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Add en d inn

Page 22, Is' sentence should read: The nucleus is a charged particle which has a magnetic moment, //. and a spin.
Applying a magnetic field removes the degeneracy of the spin state.

Page 26, last paragraph, 2nd sentence should read: An amide group, a derivative of an ammo acid consists of an amino
group, a carboxyl group and a side chain (R) bound to the carbon atom, Figure 1.1.

Pages 27 and 28, Text should refer to symmetric (a) and asymmetric (b) phosphate stretching vibrations. Caption for
Figure 1.7 should read: Schematic representation of the symmetric (a) and asymmetric (b) phosphate stretching
vibrations of phosphate.

Page 29, Table 1.2 and page 142. Figure 142. In reference to the absorption band arising -1080 cm ' , this band is an
overlap from contributions of phosphodicster linkages in nucleic acids as well as C-O vibrations from glycogen.

Page 32, 2nd paragraph, 3rd sentence should read: This experiment remained inconclusive because diffraction effects
for an infrared microscope fitted with a mercury-cadmium-telluride (MCT) normally prevents the use of physical
apertures no less than 10 u.m with the use of a 15.v objective.

Page 63, equation 2.12 should read: A = - l o g ] 0 — = log, 0 ( l /7")
'o

Page 114, Is1 sentence should read: A minimum of six transmission spectra were recorded for each sample with the
effective aperture reduced to 50 x 50 jam.

Page 116. PCA was utilised to determine which samples were likely to be a mixture of endocervical and ectoccrvical
cells. This was achieved by performing the analysis of spectra known to contain only ectocervical or endocervical
cells. These samples were inspected visually and either kept or discarded.

Page 140, Section 5.1.1.4, Is' sentence: data points should read data point spacing.

Page 167, last sentence should read: The high reproducibility of these spectra post clean-up, as compared with spectra
pre clean-up, is further illustrated in Figure 5.22.

Pace 159, Fisiure 5.14
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Winenumbcr values / cm '

1000

Figure 5.14 Infrared spectra of HeLa cells (blue) and normal squamous epithelial cells (black).
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ABSTRACT

This dissertation investigates the use of infrared (IR) microspectroscopy and multivariate

statistics in the diagnosis of cervical cancer. During the course of the candidature a

significant number of IR spectra of epithelial cells from cervical smears were collected.

These spectra had either a cytological and/or a histological diagnosis. Multivariate

statistical techniques were investigated as a means of objectively diagnosing IR spectra

and also to determine the effects of confounding variables.

A pre-processing routine was written in Matlab code to allow bulk spectral pre-

processing to be perfomied within one program, thus saving time and the inconvenience of

importing and exporting data between existing programs. The pre-processing routine

objectively removes spectra exhibiting nonlinearity effects or noise outside an acceptable

limit, as well as performing baseline correction, normalisation and derivative calculations.

The spectroscopic effects of hormonal influences on cervical epithelium were

investigated. IR spectra of ectocervical and endocervical cells were obtained from women

taking monophasic oral contraception and women not taking oral contraception. IR

spectra reflected the cyclical changes occurring in the squamous epithelium. These are

seen by an increase in the glycogen peak at 1025 cm"1 towards ovulation, and a subsequent

decrease following ovulation. The contribution of nucleic acids to these also appeared

cyclically related. As expected the IR spectra of ectocervical cells obtained from women

taking monophasic contraceptives did rot exhibit cyclical variation. IR spectra of

endocervicai cells from both groups did not exhibit cyclical variation. Principal

component analysis indicates that cyclical variation is not a confounding variable in the

spectroscopic diagnosis of cervical cancer.

IR spectra of isolated nuclei were recorded to determine the contribution of nucleic

acids to the spectra of cervical epithelial cells. IR spectra of isolated nuclei exhibited no

features characteristic of nucleic acids.

Principal component analysis (PCA), soft independent modelling of class analogy

(SIMCA), /^-nearest neighbours (/if-NN), linear and quadratic discriminant analysis and

artificial neural networks (ANNs) were investigated for their potential to classify and

predict IR spectra of cervical cells diagnosed by cytology and histology as normal or

abnormal (high-grade dysplasia or malignancy). Bayesian regularised (BR) ANNs

XI



perfomied the best out of these techniques in the preliminary analysis of a subsection of

the collected data. When more data was included and cytological diagnosis was used as

the expected output, the BRANN perfomied poorly, and was unable to train or predict the

IR spectra of normal and abnormal diagnosed cervical cells.

The presence of non-epithelial cells in cervical smears, as well as benign changes of

cells is a problem in spectroscopic analysis. Chemical removal of blood components from

abnormal diagnosed cervical smears was investigated. Lymphocytes were successfully

removed from samples, demonstrated through light and IR microscopy, however IR

spectra obtained from some abnormal samples after the removal of lymphocytes exhibited

spectral features similar to those of normal diagnosed cervical cells. PCA was performed

on the spectra of samples before and after the clean-up process (compared with normal

and abnormal diagnosed spectra from the databank). The majority of post clean-up

samples were grouped with normal diagnosed samples.

The influence of endocervical cells and benign cellular changes associated with

inflammation, bacterial and yeast infections were investigated. Spectral differences

between these groups from normal and abnormal samples were exhibited in the

phosphodiester and carbohydrate regions. PCA was able to separate normal ectocervical

cells from normal endocervical cells, and samples diagnosed with inflammation, Candida

or bacterial vaginosis. Abnormal ectocervical cells were separated from normal

endocervical cells, and samples diagnosed with inflammation or bacterial vaginosis.
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CHAPTER 1

AN INTRODUCTION TO CERVICAL CANCER AND

DIAGNOSTIC TECHNIQUES
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1 AN INTRODUCTION TO CERVICAL CANCER AND DIAGNOSTIC
TECHNIQUES

1.1 CARCINOMA OF THE CERVIX

Carcinoma of the cervix is the second most common occurring cancer in women

worldwide [1], and was the ninth most frequently occurring cancer in Australian females

in 1996. In that year, 923 Australian women were diagnosed with cancer of the cervix and

301 died from cancer of the cervix [2]. There can be no doubt that since the introduction

of mass screening programs, the incidence and mortality of cervical cancer has been

reduced dramatically. The fact that the prognostic outlook on cervical cancer has

improved can be traced back to George N. Papanicolaou's contribution to the field of

exfoliative cytology, the Pap smear.

1.1.1 GEORGE PAPANICOLAOU AND THE CER VICAL SMEAR

George N. Papanicolaou has been referred to as the "founding father of modern day

exfoliative cytology" [3]. In 1917, whilst working under the direction of Charles Stockard

at Cornell University, George Papanicolaou established a correlation of the cytology of

vaginal smears with the ovarian and uterine cycles in guinea pigs. In the 1920s he began

investigating women with menstrual functional problems where he discovered exfoliated

cancer cells. These findings, entitled "New Cancer Diagnosis" were presented to the

Third Race Betterment Conference in 1928. The presentation was "weakly received and

almost rebuffed by many, especially the pathologists" [4]. Not to be deterred, he

concentrated all his efforts on the detection of cancer by vaginal smear and in 1943,

published with Herbert Traut "Diagnosis of Uterine Cancer by the Vaginal Smear" [5].

The discovery of exfoliated cancer cells led to the development of a screening

procedure for the diagnosis of cancer of the cervix [5]. The technique involved the

collection of vaginal fluid by aspiration with a rubber bulb attached to a glass pipette

which sampled the posterior fornix of the vagina. The fluid was spread onto the surface of

a glass slide and fixed in equal parts 95% alcohol and ether. Slides were stained with

haematoxylin to ensure nuclear staining and analysed with light microscopy. The most



characteristic features of the abnormal cells were the atypical form and the nuclei, which

were often very large, irregularly shaped and hypcrchronwtic1.

By 1943 the concepts of early cancer and carcinoma in situ were widely understood

[6], and the potential of the Pap smear for cancer prevention was finally appreciated.

Papanicolaou had studied vaginal pool secretions which were easy to obtain but tedious to

screen and not applicable in a clinical setting [7]. Ayre [8] used a wooden spatula (now

referred to as the Ayre spatula) to directly scrape cells from the cen'ix [9]. By the late

1940s, cytology laboratories were opening and by the 1950s, Pap smear screening was

widespread, even before clinical trials could be performed [10].

It is not well known that the Romanian pathologist, Aureli Babes, had introduced the

concept of eytologic sampling of the uterine cen'ix for the diagnosis of cervical cancer in

1928, two years before the discovery of exfoliated cancer cells by Papanicolaou [11].

1.1.2 THE PAPANICOLAOU (PAP) OR CERVICAL SMEAR

A cervical smear is a test to detect abnormalities of the cells in the cen"ix. These

abnormal cells are the first warning signs of cenical cancer, which if left undiscovered

and untreated, may be fatal. If detected early, pre-cancerous changes can be treated.

To obtain a cervical smear a speculum is inserted into the vagina and the handles are

squeezed together, widening the jaws to open the vagina and reveal the cervix, Figure 1.1.

When the cervix is visible it is examined for any signs of infection or warts. An Ayre

spatula is inserted through the speculum and, using the external os as a fulcrum, the

ectocervix is gently scraped to remove a thin layer of squamous cells [12]. The

endocen'ical or columnar component of the cervical smear is obtained with a Cytobrush™

(MedScand, Inc, Hollywood, Fla., USA), which is inserted, via the speculum, into the

cervical canal and rotated to ensure all areas are sampled [12]. The scraped cells are

smeared onto a microscope slide, fixed and sent to a cytology laboratory for screening.

If atypical cells are detected, a colposcopy is performed and a surgical biopsy

specimen is taken from the most abnormal area or areas observed. This specimen is

examined histologically to assess the grade of dysplasia or cervical intraepithelial

neoplasia (CIN) and to confirm or exclude the presence of invasive cancer. Colposcopy is

the most sensitive method for the detection of abnormalities, however the specificity of the

Refer to the glossary for definitions of words appearing in italics (excluding bacterial strains).



technique is quite low. Colposcopy is an expensive, time-consuming technique and is

therefore not practical for the routine screening of cervical cancer [13]. If the abnormality

is considered historically to be mild, it will be treated with laser ablation, cryotherapy or

a LEEP procedure. If the abnormality is severe, a cone biopsy or even a hysterectomy

may be performed.

Bladder Spatula
Uterus Speculum

v(&. tfm^'y''.S Cervix

Figure 1.1 A cervical smear is obtained by insertion of a speculum, which widens the vagina
to reveal the cervix. A spatula is rotated against the surface of the cervix to scrape off a thin
layer of ectocervical squamous cells. A Cytobrush™ (not shown) is then used to collect
endocervical squamous cells.

Two types of cancer can develop in the uterine cervix: squamous cell carcinoma,

which develops from the squamous epithelium; and adenocarcinoma, which arises from

the glandular lining of the endocervical canal. Approximately 85-90% of cervical cancers

are squamous cell carcinomas. Squamous cell carcinoma (SCC) is preceded by well

recognised epithelial changes and precancerous lesions, which develop through several

grades: cervical intraepithelial neoplasia (CIN) I to III; or squamous intraepithelial lesions

(SEL), low to high grade.

Cervical intraepithelial neoplasia is graded in terms of the amount of differentiation of

the neoplasia, with CIN I showing the most differentiation. Progression of precancerous

changes and development of invasive carcinoma usually takes about 10-12 years [14]. It

has been reported that the regression of CIN I is 60%, persistence 30%, progression to

CIN III 10% and to invasion 1% [15]. Similarly, the percentage of CIN II that will regress

is 40%, persist 40%, progress to CIN III 20% and to invasion 5%. The likelihood of CIN

III regressing is 33% and progressing to invasion greater than 12%. From this data it is

clear that the probability of atypical epithelium becoming invasive increases with the

severity of the atypia.



As well as identifying cancer and precancerous changes, the cervical smear test is able

to detect infections including thrush {Candida albicans), Gardncrella, Trichomonas,

Actinomyces, wart virus and genital herpes.

1.1.2.1 THE SQUAMOCOLUMNAR JUNCTION AND TRANSFORMATION ZONE

The squamocolumnar junction is the point in the cervix where the squamous epithelium

meets the columnar epithelium. This junction undergoes several changes during the life

cycle of a female [16]. In young women the majority or the entire transformation zone is

ectocervical. As a woman ages, the transformation zone recedes to the endocervical canal

[13]. Morphologically there are two types of squamocolumnar junction (SCJ), Figure 1.2.

The original SCJ is the border where the original squamous epithelium meets the

outermost limit of the developing transformation zone. The present SCJ is the innermost

border where the maturing squamous metaplasia meets the mucus secreting columnar

epithelium. The transformation zone is the area of actively maturing epithelium between

the SCJs and is composed of both squamous and columnar epithelium [17].

Original Squamous Epithelium Transformation Zone Columnar Epithelium

Ectocervix Ijj Squamous Metaplasia
Neoplasia

: ^ - - i •' .-.' . i . r - . :':•••••"••:•• ; . - - : V "

mm Endocervix

Original Squamocolumnar Junction Present Squamocolumnar Junction

Figure 1.2 Schematic representation of the squamocolumnar junction and transformation
zone. Redrawn from [17].

For the purposes of cytological analysis a fully satisfactoiy specimen must contain

both squamous (ectocervical) and columnar (endocervical) or squamous metaplastic cells

[18, 19]. These cellular elements form the microscopic basis for the assumption that the

transformation zone has been sampled. The transformation zone is the site at which

cervical neoplasia is likely to arise [9]. Data published in the current literature is

inconclusive in relation to the endocervical component as a measure of specimen

adequacy. Cross-sectional studies have repeatedly demonstrated that smears with

endocervical cells have a significantly higher frequency and higher grade of squamous

epithelial abnormalities than do smears lacking such cells [20-22]. However longitudinal

studies have demonstrated no increase in the frequency of such lesions on follow up

among women whose earlier smear lacked an endocervical component [18, 23]. Since

endocervical and ectocervical cells are usually sampled with different instruments the



presence of both ectocervical and endocervical cells does not guarantee adequate sampling

of the transformation zone [23]. It has been suggested that the presence of endocervical

mucus is a more important component for assessing the adequacy of a cervical smear as

abnormal cells from the endocervical canal can become trapped in the mucus [24].

1.1.2.2 STAINING

The Papanicolaou stain contains three cytoplasmic dyes: orange G, eosin Y and light

green, with haematoxylin for nuclear detail. The Pap stain is able to stain cells blue or

blue-green (basophilia, cyanophilia), pink (acidophilia, eosinophilia), orange

(orangeophilia) or indeterminate (gray-blue). Cytoplasmic cyanophilia is associated with

metabolically active cells, staining RNA, including ribosomes (free ribosomes in the

cytoplasm are associated with protein synthesis for internal consumption and are often

seen in rapidly proliferating or neoplastic cells). Cytoplasmic acidophilia is associated

with an abundance of non-ribosomal organelles (mitochondria, lysosomes, neuroendocrine

granules, filaments and smooth endoplasmic reticulum).

1.1.2.3 THE BETHESDA SYSTEM FOR REPORTING CYTOLOGICAL DIAGNOSES OF CERVICAL

SMEARS

The Bethesda system was first introduced in the USA in 1988 and was devised from the

obvious need to have uniform nomenclature and terminology in the reporting of cytologic

findings of Pap smears [25]. The system introduces statements about the adequacy of the

specimen ("satisfactory for evaluation", "satisfactory for evaluation but limited by...." and

"unsatisfactory for evaluation") as well as detailed criteria for the inclusion of a smear

under different criteria based on cellular changes. Specimen adequacy is limited by

factors such as blood, inflammation, thick areas of cells, poor fixation and air-drying

artifacts [23]. Benign cellular changes include inflammation, bacterial or yeast infection,

metaplasia and atrophy. What was previously termed mild dysplasia or CIN I, changes

associated with Human Papilloma Virus (HPV), and ASCUS (atypical squamous cells of

undetermined significance) are reported as low-grade squamous intraepithelial lesions

(LSIL). Higher grades of dysplasia, previously known as (CIN II-III), and CIS are

reported as high-grade squamous intraepithelial lesions (HSIL) [23].

In Australia a similar system for reporting the findings of cervical smears is used [19].

The general categories are as follows: unsatisfactory, negative, low-grade epithelial



abnormality, inconclusive and high-grade epithelial abnormality. C1N nomenclature is

retained in favour of LSIL and HS1L. Benign reactive changes are reported as negative

rather than having a separate category as with the Bethesda system.

7.7.3 HISTOLOGY OF THE FEMALE GENITAL TRACT

The uterus is comprised of two main parts: the cervix (neck) and the body (corpus). The

cervix is a tubular structure measuring about 4 cm in length and 3 cm in diameter. About

half the total length of the cervix lies in the vagina and is called the portico vaginalis

(ectocervix), the remainder (endocervix) is continuous with the body of the uterus [26].

The ectocervix lies external to the primary squamocolumnar junction (external os) and

is covered by stratified squamous epithelium [27]. Squamous epithelium protects the

cervix and vagina from physical, chemical and microbiologic damage [9].

Squamous cells can be divided into four types: superficial", intermediate, parabasal

and basal ceils. As the name implies, superficial cells originate from the superficial layer

of squamous epithelium and are the most common epithelial cells at the preovulatory

phase of reproductive women [27]. Superficial cells are polyhedral in shape and are

reported to be between 35-50 |im in diameter [26, 27] with a nucleus that is small (5-7

urn), shrunken, round or oval in shape. Most superficial cells contain pyknotic nuclei,

which represent the final stage in the maturation process [27]. Superficial cells are not

capable of further growth [26]. Cytoplasm of squamous epithelium stains either

eosinophilic (indication of maturation [26]) or cyanophilic [28].

Intermediate cells originate from the middle layer of squamous epithelium and are the

most common epithelial cells at the post ovulatory progesterone phase of reproductive

women [27]. Intermediate cells (40-50 urn) are polygonal with a round or oval nucleus

(9-11 jam) larger than superficial cells [27]. Intermediate cells have cyanophilic

cytoplasm and a nuclear-to-cytoplasmic (N/C) ratio less than 1:6 [28]. A frequent variant

of intermediate cells are navicular cells which fill with glycogen deposits and are

associated with pregnancy and the late menstrual phase [9].

Parabasal cells originate from the deep layer of the squamous epithelium and are

smaller (15-30 |am) than superficial or intermediate cells. The nucleus (8-12 urn) is round

2 Refer to Appendix B for light microscopic images of normal epithelial cells, and cells exhibiting various
stages of abnormality, be it benign, precancerous or malignant.



or oval [27]. These cells exhibit cyanophilic staining and have a thick, dense cytoplasm

and a N/C ratio varying from 1:3 to 1:6 [28]. The occurrence of these cells is associated

with childhood, post-partum and menopause, although they may be seen in immature

squamous metaplasia [27].

Basal cells are small, round, about 12 j.im in diameter, cyanophilic and derived from

the basal layer [26]. These cells have an N/C ratio between 1:2 and 1:3 and are not found

in cytologic smears under normal conditions [28]. The basal cells are the only cell in the

epithelium capable of regeneration, i.e. able to undergo mitosis [26].

Glycogen is present in normal squamous epithelium and absent in atypical squamous

epithelium. Basal cells are almost totally devoid of glycogen and the concentration

increases towards the surface with superficial cells containing the highest concentration.

The quality of glycogen in the epithelium appears to be hormonally controlled and serves

to maintain the acid pH of the vagina. Bacterial vaginal flora (Lactobacillus vaginalis)

metabolise the glycogen released by the cytolysis of cells to form lactic acid [16].

The endocervix is 2-3 mm thick and lined with a single layer of tall columnar

epithelium. The nuclei are round or oval and generally situated in the lower third of the

cell [16]. Columnar cells may be ciliated or mucus secreting. Unlike basal epithelial

cells, which are only able to differentiate into squamous cells, endocervical reserve cells

have the ability to differentiate in either glandular or squamous cells [9].

1.1.4 CARCINOGENESIS

The development of cancer is a slow process over many years, originating from a mutation

of a gene or a series of changes in cellular DNA in one cell and leading to invasive

carcinoma, capable of metastasising (spreading) throughout the body [29].

Mutations can occur which result in the formation of an epithelial cell capable of

mitosis. These cells may develop the ability to replicate under conditions when the

replication of normal cells is inhibited. The uncontrolled proliferation associated with

cancer results when the enzymatic mechanisms governing cell replication are disturbed

and no longer respond to normal regulating agents [26]. The mutated cell and its

descendants reproduce at an abnormal rate, whilst still appearing normal, a condition

referred to as hyperplasia. Over time one in a million of these cells will undergo another

genetic mutation, further increasing cell proliferation. In addition to excessive



proliferation descendants of this cell appear abnormal in shape and orientation, known as

dysplasia. With time another mutation altering cell behaviour occurs. Affected cells

become increasingly abnormal in appearance and growth. The tumour may remain

contained (//; situ cancer) indefinitely, not having broken through boundaries between

tissues, and some cells may undergo further mutations. A tumour is considered malignant

when invasion of underlying tissue and shedding of cells into the blood or lymphatic

system occurs (invasive carcinoma). These cells are likely to form new tumours

(metastases) in the body [30]. The development of cancer depends on the body's defense

mechanisms such as apoptosis and phagocytosis and it is likely that mutated cells will die

before cancer can be established [26].

In the course of reshuffling DNA, caused by abnormal mitosis, cell differentiation and

function are usually seriously affected [26]. Uncontrolled cell division results in a loss of

coordination between the nucleus and the cytoplasm, which leads to the characteristic

increase in N/C ratio [9].

1.1.5 CYTOLOGY OF NEOPLASM AND CER VICAL LESIONS

Morphologic nuclear abnormalities are intimately associated with cancer. The following

morphologic changes may be observed in the nuclei of cancer cells [29]:

1. Nuclear enlargement. The lclei occupy a larger volume than 1 jnign cells of

similar size.

2. Anisonucleosis or variation in nuclear size and shape. Cancer cells of similar size

may contain nuclei of various sizes.

3. Relationship of the cytoplasmic to nuclear volume is often significantly altered in

favour of the nucleus, therefore the N/C ratio is increased in cancer cells.

4. Hyperchromasia or the visually perceptible darker staining of the nuclei of cancer

cells with nuclear stain (haematoxylin).

5. Abnormal appearance and distribution of chromatin. Cancer cells often display

large, coarse and irregular, dark staining chromatin granules, significantly larger

than normally occurring chromocentres.

6. Nuclear abnormalities. Nuclei are often enlarged, often presenting multiple

nucleoli or irregular shapes.



7. Mitoses in cancer cells. Numerous mitoses are frequently observed in cancer,

many of which are abnormal. Defects arising from abnormal mitosis prevent the

proper separation and uneven distribution of chromosomes during metaphase and

anaphase [26]. The result of abnormal cell division is either cells with abnormal

numbers of chromosomes, or gigantic abnormal tumour cells with multiple nuclei.

The nuclei of cancer cells usually contain more DNA compared to normal cells.

Nuclear DNA is contained in chromosomes, hence it follows that an increase in nucleic

acids (and degree of hyperchromasia) would be proportional to the number and size of

chromosomes. It is possible in cancer that not only the absolute concentration of DNA but

also the physical state of DNA or DNA associated proteins may be modified in a manner

as yet undetermined [29]. The volume, and therefore, to a limited extent the size of the

normal nuclei reflects closely the content of DNA and DNA associated protein [26].

The variability in the size of the cytoplasm is a reflection of changes occurring in the

RNA and ultimately in the DNA. Variability in shape may result from cell crowding

caused by rapid growth [29].

The nucleus generally reflects the health of the cell (normal, inflamed, and

degenerative) and nuclear size is an indication of the functional activity of the cell, with

larger nuclei associated with more active cells [9].

The following is a summary of the diagnostic features of malignancy used by

cytologists. No single feature is diagnostic of malignancy and virtually any feature listed

can be found in benign cells [9].

1. Cells - usually numerous, disordered, crowded groups (chaotic architecture),

single intact atypical cells, cannibalism, pleomorphism, anisocytosis, abnormal

shapes, increased N/C ratio.

2. Nucleus - disorderly, loss of polarity, crowded, enlargement, pleomorphic size and

shape, multinucleation, naked, molding, irregular nuclear membrane, thick nuclear

membrane, hyperchromatic, irregular abnormal chromatin, prominent multiple

irregular or macro nuclei, mitotic figures.

3. Cytoplasm - pleomorphism, loss of cell boundaries, abnormal staining, abnormal

cellular products (keratin, mucin).

4. Background - necrosis, blood, tumour diathesis.



The diagnosis of dysplasia or CIN relies on comparison of nuclear size and shape with

surrounding "normal" epithelial cells. Cells arising from mild dysplasia (CIN I) are

usually of superficial or intermediate size. The nucleus of CIN I is the largest of the

neoplastic and cancerous cells due to the high level of differentiation [9]. CIN I is

diagnosed by a comparison of the nucleus with those of surrounding intermediate cells.

CIN I is diagnosed if nuclei are larger and exhibit darker staining patterns [28]. Moderate

dysplasia (CIN II) show cellular patterns intermediate between mild and severe dysplasia.

Most CFN II resembles parabasal size cells with big, dark non-uniform nuclei. Severe

dysplasia (CIN III) resembles mainly parabasal or basal cells showing big, dark nuclei

with dense uniform chromatin. Cells of carcinoma in situ (CIS) are poorly differentiated.

The essential difference between dysplasia and CIS is the presence or absence

respectively, of any visible signs of squamous differentiation in the abnormal cells [9].

For invasive cancer to be diagnosed, the presence of necrosis or tumour diathesis must be

observed. Koilocytes are mature epithelial cells with cytoplasmic halos and atypical big,

dark nuclei. Differentiating between dysplasia and HPV is often veiy difficult unless

koilocytes are present, indicating HPV infection.

1.1.6 HUMAN PAPILLOMA VIRUS, SMOKING AND CERVICAL CANCER

Epidemiological studies demonstrate that the major risk factor for the development of

preinvasive or invasive carcinoma of the cervix is HPV infection [31-36]. Infection with

the HPV virus far outweighs other known risk factors such as high parity, promiscuity,

young age at first intercourse, low socioeconomic status, and a history of smoking [31, 35,

37]. Studies show that patients with low-risk cytology and high-risk HPV infection with

types 16, 18, 31 and 33 are more likely to have cervical intraepithelial neoplasia [11, 38].

Acute infection with HPV types 16 and 18 confer an 11 to 16.9 fold risk of development

of high grade CIN [37, 39]. HPV types 6 and 11 have not been associated with the

development of neoplasia or cancer and as such are considered low risk types [35].

The oncogenic potential of the virus has been attributed to the E6 and El genes. The

products of these genes stimulate cell proliferation by activating the cell-cycle-specific

proteins and interfere with the functions of cellular growth-regulatory tumour suppressor

genes /?53 and pRB [36]. Whilst it has been established that infection of specific types of

HPV is essential for the development of cervical cancer, progression to malignancy

requires the involvement of other risk factors and/or cellular events. Important cofactors
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may be immunity to HPV, age at exposure to HPV, type of exposure, presence of other

sexually transmitted diseases and hormonal status [40].

The HPVs are small viruses (about 55 nm in diameter) with a circular double stranded

DNA genome. HPV viruses initiate infection and replication in squamous epithelial cells.

Viral transcription and replication occurs as cells become more differentiated. The

Papillomavirus El protein affects cellular processes and acts as a transcriptional regulator.

Malignant transformation is usually accompanied by disruption of the El gene, causing

deregulation of E6 and El expression. The increased expression of these two genes

produces HPV-transformed cells, which are less prone to apoptosis [33].

Conventional diagnostic techniques relying on cytological and histological

examination are unable to detect the Papilloma virus. The presence of HPV is associated

with the formation of koilocytes in the squamous epithelium. M< lecular methods such as

Southern blotting, dot/slot blotting, in situ hybridisation and polymerase chain reaction

(PCR) are being employed for HPV detection. Of these methods, PCR show the most

sensitivity and specificity and is able to detect a single molecule of HPV-DNA out of a

million cells [36]. Although the literature suggests that HPV is a principal aetiologic

agent for the development of cervical cancer [11, 38], not all HPV infections lead to

cervical cancer and some cancers arise without HPV infection. The incorporation of

HPV-DNA testing in conjunction with conventional Pap test screening could identic

women likely to have progression to invasive cancer if they harbour infection of HPV,

especially high risk types.

Whilst it is difficult to assess the causal effect of smoking on invasive cervical cancer

due to the potential confounding factor of sexual behaviour, epidemiological studies have

consistently found a relationship between the two [41]. Nicotine and cotinine (a nicotine

metabolite) concentrations found in cervical mucus correlate with cigarette consumption

[4?], and it is thought that smoking may act as a co-carcinogen with HPV being the

primary cause. Smoking may depress the immune response allowing HPV infection to

persist. The persistence of this infection is believed to allow the development of cervical

cancer. Immunosuppression is associated with an increased risk in cervical neoplasia and

there is evidence to suggest that smoking may induce immunological changes in the cervix

[41,43].
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1.1.7 THE ACCURACY OF THE PAP SMEAR

Since the Pap smear was first introduced in 1943, there have been many reports regarding

the accuracy, sensitivity and specificity of this technique. Although tiie Pap smear has

been widely accepted, there continues to be considerable debate as to cost effectiveness

and screening intervals required [44].

Given the undesirable effects of misdiagnosis for both patients and laboratories, it is

important that the problem of false negative results are addressed in the development of

any clinical diagnostic tool.

A false negative result, in the area of cervical cancer, is the failure to detect abnormal

cells in a sample from a subject with cervical malignancy or neoplasia. False negative

smears give false reassurance and may delay the discovery of a carcinoma until a later

stage [45]. Estimates of false negative rates of the Pap smear have been reported to range

from 6 to 69% [12, 44, 46-48].

The opposite of a false negative result and just as undesirable, is a false positive result

which involves the detection of abnormal cells in a sample from a subject without cervical

malignancy or neoplasia. False positive smears lead to unnecessary diagnostic procedures

and anxiety in screened women [49]. False positive rates of the Pap smear have been

estimated to be as high as 32% [50].

There are many factors which affect the detection rates in cervical smears, including

the sampling technique used, preparation of the patient, fixation and staining of the

smears, accuracy of screening by the cytotechnologist and interpretation by the

cytopathologist [44].

Gay ei al. [44] reviewed the false negative rate in their laboratory, rescreening the

cytologic slides of cases where negative Pap smears were obtained within one year prior to

the identification of a malignant tissue diagnosis. The review was conducted without the

knowledge of the pathologic diagnosis and false negative cases were placed in the

following categories:

1. Sampling error: no malignant or dysplastic cells found on review.

2. Screening error: malignant or dysplastic cells present but not marked by

cytotechnologist.
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3. Interpretation error: malignant or dysplastic cells present and marked by screcner,

but their significance misinterpreted by the cytopathologist.

The results obtained showed a 20% false negative rate over the four year period. Of

this rate, sampling errors accounted for 62%, screening errors for 16% and interpretation

errors for 22%. False negatives may also be caused by vaginal douching, the use of

intravaginal drugs and coitus prior to examination or collection of cervical cells [51].

It has been estimated that between 43 and 96% of cervical cells collected by a cervical

smear are lost when conventional Pap smears are made [52]. Furthermore the smears may

show a different pattern of cellular size and distribution indicating that the cell population

in the smear is not representative of the original collection; as a nonrandom portion of

cells on the sampling device are transferred to the microscope slide. If these cells are not

representative of the original cell population, there may be a significant chance of failing

to identify abnormalities in the Pap smear.

1.1.8 GOLD STANDARDS

In order to determine the accuracy of any technique, a second test for verification is

generally required, called the gold standard. Histologic diagnosis through biopsy is often

taken as the gold standard in cytology [9]. Validity measures (Table 1.1) such as true

positive, true negative, false positive and false negative need to be carried out to determine

the overall ability of a test result to indicate the disease state of a patient.

Table 1.1 Example of validity measures of a screening test3, where TP, TN, FP and FP
represent true positive, true negative, false positive and false negative respectively.

Test
Positive
Negativ
Total

Patient with disease
TP
FN
(TP+FN)

Patient without disease
FP
TN
(FP+TN)

Total
(TP+FP)
(FN+TN

A true positive test result is a true indication of the presence of disease, for example

diagnosing abnormal when an abnormality is present. Conversely, a true negative test

result is an indication of the absence of disease, for example diagnosing normal when no

abnormalities are present.

3 Adapted from [9, 53].
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The term sensitivity refers to the ability of a technique to detect the presence of

disease, i.e. the detection rate. The sensitivity is measured as the number of true positives

divided by the total number of positives, i.e. (TP)/(TP+FN) [9, 53] and relates to the

ability to detect true positives at the expense of including false positives.

Specificity, on the other hand, refers to the ability of a technique to rule out the

presence of disease and can also refer to the ability of a technique to diagnose the

particular type of disease present, i.e. CIN II rather than CIN, degree unknown.

Specificity is measured as the number of true negatives divided by the total number of

negatives, i.e. (TN/TN+FP) [53]. Sensitivity and specificity are tradeoffs, and increasing

the sensitivity will probably result in a decrease in specificity.

1.2 ADJUNCTS TO CONVENTIONAL CER VICAL SMEAR SCREENING

The Pap smear, despite wide reports of low sensitivity (high false negative rates), is highly

specific with regard to detection of high-grade squamous intraepithelial lesions (HSILS)

and cancer [13].

A screening test must be highly sensitive, even if specificity is compromised. The

drive to improve sensitivity, thus reducing the false negative rate, whilst maintaining or

even improving the specificity is the primary objective behind the development of new

technology for the detection of cancer and precancerous lesions [13].

1.2.1 PAPNET®

Manual screening of cervical smears is fatiguing, time-consuming and difficult [54].

Screening involves the microscopic search for the relatively few abnormal cells on a slide.

As more than 90% of cytological smears are negative, psychological habituation can

easily occur [54]. An automated cytological analysis could eliminate the habituation of

manual screening thereby reducing the error rate.

The introduction of the PAPNET" cytological screening system (Neuromedical

Systems, Inc., Suffren, NY) is the first step towards the automation of cervical screening.

The system serves as a device for locating potentially abnormal cells, which are then

interpreted by a cytopathologist [55]. The complete system includes two units: a scanner
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and a review station. The scanner uses two neural networks4 to analyse each smear,

identifying 128 abnormal appearing cells on the slide [56], and digitally storing colour

images of each cell scene. The exact location (.v and v coordinates) of the abnormal cells

on the actual slide are also displayed [13]. One neural network is trained to be sensitive to

the detection of single abnormal cells, whilst the other is sensitive to the detection of

groups of abnormal cells [56]. The images produced are viewed by a cytologist who

categorises the slides under 'negative' or 'review,' in which case further microscopic

examination is required.

PAPNET ' has been shown by several investigators to be a useful tool in the screening

and rescreening of cervical smears [54-59]. The system is sensitive to the identification of

small numbers of neoplastic epithelial cells and detached malignant cells and is able to

detect abnormalities missed during manual screening. PAPNET^ utilises the robustness

and error tolerance of neural networks to detect abnormal appearing cells in smears that

have poor fixing or staining, inflammation, blood and even tumour diathesis.

Despite the high sensitivity of the PAPNET'' system to detect abnormalities, the

ultimate diagnosis still remains with the cytopathologist and hence human judgement.

1.2.2 THINPREP®

It is reported that to prepare a slide for cytological diagnosis there are four critical

parameters that need to be optimised: cellular morphology, clarity, density and uniformity

[60]. The conventional methods for the preparation of a slide for diagnosis have little

control over these sample components. Often cellular distribution on the slide is uneven,

cells can be damaged in the drying process and the presence of blood and mucins can

make accurate diagnosis difficult. Furthermore, only a small percentage of cells are

transferred onto the microscope slide in the preparation of conventional Pap smears [52,

61, 62]. This subsection of cells is not randomly selected from the sampling device and

may not be representative of the cellu'ar composition of the cervix [52].

The ThinPrep® processor (Cytyc Corporation, Marlborough, MA, USA) allows the

automated preparation of slides from cells collected in a fluid suspension and is able to

control cell density, maintain uniform cellular distribution and enhance the presentation of

4 Refer to Section 2.5.7 for a detailed explanation of the theory of artificial neural networks.
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cellular morphology [63]. Rinsing the cells in a fluid suspension ensures that virtually all

the cells from the collection device are transferred and preserved [60]. Homogenisation

ensures that cells are thoroughly mixed and slides are representative of the population of

collected cells.

With the ThinPrep® method, cells to be diagnosed are obtained by gently scraping the

transformation zone of the cervix as per conventional smears. The difference between the

two methods arises in the preparation of the cells for cytological analysis. Rather than

smearing the cellular material directly onto a glass microscope slide, the sampling

instruments containing cellular material are rinsed into a vial of preservative

(PreservCyt™) solution that preserves the morphology of the cells. PreservCyt™ (Cytyc

Corporation, Marlborough, MA, USA) is a buffered alcohol solution able to lyse red blood

cells and kill microbiologic elements. The vial is placed inside the ThinPrep® processor

where a filter cylinder inserted into the vial is spun at high speed resulting in the breaking

up of large clumps of mucus and cellular clusters and homogenisation of the suspension.

The cells are collected on a polycarbonate filter membrane that minimises red blood cells,

mucins and non-diagnostic debris. A vacuum is applied to the cylinder and the rate at

which the pressure difference across the filter membrane changes is monitored by a

microprocessor to estimate the percentage coverage of the filter and in tum the number of

cells on the filter. An evenly dispersed layer of cells is deposited onto a glass microscope

slide in a 20 mm circle and cells are preserved by immersion in a fixative bath containing

alcohol. The ThinPrep® process results in a slide containing a thin, uniform layer of cells

retaining diagnostic clusters with preserved morphology. These slides are stained for

cytological analysis in a routine manner.

Several studies involving the ThinPrep® processor have been undertaken [57, 60, 63-

69]. In each trial both conventional and ThinPrep® slides were prepared. This involved

the clinician first making a conventional smear on a microscope slide and then rinsing the

instruments containing the remaining cellular material into a vial containing PreservCyt™

solution to make a ThinPrep® slide as outlined above. Whilst these studies reported

improved specimen quality with the ThinPrep® technique and a high correlation in

diagnostic ability compared to conventional screening, no significant difference in the

detection of disease with the two techniques was reported. ThinPrep® was found to be

superior to the conventional technique in the detection of low-grade epithelial

abnormalities [60, 63, 66, 67].
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In a study comparing the ThinPrep® technique with histology (gold standard),

ThinPrep® was shown to be significantly more sensitive than the conventional method for

the detection of low-grade S1L and more severe disease [70]. The ThinPrep® method

showed no significant difference in specificity from the conventional method.

Although ThinPrep® offers an improvement in the quality of cervical smears for

cancer screening, there are several disadvantages in using monolayer preparations [13].

The interpretation of monolayers is more difficult and requires the retraining of

cytopathologists. The cost of ThinPrep® is substantially more than the cost of preparing

conventional slides, in terms of the cost of the preservative fluid used and the extra time

taken to prepare the slides. This increase in cost may however be offset by the shorter

time required to read the slides given the smaller surface area coven -A by the cells in the

monolayer.

1.2.3 CERVICOGRAPHY

Cervicography (National Testing Laboratories, Fenton, Mo, USA) was first proposed by

Stafl [71] in 1981 as an adjunct of cervical screening and intended to complement

cytologic sampling [72]. Cervicography is the process of interpreting an ectocervical

photographic image of the cervix based on colposcopic principles. The cerviscope is a

specially designed hand-held 35 mm camera with a telephoto macrolens fitted with an

illumination and flash system, which enables a panoramic photograph (cervicogram) to be

taken of the cervix [72]. To obtain a cervicogram, the cervix is visualised with a

speculum, cleaned with dry gauze and moistened with 4-5% acetic acid [71].

Cervicography, like colposcopy, is most useful in younger women whose entire

squamocolumnar junction (transformation zone) can be visualised; and may be of limited

value for women whose squamocolumnar junction is located within the endocervical canal

(for example in elderly and post-menopausal women) [72].

Ferris et al. [72] compared the diagnostic ability of cervicography with histology,

when performed alone and in conjunction with conventional screening. Cervicography

was found to detect twice as many cases of premalignant cervical disease when compared

with the Pap smear alone. When used in conjunction with the Pap smear, cervicography

identified nearly two and a half times the number of women with dysplasia as compared to

the Pap smear alone. This investigation was potentially limited by the fact that most of the

subjects were young and the squamocolumnar junction was easily visualised. Sensitivity
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and specificity measurements could not be determined, as colposcopy was not performed

on women with negative cytologic results.

Earlier studies also reported an increase in the detection of cervical dysplasia

compared to the Pap smear [73, 74]. However a significant number of positive

cervicograms were found to be false positives. These studies found cervicography to be

more sensitive and less specific than the Pap smear. False positive cervicograms typically

result from over-interpretation of the significance of pcetowhite epithelium [72],

Cervicography false negative failures may represent disease located in the endocervical

canal and not visible to the evaluator [72].

Cervicography has been shown to be a very sensitive technique in younger women

whose transformation zone is predominantly ectocervical. The sensitivity of

cervicography decreases however, when the transformation zone recedes into the

endocervical canal [13].

7.3 NON-CONVENTIONAL APPRO A CHES TO CER VICAL CANCER DIA GNOSIS

1.3.1 POLARFROBE

Polarprobe is an electronic prototype for the detection of cancers and pre-cancers of the

cervix [75]. A pen-sized probe tip is placed on the cervix prior to colposcopy and

methodically moved across the cervical tissue, stimulating it with electrical and optical

pulses for a 2 minute period. The tissue response to the pulses is detected and relayed to

an electronics module, which assembles the detector signals and data. Computer software

interprets the tissue-response signals and these are compared to a catalogue of 14 tissue

types determined by mathematical models.

Coppleson et al. [75] collected tissue-responses from 106 volunteers to develop tissue

recognition algorithms, which were then applied to an additional 77 volunteers. The

algorithm was capable of recognising 14 tissue types, categorised as: Human

Papillomavirus (HPV), minor atypia, cervical intraepithelial neoplasia (CIN) grades 1, 2

and 3, micro-invasive/invasive carcinoma, transformation zone edge, columnar cell types

1 and 2, immature metaplasia, mature metaplasia, cervical squamous epithelium, vaginal

squamous epithelium and regenerative squamous epithelium. When compared to

colposcopy/histology, Polarprobe managed a concordance of 85% on low-grade

abnormalities (HPV, minor atypia, CIN 1), 90% for high-grade abnormalities (CIN II or
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Ill) and 99% for invasive cancer. These results were obtained by amalgamating the tissue

types listed above into 6 categories: Atypia-CIN ], CIN 11-111, invasive cancer, squamous

epithelium, physiologic metaplasia and columnar epithelium.

These findings, whilst giving a good indication of the tissue mapping accuracy of the

probe, do not directly indicate diagnostic accuracy. This technique is further limited by

the size of the probe, which excludes evaluation of tissue within the cervical os [75].

1.3.2 SPECTROSCOPY

The premise that biochemical changes occurring in cells undergoing transformation from

normal to cancerous will precede morphological changes [76] is the basis for the

investigation of spectroscopy as a possible tooi for the diagnosis of cervical cancer.

Raman and Infrared (IR) are the two main types of spectroscopic methods based on

vibrations of atoms in a molecule. Vibrations that lead to changes in the dipole moment of

a molecule can be detected using IR spectroscopy, whereas Raman is sensitive to

vibrations that modulate band polarisability. The number of vibrations for a non-linear

molecule containing n atoms is 3/7-6 (3/2-5 for linear molecules). For a biomolecule there

are many vibrations resulting in a complex spectrum. Many of the vibrations can be

grouped to specific bonds with typical functional groups of interest including C=O, -

COOH, O-H and S-H. [77]. Some vibrational modes do not represent a single type of

bond oscillation but are instead coupled to neighbouring bonds. A classic example of this

are the regions in the IR spectrum termed the amide modes (Section 1.3.3.1) which are

characteristic of the IR absorption of proteins.

1.3.2.1 RAMAN SPECTROSCOPY

All molecular species possess polarisability, which is a measure of the ease at which

electrons can be induced to move within a molecule under the influence of an applied field

[78]. Application of an electric field can induce a dipole resulting from a distortion of the

electron cloud. The induced dipole in a molecule vibrating with frequency vvib and

irradiated with frequency v0 will vary as a function of v0, (vo+vvib) and (vo-vVib). The polar

state is more energetic than the relaxed state and so polarisation is an endothermic process

with spontaneo1" -taxation accompanied by a release of energy. This process results in

the emission of radiation, which is described as scattering, and is the basis for the

investigation of molecules via Raman spectroscopy [78].
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Polarisation is not an energy state of the molecule and there is no change in the

electronic configuration. The polarised state is described as virtual, Figure 1.3, and

relaxation from this state can occur in three ways. The most probable is elastic or

Rayleigh scattering, where relaxation occurs with no change in vibrational quantum

number. Relaxation which occurs with a change in vibrational quantum number produces

inelastic or Raman scattering and is termed Stokes if Av = +1 and anti-Stokes if Av = -1.

