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Summary

There are many situations where the relationship of a response variable as,a function of a

quantitative variable (e.g., time) is of importance. The presence of other variables is also

common. This thesis considers statistical models in which the additional variables are

modeled by means of a parametric linear relationship and the time variable is modeled by

an unknown non-parametric function that can be estimated by cubic smoothing splines.

Cubic smoothing splines have attracted much attention as an alternative to parametric

regression. Perhaps their popularity is due to the fact that ths criterion giving rise to cubic

splines can be seen as a combination of a least squares goodness of fit criterion and a

term that penalizes the degree of curvature of the regression function.

This thesis outlines a general regression methodology, which provides data-driven

solutions to the following problems:

the variance-covariance structure of the resultant non-parametric regression,
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• diagnostic checking for departures from linearity,

• bandwidth selection,

• prediction.

The approach is data analytic in which the possible relationship is determined by data,

instead of being limited to a certain functional form as in parametric analysis. Using non-

parametric models in place of parametric ones introduces flexibility into the smoothing

process. Our approach uses cubic smoothing splines in their state-space representation.

In this thesis we use the semiparametric model in which the time component is estimated

by cubic smoothing splines. We express the semiparametric model in the state-space

form and derive the variance-covariance matrix of the error disturbance vector by

applying Yule-Walker equations.

A desirable capability in many economic and business situations is to be able to make

reasonably accurate predictions of future values of the oirtcovii*; variable. This thesis

improves the potential use of the cubic smoothing splines in p,»;dictio i by deriving the

best unbiased predictor and the variance-covariance matrix of its prediction error. This

allows us to construct prediction intervals and to test whether a recently rea'ised

observation on the dependent, variable could have been generated from the same mode!

that generated the past observations.
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The derivation of the variance-covariance matrix of the disturbance vector of the general

regression model leads naturally to the extension of the family of the likelihood ratio

based tests. Two new tests for detecting nonlinearity are proposed in this thesis. One

problem considered is that of testing for the inclusion of a possibly nonlinear component

in the model and the other is testing for linearity of a possibly nonlinear component.

Where alternative comparable test procedures are available, extensive simulations are

used to benchmark the performance of the methodology and demonstrate that both new

tests are competitive. A comparison study between mean and variance based tests is a

part of this thesis.

The smoothing parameter, which controls the trade off between the smoothness of the

solution and the fidelity to the data, is very important in non-parametric smoothing

techniques. The marginal likelihood function is constructed for the new tests for

nonlinearity. The smoothing parameter is a by-product of the maximization of the

marginal likelihood. Simulations are used to compare the estimated value of the

smoothing parameter along with the accuracy of the estimated nonlinear function for the

time component in the model.

A wide variety of non-linear data sets that are difficult to model and estimate are used to

illustrate the potential of the approach in applied data analysis.
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CHAPTER 1

Introduction

1.1 Background

Every day, economists make personal and professional decisions that are based upon

predictions of future events. To be able to do this, they rely upon the relationship between

what is already known and what is to be estimated. If decision makers can determine how

the known is related to future outcomes, they can aid the decision-making process

considerably. To be able to do this, they need to formulate and test a model based on

what has been observed and utilize it for prediction.

Econometrics as a science involves estimation and testing of economic models. Maddala

(1992) formulated three main aims of econometrics:
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• formulation of economic models in empirically testable form,

• estimation and testing of these models with observed data,

• using these models for prediction and policy purposes.

Beginning with the initial set of assumptions, econometric theories provide the guidance

to formulate an economic model, which is used to describe the phenomenon under study.

A commonly used model in econometrics, which this thesis is mainly concerned with, is

the regression model. Regression and correlation analyses are well known and widely

used techniques to determine both the nature and the strength of a relationship between

the variables. Francis Galton first used the term regression a& a statistical concept in

1877. He designated the word regression as the name of the general process of predicting

one variable from another. Later, statisticians coined the term multiple regression to

describe the process by which several variables are used to predict another. This allows

the use of more available information to predict the unknown values of the dependent

variable.

Given a variable we want to explain and a group of potential explanatory variables, there

may be several different regression equations we can look at, depending on which

explanatory variables we include and how we include them. Each such regression

equation is called a model. Modeling techniques are the various ways in which we can

include the explanatory variables and check the appropriateness of the resultant models.
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There are many modeling techniques. This thesis is concerned with one of the non-

parametric modeling techniques called spline smoothing.

In the case of univariate modeling, a repression curve describes a general relationship

between an explanatory variable -r-d ••>, resp^:.;,c %« >ble. The aim of regression analysis

is to produce a reasonable approximation to Che v??ik;v .vn response function. A look at a

scatter plot of variables does smt always suffice in order to establish an interpretable

regression relationship. By describing \hc "bservational errors a regression model allows

one to concentrate on important details of the mean, dependence of the variables. The task

of approximating the mean function can be done in two ways. The familiar parametric

approach is to assume that the mean curve has some prespecified functional form. An

example of a parametric model is a polynomial regression equation where the parameters

are the coefficients of the independent variables. An important assumption of the

parametric approach is that the approximation bias of the best parametric fit is a

negligible quantity. An alternative approach is to estimate the mean curve non-

parametrically without reference to a specific form. This overcomes the main

disadvantage of the parametric approach which is that a preselected parametric model

might be too restrictive or too rigid to fit unexpected features. The non-parametric

approach offers a flexible tool in analyzing unknown regression relationships. The term

"non-parametric" refers to the flexible functional form of the regression curve, therefore

neither the functional form of the mean function nor the error distribution is prespecified.
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Hardle (1990) listed the main advantages of the non-parametric approach to estimating a

regression curve as follows:

• it provides a versatile method of exploring a general relationship between the

variables,

• it gives predictions of the observations yet to be made without reference to a

fixed parametric model,

• it provides a tool for finding spurious observations by studying the influence

of isolated points,

• it constitutes a flexible method of substituting for missing values or

interpolating between adjacent values.

The prediction of new observations is of particular interest in time series analysis. It has

been found that in certain applications classical parametric models are too restrictive to

give a reasonable explanation of observed phenomena. Robinson (1983) has investigated

the non-parametric prediction of time series. In the nineties, non-parametric smoothing

methods became popular techniques in applied research in many fields of economics such

as electricity demand modeling, housing prices modeling, term structure of interest rate

modeling, investment behavior modeling etc. The recent book by Schimek (2000) is a

unique collection of a variety of points of view regarding non-parametric regression,

smoothing and statistical modeling. This book provides an excellent reference for

researchers in various fields wishing to obtain an overview of assorted techniques and

practical issues related to implementing non-parametric techniques.
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The question of which approach should be taken in data analysis is a compromise

between the possibility of gross misspecification resulting from too high a model bias in

the case of a pure parametric model and more variable estimates in the case of non-

parametric models. The ideal approach seems to be a combination of the advantages of

both methods in a semiparametric mixture.

1.2 Direction and motivation

The aim of this thesis is to extend a general approach to non-parametric smoothing by

modeling the unknown, possibly nonlinear function of the time component by cubic

smoothing splines in a semiparametric model. The optimal value of the smoothing

parameter is determined by optimizing the marginal likelihood function. To be able to

derive the marginal likelihood function, the variance-covariance matrix of the disturbance

vector of the general regression model will be derived. Further applications of cubic

smoothing splines in nonlinear inference for time series will be based on the identified

error term structure.

This thesis is largely motivated by work of Shively, Kohn and Ansley (1994), who

proposed a new exact test for nonlinearity in regression models with one possibly

nonlinear component. Their test is based on the stochastic interpretation of the smoothing

splines as given in Wahba (1978) and is a point optimal invariant test, as defined in King
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(1987). Wecker and Ansley (1983) derived an exact maximum likelihood estimator for

the parameters of Wahba's model. Shively et al. (1994) combined these findings to derive

their exact test, which is computationally intensive and requires a numerical derivation of

the critical values. Their approach is not easy to understand and loses some of its appeal

because of the complicated computation required. We extend the Shively et al. (1994)

work by deriving the exact covariance structure of the error term for cubic smoothing

splines and equally spaced data. We apply our finding to prediction by deriving the best

linear unbiased predictor and the variance-covariance matrix of its prediction error. This

allows formulation of prediction intervals for future values.

We propose two new variance based tests for detecting by nonlinearity applying a

likelihood ratio hypothesis testing approach. Our approach is computationally very

friendly and easy to implement using conventional statistical software. We are interested

in two testing problems. The first is to test for the inclusion of a possibly nonlinear

component and the second one is to test for linearity against the alternative of nonlinear

component. Thus in the first test we would like to know, whether an additional

component, which we assume is nonlinear, should be included in a regression model. In

the second test we are testing whether the additional component which should be

included in the model, based on the first test result, is or is not linear indeed.

We also investigate the amount of smoothness of the estimated regression function,

which is controlled by a smoothing parameter. This is commonly k;._, , as a bandwidth
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selection in non-parametric regression techniques. We compare the existing methods of

smoothing parameter selection with our approach.

1.3 Outline of the research

Chapter 2 provides an introduction to the theory of the univariate polynomial splines, and

is largely based on the work of Silverman (1985), Mathews (1992), and Green and

Silverman (1994). It briefly reviews the rapidly developing field of non-parametric

smoothing with focus on spline smoothing techniques. We introduce the general spline

classification. Attention is focused on spline functions in relation to estimating the

unknown function as a data-driven solution. We briefly discuss the objective of

regression splines and related problems of choosing the optimum number of knots and

their optimum location. We describe the concept of smoothing splines, because

smoothing spline applications are the focal point of this thesis.

Chapter 3 is motivated by the work of Wahba (1978), Wecker and Ansley (1983), and

Judge et al. (1988). We introduce univariate cubic smoothing splines in a state-space

form and derive the variance-covariance matrix £ of its disturbance vector by Yule-

Walker equations. This derivation leads to the application of U in prediction. We derive

the best linear unbiased predictor and the variance-covariance matrix of its prediction

error. Based on this derivation, we construct prediction intervals.
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of the methodology presented here. We evaluate the accuracy of the estimation

performance by the square root of the integrated squared error.

Chapter 7 summarizes the original contribution of this thesis, It also outlines associated

problems with this research that require additional consideration.
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Spline functions

2.1 Introduction

Spline functions were introduced to the mathematical literature just over 70 years ago

by Whittaker (1923) and extended later by Shoenberg (1964). The basic idea is to use

simple functions, usually cubic polynomials, to construct a suitably smooth piecewise

function. Since their introduction, splines have proved to be very popular in

interpolation, smoothing and approximation and in computational mathematics

generally. As well as their theoretical interest, splines are used as computational tools

in science, engineering, co:nputer-aided design, business, and the social sciences.

hi this chapter we introduce the concept of spline functions. We will focus on spline

functions in relation to estimating an unknown function based on a set of data.

^•MXamsSctOBmn^t^
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In Chapters 4 and 5, we propose two variance based tests for detecting nonlinearity based

on marginal likelihood functions. Both tests are likelihood ratio type tests. In the first test,

which we denote [>''..li test, we formulate null hypotheses as that there is no need to

include any additional component in a regression model, against the alternative one, that

there is. We assume that this additional component is nonlinear. In the second test, which

we denote MLR* test, we are in fact testing whether this additional component is or is not

linear. Therefore we formulate the null hypotheses in this test as that the additional

component which should be included in a regression model is linear against the

alternative, that it is nonlinear. We compare the tests' performance with those of

alternative comparable tests by computing their sizes and powers. We investigate their

performance for ten nonlinear functions that are difficult to model by traditional

parametric approaches. We perform a large Monte Carlo simulation subject to variation

of the test functions and the variance of the error vector. We also compare the variance

based tests with mean based tests for the inclusion and for the linearity of a possibly

nonlinear component. These two chapters demonstrate the application of cubic smoothing

splines in nonlinear inference, namely hypothesis testing

The work of Kohn, Ansley and Tharm (1991) motivates Chapter 6. This chapter extends

the family of bandwidth selection methods of the smoothing parameter A. A maximum

marginal likelihood estimate of the smoothing parameter is a by-product of the likelihood

function maximization from Chapters 4 and 5. A comparison between penalized

regression and maximum likelihood based methods highlights the promising performance
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A very common problem in practice, is to fit a function 5 (i) of a known form to a set

of data values (t,Y.), for i = l,2,...,n, where E(Y.\t.) = s(t). The most well-

known technique for finding such a fit is least squares curve-fitting. The underlying

model is cf the form

(2.1)

The simplest form is the linear regression, which will fit a straight line to any data,

regardless of the shape of the data. It is one of the most classical and widely used

techniques. In other words, the data are regarded as realizations from the model

Y. =
t

(2.2)

The error e (t) is often assumed to be independent identically distributed noise with

mean zero and constant variance a2. The main purposes of such regression analyses

are to quantify the contribution of the covariate tto response Y per unit of value of t,

to summarize the association between the two variables, to predict the mean response

for a given value of t, and to extrapolate the results beyond the range of the observed

covariate values. The linear regression technique is very useful if the mean response is

linear

E(Y. t.) = s(t.) = a (2.3)
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If the scatter plot of the data appears to be non-linear, it is reasonable to use a non-

linear relationship and linearise it by a suitable transformation. An important class of

such models is specified by means of functions that are intrinsically linear. The non-

linear yet intrinsically linear models involve functions of the independent variable that

are either strictly increasing or strictly decreasing. In many situations, a scatter plot of

data suggests that s (t) has some local minimas and maximas. In this case a fit of a

polynomial function, i.e. polynomial regression, is a very popular approach.

While the polynomial regression approach has been widely used, it suffers from a few

drawbacks. One is that polynomials often suffer from excessive 'wiggle' as the order

of the polynomial increases. The polynomial functions are not very flexible in

modelling many problems because polynomial functions have all orders of derivatives

everywhere. Another is that individual observations can have a large influence on

remote parts of the curve. A third point is that the polynomial degree cannot be

controlled continuously. There are several ways to repair the drawbacks of

polynomial fitting. One is to allow possible discontinuity of derivative curves. This

leads to the spline approach. Another possible direction is to expand the regression

function into orthogonal series, then choose a few useful subsets of the basis

functions, and use them to approximate the regression function. This approach is

called the orthogonal series method A third approach is that, instead of increasing the

number of parameters, one can apply the linear model locally. This approach is

termed the local (linear) modelling approach. In this thesis we will focus on the

spline approach only.
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2.2 Interpolating splines

In the least-squares method, we assume that there are errors and uncertainties in the

data, so we do not demand that our fit passes through the data points [toy\. In the

interpolating-polynomial technique, our fitted polynomial will pass through all data

points (i-jj/,-)- There are a number of techniques, such as Newton's, Lagrange

interpolating polynomials and many more, coming from numerical mathematics that

fit an interpolating polynomial to data points (t.,y.).

A more serious problem with polynomial interpolation is that it often results in a large

amount of oscillation, especially for large polynomials of order n, therefore the

interpolating fit is less accurate. Introducing piecewise linear or piecewise quadratic

interpolation usually improves modelling. The resulting curve is not smooth because

the derivative s'(t) is discontinuous (i.e., the graph has "corners"). An alternative

approach is still to apply lower-order polynomials but of larger degree than 2 to a

subset of data points. Such connecting polynomials are called spline functions. The

most frequently used spline functions are third-order polynomials known as cubic

splines. These functions have the additional property that the connections between

adjacent cubic equations are visually smooth. The interpolating cubic spline also

connects all the points, but because it is limited to third-order changes, the oscillations

are kept to a minimum. The spline usually provides a superior approximation to the

behaviour of functions that have local, abrupt changes.
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It is possible to construct cubic functions sk(t) on interval [tk,tk+1], so that the

resulting piecewise curve y = s(t) and its first and second derivatives are all

continuous on the larger interval [a,b]. The graph Y = s(t)vn\] not have sharp

corners and the radius of curvature is defined at each point because sk'(t) and

sk"(t) is continuous. Mathews (1992) presented the following definition of the cubic

spline interpolant. Let {( tk,tk+t )}n
k=0 bera + 1 points where

a = tQ<tJ< ...<tn =b. These points tk are called knots. The function sk(t) is

called a cubic spline if there exist n cubic polynomials s (t) with the properties:

for t G k.,<t+1] for each k = 0 ,1 , . . . ,n — 1.

This means that the spline is a cubic polynomial.

(ii) s(tk) = skfi = yk for k = 0,1,..., n.

This indicates that the spline passes through each data point.

This condition means that the spline is a continuous function.

This means that the spline is a smooth function.
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The second derivative is also continuous, which is related to the curvature of

the cubic spline interpolant.

The data points give (rc +1) conditions and properties (iii), (iv) and (v) each give

(n - 1 ) conditions. Therefore n + 1 + 3 (n - 1 ) = 4n — 2 conditions are specified.

This leaves two additional degrees of freedom unaccounted for. These are called

endpoint constraints; they involve either s'(t) or s"(t) at tQ and £„. The typical

approach for the endpoint constraints can be summarized as follows:

(i) Clamped cubic spline : specify s' (tQ), s' (tn).

(ii) Natural cubic spline : a relaxed curve, s" (tQ) = s" (tn) = 0, so that s (t) is

linear on the two extreme intervals.

(iii) Extrapolated spline: extrapolate s"(t) to the endpoints.

(iv) Parabolically terminated spline: s" (t) is constant near the endpoints.

(v) Endpoint curvature-adjusted spline: specify s"(t) at each endpoint.

We refer to Mathews (1992) for more details about various interpolating cubic

splines, their computation and their graphical presentation. The work of Schumaker

(1981) provides a history of inteipolating splines from a numerical analyst's point of

view. Prenter (1975) describes their role in the numerical solution of differential

equations and DeBoor (1978) is the standard reference on algorithms for generating

univariate splines.
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2.3 Univariate polynomial regression splines

Splines are of interest to scientists for their favourable properties in smoothing noisy

data at least since Shoenberg's (1964) work. The two major types of non-interpolating

splines as a function of one variable are regression splines and smoothing splines.

The concept of so-called B-splines (B stands for "basis") is used in regression splines.

B-splines are not interpolating splines, because curves used for fitting data do not in

general pass through the given data points. A special type of curve in this family are

Bezier curves, see Geraald et al. (1989). We refer to DeBoor (1978) for more details

about univariate regression splines.

In the previous section "knots" = | t | . Now assume that lk],k2,...,kK} are the

-K" knots placed along the domain of the independent variable t, such that

kx <...<kK <max(t.y An important problem associated with fitting

regression splines is the choice of both the number and location of the knots. A large

number of knots leads to interpolation of the data. As the number of knots becomes

much smaller than the sample size, the resulting regression spline will have an

increasingly smooth appearance and the residuals will tend to increase. If the knots

are badly located, details of the curve can be missed. The knots are often placed at

locations where curvatures have a reasonably large change. The "eyeball" or trial and

error method is frequently used, but it can be very cumbersome and time consuming.

We refer to work of Agarwal and Studden (1980) on the issue of determining the

optimal number of knots. Friedman and Silverman (1989) proposed a
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forward/backward stepwise knot-placement strategy. Their model selection and knot-

placement strategy is known as the TURBO smooth model. Silverman (1985)

proposed a minimum span method for knot placement. Fan et al. (1996) listed a knot

deletion idea as an automatic procedure for selecting knots. Finding the optimum

number of knots and their location in regression splines is similar to the finding

optimum value of the smoothing parameter A in smoothing splines.

For applications of regression splines, see Poirier (1973), Buse and Lim (1977), Niu

(1996), Shively and Sager (1997), and Smith (1998a). Regression splines have

attracted the attention of many scientists in economics and business, see for example

Vasicek et al. (1982), Engle et al. (1986), Munson and Jernigan (1989), Kohsaka

(1992), Smith and Huang (1993), Moyeed (1995), Smith (1998b), and Chen et al.

(1999). Smith and Kohn (1996, 1997), and Smith et al. (1996, 1998) discuss applied

non-parametric regression using regression splines in a Bayesian context.

2.4 Smoothing splines and the penalized least squares

problem

Smoothing splines owe their origin to Whittaker (1923) whose work on graduating

data stimulated Schoenberg (1964) to derive the smoothing spline estimator. Later,

Reinsch (1967) gave an independent derivation for the case of a cubic spline.

Smoothing splines were generally regarded as a numerical analysis tool until

extensive research, pioneered by Grace Wahba, showed they had useful statistical

properties and deserved consideration as a method for performing non-parametric
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regression introduction t 0 her work, along with references to her more

important f\dti,catl "•* found j n the Wahba (1990) rnonograph. It has since become

have four A

of researc

evident t l>^ jnoo^x^g splines, and their variants, provide extremely flexible data

analysis l<r\ As" l^^«lt of this, they have became very popular in data analysis and

in. many areas, including economics and business. The Green

and Silver^ (\^\- monograph has become a standard theory reference in this field

Fitting the V * #" is£ an obvious aiin of curve fitting. Another objective is to fit a

reasonably V pot'1 c^^ve to the data. These two objectives are in conflict because a

good fit <$\^ *\iPn S* Widely fluctuating or rough curve. The solution to this conflict

has been ^\ , j r o ^ a roughness penalty term into the goodness-of-fit measure, so

there is a ^ yjn '̂6 c?°iripromise between a good fit to data and smoothness of the

fitted c u r / \

The word \ , ^ i e cOI^«^s ^.oni the natne for a flexible piece of wood used to draw

smooth cff\ , in ̂ e ^ a y ^ before computer graphics. If the s(t) is the mathematical

function 0% ^ e <^<& to be drawn then the leading term in the mathematical

expression energy in this piece of wood is a constant times J s"
2. An

obvious ifl̂ V /re ̂  §cs»°dtiesS'Of-fit i s the sum of squared errors ^ (yt - s (t. )j and

if we take . n/2 $ K re^onable approximation for the roughness of the curve (the. n/2 $ K re^on

less smooth , Curvev -the greater the strain on the spline) then we get
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la] t/
(2-4)

as a penalised goodne5^s,0f.'fl
t measure for the fitted curve s (t), which is required to

be a twice-differenti^^ f^nctioc* o n [a,6]. The smoothing parameter A > 0 is an

important parameter ft * ^fr)- 'l r e f l a t e s the 'rate of exchange' between goodness-of-

fit and smoothness. ̂ %^\\ V^Ues ̂ ive rise to rougher fitted functions and larger values

result in smoother cuî V ŝ yfl" larger mean squared errors The penalized least squares

estimator s(t) is the I^jni<*I'!er ^ f the expression (2.4) from the range of all twice-

differentiable functio^^f) and ihe function s(t) is known as a cubic smoothing

spline.

