However, convolutional and
sampling layers can be designed to minimise this effect. This is discussed in
Section 3.2.2. Skip connections between encoder layers and decoders layers
are also included in order to retain fine-grained spatial information.

3.2.1 Terminology

Commonly used terms relating to deep learning and convolutional neural
networks are defined below.

• Weights: the trainable parameters of the neural network. These pa-
rameters are updated during network training such that some objective
function is optimised.

• Tensor: a generalisation of a vector or matrix. Data in a CNN is often
represented as an d-dimensional tensor.

• Input data: the input to the convolutional neural network. In the con-
text of this thesis, the input data is always an image, which can be
stored as a tensor. For example, an RGB image can be stored as a
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H × W × 3 tensor, where H and W are the height and width of the
image, respectively. Image data is often pre-processed before being in-
put to the network. This is discussed in Section 3.2.4.

• Labels: ground-truth target values for training data, used by super-
vised training algorithms. For image data, there may be a single label
per image or a label per pixel.

• Layer: the building block of convolutional neural networks. A layer
performs an operation on an input tensor to create an output tensor.
Common layer types are discussed in Section 3.2.2.

• Features: useful representations of the input data extracted by the con-
volutional neural network. CNN features may describe low-level struc-
tural information in the data, such as edges and corners, as well as
high-level semantic information. However, features extracted by net-
work layers may not always be interpretable as meaningful image cues,
when analysed in isolation. The weights of convolutional layers (Sec-
tion 3.2.2.1) and fully connected layers (Section 3.2.2.3) are learned such
that useful features are extracted from the input tensors.

• Activations: the output tensors of activation layers, which apply non-
linear functions to input tensors. Activation layers are discussed in Sec-
tion 3.2.2.4.

• Hyperparameters: parameters that are not learned during training.
Hyperparameters are set before the learning algorithm is carried out.
CNN hyperparameters include the learning rate (Section 3.1.1), mo-
mentum factor (Section 3.1.3) and weight decay factor (Section 3.2.5.5).

3.2.2 Layers

Convolutional neural networks are made up of a series of layers. The most
common of these layers can be categorised into five types: convolutional,
sampling, fully connected, activation and normalisation. Of these five layer
categories, convolutional and fully connected layers can be further cate-
gorised as feature extraction layers, which are made up of trainable weights.
Commonly used layer types within these five categories are explained in this
section.
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FIGURE 3.9: Image convolution with a 3 × 3 input and a 2 × 2
filter.

FIGURE 3.10: Convolutional layer with multiple input and out-
put channels.

3.2.2.1 Convolutional Layers

The primary building blocks of CNNs are convolutional layers. These layers
are comprised of a stack of convolutional filters that extract features from the
input by performing an image convolution. The filter parameters are train-
able weights that are tuned during network training such that the objective
function is optimised. An image convolution involves sliding the convolu-
tional filter over the input. At each point in the sliding window process, an
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FIGURE 3.11: Image convolution with a dilated convolutional
filter.

output value is computed by multiplying the filter element-wise with the
underlying section of the input and summing the element-wise products.

A simple 2-dimensional image convolution is shown in Figure 3.9, with a 2×2

filter on a 3 × 3 image. The stride of a convolution is the amount the kernel
is shifted after each computation. In Figure 3.9, the stride is one in both the
horizontal and vertical directions. It is important to note that the formal def-
inition of a convolution involves flipping the kernel. For a one-dimensional
kernel, this amounts to reversing the order of the kernel elements. However,
the examples presented in this section do not employ kernel flipping, which
is common practice in computer vision problems. Further, padding is not ap-
plied to the inputs in these examples, meaning the output heights and widths
are reduced compared to the input. In practice, this can be avoided by zero
padding the input dimensions by the appropriate amount.

In CNNs, convolutional layers generally perform higher-dimensional con-
volutions than the 2-dimensional example in Figure 3.9. The dimensions of
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FIGURE 3.12: Transposed convolution with input and filter el-
ements equal to values of one.

a convolutional layer can be expressed as h × w × cin × cout, where h is the
height of the filter, w is the width of the filter, cin is the number of input chan-
nels and cout is the number of output channels. A layer is made up of cout
convolutional filters, each of which have the dimensions h × w × cin. This is
illustrated in Figure 3.10. In this example, the input dimensions are 11×11×3

and the output dimensions are 7 × 7 × 4. This is achieved by stacking four
convolutional filters of size 5 × 5 × 3, making the dimensions of the layer
5× 5× 3× 4.

It is generally desirable for convolutions to have a large receptive field in
order to extract semantically rich features. In conventional network architec-
tures with small convolutional filters sizes, such as 3×3, the receptive field is
increased by downsampling feature maps using pooling layers (see Section
3.2.2.2). However, pooling operations result in a significantly reduced output
resolution, compared to the input resolution. For problems such as semantic
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segmentation, this loss of spatial information is undesirable. Dilated convo-
lutions allow the receptive field of the convolution to be increased without
increasing the filter size and without the need for pooling layers. In a dilated
convolutional filter, the weights are sparsely arranged, rather than densely
packed, allowing the same number of parameters to operate over a larger
input region. For example, the dilated convolutional filter in Figure 3.11 is
5× 5 in size, but with 16 regularly space holes, resulting in the same number
of parameters as a densely packed 3 × 3 filter. Dilated convolutions are also
referred to as atrous convolutions.

A transposed convolutional layer, also known as a deconvolutional layer,
performs the opposite of a convolutional layer in terms of restoring the res-
olution. However, a transposed convolution is not the inverse of a con-
volution and does not undo a convolutional operation. These layers are
a method of upsampling and are often found in the decoder section of an
encoder-decoder network, such as that shown in Figure 3.8B. The operation
performed performed by a transposed convolutional layer is shown in Fig-
ure 3.12, with a simple 2-dimensional example. The highlighted input value
is multiplied by each of the elements in the filter and the results are place into
the appropriate window of the output tensor. This is repeated for all input
elements. Overlapping elements in the output tensor are summed. For sim-
plicity in this example, all elements in the input tensor and the filter are set to
values of one. This shows how the transposed convolutional filter distributes
an input element across the output space.

3.2.2.2 Sampling Layers

A sub-category of sampling layers are those that perform downsampling op-
erations. These are generally referred to as pooling layers. Reducing the res-
olution of feature maps can be desirable for several reasons. Firstly, succes-
sively extracting features from high resolution inputs is expensive in terms
of computation and memory requirements. Secondly, downsampling the full
image resolution introduces a degree of spatial invariance into the network,
as neighbouring pixel locations are pooled together. Finally, pooling layers
increase the receptive field of subsequent convolutional layers, allowing the
extraction of more context-aware features. However, as discussed in Section
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FIGURE 3.13: Max-pooling and average-pooling layers.

3.2.2.1, reducing the resolution can be undesirable for problems such as se-
mantic segmentation, where spatial information is important. An alternative
approach to downsampling is convolutional layers with a large stride.

The two most common types of pooling layers are max-pooling and average-
pooling, both of which are shown in Figure 3.13. A max-pool operation takes
the maximum value within the pooling window as output, while an average-
pool operation computes the average of all values within the window. It is
common for the stride of the pooling kernel to be set such that there is never
an overlap of windows, as shown in Figure 3.13.

Upsampling layers are used in decoder networks to recover the spatial res-
olution lost during the encoder stage of the network. Simple upsampling
methods include nearest neighbour interpolation, bi-linear interpolation and
bi-cubic interpolation. Transposed convolutional layers, discussed in Section
3.2.2.1, are also a method of upsampling. A commonly used upsampling
layer is the unpooling layer. As the name suggests, unpooling layers attempt
to undo the pooling operations from the encoder network. Three approaches
to unpooling are shown in Figure 3.14. The most simple upooling technique
is to place the input value in the top left corner of the upsampled window,
filling the remaining elements with zeros (Figure 3.14A). A second approach
involves filling each element of the upsampled window with the input value
(Figure 3.14B). A third approach, proposed by Zeiler and Fergus [64], stores
the locations of the maximum values from the pooling layers and replaces
the values into these locations in the unpooling layers (Figure 3.14C).
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(A)

(B)

(C)

FIGURE 3.14: Three different approaches to unpooling layers.

3.2.2.3 Fully Connected Layers

In CNN architectures, fully connected layers can be used as feature extraction
layers and also in classifiers to create a class activation space. The parameters
of a fully connected layer are trainable and are learned end-to-end with the
other trainable network weights. As the name suggests, fully connected lay-
ers connected every input element to every output element, via a trainable
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(A)

(B)

FIGURE 3.15: Top: fully convolutional layer with an 8-
dimensional feature vector output. Bottom: the same fully con-

nected layer formulated as a convolutional layer.

weight. These layers output a cout-dimensional feature vector. This arrange-
ment allows the fully connected layer to extract a feature that describes the
image in a global sense, since the fully connected layer has a field of view
that encompasses the entire input space. This makes such layers suitable
for image classification problems, but unsuitable for segmentation problems,
which require image structure to be maintained. The number of weights in a
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(A) Sigmoid. (B) Hyperbolic tangent. (C) ReLU.

FIGURE 3.16: Example activation functions.

fully connected layer is equal to H ·W · cin · cout, where H ×W × cin are the
dimensions of the input and cout is the number of output channels. Figure
3.15A shows a fully connected layer with eight output channels.

A fully connected layer can also be constructed as a convolutional layer. For
an input of size H×W , a convolutional layer with a filter size of H×W ×1×
cout is equivalent to flattening the input and passing it into a fully connected
layer with cout output channels. This is shown in Figure 3.15B.

3.2.2.4 Activation Layers

Convolutions and the dense multiplications performed by fully connected
layers are linear operations. The problems that CNNs are applied to are not
linearly solvable and require a non-linear mapping from the input space to
the desired output space. Activation layers provide this non-linearity by ap-
plying element-wise non-linear functions to the outputs of convolutional and
fully connected layers. Commonly used activation functions are described
graphically in Figure 3.16 and mathematically below.

• Sigmoid (Logistic) Activation Function.

f(x) =
1

1 + e−x
(3.4)

• Hyperbolic Tangent (tanh) Activation Function.

f(x) =
ex − e−x

ex + e−x
(3.5)

• Rectified Linear Unit (ReLU) Activation Function.

f(x) = max(0, x) (3.6)
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ReLUs are the most commonly used activation functions in deep CNNs, gen-
erally following convolutional and fully connected layers. The function is
efficient to compute, as is the derivative, which is equal to one for positive
inputs and zero otherwise. ReLUs are useful in reducing the effect of the
vanishing gradient problem, compared to sigmoid and hyperbolic tangent
activation functions. This is discussed in detail in Section 3.2.5.7.

The sigmoid function returns a value between zero and one, which makes it
useful for models that predict probabilities. The softmax function is a gener-
alisation of the sigmoid function for multi-class scenarios. All output chan-
nels are squeezed such that the values are between zero and one, and are
normalised by the sum of all channels. This results in the channels summing
to one, as required to predict the probability distribution. Softmax functions
are commonly used in classification networks, following a fully connected
layer that outputs a vector with the number of channels equal to the number
of classes. This vector can be referred to a class activation vector, since each
dimension corresponds to the likelihood of the input belonging to a partic-
ular class. The softmax function scales and normalises these activations in
order to predict the probability distribution over class labels. The formula
for the softmax function is shown in Equation 3.7, where L is the number of
classes.

yi =
exi∑L
j=1 e

xj
for i = 1, . . . , L (3.7)

3.2.2.5 Normalisation Layers

It is often useful to normalise features at various stages of the network. Fea-
tures extracted by fully connected layers are sometimes normalised using
`2 normalisation, such that all features have the same scale. Other types of
normalisation include local contrast normalisation (LCN) and local response
normalisation (LRN), both of which perform local normalisations to incite
competition between nearby neuron outputs. However, both LCN and LRN
have fallen out of favour in more recent network architectures.

Batch normalisation layers [97] are commonly used in current CNN architec-
tures. During network training, examples are passed through the network
in mini-batches (see Section 3.2.5.3). Batch normalisation is the process of
normalising features within a batch to have a mean of zero and a standard
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FIGURE 3.17: The VGG16 network architecture [65].

deviation of one. This has the advantage of improving the stability of the
network during training and reducing the time taken for the model to reach
convergence. Additionally, the inclusion of batch normalisation layers intro-
duces more regularisation into the network. Regularisation is discussed in
detail in Section 3.2.5.5. At test time, fixed global training set normalisation
parameters are used. These parameters are estimated during training. Batch
normalisation layers are generally located after convolutional layers.

3.2.3 Network Architecture

An example network architecture is shown in Figure 3.17. The network is
the commonly used VGG16 architecture [65], consisting of 13 convolutional
layers and 2 fully connected layers in the feature extraction section of the net-
work. The classifier consists of an additional fully connected layer, to output
a class activation vector, and a softmax layer to predict a probability distri-
bution over classes. Each of the convolutional layers, as well as the two fully
connected layers in the feature extraction section, are followed by a ReLU ac-
tivation layer. Pooling layers follow banks of two or three consecutive convo-
lutional and ReLU layers. Compared to some recent network architectures,
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FIGURE 3.18: The VGG16 network architecture [65] in terms
of convolutional kernel sizes, pooling window sizes and fully
connected layer output sizes. Output feature map dimensions

are shown next to the arrows.

the VGG architecture is relatively simple, with no batch normalisation layers
or skip connections, like in ResNet [69] or DenseNet [71].

Figure 3.18 shows the VGG16 architecture in terms of the convolutional ker-
nel sizes, pooling window sizes and fully connected layer output sizes. The
dimensions shown next to arrows at the layer outputs are the dimensions of
the feature maps at that location in the network. All convolutional kernels
have a height and width of three and all pooling layers half the resolution in
terms of both height and width. The two feature extraction fully connected
layers output a 4096-dimension feature vector.
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3.2.4 Data Pre-Processing

Before image data is fed into a convolutional neural network, pre-processing
steps are usually carried out. Many CNN architectures, particularly those for
image classification problems, require that the input is of a specific size. This
can be seen in the VGG16 architecture in Figure 3.18, which expects input im-
ages to be 224× 224× 3. The three channels correspond to the red, green and
blue channels of a colour image. If an image is grayscale with a single chan-
nel, it can be converted to RGB by replicating the channel. Possible methods
of adjusting the image dimensions include rescaling the image to the correct
size, which may not preserve the aspect ratio, or resizing the image such that
the smallest side is of the correct size and then taking a centre crop.

Image data is usually processed such that the mean across the training set
is zero centred. Two methods of zero centring the data are commonly em-
ployed. The first involves finding the mean channel values of the training
set. In other words, the mean red, green and blue values are found across the
training data. Pixel intensities are then shifted by the appropriate channel
mean. A second approach involves finding a mean image across the training
set, that is, the RGB mean for each pixel location. The mean image is then
subtracted from the input data.

It can also be useful to further normalise the input data to be at a uniform
scale. This is generally carried out by dividing the input data by the training
set standard deviation. Further data pre-processing is often carried out dur-
ing training in order to artificially expand the size of the training set. This is
discussed in Section 3.2.4.

3.2.5 Training Convolutional Neural Networks

In this section, the details of learning the convolutional neural network
weights are discussed. The training of the model is treated as an iterative
optimisation problem. A simple method of updating the network weights
is via the gradient descent algorithm, which is described in detail in Section
3.1.1.
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3.2.5.1 Initialisation and Pre-Training

Before training the network on data from the target domain, the weights of
the network must first be initialised. Two methods of network initialisation
are commonly employed: random initialisation and initialisation with pre-
trained weights. Methods of random initialisation include Gaussian, Xavier
[196] and He [197]. Random initialisation is desirable over uniform initial-
isation, as it ensures each weight receives a different signal and gradient,
avoiding a bias toward any particular local solution. With random network
weights, it is expected that a softmax classifier would have a classification
accuracy comparable to random classification.

Training network weights from scratch is costly in terms of time and the
amount of training data required. Often, target domains have limited la-
belled training data available. As such, random initialisation is undesirable.
It is common for network weights to be initialised from a model that has
been pre-trained on some large dataset, such as ImageNet [61]. The ratio-
nale is that the learned weights from such a pre-trained model will gener-
alise to new target domains well enough to be a useful starting point. The
weights are then fine-tuned on the target training set. Initialisation from pre-
trained weights requires that the network architectures of the pre-trained
model and the target model match. In cases where the match isn’t perfect,
partial initialisation with pre-trained weights can be employed, where only
the weights from layers that have matching shapes are copied. It is often the
case that the early convolutional layers will match, but modifications have
been made to the deeper layers of the target network. The modified layers
are initialised with random weights. Prior to the availability of large datasets
for pre-training, unsupervised pre-training using auto-encoders was often
employed [198].

3.2.5.2 Loss Functions

The training of CNN weights is driven by a loss function, which defines the
objective of the training algorithm. Loss functions can also be referred to as
objective functions, cost functions or error functions. The value returned by
a loss function is a measure of how well the machine learning model is per-
forming on the given data. This measure is obtained by comparing the pre-
diction made by the model to a target ground truth value, in some manner.
The network weights can be updated such that the loss is minimised using
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a variant of the gradient descent algorithm (see Section 3.1.1). For complex
models and objectives, loss functions can often only be optimised to local
minimum.

An example loss function used for classification problems is the negative log
loss, or cross-entropy loss. A model with parameters θ that predicts a label
ŷi for an input xi has the following cross-entropy loss:

J(θ) = −
m∑
i=1

log (Pr(ŷi = yi|xi)) , (3.8)

where yi is the true label of xi and m is the number of examples. For a CNN
with a softmax classifier (see Section 3.2.2.4), this is equal to the negative log-
arithm of the normalised softmax channel pertaining to the true class label.

For regression problems, such as predicting depth, a common cost function
is the `2 loss between the predicted and target values:

J(θ) =
1

n

n∑
i=1

(ŷi − yi)2 , (3.9)

where ŷ = [ŷ1, . . . , ŷn] a vector of predicted values and y = [y1, . . . , yn] is a
vector of target values.

3.2.5.3 Training Batches, Iterations and Epochs

Training data is passed through the convolutional neural network during
training in mini-batches, or simply, batches. A batch is a small subset of the
training examples that are grouped together. A training iteration consists of a
forward and backward pass of a batch through the network, where a forward
pass involves propagating data from the input to the output, while a back-
ward pass involves propagating the gradients of the error backwards from
the output (see Section 3.2.5.4). A training epoch is a full pass over the training
set. The number of iterations in an epoch is equal to the number of training
examples divided by the batch size. The loss is computed across the entire
batch and the weights are generally updated each training iteration. Batch
selection usually involves shuffling the training data and sampling without
replacement until all training examples have been selected. The data is then
shuffled again and the process repeats over the next epoch. In general, the
batch size is selected to be the largest that will fit in the GPU memory.
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FIGURE 3.19: Overview of the back propagation of errors ap-
proach to training neural networks. This example consists of
three simple layers that each contain a single trainable weight
(w1, w2 and w3). The inputs and outputs of layers are named x1

through x4 and the target value is t.

3.2.5.4 Back Propagation of Errors

The weights of the network can be updated using an iterative optimisation
method, such as gradient descent (see Section 3.1.1). Such optimisation al-
gorithms require calculation of the partial derivatives of the loss function, or
error, with respect to each trainable parameter. This is achieved in convolu-
tional neural networks by back propagation of errors, or simply, back propa-
gation. At each training iteration, a batch is forward propagated through the
network, with the objective function producing an error term. Error gradi-
ents are back propagated layer-by-layer through the network. At each layer,
the derivative of the error with respect to trainable parameters in the layer,
as well as with respect to the input to that layer, can be computed by apply-
ing the chain rule of differentiation. The derivatives with respect to the layer
weights are used to update those weights, while the derivatives with respect
to the inputs are back propagated to the previous layer.

Back propagation is illustrated in Figure 3.19 with a simple three layer ex-
ample. Each of the three layers have a single trainable weight, w1, w2 and
w3, and output a single value. Inputs and outputs to layers are denoted as
x1 through x4. In this example, the error function is simply the difference
between the output of the final layer and a target value t. The derivative of
the error with respect to the output of layer 3 is computed and passed to that
layer. The chain rule is used to find the derivative with respect to weight w3

and with respect to the input of the layer, x3. The latter is back propagated to
the previous layer and this process repeats.
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(A) Good fit. (B) Over-fit.

FIGURE 3.20: Over-fitting demonstrated on a two class classifi-
cation problem. Training examples are represented as points in
the space, where the colour denotes the class label. The model
fits a decision boundary to the training data, shown as a black

line.

FIGURE 3.21: The validation loss increasing while the train-
ing loss continues to decrease is an indication that the model

is over-fitting to the training data.

3.2.5.5 Over-Fitting

The problem of over-fitting refers to the scenario when a model learns the
noise in the training data, that is, the model has “over-fit” to the training
examples. This is illustrated with a two class example problem in Figure
3.20. A model that has over-fit will not generalise well to unseen examples
and will likely have poor classification accuracy on a withheld set of data.
Over-fitting can be observed during training if the error of a withheld set of
examples, named the validation set, begins to increase, while the error of the
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training set continues to decrease. This is shown in Figure 3.21

Techniques that aim to reduce the generational error of models by mitigating
over-fitting are referred to as regularisation techniques. A simple approach
to regularisation is the use of dropout [63]. During training, the outputs of
neurons are randomly set to zero, or dropped out. This forces neurons to
learn something that is useful without the reliance on specific previous acti-
vations and in turn, forces the network to extract more generalised features.
Dropout can also be thought of as sampling a different network architecture
at each training iteration.

Another approach to regularisation is weight decay [199], which is used to
prevent the network weights becoming large too quickly. Each trainable
weight in the network results in an additional term being included in the
loss function, which incorporates a tunable hyperparameter that controls the
dampening factor of the weight decay. The rationale behind constraining
weights to be small is that simpler and sparse networks tend to generalise
better than complex networks.

The size of the training set plays an important role in avoiding over-fitting.
Smaller training sets are more susceptible to over-fitting since it is easier for
the network to learn the noise in a small amount of data. Artificial expansion
of the training set can be used to reduce over-fitting. This is discussed in Sec-
tion 3.2.5.6. Batch normalisation, discussed in Section 3.2.2.5, also introduces
some regularisation into the training process.

3.2.5.6 Data Augmentation

Training datasets can be artificially expanded by performing data augmen-
tation on the training images. This involves processing training examples
in some manner to create “new” training examples. Augmentation can be
achieved by taking random crops of the image or by performing mirroring,
usually only in the horizontal direction. Other approaches include scaling,
adding noise to the image, adjusting the pixel brightness and perspective
transformations. It is important to ensure that any data augmentation does
not alter the semantics of the underlying image. For example, rotating an
image of the digit “6” by 180 degrees results in an image that appears to be
of the digit “9”.
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3.2.5.7 Vanishing Gradients

The problem of vanishing gradients can occur in deep neural networks when
saturating activation functions, such as sigmoid and hyperbolic tangent (see
Section 3.2.2.4), are used. The problem refers to gradient magnitudes expo-
nentially decaying as they are back propagated through the network, result-
ing in slow training of early layers. The use of ReLU activation functions,
which are linear for inputs greater than zero, largely mitigates this problem.
However, vanishing gradients can still occur when training very deep net-
works. Residual networks with skip connections [69] address this problem
by directly adding the input of a residual block to the output of the block.
These connections skip the activation functions, resulting in larger gradients
to back propagate.

3.3 Conditional Random Fields

Probabilistic graphical models, such as condition random fields (CRFs), al-
low the modelling of structural and contextual information to be incorpo-
rated into the inference process. In the context of this thesis, CRFs are con-
sidered for the problem of the semantic segmentation of images. The mod-
els work to find the labelling, or segmentation, that maximises a defined
probability distribution, or minimises a defined energy definition. A con-
ditional random field is defined by a set of random variables, or nodes, that
are arranged in a graphical structure. Interactions and relationships between
nodes are represented by edges in the graph. In the case of CRFs for semantic
segmentation problems, edges are generally undirected. A node may be de-
fined for every pixel in the image, or for larger image regions. Edges may be
defined between nearby nodes only or between every possible pair of nodes
in a fully connected dense CRF [182]. A simple pairwise CRF is depicted in
Figure 3.22.

3.3.1 Energy Function

The energy that is to be minimised by the graphical model inference algo-
rithm is described in this section. In the probability domain, this corresponds
to finding the labelling that maximises a probability expression defined over
the random field. A set of random variables {X1, ..., XN} defines a random
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FIGURE 3.22: Example structure of a pairwise CRF.

field X, where N is the number of nodes in the graph. Each random variable
is defined over a set of class labels L = {1, 2, ..., L}. An assignment x to X,
where all xi ∈ L, is a valid segmentation. The probability distribution for a
general graph is seen in Equation 3.10.

Pr(X = x | I) =
1

Z

∏
ω∈Ω

ψω(Xω | I) (3.10)

In the general case, Ω is a set of cliques within a graph that describe the
interactions between nodes. Each clique has an associated potential ψω. The
partition function, Z, is the function that normalises the distribution. In the
context of semantic segmentation, potentials can be defined for individual
pixels (unary terms), pairs of pixels (pairwise terms) or regions of pixels (higher-
order terms).

3.3.1.1 Pairwise CRF Energy

The most common CRF structure is a pairwise graph, which includes only
unary and pairwise clique potentials. This is the structure that is considered
for the remainder of this section. The pairwise graph has the probability
distribution seen in Equation 3.11, where ui(.) are the unary terms, fij(., .)
are the pairwise terms defined over connected pairs of nodes and E is the set
of edges.
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Pr(X = x | I) =
1

Z

N∏
i=1

ui(xi)
∏
i,j∈E

fij(xi, xj) (3.11)

It is generally more computationally efficient and numerically stable to oper-
ate in the log, or energy, domain. The distribution is reformulated in the log
domain as:

Pr(X = x | I) =
1

Z
exp

(
−

(
N∑
i=1

Ui(xi) +
∑
i,j∈E

Fij(xi, xj)

))
, (3.12)

where Ui(.) and Fij(., .) are the negative logarithms of the unary and pairwise
terms, respectively. Maximising the distribution Pr(X = x | I) is equivalent
to minimising the energy, which is defined in Equation 3.13 as E(x | I).

E(x | I) =
N∑
i=1

Ui(xi) +
∑
i,j∈E

Fij(xi, xj) (3.13)

3.3.1.2 Unary Potentials

The potential at a given node without considering any interactions from con-
nected nodes is referred to as a unary potential. The unaries can be treated
as initial guesses of the likely labelling of each individual node. These initial
distributions are generally computed by some other classifier. For example,
a fully convolutional network [80] can be used to obtain a probability dis-
tribution over classes at every pixel location. The unary potentials can be
defined as the logarithms of these distributions. The predictions made by
convolutional neural networks are good initial guesses due to a CNN’s abil-
ity to extract rich semantic features. However, the context incorporated into
such predictions is limited to the receptive field of the network. Conditional
random fields allow further contextual and structural information to be in-
corporated into the predictions by defining interactions between nodes in the
graphical model.

3.3.1.3 Pairwise Potentials

The cost associated with assigning labels to a pair of nodes that are connected
by an edge is referred to as a pairwise potential. These potentials can be
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defined based on prior knowledge, such as a car pixel is more likely to be near
road pixels than water pixels, or they can be learned via iterative optimisation
techniques (see Section 3.1). Terms based on the contextual consistency of
class labels are often referred to as label compatibility terms. A simple label
compatibility function is the Potts model, which is equal to a value of zero
for connected nodes that have the same label and a value of one for those
with different labels.

In addition to label compatibility, information from the input data can be di-
rectly incorporated. For example, the dense CRF in [182] encourages nodes
belonging to pixels that are nearby or have a similar appearance to take the
same class label. This is achieved by applying Gaussian kernels to the pixel
coordinates and RGB intensities. The sum of the Gaussian kernels is multi-
plied by a label compatibility function.

3.3.2 Energy Minimisation with Belief Propagation

Finding the labelling that minimises the energy described in Section 3.3.1.1 is
complex, as the graph is undirected and contains loops. A common method
used to find an approximate minimum solution is message passing, wherein
nodes communicate information about their own belief to connected nodes.
These belief messages propagate around the network until they converge, at
which point the belief at each node can be calculated from the unary distri-
bution and incoming messages. If message passing is suited to the problem,
the resultant state of the nodes will be an exact minimisation of the energy
for tree-like graphs and an approximate minimisation for graphs containing
loops. Message passing in graphs with loops is referred to as loopy belief
propagation [177].

3.3.2.1 Message Passing

Nodes compute messages based on their current belief and propagate the
information to connected nodes, such that the receiver nodes can in turn up-
date their belief states. The message a node propagates is computed based on
the unary distribution at that node, the defined pairwise potentials and pre-
viously received messages. A caveat of this approach is that a node should
not receive information that it has itself propagated. This is illustrated in
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FIGURE 3.23: The message from node i to node j considers
previous messages flowing into node i, except for the message

propagated from node j.

Figure 3.23. When computing the message from node i to node j, the mes-
sage includes information propagated to node i from all nodes except j. The
message mt

ij refers to the message passed from node i to node j at time t.

The message update formula is shown in Equation 3.14, where i indicates
the sender node, j is the receiver node and t is the time step. The edges
connecting node i to other nodes are contained in the set Ei, and therefore Ei\j
represents edges to node i excluding the edge connected to node j. The unary
distributions at node i and the pairwise potentials are represented by ui and
f respectively, while xi and xj represent class labels under consideration at
each node.

mt+1
ij (xj) =

∑
xi

f(xi, xj) ui(xi)
∏
k∈Ei\j

mt
ki(xi) (3.14)

Equation 3.14 shows the single scalar message for a particular class label. The
message for the entire distribution of class labels is simply a matrix-vector
multiplication between the pairwise terms and the product of unaries and
incoming messages. For numerical stability, messages are normalised such
that

∑
xj
mij(xj) = 1.
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3.3.2.2 Belief Calculation

Messages propagate until convergence is reached, at which point the beliefs
at nodes can be computed from the converged incoming messages and the
node unary potentials. Equation 3.15 describes the belief calculation at a
given node, where bi(xi) is the belief of label xi at node i. Once normalised,
the belief becomes a probability distribution across the set of class labels at
the given node.

bi(xi) = ui(xi)
∏
k∈Ei

mki(xi) (3.15)

In the energy domain, the product operation becomes a sum of energies, as
seen in Equation 3.16, avoiding the multiplication of many small probabili-
ties that may result in numerical instability.

bi(xi) = exp

(
ln (ui(xi)) +

∑
k∈Ei

ln (mki(xi))

)
(3.16)
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Chapter 4

Deep Metric Learning and Image
Classification

This chapter proposes a Gaussian kernel loss function and training algorithm
for convolutional neural networks that can be directly applied to both metric
learning and image classification problems. The method treats all training
feature embeddings from a deep neural network as Gaussian kernel centres
and computes the loss by summing the influence of a feature embedding’s
nearby centres in the feature embedding space. Fast approximate nearest
neighbour search is leveraged, in the interest of providing a scalable solu-
tion. End-to-end learning of the network weights is made feasible by the
introduction of periodic asynchronous updates of the Gaussian centres. Our
approach results in a well formed feature embedding space, in which seman-
tically related instances are likely to be located near one another, regardless
of whether or not the network was trained on those classes. Our proposed
method outperforms state-of-the-art deep metric learning approaches on em-
bedding learning challenges, as well as conventional softmax classification
on several datasets.