The intensity of the Raman scatter is related to the population of the initial state of the

molecule. For Stokes scatter the intensity is normally related to the population of the

ground state, v = 0, and for anti-Stokes to that of the first excited vibrational level, v = 1.

The Raman scattering efficiency depends on the fourth power of the frequency of the

light being scattered. Since the virtual state is not a fixed level, Raman scattered light can

be produced from an excitation source with any wavelength, and so Raman spectra are

presented as the intensity versus frequency shift from this excitation source [78].

Virtual

505 cm • r

Virtual

Anti-Stokes Rayleigh
v=0

Stokes

Absolute frequency, v

Figure 1.3 Schematic representation of the scattering effects possible with the induction of
polarised states. Redrawn from [78].

A conventional Raman system consists of a laser source illuminating the sample and

collection optics to gather the scattered light and pass it into the detection system. A

detailed description of Raman spectroscopy theory and instrumentation can be found in

Hendra et al [78].

Raman spectroscopy has been investigated as a potential technique for the diagnosis of

cancers including breast [79-83], skin [81, 83-86] and gynaecological cancer [83, 84].

The potential of near infrared (NIR)-Raman spectroscopy was first investigated by Liu

et al. [84]. A NIR laser source was used to reduce the fluorescence arising from

chromophores inherent in biological specimens. Three main spectral differences were
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observed between malignant, normal and benign tissue samples. In cancerous tissue, the

intensity of the amide I stretching vibration band at 1657 cm"1 was less than the intensity

of the C-H bending vibrational band at 1445 cm'1. The amide 111 band at 1262 cm"1 was

broadened in cancerous lesions; and an additional peak at 934 cm"1 was observed only in

normal and benign cervical samples.

The reduction in the intensity of the amide 1 band (1656 cm"1) in precancerous tissue

compared to normal, using N1R Raman spectroscopy, was used to form a diagnostic

algorithm [87]. The algorithm differentiated precancerous tissues from other tissue

categories with a false negative of 9% and a false positive of 12%. The amide I band was

also used to discriminate between HSIL and LSIL with a false negative and false positive

of 14% and 4% respectively. Cytological cnanges associated with inflammation and

metaplasia were also separated from precancerous lesions.

Ultraviolet resonance Raman (UVRR) spectroscopy at 257 nm excitation was used to

study suspensions of normal and malignant cultured cell lines [83]. Cell spectra closely

resembled that of DNA, with peaks at 1580, 1480 andl330 crrf'arising due to nucleotide

bases. Strong contributions from tryptophan and tyrosine appeared in the 1670-1520 cm"1

region. The ratios of the Raman spectral peaks 1480/1614 cm"1 and 1480/1540 cm"1,

which are sensitive to the concentration of nucleic acids relative to cell proteins, were

found to be higher in malignant than normal cells. Despite these promising results, the use

of UVRR in vivo is precluded by the possible mutagenic effects of UV radiation [88].

1.3.2.2 MAGNETIC RESONANCE SPECTROSCOPY (MRS)

Nuclear magnetic resonance (NMR) spectroscopy gives information about the number of

magnetically distinct atoms of the type being studied, with hydrogen and carbon being the

most common. When hydrogen nuclei (protons) are studied, fcr example, the number of

distinct types of hydrogen nuclei as well as information regarding the immediate

environment of each type can be determined. Many atomic nuclei have a property called

spin whereby the nuclei behave as if they were spinning. The most common nuclei that

possess spin and which can therefore be studied through this technique include

JH, ^H, X\C, "N. 'gO, 'gFand ]\?. An atomic nucleus that possesses an odd mass, odd

atomic number or both, has a quantised spin angular momentum and a magnetic moment.

The number of spin states is determined by the nuclear spin quantum number, /, and there

are 2/ + 1 allowed spin states with integral differences ranging from +/ to - / [89].
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When a magnetic field is applied, the nucleus (which is a charged particle) has a

magnetic moment, //, generated by its charge and spin. The resonance effect occurs when

nuclei are induced to absorb energy and change their spin orientation with respect to an

applied field. As energy absorption is a quantised process, the energy absorbed equals the

energy difference between the spin states. This energy difference is a function of the

strength of the applied magnetic field. Nuclear magnetic resonance is so versatile because

not all nuclei in a molecule have resonance at the same frequency. This variability arises

because the nuclei in a molecule are surrounded by electrons and exist in slightly different

electronic environments [89].

The basic requirements for a NMR spectrometer are a radiofrequency (RF) source and

a magnetic field. The sample is placed in a probe that is positioned between the poles of

the magnet. A coil on the probe transmits the RF radiation and either the magnetic field or

the RF is slowly varied. When the resonance condition of the nuclei under investigation is

satisfied the sample absorbs energy from the RF radiation and the resulting signal is

recorded [90].

Several kinds of "spectra" can be obtained using MRS. A one-dimensional (ID)

spectrum can be analysed using five main parameters. The chemical shift (8) describes

the location of each moiety in the frequency scale and is expressed in dimensionless units

of ppm (parts per million). The coupling constant J corresponds to the interaction of

neighbouring moieties, is expressed in Hertz and the area of each resonance corresponds

to the number of resonant nuclei. The spin-spin relaxation time T2* is inversely

proportional to the linewidth at half height of the resonance. Lastly, the spin-lattice

relaxation time Tl often acts as a partial saturation factor [91, 92].

2D NMR experiments either observe two different parameters of the same nucleus

observation such as the COSY method which provides both 5 and J on a 2D map, or two

different nuclei, such as 13C and !H, which are studied simultaneously. 3D methods are

also available but these are time consuming, difficult to analyse, and not really appropriate

for a clinical setting [91, 92]. For a more detailed explanation of the theory and

instrumentation of MR spectroscopy, the reader is referred to texts by Abraham ei al. [90]

and Pavia et al. [89].
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Magnetic resonance spectroscopy has been investigated as a technique for the

diagnosis of various cancers [91-99] including cancer of the cervix [100-103] and ovaries

[104, 105].

Proton magnetic resonance (!H MR) spectroscopy allows the detection and

identification, by means of the chemical shift (frequency), of molecules in cells and tissues

that have sufficient molecular motion to be visible on the MR time scale. MR spectra have

been shown to provide information on the chemical and biological characteristics of cells,

with the most prominent feature emerging being the appearance of triglyceride in the

spectra of malignant cervical cells and tissue [94, 100, 106]. MR spectroscopy is a non-

destructive technique allowing histologic classification of specimens after spectra have

been recorded [101].

'H MR spectra of malignant cervical tissue are characterised by an intense resonance

at 1.3 ppm, which arises primarily from methylene protons of acyl chains in mobile

neutral lipids with contributions from methyl protons of lactate and threonine [101-103].

High-grade dysplastic (preinvasive) specimens lack the intense methyl resonance at 1.3

ppm and there is an increase in the broad featureless resonance between 3.4 and 4.2 ppm

relative to the spectra of invasive specimens. This resonance arises mainly from protons

on carbohydrate, protein and phospholipid metabolites. Plotting the CH2/CH3 ratio against

the CH/CH2 ratio resulted in a separation between invasive and preinvasive with a

sensitivity and specificity of 94 and 98% respectively [102].

Wallace et al. [104] used MRS coupled with linear discriminant analysis (LDA) to

distinguish ovarian cancer from normal tissue with a sensitivity of 100%, a specificity of

95% and an accuracy of 98%. ID 'H spectra from normal, benign, borderline and

cancerous biopsy specimens of ovarian tissue were dominated by resonances from lipid

methylene (1.3 ppm) and methyl (0.9 ppm) groups, cholines (3.2 ppm), creatines (3.0

ppm) and lysine and polyamines (1.7 ppm). The spectra from the benign neoplasms

resembled the spectra of normal samples, both having less intense lipid signals than the

borderline and malignant tumours. Smith et al. [96] used similar methods and

chemometric techniques to classify normal and malignant tissues with a sensitivity of

100% and a specificity of 95%.

31P has been used to study the cellular physiology and metabolism of malignant and

normal specimens [92, 97, 98, 107]. In vivo 31P spectra typically have three peaks due to
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nucleotide triphosphates (predominantly ATP), a pei' due to phosphocreatine (PCr) and

an inorganic phosphate (Pi) peak [98]. Human careers .ire characterised by elevated PME

(phosphomonoester compounds), elevated PDF: (phosphodiester compounds) and an

alkaline pH [92].

"C MRS has been applied in vivo for studying cancer by monitoring, non-invasivcly,

glycolysis and other metabolic pathways and the flux of metabolites in tumours relative to

normal tissue. The presence (or absence) of several important metabolites including

glucose, lactate, citrate and alanine, can be detected, along with their concentration,

mobility and relaxation characteristics [92].

In vivo studies using MRS are limited by the highest magnetic field strength permitted

in clinical practice, 1.5-4 Tesla. In vivo pre-clinical studies of tumours by *H MRS allows

the observation of several metabolites that are not detected by MRS of other nuclei. The

disadvantage of their use in vivo however are the high concentrations of tissue water and

lipids which produce intense background signals and must therefore be suppressed in

order to observe the metabolites of interest [92]. Metabolites within living tissue or tissue

samples are NMR detectable only if they are highly mobile in the cytosol or interstitial

spaces. Membrane associated molecules are usually not seen due to line broadening from

dipolar coupling, hi vivo tumour spectra contain only a few resonances and the resolution

is much lower giving rise to peaks that overlap and are poorly resolved. In principle the

area under each peak is proportional to the concentration of the substance(s) that give rise

to it. However peak overlap, distortion and irregular baseline present a problem in

analysing and quantifying spectra [97].

The main limitations for the introduction of MRS in a clinical setting is the relatively

high cost of equipment, lack of procedural standardisation and low sensitivity of the

technique (in terms of amount of sample required for analysis) [91]. Low sensitivity

arises because molecules of interest are present in low concentrations and because nuclei

other than ]H give rise to weaker signals. For in vivo techniques to become clinical

practice, it will be necessary to improve detection sensitivity, to automate spectral analysis

and to obtain such spectra in a clinically reasonable time at an affordable cost [96].

Whilst the studies mentioned above have indicated the potential of MRS in the

diagnosis of invasive cervical carcinoma, MRS appears unable to differentiate between

normal and pre-invasive neoplasms [101]. MRS could be a useful adjunct to histology in
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the clinical management of cervical cancer, where the diagnosis of a neoplasm as invasive

depends on the presence of diagnostic debris such as necrotic material, but seems an

unlikely technique for routine clinical screening of cervical cancer. 'H MR spectroscopy

may have the capacity to allow objective diagnosis of invasive cancer based on cellular

chemistry rather than morphologic criteria.

Magnetic Resonance Imaging (MRI) has been used successfully to measure tumour

volumes of cervical neoplasia with a high degree of precision [108]. An endovaginal

receiver coil placed around the cervix detected tumour volumes as low as 0.2 cm3 and may

be useful for precancer management of patients.

1.3.2,3 FL UORESCENCE SPECTROSCOPY

Laser induced fluorescence spectroscopy is a non-invasive real-time technique that has the

potential for quantitatively analysing the biochemical and morphological changes that

occur in neoplasia [109, 110].

The technique works by placing a fibre-optic probe on the cervix and illuminating the

tissue with low-power, monochromatic light. The system measures tissue fluorescence at

excitation wavelengths of 337, 380, and 460 nm. The fluorescent light emitted by the

tissue is collected and a fluorescence spectrum recorded, the shape of which is based on

the number and type of fluorophores in the tissue. Different levels of fluorescence

recorded from the tissue of patients with normal, pre-neoplastic and neoplastic cervices

form the basis of discrimination for this technique [110]. Using the excitation

wavelengths mentioned above, Turner et al. [109] used connectionist methods such as

multilayered perceptrons, and radial basis function (RBF) networks to create algorithms

more reliable, direct and accurate in precancer detection than those achieved by human

experts or multivariate statistical algorithms.

Mitchell et al. [110] reported for the diagnosis of SIL, sensitivities of 87% for

squamous epithelium, 96% for columnar epithelium, and 78% for the transformation zone.

Using the same excitation wavelengths in conjunction with the application of acetic acid

to the cervix, Ramanujam et al. [ I l l ] developed a diagnostic algorithm with 82%

sensitivity and 68% specificity in the discrimination of SILs from non-SILs, and 79%

sensitivity and 78% specificity in the discrimination of LSIL from HSIL. Acetic acid was

found to enhance the discrimination achieved between normal and precancerous cervical

tissue [112].
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1.3.3 INFRA RED SPECTROSCOPY

Infrared (1R) spectroscopy5 is the study of the interaction of infrared light with molecules

and measures the absorption of this light as chemical bonds vibrate. The wavelength of

light absorbed depends on the molecules involved in the bond, the type of vibration and

the environment [113]. IR spectroscopy is a well-established technique for the srudy of

molecular structure. It is useful in biology and medicine for identification and

quantification of compounds with unknown chemical structure and to study the nature of

inter- and intra-molecular interactions and conformations of systems. The vibrational

spectrum of a compound is analogous to the human fingerprint and is highly characteristic

of its physical properties [113].

Biological molecules can be grouped into four major classes: proteins, nucleic acids,

lipids and carbohydrates (which are the main constituents of the four elements of interest

in diagnostic cytopathology: the nucleus, cytoplasm, membrane and extracellular matrix).

Interactions occurring among and between these molecules are usually weak, and

comprise of hydrogen bonding and electrostatic and van der Waals interactions [76].

With simple organic molecules it is possible, through theoretical studies such as ab

initio calculations, to assign absorptions to IR spectra. This is not the case with complex

molecules such as biological specimens. Assignment of infrared bands of human tissues,

for example, relies on the extrapolation of the infrared spectrum of lipids, carbohydrates,

proteins and polynucleotides recorded in isolation and in other systems [76].

1.3.3.1 CHARACTERISTIC VIBRATIONS OF INTEREST

Following is a brief description of the main infrared absorptions arising from biological

tissues and cells. For a more detailed list of infrared absorptions of biological molecules

refer to Table 1.2.

The amide region

Amino acids are the basic structural units of all proteins, peptides and polypeptides.

An amino acid consists of an amino group; a carboxyl group and a side chain (R) bound to

the carbon atom, Figure 1.4. The spectral region from 1700-1500 cm"1 contains the amide

I and II vibrations of the amide bonds of the protein components.

Refer to Chapter 2 for a detailed explanation on the theory and instrumentation of infrared spectroscopy.
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Figure 1.4. Schematic representation of the amide functional group.

The amide I region, near 1650 cm'1 arises predominantly from the C=O stretching

vibration of the amide group [76, 77] with contributions from peptide N-H in plane

bending [114], Figure 1.5.

\R

Figure 1.5. Schematic representation of the vibrations contributing to the amide I infrared
mode.

The amide II region (1560-1500 cm"1) is primarily an N-H bending vibration coupled

to a C-N stretching vibration [76, 77], Figure 1.6. These two vibrational modes of tissue

proteins are also able to provide infonnation concerning conformational structure [115].

Figure 1.6. Schematic representation of the vibrations contributing to the amide II infrared
mode.

The amide III (1350-1250 cm"1) absorption arises primarily from N-H in plane bending

and C-N stretching vibrations with significant contributions from CH2 wagging vibrations

[76, 77].

The phosphodiester region

The spectral region between 1000-1250 cm"1 contains the vibrational modes of

phosphate groups. In nucleic acids, phosphodiester linkages of the polynucleotide chain

lead to two strong IR bands: asymmetrical (vasPO2\ 1244 cm"1, Figure 1.7a) and

symmetrical (vsPO2\ 1080 cm"1, Figure 1.7b) phosphate stretching vibrations [76, 116]. A

weak band at 1082 cm"1 arising from glycogen contributes to the intensity of the

symmetric phosphate stretch [116]. PO2" groups from phospholipids contribute minimally

to these bands [116].
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Figure 1.7. Schematic representation of the asymmetric (a) and symmetric (b) stretching
vibrations of phosphate.

The carbohydrate region

The major absorption of carbohydrate occurs in the infrared region 1200-1000 cm"1

ane has been attributed to C-0 stretching vibrations. The infrared region between 2800-

1800 cm"1 is generally devoid of absorptions in biological materials.

Table 1.2. Infrared band assignments of biological molecules [76, 77, 114-123]

Frequency
(cm1)

3015
-2960
2957
2956

2922
2874
2852

1741
1730
1650

1642
1500-1560

1485
1463-1473
1457

1452
1405
1404
1401
1399
1378
1318
1339
1200-1400
1250-1350

Functional
Group

=CH
CH3

CH2

CH3

CH2

C=O

Amide I

OH
Amide II

(CH3)3N
CH2

CH3

CH3

(CH3)3N~
CH3

CH3

CH3

CH2

Amide III

Vibrational Mode

V

Vas

Vas

vs

Vs

V

v O O
8N-H, in plane
5
5N-H with vC-N

5
6, scissoring
5

Vas

8
5
5
5

5, wagging
SN-H, vC-N and
5CH2, wagging

Arising from

Lipids
Methyl end groups of
membrane lipids as well as
methyl side chains in
cellular proteins
Lipids

Methylene chains in
membrane lipids
Acyl chain lipids

Amide functional groups of
amino acids and proteins
Water
Amide functional groups of
amino acids and proteins

Lipids
Methyl groups of proteins,
also seen in collagen
Methyl groups of proteins

Collagen
Methyl groups of proteins
Methyl groups of proteins

Sharp bands from connective
tissue

Amide functional groups of
amino acids and proteins
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12S3
1204
1244
1240
1228
1205

1170

1155

1122

-1080

1070

1047

1047

1043

1031
1025

1023

971

PO2"

CO-O-C

C-0

C-0

PO2"

CO-O-C

C-O-P
C-OH
C-0

CH2OH

-CH2OH

C-0

PO4"

V,

V

V

vs

Vs

V

V

5
V

V

V

vs

Sharp bands from connective
tissue
Phosphodiester linkages in
nucleic acids

Collagen
Glycogen
C-OH of proteins and C-0
of carbohydrates
Mucins
Phosphodiester linkages in
nucleic acids

Carbohydrates, in particular
glycogen
Mucins
Collagen
Glycogen
Glycogen
Dianionic phosphate
monoesters of
phosphorylated proteins and
cellular nucleic acids

1.3.3.2 INFRARED SPECTROSCOPY IN THE DIAGNOSIS OF CANCER

Infrared spectroscopy has been extensively applied to study changes at the molecular level

of various human cancers. Several groups have investigated the use of IR spectroscopy in

the diagnosis of colon [117, 120, 124], cervical [116, 118, 121, 123, 125-131], lung [132,

133], and liver [119] cancers, as well as leukemia [134-136].

1.3.3.3 CHARACTERISTIC INFRARED SPECTRAL CHANGES BETWEEN NORMAL AND

MALIGNANT CERVICAL CELLS

The initial work in the application of infrared spectroscopy in the detection of cervical

cancer was undertaken by Wong et al. [118]. Several changes in the infrared spectra were

found to be common to cancer:: including colon, stomach, skin, esophagus, liver, cervix

and vagina.

After collecting infrared spectra of exfoliated cervical cells from women with normal

or dysplastic cytology, Wong et al. [116] found several observable spectral differences,

and noted the following differences in malignant from normal cells:
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1. Significant changes in intensity of bands at 1303, 1244, 1155, 1082, 1047 and

1025 cm"1.

2. Significant shifts of peaks normally appearing at 1244, 1155 and 1082 cm"1.

3. Additional peak at 970 cm'1.

They also noted four prominent features characteristic of a dysplastic spectrum:

1. The intensity of the glycogen band is intermediate between those of normal and

malignant samples.

2. Ihe vsPO2" peak of 1082 cm"1 is not shifted.

3. The centre of gravity of the band at 1155 cm"1 is not shifted to the same extent as

in cervical cancer.

4. The additional band at 970 cm"1 is less intense than in cervical cancer.

The ratio of the peak intensities of bands at 1025 cm"1 (glycogen) and 1082 cm"1

(phosphodiester groups of nucleic acids) were found to differ greatly between normal and

malignant cells [116]. The decrease in intensity of the vC-CM band at 1155 cm"1 and the

vC-0 band at 1023 cm'1, which disappears with malignancy, occurs due to a reduction in

the glycogen level in abnormal cells [116]. It is well known that cells undergoing

neoplastic and malignant transformation exhibit a reduction in glycogen [6, 133]. The

relative intensity of the phosphodi ester stretching (vasPO2~) band at 1240 cm"1, with respect

to infrared bands originating from the vibrations of proteins and lipids, became stronger in

abnormal cells due to an increase in the N/C ratio [116], This correlates with the increase

in N/C ratio that occurs with the uncontrolled proliferation associated with cancer.

Growth control mechanisms have been inhibited and cells devote all their energy reserves

to division, which leads to a decrease in the ability of these cells to differentiate and form

a normal cytoplasm [9].

Pressure dependence studies and deconvolution techniques were used in an attempt to

correlate the spectral findings vith possible structural changes occurring in malignant

cervical cells [115, 116]. It was revealed that in malignant tissue there were extensive

changes in the degree of hydrogen bonding of phosphodiester groups of nucleic acids and

C-OH groups of proteins, as well as changes in the degree of disorder of methylene chains

of lipids.
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These findings were further substantiated and found to be applicable to malignant

cervical tissue [115]. In 1996 Yazdi et al. [123] identified the following features common

to all types of cancer:

1. Increase in hydrogen bonding of the phosphodiester groups of nucleic acids.

2. Decrease in the hydrogen bonding of the C-OH groups of proteins.

3. Enhanced molecular packing of nucleic acids.

4. Increase in hypomethylation.

5. Reduced glycogen levels in glycogen-rich tissues.

6. Increase in the disorder of the methylene chains of membrane lipids.

Fung et al [53] compare J FTIR spectroscopy in the screening of cervical cells with

conventional Pap smears using colposcopy directed biopsy as the gold standard.

Specificity and sensitivity were reported for FTIR (98.8% and 98.6%) and for the Pap

smear (90.5% and 86.6%>). Infrared spectra were classified as abnormal if they contained

any of the spectral features based on the earlier work of Wong et al. [116, 123].

Although these findings seem to indicate that IR spectroscopy is a powerful tool in the

(visual) discrimination of normal and malignant cervical epithelial cells and tissue, it is

becoming increasingly apparent that there may be other factors contributing to the spectral

changes assumed to be arising from neoplastic processes and malignancy. Section 1.4

provides a more detailed discussion of some of these factors.

Yazdi et al. [123] demonstrated that changes in the intensity, frequency and band

shape of many bands in the IR spectra of abnormal cervical specimens were altered from

those of riormai cervical specimens [123]. The majority (95%) of HSIL cases investigated

showed dramatic changes in IR spectra. However, only 54% of LSIL cases and 33% of

ASCUS cases exhibited significant spectral changes. The remaining cases exhibited only

slight spectral changes, which were considered to be ? icfiection of the heterogeneity of

lesions classified as LSIL and ASCUS.

In 1998 Diem's group [128] conducted a series of experiments in an attempt to

demonstrate that IR spectroscopy could be used as a marker of maturation and

differentiation in cervical squamous ep'ihelium. The spectral differences between basal,

parabasal, intermediate and superficial layers arose mainly in the 1200-900 cm"1 region.

The differences were seen as an increase in glycogen concentration towards the surface,
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i.e. as cells matured from the basal layer they accumulated more glycogen. Cervical

squamous epithelial cells accumulate glycogen as a proems of maturation, the

concentration being hormone dependent and peaking around ovulation [137]. Differences

were also noted in the amide 1/amide II ratio, believed to be a result of nucleic acid

contributions.

It was hypothesised [128] that the nucleus in a superficial cell, which has reached

maturity and is therefore tightly compacted, is infrared "opaque" and that any spectral

features of nucleic acids observed from these cells are a result of RNA rather than DNA

contributions. A 5 jam infrared beam focused on a single cell nucleus produced no

observable light at the detector, whereas a similar size beam focused on the cytoplasm

produced a weak IR spectrum. This experiment remained inconclusive because diffraction

effects for an infrared microscope fitted with a mercury-cadmium-telluride (MCT)

normally prevents the use of an aperture less than 30 um [138]. A recent study in the

same laboratory has concluded that DNA in the nucleus has an optical density too high to

allow transmission of IR radiation [136].

Despite the differences that are observed in normal squamous epithelial cells as a

product of maturation, Cohenford and Rigas [127] found that the spectra of cytologically

normal intermediate and superficial cervical squamous cells from women with dysplasia

or cancer differed frrn those of the cells of normal women6.

Exfoliated cervical cell samples are dominated by the presence of superficial and

intermediate cells, with parabasal cells occurring less frequently and basal cells rarely

observed [28]. Superficial and intermediate cells were found to give rise to two spectral

patterns [127]. The first pattern (A) was characterised by bands at approximately 1652,

1544, 1242, 1153, 1105, and 1080 cm"1 and an intense glycogen band at 1027 cm"1. The

second spectral pattern (B) was characterised by a significant reduction in the intensity of

the 1027 cm"1 band. Other bands were observed at approximately 1653, 1544, 1171, 1114,

and 1079 cm"1. The band seen at 1241 cm"1 exhibited an increase in intensity compared to

pattern A. The position of the peaks between the two spectral patterns did not differ

significantly except for the peaks at 1153 and 1105 cm"1 which were shifted to 1171 and

1114 cm"1 in the pattern B spectra. A spectral pattern intermediate between patterns A and

B were observed in about 5% of the cells. Glycogen was believed to be the primary cause

' Refer to Section 1.3.3.4 for a further discussion of these results.
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in the difference between the two spectral patterns, with peaks associated with glycogen

(1155, 1080 and 1026 cm'1) all observed in the infrared spectra exhibiting spectral pattern

A. This was further proven when cells exhibiting spectral pattern A stained positive for

glycogen with Lugo! 's reagent. No staining was observed in any of the cells yielding

spectral pattern B [127]. The spectral patterns displayed by parabasal, endocervical,

koilocytic, dysplastic and malignant cells were all similar to pattern B spectra.

The infrared spectra of dysplastic and malignant cells were found to have spectral

features similar to those observed in basal cells [131]. A loss in spectral detail in the low

frequency peaks associated with DNA was found as the cells progressed towards cancer.

In addition to the loss of spectral detail in the 1200-1000 cm"1 region, dysplastic tissue

spectra exhibited a small increase in the intensity between 1500 and 1150 cm"1 and an

increase in the amide II peak [131]. Given that basal cells are very rarely observed in

cervical smears, a spectral pattern representing these characteristics could be used as an

indication of the presence of dysplasia of malignancy.

The majority of studies involving the application of infrared spectroscopy to the

investigation of cervical cancer have been based on results of samples containing a large

amount of cells. The spectral differences observed with infrared spectroscopy can only be

attributed to large changes in the total sample, rather than changes occurring as a result of

the few abnormal cells generally present in cervical smears [139]. Lowry [139] employed

mapping techniques in an attempt to understand the nature of these effects. Results show

that abnormal changes occur across the whole sample, rather than from just the presence

of a few abnormal cells. This observation provides further evidence in support of the

argument that significant biochemical changes are occurring in the cells before

morphological changes of the disease state can be visually detected.

1.3.3.4 THE ROLE OFMULTJVARIATE STATISTICS

The discrimination between the infrared spectra of normal and malignant cervical cells

reported by Wong et al. [116, 118] is not ideal because results were based on visual

inspection of the spectra and the use of peak ratio comparison. Visual inspection of

infrared spectra introduces subjective bias, and the technique of peak ratio measurements

is insensitive to interference from extraneous factors and subtle differences between

spectra [126]. Differences in the thickness of the sample can also contribute to peak ratio
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bias and if these are to be used as criteria for discrimination, sample thickness must be

compensated for [139].

Biological specimens are inherently variable in nature and as such discrimination

between IR spectra of cervical specimens requires the use of robust and sensitive methods.

These methods must be able to model for nonlinearities arising from various sources

including sample processing errors, baseline shifts, batch-to-batch variations, and the

presence of non-diagnostic debris [126]. Methods also need to be sensitive to the presence

of 'outlier' spectra which may result from samples with less than optimal numbers of

cells, or specimens containing blood, mucus or other non diagnostic debris.

Infrared spectroscopy has been coupled to various multivariate statistical techniques to

create effective models and classification tools in the investigation of cervical cancer [125-

127, 140].

Wood et al. [125] used principal component analysis (PCA) to identify 7 key

wavenumber values contributing to the majority of the variance between the infrared

spectra of normal and abnormal cervical cells. Infrared spectra were assigned into two

groups with type 1 spectra exhibiting a spectral profile characteristic of normal epithelial

cells and type 2 spectra exhibiting features of dysplasia. Type 1 spectra were

characterised by an intense glycogen band at 1022 cm"1 and a pronounced VjPO? band.

Type 2 spectra showed pronounced vasPO2~ and vsPO2" bands and a reduction in the band

arising from glycogen. These spectral types are in agreement with those described by

Wong et al. [115] as normal (type 1) and dysplastic or malignant (type 2). Further

evidence to support type 2 spectra as displaying spectral profiles consistent with dysplasia

or malignancy was seen when IR spectra obtained from HeLa cells (a malignant cell line)

were shown to cluster with type 2 spectra in a 2D principal component scores plot.

Comparison of the two spectral profiles with cytology (Pap smear) and histology (biopsy)

revealed that 86% of the spectra exhibiting type 1 spectral profiles were diagnosed normal

by Pap smear and 87% exhibiting type 2 spectral profiles were diagnosed histologically as

showing dysplasia or HPV effects [125].

Cohenford et al. [126] utilised principal component regression (PCR) to achieve a

separation between normal and malignant cervical cells based on the presence (normal) or

absence (malignant) of a peak attributed tu glycogen at -1025 cm"1. They also reported

findings suggesting that cells of atrophic cervical samples shared important structural
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features with neoplastic cells. It has been well documented that cells in cervical cancer

and cervical atrophy have a reduction in glycogen content [6]. The discrimination of

normal and malignant cells based solely on the glycogen region is of questionable value

given the inherent amount of variation seen in the glycogen levels of normal squamous

epithelium.

Cohenford and Rigas [127] used partial least squares (PLS) as a means of achieving a

separation between malignant and cervical squamous epithelial cells. Chemometric

analysis was concentrated in the spectral regions 1200-1000 cm"1 and 3000-2800 cm"1.

Calibration curves were fitted using the spectral data of normal, dysplastic and malignant

samples exhibiting pattern A spectra. Calculated average predicted values were found to

differ significantly between normal and dysplastic and also between normal and

malignant. Similar calibration curves were fitted for pattern B spectra. No statistically

significant difference was noted between the normal and dysplastic groups, although

differences between normal and malignant and dysplastic and malignant groups were

statistically significant. These findings suggest that when a morphologically defined

neoplasia develops in the cervix, normal-appearing cells surrounding the abnonnal cells

have extensive structural, chemical or metabolic changer, which become apparent using

IR spectroscopy. This indicates that changes associated with the neoplastic process may

occur earlier than presently recognised morphologically.

1.4 THE IMPORTANCE OF IDENTIFYING POTENTIAL CONFOUNDING VARIABLES

The cytology of a cervical smear is very complex and comprises a variety of cell types

including endocervical and ectocervical epithelial cells, erythrocytes, leukocytes, and

platelets (thrombocytes). Smears may also contain bacteria, yeast, mucins, semen and

other contaminants [140].

It is becoming increasingly apparent that changes seen in IR spectroscopy are not

always indicative of a disease process. There are many variables that could potentially

contribute to spectral changes observed between healthy and abnormal samples, and

changes seen are not always indicative of the progress of disease [130]. In order for the

application of IR spectroscopy in the diagnosis of cervical cancer to be highly sensitive

and specific, it is of vital importance to identify possible confounding variables in cervical

smears and to assess their influence on the IR spectra of exfoliated cervical cells.
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1.4.1 THE MENSTRUAL CYCLE

The menstnial cycle consists of three phases (flow, proliferative and secretory), paralleled

to the follicular, ovulatory and luteal phase of the ovarian cycle, Figure 1.8, which

provides hormonal stimulation (in the form of estrogen and progesterone) to the

endometrium and epithelium of the vagina and cervix [141]. Menstrual bleeding occurs in

the flow phase, with the first day of bleeding used as a reference point for the cycle.

Follicles in the ovary begin to grow during the follicular phase, culminating in the

maturation of one follicle, leading to ovulation. In the ovary, the follicular tissue that

remains after ovulation is transformed into the corpus luteum (luteal phase). The corpus

luteum is an endocrine tissue that secretes estrogen and progesterone [141].

Estrogen
(estradiol)

Progesterone

Uterus
(endometrial

thickness)

1: Ovary

2: Follicular
development

3: Ovulation
4: Development
of corpus luteum

5: Degeneration
of corpus luteum

Uterine Menstrual Proliferatixfe Sectretory
phases phase

Ovarian
phase

Follicular

phase
Onset of new

menstrual phase

Luteal
phases phase Ovulation phase

0 14 28

Figure 1.8 The reproductive cycle of the human female [141].

During the follicular phase the ripening follicle produces only estrogen, causing

development of the epithelium. With continuing estrogen stimulation, a separate layer of

intermediate cells differentiates from the parabasal layer. These cells contain vacuoles

rich in glycogen [137]. Towards the end of the follicular stage, full estrogenisation is

established and the epithelium has developed into a thick structure, with an outer covering

of superficial cells. A characteristic feature of the completion of this maturation process is

the appearance of pyknotic nuclei in the superficial cells. Only estrogen is capable of

producing this degree of proliferation. Following ovulation, the corpus luteum secretes

both progesterone and estrogen. Progesterone causes the highly proliferated epithelium to
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regress back to intermediate proliferation [142]. The relative numbers of superficial and

intermediate squamous cells vary, depending on the phase of the menstrual cycle [143].

Endocervical cells also participate in cyclic hormonal changes, although no

morphological changes are observed by light microscopy [144]. During estrogenic activity

the endocervical epithelium proliferates and an increase in secretory activity is observed

[16]. Cervical mucus, which is thick for the majority of the menstrual cycle becomes

liquid for 3 or 4 days prior to, during and after ovulation [26]. The number of secretory

and ciliated cells in the endocervix is variable and the presence or absence of either may

be related to the phase of the menstrual cycle [16]. Doomewaard et al. [22] reported that

the day of the menstrual cycle on which cervical smears were obtained was influential on

the presence or absence of endocervical cells, with the absence of endocervical cells more

likely in the second half of the menstrual cycle.

1.4.1.1 CYTOLOGY OF THE OVULATORY CYCLE

1. Follicular phase: occurs from menstruation to ovulation. Cervical smears taken during

this phase consist of large, flat superficial cells and intermediate squamous cells.

Under normal cyclic conditions the number of polymorphonuclear leukocytes (PMNs)

decreases and the percentage of superficial cells increases throughout the phase [28].

The increase in the number of superficial cells is directly related to the maturation

effect of estrogen on squamous epithelium.

2. Ovulatory phase: refers to the midcycle days when ovulation occurs (theoretically day

14 in an ideal 28 day cycle). Cervical smears are "clean" with little, if any, mucus or

PMNs. The percentage of superficial cells is at a peak due to estrogenic stimulation.

A postovulatory reaction is expressed by folding of cells and appearance of small

clusters, sometimes accompanied by mucus and PMNs [28].

3. Luteal phase: occurs post ovulation and continues to the onset of menstruation.

Progesterone activity causes abundant exfoliation and squamous maturation reaches

the intermediate cell level seen through an increase in intermediate cells. This pattern

continues until 2-4 days before menstruation when an increase in superficial cells may

occur. During the premenstrual period abundant PMN and granular mucus are present

[28].
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4. Menstrual phase: may show cellular smear pattern similar to late luteal or early

follicular. Numerous blood cells and groups of endornetrial cells are present [28].

Oral contraceptives act primarily through pituitary inhibition to prevent ovulation and

suppress endogenous estrogen and progesterone [142]. The two most prescribed oral

contraceptives are monophasic and triphasic. The monophasic pill has a fixed

combination of estrogen and progesterone throughout the cycle. Cellular patterns are

characterised by the absence of cyclical changes and presence of the features usually

associated with the second half of the cycle [142]. The triphasic pill varies the

concentrations of estrogen and progesterone in an effort to mimic the cyclical pattern of

endogenous hormone secretion [145].

1.4.2 ENDOCERVICAL CELLS

The presence uf endocervical columnar cells in cervical smears is usually indicative of

adequate sampling of the transformation zone however endocervical cells have been found

by several groups to exhibii IR spectral patterns similar to those seen in dysplasia and

malignancy [121, 127, 129, 140]. Columnar cells differ markedly from squamous cells in

structure, molecular composition of the cytoplasm and physiological functions.

Endocervical cell spectra are characterised by an increase in the relative intensity

ratios of vasPO2" (1238 cm'1) and vsPO2" (1082 cm"1) with respect to 5CH3 (1401 cm"1),

compared to ectocervical cells. Significant changes in the band shape and relative

intensity of the C-0 stretching vibration at 1155 cm"1 have also been noted as well as the

appearance of a band at 971 cm"1 which is absent in ectocervical epithelial cell spectra.

The intensity of the methylene band increases whilst the methyl band decreases in

endocervical compared to ectocervical, suggesting that the number of methyl groups with

respect to ethylene groups is lower in columnar cells than in squamous cells [121].

Differences between columnar and squamous epithelium are most pronounced in the

1100-1000 cm'1 region, with columnar cells showing a characteristic broad peak with

maxima at 1076 and 1040 cm"1 and a weak shoulder at. approximately 1120 cm'1. These

peaks have been attributed to the carbohydrate moiety of glycoproteins in cervical mucus,

which accumulates in columnar epithelium [129]. Glycogen is not accumulated in

columnar cells [16].
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Columnar cells can be differentiated from malignant squamous cells by shoulder bands

occurring at 1122 and 1052-1043 cm"1 which are stronger in normal endocervical than

malignant squamous cells. The presence of mucins in endocervical cells contribute to the

intensities of these shoulder bands

1.4.3 BENIGN CELLULAR CHANGES (BCCS)

There are many processes occurring in the epithelium of the cervix that are considered to

result in benign changes. Two examples of benign cellular changes, which could

potentially confound the IR detection of cancer and precancer, are inflammation and

metaplasia.

Yazdi et al. [123] demonstrated that changes in IR spectra arose in cervical cells from

preinvasive and other conditions such as BCC and ASCUS. All samples with BCCs

exhibited abnormal IR spectra. Fifty-nine percent of these samples, which had cytologic

changes associated with inflammation, exhibited IR spectral features similar to those seen

in malignancy.

1.4.3.1 INFLAMMATION, LYMPHOCYTES AND OTHER BLOOD COMPONENTS

Inflammation occurs as a tissue reaction to injury and the injured tissue is associated with

the presence of leukocytes. There are three main types of inflammation [29]:

1. Acute: characterised by necrosis and breakdown of tissues with the predominance

of polymorphonuclear leukocytes [26]. Liquification of necrotic tissue and dead

leukocytes results in exudate (pus).

2. Subacute: less tissue breakdown with a predominance of leukocytes and

lymphocytes.

3. Chronic: slight tissue breakdown with a predominance of leukocytes and

lymphocytes with occasional plasma cells.

Macrophages (cell capable of engulfing large particles) or histiocytes participate in the

bodies defenses by phagocytosis. They may be mono- or multi-nucleated with round or

kidney shaped nuclei. The cytoplasm is usually filled with small vacuoles [26].

Wood et al. [140] found that in general, the IR spectra of leukocytes (a type of

lymphocyte or white blood cell (WBC)) exhibit features suggestive of malignant

transformation in the phosphodiester region. Spectra are characterised by a reduction in
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glycogen at 1050 cm"1 and 1024 cm"1 and pronounced vasPO2" and vsPO2" bands at 1240

and 1080 cm" respectively. These spectral differences were observed in the IR spectra of

cytologically inflamed samples, althorgh several features in the spectra enabled their

differentiation from malignancy [123].

Thrombocyte (platelet) numbers become significant as a consequence of a cervical

lesion or tissue damage. Thrombocyte aggregation arises as part of the initial clotting

mechanism and IR spectra are characterised by intense vasPO2" and vsPO2" peaks at 1240

and 1080 cm"1 respectively, possibly due to a combination of phosphorylated proteins

(ADP) found in thrombocyte granules. Thrombocytes exhibit characteristic bands at 980

cm"1 and 935 cm"1 that can be used as a marker of contamination [140].

Chiriboga et al. [130] found the most common contaminant in the IR spectra of

cervical tissue and cells arose from the presence of PMNs. PMN contamination lead to

spectra that were different from those of pure epithelial cells. The spectral features of

PMNs could possibly mask those of diseases such as cervical dysplasia.

Erythrocytes (red blood cells (RBCs)) are frequently observed in smears and their

presence may result from cervical sampling during menstruation (flow phase), tissue

damage caused from sampling or symptomatic bleeding of a cervical lesion [140]. The IR

spectrum indicates a lack of glycogen, but erythrocyte spectra are readily discerned from

abnormal spectra by examination of distinctive phosphate peaks. Erythrocytes exhibit

only diminutive phosphate peaks due to a deficiency in nucleic acids.

1.4.3.2 METAPLASIA

Metaplasia occurs as a response to stimuli such as pH or endocrine changes, trauma or

inflammation. Metaplastic cells are derived from columnar basal cells, which differentiate

into squamous cells in order to protect the delicate glandular epithelium. Metaplasia

frequently occurs at puberty and at pregnancy when the size and shape of the cervix

increases [9]. Immature metaplastic cells resemble parabasal cells.

The IR spectra of 19 out of 36 samples, diagnosed by cytology as 'within normal

limits', demonstrated abnormal spectra [123]. All of these patients had previous histories

of abnormalities of the cervix and the authors believe that these spectra could be indicative

of the occurrence of molecular changes before morphological abnormalities are observable

in cytology. However careful review of these smears showed the presence of squamous
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metaplastic cells, parabasal cells or mild reactive cell changes in some of the smears that

might have caused changes in the 1R spectra.

1.4.4 Mucus's

The consistency of cervical mucus can vary considerably depending on hormonal

influences such as ovulation, at which time the mucus becomes thinner enabling the

reception, transport and nutrition of spermatozoa. The major component of mucus is a

highfy characteristic epithelial glycoprotein with smaller amounts of protein [146].

Cervical mucus contains a high proportion of sugars (70-90%) and low nitrogen content.

Large amounts of the amino acids proline, serine and threonine are present whereas

aromatic and sulfur-containing amino acids are present in low concentration or absent

altogether. The constituent sugars are N-acetylglucosamine, N-acctlygalactosamine, N-

acetyl neuraminic acid, fucose, galactose and ester sulfate. The most probable structure of

mucus is a polypeptide backbone to which a large number of branched sugar chains are

attached via O-seryl and O-threonyl glycosidic linkages. Neuraminic acid and fucose are

present at either the ends of the sugar chains or as non-reducing terminal side chains. The

protein component of mucus is believed to act as a cross-linking reagent between the long

threads of glycoprotein. It has been suggested that the cross-linkages occur via the

neuraminic acid residues through a combination of ionic and hydrogen bonds. Low

molecular weight components include sodium and chloride ions and organic constituents

include glucose [146].

The presence of mucus represents a problem in IR spectroscopy since its high

viscosity prevents the easy separation from epithelial cells, and both the viscosity and the

spectral pattern of mucus depends markedly on the menstrual cycle [130]. IR spectra

arising from mucins are characterised by a broad peak with maxima at 1076 and 1040 cm"1

and a weak broad shoulder at approximately 1120 cm"1. These peaks have been attributed

to the carbohydrate moiety of glycoproteins, the major constituent of mucus [130].

1.4.5 CONNECTIVE TISSUE

The problem with sampling cervical tissue is the presence of connective tissue below the

epithelium, which absorbs in the IR region 1100-950 cm"1, similar to the region where

changes associated with malignancy have been noted [115]. The purpose of connective

tissue is to provide a matrix, which connects and binds cells and organs. The major
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constituent of connective tissue is the extra cellular matrix composed of collagen, protein

fibres, an amorphous ground substance and tissue fluid [115, 122]. Connective tissue

becomes less of a problem when studying exfoliated cervical cells, as only cells are

scraped in the collection process. Connective tissue may become problematic if

endocervical cells are sampled [121], as the epithelium of the endocervix is only a single

layer thick. If a smear is taken with force, it is foreseeable that connective tissue may be

present. Connective tissue can be differentiated from normal and malignant tissue and

cells in the region 1500-1200 cm'1 (Table 1.2).