Consequently a genef^^jsrtt001^'^ spline of order mthat estimates s(t) is obtained

by minimizing the peH^jjze^ sum «̂ >f squares

over all functions s(t) % |,avin8 sRuare jntegrable mth derivative, where J(sim(t)f

represents a roughne*s
 ; fne^- The solution to minimizing (2.5) for given A is a

spline function s(t\h) of &&£& 2m, ^ 1 , that is a piecewise polynomial of degree

2m - 1 between the ̂ \,sjgri P°iti^ t. v/ith 2m~~.2 continuous derivatives across the

points. m = 2.
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2.4.1 Smoothing parameter selection

The problem of choosing the smoothing parameter A is very important in curve

estimation. An incorrect value of A tends to overestimate or underestimate the

possible relationship. In the case of smoothing we use the terminology "over-

smoothing" or "under-smoothing".

As noted above, the value of the smoothing parameter A (0 < A < oo) regulates the

trade-off between goodness-of-fit ana smoothness. The choice of A is therefore vital

for the shape of the fitted curve. Increasing A increases the smoothness of the curve

vs the I s"2 term becomes more important. This has the effect of forcing I s"2

down. In the limit as A approaches infinity, I s"2 will be forced to zero and we end

up with a straight line fitted by least squares.

Figures 2.1-2.5 show cubic smoothing splines with different values of A applied to

the same artificial data set. The artificial set of data was created as follows: we

generated a set of 100 independent design points, t , uniformly distributed over the

interval [0,1], and than generated a response variable y. = s(t.} + e. via the function

s(t) = sm(4tf + 3ts with the errors e.,i = 1,..., 100, being iidN(0,0.52).
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8.
S

o.O 0.2 0.4 D.6

Design points

1.S

Figure 2.1: Scafsrplo! of the artificial data with smooth function s ( i ) superimposed

Design points

Figure 2.2: Scatter plot oftue artificial data and the estimated cubic spline with A being too small



Chapter 2: Spline functions 22

0.4 0.6

Design points

0.8 1.0

Figure 2.3: Scatter plot of the artificial data and the estimated cubic spline with X = oo

8

1.0

Design points

Figure 2.4: Scatter plot of the artificial data and the estimated cubic spline with X being too large
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Design points

Figure 2.5: Scalier plot of the artificial data and the estimated cubic spline with A = 0

In the two limiting cases we have interpolation for A = 0 in Figure 2.5, and the linear

fit for A = co in Figure 2.3. An incorrect value of the smoothing parameter tends to

oversmooth (Figure 2.4) or undersmooth (Figure 2.2) the relationship between

variables. If the aim is to smooth the data only, larger values of the smoothing

parameter produce smoother curves while smaller values produce rougher curves. The

values of smoothing parameter A used in the above-mentioned exercise were chosen

subjectively according to visual inspection of the artificial data set.

Figure 2.6 gives the spline estimate with A "about right". Generalized cross

validation (to be discussed) was used to choose A.



Chapter 2: Spline/unctions 24

0.0

Design points

Figure 2.6: Scatter plot of the artificial data with cubic spline estimate using GCV

The correct value of the smoothing parameter A is thereforS crucial in fitting and

smoothing the data by smoothing spline techniques. Theoretical and practical

discussions concerning the selection of the smoothing parameter A within the

penalized regression framework arc rich in the literature, see Eubank. (1988) for a

good review, also see Green and Silverman (1994).

Often the smoothing parameter, A, is chosen by a trial and eror approach. An

arbitrary value of A is selected until one is found which represents a visually

satisfactory fit to the data. This can be time consuming and has the disadvantage that

no optimality properties can be attributed to the value selected in this manner. It is

preferable to use some data driven, objective or automatic methods for selecting A.
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The most well known automatic procedures are cross-validation (CV) and

generalized cross-validation (GCV). Allen (1974) suggested CV in the context of

regression splines and Wahba and Wold (1975) in the context of smoothing splines.

Craven and Wahba (1979) introduced an improved version of CV known as GCV. It

has become the standard automatic procedure for A determination. Note that CV and

GCV do not need a2 for estimating A.

Robinson and Moyeed (1989) introduced a robustification of generalized cross-

validation being motivated by the finding that CV can cause under-smoothing. For an

appealing comparison between GCV and robustified GCV, see Neubauer and

Schimek(1994).

Other procedures, which require estimating a2 for A selection, are maximum

likelihood (ML) or restricted maximum likelihood (REML). Anderssen and

Bloomfield (1974) were the first to suggest the use of a maximum likelihood estimate

for A in a smoothing context. The Bayesian formulation of the smoothing spline

estimator given in Wahba (1978) allows smoothing parameter estimation to be

performed using the likelihood function. ML estimation of the smoothing parameter

A was incorporated in work by Ansley and Wecker (1981) and by Wecker and

Ansley (1983). Their finding was Jater generalized to marginal likelihood (GML) by

V <hba (1985), and Ansley and Kohn (1985). According to Speed (1991), REML

animation of A coincides with the GML procedure discussed by Wahba (1985).

Kohn, Ansley and Tharm (1991) used Monte Carlo simulations to compare CV, GCV

and GML. They found that GCV and GML outperformed CV for unequally spaced

data, while GCV and GML had similar properties for cubic smoothing splines.

m.



Chapter 2: Spline functions 26

hi recent work, Lin and Zhang (1999) estimated a non-parametric function in their

model by using smoothing splines. They jointly estimated the smoothing parameter A

and variance component a2 using a marginal quasi-likelihood method. Their

approach is based on the generalized additive mixed models setting.

We devote Chapter 6 of this thesis to the problem of estimating the smoothing

parameter A.

2.4.2 Properties

This thesis focuses on natural smoothing splines following the approach of Green and

Silverman (1994). They call this representation of smoothing splines the value-second

derivative representation. The following discussion draws heavily on Green and

Silverman (1994, pp. 11 - 13 and 17 - 20).

Assume s is the natural cubic spline with knots tt < ... < tn . Let s. = s(i.) and

£. = s"(t.) for * = 1, ..., n, s = («,,.••>«»)' and £ = ( £ 2 , - , C i ) ' • N o t e t h a t * i s

an (n - 2)x 1 vector because for a natural cubic spline s"{t^ = s"(tn) = 0 so that

£. for i = 1 and n are zero. The curve s(t) can be completely specified by s and £;

in fact it is possible to specify s (t) and its derivatives as explicit functions of s and
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We now need to introduce the matrices Q, R and K. Assume that h. is the difference

between two subsequent knots such as h,•,= ti+1 -1,; for i = 1, ...,n - 1. Matrix Q is

the n x (n - 2) matrix with elements q{j, for i = l,...,n and j = 2,...,n -1 given by

r. j . = h~*v q.. — —h.*, and q = h'1 for j = 2,...,n — 1 and q{j = 0 for

I* — j \ > 2 . Matrix R is of order (n - 2) x (n - 2) with entries rip for i and j from 2 to

in — 1), specified by r. = — ( / ? , + /i.) for i = 2,...,n — 1 and r.. , =r. ,. = — h.
\ S i r J „ o V s-1 1' ' ' i,i+l i+l,i c. i

for i = 2, ...,n - 2 and r{j = 0 for I i - j | > 2. The matrix K is defined as

K =

Theorem 2.1 [Green and Silverman (1994, p. 13).] The vectors s and £ specify a

natural cubic spline s if and only if the condition

Q's = (2.6)

is satisfied. If (2.6) is satisfied then the roughness penalty will satisfy

(2.7)
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Now we wish to express the cubic smoothing spline given by (2.4) by the combination

of matrices Q,R and K. The estimator of the unknown curve s is a minimiser of

Sis) over the set of functions that are differentiable on a < tt < ... < tn < b and

have absolutely continuous first derivatives. Let s be a natural cubic spline with

vectors s and £, and matrices Q and R. Let Y be the vector (yv...,yn}. The

penalised sum of squares (2.4) can be expressed as the residual sum of squares about

s plus the roughness penalty term. The residual sum of squares can be rewritten as

where the vector s is the vector of «(£,-)• Substituting (2.7) for the roughness penalty

term the original equation (2.4) changes to

S (s) = (Y - s)' (Y-s) + Xs'Ks

= s'(I + XK) s - 2Y's + Y'Y.
(2.8)

Equation (2.8) has a unique minimum, because \K is non-negative definite and the

matrix (/ + XK) is positive-definite. This minimum is given by

xxy'Y, (2.9)

therefore (2.8) can be expressed as
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XK){s - (I + XK)lY) (2.10)

plus a constant that depends only on Y. Thus, S(s) has a unique minimum given by

(2.9) over the space of all natural cubic splines with knots at the points t{. All this is

summarised in the definition of the cubic smoothing spline given by Theorem 2.2,

where S z[a,b] specifies the set of the set of functions that are differentiable on

a < ij <...<tn <b and have absolutely continuous first derivative.

Theorem 2.2 [Green and Silverman (1994, p. 19).] Suppose n > 3 and tv...,tn are

points satisfying a < tj < t2 < ... < tn < b. Given data points (jjv...,yn^j and a

strictly positive smoothing parameter X, let s be the natural cubic spline with knots at

the points tt, ... ,tn for which s = (I + XK)~lY. Then for any s in S2[a,b],

S(s)<S(s)

with equality only ifs and s are identical.

For the purpose of working in higher dimensions, an alternative representation of the

natural cubic spline is given in Green et al. (1994 on p.140). We refer the reader to
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Green et al. (1994), which has become a standard theory reference in this field, for

more details on nonparametric regression with a roughness penalty.

2.4.3 Application and extension

Eubank and Spiegelman (1990) investigated the use of non-parametric regression

methodology to test the adequacy of a parametric linear model. Their test is based on

fitting cubic smoothing splines to residuals and has good power properties against

several reasonable alternatives. Gu (1990) applied the concept of adaptive spline

smoothing in non-Gaussian regression models. In the paper by Schlitten (1991),

smoothing splines were applied to time series decomposition. His proposed method

used structural time series models and adapted smoothing splines, which were

suitably robustified. Coulson (1992) used smoothing splines to generate a non-

parametric response of housing prices to floor space. In the study of Rodriguez

(1992), the constrained smoothing spline estimator was introduced into time-of-day

electricity demand modelling. Fisher et al. (1995) described a technique for fitting the

term structure of interest rates using smoothing splines. They showed how their

technique can be used to spline an arbitrary transformation of the discount function.

Rodriguez (1999) applied smoothing splines to the estimation of a model of

investment behaviour of the U.S. telephone industry.

We need to make a few remarks on the choice of regression splines versus smoothing

splines for smoothing data from the model (2.1). Wahba (1975) and subsequently

Agarwal and Studden (1980) showed that the asymptotic behaviour of the two

methods is the same, provided the smoothing parameters, namely the number of knots
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and the smoothing constant A, are both chosen optimally. It was found that for very

large data sets, the regression spline with the optimal number of B-splines does not

have such a good resolution to follow the local features of data as smoothing splines.

A hybrid approach Ibi very large data sets has been suggested by Nychka et al.

(1984).

A new concept of regression and smoothing splines is spatially adaptive smoothing,

proposed by Luo and Wahba (1997). Spatially adaptive smoothing can handle a wide

variety of shapes and spatial inhomogeneity. Traditionally, two techniques have been

used to address this problem of spatial adaptivity. One technique uses local variable

smoothing parameters (or bandwidth) in common smoothing methods, such as

smoothing splines. The omer technique is to place knots adaptively in a regression

spline method.

Luo and Wahba (1997) combined some of the features of adaptive regression splines

and traditional smoothing splines to obtain a hybrid smoothing procedure termed

hybrid adaptive splines (HAS). This combines features from both regression and

smoothing spline approaches. One of its advantages is its ability to vary the amount of

smoothing in response to the inhomogeneous "curvature" of the true functions at

different locations. This method can be applied to many estimation problems. The

method's performance in Luo and Wahba's (1997) simulation study was found to be

comparable to the wavelet shrinkage methods proposed by Donoho and Johnstone

(1994, 1995), and Donoho, Johnstone, Kerkyacharin and Picard (1995). The HAS

procedure is well suited to highly unequally spaced data.

• • - I '
• i '
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2.5 Models with smoothing splines

The theory regarding univariate spline functions in Sections 2.2 - 2.4 focussed on the

simple dependence of observations y on one independent variable /. Recall (2.1) and

write the general form of the simple model again as Y. = sU.^ + eCt.). If s(t) is

estimated non-parametrically by the use of a cubic smoothing spline, this model

represents a simple non-parametric model. In real situations there are usually other

variables, which are thought to provide information on the behaviour of the dependent

variable. Multiple explanatory variables leads to the multivariate regression model.

The way in which these additional variables are incorporated into the model results in

different forms of models. If all explanatory variables are believed to be linear or if it

is possible to achieve their linearity by a suitable transformation, the resulting

multivariate linear regression model can be expressed as

where x. is a k - vector of independent explanatory variables for the ith observation,

7 is a k -vector of regression coefficients to be estimated and e. are iid N (0, <r2 j . In

this case, the variable t is included in the vector x..

In many situations in practice, for example in time series modelling, the trend t is

very often non-linear. As an example we refer to Figure 2.7 that represents a plot of
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Australian production of crude steel in thousands of tons within a period of January

1969 and April 2001, based on the monthly observations from the OECD Main

Economic Indicators official databases.

350 I, i i

Australia: Production: Commodity output Crude steel
'000 tonnes

Apr-1971 Apr-1976 Apr-1981 Apr-1986 Apr-1991 Apr-1996 Apr-2001

Figure 2.7: Graph of Australian production of crude steel in '000 as an example of a time series -with a

non-linear trend

There is a possibility of being able to make this time series stationary in its mean, by

for example, taking first or second order time differences. However there is no

guarantee this will achieve stationarity in the mean, although this approach is often

used in practice. Another way would be to model and extract the trend from the time

series. In the case of a very complicated non-linear trend such as in Figure 2.7, the use
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of higher order polynomial functions for modelling the trend component or its

combination with any non-linear function might not necessarily lead to an appropriate

form. A trend component like this seems to be best estimated non-parametrically.

hi a modelling situation when other variables are assumed to influence the dependant

variable in a linear way but the dependant variable itself shows a complicated non-

linear trend, it makes sense to include the variable t into the model separately from

the other predictor variables. The trend variable t can be estimated non-

parametrically and the resulting model is of the form

where for each observation Y., we have k explanatory variables, x. is now a k-\

vector and t. is a scalar, 7 is a (k — 1) -vector of regression coefficients to be

estimated along with the unknown smooth curve 5. The model (2.12) is known as a

semiparametric model. If we are interested in fitting a semiparametric model (2.12) to

the data, we can estimate 7 and s by minimizing the penalized sum of squares

fr h 4.)} / ( (2.13)
1=1

As Green and Silverman (1994, pp.64 - 65) show, the penalized sum of squares

) can be written as

K&
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s)' (Y-X-y-s)+ Xjs" (tf dt,

35

(2.14)

where Y is the n-vector with ith component Y. and X the nx(k — l) design matrix

whose ith row is x'.. The minimizing curve s is the natural cubic spline with knots

replacing tt,t2,...,tn. Recall (2.7) expression (2.14) can be written as

(Y - X~/ - s)' (Y-X*y-s)+ Xs'Ks. (2.15)

It follows that (2.15) is minimized when 7 and s satisfy the block matrix equation:

X'X X'

X \K

X'

I1
(2.16)

We refer to Green et al. (1994) for more about how effectively to solve the system

given by (2.16).

The semiparametric model (2.12) is a reasonable compromise between the fully linear

regression (2.11) and fully non-parametric modelling. The main advantage of the

semiparametric model is, that the mean response is additive in the independent

variables x,...,xk_x,t, even though it is non-linear in the variable t. If all the

explanatory variables are believed to influence the response variable in a non-linear

fashion, it might be useful to estimate all piece functions s. related to the variables
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xv-:x
k-i>t non-parametrically. The resulting model is known as an additive

nonparametric model and can be written in form

Y. =
i

.(x (2.17)

where x.. is the value of the jth variable for the zth observation and j = l,...,k with

x^ = t . The estimated piece functions s. could all be linear, in this case model

(2.17) will be the linear model given by (2.11). If all but one of the piece functions

s. are linear this situation is equivalent to the semiparametric model (2.12).

When an additive model (2.17) is estimated using the penalized lease squares

approach, the unknown non-linear functions Is.} are obtained by minimizing

where A,,.-.,Afc are separate smoothing parameters for each of the piece smooth

functions 5..

Additive models have recently become very popular in applied work for their

flexibility to model each variable separately. The application of spline functions to

additive models was mentioned very briefly. The interested reader is refereed to

Hastie and Tibshirani (1990) for more details.

ig.
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2.6 Concluding remarks

This chapter reviewed the literature related to univariate polynomial splines. One

observation is that the smoothing techniques are a driving force in the development of

non-parametric regression techniques. Furthermore semiparametric regression models

are attracting more and more attention. What all non-parametric techniques have in

common is that they are computationally demanding. Therefore before the advent of

high-speed computers, their theoretical development appeared to be of limited

practical value. Since then smoothing techniques in regression have been increasingly

applied in many economics and marketing fields.

In the remaining chapters of this thesis we will utilize the semiparametric model and

describe the non-linear component of the model non-parametriadly by smoothing

splines. We will consider the smoothing spline model as a stochastic process. We will

rewrite the semi-parametric model in a state space form and apply the model in non-

linear inference.



CHAPTER 3

Stochastic process formulation

3.1 Introduction

This chapter is devoted to the stochastic process and state space form of smoothing

splines. Suppose we observe a variable Y that depends on multiple explanatory

variables. In a multiple linear regression, it would be assumed that dependence was

linear and the theory of the general linear model would be used to estimate the model.

We consider a semiparametric model where we relax the assumption of linearity on

one of the explanatory variables which we shall call t, but retain the linear

dependence on the remai' ing k variables. We write the model as

(3.1)

ills
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where x{ is a ^-vector of explanatory variables, 7 is a vector of regression

coefficients, 5 is a smooth function of t, and the errors e{ are iid N(o,a2). Model

(3.1) is called a semiparametric model, because the response Y is assumed to depend

in a parametric (linear) fashion on some, but not all, of the explanatory variables. In

this thesis, we shall use cubic smoothing splines to estimate s .The original idea

proposed by Wahba (1978) and developed in subsequent work of Wecker and Ansley

(1983) links polynomial smoothing splines with stochastic processes. Wahba showed

that polynomial smoothing splines could be obtained using a signal plus noise model

where the signal is distributed as an integrated Wiener process of the same order. She

showed that the polynomial smoothing spline is the conditional expectation of the

signal given the variable that is observed. Wecker and Ansley (1983) used Wahba's

model to develop a state space model for smoothing splines of all orders and

suggested the use of Kalman filtering and related tools for estimation and prediction.

In Sections 3.2 - 3.4, we describe a smoothing spline as a stochastic process in a state

space form. We apply the results of Wahba (1978) and Wecker and Ansley (1983) to

cubic polynomial splines and include a linear term in the general statistical model.

This model is similar to that discussed by Shively et al. (1994). We extend their model

to allow covariates in Section 3.5. We express this semi-parametric model in state

space form. We derive the error variance-covariance matrix for this model in the case

of equally spaced data using Yule - Walker equations in Section 3.6, which is then

used in further analysis in Chapters 4, 5 and 6 of this thesis. Further generalization of

the covariance matrix derivation is also discussed. Section 3.7 is devoted to the

application of the derived variance-covariance matrix to prediction. Section 3.8
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highlights the significance of the theoretical work. Appendix 3A.1 gives a proof of the

variance-covariance matrix derivation.

3.2 Integrated Wiener process

The stochastic process \Y(t):te[0,l]} is said to be Gaussian if {y(£,),...,7(£T1

has a multivariate normal distribution for any finite collection of points £,,...,£„ from

[0,1]. To specify a Gaussian process we need to specify its mean value function

p(i) = E|Y(*)] and its covariance function K(l,t) = Cov(Y(l),Y(t)). A white

noise process is a Gaussian process with mean zero and covariance function

o

A Wiener process W = {W(t):te[0,\]} is a Gaussian process, which satisfies the

following conditions

• W has independent increments, that is, if u<v<l<t, then W(t)-W(l)

and Vb (v)-W(u) are independent;

l)-W(t) is N(0,v2l} for all l,t>0 where v2 is a positive constant.
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The covariance function of W is given by K(l,t) = v2nan{l,t]. W is called a

standard Wiener process if v = 1.

Let W denote a standard Wiener process and let

t / , \m

ft ~U)) dW(u), 0<t< (3.2)

denote the m-fold integrated Wiener process, see Shepp (1966). Then,

Wo (t) = W(t), Wm (t) = jWm_x (u)du, m = 1,2,.

The process Wm has a covariance function given by

Km (i,t) = p - f hi - uy; (t - u); d«, o < i,t < i,
\ml) J

n

(3.3)

where (w)+ ~u if u > 0 and 0 otherwise.

An /w-fold Wiener processes can be written in a dynamic linear representation. Let

Wm {X> V) =
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Then for x,y,zE [0,1]

'"^ (v — zYw,n (x, y) = wm (z, y) + J2 wm_. (x, z)
j=0 J-

(3.4)

and Wm (t) = wm(0,t). See Wecker and Ansley (1983) for a proof of this result.

3.3 Wahba's approach

Suppose that observations ( ,̂2/j),•••?(£„) 2/,,) are obtained by sampling from a

stochastic process {Fc (t): t G [0,1]} at predetermined points tv...,tn where c is an

arbitrary large number, theoretically c -> oo. The process Yc (t) is assumed to be the

sum of a polynomial of degree m — 1 plus (m — 1) -fold integrated Wiener process.

Specifically, let

(3.5)

in which {e (£)} is a white noise process with zero mean and variance a2, and

(3.6)
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where 0 = (/?„,—,/^,_j) is normally distributed with zero mean and covariance

matrix cl and r i s a scaling parameter. The random vector (3 and the integrated

Wiener process Wm_1 (t) are assumed to be uncorrelated.

Let fin A denote the smoothing spline of degree 2m — 1 and smoothing parameter A,

defined as the function, which minimizes

over all functions with 2m —2 continuous derivatives on [0,1]. Wahba (1978)

showed that the smoothing spline //„ ^Q is the mean of the stochastic process ji{t) if

the distribution of {3 is diffuse. That is,

(3.7)

where Y = (Yv...,Yn) , y = (yv...,yn) , A = a / 2 . The smoothing parameter A is

controlling the "rate of exchange" between the residuals error described by the

residuals sum of squares and local variation represented by the squared integral of the

mth derivative of s. In practice, A is not generally known and it should be

estimated. Chapter 6 of this thesis is devoted to the problem of choosing the

smoothing parameter A.
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3.4 State space form

Wecker and Ansley (1983) proposed a state space version of Wahba's stochastic

process model (3.6), which enables the estimation of the parameters A and a2 as well

as an estimate for fj, (t) together with confidence bounds.