The problems of classification and metric learning are each important to the
application of robotic vision. Classifying observed objects is an important
precursor to robotic interaction with the environment, such as object manipu-
lation [4] or safe navigation [2]. Metric learning allows a robot to measure the
similarity between an observed example and other observations or known
training examples. This is an important step in enabling a robot to reason
about unknown observations.
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4.1 Motivation

Metric learning is the problem of learning a distance function over inputs.
In this work, the inputs are images and the distance function should be a
measure of the semantic similarity of given inputs. Since distance measures
between examples in the image space are largely meaningless in terms of
high-level semantic information, metric learning approaches aim to learn a
transformation from the image space to a semantically meaningful feature
embedding space. This transformation should be learned such that a stan-
dard distance measure, such as the Euclidean distance, between examples
in the feature embedding space can be used as a measure of the semantic
similarity. In other words, feature embeddings extracted from semantically
similar images will be located nearby, while those extracted from semanti-
cally dissimilar images will be located further apart. A well learned distance
metric should transfer to out-of-distribution examples, that is, examples be-
longing to semantic classes that are not represented in the training set. This
provides a means for a system, such as a robot, to reason about novel ob-
servations. Other applications of metric learning include retrieval, zero-shot
and few-shot learning, clustering and weakly supervised or self-supervised
learning.

Image classification is the task of categorising an image into one out of a
set of classes. The classes must be previously known to the model and are
generally those that are represented in the training set. Image classification
is a fundamental problem in robotic vision, as the ability to categorise and
recognise observations is often a necessary precursor to interaction with the
environment. Examples of image classification include coarse object recog-
nition [61, 15], fine-grained recognition [200, 201, 202, 203], face recognition
[204] and scene recognition [205, 206].

The tasks of classification [60, 207, 66, 69] and metric learning [19, 21, 22]
are generally treated as two separate problems. Although the feature em-
beddings learned by metric learning approaches often transfer well to novel
classes, they are generally less amenable to classification. As such, met-
ric learning models struggle to compete with, and may significantly under-
perform, conventional state-of-the-art classifiers for problems beyond zero-
shot and few-shot classification [116]. Likewise, state-of-the-art classification
approaches fail to learn feature embedding spaces that represent inter-class
and intra-class similarities and variations to the standard of metric learning
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approaches. This means that a model trained for a specific classification task
may not be suitable for any other task. Outside of zero-shot and few-shot
learning, some metric learning algorithms have been applied to classification
[116, 20], although approaches that perform well in both domains remain
uncommon.

Metric learning and classification should not need to be treated as separate
problems. Both tasks require rich representations of the high-level semantic
information contained within an input image. One would expect that feature
embeddings from metric learning approaches that encode fine-grained infor-
mation should also be amenable to classification tasks. This suggests that it
should be possible to learn a single model that can be successfully applied to
problems in both domains.

Such a model is particularly desirable for robotic applications. A robot op-
erating in an unconstrained environment will almost certainly observe ob-
jects that are from outside of the training set distribution. The ability of
the learned representations to transfer to out-of-distribution classes enables
a robotic system to reason about novel observations, rather than silently fail-
ing. The ability to classify in-distribution examples allows a robot to under-
stand and interact with the environment.

To this end, we propose a loss function and training algorithm for convolu-
tional neural networks that can be applied to both metric learning and image
classification problems. The approach defines training set feature embed-
dings as Gaussian kernel centres, which are used to push or pull features
in a local neighbourhood, depending on the labels of the associated training
examples. Fast approximate nearest neighbour search is used to provide an
efficient and scalable solution. Our proposed approach differs from kernel or
radial basis function neurons [208, 209], as the kernel centres are not learned
network parameters, but are defined to be the locations of the training set fea-
tures in the embedding space. Additionally, kernels are used only in the loss
function and classifier, not as activation functions throughout the network.
The proposed approach is related to NCA [210, 211], but introduces per ex-
emplar weights, makes training feasible through the introduction of periodic
asynchronous updates of the kernel centres and is made scalable for a large
number of training examples and a high feature embedding dimension. Ad-
ditionally, the importance of the feature embedding space dimensionality is
explored. Our approach is motivated in terms of metric learning in Section
4.1.1 and in terms of classification in Section 4.1.2.
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FIGURE 4.1: Training a triplet network. The positive pair dis-
tance should be smaller than the negative pair distance, by

some margin.

4.1.1 Metric Learning Motivation

The best success on feature embedding learning tasks has been achieved by
deep metric learning methods [17, 18, 19, 20, 21, 22, 23, 21], which use deep
neural networks to learn the transformation between the image space and
the feature embedding space. The majority of these approaches use or in
some way generalise a triplet architecture with hinge loss [109]. At a given
training iteration, a triplet network takes a trio of inputs: two images of the
same class, one of which is called the anchor, and one image of a different
class. The training algorithm tries to make the distance between the anchor
and the positive example smaller than the distance between the anchor and
the negative example, by some margin. This is illustrated in Figure 4.1.

Triplet networks often demand that a single cluster is formed per class. The
reason for this is that during training the algorithm may indiscriminately se-
lect any semantically similar examples to be pulled together. For example, if
the two feature embeddings sampled as the positive pair are located in sep-
arate, well formed local clusters of similar examples, the algorithm will still
attempt to pull those examples together. In other words, these approaches
consider only the global structure of the feature embedding space and not
the local structure of the space. Triplet loss can be defined for each example
over only a selected subset of target neighbours, however, this may restrict
the possible feature space that can be learned by the model.
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A single cluster per class is not necessarily the most semantically rich repre-
sentation and can be limiting in terms of representing inter-class and intra-
class variations. Considering, for example, the problem of learning a distance
metric over images of different species of birds. One region of the space may
contain species-based clusters of birds in flight, while another region may
contain clusters of the same species, but on the ground. Allowing multiple
clusters to form per class may enable a richer representation of such fine-
grained information.

The proposed Gaussian kernel metric learning approach allows multiple
clusters to form per class, if that is appropriate. The local structure of the
feature embedding space is considered, avoiding the indiscriminate pulling
together of examples in well-structured local regions. This allows the pro-
posed method to better represent fine-grained variations that may be present
in the data, compared to existing state-of-the-art deep metric learning ap-
proaches. Further, experimental results show that the feature embeddings
learned by our approach are also amenable to classification, outperforming
conventional classification approaches on several datasets.

4.1.2 Classification Motivation

The most common approach to image classification is a convolutional neural
network trained with a softmax classifier, which transforms activations into
a distribution across class labels [60, 207, 66, 69]. As shown in Figure 4.2,
these networks include a fully connected layer that outputs a vector with the
number of channels equal to the number of classes. After passing the vec-
tor through the softmax layer, cross-entropy loss is used to train the network.
This structure is inflexible as the number of classes is baked into the network.
As such, new classes cannot be added without restructuring and retraining
of the network. The structure is closed-set by design, meaning that the net-
work will silently fail when presented with an example of a novel class by
incorrectly categorising the novel example as one of the known classes.

Softmax-based networks are also limited in terms of the inter-class and intra-
class variations that can be represented. The loss function and network struc-
ture forces classes to be axis-aligned. In other words, the training algorithm
aims for the network to output a high value on the channel corresponding
to the input’s class, and a low value on all other channels. This restricts the
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FIGURE 4.2: Classification with a softmax-based convolutional
neural network.

(A) Softmax. (B) Metric learning.

FIGURE 4.3: Example arrangement of bird classes in a softmax-
based approach (A) and a metric learning approach (B). Soft-
max approaches are inefficient, as classes must be axis-aligned.
Metric learning approaches allow efficient representation of
classes and become even more efficient as the feature embed-
ding dimensionality becomes large. We embed features in 64

dimensions up to 4096 dimensions.

representational power of the network, as seen in Figure 4.3, leading to a po-
tential loss of inter-class and intra-class fine-grained variations that are useful
for transfer learning and open-set problems.

The proposed Gaussian kernel approach addresses these issues associated
with conventional softmax-based networks. As our approach learns a trans-
formation to a space in which distance is a measure of similarity, intra-class
and inter-class similarities can be better represented by the model. The ap-
proach also allows for new classes to be added on-the-fly, with no updates
to the network weights or changes to the network architecture required for
the distance metric to remain valid. Importantly, the proposed approach not
only learns feature embeddings that are amenable to classification, but also
that transfer well to novel classes.
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4.2 Contributions

This chapter presents a Gaussian kernel-based metric learning approach. The
proposed approached learns feature embeddings that are amenable to both
transfer learning and classification problems. The advantages of our pro-
posed approach can be summarised as follows:

• The proposed training algorithm is made feasible by introducing peri-
odic asynchronous updates of the kernel centres (Section 4.7).

• End-to-end learning can be made scalable by leveraging fast approxi-
mate nearest neighbour search (Section 4.6).

• Trainable per-kernel weights are introduced, allowing the influence
of important training set feature embeddings to be amplified (Section
4.5.3).

• Our approach can be applied to what are usually treated as two sepa-
rate problems: image classification and metric learning.

• For feature embedding learning problems, the proposed approach out-
performs state-of-the-art deep metric learning algorithms on the Stan-
ford Cars196 and CUB Birds200 2011 datasets (Section 4.10.1).

• The proposed approach outperforms a conventional softmax classifier
on the CUB Birds200 2011, Stanford Cars196, Oxford 102 Flowers and
Leafsnap datasets (Section 4.10.2).

• Further to learning better compact feature embeddings than triplet-
based networks, the Gaussian kernel approach is able to take advantage
of a larger feature embedding space (Section 4.10.1.4).

• Finally, the proposed approach is able to learn from limited training
data, significantly outperforming softmax-based networks in few-shot
learning problems (Section 4.10.2.4).

The majority of the research detailed in this chapter has been presented in
a peer-reviewed publication [24]. Additional work not found in the publi-
cation includes the analysis in Sections 4.7.2, 4.8.2 and 4.9.2.3, as well as the
experimental results in Sections 4.10.2.5 through 4.10.2.7.
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4.3 Related Work

This section provides a brief summary of previous work that directly relates
to the proposed approach, as well as methods that our approach is evalu-
ated against in the experimental results in Section 4.10. A detailed review of
metric learning and image classification literature can be found in Chapter 2.

4.3.1 Radial Basis Functions in Neural Networks

A Gaussian kernel is a type of radial basis function (RBF), which have previ-
ously been used to varying degrees in neural networks. Radial basis function
networks were introduced by Broomhead and Lowe [208]. These networks
formulate activation functions as RBFs, resulting in an output that is a sum
of radial basis function values between the input and network parameters.
In contrast to these radial basis function networks, our proposed Gaussian
kernel approach uses RBFs in the classifier and loss function of a deep con-
volutional neural network and the radial basis function centres are defined to
be the locations of the high-dimensional feature embeddings of training ex-
amples, rather than being network parameters. Radial basis functions have
been used as neural network classifiers in the form of support vector ma-
chines. In one such formulation, a neural network is used as a fixed feature
extractor and separate support vector machines are trained to classify the
features [73, 74]. No joint training occurs between the classifier and network.
Such an approach is often used for transfer learning, where the network is
trained on vast amounts of data and the support vector machines are trained
for problems in which labelled training data is scarce. The work proposed by
Tang [212] replaces the typical softmax classifier with linear support vector
machines. In this case, the classifier and network are trained jointly, meaning
the loss that is minimised is margin based.

4.3.2 Metric Learning

Early methods in the domain of metric learning include those that use
Siamese networks [101] and contrastive loss [102, 103]. The objective of
these approaches is to pull pairwise examples of the same class together
and push pairwise examples of different classes apart. Such methods work
on absolute distances, while triplet networks with hinge loss [109] work on
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relative distance. Metric learning with deep convolutional neural networks
is known as deep metric learning. Several deep metric learning approaches
make use of, or generalise, deep triplet neural networks [17, 106, 18, 19, 20,
21].

The selection of informative triplets that will result in useful updates to the
network weights is an important problem for triplet networks. A useful
triplet is one that is not currently well-learned by the network. For example,
a triplet for which the distance between the anchor and the negative example
is significantly smaller than the distance between the anchor and the positive
example, would be considered a hard example. These hard triplets are much
more informative than triplets that already satisfy the triplet objective, and
therefore allow better updates to be made to the network weights. Selecting
good triplets is an important line of research in metric learning, known as
hard negative mining. Schroff et al. [18] perform semi-hard mining within
a mini-batch, while [21] introduces a smart mining technique that mines for
triplets over the entire training set.

Other approaches seek to achieve useful and efficient updates to the net-
work weights by performing multiple comparisons for a single anchor im-
age at a single training iteration. Song et al. [19] propose a lifted structured
embedding with efficient computation of the full distance matrix within a
mini-batch. This allows comparisons between all positive and negative pairs
in the batch, resulting in more efficient updates at each training iteration.
Similarly, Sohn [20] proposes an approach that allows multiple intra-batch
distance comparisons, but optimises a generalisation of triplet loss, named
N-pair loss, rather than a max-margin based objective, as in [19]. The global
embedding structure is considered in [22] by directly minimising a global
clustering metric. However, a combination of global and triplet loss is shown
to be beneficial in the work by Kumar et al. [23].

4.4 Feature Embeddings

Feature embeddings are representations of input data in a space in which
properties of the data can be more easily represented. These properties may
be the semantic information contained within an input image. Practically, a
feature embedding is a fixed-length and continuous vector of real numbers.
In this section, the process of extracting feature embeddings by transforming
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an input from the image space into a feature embedding space using con-
volutional neural networks is described. Visualisations of example feature
embeddings are then presented and discussed.

4.4.1 Extracting Feature Embeddings

A deep convolutional neural network extracts a hierarchy of features from a
given input image. The first layer in a network extracts features directly from
the image pixel intensities. These features are passed through an activation
function and the subsequent layer extracts features from these activations.
This process continues through the network layers, with each layer trans-
forming the features from the previous layer into a higher-level feature rep-
resentation. In embedding space learning problems, generally only a single
feature representation is explicitly considered. In general, the activations of
the final layer of network are taken as the feature embeddings. All other fea-
ture representations learned by the network are treated as latent. Although
no particular structure is demanded by embedding learning problems, fea-
ture embeddings are usually d× 1 in shape, where d is the dimensionality of
the feature embedding space.

The final layer of the network that produces the feature embeddings is re-
ferred to as the embedding layer. Most commonly this layer will be a fully
connected or pooling layer. For example, a fully connected layer will out-
put a d-dimensional feature embedding for a given image, where d is sim-
ply set using a layer parameter that controls the number of output channels
produced. An example configuration with the commonly used VGG16 archi-
tecture [207] may involve taking the penultimate fully connected layer (FC7)
as the embedding layer, producing a 4096-dimension feature embedding. Ex-
tracting a feature embedding from a given image using a VGG16 architecture
is illustrated in Figure 4.4.

Formally, an input image I ∈ I is transformed from the image space into a
feature embedding space by a convolutional neural network. This transfor-
mation is expressed as:

x = g(I;θ), (4.1)

where x =
[
x(1), . . . , x(d)

]
is a d-dimensional feature embedding for image I,

g is the transformation function and θ denotes the parameters, or weights, of
the neural network.
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FIGURE 4.4: Extracting a feature embedding using a convolu-
tional neural network with a VGG16 architecture [207]. The em-
bedding layer is taken as FC7, without a subsequent activation
layer. This set-up extracts a 4096-dimension feature embedding

from an input image.

4.4.2 Visualising Feature Embeddings

In this work, the aim is for feature embeddings to represent the semantic
information contained in input images. The feature embeddings of semanti-
cally similar images should be located nearby in the embedding space, while
those of semantically dissimilar images should be located further apart. Fig-
ure 4.5 shows visualisations of example feature embeddings learned by the
approach described in the remainder of this chapter. These visualisations
illustrate how CNNs can be trained to transform images into a space that
allows easier representation of complex, high-level semantic information.

In Figure 4.5, the feature embeddings belonging to different classes of car
makes/models/years are visualised by projecting the vector elements to
RGB values. It can be seen that examples belonging to the same semantic
category have similar representations in the feature embedding space, de-
spite the many input image variations that exist, such as viewpoint, pose
and car colour. Further, examples belonging to different but related semantic
categories have feature representations that are more similar than those
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FIGURE 4.5: Visualisation of feature embeddings for differ-
ent car makes/models/years. Rows of the visualisation cor-
respond to examples and columns correspond to the dimen-
sions of the feature embeddings. For each class, 80 examples
each with 64-dimension feature embeddings are shown. Visu-
alisations are obtained by converting each feature element to an
RGB vector. It can be seen that the feature embeddings encode
more information than simply the class label. Similar classes,
such as different makes and models of convertibles, different
years of the same model or different body types of the same

model, result in similar feature embeddings.

belonging to less semantically related categories. This shows that convolu-
tional neural networks not only have the ability to classify examples into
semantic categories, but also allow measurement of the semantic similarity
between examples from different categories. The similar semantic categories
include two different makes and models of convertibles, two different years
of the same car model and two different body types of the same car model.
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FIGURE 4.6: Overview of our approach. Note that the feature
embeddings are high-dimensional.

4.5 Classifier and Objective Function

This section introduces the proposed approach that can be applied to both
metric learning and classification problems. Gaussian kernels are described
and a classifier based on these kernels is presented. The objective function
used to the train the model is also discussed. An overview of the proposed
approach seen in Figure 4.6.

4.5.1 Gaussian Kernels

A Gaussian kernel is a type of radial basis function. Given two points, x and
c, a radial basis function f returns a value that depends only on the distance
between those points:

f(x, c) = f (‖x− c‖) . (4.2)

Although many radial basis functions exist, this work considers only Gaus-
sian kernels, which return values based on the Gaussian function of the dis-
tance between the two points:

f(x, c) = exp

(
−‖x− c‖2

2σ2

)
, (4.3)

where σ is the Gaussian standard deviation that sets the width of the Gaus-
sian. The point c is referred to as the Gaussian centre. As such, the kernel
can be thought of as returning a value based on how far some example point
x is from the centre of the Gaussian curve c. The value returned radiates out
evenly from c in all directions.
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4.5.2 Defining the Gaussian Kernel Centres

In this work, the feature embeddings of each training example are defined
as Gaussian kernel centres. That is, the training set feature embeddings are
stored and used in order train the network and classify new examples. For-
mally, a set of α Gaussian kernel centres is defined as C = {c1, . . . , cα}, where
ci =

[
c

(1)
i , . . . , c

(d)
i

]
is the d-dimensional feature embedding for the i-th train-

ing set example. A feature embedding for training example i is obtained by
passing the corresponding training image through the convolutional neural
network, transforming the example from the image space into the feature
embedding space. This is shown in Equation 4.4, where Ii is the i-th training
image and g is the transformation function performed by the network with
parameters θ.

ci = g(Ii;θ) (4.4)

4.5.3 Gaussian Kernel Classifier

Given the set of Gaussian kernel centres C, a classifier can be formed that
allows new examples to be categorised into one out of the set of semantic
classes represented in the labelled training data. A classifier is formed by
the weighted sum of the kernel distance calculations between an example
feature embedding and the Gaussian centres. Classification of an example
is achieved by first passing the given input image through the network, re-
sulting in a feature embedding in the same space as the Gaussian centres. A
probability distribution over classes is found by summing the influence of
each Gaussian centre and normalising. Centres that are nearby the exam-
ple in the feature embedding space have large influence over the example’s
predicted class, while centres that are further away from the example have
smaller influence. A Gaussian centre contributes only to the probability of
the class label associated with the training example coupled to that centre.
In other words, a centre inherits its class label from the training example by
which it is defined.

The probability that example feature embedding x has class label ` is:

Pr(x ∈ class `) =

∑
i∈C wif(x, ci) [ci ∈ class `]∑

j∈C wjf(x, cj)
, (4.5)
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where f is the kernel function andwi is a learned weight for centre i. The term
[ci ∈ class `] evaluates to a value of 1 if centre ci has class label ` and a value
of 0 otherwise. If the example x is in the training set, the distance calculation
to itself is omitted during the computation of the classification distribution,
the objective function and the derivatives of the objective function.

The value of the shared σ defines the radius around a Gaussian centre that
is considered to be important. It sets the distance from an example feature
embedding at which the influence of a Gaussian centre should become negli-
gible. That is, it defines the radius beyond which the returned kernel values
decay to zero. A single global Gaussian σ is shared by all kernels, rather
than allowing the value to differ for each centre. The shared σ means that
the classifier is a weighted nearest neighbour-based approach. The value of
σ can be learned end-to-end with the rest of the model parameters or it can
be set to a reasonable value before training and fixed. By setting the value
before training, the parameter is being treated as an extra hyperparameter of
the model, similar to the learning rate, weight decay and momentum. These
implementation details are discussed further in Section 4.9.2.2.

In Equation 4.5, each Gaussian centre has an associated weight, for example
wi for the i-th centre. The per-centre weights are learned end-to-end with the
rest of the network weights (θ). By incorporating these weights, the influence
of important centres can amplified and that of problematic centres can be
diminished. Section 4.9.2.1 describes the implementation details for the per-
kernel weights, while the impact that the weights have on the performance
is investigated in Section 4.10.2.5.

4.5.4 Objective Function

The objective function used to train the network is simply the summed neg-
ative logarithm of the probabilities of the true class labels. For example, the
loss for training example x with ground truth label R is:

loss(x) = − ln (Pr(x ∈ class R)) . (4.6)

During training, the model parameters should be updated such that the ob-
jective function is minimised.

This objective function means that examples are pushed and pulled in the
feature embedding space proportional to the gradient of the Gaussian, as
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FIGURE 4.7: Gradients with respect to point x (at various loca-
tions) produced by a Gaussian kernel centred on point ci. Note
that in this example x has the same class label as ci. The mag-
nitude of the gradient is represented by the size of the arrow.
Since the Gaussian decays to zero, the gradient also decays to
zero at points that are far from the centre. This allows multiple

clusters to form for a single class, if that is appropriate.

seen in Figure 4.7. The gradient decays to zero as an example point x moves
further away from the Gaussian centre c. As such, only the local neighbour-
hood around a given Gaussian centre is influenced during training. The size
of the local neighbourhood is determined by the Gaussian parameter σ. This
property of considering the local structure of the space allows multiple clus-
ters to form for a single class, if that is appropriate. Examples in one cluster
won’t be influenced by examples in another, if the separation between those
two clusters is large enough. This allows better representation of inter-class
and intra-class similarities and variations in the data, compared to methods
that demand a single cluster per class. Such methods include triplet-based
approaches, which may select any examples of the same class to pull to-
gether, regardless of whether or not those two examples are already well
clustered locally. As discussed in Section 4.1.1, this limits the variations in
the data that can be represented by the model.

The same objective function is used for both classification and metric learn-
ing problems. This is possible since the Gaussian kernel classifier is directly
computed from distances between features in the embedding space. This
means that a network trained for classification will result in features of the
same class being located near one another, and similarly a network trained
for metric learning will result in an embedding space in which features can
be well classified using the Gaussian kernels.
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4.6 Nearest Neighbour Gaussian Kernels

The probability distribution over classes from Equation 4.5 is found by sum-
ming the influence of all Gaussian centres in C. Since the centres are de-
fined to be the locations of the training set feature embeddings, and there can
be any large number of training examples, computing this sum can become
costly. It is also unnecessary to compute the full sum of Gaussian kernels, as
most of the kernel values for a given feature embedding x will be effectively
zero. This is because x will only lie within a subset of the Gaussian windows
of the centres in C. The subset of meaningful Gaussian centres for a given
example is likely to be significantly smaller than the total number of cen-
tres. This assumption is verified in Section 4.10.2.6. Since only those centres
nearest an example feature embedding have non-negligible influence, only
the local neighbourhood around the example needs to be taken into account.
Considering the nearest Gaussian centres to a feature embedding ensures
that most of the distance computations are pertinent to the probability and
objective calculations.

In the interest of providing a solution that is scalable in terms of both training
set size and the dimensionality of the embedding space, approximate near-
est neighbour search is used to obtain candidate nearest neighbour lists for
example feature embeddings. Compared to exact nearest neighbour search
problems, which demand that the returned neighbours are the true near-
est neighbours, approximate nearest neighbour methods return what can be
considered a good guess of the true neighbourhood. This allows for a trade
off between precision and computational efficiency. This is particularly suit-
able for the Gaussian kernel approach described in this chapter, since the
neighbourhood sizes considered will be some order of magnitude larger than
one. The relatively large neighbourhood sizes returned, although still small
relative to the entire set of centres, means that it becomes very likely that the
search algorithm will return the most important centres, that is, those that
are nearest the example feature embedding. The precision of the approxi-
mate nearest neighbour search approach is evaluated in Section 4.8.2. This
is achieved by analysing the variation between the true nearest neighbours
of example points and the approximate nearest neighbours returned by the
search algorithm.

Specifically, the search algorithm used is a fast approximate nearest neigh-
bour graph (FANNG) [110]. This approach provides the most efficiency
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when needing a high probability of finding the true nearest neighbours of
a query point. Importantly, FANNG provides scalability in terms of the
number of dimensions and the number of training examples. Full details on
why this search method is suitable and how it is integrated into the Gaussian
kernel metric learning approach can be found in Section 4.8.

4.6.1 Nearest Neighbour Classifier and Objective

Let S be the set of β nearest neighbour Gaussian kernel centres for example x,
where S is a subset of the set of all Gaussian kernel centres C, that is, S ⊆ C.
The number of elements in S may be significantly smaller than the number of
elements in C. Using this subset in the classifier, the probability distribution
from Equation 4.5 becomes:

Pr(x ∈ class `) =

∑
i∈C wif(x, ci) [ci ∈ class `] [ci ∈ S]∑

j∈C wjf(x, cj) [cj ∈ S]
, (4.7)

where the term [ci ∈ class `] evaluates to a value of 1 if centre ci has class
label ` and a value of 0 otherwise. The term [ci ∈ S] evaluates to a value of
1 if centre ci is in the set of nearest neighbours for example x and a value
of 0 otherwise. Again, if the example x is in the training set, the distance
calculation to itself is omitted during the computation of the classification
distribution, the objective function and the derivatives. The objective func-
tion optimised to train the model is unchanged from Equation 4.6, but uses
the nearest neighbour-based probability calculation from Equation 4.7, rather
than the calculation from Equation 4.5.

4.7 Making Training Feasible

Training the network should result in the Gaussian centres, that is, the train-
ing set feature embeddings, forming clusters according to class label. At a
given training iteration, a batch of training examples is passed through the
network and the probability distribution over classes is found for each ex-
ample. The loss is computed for each example using the objective function
from Equation 4.6 and the network weights are updated such that the loss
for those examples will decrease. This is done by differentiating the objective
function and updating the weights using an optimisation algorithm. These
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implementation details are discussed in Section 4.9. However, it is infeasible
to train the network by computing the probability distribution in Equation
4.5 in an exact manner. In this section, the problems that arise with exact
training are discussed and solutions are proposed.

4.7.1 Moving Centres

At each training iteration, the network weights are updated. This means that
the locations of the training set feature embeddings are constantly changing
during training. Since the Gaussian centres are defined to be the locations
of training set examples in the feature embedding space, the centres are also
constantly moving. The true locations of an example’s nearest centres are
required to compute the distribution from Equation 4.7 correctly. However,
finding these true locations online at every training iteration is intractable. At
a given training iteration, to correctly compute this distribution requires β+1

images to be forward passed through the network, where β is the number
of nearest neighbours considered. These are the images corresponding the
β neighbouring centres and the image of the training example itself. For
any reasonable neighbourhood size, this is intractable. For example, in the
experiments presented in Section 4.10.2.3, neighbourhood sizes of up to 200
are considered. Forward passing 201 images through the network for a single
training example, at a single training iteration, is clearly not feasible.

In order to solve this problem, periodic asynchronous updates of the Gaus-
sian centres are introduced. During training, the feature embeddings be-
longing to each training example are stored. As training progresses, the
stored centres are kept static and the true locations of the training feature
embeddings are allowed to drift from the stored centres. At some interval,
the stored centres are updated with the true training set feature embedding
locations by forward passing the training set through the network. As train-
ing continues, the true locations again drift from the stored centre locations
and the process repeats. Periodic asynchronous updates of the Gaussian cen-
tres is illustrated in Figure 4.8. The experiments presented in Section 4.10
show that the periodic asynchronous updates of the Gaussian centres allows
meaningful learning to take place and importantly, allows training to be com-
putationally reasonable.

The training process with periodic asynchronous updates of the Gaussian
centres is outlined in Algorithm 1. The interval at which the stored centres
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FIGURE 4.8: The true locations of the Gaussian centres are al-
lowed to drift from the stored locations during training. The

stored centres are updated periodically.

are updated is referred to as the update interval and is denoted as u. The
update interval is represented in terms of training epochs, where an epoch
is equal to the number of training iterations required to perform a full pass
over the training set. For example, for a training set size of 10000 images
and a batch size of 10, a training epoch is equal to 1000 training iterations. A
static list of approximate nearest neighbours for each training set example is
also computed once per update interval, after the stored centres are updated.
This is discussed in more detail in Section 4.7.2. The set of stored nearest
neighbours for the i-th training example is denoted as S(i), where S(i) ⊆ C.
The true Gaussian centre locations drift from the stored centres only during
training; the true centres are used during testing and deployment, with clas-
sification carried out according to Equation 4.7. Note that for network archi-
tectures that incorporate dropout [213] during training, the stored Gaussian
centres C do not have dropout applied.