1.4.6 SEMEN

Infrared spectra of semen are characterised by an intense amide II band (1550 cm"1); a

prominent band at 1400 cm"1 associated with the COO" groups of fatty acids and amirio

acids; an intense broad band at 1084 cm"1; and a distinctive doublet appearing at 981 and

968 cm"1. Semen does not seem to present a problem as a confounding variable because

the distinctive spectral doublet could be used as a marker for its presence [140].

1.4.7 FIXATIVES

For analysis of cells it is desirable to preserve structure and cellular constituents with the

least possible distortion. The fixative used must be able to quickly penetrate the cell

membrane and stop all biochemical and mechanical activity. The direct effect of most

fixatives is on cell proteins and protein-lipid compounds, which become denatured and

coagulated [26]. Alcohol is a coagulative fixative and may cause up to 70% shrinkage in

cells [9]. Isotonic saline can cause the precipitation of glycogen from the cytoplasm [140].

7.5 A NEW DIAGNOSTIC TECHNIQUE FOR CERVICAL CANCER

The investigations of objective spectroscopic techniques for diagnosing cervical cancer

performed in this dissertation are a continuation of the Honours project undertaken by the

author. The main outcome of that project was a trained artificial neurai network that

predicted the IR spectra of 20 unknown normal and abnormal samples with 100%

sensitivity and 90% specificity [147]. The project also presented preliminary results of a

study of the IR spectra of cervical smears obtained during the menstrual cycle.

Matlab was utilised to write routines that would enable the objective pre-processing of

spectral data. Chapter Three gives a detailed account of the Matlab routines written for
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pre-processing and analysis. Unless otherwise stated, all routines presented in this chapter

were written by the author of this dissertation. Having had no real experience in computer

programming, Matlab code was self-taught under the guidance of Prof. Frank Burden, a

chemometrician in the School of Chemistry at Monash University (Clayton, Australia).

Chapter Four of this dissertation presents an investigation into the spectroscopic

efforts of hormonal stimulation and nucleic acids in the diagnosis of cervical cancer. IR

spectra of cervical smears comprise molecular contributions of the major components of

cells. The intensity of peaks arising from cellular components present on cervical smears

differ according to stage of maturation, normality of the cell, environment of the cervix

and stage of the menstrual cycle, to name a few. It is necessary to identify the

contributions of individual components of cervical cells in order to understand the spectral

changes seen in the manifestation of abnormality. Weekly cervical smears were obtained

from participants to study the hormonal influences on cervical epithelium. Subcellular

fractionation of HeLa cells and epithelial cells of cervical smears was performed to isolate

nuclei and obtain IR spectra. This was to assess the contribution of nucleic acids in IR

spectra of cervical smears.

Chapter Five is divided into four sections:

1. A continuation of the investigation into multivariate statistical techniques started as

a collaboration with Bayden Wood, who presented the initial findings as part of his

PhD dissertation [148].

2. A continuation of the investigation of the ability of artificial neural networks to

classify and predict IR spectra of normal and abnormal cervical smears with high

sensitivity and specificity, presented in Romeo et at. [147].

3. An investigation of the chemical removal of potential confounding variables from

cellular deposits by lysing blood components, including leukocytes associated with

inflammation and platelets, which cause cell aggregation and inhomogeneity of

sample deposits.

4. An investigation into the spectroscopic and statistical influences of the presence of

confounding variables in cervical smears. This is a continuation of our earlier

study, which identified leukocytes including B- and T- lymphocytes, macrophages,

polymorphs and monocytes, fibroblasts and connective tissue as potential

confounding variables in the diagnosis of cervical cancer by IR spectroscopy
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[140]. The present study investigates the potential of endoccrvical cells, benign

cellular changes including inflammation, bacterial and yeast infections to confound

speetroscopic diagnosis of cervical cancer.
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2 AN INTRODUCTION TO INFRARED SPECTROSCOPY AND
MULTIVARIATE STATISTICS

2.1 THEORY OF INFFLARED SPECTROSCOPY

Spectroscopy is the study of the interaction of electromagnetic radiation with matter and

deals with transitions of molecules from one state or energy level to another. Figure 2.1

shows the electromagnetic spectrum for different types of radiation.
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Figure 2.1 The electromagnetic spectrum. Redrawn from[l].

All molecules undergo vibrational motion and the energy of most of these molecular

vibrations corresponds to that of the IR region of the electromagnetic spectrum, Table 2.1.

Table 2.1 Infrared spectral regions [2].

Region

Near
Middle
Far

Wavelength (X)
Range, urn
0.78-2.5
2.5-50
50-1000

Wavenumber
(v ) Range, cm"1

12800-4000
4000-200
200-10

Frequency (v) Range,
Hz
3.8xl014-1.2xI014

1.2xl01 4-6.0xl0u

6.0x10^-3.0x10"

Electromagnetic radiation can be thought of as having properties of particles and

waves, and consists of perpendicular oscillating electric (s) and magnetic (B) fields, Figure

2.2.

v. £

Magnetic Field

Figure 2.2 Plane polarised electromagnetic radiation of wavelength X propagating along the
x-axis. Redrawn from [3].
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2.1.1 THE DIPOLE MOMENT

In order to absorb infrared radiation, a molecule must undergo a net change in dipole

moment as a consequence of its vibrational motion. The electric dipole moment, ju, is

given by fi - qr where q is the charge on the atoms separated by a distance r. The dipole

moment is a vector quantity and is measured in SI units of coulomb meter (Cm). An

electric dipole moment is present in a molecule when there is a difference between the

centres of positive and negative charge. An electric dipole may be permanent, due to

differences in electronegativities among the atoms in the molecule, or induced

(temporary), caused by distortions of the molecule due to either interactions with other

molecules or to intramolecular motions [4]. The dipole moment of a vibrating diatomic

molecule is the sum of two components, a permanent dipole moment, /io, which is due to

the partial electronic charge on each of the atoms when they are at equilibrium, and a

component that changes as the molecule undergoes vibration, ju{q): ju = /JO + }j{q) where q

is the displacement from equilibrium. Since the dipole moment /J is the product of the

partial charge on the atoms and the internuclear separation, it should go to zero at small

internuclear separations or when the atoms are separated. If this is represented by a curve,

then the slope of the curve, d/j/dq, is essentially constant over the amplitude of the

oscillation. This is represented by (d/j/dq)0 which is the dipole moment change per unit

displacement from equilibrium. The dipole moment term is written as [4]:

ju = /Jo+\ — q Equation 2.1
dq

1 aa >o

If the frequency of the vibration of the electromagnetic radiation matches the natural

frequency of the molecule a net transfer of energy occurs, resulting in a change in the

amplitude of the molecular vibration and absorption of the radiation.

Homonuclear diatomic and polyatomic molecules with a centre of inversion cannot

have permanent dipole moments since nuclei attract the electrons equally. Heteronuclear

diatomic and unsymmetrical molecules have permanent dipole moments since one atom

will be more electronegative than the other/s and will have a net negative charge [3].

The molecular dipole moment of a heteronuclear molecule oscillates about equilibrium

as two atoms with net negative and positive charges move back and forth. This oscillating

moment is able to absorb energy from an electric field if the oscillations of the field occur
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at the same frequency. Different molecules absorb infrared radiation at different

frequencies and therefore IR spectroscopy is used to identify 'compounds' and possibly

their structure by the frequencies of the absoiptions of the molecules present. The

absorptions of each type of bond or functional group are found in certain regions of the

infrared range and as such absorption in a particular region is indicative of a bond or

functional group.

Excitation can result in a molecule undergoing an increase in vibrational amplitude, or

rotational frequency. Since the rotational energies of molecules are smaller than

vibrational energies, vibration and rotation usually occur simultaneously [2]. Models

explaining the mechanics of rotation and vibration in diatomic molecules have been

formed in order to understand the spectra produced from the excitation of molecules with

infrared radiation.

2.1.2 ROTATION

The simplest model for explaining the rotation of a diatomic molecule is the rigid rotor,

Figure 2.3.

Centre of mass -—

Figure 2.3 The rigid rotor. Redrawn from [1],

TbJs model supposes that the two nuclei are fixed at rc, equilibrium separation. If the

nuclei have masses mi and m2, the molecule will rotate about the centre of mass defined

such that rn\r\ —

It is possible to completely resolve the fine structure due to rotational transitions in the

infrared region using gaseous samples. The infrared bands of liquid or solid samples

however, are often broadened due to rotational coupling with vibration [5].

Rotational energies of a diatomic molecule can be calculated using the reduced mass,

ju, (not the same as the dipole moment, Equation 2.10) and the moment of inertia, /, of the

molecule. The theory of rotational vibration is presented in Harris et al [3].
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2 A3 VIBRATION

A simple model for the vibration of a diatomic molecule, Figure 2.4, can be formed if the

bond between the two nuclei is thought to behave as a spring that obeys Hooke's Law,

Equation 2.2.

Figure 2.4 A model for the vibration of a diatomic molecule. Called a harmonic oscillator
because it obeys Hooke's Law. Redrawn from [3].

restoring force = / = —kq Equation 2.2

where k is the force constant (SI units is newtons per metre). The potential energy is given

by:

V = (\/2)kq2 Equation 2.3

The harmonic oscillator model predicts molecules to have discrete vibrational energy

levels characterised by the quantum number v:

Ev = (v +1/2) — Jkfji s (v +1/2) h v Equation 2.4
In

where:

v = — sjk/ju Equation 2.5
2K

In the lowest vibrational state, the ground state (v = 0), the molecule has zero point

energy, Eo =(l/2)hv, whereas rotational energy levels have a ground state energy of

zero. The harmonic oscillator model, Figure 2.5, predicts a diatomic molecule to have

equally spaced vibrational energy levels, starting (1/2)/? v from the bottom of the potential

well with the spacing between levels equal to h v. The mid IR vibrational spectra of

diatomic molecules usually result from excitation from the v = 0 to the v = 1 energy

levels. Therefore the difference in energy, AE, between these two levels is h v. This value
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can be used to calculate the force constant (k) of a chemical bond, which is an indication

of bond strength [3].

V

v=\

v=0

rc r-

Figure 2.5 Harmonic oscillator potential well showing energy levels. Redrawn from [3J.

The parabolic potential well generated by the harmonic oscillator is a poor

representation of the force between diatomic molecules. A real molecule should have an

asymmetric potential well, Figure 2.6. As q (Figure 2.4) decreases the nuclei come

together and repel each other. At small values of q the repulsion is very strong, but as q

increases the restoring force equilibrates and the molecule dissociates [3].

In vibrational spectroscopy wavenumber (cm"1) units are usually used in preference to

wavelength, energy or frequency. Energy (joules) can be converted to wavenumber

values/(cm"') using Equation 2.6:

£(joules)

h (joules/sec) • c(m/s) • 100(cm/m)
= £(cmH) Equation 2.6

where the bar over the symbol E emphasises that the units are in wavenumbers. The

wavenumber scale is preferred because of its linearity and direct proportionality with

energy (Equation 2.7) and frequency (Equation 2.8):

E — hcv

1 v
v — — = —

A c

Equation 2.7

Equation 2.8

60



E
O

Dissociation Energy

Figure 2.6 The anharmonic oscillator potential (solid line) and harmonic oscillator (dashed
line). Redrawn from [3].

If a diatomic molecule is assumed to behave as an harmonic oscillator, the natural

frequency of the vibration is given by:

1
v =

7.TCC \ fJ.
Equation 2.9

which is derived from Hooke's Law (Equation 2.2). The reduced mass, ju, is given by:

Equation 2.10
777, +77T 2

The value of k varies from one bond to another. The force constant of triple bonds are

approximately three times those of single bonds, whilst the force constant of double bonds

are approximately twice that of single bonds [5].

Consequently bond strength and mass of the atoms in a molecule affect the frequency

at which IR absorption occurs. Since stronger bonds have a larger force constant they will

vibrate at a higher frequency than weaker bonds. Bonds between atoms of higher masses

will have a larger reduced mass and will vibrate at lower frequencies than bonds between

lighter atoms [5].

2.1.4 VlBRA TIONAL MODES

The simplest modes of vibrational motion, which gives rise to absorption in an infrared-

active molecule are stretching and bending, Figure 2.7. Stretching modes take the form of

symmetric and asymmetric stretches. Asymmetric stretches generally occur at higher
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frequencies than symmetric stretching vibrations. Bending vibrations are commonly

referred to as scissoring, rocking, wagging or twisting, and occur at a lower frequency

than stretching vibrations because the value of A' is lower [5],

Symmetric stretch

Asymmetric stretch

Scissoring Wagging

Rocking

/x
Twisting

Figure 2.7 Possible stretching (a) and bending (b) vibrational modes of infrared absorption
J5]. Scissoring and rocking are termed in-plane bending vibrations, whilst wagging and
twisting are termed out-of-plane bending vibrations.

The absoiptions mentioned above are termed fundamental absorptions because they

are a result of excitation from the ground state to the lowest excited state. Whilst these

absorptions give rise to strong infrared bands, weaker overtone, combination and

difference bands may also be observed. Fermi resonance effects may also be seen and

occur as a result of coupling between a fundamental and an overtone or combination band.

Fermi resonance is often observed in carbonyl compounds [5].

2.1.5 ABSORPTION OF LIGHT.

In spectroscopv a sample is illuminated with light and the amount of light absorbed by the

sample is measured as a function of the energy of the light. The amount of light absorbed

by a sample can be expressed as transmittance (Equation 2.11) or absorbance (Equation

2.12). If the intensity of the light striking a sample is 70, and the intensity of the light that

passes out of the other side of the sample is /, the transmittance, Tis the ratio:

T = III Equation 2.11
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The absorbance, A, is defined as:

A = log10 — = logU) (1/T) Equation 2.12

Absorbance is a useful measure of light absorption because at low absorbance values it is

directly proportional to the molar concentration of the sample, c, and the length of the

light path through the sample cell, I, as expressed by the Beer- Lambert Law:

A=<=c£ Equation 2.13

The proportionality constant, e, is known as the molar absorption [6] or extinction

coefficient (units M"1 cm"1) and is a measurement of how strongly a particular sample

absorbs light at a given wavelength [3].

2.2 THE INFRARED SPECTROMETER

An infrared spectrometer, or spectrophotometer, is used to measure the spectrum of a

compound. The two types of infrared instruments commonly used are dispersive and

Fourier transform (FT). Dispersive instruments make use of diffraction gratings which act

as monochromators to separate polychromatic radiation into monochromatic components

[7]. As a consequence dispersive spectrometers are time intensive as the detector is only

able to receive information about individual spectral elements at any given time. There

are two main advantages of a FT spectrometer over traditional dispersive instruments.

Dispersive instruments are restricted due to the ability of the slits to receive information

about a narrow band at a given time. The interferometer of the FT system receives

information about the entire spectral region in each scan. This is known as the Fellget or

mul';plex advantage. The Jacquinot or throughput advantage is the ability of

interferometers to collect large amounts of energy. The grating spectrometer requires long

and narrow slits whereas the interferometer has a much larger area for the same resolving

power and less attenuation of infrared radiation. Advantages resulting from this include

large resolving power, high wavenumber accuracy, fast scanning time, and large scan

range [8]. The advantages of FTIR so outweigh the grating spectrometers that dispersive

instruments in the mid IR are no longer used to any great extent.
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2.2.1 MlCHELSON INTERFEROMETER

The essential instrument for modern infrared spectroscopy is a Michelson interferometer,

Figure 2.8.

-**-

Moveablc Mirror

Source

Fixed Mirror

Compensator

Beam
• • Splitter .

Focusing Mirror

Spectral Filter

Detector

Collimator

Figure 2.8 Schematic diagram of a Michelson interferometer.

Infrared light is emitted by a source and directed to a beam splitter. Ideally, the beam

splitter allows half of the light to pass through, whilst the other half is reflected. The

reflected beam strikes a moving mirror and reairns to the beam splitter. The transmitted

beam travels to a fixed mirror through distance L, is reflected and returns to the beam

splitter after a total path length of 2L. A stepper motor, the precision of which is governed

by the modulated output of a HeNe laser, moves the reflecting mirror around L by

successive distances x resulting in a beam with a total path length of 2{L+x). The beams

recombine at the beam splitter, with the partial waves interfering constructively or

destructively as a consequence of the path length difference (2x) between the wave trains.

Maximum detector signal arises if the partial waves interfere constructively, i.e. when the

optical retardation is an exact multiple of the wavelength X: 2x = nA (n = 0,1,2,....).

Minimum detector signal arises from destructive interference when 2x is an odd multiple

of A/2.

2.2.2 FOURIER TRANSFORMA TION

The beam leaving the interferometer is passed through the sample and focussed onto the

detector. The quantity measured by the detector is the intensity I(x) of the combined

infrared beams as a function of the mirror displacement (x) and is known as the

interferogram. The dependence of the intensity I(x) on the mirror displacement (x) is

given by the cosine function:
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Equation 2.14

The interferogram is converted from an optical path difference or time domain into a

frequency domain (S(v)) by means of a mathematical operation called Fourier

transformation [8]:

-to.'

S(v) = j /(.v) cos 2;na- • dx Equation 2.15

If the interferogram is sampled, as is the case where sampling points are determined by

the interference pattern of a monochromatic HeNe laser, it consists of TV discrete

equidistant points and discrete Fourier transformation (DFT, Equation 2.16) must be

performed [8]. As a consequence of performing discrete rather than continuous Fourier

transformation of the interferogram I(x), the continuous variables scan length x and

frequency vbecome the discrete variables n. Ax and k. Av [9].

A : -1 K

S(k-Av) = £7(/jAx)exp(/2;m •—) Equation 2.16
n=0

The mathematical process of Fourier transformation assumes infinite boundaries,

whereas discrete Fourier transformation (DFT) performs integration over a finite range.

DFT can lead to the spectral artifacts known as the picket fence effect, aliasing and

leakage [8].

The picket fence effect is seen when the interferogram contains frequencies that do not

coincide with the frequency sample points k*Av. This effect can be avoided by zero

filling, which causes spectral interpolation by adding zeroes to the end of the

interferogram [8].

The process of DFT produces a spectrum and its mirror image or alias. The first N/2

points of the DFT represent the spectrum whilst the remainder represents the mirror

image. The point at which the mirror image begins is called the folding or Nyquist

number. Aliasing presents a problem, if an overlap occurs between the spectrum and its

alias or if the spectrum is non-zero above the Nyquist number. Alias overlap can be

avoided by increasing the number of sampling points in the interferogram, i.e. reducing Ax

[8].
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The truncation of the interferogram at finite optical path difference causes convolution

of the true interferogram with a boxcar function, resulting in leakage or the appearance of

positive and negative sidelobes in the instrumental lincshape. Side lobes can be removed

by apodisation, where the interferogram is multiplied by a suitable function before the FT

is carried out [10]. The problem of leakage can be avoided by truncating the

interferogram less abruptly than with the rectangular boxcar function. Apodisation

functions and the instrumental lineshape produced are presented in Figure 2.9. The use of

apodisation functions other than the boxcar results in a loss of resolution.

3-Term Blackman-Harris

Figure 2.9 Apodisation functions and resulting instrumental lineshapes [8].

The measured interferogram is generally not symmetrical about the centreburst, .v = 0.

Asymmetry is caused as a result of sampling positions not coinciding with zero path

difference, the measurement of a 'one sided' interferogram, or wavenumber dependent

phase delays [8]. Fourier transformation of the asymmetrical interferogram produces a

complex spectrum rather than a real spectrum. Phase correction is employed to extract the

spectrum S(v) from the complex output of the FT. The procedure known as

'multiplicative phase correction' or the 'Mertz method' is able to extract the spectrum

without amplification of noise [8].

Fringes are the appearance of sinusoidal modulations on the baseline of infrared

spectra. Fringing results from multiple reflections of the IR beam betv/een two parallel

surfaces in the spectrometer's optical path [8]. The effects of fringing can be avoided by
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using a lower resolution for data acquisition or by removal or adaptation of the offending

element.

2.2.3 SOURCES AND DETECTORS

The infrared source is usually an inert solid which, when heated electrically to

temperatures between 1500 and 2400 K, is able to emit continuous radiation

approximating that of a black body. Sources most often used are globars (SiC), Nichrome

wires, or ceramic Nernst glowers (mixtures of zirconium, yttrium and erbium oxides).

Infrared detectors can be classified as thermal or semiconductive. Thermal detectors

measure the temperature change caused by the infrared radiation and include

thermocouples, bolometers and pyroelectric detectors. Semiconductor detectors include

photoconductive and photovoltaic devices that have faster response times than thermal

detectors. In photoconductive detectors such as HgCdTe (mercury, cadmium, and

telluride (MCT)), the infrared photon promotes an electron across the band gap between

the valence and conductivity band which is measured as a change in current across the

detector. In photovoltaic detectors such as InSb an electric current is produced that

induces a charge that is directly proportional to the light intensity [7]. Semiconductor

detectors are usually cooled with liquid nitrogen to reduce noise arising from thermal

sources.

2.2.4 NOISE

Noise is an effect that is visible as fluctuations of the baseline in a signal, Figure 2.10.

Random noise usually cancels out of a spectrum after many iterations, and the signal-to-

noise ratio (SNR) improves as a function of the square root of the number of scans, n [5]:

TV
Equation 2.17

Signal (S)

Noise WJ

Figure 2.10 The signal-to-noise ratio. Redrawn from (5].
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The detection limit for an instrument is the point at which a signal canno> be

discriminated from the noise level and is frequently considered to be at a signal to noise

ratio of 2 [6] or 2-3 [2]. The SNR is a measure of the signal in a peak measured relative to

the noise (background signal) and is useful for describing the quality of the instalment or

the instrumental method.

For a dc signal, noise takes the form of a time variation of the signal about the mean.

Noise can therefore be defined as the standard deviation of the signal where signal is given

by the mean [2]. The SNR is statistically defined as the ratio of signal strength to root-

mean-square (RJVIS) noise [11]:

S mean 1
Equation 2.18TV standard deviation relative standard deviation

2.2.4.1 SOURCES OF INSTRUMENTAL NOISE

Noise is associated with each component of an instrument and is a complex composite

arising from several sources, Instrumental noise can be divided into four general

categories. Johnson or thermal noise, shot noise, environmental or interference noise and

flicker or \lf noise. Johnson or thermal noise arises due to thermal agitation of e ..trons

or other charge carriers in resistive elements of an instrument including resistors,

capacitors and radiation detectors. Johnson noise is dependent on the frequency

bandwidth but independent of frequency and is often referred tc as white noise.

Narrowing the bandwidth with filters and lowering the temperature of the detector, usually

with liquid nitrogen, can reduce Johnson noise. Shot noise occurs wherever a current

requires the movement of electrons or other charged particles across a junction. Flicker

(1//) noise has a magnitude that is inversely proportional to the frequency/of the signal

and its presence is not well understood. Environmental or interference noise occurs as

conductors in the instrument extract electromagnetic radiation from the surroundings and

convert it to a signal. Temperature fluctuations over time also contribute to noise [2].

2.2.4.2 SIGNAL- TO-NOISE ENHANCEMENT

Several techniques can be employed to enhance the SNR. Hardware methods improve the

SNR through incorporating different components into the instrument design; whilst

software methods extract signals from noisy environments. Shielding or grounding the

circuits can reduce noise arising from environmental electromagnetic radiation.
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Difference amplifiers can be used to attenuate noise generated in transducer circuits.

Analog filtering uses low-pass filters to remove any high frequency component arising

from Johnson or shot noise. High-pass filters reduce the effect of drift and other low

frequency flicker noise. The process of modulation reduces the effects of flicker noise at

low frequencies by converting the dc signal from the transducer to a higher frequency.

The chopper amplifier employs an electrical or mechanical chopper to convert the input

signal to a square-wave form. This process removes only noise occurring after chopping

the signal so it is preferable to chop the signal close to the source.

Infrared spectroscopy, i.e. dispersive instruments, use mechanical choppers to reduce

noise, whereas in FT instruments the signal is modulated by the interferometer. Noise can

be a problem in infrared spectroscopy because the source intensity and the detector

sensitivity are low. This results in an electrical signal that is generally small and requires

amplification. Thermal radiation and environmental noise may also present problems.

Boxcar averaging is a digital procedure for smoothing irregularities, assumed to be arising

from noise, in the waveform. Digital filtering is a method of smoothing that assumes a

linear or polynomial relationship exists between the points being sampled in the boxcar

procedure. Digital filtering can also be used to convert the original signal that varies as a

function of time (time-domain signal) to a frequency-domain signal in which frequency is

the independent variable. This is accomplished by a Fourier-transform procedure [2]. As

seen in Equation 2.17 noise can also be reduced by simple signal averaging.

2.3 FTIR MICROSCOPE.

The FTIR microscope combines an optical microscope and an FTIR. spectrophotometer.

The FTIR microscope, Figure 2.11, utilises cassegrain optics for visible light and the

infrared beam; therefore the infrared spectn .i obtained corresponds to the visually

selected area. The optical microscope enab.os a 120 times magnification of the visible

light image of a sample.

A microscope enables the collection of spectra from several areas of one sample. This

allows spectral reproducibility to be verified on samples of known heterogeneity, and on

that basis allows sample differentiation in samples of unknown heterogeneity. The

microscope aperture is important for isolating groups of cells and potential contaminants

for further investigation. Infrared spectra can be collected from samples as small as

20um2.
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Upper Variable Aperture

Objective

Condenser

Lower Variable
Aperture

Figure 2.11 The general layout of an FTIR microscope [12].

2.4 INSTRUMENTAL PARAMETERS

A Bruker IFS-55 Spectrophotometer (Figure 2.12) coupled to an A590 infrared

microscope was used to collect the majority of the spectral data. A Perkin Elmer (PE)

1600 spectrophotometer coupled to a PE infrared microscope was used to collect the

infrared spectra for the menstrual study and a small proportion of the spectra used for the

database.

Fifty scans were accumulated for each spectrum at a resolution of 8 cm"!. The Bruker

IR Microscope utilises a globar (MIR) source, a Ge multilayer coating on a KBr beam

splitter, a MCT detector and an aperture setting of 5.0 mm. The MCT detector has an

operating temperature of 77 K, is enclosed in a liquid nitrogen filled dewar and gives

spectra with far less noise than those obtained with detectors that operate at room

temperature. A low pass filter operating at 16 Hz and 12638 cm"1 was employed to

remove any high frequency components arising from Johnson or shot noise. The

acquisition mode was single sided, fast return. The frequency range of data collection was

3650-700 cm"1 with a phase resolution of 32. Mertz phase correction was employed as

was a 3 term Blackman-Harris apodisation function and a zero filling factor of 2. To
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reduce the effects of environmental water vapour and carbon dioxide, the microscope was

enclosed in a Perspex box purged with nitrogen.

1R source

Aperture

InterferometerSample
position

To -«*J
microscope

Dc:ectorN

Sample
compartment
windows

Figure 2.12 Schematic of the Bruker IFS 55 Spectrometer. Courtesy of Bruker (Australia).

Detectors such as MCT photoconductive detectors generate a nonlinear response with

respect to concentration and intensity. A nonlinear response results in non-zero intensities

appearing in spectral regions where zero intensity is expected [13]. Refer to Section 3.2.2

for an explanation of removal of nonlinearity effects.

In order to reduce the measurement time, resolution should not be higher than

necessary as doubling the resolution results in a 4-fold increase in measurement time to

maintain the same signal-to-noise ratio. Resolution is related to the optical path difference

of the wave train and therefore the mirror displacement by the following relationship:

Resolution =
1

—- — x Mirror displacement Equation 2.19
Optical path difference 2

To achieve a particular resolution (Sv) at a certain wavenumber ( v ) , the aperture

diameter (A) must be a small value as defined by:

I OV 12

A(mm) < 2 * F(mm) * -=- Equation 2.20

Where F = instrument focal length. The focal length of the IFS-55 is 69 mm [13] and the

aperture size used for collection of spectra was 0.6 mm.
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2.5 THEOR Y OF MUL TIVARIA JE STA TISTICS

The term multivariate data analysis incorporates many different methods and techniques

and can be divided into two different types: clustering methods and ordinal methods.

Clustering methods are algorithmic approaches that aim to divide or collect samples into

groups, depending on similarities. Ordinal methods, such as principal component analysis

(PCA), use mathematical properties to decompose data matrices. These methods work by

obtaining new coordinates describing the variance, or covariance, in the data set. This

enables complex data consisting of many variables to be reduced to a lower

dimensionality [14].

2.5.1 PATTERN RECOGNITION

Pattern recognition refers to the ability to assign an object to one of several possible

categories according to the values of measured parameters or variables. In chemometrics,

pattern recognition can be further divided into two groups: unsupervised and supervised.

Unsupervised pattern recognition includes cluster analysis and hierarchical techniques and

the interpretation of the number of clusters and populations can often be subjective, as this

information is not known prior to analysis. In supervised pattern recognition techniques

such as classification or discriminant analysis the number of groups is already known and

there are representative samples of each group. Classification uses information from

known samples to identify and categorise future samples. The means of deriving the

classification rules from previously classified samples is referred to as discrimination [15].

If the data observed for one object is measured by M variables, it can be represented as

a vector and as a point in jV/-dimensional space by giving each variable one coordinate

axis. A class of objects is represented by a swarm of points in M-space and several classes

as distinct or overlapping swarms. Pattern recognition can be seen as the methodology to

describe these swarms quantitatively and enables the calculation of which class a new

object is to be assigned to [16].

2.5.2 CLASSIFICATION

The concept of distance is very important in classification procedures and follows from

the assumption that proximity in multivariate space is indicative of similarity between

samples. Therefore samples that are near in variable space are considered to have the

same characteristics, whereas a large separation is suggestive of different characteristics.
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The most commonly used method for determining similarity between samples is to

measure the Euclidean distance of samples in variable space [17]:

M

Equation 2.21

where Mis the number of variables.

Classification on the lowest level operates under the assumption that all objects in the

training and test sets belong to one of the initially defined classes. If the reference or

training sets of the classes can be separated from each other by a surface, new objects are

classified according to which side of this surface they fall. Two examples of this type of

classification are /^-nearest neighbours (Section 2.5.3) and linear discriminant analysis

(Section 2.5.4). It is often unrealistic to assume that all objects belong to one of the

defined classes and these methods of classification do not allow for the presence and

detection of outliers or the possibility that an object might belong to an unknown class

[16].

The next level of classification operates by containing each class in a closed envelope

(mathematical structure) in M-space. These class envelopes are constructed so that an

object falling within an envelope is considered to be a member of that class and objects

falling outside all envelopes are considered to be outliers to all classes. An example of

this level of classification is called SIMCA (soft independent modelling of class analogy,

Section 2.5.6) [16].

2.5.3 K-NEARESTNEIGHBOURS (K-NN)

/^-nearest neighbours is referred to as a non-parametric technique and searches primarily

for similarity within classes, making no assumptions about the distribution of the data.

Unknown samples are classified by measuring the Euclidean or Mahalanobis distance

from the unknown to members in the training set. An object is assigned to the class to

which the majority of nearest neighbours belong.

For two objects characterised by multivariate pattern vectors x\ and X2 defined by:

X\ - \2, . . • .,X\M)

Equation 2.22
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where M is the number of variables, the Euclidean distance between objects 1 and 2 is

given by Equation 2.2.1. This equation can be expressed in vector notation as:

Equation 2.23

where a and b represent xt and A'2 respectively.

The Mahalanobis distance is a weighted distance measure and is defined as:

dAB=[{a-b)T-Cov-\a-b)]xl2

where Cov if the variance-covariance matrix ^or the original data.

Equation 2.24

Application of these distance equations to iT-NN defines a circle or sphere about the

unclassified sample in point space containing K nearest neighbours, with radius rK, which

is the distance to the A4*1 nearest neighbour. This is shown schematically in Figure 2.13.

5 -

4 -

3

2 -

• Group A

H Group B

A Unknown

I I I
1 2 3 4 5

Figure 2.13 Schematic representation of the circle with radius r about an unclassified object
containing three nearest neighbours. The unknown sample is assigned to group A. Redrawn
from [15].

The volume of the sphere is used as an estimate of P(X\GO or the conditional probability

of the pattern vector* arising from group i:

1 Equation 2.25

where /i; is the number of samples known to belong to each group /, kj is the number of

nearest neighbours in group / and VK,X is the volume of space which contains the K nearest

neighbours.

Using Equation 2.25 in Bayes' rule (Section 2.5.4) an object is assigned to group / if:
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>
"j

, for all j Equation 2.26

If the number of objects in each training set, nt, is proportional to the unconditional

probability of occurrence of the groups, P(c,i), the equation is further simplified to, assign

to group / if:

ki > kj Equation 2.27

The choice of distance measurement used, be it Euclidean or Mahalanobis depends on

correlation between samples and variables and the ratio of variables to sample objects.

When variables are correlated, the Euclidean distance leads to distorted conclusions. If •

the number of variables is lower than the number of objects, the Mahalanobis distance

may be applied because this distance takes account of correlation existing within objects

in the class. When the number of variables is comparable or higher than the number of

objects, and when the variables are correlated, the Mahalanobis distance cannot be

calculated because the covariance matrix is singular [18].

The choice of AT is arbitrary but for data in which the classes overlap, K = 3 or 5 have

been shown to provide good classification [15]. K-NN is a useful statistical technique in

that it drastically reduces the amount of storage and computation requirements. However

the classification of a new object requires recalculation of all distances, and if another

class is added, K-NN criteria must be recomputed, K-AUSls is sensitive to unequal numbers

of objects in the training sets and the classification of an unknown object can differ

depending on K. K-NNs ;s superior to some other pattern recognition techniques in that

each sample is unambiguously assigned to a single group.

2.5.4 DISCRIMINANT ANALYSIS

The central idea behind discriminant analysis, like most classification techniques, is to

assign an observation, x, of unknown origin to a distinct group on the basis of the value of

the observation.

Discriminant analysis is based on Bayes' theorem, which states "a sample or object

should be assigned to that group having the highest conditional probability" [15]. The

application of this rule to parametric classification provides discriminating ability. An

unknown sample is assigned to, for example, Group A or G(A) on the condition that:
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p > p
1 (G(A)\x) ' x (

Equation 2.28

Determining these conditional probability values involves the analysis of all samples

in the parent population, which is quite obviously unrealistic. Bayes' theorem provides an

indirect means of estimating the conditional probability, P(G(A)\X) • According to Bayes'

theorem:

P.
P • P
1 (x\G(A)) 1 (C(.-l))

(G(A)\x) P • P
r(x\G(A)) r(G(A))

P • P
Equation 2.29

and PiGip)) are the a priori probabilities and represent the probabilities of a sample

belonging to A and B in the absence of having data. P(X\G{A)) is a conditional probability

that expresses the chance of a vector pattern x arising from Group A. This probability can

be estimated by sampling the population of Group A. Whilst P(X\G(A)) and -P(.r|G(B)) can be

estimated through the analysis of large numbers of samples, if the variables contributing to

the vector pattern are assumed to follow a normal distribution, the conditional probability

values can be calculated from:

P.
1

(x\G(A))
2TT-COV|

1/2
CXP[-\/2(X-MA)T -COV/ ! Equation 2.30

In quadratic discriminant analysis, a sample is assigned to Group A if:

In PiGW) - 0.51n(|CovA|) - 0.5(x - / /A)T CovA
] (x - //A) >

In P(G(B)) - 0.51n(!CV?vB|) - 0.5(JC - /iB)T CovB
l (x - //„)

The discriminant function, dA(x) is defined by:

dA(x) = 0.51n(|CovA|) + 0.5(JC - / /A)T CovA
] (x -

and an object is assigned to Group A if:

Equation 2.31

Equation 2.32

dA(x) < de(x) Equation 2.33

If the prior probabilities can be assumed to be equal, i.e. P(G(A)) ~ P(G(B)) the

discriminant line between Groups A and B is given by:

dA(x) = dB{x) Equation 2.34
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A further simplification to Bayes' classifier can be made if the covariance matrices for

both groups are assumed to be equal. Equal covariance implies that the correlations

between variables are independent of the group to which the objects belong [15]. In these

cases the groups are linearly separable and linear discriminant analysis is performed. With

the assumption of equal covariance matrices, an object is assigned to Group A if:

In P(G{A)) - 0.5(A- - /iA)T(Covl)(x -

In P{Gm - 0.5(x - HB)T(COV])(X -

where Cov = CovA = CovB

Equation 2.35

This further simplifies to:

(JIA
T Covlx) - 0.5(/iA

r Cov'1 ̂ A) > (juB
r Cov']x) - 0.5(//B

T CovA fiB) Equation 2.36

or

/A(X) >/B(X) Equation 2.37

As with the quadratic discriminant analysis (Equation 2.34), the discriminant line between

Groups A and B is given by:

/A(x) =/B(JC) Equation 2.38

Like AT-nearest neighbours, discriminant analysis performs poorly when the ratio of

objects to variables is small [19]. To overcome this problem principal component analysis

can be utilised as a means of vaiiable reduction and the resulting principal components can

be used instead of the original variables.

2.5.5 PRINCIPAL COMPONENT ANAL YSIS (PCA)

Principal component analysis is one of the most widely used multivariate statistical

techniques for the extraction and interpretation of information from multivariate data [20].

The aim of PCA is to reduce a large number of variables down to a small number of

summary variables, or principal components (PCs), that explain most of the variance in

the data. All PCs are orthogonal and each successive component expresses decreasing

amounts of variation with most of the variation explained by the first few components.

This enables the multi-dimensional data to be represented in two or three dimensions,
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which are easily visualised. The technique works by transforming the original variables

onto a new set of axes in the direction of the greatest variation in the daia, Figure 2.14.

x\ PC,

x, PC,

Figure 2.14 Plot of observations on two variables Xl5 X2 (left) and the same observations
plotted with respect to their principal components PC1} VC2 (right). Adapted from [20].

The first component is oriented along the axis of greatest variance of the variables in

the data matrix about their means. The second PC is independent of (orthogonal to) the

first PC and is the vector along the axis of next largest variance in the data. Succeeding

PCs can be calculated which will be orthogonal to the preceding ones and which explain

some of the remaining variance. The PCs are linear combinations of the original

variables, which are fitted in the least squares sense through the points in measurement

space. These new variables usually result in a reduction of variables from the original set

and often can be correlated with physical or chemical factors [21].

If x is a vector ofp variables then algebraically the first PC is a linear combination of

X\,X2,....,Xp.

PC, = anx, + aX2x2 + + Equation 2.39

The variables, x, can be either deviation from mean scores or standardised scores, and

the variance of PC] is maximised given the nonnalisation constraint that the sum of the

squared weights is equal to one (^a^ - 1 )•
/=!

The second PC involves finding a second weight vector (a2\, a22, a2p) such that the

variance of:

PC2 = a22x2 a2jxi
Equation 2.40

1=1
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is maximised subject to the normalisation constraint, ^ « 2 / = ' a r | d t n e constraint that it is

uncorrelated with the first PC, ^#1,^2; = 0- The independence condition is specified by

1=1

the constraint that the second PC has the next largest sum of squared correlations with the

original variables. The sum of squared correlations with the c.'ginal variables, or the

variance of the PCs get smaller with the extraction of successive PCs. The su of the

variance of the PCs is equal to the sum of the variance of the original variables:

crj Equation 2.41
1=1 1=1

where X\ is the variance of the i^ PC [22].

The main statistics resulting from PCA are the variable weight vectors or latent vectors

(eigenvectors), a = a\, a2,-..ap, from each PC and its associated variance or latent root

(eigenvalue), X. The pattern of variable weights for a particular PC are used to interpret

that component ar.d the magnitude of the variance of the PCs provide an indication of how

well they account for the variability in the data [22].

Principal components are easier to interpret when the elements of the latent vector are

transformed to correlations of the variables with the particular PCs. These correlations are

called loadings. Loadings are calculated by multiplying each of the elements of a

particular latent vector, ax by the square root of the associated latent root, ~4\\. Thus the

correlations of the variables with the /<th PC is •\'A,/a/-. Variables that correlate highly with a

particular PC give meaning to that component. The relative magnitudes of the elements in

the eigenvector or loadings for a particular PC indicate the relative contribution o/ the

corresponding variable to the variance of that PC. The first PC usually has large

correlations with all the variables and is essentially a weighted average of the standardised

variable scores. The PC scores for any pair of PCs can be plotted. The reasons for doing

this include checking for outlying observations, searching for clusters and, in general,

understanding the structure of the data [22].
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2.5.6 SOFT INDEPENDENT MODELLING OF CLASS ANALOGY (SIMCA)

A major advantage of soft modelling techniques, such as SIMCA, is that objects are not

forced into discrete classes. This is useful for the detection of outliers, which are samples

that belong to none of the predefined groups [15].

SIMCA allows the development of a separate mathematical description for each class

independently. A new object is classified according to its position in the pattern space

with relation to the class boxes. PCA is used to form models for individual classes.

Each sample or object is represented by a lxM row vector containing the M

measurements on the sample. The row vectors (.v,) for N samples together form the NxM

data matrix X. By the use of the constraints outlined in Section 2.5.5 the matrix Xcan be

decomposed into principal components. A PC model can be written by collecting the

results from PCA, eigenvalues, a scores vector ta, and a loading vector pa (orthogonal to ta)

containing N and M elements respectively, into matrices [17]:

Ar = lx'(g) + TP' + E(g) Equation 2.42

where 1 is of dimension Nx\, g represents the class and the vector x(g), which defines the

centroid for each variable, is of dimension Mx\. The matrix E{g) contains the residuals,

which is the difference between the data and the model for class g [17]. The group

centroids define the models so that the group centroid xg plus a residual distance e,-

describe each sample. The optimal number of components, A, to use in each model is

determined by double cross-validation7.

An ^-dimensional hyperplane is fitted to each class, which can be visualised (Figure

2.15) as the construction of a class box for each class. A new object is classified

according to its position in the pattern space with relation to the class boxes.

The classification rule for assigning a new object to classes is based on the distances,

Si, from the object to the class [24]. The object-class distances are calculated as squared

residuals

Equation 2.43
M-A

7 A validation set is used to check how well a model will perform on future samples taken from the same
population as the calibration or training samples. Cross validation is a validation method where some
samples are kept out of the calibration and used for prediction. This process is repeated until ail the samples
have been kept out once [23].
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where s, is termed the residual standard deviation (RSD) of the sample /.

PCI

Figure 2.15 Schematic representation of the construction of a class box around two classes.
Redrawn from [24].

If the RSD for the samples are collected into a A x̂l vector, s, the mean residual

standard deviation for the class can be determined:

s's

N-A-\
Equation 2.44

Comparison of sample / RSD with the mean RSD of the class using F-tests gives RSD

limits for inclusion in the class, which effectively determines a class boundary around the

principal components between the class and variable space.

2 ± r->

S = S r
max g cril

Equation 2.45

The difference in class boundaries between using a probability level p = 0.05 or 0.01

to detennine ¥cri, is illustrated in a one-component model in Figure 2.16.

Figure 2.16 Illustration of effect of different probability levels for deciding the boundary
between a class and variable space. Redrawn from [17].
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To close the class model along each principal component the extreme scores /„„•„,„ and

tmax.a and their spread stM are used to define lower and upper limits for the scores [25].

This is illustrated for a one component system in Figure 2.17.

Figure 2.17 Using the sample scores along each principal component upper and lower limits
are defined which enables the model to be closed in variable space. Redrawn from [17].

The upper and lower limits are defined as:

>lower,a hnin,a ~'2 Equation 2.46

'•upper,a lmax,a '. sUa Equation 2.47

Class envelopes, as well as allowing for the detection of outliers, provide information

of the relevance of each variable and measures of inter-classes distances. The relevance of

a variable can be measured by modelling power and discriminating power. The modelling

power of a variable is related to its contribution to the description of the classes and is

related to the within-class variation of a variable compared with the total variation of that

variable over the whole training set. In tenns of class envelope this is seen as the average

thickness of the envelopes along the variable coordinate axis compared with the total

range of the variable. The discriminating power of a variable relates to the contribution of

that variable in discrimination between the classes. This is measured as the average

distance between class envelopes along the coordinate axis of the variable compared with

the average envelope thickness along the same axis. Inter-class distance L measured as

the distance between two envelopes relative to their average thickness [16].

Two further advantages of the SIMCA approach compared to purely distance-based

cluster approaches are firstly; modelling into principal components separates structure

from noise. Amongst others this provides a basis for the rejection of irrelevant variables

and outlying samples [17]. Secondly, the use of PCA to build separate models for classes

enables the introduction of new classes without the need for recomputation of existing

classes.
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2.5.7 ARTIFICIAL NEURAL NETWORKS (ANNS)

Artificial neural networks are mathematical models and algorithms, which have been

designed to mimic the information processing and knowledge acquisition methods of the

human brain. Neural networks have significant advantages over standard computer

methods, especially for pattern recognition applications [26]. Neural networks do not use

rules, rather they 'learn' from 'training sets' in a similar way to humans. ANNs have the

ability to learn directly from data, and can process data that only broadly resembles that on

which they were trained [27]. After learning the patterns of inputs and outputs they are

able to classify patterns and make predictions based upon new patterns of inputs [28].