If in (3.4), we let t = tvz = t._v y = t, then we have for i = 2,...,n,

j=0

(3.8)

Now define

i = r

and let T («) be the mxm matrix

1 u

0 1

0 0

u
m-l

(m-1)!
U

m-2

(m-2)!

1
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Then (3.8) implies that

(3.9)

where Tt =T(hi),h,=t] and /i,. = tt —*,-_,.

Note that Wecker and Ansley (1983) derived the covariance matrix of u, incorrectly.

As pointed out by Mazzi and de Jong (1998), the covariance matrix of u, , which we

denote by V., has (j, k)tti entry

m-k( , \'"-J I, \m-k

(m-j)!(m—k)l
,2m-(j+k)+\

= T

(3.10)

Letting r = (l,0,...,0)'J/3 = (/?0,...,A,1-I)' Wahba's model (3.5) and (3.6) can be

written in state space form as

(3.11)

and

ai=Tiaci_]+ui,i = (3.12)
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where e, are iid N(O,a2) and z, =
t2

' r 2 !
with starting condition

a0 =(0,...,0) . It follows from the definitions that a,_, is independent of ut. Note

the difference in the same notation z in (3.4) and (3.11).

3.5 State space form with covariates

Let us assume cubic smoothing splines (m = 2) and modify Wahba's model by

adding some covariates as follows

(3.13)

where e; are iid iV(0,cr2), s (<.) = z. /3 + g (t.}, and

The additional covariates are given by a;,. =(x,,,...,x;(t)

Let e = {e.,...,en}, s = and fl = {^(0'-'^(O} • Then'

observed by Ansley et al. (1994), the model can be written in matrix form as
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(3.14)

where the /th row of X is x.', the z'th row of Z is z\ = (l,t i), E(g) = 0, Var (g) = A"1 E,

' +A~1£, £(/3)=--03 and Var(/3) = c / . We use the notation

E for an unknown variance-covariance matrix of the nonlinear component g(t.} in

s(t.), recall (3.13). The structure of I! will be derived in Section 3.6.

If T = 0 , then g(t) = O and s(t) is a linear function of t. In this case, solving the

Kalman recursion is equivalent to letting A—• oo and fitting an ordinary least squares

regression line.

Following the approach of Wecker and Ansley (1983), we model (3.14) in state space

form. Let a,. = . Then

(3.15)

and

(3.16)

where u, = r
](ti-u)dW(u)

and T =
0 1
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Mazzi and de Jong (1998) give the same state space formulation although they derived

it differently, beginning with a continuous time version. Note that equation (5) in

Mazzi and de Jong is incorrect, the exponent of e inside the integral should be A(S -

t) and the variable of the integration should be dW(t).

From (3.10), we have

du=r2

J

h]
3

hf
~2

h1

(3.17)

3.6 Calculation of XI

3.6.1 Derivation of X using cubic smoothing spline

We next derive the error variance-covariance matrix S . Let Ti(j) =

j = 0,1, Note a, is vector autoregressive model of order one in (3.16). Thus we

obtain the Yule-Walker equations

r0(o)=o,
(3.18)
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Note that Ti(j) = 0,j>iWe can use tliese equations to iteratively calculate the

values of T,(j) for i = 1,2,...,?i and j = 1,2,... . Then the (?',j)th element of A~'E

is the top left element of IV(j- i ) i f i< j and the top left element of r , ( i - j ) i f i> j .

For more on Yule-Walker equations, see Reinsel (1997).

Let us consider the special case of equally spaced time, so h{ = ^ — ii_1 = h. Therefore

T. =
1 h

0 1
(3.19)

and

V- = -
3 2

* H
2

(3.20)

for all i. By substituting (3.19) and (3.20) into (3.18), we can construct S . It is

symmetric with the (i, j ) th element on or above the diagonal given by

Thus

Bft1:'



Chapter 3: Stochastic process formulation 50

2

5

5

16

3 n - l •••

•• 3 n - l

2n3

(3.21)

We refer to Appendix 3 A.I for a detailed derivation of expression (3.21).

3.6.2 Modification of X using higher order smoothing splines

In this section we briefly outline the method for the extension of the variance-

covariance matrix S to a higher order smoothing spline. We need to modify the

covariance matrix F.of ur Recall (3.10) and for a smoothing spline of order m we

have the m x m matrix V. of the form

V.=r2

(2m-2)(ro-l)!(m-2)! m!

(2m - 2)(m - 2)!(TO - 1)! (2m - 3)(m - 2)!(m - 2)!

m!

(3.22)

and the m x m matrix T. is modified to the form
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T. =

1 h

0 1

0

/,(»•-.)

(TO-1)!

(m-2) ! (3.23)

To derive the variance-covariance E we apply the Yule-Walker equations (3.18). By

substituting (3.24) and (3.25) into (3.18), the variance-covariance E can be derived

for any m.

3.6.3 Further generalization

In Sections 3.6.1 and 3.6.2, we considered the special case of equally spaced time, so

h. = i, -ij_, = h was constant. The further extension of the derivation of the variance-

covariance matrix E can be made to non-equally spaced time, so

ht =t{ -£;_, * const. The covariance matrix V. of u,, expression (3.20) or (3.22),

needs to be modified for a non-constant time increment. Also matrix T. given by

expression (3.19) or (3.23) needs to be adjusted for a non constant time increment.

Yule-Walker equations given by (3.18) could be applied for the derivation of the

variance-covariance matrix S. This is however mathematically very intensive and has

not been pursued here.

V
j
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3.7 Prediction

In this section our major concern is in predicting the values of the outcome variable

Y, for various levels of the explanatory variables.

We have been using the past n observations so far in this diapter to derive the semi-

parametric regression model (3.13) and to express the model in the state space form

(3.15) - (3.16). In this section, we would like focus on the prediction of n0 future

observations, which will create a vector Yo of n0 x 1 observations.

Recall model (3.13) and rewrite this model in the general form -

(3.24)

where v = Z/3 + g + e so that E(v) = O, Var(is) = E(vv1) = <J2J2 and ft and S

are nxn positive definite symmetric matrices. Equation (3.13) implies that the

variance of disturbance vector v can be written as

Var(u) = a2 (cZZ1 + X^S + /„). (3.25)

Matrix fl is known and we have derived its E component in Section 3.6 in (3.21).

The /th row of Zis z' = (1,/,.) and i = 1,...,n.
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In the prediction problem, we assume that the model

(3.26)

will generate the future observations, where the nQ x k matrix XQ is assumed to be

known and the disturbance vector uQ is assumed to have the same properties as the

past disturbance vector u, soE(i/Q) = O, Va.r(y0) = E{yov'^j = a2ft0 and fio,E

are now nQ x nQ positive definite symmetric matrices, E is given by (3.21). The

variance-co variance of disturbance vector uQ can be written as

Var(vQ) = a2(cZZ'+ A^r + i J , where the fth row of Z is «/=(!,/,) and

i = n + l,...,n + n0. Under the general disturbance variance-co variance matrix a2fl

in a general regression problem it is possible that the past observations may contain

some information about future disturbance values vn.

hi the following, we apply ihe finding of Judge et al. (1988, pp 343-346) to our model

(3.13) in order to derive the best linear unbiased predictor for YQ and the variance-

covariance matrix of the prediction error uQ. First assume that parameters c and A

are known. In reality, constant c is any sufficiently large number and the smoothing

parameter A needs to be estimated from the data. In order to make our predictions, let

us combine the model (3.26) and (3.24) and write the combined model as
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Y] X

Xn
7 + (3.27)

where the combined variance-covariance matrix for (u, vQ j is given by

E = a
n u
u' nn

(3.28)

Now the covariance matrix of the future disturbance vector uQ is n0 x nQ which we

denote by cr2j?o and the covariances between the elements of v and uQ makes the

nX.nQ matrix a2U. The variance-covariance matrix of the combined disturbance

vector \y,vQ) implies

Var (v, ./„)' = a2 [cZZ' + X~lE + In+%), (3.29)

where £ is modified from (3.21 • to

.21,3alh

2

5

3 n - l

3(n + rao)-l

5

14

2n3
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therefore matrices ft, ftQ and U are known in our stochastic model.

We want to derive the best linear predictor and the variance-covariance matrix of its

prediction error. We introduce the transformation matrix C such that

= U, • (3-30)

Suppose that the matrix C is a lower triangular matrix so that (3.30) can be written as

Cu 0 ' a
u'

u c'u c[2
0 C22

I,
0

0

Now we multiply (3.27) by C and get

(3.31)

(3.32)

r
x:

(3.33)

V
(3.34)
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therefore matrices 17, f2Q and U are known in our stochastic model.

We want to derive the best linear predictor and the variance-covariance matrix of its

prediction error. We introduce the transfonnation matrix C such that

/ _ . (3.30)

Suppose that the matrix C is a lower triangular matrix so that (3.30) can be written as

cu o
<?21 c22

n
u'

u c'n c[2
o c'n

h
0

0

k.

Now we multiply (3.27) by C and get

(3.31)

(3.32)

X*

xl
(3.33)

v (3.34)
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Thus the transformed model is given by

Y*
_ _* =

X*
7 +

V

+ (3.35)

where

E v (3.36)

Equation (3.35) implies that the best linear unbiased predictor for Y* is

where 7 is the GLS estimator given by

\ - l

(3.37)

= (X'C'nCuX)-lX'C>nCnY (3.38)

where C'nCn = ft l can be derived from (3.31).
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We need to transform (3.37) to get the best linear unbiased predictor Yo. Equation

(3.32) implies that YQ = C^Y* - C£C2lY. Thus the best linear unbiased predictor

for YQ is

*

(3.39)

where C'2f2l = ~U'n~l can be derived from (3.31). The X0-y component in (3.39)

is the best linear unbiased estimator for I j and the U'Q'1 (Y - X7) component

is the best linear unbiased predictor for uQ.

Now we need to derive the variance-covariance matrix of the prediction error. The

covariance matrix of the prediction error of the transformed data is given by the

expression

E *)(Y*t* -Y*)(Y* - = a (3.40)

To get the variance-covariance matrix of the prediction error \YQ - Yo), we observe
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E

We substitute (3.40) into (3.41) and get

E

= cr

= (7

= a

•**•• (x'c^+xj)

n0 - u'nrlu + (x0 -

(3.42)

-$
Vat

where C[fn

from (3.31).

1 , C2 '2C72 1 -1 and -1 = fl0 - can be derived

In this section we have derived the best linear unbiased predictor in (3.39) and the

variance-covariance matrix of its prediction error in (3.42). Knowing

ft, J70 and U, we can create prediction intervals for predictions. The random variable

+
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is a standard normal variable with mean 0 and a variance 1. That means that the

random variable

- u'or'u + (x0 - U'

n — k

(X'O -

alno-u'n->u + (xQ-u'i
(3.43)

is distributed as a t random variable with (n-k) degrees of freedom. Let

and the variance

. NowVar(Yn+.) = a2 \no - U'Q-lU + (XQ -

expression (3.43) can be written as

Y -Y
n+i n+i

We may write

Pr
" 1 a>
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or

?T[-t
VariY )

= \-a,

«'hich can be rewritten as

This prediction interval predicts [yoj. with probability (1 - a) that the value of the

random variable is contained within it.

This analysis has assumed that the parameters c and A are known. As noted earlier,

in reality A is estimated and c is taken as any large value. Obviously A in the above

formulae would be replaced by A and we might also replace Student's t percentiles

with standard normal percentiles. While we can no longer claim that Yn+i is the best

linear unbiased predictor it should be asymptotically if A is a consistent estimator of

A.
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3.8 Conclusions

hi this chapter we assumed the stochastic model in state space form given by Wahba

(1978), Wecker and Ansley (1983) and Mazzi and de Jong (1998) for which

smoothing splines provide optimal estimates. A new method of variance-covariance

matrix E derivation using Yule - Walker equations was presented. Matrix E was

derived for equally spaced data in time and for cubic smoothing splines. We will use

this matrix for hypothesis testing namely marginal likelihood ratio based tests for

linearity in Chapter 4 and Chapter 5 of this thesis. The generalization of the derivation

of E by considering smoothing splines of higher order and not equally spaced data in

time was briefly discussed. We also presented the derivation of the best linear

unbiased predictor and the variance-covariance matrix of this prediction error

applying the stochastic model with smoothing splines. This was used for further

computation of prediction intervals.



Chapter 3: Stochastic process formulation 62

Appendix 3 A.I: Derivation of IS for cubic smoothing spline

We shall prove (3.21). First we show by induction that

r,(o)=- 3 2

% — in

(A 3.1)

For i - 0, ro(O) = 0, so (A 3,1) is true. Now assume (A 3.1) is true for i = k. Then

from (3.18) we obtain

7
T

3

h2

.2

h2'

~2

h

2
+ T

"1

0

hi

1J-J

; 3 *** . 2 "
t\t ' n> ——

3 2

Kt ' At/I

1 0

h 1

= r 1̂
2

So it is true for i = k + 1 and by induction is true for i = 1, 2 , 3 . - • Now from

(3.18) we have
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(i) = r r H (i -1) = r2r,._2 (j - 2) = r^r , . (0) for i > j ,

and so I\ (i-j) = THYj (0). Thus

-3
J

f

h3

3

2

.2h
2

3 —
2

jh

3 7 2h3j Jh2

4

i

and so

for i > j . Hence we obtain (3.21).



CHAPTER 4

Testing for the inclusion of a possibly

nonlinear component

4.1 Introduction

Recall that in (3.1) we have a semiparametric regression model with one potential

nonlinear component. An important problem in working with model (3.1) is testing

whether there is a nonlinear component. Various methods have been proposed for this

testing problem. Yanagimoto and Yanagimoto (1987) proposed a likelihood ratio test

using a stochastic model. Cox and Koh (1989) proposed a locally most powerful test

for linearity. Cox, Koh, Wahba, and Yandell (1988) extended this test to a

semiparametric regression model. Both these tests use test statistics assuming that the

error variance is known. Cox and Koh (1989) normalized the test statistic by a non-

parametric estimate of the error variance. Buckley (1991) proposed an exact test using

a different non-parametric estimate of the error variance. Munson and Jernigan (1989)
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constructed an exact test by fitting an interpolating cubic spline to the residuals of the

linear regression model. Eubank and Spiegelman (1990) proposed a test, which

requires a non-parametric estimate of the error variance and a choice of smoothing

parameter. Azzalini and Bowman (1993) suggested an F-type test statistic using

kernel semiparametric regression. Shively, Kohn and Ansley (1994) proposed an

exact point optimal invariant test for linearity, which is based on Wahba's (1978)

stochastic model and is invariant to the values of the regression coefficients and error

variance. Their evaluation technique is based on Kalman filtering. Their critical

values have to be calculated via numerical integration, which in some circumstances,

is computationally cumbersome.

In this chapter, we apply the findings of Wahba (1978) and Wecker and Ansley

(1983) to cubic polynomial splines. This model is similar to that discussed by Shively

et al. (1994). We assume an extended model with extra covariates. We apply the error

variance-covariance matrix for this model in the case of equally spaced data, v;hich

has been derived in Chapter 3. We propose a likelihood ratio one-sided test based on

the marginal likelihood function as was derived by Tunnicliffe Wilson (1989) and Ara

(1995) in Section 4.2. We investigate the performance of the test via a Monte Carlo

experiment in Section 4.3 and compare our marginal likelihood ratio (MLR) test with

the regression specification error test by Ramsey (1969) and a related test in Section

4.4. The comparison between the mean based tests and the variance based test is a part

of this section. We apply the MLR test to some real economic data in Section 4.5.

Section 4.6 summarizes our findings.
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4.2 Marginal likelihood ratio test

In this section we introduce the basic concepts of one-sided testing along with

likelihood and marginal likelihood principles. These concepts underpin our marginal

likelihood based tests.

4.2.1 One-sided testing

Many economic concepts are represented by parameters in models and the range of

possible values of these parameters may be restricted by statistical, functional and

logical reasons. In hypothesis testing, this leads to testing problems in which the null

hypothesis is on the boundary of the parameter space.

Our MLR test, to be discussed in more detail in Section 4.2.4, and our MLR* test to

be discussed in Chapter 5, are one-sided tests. The smoothing parameter A which is

controlling the "rate of exchange" between the residual errors described by the

residual sum of squares and local variation is defined on a set of nonnegative

numbers, hence leading to inequality restricted estimation and one-sided testing of

A = 0.

Research on one-sided testing started in the early 1950's. The main results for testing

the mean of a multivariate normal distribution with a likelihood ratio procedure were

presented in the book by Barlow et al. (1972). Also the likelihood-based approach is

captured in Robertson et al.'s (.!988) book. King and Evans (1984) observed a



Chapter 4: Test for the inclusion of a possibly nonlinear component-MLR test 67

significant increase in power when a one-sided Lagrange multiplier test was used

instead of the two-sided test. Wu and King (1994) summarized a range of important

findings on one-sided hypothesis testing and also confirmed that these types of tests

result in greater power. They distinguished two main approaches to the testing

problem. One is based on local optimization of power through the use of the Neyman-

Pearson lemma. A variation of this approach is to construct a test that is most

powerful among all the tests of the same size at a chosen point in the alternative

parameter space. This is known as a point optimal (PO) test. An alternative is to

construct tests by maximizing power locally at the null hypothesis. These tests are

known as locally best (LB) tests. The second approach is to construct one-sided

versions of conventional likelihood ratio (LR), Wald and Lagrange multiplier (LM)

tests. These are likelihood-based tests and involve maximization of the likelihood

function with respect to parameters subject to the inequality restrictions. Estimation of

unknown parameters is a part of the test procedure.

The problem with testing against an inequality restricted alternative hypothesis is how

to incorporate this additional one-sided information into the test. The conventional

two-sided test statistics are typically quadratic forms of maximum likelihood

estimators. When the number of parameters under test is one, appropriately signed

square roots of these statistics can be applied as one-sided tests.

Consider a general density function f{y\9,<j>) of an n x l random vector y, where

(f) € $ is a q x 1 nuisance parameter vector, # is a subset of R9, 6 e 0 is a p x 1

parameter vector under test and G is a subset of Rp. The problem of interest is to test
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against

Ha:9>6Q.

We assume that 6Q is an interior point of 0. This assumption is needed as the

derivation of the asymptotic distribution of the likelihood-based test statistic relies on

the Taylor's expansion of the score function around 0Q.

By Wu and King (1994), with p = 1 and log likelihood function L(6,(j)) induced by

f(y\O,<f>), a signed square root of the two-sided likelihood ratio statistic R is defined

by

\ (4.1)

which under HQ is asymptotically distributed N(0,\), where sgn(y) = 1,-1,0 if

y>0,y<0,y = 0, respectively and 6, cj) are the maximum likelihood estimates of

0, (j> under Ha and </>0 is the maximum likelihood estimate of <f) under HQ. The

upper tail of the iV(0,l) distribution is used as the critical region.

Instead of taking the square root of the two-sided likelihood ratio test statistic as in

(4.1), another approach to testing against an inequality restricted alternative is to
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follow the traditional way of constructing one-sided tests. This involves comparing

the log-likelihood function under Ha to that under HQ for the likelihood ratio test.

Gourieroux et al. (1980), (also see Farebrother (1988)), considered the one-sided

testing problem and derived a one-sided likelihood ratio test statistic as

(4.2)

where 6Q is the maximum likelihood estimate of 6 under the H0. They assumed that

8 = (9',(j)') and <S0 = (#„', </>„') where 0O is the true unknown value of the parameter

(j). They also assumed that <p0 is an interior point of 0. Also let tp be the score vector

that corresponds to 9, scaled by dividing by sample size, that is, ip = n~1 ®^/QQ • Let

6 = \9',<f)'\ be the solution of

maxrr subject to 9 > 90,<f> €

so

dS s=e
(4.3)

and
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<'\e-oA = o, (4.4)

where (4.4) is the Kuhn-Tucker condition, see Kuhn and Tucker (1951). This means

that the components of <p in (4.3) must be either zero or negative. This is because of a

presence of a positive component in (p implies that L{9,4>) has not yet been

maximized. Equation (4.3) is the definition of (p. Gourieroux et al. (1980) noted that

So=WQ,(pQj is the solution of

maxn L(0,<f)), subject to 9 > #o,0 G

so

as

The asymptotic distribution of s under H is given by

) =
i=0

(4.5)

for c € R. This is a probability mixture of independent chi-squared distributions, x;2,

with different degrees of freedom, e.g. x* is degenerate distribution at zero. The

weights w(p,i),i = 0,...,p, represent the asymptotic probability of the event that
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under Ho any i elements of 0- 6Q are strictly positive, and the remaining p - i

elements are zeros, thus Y^w(p,i) = 1. By (4.3) and (4.4), this is also the event that
i=0

i corresponding elements in ip are zero and the remaining p — i elements are strictly

negative. Thus, the weights are dependent on the distribution of v? which is

information matrix, and therefore density function, f(y\0,<j>), specific. Also w(p,0)

is the asymptotic probability that strictly 9— 8Q < 0 and xl is the degenerate

distribution with unit mass at zero. Let a be the significance level of the test. If the

w (p, i) 's are known, the positive value c satisfying Pr (sLR > cj = a asymptotically

under H can be found by solving

(4.6)
i=0

Note that w(p,0) is not involved so that a cannot be larger than 1 — w(p,0) as

asymptotically Pr(sLR >6) = l-w(p,0) and Pr(sLR = 0) = w(p,0). Because

w (P) 0) < — in all cases, this causes no difficulty for the conventional choice of a.

Our testing approach in this thesis is based on a likelihood function, therefore the

following section will describe the basic likelihood and marginal likelihood concepts.
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4.2.2 Likelihood concepts

Presume that we want to estimate unknown parameter 9 about which we do not have

enough information. If we have a random sample represented by the vector y, our

intention is to reveal the appropriate information about 9 from this random sample.

Various information about 0will be collected from different data. The likelihood

function is a function that collects all the information that the sample has about 9.