Experimental results suggest that the length of the update interval has little
impact on the final model performance. However, a larger update interval
means that the approximations made during training are greater and there-
fore training may take longer to converge than with a smaller update inter-
val. The time taken to update the centres and find the training set nearest
neighbour lists depends on the training set size. This means that for small
datasets, a short update interval can be used, as the update of centres and
neighbours is fast to compute and can be carried out often, allowing the
model to converge in fewer training epochs. For very large datasets, a longer
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Algorithm 1 Pseudo-code for training. A batch size of one is shown for no-
tational convenience only.
Precondition:

Set of training images I(t) = {I1, . . . , Iα}
Vector of labels for training images y = [y1, . . . , yα]
Set of Gaussian centres C = {c1, . . . , cα}
Vector of per centre weights w = [w1, . . . , wα]
Set of per training example nearest neighbour sets S = {S(1), . . . , S(α)},
where S(i) ⊆ C for all i ∈ 1, . . . , α
Neural network g with weights θ

1: while training do
2: for each image Ii ∈ I(t) do
3: ci = g(Ii,θ) . Update centres with current training features
4: end for
5: for u epochs do . Update interval for centres
6: for each image Ii ∈ I(t) do
7: x = g(Ii,θ)

8: p =

∑
j∈C,j 6=i wj exp

(
−|x−cj |

2

2σ2

)
[cj∈ class yi] [cj∈S(i)]∑

k∈C,k 6=i wk exp

(
−|x−ck|2

2σ2

)
[cj∈S(i)]

. Prob. of true label

9: loss = − log(p) . Log prob. of true class
10: Update network weights θ and w
11: end for
12: end for
13: end while
14: for each image Ii ∈ I(t) do . Update centres a final time when done
15: ci = g(Ii,θ)
16: end for

update interval should be used. Although training will take a greater num-
ber of epochs to converge, expensive updates of the centres and neighbours
are carried out less often. Further discussion on the implementation details
of the update interval is carried out in Section 4.9.2.3. Testing and deploy-
ment of the network is efficient regardless of the training set size. This is due
to the properties of the approximate nearest neighbour search algorithm that
are discussed in Section 4.8.2. Timing information regarding forward propa-
gation through the model, which is used to update the stored centres, can be
found in Section 4.10.2.3.
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4.7.2 Neighbourhood Structure Changes

As the true Gaussian centres drift from the stored locations, the true near-
est neighbours also drift from the computed nearest neighbour lists. Since
it is intractable to find the true Gaussian centres online at each training iter-
ation, it is also intractable to find the real nearest neighbour lists each time
the network weights are updated. This problem is simply remedied by con-
sidering a larger number of nearest neighbours than would be required if
all stored Gaussian centres and neighbour lists were up-to-date at all times.
This solution is suitable because the feature embedding space changes slowly
enough that it is highly likely many of an example’s previously neighbour-
ing Gaussian centres will remain relevant in subsequent training iterations.
This assumption is verified in this section. Since the Gaussian kernel decays
to zero as the distance between an example feature embedding and a Gaus-
sian centre becomes large, it does not matter if a centre that is no longer near
the example remains a candidate nearest neighbour. This simple solution
increases computational complexity only modestly, as the total number of
nearest neighbours required is still significantly smaller than the total train-
ing set size. An analysis of the number of nearest neighbours required per
example during training is carried out in Section 4.10.2.6.

The proposed solution of simply considering a larger neighbourhood size
assumes that the feature embedding space changes slowly enough during
training that many of an example’s previously neighbouring centres will re-
main relevant. This assumption is tested in Figure 4.9, which shows the mean
fraction of the true nearest neighbours that are found in the 200 stored neigh-
bours, at different points during training. Results are shown at 256 training
iterations after the most recent update of the stored centres and nearest neigh-
bour lists. The results in Figure 4.9 verify the assumption that the feature
embedding space changes slowly enough during training that the majority
of previously found nearest neighbours will remain pertinent in subsequent
training iterations. This suggests the proposed simple solution of consider-
ing a larger neighbourhood size around training examples is suitable.

4.8 Fast Approximate Nearest Neighbour Graphs

The approximate nearest neighbour search method leveraged by our ap-
proach is a fast approximate nearest neighbour graph (FANNG) [110]. In
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FIGURE 4.9: Mean fraction of the true nearest neighbours (NN)
found in the 200 stored nearest neighbours, 256 training it-
erations after the most recent update of the Gaussian centres
and stored neighbours. The number of true nearest neigh-
bours considered is plotted from 1 up to 200, and the results are
shown at various stages of training. Despite 256 updates being
made to the network weights since the most recent update of
the stored centres and neighbours, a large fraction of the true
nearest neighbours are still found in the stored neighbour lists.
The CUB Birds200 2011 dataset [200] and a VGG16 architecture

[207] are used.

this section, building of the graph during training is discussed, as well as
searching the graph, which is used both during training and testing. These
are discussed only in terms of our proposed approach; full details on the
build and search algorithms can be found in [110].

4.8.1 Building the Graph

Nodes of the fast approximate nearest neighbour graph are defined for each
training set feature embedding. The building process involves the definition
of directed edges between nodes to create a graphical structure that is effi-
cient to search. During the training of our model, the nodes of the graph are
defined to be the stored feature embeddings, which are allowed to drift from
the true locations, as discussed in Section 4.7.1. When the stored centre loca-
tions are updated, the nearest neighbour graph is rebuilt to represent these
changes. At the conclusion of training, the graph should be rebuilt a final
time and deployed with the converged model.
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4.8.2 Searching the Graph

The approximate nearest neighbours of a query point are found by searching
the graph. This is used in training to find the neighbourhood of training ex-
amples to compute the loss, and during testing to classify a given example.
The search algorithm is iterative, with a new node, or training example, re-
turned each iteration. If the query point is a training example, the search can
begin at the node corresponding to that feature embedding. For query points
that do not have nodes in the graph, such as test examples, the search can be-
gin at any node. We chose to begin the search at a node near the training
dataset mean for such examples. Searching of the graph is analysed in Fig-
ure 4.10. The training and validation sets of the CUB Birds200 2011 dataset
[200] are used as the graph nodes and the query points, respectively.

Our approach requires not only the nearest neighbour to be returned but the
local neighbourhood around a given query point. Figures 4.10A and 4.10B
show that FANNG is able to achieve this goal. Figure 4.10A shows the mean
distance to the query point as a function of the search iteration. The reported
distance is the Euclidean distance between the query point and the node vis-
ited at a given search iteration. This is averaged across all query points. Fig-
ure 4.10B is the same plot, but zoomed into the earlier search iterations to
highlight the behaviour of the algorithm when it is in the local neighbour-
hood of the query point. Once in the local neighbourhood of the query point,
the search algorithm continues to return nearby examples before returning
examples that are further away. This can be thought of as the algorithm spi-
ralling out from the query point. As seen in Figures 4.10A and 4.10B, the
number of search iterations required to return a local neighbourhood around
a query point is significantly smaller than the size of the dataset. For exam-
ple, a search size of around 100 would be reasonable for this dataset contain-
ing just under 5000 examples.

Figure 4.10C shows the fraction of the true k-nearest neighbours found as a
function of the search iteration. Four values of k are considered: 32, 64, 128
and 256. It can be seen that the number of search iterations required to find
all k true nearest neighbours is only slightly larger than k. For example, to
find the true 128 nearest neighbours requires just 143 search iterations. This
illustrates how FANNG allows our approach to be efficient and scalable to
large datasets.
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(A)

(B)

(C)

FIGURE 4.10: Searching a fast approximate nearest neighbour
graph. (A) shows the mean distance to the query point as a
function of the search iteration. (B) shows the same plot as (A),
but zoomed in to the early search iterations. (C) shows the frac-
tion of the true k-nearest neighbours returned as a function of

the search iteration.
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4.9 Implementation Details

In this section, details regarding the implementation of the proposed ap-
proach are presented. Model parameter and training hyperparameter set-
tings are discussed, while the extraction of feature embeddings from various
network architectures is detailed.

4.9.1 Optimisation Details

The optimisation algorithm makes updates to the model parameters in or-
der to reduce the training error. A full description of model optimisation
is given in Section 3.1. For our approach, the first order optimisation algo-
rithm of mini-batch gradient descent is used. This optimiser uses several
well established hyperparameters, including the base learning rate, momen-
tum and weight decay rate. These parameters are set such that validation loss
is minimised. Experimental investigation finds that a conventional range of
values is suitable for the momentum and weight decay rate, such as 0.9 and
5× 10−4, respectively. The magnitudes of the gradients produced by the pro-
posed Gaussian kernel approach are larger than those produced by a stan-
dard softmax-based network. As such, a smaller than conventional learning
rate is required. The gradients produced by our approach are two orders of
magnitude larger than those from the softmax network and as such, experi-
mental results find that a comparatively small base learning rate of the order
of 10−5 is suitable.

4.9.2 Introduced Parameters

This section discusses the parameters introduced by our proposed approach
that are not standard in existing methods.

4.9.2.1 Per Kernel Weights

As seen in Equation 4.7, each Gaussian centre has an associated scalar weight
that can be learned end-to-end with the rest of the convolutional neural net-
work weights. These weights allow the influence of certain Gaussian centres
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to be adjusted in a manner that reduces the training error. Experimental re-
sults suggest that the per kernel weights are largely insensitive to the learn-
ing rate. However, there appears to be a small benefit in multiplying the
base learning weight by some larger factor, such as 1000, for these parame-
ters. This is likely to offset the smaller than usual base learning rate required
by our approach. The importance of learning the per kernel weights to the
model performance is analysed in the ablation study in Section 4.10.2.5.

The per kernel weights are denoted as w = [w1, . . . , wα], where wi is the
weight for the i-th Gaussian centre and w is defined over the set of real pos-
itive numbers w ∈ {R>0}. The initial value for all kernel weights should be
set to one. Since the gradient descent algorithm makes updates to param-
eters without any regard to the parameters’ valid range of values, the per
kernel weights must be properly parameterised to avoid the kernel weights
becoming negative. To achieve this, the weights are reparamaterised in the
log space:

w = exp (υ) , (4.8)

where υ = [υ1, . . . , υα] are the parameters that are directly updated by the
optimisation algorithm. This reparameterisation means that the gradient de-
scent algorithm can make updates to the weights υ without regard to the
valid range of values for w. The exponential ensures that the values of the
weights w are positive. Since the initial values of w should be one, the initial
values of the components of υ should be set to zero. To update the weights,
the partial derivatives of the objective function must be found with respect
to the parameters in υ, rather than the parameters in w. The effect that this
has on the derivatives is shown in Equation 4.9.

∂loss

∂υi
=
∂loss

∂wi

dwi
dυi

=
∂loss

∂wi
wi (4.9)

4.9.2.2 Gaussian Kernel Scale

The scale, or width, of the Gaussian kernel is controlled by the parameter
σ from Equation 4.7. This parameter can either be learned end-to-end with
the network weights or treated as a model hyperparameter by setting it to a
reasonable value before training. Experimental results suggest that there is
little, if any, benefit in allowing the value of σ to update during training. Even
if the parameter is tuned during training, it must still be set to a reasonable
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initial value. For these reasons, the experiments in Section 4.10 are carried
out with a fixed σ.

In general, experimental investigation finds that the model is rather robust
to the setting of σ. Training will converge at the same performance level over
a wide range of σ values. However, if the value is set too small, no meaning-
ful learning will take place as there will be no feature embeddings within a
centre’s small Gaussian window. Similarly, if the value is set too large, the
majority of feature embeddings will be within a centre’s Gaussian window
and training will progress slowly, if at all. The appropriate range of values
for σ will depend heavily on the number of dimensions in the feature embed-
ding space. As the number of dimensions grows larger, the average distance
between feature embeddings will also grow. The network architecture also
plays a role in the appropriate value range for σ, as some architectures tend
to produce feature embeddings with a larger range of values than others.
For example, AlexNet [60] and VGG [207] architectures tend to produce a
larger range than a ResNet [69] architecture. Further, networks that make
use of dropout during training will require a larger σ, as the random zeroing
of channels will increase the distance between training examples and stored
centres. Finally, the appropriate range is loosely dependant on the dataset,
however, this factor appears to be the least important, as the range of ap-
propriate σ values overlaps considerably between datasets. In order to set
the value of σ, the parameter should be treated as any other model hyperpa-
rameter, such as the learning rate, momentum or weight decay rate. That is,
the value should be tuned such that validation or withheld set loss is min-
imised. For problems with no validation set, tuning the parameter such that
the training set error steadily improves, generally leads to acceptable model
performance.

If the value of σ is to be learned end-to-end with the network weights,
it is important that the value remains a real positive number, that is,
σ ∈ {R>0}. As with the per kernel weights in Section 4.9.2.1, this is achieved
by reparametrising σ in the log space:

σ = exp (φ) , (4.10)

where φ is the parameter to which updates are made by the optimisation
algorithm. This impacts the derivatives with respect to the scale term in the
same manner as shown in Equation 4.9.
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FIGURE 4.11: Validation loss on the Oxford 102 Flowers dataset
[202] for different update intervals (u) with a VGG16 architec-

ture [207].

4.9.2.3 Update Interval

As discussed in Section 4.7, introducing periodic asynchronous updates of
the stored Gaussian centres allows training to become tractable. The impact
that the frequency at which the centres are updated, referred to as the update
interval, has on the training process is analysed in this section. In general, a
larger update interval will result in more training epochs being required in
order for the model to converge. The time taken to perform update, which
includes finding the approximate nearest neighbours, is dependant on the
training set size and the number of dimensions in the feature embedding
space. For very large datasets, frequent updates should be avoided, even if
it results in more training epochs, as the training duration in terms of overall
time will be decreased.

The impact that the update interval has on the model in terms of the valida-
tion set error is seen in Figure 4.11. This plot shows that the model is robust
to the length of the update interval, with only marginal differences observed
in the final validation loss.
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4.9.3 Network Architectures and Feature Embeddings

Two methods of extracting feature embeddings from standard convolutional
neural network architectures are used in the experiments in Section 4.10.
Starting with a conventional softmax-based network, the first method is to
simply remove the softmax layer and the final fully connected layer that out-
puts the class activation vector. After removing those layers, the new final
layer is considered the feature embedding layer and its output is treated as a
feature embedding. For both AlexNet and VGG16 architectures, this makes
the feature embedding layer FC7, which produces a 4096-dimension feature
embedding. For GoogLeNet and ResNet architectures, the embedding layer
becomes the final average pooling layer in the respective networks. This
produces a 1024-dimension feature embedding for GoogLeNet and a 2048-
dimension feature embedding for ResNet.

The second method is used if the feature embedding produced by the first
method is not of a suitable dimensionality. To change the dimensionality of
the feature embedding space, the softmax and classification fully connected
layers are removed, as in the first method, but a new fully connected layer
is added to the end of the network. The feature embedding dimensionality
can be controlled by setting the number of output channels produced by this
new fully connected layer.

If the network architecture incorporates dropout, such as in VGG architec-
tures after the FC6 and FC7 layers, it is important to ensure that the stored
Gaussian kernel centres do not have dropout applied. The feature embed-
dings computed at each training iteration for the examples in that batch,
however, may have dropout applied. The activation function used in the
network architectures considered is the ReLU. Since this function zeros any
negative input, ReLUs are not placed after the feature embedding layer. This
avoids loss of information in the feature embedding space by considering
the full range of possible values. For networks containing batch normali-
sation layers, we find that using the global statistics during training yields
better performance than using batch statistics.
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4.10 Experiments

Our proposed approach is quantitatively and qualitatively evaluated in this
section. The approach is compared to state-of-the-art deep metric learning
methods in Section 4.10.1, by applying it to a transfer learning problem. Ad-
ditionally, the importance of the feature embedding space dimensionality is
explored. Section 4.10.2 investigates the efficacy of the proposed approach
to image classification, comparing results to a conventional softmax-based
convolution neural network. Ablation studies are also carried out in Section
4.10.2.

4.10.1 Metric Learning

The standard way to evaluate metric learning and feature embedding learn-
ing problems in the literature is to apply the learned models to transfer learn-
ing problems [18, 19, 20, 23, 22, 21]. This is done by training and evaluating
the model on different sets of classes. At test time, the model is presented
with images belonging to semantic classes never before seen by the model.
The feature embedding space is evaluated by examining how well the notion
of similarity is encoded by distance in the space. In other words, a well per-
forming model will produce feature embeddings that are located nearby for
semantically similar examples, despite the model not being trained on the
test set classes.

4.10.1.1 Datasets

Two datasets are used to evaluate our approach: Stanford Cars196 [201] and
CUB Birds200 2011 [200]. The Cars196 dataset that contains 16,185 images
belonging to 196 different classes of car, split at the level of make, model and
year. Example class labels include Audi S4 Sedan 2007, Audi S4 Sedan 2012,
BMW 3 Series Sedan 2012 and BMW 3 Series Wagon 2012. The Birds200 dataset
contains 11,788 images belong to 200 different bird species. Example classes
include Herring Gull, Western Gull, Belted Kingfisher and Green Kingfisher. Both
datasets have object bounding boxes available. However, for fair comparison
to existing approaches, these are not used in the metric learning experiments.
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4.10.1.2 Experimental Set-Up

The experimental set-up from [19, 20, 22, 21] is followed, allowing fair com-
parison to the state-of-the-art methods. For each dataset, the first half of
classes is used for training and the second half is used for testing. This re-
sults in 98 classes each for training and testing for the Cars196 dataset, and
100 each for training and testing for the Birds200 dataset. All images are re-
sized to 256x256 pixels. Training data is augmented using random cropping
and random horizontal mirroring.

Mini-batch gradient descent is used as the optimisation algorithm, while
GoogLeNet [66] with ImageNet [61] pre-trained weights is used as the model.
The softmax and class-specific fully connected layers are removed from the
standard GoogLeNet architecture. A new fully connected layer is added as
the embedding layer, with the number of output channels determining the
number of dimensions in the feature embedding space. No auxiliary losses
are used. A neighbourhood size of 100, update interval of 10 epochs, batch
size of 20, base learning rate of 10−5 and weight decay of 2× 10−4 is used.
The Gaussian σ used depends on the number of dimensions in the feature
embedding. Values between 10 and 30 work well for this task.

4.10.1.3 Evaluation Metrics

Two metrics are used to evaluate the learned feature embedding spaces. Both
of the metrics consider only the test set feature embeddings, that is, those
belonging to novel classes on which the network was not trained. The first,
normalised mutual information (NMI) [214], is a clustering metric that essen-
tially measures the homogeneity of cluster assignments. The measure is the
ratio of mutual information and average entropy of a set of clusters formed
by the feature embeddings and the true labels of the feature embeddings. It
evaluates only for the number of clusters equal to the number of classes in
the test set. As discussed in Section 4.1.1, a good feature embedding space
does not necessarily have only one cluster per class, but may have multi-
ple well formed clusters per class in the space. This means that the mutual
information for our method may be higher than reported with this metric.
Further, the cluster assignments are found using the k-means algorithm [8],
meaning that the evaluation metric is not deterministic, due to the initialisa-
tion process. Nevertheless, in the interest of comparing to existing methods
that evaluate on this metric, NMI results are reported.
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The second metric, Recall@k (R@k), is more appropriate for evaluating fea-
ture embedding spaces. This metric reports the percentage of test set feature
embeddings that have at least one example of the same class in their nearest
k neighbouring feature embeddings. For example, a Recall@1 of 100 means
that every test example’s nearest neighbour is of the same class. Results are
reported for k equal to 1, 2, 4 and 8 nearest neighbours.

4.10.1.4 Feature Embedding Dimensionality

The importance of the feature embedding dimensionality is investigated. The
number of dimensions in the feature embedding space is set by the number
of output channels in the embedding layer. A similar study in [19] suggests
that the number of dimensions is not important for triplet networks, in fact,
increasing the number of dimensions can be detrimental to performance. The
proposed Gaussian kernel approach with increasing dimensionality is com-
pared to two triplet-based approaches with increasing dimensionality: stan-
dard triplet loss [109, 18] and lifted structured embedding [19]. Results for
the compared approaches are taken from the study in [19].

Figures 4.12A and 4.12B show the effect of the embedding size on NMI score
for Cars196 and Birds200, respectively. Increasing the number of dimensions
for triplet-based networks does not result in improved performance. The
NMI score oscillates or deteriorates as the dimensionality increases. For our
proposed approach, however, the NMI score clearly improves as the num-
ber of dimensions grows larger. Similar behaviour is seen in Figures 4.12C
and 4.12D, which show the Recall@k metric for the proposed approach on
Cars196 and Birds200, respectively. Again, these plots show a clear perfor-
mance improvement as the dimensionality of the feature embedding space
increases.

The likely explanation for this behaviour is that our approach utilises signif-
icantly more information at each training iteration compared to triplet-based
approaches. For a given training example at a given training iteration, a stan-
dard triplet approach considers only two examples in the space: one of the
same class and one of a different class. While some approaches select difficult
triplets to improve the effectiveness of each training iteration [18, 21], or clev-
erly structure the data in the batch to allow multiple comparisons [19, 20], the
amount of information is still significantly less than in our approach, which
considers all examples within the neighbourhood. As a result, triplet-based
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(A) (B)

(C) (D)
FIGURE 4.12: Top: NMI score with increasing feature embed-
ding dimensionality on Cars196 (A) and Birds200 (B). Bottom:
Recall@k nearest neighbours for our proposed approach on

Cars196 (C) and Birds200 (D).

approaches are less able to take advantage of a higher-dimensional feature
embedding space, compared to our approach.

4.10.1.5 Comparisons to Existing Methods

The proposed method is compared to existing state-of-the-art approaches
on the Cars196 dataset in Table 4.1 and the Birds200 dataset in Table 4.2.
The compared results are taken from [22] and [21]. As discussed in Section
4.10.1.4, the dimensionality does not have much impact on the compared
approaches. As such, all results in [22] and [21] are reported using 64 di-
mensions. For fair comparison, results for our method are reported at 64
dimensions, but also at the better performing higher dimensions.

At 64 dimensions, our approach outperforms the compared methods on both
datasets and across all evaluation metrics. The gain is particularly large on
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TABLE 4.1: Feature embedding results on Cars196.

Dims R@1 R@2 R@4 R@8 NMI

Semi-hard [18] 64 51.54 63.78 73.52 82.41 53.35
LiftStruct [19] 64 52.98 65.70 76.01 84.27 56.88
N-pairs [20] 64 53.90 66.76 77.75 86.35 57.79
Tripl/Gbl [23] 64 61.41 72.51 81.75 88.39 58.20
Cluster [22] 64 58.11 70.64 80.27 87.81 59.04
SmrtMine [21] 64 64.65 76.20 84.23 90.19 59.50
Ours 64 71.05 80.74 88.06 92.79 62.15

Ours 128 73.52 83.37 89.80 93.76 63.35
Ours 256 77.35 85.49 91.10 94.81 63.76
Ours 512 78.39 86.91 92.06 95.52 64.68
Ours 1024 79.65 87.33 92.36 95.65 65.30

TABLE 4.2: Feature embedding results on Birds200.

Dims R@1 R@2 R@4 R@8 NMI

Semi-hard [18] 64 42.59 55.03 66.44 77.23 55.38
LiftStruct [19] 64 43.57 56.55 68.59 79.63 56.50
N-pairs [20] 64 45.37 58.41 69.51 79.49 57.24
Tripl/Gbl [23] 64 49.04 60.97 72.33 81.85 58.61
Cluster [22] 64 48.18 61.44 71.83 81.92 59.23
SmrtMine [21] 64 49.78 62.34 74.05 83.31 59.90
Ours 64 51.15 64.64 75.57 84.72 61.26

Ours 128 52.08 64.69 76.05 84.86 61.72
Ours 256 54.74 67.18 77.53 86.09 62.18
Ours 512 55.91 68.26 78.63 86.38 63.50
Ours 1024 57.22 68.75 79.12 87.14 63.95

the Cars196 dataset, with a relative improvement of around 10% in the Re-
call@1 measure over the best performing compared method. Beyond a di-
mensionality of 64, our approach sees improvement in all evaluation metrics.
At a dimensionality of 1024, our approach sees an improvement of 8.6% in
the Recall@1 measure (relative improvement of 12%), compared to the 64 di-
mension version. These results show that the proposed Gaussian kernel ap-
proach is not only able to produce better compact feature embeddings than
existing methods, but can also take advantage of a larger embedding space.
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FIGURE 4.13: First through fourth nearest neighbours for exam-
ple query images from the Birds200 test set. All query images
are of the same class and the network was not trained on any
classes from the test set. A green border around the neighbour
images indicates that it is of the same class as the query image,
while a red border indicates that it is of a different class. Inter-
esting success and failure cases are shown. The embedding size

is 64 dimensions.

4.10.1.6 Visualising the Feature Embedding Space

Figure 4.13 shows the four nearest neighbours for example query images
from the Birds200 test set. All query images are from the same class. The
figure shows interesting success and failure cases.

A t-SNE [215] visualisation of the learned feature embedding space for the
Birds200 dataset is shown in Figure 4.14. Similarly, Figure 4.15 shows a visu-
alisation for the Cars196 dataset. The t-SNE algorithm is a dimension reduc-
tion method that is well suited to visualising high-dimensional data.
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FIGURE 4.14: Visualisation of the Birds200 test set embedding
space from Section 4.10.1.5. All species of bird visualised are
from withheld classes that were not present during training.
Despite this, examples are still well clustered based on species
and attributes. The visualisation was obtained using the t-SNE

algorithm [215].

In this case, the 64-dimension feature embeddings are mapped to two dimen-
sions. The location of a feature embedding in the two-dimensional space is
marked by the image corresponding to that example. The visualised feature
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FIGURE 4.15: Visualisation of the Cars196 test set embedding
space from Section 4.10.1.5. All models of car visualised are
from withheld classes that were not present during training.
Despite this, examples are still well clustered based on car
model and attributes. The visualisation was obtained using the

t-SNE algorithm [215].

embeddings are from the test set, meaning that the network was not trained
on any of the classes seen in the visualisations. Despite belonging to withheld
novel classes, examples are still well clustered based on class and attributes.

In the Birds200 visualisation in Figure 4.14, the bottom right of the visualised
space shows different clusters of water-based bird species located nearby. On
the bottom left, different species of woodpecker, which belong to the same
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genus, are located nearby. Similar behaviour is seen in the Cars196 visualisa-
tion in Figure 4.15. For example, the top left shows clusters of different sports
car models located nearby, while the middle right of the visualisation shows
co-location of different models of SUV. This fine-grained and hierarchical se-
mantic information is learned implicitly by the metric learning algorithm.
Distance in the feature embedding space as a measure of the notion of sim-
ilarity has transferred to novel classes that have never before been seen by
the network. This ability to transfer to unseen classes would allow a vision
system to make meaningful inference about novel observations.

4.10.2 Image Classification

The suitability of our approach to image classification is evaluated in this
section by comparing performance to conventional softmax-based convolu-
tional neural networks. This is the standard classification problem; the net-
work is tested on withheld examples belonging to the same set of classes on
which the network was trained. Additionally, the efficacy of the proposed
approach to few-shot learning is investigated and an ablation study is pre-
sented. We also investigate how well our proposed approach represents fine-
grained semantic information, such as attributes.

4.10.2.1 Datasets

Experiments are carried out on four datasets: CUB Birds200 2011 [200],
Stanford Cars196 [201], Oxford 102 Flowers [202] and Leafsnap [203]. All
datasets are split into training, validation and test sets. Hyperparameters for
both the proposed approach and the compared approach are selected such
that the validation loss is minimised. Dataset information and splits can be
sumarised as follows:

• The Birds200 dataset contains 11,788 images belonging to 200 different
bird species. Example classes include Herring Gull, Western Gull, Belted
Kingfisher and Green Kingfisher. Images are cropped using the provided
bounding boxes. The validation set is created from 20% of the standard
training data.

• The Cars196 dataset contains 16,185 images belonging to 196 different
classes of car, split at the level of make, model and year. Example class
labels include Audi S4 Sedan 2007, Audi S4 Sedan 2012, BMW 3 Series
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Sedan 2012 and BMW 3 Series Wagon 2012. Images are cropped using
the provided bounding boxes. Since no standard validation set exists
for this dataset, 30% of the training data is taken as validation.

• The Oxford 102 Flowers dataset is made up of images from 102 different
flower species. Example classes include Sword Lily, Water Lily and Toad
Lily. The standard splits are used for the Flowers102 dataset.

• Finally, the Leafsnap dataset consists of images of different leaf species,
split into those taken in controlled lab conditions and uncontrolled
field conditions. Classification is evaluated using only the challenging
field images. Example classes include Acer Ginnala and Acer Rubrum.
The field dataset contains 7719 images belonging to 185 classes of leaf
species. The data is split into 50%, 20% and 30% for training, validation
and testing, respectively.

4.10.2.2 Experimental Set-Up

Three different network architectures are used to evaluate classification per-
formance: AlexNet [60], VGG16 [207] and ResNet50 [69]. For each of these
architectures, the softmax layer and final class-specific fully connected layer
are removed. No new layers are added, meaning that the final remaining
layer is taken as the embedding layer. For both AlexNet and VGG, this makes
FC7 (with dropout and no ReLU) the embedding layer, producing a 4096-
dimension feature embedding. While for ResNet, the final average pooling
layer becomes the embedding layer, producing a 2048-dimension feature em-
bedding. Experiments find that following the ResNet embedding layer with
a dropout layer results in a small performance gain for both the proposed
approach and the softmax baseline.

Hyperparameters are selected that minimise the validation loss. Mini-batch
gradient descent optimisation is used for all approaches. On the Birds200
dataset, a batch size of 20, update interval of 10 epochs and base learning rate
of 10−5 is used for the proposed Gaussian kernel approach. A Gaussian σ of
around 100 is found to be suitable for the 4096-dimension VGG16 embed-
dings on Birds200 and a neighbourhood size of 200 is used, unless otherwise
noted. All networks are initialised with ImageNet [61] pre-trained weights.
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4.10.2.3 Softmax Baseline Comparison

The proposed Gaussian kernel approach is compared to a softmax baseline
in this section. Experiments investigate the performance with both diversity
of dataset and diversity of network architecture.