Although ANNs are programs and therefore software, the number of inputs to a network is

limited by available hardware and processing time required. Problems handled by

artificial neural networks can generally be divided into four groups [26]:

1. Association (auto or hetero): in auto association, the system is able to reconstruct

correct patterns if the pattern learned is incomplete or corrupted. In hetero

association the system makes a one-to-one association between members of two

sets of patterns.

2. Classification: the goal of classification is to assign all given objects to appropriate

classes of objects based on one or more properties that categorise a given class.

3. Transformation: involves the transformation or mapping of a multivariate space

into another space of the same or lower dimensionality.

4. Modelling: is the search for an analytical function or model that will give a

specified ^-variable output for any /w-variable input. Whereas standard modelling

techniques require the mathematical function to be known in advance, the

nonlinearity and large number of variable parameters (weights) enables the neural

network to adapt to any relation between input and output data without prior

knowledge of the mathematical function.

2.5.7.1 NEURODES

The basic unit in an ANN is the neuron or neurode, which has many input paths each

modified by a weight. The generation of an output from a neurode for a given input

involves two steps. The first step is the evaluation of the net input Net, the second step

involves a nonlinear transformation of Net.
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The net input or decision function of a ncurode is a function of the weights ir, and all

the signals Sj that arrive at a neurode:

Net = W\S\ + H'2S2 + + wmSmSm Equation 2.48

Equation 4.28 employs a linear transformation on a multivariate signal X using the

weight vector W to obtain a one-variable signal, where A' is a multidimensional vector

whose components are the individual signals. This procedure has been referred to as a

linear learning machine because the input vector is linearly proportional to the corrected

result, Net [26].

The most commonly used transfer function for the nonlinear transformation of Net into

an output, is the sigmoidal function j(x):

t

/(*) =
1

Equation 2.49

The generation of an output is shown schematically in Figure 2.18.

5 2 . W2

Sigmoidal output

Weights

Figure 2.18 Schematic representation of the generation of an output from a neurode.

The nonlinearity of the transfer function enables the network to be flexible in adjusting

to different learning situations. The derivative of the sigmoidal transfer function is

important to the way in which the neural network is able to learn and is used to determine

the gradient for finding the surface minimum:

df{x)
dx = /(*)[!-/(*)] Equation 2.50
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The initial weights associated with individual neurodes in the network are usually

randomly chosen, and then improved iteratively. An increment for W is calculated as the

difference between a new, corrected weight vector f̂ ncw) and the old, uncorrected vector

A W = tf/ncw) - 0*old) Equatioa 2.51

This correction is achieved by employing the delta rule. In order to improve the

decision vector, W, correction should be proportional to a certain parameter 5, (which is

proportional to the error) and to the input X for which the wrong answer was obtained.

After correction, the new weight vector should classify the vector X if not correctly, then

with a smaller error than before:

A W = T)5 X Equation 2.52

where 5 is the correction constant and r| is a constant of proportionality, or learning rate.

In order to ensure that large changes in the decision vector do not lead to previously

correctly classified objects becoming falsely classified, rj is usually kept less than 1. If the

learning rate is too high, the network tends to oscillate and not learn the correct mapping

from the inputs to targets. If the weight adjustments are too small, learning will take a

longtime [26].

If the decision function (Net) is taken to be the dot product between the representation

of the object X and the weight vector W:

Equation 2.53

The offset parameter, &, is called a bias and it increases the adaptability of the

decision function to the problem it is designed to solve. The bias acts as an extra weight

and always receives an input of 1. The addition of a bias moves the problem from the

two-dimensional space, where the solution would be a line, to a three-dimensional space,

where the solution is a plane [26].

An artificial neural network consists of many neurodes organised into groups called

layers or slabs [28]. Each neurode in the layer has the same number of m weights and

receives the same /^-dimensional input signal simultaneously. The neurodes of two layers
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can be fully, partially or randomly connected. Full connection means that each neurode in

one layer is connected to all the neurodes in the next layer.

The topographical data of the network including number of inputs and outputs, number

of layers, number of neurodes in each layer, number of weights associated with each

neurode and the interconnections of the layer(s) form what is known as the architecture of

the network (Figure 2.19). All neurodes in one layer receive the same number of inputs,

including the input connected to the bias. The number of signals arriving from the

previous layer determines the number of weights in each neurode.

Input Signal

Input Layer (bm)

Hidden Layer

Output Layer

Figure 2.19 Schematic representation of a fully connected feed-forward8 neural network,
with neurodes represented by circles and connections between the neurodes represented by
lines.

The input neurodes do not modify the signal, as there are no weights or transfer

functions associated with them. These neurodes act to distribute the input and as such are

referred to as a non-active layer [26].

The layer(s) below the input layer are referred to as the hidden layer(s) because they

are not connected to the outside world. The layer of neurodes that yields the final signal is

called the output layer.

The number of hidden layers and neurodes, and thus the number of weights in the

neural network, is governed by the number of data points in the training set. Ideally, there

should be at least twice as many samples as there are weights [29]. For one hidden layer,

the number of weights (accounting for the bias node in the input and hidden layer) is equal

to:

Equation 2.54

8 Feed-forward is the term used to describe neural networks in which the data passes through the network in
one direction (from the input layer through any hidden layer/s to the output layer).
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where:

i is the number of nodes in the input layer (1,2,3 ).

j is the number of nodes in the output layer (1,2,3 ).

n is the number of nodes in the hidden layer (1,2,3 ).

2.5.7.2 BA CK PROP A GA TION

The most widely used learning or training method for an artificial neural network is called

back-propagation of errors. Back propagation (Figure 2.20) employs a modification of the

delta rule, applying the equations for the correction of weights throughout the layers of the

network, starting with the weights in the output layer and continuing back towards the

input layer [27]. Training requires showing the network many data input sets thousands of

times before the ANN adjusts its internal weights enough to give accurate output

responses, using least-squares, to input data [28].

inputlira

corrected \\A

corrected

IV* r corrected fts

I output

target

correction

error

Figure 2.20 Schematic presentation of weight correction by back-propagation of errors.
Redrawn from [26].

Back propagation is a supervised learning method and requires a set of pairs of inputs

Xs and targets Ys. One advantage of training a neural network by back propagation is that

there is no need to know the exact form of the mathematical function on which the model

is built. In a fully connected multi-layer network, where each input has an influence on all

the weights, it is virtually impossible to test the influence of the weights on the final

output because it would require determining the effects of each individual input on each

weight. This becomes difficult with a complex architecture of many weights and

sensitivity analysis must be performed to enable interpretation of internal parameters. The

architecture of a back propagation neural network, i.e. the number of layers, the number of
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neurodes in each layer and the connection of the neurodes, is the main feature influencing

the flexibility of the model [26].

Correction of weights can be made after each new input, termed immediate correction,

or after all the inputs have been tested, deferred correction. With immediate coirection,

correction is made as soon as an error is detected, and the accumulated error of the entire

training set is used for correction. Most applications of neural networks use immediate

correction.

During learning, the object X (input vector) is presented to the neural network and the

output vector Out is compared with the target vector Y, which is the correct output for X.

Once the error produced by the network is known, weights are corrected throughout the

neural network using a modification of the delta rule seen in Equation 2.52.

Aw1.. = jjS'jOutj-' + //Aw,!(previ01B) Equation 2.55

where / is the index of the current layer, j identifies the current neuron, and z is the index

of the input source, i.e. the index of the neuron in the upper layer.

The correction of weights in the /-th layer is composed of two terms, which pull in

opposite directions: the first term tends towards a fast "steepest descent" convergence,

whilst the second is a longer-range function that prevents the solution from being trapped

in a local minima. The constant r\ is called the learning rate and \i is called the momentum

constant or factor, which can be used to speed network training. The momentum factor

adds a proportion of the previous weight changes to the current weight changes and

appropriate selection can prevent the network from oscillating and speed learning [26].

In a back-propagation neural network, where the output is obtained directly from the

neurons in the output layer, it is advisable to scale each component of the target to lie

between 0 and 1. Due to the nonlinear character of the transfer function, it is better to

scale the entire output to lie between 0.1 and 0.9. Scaling offers three advantages [26]:

1. Easier comparison of the output and target data.

2. Proper calculation of the RMS (root-mean-square) error.

3. Later recalculation of the correct answer from the output neuron.
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2.5.7.3 NETWORK OPTIMISA TION

Some inherent problems of feed-forward, back-propagation neural networks include

overtraining, overfitting and network architecture optimisation.

The network architecture (the number of neurodes in the hidden layer, the number of

inputs, the number of epochs (training cycles) and the choice of values for the learning

rate and momentum factor) all contribute to the ability of the neural network to learn.

Increasing the number of epochs will enable the network to be trained longer, but can

sometimes result in a network that has lost the ability to generalise. This is known as

overtraining and occurs when the network has "memorised" the input patterns and is

unable to accurately predict outcomes from new objects. Overtraining can be prevented

by reducing the number of epochs or by employing a validation set. As described earlier,

training a network involves an iterative reduction of the error function defined with

respect to a set of training data. The error generally decreases as a function of the number

of iterations. When the error is measured with respect to independent data, as is the case

with a validation set, there is often a decrease at first followed by an increase as the

network starts to overtrain (Figure 2.21). The network architecture at the point of smallest

error with respect to the validation data is expected to have the best generalisation ability

[30].

validation

training

Figure 2.21 Schematic illustration of the training and validation errors as a function of the
iteration step T . To achieve a network with the best predictive performance training should
be stopped at the point corresponding to the minimum validation error x . Redrawn from
[30].

Validation procedures such as the leave N out method produce a family of network

models and it is not always clear which model gives the best predictive ability. It is also

not obvious which architecture results in the best model further necessitating architecture

optimisation [31].

89



Overfitting occurs when the number of weights is larger than the number of objects

and is a consequence of parameter redundancy, i.e. the network has more parameters than

are needed to find a solution to the problem. Overfitting can be avoided by employing

PC A to reduce redundant information. The number of principal components that gives the

lowest standard error of prediction should be chosen. Furthermore the use of a test set

a/lows selection of models with best predictivity [31]. The test set should comprise data

previously unseen by the network, i.e. data not included in either the training or validation

sets.

Several methods can be employed to optimise network architecture and control the

effective complexity of the network model. The complexity can be varied by changing the

number of adaptive parameters in the network, known as structural stabilisation [30].

Currently there are no objective methods for architecture optimisation using this technique

and the best network is usually found using trial-and-error or rule-of-thumb [32].

Another approach to controlling the complexity of a network model involves the

addition of u penalty term to the error function, known as regularisation. The simplest

form of regulariser is called weight decay and the addition of this term to the error

function encourages small weights, which are less likely to result in overfitting. For a

detailed explanation of regularisation and weight decay refer to Bishop [30].

2.5.7.4 BA YESIAN REGULARISED NEURAL NETWORKS

Bayesian regularised artificial neural networks (BRANNs) are a special type of neural

network based on a Gaussian approximation9 to the posterior weight distribution and offer

several advantages compared with conventional back-propagation neural networks [31].

BRANNs were introduced in 1992 by MacKay [33, 34] and are essentially a

mathematical formulation of Occam's Razor. Occam's Razor employs the principle of

economy in explanations and states that if several theories account for a phenomenon, the

simplest one, which describes the data sufficiently well, should be used [35].

The main benefits of BRANNs are [35]:

1. Weight decay parameters are adjusted automatically during training to near

optimal levels resulting in the best generalisation.

Refer to Appendix C for an explanation of the Gaussian distribution.
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2. The Bayesian approach estimates the evidence (Equation 2.56) for each model,

which is a measure of how probable the model is with respect to the data

(assuming equal prior probability). The evidence is used as a quality measure to

select the best model and enables comparison of models with different

architectures as well providing an objective stopping criterion.

3. BRANNs do not require a separate validation set. therefore all available data can

be used for training, which results in better models.

Whereas standard back-propagation neural network training methods use a single set

of parameters, the Bayesian approach to neural network modelling considers all possible

values of network parameters weighted by the probability of each set of weights.

Bayesian inference is used to find the posterior probability of the weight parameters, w,

and related properties using the prior probability distribution formed by the training set D

using the BRANN model, H,- [31, 33].

n, , , l x PiDlw.HJPivrlH.)
P(\\ AH. = ' ' Equation 2.56

or in words

Likelihood x Prior
Posterior =

Evidence

The Gaussian approximation is the main weakness of this approach and problems with

the approximation are encountered when the number of weights exceeds one third of the

number of objects in the training set [34].

For a detailed description of the theory and derivation of Gaussian approximations and

Bayesian neural networks the reader is referred to the texts of MacKay [33, 34] and

Thodberg [35].
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CHAPTER 3

MATLAB ROUTINES FOR PRE-PROCESSING IR SPECTRA



3 MATLAB ROUTINES FOR PRE-PROCESSING IR SPECTRA

Matlab (The Mathworks, Inc, MA, USA) is a software package that enables the user to

utilise programs from an existing toolbox, or to write code for programs. Unless

otherwise stated, the author of this dissertation wrote all programs used for pre-processing

raw spectra prior to analysis. This chapter gives an explanation of the pre-processing

routines written during this candidature.

The three main aims of pre-processing data are as follows [1]:

1. To reduce the amount of data and to eliminate irrelevant data.

2. To preserve or enhance sufficient information within the data in order to

achieve a desired goal.

3. To extract information in, or transform the data to, a form suitable for further

analysis.

Pre-processing the data ensures that all the spectra can be compared with one another

because they have all been manipulated in the same way. Pre-processing also enables the

objective removal of spectra that are inappropriate for inclusion in the analysis because

they may be, for example, saturated or too noisy. Matlab was also used to perform several

multivariate statistical techniques.

The pre-processing and multivariate statistical programs are controlled through an

interactive front-end routine called Cervjoin.m10. This routine offers the user various

menus, each containing several options. The main menu (Figure 3.1) is designed for

importing data into the Matlab environment and the pre-processing menu (Figure 3.3)

offers several standard functions. Although programs for most of these functions already

existed, they were usually in different software and so data manipulation required

importing and exporting data between various programs before the analysis could begin.

This routine offers the user all the functions in one program. The analysis menu (Figure

3.12) calls multivariate statistical functions, and once again has the advantage of offering

standard statistical functions in the one program.

10 Words appearing in italics and ending with .m are Matlab program files. Refer to Appendix D for the
code to each of these routines.
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3.1 MAIN MENU

Source of Data

Load existing DataBase

Start DataBase

Add to existing DataBase

Figure 3.1 Main menu for the Matlab routine Cervjoin.m

3.1.1 LOAD EXISTING DA TABASE

Selection of this option brings up a menu (Figure 3.2) offering choices of which Database

to open. The first two options loads the Database in the form of a n x 1475 matrix, where

n represents the number of samples, i.e. the number of spectra, each with 1475 absorbance

measurements in the region 3648 - 700 cm"1. The third option is interactive and loads the

chosen Database in the form of a n x m matrix, where m is equal to the number of

wavenumber values plus a column of filenames and a column containing the diagnosis.

Please select Database

RWHfraw]

FPVfraw]

Post Diagnosis (r£<|2Y]

Figure 3.2 Load menu for the Matlab routine Cervjoin.m.

3.1.2 START NEW DATABASE

When this option is chosen the program Jcampdbjoin.m is called. This program searches

the specified directory for '.dx' files, which are files in a JCAMP format". The program

imports each file individually, reading the data line by line to create a matrix in the form

outlined above. Filenames, which are the patient numbers to allow diagnosis, are stored in

11 Refer to Appendix E for an example of a spectrum in JCAM? ormat.
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another matrix. The order of the filenames corresponds to the order of the spectra in the

data matrix.

3.1.3 ADD TO EXISTING DATABASE

This option calls the program Jcampcervjoin.m, which imports JCAMP files into a pre-

existing Matlab array, DB. Filenames for the newly imported files are imported into the

pre-existing Filename matrix.

3.2 PRE-PROCESSING MENU

Preprocessing Functions

Define Spectial Region

Account for non-linearities of the MCT

Calculate Signal-to-noise Ratio

Take Derivatives (Savitey-Golay)

Normalise

Baseline Correction

Plot Data

Assign Diagnosis 3
View DataBase Details

Oo to Analysis Menu

Quit

Figure 3.3 Pre-processing menu for the MaUab routine Cervjoin.m.

3.2.1 DEFINE SPECTRAL REGION

It is important with any pre-processing technique that the range of data can be manipulated

or reduced. Selection of this option calls the program Defregjoin.m and allows the user to

choose various regions, both interactively and pre-set. The user can choose from three

options (Figure 3.4).
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Choose required regions

Entire spectrum

1800-800cm-1

Other

Figure 3.4 Define region menu for the Matlab routine Defvegjoin.m.

The third option is interactive and enables the user to choose up to three spectral regions.

This option is useful in principal component analysis where certain wavenumber regions

are more influential than others in describing the variance. Figure 3.5 illustrates the

resultant spectra for each of these options.

1800 1400 1180
Wavenumber Values / cnr1 1000

Figure 3.5 Spectral regions obtained through define spectral region option. A. Entire
spectrum, B. 1800-800 cm"1 and C. Other.

3.2.2 ACCOUNT FOR NONLINEAR/TIES OF THE MCT

As discussed in Section 2.4, photoconductive detectors such as MCT detectors generate a

non-linear response with respect to concentration and intensity. The Beer-Lambert Law,

Equation 2.13, which describes the absorption of a substance with respect to

concentration, is linear at small absorbance but becomes non-linear with absorbance
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greater than unity. To remove the effects of these two types of nonlinearities, spectra with

absorbance greater than unity were removed from the database using the Matlab routine

nonlmjom.m. The routine finds the maximum absorbance in each spectrum and discards

spectra with maximum absorbance greater than or equal to one, illustrated in Figure 3.6.

3650
VVavenumber Values / cm'1

Figure 3.6 Spectra with a maximum absorbance greater than 1.0 will be discarded when this
option is chosen.

3.2.3 SIGNAL-TO-NOISE RATIO (SNR)

Noise is a random effect that is visible as fluctuations of the baseline in a signal and was

introduced in Section 2.2.4. The detection limit for an instrument is frequently considered

to be a SNR of 2 - 3. To remove the effects of noisy spectra in the database, a program

was written, SNRjoin.m, which calculates the SNR of a spectrum using the amide II band

and removes all spectra from the database with a SNR less than 10. The SNR is calculated

using the RMS (root mean square) method:

S / N = - -
rage signal magnitude

rms noise
Equation 3.1

The rms (root mean square) noise is the square root of the average deviation of the

signal, xi, from the mean noise value:

rms noise =
[S(3C-JC,)2

n-\
Equation 3.2
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The first step in the calculation of SNR is to define a region of the spectrum free of

peaks. This region was chosen to be 2100 - 1900 cm"1. To overcome the problem of a

non-zero baseline, a third order polynomial was fitted to this region of the spectrum and

the defined region subtracted from the polynomial. This served two functions: first to

enable the baseline to be flattened and offset to zero, and secondly to show the noise

component of the spectrum to enable calculation of the RMS. Figure 3.7 gives a graphical

representation of this process.

g 0.126

X)

o
X)

0.108

-0.0025 L
2100 1900

Wavenumber values / cm1

Figure 3.7 Matlab plots representing the steps involved in the calculation of the RMS noise
component for calculation of SNRs. A. represents the entire spectrum. B. represents the
noise in the region 2100 - 1900 cm'1, and the third order polynomial (black) fitted to the
noise. C. represents the result of subtraction of the fitted polynomial from the specified
region, leaving the noise component in that region of the spectrum.

The next step in the calculation of the SNR was to determine the signal component.

The amide II peak was chosen for this puipose, because the amide 1 peak is often used for

normalisation. Once again, to overcome the problem of a non-zero baseline, baseline

correction of the spectra in the region 2100-700 cm"1 was performed. A detailed

description of baseline correction is given in Section 3.2.6. Once the spectrum had been

baseline corrected, the signal component was taken to be the height of the amide II peak

and the SNR was calculated by dividing this value by the RMS of the noise component.
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3.2.4 DERIVATIVES (SAVITZKY-GOLAY)

A useful way of presenting and interpreting infrared spectra is by using differentiation.

Infrared spectra are zero'th order but with the use of mathematical functions first, second

and higher-order derivatives can be generated. Taking the derivative of a spectrum offers

an apparent increase in resolution of the differential data compared with the original

spectrum, as well as removing baseline effects. Derivative spectra emphasise changes in

slope that are difficult to detect in the zero'th order spectrum. However noise, which is

often comprised of high frequency components, may be amplified by differentiation [1].

There are many mathematical procedures that may be employed to differentiate

spectral data. Assuming data is recorded at evenly spaced intervals along the A axis, the

simplest method to produce the first-derivative spectrum is by difference:

dv v/+1-v,.
—— = '-— Equation 3.^
dA AA

or

dA 2AA

and for the second derivative:

Equation 3.4

d2v v- i — 2v n — v- i
— L = jii±! ~-l—-LL± Equation 3.5
dA2 AA2

where y represents the spectral intensity or absorbance. The use of polynomial

derivatives, such as the Savitzky-Golay algorithms [2], which utilises an array of weighted

coefficients as a smoothing function to convolute the spectral data reduces the problems of

amplified noise. Using a quadratic polynomial and a five-point moving window, the first

derivative is given by

dy 1
—— = (— 2v._, — v_, + v- i + 2y- , ) Equation3.6

dA 10AA

and for the second derivative
d2v 1

~ '1v i . .2 -y,._i ~2)' ~);M +2)'i+2) Equation3.7
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the use of additional terms sampling extra points from the data provides a better

approximation compared with the results obtained using Equations 3.3, 3.4 and 3.5 [I].

A Savitzky-Golay smoothing and differentiation routine from the Matlab toolbox was

adapted for use in the Cervjoin.m routine. Examples of the resultant first- and second-

order derivative spectra using the svgijoin.m routine are shown in Figure 3.8B and Figure

3.8C respectively. Figure 3.8A is the original spectrum.

A 0.4S

3648 700

B 0.0Z

-0.02

C 1.5
X I f f

-2.5

!:l £' t

3648
Wavenumber Values / cnr1

700

Figure 3.8 A. Absorbance spectrum. B. First order derivative, quadratic polynomial with 9
smoothing points. C. Second order derivative, cubic polynomial with 9 smoothing points.

3.2.5 NORMALISATION

In order to compare different spectra it is often useful to perform a normalisation function

on the spectra so that they are "scaled" in order to achieve specific properties.

There are several different normalisation techniques that can be used to manipulate

absorbance spectra. These include vector, maximum, mean, and range normalisation.
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3.2.5.1 VECTOR NORMALISA TION

In vector normalisation the average y-value (absorbance) of the spectrum is calculated

first. This average value is then subtracted from the spectrum so that the middle of the

spectrum is pulled down to y = 0. The sum of the squares of all y-values is then calculated

and the spectrum is divided by the square root of this sum. The vector norm of the result

spectrum is 1 [3].

Equation 3.8

3.2.5.2 MAXIMUM NORMALISA TION

This technique divides each sample by its maximum absolute value and is relevant only if

all values of the curve have the same sign. If all values of the curve are positive, the

maximum value becomes +1 [4].

X(i, k) = ^iB— Equation 3.9
(|X(»|)

3.2.5.3 MEAN NORMALISATION

This is the most classical case of normalisation and the area under the curve becomes the

same for each sample that has been normalised using this technique. This technique

works by dividing each sample in a data matrix by its average and is the same as replacing

the original variables by a profile centred about 1. Only the relative values of the

variables are used to describe the sample. This transformation is not relevant if all values

of the curve (spectrum) do not have the same sign [4].

Equation3.I0

3.2.5.4 RANGE NORMALISA TION

In this technique each sample is divided by its range, i.e. maximum value minus minimum

value. With range normalised samples the curve span becomes 1 [4].
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max(/»
Equation 3.11

Figure 3.9A-D illustrates the effects on a spectrum of performing vector, maximum,

mean and range normalisation respectively. The same spectrum (blue) was used for each

normalisation technique.
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Figure 3.9 Illustration of normalisation techniques. The blue spectrum in each plot is un-
normalised and the green spectrum in each plot is the result of performing vector (A),
maximum (B), mean (C) and range (D) normalisation.

3.2.6 BASELINE CORRECTION

Baseline correction is an important pre-processing technique. Spectra produced from

inhomogeneous samples, and from samples with non-uniform thickness will often have a

non-zero baseline. Scattering effects from the solvents used may also cause a non-zero

baseline. Many of the spectra recorded from samples collected in saline solution, for

example show this effect as the infrared radiation is scattered by che salt crystals that are

formed in the desiccation process. The baseline correction option in the pre-processing

routine performs a linear regression of the baseline of the raw spectrum and uses the linear

line produced to offset the entire spectaim to zero. Three regions free of absorbance peaks

are chosen and the minimum absorbance in each region is determined. Two linear

regression lines are fitted between these minima and the raw spectrum is subtracted from

these lines to offset the entire spectrum to zero. The three regions chosen for detection of
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minima are 3648-3646 cm"1, 2100-1800 cm'1 and 1000-700 cm'1. Figure 3.10 illustrates

this process.

3648
Wavenumber values / cm"1

700

Figure 3.10A Spectrum to be baseline corrected (blue). Three regions are chosen: a (3648-
3646 cm1), b (2100-1800 cm"1) and c (1000-700 cm1) and the minimum absorbance for each
region is determined. Linear regression is performed and a linear line (green) is fitted
between the minimum in each region. The original spectrum (blue) is subtracted from this
line to give the baseline corrected spectrum illustrated in B (red).

3.2.7 PLOT DATA

Selection of this option plots all the spectra in the Database against the wavenumber

values. All plots in this chapter were generated using this option.

3.2.8 ASSIGN DIAGNOSIS

In order to perform statistical analysis on the spectra imported into the database, it was

necessary to assign each spectrum a diagnosis. Most of the spectra obtained from samples

collected from the Royal Women's Hospital (RWH) had both histological (biopsy) and

cytological (Pap smear) results. Spectra obtained from samples collected from Family

Planning Victoria (FPV) had only cytological results. Each sample was assigned a

numerical code according to Table 3.1. This table was generated according to numerical

codes used for reporting histological and cytological results at the RWH. Often more than
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one code was applicable to the samples and so the diagnosis for some samples consisted of

a string of the applicable codes joined together.

Table 3.1 Numerical codes and corresponding diagnosis assigned to spectra.

Numerical Code
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
55
65

Diagnosis
Normal, negative
Normal metaplasia (mature)
Atypical metaplasia
Mild dysplasia (CIN I)
Moderate dysplasia (CIN II)
Severe dysplasia (CIN III)
Carcinoma in situ (CIS)
Minimal stromal invasion
Frank stromal invasion
Atypia
Dysplasia, unspecified
Atrophy
Inflammation
Normal metaplasia (immature)
Condyloma
Herpes
Vaginal adenosis
Hyperplasia (endometrial)
Hyperplasia (endocervical)
Polyp
Wart virus changes (HPV)
Hyperkeratosis
Not done, not applicable
Epithelium absent or denuded
High grade epithelial changes (HGEA)
Low grade epithelial changes (LGEA)
Bacterial vaginosis
Candida
Cervicitis
Inconclusive
Unsatisfactory
Bacteria, unspecified
Vault (vaginal smear)
Actinomyces
Trichomonas
Endocervical only
Endometriosis
Endocervical / glandular component absent
Keratinisation
Cytolysis
Koilocytes
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Table 3.1 indicates the diversity of possible diagnoses resulting from Pap smears and

biopsies. Whilst the majority of these diagnoses are not abnormal, in terms of dysplasia

and malignancy, as discussed in Chapter 1, inflammation, metaplasia and other benign

cellular changes (BCCs) may cause possible confounding results in infrared spectroscopy.

Therefore it was decided that the analysis would be performed using several different

options for diagnosis, as outlined in Figure 3.11.

Type of Assignment

N orma!/Abnorma(

' Abs No I'.

Biopsy Cytology

Normal/Dysplasia

; , Ab* Normol/Normd/Abi-iormol j

Figure 3.11 Diagnosis menu for the Matlab routine Cervjoin.m.

When the assign diagnosis option in the Cervjoin.m routine is selected, the user can

choose between assigning a diagnosis for RWH or FPV data. DiagnosisRWH.m or

DiagnosisFPV.m is called and this program loads a text file containing the filenames of

the spectra and their corresponding diagnosis. The filenames in the database are compared

with the filenames in the text file and each spectrum is assigned a diagnosis according to

the chosen option from the menu illustrated in Figure 3.11.

3.2.8.1 NORMALJABNORMAL

Selection of this option assigns spectra a diagnostic value of 1 (abnormal) for samples

with high-grade dysplasia (CIN II and III), dysplasia unspecified, CIS, invasive carcinoma

or HGEA, excluding samples exhibiting CIN I, or LGEA and 0 (normal) for all other

diagnoses.

107



3.2.8.2 A BS NORMAL/ABNORMAL

Selection of this option assigns spectra a diagnostic value of 1 (abnormal), as outlined in

Section 3.2.8.1 and 0 (normal) for samples with a diagnosis of normal or negative only,

excluding samples exhibiting BCC or metaplasia.

3.2.8.3 BIOPSY/CYTOLOGY

Selection of this option assigns spectra the exact numerical code given in Table 3.1. FPV

spectra will only have a cytological diagnosis.

3.2.8.4 NORMAL/DYSPLASIA

Selection of this option assigns a diagnostic code of 1, 2, or 3 for samples exhibiting CIN

I, CIN II, CIN III respectively, 4 for samples exhibiting CIS, 5 for samples exhibiting

minimal or frank stromal invasion and 0 (normal) as outlined in Section 3.2.8.2.

3.2.8.5 ABS NORMAL/NORMAL/ABNORMAL.

Selection of this option assigns a diagnostic code of 0 (abs normal) for samples with a

diagnosis of normal or negative only, 1 (normal) for samples which have been diagnosed

normal or negative but exhibit BCC or metaplasia, 2 (abnormal) for samples exhibiting

LGEA, CIN 1 and/or HPV effects and 3 (abnormal) for samples exhibiting high-grade

dysplasia, CIS, HGEA, dysplasia unspecified or invasion.

3.2.9 VIEW DATABASE DETAILS

Selection of this option returns a list of all the variables in the routine and their size. This

option is useful for determining how many spectra are in the Database, particularly after

performing a task that causes spectra to be discarded, for example the non-linearity and

SNR routines.

3.3 MULTIVARIATE ANALYSIS

An introduction to the multivariate statistical techniques called by this menu (Figure 3.12)

is given in Section 2.5. Matlab code for all techniques, except discriminant analysis, were

obtained from the Matlab toolbox with only minor changes necessary for incorporation

into Cervjoin.m. The discriminant analysis routines were modified considerably as the
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results from the existing routine gave ambiguous results. The codes for LDA

{LDAcenun) and QDA (ODAcemm) can be found in Appendix D.

Muitivariate Statistics

K.-NN i

PCA

BIMCA

LDA

QDA

BRANN

Quit

Figure 3.12 Muitivariate statistics menu for the Matlab routine Cervjoin.m.
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CHAPTER 4

AN INVESTIGATION INTO THE INFLUENCE OF HORMONES
AND NUCLEIC ACIDS IN THE DIAGNOSIS OF C E R V I C A L

CANCER
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4 AN INVESTIG^ ION INTO THE INFLUENCE OF HORMONES AND
NUCLEIC ACIDS IN THE DIAGNOSIS OF CERVICAL CANCER

This; chapter is divided into two sections. The first section investigates the influence of

hormonal stimulation on IR spectra of cervical smears in an effort to determine if smears

taken during certain phases of the menstrual cycle may confound diagnosis. The second

section investigates subcellular fractionation as a means of isolating the nuclei from

epithelial cells. This was to determine the exact contribution of the nucleus to IR spectra

of cervical smears.

4.1 HORMONAL STUDY

Despite the earlier work of Wong et al. [1, 2], Yazdi et al. [3], and Fung et al. [4], which

indicated that infrared spectroscopy is a powerful tool in the discrimination of normal and

malignant cervical cells, it is becoming increasingly apparent that there may be other

factors contributing to the spectral changes assumed to be arising from neoplastic

processes and malignancy. Possible contributing factors and/or confounding variables

have been identified. They include benign cellular changes (BCC), specifically metaplasia

and inflammation [3]; erythrocytes [5] and lymphocytes [5, 6]; endocervical cells [5] and

mucins [5-7].

Recently Diem's group [8] conducted a series of experiments demonstrating that

infrared spectroscopy could be used to monitor maturation and differentiation in cervical

squamous epithelium. The observed spectral differences between the basal, parabasal,

intermediate and superficial layers of the squamous epithelium arose mainly in the 1200-

900 cm"1 region. The spectral differences observed showed an increase in glycogen

concentration towards the surface, i.e. as cells matured from the basal layer they

accumulated more glycogen. Differences were also noted in the amide I/amide II ratio,

believed to be a result of nucleic acid contributions. Despite these differences, Cohenford

and Rigas [9] found that spectra of cytologically normal intermediate and superficial

squamous cells from women with dysplasia or cancer were different from spectra of

intermediate and superficial squamous cells in cytologically normal smears.

Multivariate statistics have been utilised by several groups to obtain a separation

between the infrared spectra of normal, dysplastic and malignant samples. Wood et al.

[10] used principal component analysis (PCA) to achieve a separation between the
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infrared spectra of normal and dysplastic cells. Cohenford et al. [11] employed principal

component regression (PCR) to achieve a separation between normal and malignant

cervical cells. Romeo et al. [12] used PCA coupled with ANNs to classify unknown

dysplastic and normal samples.

Morphologically there are many changes occurring in cervical epithelium as a direct

result of hormonal stimulation from the menstrual and ovarian cycles. A detailed

description of these changes is given in Section 1.4.1. Cervical squamous epithelial cells

accumulate glycogen as a process of maturation, the concentration of which is hormone

dependent, peaking around ovulation [13]. Given the findings by Chiriboga et al. [8],

outlined above, it would seem likely that the infrared spectra of cervical cells sampled

throughout the menstrual cycle would exhibit spectral differences.

4.1.1 METHODOLOGY

4.1.1.1 PARTICIPANTS

Information for potential volunteers for this study took the form of a poster (Appendix F)

placed around the Monash University Clayton Campus. Participants in this study were

required to be pre-menopausal non-smokers with a history of normal Pap smears, the most

recent within the last twelve months. Because nicotine has been found to affect cellular

proliferation of the cervix [14], smokers were not included in this study to reduce the

number of contributing variables. Interested women were informed about the project,

given an explanatory statement and required to provide written consent to their

participation12.

Inclusion in the study was limited to women taking either monophasic or no form of

oral contraception. The women taking monophasic contraception were asked to have a

cervical smear once a week. Women not taking oral contraception were required to have

four cervical smears each cycle corresponding to: postmenstrual, preovulatory,

postovulatory, and premenstrual phases of the menstrual cycle. These women were also

required to have blood taken once each cycle (postovulatory). Progesterone assays were

undertaken to ensure that ovulation had occurred and that the women had functional

menstrual cycles. Cervical smears were obtained at the Health Service on campus.

12 Refer to Appendix F for explanatory statement and informed consent form.
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4.1.1.2 SAMPLE COLLECTION

Cervical cells were taken from the transformation zone of the cervix with both an Ayre

spatula to ensure collection of ectocervical cells, and a Cytobrush™ (MEDSCAND,

Hollywood, Fl, USA) to ensure collection of endocervical cells. Sampling instruments

were agitated in separate 50 cm3 centrifuge tubes containing 10 cm3 absolute ethanol to

collect the cells and then stored at -70°C until required.

4.1.1.3 SAMPLE PREPARATION

Samples were centrifuged at 2500 r.p.m. for 10 minutes and the ethanol supernatant

removed with an automated pipette leaving a cellular pellet. Ultra-clean water was added

and the tubes were then vortexed to re-suspend and clean the cellular material. This

washing procedure was carried out three times and the cellular material was then pipetted

into a KRS-5 multicavity cell and desiccated under vacuum.

4.1.1.4 MULTICA VITY INFRARED CELL

The multicavity infrared cell was purpose built for the analysis of biological samples [10].

The cell consists of a KRS-5 (thallium bromide iodide) crystal (50x30x5 mm) mounted

between two aluminium plates (Figure 4.1). The top plate has fourteen regularly spaced 5-

mm diameter cavities. The cavities are countersunk to allow the positioning of O-rings.

The top plate has a dual function, acting as both a seal and a surface protector.

Figure 4.1 Multicavity IR cell comprising two aluminium plate, one with 14 countersunk
holes, and a KRS-5 infrared substrate.

4.1.1.5 INFRARED MICROSPECTROSCOPY

Following removal of the aluminium plates used to form sample wells, the KRS-5

multicavity IR cell containing fourteen cervical samples was placed on the sampling

platform of a Perkin-Elmer IR microscope coupled to a Perkin-Elmer 1600
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spectrophotometer. A minimum of six transmission spectra were recorded for each

sample with the knife-edge aperture reduced to 50 x 50 fim. For each spectrum, 16 scans

were co-added at a resolution of 8 cm"1, with a total recording time for each spectrum of

20 seconds.

4.1.1.6 DATA TREATMENT

Infrared spectra were transferred via a Macintosh computer in JCAMP fonnat onto an

OPUS (Bruker Messtechnik, Karlsruhe, Germany) operating platform where the spectra

from each sample were re-scaled, baseline corrected, normalised to the amide I peak (1650

cm"1), averaged and converted into an ASCII format recognised by Unscramble/- II

(CAMO ASA, Oslo, Norway). Unscrambler enabled visual inspection of the spectra and

multivariate statistical analysis.

4.1.1.7 BLOOD PREPARA TION

Blood samples (10 cm3) were centrifuged at 2500 r.p.m. for 15 minutes. Centrifugation

separated the blood into three components: red blood cells, white blood cells, and serum.

The serum was pipetted into a 10 cm3 centrifuge tube and frozen until the assay was

performed.

4. L 2 RESUL TS AND DISCUSSION

Eleven non-smoking women participated in this study for periods of between four and

twelve weeks. Table 4.1 summarises the length of participation.

Table 4.1 Summary of participation in the hormonal study.

Number of Women
2
2
1
1
3
2

Length of participation (weeks)
12
12
8
8
4
4

Oral Contraception
Monophasic
None
Monophasic
None
Monophasic
None

4.1.2.1 PROGESTERONE ASS A Y

All of the serum samples collected from participants showed progesterone, indicating that

ovulation had occurred and the women had functional ovulatory cycles.
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4.1.2.2 CONTAMINATION

A thin, white substance covered a high proportion of the ectocervical cell sample deposits.

The n.frared spectra of these deposits, shown in Figure 4.2A, appeared unusual and were

characterised by a doublet at 1053 and 1036 cm"1, and peaks at 1730, 1323, 1235, 1160

and 1108 cm"1.

The origin of this contaminant was considered to have arisen from loose fibres on the

Ayre spatula, removed by agitation of th? instrument in ethanol when collecting cellular

material. An Ayre spatula was vigorously agitated in a solution of absolute ethanol, and

this solution was centrifuged and the resulting pellet pipetted into a KRS-5 infrared cell

and desiccated under vacuum. The resulting spectrum, also shown in Figure 4.2, showed

similarities with the contaminated ectocervical cell spectnjm, with peaks at 1730, 1323,

1232, 1157, 1108 and 1033 cm"1.

1800 1600 1400 1200 1000 800
Wavenumber Values / cm1

B

1800 1600 1400 1200 1000
Wavenumber Values / cm1

800

Figure 4.2A Spectrum of ectocervical cells contaminated with Ayre spatula debris (A, black),
uncontaminated ectocervical cells (B, blue) and spectrum of Ayre spatula debris (C, red).
Spectra have not been normalised. B. Ayre spatula debris, normalised to the most intense
band.

Sampling instruments were initially kept in centrifuge tubes to maximise cell

collection, however once the contaminant was identified as Ayre spatula debris, sampling

instruments were briefly agitated in the ethanol solution immediately after collection and

then discarded.
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A further source of contamination identified were mixed populations of ectocervical

and endocervical cells. Cervical smears are obtained from the transformation zone of the

cervix, which is the area of the cervix where the squamous epithelium (ectocervical) and

columnar epithelium (endocervical) meet and where neoplasia is likely to occur [15]. It is

sometimes difficult to sample squamous and columnar cells separately because the

transformation zone may not always be visible to the person taking the smear. The

location of the transformation zone changes throughout the lifetime of a female and

depends on age, reproductive status and pregnancy [16]. Consequently samples which

showed IR spectra characteristic of both ectocervical and endocervical epithelium were

discarded to minimise the chance of spectra resulting from a mixture of these two

components confounding the effects occurring from cyclical changes.

4.1.2.3 SPECTRAL SUBrREACTION

To remove the effects of Ayre spatula contamination in the ectocervical cell spectra,

spectral subtraction was performed on contaminated spectra. Spectral subtraction was

performed iteratively using Grrms 3.2 software (Warsash, Sydney, Australia). Because

the relative intensities of the spatula spectrum compared to the ectocervical cell spectra

were so low, direct subtraction of the spatula could not be performed due to scaling

factors. Instead, spectral subtraction was performed by subtraction of a non-contaminated

spectrum from a contaminated spectrum. Whilst this method is less than ideal, the same

spectrum was used for all the subtractions.

4.1.2.4 ECTOCER VICAL CELLS

Ectocervical cells are characterised by:

1. Amide I and amide II bands at 1651 and 1544 cm"1 respectively.

2. Peaks at 1543 and 1394 cm"1 arising from deformation modes of methyl groups

in proteins.

3. A very weak amide III band at 1318 cm"1.

4. vasPO2" and vsPO2" bands at 1242 and 1081 cm"1 respectively.

5. A band at 1154 cm"1 arising from vC-0 of proteins and carbohydrates.
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6. A peak at 1027 cm"1 arising from the -CH2OH stretching vibration of

glycogen.

The infrared spectra of ectocervical cells exhibited variation throughout the cycle and

an example is shown in Figure 4.3, The main differences were observed in the

carbohydrate region (1200-1000 cm"'). Increases in the intensities of the peaks

attributable to glycogen would be expected tov/ards mid-cycle, as a result of glycogen

accumulation in intermediate cells [13]. This increase is clearly seen with the infrared

spectra resulting from days 8 and 12 showing marked increases in the 1025 cm"1 band,

attributed to glycogen, compared to days 19 and 26. Glycogen concentrations are

expected to peak around ovulation, which in this 30 day cycle would occur at day 16.

Of the seventeen cycles of women not taking oral contraception examined in this

study, all but two cycles exhibited this spectral pattern, i.e. the glycogen band at 1025 cm"1

increased towards mid-cycle and decreased following ovulation.

1800 1600 1400 1200 1000 800
Wavenumber Values / cm'1

Figure 4.3 Infrared spectra obtained from a woman, not taking oral contraception, over one
cycle. The length of this cycle was 30 days.

The consistency of these changes is also observed when similar days from different

cycles are examined. Figure 4.4 shows the mid-cycle days from a woman not taking oral

contraception. The slight differences in these spectra result from different cycle lengths,

and it is known that cycle length both between and within women can differ substantially

[17].
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1800 1600 1400 1200 1000 800
Wavenumber Values / cm"1

Figure 4.4 Infrared spectra of a woman, not taking oral contraception, collected over four
cycles.

Figure 4.5 shows the IR spectra of ectocervical cells collected from a woman taking

monophasic oral contraception. As expected the spectra do not exhibit large variation

throughout the cycle, with small differences observed in the carbohydrate region. All of

the cycles recorded from the monophasic participants showed similar spectral patterns,

although at the end of the cycle, glycogen levels were found to decrease. This is believed

to be due to the withdrawal of monophasic contraception to allow for menstruation.

1800 1600 1400 1200 1000
Wavenumber Values / cm"1

800

Figure 4.5 Infrared spectra of a woman taking monophasic oral contraception collected over
one cycle.

Whilst it is obvious that there is a large degree of variability in cervical cells

throughout the menstrual cycle, these cells are essentially normal and would be expected

to group with normal cervical cells in multivariate statistics.

PCA was performed on two hundred and forty infrared spectra with known biopsy

results. Figure 4.6A shows a clear separation between normal and dysplastic samples on a

PCI versus PC2 scores plot. Sixty-six infrared spectra from all participants were added to
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the data set and PCA was performed a second time. The resulting PCI versus PC2 scores

plot is shown in Figure 4.6B, with M and N representing monophasic and no contraception

respectively and the number indicating the day of the cycle the cells were obtained. A

separation between the abnormal and the normal/menstrual samples is observed indicating

spectral changes arising throughout the menstrual cycle do not confound IR diagnosis of

high-grade dysplastic and carcinoma in situ (CIS) samples.