The likelihood function is the most common basis for statistical inference. Fisher

(1922) introduced the concept of likelihood. He also introduced the concept of

consistency, sufficiency and efficiency of parameter estimates and promoted the use

of maximum likelihood methods. The maximum likelihood estimate is that value of

the unknown parameter vector of interest 9, which makes the likelihood a maximum

given that particular sample. Maximum likelihood estimation, under prescribed

regularity conditions, (see for example Lehmann (1983) or Stuart and Ord (1991)),

gives consistent, asymptotically efficient and asymptotically unbiased estimates. This

implies that if a sample of nobservations y = (y1,y2,—,yn) is taken from a

population with a probability density function f(y,6), where 9 is a scalar, as

n —> oo,

- #) A JV (0, Jim n (I (0))"1
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i

where 9 is the maximum likelihood estimate of 9, 'a' denotes asymptotically

distributed as, and 1(9) = -E\ °g } V ' is Fisher's information, which ensures
I o9 I

that 9 is close to 9 or minimizes information loss for hi fficiently large samples.

The likelihood function usually involves several parameters, only some of which are

of interest. The other parameters, known as nuisance parameters, are necessary for the

model validity, however their values are not important for the conclusions to be

formulated. The problem of estimating 9 in the presence of a nuisance parameter <j>

requires the modification of the usual concept of Fisher's information. It is important

that no information is lost in making an inference about 9 in the absence or presence

of <j). Basu (1977) and Barndoff-Nielsen (1978) gave detailed reviews of this

problem. Research work by Remon (1984), Lloyd (1987), Bhapker (1989,1991) is an

illustration of many scientists who emphasized the use of marginal likelihood based

procedures rather than conventional likelihood when estimating 9 in the presence of

the nuisance parameter <f>.

4.2.3 Marginal Likelihood

In this section we will concentrate on methods for eliminating the nuisance parameter

from the likelihood function, focussing on marginal likelihood based procedures. We

are interested in eliminating 0 from the likelihood function f(y;9,4>) so that

inference about 0can be made. The marginal likelihood is based on a suitable

transformation model, which eliminates <j> from the likelihood function without loss
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of information. The marginal distribution function therefore depends only on 8.

There exist different theories on how to construct the marginal likelihood. We will

focus on the 'factoring one' method, which leads to the marginal likelihood function

for our testing problem to be discussed in Section 4.2.4.

Kalbfleisch and Sprott (1970) developed the marginal likelihood, which arises from

density factorization. This theory is based on factoring the likelihood into two parts,

one part being uninformative about 8 in the absence of knowledge of <j> and the other

part containing 6 only. Assume that the joint distribution f(y;8,<j)) of the sample

factorizes into two factors

by a non-singular transformation of y to an nx x 1 vector \ and an n2 x 1 vector t2.

The first factor can be used for inferences concerning 8 without knowing 0

and the likelihood that arises from that factor is known as the marginal likelihood. In

more general context, when tx is a function of 8, the quantity d\ (0) is a function of

9. The other factor ffafoOrf) is used for inferences about unknown parameter 8

in the presence of knowledge of a nuisance parameter 0 . By Kalbfleisch and Sprott

(1970) the y.,i = l,...,n, are the Cartesian co-ordinates of a point in Euclidean space

of dimension n with distance metric given by (dsf = ^(dyt) . Assuming this the

marginal likelihood of 6 is proportional to
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(4.7)

where K is the matrix defined with elements and L is the Jacobian of this

transformation of y to (^ t , ) , that is

L =
' "'' ^2,^ J

Barndoff-Nielsen (1983) proposed the use of the density of a maximum likelihood

estimator conditional on ancillary statistic u. His factorization is of the form

where <j>Q is the maximum likelihood estimate of 0 , therefore a marginal likelihood

for 9, based on / (u; 6) can be approximated as

J(9), (4.8)
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where -M0,0oJ is the profile likelihood for 9, J^is the observed information on 0

A

for fixed 9 and J(0) = —~- for fixed u. Barndoff-Nielsen (1983) called (4.8) the

modified profile likelihood.

Cox and Reid (1987) modified (4.8) by eliminating the Jacobian factor and making 0

to be orthogonal to 9. Their factorisation is of the form

The approximate conditional likelihood of the density of 0O is obtained from

f\y <po]9\, where 0O is accessible from a saddle-point approximation theory under

certain assumptions.

The previous discussion was an introduction to the likelihood concepts based on the

general distribution f(y;9,(j)) for the variable y in order to give a general foundation

to marginal likelihood. We are going to use the idea of marginal likelihood in the

context of the linear regression model. We wish to test whether possibly nonlinear

component was not left out of the model, hence we propose the MLR test in Section

4.2.4. In Chapter 5 we apply the marginal likelihood approach to the other testing

problem. We wish to test whether possibly nonlinear component which should be

included in the model is or is not linear, hence in Chapter 5 we propose the MLR*
v

test.
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Consider the linear regression model

(4.9)

where y is an n-dimensional random vector of the dependant variable, X is an nxk

matrix of observations on k non-stochastic variables, k is the rank of matrix

X, (3 is a fc-dimensional vector of unknown parameters and u is 7i-dimensional

vector of random errors with variance-covariance matrix a2Q(9). The random error is

a stochastic process depending on the parameter 6 to be estimated. Let us assume that

the errors in (4.9) are normally distributed, s o « ~ N (0, cr2Q (0)). The error term can

be written as follows

u = Xb + c,

where b = (X'X) X'u and c = u - Xb = Mu. Matrix M is a symmetric matrix

with rank n — k and has n — k characteristic roots equal to one, the remaining

k roots are zero. The marginal distribution of c is

ttc)\X'X\/2db. (4.10)j
Rk

When deriving the density of c = My directly from (4.9), the Jacobian factor needed

for the likelihood function, involves the determinant of the singular matrix M; which
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is zero. Ara (1995) found matrix M analytically by the use of the eigenvectors. Her

derivation is based on the existence of orthogonal ma fe P whose rows form the set

of analogous eigenvectors of M, for which

PMP' =
I . 0

n-fc

0 0,

and PP' = P'P = / . Separation the P matrix into the(n — k) x n matrix P1 and the

kxn matrix Pn

> 1 1

P =

where PMP' = I . and PMP' - 0,. Also PMy = P.Mu = 0 because the rows

of P2 are linearly dependent on the columns of X. By Kadiyala (1970), this is valid

for any value of 9 and does not have any effect on the inference regarding 6. We

therefore make an inference using c = My or d = PxMy = Pxu.

Now return back to the parameterization of the vector y, which has distribution

N(XP,a2Q(6)), Pxy therefore has distribution N[PxXP,a2(P£l{6)P{)\ and

d = Pxu has distribution N[01a
2(Pp(9)Pl)]. Consequently the density of d is

expressed as
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f{d) = (2xv exp d (4.11)

where m = n — k is the number of degrees of freedom. The distribution of d = Pji

can be expressed as a function of the distance from the origin. By King (1979), for

oo

/

The resulting statistic vector v =
(d'df

from dividing d by its distance r, is a unit

vector defined in terms of ( ro-1) co-ordinates. King (1980) showed that v is a

maximal invariant with respect to transformations of the form

9, where i?0 > 0 is a positive scalar and 9 is k x 1. The distribution

of v can be expressed as

(4.12)

where G = v'(P$ v =

A

c c

A

" , c is the OLS residual vector, u is the

GLS residual vecior assuming variance-covariance matrix a2Q(0) and dv denotes the
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uniform measure on the surface of the unit m -sphere. Observe that the distribution

given in (4.12) is independent of (3 and a.

We need to explain that the maximal invariant is defined with respect to a set of

transformations on the data. It is a statistic that is always invariant under these

transformations but for data vectors not connected by a transformation, the maximal

invariant takes different values. Hence it is maximal in the sense of having the largest

number of different values. Any invariant test statistic can be written as a function of

a maximal invariant. For more explanation on concepts of invariance and maximal

invariant based tests see Lehmann (1986).

The marginal likelihood function given by Tunnicliffe Wilson (1989) used the same

statistic v and is expressed as

Wv) =
- 1 A

~2

(4.13)

ByVerbyla(1990)

''pie^x'nieyx (4.14)

The expression (4.12) can be simplified by use of (4.13) and (4.14). Because any

invariant test statistic can be written as a function of a maximal invariant and because

of the "maximal" property of a maximal invariant all invariant tests can be

constructed by treating v as the observed data and (4.12) as its density function. We
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will use the simplified version of (4.12) in Section 4.2.4.for parameter K estimation,

to construct likelihood ratio MLR and MLR* based tests and for smoothing parameter

A estimation in Chapter 6.

Ara (1995) constructed the likelihood ratio test based on the marginal likelihood

function (4.12) and showed that the likelihood ratio statistic is asymptotically

distributed as xl when the null hypothesis is true, where p is number of parameters

A

being estimated. Her derivation of the asymptotic distribution of do is based on the set

of regularity conditions outlined by Godfrey (1988) and used in the context of the

classical likelihood as follows:

(i) If the parameter space tp is closed, bounded and finite dimensional, the true

parameter vector is an interior point of rp.

(ii) Two different values of 9 have different probability distributions for v.

(iii) The first, second and third order partial derivatives of the log likelihood

function L(9) with respect to 6.,i = 1,2,...,p, exist for all 9 e ip and should

be continuous throughout some neighbourhood of the true parameter value 90.
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(iv) The expected value E
89

= 0 and the variance-covariance matrix

var
89

hi

8989'
= /(0o) , where l(da) is the information

matrix and 9 is the true parameter value.

(v) The matrix /(#„) needs to be positive definitive at 0 = 0oand locally

identifiable, m>p. This requires a lack of perfect multicollinearity in X and

the Cl(9) matrix to be identified for all 9.

(vi) The information increases as the sample sizes increases as a consequence of

the eigenvalues of / (#0) tending to infinity as m -* oo.

(vii) By a Law of Large Number applied to the second derivative matrix of the log

likelihood, the null hypothesis of the true parameter value Qo we assume

or

- l

8989' 8989'
0) ,,

where 'p' means convergences in probability and 9 is in a neighbourhood of 9Q.
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(viii) The Central Limit Theorem for martingales applies to the score vector under

rather general conditions (see Crowder (1976)) as

_1

where 'D' means convergence in distribution and j(0o) 2 is the positive definite

square root of I[9Q).

(ix) lim m" 1 / (O) exists as a finite non-singular matrix.
m-»oo * "•

A

Ara's (1995) derivation of the psymptotic distribution of 9 is based on. the distribution

of the score function. She showed that the asymptotic distribution of
1 /A \ ' /A \

/ (0o)~ 2 / #_ 6»Q j -^ iV (0, /p) and (0 - 0fl 1 / (9Q) 19- 0O) -^ xj under the n u l 1 hypothesis

of 9 = 0O. The same autnor also derived the asymptotic distribution of the likelihood

ratio test statistic by using a function of the score vector and the information matrix by

means of a Taylor's series expansion of L{60) about 9 as

LR = 2

= 2

L(o\-L{eo)
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Ara (1995) showed that the distribution of the LR statistic depends on the distribution

of

evaluated at 6 = 6, because — is zero and the residue R is asymptotically

insignificant. Also the finite bound assumption on the third derivative and the

A

consistency of 6 under the null implies that

d2L 6

0606' 0686' '

A

as a consequence of taking the Taylor's series expansion about 6 = 6. The LR

statistic is asymptotically distributed as x\ under the null, because from the Weak

Law of Large Numbers the use of assumption (vii) for LR statistic is justified.
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4.2.4 Test for the inclusion of a possibly nonlinear component - MLR

test

Suppose we have a semiparametric regression model (3.1) with one potential

nonlinear component and with additional covariates as in Section 3.5 of this thesis.

Recalling (3.14) and separating out the linear part of the model, we can rewrite the

model as follows

(4.15)

where Q = e. Now E(Q) — O and the variance is

A = Var (Q) = cZZ' + KS + a2l, with c -» oo and K = A"1. We can substitute the

error variance-covariance form E given by (3.21) into this expression in order to test

for inclusion of the nonlinear component in model (3.1). We use the null hypothesis

H0:K = 0, i.e.,Q ~ N(0,cZZ'+a2l)

against the specific alternative

Ha : K > 0, i.e., Q ~ N (0, cZZ' + KS + a2l)
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If K — 0, g(t.) = 0 and s(t.) is a linear function of t, recall (3.13) and (3.14). We

want to test the model Y. = xfr + s(t.) + e. being restricted under HQ with

s(ti) = 0o being constant versus an • unrestricted model under Ha with

s(t)= Po +g{ti), where g(t.) represents the non-linear component in s ( i ) . We

therefore formulate this type of test as a test for the inclusion of a possibly nonlinear

component, so the null hypothesis is that there is no need to include an additional

(possibly nonlinear) component into the model. The alternative hypothesis is that

there is a need to include a additional component into the model.

By Tunnicliffe Wilson (1989) and Ara (1995), the marginal likelihood function

(4.12)-(4.13) is modified for our semiparametric regression (3.14) as

*(«M = (4.16)

where Q is the GLS residual vector from (4.15) assuming variance-covariance matrix

A and N = n-p is the number of degrees of freedom. In the special case where

there are no regressors, this reduces to

(4.17)



Chapter 4: Test for the inclusion of a possibly nonlinear component - MLR test 85

4.2.4 Test for the inclusion of a possibly nonlinear component - MLR

test

Sv.ppose we have a semiparametric regression model (3.1) with one potential

nonlinear component and with additional covariates as in Section 3.5 of this thesis.

Recalling (3.14) and separating out the linear part of the model, we can rewrite the

model as follows

(4.15)

where Q — Zf3 + g + e. Now E(Q) = 0 and the variance is

A = Var (Q) = cZZ' + KT, + a2l, with c -> oo and K = X~l. We can substitute the

error variance-covariance form S given by (3.21) into this expression in order to test

for inclusion of the nonlinear component in model (3.1). We use the null hypothesis

# 0 : K = 0, i .e.,Q~N(0,cZ2"+a2/)

against the specific alternative

# „ : « > ( ) , i.e., Q - N (0, cZZ' + KS + <r2/)
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If K = 0, g(t.) = 0 and s(t.) is a linear function of /, recall (3.13) and (3.14). We

want to test the model Y. = x'/y+ s(t.) +e.bcing restricted under Ho with

= 0O being constant versus an • unrestricted model under Ha with

-̂ ) = /30 + g{t.J, where g(t.} represents the non-linear component in «(<,-)• We

therefore formulate this type of test as a test for the inclusion of a possibly nonlinear

component, so the null hypothesis is that there is no need to include an additional

(possibly nonlinear) component into the model. The alternative hypothesis is that

there is a need to include a additional component into the model.

By Tunnicliffe Wilson (1989) and Ara (1995), the marginal likelihood function

(4.12)-(4.13) is modified for our semiparametric regression (3.14) as

(4.16)

where Q is the GLS residual vector from (4.15) assuming variance-covariance matrix

A and N = n — p is the number of degrees of freedom. In the special case where

there are no regressors, this reduces to

(4.17)
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Let C be the lower-triangular matrix from the Choleski decomposition of A and let

{<*>»} denote the residuals from the ordinary least squares regression of Yt on Xt

where X, = C~*X and Y, = C"1^ • Then, we can write

_1
2 = (4.18)

X'AX XJX. (4.19)

JV
N

. t=l

(4.20)

By (4.18) - (4.20), equation (4.16) is simplified to the form

i=l

(4.21)

so that the marginal log-likelihood is given by

We estimate « by minimizing (4.22). Then we can formulate a test statistic by

applying the marginal log-likelihood ratio (MLR) test as follows

* ^



Chapter 4: Test for the inclushn of a possibly nonlinear component - MLR test 88

= 2[logj(KJ!/)-logZ(0|»)]. (4.23)

Note that MLR is independent of a under HQ. To see this, recall that E (Q) = 0 and

we can write Vax(Q) —• cr2lcZZ' + KE + I) where c = c/2 and K = K*/2.

Thus by a reparametrization, the MLR test is invariant to a2 but depends on c and is

a test of re* = 0 and consequently of K = 0.

!v

By Ara (1995), under the null hypothesis and appropriate regularity conditions (i) -

(ix) from Section 4.2.3, MLR follows asymptotically a mixture of the degenerate

distribution with a point mass at 0 and a xl component with equal weights, recall

Section 4.2.2.

In the following section we investigate the size and power properties of this MLR test

in small samples.

4.3 Simulation study

4.3.1 Size of the MLR test

If

We conducted a simulation study to evaluate the performance of the MLR test. In

model (4.15), we alternated the nxk design matrix X to be composed of

k = 2,3,4,5 explanatory variables, hence the notation X^X^X^X^ The function

\*4

\1r
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s{t) = t and a2 = 0.01; Z is a column matrix created by a sequence of numbers

equally spaced between zero and one; the constant c takes the value 1,000 and the

sample size nis equal to 100 or 50. We carried out 600 simulations for each

combination of the matrix X and the sample size. The size of the test for each

combination was obtained by comparing (4.15) with critical value from the x2(l)

distribution for a —10% being 2.70554 which, given the mixture nature of the

asymptotic null distribution, is the critical value for a test at the 5% nominal level,

refer to Sections 4.2.2 - 4.2.3. Results of the simulation are listed in Table 4.1. We

refer to Appendix 4 A.I for more details on S-Plus code on MLR test.

The following four design matrices were used to generate the data:

Data set 1, X (n x 2), where each value in the first column is equal to one and

each value in the second column is a random normal variate with mean 5 and

standard deviation 1.

Data set 2, X2 (n x 3), where the first two columns are the same as in matrix

X and the third column is manufacturing monthly data from dX Data File,

part Main Economic Indicators, Table USA 04: Manufacturing. This data from

1960 to 2000 are presented by Figure 4.1. We consider the latest 50 or 100

observations for the purpose of our simulation study.

4
4

r >
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Data set 3, X3 (n x 4), where the first three columns are the same as in matrix

X2 and the fourth column is the USA manufacturing data lagged by one

period.

Data set 4, X^ ( n x 5 ) , where the first four columns are the same as in matrix

X3 and the fifth column is the lagged USA manufacturing data by two periods

450 -,

400-

350-

300-

250-

200-

150-

100-

50-

Unlted States: Manufacturing: Deliveries: Total
bin USD

Jul-1960 1
Jul-1970

1
Jul-1980 Jul-1990 Jul-2000

Figure 4.1: Time plot of USA manufacturing deliveries, total in billion USD

150111 0.028 0.028 0.025 0.030
J D o S 0.025 0.022 0.025 0.024

Table 4.1: Estimated sizes of the MLR test based on the asymptotic critical values at 5% nominal level
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From the results of the simulation study on the size of the MLR test in Table 4.1, it is

evident that the sizes are ranging between 0.022 and 0.03 (whereas the nominal size

was set to 0.05). The majority of results are not significantly different from the

nominal value of 0.05 at the 1% significance level. Only the value 0.022 is smaller

than 0.023, which means that only in one time out of eight, the size of the test is

significantly different from the nominal size. The size of the test seems to be invariant

to the changes in sample size and the type of the design matrix X. Overall there is

some evidence of sizes being lower than nominal but this evidence is not particularly

conclusive.

We also checked whether nonzero MLR test statistics follow a x2 (1) distribution

under Ho. For the set of ail calculated values of MLR > 0 we applied a collection of

four plots, namely histogram, boxplot, density plot and a qq-plot. The four plot

summary of the values of MLR > 0 under the null hypothesis from design matrix Xt

is depicted by Figure 4.2.

These graphical devices provide a quick informative guide to see whether the

empirical distribution corresponds to a hypothetical theoretical distribution. Density

plots are smooth versions of histograms. They provide smooth estimates of the

population probability density curve. The most frequently used fonn to check whether

a data set comes from a particular hypothesized distribution shape is a qua/itile-

quantile plot. The qq-plot compares two set of quantiles. The first consists of the

ordered set of data values, which are quantiles for the empirical distribution. The other

set of quantiles are those for our hypothesized x2 (1) distribution. If the points in this

*
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qq-plot cluster along a straight line, the data set probably has the hypothesized

X2(l) distribution.

s,

g

0

11

2

\

A

X

6 8

1

-2 0 8 10 2 4 6 8

qchisq(ppoints(x), 1)

Figure 4.2: The four plot summary of the distribution of the calailated MLR test statistics larger than

zero for X1 specification

From Figure 4.2 is evident that the histogram, boxplot and density plots reveal an

asymmetric, skewed, like x? (1) distribution in shape for simulated MLR > 0. Note

that the density plot of MLR > 0 should be positive. The default setting in S-Plus code
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created some values being < 0. From the qq-plot it appears that the x* CO distribution

is not too far from the true distribution. There are some extreme values, but the

majority of points cluster along the straight line. We obtained a similar finding for the

distribution of MLR test from the simulation study on the size of the MLR test for

design matrices X2 ,X3,Xr

4.3.2 Power of the MLR test

We investigated the power of the MLR test assuming that s ( i ) is one of several non-

linear test functions given by (4.25). The observations were generated by

7. =x.i (4.24)

where the errors e. are independent and normally distributed with variance

cr2 = 0.01. For the sample size n = 50, the t. are equally spaced on the interval

(0,1) with tx=0 and i n = 5 0 , and the power is computed at the points

0 = 0.0,0.1,...,0.6. We considered the following ten nonlinear functions
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W = t2

(4.25)

These functions aie shown in Figure 4.3(a)-(e) and were chosen to have the same

range but varying degrees of nonlinearity. Here, s(t) = fo(t) = t is the linear

function used for the size calculations in the preceding section. The function Jlj (£) is a

Gompertz function, which is often used to model growth curves; f2 (t) is a quadratic

and a natural alternative to the assumption of linearity and f3 (t) is an exponential

function. Functions ft (t) — fw (t) represent combination of polynomial, exponential

and trigonometric functions. By this selection of test functions, we covered various

trends, shapes, amplitudes and frequency of oscillation in possible non-linear

relationships.

i

Let X be the two-column matrix initially with each value in the first column equal to

one and each value in the second column a random normal variate with mean 5 and

standard deviation 1. We ran our simulation study for 600 replications for different

values of 9; the constant c taking the value 1,000; and the regressors being the same
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as in Section 4.3.1 Results of this simulation are presented in Table 4.2. We stoped

simulating the power of MLR test for some values of 9 for some functions because

the increment in the power by increasing the 6 value was very small compared to

other non-linear functions.

Figure 4.4 shows a power comparison of the MLR test for the ten non-linear test

functions. The results show that the MLR test performs well. The lowest power is

obtained for functions fx and f2. The MLR test does not perform satisfactorily for the

least nonlinear functions of the set often deterministic curves, see Figure 4.3 (a) -

(e). The highest power is obtained for function f6. The MLR test also performs well

also for functions f7 and fg. The power of the MLR test depends upon the degree of

non-linearity of the test function / (t.).