Diversity of Architecture Evaluation is carried out over three different net-
work architectures, on the same dataset. Table 4.3 shows the classification
accuracy of the softmax baseline and our approach on the Birds200 dataset,
with an AlexNet, VGG16 and ResNet50 base network architecture. The pro-
posed approach outperforms the softmax counterpart across all three base
architectures. The gain is largest for the AlexNet architecture, with our ap-
proach resulting in a 4.54% absolute increase in accuracy. This amounts
to a reduction of 12% in errors compared to the softmax baseline, that is,
4.54/(100 − 62.41) = 12. Similarly, for a VGG architecture the absolute gain
in classification accuracy is 3.26%, amounting to a reduction of around 13%
in errors compared to the softmax-based network.

The performance gain seen for the ResNet architecture is smaller than for
the AlexNet and VGG architectures. An absolute improvement of 0.93% in
classification accuracy is achieved by the proposed approach, amounting to
a reduction of around 4% in errors compared to the softmax baseline. The
reason for this is two fold. Firstly, as the baseline performance increases, the
room for improvement shrinks. This is seen in the drop in improvement be-
tween AlexNet and VGG, as well as between VGG and ResNet. Secondly,
a ResNet architecture contains significantly more non-linear activation units
than the AlexNet and VGG architectures. This means that there is less im-
provement seen when using the highly non-linear Gaussian Kernel classi-
fier and loss function. Nevertheless, our approach outperforms a softmax-
based network across the three presented architectures. The inference time of
the proposed approach, which includes forward passing pre-processed data
through the model and performing classification, is approximately 14 mil-
liseconds for a single image and 61 milliseconds for a batch size of 20, when
using a ResNet50 architecture. In order to update the stored centres during
training, the classifier portion of the model does not need to be utilised. This
means that the forward pass time is reduced.
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TABLE 4.3: Birds200 test set accuracy with various networks.

Base Network Softmax Ours

AlexNet 62.41 66.95
VGG16 75.37 78.63
ResNet50 78.05 78.98

TABLE 4.4: Test accuracy on four classification datasets.

Dataset Softmax Ours

Flowers102 82.79 86.26
Cars196 85.67 86.52
Leafsnap Field 73.80 75.96
Birds200 75.37 78.63

Diversity of Dataset Our approach is further evaluated on various
datasets, with a fixed base network architecture. In addition to the Birds200
dataset, classification accuracy of the softmax baseline and our proposed ap-
proach on Cars196, Flowers102 and Leafsnap are seen in Table 4.4. A VGG16
base network architecture is used. Note that the Birds200 results are the same
as from Table 4.3. The proposed Gaussian kernel approach outperforms the
softmax counterpart on all four datasets. The improvement is largest for the
Flowers102 dataset, with an absolute increase of 3.47%, which equates to
an approximately 20% reduction in errors over softmax. For the Leafsnap
dataset, the absolute improvement is 2.16% and the reduction in errors is
approximately 8%. Finally, on the Cars196 dataset, our approach results in
an absolute improvement of 0.85% and an approximately 6% reduction in
errors, compared to the softmax baseline.

When training with a softmax classifier on the Birds200 dataset, validation
loss plateaus at around 7000 iterations. For the proposed Gaussian kernel
approach, the number of iterations taken for validation loss to stop improv-
ing depends on the update interval, that is, the interval at which the Gaussian
centres are updated and the nearest neighbours are computed. For update in-
tervals of 1, 5 and 10, validation loss stops improving at around 8500, 12000
and 15000 iterations, respectively. The softmax network is able to converge in
fewer iterations than our approach. This is likely due to the Gaussian centres
not being up-to-date at all times, leading to weight updates that are less effec-
tive than in the ideal scenario. However, as discussed in Section 4.7, keeping
the Gaussian centres up-to-date at all times in intractable.
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FIGURE 4.16: Effect of the number of training examples per
class on the test set accuracy of Birds200, with a VGG16 archi-

tecture.

4.10.2.4 Impoverished Training Data

Our proposed approach is further evaluated by analysing the impact that the
number of training examples has on the performance. There is a particular
interest in the case of impoverished training data, where very few training
images exist per class. This is because softmax-based networks generally
perform poorly when training data is limited. Learning from a few examples
per class is known as few-shot learning. The effect of the number of training
examples on the classification performance is analysed across a range from
few-shot learning up to full training set size. Figure 4.16 shows the classifica-
tion accuracy of the softmax baseline and the proposed approach against the
training set size.

As seen in Figure 4.16, the proposed Gaussian kernel approach outperforms
the softmax baseline at all training set sizes from three images per class up to
the standard training set size. Interestingly, the performance gain over soft-
max is largest when the number of training examples per class is small. For
the few-shot classification scenario of three images per class, the proposed
approach outperforms the softmax baseline by 13.8%. This is compared to
the 3.26% absolute gain seen when the entire training set is used. This is
an important result, since labelled training data is often difficult obtain. As
such, the ability to learn from impoverished data can often be vital. This is
particularly true in robotic applications, where a robot may observe novel
objects in the environment and obtain a small number of labels in an active
learning setting.
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TABLE 4.5: Ablation study for classification on Birds200.

Initial
Network
Weights

Tune σ
Learn per

Kernel
Weights

Fine-tune
Network
Weights

Test
Accuracy

Random Yes No No 1.35
ImageNet Yes No No 47.32
ImageNet Yes Yes No 49.22
ImageNet Yes No Yes 77.94
ImageNet Yes Yes Yes 78.63

4.10.2.5 Ablation Study

Table 4.5 shows an ablation study for the proposed approach. The study
shows how each of the following impacts the classification performance:
network weight pre-training, fine-tuning the network weights on the given
dataset with the Gaussian kernel loss and learning the per-kernel weights
w. An appropriate Gaussian σ value is required to perform classification
with the Gaussian kernels, as such, the value of the Gaussian kernel σ is first
tuned to minimise validation loss for each of the five arrangements of set-
tings shown. Note that when Learn per Kernel Weights is marked as No, the
weights in w are fixed at values of one.

A random classifier on the Birds200 dataset would achieve a classification
accuracy of 0.5%, since there are 200 classes. Table 4.5 shows that the Gaus-
sian kernel classifier with random network weights achieves a higher ac-
curacy than random guessing, at 1.35%. Initialising the network with Im-
ageNet pre-trained weights unsurprisingly has a significant impact on the
accuracy. Without any fine-tuning of the network weights or learning of the
per kernel weights on Birds200, ImageNet initialisation achieves an accu-
racy of 47.32%. Learning the per kernel weights on the Birds200 dataset, but
fixing the network weights at the ImageNet initialisation results in a 1.9%
increase in accuracy. Conversely, fixing the per kernel weights at values of
one and fine-tuning the network weights using the Gaussian kernel loss on
Birds200 results in a 30.62% improvement over the ImageNet initialisation.
Finally, learning the per kernel weights together with fine-tuning the net-
work weights with the Gaussian kernel loss results in a 31.31% increase over
the ImageNet initialisation.
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(A)

(B) (C)

FIGURE 4.17: (A) The effect of the number of nearest neigh-
bours considered while training the network. (B) The average
distance from training examples to their nearest Gaussian ker-
nel centres, at different points during training. (C) The Gaus-
sian kernel value (Equation 4.3) between training examples and
their nearest kernel centres, at different points during training.

4.10.2.6 Neighbourhood Size Analysis

Figure 4.17A shows the impact of the neighbourhood size used during train-
ing, in terms of the classification accuracy achieved. The neighbourhood size
is the number of approximate nearest neighbours considered for each train-
ing example. The training neighbourhood size is also used for testing. There
is a clear lower bound required for good performance. Below a neighbour-
hood size of 32, the maximum classification accuracy achieved is approxi-
mately 46%. At 32 nearest neighbours, the accuracy jumps to approximately
73%, with performance plateauing at around 78%. The reason for this lower
bound is because, as discussed in Section 4.7, the network weights are con-
stantly being updated, resulting in the true centre locations moving at each
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training iteration. However, the stored Gaussian centres are not updated ev-
ery time the network weights are updated. As such, a larger neighbourhood
needs to be considered, compared to if the centres were always up-to-date.

The local structure of the feature embedding space around training exam-
ples and how it changes throughout training is shown in Figures 4.17B and
4.17C. The VGG16 network used for these experiments was trained with a
neighbourhood size of 200. Figure 4.17B shows the Euclidean distance from
each training example to its 200 nearest Gaussian kernel centres, at different
points during training. The distances are averaged over all training exam-
ples. The horizontal axis is the ordered nearest neighbour index. That is, the
first point on the horizontal axis corresponds to the nearest neighbour and
the last point corresponds to the 200th nearest neighbour. Similarly, Figure
4.17C shows the average Gaussian kernel function value (from Equation 4.3)
between training examples and their 200 nearest Gaussian centres. As train-
ing progresses, the feature embedding space expands and clusters begin to
form. This can be clearly seen in the Late Training lines on both plots. Interest-
ingly, the Gaussian kernel function value begins to decay to zero at around
the 30th nearest neighbour. This lines up with the minimum neighbourhood
size required to achieve good classification performance in Figure 4.17A.

4.10.2.7 Implicit Attribute Learning

The proposed Gaussian kernel approach allows clusters to position them-
selves freely in the feature embedding space, such that the intrinsic structure
of the data can be represented. As a result, it is expected that the feature em-
beddings will be co-located based not only in terms of class, but also in terms
of more fine-grained information, such as attributes. We use the 312 binary
attributes of Birds200 to confirm this expectation. For each 4096-dimension
VGG16 test set embedding, attributes are propagated by computing the den-
sity of each attribute label present in the neighbouring test feature embed-
dings. This is done using Gaussian kernel functions, treating each attribute
as a binary classification problem. The best Gaussian σ is found for softmax
and Gaussian kernel learned embeddings separately. A precision and recall
curve, shown in Figure 4.18, is generated by sweeping the classification dis-
crimination threshold from zero to one. The bottleneck FC7 layer is used as
the embedding layer for both the softmax approach and the proposed ap-
proach.
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TABLE 4.6: Attribute Area Under Precision-Recall curve
(AUPR) on the 312 binary attributes of Birds200.

Method AUPR

Softmax 0.5455
Ours 0.5945

FIGURE 4.18: Attribute precision and recall on the 312 bi-
nary attributes of Birds200. The attributes are propagated from
neighbouring test embeddings and the curves are generated
by sweeping the classification discrimination threshold. The
ideal value of σ is found for the Gaussian kernel and softmax
approaches separately. No training was carried out on the at-

tribute labels.

At a given precision, the Gaussian kernel approach results in a feature em-
bedding space with better attribute recall than softmax. Note that the net-
works are not trained using the attribute labels. The Area Under Precision
Recall curve (AUPR) of the two approaches is shown in Table 4.6. This mea-
sure is threshold independent, allowing approaches to be compared using a
single number. These results show that compared to a softmax network, the
proposed Gaussian kernel approach learns a feature embedding space that
allows better representation of the fine-grained semantic information con-
tained within the data.
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4.11 Discussion and Conclusion

In this chapter, we proposed a nearest neighbour Gaussian kernel metric
learning approach that can be directly applied to both feature embedding
learning problems and classification problems. Our approach is trained in
the same manner, regardless of whether the primary goal is classification
or feature embedding learning problems, such as knowledge transfer. This
means that a model trained for classification will also learn feature embed-
dings that are suitable for transfer learning. Likewise, a model trained for
feature embedding learning problems will result in feature embeddings that
can be well classified by the Gaussian kernel classifier. A classification model
that also produces a well formed feature embedding space is particularly use-
ful in robotic applications. A robot operating in a dynamic environment will
almost certainly observe objects that are outside of the training set distribu-
tion. A model that transfers well to out-of-distribution observations allows
reasonable inference to be made about previously unknown semantic classes.

Experimental results show that the proposed approach outperforms existing
state-of-the-art deep metric learning approaches on feature embedding learn-
ing problems. The Gaussian kernel approach also outperforms a conven-
tional softmax-based convolutional neural network on four experimented
classification datasets. Further, results show that our approach learns fea-
ture embeddings that better capture the fine-grained semantic information
contained within images, compared to a softmax network. The importance of
dimensionality in the feature embedding space was also investigated. Exper-
imental results show that in addition to learning better compact feature em-
beddings than a triplet-based metric learning model, our approach can also
take advantage a larger, higher-dimensional space. Training of our method
is made feasible by the introduction of periodic asynchronous updates of the
Gaussian centres and the approach is made scalable through the use of fast
approximate nearest neighbour search.
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Chapter 5

Open Set Recognition and Active
Learning of Novel Classes

State-of-the-art deep neural network recognition systems are designed for a
static and closed world. It is usually assumed that the distribution at test
time will be the same as the distribution during training. As a result, classi-
fiers are forced to categorise observations into one out of a set of predefined
semantic classes. Robotic problems are dynamic and open world; a robot
will likely observe objects that are from outside of the training set distribu-
tion. Classifier outputs in robotic applications can lead to real-world robotic
action and as such, a practical recognition system should not silently fail by
confidently misclassifying novel observations. In this chapter, we show how
a deep metric learning classification system can be applied to such open set
recognition problems, allowing the classifier to label novel observations as
unknown. Further to detecting novel examples, we propose an open set ac-
tive learning approach that allows a robot to efficiently query a user about
unknown observations. Our approach enables a robot to improve its under-
standing of the true distribution of data in the environment, from a small
number of label queries. Experimental results show that the proposed ap-
proach significantly outperforms comparable methods in both the open set
recognition and active learning problems.

5.1 Motivation

Robotic applications demand special considerations when designing a visual
recognition system. The open set nature of robotics means that a robot will
encounter observations belonging to novel, out-of-distribution classes. Any
classifier prediction in a robotic environment can trigger some sort of costly
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(A) (B)

FIGURE 5.1: (A) Motivation for our approach. Conventional
classifiers will silently fail when observing a novel example. (B)

Overview of our approach.

robotic action. As such, a recognition system must not silently fail when ob-
serving a novel example by incorrectly predicting a label from the training set
distribution, as shown in Figure 5.1A. Additionally, a robotic vision system
should not cease learning after the initial training phase. The distribution
of data in the training set will undoubtedly vary from the true distribution
of data in the robot’s operating environment. By sampling data from the
environment and interactively querying a human user about novel observa-
tions, a robotic vision system can continue to improve its understanding of
the real-world data distribution, as shown in Figure 5.1B.

Detecting out-of-distribution observations is known as novelty detection
[135] and the problem of both classifying in-distribution observations with
the correct class label and detecting novel examples is known as open set
recognition [147]. The task of interactively querying a user for labels is
referred to as active learning [159]. If a recognition system can select the
most informative observations for labelling, the model can efficiently learn
from a small number of labelled examples. This is important for robotics,
as the number of observations may be very large but the labelling budget is
likely to be small. In this chapter, we focus on the active learning of novel
classes, also referred to as open set active learning. A model trained on
known classes is deployed in an environment containing both known and
novel classes. The active learning algorithm aims to learn about the novel
class distribution from as few human-labelled examples as possible.



Chapter 5. Open Set Recognition and Active Learning 142

Conventional classification approaches, such as convolutional neural net-
works (CNNs) with softmax classifiers [60, 207, 66, 69], are closed set by
design. As such, these commonly used methods are limited in their abil-
ity to detect novel examples. Softmax-based CNNs are not only forced to
predict a known label for out-of-distribution examples, but often do so with
high confidence [145]. Approaches that are limited in their ability to detect
novel examples, are also limited in their ability to learn from and improve
their understanding of the corresponding unknown classes. As a result, these
conventional softmax-based approaches are not suitable for open set robotic
vision problems.

Deep metric learning algorithms learn a transformation from the image space
to a feature embedding space, in which distance is a measure of semantic
similarity. State-of-the-art deep metric learning models demonstrate an im-
pressive aptitude for transfer learning [18, 19, 20, 23, 22, 21], meaning that
features are likely to be co-located based on class, even when those classes
are outside of the training distribution. This not only allows for the reliable
detection of novel examples, but also provides a meaningful way of deter-
mining an observation’s informativeness of the true class distribution. This
knowledge enables efficient querying in an active learning setting, allowing
the model to learn about novel classes from a small number of labelled ex-
amples.

An overview of our proposed approach is shown in Figure 5.1 and the contri-
butions of the work are enumerated in Section 5.2. The proposed approach
is a deep metric learning method for the open set problems of novelty de-
tection and active learning of novel classes. Experimental results show that
our proposed approach outperforms comparable methods in both problems.
The metric learning-based approach is further motivated from the perspec-
tive of novelty detection and open set recognition in Section 5.1.1 and from
the perspective of novel class active learning in Section 5.1.2.

5.1.1 Open Set Recognition

The converse of open set recognition is closed set recognition. Most work in
the field of image classification is in this domain, as it is generally assumed
that the distribution at test time will be the same as during training. The ma-
jority of classifiers are closed set by design; a classifier is forced to make a pre-
diction for every observation by classifying into a set of predefined training
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FIGURE 5.2: Closed set problems. During testing and deploy-
ment, the trained model assumes all data is sampled from only

the distribution of known classes.

classes. This is illustrated in Figure 5.2, wherein the same data distribution,
K, is sampled from during training and testing.

The scenario depicted in Figure 5.2 is not representative of many real-world
vision applications. This is particularly true of robotic vision, which is, by its
very nature, an open set problem. It is unreasonable to expect that a train-
ing set could include all possible semantic categories that a robot in an un-
constrained and dynamic world may observe. A training set should be the
best representation of the true distribution of data in the environment that
is possible, given the available prior knowledge and budget of human effort
allotted to the task of gathering and labelling training data. It should then be
assumed the true distribution varies in some way from the known training
distribution K.

An open set recognition setting is illustrated in Figure 5.3. In this scenario,
the model is again trained on the distribution of known classes K. Unlike in
the closed set problem, the classifier samples data from both the known dis-
tribution and some unknown distribution during model testing or deploy-
ment. The unknown novel distribution N contains observations from the
environment that belong to semantic classes not represented in the training
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FIGURE 5.3: Open set problems. During testing and deploy-
ment, the trained model observes a mixture of data from the
distribution of known classes and some distribution of un-

known, novel classes.

set. This is the most likely setting in which a robotic vision system will oper-
ate. A robot will observe semantic entities belonging to a mixture of known
and novel semantic categories. When a model that is designed only for closed
set problems is deployed in a open set world, observations belonging to the
unknown distribution N will be incorrectly classified as one of the classes in
the known distribution K. As such, closed set classifiers are inappropriate
for many robotic applications.

A classifier that is able to perform open set recognition is vital to robotic
vision. The predictions that are made by a classifier are not the end goal
in robotic applications. Predictions are made to enable some sort of infer-
ence with the environment, such as interacting with certain objects, avoiding
other objects and navigating the scene. In other words, classifier outputs
in robotic applications can trigger costly robotic action. This action may be
either physical or computational. As such, the observation and misclassifica-
tion of novel objects by a closed set classifier does not allow a robot to carry
out tasks safely or accurately. To avoid such ill-advised robotic action, an
open set classifier is required. This allows a robot to “know when it doesn’t
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know”, rather than silently failing and making confident mistakes by incor-
rectly classifying novel observations as known.

Open set recognition is included in a range of terms inconsistently used
to described related problems. These terms also include novelty detection,
anomaly detection, outlier detection and out-of-distribution detection. The
definitions of these terms as they are used in this chapter, are described be-
low:

• Novelty Detection is the process of detecting when an observed exam-
ple belongs to a class that is not represented in the training set. Such
an example is referred to as novel because the model was not aware of
any such class at training time.

• Anomaly and Outlier Detection are related to novelty detection, but
focus more on the detection of examples that are unusual, relative to
some “regular” distribution. This may be in the form of detecting
fraudulent financial transactions or malicious web activity.

• Out-of-Distribution Detection refers to the detection of any examples
that are outside of some training or regular distribution. This is a catch-
all term that covers novelty detection, anomaly detection and outlier
detection.

• Open Set Recognition is the partial goal of the work proposed in this
chapter. It is the process of simultaneously classifying observed known
examples into the correct class and detecting observed novel examples
as unknown. This is shown in Figure 5.4.

5.1.1.1 The Problem with Softmax

Convolutional neural networks with softmax classifiers are closed set by
design. The final fully connected layer outputs an activation vector with
the number of channels equal to the number of known classes, which is
then passed into the softmax layer. The probability distribution over known
classes must sum to a value of one. A softmax classifier is forced to make a
prediction for every input, by categorising examples into one out of the set
of known training classes.
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FIGURE 5.4: Open set classifier. Examples from novel classes
should be flagged as such, rather than the classifier silently
failing by incorrectly classifying the example as from a known

class.

A simple novelty detector for softmax-based convolutional neural networks
would be to threshold on the softmax certainty [145]. That is, take the max-
imum softmax probability output by the network, which should represent
the certainty/confidence with which the classifier is making its prediction,
and if it is too low, reject the input. One would assume that novel exam-
ples will be classified as a known class with low certainty, while the clas-
sifier will make confident predictions for known examples. However, soft-
max classifiers tend to make confident predictions for most inputs, regardless
of whether the predictions are correct or incorrect [145]. Since the classifier
makes mistakes with high confidence, it is difficult to distinguish between
known and novel examples by analysing the softmax certainty.

Softmax confidence is a poor measure of the likelihood of a prediction be-
ing correct because deep convolutional neural networks are poorly calibrated
[146]. A classifier with perfect confidence calibration would output a confi-
dence score that is exactly equal to the probability of that prediction being
correct. For example, a perfectly calibrated softmax classifier would be cor-
rect 50% of the time when classifying an example with a softmax score of 0.5.
As convolutional neural networks have poor confidence calibration, the soft-
max distribution does not capture the true probability distribution over the
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universe of examples. This property of deep softmax-based convolutional
neural networks is shown in the work by Guo et al. [146]. Analysis shows
that on a 100 class classification dataset, a ResNet model has an accuracy of
around 70%, but an average confidence of around 90%. In addition to show-
ing that the probability of a prediction being correct does not correspond
to the confidence score, the work shows that the probability of a prediction
being correct does not necessarily even increase monotonically with the con-
fidence score. Note that the poor calibration is not the result of the softmax
function itself, but rather the class activation feature vectors that are extracted
from the final layer of a neural network that is trained with cross-entropy loss
on a softmax classifier.

5.1.1.2 Opening Softmax

There has been some work focused on making networks with softmax clas-
sifiers more appropriate for open set problems [148, 147]. Liang et al. [148]
introduce ODIN, which aims to improve the calibration of softmax networks
by performing input pre-processing and softmax temperature scaling. The
input pre-processing involves making small perturbations to the input im-
age along the direction of gradients of the softmax confidence. The authors
find that these small perturbations generally result in greater change in the
softmax space for in-distribution examples compared to out-of-distribution
examples. Softmax temperature scaling involves scaling the activations from
the final fully connected layer by some constant before performing softmax
normalisation. Careful selection of the scaling constant, known as the tem-
perature, results in better confidence calibration [146]. These two techniques
push the softmax confidence scores of in-distribution and out-of-distribution
examples further apart, allowing for easier detection of novelty by consider-
ing the softmax confidence.

Bendale and Boult [147] propose an open set version of softmax known as
OpenMax. This work introduces a pseudo-activation to estimate the confi-
dence score relating to the notion of novelty. The probability of an example
belonging to an unknown class is estimated by fitting per-class models to
the activation vectors of the training data. These models are used to refine
the raw per class activations into an activation vector that includes a channel
for novel examples. The refined activation vector can be normalised in the
normal softmax manner to produce an OpenMax distribution. In addition
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to directly estimating the probability of an example being novel, the novelty
detector also thresholds on the known class confidence scores. We compare
the novelty detection and open set recognition performance of our proposed
approach to these open versions of softmax in Section 5.7.2.

5.1.1.3 Metric Learning for Open Set Recognition

In Chapter 4, a deep metric learning approach was introduced that not only
transfers well to novel classes, but also has good classification performance.
A distance metric that transfers to previously unknown classes allows for a
meaningful measure of novelty by considering some sort of distance mea-
sure between examples in the feature embedding space. The approach from
Chapter 4 stores all training set feature embeddings for the purpose of classi-
fication. This allows direct measurement of the semantic similarity between
observed examples and all training set examples from known classes. In ad-
dition to measuring the similarity of observations to training set examples,
a metric space also allows the similarity between observed novel examples
to be measured. For example, it is possible for a metric learning model to
recognise when it is observing a novel object that is similar to a previously
observed novel object. This provides the model with information about the
distribution of novel classes in the environment, enabling efficient learning
of these classes. This active learning of novel classes is discussed further in
Section 5.1.2.

In this chapter, we show the importance of deep metric learning to robotic
vision through the application of open set recognition. Novelty measures for
metric spaces are investigated and evaluated. Experimental results show that
the deep metric learning approach to novelty detection and open set recog-
nition significantly outperforms the softmax baseline, as well as the open set
variants of softmax discussed in Section 5.1.1.2. Importantly, the proposed
metric learning model performs well at both detecting novel examples and
classifying known examples into the correct semantic category.

5.1.2 Active Learning of Novel Classes

As an open set robotic vision system observes objects in the environment,
known objects will be classified into the correct class and novel objects will
be flagged as such. The learning phase of a robotic vision system should not



Chapter 5. Open Set Recognition and Active Learning 149

end after the initial training of the model on the training data. A robot that
is able to recognise when it is observing novel examples is also able to learn
from such examples. This should improve the robot’s understanding of the
environment and reduce the discrepancy between the known data distribu-
tion and the true distribution in the robot’s operating environment.

In order to update the model parameters to better represent the true data
distribution in a supervised manner, semantic labels must be attached to the
novel observations. Such labels could be provided by a human user. The
potential number of observations made by a robot is unbounded. As such, it
is not reasonable or feasible to expect that labels can be attached to all novel
examples that a robot may observe. The best observations should be selected
by the model for labelling, adhering to some user labelling budget. In this
case “best” refers to the examples which, when labelled, will provide the
most information to the system about the true distribution of data and allow
the system to make effective and efficient updates to the model parameters.

This problem is known as active learning. It is so named because the algo-
rithm is actively querying a user or oracle for labels, rather than passively
receiving a set of labelled examples. Active learning works on the premise
that not all data is created equal. Given the current state of the model, some
examples will be more informative of the true data distribution than others.
In terms of a feature embedding space, an example is generally more infor-
mative if it is far from other labelled examples. In addition, an unlabelled
example that is surrounded by many other unlabelled examples is more in-
formative than a lone unlabelled example. It is the job of the active learning
algorithm to select the examples that will allow the model to learn from as
few label queries as possible. In our case, we are concerned with the active
learning of novel classes that are outside of the original training set distribu-
tion.

The importance of novel class active learning and careful query selection is
shown in Figure 5.5. The example shows an embedding space containing
original training data from four different classes and observed data, which
contains examples from both the known four classes and additional novel
classes. In this example, labels can be obtained for six of the observations.
Given this limited labelling budget, care must be taken to select the most
informative examples for labelling. Random query selection (Figure 5.5B)
fails to discover all novel classes observed, as the majority of the labelling
budget is spent acquiring labels for already well learned classes. Careful
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(A) Example space.

(B) Random query selection. (C) Careful query selection.

FIGURE 5.5: The importance of novel class active learning and
careful query selection. The colour of examples denotes the
class (with grey representing unlabelled observations), black
lines represent decision boundaries and the shaded colours rep-
resent the class to which new examples will be classified in that
region of the space. Note that the decision boundaries are for il-
lustrative purposes only; our approach performs classification
by summing the influence of nearby labelled examples in the
feature embedding space. The original training data contains
four classes and the observed data contains an additional three

novel classes. A labelling budget of six is shown.

query selection with an intelligent querying scheme that selects informative
examples for labelling (Figure 5.5C) allows for all three novel classes to be
discovered.
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5.1.2.1 The Problem with Softmax (Again)

As discussed in Section 5.1.1.1, softmax-based networks are limited in their
ability to detect novel examples. Consequently, softmax networks are also
limited in their ability to learn from and improve their understanding of ob-
served novel classes. Since the classifiers are poorly calibrated, softmax con-
fidence scores are not a good measure of an observed example’s potential
informativeness to the model. Further, the informativeness of an observation
with regards to an entire set of unlabelled observations is difficult to mea-
sure since softmax networks do not learn a distance metric. The lack of a
meaningful way to measure the similarity between observed novel examples
means there is no clear way to select the observation that best represents the
entire set of unlabelled observations.

Those approaches that improve the ability of softmax classifiers to discern
novel observations [148, 147] still suffer from these problems. Although the
ODIN out-of-distribution detector proposed in [148] drives the confidence
scores of in-distribution and out-of-distribution examples further apart, the
lack of a learned distance metric between observations means that the ability
of such an approach to select the most informative observations for labelling
is limited. The open set version of softmax, OpenMax [147], does attempt to
measure the similarity of observations to training examples of each known
class. This is done by fitting a per class model on the training data. However,
this does not allow for similarity measurements between different observa-
tions and therefore, does not enable the selection of the most informative ob-
servations. Further, as the model does not learn a distance metric, there is no
guarantee that distances between activation vectors are an effective measure
of semantic similarity.

5.1.2.2 Active Learning with Metric Spaces

A distance metric over images allows for direct measurement of the similar-
ity of semantic entities. An observation can be compared to examples in the
training set, as well as unlabelled observations, including those from known
classes and unknown classes. As a result, metric learning models are a more
suitable approach to the active learning of novel classes than conventional
softmax-based networks. The learned distance metric provides a meaningful
way for the active learning algorithm to select the most informative observa-
tions. This is because the metric can measure how similar an observation is to
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other labelled examples, including the original training data and previously
labelled observations, in order to determine the novelty of the observation. It
can also measure the similarity of an observation to other unlabelled obser-
vations, allowing the algorithm to select an example that is representative of
many unlabelled novel observations.

The ability to select the most informative examples for labelling is not the
only requirement for an effective active learning model. Since the goal of
novel class active learning is to improve a model’s ability to make predic-
tions about observations by enabling a larger range of semantic classes to
be categorised, the approach must also be suitable for classification. As dis-
cussed throughout Chapter 4, many state-of-the-art deep metric learning al-
gorithms have poor classification performance compared to a conventional
network with a softmax classifier. This eliminates the majority of deep met-
ric learning approaches as candidates for this problem. The Gaussian kernel
metric learning approach proposed in Chapter 4, however, does meet the
criteria for this problem. Experimental results in Section 4.10 show that the
Gaussian kernel approach learns a distance metric that transfers well to novel
classes, enabling effective selection of informative observations for labelling.
Importantly, the results also show that the proposed approach learns feature
embeddings that are amenable to classification by the Gaussian kernel classi-
fier, with the approach outperforming softmax networks on several datasets.