-1

Figure 4.6 Scores plots showing discrimination between normal (green, 0) and dysplastic
(blue) cervical cells (A) and with menstrual data included (B). The spectra were diagnosed
by biopsy as normal (0), CIN II (2), CIN HI (3) or CIS (4). The menstrual samples (red) are
represented by an M or N, for r onophasic or no contraception respectively, with the
number indicating the day of the cycle the smear was obtained.

4.1.2.5 NA VICULAR CELLS

Navicular cells are a common variant of intermediate cells and are sometimes seen in

cervical smears of pregnant women and smears taken during the late menstrual phase [15].

These cells are characterised by large deposits of glycogen and are shown in Figure 4.7.

Several spectra, recorded between days 8 and 11 and shown in Figure 4.8, exhibited

glycogen peaks with intensities equal to or greater than the intensity of the amide I band.

These spectra may be the result of the presence of navicular cells.
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Figure 4.7 Microscopic image of a cervical smear showing the presence of navicular cells.
These cells are of intermediate maturation and are filled with vacuoles of glycogen.

Day 8

1800 1600 1400 1200

Wavenumber values / cm'

1000 800

Figure 4.8 Infrared spectra of ectocervical cells sampled at day 11 of a 30 day cycle and day 8
of a 27 day cycle.

4.1.2.6 ENDOCERVICAL CELLS

The infrared spectra of endocervical cells differ somewhat from ectocervical cell spectra.

Differences occur in the carbohydrate region (1200-1000 cm"1) because endocervical cells

do not contain glycogen [16, 18] and so lack the 1025 cm"1 peak arising from glycogen.

The majority of endocervical cells present in cerv-ical smears are mucus secreting [16] and

spectra are differentiated from ectocervical cells by a band at 1047 cm"1 and a shoulder at

1120 cm"1 arising from the C-0 and -CH2OH stretching vibrations respectively of mucins.

Figure 4.9 illustrates the minimal variation in the IR spectra of endocervical cells

throughout the cycle. The amount of protein remains relatively constant throughout the

cycle, indicated by the intensity of the amide II band at 1544 cm"1. The band shape and

peak position does not vary throughout the cycle and the main differences noted occur in

the carbohydrate region, with the peak at 1047 cm"1 and the shoulder at 1120 cm"1, both
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attributed to stretching vibrations of carbohydrate moieties in mucus, showing changes in

intensity.

These changes however do not seem to be related to the cycle. Changes associated

with endocervical cells would be thought to coincide with mucus production in the cervix.

For the majority of the menstrual cycle mucus is thick and viscous however in the days

leading up to, during and after ovulation, the mucus becomes less viscous to facilitate the

passage of sperm into the uterus [19]. If changes occurring in cervical mucus were

manifested in the spectra of endocervical cells, changes would be expected around the

time of ovulation. Ovulation usually occurs at about day 14 of a 28 day cycle. The length

of the cycle in Figure 4.9 was 30 days. If changes in the mucins affected the infrared

spectra of endocervical cells the spectrum from day 14 should be different from those of

the other days. As can be seen in Figure 4.9 this is not the case, with the spectra arising

from days 14 and 28 showing very similar spectra. The changes observed may arise from

differences in the concentration of mucus in the epithelial cells, but they may also be an

averaging artifact from the two populations of endocervical cells in the cervix, secretory

and ciliated.

uoca

1800 1600 1400 1200
Wavcnumber values / cm1

1000 800

Figure 4.9 Infrared spectra of endocervical cells from a woman not taking oral
contraception. These spectra were baseline corrected and normalised to the Amide I band.

Infrared spectra of endocervical cells from women taking monophasic contraception

were of similar appearance to those obtained from women not taking oral contraception.

This further supports the evidence that cyclical changes are not occurring in the spectra as

a result of mucus because women taking monophasic contraception do not ovulate and so

the consistency of the cervical mucus should remain constant throughout the cycle.
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4.1.2.7 NUCLEIC ACIDS

As the nucleus of a superficial squamous cell becomes compact, so too does the nuclear

material, which is believed to be too compact to absorb infrared radiation [8, 20].

Superficial cells appear in cervical smears as a result of estrogen stimulation and occur

around ovulation as well as in the days leading up to menstruation [21]. The spectral

effects of this phenomenon are seen by reductions in the bands associated with nucleic

acids, namely the vasPO2~ and VSPO2~ bands arising from phosphodiester linkages at 1240

and 1080 cm'1 respectively. Figure 4.10 shows the phosphodiester region of ectocervical

cell spectra from a woman not taking oral contraception. The spectrum resulting from a

cervical smear obtained from day 15, where one expects a high proportion of superficial

cells, exhibits a reduction in intensity of the VasPCK compared to the spectra arising from

days 8 and 22 where the proportion of intermediate cells is greater. Although this trend is

reversed upon inspection of the vsP(>f band, this peak also has contributions from

carbohydrate moieties and so the exact contribution from nucleic acids is unknown.

Further evidence to support this theory is shown in Figure 4.11, where the spectra arising

from day 36 also shows a reduction in the vasPO2~ region.

•e

1300 1250 1200 1150
Wavenumber Values / cm -1

1100 1050

Figure 4.10 Infrared spectra of ectocervical cells obtained from a woman not taking oral
contraception highlighting the phosphodiester region. The length of cycle was 29 days.

Even though there is a reduction seen in the vasPO2~ bands with spectra associated with

ovulation and premenstruation, the band does not disappear completely because

phosphodiester linkages of RNA [20], which occur in the cytoplasm of cells, absorb

radiation in this region.
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Figure 4.11 Infrared spectra of ectocervical cells obtained from a woman not taking oral
contraception highlighting the phosphodiester region. The length of cycle was 36 days.

The consistency of the amide II peak intensities throughout the cycle, which indirectly

show contributions from nucleic acids [8], may also be used as an indicator of nucleic acid

changes. Chiriboga et al. [8] found that the intensity of the amide I/amide II ratio changed

depending on the contributions of DNA. Morphologically, the N/C ratio changes

throughout the cycle as seen with the appearance of pyknotic nuclei around ovulation.

The actual concentration of the nuclear material in the cells does not vary rather it

becomes more compact. If the protein and nucleic acid concentration of the cells were

undergoing cyclic changes these would be seen as a difference in intensity of the amide II

band.

Figure 4.12 shows the amide II bands of ectocervical cells, sampled from a woman not

taking oral contraception. The intensity of these bands can be related to the contributions

of DNA in cells. This is exhibited through changes in amide I/amide II ratio, as DNA

exhibits a broad carbonyl stretch at the same frequency as the amide I peak arising from

protein. It can be considered that DNA contributions would result in an increase in the

amide I/amide II ratio, which in a spectrum normalised to the amide I band would result in

an increase in the intensity of the amide II band with respect to the amide II band of

spectra not showing DNA contributions. Therefore, the spectrum resulting from day 15

can be seen to have less contributions from nucleic acids than the spectra from days 8 and

22, indicating a higher presence of superficial cells with pyknotic nuclei.
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Figure 4.12 Infrared spectra obtained from a woman not taking oral contraception,
highlighting the amide II band.

4.1.3 CONCLUSION

In conclusion it appears that there are definite changes occurring in ectocervical cells

throughout the menstrual cycle. The main differences are seen in the carbohydrate region

and can be attributed to the accumulation of glycogen in intermediate cells as a result of

estrogenic stimulation. Ectocervical cell spectra obtained from women taking monophasic

oral contraception did not exhibit the same degree of variation. Despite these cyclical

differences, PCA was able to demonstrate that high-grade dysplasia could be separated

from normal samples collected at different phases of the menstrual cycle. The infrared

spectra of endocervical cells from both groups did not show cyclical variation.

Contributions from nucleic acids, in particular DNA, also caused cyclical changes.

Changes were manifested in a reduction of the VasPOi" and amide II bands from the

infrared spectra of ectocervical cells obtained around ovulation and prior to menstruation.

4,2 AN INVESTIGATION INTO NUCLEIC ACID CONTRIBUTIONS IN THE IR
SPECTRA OF NORMAL CERVICAL EPTITHELIAL AND HELA CELLS.

Given the complex nature of biological molecules and systems, it is often difficult to make

band assignments based on the functional groups involved. Therefore it is necessary to

obtain IR spectra of the constituent molecules and extrapolate these findings to IR spectra

of biological molecules. The four main constituents of biological molecules are proteins,

carbohydrates, lipids and nucleic acids. IR spectra of these macromolecules can be

obtained by recording spectra of these constituents in isolation. To do this it is often
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necessary to isolate these components from whole cells by a technique known as

subcellular fractionation.

Subcellular fractionation is essentially separating out the organelles of cells. The

membrane, nucleus and other organelles can be isolated and purified allowing IR spectra

to be obtained to determine which peaks in spectra are attributable to the various

components of cells.

Cytologically the main differences in cell morphology of normal, dysplastic, malignant

and benign cellular changes all involve changes in the nucleus, for example size

(measured by N/C ratio) and shape (refer to Section 1.1.5) [15, 21-23]. Subcellular

fractionation was utilised to extract the nuclei of whole cells in an effort to determine the

contributions of nuclei, in particular nucleic acids to IR spectral differences seen between

normal and other disease states, be it benign, precancerous or malignant.

The first step in subcellular fractionation is the formation of a cell homogenate by the

rupture of the cell wall. This may be achieved by a number of methods including

sonicatnn, nitrogen cavitation or mechanical shearing. Generally, the homogenisation

procedure should be able to produce at least 90% cell breakage [24].

A gaseous shear such as nitrogen cavitation involves the exposure of a cell suspension

to nitrogen gas at about 800 psi (5516 kPa) at 4°C for about 15 minutes within a stainless

steel pressure vessel. The suspension is then forced through a needle valve by the gas

pressure, and cell rupture occurs by a combination of the sudden expansion of gas

dissolved within the cytosol and the formation of bubbles of nitrogen gas in the medium.

Once the cell has been ruptured, centrifugation techniques employing density gradients

or differential pelleting are used to recover the components. The concept of differential

centrifugation, or separation of particles on the basis of size, utilises the principle that

large particles settle faster than small ones. A cell homogenate can be centrifuged at

progressively higher g-forces to produce pellets of partially purified particles. The

nucleus, which is the largest and fastest sedimenting organelle, and the mitochondria can

be obtained with reasonable purity by this method, although the pellet must be washed

several times to remove trapped smaller particles. This may cause damage to and loss of

the organelles [25].

Rate zonal centrifugation also uses the property of particle size to achieve separation

of the organelles. The sample is placed on top of a continuous density gradient and the
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particles move down through the gradient as discrete zones depending on particle size.

This technique is rarely employed in subcellular fractionation because of the restrictions

imposed on sample size, which should be no more than 10% of the total gradient volume

[25].

Organelles may also be separated on the basis of their buoyant density, through the use

of pre-formed or self-generated density gradients. The sample is loaded at the bottom or

middle of a discontinuous gradient or throughout a continuous gradient to minimise

particle aggregation and artifactual banding and clumping of material [25]. The particles

then either sediment or float upward to their isopycnic13 point during centrifugation. It is

important to maintain constant osmolarity throughout the gradient to preserve organelle

integrity and structure. Exposure of cells and cell organelles to changing tonicity will alter

their volume and hence density and may also affect viability.

It is therefore better to perform gradient centrifugation with a medium that is iso-

osmotic with mammalian fluids. Sucrose has traditionally been very popular because it is

widely available at a relatively low cost. The use of sucrose gradients however, has several

disadvantages in terms of osmolarity and viscosity. The high osmolarity causes

membrane-bound, osmotically sensitive particles to lose water and shrink, thus altering

their buoyant densities. This can lead to co-banding of organelles, which under iso-

osmotic conditions would have distinctive buoyant densities [26]. The high viscosity of

sucrose solutions leads to low sedimentation rates and long periods at high centrifugation

speeds.

Iodixanol (Nycomed Pharma AS, Oslo, Norway) or OptiPrep™ is an iso-osmotic

density gradient medium that is resistant to bacterial degradation, non-toxic and not

metabolised by mammalian cells. Iodixanol, Figure 4.13, is a non-ionic, dimeric

hexaiodinated compound with a molecular weight of 1550, a density of 2.08 g/ml and a

melting point between 221-244CC [27].

13 The isopycnic point is the point at which the bouyant density is equal to the density of the medium.
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Figure 4.13 Structure of iodixanol, or 5,5'-|(2-hydroxy-l-3-propanediyl)-bis(acctjiamino)]
bis |N,N'-bis (2,3-dihydroxypropyl)-2,4,6-triiodo-l,3-benzenedicarboxamide]. Redrawn
from [27].

The high density comes from the presence of two substituted triiodobenzene rings that

are linked to a number of hydrophilic groups. Iodixanol is commercially available as a

sterile 60% (w/v) aqueous solution with a density of 1.320 g/ml, an osmolarity of 260

mOsm, a refractive index of 1.4287 and does not contain buffers or other additives. The

high solubility of iodixanol in water is attributed to the hydrophilic amide side chains and

the hydroxylated carbon atoms between the two aromatic rings [27]. The physico-

chemical properties of different concentrations of iodixanol are summarised in Table 4.2.

Iodinated density gradient media are able to form solutions dense enough to band

subcellular organelles isopycnically without subjecting them to the damaging effects of

high osmotic stress. The low osmolarity of these solutions maintains physiological

osmolality and allows organelles to retain normal shape and volume, which results in

better resolution of organelles [27].

Table 4.2 Physical properties of iodixauol in water (20°C) [27],

Iodixanol
% (w/v)

0
10
20
30
40
50
60

Molar
concentration

0
0.0645
0.1290
0.1935
0.2581
0.3226
0.3871

Refractive
Index (t|)

1.3330
1.3490
1.3649
1.3809
1.3968
1.4128
1.4287

Density, g/ml

0.998
1.052
1.105
1.159
1.213
1.266
1.320

Osmolarity,
mOsm

0
38
80
115
150
200
260

Nitrogen cavitation and centrifugation using OptiPrep™ was performed on cervical

epithelial cells and HeLa cells to isolate and obtain infrared spectra of nuclei.
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4.2.1 METHODOLOGY

The cervical epithelial cells used in this experiment were obtained from the dysplasia

clinic of the Royal Women's Hospital (Melbourne, Australia). Cultured HeLa cells were

obtained from the Monash Medical Centre (Clayton, Australia). HeLa cells were removed

from the culture flasks according to the protocol outlined in Appendix G.

4.2.1.1 PREPARA TION OF HOMOGENA TE

The preparation of a homogenate requires temperatures of less than 4°C. All operations

were carried out at temperatures between 0-4°C, requiring the nitrogen pressure vessel14 to

be pre-cooled in ice. The cells were centrifuged at 1000 g for 10 minutes, and washed

twice with phosphate buffered saline (PBS). After decantation of the supernatant the

pellet was resuspended in PBS (at least 10 volumes PBS to 1 volume of cell pellet). Cells

were resuspended by gentle inversion or the use of a Pasteur pipette, centrifuged at 1000 g

for 10 minutes, and resuspended in a sucrose medium (solution D). Refer to Appendix G

for details on preparation of solutions A to D. The suspension was cooled to 0°C and

transferred to the stainless steel cavity of the nitrogen pressure vessel. Oxygen free

nitrogen was introduced to a pressure of ~20 MPa and allowed to equilibrate for 20

minutes. With the deliver}' tube leading to a beaker, the delivery valve was opened

slowly, ensuring that the tip of the delivery tube was kept above the level of the collected

homogenate in the beaker. Once all the suspension had been collected the delivery valve

was closed and any remaining gas vented. The homogenate was gently stirred to allow the

foaming to subside.

The progress of the homogenisation was monitored by light microscopy to give an

indication of the percentage cell rupture and to ensure that nuclear integrity had been

maintained. A small amount of the homogenate was pipetted onto a microscope slide and

stained with Ehrlich's Haemotoxylin15. The nuclei should appear dark red and unswollen.

4.2.1.2 ISOLATION OF NUCLEI16

Oii^e the homogenate has been prepared, organelles such as the nucleus are isolated by

means of centrifugation. Two gradient solutions of 30% (w/v) and 35% (w/v) iodixanol

14 For more information regarding the nitrogen pressure vessel, or bomb, refer to Appendix H.
15 Refer to Appendix G for the preparation of Ehrlich's Haemotoxylin.
16 Methodology from [25]
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were prepared by diluting solution C with solution D. (6 vol. C and 4 vol. D; 7 vol. C and

3 vol. D respectively). The entire homogenatc or a crude nuclear pellet, obtained by

centrifugation of the homogenate at 1000 g for 10 minutes and resuspended in solution D,

was used. Equal volumes of the sample and solution C were mixed and 10-15 ml was

transferred to a suitable centrifuge tube (40-50 ml) for a swinging bucket rotor of a high-

speed centrifuge. The sample was undcrlayered with 10 ml of the 30% iodixanol and 5-10

ml of the 35% iodixanol and centrifuged at 10,000 g for 20 minutes. The nuclei banded at

the 30/35% interface as illustrated in Figure 4.14.

Homogenatc in
25% iodixanol

30% iodixanol

35% iodixanol

°- I

10,000 g

30 min.

re
Nuclei

Figure 4.14 Schematic representation of the purification of nuclei from mammalian cells.
Redrawn from [28].

Cellular material banding at the interface was carefully recovered with a Pasteur

pipette and placed in an Eppendorf tube. The material was centrifuged at 1,000 g foi 10

minutes and washed twice with 70% ethanol.

The relative centrifugal force (RCF) was determined using the following equation:

Equation 4.1
1000

where r is the radius (cm) of the centrifuge, measured as the distance from the middle of

the centrifuge to the bottom of the centrifuge tube (for a swinging bucket rotor) and the

distance from the middle of the centrifuge to the middle of the top of the centrifuge (for a

fixed rotor).

4.2.2 RESUL TS AND DISCUSSION

A problem was initially encountered with performing separation of subcellular organelles

because established protocols were predominantly for the homogenisation of liver and/or

cultures of liver cells, rather than epithelial or HeLa cells. The first step in refining the
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protocol was to find out how the densities of organelles differ according to the type of cell

and with respect to the gradient density medium used for the separation. One of the major

advantages of OptiPrep™ is that it is able to maintain an iso-osmotic environment over all

concentraiion and density ranges [27], meaning that the densities of organelles in a

solution of OptiPrep™ will not be altered.

The receptacle chosen for delivery of homogenate from the nitrogen pressure vessel (a

beaker) was inappropriate because the homogenate was expelled with very high force and

the solution was sprayed out of the receiving beaker. A 50 ml centrifuge tube and lid were

adapted to fit over the hose to minimise leakage17. Homogenisation is never 100%

successful as there will be a certain proportion of whole cells that will not rupture. It is

generally accepted that 90% rupture is adequate to perform organelle isolation [24].

A small sample of each homogenate produced was pipetted onto a glass microscope

slide, stained and examined under a light microscope. The first few attempts at

homogenisation were unsuccessful as only a small percentage of the cells were ruptured,

and the nuclei from the ruptured cells still had cytoplasm i Cached. Higher pressures were

then used and this resulted in a greater proportion of cell .upture and organelle liberation.

HeLa cells posed a major problem for homogenisation, with cells either not rupturing, or

rupturing and destroying the nuclei. It was thought that this problem might have been due

to the cells being too old (they had been cultured over a few weeks and it was believed

that the growth medium used was contaminated). Due to the difficulty with culturing

enough HeLa cells for the process, it was decided that the protocol would be refined using

epithelial cells from cervical smears. After experimenting with different equilibration

times and pressures, the homogenisation rate increased to between 80-85%.

The first few attempts at gradient density centrifugation were also unsuccessful.

Figure 4.14 shows a schematic representation of the centrifugation tube? before and after

centrifugation. In an isotonic environment the nuclear pellet should have a density of 1.12

g/ml18 and was expected to band at the 30/35% OptiPrep™ interface, but instead all the

cellular material collected as a pellet at the bottom of the tube. Initially it was thought that

the densities of the prepared solutions of OptiPrep™ were incorrect, so the refractive

17 Rcftr to Appendix H for a schematic representation of the nitrogen pressure vessel.
18 Tae homogenate was in a low concentration sucrose solution so it was expected that the density would
increase slightly due to osmosis.
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indices of the 30 and 35% OptiPrep™ solutions were calculated, and hence density

calculated according to Equation 4.2 [27]:

p = 3.29877,C).r -3.396 Equation 4.2

The refractive indices of the ^0% and 35% OptiPrep™ solutions were measured as 1.380

and 1.3889 respectively, which corresponds to densities of 1.155 g/ml (1.159 g/ml

expected) and 1.184 g/ml (1.186 g/ml expected) respectively. Please refer to Table 4.2 for

the physical properties of aqueous solutions of OptiPrep™. As the recorded density

measurements were similar to that of the expected OptiPrep™ densities, it was thought

that analysis of the pelleted cells by light microscopy might be useful in explaining the

failure of the nuclei to band at the 30/35% interface.

Analysis by light microscopy revealed a mixture of whole cells, liberated nuclei and

nuclei with cytoplasm still attached. The next homogenate was prepared and instead of

only having two different densities of OptiPrep™, it was decided to use a 40% solution as

v. sll, to encourage the whole cells to settle at the 35/40% interface. Solutions were

centrifuged at 10,000 g for 25-30 minutes, and two bands could be seen at the 30/35% and

the 35/40% interfaces vith the 35% solution containing a particulate suspension. These

fractions were collected in Eppendorf tubes, centrifuged at 1,000 g for 10 minutes, and a

small amount of cellular material fixed and stained for microscopic analysis. At the

30/35% interface, the majority of the cells had been ruptured as could be seen by the high

proportion of liberated nuclei, but some cytoplasm was also present. The 35/40%

interface had a high proportion of whole cells, a few had been ruptured but nuclei were

still attached to the cytoplasm. The 35% suspension contained a mixture of whole cells,

liberated nuclei and cytoplasm. The collected cellular material from the two interfaces as

well from the 35% suspension were washed twice in 70% ethanol and prepared r->r

infrared analysis. Figure 4.15 shows the spectra of nuclei and whole cells. The specaum

of the nuclei is the averaged result of three separate fractionation experiments and

represents the cellular material at the 30/35% interface. Figure 4.16 shows the

microscopic image of isolated nuclei from the 30/35% OptiPrep™ interface.

131



g
<

1800 1600 1400 1200
Wavcnumber values / oili

1000 800

Figure 4.15 Infrared spectra of whole cells (red) and cellular material believed to be nuclei
(blue) collected from the 30/35% OptiPrep™ interface.

nuclei

jbigure 4.16 Microscopic image of isolated nuclei obtained from the 30/35% OptiPrep™
interface.

The infrared spectrum obtained from the 30/35% interface exhibits a shift in the amide

I and II bands from 1650 tol646 cm"1 and 1544 tol550 cm"1 respectively compared to the

whole cell. The spectrum obtained from isolated nuclei exhibits bands at 1432, 1400,

1334, 1270, 1114 and 1048 cm"1. The nuclei spectrum lacks the 1240 and 1086 cm"1

bands arising from VasPO2" and VjPCX of phosphodiester linkages in DNA respectively,

reported by Wong et al. [1, 2]. The reported infrared spectra were obtained from

homogenisation of a cultured colon adenocarcinoma cell line rather than cervical epithelial

cells.

The bands at 1270 and 1114 cm"1 could be arising from vasPO2" and vC-0 in RNA

respectively, although it is unlikely that the expected VasPCb" band would have shifted

from 1244 cm"1 [29]. Indications these bands are not due to RNA is further exhibited with

the absence of a vsPO2" band at 1084 cm"1. The presence of a carbohydrate peak at 1048

cm"1 may be due to residual glycogen from the small amount of cytoplasm not separated

from the nuclei. Since food materials are stored in the cytoplasm of cells [30],

carbohydrate bands were not expected in the IR spectrum of isolated nuclei.
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Although nitrogen cavitation is highly reproducible, isolated nuclei can be very fragile

[24]. Using cultured cells rather than tissue also presents problems in subcellular

fractionation, especially if the density of the Optiprep™ solution is not correct. Cultured

cells require higher shearing forces to cause cell disruption, or lysing. This increased

pressure increases the chance of nuclear rupture. DNA released from even a few cells will

result in severe aggregation of material [25].

It is possible that the absence of characteristic nucleic acid bands in the IR spectra of

isolated nuclei were caused by DNA released by nuclear rupture and discarded with the

supernatant. Light microscopy of the isolated nuclei however did not reveal aggregation,

indicating that nuclear rupture had not occurred. The IR spectra presented in Figure 4.15

were obtained from ectocervical smears. Therefore the pressures required to cause cell

rupture should be closer to those of cells collected from tissue samples. Furthermore the

density of the OptiPrep™ solutions used were checked using refractive index

measurements and found to be consistent with recommended densities [27]. If the nuclei

have remained intact during this experiment, then there has to be another reason as to why

contributions from nucleic acids, in particular DNA are not seen in the IR spectra of

isolated nuclei.

Nucleic acids and proteins, known as polyelectrolytes and polyampholytes

respectively, are classed as macroions and may carry a substantial charge depending on

pH [31]. In solution, nucleic acid molecules repel each other and proteins are soluble at

pH values above or below the isoelectric point. When positively and negatively charged

macromolecules are mixed together electrostatic attraction results in molecular

association. In the chromosomes of the nucleus of higher organisms the negatively

charged DNA is strongly associated with the positively charged proteins, called histones,

forming a complex called chromatin [31].

Enkaiyotir cells contain an enormous amount of DNA. The diploid content of a

human cell is about 8 x 109 base pairs, corresponding to a total len<rth of nearly 3 metres.

This DNA is packed into a nucleus about 10 jam in diameter [31], and the amount doubles

as the cell undergoes mitosis. The optical density of the DN A-histone chromatin complex

is thought to be too high to allow the transmission of IR radiation, hence phosphodi ester

bands arising from DNA are not always seen in IR spectra [20]. The study undertaken in

the Diem laboratory [20] investigated the IR spectra of nuclei at different stages of the cell

cycle in cultured myeloid leukemic (ML-1) cells and found an extremely low contribution
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of nucleic acid features in the IR spectra of ML-1 cells in the Gl and G2 phases,

especially given that cells in the G2 phase are tetraploid. Furthermore, some of the

spectral differences observed for the phases of the cell cycle resembled differences

between normal and abnormal exfoliated cells.

The cell cycle will not affect the spectral features of normal cervical smears, as basal

cells and reserve cells are the only epithelial cells to undergo mitosis and these are rarely

seen in smears [21]. However the size of the nucleus and hence the degree of chromatin

packing changes throughout the maturation of squamous epithelial cells. The diameter of

the pyknotic nucleus associated with a mature superficial cell is 5-7 um compared to a 9-

11 fim diameter for the nucleus of an intermediate cell. Spectral differences in the

phosphodiester region have been observed between the maturation stages of squamous

epithelial cells [8, 32]. Isolated nuclei from superficial squamous cells of cervical smears

would be expected to have less spectral contributions from DNA in the phosphodiester

regions due to chromatin compactness than isolated nuclei from intermediate cells. This

suggests that the epithelial cells in the cervical smears used for this experiment were

predominantly of superficial maturation. The lack of RNA contributions may also be

explained by the pyknotic nuclei of superficial cells. The highly compacted DNA in the

small nucleus may increase the optical density of the entire nucleus, reducing spectral

contributions from other macromolecules, including RNA.

Spectral differences observed between normal and neoplastic tissue have been linked

to the optical density of the nucleus in these cells [33]. Increased N/C ratio and cell

division associated with neoplasia may contribute to increased DNA features in IR spectra

of neoplastic cells, brought about by decreased chromatin packing in larger nuclei.

Benign cellular changes in squamous epithelial cells can also cause an increase in N/C

ratio, the implications of this are investigated in Section 5.4.

A study investigating spectral differences between nucleated and anucleated cells

undertaken in our laboratory also observed interesting changes in the phosphodiester

region [34]. IR spectra of human red blood cells, which lack a nucleus, and chicken red

blood ceils, which contain a nucleus, were recorded. Difference spectroscopy revealed no

significant differences between the two cell types in the vasPO2~ and vsPC>2~ bands at 1240

and 1080 cm"1 respectively. Nuclei isolated from chicken red blood cells showed an

increase in PO2" absorption at 1244 and 1080 cm"1 when collected in water and PBS.
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Whilst the increased absorption was attributed to nuclei expansion, changes in electrostatic

interaction between DNA and histones could also contribute to increased absorption.

Dissociation of the chromatin complex in nuclei suspended in water may cause dispersion

of DNA molecules throughout the nucleus. This would explain the increased intensity of

PO2" bands. The reduction in PO2" band intensity in the IR spectra of nuclei suspended in

PBS, relative to those in water may be arising from less dissociation of the chromatin

complex. Although PBS is an isotonic solution, exposed nuclei can be fragile and

swelling can occur. The use of PBS containing cations, as used in the study presented in

this chapter, help to maintain nuclear integrity and reduce the possibility of swelling or

rupture [24].

4.2.3 CONCLUSION

Subcellular fractionation via nitrogen cavitation was successful as confirmed by light

microscopy of collected fractions. The recorded IR spectra of isolated nuclei did not

correspond to those reported in the literature [1, 2], exhibited by a lack of nucleic acid

contributions. It is possible that the extreme density of chromatin in the nucleus precludes

the absorption of radiation by the nucleic acids present [20]. These findings would then

support those of the Diem laboratory [8, 20], where the presence of nucleic acids in the

nucleus of cervical squamous epithelial cells and myeloid leukemic cells respectively were

not always detected using infrared spectroscopy. The study undertaken in our laboratory

by Khurana [34] found no observable spectral differences between red blood cells with

and without a nucleus. Phosphodiester contributions increased when nuclei were isolated,

and the intensity of these bands depended on the solution used to rupture the red blood

cells and collect the nuclei. Nuclear integrity was maintained in this study of isolated

nuclei of cervical squamous epithelial cells. This was demonstrated through light

microscopy of isolated nuclei. The refractive indices of the OptiPrep™ solutions used and

the inclusion of PBS+ maintained an isotonic environment for isolated nuclei. It is

possible that the electrostatic interaction between DNA and histones plays a part in the

contributions of nucleic acids to IR spectra.
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CHAPTER 5

A DIAGNOSTIC TECHNIQUE FOR CERVICAL CANCER



5 A DIAGNOSTIC TECHNIQUE FOR CERVICAL CANCER

Multivariate statistics is an important tool for spectroscopists as it enables the objective

analysis of data and the extraction of information in the data not possible from visual

inspection. The term multivariate statistics encompasses a broad range of techniques, but

the methods used in this analysis are limited to those described in Section 2.5. The

purpose of the preliminary analysis was to ensure that discrimination between normal and

abnormal (high-grade dysplastic and malignant) samples could be achieved before

proceeding with collection of vast amounts of data.

The results of the final statistical analysis employing Bayesian regularised artificial

neural networks to train and predict the data collected during the course of this research is

presented and discussed in Section 5.2.

5. / PRELIMINARYSTA TISTICAL ANAL YSIS

5J.I METHODOLOGY

5.1.1.1 SAMPLE COLLECTION

Cervical cells used in the database were obtained from the Royal Women's Hospital

Dysplasia Clinic (Melbourne, Australia) and from Family Planning Victoria (Melbourne,

Australia). Samples were initially col?°cted from all patients attending the Dysplasia

Clinic. However, given the inaccuracies of the Pap smear it was decided that samples

would only be collected from patients undergoing biopsy. Patients who attended the

Dysplasia Clinic through referral19 or existing patients with an abnormal Pap smear had

biopsies. Therefore, the spectra collected that have associated biopsy results are sampled

from an abnormal population and are not representative of the normal population.

Samples from patients attending the FPV Clinic were collected to ensure sampling of a

normal population. Unfortunately only patients with Pap smears that are classified as

abnormal are required to have a biopsy, a procedure not undertaken at this clinic.

Therefore none of the FPV samples have a histological diagnosis although statistically

90% of the samples would be expected to be normal [1].

19 Patients attending other clinics who have abnormal Pap smears are often referred to the dysplasia clinic for
a Pap smear and biopsy.
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Cervical cells were collected from the transformation zone of the cervix with an Ayre

spatula and a Cytobrush'rM to obtain ectocervical and endocervical cells respectively.

Sampling instruments were agitated in the same 50 cm3 centrifuge tube containing 10 cm3

ethanol to collect the cellular material. The samples used to record IR spectra therefore

comprised mixed populations of ectocervical and endocervical cells.

5.1.1.2 SAMPLE PREPARA TION

Centrifuge tubes containing cervical cells were centrifuged at 2500 r.p.m. for 10 minutes.

The ethanol supernatant was removed with an automated pipette leaving a cellular pellet.

The cellular material was pipetted into the KRS-5 multicavity cell (Figure 4.1, Section

4.1.1.4) and desiccated under vacuum.

5.1.1.3 INFRARED SPECTROSCOPY

Following removal of the aluminium plates used to form sample wells, the KRS-5 infrared

substrate, containing fourteen cervical samples was placed on the sampling platform of a

Bruker 1FS-55 infrared microscope system. Fifty scans were co-added at a resolution of 8

cm"1, sampling 766 data points between 3648.788 and 698.129 cm"1. A minimum of six

transmission spectra were recorded for each sample, unless samples exhibited gross

spatula contamination or there was not enough cellular material to record spectra with an

acceptable signal to noise ratio.

5.1.1.4 DATA TREATMENT

The data points of the IR spectra recorded on the Bruker spectrometer were not integer

values. To overcome this, the 'make compatible'20 option in OPUS was utilised. Using a

spectrum recorded on the PE spectrometer (1476 data points between 3650 and 700 cm"1)

as a comparison, interpolation was used to convert the spectra to 1475 data points between

3648 and 700 cm"1.

Spectra were baseline corrected, averaged, normalised to the amide I band (using

maximum normalisation (Section 3.2.5.2) and converted into JCAMP.dx format to enable

importing into Unscrambler and Matlab for analysis.

20 Refer to Appendix I for an explanation of the make compatible function.
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5.7.7.5 SOFTWARE

The statistical analyses carried out in this chapter were undertaken using Unscrambler

(CAMO, Oslo), Propagator (ARD, Columbia, USA) and Matlab (The Mathworks, Inc,

MA, USA) software. Unscrambler was used for spectral averaging and visualisation of

data, and was also employed for PCA and SIMCA. Propagator, a commercial artificial

neural network package was used to perform initial neural network calculations. K-

nearest neighbour, discriminant analysis, ANN and BRANN calculations were performed

in Matlab, using existing and purpose written programs.

5.7.2 RESUL TS AND DISCUSSION

Infrared spectra used in the following analyses were chosen because both the cytological

and histological results were in agreement. Normal samples were included if they were

diagnosed as negative without inflammation, bacterial infections, metaplasia or BCCs.

Abnormal samples were included if they were diagnosed with high-grade abnormalities

(CIN II, CIN III, CIS, SCC or invasion) with and without HPV effects.

Following this selection process, spectra were further subjected to visual processing

and grouped according to spectral characteristics described by Wong et al. [2, 3],

illustrated in Figure 5.1. Figure 5.1 compares averaged IR. spectra of cervical cells

diagnosed as normal with those exhibiting various grades of abnormality ranging from

CIN I to CIS. It is now widely accepted that these spectra are not representative of the

infrared spectra seen in routine spectroscopy of cervical smears [4, 5]. However the

preliminary analyses were performed throughout the candidature, and the spectra chosen

for inclusion in the analysis reflect the findings reported in the literature at the time [3,6].

Replicate spectra of each sample were averaged according to the criteria discussed

above. Spectra exhibiting features of contamination, Section 5,1.2.1, were also removed.

In total, 211 normal samples and 181 abnormal samples were used in the preliminary

analysis.
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Figure 5.1 Averaged infrared spectra of cervical cells exhibiting various grades of
abnormalities compared with normal cervical cells.

5.1.2.1 CONTAMINATION

The problem of spectral contamination by spatula debris discussed in Section 4.1.2.2. also

presented a problem in the initial stages of data collection. Ethanol appeared to extract a

residue from the wooden spatulas, which were initially kept stored in centrifuge tubes

containing 70% ethanol to maximise cell collection. The use of KBr (potassium bromide)

infrared substrates was trialed due to the expense and toxicity of KRS-5 substrates. KBr is

very hygroscopic necessitating the use of absolute ethanol as a cell collection medium.

The higher concentration of ethanol enhanced the extraction of spatula residue and an

increase in spatula contamination was noted. Plastic spatulas were introduced to the RWH

and FPV to minimise the loss of data due to contamination. Compliance was poor due to

the fact that those v '.ng them complained the plastic spatulas were too flexible and caused

patient discomfort. Wooden spatulas were re-introduced and cells were collected in 70%

ethanol with KRS-5 as an infrared substrate. To minimise the effects of contamination,

the spatulas were only briefly agitated in the ethanol solution and then discarded. Whilst

there was still a small percentage of contaminated samples, these could easily be identified

due to the characteristic bands discussed in Section 4.1.2.2.

5.1.2.2 PRINCIPAL COMPONENT ANALYSIS

PCA was utilised to identify the key wavenumber values accounting for the majority of

the variance in the infrared spectra and thus reduce the number of variables. Each

spectrum had 501 data points (1800 - 800 cm'1) and with the aid of PCA, spectra were

reduced to 7 data points. Loadings plots, Figure 5.2, were analysed to determine which
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wavenumber values were responsible for the discrimination. Wavenumber values with a

loading higher than 0.1 were chosen. The resulting 7 wavenumber values (1620 - 1614

cm"1 and 1028 - 1024 cm'1) are indicated by boxes marked (a) and (b) respectively. The

box marked (c) corresponds to the amide I region. This region was excluded because the

variance seen is most likely a result of normalisation, as the amide I band was the peak

chosen to normalise to.

PCA formed the basis for each analytical technique either as a means of data reduction

or to form models of the classification groups. Figure 5.3A illustrates the separation

between the infrared spectra of normal and high-grade dysplastic and CIS diagnosed

cervical cells using all 501 wavenumber values, whilst Figure 5.3B illustrates the

separation when the number of variables or wavenumber values was reduced to 7.

Variable reduction corresponded to wavenumber values in the range 1620 - 1614 cm'1 and

1028 - 1024 cm"1 inclusive. Reducing the number of variables resulted in tighter clusters

of the two groups, and a slight increase in discrimination.
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0.10

0 -

-0.10

PCI (79%)
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Figure 5.2 Loadings plots of the first three principal components, illustrating the variance of
501 wavenumber values. Seven variables with a loading greater than 0.1, shown by boxes
marked (a) and (b) were chosen for a second PCA. The variables contained in box (c) were
not included because this region was used for normalisation.
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Figure 5.3A Scores plot illustrating the discrimination obtained between IR spectra of
normal (0) and abnormal (2: CIN II, 2/3: CIN II-III, 3: CIN ID and 4: CIS) cervical cells
using 501 variables. B. Number of variables reduced to 7, note the tighter clustering and a
slight increase in separation between the normal and abnormal samples.

5.1.2.3 K-NEAREST NEIGHBOURS

PCA coupled to /cT-nearest neighbours formed the next rnultivariate technique. Spectra

were grouped into classes of normal and abnormal according to histological diagnosis, and

PCA was performed. The scores of the principal components represent each sample, and

values of K ranging from 1 - 9 were investigated in terms of sensitivity and specificity.

The theory of AT-nearest neighbours was discussed in Section 2.5.3, but to recap, the

Euclidean or Mahalanobis distance between each unknown sample and members in the

training set is calculated, and the unknown object is classified according to the majority of

K nearest-neighbours to which it belongs. This can be visualised as the formation of a

sphere around the unknown object, with the distances of the K nearest-neighbours acting

as the boundary of the sphere. The object is assigned to the group with the most objects in

the sphere.

K-NN was performed on normalised data with 501 wavenumber values, second

derivative normalised data with 501 wavenumber values, and normalised data with 7

wavenumber values. The results of the analysis are summarised in Table 5.1. The

spectrum of each sample included in the #-NN analysis was selected according to the

criteria outlined in Section 5.1.2. The best results, in terms of the highest sensitivity and

specificity were obtained using a K value of 3 (with normalisation and 501 wavenumber
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values) and 1 (with normalisation and 7 wavenumber values). Analysis using the second

derivatives of infrared spectra resulted in lower sensitivity and specificity.

Table 5.1 Results of A-NN analysis with K values ranging from A'= 1 to A'= 9.

K

I
3
5
7
9
1
3
5
7
9
1
3
5
7
9

Pre-processing"

MN
MN
MN
MN
MN
MN, 2Dv
MN, 2Dv
MN, 2Dv
MN, 2Dv
MN, 2Dv
MN
MN
MN
MN
MN

Variables

501
501
501
501
501
501
501
501
501
501
7
7
7
7
7

PCs
(variance)
4 (98%)
4 (98%)
4 (98%)
4 (98%)
4 (98%)
4(81%)
4(81%)
4(81%)
4(81%)
4(81%)
4(100%)
4(100%)
4(100%)
4(100%)
4(100%)

Sensitivity" (%)

95
95
94
95
95
94
93
92
92
91
98
98
98
99
98

Specificity0 (%)

98
99
99
99
99
91
92
92
90
88
98
98
98
97
96

MN represents spectra normalised to the amide I peak using maximum normalisation and 2Dv represent
second derivative spectra obtained by employing the Savitzky-Golay algorithm.

sensitivity =

'specificity =

number of samples predicted as abnormal

number of abnormal samples

number of samples predicted as normal

number of normal samples

Whilst the results of the AT-NN analysis are promising in terms of sensitivity and

specificity, there are some disadvantages to using hard modelling techniques such as K-

NN. The most obvious disadvantages are that classification of a new object requires re-

calculation of all distances, and addition of a new class involves recomputing AT-NN

criteria. AT-NNs are sensitive to unequal numbers of objects in a training set, and

classification results can differ depending on K.

5.1.2.4 SOFT INDEPENDENT MODELLING OF CLASS ANALOGY

Individual PC models were formed for the normal and abnormal groups of IR spectra.

One hundred normal samples and 60 abnormal samples (13 CIN II, 2 CIN II-III, 37 CIN

III and 8 CIS/SCC) made up the data for modelling. Once models had been formed,

classification was performed on 36 normal samples and 29 abnormal samples (12 CIN II,
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4 CFN 11-111 and 13 CIN III). Initial classification was undertaken using 501 variables, and

7 variables. However, when the data was randomised the results for both 501 and 7

variables changed. This was thought to be due to the different populations of samples

making up training and classification groups. If the data used in the models are

representative of the parent population, then the model will be able to account for the

variability inherent in these samples. If the models are not representative of the parent

population, then the model may not have strong modelling and discrimination powers and

will be unable to classify unknown samples with a high degree of accuracy. This is

illustrated in the results of SIMCA analysis on randomised and non-randomised data.

The results of the SIMCA analysis are summarised in Table 5.2 and illustrate the

differences in sensitivity and specificity depending on the number of wavenumber values

and randomisation of data.

Table 5.2 Results of SIMCA analysis

Class Parameters
501 wavenumber values
7 wavenumber values
501 wavenumber values, randomised data
7 wavenumber values, randomised data

Sensitivity (%)
90
85
56
85

Specificity (%)
60
92
96
92

Randomising the data improved the sensitivity and specificity of the data reduced to 7

wavenumber values and the specificity of the data using 501 wavenumber values. The

sensitivity of the data using 501 wavenumber values was reduced dramatically with

randomisation.

SIMCA models were created including spectra of samples diagnosed with CIN I and

CIN 1—II. A reduction in sensitivity was noted when CIN I and CIN I-II samples were

included. Second derivatives of the spectra were calculated and SIMCA repeated. No

improvement in the specificity or sensitivity was noted.
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Figure 5.4 represents the results of the SIMCA analysis expressed in Coomans21 plots,

which give an indication of sample-to-model distances and class membership [7]. Despite

the fact that the PCA scores plot in Figure 5.3 showed a separation between normal and

abnormal samples, and the distance between the two models was 2.4 for 501 variables and

5 for 7 variables, SIMCA appears unable to achieve a good separation between the two

models, with the majority of samples from the abnormal model, and a high proportion of

samples from the normal model belonging to both models (indicated by the presence of

these samples in the bottom left quadrant of the Coomans plot).

0.03

0.010 0.020 0.030 0 0.010
Sample Distance to Model Abnormal

0.020

Figure 5.4 Coomans plots resulting from classification of unknown (green) samples based on
models formed from normal (pink) and abnormal (blue) data. A. and B. represent
classification results of normal and abnormal data respectively using 501 wavenumber
values. C. and D. represent the same samples with reduced variables.

The modelling and discriminating power of the variables were examined as a means of

eliminating redundant variables to improve the models. Variables with a discriminating

power greater than 2 and variables with a modelling power greater than 0.5 were included

and new PC models of the data were formed. No increase in specificity or sensitivity was

noted. Outliers were removed from the PC models and new models calculated.