I
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; Figure 4.3(a): Functions fQ (t), ./j (t), f2 (t), used for power calculations
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Figure 4.3(d): Functions fQ (t),f7 ( i ) , / 8 (t), usedfor power calculations
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Figure 4.3(e): Functions fQ (t),f0 (t),fw (t). used for power calculations
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Function f1

0.028 0.028
0.030 0.035
0.032 0.058
0.037 0.083
0.041 0.130
0.047 0.280
0.055 0.4S3

0.028
0.059
0.092
0.171
0.342
0.703
0.898

0.028
0.048
0.091
0.198
0.371
0.697
0.918
0.987
1.000

0.028
0.050
0.083
0.183
0.280
0.533
0.783
0.985
1.000

0.028
0.112
0.452
0.815
0.980
1.000

0.028
0.075
0.132
0.375
0.675
0.980
1.000

0.028
0.087
0.176
0.375
0.672
0.976
1.000

0.028
0.049
0.075
0.155
0.235
0.506
0.823
0.952
1.000

0.028
0.049
0.075
0.104
0.130
0.290
0.476
0.773

Table 4.2: Power estimates of the MLR test for ten different nonlinear functions at the 5% nominal
level using asymptotic critical values
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Figure 4.4: Estimated power of the MLR test for ten non-linear test functions
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4.4 Three tests comparisons

r

Now we briefly describe one of the regression specification error tests (RESET) by

Ramsey (1969) commonly known as the F test. We will compare the power of our

MLR test with the F test and its modification the F spline test.
I !

4.4.1 Regression specification error test — F and F spline test

The specification error considered in this thesis is that of omitted variables. The

following explanation comes from Ramsey and Gilbert (1972). Suppose that the basic

model relevant to the development of the test statistics is given by

w
IS*-

= X(3 + u, (4.26)

where y is an n x l regressand vector, X is an re x ft nonstochastic matrix of rank

k, (3 is a ft x 1 vector of coefficients, and u is an n x 1 vector of independent

disturbance terms each distributed normally with mean zero and variance a2. The

specification of the null hypothesis is given by (4.26). The alternative hypothesis is

defined by specifying that the true model has some specification other than that given

in (4.26). Thus, the use of regression (4.26) to analyze data generated by some other

model leads to specification error. Under the alternative hypothesis, the specification

of the true model that would give rise to specification error for the case of omitted

variables is given by
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y = Xf3 (4.27)

hi model (4.27), y,X,(3 are the same as in (4.26), w is a n x l non-stochastic

regressor vector, 77 is the corresponding coefficient, and v is distributed as

JV"(0,cr2/). The specification error test proposed by Ramsey (1969) was defined with

respect to Theil's BLUS (best linear unbiased scalar covariance matrix predictor)

residual vector u given by u = A'y, where the n x (n — k) matrix A has the

properties

A'A = In_v A A' = [l - X(X'xyl X'\ = M.

In model (4.27) the use of (4.26) as a true regression model leads to a vector u

distributed as (n - k) -variate normal with mean vector given by A'£, where £ is a

non-stochastic vector. The null hypothesis Ho can be expressed as

H0:u~N(0,a2In_k)

and alternative hypothesis Hl as

where a2 is the variance of u.. The fundamental idea underlying the test is that the

effect of specification error is to alter the distribution of the residuals from that
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postulated under the null hypothesis. In the omitted variable problem, the vector £ is

given by r]w , the vector w can be approximated by a polynomial. Ramsey (1969)

also found that, in practice the polynomial of degree k = 3 is large enough to obtain

reasonable power against the alternative hypothesis.

We want to apply the Ramsey error misspecification test to our model. Recall (4.15),

the specification of the null hypothesis is given by the restriction

Q = e (4.28)

where e is a vector of independent disturbance terms each distributed normally with

mean zero and variance a2. This leads to the restricted model

Y = + e. (4.29)

The alternative hypothesis is defined by specifying that the true model has some

specification other than that given by (4.29). Thus, the use of the restricted regression

to analyze data generated by some other model leads to specification enor. We want

to test the non-linear component in Q, therefore the specification error considered

here is that of omitted variable in (4.15). Under the alternative hypothesis, the

specification of the true model is given by (3.13).

For a test of significance level a, the null hypothesis is rejected if the test statistic

T > F
F in

(4.30)
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in which

T =
(SSER-SSEW

/m
SSE,, (4.31)

(n — m — k)

where SSER stands for error sum of squares resulting from restricted model (4.29)

and SSEV represents the error sum of squares resulting from unrestricted model

(3.13). The number of parameters being estimated is denoted by k and the symbol

mis used for the number of restrictions. The test statistic Tp follows the F-
b

distribution under Ho. In (3.13), function s(i.) can be estimated by any nonlinear

function. Our arbitrary choice was a cubic polynomial function. We denote this type

of the regression specification error test as the F test.

We use a modification to the above mentioned F test and denote this modified test as

the F spline test. If in (3.13), function s(t.) is estimated non-parametrically by a

smooth spline function instead of the cubic polynomial function, we assume that the

true model in this case will be more accurate, because of the flexibility of the

smoothing splines. We denote the test statistic as T Hnefor this alternation. For more

details on S-Plus codes on F and F spline see Appendixes 4A.2 and 4A.3.

We assume that the F spline test works exactly like the F test. The unrestricted

model is specified by (3.13) and restricted model by (4.29) as for the F test. The only
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difference in the F and F spline tests is that the function g(t.) in (3.13) is

approximated by the smoothing spline instead of by the polynomial of degree k = 3.

The following brief discussion is about how to effectively use the smoothing spline

feature from non-parametric regression in S-Plus. To get the test statistic TF Une for

the F spline test, we fit a generalized additive model to the data as the unrestricted

model, using the function "gam" in S-Plus. Then with analysis of variance on "gam"

we get the required test statistic Tp )Une. The number of restrictions m is estimated

from the smoothing matrix (see Hastie and Tibshirani, 1990). Using "anova.gam" in

S-Plus gives a breakdown of the degrees of freedom for all the terms in the model into

a single degree of freedom for its linear component, and the reminder for non-

parametric component. In addition, a type of F test is performed for each of the non-

parametric terms in S-Plus

4.4.2 Simulation comparison

We carried out 600 replications with n = 50. Let matrix X be the two-column

matrix with each value in the first column equal to one and each value in the second

column a random normal variate with mean 5 and standard deviation 1. Results are

listed in Table 4.3. Power of the MLR, F and F spline tests differ according to

different deterministic nonlinear functions being used in the study. All three tests are

most powerful for function /0. Our MLR test performed well for all test functions

besides function j j . When comparing the MLR test with the F test, the former
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outperformed the latter for functions ^ ,^ , / 8 and both are very close to each other for

functions f5JQ. When comparing the MLR test with the F spline test, the former

outperformed the latter for functions /2,/,,/c. The power of both F and F spline tests

is close to each other for all functions. In Table 4.3 the best power is highlighted for

each test and nonlinear test function with respect to 8.

The simulation study comparing the MLR, F and F spline tests revealed an interesting

finding that the F test appeared to perform superior to the MLR and F sp'nie tests. The

F test had the best power for functions jj, f2, /3, f4, /g, f9, fw. In fact, for function f7

when the F test performed poorly in comparison to MLR, the F spline test

outperformed MLR.

Thus the F test or its modification the F spline test are better alternatives to the MLR

test. Note that the size of the MLR test is the smallest of all three tests therefore the

power of the MLR test might be instantly behind by this initial handicap.

Figures 4.5 (a) - (j) plot the power of the three tests for each individual deterministic

test function. These plots give better graphical comparison of all three tests for every

nonlinear test function.
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F
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MLR
F

F spline
MLR

F
F spline

MLR
F

F spline

0.028
0.055
0.056

0.028
0.055
0.056

0.028
0.055
0.056

0.028
0.055
0.056

0.028
0.055
0.056
0.028
0.055
0.056

0.028
0.055
0.056

0.028
0.055
0.056

0.028
0.055
0.056

0.035
0.115
0.060

0.059
0.100
0.071
0.048
0.076
0.076

0.050
0.060
0.065
0.112
0.116
0.135
0.075
0.055
0.090
0.087
0.120
0.091
0.049
0.080
0.070

0.049
0.090
0.060

0.058
0.393
0.071

0.092
0.288
0.085
0.091
0.156
0.132

0.083
0.098
0.090
0.452
0.378
0458
0.132
0.105
0.253
0.176
0.312
0.218
0.075
0.113
0.108

0.075
0.162
0.086

0.083
0.715
0.095

0.171
0.593
0.167

0.198
0.271
0.238
0.183
0.170
0.180
0.815
0.760
0.800

0.375
0.176
0.516

0.375
0.570
0.450

0.155
0.230
0.200

0.104
0.300
0.120

0.130
0.938
0.125
0.342
0.840
0.336

0.371
0.458
0.415

0.280
0.253
0.302
0.980
0.935
0.978

0.675
0.303
0.870
0.672
J.850
0.712

0.235
0.393
0.317

0.130
0.500
0.165

0.280
0.990
0.255
0.703
0.990
0.653
0.697
0.838
0.795

0.533
0.475
0.593
1.000
1.000
1.000
0.980
0.528
0.990
0.976
0.990
0.905
0.506
0.712
0.705

0.290
0.780
0.350

0.453
1.000
0.385

0.898
1.000
0.860

0.918
0.977
0.971

0.783
0.720
0.850

1.000
0.713
1.000
1.000
1.000
0.987
0.823
0.910
0.933

0.476
0.975
0.538

0.713

1.000
0.987
1.000
1.000
0.985
0.976
0.990

1.000

0.952
0.981
0.975

0.773
1.000
0.880

1.000

1.000
1.000
1.000

1.000
1.000
1.000

Table 4.3: Simulated power of the MLR, F and Fspline tests for ten non-linear test functions

1;
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Plots (d), (e), (j), (h) and (i) related to functions /4,/5,/c,/7 and /D show very small

deviations of the MLR, F and F spline tests results. Plots (c), (g), and (j) related to

functions /3,/8 and fw show moderate deviations of all three tests results. Plots (a),

(b) show the largest deviations mostly on MLR and F spline test results for functions

fvf2. These results are most likely due to a different degree of nonlinearity of the ten

deterministic functions being used in the study. Most importantly the MLR test failed

for the function, which shows the least nonlinear shape, i.e. function f} or Gompertz

curve. The F test was least powerful for function /g, which is possibly the most

nonlinear.
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The F spline test is a mean based test and the MLR test is a variance based test. It is

interesting that similar power curves resulted for both tests from the simulation study

mostly for functions fAJ5J6.fvfvf9.

4.5 The MLR test application

hi this section we apply the MLR test to the nominal yields to maturity data (hereafter

yields data) and the holding period return data (hereafter hold data) from the Fama

Twelve-Month Treasury Bill Term Structure File of the U.S. Government Securities

File of the Centre for Research in Securities Prices (CRSP) at the University of

Chicago. The file contains twelve yields series on Treasury bills; one series for bills

with one month to maturity, another for bills with two months to maturity, and so on,

to a series with twelve months to maturity.

The MLR test was conducted on the series for bills with 3 months to maturity and

with 6 months to maturity for both yields and hold data. The underlying model, refer

to (3.13), is assumed to be a semiparametric model

where Y is (raxl) vector of Y{ which are 6 months hold (yields) to maturity, X is a

(nx2) matrix of constant intercept term and the 3 months hold (yields) to maturity

x{, e,. are errors that are iid iV(0,cre
2) and ra = 120. Using a common notation from
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the term structure theory, for example as used by Hall et al. (1992), this

semiparametric model can be rewritten in the form

,ti) = 1R(3,ti)+L(6,ti)+ei,

where £(6,^) ss(i j) is a risk premia, which may account for risk considerations or

investors' preferences about liquidity, #(6,£,)sY; and 72(3,^) = a:!. According to

some expectation theories, risk premia is assumed to be zero, while other versions

assume that it is constant over time. For more about the theory of the term structure of

interest rates, see Hall, Anderson and Granger (1992). The risk premia is likely to be

time varying in a linear or non-linear fashion, because of uncertainty caused by the

volatility in monetary growth, interest rates and other economic environmental

explanatory variables, which are believed to be non-linear in time. The MLR test is a

test for the inclusion of a possibly non-linear component, in this case a risk premia

L(6,t{) = s ^ ) term in the model without testing its specific form.

i r •

Figure 4.6 shows a scatter matrix of the Holding period return data, where the

notation 'tmths' denotes 3 months hold to maturity and 'smths* denotes 6 months hold

to maturity. From Figure 4.6, a stochastic linear relationship of the 6 months hold to

maturity data to the 3 months hold maturity data is visible. Dependence of both data

sets on time is however not constant and shows a visible departure from linearity. It

does make a sense to test whether to include a risk premia L{6,tt) = s(t{) component

into the model in a form different from a constant. Moreover Figure 4.7 illustrates the

time plots of the 6 months hold to maturity data and the 3 months hold maturity data.
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It is evident that holds of different matir»:ty <n-o^r \<y .nOve togetter uv»- "ime, which

is typical for cointegrated time series, for more %ce Granger

The MLR test has H0:K = 0, which means that the risk premia is constant over lime,

therefore its value will be estimated by the parameter vector 7. The specific

alternative HA:K>Q means that the risk premia is time varying and therefore it

should stay in the model. Result of the MLR test for hold data is MLR - 23.29 is
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supported by the p-value being 0.00. We have significant evidence to reject

H0:K = 0 at 5% level when we compare MLR test statistic with *2( l) = 2.70554.

The MLR test suggests inclusion of the time varying risk premia component into the

model for hold maturity data.
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%1II

I

The logical further step is to estimate the semiparametric model, to clarify whether the

estimated model is statistically significant and to show its potential applicability in the

forecasting yields of Treasury bills.

We also applied the MLR test to yields maturity return for 3 and 6 month data from

the same source. The MLR test confirmed the previous finding and rejected Ho at the
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5% nominal significance level. The MLR test suggests including the time varying risk

premia component into the model for yields maturity data.

This analysis demonstrates the use of MLR test and suggests gains from its use in

applied research. It is appropriate to think about the form of the time varying risk

premium, which will be tested by MLR* test to be discussed in Chapter 5. At this

stage we can say that it is advisable to include the time varying risk premium as an

exogenous variable in the model.

4.6 Results summary

In this chapter we proposed the marginal likelihood ratio test for the inclusion of a

possibly nonlinear component in a linear regression model. Our simulation study on

the MLR test revealed a slightly smaller than the nominal size of the test. The size of

the MLR test was invariant to the change in the design matrix. The study on the power

of the MLR test using ten nonlinear deterministic functions was promising. The

simulation study comparing our MLR test with the F and F spline tests failed to

confirm superiority of the proposed MLR test. Either the F test or F spline test

outperformed the MLR test in power for all ten nonlinear deterministic test functions.

Results from this chapter support a mean based F or F spline tests instead of a

variance based MLR test when testing for the inclusion of a possibly nonlinear

component. The mean based F spline test seems to be worthy of further exploration. It

had the best power for function /g and outperformed the F test for functions f5j6.

i-
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We demonstrated the application of the MLR test on the nominal yields to maturity

data and the holding period return data from the Fama Twelve-Month Treasury Bill

Term Structure File of the U.S. Government Securities.
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Appendix 4A.1 S-Plus code of MLR test

mmmmmmmmmmmmmmmm
# MLR test, size and power simulations#
#################################

### Generate x data
n<-50
set.seed(l)
x<-rnorm(n,5,l)
tt<-(l:n)/n

## Set up equation for y data
gamma 1 <- 0 #intercept
gamma2 <- 1 #slope
sigma<-0.1 #stdev

### Set up X and S matrices
ones<-seq(l,l,l=n)
X <- cbind(ones,x)
S <- cbind(ones.tt)
halfN <- 0.5*(n-ncol(X))

### Set up Sigma matrix
h3 <-l/(nA3)
Sigma <- matrix(0,nrow=n,ncol=n)
for(i in l:n)

Sigma[i,i:n] <- Sigma[i:n,i] <-

### Set up nonlinear functions
fl)<-tt
fl <- exp(-3*exp(-3*tt))

- ttA2
- exp{-5*(l-tt))
- 0.71*(sin((4*rt)A2)+3*ttA8)/3+.25
- (0.909*(l/sin(3*tt))/15)-0.04
- 1.4*(exp(sin(3*tt)A2)/2.5)-0.55

f7 <-0.5*sin(4*pi*tt)+0.5
f8<-((5*tt+5*exp(-((rt-0.5)A2)/0.04))/7)*0.909
f9 <- 2.5*((exp(sin(3*tt)A3)+exp(cos(3*tt)A2)+ttA4)/4.5}-1.7
fl0<-((exp(sin((3*tt)A3))+4*ttA4)/6)-0.1

*h3

f3
f4
f5
f6

### Functions to compute likelihood and MLR statistic (here lr)
logdet <- function(x)

sum(log(eigen(x)$values))

fK-function(ll)
{

C <- chol(SS + exp(H)*Sigma)
Cinv <- t(solve(C))
Xstar<-Cinv%*%X
Ystar<-Cinv%*%Y
tX <- t(Xstar)
XX <- tX %*% Xstar
beta <- solve(XX) %*% tX %*% Ystar
res <- Ystar - Xstar %*% beta
return(Iogdet(C) + 0.5*Iogdet(XX) + halfN *Iog(sum(res*res)))

minfl <- functionQ
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cat(".")
y <- frnean + morm(n,0,sigma)
Y <- matrix(y,ncol=l)
assign("Y",Y,frame=l)
flO <- fl(-l e20) # Value at zero
fredal! <- nlmin(fl,l) # Minimize starting near zero
fl.fred <- fl(fredall$x) # Best fl
ifCflO < fl.fred)

lstar<-lr<-0
else
{

lr<-2*(flO-fl.fred)
Istar<-exp(fredall$x)

}
return(c(lr,lstar))

## Simulation
iheta<-0.6
finean <- gammal + gamma2*x + theta*flO
cc <- 1000
SS <- cc*(S %*% t(S)) + diag(n)
#set.seed(2)
nn <- 600
lmal <- matrix(0,nrow=nn,ncol=2)
for (k in 1:10) lmat[k,] <- minflQ

for (k in 591:600)lmat[k,] <- minflO

lstar <- lmat[,2]
count2 <- length(lr[lr>2.70554])
print(count2)
power<-count2/nn
print(power)
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Appendix 4A.2 S-Plus code of F test

######################
# Ftest, power simulations
######################

### Generate x data
n<-50
set.seed(l)
x<-rnorm(n,5,l)
tt<-(l:n)/n

### Set up equation for y data
gammal <- 0 intercept
gamma2 <-1 #slope
sigma<-0.1 #stdev

### Set up nonlinear functions
fl)<-tt
fl.<-exp(-3*exp(-3*tt))
f2 <- ttA2
B<-exp(-5*(l-tt))
f4 <- 0.71*(sin((4*tt)A2)+3*ttA8)/3+.25
f5 <- (0.909*(l/sin(3*tt))/15)-0.04
f6 <- 1.4*(exp(sin(3*tt)A2)/2.5)-0.55
f7 <-0.5*sin(4*pi*tt)+0.5
f8<-((5*tt+5*exp(-((tt-0.5)A2)/0.04))/7)*0.909
f9 <- 2.5*((exp{sin(3*tt)A3)+exp(cos(3*tt)A2)+ttA4)/4.5)-1.7
n 0 <-((exp(sin((3*tt)A3))+4*ttA4)/6)-0.1

### Calculate F statistic
FtestsinK-functionO
{

y<-finean+rnoim(n,0,sigma)
ma<-lm(y ~ x +tt+ttA2+ttA3)
mO<-lm(y ~ x )
Ftest<-((deviance(mO)-deviance(ma))/3)/(deviance(ma)/43)
return(Ftest)

mmmmmtmmmmtmMimm
## Simulation to compute power ##
#############################

theta <-0.3
finean <- gammal + gamma2*x + theta*f8
set.seed(23)
nsim <- 600
Ftest <- numeric(nsim)
for(i in lrnsim)

Ftest[i] <- Ftestsim()

count <- length(Ftest[Ftest>2.83])
print(count)
power <- count/nsim
print(power)

########################
## Calculate critical value ##
########################
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flnean <- gammal + gamma2*x
set.seed(2)
nsim <- 600
Ftest <- numeric(nsim)
for(i in l:nsim)

Ftest[i] <- FtestsimO
Ftestxritical .value <- quantile(Ftest,0.95)
print(Ftestxritical.value)
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Appendix 4A.3 S-Plus of F spline test

#########################################################
# Ftest assuming that the additional nonlinear component is estimated#
# by smoothing spline, power simulation #
#########################################################

### Generate x data
n<-50
set.seed(l)
x<-rnorm(n,5,l)
tt<-(l:n)/n

### Set up equation for y data
gamma 1 <- 0 #intercept
gamma2 <-1 #slope
sigma <- 0.1 #stdev

### Set up nonlinear functions
fO<-tt
fl <- exp(-3*exp(-3*tt))
n <- ttA2
O <- exp(-5*(l-tt))
f4 <- 0.71*(sin((4*tt)A2)+3*ttA8)/3+.25
f5 <- (0.909*(l/sin(3*tt))/15)-0.04
f6 <- 1.4*(exp(sin(3*tt)A2)/2.5)-0.55
f7 <-0.5*sin(4*pi*tt)+0.5
f8<-((5*tt+5*exp(-((tt-0.5)A2)/0.04))/7)*0.909
f9 <- 2.5*((exp(sin(3*tt)A3)+exp(cos(3*tt)A2)+ttA4)/4.5)-1.7
n0<-((exp(sin((3*tt)A3))+4*ttA4)/6)-0.1

theta <-0.2
finean <- gammal + gamma2*x + theta*f8

nsim<-600
Fspl<-numeric(nsim)

for (i in 1 :nsim)

ri

y<-fmean+rnorm(n,0,sigma)
ma<-gam(y ~ x + s(tt))
junk<-anova(ma,test="F")
Fspl[i]<-aunk$"NparF"[3])

count<-length(Fspl [Fspl>3.105614])
power<-count/nsim
print(power)

# Fcritical by bootstrap from 1000 obs is 3.105614 #
# F critical 4,40 d.f. alpha 0.05 is 2.61 #



CHAPTER 5
ft

Testing for linearity of a possibly nonlinear

component
: & •

5.1. Introduction

This chapter is an extension of Chapter 4. Recall that in (3.1) we have a

semiparametric regression model with one potential nonlinear component. We apply

the same finding as in Section 4.1 and propose a likelihood ratio one-sided test based

on the marginal likelihood function as was derived by Tunnicliffe Wilson (1989) and

Ara (1995). We use the error variance-covariance matrix (3.21) for this model in the

case of equally spaced data. We will modify the null hypothesis when testing for

linearity of a possibly nonlinear component, hence the MLR* notation.
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We need to distinguish between the MLR test from Chapter 4 and the MLR* test to be

proposed in this chapter. The MLR test is a test of the existence of a nonlinear

component whereas the MLR* test is a test of linearity of a possibly nonlinear

component. Recall Section 4.6, where we illustrated the use of the MLR test on holds

and yields maturity data. The MLR test suggested including a time varying risk

premia component into the model. In this chapter we test by the MLR* test, whether

the time varying risk premia component should be included in a linear form or a

nonlinear form. Hence the MLR* is a test of linearity of a possibly nonlinear

component.

w

We propose the marginal likelihood based test (MLR*) for testing for linearity of a

possibly nonlinear component in Section 5.2 by applying the error variance-

covariance matrix for this model in the case of equally spaced data, which has been

derived in Chapter 3. We investigate the performance of the test via a Monte Carlo

experiment in Section 5.3. We compare the MLR* test with the regression

specification error test by Ramsey (1969), known as F test, and with the locally most

powerful invariant test by King and Hillier (1985) in Section 5.4. The comparison

between the mean based tests and the variance based tests is one of the themes of this

section. We apply the MLR* test to real economic data in Section 5.5. Section 5.6

summarises our findings.
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5.2 Test for linearity of a possibly nonlinear component -

MLR* test

We have a semi-parametric regression model with one potentially non-linear

component. Recalling (3.14), we can rewrite the model as follows

(5.1)

or

lav

•i

u
k

where Qt = g + e, matrix G = [X : Z] involves matrices X and Z, so

6' = (y, /3 ') , e. are iid N(0,<r2) and the vector g is the same as in Section 4.2.4.