5.1.2.3 Informativeness Measures

A well structured feature embedding space provides a means to effectively
measure the informativeness of observations. However, constructing an in-
formativeness measure in order to select the best observations for labelling,
is non-trivial. A common approach is the furthest nearest neighbour (FNN) in-
formativeness measure [216]. This method selects the next observation for
querying based on the distance to the nearest labelled example. The obser-
vation that is furthest from a labelled example is chosen for querying. The
assumption is that the most informative example is that which is the most
semantically dissimilar to all labelled examples. Although a reasonable mea-
sure of an observation’s informativeness in terms of novelty, the measure
does not consider the distribution of other unlabelled examples in the fea-
ture embedding space. An lone observation is not necessarily informative
of the true distribution of data in the environment, as it may just be outlier.
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Even if the observation is not an outlier, those observations that are repre-
sentative of more common novel entities should be selected first. Such an
observation would be found in regions of high unlabelled density in the fea-
ture embedding space.

Another approach to measuring the informativeness of an observation is ker-
nel density estimation. With labelled feature embeddings as kernel centres,
a per class density can be computed. This is akin to the per class classifi-
cation confidence scores. The observation with the smallest maximum class
density is selected for querying. The intuition is that observations with a
high maximum confidence score are not informative, since they are in high
density regions that are largely homogeneous in terms of class. However, ob-
servations that are located in contentious regions, with labelled examples be-
longing to more than one class, are treated as informative. Observations that
are far from any labelled examples are also considered informative. As with
the furthest nearest neighbour approach, kernel density estimation does not
consider an observation’s similarity to other unlabelled observations. This
means that the informativeness measure fails to consider the degree to which
an observation is representative of the entire set of unlabelled examples.

In this chapter, we propose a novel informativeness measure to be used with
deep metric spaces. The proposed approach is a density-based measure that
considers the structure of both labelled and unlabelled examples in the fea-
ture embedding space. The informativeness measure is simple to compute
and fuses well with the Gaussian kernel classifier discussed in Chapter 4,
which already computes the Gaussian distances between an observation and
labelled examples for the purpose of classification. By considering both la-
belled and unlabelled density, the approach is able to measure informative-
ness both in terms of novelty and in terms of how representative an observa-
tion is of the unknown true distribution.

5.2 Contributions

In this chapter, the importance of deep metric learning to open set problems
is investigated. The main contributions are as follows:

• We present a deep metric learning approach to novelty detection and
open set recognition, exploring several distance-based novelty mea-
sures (Section 5.5).
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• We show that our proposed approach to novelty detection and open set
recognition outperforms conventional CNNs and purpose built novelty
detectors (Section 5.7.2).
• We present an open set active learning approach for metric spaces using

our proposed query selection method, unlabelled to labelled density
ratio, which allows efficient learning of observed novel classes (Section
5.6).
• We show that our proposed approach to active learning significantly

outperforms comparable methods at small labelling budgets (Section
5.7.3).
• For a labelling budget of zero, we investigate if the representation of

observed novel classes can be improved using unsupervised pseudo-
labels (Section 5.7.3.7).

The major contributions of this chapter have been presented in a peer-
reviewed publication [25]. Further analysis that is not found in the publica-
tion includes a portion of the experimental results in Section 5.7.2.4 (Figure
5.8) and Section 5.7.3.4 (Figures 5.10-5.12), as well as the visualisations in
Section 5.7.3.5.

5.3 Related Work

In this section, a brief overview of novelty detection, open set recognition and
active learning literature is given. A detailed discussion of previous work in
these fields can be found in Section 2.5.

5.3.1 Novelty Detection and Open Set Recognition

An in-depth review of classical novelty detection approaches can be found
in the survey by Pimentel et al. [135]. Common methods include probabilis-
tic approaches [127, 128] that estimate the probability density function of the
data, distance approaches [136, 137] that assume novel examples are located
far from known examples, domain approaches [124, 140] that treat the task as
a binary classification problem and information-theoretic approaches [143, 144]
that analyse the information content of data. Our metric learning method is
in the distance approaches category. Novelty detection is related to the task of
anomaly and outlier detection [217].
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Recent works that make use of deep CNNs include a generative adversarial
network approach [151], in which a multi-class discriminator is trained with
a generator that creates data from both known and novel distributions. Man-
delbaum and Weinshall [149] propose a density-based confidence score that
can be applied to novelty detection, as an alternative to confidence scores
based on softmax probabilities [145].

Bendale and Boult [147] propose an open set version of a softmax classifier
named OpenMax. Class probabilities are revised using a meta-recognition
Weibull model fitted on distances between activation vectors and per-class
mean activation vectors. A pseudo-class representing unknown classes is
introduced, allowing direct measurement of novelty.

Liang et al. [148] introduce an out-of-distribution detector called ODIN that
operates on pre-trained softmax-based networks. The authors use softmax
temperature scaling and input pre-processing to push softmax scores from
known and novel classes further apart. This method requires a forward pass,
backward pass and second forward pass through the network to perform
novelty detection.

A contrastive loss metric learning approach is proposed in [150]. However,
the classification performance is poor, making it unsuitable for direct use in
open set recognition. Further, the work proposed in [150], along with [218],
requires out-of-distribution examples during training.

5.3.2 Active Learning

Classic methods of active learning include uncertainty approaches [158, 161,
219] and decision-theoretic approaches [163, 164, 220]. A comprehensive re-
view of these methods can be found in Settles’ survey [159]. Recent works
have investigated active learning with CNNs [165, 166, 167, 168, 169]. These
approaches include framing active learning as a reinforcement learning prob-
lem [168], generative adversarial active learning [167] and a core-set based
approach [169]. These methods aim to select a subset of examples for la-
belling that best represent the entire set of unlabelled examples, for the pur-
pose of initial network training. Our method is focused on learning from
observed novel classes that are not present in the existing training set. This
means that rather than selecting a subset that best represents the entire ob-
served unlabelled set, we want to select a subset that best represents the
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novel classes in the unlabelled set. In other words, we don’t want to waste
our limited labelling budget acquiring labels for classes that are already well
learned.

5.4 Notation and Background

We first introduce the notation used for the remainder of this chapter. The
term observation is used to refer to an example presented to the system at test
time. This is representative of a robotic system observing some object in the
environment. For a given observation with true label y, a β-dimensional fea-
ture embedding x = [x(1), . . . , x(β)]T is extracted. The feature embedding is
defined in a metric space M, in which the Euclidean distance between fea-
ture embeddings is a measure of the semantic similarity between the asso-
ciated images. The set of α labelled training feature embeddings is denoted
as C = {c1, . . . , cα}, with ci = [c

(1)
i , . . . , c

(β)
i ]T corresponding to the feature

embedding vector of the i-th labelled training image.

The feature embeddings are computed by learning a transformation from the
image space I into the metric space (or feature embedding space)M. Prac-
tically, the transformation is performed by a convolutional neural network.
The transformation function learned and performed by the network is de-
noted as g. That is, the convolutional neural network transforms an example
image I ∈ I into a feature embedding x as:

x = g(I;θ), (5.1)

where θ denotes the neural network parameters.

5.4.1 Deep Metric Learning Model

In this section, a brief review of deep metric learning and the model used
for our proposed approach is presented. For a detailed discussion on metric
learning, refer to Chapter 4. Deep metric learning refers to metric learning
approaches that make use of deep convolutional neural networks. Unlike
conventional classification models, such as a CNN with a softmax classi-
fier, metric learning algorithms aim to learn a transformation from the im-
age space to a feature embedding spaceM, in which distance is a measure
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of semantic similarity. Deep metric learning approaches learn feature em-
beddings that are amenable to transfer learning [18, 19, 20, 23, 22, 21]. This
suggests that such models are suitable for detecting novel examples.

The deep metric learning approach we use in this chapter is described in
detail in Chapter 4. A brief recap of the approach is presented in this section.
A Gaussian kernel, or radial basis function, is centred on each training feature
embedding. The probability that example x has class label ` is computed as:

Pr(y = ` | x) =

∑
j∈C exp

(
−|x−cj |2

2σ2

)
[cj ∈ class `] [cj ∈ S]∑

k∈C exp
(
−|x−ck|2

2σ2

)
[ck ∈ S]

, (5.2)

where σ is a shared Gaussian scale term and S ⊆ C is the set of training
nearest neighbours for example x. The Iverson brackets [condition] evaluate
to values of 1 if condition is true and a value of 0 otherwise.

During training the Gaussian kernels pull examples of the same class to-
gether and push examples of different classes apart. The loss for a given
training example is the negative logarithm of true class probability. The ap-
proach is made scalable to large numbers of classes and examples through
the use of fast approximate nearest neighbour search. Training is made fea-
sible and efficient by periodic asynchronous updates of the training embed-
dings and nearest neighbours, negating the need to do so after every network
update.

Although many deep metric learning approaches perform well on transfer
learning tasks, the feature embeddings learned from commonly used triplet
approaches are not well suited to classification [116]. In contrast, the Gaus-
sian kernel approach performs well for transfer learning as well as classifi-
cation, outperforming softmax classification on several datasets. This makes
the model suitable for our open set recognition and active learning setting.

5.5 Novelty Detection and Open Set Recognition

We now describe the problem of detecting out-of-distribution observations.
In this context, out-of-distribution refers to examples belonging to semantic
classes that are not represented in the training set or a set of known labelled
examples. Let K denote the distribution of the known training data and N
denote the distribution of unknown data that is outside of K. Our open set
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recognition system should determine whether an observation x is from the
known distributionK or the unknown distributionN . If x is fromK, the clas-
sifier should predict a known class label ŷ ∈ K as normal. If x is deemed to be
from outside of the known distribution, the observation should be labelled
as unknown/novel.

5.5.1 Rationale

The deep metric learning model used by our approach stores all training set
feature embeddings C and computes the Euclidean distance between an ex-
ample embedding and its set of nearest neighbours for the purpose of clas-
sification. Distance between examples in the metric space can be used as a
measure of semantic similarity. We expect that most observed examples from
a known class will be located nearby training set feature embeddings of the
same class. Observed examples that are not located nearby any training set
embeddings are novel to the model and are likely from the unknown dis-
tribution N . Since it is known that the metric learning model transfers well
to novel classes, we expect the model to be well suited to novelty detection.
This assumption is evaluated experimentally in Section 5.7.2.

5.5.2 Open Set Classifier

Our open set classifier and novelty detector predicts a class label ŷ for exam-
ple x as follows:

ŷ =

arg max` Pr(y = ` | x), if n(x) ≤ δ,

unknown/novel, if n(x) > δ,
(5.3)

where n is a novelty function and δ is a threshold.

5.5.3 Novelty Measures

The novelty measure n(x) from Equation 5.3 is a function that for an obser-
vation x, returns a score that is proportional to the novelty of the observed
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example. A low novelty score corresponds to an observation that is seman-
tically similar to known labelled examples. Such an observation will be clas-
sified with high confidence into a known class. A high novelty score corre-
sponds to an observation that is semantically dissimilar to all known labelled
examples. Such an example is likely outside of the training set distribution
and from an unknown, novel semantic category.

We investigate the effectiveness of several simple distance-based novelty
measures for use in a deep metric space. Since the metric learned by the
convolutional neural network g transfers to novel classes, distance in the
metric space is an appropriate measure of novelty. The presented novelty
measures are compared with softmax confidence-based novelty detection
and purpose built novelty detectors in Section 5.7.2. The novelty measures
for metric spaces that are investigated and evaluated are described below.

1) Nearest neighbour distance (NN dist.) is the distance between an ob-
served example and its nearest training set embedding (Equation 5.4). The
Euclidean distance between the embeddings x and ci is denoted as d(x, ci).

n (x) = min
ci∈C

d (x, ci) (5.4)

2) Maximum class density (density) is found by computing the per class
densities of training set embeddings nearby an example (Equation 5.5), using
the Gaussian kernel sum from Equation 5.2. For notational convenience in
Equation 5.3, we subtract the class density from one.

n (x) = 1−max
`

Pr(y = ` | x) (5.5)

3) Entropy is the Shannon entropy of the class density distribution from
Equation 5.2.

n (x) = −
∑
`

Pr(y = ` | x) log (Pr(y = ` | x)) (5.6)

Since the metric learning model’s class probability distribution is computed
based on class densities, the density measure is equivalent to measuring nov-
elty based on the maximum class probability. Density is suggested as a suit-
able measure for novelty detection in [149] and we adapt the method for our
approach, using the shared Gaussian σ.
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5.6 Active Learning of Novel Classes

When deployed, a deep metric learning model trained on the distribution
K, observes new unlabelled data from a mixture of the distributions K and
N . Let U = {u1, . . . ,uγ} represent the set of feature embeddings from γ

unlabelled observations, with ui = [u
(1)
i , . . . , u

(β)
i ]T . In addition to detecting

observations belonging to N , our system should select the most informative
examples in U for labelling by a user. Obtaining a label is referred to as a
query. The selected examples should be those that allow the model to learn
the most about N , from the fewest label queries. Metric spaces that transfer
knowledge to novel examples enable such efficient label querying.

5.6.1 Labelling Budget

A robotic system may observe any large number of objects while navigating
the environment. Since the number of potential observations is unbounded,
it is unreasonable to expect labels for all examples to be supplied by a user.
The labelling budget, denoted as b, is defined as the number of labels that
can be obtained from a user. Since the labelling budget may be significantly
smaller than the total number of observations, it is important that examples
are selected for querying based on an informativeness measure. This selec-
tion process is known as query selection and is generally based on an informa-
tiveness measure that describes how useful an observation may potentially
be in allowing the model to improve its understanding of the true data dis-
tribution. Our approach to query selection is presented in Section 5.6.2. The
experimental results in Section 5.7 evaluate over a large range of labelling
budgets, from a small a fraction of the total number of observations up to the
best case scenario of acquiring labels for all observations.

5.6.2 Query Selection

With a limited labelling budget, it is vital that the observations that are se-
lected for labelling are those that will be most useful in enabling the learning
of the true data distribution. Acquiring labels for examples that are clearly
from the known distribution is a waste of the labelling budget, since observa-
tions that are already well understood provide little new information to the
system. It is also wasteful to acquire labels for novel objects that are rare in
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FIGURE 5.6: Distances used when calculating the ULDR for ex-
ample point x.

the environment, if there are more common novel objects that are not yet un-
derstood. Since the learned distance metric transfers to novel classes, it is not
only possible to measure the novelty of observations but also how similar
they are to other novel observations. This allows the active learning algo-
rithm to first select observations that belong to more common novel classes,
before selecting those which are less common.

The proposed informative measure used to rank observations and select
queries is the unlabelled to labelled density ratio (ULDR). This informativeness
measure is defined as:

ULDR(x) =

∑
uj∈U exp

(
−|x−uj |2

2σ2

)
∑

ck∈C exp
(
−|x−ck|2

2σ2

) , (5.7)

where U the set of unlabelled feature embeddings and C the set of labelled
feature embeddings, which includes the original training data. The infor-
mativeness of an example feature embedding x is the ratio of the density of
unlabelled feature embeddings and the density of labelled feature embed-
dings at the location of x in the feature embedding space. Note that if the
observation x is in either U or C, the distance to itself is ignored. The value
of σ is the same as that in Equation 5.2. The next example selected for query-
ing is that with the largest unlabelled to labelled density ratio. Calculation of
the ULDR is visualised in Figure 5.6.

The ULDR query selection method ensures that examples that are novel, as
well as good representatives of the distribution of novel observations, are
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FIGURE 5.7: ULDR query selection on two-dimensional syn-
thetic data. The numbers next to observations represent the
order of selection for label querying. Once an observation is
labelled, it is included in the set of training examples (blue

points).

favoured. Novel observations are selected over known observations as a re-
sult of the labelled density (denominator is Equation 5.7). Feature embed-
dings that are in regions of high labelled density are similar to many known
observations and are likely from known classes. While feature embeddings
that are far from all labelled examples are likely novel. The favouring of
novel examples that are representative of the distribution of novel classes is
facilitated by the unlabelled density (numerator in Equation 5.7). A novel
example with a small unlabelled density is located in a sparsely populated
region of the feature embedding space. An novel example with a large un-
labelled density is in a region that is densely populated with other novel
observations. Such a cluster of novel observations suggests the presence of a
novel class that is common in the environment. That is, the observation likely
belongs to a class that is outside of K, but common in N . As such, novel ob-
servations that are in regions of high unlabelled density are favoured. This
behaviour is shown with synthetic two-dimensional data in Figure 5.7.
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5.6.3 Algorithm for Novel Class Active Learning

The active learning of novel classes is described in Algorithm 2. With a set of
labelled feature embeddings C, which includes the original training data and
any subsequently labelled observations, a set of unlabelled observations U
and a labelling budget b, the active learning algorithm first computes the in-
formativeness measure for each observation in U . The informativeness mea-
sure is the ULDR, discussed in Section 5.6.2. The formula for the ULDR is
reworked in Equation 5.8 (Line 13 of Algorithm 2) to compute density for a
single observation in U with index i. After computing the informativeness
measure for each unlabelled example, the algorithm selects the observation
with the largest ULDR for label querying. A label is then obtained for the
selected observation from a user or oracle. The newly labelled example is
then removed from the set of unlabelled examples U and included in the set
of labelled examples C. This process repeats until the budget is reached.

With b new labelled examples included in the set C, fine-tuning of the net-
work weights can proceed. Gaussian kernels are centred on all new labelled
observations; the new entries are now treated the same as any other training
example. The model is fine-tuned using all labelled examples in C, including
the original training data. This is important to ensure that knowledge about
previously learned classes is not lost. Fine-tuning is carried out in the same
way as described in Chapter 4. Following fine-tuning, the model should have
an improved understanding about the true distribution of data in the envi-
ronment. Any novel classes that were introduced to the model in the active
labelling process are now considered known. The model should correctly
classify future observations belonging to such classes.

The proposed process of query selection works based on the knowledge that
the learned distance metric transfers to novel classes. The feature embedding
space is already well structured for observed novel examples before any fine-
tuning with novel classes takes place. Although it is possible to measure the
similarity of novel examples, which can be useful in some problems, it is not
possible to classify the novel examples, since the model does not know that
such novel classes exist. Classifying observations from classes that have no
labelled training examples is known as zero-shot classification. Approaches
to this problem generally have some sort of description of classes available,
such as attributes. As such, the model needs to aware of the existence of
specific novel classes, even if there are no labelled examples supplied.
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Algorithm 2 Open set active learning with unlabelled to labelled density ra-
tio (ULDR).
Precondition:

Labelling budget b
Set of unlabelled feature embeddings (observations) U
Set of labelled feature embeddings C

1: for 1 . . . b do
2: Initialise r(i) = 0, for all i ∈ U
3: for each i ∈ U do
4: r(i) = ULDR(i, U, C)
5: end for
6: q = arg max(r)
7: Query user for label of uq
8: C.append(uq) . Add to labelled set
9: U .remove(q) . Remove from unlabelled set

10: end for
11: Fine-tune deep metric learning model on C

12: function ULDR(i, U, C) . Query selection
13:

r =

∑
uj∈U,j 6=i exp

(
−|ui−uj |2

2σ2

)
∑

ck∈C exp
(
−|ui−ck|2

2σ2

) (5.8)

14: return r
15: end function

We do not consider zero-shot classification, but rather use active labelling of
examples to enable classification of previously unknown classes. Obtaining
labels for a subset of the novel observations informs the model of the exis-
tence of previously unknown classes. Since the feature embedding space is
well structured, reasonable classification performance can be achieved even
without model fine-tuning. This is shown in the experiments in Section 5.7.3.
Allowing the model to update its weights using the newly obtained informa-
tion enables some restructuring of the feature embedding space. This new
information should not only allow for classification of the newly introduced
classes, but also a better metric that can be applied to future observations.

Fast approximate nearest neighbour search and period asynchronous up-
dates of the training embeddings can be utilised to make query selection and
network fine-tuning scalable to large numbers of classes and training exam-
ples. Nearest neighbours are computed to classify an observation and can
be used to consider only a local neighbourhood of training examples for the
ULDR computation. These details are discussed in depth in Chapter 4.
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5.6.4 Learning with a Zero Labelling Budget

It is known from the experiments in Section 4.10.1 that the learned distance
metric transfers well to novel classes. Feature embeddings belonging to
classes that the network has not be trained on, are still well clustered based
on class. This suggests that it should be possible to update the network
weights in such a manner that improves the distance metric, without ob-
taining any new labels from a user or oracle. In other words, we want to
investigate if it is possible to improve the model’s understanding of the
semantic entities in the environment with a labelling budget of zero. As
discussed in Section 5.6.3, without knowledge of the existence of classes, it
is not possible to categorise examples into unknown classes. The aim here
is not to perform classification of novel observations, but rather to use them
to improve the distance metric, or the structure of the feature embedding
space, for future observations.

Without the ability to obtain true labels from a user, the algorithm can use
spatial relationships in the feature embedding space to obtain pseudo-labels
for observations. Since the distance metric transfers to novel classes, a cluster
of novel observations likely contains examples belonging to predominantly
one unknown class. Pseudo-labels are label assignments that allow super-
vised learning algorithms to be trained on data for which true class labels are
not available. In this case, unique pseudo-labels are supplied to each cluster
in the metric space. This can be achieved by using unsupervised clustering
techniques, such as k-means [8]. The newly pseudo-labelled examples can be
treated as normal training examples, with each pseudo-class treated the same
as real classes during network fine-tuning. Gaussian kernels are centred on
each pseudo-labelled example and fine-tuning is carried out as normal, with
both the original training data and the pseudo-labelled examples.

Of course, the pseudo-label assignments will not be perfect. Although a
single cluster in the feature embedding space will likely contain predom-
inately one class, there may be examples of a different class assigned the
same pseudo-label. This is akin to learning with noisy labels. Further, since
the pseudo-labels are obtained using unsupervised cluster analysis, one true
class may be assigned multiple pseudo-classes if it has multiple clusters in
the feature embedding space. A single class with multiple clusters suggests a
significant semantic difference between the two subsets. Since the Gaussian
kernel metric learning model allows multiple clusters to form for a single
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class, the assignment of a single class to multiple pseudo-classes may not be
detrimental. The ability of the model to learn despite the noisy pseudo-labels
is investigated in Section 5.7.3.7.

The pseudo-labels are obtained on the assumption that novel examples are
already well clustered based on class. This leads to a question: why would
allowing the model to fine-tune with pseudo-labels further improve the dis-
tance metric? Improvement seen is likely due to the arrangement of clusters
in the feature embedding space being adjusted. Given new observations, the
model may push clusters of some classes into better regions of the space. For
example, this may allow better representation of a previously known class,
given the newly obtained information. It is important that updating the net-
work weights using the noisy pseudo-labels does not degrade the classifica-
tion performance for known classes. This is investigated in Section 5.7.3.7.

5.7 Experiments

The importance of metric learning to open set problems is investigated in
this section. Beginning with novelty detection and open set recognition in
Section 5.7.2, several distance-based novelty measures are investigated and
compared with softmax baselines and purpose built novelty detectors. In
Section 5.7.3, the novel class active learning approach is evaluated. Finally,
our proposed approach to learning with a labelling budget of zero is analysed
in Section 5.7.3.7.

5.7.1 Datasets

Three datasets are utilised for the open set experiments: Stanford Cars196
[201] (196 classes), Oxford Flowers102 [202] (102 classes) and CUB Birds200
2011 [200] (200 classes). The classes from each dataset are split into known
and novel. The first half of classes, that is the first 98, 51 and 100 classes
respectively, are taken as known classes (from K). The remaining half are
taken as novel classes (from N ). The datasets are split into training, ob-
served and test sets. The training sets contain only images belonging to
the known classes, while the observed and test sets contain an equal num-
ber of known and novel class images. The observed set simulates a model
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being deployed in an environment containing both in-distribution and out-
of-distribution classes. This is used for evaluating open set recognition and
performing active learning. Evaluation of the active learning is performed
on the test set.

5.7.2 Novelty Detection and Open Set Recognition

We first evaluate the deep metric learning approach on the problem of open
set recognition. In these experiments, the network is trained on the train-
ing sets that contain only images from the distribution K. The observed set,
which contains images from both the known distribution K and the distribu-
tion of novel classes N , is used for testing. During testing, a perfect system
will categorise all examples from K into the correct known class, while flag-
ging all examples from N as novel/unknown.

5.7.2.1 Experimental Set-up

A VGG16 [207] architecture is used for all experiments, as we find this net-
work configuration performs particularly well for transfer learning tasks.
The second fully connected layer, FC7, is taken as the feature embedding
layer. This produces a 4096-dimension feature embedding for a given input
image, and therefore, a 4096-dimension metric space. The network is trained
on the training set of known classes, following the methodology described
in Chapter 4. Training data is augmented using random cropping and hori-
zontal mirroring. For the Gaussian kernel approach, a learning rate of 10−5,
weight decay of 5× 10−4, momentum of 0.9 and shared Gaussian kernel σ of
91, 75 and 103 is used for Cars196, Flowers102 and Birds200, respectively. All
hyperparameters are selected as described in Section 4.10.2.2.

5.7.2.2 Evaluation Metrics

Three metrics are used to evaluate the compared approaches on the task of
novelty detection. These evaluation metrics and any necessary intermediate
measures are described below. Note that for all measures except the false
positive rate (FPR), a higher value corresponds to better performance.

• True Positives (TP): Number of novel examples correctly detected as
novel.
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• False Positives (FP): Number of known examples incorrectly detected
as novel.

• True Negatives (TN): Number of known examples correctly not de-
tected as novel.

• False Negatives (FN): Number of novel examples not detected as novel.

• Recall (recall) = TP
TP+FN

• Precision (precision) = TP
TP+FP

• True Positive Rate (TPR) = recall

• False Positive Rate (FPR) = FP
FP+TN

• Area Under Precision-Recall Curve (AUPR): Computing the recall and
precision requires the selection of a discrimination threshold (i.e. δ from
Equation 5.3), which in turn requires a desired level of precision to be
selected. To avoid threshold selection, the area under the precision-
recall curve, created by sweeping the threshold across an appropriate
range of values, is computed. This measure is threshold independent.

• Area Under ROC Curve (AUROC): Another threshold independent
measure that is the area under the receiver operating characteristic
(ROC) curve found by sweeping the threshold δ. The ROC curve is a
plot of the true positive rate against the false positive rate.

• F-measure (F1): A fixed-threshold metric, the F-measure takes both the
precision and recall into account:

F1 = 2
precision · recall
precision+ recall

(5.9)

For open set recognition, that is, the problem of simultaneously detecting
novel examples and classifying known examples, performance is measured
using the open set recognition accuracy (Acc.). This is the standard classifi-
cation accuracy with a single unknown/novel superclass for all observations
fromN . That is, for a problem with L known classes, an example is predicted
as class L + 1 when it is detected as novel. Open set accuracy is defined as
Acc. = 1

M

∑M
m=1[ym = ŷm], where y = [y1, . . . , yM ] and ŷ = [ŷ1, . . . , ŷM ] are the

true and predicted class labels, respectively, and the term [ym = ŷm] evaluates
to zero or one based on the logical condition.
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5.7.2.3 Compared Methods

We evaluate our deep metric learning approach to novelty detection and
open set recognition with varying novelty measures. Full details on the nov-
elty measures can be found in Section 5.5.3. Our methods are:

• DML NN dist.: Our deep metric learning approach with nearest neigh-
bour distance novelty measure.

• DML Density: Our deep metric learning approach with maximum class
density novelty measure.

• DML Entropy: Our deep metric learning approach with Shannon en-
tropy novelty measure.

Our approach is compared to baselines and purpose built novelty detectors
and open set classifiers, which are discussed in detail in Sections 5.1.1.1 and
5.1.1.2. The compared methods are:

• Baseline [145] Max Pr.: A baseline softmax uncertainty novelty detector
with maximum class probability thresholding.

• Baseline [145] Entropy: A baseline softmax uncertainty novelty detec-
tor with Shannon entropy thresholding.

• OpenMax [147]: Open set version of softmax classification.

• ODIN [148] Max Pr.: Out-of-distribution detector with maximum class
probability thresholding.

• ODIN [148] Entropy.: Out-of-distribution detector with Shannon en-
tropy thresholding.

For both the softmax baseline and ODIN, we utilise two different novelty
measures: the confidence score of a classification and the entropy of the clas-
sification probability distribution. Entropy is a more informative measure
as it considers all class probabilities, rather than simply the maximum class
probability. The non-maximum probabilities often contain useful informa-
tion regarding the certainty of a classification and as such, entropy may be a
better measure of novelty than the confidence score for these classifiers.

Both our approach and [145] have only one tunable parameter (the threshold
δ), while [147] and [148] each have three. A withheld set of images is used to
tune the parameters such that the withheld set F-measure is maximised, as
suggested in [147]. Note that no parameter tuning is needed for the AUROC
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and AUPR measures for our approach or the softmax baseline [145]. Since
OpenMax [147] explicitly includes an estimated novel class probability, AU-
ROC and AUPR measures cannot be computed. As such, we report only the
F-measure and open set accuracy for this approach.

5.7.2.4 Results

Results are shown for the Cars196, Flowers102 and Birds200 datasets in Ta-
bles 5.1, 5.2 and 5.3, respectively. Our deep metric learning approach out-
performs the compared methods on all evaluation measures and datasets, in
most cases by a significant margin. The softmax baseline and ODIN both see
greater performance when using the entropy novelty measure, compared to
the maximum class probability, in most cases. In general, the advantage of
using entropy is larger for the softmax baseline. Comparing the best per-
forming novelty measure for each method on the Cars196 dataset, the deep
metric learning approach results in a 4.13%, 4.47% and 6.37% increase in the
F-measure over the ODIN, OpenMax and softmax baseline methods, respec-
tively. On the threshold-independent AUROC measure, the metric learning
method outperforms ODIN and the softmax baseline by 3.6% and 5.12%,
respectively, on the Cars196 dataset. Considering the open set accuracy, a
4.18%, 5.12% and 6.46% increase is achieved by the metric learning approach
over ODIN, OpenMax and the softmax baseline, respectively. These results
show that metric learning is important for open set problems, with a consis-
tent and significant advantage seen over softmax and purpose built novelty
detectors and open set classifiers.