Classification based on these new models performed poorly, with a resulting decrease in

sensitivity and specificity. This result further highlights the need to have a broad spectrum

21 Refer to Appendix K for an explanation of the interpretation of these plots and the relevance of the results
obtained.
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of data with which to create models for SIMCA analysis. The SIMCA models could

possibly be improved by including more samples in each class. The robustness of the

models and their separation would be improved, enhancing the prediction capabilities.

If the SIMCA models could be improved, this soft modelling technique possesses

benefits as an analytical tool. First of all, it is possible to add new classes without

changing the overall model, this arises from the formation of individual PCA models for

each class. Secondly, objects are not forced into discrete classes allowing the detection of

outliers.

The importance of ensuring all data is pre-processed in an identical manner is

illustrated in Figure 5.5. Normal and abnormal data were collected separately and pre-

processed using different baseline correction algorithms. PCA models were formed and

the separation and classification results from differences in pre-processing methods rather

than from spectroscopic differences between the two groups.

A
0.00121

0.0009

0.0006

0.0003

0-

3s
•8 \&

3
3

H

3

} ^ 0
000 0

p°0

0

0 0
n 0
u°o°

OP
a u

0

0 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012 0.0014 0.0016

B
0.0012"

0.0009"

0.0006"

0.0003"

0 "

3
33 3
^3

o o ° o oQ

' 0

0 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012 0.0014 0.0016

Figure 5.5 Coomans plot resulting from classification of unknown (green) samples based on
models formed from normal (pink) and abnormal (blue) data. A. and B. represent
classification results of normal and abnormal data respectively using 7 wavenumber values.
The normal and abnormal diagnosed samples were pre-processed separately.

5.1.2.5 ARTIFICIAL NEURAL NETWORKS

Feed-forward, fully connected, back propagation neural networks were trained on the

infrared spectra of cervical samples, again using all 501 wavenumber values and then the

7 wavenumber values identified by PCA. Different architectures were trialed, by
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changing network parameters such as the number of nodes and layers, the number of

training cycles (epochs), learning rate and momentum factor.

The type of abnormal samples included for training and testing were also varied.

Abnormal samples included high-grade dysplastic and malignant samples. When samples

with low-grade dysplasia were included in the training set, the sensitivity was found to

decrease as shown in Table 5.3. This correlates well with our previous study using neural

networks in which samples exhibiting CIN I were predicted by the network as

intermediate between normal and abnormal [8].

Table 5.3 Results of Neural Network Analysis

Neural Network Classes
Abnormal, including CIN 1 and CIN I-II
Abnormal, excluding CIN I
Abnormal, excluding CIN I and CIN I—11
BRANN (pre-selected data)

Sensitivity (%)
77
81
84
100

Specificity (%)
100
100
100
100

Whilst neural networks look like a promising technique for the diagnosis of cervical

cancer, the data used for training and testing were subjectively chosen based on the

spectral profiles seen in Figure 5.1 and discussed in Section 5.1.2. Although subjectivity

is undesirable for a technique which aims to replace human judgement, it is important

when forming data sets for training in pattern recognition that the data is representative of,

in this case, the disease state [9]. Otherwise the network will perform poorly in prediction.

The network with the best performance (BRANN), as given in Table 5.3 had a

standard error of prediction (SEP) of 0.0065 and a correlation of 0.99, which corresponded

to 100% sensitivity and 100% specificity using pre-selected data.

5.1.2.6 LINEAR AND QUADRATIC DISCRIMINANT ANALYSIS

Discriminant analysis, both linear and quadratic, was performed on the cervical data.

Once again spectra were chosen because there was agreement in histology and cytology

diagnosis, and because the infrared spectra were visually representative of the disease state

given by the diagnosis. The results of discriminant analysis of pre-selected data are

illustrated in Figure 5.6. A second discriminant analysis was performed including the data

that had previously been selected out of the training set, refer to Section 5.1.2, due to the

presence of confounding variables and the results are illustrated in Figure 5.7. Table 5.4

compares the sensitivity and specificity from linear and quadratic discriminant analysis
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with the average sensitivity and specificity reported for Pap smears in the literature as well

as from our databank. Although the sensitivity and specificity of both discriminant

analysis techniques has been reduced, the results are still promising in the sense that there

is an improvement in sensitivity compared with the Pap smear.

Table 5.4 Results of discriminant analysis compared with values of the Pap smear reported
in the literature and calculated from our studv.

Technique
LDA (pre-selected data)
LDA
QDA (pre-selected data)
QDA
Pap smear [10-14]
Pap smear (from our study)a

Sensitivity (%)
100
89
98
91
80
59

Specificity (%)
97
68
99
63
68
79

Two hundred samples with histology ard cytology results were randomly chosen from the databank.
Sensitivity and specificity were calculated for the Pap smear using histology as the gold standard.
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Figure 5.6 Results of linear discriminant analysis (A) and quadratic discriminant analysis
(B), where +, +, o, o, o, and o represent normal original data, abnormal original data, normal
classified data, abnormal classified data, normal predicted data and abnormal predicted
data respectively. A red cross -n a blue circle represents a sample misclassified as abnormal,
and a blue cross in a red circle represents a sample misclassified as normal.
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Figure 5.7 Results of linear (A) and quadratic (B) discriminant analysis using non-
subjectively chosen data, where +, +, o, and o, represent normal original data, abnormal
original data, normal classified data and abnormal classified data respectively. A red cross
in a blue circle represents a sample misclassified as abnormal, and a blue cross in a red circle
represents a sample misclassified as normal.
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5.1.3 CONCLUSION

Multivariate statistical techniques were investigated to determine which method is best

able to classify and predict normal and abnormal diagnosed cervical cells. AT-NNs,

SIMCA, ANNs (including BRANNs) and linear and quadratic discriminant analysis gave

sensitivities and specificities ranging between 80-100%. These results were based on data

pre-selected due to cytological and histological agreement. Spectra exhibiting signs of

mild dysplasia or HPV were excluded as were spectra showing obvious signs of

contamination or the presence of confounding variables.

Whilst the pre-selection processes employed in this investigation do not remove the

subjectivity of the Pap smear, or rather introduce a new form of subjectivity by means of

visual inspection of the spectra, the processes used reflect the feeling and attitudes in the

literature at the time. It is likely that the values for sensitivity and specificity reported

above indicate the best that could be achieved if cervical smears could be "cleaned up" in

some way, i.e. if there was a way of removing the effects of non-diagnostic debris such as

blood components and mucins. This is investigated further in Section 5.3.

5.2 FINAL STA TISTICAL ANAL YSIS

5.2.1 METHODOLOGY

The methodology used for sample collection, preparation and recording of infrared spectra

was described in Section 5.1.1. Infrared spectra were made compatible in OPUS, refer to

Section 5.1.1.4, and converted into JCAMP format for importing into Matlab where pre-

processing and analysis by BRANNs could be undertaken. Once IR spectra had been

imported into Matlab, spectra with a maximum absorbance greater than unity were

discarded, as were spectra with a signal-to-noise ratio less than 10. Spectra were baseline

corrected and reduced to the wavenumber region 1800 - 800 cm"1. Other pre-processing

techniques used are discussed in Section 5.2.2 below.

5.2.1.1 DATABASE

By the end of this candidature, an extensive database of infrared spectra v/ith either

cytological and/or histological diagnosis had been obtained. There were approximately

4700 individual samples collected, each with replicate spectra. The total number of
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samples collected from the RWH was approximately 2800, nearly one thousand of these

had both cytology ana histology results. About 900 samples were collected from FPV, all

of which had a cytology result. Eighteen percent of spectra were discarded due to

nonlinearity effects, one percent of spectra had a SNR of less than 10, and a further ten

percent of spectra were discarded due to spatula contamination. A further twenty-four

percent of spectra were excluded from analysis due to a diagnosis other than negative or

high-grade dysplasia and malignancy, i.e. negative with BCC (3%), and CIN 1/HPV (21 %)

effects. Fifty-four percent of the samples used for the final analysis were diagnosed

negative and twenty-two percent were diagnosed with high-grade dysplasia.

5.2.2 RESULTS AND DISCUSSION

5.2.2.1 PRINCIPAL COMPONENT ANALYSIS

Given that biopsy is considered the gold standard in diagnosis of cervical cancer, it was

decided that histology results would form the basis of diagnosis for IR spectra of cervical

cells. Due to the inhomogeneity of many of the samples, indicated by different spectral

profiles obtained from the same sample, it was initially decided that replicate spectra for

each sample would not be averaged, and the analysis would proceed using all spectra, with

multiple spectra representing one sample. A principal component scores plot of the data,

Figure 5.8, exhibits a seemingly random distribution of normal and abnormal cells, with a

few samples forming clusters along the PCI axis. The normal component of the data

comprised samples with a histological diagnosis of normal, excluding samples exhibiting

inflammation, bacterial infection, HPV effects and benign cellular changes. The abnormal

component comprised samples diagnosed as high-grade dysplasia, CIS and SCC, with and

without HPV effects. Samples exhibiting mild dysplasia were excluded from the data.

This was to determine if high-grade and malignant abnormalities could be discriminated

from normal samples, given that cytologically the greatest differences exist between these

disease states and ncrrnal.
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4 T PC2 (23%)

Figure 5.8 PCI versus PC2 scores plot of normal (0) and abnormal (1) high-grade dysplasia,
CIS and SCC samples.

It is undesirable to introduce the errors of the Pap smear into the statistical analysis.

The Pap smear has a high degree of inaccuracy associated with it, Section 1.1.7, and 62%

of this inaccuracy has been attributed to sampling errors [11], i.e. the sample obtained is

not representative of the cytology of the cervix. The samples collected for IR analysis

were from the same population of cells used for cytological diagnosis, and whilst they

may not be reflective of the cytology of the cervix, or of the biopsy sample, the analytical

technique should be based on the cytology of the cells forming the IR spectra.

PCA was performed on the same data, using cytology as the diagnosis. A PC scores

plot, Figure 5.9, exhibits more distinct groups of normal and abnormal cells, although

there is still overlap and spread of both diagnostic types throughout the plot.
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Figure 5.9 PCI versus PC2 scores plot of normal and abnormal cells with cytology as the
diagnosis.

The distribution of abnormal within the normal samples could be occurring as a result

of the presence of clusters of normal cells in the abnormal diagnosed deposit. PCA was
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performed on all the spectra of the samples, so it is likely that samples diagnosed

abnormal contain spectra of normal cells given that only a small proportion of cells in a

smear are likely to be abnormal [15].

Replicate spectra of each sample were averaged. To remove subjectivity all spectra of

each sampk" were averaged, regardless of spectral profile. Therefore the average spectrum

reflects the overall chemistry of the cells in the sample and contains influences from all

cell populations within the sample, be it normal epithelial cells at various stages of

maturation, abnormal cells, blood components, endocervical cells, mucins or bacteria.

The only spectra removed exhibited spatula contamination based on the presence of peaks

in the spectral regions as discussed in Section 4.1.2.2.

PC A was performed on the averaged spectra, and the results illustrated in Figure 5.10.

The number of spectra have been significantly reduced from the plots seen in Figure 5.8

and Figure 5.9 because each sample is represented by one spectrum rather than by

replicate spectra.

1.0-

0.5-

-0.5"

-1.0
-1

Figure 5.10 PCI versus PC2 scores plot of averaged normal (0) and abnormal (I) spectra,
diagnosed by cytology.

The next stage in the analysis involved determining the best pre-processing methods to

enhance the discrimination between the classes of normal and abnormal. Figure 5.11 A -

D illustrates the effects of maximum, vector, mean and range normalisation respectively

on PCA of the data.
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Figure 5.11 PCI versus PC2 scores plot of normal and abnormal samples illustrating the
effects on clustering of normalisation techniques. A - D represent the ekTects of maximum,
vector, mean and range normalisation respectively.

Clusters of normal and abnormal samples are formed with each technique, but there is

still a scattered distribution of normal and abnormal samples. Inspection of the loadings

plots of these techniques shown in Figure 5.12 show that differences in the glycogen

region are the strongest influence contributing to the first PC, which accounts for over

70% of the variance in the data.
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Figure 5.12 Loadings plots of the first 3 principal components resulting from the PCA of
maximum (A), vector (B), mean (C) and range (D) normalisation techniques.
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5.2.2.2 BAYES1AN REGULARISED ARTIFICIAL NEURAL NETWORKS

The data in each PCA analysis discussed in the previous section was used to form training

and test sets for input into the BRANN. Each spectrum represented one sample and

consisted of 501 wavenumber values. Network architecture was varied by changing the

number of PCs, the inputs to the network, and the number of nodes in the hidden layer.

Basing the diagnosis on cytology results enabled the inclusion of more samples,

previously excluded because a biopsy was not performed. FPV and Dysplasia Clinic data

without biopsies were added to classes based on cytological diagnosis and the same

criteria used for selection of normal and abnormal samples from histological results,

discussed at the beginning of Section 5.2.2.1. It was important to include samples from

FPV as they represented sampling from a normal population. The new data was included

in network training and prediction, as were the results of calculating second order

Savitzky-Golay derivative analysis employing a cubic polynomial and 9 smoothing points

to remove baseline effects in the spectra.

The results of network training and testing, expressed in terms of correlation (R2)

between the classes of normal and abnormal, where a correlation of 1 indicates ideal

discrimination of the classes, are summarised in Table 5.5. The standard error of training

(SET) and the standard error of prediction (SEP) give an indication of the error in the

network.

Table 5.5 Results of applying a BRANN to the infrared spectra of cervical samples.

Input Dataa

H
C
C, Av
C, Av, MxN
C, Av, VN
C, Av, MeN
C, Av, RN
Call, Av, D
Call, Av, VN, D

Spectra

1130
1116
330
330
330
330
330
828
828

PCs

51
51
21
21
21
21
21
41
46

Hidden nodes

6
6
4
4
4
4
4
6
6

Epochs

2
3
5
4
1
1
4
5
3

Training
SET
0.28
0.29
0.40
0.40
0.39
0.40
0.40
0.21
0.21

R2

0.63
0.65
0.33
0.31
0.32
0.31
0.30
0.76
0.77

Prediction
SEP
0.46
0.48
0.44
0.43
0.39
0.40
0.41
0.51
0.55

R2

0.17
0.20
0.16
0.19
0.33
0.31
0.27
0.23
0.10

H: histology, C: cytology, MxN: maximum normalisation, VN: vector normalisation, MeN: mean
normalisation, RN: range normalisation, Av: averaged data, Call: includes samples without biopsy results,
D: second derivative.

The number of inputs and hidden nodes in the architecture hence the number of

weights in the network were limited by the number of samples. Ideally the number of
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weights should be no more than about one third of the number of samples in the training

set (Section 2.5.7.4). The number of epochs used for training was not increased because

there was no improvement in the evidence (Section 2.5.7.4).

A plot of the samples comparing the predicted outputs of the BRANN with the

expected outputs for the network with the largest correlation in training is shown in Figure

5.13A (training) and B (prediction). The largest correlation in training (0.77) arose from

vector normalisation and calculation of Savitzky-Golay derivatives of baseline corrected

averaged spectra with cytology diagnosis.

Training Set
1.5 r - -

1 o.5 i-r

0 -;.

-0.5

1

0.5 Expected

Test Set
B

B 1

1 0

-1

. 9

0.5 Expected

Figure 5.13 Plots comparing the predicted outputs of the BRANN with the expected outputs
for the network with the largest correlation of training (A) and prediction (B).

The data is very scattered and the slight clustering of the two classes exhibited for the

training set of Figure 5.13A is not distinct enough to allow discrimination between the

groups. The correlation of this training set indicates that the network is able to extract

patterns from the training set, but is unable to generalise these patterns to form predictions

of unknown data, indicated by a prediction correlation of 0.1.

Even though the artificial neural network was unable to classify infrared spectra of

normal and abnormal cervical cells, there have been numerous studies using infrared

spectroscopy and chemometrics in the diagnosis of cervical cancer that show there is

variability between the spectra of normal and abnormal cervical cells [6, 9, 16, 17]. The

problems with these studies, as with the analysis performed in Sections 5.1 and 5.2 is that,
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though the technique used for analysis is objective, the data is pre-selected in some way.

Infrared spectra that do not exhibit expected spectral features [6, 9] or spectra without

conferring histology and cytology results [18J are removed from the training set. From a

statistical point of view, this is a valid decision. Samples used for training and forming

models should represent the differences between the two classes, and this is based to a

certain extent on the spectral differences seen between normal epithelial cells and HeLa

cells, illustrated in Figure 5.14. The main differences occur in the glycogen (1200 - 1000

cm"1) and phosphate (1250 - 1000 cm"1) regions, which are also where a number of bands

due to confounding variables occur.

1800 1600 1400 1200
Wavenumber Values / cm1

1000 800

Figure 5.14 Infrared spectra of HeLa cells (black) and normal squamous epithelial cells
(blue).

Although spectral differences between abnormal and isolated confounding variables

exist [16, 17, 19-22] the differences are subtler than the differences between normal and

cancer. As a result, multivariate statistical methods that are based on extracting

information about the variance between spectra assigned a cytological or histological

diagnosis of normal and abnormal use variables that account for the greatest variance.

Perhaps statistical analysis based on differentiating between normal and everything else

(abnormal and confounding variables) and then separating out abnormalities from spectra

exhibiting the presence of confounding cells and mucin would be a better way to proceed.

This is investigated further in Section 5.4.

Whilst the presence of inflammation and other confounding variables are themselves

indicators of processes occurring in the cervix, they are present in smears which contain

normal cells as well as those exhibiting specific disease states such as dysplasia and

malignancy.
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If spectroscopy is to be used as a diagnostic technique, there needs to be an analytical

method capable of extracting the information from spectra without the exclusion of

samples showing the presence of confounding variables. Otherwise the inconclusive rate

of screening would be unacceptable.

Figure 5.15 illustrates a PCI versus PC2 scores plot when all samples were included in

the PCA. Spectra were divided into four groups based on cytological diagnosis,

summarised in Table 5.6.

Table 5.6 Summary of the cytological diagnoses use to form four groups of infrared spectra
for PCA.

Group
0
1

2
3

Cytology Diagnosis
Negative
Negative with inflammation, bacterial infection, metaplasia, erythrocytes
and other BCCs
CIN I, HPV effects and low-grade epithelial abnormalities
C1N II-III, CIS, SCC and high-grade abnormalities, including HPV effects

-1

Figure 5.15 PCI versus PC2 scores plot of IR spectra of cervical samples diagnosed by
cytology as normal (0, green); normal but exhibiting signs of inflammation, other blood
components, bacterial infection and benign cellular changes, including metaplasia (1,
orange); CIN I and HPV effects (2, red); and abnormal, CIN II, III, CIS and SCC, including
HPV effects (3, blue).
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The scores plot indicates the diversity of IR spectra according to cytology diagnosis

and PCA seems unlikely to be able to extract enough information from the spectra to

differentiate between the groups.

Even if it was possible to extract this information from spectra, the inhomogeneity of

the sample still presents a problem. It is not possible to record spectra of individual cells

and time constraints and poor differentiation of unstained cells on the infrared substrate

prevent searching for clusters of cells to sample. Therefore, infrared spectra will often

represent the chemistry of both epithelial, be it normal or abnormal, cells and confounding

cells and mucins.

An alternative to post-spectral extraction of confounding cells and mucins would be

chemical removal before spectral collection. The advent of the ThinPrep® processor has

helped reduce the influence of inflammatory effects by lysing white blood cells.

Erythrocytes are also lysed and the epithelial cells are filtered from non-diagnostic debris.

The results of chemical removal of the influences of inflammation and erythrocytes are

presented in Section 5.3.

The low proportion of abnormal cells compared to normal cells in a deposit may also

present a problem. It is possible to record many infrared spectra of one deposit, but if

abnormal cells are missed, or if normal cells surround the abnormality, then spectra will be

a composite of normal as well as normal and abnormal cells. This would account for

spectra of diagnosed abnormal cells that exhibit large glycogen bands. Infrared imaging

systems are available that record spectra of 4096 pixels on a sample. If the whole sample

deposit could be analysed, this would minimise the risk of missing abnormal cells, and

spectral regions of different areas on the deposit could be ratioed as an objective means of

determining the best spectrum to use for analysis.

5.2.3 CONCLUSION

BRANNs were unable to predict unknown spectra of normal and abnormal diagnosed

cervical samples when cytology was used as a diagnostic standard and spectra were not

visually pre-selected.

Multivariate statistical techniques were able to differentiate between IR spectra of

normal and abnormal cells on pre-selected data with histological and cytological

agreement, excluding the effects of inflammation, bacterial infection, and benign cellular
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changes. Methods to reduce the effects of these confounding variables need to be

investigated, either by removal of these spectral contaminants before spectroscopy or

through other statistical techniques after spectroscopy.

5.3 CLEAN-UP OF CERVICAL SMEARS

Biological samples, in particular cervical smears, are intrinsically variable in nature. The

population of epithelial cells, exhibiting various stages of maturation, is dependent on

endogenous hormones and therefore cyclically dependent. Cervical smears, as well as

containing populations of intermediate and superficial cells, may contain parabasal cells,

in the case of atrophy associated with the post menopausal stage, as well as metaplastic

squamous cells and endocervical cells. Smears may also contain platelets, erythrocytes

(red blood cells, RBC), white blood cells (WBC) including polymorphonuclear leukocytes

(PMNs), leukocytes and thrombocytes, which occur as an inflammatory response to tissue

damage or trauma. Bacteria is naturally present in the cervix to maintain acidic pH,

although there are several other strains such as Candida albicans, Actinomyces and

Trichomonas which can cause infection. Mucins are also present in the smears, the

viscosity of which is cyclically influenced [23].

Given the intrinsic variability of cervical smears, it would be beneficial to the infrared

spectroscopic technique if some of the non-diagnostic debris associated with cervical

smears could be removed. The presence of erythrocytes and other blood components may

mask the spectral patterns of the epithelial cells, potentially confounding diagnosis.

The introduction of the ThinPrep® processor is a novel method of "cleaning up"

cervical smears and producing homogenous, evenly deposited smears for cytological

analysis. This is achieved by rinsing the collected cells in an alcohol buffered preservative

solution able to lyse red blood cells and kill microbiological elements. Centrifugation at

high speed breaks up large clumps of mucus and cellular clusters ensuring homogenisation

of the suspension. The suspension is then filtered to minimise the presence of white blood

cells, mucins and non-diagnostic debris. Refer to Section 1.2.2. for a detailed explanation.

In an attempt to reduce some of the confounding variables found in cervical smears,

ThinPrep® solution (known commercially as PreservCyt™), white cell lysis buffer

(WCLB) and red cell lysis buffer (RCLB) were investigated for their ability to reduce the
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presence of confounding variables, non-diagnostic debris and to improve the homogeneity

of cellular deposits.

5.3.7 METHODOLOGY

Cervical smears used for the development of the "clean-up" protocol were obtained from

the Royal Women's Hospital (Melbourne, Australia), Dysplasia Clinic and from theatre

patients at the hospital undergoing laser ablation for cervical abnormalities such as

dysplasia.

5.3.1.1 SAMPLE COLLECTION AND PREPARA TION

Despite the fact that the presence of an endocervical component in cervical smears is

deemed necessary for a satisfactory smear in cytology, the presence of these cells for IR

analysis may cause confounding results to diagnosis. Due to this fact, ectocervical and

endocervical cells were collected separately for the clean-up process. Samples used for

these experiments were collected from women undergoing laser ablation therapy for

cervical dysplasia of varying degrees.

5.3.1.1.1 THINPREP®

Ectocervical cells, obtained with an Ayre spatula, and endocervical cells, obtained with a

Cytobrush™ were collected, after conventional Pap smears were made, in separate 50 cm3

centrifuge tubes containing 10 ml of PreservCyt™ solution. The tubes were centrifuged at

3000 r.p.m. for 10 minutes, the supernatant removed and the resultant cellular pellet

deposited into the multicavity infrared cell and desiccated under vacuum.

5.3.1.1.2 RED AND WHITE CELL LYSIS BUFFER

Ectocervical and endocervical cells were collected, after conventional Pap smears were

made, in separate 50 cm3 centrifuge tubes containing 10 ml of physiological saline

solution (0.9% w/v). The tubes were centrifuged at 3000 r.p.m. for 10 minutes, the

supernatant removed and a 10 ul portion of the cellular material deposited onto the IR

substrate with the remaining cells resuspended in 10 ml of WCLB, vortexed and incubated

at 37°C for 15 minutes. Following incubation the tubes were centrifuged for a further 10

minutes, and washed twice in saline to remove platelets. A 20 \xm aliquot of the resultant

vortexed suspension from each sample was spread over a glass microscope slide with a

pipette and the slide sprayed with ethanol fixative. A further 10 um aliquot was deposited
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on the KRS-5 infrared substrate for subsequent infrared analysis. If the cervical smears

showed the presence of erythrocytes, RCLB was added to samples at the incubation stage.

5.3.1.2 CYTOLOGICAL ANALYSIS

Independent cytological analysis of the cells used in this experiment was undertaken in the

Histology Department of Monash University.

5.3.2 RESUL TS AND DISCUSSION

5.3.2.1 THINPREP®

Although the precise chemical makeup of the ThinPrep® PreservCyt™ solution is not

available to the public, the solution comprises of an alcohol buffered solution containing

EDTA (ethylenediaminetetraacetic acid or [ethylenedinitrilo] tetraacetic acid) coupled to a

dihydraled disodium salt. Figure 5.16 shows the IR spectrum of the ThinPrep® solution

after desiccation.
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Figure 5.16 Infrared spectrum of the ThinPrep® PreservCyt™ solution after desiccation.

In a blind study, samples suspended in PreservCyt™ solution were obtained for IR

analysis. Samples were not washed prior to deposition and IR spectra of these samples

appeared to be contaminated with PreservCyt™ solution. Due to the cost of this solution,

and the similar chemical make-up to WCLB, see below, no further investigations were

performed using this solution.
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5. „?. 2.2 BLOOD CELL L YSIS B UFFERS

White cell lysis buffer contains 10 mM Tris HC1, pH 8.2, 400 mM NaCl, 2 mM Na2EDTA

and red cell lysis buffer contains 77.03 g NH^Cl and 0.84 g NaHCCb made up to one litre

with distilled water.

Initial attempts at cell clean-up proved futile because the original protocol involved

four stages of washing the cells in saline solution to remove the presence of buffers and

platelets, which can cause aggregation and reduce the homogeneity of the deposit.

Unfortunately so many washing stages also removed most of the cellular material leaving

spectra that were very noisy and not suitable for further analysis. Consequently the

number of washing steps was reduced to two, with no contamination seen from the

presence of the white cell lysis buffer. Unfortunately two washings was not enough to

remove the presence of red cell lysis buffer. The infrared spectrum of red cell lysis buffer,

after desiccation, is shown in Figure 5.17 and a cervical cell spectrum contaminated with

the buffer in Figure 5.18.

1800 1600 1400 1200
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Figure 5.17 Infrared spectrum of red cell lysis buffer.

1000 800
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Figure 5.18 Infrared spectrum of cervical cells contaminated with red cell lysis buffer.

Figure 5.19 shows the infrared spectrum of white cell lysis buffer after desiccation.

Due to its similar chemical makeup, it is not surprising that there are several similar peaks

between this spectrum and the one seen in Figure 5.16 of the PreservCyt™ solution.

o
u
c
re

1800 1600 1400 1200
Wavenumber values / crrr1

1000 800

Figure 5.19 Infrared spectrum of white cell lysis buffer

Initial results from the revised protocol indicate that this process was successful in the

removal of white blood cells from the cervical smears. This was demonstrated

spectroscopically, Figure 5.20, and also by light microscopy of the before and after

microscope slides (Figure 5.21), which were fixed and stained according to conventional

Pap smear protocol.
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Figure 5.20 Infrared spectra showing the results of the clean-up protocol. Black spectra
represent cervical cells before the clean-up process, and red spectra represent cervical cells
after the clean-up process

The infrared spectra shown in Figure 5.20 show two different spectral patterns. The

spectral pattern characteristic of the cervical cells before the clean-up process resembles

spectra of lymphocytes, with characteristic vasPO2~ and vsPO? bands at 1240 and 1080

cm'1 respectively [24]. The spectra of cervical cells after the clean-up process has been

performed show the chaiacteristic bands associated with cervical epithelial cells. These

findings are confirmed on inspection of the Pap smears, before clean-up (Figure 5.21 A)

and post clean-up (Figure 5.2IB) under light microscopy, which indicate that the presence

of white blood cells, in particular polymorphonuclear leukocytes have been removed.

The spectra also indicate that this technique has improved the homogeneity of the

sample, which is seen by the high degree of reproducibility throughout the sample and the

small degree of variation or spread of the spectra. The high reproducibility of these

spectra post clean-up is further illustrated in Figure 5.22.
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Figure 5.21 Light microscopy slides of cervical smears used in the clean-up process. A. and
B. Cervical smears before the clean-up process showing a high proportion of white blood
cells. C. and D Corresponding smears post-clean-up exhibiting no white blood cells.
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Figure 5.22 Infrared spectra showing the results of the clean-up protocol. Black spectra
represents cervical cells before the clean-up process, and red spectra represent cervical cells
after the clean-up process.

Principal component analysis (PCA) was performed on a small subset of the samples

in the existing database with the spectra of the cleaned up cervical samples included. This
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was to determine if cleaning up the samples offered any benefits in terms of increased

discrimination between normal and abnormal diagnosed samples. The resultant PCI

versus PC2 scores plot is shown in Figure 5.23. The cytological and histological diagnosis

for the clean-up samples is given in Table 5.7.

,- PC2(19%)

Figure 5.23 Scores plot showing distribution of clean-up samples before (B, orange) and after
(A, purple) with normal (01, green) and abnormal (05, 06, 07 representing CIN II, III and
CIS respectively, blue).

Table 5.7 Diagnostic results for samples used in clean-up experiment .

Sample Number
1
2
3
4
5
6
7
8
9
10
11
12
13

Cytology Result
0421
01
0421
0421
01
0421
30
01
21
01
01
040521
01

Histology (Biopsy) Result
0421
0421
0421
0421
0521
0521
0421
0421
0421
0421
0521
0521
0421

Whilst there appears to be slight differences in the distribution of the before and after

clean-up samples, there is not necessarily an increase in the discrimination of the samples

compared to normal and abnormal. Infrared spectra of before clean-up samples were

recorded to ensure that the buffers used in this experiment were not affecting the integrity

of the cells. When it was shown that this was not the case, through light microscopy and

spectroscopy, infrared spectra were only obtained for samples post clean-up.

Refer to Table 3.1 for an explanation of the diagnostic codes.
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The majority of the clean-up spectra used for the PCA were the result of cellular

material collected from the Ayre spatula and therefore would be expected to contain only

ectocervical cells. Since the samples from the database were the result of mixed

populations of ectocervical and endocervical cells, it is possible that the different

populations of cells could have affected the discrimination. A second PCA was performed

including spectra obtained from ectocervical cells only and no improvement in

discrimination was achieved.

Even though the clean-up samples were supposedly ectocervical only, independent

cytological analysis revealed that 89% of the samples used in the above PCA contained

the presence of endocervical cells, despite cervical smears being obtained by spatula only.

Cytological analysis also revealed that 92% of the samples appearing in Figure 5.23

exhibited signs of inflammation, ranging from mild to marked2^. Since it has been noted

that inflammation exhibits spectral features similar to those displayed in dysplasia and

malignancy [17], it is likely that the differences seen between the before and after clean-up

samples is due to the removal of inflammatory exudate.

The lack of discrimination between the clean-up samples could also be due to the

majority of samples used in this analysis having a diagnosis of CIN I. Since the main aims

of this research were to achieve discrimination between high-grade dysplastic and

malignant samples from normal samples, only these samples from the database were used

in the PCA. Assuming that the process of neoplasia is continuous from CIN I to CIN III

and CIS, the clean-up samples would be expected to appear in between the two groups, as

in seen the majority of samples in Figure 5.23. It is also possible that the differences seen

between the abnormal (blue) and normal (green) samples are just a result of differences in

inflammatory response often exhibited with dysplastic and malignant samples [25].

PCA was performed on all the post clean-up samples to compare the biopsy results

with an independent cytological analysis. The resulting PCI versus PC2 scores plot is

given in Figure 5.24.

23 Inflammatory infiltrate is recorded as mild when it covers 73 of the slide, moderate when it covers !4 of
the slide and marked when it covers % to all of the slide.
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Figure 5.24 Scores plot of normal (green), abnormal (blue) and samples after clean-up (red).

As was seen in Figure 5.23, the scores plot shown in Figure 5.24 also shows post

clean-up samples grouping with normal samples. The diagnostic results for these samples

are given in Table 5.8. Eighty three percent of these samples exhibit signs of

inflammation and 58% contain an endocervical component, despite 88% of the samples

being obtained through spatula only. Table 5.8 also highlights the disparity seen between

cytological and histological (biopsy) diagnosis, summarised in Table 5.9. It is possible, as

stated previously that the discrimination seen between normal and abnormal cells arises

from the inflammatory response associated with dysplasia and malignancy, rather than due

to individual differences between the two disease states. Although there is a high

proportion of samples diagnosed as CIN I/HPV (0421), a second PC A excluding these

samples did not improve the discrimination.

Despite the fact that biopsy is considered the gold standard for diagnosis of cervical

cancer, biopsies from the patients participating in this study were performed up to 6 weeks

prior to surgery. Whilst it is highly unlikely that these abnormalities have regressed, a

more plausible explanation for the lack of discrimination of abnormal clean-up samples

and the lack of agreement with cytology results is due to the smears being taken at

different times from the biopsy. Therefore, since the samples used in this experiment were

of the same cell population as the smears sent for cytological analysis, it makes sense to

use cytology results rather than biopsy for the definitive diagnosis. Even using this

rationale, however, the two cytologically (high-grade) abnormal samples (CIO and C20)

are grouped with the normal samples.
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Table 5.8 Biopsy and Cytology diagnosis from clean-up samples, indicating the presence of
an endocervical component and inflammatory cxudatc.

No.

Cl
C2
C3
C4
C5
C6
C7
C8
C9
CIO
Cll
C12
C13
C14
C15
C16
C17
C18
C19
C20
C21
C22
C23
C24

Biopsy"

0421
0421
0421
0421
0421
0421
0421
0421
0421
0521
0521
0521
0521
040521
0421
0421
0421
0421
0621
050621
0421
0421
0421
0421

Cytology

01
01
04
21
01
0421
0421
0421
01
0521
0421
01
01
04
0421
01
21
04
01
0521
0421
04
01
01

Ectocervical only
or mixed
Mixed
Mixed
Mixed
Ectocervical only
Ectocervical only
Ectocervical only
Ectocervical only
Ectocervical only
Ectocervical only
Ectocervical only
Ectocervical only
Ectocervical only
Ectocervical only
Ectocervical only
Ectocervical only
Ectocervical only
Ectocervical only
Ectocervical only
Ectocervical only
Ectocervical only
Ectocervical only
Ectocervical only
Ectocervical only
Ectocervical only

Endocervical
cells present
Yes
Yes
No
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
No
Yes
Yes
No
Yes
Yes
No
No
No
No
No

Inflammation

Mild
Mild
Moderate

Moderate
Marked
Marked

Marked
Marked
Marked

Marked
Marked
Mild
Moderate
Mild
Marked
Moderate
Moderate
Marked
Marked

Marked
A description of the diagnostic codes for cytology and histology are given in Table 3.1.

Table 5.9 Histology (biopsy) and cytology results for the cervical smears of 24 samples used
in the clean-up process.

Diagnosis (code)
Negative (01)
HPV(21)
c m i (04)
Cm I, HPV (0421)
Cm I-II.HPV (040521)
CINII, HPV(0521)
CIN II-III, HPV (050621)
CINIII,HPV(0621)

Biopsy (%)
0
0
0
71
4
17
4
4

Cytology (%)
42
8
17
25
0
8
0
0

172



5.3.3 CONCLUSION

Red and white cell lysis buffers were investigated for their ability to remove blood

components from cervical smears. Even though the use of white cell lysis buffer has

demonstrated that it is an effective method for increasing spectral reproducibility and

sample homogeneity and reducing the presence of inflammatory exudate, in particular

PMNs from cervical smears, it appears that the clean-up process has reduced the ability of

these samples to be discriminated from samples with normal cytology. Rather, the

reduction of PMNs appears to be causing abnormal samples to be grouped with normal

samples. The extent of this phenomenon is difficult to ascertain given that 42% of the

samples investigated were diagnosed cytologically as normal, and 50% of the samples

were diagnosed cytologically as having low-grade (CIN 1 and/or HPV) abnormalities.

5.4 CONFOUNDING VARIABLES AND MUL TIVARIA TE STA TISTICS

Our group has previously investigated potential confounding variables in the spectroscopic

diagnosis of cervical cancer [17]. The following were investigated: endocervical cells,

erythrocytes, leukocytes, platelets, fibroblasts, connective tissue, mucin, semen and

bacterial and yeast infections. The study identified endocervical cells, leukocytes,

fibroblasts, connective tissue, mucins and semen as possible confounding variables. The

infrared spectra of semen exhibited a characteristic doublet at 981 and 968 cm"1 allowing

removal by visual analysis. It was concluded that erythrocytes, platelets and bacterial

infections would not influence the diagnostic technique and were therefore considered as

nonconfounding variables. Candida albicans, a common yeast infection of the cervix,

was considered a possible confounding variable depending on severity of infection in the

cervix.

Other groups have noted spectral differences between normal diagnosed cervical smears

and those containing metaplastic cells [20], parabasal cells [16, 20] and PMNs [22]. The

IR spectra of these cells are similar to those of high-grade dysplasia and malignancy.

Many of the cellular changes brought about by the identified confounding variables are

diagnosed cytologically under the general term benign cellular changes (BCCs). The

Bethesda System reports infection by Trichomonas, Candida and Actinomyces and cellular

changes associated with inflammation and atrophy under this category [26].
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The study by Wood et al. [17] also employed PCA as a means of separating normal

from abnormal diagnosed cervical cells, investigating the separation achieved using IR

spectra obtained from cervical smears containing only ectocervical cells and from smears

containing only endocervical cells. Tighter clusters and a better separation between

normal and abnormal diagnosed samples was found using the spectra of smears containing

only ectocervical cells [17]. The results of multivariate statistical analysis of cervical

smears containing only ectocervical cells is presented in the PhD Dissertation by Wood

[24]. One hundred and two infrared spectra of normal (69) and abnormal (CIN I (3), CIN

I/II (3), CIN II (11), CIN II/III (5) and CIN III (11)) diagnosed samples were classified

utilising S1MCA, LDA and K-NN. Table 5.10 summarises the sensitivity and specificity

of the three techniques.

Table 5.10 Sensitivity and specificity of SIMCA, LDA and A-NN in the classification of
cervical smears principally containing ectocervical cells.

Technique
SIMCA
LDA
K-NN(K=l)

Sensitivity (%)
82
100
92

Specificity (%)
88
91
100

Despite the fact that this analysis shows high sensitivity and specificity for the

classification of normal and abnormal diagnosed ectocervical smears, it was decided24 that

samples collected for the analysis presented in Sections 5.1 and 5.2 would consist of both

ectocervical and endocervical cells. Because the presence of both cell types is deemed

necessary by cytologists for a satisfactory smear representative of the transformation zone

(Section 1.1.2.1).

It is important to determine the exact influence of endocervical cells in the IR spectra

of cervical smears. Whilst there are obvious visual spectral differences between abnormal

diagnosed cervical smears and endocervical cells, it is necessary to ascertain if

multivariate statistics is able to distinguish between these cell types. Multivariate statistics

was also employed to investigate the spectroscopic effects of BCCs in cervical smears.

24 Under the advice of Professor Michael Quinn, Obstetrician and Gynaecologist at the Royal Women's
Hospital.
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5.4.1 METHODOLOGY

5.4.1.1 SAMPLE COLLECTION

The preparation of cervical smears for infrared spectroscopy has been described in

Sections 4.1.1 and 5.1.1. Endocervical cells in this study were obtained from the

hormonal study data. Smears diagnosed as normal but exhibiting BCCs including

inflammation, bacterial or yeast infection were obtained from the database of smears. To

increase the number of samples diagnosed with inflammation, smears diagnosed negative

with inflammation effects ranging from mild to marked were obtained from the clean-up

study. These spectra were obtained from smears before the clean-up process was

performed. Normal and abnormal diagnosed (histological and cytological agreement)

smears were randomly obtained from the database. Table 5.11 summarises the number of

samples for each cell type or diagnosis investigated in this study.

Table 5.11 Number of IR spectra of each cell or diagnostic type used for PC A.

Symbol
N
05
06
07
E
I
Y
B
C
A
K
M

Cell type or diagnosis
Negative (normal)
CINII
CIN III
CIS
Endocervical
Inflammation
Candida albicans
Bacterial vaginosis
Cervicitis
Atypia
Keratinisation
Metaplasia (immature)

Number of samples
30
10
10
10
67
7
13
9
2
1
2
1

5.4.1.2 DA TA TREA TMENT

Infrared spectra were baseline corrected and spectra for each sample averaged. The

averaged spectra were normalised to the amide II band. Spectra exhibiting spatula

contamination were removed prior to averaging.

The reason why there were low numbers of samples representing each diagnostic type

was three-fold:
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1. Cervical smears exhibiting severe cases of any of the above diagnoses may

have been classified by the cytologist as inconclusive or unsatisfactory and

discarded from the spectral databank.

2. These diagnoses may have been made in conjunction with a diagnosis of

abnormality, be it dysplasia or malignancy, and grouped accordingly.

3. Infrared spectra may have been discarded due to nonlinearity effects or a low

signal-to-noise ratio.

The number of normal and abnormal (CIN II, CIN III and CIS) samples were

restricted in order to approximately match the numbers of samples with BCCs investigated

in this study.

5.4.2 RESULTS AND DISCUSSION

5.4.2.1 ENDOCERVICAL CELLS

The spectral differences between normal ectocervical, abnormal ectocervical and normal

endocervical cells are shown in Figure 5.25. The spectra presented in this figure are the

result of averaging all the samples in each type (refer to Table 5.11).

•e
o

1800 1600 1400 1200
Wavenumber values / cm1

1000 800

Figure 5.25 Averaged IR spectra of normal ectocervical (green), abnormal ectocervical (blue)
and normal endocervical (red) cells.

The infrared spectra of endocervical cells and abnonnal ectocervical cells are almost

identical, except for differences in the vsPO2" and vC-0 bands appearing at approximately

1080 and 1040 cm'1 respectively. The band at 1080 cm"1 is shifted in the endocervical

spectrum compared to 1082 cm"1 in the ectocervical spectrum. This band arises from
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VSPO2" of nucleic acids and vsCO-O-C of glycogen. The band shape arising from C-0

vibrations of carbohydrate moieties is also different in the two spectra. This would be

expected given the different types of carbohydrates present in the two cell types.

Endocervical cells contain mucin, which exhibit a vCH2OH band at 1043 cm*1.

Ectocervical cells contain glycogen, which exhibit vC-OH and 5C-OH bands at 1047 cm"1

and a vCH2OH band at 1025 cm"1. Figure 5.26 highlights the spectral differences between

normal endocervical cells and abnormal ectocervical cells in the lower phosphodiester and

carbohydrate regions.

1200 1150 1100 1050
Wavenumber values / cm1

1000

Figure 5.26 IR spectrum of normal endocervical cells (red) and abnormal ectocervical cells
(blue).

In comparison with these two spectra, the IR spectrum of normal ectocervical cells

exhibits an increase in intensity of the bands arising from:

1. vasCH3 of lipids and proteins (1450 cm"1).

2. SCH3 of proteins (1400 cm"1).

3. vasPO2" (1240 cm'1) and vsPO2" (1080 cm"1) of phosphodiester linkages in nucleic

acids.

4. vC-OH of proteins and vC-0 of carbohydrates (1154 cm"1), vsCO-O-C of glycogen

(1080 cm"1) and vC-O of glycogen (1028 cm"1).

The intense, broad glycogen band at 1028 cm"1 overlap any contributions from vC-OH

and 5C-OH of glycogen at 1047 cm"1. The 8CH3 band is shifted in the spectrum of the

normal ectocervical cells (1402 cm"1) compared with the abnormal ectocervical and

normal endocervical ceils (1396 cm" ).
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PCA was performed on the spectra of normal and abnormal ectocervical cells and

normal endocervical cells to determine if a separation between the groups could be

achieved. Figure 5.27 shows the PCI versus PC2 scores plot of the three groups. Whilst

there is a good separation between normal and abnormal ectocervical cells, and between

normal ectocervical and endocervical cells, there is no separation between abnormal

ectocervical cells and normal endocervical cells.

,. PC2 (28%)

Figure 5.27 PCI versus PC2 scores plot showing a separation between normal ectocervical
cells (green, 01) and abnormal ectocervical cells (blue, 05-07) and normal endocervical cells
(red, E).