Now E(Qt) = O, the variance is A, = Var(<QtJ = «£ + a2l and « = A ! . We can

substitute the error covariance form S given by (3.21) into this expression in order to

test the linearity of component / , referring to (3.13). We use the null hypothesis

HQ:K = 0 le.,Qt ~N(0,<72/)

against the specific alternative

If
4'

5 "

Ha:n>0
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We therefore want to test the model Y. = x'/y + s(t.) + e. being restricted under HQ

with s{t.) = P0+/3lt. versus an unrestricted model under Ha with

s(t.) = z'.p + g(t.^ being non-linear. Therefore under HQ if n = 0, g{ti) = 0 and

s (t) is a linear function of t.

it'

I

We will construct the test statistic in the same way as in Section 4.2. By Tunnicliff

Wilson (1989) and Ara (1995), the marginal likelihood function (4.12) - (4.13) is

modified for our testing problem as follows

(5.2)

where Q, is the GLS residual vector from (5.1) assuming variance-covariance matrix

4» - Equation (5.2) can be simplified into the form

) 2

so that the marginal log-likelihood is given by

logi(K|i/).=-log|C,|-ilog|G:G,|-—log
ft

E A2

(5.3)

(5.4)

«5
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where C, is the lower-triangular matrix from the Choleski decomposition of A, and

Wi denotes the sum of squared residuals from the ordinary least squares

regression of Yt on Gt where G, = C^G and Yt = C^Y. We estimate n by

minimising (5.4). Then the marginal log-likelihood ratio MLR* test statistic follows

MLR* = 2[logi(A|y)t -logJ(0|y).l. (5.5)

Note that MLR* is independent of a under Ho. To see this, recall that E>(Qt) = 0

and we can write Var ((?,) = a1 (K where K = K/2. Thus by a

reparametrization, the MLR test is invariant to a2 and is a test of K = 0 and

consequently of K, = 0.

By Ara (1995), under the null hypothesis and some appropriate regularity conditions,

namely (i) - (ix) from Section 4.2.3, MLR* follows asymptotically a mixture of the

degenerate distribution with a point mass at 0 and a x\ component with equal

weights, recall Section 4.2.2.

In the following section, we investigate the size and power properties of this MLR*

test in small samples.

\y

Knr»5msaftfK????*9.'j
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5.3 Simulation study

5.3.1 Size of the MLR* test

II

II

We conducted a simulation study to evaluate the performance of the marginal

likelihood based MLR* test. In model (5.1), we alternated the rax A; design matrix

G = [X -. Z] to be composed of k = 3,4,5,6 explanatory variables, hence the

respective notation GX,G2,GVG4. The sample size is equal to 100 or 50. The size of

the test for each sample size was obtained by comparing (5.5) with the critical value

from the x2 (1) distribution for a = 10% being 2.70554 which, given the mixture

nature of the asymptotic null distribution, is the critical value for a test at the 5%

nominal level, refer to Sections 4.2.2 - 4.2.3. We carried out 600 replications in the

simulation experiment for each combination of the matrix G and the sample size.

Results are listed in Table 5.1. We refer to Appendix 5 A.I for more details on the S-

Plus code for the MLR* test.

i »\

The following four design matrices were used to generate the data:

Data set 1, Gl (n x 3), where each value in the first is column equal to one, in

the second column is a random normal variate with mean 5 and standard

deviation 1 and the third column is created by a sequence of numbers equally

spaced between zero and one.
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Data set 2, G2 (nxA), where the first three columns are the same as in matrix

Gx and the fourth column is the USA manufacturing data from the dX Data

File, from part Main Economic Indicators, Table USA 04: Manufacturing. The

raw manufacturing monthly data from 1960 to 2000 are presented in Figure

4.1, refer to Section 4.3.1. We consider the latest 50 or 100 observations for

the purpose of our simulation study.

Data set 3, C?3 (n x 5), where the first four columns are the same as in matrix

G2 and the fifth column is the USA manufacturing data lagged by one period.

Data set 4, GA (n x 6), where the first five columns are the same as in matrix

G, and the sixth column is the USA Manufacturing data lagged by two

periods.

0.031 0.028 0.025 0.022
0.023 0.022 0.020 0.016

Table 5.1: Estimated size of the MLR. test based on asymptotic critical values at the 5% nominal

level

The results of the simulation study on the size of the MLR* test given in Table 5.1

reveal that the estimated test sizes are in a range between 0.016 and 0.031 (whereas

the nominal size was set to 0.05). The majority of results for sample size n = 50 are

not significantly different from the nominal value at the 1% significance level All
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Figure 5.1: The four plot summary of the distribution of MLR* test statistic larger than zero for Gl m

results for the sample size n — 100 are not significantly different from the nominal

value at the 5% significance level. The size of the test seems not to be invariant to

changes in sample size. The size of the MLR* test is larger for the smaller sample

i



Chapter 5: Test for linearity of a possibly nonlinear component - MLR* test 128

size. The size of the MLR* test is smaller for larger dimensions of the G matrix for

both sample sizes.

We applied the same collection of four summary plots, namely the histogram, the

boxplot, the density curve and the qq-plot as in Section 4.2.4 to check whether the

non-zero values of the MLR* test statistic follow a x* (1) distribution. The four plot

summary of the MLR* > 0 with design matrix G1 is depicted by Figure 5.1.

< r

From Figure 5.1 the histogram, boxplot and density plots reveal an asymmetric,

skewed, x2 (1) like distribution for simulated MLR* > 0. From the qq-plot it appears

that the %2 (1) distribution is not too far from the true distribution. There are some

extreme values, but the majority of points cluster along the straight line.

The four plot summaries of the size MLR* > 0 with design matrixes G2,GS,GA

revealed an asymmetric, skewed, x2 (1) like distribution in shape similar to that

presented by Figure 5.1.

5.3.2 Power of the MLR* test

We investigated the power of the MLR* test using the same ten nonlinear test

functions as in the Section 4.3.2.

\k

[i
\ >

'< T
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o:2oj

om;

aol

Function f1 \.

0.031 C

2

).O31

0.035 0.042

0.037 0.059

0.043 0.086

0.051 0.125

0.059 0.239

0.071 0.420

0.108 0.740

0.178 0.943

f3

0.031

0.065

0.104

0.178

0.297

0.625

0.867

0.995

1.000

f4

0.031

0.058

0.107

0.209

0.332

0.661

0.903

0.994

f5

0.031

0.055

0.089

0.169

0.252

0.502

0.745

0.975

1.000

f6

0.031

0.129

0.467

0.833

0.974

1.000

f7

0.031

0.097

0.175

0.283

0.463

0.810

0.962

1.000

f8
• • • • • • • 1

0.031

0.087

0.208

0.397

0.683

0.917

0.995

f9

0.031

0.063

0.078

0.124

0.178

0.446

0.758

0.935

0.998

1.000

f10

0.031

0.058

0.076

0.103

0.120

0.265

0.445

0.756

0.950

0.997

Table 5.2: Power estimates of the MLR* test for ten different nonlinear functions at the 5% nominal
level using asymptotic critical value

Let the matrixG in (5.1) be the three-column matrix with each value in the first

column equal to one, the second column being a random normal variate with mean 5

and standard deviation 1, and the third column being created by a sequence of

numbers equally spaced between zero and one. We carried out 600 replications on the

same set of test nonlinear functions given by (4.25). Results of this simulation are

presented in Table 5.2. We stoped simulating the power of MLR* test for some values

of 9 for some functions because the increment in the power by increasing the 9 value

was very small compared to other non-linear functions.

Figure 5.2 shows the powers of the MLR* test for ten non-linear test functions. The

results show that the MLR* test performs well for the majority of the test functions.

The best power was obtained for function f(.. There is also visible a distinctive group
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of functions /7,/8 and /3,/4,/5,/9 which exhibit similar power. Also functions /2,/10

result in low power for smaller 9 values and have a quick increase in power for larger

9. The results are not satisfactory for the Gompertz function fx which is the least

nonlinear of the set often deterministic curves.

Figure 5.2 shows a power comparison of the MLR* test for the ten non-linear test

functions.
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Figure 5.2: Power of the MLR* test for all ten non-linear test functions

Overall, the results show that the MLR* test performs well. The lowest power is

obtained for the function j j . The MLR* test does not perform satisfactorily for the

least nonlinear functions of the set often deterministic curves, refer to Figure 4.6 (a)
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- (e) in Chapter 4. The highest power is obtained for function /6. The power of the

MLR* test depends upon the degree of non-linearity of the test function f(t.) as

might be expected.

5.4 Comparison of four tests

We now compare our MLR* test with the locally most powerful invariant (LMPI) test

proposed by King and Hillier (1985), the modified regression specification error F*

test by Ramsey (1969) and F*spline test.

5.4.1 Locally most powerful invariant test

The LMPI test for the null hypothesis HQ : n = 0 against the specific alternative

Ha -. K = Kj > 0 rejects Ho for large values of the test statistic

1LMPI I
e

(5.6)
e o e o

where eQ is the ordinary least squares residual vector for the regression of y on X

and Z as given by (3.14) and E is given by (3.21). The critical value for our case

was calculated using standard numerical methods as outlined in King (1981) and is

0.00826 at 0.95. (The author wants to thank to Zeng-Hua Lu from Department of
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Econometrics and Business Statistics, Monash University for his calculation of the

critical value for the LMPI test using the Imhof (1961) algorithm.)

5. 4.2 Regression specification error test - F* and F* spline test

The specification error considered in this chapter is that of the misspecified type of

regression. We have a linear regression of s (t) that might be nonlinear. We want to

apply the Ramsey error misspecification test to our model, refer to Section 4.4.1 in

Chapter 4.

Recall (5.1), the specification of the nu'l hypothesis is given by the restriction

(5.7)

where e is a vector of independent disturbance terms each distributed normally with

mean zero and variance a2. This leads to the restricted model

Y = Xj + Z(3 + e. (5.8)

The alternative hypothesis is defined by specifying that the true model has some

specification other than that given by (5.8). Thus, the use of the restricted regression

to analyse data generated by some other model leads to specification error. We want

to test the non-linear component in Qt, therefore the specification error considered



Chapter 5: Test for linearity of a possibly nonlinear component - MLR* test 133

here is that of misspecified type of s (t) in (5.1). Under the alternative hypothesis, the

specification of the true model is given by (3.13).

For a test of significance level a, the null hypothesis is rejected if the test statistic

in which

T > F
F* m,n—m—Jt,a

(SSER-SSEW
An

(5.9)

SSEr,
(5.10)

1 /
(n — m — k)

where SSER is the error sum of squares resulting from restricted model (5.8), and

SSEV represents the error sum of squares resulting from unrestricted model (3.13).

The number of parameters being estimated in the unrestricted model is denoted by k

and the symbol m is used for the number of restrictions, which is 2 in this case. The

test statistic Tpt follows the F-distribution under the null hypothesis. The difference

between the F test from Chapter 4 and the F * test is in the matrix X specification.

In the F test, the matrix X is a two-column matrix with each value in the first column

equal to one, with a random normal variate with mean 5 and standard deviation 1 in

the second column. In the F *test, the same matrix X\s combined with the matrix Z

to make the matrix G = [X : Z). The matrixG is the three-culumn matrix with the

first two columns the same as those for X and the third column is created by a
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sequence of numbers equally spaced between zero and one. For more details on the

difference between the Ftest and the F * test refer to Appendix 4A.2 and 5A.3.

Similarly as in Chapter 4, function s(t.) in (3.13) can be estimated by any nonlinear

function. Our choice was a cubic polynomial function. We denote this type of

regression specification error test as the F* test. If in (3.13), function s(t.) is

estimated non-parametrically by a smooth spline function, we denote this type of test

as the F * spline test, hence the test statistic is denoted as T" . For more details

on the S-Plus codes on F * and F * spline see Appendix 5A.3 and 5A.4.

The same discussion applies for the test statistic TV ,. in F * spline test as in

Section 4.4.1 regarding how to get the number of degrees freedom. The difference

between F spline test from Chapter 4 and F * spline test is in the design matrix X

and G specification, similar to the difference between the F and F * tests. For more

details of the difference refer to Appendix 4A.3 and 5A.4.

5.4.3 Simulation comparison

We carried out 600 replications with n = 50 with the regressors and nonlinear

functions being the same as in Section 5.3.2 See Appendices 5A.I - 5A.4 for S-Plus

codes of all four tests. The results of the simulations are listed in Table 5.3.

,.*&.-
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0.031
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0.056

0.035
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0.037
0.056
0.056
0.061

0.043
0.056
0.060
0.062

0.051
0.056
0.071
0.063

0.059
0.065
0.085
0.070

0.071
0.080
0.102
0.085

0.108
0.123
C150
0.136
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0.193
0.216
0.208
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ft1 Wtf-
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i
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fe* f8 >
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i

i
" f10

J MLR*
LMPI

_, F*
" F* spline

MLR*
*' LMPI

F*
F* spline

MLR*
LMPI

F*
F* spline

MLR*
\ LMPI

F*
F* spline

MLR*
* LMPI

F*
F* spline

, MLR*
LMPI

F*
F* spline

MLR*
LMPI

1 F*
F* spline

i MLR*
1 LMPI

F*
F* spline

MLR*
LMPI

F*
F* spline

0.031
0.046
0.052
0.056
0.031
0.046
0.052
0.056
0.031
0.046
0.052
0.056
0.031
0.046
0.052
0.056
0.031
0.046
0.052
0.056
0.031
0.046
0.052
0.056
0.031
0.046
0.052
0.056
0.031
0.046
0.052
0.056
0.031
0.045
0.052
0.056

0.042
0.065
0.060
0.065
0.065
0.100
0.090
0.080
0.058
0.078
0.078
0.076
0.055
0.080
0.063
0.063
0.129
0.168
0.146
0.135
0.097
0.040
0.080
0.120
0.087
0.113
0.100
0.090
0.063
0.090
0.070
0.080
0.058
0.060
0.080
0.070

0.059
0.095
0.073
0.073
0.104
0.168
0.120
0.108
0.107
0.151
0.158
0.108
0.089
0.152
0.115
0.090
0.467
0.543
0.447
0.458
0.175
0.038
0.086
0.250
0.208
0.242
0.210
0.217
0.078
0.112
0.086
0.108
0.076
0.088
0.091
0.086

0.086
0.150
0.110
0.100
0.178
0.263
0.220
0.180
0.209
0.235
0.250
0.230
0.169
0.240
0.200
0.170
0.833
0.873
0.823
0.836
0.283
0.034
0.120
0.620
0.397
0.500
0.390
0.490
0.124
0.176
0.134
0.180
0.103
0.110
0.143
0.130

0.125
0.216
0.133
0.118
0.297
0.443
0.341
0.287
0.332
0.370
0.433
0.415
0.252
0.363
0.285
0.302
0.974
0.995
0.960
0.971
0.463
0.032
0.162
0.833
0.683
0.743
0.618
0.728
0.178
0.270
0.178
0.317
0.120
0.175
0.190
0.163

0.239
0.375
0.250
0.235
0.625
0.780
0.650
0.630
0.661
0.663
0.760
0.795
0.502
0.650
0.600
0.670
1.000
1.000
1.000
1.000
0.810
0.020
0.250
0.950
0.917
0.981
0.915
0.973
0.446
0.450
0.310
0.700
0.265
0.312
0.360
0.354

0.420
0.566
0.393
0.378
0.867
0.931
0.888
0.867
0.903
0.850
0.948
0.971
0.745
0.860
0.792
0.870

0.962
0.010
0.315
1.000
0.995
1.000
0.985
1.000
0.758
0.648
0.493
0.938
0.445
0.460
0.540
0.527

0.740
0.873
0.751
0.713
0.995
0.990
0.990
0.990
0.994
0.987
1.000
1.000
0.975
0.990
0.986
0.995

1.000
0.003
0.443

1.000

0.935
0.912
0.823
0.997
0.756
0.733
0.860
0.886

0.943
0.980
0.948
0.941
1.000
1.000
1.000
1.000

1.000

1.000
1.000
1.000
1.000

0.521

0.998
0.983
0.953
1.000
0.950
0.898
0.980
0.990

1.000
0.995

1.000
0.998
0.995

0.997
0.967
1.000
1.000

I}.'

Table 5.3: Simulated power of the MLR*, LMPI, F* and F* spline tests for the ten nonlinear test
functions
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From Table 5.3 it is evident that the power of the MLR*, LMPI, F* and F* spline

tests differ according to the different deterministic nonlinear functions being used in

the study. All four tests are most powerful for function /6. Our MLR* test performed

well for all of the test functions. However it does not have the best power for any

function. Note that the size of MLR* test is the smallest of all four tests therefore the

power of the MLR* test is lower as a result of this.

When comparing the MLR* test with LMPI test (both are variance •-covariance based

tests), the latter outperformed the former for functions Jx, f2, /3, f5, /c, /g . The MLR*

test performs better than the LMPI test for larger 6 for functions fg,f1Q. Tfcs LMPI

ft failed for function f7, for which the MLR* test revealed very good power. The

mean based F* or F* spline tests showed the best power for functions f1,fi,f7,fg)fw.

In fact the F* spline test was always more powerful than the F* test. This indicates the

better flexibility of the spline based F test to the polynomial based F test. Overall the

LMPI test had the best power for functions /2,/3,/G,/8 and partly for function /5.

Therefore when testing for linearity of a possibly nonlinear component, the mean

based tests performed on average equally well compared to the variance based tests.

In Table 5.3 the best power was highlighted for each test and nonlinear test function

with respect to 0.

Figures 5.3 (a) - (j) plot the power of the four tests for each individual deterministic

test function. These plots give a belter graphical comparison of all four tests for every

nonlinear test function.
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.3 (c) - (d): Power of the MLR* LMPI, F* and F* spline tests for function ft part (c) and ft

part (d)



Chapter 5: Test for linearity of a possibly nonlinear component - MLR* test 138

p

O.
B

0.
6

d "

d "

0.
0

1

J
1

4
If

MLR-
LMPI
F-
F-splin»

f/ MLR'
LMPI
F*
F-jpline

0.0 02 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 0.6 1.0

• « •

Figure 5.3 (e) - (0: Power of the MLR*, LMPI, F* and F* spline tests for function fh part (e) and ft

part (0

0 0 0.2 0.4 0.6 0.8 1.0

MLR1

LMPI
Fg

F'splino

T 1 1 1 1 r
0.0 0.2 0.4 0.6 0 8 1.0

Figure 5.3 (g) - (h): Power of the MLR*, LMPI, F* andF* spline tests for function f7 part (g) and f,

part (h)



Chapter 5: Test for linearity of a possibly nonlinear component- MLR* test 139

1.
0

CO

b ~

s-
f
5.

0.
4

«l
o

o
o -

/ / '
I //

• 1 ' ' •••'
/ / / •

1 b! 1/ /i 1

/ y •

ill/
MLR-
LMPI
F*
F'spline

0.
4

0.
2

0.
0

/

/ /
/ /

/

MLR*
LMPI
F"

0.2 0.4 0 6 0.S

•w

Figure 5.3 (i) - (j): Power of the MLR*, LMPI, F* andF* spline tests for function /, part (g) and fw

part (h)

Plots (f), (h), (c), (d), (e), and (a), related to functions / 0 , / g , / 3 , / 4 , / e , / , show very

small deviations on results of all four tests. Plots (b) and (i) related to functions

/ and / show moderate deviations in the results of all four tests. Plot (g) is very

different to the others because the LMPI test failed and the F* test shows very poor

power compared to the F* spline and the MLR* tests. These results are most likely

due to the different degree of nonlinearity of each of the ten deterministic functions

being used in the study. Most importantly the MLR* test did not fail for any test

function.



Chapter 5: Test for linearity of a possibly nonlinear component - MLR* test 140

5.5 The MLR* test application

Recall the semiparametric model (3.1) and the data sets outlined in Section 4.5. The

conclusion of MLR test from Chapter 4 was to include the time varying risk premia

into the model. It is appropriate to know the functional form in which this time

varying risk premia should be included into the model. Recall Figure 4.6. The 6-

months hold time dependency is graphed on Figure 5.4

0.010-

0.000 "

Figure 5.4: 6-months holds to maturity data from 31/12/85 to 29/12/95

There is a visible time varying dependance in some non-linear fashion. We can try to

model this dependency by a polynomial function, however we are interested to apply

-•>,
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the cubic smoothing spline approach. The MLR* test has Ho: K = 0, which means

that the risk premia is linear over the time, refer to Figure 5.5. The specific alternative

HA: K > 0 means that the risk premia is non-linear, refer to Figure 5.6.

0.010 -

0.008 "

0.006 -

0.004 "

0.002 "

0.000 -1

Figure 5.5: 6-months holds to maturity data with fitted linear trend

Result of the MLR* test for hold data is MLR* = 23.197 is supported by the p-value

being 0.00. We have a significant evidence to reject H0:K = 0 at 5% level v t a we

compare MLR* test statistic with x2 0 ) = 2.70554.
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0.010-

0.008 "

0.006 -

0.004 "

0.002 -

0.000 "

Figure 5,6: 6-months holds to maturity data with cubic spline superimposed (X was estimated by

GCV)

We also applied the MLR* test to yields maturity return for 3 and 6 month data from

the same source. The MLR* test confirmed the previous finding and rejected HQ at

the 5% nominal significance level.