All three novelty measures investigated for our metric learning approach
outperform the best performing compared method in all cases. Comparing
the three distance-based novelty measures, density is almost uniformly the
poorest performer. Across the twelve metrics (four evaluation metrics on
three datasets), the entropy novelty measure is the best performing on five
occasions, while the nearest neighbour distance is the best novelty measure
on the other seven occasions.
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TABLE 5.1: Novelty detection results on Cars196.

Method AUROC AUPR F1 Acc. (%)

Baseline [145] Max Pr. 0.8331 0.8116 0.7832 73.34
Baseline [145] Entropy 0.8512 0.8374 0.7865 73.95
OpenMax [147] - - 0.8055 75.15
ODIN [148] Max Pr. 0.8613 0.8443 0.8021 75.31
ODIN [148] Entropy 0.8668 0.8469 0.8089 76.23
Ours: DML Density 0.8901 0.8671 0.8263 78.78
Ours: DML Entropy 0.9013 0.8710 0.8454 80.33
Ours: DML NN Dist. 0.9028 0.8706 0.8502 80.41

TABLE 5.2: Novelty detection results on Flowers102.

Method AUROC AUPR F1 Acc. (%)

Baseline [145] Max Pr. 0.8509 0.8051 0.8004 78.73
Baseline [145] Entropy 0.8559 0.8206 0.8015 79.07
OpenMax [147] - - 0.7985 75.88
ODIN [148] Max Pr. 0.8712 0.8471 0.8021 75.31
ODIN [148] Entropy 0.8690 0.8447 0.8085 78.48
Ours: DML Density 0.9043 0.8741 0.8442 82.55
Ours: DML Entropy 0.9084 0.8718 0.8477 82.99
Ours: DML NN Dist. 0.9078 0.8884 0.8543 83.97

TABLE 5.3: Novelty detection results on Birds200.

Method AUROC AUPR F1 Acc. (%)

Baseline [145] Max Pr. 0.7311 0.6933 0.7277 64.73
Baseline [145] Entropy 0.7397 0.7017 0.7280 64.22
OpenMax [147] - - 0.7628 68.93
ODIN [148] Max Pr. 0.7383 0.7031 0.7271 64.04
ODIN [148] Entropy 0.7400 0.7034 0.7260 63.89
Ours: DML Density 0.7838 0.7475 0.7419 68.95
Ours: DML Entropy 0.7981 0.7601 0.7559 70.12
Ours: DML NN Dist. 0.7961 0.7489 0.7652 68.40
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(A) ROC curve. (B) Precision-Recall curve

(C) Open set accuracy (known classes
only).

(D) Open set accuracy (known and
novel classes).

FIGURE 5.8: Novelty detection on the Cars196 dataset. The best
performing novelty measures from Table 5.1 are shown for each
compared method. Note that the novelty detection recall and
true positive rate (TPR) are the same measure. The open set
accuracy in (C) considers only the test examples belonging to
the set of known classes. The open set accuracy in (D) considers
test examples from both the known and novel class sets, with a

single superclass for all novel examples.

Further results are shown in Figure 5.8 for the Cars196 dataset. The best
performing novelty measures for each of the Baseline [145], ODIN [148] and
DML approaches are shown. Figures 5.8A and 5.8B show the novelty de-
tection ROC curve and precision-recall curve, respectively. Our approach
outperforms the compared method across all novelty detection recall values,
except when the recall is less than approximately 0.1. In this region, the com-
pared methods result in a better novelty detection precision. However, this
range of very low novelty detection recall values is not of great interest. Fig-
ure 5.8C shows the open set accuracy as a function of the novelty detection
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recall, considering only the test examples from the known set of classes. Fig-
ure 5.8D shows the open set accuracy for both known and novel class test
examples. The open set accuracy includes a superclass for all novel exam-
ples. Our approach outperforms the compared methods at all recall values.

5.7.3 Open Set Active Learning Results

The proposed approach to novel class active learning is evaluated in this
section. The advantage of a metric learning approach in general, over a con-
ventional network configuration, is shown. We also investigate the quality of
the proposed query selection methodology, comparing it to other commonly
used distance-based query selection approaches.

5.7.3.1 Experimental Set-up

Initial training of the network is carried out on the training set of known
classes in the same manner as the novelty detection experiments, which is
described in Section 5.7.2.1. Query selection is then carried out on the ob-
served set, which contains examples from both known and novel classes.
Following the query selection, which expands the training set size, the net-
work is further fine-tuned with the same parameters. This fine-tuning stage
includes training examples from the original training sets, as described in
Section 5.7.1, as well as any newly labelled examples from the query selec-
tion algorithm. In our experiments, labels are provided to the model auto-
matically in response to a query. This simulates the process of a human user
providing labels to a robot. Approaches are then evaluated on the test set,
containing unseen examples from both the original known class set and the
novel class set.

5.7.3.2 Evaluation Metrics

Standard classification accuracy is used to evaluate the approaches. The ac-
curacy on the novel class examples only is reported, as well as the accuracy
on the combined known and novel class examples. Note that individual
novel classes are used for the accuracy calculation in these experiments, not
a single superclass, as in Section 5.7.2.
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5.7.3.3 Compared Methods

We compare a deep metric learning-based active learning approach to a con-
ventional softmax network approach. The proposed query selection method
is also evaluated, by comparing it to other commonly used distance-based in-
formativeness measures. The compared distance measures are discussed in
detail in Section 5.1.2.3. Random query selection is also included to provide
some context to the results. Approaches that include DML in their name are
deep metric learning approaches, all of which use the same metric learning
algorithm and model, described in Chapter 4. The only difference between
these approaches is the method of query selection in the active learning algo-
rithm. The following approaches are compared:

• Softmax w/ Uncert.: A conventional softmax approach with a typical
query selection method based on classifier uncertainty. The observation
with the largest Shannon entropy is queried.

• DML w/ Random: Deep metric learning approach with random query
selection.

• DML w/ FNN [216]: Deep metric learning approach with furthest near-
est neighbour (FNN) query selection [216]. The observation with the
largest distance to its nearest labelled example is queried.

• DML w/ KDE: Deep metric learning approach with kernel density esti-
mation (KDE) query selection. The observation with the smallest maxi-
mum class probability (density) is queried. The probabilities are found
using Equation 5.2.

• Ours: DML w/ ULDR: Deep metric learning with our unlabelled to
labelled density ratio (ULDR) query selection. The observation with
the largest ULDR is queried.

5.7.3.4 Quantitative Results

Novel class active learning results for the three experimented datasets are
shown in Figure 5.9. The plots show the test set classification accuracies as
a function of the labelling budget. The labelling budget is shown as a per-
centage of the total observed set queried. A labelling budget of 100% means
that the entire observed set is included as training data. This represents the
upper bound on performance. Our experiments aim to show two important
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(A) Cars196, novel only. (B) Cars196, novel and known.

(C) Flowers102, novel only. (D) Flowers102, novel and known.

(E) Birds200, novel only. (F) Birds200, novel and known.

FIGURE 5.9: Active learning results on Cars196 (top), Flow-
ers102 (middle) and Birds200 (bottom). Plots show the test set
classification accuracy of novel classes only and the combined
novel and known classes at various labelling budgets. The la-
belling budget is represented as a percentage of the total ob-

served set.

points: that deep metric learning is better suited to open set active learn-
ing than softmax-based networks, and that our proposed ULDR approach to
query selection is efficient and effective.
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All deep metric learning approaches outperform the softmax approach in the
majority of cases. Even random selection of queries in the metric learning
framework results in an often significant advantage over the softmax-based
approach. Comparing the softmax approach with the best performing met-
ric learning approach (our ULDR query selection), the performance gain is
significant. The advantage of the deep metric learning approach is largest at
small labelling budgets. This is important because the aim is to be able to
learn from as few queries as possible. As the labelling budget increases, the
advantage shrinks. This is expected as more examples are queried and the
methods of measuring informativeness and novelty become less important.
Considering the Cars196 dataset, our deep metric learning approach with
ULDR query selection outperforms the softmax approach by 18.26%, 26.70%
and 22.13% at labelling budgets of 1%, 4% and 10%, respectively, on the novel
class accuracy. For combined known and novel class accuracy, the advantage
is 8.34%, 12.40% and 11.10%, for the same labelling budgets. These results
show the importance of metric learning to open set active learning problems.

Our proposed ULDR query selection method significantly outperforms the
compared distance-based query selection approaches. Again, the advantage
is largest for small labelling budgets, as query selection is less import as a
larger fraction of the observed data is labelled. Compared to the KDE ap-
proach, the ULDR query selection results in a novel class accuracy improve-
ment of 17.52%, 22.73% and 11.36% at labelling budgets of 1%, 4% and 10%,
respectively. At the same labelling budgets, the advantage over the FNN
approach is 18.11%, 18.66% and 13.95%, respectively. Our ULDR method re-
sults in the selection of informative examples, enabling efficient learning of
the novel class distribution from few label queries.

The impact of fine-tuning the network weights after query selection with
both the original training data and the newly labelled examples is shown in
Figure 5.10. Results are shown for the DML approach with ULDR query se-
lection and for the softmax approach. The results with no fine-tuning of the
network weights are obtained for the DML approach by simply including
the newly labelled examples in the set of Gaussian centres, allowing these
new examples to contribute to the classification of test examples. No fine-
tuning of any network parameters is carried out. For the softmax approach,
the results with no fine-tuning are obtained by freezing all network weights,
except the final class-dependent fully connected layer. This layer must be
trained because it is reshaped when new classes are discovered.
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(A) Cars196, novel only. (B) Cars196, novel and known.

(C) Flowers102, novel only. (D) Flowers102, novel and known.

(E) Birds200, novel only. (F) Birds200, novel and known.

FIGURE 5.10: Impact of fine-tuning the network weights with
newly labelled queries for both the deep metric learning (with
ULDR query selection) and softmax (with uncertainty-based
query selection) approaches. For softmax with no fine-tuning,
all network weights are frozen except the final fully connected
layer, which must be reshaped and retrained when new classes
are introduced. For deep metric learning (DML) with no fine-
tuning, all network weights are frozen and newly labelled ex-
amples are included as Gaussian centres for the purpose of clas-

sification.
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(A) Cars196 dataset.

(B) Flowers102 dataset.

(C) Birds200 dataset.

FIGURE 5.11: The number of novel classes in the observed
set that have been discovered as a function of the number of
queries. A novel class is “discovered” if at least one observa-

tion from that class has been selected for querying.
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(A) Cars196 dataset

(B) Flowers102 dataset.

(C) Birds200 dataset.

FIGURE 5.12: The Kullback–Leibler divergence (KL diver-
gence) between the true class distribution (all labelled examples
in the training and observed sets) and the current class distribu-
tion (all labelled training examples and the observed examples

queried so far) as a function of the number of queries.
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The active learning approaches are further compared by analysing the num-
ber of novel classes discovered as a function of the number of label queries
in Figure 5.11. A novel class is considered “discovered” if there is at least
one newly labelled observation with that class label. A good query selection
method for novel class active learning should discover classes with as few
label queries as possible. Our approach outperforms the compared methods
in the vast majority of cases. For example, at a labelling budget of 2% on the
Cars196 dataset, our method outperforms the FNN approach by 15.3% and
the KDE approach by 22.5%.

We also investigate the Kullback–Leibler divergence (KL divergence) be-
tween the current class distribution and the true class distribution, as a
function of the number of label queries, in Figure 5.12. A small KL diver-
gence indicates that the approximated distribution is similar to the true
distribution, while a large divergence indicates that the distributions dif-
fer significantly. The true class distribution is computed using all training
examples and all examples in the observed set. The current approximated
distribution is found using all training examples and the observed examples
that have been selected for label querying. To avoid zero probabilities for
undiscovered classes, small values are added to zero elements. These val-
ues affect only the scale of the plots, with negligible impact on the shapes.
This allows for reasonable relative comparison between the approaches.
Again, our proposed method outperforms the compared methods in the vast
majority of cases.

5.7.3.5 Visualising Query Selection

The compared query selection approaches for deep metric spaces (FNN, KDE
and ULDR) are visualised for Cars196, Flowers102 and Birds200 in Figures
5.13, 5.14 and 5.15, respectively. The figures show t-SNE [215] visualisations
of the metric space, with the original training examples and the examples
from the observed set included. The observed examples selected for query-
ing are shown for each of the query selection methods at labelling budgets of
1% and 10% of the entire observed sets. It is important to note that t-SNE vi-
sualisations are not faithful representations of the global space. The size and
density of clusters and the distance between them may not be meaningful.
This is because the data transformations are not consistent across the entire
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space, resulting in a notion of distance that differs regionally. The t-SNE al-
gorithm can be helpful in understanding the query selection process in high-
dimensional metric spaces, however, the visualisations should be taken with
a pinch of salt.

Analysing the Birds200 visualisation in Figure 5.15 with a labelling budget
of 1%, it can be seen that the ULDR method selects no observations from
known classes for querying. Conversely, the KDE and FNN methods select
several known class examples, wasting some of the limited labelling budget
on classes that already have a large amount of labelled examples in the train-
ing data. For a labelling budget of 10%, the ULDR approach again selects sig-
nificantly fewer known class examples for querying, particularly compared
to the FNN approach. Further, the ULDR method results in better coverage
of the novel class examples. The KDE approach results in large regions and
clusters of novel examples with no labels, meaning that several novel classes
are yet to be discovered by this approach. This result is mirrored in the class
discovery plots in Figure 5.11. These visualisations, combined with the class
discovery plots, show how our proposed approach is able to perform efficient
query selection of novel observations, with examples selected from across the
range of novel classes and with few queries wasted on classes that already
have a large number of labelled examples.

5.7.3.6 Qualitative Results

The novel class test set feature embedding space is visualised in Figure 5.16.
Two-dimensional visualisations of the high dimensional feature space are ob-
tained using the t-SNE algorithm [215]. The initial feature embedding space
is shown, that is, the space before any active learning has taken place. Novel
test classes are already quite well clustered before any learning has taken
place with novel examples. This shows the transfer learning capabilities of
deep metric learning that motivate our approach. Also shown is the fea-
ture embedding space after fine-tuning on observed examples, with labelling
budgets of 10% and 100%. The 100% labelling budget is the best case scenario
and is included to show the upper bound of performance. The improvement
seen with a labelling budget of 10% over the initial state is significant, though
novel examples are less tightly clustered compared to the best case. Note that
the visualised feature embeddings are from the test set and unseen during
initial training and active learning.
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FIGURE 5.13: Cars196 dataset: t-SNE visualisation of query se-
lection approaches for deep metric spaces. Best viewed zoomed

in on a monitor.
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FIGURE 5.14: Flowers102 dataset: t-SNE visualisation of query
selection approaches for deep metric spaces. Best viewed

zoomed in on a monitor.
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FIGURE 5.15: Birds200 dataset: t-SNE visualisation of query se-
lection approaches for deep metric spaces. Best viewed zoomed

in on a monitor.
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TABLE 5.4: Unsupervised pseudo-label approach compared to
no novel class fine-tuning and active learning of novel classes.
The mean pseudo-label results with standard deviation values

are shown.

Novel
R@1

Novel
R@2

Novel
R@4

Novel
R@8

Known
Acc. (%)

Initial 68.93 79.11 86.80 91.61 83.22

Pseudo-labels 75.04±
0.23

83.16±
0.40

89.04±
0.47

93.06±
0.23

83.68±
0.25

AL, b = 10% 77.42 84.47 89.78 93.60 83.87
AL, b = 100% 86.80 91.01 94.84 96.87 89.01

5.7.3.7 Zero Labelling Budget Results

We further investigate whether a model can improve its representation of
observed novel classes with a labelling budget of zero. We use spatial rela-
tionships in the metric space to generate pseudo-labels for observed exam-
ples. In other words, the knowledge that deep metric spaces transfer well to
novel classes is used to generate a training signal. We use k-means [8], with
k-means++ initialisation [221], to obtain pseudo-labels for each observed ex-
ample. The network is fine-tuned using the observed examples with pseudo-
labels together with the original training examples. The value of k is selected
such that the Silhouette Score [222] is maximised, indicating that the cluster
assignments are tight. A k value of 240 is used for the Cars196 dataset. Since
the true labels of the observed set are not known in this case, we evaluate
how well the network has learned to represent the novel set of classes using
a recall measure on the test set examples. Recall@n (R@n) is the percentage
of test examples that have the same true class label as at least one of their n
nearest neighbours in the metric space. Note that this is the same measure as
the Recall@k measure from Chapter 4, but renamed to avoid confusion with
the k from the k-means algorithm. Experiments are run multiple times and
the results are averaged.

Table 5.4 shows the Recall@n of the novel examples in the Cars196 test set.
Note that the test set metric space contains examples from both known and
novel classes. The classification accuracy of the test set examples from known
classes (Known Acc.) is also shown. The pseudo-label approach is compared
to a model that has not been fine-tuned on the observed set (initial). This
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(A) No fine-tune on observed set. (B) Pseudo-label fine-tune.

(C) AL with b = 10%. (D) AL with b = 100%.

FIGURE 5.16: Visualisations of the metric space of novel class
test examples using the t-SNE algorithm [215] on Cars196.
Colour represents the class of examples. The initial metric space
before fine-tuning on the observed set is shown in (A), while (B)
is the metric space after fine-tuning using pseudo-labels only
(Section 5.7.3.7). Metric spaces after active learning (AL) are
shown in (C) and (D), with the labelling budget b as a percent-
age of the observed set labelled. A budget of 100% is the upper
bound on performance. Novel examples are already quite well
clustered before any fine-tuning on novel classes, as seen in (A).
This demonstrates the ability of deep metric spaces to transfer

to novel classes. This property motivates our approach.

is the lower bound on performance. Active learning (AL) results are also in-
cluded, with labelling budgets b of 10% and 100%. The 100% labelling budget
is the upper bound on performance, as the entire observed set is labelled. In
terms of Recall@1, the pseudo-label approach improves over the initial state
by 6.11% and under-performs an active learning approach with 10% labelling
budget by just 2.38%. Interestingly, these results indicate that although no
true labels are available for the observed set, there is merit in allowing ob-
served examples to be pushed into a better region of the metric space. We
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do not expect known class accuracy to improve with this method, but impor-
tantly, it does not deteriorate (see final column of Table 5.4).

Figure 5.16 shows a t-SNE visualisation [215] of the novel test set metric
space. Compared to the initial feature embedding space, the novel examples
are better clustered based on class. This is despite the absence of any true
novel class labels being supplied to the algorithm. The visualisation, along
with the results in Table 5.4, suggest that spatial relationships in a well struc-
tured metric space can be used to generate noisy pseudo-labels to improve
the representation of novel classes present in the environment.

5.8 Discussion and Conclusion

Real-world robotic problems are open set and dynamic. Conventional object
classifiers are closed set by design and are limited in their ability to detect ob-
servations belonging to unknown novel classes. Classifier outputs in robotic
problems are not the final goal; predictions made by a classifier can trigger
some sort of robotic action. As such, it is often vital that a classifier does not
silently fail when observing novel examples. A classifier that knows what
it doesn’t know, also knows what it needs to learn. Open set recognition
enables a vision system to select informative observations for labelling, al-
lowing the model to be updated to better represent the distribution of data in
the environment. Conventional closed set classifiers that are limited in their
ability to detect novel examples, are also limited in their ability to learn from
novel examples.

In this chapter, the suitability of deep metric learning to open-set problems
was investigated. We showed how a deep metric learning classification
model is well suited to novelty detection and open set recognition. Ex-
perimental results show that a deep metric learning approach significantly
outperforms conventional softmax-based networks and purpose built nov-
elty detectors in open set recognition problems.

A novel approach to the active learning of previously unknown classes was
also proposed. The importance of metric learning to open set active learn-
ing problems was demonstrated experimentally. A conventional softmax
network with uncertainty-based query selection is outperformed by even
random query selection for a metric learning approach, in the majority of
cases. A distance-based query selection method was proposed. We showed
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how the proposed approach significantly outperforms other commonly used
distance-based informativeness measures. The advantage of deep metric
learning and the proposed query selection methodology is particularly large
with small labelling budgets. As such, this would allow a vision system to
efficiently and effectively extend its understanding of the environment be-
yond the original training distribution. Finally, we showed how spatial re-
lationships in a deep metric space can be used to generate pseudo-labels for
observed examples. This enables the model to improve its representation of
novel classes with a labelling budget of zero.
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Chapter 6

Improved Semantic Segmentation
for Robotic Applications

Conventional approaches to the problem of semantic segmentation are
inappropriate for robotic applications, as they focus on pixel-level perfor-
mance and give little significance to spurious object detections. This chapter
presents a region-based conditional random field model for semantic seg-
mentation that focuses on object-level performance, recognising that in a
robotics context, false object-detections can have costly consequences. We
show how optimising at the semantic region-level results in significantly
fewer false-positive object detections than conventional approaches. We
further show how both object and pixel-level performance can be improved
over conventional methods by combining region random fields with dense
pixel random fields in a hierarchical manner. An object-aware performance
metric is introduced that heavily penalises false positive and false negative
object detections, as appropriate for robotic applications. Our approach is
evaluated on the challenging NYU v2 and Pascal VOC datasets, outper-
forming comparable conventional methods in terms of object and pixel-level
performance.

Unlike the previous chapters, we do not focus on convolutional neural net-
works in this chapter. Rather, the CNN is taken as a black box classifier that
provides initial pixel-level probability distributions. We propose conditional
random field models that refine and significantly improve the initial CNN
segmentations by incorporating high-level contextual information. There
exists further promising research opportunities in adapting metric learning
approaches for pixel-wise feature embedding learning. Additional research
opportunities exist in the investigation of open set semantic segmentation
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problems. As the initial classifier is treated as a black box, the methodolo-
gies proposed in this chapter could also be used in conjunction with such
open set metric learning models. These possibilities are discussed in Section
7.2. Note that the research presented in this chapter was conducted and pub-
lished prior to the research presented in Chapters 4 and 5.

6.1 Motivation

Semantic segmentation is the problem of dividing an image into semanti-
cally meaningful regions. This is generally achieved by predicting a pixel-
wise labelling, in which each pixel is assigned one out of a set of semantic
labels. The semantic labels belong to what are often referred to as “things”
or “stuff”. Classes that are defined as “things” are usually those with a well
defined shape and which can be described as an object. Examples of such
classes include chair, table, car or human. On the other hand, classes that are
referred to as “stuff” have less well defined, amorphous shapes and often
lack objectness. These classes include floor, grass, road and water. Seman-
tic segmentation allows both categories of semantic classes to be predicted
together, enabling a rich and detailed representation of the environment.

Semantic segmentation is an important problem in robotic vision, as it si-
multaneously provides the robot with information about the structure of the
environment (e.g. floor, wall, road and grass), as well as information about
objects in the environment (e.g. chair, table, car and human), with which the
robot may attempt to make affordances. The structural information is often
required for the purpose of navigation, for example, manoeuvring through
a doorway or avoiding rough terrain, such as grass or gravel. Information
about objects is a vital component of robot decision making. For example,
interaction with a human begins with the detection and recognition of a hu-
man. The same is true for manipulating or avoiding certain objects.

Conventional approaches to semantic segmentation seldom consider the
problem from a robotics perspective and as a result give little consider-
ation to robot-specific factors. Additionally, as conventional approaches
are not designed with robotic factors in mind, they are not evaluated with
metrics that are appropriate for robotic applications. The problems with
conventional semantic segmentation approaches, when considered through
a robotics lens, are discussed in Section 6.1.1. Details on how the proposed
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approach addresses these issues are also presented. Similarly, Section 6.1.2
discusses the problems with conventional evaluation measures and details
how our proposed measure addresses these problems.

6.1.1 Semantic Segmentation for Robotic Vision

The design of a semantic segmentation system demands special consid-
erations when examined from a robotics point of view. Conventional
approaches generally treat the output segmentation as the end goal and
therefore do not consider any requirements of real-world applications in
the design process. In robotics, the segmentation itself is not the goal; the
segmentation is an enabler of decision-based robotic operation. In a robotics
context, any object detection can trigger some sort of costly robotic action.
This action may be further computation, as the robot attempts to learn more
about the object, such as its pose or instance label. Alternatively, the action
may be physical, such as the robot attempting to manipulate an object or
navigate over some terrain. In these situations, erroneous object detections
can be detrimental to the operation of the robot. As such, approaches for
robotics should give a high level of significance to false object detections.

Conventional approaches to semantic segmentation give greatest signif-
icance to pixel-level performance. The degree to which an incorrectly
labelled image region is penalised is proportional to the size of that region,
that is, the number of pixels. In practical applications, the size of an object
detection is often irrelevant; a small object may have just as much semantic
importance as a large object. Semantic regions of any size can trigger costly
robotic action, and as such, a semantic segmentation approach for robotic
applications should not optimise performance at the level of pixels. An ap-
proach that is suitable for robotics should focus on minimising the number
of false positive and false negative object detections, without regard to size.

6.1.1.1 Dense Conditional Random Fields

Many state-of-the-art approaches to semantic segmentation combine the use
of a convolutional neural network and a fully connected, or dense, condi-
tional random field (CRF) [182]. A dense prediction convolutional neural
network, such as a fully convolutional network (FCN) [80], predicts pixel-
wise class probability distributions. The segmentation from the network is
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then refined by the conditional random field. A CRF allows the incorpora-
tion of contextual and structural information into the inference process, as
well as object boundary refinement and the enforcement of local smoothness
[90, 185, 186]. An energy function is defined over nodes (such as pixels) in
a graphical structure and the CRF inference algorithm aims to find the state
(pixel labels) that minimises the energy. The energy function is usually a
combination of unary terms, that is, the energy at a single node, and higher
order terms, such as the pairwise energy between connected nodes. The in-
terconnection of image subregions in the graph allows the prediction of a
smooth and contextually consistent segmentation. A detailed discussion on
neural networks for dense prediction can be found in Section 2.3.2 and a dis-
cussion on conditional random fields is carried out in Section 2.6.

The conventional densely connected CRF [182] defines a node for every pixel
in the input image. A connection, or edge, is defined between every possi-
ble pair of pixels. That is, every pixel has an edge to every other pixel in
the image. The dense CRF graph is illustrated in Figure 6.1. This structure
means that both short range contextual information, which is useful for la-
bel smoothness and local consistency, and long range information, such as
higher-level contextual information, can be incorporated. An energy func-
tion that is defined over a fully connected graph structure is computation-
ally complex to minimise. The authors of [182] make approximate inference
tractable and efficient with mean-field approximation and by placing a Gaus-
sian constraint on the pairwise potentials.

Such approaches have shown impressive results in terms of pixel-level per-
formance, particularly with the refinement of object boundaries and other
fine-grained details in the image. However, since these CRFs optimise at
the level of pixels, the object performance, such as the number of false posi-
tive and false negative object detections, is less impressive. Additionally, the
effectiveness of such dense approaches on pixel-level performance is dimin-
ished when the initial probability distributions, provided by the fully convo-
lutional network, are poor. This may occur when evaluating on challenging
datasets with a large number of class labels and a small amount of training
data. This is seen in the example segmentation shown in Figure 6.2. The seg-
mentation produced by the neural network contains many regions of spu-
rious labels that the dense CRF struggles to correct. Large regions that are
incorrectly labelled by the FCN are particularly difficult for the dense CRF to
refine. Since false object detections in a robotics context can result in costly
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FIGURE 6.1: Structure of a fully connected, dense conditional
random field. Each pixel has a node in the CRF and there is a
connection from each node to every other node in the graph.

For convenience, only a small 6× 4 example is shown.

computation or real-world action, we believe that a robotics approach to se-
mantic segmentation should consider object-level performance as important,
if not more, than pixel-level performance.

Conditional random fields make a Markov assumption; it is assumed that
nodes are independent of other nodes given their neighbours (see Section
3.3.1). This is clearly not the case with CRFs for image segmentation. The
errors between pixels or image regions are highly correlated; the factors that
lead to an example pixel being incorrectly classified as particular class are
very similar to the factors that lead to a nearby pixel also being incorrectly
classified as that class. When a large region of an image is incorrectly labelled
by a neural network, it is difficult for a pixel-level CRF to correct this misla-
belling, as there are a large number of nodes in the graph that believe the
same errors. Given enough incorrectly labelled pixels, the nodes consolidate
the errors amongst themselves and may become even more certain of the er-
roneous prediction. The incorrect assumption of independence of errors is a
significant contributing factor to the poor performance of densely connected
CRFs in terms of the object and region-level performance that is important
for robotics.
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(A) Image. (B) Ground truth.

(C) Unary (FCN). (D) FCN + dense CRF. (E) Ours.

FIGURE 6.2: (A) Input image from the NYU v2 dataset. (B)
Ground truth segmentation. (C) Segmentation produced by the
unary classifier used by our models (FCN [80]). (D) Segmenta-
tion produced by the commonly used fully connected (dense)

CRF [182]. (E) Segmentation produced by our approach.

6.1.1.2 Solution: Region and Hierarchical CRFs

In an effort to limit the amount of non-independent information that is
shared between nodes and therefore improve the ability of CRF approaches
to refine erroneous labels, we propose a region-based CRF, wherein nodes
represent semantically meaningful image regions. Treating each semanti-
cally distinct region of an input image as a node allows for easier correction
of spurious initial labellings provided by the neural network. This approach
places a great deal of significance on higher-order performance, such as
object regions, compared to the performance at the pixel-level. Penalising
segmentations at the semantic region-level results in a system that favours
the reduction of false object detections, over more fine-grained refinements
such as object boundary localisation. This is appropriate for robotics, as any
false object detection can trigger costly robotic action.

Further to the semantic region CRF, we propose a novel hierarchical CRF that
allows additional fine-grained label refinement. We show how a semantic re-
gion CRF can be combined with a dense, pixel-level CRF. This formulation
combines the best of both CRF structures: minimal false object detections
and the conservation of fine-grained image details. Our proposed approach
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significantly outperforms a conventional dense CRF in terms of false object
detections. The hierarchical CRF also results in an improvement in conven-
tional pixel-level evaluation measures, compared to a standard dense CRF.

A key result of our proposed approach is shown in Figure 6.2. The initial
segmentation produced by the fully convolutional network is riddled with
false positive object detections. Combing the FCN with a dense CRF results
in a small improvement, but the CRF fails to removed many large regions of
false positive labellings. Our proposed semantic region CRF significantly re-
duces the number of false object detections, which we believe makes it more
suitable for robotic applications. Further, the inclusion of a pixel-level CRF
in a hierarchical model means that fine-grained refinement can occur, if that
is required for a particular task.