The loadings plots of the first three principal components, Figure 5.28, were inspected

to identify the wavenumber values contributing to the majority of the variance. The boxes

marked (a) and (b) highlight the wavenumber values chosen for further PCA: 1096-1062

cm'1 and 1060-994 cm"1 respectively.

0.20

0.10-

-0.10

1800 1600 1400 1200
Wavenumber values / cm 1

1000 800

Figure 5.28 Loadings plots of the first three principal components. The boxes marked (a)
and (b) highlight the wavenumber values chosen for further PCA, 1096-1062 cm1 and 1060-
994 cm'1 respectively.
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Despite large principal component loadings for PC3 in the region 1700-1500 cm'1 IR

spectral differences were not noted in this region. PCA was performed on spectra reduced

to either (A) 1096-1062 cm"1 or (B) 1060-994 cm"1, where the major variance occurs, and

the resultant scores plots are shown in Figure 5.29. These two regions were chosen

because spectral differences were noted between the IR spectra of abnormal ectocervicai

and normal endocervical cells at approximately 1080 cm'1 and between normal

ectocervicai and endocervical cells at 1040 cm"1. The first two PCs account for 100% of

the variance in both scores plots, and whilst there is a separation from normal in both

plots, the groups form tighter clusters in the PCA of data reduced to variables in the region
-i1096-1062 cm".

I PC2(1%)

01

- 1 0 1 2 3 4

Figure 5.29 PCI versus PC2 scores plot of data in the regions 1096-1062 cm1 (A) and 1060-
994 cm"1 (B) of normal ectocervicai (green, 01), abnormal ectocervicai (blue, 05-07) and
normal endocervica! (red, E).

PCA was also performed on normal ectocervicai and endocervical cells and on

abnormal ectocervicai and normal endocervical cells separately to determine which

variable region gives a better discrimination between the two groups. The PCI versus

PC2 scores plots for the 1096-1062 cm"1 region are shown in Figure 5.30. (A) shows the

PC scores plots for normal endocervical and normal ectocervicai cells and (B) shows the

PC scores plot for normal endocervical and abnormal ectocervicai cells. The slight

overlap in the separation between normal endocervical cells and abnormal ectocervicai

cells, is less than the overlap seen when the entire wavenumber value region (1800-800
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cm' ) was used for analysis. Figure 5.31 shows the PCI versus PC2 scores plots for the

1060-994 cm"1 region. Where (A) represents the scores plot of normal ectocervical and

endocervical cells and (B) represents the scores plot of abnormal ectocervical and normal

endocervical cells.

There is a separation between the spectra of normal ectocervical and endocervical cells

and between abnormal ectocervical and normal endocervical cells. The separation

between normal ectocervical and endocervical cells is more distinct in the 1060-994 cm'1

region although the cluster of normal spectra is tighter in the 1096-1062 cm"1 region.

-0.6 -0.4 -0.2 0.2
_, PC1 (98),
0.4 0.6

Figure 5.30 PCI versus PC2 scores plot of data in the region 1096-1062 cm'1 showing a
separation between normal ectocervical and endocervical cells (A) and between abnormal
ectocervical and normal endocervical cells (B). Normal ectocervical cells (green) are
represented by 01, abnormal ectocervical cells (blue) by 05, 06 and 07 and normal
endocervical cells (red) by E.
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Figure 5.31 PCI versus PC2 scores plot of data in the region 1060-994 cm"1 showing a
separation between normal ectocervical and endocervical cells (A) and between abnormal
ectocervical and normal endocervical cells (B). Normal ectocervical cells (green) are
represented by 01, abnormal ectocervical cells (blue) by 05, 06 and 07 and normal
endocervical cells (red) by E.

PCA in the regions 1096-1062 cm"1 and 1060-994 cm"1 could be employed as a means

of identifying and isolating IR spectra of cervical smears which exhibit contributions from

endocervical cells. Whilst IR spectra of endocervical cells could potentially confound

spectroscopic diagnosis of cervical smears, their presence in smears is important for

ensuring a representative sample. As was discussed in Section 5.3, a proportion of

cervical smears obtained using only an Ayre spatula will contain the presence of

endocervical cells. Since it is difficult and undesirable to sample only ectocervical cells,

one has to rely on multivariate statistical tools to extract information about cell

populations present in the data and the influence they impart on models formed. It would

be advisable to utilise PCA in these regions prior to spectral averaging to identify ard

remove spectra with major contributions from endocervical cells. The fact that cervicil

lesions are predominantly of the squamous (ectocervical) cell variety [27] also supports

the removal of endocervical cells once the smear has been deemed representative.
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5.4.2.2 INFLAMMATION

The spectral profiles arising from cervical smears diagnosed as exhibiting an

inflammatory response"5 are not necessarily comprised of contributions from white blood

cells alone, but are rather a composite of different cell types and a reflection of cell

populations present in the cervix at the time of sampling. Figure 5.32 shows the spectral

differences exhibited between the averaged spectra of normal and abnormal ectocervical

cells and cervical smears with an inflammatory response.

1800 1600 1400 1200
Wavenumber values / cm1

1000 800

Figure 5.32 Averaged IR spectra of smears containing normal ectocervical (green), abnormal
ectocervical (blue) cells and inflammatory effects (red).

As was noted in the comparison of endocervical cells with normal and abnormal

ectocervical cells, spectra of inflamed cervical smears exhibit spectral differences in the

phosphate and carbohydrate regions. The IR spectrum of the inflamed cervical smear does

not exhibit any of the characteristic features of leukocytes described in our previous study

[17]. Leukocytes, a type of white blood cell, exhibit pronounced VasPCV and vsPO2~ bands

at 1240 and 1078 cm"1 respectively and a reduction in glycogen band intensity at 1024 and

1050 cm"1 compared with normal ectocervical cells. Contributions from inflammation

depend on severity and the population of cell types sampled when obtaining the infrared

spectrum.

PCA was employed as a means of discriminating cervical smears with inflammation

from normal and abnormal diagnosed cervical smears. PCA was performed on data in the

region 1800-800 cm"1 as well as in the regions 1096-1062 cm"1 and 1060-994 cm"1. The

PCI versus PC2 scores plot for the entire wavenumber region is presented in Figure 5.33.

25 Inflammatory cells include lymphocytes, PMNs, macrophages and plasma cells.
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Figure 5.33 PCI versus PC2 scores plot showing a separation between normal (green)
diagnosed cervical smears (A) and abnormal (blue) diagnosed smears (B) with inflammation
(red) in the region 1800-800 cm1.

Whilst there appears to be discrimination between the two groups in each plot, it is

difficult to ascertain the extent of separation between the groups given the small number

of samples diagnosed with inflammatory effects.

Figure 5.34 and Figure 5.35 show the principal component scores plots in the regions

1096-1062 cm"' and 1060-994 cm"1 respectively. Tighter clusters are formed of the groups

by reducing the number of variables, although variable reduction does not enhance the

discrimination between normal and inflammation or abnormal and inflammation. Other

regions were investigated and offered no benefit in terms of increased separation or

overlap reduction. More samples of spectra exhibiting inflammatory effects are needed

before the benefits of PCA in the identification and removal of inflammatory effects can

be determined.
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Figure 5.34 PCI versus PC2 scores plot showing a separation between normal (green)
diagnosed cervical smears (A) and abnormal (blue) diagnosed smears (B) with inflammation
(red) in the region 1096-1062 cm'1.
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Figure 5.35 PCI versus PC2 scores plot showing a separation between normal (green)
diagnosed cervical smears (A) and abnonnal (blue) diagnosed smears (B) with inflammation
(red) in the region 1060-994 cm1.

The number of PMNs in a cervical smear cannot be correlated with inflammation,

rather it is reflective of the menstrual cycle [28]. Cervical smears obtained when estrogen

levels are high are "clean", whereas smears obtained after ovulation are accompanied by

mucus, large numbers of leukocytes and plasma cells [29]. Table 5.12 summarises the

predominant cell type and presence of leukocytes in relation to hormonal stimulation.
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Table 5.12 Presence of leukocvtcs in cervical smears in relation to hormonal stimulation.

Phase
Menstrual phase

Early proliferative phase

Late proliferative phase
(ovulatory phase)
Early secretory phase

Late secretory phase

Pregnancy

Menopause

Predominant cell component
Erythrocytes

Intermediate cells

Superficial cells

Superficial cells

Intermediate cells

Intermediate cells of "navicular
type"
Intermediate and parabasal
cells

Other cell components
Degenerate endometrial
cells and leukocytes
Occasional endometrial
cells and/or histioevtes
Clean

Some intermediate cells
and leukocytes
Abundant mucus and
leukocytes, cytoplasmic
degeneration

Aside from the presence of PMNs associated with an inflammatory response to trauma

or infection, inflammation causes changes in the cellular epithelium. Cervical smears

associated with acute inflammation are characterised by the presence of neutrophilic

leukocytes, degenerative or necrotic cells, and cellular debris, usually of intermediate or

superficial maturation [27]. Cellular changes associated with chronic inflammation mimic

malignancy and the diagnosis of benign relies on the N/C ratio [28]. Inflammation can

also cause non hormonal maturation of the squamous epithelium [30].

Given the success in reducing the presence of white blood cells from cervical smears

reported in Section 5.3 it may not be necessary to employ multivariate statistics to identify

smears exhibiting inflammation.

5.4.2.3 CANDIDA ALBICANS

Candida albicans or thrush, as it is often referred, is a yeast infection common in the

cervices of females. Infection occurs when there is a change in the balance of normal

vaginal flora [15]. The IR spectrum of this microorganism has been presented elsewhere

[17]. Spectra are characterised by an intense, broad band in the polysaccharide region

(1150-900 cm"1), and pronounced vasPO2" and 5CH3 bands. The averaged spectrum of all

Candida diagnosed samples presented in Figure 5.36 does not exhibit any of these

characteristic features. The IR spectrum of a sample is an averaged reflection of the cell
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types present in the cervix, and so the spectral features of Candida diagnosed samples will

depend on the severity of the infection.
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Figure 5.36 Averaged IR spectra of normal (green), abnormal (blue) and Candida (red)
diagnosed cervical smears.

PC A was performed on the data in the regions described previously (1800-800 cm"1,

1096-1062 cm"1 and 1060-994 cm"1). The principal component scores plot for each

analysis is presented in Figure 5.37, Figure 5.38 and Figure 5.39.
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Figure 5.37 PCI versus PC2 scores plot showing a separation of normal (green) diagnosed
smears (A) and abnormal (blue) diagnosed smears (B) with Candida (red) diagnosed smears
in the 1800-800 cm"1 region.
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Figure 5.38 PCI versus PC2 scores plot showing a separation of normal (green) diagnosed
smears (A) and abnormal (blue) diagnosed smears (B) with Candida (red) diagnosed smears
in the 1096-i062 cm"1 region.
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Figure 5.39 PCI versus PC2 scores plot showing a separation of normal (green) diagnosed
smears (A) and abnormal (blue) diagnosed smears (B) with Candida (red) diagnosed smears
in the 1060-994 cm"1 region.

Candida diagnosed samples, denoted Y, were separated from normal diagnosed

samples in all three scores plots. Reducing the number of variables resulted in the

formation of tighter clusters of individual groups but did not enhance the separation. It is

important for the specificity and sensitivity of a technique that infection, inflammation and

cellular changes not related to dysplasia or malignancy can be correctly identified. It is

necessary to have distinction of benign changes from both normal and abnormal samples.

The separation between Candida and normal diagnosed samples will result in high
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specificity, however the inability of PCA to separate Candida from abnormal diagnosed

samples, in any of the spectral regions investigated, will result in low sensitivity.

Even if the presence of Candida is not high enough to warrant the spectral changes

noted previously [17] the cellular changes brought about by the microorganism may

explain the separation of IR spectra of these samples from normal diagnosed samples.

Cellular changes, with and without inflammation, include nuclear enlargement and

perinuclear clearing as seen with HPV [15].

5.4.2.4 BACTERIAL VAGINOSIS

Bacterial vaginosis is one of the few infections of the female genital tract not associated

with an inflammatory response [15]. Bacterial vaginosis arises from an overgrowth of

vaginal flora, including Gardineralla vaginalis and anaerobic streps, that thrive in

conditions of pH 7-7.5" . These bacteria cause slight nuclear enlargement of cells.

The averaged IR spectra of normal and abnormal smears, and smears diagnosed with

bacterial vaginosis are shown in Figure 5.40. Once again spectroscopic changes between

the groups are exhibited in the phosphodiester and carbohydrate regions (1250-1000 cm"1).

1800 1600 1400 1200
Wavenumber values /cm1

1000 800

Figure 5.40 Averaged IR spectra of normal (green) and abnormal (blue) diagnosed cervical
smears with smears diagnosed with bacterial vaginosis (red).

' The natural pH of the vagina and ectocervix is ~ 4.
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PCA was performed on samples diagnosed with bacterial vaginosis in the regions

chosen for the other BCCs investigated. Figure 5.41, Figure 5.42 and Figure 5.43 show

the principal component scores plots of the entire spectral region (1800-800 cm"1) and

reduced spectral regions (1096-1062 cm'1 and 1060-994 cm"1) respectively. Slight overlap

is noted between bacterial vaginosis and the comparative normal and abnormal groups, but

overall PCA is able to produce separation of the groups in all wavenumber value regions

investigated.

-1.0 -0.5 1.5 2.0 2.5

Figure 5.41 PCI versus PC2 scores plot showing a separation of normal (green) diagnosed
smears (A) and abnormal (blue) diagnosed smears (B) with bacterial vaginosis (red)
diagnosed smears in the 1800-800 cm"1 region.

189



0.05 "

-0.05 "

-0.10

PC2(1%)

)1
01

R B BD 0 1 B $V 01CCP1

01

01

U1

01 01
01

01
PC1 (99% 1

-0.6 -0.4 -0.2 0.2 0.4

0.06

0.04

0.02 "

0 "

-0.02

-0.04.

PC2 (0.4%)

-07-

05

07 07

051

Q7.O7C

OS
0§6

Oi

0.6

07

0.8

%*$$f&

053

-0.4 -0.2 0.2 0.4 0.6 0.8

Figure 5.42 PCI versus PC2 scores plot showing a separation of normal (green) diagnosed
smears (A) and abnormal (blue) diagnosed smears (B) with bacterial vaginosis (red)
diagnosed smears in the 1096-1062 cm"1 region.
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Figure 5.43 PCI versus PC2 scores plot showing a separation of normal (green) diagnosed
smears (A) and abnormal (blue) diagnosed smears (B) with bacterial vaginosis (red)
diagnosed smears in the 1060-994 cm'1 region.

5.4.2.5 OTHER BENIGN CELLULAR CHANGES

Spectroscopic influences of atypia, metaplasia and keratinisation could not be fully

investigated due to insufficient samples of each type. Figure 5.44 shows the principal

component scores plot of normal cervical smears and other BCC diagnosed smears. More
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IR spectra of these cellular changes arc needed to determine the influence on

spectroscopic diagnosis.
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Figure 5.44 PCI versus PC2 scores plot of normal (green) cervical smears and smears
diagnosed with metaplasia (M), atypia (A) and keratinisation (K), red.

5.4.3 CONCLUSION

Infrared spectroscopy and principal component analysis of endocervical cells, and smears

diagnosed with benign cellular changes were investigated to determine their influence as

potential confounding variables in the diagnosis of cervical cancer.

Spectral differences in all cell and diagnostic types investigated were found in the

phosphodiester and carbohydrate regions. Spectral differences in other bands were not

distinct enough to allow differentiation between groups.

PCA was successfully used to obtain a reparation of normal ectocervical smears from

normal endocervical cells, and smears diagnosed with inflammation, Candida, and

bacterial vaginosis in the regions 1800-800 cm"1, 1096-1062 cm"1 and 1060-994 cm"1).

PCA obtained a separation with slight overlap of abnormal ectocervical smears from

normal endocervical cells, inflammation, and bacterial vaginosis. Candida was not

separated from abnormal ectocervical smears with any success.

Insufficient numbers of samples representing metaplasia, atypia and keratinisation

prevented thorough statistical analysis of spectroscopic differences brought about by

cellular changes exhibited in these groups.
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6 CONCLUSIONS AND FUTURE DIRECTIONS

The results of this dissertation pose some very interesting questions as to the influence of

confounding variables and non-diagnostic debris in the discrimination between normal,

dysplastic and malignant cervical cells. It was found that changes in squamous epithelial

cells brought about by hormonal stimulation of ovulating women could be monitored

spectroscopically. PCA demonstrated that despite cyclical differences, the infrared spectra

of these cells could be separated from those of dysplastic and malignant samples.

Multivariate statistical techniques were able to differentiate between the infrared

spectra of normal and abnormal cells on pre-selected data with histological and cytological

agreement, excluding the effects of inflammation, bacterial infection, and benign cellular

changes. However, if this technique is to be introduced for routine screening

methodologies capable of handling this degree of variation need to be developed.

The problem of confounding cells and non-diagnostic debris in cervical smears needs

to be addressed, and techniques that help reduce the presence of these spectroscopic

contaminants need to be further investigated. The results from the clean-up trial indicate

that it is possible to remove inflammatory cells from cervical smears via chemical

methods without affecting the integrity of epithelial cells. Although the removal of blood

components from cervical samples was successful, the resulting samples were separated

with normal by PCA. Whilst yet to be the standard procedure, it should be noted that use

of the ThinPrep® processor in routine screening of cervical smears by cytologists is

becoming more prevalent. A major limiting factor preventing its widespread use is the

current prohibitive cost of the process. However with increased awareness of its benefits

in the future it will become the standard procedure. Alternative methods to ThinPrep® to

remove non-diagnostic debris should be investigated to determine if there are less

expensive alternatives.

To further reduce the influence of PMNs, cervical smears could be obtained at a

particular time of the ovarian cycle when the presence of PMNs is low and cervical cells

are considered "clean". This would correspond to the late follicular phase, prior to the

onset of ovulation when the influence of estrogen provides an environment for the

maturation of squamous epithelial cells and reduced presence of PMNs.
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PCA was successfully utilised to separate normal and abnormal ectocervical cells from

normal endocervical cells and samples diagnosed with some benign cellular changes. The

similarities noted between IR spectra of abnormal, inflamed and samples diagnosed with

benign cellular changes raise the issue of what is being detected by spectroseopy. Are

there spectroscopic differences between normal and abnormal cervical samples, or are

differences due to non-specific changes occurring in the cell?

Spectral changes exhibited in the phosphodiester region as a result of maturation or

abnormality should be further investigated. The presence and intensity of characteristic

nucleic acid bands could be used as a marker for nuclear size, which reflects the maturity,

health and vitality of the cell.

It would be useful to compare the infrared spectra of inflammatory responses brought

about by infection such as abnormality or bacteria with the presence of PiVTNs in the

cervix due to hormonal influences. This would require sampling both pre- and post-

menopausal women, as post-menopausal women would not show signs of PMNs unless

there was an inflammatory response.

This work was carried out using IR microspectroscopy and as such time constraints

only permitted collection of spectra from random areas on the deposit, rather than

recording spectra of the entire deposit. Infrared imaging systems are available that record

spectra of 4096 pixels on a sample. If the whole sample deposit could be analysed, this

would minimise the risk of missing abnormal cells, and spectral regions of different areas

on the deposit could be ratioed as an objective means of determining the best spectrum to

use for analysis. The employment of imaging spectroseopy would also help reduce the

problem of introducing inaccuracies into the diagnostic method as thin sections of

biopsied tissue could be used for imaging, giving a direct correlation with the diagnosis

and sample site.

Finally, techniques such as flow cytometry that are capable of separating particles

according to size and density should be investigated. The presence of confounding

variables presents an obstacle in the development of spectroseopy in the diagnosis of

cervical cancer, and populations of cells exhibiting various stages of maturation, as well as

different types of epithelial cell may also cause similar problems. If more homogenous

cervical cell deposits can be made, then this technique will clearly be more successful than
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the present techniques that lack homogeniety. It is hoped that this will facilitate increased

success in the diagnosis of cervical cancer.
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APPENDIX A

GLOSSARY

aetiology:

chromatin:

chromosomes:

CIN:

colposcopy:

cryotherapy:

cytolysis:

cytoplasmic halos:

differentiation:

diploid:

epidemiology:

eukarvotic:

study of causes, especially inquiry into the origin of disease.

chiornatin is the complex formed from the electrostatic interaction

between DNA and histone [1]. Chromatin granules are the

precursors of chromosomes [2].

are made up of genes which are the hereditary material determining

the organism's characteristics [2].

or cervical intraepithelial neoplasia. This term was introduced to

enable a uniform nomenclature of precancerous legions, regardless

of histologic type, requiring colposcopy and biopsy evaluation and

treatment [3]. CIN are graded I to III according to severity, with

CIN III being the most severe type.

a colposcope is a microscope used for looking at the cervix and the

inside of the vagina in detail.

uses a cryoprobe to rapidly remove heat from the tissue to produce

controlled destruction of premalignant epithelial lesions [4].

is the dissolution of the cytoplasm and is frequently associated with

Lactobacillus vaginaiis, which thrives on cells with high glycogen

content [5].

characteristic sign for the presence of HPV infection. A noticeable

clearing around the nucleus is seen (refer to Appendix B).

process of morphological and functional specialisation of cells [5].

a diploid cell contains two copies of each chromosome [1 ].

the study of the incidence and distribution of epidemic disease in a

community.

term for cells of organisms including multicellular plants, animals,

fungi and some unicellular organisms.
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external os:

histones:

hyperchromatjc:

hyperplasia:

isoelectric point:

LEEP:

Lugol's reagent:

necrosis:

neoplasm:

nucleoli:

N/C ratio:

proliferation:

squamocolumnar junction.

the major class of DNA-binding protein of chromatin [1].

relates to staining pattern of cells. Hyperchromatic cells are so

termed because they have a darker staining pattern.

is the abnormal proliferation of benign cells within a tissue and is

associated with an absolute increase in amount of tissue [6].

the pH at which the net charge on an ampholyte (in this case amino

acids and proteins) is zero [1],

or loop electro surgical excision procedure. An electrical current is

passed through a thin wire loop that acts as a knife to remove

abnoivnal tissue [7].

aqueous solution of iodine and potassium iodide. Stains cells blue-

violet in the presence of glycogen.

localised cell death.

meaning 'new things formed' (or tumours) is a result of the growth

of tissue that has escaped the controls governing normal

proliferation and regeneration of cells. The term neoplasm is

confined to clearly abnormal proliferation of tissue forming a

visible or palpable swelling or rumour affecting part of an organ.

Neoplasms may be benign or malignant [6].

or nucleolus (singular) is the dense body in the nuclear membrane

surrounding the nucleus [2] and is necessary for the production of

rRNA.

or nuclear-to-cytoplasmic ratio. Is used to measure the maturation

of a cell. The higher the N/C ratio, the less mature the cell.

Cellular immaturity, measured by the N/C ratio, reaches its peak at

carcinoma in situ (completely undifferentiated cells), even though

mildly dysplastic cells have the largest nucleus [8].

rapid growth or reproduction.
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pyknotic nuclei:

tetraploid:

tumour diathesis:

a nucleus is defined as pyknotic when it is less than 5 um in

diameter [9].

a tetraploid cell contains four copies of each chromosome.

comprised of protein, fibrin, blood, dead cells, and debris [8], and is

cytologically indicative of invasive carcinoma.

200



APPENDIX B

LIGHT MICROSCOPY OF CERVICAL SMEARS2'

Figure B.I Parabasal squamous epithelial cells

Figure B.2 Intermediate squamous epithelial cells

Figure B.3 Superficial squamous epithelial cells

27 Courtesy of the Victorian Cytology Service (Melbourne Australia)
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Figure B.4 Endocervical columnar epithelial cells

Figure B.5 CIN I (mild dysplasia)

Figure B.6 CIN II (moderate dysplasia)

Figure B.7 CIN II (moderate dysplasia) with bacterial infection (seen by the rod-like
structures in the cells.
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Figure B.8 CIN HI (severe dysplasia)

Figure B.9 CIS (carcinoma in situ)

SL.

Figure B.IO Invasive SCC (squamous cell carcinoma)

Figure B.ll Invasive undifferentiated carcinoma
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Figure B.12 Adenocarcinoma

. ./«&»* v - ' .^:>\

Cytoplasmic halo or koilocyte

Figure B-13 Koilocytes caused by HPV

Figure B.14 Squamous metaplasia

Figure B.15 Atrophy

204



i

I
i
I

APPENDIX C

GA USSIAN DISTRIBUTION

The Gaussian or Normal distribution function is the most important distribution for

continuous data due to its wide range of practical applications. The distribution

approximates most measurements of physical characteristics, with their associated random

eiTors and natural variations. The shape of this function, referred to as the Gaussian

probability curve, is illustrated in Figure C. 1. For a single measurement variable, x, the

mathematical model describing the Gaussian distribution function is:

/(*) =
1

exp
2a

Equation C.I

The curve is symmetric about the mean, //; and the variance, a", or standard

deviations, explain the spread about the mean. The curve is often standardised so that the

area is equal to unity, and/(.T), the height of the curve gives the piobability of observing a

value within the specified ranges of x. The idealised distribution function is obtained from

an infinite number of samples, called a parent population. As it is difficult to sample the

entire population, a finite number of samples, /;, are used to give an estimate of the mean,

variance and standard deviation, denoted x , s" and s respectively [10].

- 2 - 1 0 1

Figure C. 1 Standardised Gaussian probability curve.
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APPENDIX D

MA TLA B ROUTINES

CERV.IO1N.M

% General Cervical DataBase Front End

% Author: Melissa Romeo, Monash University, 1999

clc;

clear all;

close all;

% _ Get the Data
Data=Tmenu('Source of Data','Load existing DataBase','Start DataBase',.
'Add to existing DataBase');

i fData=l ;
WhichDB=menu('Please select Database','RWH','FPV','Other');

ifWhichDB=l;
load DBRWH;

elseif WhichDB=2;
load DBFPV;

elseifWhichDB==3;
other=menu('Please select DataBase','RWH','FPV');
ifother=l

loadnaallavlb;
elseif other==2

load fpv8blred;
end

end

1

i

elseif Data=2
[DB,Filenames,WaveMatrix]=jcampdbjoin;

elseif Data=3
[DB,Filenames,WaveMatrix]=jcampcei-vjoin;

end
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% Preprocessing —
c=0;
whilst c<l;

Prepro=menu('Preprocessing FunctionsVDefine Spectral Region',...
'Account for non-linearities of the MCT','Calculate Signal-to-noise Ratio',...
'Take Derivatives (Savitzky-Golay)','Nonnalise7Baseline Correction',...
'Plot Data','Assign Diagnosis','View DataBase Details','Quit');

ifPrepro==l
[DB,WaveMatrix]=defregjoin(DB,WaveMatrix);

elseif Prepro—2
[DB,Filenames]=nonlinjoin(DB,Filenames);

elseif Prepro—3
[SNR,DB,Filenames,SNRFN]=SNRjoin(DB,WaveMatrix,Filenames);

elseif Prepro=4
[DB]=svgljoin(DB);

elseif Prepro==5
norm:=menu('Wliat type of Normalisation?','Vector Normalisation','Max

Normalisation',...
'Mean Normalisation','Range Noimalisation');

if norm==: 1
[DB]=vnormjoin(DB);

elseif norm=2
[DB]--maxnormjoin(DB);

elseif norm=3
[DB]=meannormjoin(DB);

elseif norm=4
[DB]=rangenormjoin(DB);

end

elseif Prepro==:6
[DB,WaveMatrix]=bljoin(DB,WaveMatrix);

elseif Prepro=7
plot(WaveMatrix,DB);

elseif Prepro==8
Diag=menu('Which database do you want to perform diagnosis on?','RWHVFPV);
i fDiag=l ;

[DBXSpec,DCYSpec,needBX,needCY]=DiagRWHCY(DB,Filenames);
%OrigDB=DB;
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%DB=DBXSpec(:,l :1475);
%Filenarnes=DBXSpec(:, 1476);

[DBFPV,DiagFPV,needFPV]=DiagnosisFPV(DB,Filenames);
end

elseif Prepro=9
whos

elseif Prepro== 10
c=c+l;
break

end
end

pack
%save Datal
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•:*

JCAMPDBJOIN.M

function [DB,Filenames,WaveMat.rix]=jcampdbjoin
% This routine is designed to import JCAMP.DX infrared spectral files and saves the
% results under 'DataBase' where DB is the matrix containing the absorbances for the
% spectral files. Filenames are stored in a matrix called Filenames. To add more samples
% to DataBase, run jcampcervjoin.m.

% Author: Melissa Romeo, Monash University, 1999

cd c:\Matlab\Mjr\Jcampfiles\Cerv;

D=dir;

[N,M]=size(D);

m=0;

c=l;

forIN=2:N;
File=D(IN).name;

[PATH,NAME,EXT,VER] = FILEPARTS(File);

xtn=EXT;
count=0;

if strcmp(xtn,'.dx');
eval('fidl=fopen(File,"r");');
m=m+l;

if count==0;
count=count+l;
% What is the first wavenumber value?

fori=l:10;
S=fgetl(fidl);

end

[FirstX]=sscanf(S,'%st);
FiretX=strrep(FirstX,1##FIRSTX=7l);
str2num(FirstX);
[FirstX]=sscanf(FirstX;%d');

%What is the last wavenumber value?
S=fgetl(fidl);
[LastX]=sscanf(S,'%s');
LastX=strrep(LastX,?##LASTX=1,");
str2num(LastX);
[LastX]=sscanf(LastX,'%d');
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%What is the delta value?
S=fgctl(fidl);
[DeltaX]=sscanf(S,'%s');
DeltaX=strrep(DeltaX,I##DELTAX=7I);
str2num(DeltaX);
[DeltaXhsscanf(DeltaX,'%d');

%Create a matrix of wavenumber values.
[WaveMatrix]=FirstX:DeltaX:LastX;

for i=12:15;
S-fgetl(fidl);

else
fori=l:15;

S=fgetl(fidl);

end

end

end

end

%What is the Y-factor?
[Y Factor]=sscanf(S,'%s');
YFactor=strrep(YFactor,'##YFACTOR=',");
str2num(YFactor);
[YFactor]=sscanf(YFactor,'%f);

fori=16:18;
S=fgetl(fidl);

end

%Get the absorbances.
k=0;

whilst 1
S=fgetl(fidl);

break
end

[Output]=sscanf(S '
[Output]=[Output]';
l=length(Output);

forj=2:l;
M1 (m,k+j-1 )=OutputO')* YFactor;

end

k=k+l-l;

%What are the sample numbers?
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[NAME]=sscanf(NAME,'%d');
Filenames(c)=NAME;
c=c+l;

%Close read files
fclose(fidl);

end
end
DB=M1
save DataBase DB Filenames WaveMatrix
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JCAMPCER VJOi'K M

function [DB,W'aveMatrix,Filenames]=jcampcervjoin
% This program is for importing j camp files into a pre-existing Matlab array
% (DataBase, DB) containing infrared spectra of cervical cells.

% Author: Melissa Romeo, Monash University, 1999

cd c:\Matlab\Mjr\Jcampfiles\Cerv;
D=dir;
[N,M]=size(D);
m=0;
c=l;
load DataBase;
DB=DB';

for IN=2:N;
File=D(IN).name;

[PATH,NAME,EXT,VER] = FILEPARTS(File);

xtn=EXT;
count=0;

ifstrcmp(xtn,'.DX')
evaK'fid 1 =fopsn(File,"r");f)
m=m+l;
count=count+l;

fori=l:16
S=fgetl(fidl);

end

%What is the Y-factor?
[YF actor]=sscanf(S,'%s');
YFactor=strrepvYFactor,'##YFACTOR=y');
str2num( YFactor);
[YFactor]=sscanf(YFactor,'%f);

for HI 7:19
S=fgetl(fidl);

end

%Get the absorbances.
k=0;

whilst 1
S=fgetl(fidl);

break;
end;
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end
%What are the sample numbers?
[NAME]=sscanf(NAME,'%d');
Filenames! (c)=NAME;
c=c+l;

%Close files after reading.
fclose(fidn;

end

end
Filenames=[Filenames Filenamesl];
M2T=M2';
DB=[DB M2T];
DB=DB';
save DataBase DB WaveMatxix Filenan.es;

[Output]=sscanf(S,'%i');
[Output]=[Output]';
l=length(Oulput);

forj=2:l;
M2(m,k+j-1 )=OutputO')*Y Factor;

end

k=k+l-l;

213



DEFREGJOIN.M

function [DB,WaveMatrix]=defregjoin(DB,WaveMatrix)
% This routine is interactive and allows the user to define regions of the spectrum to
% process further.

% Author: Melissa Romeo, Monash University, 1999

SpecReg=menu('Choose required regions','Entire spectrum1,11800-800cm-r,'Other');

% In entire region is chosen, nothing happens.
if SpecReg=l;

RedDB=DB;
Red\VM=WaveMatrix;

end

% If 1800-800cm-l is chosen, DB is reduced down to a matrix of 501 wavenumbers.
ifSpecReg=2;

RedDB=DB(:,925:1425);
RedWM=WaveMatrix(925:1425);

end
% A user specified Spectral Region is chosen. User can define 1 or multiple
% spectral regions,

if SpecReg==3
SpecRegl=menu('User Specific Spectral Regions','1 RegionV>l Region');

ifSpecRegl=l
upper-input('Please enter upper limit of region (WM)Vs');
lower=input('Please enter lower limit of region (WM)','s');

upper=str2num (upper);
Iower=str2num(lower);
RedDB=DB(:,upper:lower);
RedWM=WaveMatrix(upper:lower);

elseif SpecRegl ==2
Howmany=input('Please enter the number of regions?,(2 or 3)','s');
HM=str2num(Howmany);
i fHM=2

upl=input('Please enter upper limit of first region (WM)Vs');
lwl=input('Please enter lower limit of first region (WM)Vs');
ijp2=input('Please enter upper limit of second region (WM)Vs');
lw2=input('Please enter lower limit of second region (WM)Vs');

up 1 =str2num(up 1);
1 w 1 =str2num(lw 1);
Up2=str2rmm(up2);
Iw2=str2num(lw2);

DBl=DB(:,upl:lwl);
DB2=DB(:,up2:lw2);
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RedDB=[DE! DB2];
WM 1 =WaveMatrix(up 1:1 w 1);
WM2=WaveMatrix(up2:lw2);
RedWM=[WMl WM2];

elseifHM=3
upl=input('Please enter upper limit of first region (WM)Vs');
lwl=input(lPlease enter lower limit of first region (WM)','s');
up2=input('Please enter upper limit of second region (WM)','s');
lw2=input('Please enter lower limit of second region (\VM)','s');
up3=input('Please enter upper limit of third region (WM)',V);
lw3=input('Please enter lower limit of third region (WM)Vs');

up 1 =str2num(up 1);
1 w 1 =str2num(l w 1);
up2=str2num(up2);
Iw2=str2num(lw2);
up3=str2num(up3);
Iw3=str2num(lw3);

DBl=DB(:,upl:lwl);
DB2=DB(:,up2:lw2);
DB3=DB(:,up3:1w3);
RedDB=[DBlDB2DB3];
VM1 =WaveMatrix(up 1 :lw 1);

WM2=WaveMatrix(up2:lw2):
WM3=WaveMatrix(up3:lw3);
RedWM=[WMl WM2 WM3];
end

end

end

save defreg RedDB RedWM

DB=RedDrj;
WaveMat ix=RedWM;
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NONLINJO1N.M

function [DB,Filenames]=nonlinjoin(DB,Filenames)
% This routine is for the removal of data that falls outside the range of acceptable
% absorbance, ie max absorbance >=1. It is important to remove samples which have
% max absorbance of >- 1 due to nonlinearities of the MCT and the Beer-Lambert Law.

% Author: Melissa Romeo, Monash University, 2000

Y=Filenames;

RedDB=DB';
[NrDB,NcDB]=size(RedDB);

MaxRedDB=max(ReriDB);

p=i;
q=l;
fork=l:NcDB;

ifMaxRedDB(k)<=l;
NewDB(:,p)=RedDB(:,k);
NewY(p)=Y(k);
p=p+l;

elseMaxRedDB(k)>l;
BadDB(:.q)=RedDB(:,k);
BadY(q)=Y(k);
q=q+l;

end
end

save Nonlin BadDB BadY MaxRedDB NewDB NewY RedDB
Filenames-'NewY;
DB=NewDL;
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SN.XJOIN.M

function [SNR,DB,FilenamessSNRFN]=SNRjoin(DB,WaveMatrix,Filenames)
% Program to collate the SNR (signal-to-noise ratio) obtained from the subroutine
%SNRjoinl.

% Author: Melissa Romeo, Monash University, 2000

[DBm DBn]=size(DB);
t=l;
fori=l:DBm

DBM=DB(i,:);
[SNRa]=SNRioinl (DBM,WaveMatrix);
SNR(t)=SNRa;
t=t+l;

end

P=i;
q=i;
Y=Filenames;
DB=DB';
[nrDB,ncDB]=size(DB);

% Cocantenate Filenames and SNR matrices so that there is a list of the SNR for
% each filename.

Y=Filenames';
SNR=SNR';
SNRFN=[Y SNR];
Y^Filenames';
SNR=SNR';

% Once the SNR for all spectra have been calculated, spectra with an SNR less than or
% equal to 10 are removed from the DataBase.

fork=l:ncDB
ifSNR(k)>=abs(10)

NewDB(:,p)=DB(:,k);
NewY(p)=Y(k);
p=p+l;

elseIfSNR(k)<abs(10)
BadDB(:,q)=DB(:.k);
BadY(q)=Y(k);
q=q+l;

end
end

Filenames=NewY;

i
]
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DB=NewDB';

function [SNRa]=SNRjoinl (DBM.WaveMatrix)
% Routine for calculating the signal to noise ratio of spectra

[m n]=size(DBM);

% reduce the spectra down to noise region (2100-1900 cm-1) (DBN)

DBN=DBM(:,775:875);

WMN=WaveMatrix(775:875);

% fit a third order polynomial to the noise region
for i=l:m

[p(i,:),s(i,:)]=polyfit(WMN,DBN(i,:),3);

% use the coefficients to plot the polynomial
y(i,:)=polyval(p(ii:),WMN(i));

%plot(WMN,y,WMN,DBN)

% subtraction of the fitted polynomial from the original noise region will
% give the residual noise

%plot(WMN,y,WMN,DBN,WMN,noise)

% Calculate the amount of noise using the RMS
RMSN(i)=std(noise(i,:));

end

% To calculate the signal component, the spectra need to be baseline corrected. The
% minimum absorbance in the range 2100-1800cm-1 and 1000-700crn-l is found and a
% linear regression line is fitted. The regression line is subtracted from the original
% spectrum to give a baseline corrected spectrum. The signal is calculated from the
% Amide II band, and so is given by the maximum absorbance in the region 1560-
% 1520cm"1.

% Find the minimum absorbance and corresponding wavenumber value in the specified
% region and calculate the gradient (M) and the intercept (C) and draw the line. The
% regression line is then subtracted from the specified region of the spectrum and the
% signal from the amide II band is calculated.

DBM=DBM';
WM=WaveMatrix';
[m n]=size(DBM);

forj=l:n
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DBWM=[DBM(:j),WM];
rl=DBWM(775:925,:);
r2=DBWM(1325:1475,:);

min2-min(r2);

y2G)=min2(l);
xl(j>minl(2);
x2(i)=min2(2);

M(j)=y2(j)-yiO);
M(j)=MO")/diff;

WMN=[xl(l):-2:x2(l)];
[wr wc]=size(WMN);

fork=l:wc
RLO',k)=(WMN(k)*MO'))+Ca);

end

DBM=DBM';
WM=WM';

for 1=1 :m
RLalia,l)=(WM(l)*MG))+CO");
BLG\l)=DBMCU)-RLall(j,l);

end

DBS(i,:)=DBM(i,775:1065);
maxAm2(i)=max(DBS(i,:));
SNRa(i)=maxAm2(i)./RMSN(i),

plot(WM,RLa]l,'b',WaveMdtrix,DBM,'k',WM,BL,'r1)

end
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SVGLJOIN.M

function [DBDeriv,DB]=svgljoin(DB)
% Front routine for the Barry Weise Savitzky-Golay Smoothing Derivative Function.
% Allows interactive user input to specify' the nature of the filter required, ie the number
% of smoothing points (width), the order of the polynomial required (order) and the order
% of the derivative (deriv).

width=input('Please enter the number of smoothing points required (odd number):7s');
order=input('Please enter the order of the polynomial required :7s1);
deriv=input('Please enter the order of the derivative required:7s');

width:=str2num(width);
order=str2num(order);

deriv=str2num(deriv);

DBDeriv=savgolm(DB,width,order,deriv);

DB=DBDeriv;

function y_hat = savgolm(y,width,order,deriv)
% SAVGOL Savitzky-Golay smoothing and differentiation.
% Inputs are the matrix of ROW vectors to be smoothed (y), and the optional variables
% specifying the number of points in filter (width), the order of the polynomial (order),
% and the derivative (deriv). The output is the matrix of smoothed and differentiated
ROW
% vectors (y_hat). If number of points, polynomial order and derivative are not specified,
% they are set to 15, 2 and 0, respectively.
% Example: if y is a 5 by 100 matrix then savgolm(y,l 1,3,1) gives the 5 by 100 matrix of
% first-derivative row vectors resulting from a 11 -point cubic Savitzky-Golay smooth of
% each row of y.

% I/O format is: yjhat = savgolm(y,width,order,deriv);

% Sijmen de Jong Unilever Research Laboratorium Vlaardingen Feb 1993
% Modified by Barry M. Wise 5/94
% Modified by: Melissa Romeo, Monash University, 1999

[m,n] = size(y);
y_hat = y;
% set default values: 15-point quadratic smooth
if nargin<4

deriv= 0;
dispC '), disp('Derivative set to zero')

end
if nargin<3
order= 2;
dispC ')> disp('Polynomial order set to 2')
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end
ifnargin<2
width=min(l 5,floor(n/2));
s = sprintf('Width set to %g',width);
disp(' '), disp(s)

end
% In case of input error(s) set to reasonable values
w = max( 3, l+2*round((width-l)/2));
if w ~= width

s = sprintf('Width changed to %g',w);
disp(' '), disp('Width must be >= 3 and odd'), disp(s)

end
o = min([max(0,round(order)),5,w-l]);
if o ~= order

s = sprintf('Order changed to %g',o); disp(' ')
disp('Order must be <= width -1 and •<= 5'), disp(s)

end
d = min(max(0,iound(deriv)),o);
if d ~= deriv

s = sprintf('Derivative changed to %g',d); disp(' ')
disp('Deriviative must be <= order1), disp(s)

end
p = (w-l)/2;
% Calculate design matrix and pseudo inverse
x = ((-p:p)'*ones(l,l+o)).A(ones(size(l:w))'*(0:o));
for k = 1 :m
weights = (x'*x)\x';

% Smoothing and derivative for bulk of the data
for i=p+2:n-p-l
y_hat(k,i) = weights(d+l,:)*y(k,i-p:i+p)';

end
% Smoothing and derivative for tails
weights = weights* [y(k,l:w)', y(k,n-w+(l:w))']; % full polynomial model
fori=l:d
weights = diag(l :o+l-i)*weights(2:o+2-i,:); % or its d'th derivative

end
y_hat(k,l:p+l) = (x(l:p+l,l:l+o-d)*weights(:,l))'; % fitting the tails
y_hat(k,n-p+(O:p)) = (x(p+l:w,l:l+o-d)*weights(:,2))';

end
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VNORMJOIN.M

function [DB]=vnormjoin(DB)
% Vector normalisation routine. Calculates the average y-value which is then subtracted
% from the spectrum so that the middle is pulled down to y=0. The sum of the squares of
% all y-values is then calculated and the spectrum is divided by the square root of this

sum.

% Author: Melissa Romeo, Monash University, 1999

[m n]=size(DB);

fori=l:m
m(i)=mean(DB(i,:));
forj=l:n

sqDB(ij)=(DB(ijT2);
sumsqDB(i)=sum(sqDB(i,:));
sqrtDB(i)=sqrt(sumsqDB(i));

end

for k=l:n
vnormDB(i,k)=(DB(i,k)-m(i))./sqrtDB(i);

end
end
DB=vnormDB;
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MNORMJOIN.M

function [DB]=Mnormjoin(DB)
% This program finds the peak of maximum absorbance in the range of the data, this peak
% is given an arbitaiy absorbance unit of 1 and all the other absorbances are adjusted
% accordingly, ie, the maximum absorbance is divided by itself to become 1 and then all
% the other absorbances are divided by the maximum absorbance.