According to MLR test from Chapter 4, we have significant evidence to include the

time varying risk premia component s(t) for both hold and yields data into the

semiparametric model. Moreover the MLR* test results suggest that the time varying

risk premia component s(t) is non-linear. One possibility is to model s(t)

nonparametrically, which depends on its non-linear complexity.

ftfc
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Our finding confirmed the intuitive idea that the time varying risk premium should be

included in the model as a non-linear component. Apart of the risk premia, perhaps

other economic environmental explanatory variables of the 6 months hold (yields) to

maturity such as interest rates are believed to be non-linear as well, because of

uncertainty caused by the volatility in monetary growth. Their inclusion in the model

in a nonlinear form is worth of exploring because of the benefits resulting from

improved term structure models with extra nonlinear variables.

5.6 Results summary

In this chapter we proposed the modified version of the marginal likelihood ratio

MLR* test for testing for linearity of a possible nonlinear component in a

semiparametric regression model. The simulation study on the MLR* test revealed a

good size of the test. However the size of the MLR* test depends on the sample size

and the number of regressors in the model. The simulated size of the MLR* test is

larger for smaller sample sizes. When the number of regressors in the model is

increased, the simulated size of the MLR* test tends to decrease for both sample sizes.

Also the study of the power of the MLR* test using the ten nonlinear deterministic

test functions was successful. The simulation study comparing our MLR* test with

the LMPI, F* and F* spline tests showed that MLR* did not outperform the other

tests. Nevertheless our MLR* test extends the family of possible tests for regression

misspecification.
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We also compared the mean based F and F* spline tests with the variance based

MLR* and LMPI tests. The variance based test, namely the LMPI test, was the best

alternative for the five out of the ten test functions. The mean based tests, either the

F* or the F* spline test, were the best alternative for the reminding five test functions.

The comparison of the powers are not particularly conclusive to be favourable to the

mean or the variance based tests. Considering the parsimony of the testing procedure,

the mean based tests are more convenient to formulate and apply.

We demonstrated the MLR* test performance on the nominal yields to maturity data

and the holding period return data from the Fama Twelve-Month Treasury Bill Term

Structure File of the U.S. Government Securities.

f
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Appendix 5A.1 S-Plus code of MLR * test

####################################
# MLR star test, size and power simulations#

### Generate x data
n<-50
setseed(l)
x <-morm(n,5,l)
tt<-(l:n)/n

## Set up equation for y data
gammal <- 0 intercept
gamma2 <-1 #slope
sigma<-0.1 #stdev

### Set up X and S matrices
ones<-seq(l,l,l=n)
XX <- cbind(ones,x,tt)
halfN <- 0.5*(n-ncol(XX))

### Set up Sigma matrix
h3 <-l/(nA3)
Sigma <- matrix(0,nrow=n,ncol=n)
for(i in l:n)

Sigma[i,i:n] <- Sigma[i:n,i] <- (i*i*(i+1.5*(0:(n-i))))/3 *h3

### Set up nonlinear functions
fl)<-tt
fl <- exp(-3*exp(-3*tt))
fl <- ttA2
f3<-exp(-5*(l-tt»
f4 <- 0.71*(sin((4*tt)A2)+3*ttA3)/3+.25
fS <- (0.909*(l/sin(3*lt))/15)-0.04
f6 <- 1.4*(exp(sin(3*tt)A2)/2.5)-0.55
f7 <-0.5*sin(4*pi*tt)+0.5
f <-((5*tt+5*exp(-((tt-0.5)A2)/0.04))/7)*0.909
f9 <- 2.5*((exp(sin(3*tt)A3)+exp(cos(3*tt)A2)+ttA4)/4.5)-1.7
n 0 <-((exp(sin((3*tt)A3))+4*ttA4)/6)-0.1

### Functions to compute likelihood and MLR star statistic (here lr)
logdet <- function(x)

sum(Iog(eigen(x)$values))

fK-function(ll)
{•

C <- chol(diag(n) + exp(ll)*Sigma)
Cinv <- t(so!ve(C))
Xstar<-Cinv%*%XX
Ystar<-Cinv%*%Y
tX <- t(Xstar)
XXX <- tX %*% Xstar
beta <- solve(XXX) %*% tX %*% Ystar
res <- Ystar - Xstar %*% beta
return(logdet(C) + 0.5*logdet(XXX) + haIiN*log(sum(res*rss)))

minfl <- functionO
U
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cat(".")
y<- fmean + rnorm(n,0,sigma)
Y <- matrix(y,ncol=l)
assign("Y",Y,frame=1)
flO <- fi(-le20) # Value at zero
fredall <- nlmin(fl,l) # Minimize starting near zero
fl.fred <- fl(fredall$x) # Best fl
iiXflO < fl.fred)

lstar <- lr <- 0
else
{

lr<-2*(flO- fl.fred)
lstar <-exp(fredall$x)

}
retum(c(lr,lstar))

##########################################
## Simulation to compute size and power ##

theta<-1
set.seed(23)
frnean<-gammal +gamma2*x + theta*flO
nn <- 600
lmat <- matrix(0,nrow=nn,ncol=2)

for (kin 1:10) lmat[k,] <- minflQ

for (k in 591:600)lmat[k,] <- minfl()

lstar <- lmat[,2]
count2 <- length(lr[lr>2.70554])
print(count2)
power<-count2/nn
print(power)
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Appendix 5A.2 S-Plus code of LMPI test

##################################
## LMPl test, size and power simulation#
##################################

### Generate x data
n<-50
set.seed(l)
x<-rnorm(n,5,l)
tt<-(l:n)/n

### Set up equation for y data
gammal <- 0 intercept
gamma2 <-1 #slope
sigma<-0.1 #stdev

### Set up Sigma matrix
h3 <- l/(nA3)
Sigma <- matrix(0,nrow=n,ncol=n)
for (i in 1 :n)

Sigma[i,i:n] <- Sigma[i:n,i] <- i+l .5*(0:(n-i))))/3*h3

### Set up nonlinear functions
fO<-tt
fl <- exp(-3*exp(-3*tt))
f2 <- ttA2
f3<-exp(-5*(l-tt))
f4 <- 0.71*(sin((4*tt)A2)+3*ttA8)/3+.25
f5 <- (0.909*(l/sin(3*tt))/15)-0.04
f6 <- 1.4*(exp(sin(3*tt)A2)/2.5)-0.55
f7 <-0.5*sin(4*pi*tt)+0.5
f8<-((5*tt+5*exp(-((tt-0.5)A2)/0.04))/7)*0.909
f9 <- 2.5*((exp(sin(3*tt)A3)+exp(cos(3*tt)A2)+ttA4)/4.5)-'i .7
fl0<-((exp(sin((3*tt)A3))+4*ttA4)/6)-0.1

### Calculate statistic
lmpisim <- function()
{

y <- finean + rnorm(n,0,sigma)
eO <- residuals(lm(y ~ x + tt))
tmp <- Sigma %*% eO
Impi <- sum(eO*tmp) / sum(eO*eO)
return(lmpi)

v

'V

1 if*,

"v% r

## Simulation to compute power ##

immmmmmmmmmm
theta <- 0.6
fmean <- gamma! + gamma2*x + theta*f3
set.seed(2)
nsini <- 600
Impi <- numeric(nsim)
for(i in 1 :nsim)

lmpi[i] <- lmpisimO

count <- length(lmpi[lmpi>0.0082611788])
print(count)

f!
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t

power <- count/nsim
print(power)

# Calculate critical value by bootstrap##

ftnean <- gammal + gamm2?*x
set.seed(2)

nsim <- 600
Impi <- numeric(nsim)
for(i in 1 :nsim)

lmpi[i] <- lmpisimO
lmpi.critical.value <- quantilc(lmpi,0.95)
print(lmpi.critical.value)
#0.008200231
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Appendix 5A.3 S-Plus code of F * test

#// F* test, power simulations //

##// Generate x data
n<-50
set.seed(l)
x<-morm(n,5,l)
tt<-(l:n)/n

### Set up equation for y data
ganimal <- 0 //intercept
gamma2 <-1 #slope
sigma<-0.1 #stdev

### Set up nonlinear functions
fO<-tt
fl <- exp(-3*exp(-3*tt))
n <- ttA2
G <- exp(-5*(l-tt))
f4 <- 0.71*(sin((4*tt)A2)+3*ttA8)/3+.25
f5 <- (0.909*(l/sin(3*tt))/15)-0.04
f6 <- 1.4*(exp(sin(3*tt)A2)/2.5)-0.55
f7 <-0.5*sin(4*pi*tt)+0.5
f8<-((5*tt+5*exp(-((tt-0.5)A2)/0.04))/7)*0.909
f9 <- 2.5*((exp(sin(3*tt)A3)+exp(cos(3*tt)A2)+ttA4)/4.5)-1.7
flO <-((exp(sin((3*tt)A3))+4*ttA4)/6)-0.1

### Calculate F statistic
FtestsinK-functionO
{

y<-fmean+morm(n,0,sigma)
ma<-lm(y ~ x +tt+ttA2+ttA3)
mO<-lm(y ~ x +it)
Ftest<-((deviance(mO)-deviance(ma))/2)/(deviance(ma)/44)
return(Ftest)

in

## Simulation to compute power ##
#############################

theta <-0.3
ftnean <- gammal + gamma2*x + theta*f8
set.seed(23)
nsim <- 600
Ftest <- numeric(nsim)
for(i in 1 :nsim)

Ftest[i] <- FtestsimO

count <- length(Ftest[Ftest>3.22j)
print(count)
power <- count/nsim
print(power)

## Calculate critical value ##
################ ¥#####//#
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fiiiean <- gamma 1 + gamma2*x
set.seed(2)

nsim <- 600
Ftest <- numeric(nsim)
for(i in 1 :nsim)

Ftest[i] <- FtestsimO
Ftest.critical. value <- quantilc(Ftcst,0.95)
print(Ftest.critical.value)



Chapter 5: Test for linearity of a possibly nonlinear component - MLR* test 151

Appendix 5A.4 S-Plus code of F* spline test

mHmmmmmmmmmmmmmmmmmmmmmmmmt
# F* test assuming that the additional nonlinear component is estimated #
# by smoothing spline, power simulation #

mmmmmmmmmmmmmmmmmmmmmmmmmm
### Generate x data
n<-50
set.seed(l)
x<-rnorm(n,5,l)
tt<-(l:n)/n

### Set up equation for y data
gamma 1 <- 0 ^intercept
gamma2 <- 1 #slope
sigma<-0.1 #stdev

### Set up nonlinear functions
fO<-tt
H <- exp(-3*exp(-3*tt))
12 <- ttA2
f3<-exp(-5*(l-tt))
f4 <- 0.71*(sin((4*tt)A2)+3*ttA8)/3+.25
f5 <- (0.909*(l/sin(3*tt))/15)-0.04
f6 <- 1.4*(exp(sin(3*tt)A2)/2.5)-0.55
f7 <-0.5*sin(4*pi*tt)+0.5
f8<-((5*tt+5*exp(-((tt-0.5)A2)/0.04))/7)*0.909
f9 <- 2.5*((exp(sin(3*tt)A3)+exp(cos(3*tt)A2)+ttA4)/4.5)-1.7
n 0 <-((exp(sin((3*tt)A3))+4*ttA4)/6)-0.1

theta <-0.3
fmean <- gammal + gamma2*x + theta*f8

nsim<-600
Fspl<-numeric(nsim)

for(i in l:nsim)

y<-fmean+rnorm(n,0,sigma)
ma<-gam(y ~ x + s(tt))
mO<-gam(y~x + tt)
anova(ma,mO)
junk<-anova(mO,ma,test="F")
Fspl[i]<-Ounk$"F Value"[2])

count<-length(Fspl[Fspl>3.106669])
power<-count/nsim
print(power)

#crit.val by bootstrap 1000 repl. is 3.106669#
#Fcrit 4,39 d.f. alpha 0.05 is 2.62 #

Kr
&



CHAPTER 6

Choosing the smoothing parameter -

bandwidth selection

6.1 Introduction

We mentioned the problem of choosing an appropriate value of the smoothing

parameter A in Section 2.4. The "correct" value of A is important in smoothing spline

techniques in order to avoid over or under smoothing. This chapter examines the

methods of choosing the smoothing parameter A in univariate smoothing spline

techniques. The chapter is organised as follows. Section 6.2 describes the estimation

methods being used for estimatirg the smoothing parameter. Section 6.3 defines our

approach to smoothing parameter A selection, which is based on the marginal

likelihood function. We proposed the likelihood ratio test for testing for the inclusion

u
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of a possibly nonlinear component in Chapter 4 and for testing for linearity of a

possibly nonlinear component in Chapter 5 of this thesis. The smoothing parameter A

is a by-product of the maximising procedure used in our tests. We now investigate the

properties of the smoothing parameter A obtained by this approach and compare it

with estimates from existing methods. In Section 6.4 we report on an extensive

simulation study of the unknown function estimation when the smoothing parameter

is estimated by generalised cross-validaticn and our marginal likelihood and compare

the estimates with the value of A which minimizes the true squared error. Section 6.5

compares our marginal likelihood method with those by Kohn et al. (1991). Section

6.6 summarises the results. The appendices provide details of the S-Plus code for the

simulations and results obtained from them.

tP#J

6.2 Description of the estimation methods proposed in the

literature

We introduced some methods for estimating the smoothing parameter A in Chapter 2.

We explain the most frequently used methods in more detail in this section. Methods

based on cross-validation are discussed in Section 6.2.1 and methods based on the

maximum likelihood are presented in Section 6.2.2.

A-,.

f
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6.2.1 Methods based on cross-validation

Consider the general regression (6.1). In this regression model where we have

observations y.at the design points t. ,i = l,...,n, and the observations are assumed

to satisfy

(6.1)

with s (t) being a smoothed curve and e., i = 1,..., n, iid N (0, a2). The design points

tlt...,tn are assumed to be distinct and ordered so that without loss of generality

0 < \ < % <... < tn < 1. A smoothing spline of order m that estimates s (t) is

obtained by minimising the penalised squares

II *T£ it

(6.2)

over all functions s(t) having square integrable mth derivative, where J(sim(tjf

represents a roughness measure. For given A , the function s(t;X) is a spline of

degree 2m - 1 , that is a piecewise polynomial of degree 2m - 1 between the design

points t. with 2m - 2 continuous derivatives across the points. Cubic smoothing

splines are derived as a minimisation of the penalised square problem with respect to

s(t.) and A for m = 2 as follows

0» • * .
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i=\
(6.3)

Cross-validation is the standard data-driven method for determining the smoothing

parameter A in equation (6.2) and (6.3). This method is also known as "leave-out-

one" estimation. The principle is to leave the data points out one at a time and to

select that value of A under which the missing data points are best predicted by the

remainder of the data. Assuming that the random error in (6.1) has zero mean, the true

regression curve s has the property that, if an observation y is taken at the point t,

the value of s (t) is the best predictor of y in terms of mean square error. Let s\ be

the smoothing spline calculated from all the data pairs expect (t.,y.^, for the value A,

then by Wahba and Wold (1975), the cross-validation score is defined by

I

m

(6.4)

The smoothing parameter can be chosen objectively from the data by minimising the

cross-validation criterion. It cannot be guaranteed that (6.4) has a unique minimum.

By Green et al. (1994), expression (6.4) can be simplified using the hat matrix A(X)

as follows

(6.5)
I

i
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where a is the spline smoother calculated from the full data set |(i.,y.)]with

smoothing parameter A and A. (A) is the ith diagonal element of the hat matrix.

A. (A) is called the leverage value, because it measures the potential for the observed

response at t. (y{) to employ influence on the fitted value at t. (y.). An observation

with a high leverage is potentially problematic. The values of the smoothing spline

s depend linearly on the data jy.j through the equation s = A(X)y. If the diagonal

entries A. (A) are known, the cross-validation score can be calculated from the

residuals \y. — s(t.H about the spline smoother calculated from the entire data set.

Therefore no additional smoothing is required. For more about A(X), A. (A) and the

Reinsch algorithm for their computation, see Green et al. (1994).

Generalised cross-validation (GCV) is a modified version of cross-validation. It is an

improved version of CV replacing A. (A) by its average value n'HraceA (A). The

GCV score is constructed, by analogy with CV, by summing the squared residuals

corrected by the square of {] - n~^rA(A)}. Craven and Wahba (1979) introduced the

GCV as follows

i fit

it!

{l-n-HrA(X)f'
(6.6)

R!
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The GCV choice of smoothing parameter is found by minimising the function

GCV (A) over A. By Green et al. (1994) an equivalent form of (6.6) makes clearer the

connection between GCV (A) and CV (A), because

' 1 -4 , (A) f
l-n-HrA{\))

12

- 4 (A)

If all the A. (A) were equal, i.e. if tt were equally spaced, then the Acer would be

A

identical to Xcv. Usually, there will be some differences between the two approaches

A

and Acer will generally be preferable for unequally spaced data. Simonoff (1996)

noted that both GCV and CV could cause under-smoothing, data interpolation being

the worst case. The same author commented on the effect of outliers on the smoothing

spline, particularly at high leverage design points. One solution to this problem is to

robustify the roughness penalty criterion to downweight the effect of outliers. He also

pointed out that Xacv is predisposed to autocorrelation effects, with positive

autocorrelation leading to under-smoothing. Moving average type autocorrelation has

little effect.

' HHtl

Robinson and Moyeed (1989) suggested a robustification of generalised cross-

validation (RGCV) given by

RGCV{X) =
-i 1 + WfrA2 (A) ^

{l-n-'irACA)}2
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Neubauer and Schimek (1994) found in their simulation study that robustified

generalised cross validation performs better than generalised cross-validation, but

may still yield values for A that under-smooths the data. It is therefore appropriate to

use a plot of estimated results and original data in data analysis for visual inspection.

6.2.2 Methods based on maximum likelihood

Wahba (1978) derived the smoothing spline estimate of s(t) in model (6.1) using an

integrated Wiener process, recall Section 3.2 in Chapter 3. Wahba (1985) discusses a

modified maximum likelihood (what she calls generalized maximum likelihood) for

estimating A (GML). She defined an estimator of A as the minimiser of the following

expression

GML{\) =
y'(l-A(X))y

(6.8)

where det+ (/ - A(X)) is the absolute value of the product of the n-m non-zero

eigenvalues of (/ - A(X)), and A(X) is the hat matrix. For a cubic smoothing spline,

expression (6.8) is

GML(X) =
y>(l-A(X))y

det+(/-,4(A))]\Yn-2
(6.9)
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Wahba (1985) also pointed out that if the unknown function s(t) being estimated is

smooth then Acm under-smooths relative to Xacv. Also the predictive mean square

error using the GML estimate goes to zero at a slower rate than the mean square error

using the GCV estimate. She also found that if the true function is "rough" then A

and XGCV have asymptotically similar behaviour.

Wahba's (1985) generalized maximum likelihood is different to our method to be

discussed in Section 6.2. Her method is based on the Bayesian smoothing spline

estimate.

Kohn, Ansley and Tharm (1991) in their simulation study compared the finite-sample

performance of generalized cross-validation, cross-validation, and marginal likelihood

estimators of the smoothing parameter A. They obtained the marginal likelihood

estimate of the smoothing parameter A by minimising the likelihood function

i

- P

m

,711—m (6.10)

using the modified Kalman filter. Their derivation of (6.10) is based on the work of

Kohn and Ansley (1987). They also defined a fourth estimator, which they called the

true squared error (TSE) estimator, which minimises ^ \s (t.) - s (i.; A)} over all A.

Note that the TSE estimator is not strictly an estimator, because the function s(t) is

unknown. However, the TSE estimator provides some information on the

performance of the other three estimators, namely Aw,Accv,and XCML. We are going

*i*I
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to use the TSE estimator in Section 6.3 as a benchmark for the other estimators. The

same authors found that quintic splines (m = 3) based on XGm outperformed cubic

splines. Their XGV results for equally spaced data were very similar to those obtained

using XGCV, while for unequally spaced data, XGCV outperformed Xcv. They

confirmed the theoretical results of Craven and Wahba (1979).

Marginal likelihood estimation of the smoothing parameter A by Kohn, Ansley and

Tharm (1991) is different from our method to be discussed in Section 6.3 Their

density function depends on A and a2. The problem of estimation in the presence of

a Usance parameter (in this case a 2) remains. Our marginal likelihood function is

independent of o1, see Section 4.2, and so estimation in our case is independent of all

nuisance parameters.

t

6.3 Our method - Marginal likelihood method

Let us assume the cubic smoothing spline, ra = 2. In Section 3.5 we modified

Wahba's (1978) model by adding some covariates to (6.1); refer to expression (3.13).

In Chapter 4 we constructed the marginal likelihood function Z(/s|y)by (4.16). In this

Chapter we estimate K and consequently A = YK by maximizing (4.16) or (4.22)

after some simplification. Now we do not need to consider extra regressors in (4.15),

so (4.16) reduces to the form (4.17), which can be simplified as

< • ' i

s i t
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so that the marginal log-likelihood is given by

A2V-\ Â
> (jji

1=1

(6.11)

and A is estimated by minimising (6.11). The smoothing constant A is obtained by

maximising the marginal likelihood function, hence the notation MML is used for our

method hereafter. The S-Plus code for this task is given by Figure 6.1. Our MML

method of the smoothing parameter A estimation is simple to compute and easy to

implement.