6.1.2 Evaluating Segmentations for Robotic Vision

Since conventional approaches to semantic segmentation optimise at the
level of pixels, performance is also measured and evaluated at the level of
pixels. As discussed in Section 6.1.1, pixel-level approaches are not suitable
for robotic vision, as any object detection, regardless of size, can trigger some
sort of costly robotic action. Therefore, object-aware measures must also
be analysed, in addition to conventional evaluation measures, to effectively
evaluate an image segmentation for robotic vision. In Section 6.1.2.1, the
shortcomings of conventional measures are discussed. These shortcomings
motivate our proposed evaluation measure, which is briefly introduced in
Section 6.1.2.2.

6.1.2.1 Conventional Evaluation Measures

Commonly used pixel-level measures for evaluating a segmentation include
pixel accuracy and mean class intersection-over-union (mIoU). Pixel accu-
racy is simply the fraction of pixels that are assigned the correct class label.
For the mIoU measure, the intersection-over-union is first computed sepa-
rately for each class label. This is done by dividing the number of pixels that
are both classified as a given class and truly belong to that class (intersection),
by the number of pixels that are classified as the given class or truly belong
to that class (union). The mean class intersection-over-union is found by av-
eraging across class labels. Both of these evaluation metrics lack the ability to
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effectively measure the object and region-level performance that is important
for robotic applications. In order to demonstrate the limitations of pixel-level
evaluation measures, we compute the measures for example segmentations
in Section 6.7.4.

6.1.2.2 Solution: Object-Aware Metric

In order to address the problems associated with pixel-level evaluation met-
rics for robotic vision semantic segmentation, we propose an object-aware
evaluation measure. The proposed measure significantly penalises any false
positive or false negative object detection. Recognising that object detections
of any size can trigger costly robotic action, the number of pixels in an ob-
ject detection is not considered in the counting of true positives, false neg-
atives and false positives. This avoids the selection of hard thresholds on
the overlap amount between predicted and ground truth object regions. The
overlap amount, that is, the pixel-level precision and recall, is incorporated
in introduced intersection-over-area terms. These terms also ensure that the
evaluation measure cannot be gamed by erroneous growing and merging of
regions. In Section 6.7.4, we show how our proposed object-aware measure
captures information that is important for rigorous evaluation of an image
segmentation. We also show how conventional pixel-level measures fail to
capture this information.

6.2 Contributions

In this chapter, we present a region-to-pixel hierarchical CRF approach to se-
mantic segmentation for robotic applications. Our approach results in fewer
false positive object detections than comparable conventional approaches, as
seen in the example result in Figure 6.2. An overview of our approach is
shown in Figure 6.3. We also proposed a novel object-aware evaluation mea-
sure for semantic segmentation that is appropriate for robotic vision. The
main contributions of this chapter have been presented in a peer-review pub-
lication [26] and can be summarised as follows:

• We present a performance metric that gives more significance to false
positive and false negative object detections compared to pixel-level
metrics, as appropriate for robotic applications (Section 6.7).
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FIGURE 6.3: Overview of our approach. A CNN produces
initial pixel-level unaries from which semantic regions can be
segmented. Messages from the semantic region-level CRF are
propagated to the pixel-level and combined with the original
unaries to produce modified unary terms for a dense pixel CRF.
The region CRF layer of our hierarchical approach reduces the
number of false positive object detections, while the pixel CRF
layer refines object boundaries and incorporates fine-grained

information to further improve the segmentation.

• We present a conditional random field model that optimises at the se-
mantic region-level, resulting in significantly fewer false positive object
detections at a given true positive rate, compared to conventional ap-
proaches (Section 6.5).

• We show how a region-level random field can be combined with a
pixel-level random field, in a hierarchical manner, to achieve both bet-
ter object and pixel-level performance than conventional approaches
(Section 6.6).

• We show the advantage of using semantically meaningful regions
rather than data-driven image regions for improving object-level per-
formance in a region CRF (Section 6.8.3).

• Finally, we demonstrate how our approach is able to perform well on
challenging datasets with small numbers of annotated training images
(Section 6.8.3).

6.3 Related Work

In this section, we summarise and review conditional random field meth-
ods for semantic segmentation. A detailed review of dense and structured
prediction literature can be found in Chapter 2.
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6.3.1 CNNs and Pixel-level CRFs

Several approaches have been developed to adapt deep convolutional neural
networks for dense, pixel-wise prediction. Long et al. [80] present a fully con-
volutional network that replaces the fully connected layers of a traditional
CNN with convolutions. This produces a coarse prediction map that is sub-
sequently upsampled in the network, resulting in a dense pixel-level predic-
tion. Extensions of FCN include ones that replace the upsampling layers with
a full decoder network [81, 82, 83, 84, 85, 86, 87]. Further approaches incor-
porate dilated or atrous convolutions [89, 90, 91, 92, 93] into the network to
avoid the use of downsampling pooling layers.

Conditional random fields [13] in the context of semantic segmentation allow
contextual and structural information, such as class label compatibility and
spatial smoothness, to be elegantly incorporated into the inference process.
Shotton et al. [178] employ a four-connected adjacency CRF to achieve local
label smoothness, however, such a formulation is limited in terms of incor-
porating longer range information. A fully connected, or dense CRF [182],
models long range contextual information by defining connections between
every pair of pixels. Inference is made tractable by using mean-field approx-
imation. The pairwise potentials are constrained to be Gaussian, however,
Campbell et al. [184] relax this constraint by learning non-parametric po-
tentials directly from the training data and encoding the desired potentials
as Gaussian kernels. These models are able to refine object boundaries and
enforce spatial smoothness. However, they are less successful at removing
many regions of spurious labels and their effectiveness is further diminished
when the unary terms are poor. We address this problem in Section 6.5.

The representational power of CNNs is combined with the contextual mod-
elling of CRFs in [90]. A fully connected CRF is used as a post processing
step after a CNN. Zheng et al. [185] formulate a CRF as layers in the neural
network, allowing end-to-end joint learning of the CNN weights and CRF
parameters, while higher order potentials are included by Arnab et al. in
[187].

A related but different task to semantic segmentation is simultaneous detec-
tion and segmentation [78, 223, 224], which aims to detect and densely label
individual object instances. In this work, however, we focus on improving
CRF technologies for conventional semantic segmentation, which can be a
precursor to full instance segmentation.
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6.3.2 Region-level CRFs

Previous approaches that incorporate CRFs at the image region-level gen-
erally use regular super-pixels as regions [225, 226], or larger data-driven
and contour-aware regions [227, 228]. In contrast to these approaches, we
use semantically meaningful regions derived from the unary potentials com-
puted by a CNN. We find such an approach, rather than using data-driven
regions such as super-pixels or clustered super-pixels, is able to achieve bet-
ter object-level performance. Furthermore, our use of regions is not in pursuit
of computational efficiency, but as an approach to limit the amount of depen-
dant information shared between related pixels; computational efficiency is
a welcome by-product of this.

6.3.3 Hierarchical CRFs

We propose combining a region-level CRF with a fully connected pixel-level
CRF in a hierarchical manner. Several other pieces of work involve hierarchi-
cal, or multi-scale, CRFs but contain key differences to our approach. Kumar
and Herbert [229] present a two-layer hierarchical CRF that first performs
inference at the pixel-level, before passing information via directed edges to
the region layer of the CRF. Unlike [229], our approach first performs infer-
ence at the semantic region-level, before refinement takes place in the pixel
layer. Unary potentials in [229] are from hand crafted features, while we use
deep CNNs to obtain initial distributions. Moreover, the primary purpose of
the pixel layer of the CRF in [229] is to enforce local smoothness and as such
it is formulated as an adjacency CRF. In contrast, our approach uses a fully
connected (dense) CRF at the pixel layer to employ long range contextual
information.

The hierarchical CRF proposed by Ladický et al. [230] combines features from
different image quantisation levels (pixels, segments and super-segments)
into a single random field model. Graph cut techniques are used to minimise
the energy, taking between 6 and 20 seconds for a single image [231]. The
energy is minimised across all layers of the graph jointly. Our approach,
however, minimises the energy at the semantic region-level first, with no
connections or interactions with the individual pixels. After this first stage
of inference, we propagate region-level messages to the original pixel-level
unaries, obtaining modified unary terms for the pixel layer of the CRF. Such
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an approach gives more significance to spurious regions of labels, regardless
of the size of those regions. This greatly reduces the number of false positive
object detections, as appropriate for robotic applications, while also refining
the pixel-level performance.

6.4 Conditional Random Fields

In this section, we give an overview of conditional random fields for seman-
tic segmentation and introduce the notation used for the remainder of the
chapter. Background information on conditional random fields can be found
in Section 3.3.

6.4.1 Notation

A set of random variables {X1, . . . , XN} defines a random field X, in which
each random variable is defined over a set of class labels L = {1, 2, ..., L}. In
the case of image segmentation, N may be the number of pixels in the image
or the number of larger image regions to be represented in the model. An
assignment x to X, where all xi ∈ L, is a valid segmentation.

Given a graph structure G that defines the interactions between nodes (given
by X), a CRF works to find the assignment of x to X, or the labelling, that
maximises the following distribution:

Pr(X = x | I) =
1

Z(I)
exp(−E(x | I)), (6.1)

where I is the image, E(x | I) is the energy of the labelling and Z(I) is the
partition function that normalises the distribution. The energy E(x | I) is de-
fined as the sum over clique cost functions that describe the cost or potential
of a particular labelling.

6.4.2 Pairwise Conditional Random Fields

A commonly used and simple graph structure is a pairwise CRF, in which
only two types of cliques are defined: unary and pairwise. Unary poten-
tials are the cost of assigning a label to a particular node when considering
no interaction with other nodes. Pairwise potentials are the cost associated
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with assigning labels to two nodes that interact via an edge in the graph G.
The energy to be minimised in order to find the best labelling in a pairwise
random field is:

E(x | I) =
∑
i∈N

ψi(xi) +
∑
i∈N
j∈Ei

φij(xi, xj), (6.2)

where ψi(.) is the unary potential, or cost, at node i, φij(., .) is the pairwise
cost between nodes i and j, and E i is the set of nodes connected to node i via
direct edges.

The unary potentials are provided by some classifier that produces distribu-
tions over class labels. All unary potentials discussed in the remainder of this
chapter are from a fully convolutional network [80], which is often used as
a semantic segmentation baseline for comparison. FCN produces pixel-level
distributions that result in generally smooth labellings, devoid of fine-grain
noise. A more detailed discussion on fully convolutional networks can be
found in Section 2.3.2.1. Pairwise potentials can be hand crafted based on
prior knowledge of likely label configurations or can be learned by standard
optimisation approaches, as discussed in Section 6.5.4.

6.5 Semantic-Region CRF

This section details our proposed region-based conditional random field for
semantic segmentation.

6.5.1 Overview and Motivation

Rather than defining a node for each pixel in our proposed region CRF, an
initial segmentation is used to extract regions of the image that are each rep-
resented in the model by a node. Inference is carried out at the region-level,
but the final belief may be propagated back down to the pixels. We define
edges between neighbouring regions and use the pairwise energy definition
in Equation 6.2. The structure of the region CRF can be seen in Figure 6.4.
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FIGURE 6.4: Overview of the proposed semantic region CRF.
A unary classifier, such as a fully convolutional network, pro-
duces a per-pixel unary distribution and an initial segmenta-
tion. The initial unary regions are regions of semantic signif-
icance, according to the unary classifier. Each semantic region
has a corresponding node in the region CRF. Region-level unary

terms are computed from the underlying pixel unaries.

Such a formulation allows many erroneous regions of pixels to correct their
labels, which would otherwise not have been possible in a dense CRF frame-
work due to the propagation and consolidation of errors amongst seman-
tically dependant pixels. Our approach coincides well with the needs of a
robotic vision system, as described in Section 6.1.1, since the presence of false
positive or false negative object detections can have costly consequences in a
robotic application.
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6.5.2 Initial Regions and Clique Potentials

An initial segmentation of the image must be obtained in order to construct
the random field. This segmentation provides the image regions that will
be represented as nodes in the model. The approach can use any method
to obtain these initial regions, however, we propose to use the semantic re-
gions from the segmentation produced by the unary classifier (FCN). This is
illustrated in Figure 6.4. Such an approach means that the interactions in the
model are between semantically distinct image regions, limiting the amount
of dependent information shared between nodes. This is in comparison to us-
ing a data-driven segmentation that finds image regions based only on pixel
intensities, such as super-pixels or clustered super-pixels. As with pixels, us-
ing data-driven initial regions that are not based on semantic information,
results in propagation of errors between semantically non-independent im-
age regions. This limits the ability of the random field to correct spurious la-
bellings. Section 6.8.3 investigates the effect of using a data-driven approach
to obtain an initial segmentation compared to using semantic regions from
the unary classifier.

Per region unary distributions are calculated by integrating over the under-
lying pixel unary distributions (from FCN) in each region. We denote the
region-level potentials with superscript (r) and the original pixel unaries
from FCN with superscript (FCN). The region-level unary potential for re-
gion i is:

ψ
(r)
i (xi) = − ln

(
u

(r)
i (xi)

)
, (6.3)

where u(r)
i (.) is the normalised region probability distribution for region i,

calculated from the underling FCN pixel probabilities.

The region pairwise potential between connected regions i and j is:

φ
(r)
ij (xi, xj) = − ln (f(xi, xj)) , (6.4)

where f(., .) is a transitional probability function between class labels. The
parameters of this function enable high-level contextual information to be
incorporated into the inference process. Learning of these parameters is dis-
cussed in Section 6.5.4. Region-level ground truth distributions are com-
puted by integrating over the underlying pixel ground truths.
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6.5.3 Energy Minimisation

Finding the labelling that minimises the pairwise energy defined in Equation
6.2 is intractable. We use loopy belief propagation [177] to find an approxi-
mate solution, by passing messages between nodes across edges. The mes-
sages contain information from the unary distribution at the sender node,
the pairwise cost between the two connected nodes, and previous messages
received by the sender node. Messages are propagated until convergence,
at which point the belief may be read out. The belief at a node can be nor-
malised to obtain a probability distribution over classes. The message update
equation is:

mt+1
ij (`) =

L∑
`′=1

f(`, `′)u
(r)
i (`′)

∏
k∈Ei\j

mt
ki(`

′)

 , (6.5)

where mt+1
ij (`) is the message from node i to node j for label `, t is the time

step, L is the total number of class labels and E i \ j is the set of nodes di-
rectly connected to node i via an edge, excluding the receiver node j. Pre-
vious messages sent by the receiver node are ignored such that information
that was originally sent from that node isn’t received back. The unary and
pairwise terms, ui(.) and f(., .), are described in Equations 6.3 and 6.4, re-
spectively. Equation 6.5 is the message formula for the sum-product variant
of the belief propagation algorithm. We find this approach works well in our
experiments, however, it should be noted that a max-product variant is also
commonly used.

A caveat of belief propagation between regions is that a very small region
can have undue influence over the state of very large regions. Although this
disregard for region size is by design, and is indeed part of why our approach
performs well at the object-level, excessive influence from very small regions
is not desired. A scale factor is introduced to the belief read out in order
to quell this effect. The scaling term is min

(
nk
nj
, 1
)

, where nk and nj are the
number of pixels belonging to the sender and receiver nodes, respectively.
This term ensures that very small regions cannot overly influence very large
regions. The saturation at a value of one ensures that larger regions do not
dominate the information being propagated around the graph.
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The log-belief at region j after message passing is:

ln (bj(`)) = ψ
(r)
i (`) + w

∑
k∈Ej

ln
(
mT
kj(`)

)
min

(
nk
nj
, 1

)
, (6.6)

where bj is the belief of label ` at region j, w dictates the level of influence
of incoming messages and T is the final time step of the belief propagation
algorithm. Normalising the belief at a region results in the probability distri-
bution over labels.

Since our approach passes messages between regions that are comprised of
pixels, the belief can be read out at either the region-level, changing the labels
of all underlying pixels together (Equation 6.6), or at the pixel-level, allowing
individual pixels to change labels independently (Equation 6.7). Belief read
out at the region-level naturally results in fewer false positive object detec-
tions, however, propagation to the pixel-level is important for initialising the
dense layer of the hierarchical CRF discussed in Section 6.6, allowing refine-
ment of both the pixel and object-level labelling.

Let p be a pixel belonging to region j. The pixel belief, denoted as bp, is found
by combining the FCN pixel unary potential ψ(FCN)

p , with the region-level
messages. This is seen in Equation 6.7. Again, the probability distribution
over class labels at pixel p is found by normalising the belief.

ln (bp(`)) = ψ(FCN)
p + w

∑
k∈Ej

ln
(
mT
kj(`)

)
min

(
nk
nj
, 1

)
(6.7)

6.5.4 Learning Pairwise Potentials

The pairwise terms allow contextual and structural information to be mod-
elled in the random field. In order to obtain good pairwise potentials, we
learn the parameters using the first order optimisation approach of gradient
descent. Full details on the gradient descent algorithm can be found in Sec-
tion 3.1.1. We define the objective function J(F) as the log sum error over the
nodes (regions) in the graph, where F is the set of pairwise potential param-
eters (e.g. f(`, `′)). Minimising the objective function involves differentiating
the belief from Equation 6.6, after normalisation.

The update step of gradient descent allows the parameters to become either
positive or negative. As the matrix-vector multiplication of these parameters
with the unary terms (Equation 6.5) is carried out in the probability domain,
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and since negative probabilities are meaningless, it does not make sense for
the pairwise parameters to become negative. To alleviate this problem, the
pairwise terms are reparameterised in the log-space, e.g. f(`, `′) = eθ(`,`

′).
The objective function is minimised with respect to θ and all updates are
performed in the log-space. The effect of this on the derivatives of the objec-
tive function is seen in Equation 6.8. This reparameterisation allows the op-
timisation algorithm to operate in a meaningful way, ensuring that all f(`, `′)

remain positive.

∂J(θ)

∂θ(`, `′)
=

∂J(θ)

∂f(`, `′)

df(`, `′)

dθ(`, `′)
=

∂J(θ)

∂f(`, `′)
f(`, `′) (6.8)

6.6 Hierarchical Region-Pixel CRF

In order to further improve the semantic segmentation produced by the re-
gion CRF from Section 6.5, we propose a region-to-pixel hierarchical CRF
that allows fine-grained pixel refinement after inference in the region CRF.

6.6.1 Structure

Our hierarchical CRF consists of two layers: the first is the region-level CRF
model discussed in Section 6.5 and the second is a dense pixel-level, fully
connected CRF. Inference is first carried out in the region layer as described
in Section 6.5.3 and the pixel beliefs are used to calculate the unary potentials
for the dense pixel layer. Inference is then performed in the pixel layer to
produce the final labelling. The region layer of the model is used to optimise
region and object-level performance, particularly by reducing the number of
false positive object detections. A standalone dense CRF is far less effective at
this task, as discussed in Section 6.1.1.1. The pixel layer has edges connecting
every pixel with every other pixel in the image. This formulation is effective
at incorporating rich contextual information and carrying out refinement at
a finer level than the region CRF alone. Inference is carried out in the pixel
layer using mean-field approximation, as described in [182].
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6.6.2 Fully Connected Pixel Layer

The dense CRF model follows the pairwise graph energy described in Equa-
tion 6.2. Since a node is defined for every pixel, the subscripts p and q are
used for nodes in the dense CRF layer in order to differentiate from the i and
j subscripts used for regions in the region CRF layer. To distinguish between
the potentials from the region CRF, let the unary and pairwise potentials of
the dense layer be ψ(d)

p (xp) and φ
(d)
pq (xp, xq), respectively.

6.6.2.1 Pixel Layer Unary Potentials

Region-level messages from Section 6.5.3 are propagated down to pixels, as
described in Equation 6.7, to obtain pixel beliefs. The dense layer unary po-
tential is the normalised pixel belief after inference in the region CRF layer,
as seen in Equation 6.9.

ψ(d)
p (xp) = − ln

(
bp(xp)∑L
`=1 bp(`)

)
(6.9)

6.6.2.2 Pixel Layer Pairwise Potentials

Inference in fully connected CRFs with general potentials is intractable, as
such the pairwise potentials are constrained to be Gaussian kernels. This al-
lows efficient approximate mean-field inference using high-dimensional con-
volutions, as detailed in [182]. The pairwise potentials have the following
form:

φ(d)
pq (xp, xq) = µ(xp, xq)

A∑
a=1

waka(vp,vq), (6.10)

where µ(., .) is a label compatibility function, ka(., .) is a Gaussian kernel, vp
is a feature vector for pixel p and wa is a weight parameter for kernel ka. The
label compatibility takes the form of a Potts model, µ(xp, xq) = [xp 6= xq],
which equals one when the connected nodes are assigned different labels.
This means that the CRF will encourage pixels p and q to take the same label
when the sum of the kernel outputs for that connection is large.

We make use of three kernels, two of which follow the formulation in [182]:
a local spatial smoothness kernel (Equation 6.11), which encourages nearby
pixels to take the same label, and an appearance kernel (Equation 6.12),
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which encourages pixels within a larger radius that have similar appearance
to take the same label. These kernels are represented as:

k1(vp,vq) = exp

(
−
∥∥ρp − ρq∥∥2

2σ2
α

)
, (6.11)

k2(vp,vq) = exp

(
−
∥∥ρp − ρq∥∥2

2σ2
β

− ‖Ip − Iq‖2

2σ2
γ

)
, (6.12)

where ρp is the position and Ip is the colour vector of pixel p. The parameters
σα, σβ and σγ control the degree of closeness in terms of spatial or colour
distance considered to be important. For example, the value of σα is usually
small, as label smoothness should only be encouraged between very nearby
pixels. The parameter σβ is generally larger, so that the appearance of pixels
within a large radius have some influence over the final labelling of the pixel.
Selection of the parameters is discussed in [182].

When the beliefs following the region CRF inference are read out at the
region-level, as in Equation 6.6, a new segmentation is produced. These
new regions represent contiguous portions of the image that are believed,
according to the region CRF, to largely belong to the same object. To further
encourage underlying pixels in these new regions to take the same final
label, we introduce a higher order term that operates at the level of regions.
This term can be implemented as a pairwise kernel:

k3(vp,vq) = exp

(
−‖rp − rq‖

2

2σ2
ζ

)
, (6.13)

where rp is the index number of the region to which pixel p belongs. Since
this kernel is meant only to encourage pixels from the same region to take the
same label, σζ is set to be near zero. This means that the exponentiated term
will be a negative number with a large magnitude when the two pixels be-
long to different regions. As such, the influence of the kernel will disappear.
We find that incorporating this soft constraint over regions results in better
object-level performance.
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6.7 Object-Aware Evaluation Metric

Conventional evaluation metrics for semantic segmentation are based on
pixel-level performance. These metrics are insufficient to effectively eval-
uate an approach for real-world problems, such as robotic vision, as they
fail to give significance to object-level performance. Pixel-level evaluation
metrics assume that all pixels in an image have equal semantic significance.
For example, the correcting of some small number of incorrectly labelled
pixels for a given class would result in the same increase in performance,
regardless of the context of those pixels. In pixel-level metrics, refining the
boundaries of an already well segmented object is given the same impor-
tance as recognising some pixels as belonging to a previously undetected
object. To a robot, the information gain from detecting the previously unseen
object is significantly greater than the information gain from a small refine-
ment of boundary pixels. As such, an evaluation measure for robotic vision
should give great significance to object-level false positive and false negative
performance.

In this section, we propose an object-aware performance metric for seman-
tic segmentation that is appropriate for robotic vision. Unlike conventional
pixel metrics, our object-aware metric heavily penalises all false positive and
false negative object detections, regardless of size. We show that the pro-
posed measure captures information that pixel-level evaluation measures do
not. The proposed measure should be used in conjunction with pixel-level
measures to provide a better overall gauge of the performance of a semantic
segmentation system.

6.7.1 Object-Aware False Positives and False Negatives

The first step of computing the proposed evaluation metric is finding the
object-aware true positives, false negatives and false positives. In order to
compute these values, the ground truth label image, ground truth object in-
stance masks and the predicted label image are required. The ground truth
label image provides a pixel-wise true labelling, while the predicted label im-
age provides the pixel-wise label predictions from the semantic segmentation
approach that is under evaluation. The ground truth object instance masks
label each instance of a semantic class separately, allowing object-level per-
formance to be measured.
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The predicted label image is segmented into spatially contiguous regions of
the same predicted class. We define R = {R1, . . . , Ra} as a family of subsets
of the input image space I. Each subsetRi ∈ R is a predicted region of pixels
and the number of predicted regions is a. The predicted label for each region
is defined as ẑ = [ẑ1, . . . , ẑa] ∈ L. Similarly, we define O = {O1, . . . , Ob}
as another family of subsets of the input image space I, where each subset
Oi ∈ O is a set of pixels belonging to a ground truth object instance. The
number of true object instances is b and the true label for each instance is
defined as z = [z1, . . . , zb] ∈ L.

In the following equations, the Iverson brackets [condition] evaluate to a
value of one if condition is true, otherwise, the brackets evaluate to a value
of zero. The example condition ∃λ ∈ Λ: Q(λ) is true if there exists at least
one λ in the set Λ such that Q(λ) is true. The condition @λ ∈ Λ: Q(λ) is true
if there does not exist any λ in the set Λ such that Q(λ) is true. The opera-
tors ∨ and ∧ represent logical or and logical and, respectively. The empty set is
denoted as ∅. Object-aware true positives, false negatives and false positives
are defined and calculated as follows:

• True positives (tp): The number of ground truth object instances that
have an overlap with a predicted region of the correct class.

tp =
b∑
i=1

[∃Rj ∈ R : (Oi ∩Rj 6= ∅) ∧ (zj = ẑi)] (6.14)

• False negatives (fn): The number of ground truth object instances that do
not have an overlap with a predicted region of the correct class.

fn =
b∑
i=1

[@Rj ∈ R : (Oi ∩Rj 6= ∅) ∧ (zi = ẑj)] = b− tp (6.15)

• False positives (fp): The number of prediction regions that do not have
any overlap with a ground truth instance of the same class.

fp =
a∑
i=1

[@Oj ∈ O : (Ri ∩Oj 6= ∅) ∧ (ẑi = zj)] (6.16)

Equations 6.14, 6.15 and 6.16 compute the counts of true positives, false neg-
atives and false positives globally across all class labels. However, the counts
can also be computed on a per-class basis. In Section 6.8, we evaluate both
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FIGURE 6.5: Computation of the object-aware true positives,
false negatives and false positives, as well as the intersection-
over-area terms for a simple example. There are three ground

truth regions and four predicted regions.

with global and mean class measures. A simple example is shown in Figure
6.5, illustrating how global and per class true positives, false negatives and
false positives are found.

6.7.2 Object-Aware Precision and Recall

Precision and recall measures can be computed from the object-aware true
positives, false negatives and false positives. However, these measures alone
are not sufficient to evaluate performance, as the erroneous growing and
merging of predicted regions of the same class is always beneficial or neu-
tral for that class, in that it will potentially reduce false positives with no
impact on false negatives. To alleviate this issue and ensure that the measure
cannot be gamed by such methods, an intersection-over-area (IoA) term is
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introduced to the precision (Equation 6.17) and recall (Equation 6.18) calcu-
lations. Again, these measures can be computed globally across all classes or
on a per class basis. For notational convenience, Equations 6.17-6.20 describe
the global measures. Figure 6.5 illustrates the per class calculation.

P IoA =
tp IoAr

tp+ fp
(6.17)

RIoA =
tp IoAgt

tp+ fn
(6.18)

The IoAr term for a given class is the intersection of the predicted region and
ground truth instance, divided by the area of the predicted region. The IoAgt

term is the intersection of the predicted region and ground truth instance,
divided by the area of the ground truth instance. These are calculated as:

IoAr =

∑a
i=1

∑b
j=1 |Ri ∩Oj| [zi = ẑj]∑a

k=1 |Rk| [Rk is not a false postive]
, (6.19)

IoAgt =

∑a
i=1

∑b
j=1 |Ri ∩Oj| [zi = ẑj]∑b

k=1 |Ok| [Ok is not a false negative]
, (6.20)

where |Rk| is the size of the region Rk, that is, the number of pixels in the
region, and [Rk is not a false postive] is equal to one if region Rk is not a false
positive and equal to zero if it is a false positive. These IoA measures are
calculated over the entire image. P IoA and RIoA are the object-aware pre-
cision and recall, marked with IoA to distinguish them from conventional
precision and recall. Including the ratio term between the prediction and
ground truth overlap area, and the total area of the predicted region (for pre-
cision) or ground truth instance (for recall), ensures that the metric cannot be
gamed by the erroneous growing and merging of regions. The computation
of the intersection-over-area terms is shown for a simple example in Figure
6.5, both globally and on a per class basis.

A simple alternative to the intersection-over-area (IoA) terms would be to set
a threshold on the intersection size. True positives would only be counted
if the overlap between the predicted region and ground truth instance was
larger than some threshold. However, the setting of such thresholds is dif-
ficult. Introducing the intersection-over-area terms allows us to avoid the
selection of hard thresholds. True and false detections are determined based
on any overlap between predicted regions and ground truth instances, with
the IoA measures addressing the issue of the size of the overlap.
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6.7.3 Object-Aware F-Measure

When evaluating a classification system, it is often useful to combine pre-
cision and recall into a single value for easy comparison. The F-measure
considers both the precision and recall, allowing the importance of each to
weighted. Our general object-aware F-measure is defined as:

F IoA
β = (1 + β2)

P IoARIoA

(β2P IoA +RIoA)
, (6.21)

where β weights the importance of precision and recall. When β > 1, more
emphasis is placed on false negatives, weighting the importance of recall
higher than precision. When β < 1, less influence is placed on false nega-
tives and the importance of precision is weighted higher than recall.

The relative importance of precision and recall can be difficult to determine
and is likely to be specific to the application. In Section 6.8, we consider only
the equal weighting of precision and recall by analysing the F-measure when
β is equal to one. The formula for our object-aware F1-measure is shown
in Equation 6.22. This metric should be considered along with conventional
pixel metrics to better understand the performance of an approach.