% Author: Melissa Romeo, Monash University, 1999

x=DB';
[rows,cols]=size(x);
for k=l: cols;

Newx(:,k)=x(:,k)/max(x(:,k));
end
DB=Newx';

%axis tight; hold on;
%title ('Spectra of max-normalised (green) and un-normalised (blue) data');
%xlabel ('Wavenumber Values cm-1)');
%ylabel ('Absorbance (A.U.)');
%Plot (Wave,Abs,'b');
%plot (Wave,Norm,'g');
%legend('unnorniVmax-norm',2);holdoff;
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MEANORMJOIN. M

function [DB]=meannormjoin(DB)
% This program finds the mean absorbance in the range of each spectrum, then each
% absorbance is divided by the mean.

% Author: Melissa Romeo, Monash University, 2000

x=DB';
[rows,cols]=size(x);
for k=l: cols;

Newx(: ,k)=x(: ,k)/mean(x(: ,k));
end
DB=Newx';

%axis tight; hold on;
%title ('Spectra of max-normalised (green) and un-normalised (blue) data');
%xlabel ('Wavenumber Values cm-1)');
%ylabel ('Absorbance (A.U.)1);
%plot (Wave,Abs,'b');
%plot (Wave,Norm,'gl);
%legend('unnorm','max-nonn',2);hold off;
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RANGENORMJOIN. M

function [DB]=rangenormjoin(DB)
% This program finds the range of each spectrum (ie max absorbance - min absorbance)
% and each absorbance is divided by the range.

% Author: Melissa Romeo, Monash University, 2000

x=DB';
[rows,cols]=size(x);
fork=l:cols;

Newx(:,k)=x(:,k)/((max(x(:,k)))-(min(x(:,k))));
end
DB=Newx';

%axis tight; hold on;
%title ('Spectra of max-normalised (green) and un-normalised (blue) data');
%xlabel ('Wavenumber Values cm-1)');
%ylabel ('Absorbance (A.U.)1);
%plot (Wave,Abs,'b();
%plot (Wave,Norm,'g');
%legend('unnormVmax-norm',2);hold off;
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BUOIN.M

function [DB,WaveMatrix]=bljoin(DB,WaveMatrix)
% Frontend routine for baseline correction of spectra. The length of DB is determined, ie
% how many wavenumber values and calls the appropriate routine. Bljoinall is called if
% there are more than 501 wavenumbers (whole spectrum) and bljoinred if there are 501
% wavenumbers (spectrum 1800-800 cm'1).

% Author: Melissa Romeo, Monash University, 2000

[DBm DBn]=size(DB);
t = l ;
[m n]=size(WaveMatrix);

fori=l:DBm
DBM=DB(i,:);
ifn>501

[DBM,WaveMatrix]=bljoinall(DBM,WaveMatrix);

elseifn=501
[DBM,WaveMatrix]=bljoinred(DBM,WaveMatrix);

end

DB(t,:)=DBM;
t=t+l;

end

function [DBM,WaveMatrix]=bljoinall(DBM,WaveMatrix)
% Program for returning the indices of selected regions of wavenumbers. Calls the
% subroutine lamseljoin.m, which returns indices for each range.

freqs=WaveMatrix';
DBM=DBM';
indsl=lamseljoin(freqs,[3648 3646]);
inds2=lamseljoin(freqs,[2100 1800]);
inds3=lamseljoin(freqs,[ 1000 700]);

DBl=DBM(indsl);
WMl=freqs(indsl);

DB2=DBM(inds2);
WM2=freqs(inds2);

DB3=DBM(inds3);
WM3=freqs(inds3);

DBWM1=[DB1 WM1];
DBWM2=[DB2 WM2];
DBWM3=[DB3 WM3];
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minl-min(DBWMl);
min2=Tnin(DBWM2);
min3=min(DBWM3);

r 1 =lamseljoin(freqs,[min 1 (2) min2(2)]);
r2=lamseljoin(freqs,[min2(2)min3(2)]);

WMrl=freqs(rl);
WMr2=freqs(r2);

% Calculate the gradient (M1 and M2) and the intercept (Cl and C2) and fit the line to the
% data

Ml=min2(l)-minl(l);
M1 =M 1 /(min2(2)-min 1 (2));
Cl=min2(l)-(Ml*min2(2));

RLl=WMrl*Ml+Cl;

M2=min3(l)-min2(l);
M2=M2/(min3(2)-minl(2));

C2=min3(l)-(M2*min3(2));

RL2=WMr2*M2+C2;

%plot(WMr2sRL2,WMrl ,RL1 ,WaveMatrix,DB)
% once the regression lines have been fitted, each region of the spectrum is subtracted
% from the regression line for that region resulting in a baseline corrected spectrum.

DBrl=DBM(rl);
DBr2=DBM(r2);

BLl=DBrl-RLl;
BL2=DBr2-RL2;

BL1=BL1';
BL2=BL2';
BLDB=[BL1 BL2];
DBM=BLDB;
%plot(WaveMatrix,DBM,WaveMatrix,BLDB)

function [DBM,WaveMatrix]=bljoinred(DBM,WaveMatrix)
% Program for returning the indices of selected regions of wavenumbers. Calls the
% subroutine lamseljoin.m, which returns indices for each range.

freqs=WaveMatrix';
DBM=DBM';
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indsl--=lamseljoin(freqs,[l 800 1700]);
inds2=lamseljoin(freqs,[l 000 800]);

DBl=DBM(indsl);
WMl=iTeqs(indsl);

DB2=DBM(inds2);
WM2=freqs(inds2);

DBWM1=[DB1 WM1];
DBWM2=[DB2 WM2];

minl=min(DBWMl);
min2=min(DBWM2);

r 1 =lamseljoin(freqs,[min 1 (2) min2(2)]);

WMrl=freqs(rl);

% Calculate the gradient (M) and the intercept (C) and fit the line to the data

M=min2(l)-minl(l);
M=M/(min2(2)-minl(2));

C=min2(l)-(M*min2(2));

RL=WaveMatrix*M+C;

%plot(WaveMatrix,RL,WaveMatrix,DBM)
% once the regression lines have been fitted, each region of the spectrum is subtracted
% from the regression line for that region resulting in a baseline corrected spectrum.

RL=RL';
BL=DBM-RL;

BL=BL';

DBM=BL;

%plot(WaveMatrix,DBM,WaveMatrix,BL)
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DlA GN0S1SR WH. M

function [DBXSpec,DCYSpec,needBX,needCY]=DiagnosisRWH(DB,Filenames)
% This program is designed to assign a histological (biopsy) and cytological (Pap smear)
% diagnosis to the infrared spectra in DBRWH. The program works by comparing the
% filenames of the spectral files with the patient number and returning a numerical
% diagnosis.

% Author: Melissa Romeo, Monash University, 2000

load RWHdiag2.txt;
RWH=RWHdiag2;
FN=Filenames';
[rRWH cRWH]=size(RWH);
[rF cF]=size(FN);

fori=l:rF
Sl=FN(i);

forj=l:rRWH
S2=RWH(j,l);

ifSl==S2
DiagBX(i)=RWHG,2);
DiagCY(i)=RWH(j,3);

end
end

end

DiagBX=DiagBX';
DiagBX=[FN DiagBX];
DBXSpec=[DB DiagBX];

DiagCY=DiagCY';
DiagCY=[FN DiagCY];
DCYSpec=[DB DiagCY];

% Remove spectra that don't have a diagnosis (assigned 0).
function [DBXSpec,DCYSpec,needBX,needCY]=remzero(DBXSpec,DCYSpec);

assign=menu('Type of Assignment'/Normal/AbnormalVAbsNormal/Abnormal',.-
'Normal/DysplasiaVAbsNormal/Normal/Abnormar);

if assign=l
[DBXSpec,DCYSpec]=DiagRWHNA(DBBX,DBCY,FNBX,FNCY);

elseif assign=2
[DBXSpec,DCYSpec]=DiagRWHNAX(DBBX,DBCY,FNBX,FNCY);

elseif assi,cn==3
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[DBXSpec,DCYSpec]=DiagRWHND(DBBX,DBCY,FNBX,FNCY);

elseif assign=r=4
[DBXSpec,DCYSpec]=DiagRWHNNAA(DBBX,DBCY,FNBX,FNCY);

end
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DIAGRWHNA.M

function [DBXSpec,DCYSpec]=DiagRWHNA(DBBX,DBCY,FNBX,FNCY);

% This program is designed to assign a cytological (Pap smear) diagnosis to the infrared
% spectra in DBRWH. The program works by comparing the filenames
% of the spectral files with the patient number and returning a numerical diagnosis.

% The diagnosis is then eocantenated to the DB file so that each spectrum has a diagnosis.

% Author: Melissa Romeo, Monash University, 2000

%clear all
%load omlnormabpd
load CytolCYNNAA.txt;
RWH-CytolCYNNAA;
[rRWH cRWH]=size(RWH);
[rFNBX cFNBX]=size(FNBX);
[rFNCY cFNCY]=size(FNCY);

for i=l :rFNBX
Sl=FNBX(i);

forj=l:rRWH
S2=RWH(j,l);

i f S l = S 2
DiagBX(i)=RWH(j,2);

end
end

end

fork=l:rFNCY
S3=FNCY(k);
for 1=1 :rRWH

S4=RWH(1,1);

ifS3==S4
DiagCY(k)=RWH(l,3);

end
end

end

DiagBX=DiagBX';
DiagBX=[FNBX DiagBX];
DBXSpec=[DBBX DiagBX];

DiagCY=DiagCY';
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DiagCY=[FNCY DiagCY];
DCYSpec=[DBCY DiagCY];

save omlRWMDiagNA

[DBXSpecN,DC YSpccN]=normab 1 (DBXSpec,DCYSpec);
%DBXSpec=DBXSpecN;
%DCYSpec=DCYSpecN;

I
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$

NORMABl.M

function [DBXSpecN,DCYSpecN]=normabl (DBXSpec,DCYSpec);

% Author: Melissa Romeo, Monash University, 2000

[rB cB]=size(DBXSpec);
[rC cC]=size(DCYSpec);

BX=DBXSpec(:,cB);
FNB=DBXSpec(:,cB-l);
CY=DCYSpec(:,cC);
FNC=DBXSpec(:,cC-l);

s=l:
t=l;
u=l;
v=l;

•"I fori=l:rB
if BX(i) <90;

newBXSpec(s,:)=DBXSpec(i,:);
s=s+l;

elseif BX(i) >=90;
badBXSpec(t,:)=DBXSpec(i,:);
t=t+l;

end
end

forj=l:rC
ifCYG)<90;

newCYSpec(u,:)=DCYSpec(j,:);
u=u+l;

elseif CY(j)>=90
badCYSpec(v,:)=DCYSpec(j,O;
v=v+l;

end
end

DBXSpecN=newBXSpec;
DBBX=DBXSpecN(:,l :cB-2);
FNBX=DBXSpecN(:,cB-l);

DCYSpecN^newCYSpec;
DBCY=DCYSpecN(:, 1 :cC-2);

4 FNCY=DCYSpecN(:,cC-l);
n

i

! save omlnormabdiag

iJ
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DlAGNOSISFPV.M

function [DBFPV,DiagFPV,needFPV]=DiagnosisFPV(DB,Filenames)
% This program is designed to assign a cytological (Pap smear) diagnosis to the infrared
% spectra in DBFPV. The program works by comparing the filenames
% of the spectral files with the patient number and returning a numerical diagnosis.
% The diagnosis is then cocantenated to the DB file so that each spectrum has a diagnosis.

% Author: Melissa Romeo, Monash University, 2000

load fpvdiag.txt;
FPV=fpvdiag;
FN=Filenames';
[rFPV cFPV]=size(FPV);
[rF cF]=size(FN);

% need to convert the numbers of the array FN and Biopsy to strings to enable
comparison.
% (doesn't work because then only the first character is compared, need to extract
filename and
% then convert to string.

fori=l:rF
Sl=FN(i);

forj=l:rFPV
S2=FPV(j,l);

if S1=S2
DiagFPV(i)=FPV(j,2);

end
end

end

DiagFPV=DiagFPV;
%DiagFPV=[FN DiagFPV];
%DBFPV=[DB DiagFPV];

save FPVDiag

%assign=Tnenu('Type of Assignment','Normal/Abnormar,True Normal/Abnormal1,...
yo'BX/CYVNormal/Dysplasia');
%if assign=l
% [DBFPV,needFPV]=Fnormab(DBFPV);

%elseif assign==2
% [DBFPV,needFPV]=Ftnormab(DBFPV);

%elseif assign—3
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% [DBFPV,needFCY]=Fcy(DBFPV);

%elseif assign==4
% [DBFPV,needFCY]=Fnormdys(DBFPV);

%end

Please Note: The diagnosis programs for different types of diagnosis are all very
similar. Therefore an example of the programs have been given in DiagRWHNA.m
and Normabl.m above.

M
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LDACERV.M

m function
[mvect,pcov,tscor,pscor,tmislist,pmislist,dist_sum,tpct,ppct]=mjrlda(Xl ,Y1 ,X2,Y2,pscal)

1
% Linear Discriminant Analysis-Mahalanobis
% assigns ungrouped items to closest group centre, using the Mahalanobis
% distance measure (i.e., minimum distance classifier).
% Based on the explanation given in Adams [9].
% Author: Melissa Romeo, 1998

[XI ,xmean,xstd]=pscale(Xl ,pscal);
if min( Y1 ) = 0 ; Y1 =Y 1 +1 ;end;
PCprint^l;
NPC=input('Number of PCs [0=No PCA] = ');
if isempty(NPC),NPC=O;end;

ifNPOO
scl=0;
[tram,LD,ssq,res,q,tsq]=frbpca(Xl,O,scl,NPC.PCprint);

else
train=Xl;

end;

k=l;
m=l;
n=2;

Xl=train;
train=Xl;
[Rt Ct]=size(train);
[RY1 CYl]=size(Yl);
trainT-train1;

% what is the Range of the data?
PCl=train(:,l);

maxx 1 =max(PC 1);

PC2=train(:,2);
minx2=min(PC2);
maxx2=max(PC2);

% Separate the data into classes
P=l;
q=l;
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fori = l:RYl

Xa(p,l:Ct)=train(i,!:Ct);
P=P+1;
[RXa CXa]=size(Xa);

elseifY(i)=2;
Xb(q,l:Ct)=train(i,l:Ct);
q=q+l;
[RXb CXb]=size(Xb);

end
end

XaT=Xa';
XbT=Xb';

%— Calculate the vector of variable means for each class
meanXa=MEAN(Xa);
meanXb=MEAN(Xb);
%— Calculate tho pooled covanance matrix (and the inverse) —
Co vt=co v(train);
invCovt=inv(Covt);
%— Claculate fA(x) and fB(x) and assign the objects to classes
CAO = 0.5*meanXa*invCovt*meanXa';
CA1 = meanXa*invCovt;
CBO = 0.5*meanXb*invCovt*meanXb';
CB1 = meanXb*invCovt;

corA=0;
missedA=0;
cmissA=0;
corB=0;
missedB=0;
cmissB=0;

fori=l:Rt
x=trainT(l:2,i);
fA = CAl*x-CAO;
fB = CBl*x-CBO;

iffA>fB
ClassAG)=fA;
MatrixA(l:2j)=x;

corA=corA+l;
else

cmissB=cmissB+];
PrmissB(cmissB)=i;
missedB=missedB+l;
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end
end

iffA<fB
ClassB(k)=fB;
MatrixB(l:2,k)=x;
k-k+1;
ifYl(i)==2

corB=corB+l;
else

cmissA=crnissA+l;
PrmissA(cmissA)=i;
missedA=missedA+l;

end
end

iffA=fB
ClassM(m)-fA;
MatrixM(l:2,m)=x;
m=m+l;

end

end
fprintf('\rTraining Classification Performance \r');
percorA=(corA/RXa)* 100;
fprintf('Classl Percentage Correct %7.4f\n',percorA);
percorB=(corB/RXb)* 100;
fprintf(!Class2 Percentage Correct %7.4f\n',percorB);

if cmissA>0;
fprintfCVrThe sample number/s of the mis-assigned sample in Class A is %d\n',PrmissA);

end
if cmissB>0;

fprintf('\rThe sample number of the mis-assigned sample in Class B is %d\n',PrmissB);
end

%— Calculate the Linear Discriminant Function
CA11=CA1(1,1);
CA12=CA1(1,2);
CB11=CB1(U);
CB12=CB1(1,2);

Lsol(l)=((CA0-CB0)-minx2*(CA12-CB12))/(CAl 1-CBl 1);
Lsol(2H(CA0-CB0)-maxx2*(CA12-CB12))/(CAl 1-CBl 1);

x2(l)=minx2;
x2(2)=maxx2;
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%-— Original Data -
XAl=Xa(:,l);
XA2=Xa(:,2);
XBl=Xb(:,l);
XB2=Xb(:,2);

%-— Classified Data
ClAl=MatrixA(l,:);
ClA2=MatrixA(2,:);
ClB:=MatrixB(l,:);
ClB2=MatrixB(2,:);

%— Plot classification results ~
hold on
axis([(minx 1-0.1) (maxx 1+0.1) (minx2-0.1) (maxx2+0.1)])
plot(XAl,XA2,'r+')
plot(ClAl,ClA2/ro')
plot(X.Bl,XB2,'b+1)
plot(ClBl,ClB2,'bo')
plot(Lsol,x2,'k')

%— New compute prediction results
%— Predict which class an unknown sample belongs to

dispC Input test data if desired ');
[XI ,Y1 ,NA,NCol,Ncy]=getdata;

[X2]=usepscal(Xl ,xmean,xstd);
pred=X2*LD;
ifmin(Yl)=0;

Y1=Y1+1;
end;
[RP,CP] = size(pred);
predT=pred';
%pdlist=Yl;
%pcor = 0;
%missed = 0;
%for i = 1 :RP

%fork=l:ncls
%pscor(i,k) = (mvect(k,:)-pred(i,:))*c*(mvect(k,:)-pred(i,:))';

%end
%temp(l :ncls) = pscor(i,l :ncls);
%[junk,winner] = min(temp);
%if (wiruier = pdlist(i))

%pcor = pcor + 1;
%else

%missed = missed + 1;
%pmislist(missed) = i;

%end
%end
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%temp = sum(tcor);
%iprintf('\n');
%tpct = (temp/nrow_t)*100:
%ppct = (pcor/RP)*100;
%fprintf(Training performance %7.4f \n',tpct);
%iprintf('Prediction peiformance %7.4f \n',ppct);

%---- "Unknown" Data Classes
p=i;
q=l;
[RYCY]=size(Yl);
for i = 1 :RY

XPa(p,l:Ct)=pred(i,l:Ct);
p=p+l;

elseifY(i)=2;
XPb(q,l:Ct)=pred(i,l:Q);
q=q+l;

end
end

k=l;
m=l;

fori=l:RP
ux=predT(l:2,i);
fA = CAl*ux-CAO;
fB = CBl*ux-CBO;

iffA>fB
PredAO") = fA;
PredMatrixA(l :2 j)=ux;

end

iffA<fB
PredB(k)=fB;
PredMatrixB(l :2,k)=ux;
k=k+l;

end

iffA=ffi
PredM(m)=fA;
PredMatrixM(l :2,m)=ux;
m=m+l;

end

end
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% What is the Range of the data?
Pl=pred(:,l);
minPxl=min(Pl);
maxPxl=max(Pl);

P2=pred(:,2);
minPx2=min(P2);
maxPx2=max(P2);
%-— Original "Unknown" Data
%XPAl=XPa(:,l);
%XPA2=XPa(:,2);
%XPBl=XPb(:,l);
%XPB2=XPb(:,2);

%— Predicted Data
[RPa CPa]=size(PredMatrixA);
[RPb CPb]=size(PredMatrixB);
PAl=PredMatrixA(l,:);
PA2=PredMatrixA(2,:);
PBl=PredMatrixB(l,:);
PB2=PredMatrixB(2,:);

hold on
axis([(minx 1-0.1) (maxx 1+0.1) (minx2-0.1) (maxx2+0.1)])
plot(XAl,XA2,'r+')
plot(ClAl,ClA2,'ro')
plot(XBl,XB2,'b+')
plot(ClBl,ClB2,'bo')
%plot(XP A1 ,XPA2,'m+')
plot(PAl,PA2,'mo')
%plot(XPBl,XPB2,'c+')
plot(PBl,PB2,'co')
plot(Lsol,x2,'k')
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QDACERV.M

function
[mvect,pcov,tscor,pscor,tmislist,pinislist,dist_sum,tpct,ppct]=injrlda(X 1, Y1 ,X2,Y2,pscal)

PCA routine modified by Frank Burden, Monash University. Originally written by Barry
Wiese.

[XI ,xmean,xstd]:=pscale(Xl ,pscal);
ifmin(Yl)=O;Yl=Yl+l;end;
PCprint=l;
NPC=input('Number of PCs [0=No PCA] = ');
ifisempty(NPC),NPC=O;end;

ifNPC>0
scl=0;
[train,LD,ssq,res,q,tsq]=frbpca(Xl,O,scl,NPC,PCprint);

else
train=Xl;

end;

% Quadratic Discriminant Analysis-Mahalanobis
% assigns ungrouped items to closest group centre, using the Mahalanobis
% distance measure (i.e., minimum distance classifier).

% Based on the explanation given in Adams [9].
% Author: Melissa Romeo, 1993
o/o Routine for QDA

k=l';
m = l ;
n=2;

X I - t r a i n ;
t ra in=Xl ;

[Rt Ct]=size(train);
[RY1 CYl]=size(Yl);
trainT=train';

% What is the Range of the data?
PCl=train(:,l);
minx 1 =min(PC 1);
maxxl=Tnax(PCl);

PC2=train(:,2);
minx2=min(PC2);

242



maxx2=max(PC2);

% Separate the data into classes

P = i ;
q=i;
fori=l:RYl

if Y(i )=l ;
Xa(p,l :Ct)=train(i,l :Ct);
p=p+l;
[RXa CXa]=size(Xa);

elseifY(i)=2;
Xb(q,l:Ct)=train(i,l:Ct);
q=q+U
[RXb CXbj=size(Xb);

end
end

XaT=Xa';
XbT=Xb!;

% What is the vector of variable means for each group?
meanXa=MEAN(Xa);
meanXb=MEAN(Xb);

o/o What is the variance-covariancc matrix for each group?
CovXa=cov(Xa);
CovXb=cov(Xb);

% and their inverse matrices
invCovXa=inv(CovXa);
in vCo vXb=inv(CovXb);

% What is the determinant of each matrix?
detCovXa=det(CovXa);
detXa=detCovXa;
detCovXb=det(CovXb);
detXb=detCovXb;

o/o Calculate the discriminant functions, dA(x) and dB(x), for each sample in
the training set.
% let Ma = (x-meanXa)
% let Mb = (x-meanXb)

corA=0;
missedA=0;
cmissA=0;

I corB=0;
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missedB=O;
cmissB-O;

fori=l:Rt
x=trainT(l:2,i);
Ma=(x-meanXa');
Mb=(x-meanXb');

dA = 0.5*log(detCovXa) + 0.5*Ma'*invCovXa*Ma;

dB = 0.5*log(detCovXb) + 0.5*Mb'*invCovXb*Mb;

ifdA<dB
ClassA(j) = dA;
MatrixA(l:2j)=x;

corA~corA+1;
else

cmissB:=cmissB+1;
PrmissB(cmissB)-i;
missedB=missedB+l;

end

end

ifdA>dB
ClassB(k)=dB;
MatrixB(l:2,k)=x;
k=k+i;
ifYl(i)=2

corB=corB+l;
else

cmissA=cmissA+l;
Prmi ss A(cmi ss A)=i;
missedA=missedA+l;

end

end

ifdA=dB
ClassM(m)=dA;
MatrixM(l:2,m)=x;
m=m+l;

end
end
fprintf('\rTraining Classification Performance \r');
percorA=(corA/RXa)* 100;
fprintf('Classl Percentage Correct %7.4f\n',percorA);
percorB=(corB/RXb)* 100;
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fprintfCClass2 Percentage Correct %7.4f\n',percorB);

if cmissA>0;
fprintf('\rThe sample number(s) of the mis-assigned sample in Class A is

%d\n',PrmissA);
end
if cmissB>0;

fprintf('\rThe sample number of the mis-assigned sample in Class B is %d\n',PrmissB);
end

%— Solve the quadratic equation, where dA(x)=dB(x), solve for x where x=sol.
%where: dA(x) = x(l)A2a(l,l) + 2x(l)x(2)a(2,l) + x(2)A2a(2,2)+ ln(|CovXa|)
% and a(i,j) are the values from the invCov matrix.
%because there is only one equation, and two unknowns, assume that x(2)is known.
%therefore solve the quadiatic equation for x(l) and then replace into the original
equation to solve for x(2).
%d = bA2 - 4ac in the quadratic

ai=invCovXa;
all=ai(l,l);
al2=ai(l,2);
a21=ai(2,l);
a22=ai(2,2);

bi=invCovXb;

bl2=bi(l,2);
b21=bi(2,l);
b22=bi(2,2);

mual =meanXa( 1,1);
mua2=meanXa(l ,2);
mub 1 =meanXb( 1,1);
mub2=meanXb( 1,2);

d=log(detXa)-log(detXb);

alpl=all*mual+a21*mua2;
alp2=a22 *mua2+a21 *mua 1;

betal =bl 1 *mubl +b21 *mub2;
beta2=b22*mub2+b21 *mub 1;

Ca=al l*(mual)A2+a22*(mua2)A2+ 2*mual*mua2*a21;
Cb=bl l*(mubl)A2+b22*(mub2)A2+ 2*mubl*mub2*b21;

w=l;
div=(maxx2-minx2)/l 0;
for i=minx2:0.0001 :maxx2

x2=i;
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A=all-bll;
B=2*((a21-b21)*x2-alpl+betal);
C=(a22-b22)*(x2)A2-(alp2-beta2)*2*x2+Ca-Cb+d;
e=(BA2)-4*(A*C);
i f e>0

Qsol(w,1 )=(-B+sqrt(e))/(2*A);
Qsol(w,2)=(-B-sqrt(e))/(2*A);
xx2(w)=x2;
w=w+l;

end
end
[RQ CQ] = size(Qsol);
%minx2;
%maxx2;
%div;
Qsol;
xx2';

%•—- Plotting the data

%—- Original Data
XAl=Xa(:,l);
XA2=Xa(:,2);
XBl=Xb(:,l);
XB2=Xb(:,2);

%— Classified Data
ClAl=MatrixA(l,:);
ClA2=MatrixA(2,:);
ClBl=MatrixB(l,:);
ClB2=MatrixB(2,:);

hold on
axis([minx 1-0.1 maxx 1+0.1 minx2-0.1 maxx2+0.1])
plot(XAl,XA2,'r+')
plot(ClAl,ClA2,'ro')
plot(XBl,XB2,'b+')
plot(ClBl,ClB2,'bo')
plot(Qsol,xx2,'k')
%plot(Qsol(:,2)ixx2,1mt)
%plot(Qsol(:,l),xx2,'g')

%— New compute prediction results
%— Predict which class an unknown sample belongs to

disp(' Input test data if desired ');
[Xl,Yl,NA,NCol,Ncy]=getdata;

[X2]=usepscal(Xl ,xmean,xstd);
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pred=X2*LD;
[RP,CP] = size(pred);
predT=pred';

ifmin(Yl)=O;
Y1=Y1+1;

end;

fori=l:RP
ux=predT(] :2,i);
Ma=(ux-meanXa');
Mb=(ux-meanXb');

dA = 0.5*log(detCovXa) + 0.5*Ma'*invCovXa*Ma;

dB = 0.5*log(detCovXb) + 0.5*Mb'*invCovXb*Mb;

ifdA<dB
PredAG) = dA;
PredMatrixA(l :2,j)=ux;

end

ifdA>dB
PredB(k)=dB;
PredMatrixB(l :2,k)=ux;
k=k+l;

end

ifdA=dB
ClassM(m)=dA;
MatrixM(l:2,m)=ux;
m=m+l;

end
end
% what is the Range of the data?
Pl=pred(:,l);
minPx 1 =min(P 1);
maxPxl=rmax(Pl);

P2=pred(:,2);
minPx2=min(P2);
maxPx2=max(P2);
%— Original "Unknown" Data
%XPAl=XPa(:,l);
%XPA2=XPa(:,2);
%XPBl=XPb(:,l);
%XPB2=XPb(:,2);
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%—- Predicted Data
[RPa CPa]=size(PredMatrixA);
[RPb CPb]=size(PredMatrixB);
PAl=PredMatrixA(l,:);
PA2=PredMatrixA(2,:);
PBl=PredMatrixB(l,:);
PB2=PredMatrixB(2,:);

hold on
axis([(minx 1-0.1) (maxx 1+0.1) (minx2-0.1) (maxx2+0.1)])
plot(XAl,XA2,'r+')
plot(ClAl,ClA2,'ro')
plot(XBl,XB2,'b+')
plot(ClBl,ClB2,W)
%plot(XP A1 ,XP A2/m+')
plot(PAl,PA2,W)
%plot(XPBl,XPB2,'c+l)
plot(PBKPB2,'coI)
plot(Qsol,xx2,'k')
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APPENDIX E

JCAMP.DX FORMA T

##TITLE=sarnple
##JCAMP-DX=4.24
##DATA TYPE=INFRARED SPECTRUM
##DATE=10/ll/1998
##TIME=9:32:46
##DATA PROCESSING=no operation
##XUNITS=1/CM
##YUN1TS=ABSORBANCE
##RESOLUTION=8
##FIRSTX=3648
##LASTX=700
##DELTAX=-2
##MAXY=0.35364914
##MINY=0.0079337647
##XFACTOR=1
##YFACTOR=3.2936143e-010
##NPOINTS=1475
##FIRSTY=0.15247789
##XYDATA=(X++(Y..Y))
3648+462950053+459379072+458404064+460037344+463060576+467417728+472176
224
3634+477231296+481464992+484786848+485771168+485487296+486241888+487875
424
3620+491510976+495722464+498586464+501224512+504022592+507604064+513067
328
3606+518151296+521789536+524453280+525867872+527819648+530787968+534113
024
3592+537768704+541275392+544601536+548018368+551502528+554634752+557532
480
3578+560743360+564380672+569294400+575186944+581985536+588830464+593840
896
3564+597611136+599918400+601973760+604996032+608684160+613151808+618207
360

I
I
I Wavenumber and Absorbance Values

i
I
738+104561816+106976208+108915000+110471512+111640256+112741912+1137680
80
724+113702448+112613680+110632456+108169360+107549456+108679392+1126616
16
710+118773392+126022648+133859840+141024016+147377024+152507760
##END
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APPENDIX F

RECR U1TMENT POSTER

Department of Chemistry
Monash University

on-smokin
women urgently

needed to
articipate in
Chemistry

Please contact:
Melissa Romeo
Room 109C Chemistry
Ph. 9905 4557, Ext. 54557
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EXPLANA TORY STA TEMENT

Fourier-Transform Infrared Spectroscopv in the Diatmosis of Cervical Cancer

My name is Melissa Romeo and I am studying for my Bachelor of Science
(Honours) degree at Monash. A research project is an important component of the course
and I am undertaking my research project under the supervision of Dr Don McNaughton, a
lecturer in the Department of Chemistry.

The aim of this project is to investigate the cellular changes of cervical cells during
the menstrual cycle using infrared spectroscopy. Infrared spectroscopy is generating
substantial interest as a technique for the diagnosis of cervical cancer, and it is anticipated
that the findings of this research project will contribute to the eventual implementation of
infrared spectroscopy into cervical cancer screening.

I am seeking non-smoking women who are prepared to undergo cervical smears.
The procedure will take approximately 10-15 minutes each week over a period of three
months, and will be undertaken at the Health Service in the Union Building by a qualified
medical practitioner. Women taking oral contraception (monophasic) are not excluded
from this research. Women not on the pill will be required to give blood samples for a
hormonal assay once every cycle. The women, if possible, will need to refrain from
sexual intercourse at least 48 hours before each smear, and abstain from vaginal douches
and baths 24 hours before each smear.

No findings that could identify any individual participant will be published. The
anonymity of your participation is assured. Access to data is restricted to my supeivisor
and myself. Coded data are stored for five years, as prescribed by University regulations.

Participation in this research is entirely voluntary, and you will be paid for time
and inconvenience. If you agree to participate, you may withdraw your consent at any
time.

If you have any queries or would like to be informed of the aggregate research
finding, please contact 9905 4557 or fax 9905 4597.

Should you have any complaint concerning the manner in which this research is
conducted, please do not hesitate to contact The Standing Committee on Ethics in
Research on Humans at the following address:

The Secretary
The Standing Committee on Ethics in Research on Humans
Monash University
Wellington Road
Clayton Victoria 3168
Telephone (03) 9905 2052 Fax (03) 9905 1420

Thank you.

Melissa Romeo
9905 4557
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CONSENT FORM

Informed Consent Form

Fourier-Transform Infrared Spectroscopy in the Diagnosis of Cervical Cancer

I agree to take part in the above Monash University research project. I have had the
project explained to me, and I have understood and read the Explanatory Statement, which
I retain for my records.

I understand that there may be a slight discomfort experienced during the cervical smear.
Standard procedures for collecting cervical smears will be adhered to, and so there is no
danger of additional risks.

I understand that results from my participation in the project are confidential, and that no
information that could lead to the identification of any individual will be disclosed in any
reports on the project, or to any other party.

I also understand that my participation is voluntary, that I can choose not to participate,
and that I can withdraw my participation at any stage of the project.

Name: (please print)

Signature: Date:

independent witness to participant's voluntary and informed consent.

Name: (please print)

Signature: Date:

Address:
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APPENDIX G

PROCEDURE FOR REMOVING HELA CELLS FROM A MONOLA YER SUSPENSION

1. Tip off media into a centrifuge tube;

2. Pipette 3 ml Hank's BBS (balanced salt solution, room temp.) into flask and rock;

3. Tip off into a centrifuge tube;

4. Repeat steps 2 and 3;

5. Add 3 ml Trypsin-Versine solution (room temp.), rock flask;

6. Incubate 35°-37°C for 5 minutes;

7. Shake flask to loosen cells;

8. Collect solution in a centrifuge tube;

9. Centrifuge tubes at 1000 g for 10 minutes;

10. Collect pellets and resuspend in PBS+.

PREPARA TION OF EHRLICH 'S HAEMOTOXYLIN

1. Dissolve 2 g haematoxylin in 100 ml of 95% ethanol;

2. Add 100 ml distilled water, 100 ml glycerin, 3 g ammonium or potassium alum and

10ml glacial acetic acid;

3. May be ripened by addition of 0.1 g sodium iodate;

4. Stain for 2-5 minutes.

PREPARA TION OF SOL UTIONS NEEDED FOR SUBCELL ULAR FRA CTIONA TION

Solution A: 60% w/v Iodixanol (obtained from Sigma Aldrich, Australia).

Solution B: Diluent: 150 raM KC1, 30 mM MgCl2, 120 mM Tricine NaOH, pH 7.8.

Solution C: Working Solution (50% w/v Iodixanol): Mix 5 volumes solution A with 1

volume of solution B.

Solution D: Homogenisation Medium: 0.25 M sucrose, 25 mM KC1, 5 mM MgCl2, 20

mM Tricine NaOH, pH 7.8.
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APPENDIX H

THE NITROGEN BOMB

Nitrogen cavitation is one way of producing cell nipture. A suspension of cells is placed

in a sealed stainless steel vessel and nitrogen gas is introduced to pressurise the headspace

above the cell suspension. The cells are allowed to equilibrate with the pressure and when

the valve is released the difference in the pressure at the valve causes the cells to rupture.

The level of disruption is controlled using different equilibration times and pressures.

The nitrogen bomb, Figure H.I, consists of a needle valve that is screwed into the

bottom of the bomb and a Teflon ball, which acts as a seal. The chamber of the bomb is

filled with the cell suspension (up to 15 ml) and the top section is screwed down. A seal is

achieved through an o-ring contact. The beaker was replaced with a centrifuge tube with a

hole drilled into the lid to minimise loss of homogenate.

To pressure
regulator and
nitrogen gas

.Cellular suspension

Teflon ball

Figure H.I Schematic representation of the nitrogen bomb apparatus used to produce a eel!
homogenate.
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APPENDIX I

MAKE COMPATIBLE

This function changes the datapoint spacing of the selected files to match that of the

'principal file'. If the file limits of a selected spectrum lie outside the file limits of the

principal file, the selected file is cut accordingly. The 'principal file' is the file to which

all other files are made compatible [11].

The use of this function was necessary in order to compare spectra collected on the

Perkin Elmer (PE) Spectrometer with spectra collected on the Bruker Spectrometer, as

well as producing spectral files with integer wavenumber values. Spectral files recorded

on the PE Spectrometer had 1476 data points ranging from 3650 - 700 cm"1. Spectra

recorded on the Bruker had 764 points ranging from 3648.789 - 705.3439 cm"1. After

Bruker spectra were made compatible using a method of quadratic interpolation they had

1475 points ranging from 3648 - 700 cm"1.
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APPENDIX J

CONSENT FORM AND EXPLANA TOR Y STA TEMENT FOR R WH

THE ROYAL WOMEN'S HOSPITAL

RESEARCH COMMITTEE

EXPLANATION AND CONSENT FORM AND QUESTIONNAIRE

1.0 Title of Project: FOURIER TRANSFORM INFRARED SPECTROSCOPY
IN THE DIAGNOSIS OF CERVICAL CANCER

2.0 Chief Investigator: Dr. D McNAUGHTON/PROF. MA QUINN

3.0 Description of Project ("LAY TERMS")

The present r.iethods of screening for cervical cancer produce a number of false negatives
and false positives and around 40% of these arise from errors in laboratory diagnosis.
These tests also involve complicated procedures, are time consuming and expensive.
Fourier Transform Infrared (FTIR) Spectroscopy has recently been shown to be very
promising as an inexpensive and rapid tool for the diagnosis of cervical cells. We wish to
explore the possibility of using FTIR spectroscopy as a screening tool for cervical cancer
by examining the cells left on instruments used to take your smear test.

4.0 Possible Risks, inconveniences and discomforts:

NONE

5.0 I, the undersigned

Hereby consent to my involvement in the research project no

Titled: FOURIER TRANSFORM INFRARED SPECTROSCOPY IN THE

DIAGNOSIS OF CERVICAL CANCER

1. Patient Number:

2. Date of Birth:

3. Method of Contraception (if oral contraception is it mono- or triphasic)?:

4. Number of Pregnancies:

5. Smoker (YES/NO):

6. What day of your cycle are you currently?
(1st day of bleeding is taken as day 1)
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7. Usual length of cycle (including menstruation):

8. Usual length of menstruation:

9. Do you use tampons? (YES/NO):

10. Have you engaged in sexual intercourse in the last 48 hours?:

All information is anonymous and confidential. Thank you for your cooperation.

5.1 I acknowledge that the nature, purpose and contemplated effects of the project so
far as it affects me have been fully explained to my satisfaction by the research
worker and my consent is given voluntarily.

5.2 The detail of the procedure proposed has also been explained to me, including the
anticipated length of time it will take, the frequency with which the procedure will
be performed and an indication of any discomfort that may be expected.

5.3 Although I understand that the purpose of this research project is to improve the
quality of medical care, it has also been explained that my involvement may not be
of any benefit to me.

5.4 I have been given the opportunity to have am member of my family or a friend
present whilst the project was explained to me.

5.5 I prn informed that no information regarding my medical history will be divulged
ar.'i the results of any tests involving me will not be published so as to reveal my
identity.

5.6 I understand that my involvement in this project will not affect my relationship
with my medical advisers in their management of my health. I also understand that
I am free to withdraw from the project at any stage.

I consent to be included in this research study

Signature: Date: / /

Witness: Date: / /

I, being the investigator named above, certify that 1 have
explained the nature and abject of the investigations and have made clear that declining to
participate would bear no adverse consequences.

Name and phone number for emergency contact: PROF. MA QUINN
(W) 9344 2130
(H) 9816 9387
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CONSENT FORM, EXPLANATORY STATEMENT AND QUESTIONNAIRE FOR FPV

FAMILY PLANNING VICTORIA
EXPLANATION, CONSENT AND QUESTIONAIRE

1.0 Title of Project: FOURIER TRANSFORM INFRARED SPECTROSCOPY
IN THE DIAGNOSIS OF CERVICAL CANCER.

2.0 Chief Investigators:
Dr. D McNaughton, Department of Chemistry, Monash
University, Clayton. Ph: 9905 4525. Fax: 9905 4975.

Prof. Michael Quinn, Department of Obstetrics and
Gynaecology, Melbourne University. Ph: 9344 2000.
Fax: 9347 1761.

3.0 Description of Project:
The present methods of screening for cervical cancer produce a number of false negatives
and false positives and around 40% of these arise form errors in laboratory diagnosis.
These tests also involve complicated procedures, are time consuming and expensive.
Fourier Transform Infrared (FTIR) Spectroscopy has recently been shown to be very
promising as an inexpensive and rapid tool for the diagnosis of cervical cells. A
NH&MRC Grant has enabled us to explore the possibility of using FTIR spectroscopy as a
screening tool for cervical cancer by examining the cells left on instruments used to take
your smear test.

4.0 Participation in the study:
Your participation in this study is completely voluntary. You have the right to withdraw
from the study at any time.

5.0 Confidentiality of Records:
All records in this study will be kept confidential. Your identity will not be known to
anyone except those caring for you at Family Planning Victoria. The investigators
performing this study will work with samples identified by a code kept at Family Planning
Victoria.

6.0 Possible risks, inconveniences and discomforts;
NONE.

7.0 Benefits:
The study does not offer any direct benefits to you, but may eventually help other women
by enabling the introduction of an objective screening method for the detection of cervical
cancer.

8.0 Understandings:
I have chosen to take part in this research study and give my consent on the understanding
that:
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• The research will be carried out in a manner conforming to the principles set
out by the National Health and Medical Research Council.

• I have received, read and understood information contained in the attached
documents about the general purpose of the study, its methods, requirements,
possible risks, inconveniences and discomforts.

• I understand that refusal to take part in the study will not affect the quality of
my further medical, care.

» I am volunteering to take part in this study and understand that I may withdraw
at any time.

• The Family Planning Victoria Inc. Ethics Committee has approved this
research.

• 1 have had the opportunity to ask questions about this study and the answers
given have been to my satisfaction.

• If at any time during the study I need to obtain further information I am free to
telephone Dr. Don McNaughton (9905 4525), or Melissa Romeo (9905 5721).

I, (name) ...

of (address).

have received, read and understood detailed information about the above study and have
decide to participate as confirmed by my signature below.

You will receive a copy of this form for your record.

Signature Date

Witnessed by Date
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PATIENT QUESTIONAIRE

Title: FOURIER TRANSFORM rNFRARED SPECTROSCOPY IN THE DIAGNOSIS

OF CERVICAL CANCER.

1. Patient Number:

2. DateofBirth:

3. Method of contraception (if oral contraception is it mono- or triphasic)?:

4. Number of Pregnancies:

5. Smoker (YES/NO):

6. Day of cycle (1st day of bleeding is taken as day 1):

7. Usual Length of cycle (including menstruation):

8. Usual Length of menstruation:

9. Do you use tampons? (YES/NO):

10. Have you engaged in sexual intercourse in the last 48 hours?:

All information is anonymous and confidential. Thank you for your cooperation.
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APPENDIX K

INI ERPRETA TION OF Si MCA RESUL TS [12]

SAMPLE TO MODEL DISTANCE

The Coomans plot, Figure K.I, shows the orthogonal distances from the new objects to

two different classes or models. The membership limits are indicated for a user defined

level of significance. Samples that fall within the membership limits are said to belong to

that class.

Sample Distance
to Model B

Samples
belong to
Model A

Samples
belong
to both
models

, Membership limit
for model A

Samples belong to none
of the Models

Membership limit
for model B

1
Samples
belong to
Model B

Sample Distance
to Model A

Figure K.1 Coomans plot interpretation

MODEL DISTANCE

The model distance can be used to visualise the distance between one class and the other

class or classes. By definition, the distance from a class or model to itself is 1. The

distance to other classes should be greater than 3 for good separation between classes.

DlSCRIMINA TION PO WER

The discrimination power of a variable shows how much each X variable (wavenumber

value) contributes towards separating two classes. A discrimination power near 1

indicates the variable is of no use in separating the classes. Discrimination power should

be greater than 3.
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MODELLING PO WER

The modelling power gives an indication of the relevance of a variable, ie how much the

variance of the variable is used to describe the class model. Modelling power is between 0

and 1. A variable with a modelling power higher than 0.3 is said to model the class well.

OUTLIER DETECTION

PCA utilises three methods for identifying and removing outliers from data:

1. Scores plots show sample patterns according to one or two components.

Samples lying far away from other samples are likely to be outliers.

2. Residuals measure how well samples or variables fit the model. A sample with

a high residual is poorly described by the model and is an outlier.

3. Leverages measure the distance from the projected sample (model

approximation) to the centre. Samples with high leverages have a stronger

influence on the model than other samples, but may not necessarily be an

outlier. An influential outlier has both a high residual and leverage and should

be removed.
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