F IoA
1 = 2

P IoARIoA

(P IoA +RIoA)
(6.22)

6.7.4 Example Evaluations

In this section, we evaluate example segmentations using pixel-level mea-
sures and the proposed object-aware measures. These examples illustrate
the importance of object-level performance when evaluating a segmentation.

6.7.4.1 Conventional Pixel Measures

We compare our proposed object-aware metric to two conventional pixel-
level evaluation metrics. The two measures are described below, where M is
the total number of pixels, L is the number of class labels, y = [y1, . . . , yM ] are
the true pixel labels and ŷ = [ŷ1, . . . , ŷM ] are the predicted pixel labels.
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• Pixel Accuracy (Pixel Acc.):

Pixel Acc. =
1

M

M∑
i=1

[yi = ŷi] (6.23)

• Mean Class Intersection-over-Union (Pixel mIoU):

Pixel mIoU =
L∑
`=1

(∑M
i=1 [(yi = `) ∧ (ŷi = `)]∑M
j=1 [(yj = `) ∨ (ŷj = `)]

)
/ L (6.24)

6.7.4.2 Example Segmentations

Figure 6.6 shows the example segmentations. The scene, which is shown in
Figure 6.6A, consists of three semantic instances from two classes: one table
and two coffee mugs. A ground truth segmentation is seen in Figure 6.6B.
Example segmentations are shown in Figures 6.6C-6.6F. The segmentations
in Figures 6.6C and 6.6D contain the same number of correctly classified pix-
els per class. Similarly, the segmentations in Figures 6.6E and 6.6F contain
the same number of correctly classified pixels per class.

Although the number of correctly labelled pixels is the same in Figures 6.6C
and 6.6D, the segmentations are significantly different. The segmentation
in Figure 6.6C completely misses one of the mugs, while the segmentation
in Figure 6.6D has correctly labelled pixels for both coffee mug instances.
From a robotic vision perspective, the segmentation in Figure 6.6D is much
more informative of the scene, as every semantic instance is captured. Com-
pared to Figure 6.6C, less of the coffee mug on the left-hand-side is correctly
labelled. However, the information gained by detecting some of the right-
hand-side coffee mug is greater than that of improving the labelling of an
already detected instance. This is because the presence or absence of an ob-
ject in a scene can trigger robotic action.

Again, the segmentations in Figures 6.6E and 6.6F are significantly different,
despite the same number of correctly labelled pixels. The segmentation in
Figure 6.6E contains one false positive detection of a coffee mug, while the
segmentation in Figure 6.6F contains three false positive detections of cof-
fee mugs. Since any false positive object detection can trigger some sort of
robotic action, false positives should be minimised for robotic vision appli-
cations. As such, the segmentations in Figures 6.6E and 6.6F should not be
evaluated to the same performance level.
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TABLE 6.1: Conventional pixel-based evaluation metrics com-
pared to the proposed object-aware metrics on the example seg-

mentations from Figure 6.6.

Pixel
Acc.

Pixel
mIoU

Gbl.
P IoA

Gbl.
RIoA

Gbl.
F IoA
1

Mean
P IoA

Mean
RIoA

Mean
F IoA
1

Ex. 1 0.9594 0.6411 0.9594 0.6396 0.7675 0.9793 0.5809 0.6287
Ex. 2 0.9594 0.6411 0.9594 0.9594 0.9594 0.9793 0.6618 0.7340
Ex. 3 0.9305 0.5738 0.4652 0.9305 0.6203 0.5591 0.6465 0.5891
Ex. 4 0.9305 0.5738 0.6978 0.9305 0.7975 0.6127 0.6465 0.6283

(A) Image. (B) Ground truth.

(C) Example segmentation 1 (Ex. 1). (D) Example segmentation 2 (Ex. 2).

(E) Example segmentation 3 (Ex. 3). (F) Example segmentation 4 (Ex. 4).

FIGURE 6.6: Example segmentations of an input image.
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6.7.4.3 Evaluating the Example Segmentations

Table 6.1 evaluates the four example segmentations from Figure 6.6. Conven-
tional pixel-based metrics are shown, as well as the proposed object-aware
measures. Note that the mean class object-aware F-measure is computed by
finding the mean of the per class F-measures, not by using the mean class re-
call and precision. Looking first at Example 1 (Figure 6.6C and Ex. 1 in Table
6.1) and Example 2 (Figure 6.6D and Ex. 2 in Table 6.1), it can be seen that
the pixel-level evaluation metrics are the same for both segmentations. Any
difference in the quality of the segmentations is not recognised by the pixel-
level metrics. The proposed object-aware metrics, however, differ for the two
segmentations. The object-aware recall measures are greater for Example 2,
since Example 1 completely misses one of the coffee mugs, while Example 2
detects both. Consequently, the object-aware F1 measure is also greater for
Example 2. The object-aware precision measures are the same, since there are
no false positives in either example.

For Example 3 (Figure 6.6E and Ex. 3 in Table 6.1) and Example 4 (Figure
6.6F and Ex. 4 in Table 6.1), the pixel-level metrics again fail to recognise
any difference in quality and report the same values for each example. Con-
versely, the proposed object-aware evaluation measures recognise the differ-
ence in the segmentations. The object-aware precision is greater for Example
4, as Example 3 has more object-aware false positives. This results in a larger
F1 measure for Example 4. Since all objects are correctly detected in both
examples, the recall measures are unchanged. These examples show that
our proposed evaluation metrics place great significance on object-level per-
formance. The proposed measures should be used alongside conventional
pixel-level measures to robustly evaluate a semantic segmentation approach
for robotic vision.

6.8 Experiments

The proposed semantic region CRF and hierarchical region-to-pixel CRF
are evaluated in this section. Performance is compared to conventional
approaches on two commonly used semantic segmentation datasets: NYU
v2 (Section 6.8.3) and Pascal VOC (Section 6.8.4). The compared approaches
are evaluated both quantitatively, by analysing object-aware and pixel-level
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performance metrics, and qualitatively, through visual inspection of example
segmentations.

6.8.1 Compared Methods

Five methods are evaluated and compared in the following experiments. The
two baseline methods are a fully convolutional network (FCN) [80] with no
CRF and an FCN with the commonly use dense CRF model [182]. For our
proposed approach, we analyse three different variants. The evaluation in-
cludes analysing performance of the region-based CRF only, compared to the
hierarchical region-to-pixel CRF model. The importance of using semantic
regions in the region CRF is also investigated. This is achieved by comparing
performance to a model with data-driven initial regions for the region-based
CRF. The compared methods are described in detail below. Note that for all
methods, the same unary terms from a fully convolutional network are used.

Unary (FCN) [80] The first baseline is simply the unary terms only, with
no conditional random field. A fully convolutional neural network is used
to provide the unary terms. A detailed description of fully convolutional
networks can be found in Section 2.3.2.1.

FCN [80] + Dense CRF [182] The second baseline is the commonly used set-
up of a fully convolutional network with the conventional pixel-level fully
connected CRF (dense CRF). Refer to Section 6.1.1.1 for full details on this
CRF model.

Region CRF with Semantic Regions A fully convolutional network with
our proposed region-level CRF. The regions used are the semantically mean-
ingful regions determined by the fully convolutional network. The regions
obey the semantic boundaries found by the FCN, as discussed in detail in
Section 6.5.2. Following message passing, beliefs are read out at the region-
level. This means that entire semantic regions change labels together. This
approach includes no pixel-level refinement. Full details can be found in
Section 6.5. Semantic regions are referred to as SemReg in the results.
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FIGURE 6.7: Example data-driven regions generated using the
approach from [190] (ImgReg). Unlike in other segmentation

figures, colour denotes the image region, not a class label.

Hierarchical CRF with Semantic Regions A fully convolutional network
with our proposed region-to-pixel hierarchical CRF. In the region layer of the
CRF, the semantically meaningful regions from the FCN are used as the initial
regions. Following message passing in the region layer, beliefs are read out
at the pixel-level, rather than the region-level. These new pixel distributions
are used as the unary terms in the dense pixel CRF layer, which carries out
fine-grained pixel-level refinement. Refer to Section 6.6 for full details.

Hierarchical CRF with Image Regions This approach enables analysis of
the importance of the proposed semantic regions in the region CRF. Again,
this method is a fully convolutional network with our region-to-pixel hier-
archical CRF. However, instead of the semantically meaningful regions from
the FCN, structurally meaningful data-driven regions are used in the region
CRF. The image regions are segmented based only on pixel intensities; con-
nected pixels with similar appearance are grouped together. The data-driven
segmentation is produced using the method described in [190]. This results
in contour-aware regions that vary significantly in size, from large planar
regions to small super-pixel sized regions. Some example regions found us-
ing this method are shown in Figure 6.7. The data-driven image regions are
referred to as ImgReg in the results.
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6.8.2 Evaluation Metrics

All compared approaches are evaluated using both conventional pixel-level
measures, as well as the proposed object-aware semantic segmentation mea-
sures that are appropriate for robotic vision. The evaluation measures that
are used in the following experiments can be summarised as:

• Gbl. F IoA
1 : Global object-aware F1 measure for robotic vision, as pro-

posed in Section 6.7.3.

• Mean F IoA
1 : Mean per-class object-aware F1 measure for robotic vision,

as proposed in Section 6.7.3.

• False Pos., fp: Total number of object-aware false positive detections,
as defined in Section 6.7.1.

• False Neg., fn: Total number of object-aware false negative detections,
as defined in Section 6.7.1.

• True Pos., tp: Total number of object-aware true positive detections, as
defined in Section 6.7.1.

• TPR: Object-level true positive rate, as defined in Equation 6.25. Can
also be referred to as the object-level recall.

TPR =
tp

tp+ fn
(6.25)

• Pixel Acc.: The fraction of pixels that are correctly classified. See Section
6.7.4.1 for a mathematical definition and discussion.

• Pixel mIoU: Mean per-class intersection-over-union of true pixel labels
and predicted pixel labels. See Section 6.7.4.1 for a mathematical defi-
nition and discussion.

6.8.3 NYU v2 Dataset

Our proposed approach is first evaluated on the challenging NYU v2 indoor
segmentation dataset [16].



Chapter 6. Improved Semantic Segmentation for Robotics 220

FIGURE 6.8: NYU v2 object-level performance of our approach
compared to the unary terms and the commonly used dense
CRF. Note the difference in scale of the two axes. All variants of
our approach outperform dense CRF, with fewer false positives
at a given number of false negatives. The importance of using
semantic regions (SemReg) over data-driven image regions (Im-

gReg) in the initial segmentation is also shown.

6.8.3.1 Experimental Set-up

The NYU v2 dataset contains 1449 images of indoor scenes, with pixel-level
and scene-level labels. In these experiments, only the pixel-level labels are
used. The standard training and test sets are used, which split the data into
795 and 654 images for training and testing, respectively. While the dataset
contains RGB-D images, in this work we evaluate all approaches using only
the RGB channels. There are over 1000 different semantic classes represented
in the dataset. The very fine-grained class labels are generally collapsed into
coarser classes. We evaluate using the challenging 40 class version put to-
gether by Gupta et al. [232]. Example class labels include wall, cabinet, table
and bed.

6.8.3.2 Quantitative Results

The object-level performance, in terms of the number of object-aware false
positives and false negatives, is seen in Figure 6.8. The curves show a varying
true positive rate and are generated by sweeping the level of influence of the
incoming messages to a node (w in Equation 6.6) from zero to one. The w
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TABLE 6.2: NYU v2 global and mean class object and pixel per-
formance at 65% object true positive rate (except unary, which

has a fixed TPR).

Gbl.
F IoA

1

Mean
F IoA

1

False
Pos.

Pixel
Acc.

Pixel
mIoU

Unary (FCN) [80] 18.9 14.0 58150 60.1 30.2
FCN [80] + Dense CRF [182] 28.8 22.3 24240 61.5 31.5
Ours: Region CRF SemReg 35.8 25.6 13371 61.7 30.7
Ours: Hierar. CRF SemReg 36.6 26.8 13159 62.7 31.7
Ours: Hierar. CRF ImgReg 33.2 25.0 17668 63.4 32.5

term controls the balance between the initial distributions (unary terms) and
the pairwise connections. A value of zero means that the pairwise terms
disappear, leaving just the unary terms from the FCN. A value of one means
equal weighting between the unary and pairwise terms. Note the scale of
the two axes. The unary term results in only 4260 false negatives but 58150
false positives. Unsurprisingly, no approach results in fewer false negatives
than the unary term alone. This is because the segmentation produced by the
unary classifier is littered with false positives. It would be possible to achieve
a very low number of false negatives simply by randomly classifying every
pixel. Of course, this would result in an extremely large number of false
positives.

All of our approaches outperform the commonly used dense CRF [182]. That
is, at a given number of object false negatives, our approaches result in fewer
false positive object detections. For a given object true positive rate (or false
negative rate) the best performance is achieved by either our region CRF or
our hierarchical CRF with semantic regions. The region CRF outperforms the
hierarchical approach when the object false negative rate is lower, while the
hierarchical CRF is the best performing method when the object false nega-
tive rate is higher. The true advantage of the hierarchical approach, however,
is that allowing pixel refinement results in superior object and pixel-level per-
formance compared to the dense CRF approach, while the region CRF only
outperforms dense CRF at the object-level. Compared to semantically mean-
ingful regions (SemReg), the data-driven image regions (ImgReg) result in
poorer object-aware performance. This shows the importance of using se-
mantic regions when aiming to reduce object-aware false positives.

Table 6.2 summarises the object and pixel performance of the evaluated
approaches at a given true positive rate (65%). In addition to the proposed
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object-aware evaluation measures, performance is also measured by the
number of false positives. The best pixel performance is achieved by the
hierarchical approaches, with the data-driven (ImgReg) variant outperform-
ing the semantic regions (SemReg). This is expected, since the data-driven
regions are far more contour-aware than the semantic regions from FCN.
This results in better object boundary delineation, as seen in Figure 6.9.
However, the data-driven regions suffer in terms of object-level performance
compared to the semantic regions, with a 34% increase in false positive object
detections.

Compared to our hierarchical CRF with semantic regions, the conventional
dense CRF results 84% more false positive object detections. Overall, our
hierarchical CRF with semantic regions outperforms dense CRF in the global
and mean measures at both the object-level and pixel-level. This is significant
because, as discussed in Section 6.1.1, all false object detections in robotic
applications can be costly.

Including FCN inference, our region CRF approach is 60% faster than dense
CRF. Our hierarchical approach, which includes a dense CRF, increases the
dense CRF inference time by only 5%. Inference on FCN takes between 50ms
and 190ms, depending on the network size used, on a GeForce GTX 1080
GPU. Dense CRF inference takes approximately 70ms per iteration, while re-
gion CRF set-up and message passing takes 7ms and a further 23ms to prop-
agate to pixels, on an Intel i7-4770 CPU. We report results using the largest
FCN model and five iterations of dense CRF.

6.8.3.3 Qualitative Results

Example segmentations are shown in Figure 6.9 for the five compared ap-
proaches. The segmentations produced by the fully convolutional network
are poor, with a large number of object-aware false positives of various sizes.
Poor unary terms are a challenge for conditional random fields. Compared
to the unary terms only and the conventional dense CRF approach, our se-
mantic region CRF results in a significant improvement in the segmentation.
Large regions of incorrect labels from the fully convolutional network are
unable to be corrected by the dense CRF in many cases. The dense CRF im-
proves the object boundary delineation, however, it does not perform well at
the task of correcting incorrect classifications from the FCN. Conversely, the
semantic region CRF performs very well at the task of correcting spurious
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FIGURE 6.9: Qualitative results on NYU v2. Colour denotes
class labels, with black used to represent unlabelled regions of

the ground truth segmentations.

object-aware detections in the unary terms. No pixel-level refinement occurs
in the region CRF segmentations, as entire semantic regions change labels
together.

Compared to the region CRF alone, the hierarchical CRF further improves the
segmentations. Firstly, the fine-grained refinement performed by the pixel-
level layer of the CRF results in better object boundary localisation. Secondly,
the hierarchical structure also results in a further reduction in object-aware
false detections. This can be seen, for example, on the curtains in the dining
room scene (Row 4) and throughout the bookshop scene (Row 5) in Figure
6.9.

Comparing the use of data-driven initial regions (ImgReg) to semantic initial
regions (SemReg) in the hierarchical structure, the data-driven regions result
in better object boundary localisation. This is expected, as the data-driven re-
gions are based on pixel intensities and result in structurally meaningful re-
gions that better obey object boundaries. This coincides with the pixel-level
performance of the data-driven regions outperforming the semantic regions
in Table 6.2. However, it is clear from visual inspection that the data-driven
regions result in significantly poorer object-level performance, with many
more false positive object detections. Again, this coincides with the object-
aware measure in Table 6.2. As discussed in detail in Section 6.1, pixel-level
performance is often less important than object-level performance for robotic
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TABLE 6.3: Object-aware (global and mean class) and pixel per-
formance on the Pascal VOC validation set.

Gbl. F IoA
1 Mean F IoA

1 Pixel mIoU

Unary (FCN) [80] 55.3 45.3 65.8
FCN [80] + Dense CRF [182] 66.0 55.1 67.3
Ours: Region CRF SemReg 71.6 60.3 67.0
Ours: Hierar. CRF SemReg 71.9 60.5 67.5

vision applications. Therefore, based on both visual inspection and analysis
of the object-aware and pixel-level evaluation metrics, the hierarchical CRF
with semantic regions is the best overall performing model. This model re-
sults in significantly fewer object-aware false positives, as well as superior
pixel-level performance, compared to a conventional dense CRF.

6.8.4 Pascal VOC

Our proposed approach to semantic segmentation is further evaluated on the
Pascal VOC dataset [15].

6.8.4.1 Experimental Set-up

We evaluate on the Pascal VOC dataset with the additional annotations of
the Semantic Boundary Dataset (SBD) [233]. In total, there are 8498 training
images with pixel-wise class labels. Since the test set annotations are not
publicly available, we evaluate using the 736 images of the validation set
that do not overlap with the training set of SBD. The dataset contains 20
object classes and a background class. Compared to the NYU v2 dataset,
Pascal VOC contains far more training images and almost half the number of
class labels. As such, the unary terms from the fully convolutional network
are significantly better than for the NYU v2 dataset in Section 6.8.3.

6.8.4.2 Quantitative Results

Results on the Pascal VOC dataset are summarised in Table 6.3. Both our re-
gion and hierarchical approaches outperform the conventional dense CRF in
the object-aware metrics, with the hierarchical approach also achieving better
pixel-level performance. Our hierarchical model results in a 16.6% and 5.9%
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FIGURE 6.10: Qualitative results on Pascal VOC Validation.
Ground truth segmentations are unlabelled at the object bound-
aries (shown as white). Non-white colours represent the class

labels.

increase in the global F IoA
1 measure, compared to the unary terms only and

the dense CRF, respectively. On the mean F IoA
1 measure, the improvement is

15.2% and 5.4%, respectively. The semantic region CRF on its own similarly
outperforms the baseline methods, but the hierarchical model is required to
improve performance on the pixel-level measure.

6.8.4.3 Qualitative Results

Example segmentations are shown in Figure 6.10. Due to the reduced num-
ber of classes and increased training set size compared to NYU v2, the dense
CRF approach has fewer false positives than the NYU v2 segmentations in
Figure 6.9. However, the dense CRF is still unable to refine many regions of
erroneous labels. Our hierarchical CRF with semantic regions successfully
corrects many of the object-aware false positives that the conventional dense
CRF is unable to refine. Again, these results show how our proposed ap-
proach is well suited to problems in which any false object detection can be
costly.
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6.9 Discussion and Conclusion

Semantic segmentation for robotic vision demands special considerations. In
robotic applications, the segmentation is not the end goal, but a tool to enable
robotic action. As such, any objects that are detected in a scene can trigger
some sort of costly robotic action. Conventional approaches to semantic seg-
mentation optimise pixel-level performance, meaning that little significance
is given to false object detections if the size of the detected object is small.
However, size is often irrelevant in a real-world scenario, as robotic action
can be triggered by objects of any scale. As such, semantic segmentation ap-
proaches for robotic vision should give a great deal of significance to object-
level performance. Conventional pixel-level CRFs not only penalise mistakes
based on size, but also struggle to refine large regions of incorrect predictions
due to the consolidation of non-independent errors amongst pixels.

In this chapter, we introduced a semantic region CRF that heavily penalises
any false object detection, regardless of size. Nodes in the CRF correspond to
regions of the image that, according to a fully convolutional neural network,
are semantically meaningful. In addition to the region-level CRF, a hierar-
chical CRF model that allows fine-grained pixel refinement is also proposed.
The hierarchical model allows the object-level improvement seen by the re-
gion CRF to be combined with the advantages of a pixel-level CRF, such as
better object boundary localisation. Finally, an object-aware evaluation mea-
sure for semantic segmentation is introduced. Due to the significance placed
on false object detections, the measure is more appropriate for robotic vision,
compared to conventional pixel-level measures.

Experimental results show both quantitatively and qualitatively that our pro-
posed approaches significantly outperform conventional pixel-level CRFs.
The region CRF results in a large reduction in object-aware false positives
at a given true positive rate. The hierarchical model further improves on the
object-level performance, while also improving on pixel-level performance
by allowing fine-grained refinement. The importance of using semantic re-
gions in the region CRF is investigated by comparing performance to a CRF
with data-driven regions. Experimental results show that the semantic re-
gions are important in reducing the number object-aware false positives. The
results suggest that compared to conventional methods, our proposed ap-
proach is well suited to real-world problems such as robotic vision, where
classifier outputs can trigger costly action.
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Chapter 7

Conclusion

In this thesis, the problems of visual representation learning and semantics
have been approached with robotic considerations in mind. Although moti-
vated by the needs of a robotic vision system, the methodologies proposed
in this thesis have applications in the wider field of computer vision. In this
chapter, the key contributions of the presented research are summarised and
future promising research opportunities are discussed.

7.1 Summary of Contributions

A deep metric learning approach for feature embedding learning and image
classification problems was proposed in Chapter 4. The feature embeddings
of all training set examples are defined to be Gaussian kernel centres, which
can be used to classify examples by summing the influence of nearby centres
in the feature embedding space. Training of the network was made feasi-
ble by the introduction of periodic asynchronous updates of the Gaussian
centres, allowing the true centre locations to drift from the stored locations.
We showed how to make the approach scalable by use of fast approximate
nearest neighbour search.

A thorough experimental evaluation analysed the proposed nearest neigh-
bour Gaussian kernel method in terms of distance metric learning and im-
age classification. Our approach outperforms state-of-the-art deep metric
learning methods on transfer learning problems, showing that feature em-
beddings co-locate in the metric space based on semantic similarity, despite
the classes being withheld during training. Finally, we showed that the pro-
posed approach outperforms a conventional softmax-based convolutional
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neural network on several image classification datasets, with the advantage
particularly large when training data is impoverished.

Novelty detection and open set recognition was investigated in Chapter 5.
A deep metric learning approach that allows examples from known classes
to be classified and examples from novel classes to be detected as such, was
proposed. This ability is a necessity of robotic and other real-world prob-
lems, where conventional closed set classifiers that silently fail by classifying
novel examples into a known class are unacceptable. Novelty measures for
use in deep metric spaces were investigated and compared. Experimental
evaluation demonstrated how the proposed approach is able to detect novel
examples more reliably than softmax uncertainty baselines and purpose built
novelty detectors and open set classifiers.

Open set problems were further explored in Chapter 5 by investigating the
active learning of observed novel classes. Recognising that learning should
not cease following initial model training, we investigated how a deep metric
learning model can efficiently learn from observed novel examples by query-
ing a user or oracle for labels. A query selection method was proposed that
favours the selection of examples that are both novel and from classes that
are common in the true distribution of data. We showed how the proposed
query selection approach can be incorporated into an active learning algo-
rithm. A method to improve the representation of novel classes with a la-
belling budget of zero was also explored. The proposed method uses spatial
relationships in the metric space to generate pseudo-labels for unlabelled ob-
servations. An in-depth experimental evaluation showed how our proposed
active learning approach significantly outperforms the compared methods
at small labelling budgets, enabling a vision system to efficiently learn from
observations and improve its understanding of the true distribution of data.

We turned to the problem of semantic segmentation in Chapter 6. The is-
sues with conventional semantic segmentation systems that optimise only
at the level of pixels were discussed, highlighting the importance of min-
imising false object detections for robotic applications. A semantic region
conditional random field model was proposed that significantly penalises
any false object detection. The importance of using semantically meaningful
image regions as conditional random field nodes was discussed. Further, a
hierarchical region-to-pixel conditional random field was proposed to allow
fine-grained pixel-level refinement.
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The shortcomings of conventional semantic segmentation evaluation meth-
ods were discussed, recognising that for robotic applications, pixel-level per-
formance is often less important than object-level performance. To that end,
an object-aware evaluation metric was proposed that heavily penalises all er-
roneous object detections, regardless of size. Example segmentations were
used to show how the proposed measure addresses the discussed issues
with conventional pixel-level evaluation measures. Our proposed condi-
tional random field models were evaluated experimentally. Quantitative re-
sults showed that our models outperform the compared methods on both the
conventional and proposed evaluation measures, resulting in significantly
fewer false positive detections at a given number of false negatives.

7.2 Future Work

The contributions summarised in Section 7.1 lead to a number of promising
future research opportunities that are explored below.

• In Chapter 4, we showed how our proposed metric learning approach
results in feature embeddings that co-locate based on semantic similar-
ities beyond class label. For the Birds200 dataset, for example, feature
embeddings were clustered based on species but also often co-located
based on genus. There exists a promising research opportunity in ex-
ploring how our metric learning approach can be modified to explicitly
model class hierarchy. This could involve multiple Gaussian kernels
per example with differing scale terms. Explicit modelling of class hi-
erarchy should improve the ability of the learned distance metric to
transfer to novel examples.

• Research opportunities exist in the deployment of our open set recogni-
tion and active learning methodologies from Chapter 5 on robotic plat-
forms. An example of this is a mobile robot exploring the environment,
categorising known objects into the correct class, detecting novel ob-
jects and querying a human user for labels. Deployment on a robot
introduces new hurdles. For example, the system would likely require
an object proposal and acceptance pipeline. However, new opportuni-
ties are also introduced. For example, the agency of the robot can be
exploited by allowing further investigation of observed unknown ex-
amples, such as viewing the object from different angles.
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• Metric learning has many potential benefits for robotic applications and
should be further explored from a pixel-level perspective. As discussed
in Section 2.4.2.5, existing literature regarding pixel-level metric learn-
ing is limited. The transfer learning capabilities and classification ad-
vantages of our metric learning approach, demonstrated in Chapter 4,
would be equally as useful at the pixel-level as at the image-level. This
promising future research opportunity requires investigation into how
to manage the potentially astronomical numbers of pixel-wise feature
embeddings. This could involve the intelligent selection of key pixels,
with region growing used to form region-level feature embeddings.

• Adaptation of our proposed metric learning approach for pixel-wise
feature embeddings also opens opportunities to explore open set sce-
narios in semantic segmentation problems. Of particular interest is ac-
tive learning for semantic segmentation. An open research question
in this domain is how to select pixels for active labelling. Possible so-
lutions include selecting key pixels, object bounding box proposals or
object region proposals.

• The semantic segmentation approaches proposed in Chapter 6 can be
improved by incorporating geometric information from active depth
sensors or stereo cameras into the inference process. Depth information
would allow for better contextual modelling compared to using only
the pixel coordinates. Contextual relationships such as a coffee mug is
likely to be above a table could be more accurately modelled as a coffee mug
is likely to be on a table. The conditional random field models are readily
extendible to incorporate this geometric information and the training
of such models can be facilitated by the depth data that is attached to
the RGB images of the NYU v2 dataset [16].

• Semantic segmentation is often an important part of robotic arm manip-
ulation systems. As such, it would be interesting to investigate the per-
formance of our proposed semantic segmentation systems from Chap-
ter 6 on such applications. Cluttered scenes, as well as impoverished
training data scenarios, are of particular interest as these would likely
generate poor unary terms with high numbers of false object detections.
These false detections could trigger ill-informed robotic action. The im-
portance of optimising object-level performance would be highlighted
in such a scenario.
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Several interesting broad future research directions exist in the domain of
machine learning for robotic vision. The incorporation of temporal informa-
tion is perhaps one of the most interesting of these directions. Robotics is
an inherently temporal problem, which opens up a range of opportunities to
improve and extend existing computer vision approaches for static images.
A second interesting research direction in robotic vision is the exploration of
how the agency of robots can be used to enhance machine learning meth-
ods. A robot is not a passive observer of the world; an intelligent agent has
the ability to “poke” and explore the environment. When a robot is able to
measure the uncertainty of the predictions it makes, it can actively attempt
to reduce that uncertainty by interacting with the environment, such as by
changing its viewpoint or an object’s orientation. Finally, incorporating the
structure of the environment, such as depth information, into learning al-
gorithms remains an interesting research topic. Robots exist in a 3D world
and require this information to reliably interact with the environment. As
such, there are opportunities to better leverage such depth and structure for
representation learning and semantics.

7.3 Concluding Remarks

The learning of visual representations and extraction of semantic information
are important steps in the development of autonomous robotic systems that
can sense and understand the environment. Vision is a key aspect of percep-
tion, cognition and learning in humans. As such, there is a strong argument
that this should also be the case for robotics. Visual representations and se-
mantic information can play important roles in enabling the safe and effective
execution of tasks such as navigation, object manipulation and human-robot
interaction. Learning from visual data allows a robot to develop an under-
standing of its environment. This understanding is an imperative precursor
to intelligent robotic action.

Existing literature in the field of learning for vision seldom make any consid-
erations for such robotic applications. In this thesis, methodologies were pro-
posed to bridge part of this gap by designing machine learning systems with
a focus on the needs of robotic vision. Although motivation for each contri-
bution of this research was drawn primarily from robotic problems, the de-
veloped methodologies have advantages beyond the application to robotics.
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Improvements were demonstrated over existing approaches on conventional
computer vision problems.

The needs of a robotic vision system are not unique to the application of
robotics. In many real-world computer vision problems, such as computer-
aided diagnosis, human-computer interaction, security and biodiversity
monitoring, the outputs of machine learning models are not the end goal.
Model predictions can trigger an action and mistakes in predictions can
be costly. The research presented in this thesis has potential in many such
applications. Although deployment on such real-world problems was not in
the scope of this thesis, it is our hope that this can be demonstrated in future
work, with a particular interest in pursuing the field of practical robotic
vision.
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