In the next section we compare the three estimation methods applied to our set often

nonlinear test functions given by (4.25), with various a values. We also evaluate the

accuracy of estimating the unknown test functions .
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mml<-fiinction(y,tt)

n<-length (y)
ones<-seq(l,l,l=n)
Z <- cbind(ones,tt)
halfN <- 0.5*n

### Set up Sigma matrix
h3 <-l/(nA3)
Sigma <- matrix(0,nrow=n,ncol=n)
for (tin l:n)

Sigma[i,i:n] <- Sigma[i:n,i] <- (i*i*(i+1.5*(0:(n-i))))/3*h3

### Functions to compute likelihood
logdet <- function(x)

sum(log(eigen(x)$values))
fK-function(ll)

I r:|

C <- chol(ZZ + exp(ll)*Sigma)
Cinv <- t(solve(C))
Ystar<-Cinv%*%Y
return(logdet(C) + halfN*log(sum(Ystar*Ystar)))

cc<- 1000
ZZ <- cc*(Z %*% t(Z)) + diag(n)

Y<-matrix(y,ncol=1)
assign(" Y", Y,frame= 1)
flO <- il(-le20) # Value at zero
fredall <- nlmin(fl,l) # Minimize starting near zero
fl.fred <- fl(fredall$x) # Best fl
if(flO < fl.fred)

lstar<-0.000000001
else

lstar <- exp(fredall$x)
}
retum(l/lstar)

Figure 6.1: S-Plus code for A estimation by our MML method and square root oflSE
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6.4 Simulation study

6.4.1 Procedure

We performed a simulation study in order to compare the different methods of

estimating the smoothing parameter A. We considered three smoothing parameter

estimates, namely the generalised cross-validation estimator XGCV, the maximum

marginal likelihood estimator \m]L (our method) and the true squared error

"estimator" A ^ . Although the TSE estimator is not a feasible one because the

function s(t) is unknown, it provides the benchmark on the performance of the other

two estimators. The true squared error "estimator" is chosen to minimise integrated

squared error given full knowledge of the function s(t) to be estimated.

To determine how well all three estimators perform in estimating the unknown

function s(i;), we compute the square root of integrated squared error for each

estimator,

(6.12)

The simulation study considered cubic splines (m = 2). We used the same set of 10

nonlinear test functions «(*,) =/(*,•)»••• Jio(0> i = l,-,n as in Chapters 4 and 5,



Chapter 6: Choosing the smoothing parameter - bandwidth selection 164

refer to the expression (4.25) and to their graphical presentation in Figures 4.3 (a) -

(e). These were used for the sample size n = 50 and the standard deviations

a = 0.1,0.2,0.5 and 1.0. Six hundred replications were performed for each

combination of the test function s(tt), sample size n and standard deviation a. The

simulation program for each estimation method was written in S-Pli4s. For the S-Plus

codes for the GCV method and the TSE benchmark method see Appendices 6A.1,

6A.2

We used "smooth.spline" and "predict.smooth.spline" built in S-Plus routines for

calculating s(^;A) in (6.14). We also saved programming time on XGCV computation

by assigning "spar" = 0 in S-Plus, so that cross-validation is used to automatically

select A.

We present a graphical comparison of our MML method with GCV method in Figure

6.2. In Figure 6.2, there is a plot of the test function s {t) = sin (Atf + 3t8 along with

corresponding data points being generated by adding an error term so that

y. = s(i.) + e., where e., i = l,...,n iid JV"(0,0.52). We estimate the function s(t)

non-parametrically and get the smoothing parameter by the GCV and MML methods.
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Figure 6.2: Scatter plot of the artificial data \.ith unknown function s(t) being estimated by GCV,

MML and TSE.

From Figure 6.2 is evident that all three methods estimate the non-linear function

s(t) very well and visually they do not differ very much. The estimates of smoothing

constant A are marginally different, XGGV =0.0000239956, \MML= 0.0000181961 and

XTSE= 0.0000467454.

When evaluating the results of the simulation, we compare the median of A estimates

rather than using the mean, as the median of A is not affected by extreme values.
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6.4.2 Results evaluation - the smoothing parameter estimation

A summary of the simulation results of A for GCV, MML and TSE are presented in

Table 6.1 for every test function. We present the results of the simulation study by the

quartiles and the interquartile range.

Table 6.1 shows the median estimates of the three estimation methods for all ten

nonlinear test functions for a = 0.1,0.2,0.5,1.0. We arrived at the following

conclusions from the simulation study on the smoothing parameter A estimation.

- The median values of \cv)\mL)\SE increase as the value of the standard

deviation increases. This was expected because larger standard deviations enlarge

the spread of the data, making it difficult to detect the nonlinearity in s (t). The

maximum values were effectively infinite (denoted by ">100"). This means that

the same functions will often be estimated by a smoothing spline equivalent to the

linear function. This represents the limiting case of over-smoothing.

li

The rate that A increases as a increases is different for different test functions.

This is due to the different shapes of the nonlinear test functions. For example,

function f6(t) is less wiggly compared tofw(t), refer to Figure 4.3 (c) and 4.3

(e). Thus the estimates of A increase more rapidly with a for /10 (t) than for
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The median value of the smoothing parameter A is very different for different

nonlinear functions for constant a. Assuming a = 0.1, the median for the GCV

method ranges from 0.000002 to a maximum value of 0.039900. For the MML

method, the minimum median value is 0.000026 and the maximum 0.045680. The

minimum for the TSE benchmark method is 0.000002 and the maximum is

0.145000. Such a big difference in results is again due to the different degrees of

non-linearity.

The GCV method returns the highest A for all values of the standard deviation for

functions f2>f3,f6. For these functions, the GCV method might have a tendency to

over-smooth data compared to the MML method. The MML method returns the

highest A for all values of the standard deviation for functions

./j,/4,/5,/7,/83/9and f10. For these functions the MML method might have a

tendency to over-smooth data compared to the GCV method.
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Method

f1 MML; ;

TSE-1

0.0399
0.0457
0.0145

0.6179
>100
0.0846

>100
>100
0.4065

>100
>100
0.9846

GCV
f2

0.0127
0.0062
0.0098

0.0302
0.0216
0.0193

0.3726
0.2190
0.0617

f3
GCV.1,
MML

0.0019
0.0014
0.0014

0.0069
0.0058
0.0046

0.0545
0.0494
0.0230

f4
0.0000
0.0000
0.0000

0.0001
0.0004
0.0006

0.0108
0.0348
0.0017

f5
0.0000
0.0005
0.0000

0.0005
0.0039
0.0002

0.0561
0.0712
0.0143

f6
0.0005
0.0003
0.0005

0.0012
0.0009
0.0010

0.0092
0.0061
0.0048

f7
0.0001
0.0000
0.0001

0.0001
0.0001
0.0001

0.0004
0.0015
0.0004

f8
0.0004
0.0026
0.0004

0.0010
0.0010
0.0008

0.0120
0.0121
0.0039

f9
0.0003
0.0002
0.0003

0.0007
0.0007
0.0006

0.0501
0.1956
0.0028

f10
0.0000
0.0012
0.0000

0.0001
0.0072
0.0001

0.1312
0.9867
0.0182

>100
>100
0.1880
>100
>100
0.0762
0.7311
>100
0.0468
>100
>100
0.0847
0.0328
0.0243
0.0199
0.0197
>100
0.0018
0.0687
0.0708
0.0347
>100
>100
0.1122
>100
>100
0.1801

Table 6.1: Median X estimates by GCV, MML and TSEfor the ten nonlinear test functions

From Table 6.1 it is evident that there are not big differences in estimates of the

smoothing parameter A for some test functions. However for some other test

functions, such as /, (<),/, (0 for a = 0.5 and /7 (t) for a = 1.0 the differences in

A are large. For example, we refer to Figure 6.3 for a visual difference in estimating
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test function / (i) if XGCv= 0.050060, \MML= 0.195600 and XTSE= 0.002765 for

a = 0.5.

p _

to O

a
a

I §"

i n

9 "

•

f1
TSE
MML
GCV

" ~ * ~ — —.JS^_—'i^-j,.

•

r

• • •

# •• A
• • /

• • x - ••-
-^^'

# 0

1 I I I

0.0 0.2 0.4 0.6 0.8 1.0

Design points

Figure 6.3: Scatter plot of the artificial data and test function f9(t) being estimated by GCV, MML and
TSE for a = 0.5

From Figure 6.3 it is evident that the GCV and MML methods both have a tendency

to over-smooth the data. Their graphs are flatter compared to that for TSE. GCV

picked up the curvature only marginally better than MML. The TSE benchmark

method picked up the test function shape better, however there are still big differences

between the underlying test function and its estimate.
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We evaluated the variation of the smoothing parameter A estimates by the

interquartile range (IQR). A summary of IQR for all three methods of estimation and

all test functions with respect to the standard deviation is presented in Table 6.2.

Similar to the median A estimates, results on interquartile range are very different for

different estimation methods and test functions. There does not seem to be any visible

pattern of dominancy of one method of estimation. Results vary with the degree of

nonlinearity of the test function. The interquartile range for the MML method was

smaller than for GCV in 14 out of 24 cases. We can therefore conclude that method

MML returned slightly less variable estimates of smoothing constant A compared to

GCV.

6.4.3 Results evaluation - the unknown function estimation

In this section we focus on the accuracy of the estimation method of the unknown

nonlinear function s(t). To determine how well the GCV, MML and TSE methods

perform to estimate the test functions, we computed the square root of integrated

squared error of the differences between s(l.) and s(t.;\) as the performance

criterion, refer to (6.12). We collected quartiles, medians and computed interquarile

range of yjISE, assuming the three estimation methods, a = 0.1,0.2,0.5,1.0. and

the same set often nonlinear test functions as in Section 6.4.1 We present results from

the computation for every test function in Tables 6.3 (a) - (j).
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f1

Method |
GCV~
MML
TSE i

KIM0.2721
1.3514
0.0418

KsBl>100
>100

0.1986

KSU
>100
>100

56.9813

>100
>100

118.9073

f2

f3

0.0111
0.0035
0.0114

0.0395
0.0260
0.0226

>100
>100

0.1094

>100
>100

96.4840
0.0025
0.0009
0.0017

0.0126
0.0055
0.0071

0.3271
0.3939
0.0342

>100
>100

0.1686

f4
0.0000
0.0000
0.0000

0.0001
0.0013
0.0000

0.1045
0.7920
0.0102

>100
>100

0.1789

f5
0.0001
0.0004
0.0000

0.0020
0.0065
0.0004

1.4046
>100

0.0439

>100
>100

0.2239

f6
0.0003
0.0001
0.0003

0.0012
0.0006
0.0009

0.0144
0.0050
0.0133

0.0569
0.0426
0.0307

f7
0.0000
0.0000
0.0000

0.0001
0.0000
0.0002

0.0004
>100
0.0003

>100
>100
0.3648

f8
t'

MML y
0.0003
0.0001
0.0002

0.0010
0.0009
0.0007.

0.0280
0.0173
0.0128

2.5800
>100
0.0645

f9 j^'MMC
TSE

0.0002
0.0001
0.0000

0.0006
0.0007
0.0000

>100
>100
0.0251

>100
>100

72.5851

f10
0.0000
0.0020
0.0000

0.0086
0.0165
0.0002

>100
>100
0.1073

>100
>100

157.7612

Table 6.2: Interquartile range of A estirz'es by GCV MML and TSE methods for all the test function

Figures 6.4 (a) - (j) represent a graphical summary .if the intern,- 'ile range of

4lSE for each method and the test function. Not; that TSF r.ahod is the

benchmark, and represents the best possible achievable results. It is a level of

accuracy we would like to achieve by other estimation procedures. Each graph shows

the quartiles of yJlSE obtained for each estimation method.
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Sigma
Method

Q1
0.1546
0.1533
0.1206

0.2412
0.3146
0.1977

0.4785
0.5996
0.4013

0.9004
0.9908
0.7554

— M
«TSE»

Q3

IQR

0.1971
0.2028
0.1578
0.2401
0.3513
0.1974
0.0855
0.1980
0.0768

0.3160
0.5548
0.2679
0.4241
0.8546
0.3541
0.1829
0.5400
0.1564

0.7001
0.9092
0.6001
0.9987
1.3080
0.8334
0.5202
0.7084
0.4321

1.3600
1.5910
1.1780
1.9820
2.1850
1.6530
1.0816
1.1942
0.8976

Table 6.3 (a): Simulated residts of JlSE estimated by GCV, MML and TSEfor the test function fx

LU

<n

0.6 0.8 1.0

sigma

Figure 6.4 (a): Quartiles of-JlSE for GCV. MML, TSE with the test function
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Method

Q1

Median

0.1492
0.1417
0.1226

0.2784
0.2672
0.2236

0.6231
0.6686
0.4993

0.1935
0.1821
0.1606

0.3776
0.3526
0.2901

0.7926
0.9029
0.6458

0.2442
0.2272
0.2040

0.4746
0.4505
0.3881

1.0560
1.2660
0.8853

1.0130
1.0730
0.8456
1.4240
1.5730
1.2240
2.0100
2.1620
1.6640

IQR Sm
CV,g| 0.0950
M l i f i 0.0855
SBSR 0.0814

0.1962
0.1833
0.1645

0.4329
0.5974
0.3860

0.9970
1.0890
0.8184

Table 6.3 (b): Simulated restdts of yflSE estimated by GCV, MML and TSEfor the test function f

UJ

1.0

sigma

Figure 6.4 (b): Quartiles of^ISE for GCV, MML, TSE with the test function f2

I •• • / .
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Q1
0.3456
0.3321
0.2957

0.7397
0.7141
0.5882

1.2140
1.2470
1.0220

pijiGCVijilj

llGcyg
Q3 mm&&

0.2445
0.2266
0.2135
0.2956
0.2718
0.2540

0.4328
0.4066
0.3700
0.5323
0.4912
0.4483

0.9725
0.9509
0.7540
1.1780
1.1620
0.9728

1.5460
1.6370
1.2910
2.0970
2.1900
1.7550

IQR
0.0955
0.0826
0.0805

0.1867
0.1591
0.1526

0.4383
0.4479
0.3846

0.8830
0.9430
0.7330

Table 6.3 (c): Simulated results of ^JlSE estimated by GCV, MML and TSEfor the test function /3

0.8 1.0

sigma

Figure 6.4 (c): Quartiles on IQR ofJlSEfor GCV, MML, TSE with the test function f3

»sft
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Q1

Median

Q3

IQR

0.3198
0.3151
0.3028

0.5907
0.6428
0.5415

1.2220
1.2280
1.0630

1.6610
1.6610
1.4610

0.3608
0.3580
0.3430

0.6684
0.7707
0.6181

1.4230
1.4130
1.1960

1.9180
1.9700
1.6750

0.4098
0.4088
0.3870

0.7717
0.9024
0.6962

1.5920
1.5940
1.3470

2.4000
2.4180
2.0480

0.0900
0.0937
0.0842

0.1810
0.2596
0.1547

0.3700
0.3660
0.2840

0.7390
0.7570
0.5870

Table 6.3 (d): Simulated results of yjISE estimated by GCV, MML, TSE for the test function /4

w
CO

0.6 0.8 1.0

sigma

Figure 6.4 (d): Quartiles ofyflSE for GCV, MML, TSE with the test function /4
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Method

Q1
0.3731
0.4342
0.3450

Sigma

0.5896
0.6260
0.5314

0.9958
0.9723
0.8356

1.3540
1.3630
1.1640

Median
0.4108
0.4737
0.3805

0.6703
0.6942
0.5907

1.1560
1.1310
0.9671

1.6750
1.7270
1.4390

Q3
0.4530
0.5157
0.4124

0.7548
0.7564
0.6576

1.3410
1.3200
1.1340

2.1940
2.2060
1.8340

IQR
0.0799
0.0815
0.0674

0.1652
0.1304
0.1262

0.3452
0.3477
0.2984

0.8400
0.8430
0.6700

Table 6.3 (e): Simulated results on yjISE by GCV, MML and TSE for the test function f

0.6 0.8 1.0

sigma

Figure 6.4 (e): Quartiles ofyflSE for GCV, MML. TSE with the test function f6
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Method

Q1

Median

Q3

0.2073
0.2077
0.1868

0.3880
0.3755
0.3418

0.8270
0.8025
0.7227

1.4170
1.4020
1.1630

0.2560
0.2488
0.2317

0.4872
0.4533
0.4264

1.0390
0.9869
0.9198

1.8890
1.8150
1.5180

0.3086
0.2903
0.2729

0.6005
0.5381
0.5096

1.2880
1.1940
1.0830

2.4340
2.2780
1.9670

IQR
s|feGCVJi&
IIIMMIM
Emgft

S 0.1013
0.0826

\ 0.0861

0.2125
0.1626
0.1678

0.4610
0.3915
0.3603

1.0170
0.8760
0.8040

Table 6.3 (0: Simulated results of y/ISE by GCV, MML, TSEfor the test function /„

LU
CO

0.6 0.8 1.0

sigma

Figure 6re 6.4 (0: Quartiles ofJlSEfor GCV, MML, TSE with the test function f0
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Q1

Median

0.2876
0.2565

0.5007
0.5018
0.4687

1.1390
1.2860
1.0360

2.3550
2.4500
1.8690

0.3158 0.5853 1.3540 2.5670
0.3241 0.5738 1.7310 2.6560

I f S E H 0.2937 0.5413 1.2100 2.2240

Q3
0.3654
0.3630
0.3405

0.6931
0.6596
0.6342

1.6570
2.3820
1.4370

2.9430
3.0050
2.5180

:GC\Ag$

KTSEUM

0.0926
0.0754
0.0840

0.1924
0.1578
0.1655

0.5180
1.0960
0.4010

0.5880
0.5550
0.6490

Table 6.3 (g): Simulated results of y/lSE by GCV, MML, TSEfor the test function f7

0.6 0.8 1.0

sigma

Figure 6.4 (g): Quartiles ofyflSE for GCV, MML, TSE with the test function f7
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Method

Q1

Median

0.2124
0.2130
0.1938

0.3945
0.3856
0.3484

0.8696
0.8518
0.7531

1.4910
1.4510
1.1750

0.2600
0.2535
0.2350

0.4949
0.4674
0.4345

1.0710
1.0320
0.9130

1.8430
1.8260
1.5130

1Q3 1
1

IQR I1

££&&£
iH

ftfsEli

0.3137
0.2944
0.2766
0.1013
0.0814
0.0828

0.6053
0.5625
0.5168
0.2108
0.1769
0.1684

1.3350
1.2480
1.0950
0.4654
0.3962
0.3419

2.3030
2.2750
1.9000
0.8120
0.8240
0.7250

Table 6.3 (h): Simulatedresults ofyflSE by GCV, MML, TSE for the testfunction fR

W

0.8 1.0

sigma

Figure 6.4 (h): Quartiles ofsflSEfor GCV, MML, TSE with the test function /8
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Method

Q1
0.2262
0.2233
0.2067

0.4146
0.4056
0.3686

1.0690
1.0840
0.8113

1
1
1

.4010

.4330

.2230

Median

Q3

IQR

0.2691
0.2614
0.2464

0.5037
0.4874
0.4522

1.1990
1.2220
0.9877

1.7280
1.7840
1.4900

0.3198
0.3055
0.2911

0.6126
0.5860
0.5375

1.3950
1.4440
1.1530

2.2650
2.2690
1.8680

0.0936
0.0822
0.0844

0.1980
0.1804
0.1689

0.3260
0.3600
0.3417

0.8640
0.8360
0.6450

Table 6.3 (i): Simulates results of JlSE by GCV, MML, TSE for the test function f

Ul
03

0.8 1.0

sigma

Figure 6.4 (i):. Quartiles ofyJiSE for GCV, MML, TSE with the test function fg
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I

Q1

Median

0.4512
0.6967
0.4516

0.7997
0.8352
0.7050

1.1100
1.1210
0.9875

0.4986
0.7507
0.5083

0.8621
0.8871
0.7617

1.2190
1.2540
1.0940

1.3860
1.4290
1.2470
1.7060
1.7850
1.5130

Q3

IQR

ffiSXNM

i§f,GCV$gi
Ip^iijiyjp

0.5654
0.7860
0.5918
0.1142
0.0893
0.1402

0.9461
0.9567
0.8232
0.1464
0.1215
0.1182

1.4040
1.4580
1.2430
0.2940
0.3370
0.2555

2.2270
2.2710
1.9090
0.8410
0.8420
0.6620

r, *

Table 6.3 (J): Simulated results of y/ISE by GCV, MML, TSE for the test function f10

i

•4
UJ
w

0.8 1.0

sigma

Figure 6.4 G): Quartiles of-JISE for GCV, MML, TSE with the test function fw
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Concluding from Tables 6.3 (a) - (j) and Figures 6.4 (a) - (j), the MML method

outperformed the GCV method for functions /0 ,/8 . Both methods performed about

equally well for functions /3,/4,/6,/0. The latter method outperformed the former for

functions fx,fvfv/10.

I

w

•'• 1* '••-• \\}i

1
S

i
1

J

1

We constructed boxplots of the ratio of medians and boxplots of the ratio of IQRs of

-JlSE to compare simulated results from the three methods. We use the following

notation. For a given combination of a and test function let M,GCV be the ratio of

medians

median^
M.GCV,MML

Define the ratio of medians MGCVTSE and MmiLTSE similarly. Figure 6.5 displays

the results for sample size 71 = 50 using all 40 combinations of a and test function.

In Figure 6.5, the .first plot on the left is a boxplot of MGCVMMl, the second plot is a

boxplot of MGCVTSE and the third plot is a boxplot of MMMLTSE. Comparing the

second and the third boxplot, the average performance of GCV and MML relative to

TSE is about the same. The third boxplot has a larger variance compared to the

second one indicating that the MML method is less reliable in estimating the unknown

function than the GCV method relative to the TSE method. In particular, there are two

outlying observations in the third boxplot.
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P

1

1
I

Figure 6.5: Boxplots comparing the median value of \ISE by GCV, MML, TSE

The first boxpot shows the median value being around unity. This means that on

average GCV and MML performed equally well. However the upper portion of the

box is larger than the lower which indicates the smaller variance of MML estimates.

There are few outliers in the lower portion of the first boxplot indicating that some

medians of ISE\ XMML > ISE\ XGCV \ .

ill

tj

We used a similar notation for the analysis of a variance expressed by IQR of

For a given combination of a and test function, let IQRGCV,MML
 b e t h e r a t i o °
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1

Define the ratios of IQRacv,TSE and IQRMMLJSE similarly. Figure 6.6 displays the

results for sample size n = 50 using all 40 combinations of a and test function.

i

in
pi

q
CO

in

cvi

in
d

Figure 6.6: Boxplots comparing the interquartile range of yJISE by GCV, MML, TSE

The first plot on the left is a boxplot of IQRGCVMML » t n e s econd plot is a boxplot of

IQRGCV TSE and the third plot is a boxplot of IQRMMLTSE • Comparing the second and

the third boxplot, the average performance MML relative to TSE is better than GCV

relative to TSE because the median value in the third boxplot is closer to unity than on



Chapter 6: Choosing the smoothing parameter - bandwidth selection 185

the second one. The third boxplot has a larger variance compared to the second one

indicating that the MML method is less reliable in estimating the unknown function

than the GCV method relative to the TSE method. The first boxpot is showing the

mean value is around unity. This means that on average, GCV and MML performed

equally well. However the upper portion of the box is larger than the lower one which

indicates the smaller variance of MML estimates. There are few outliers in the lower

portion of the first boxplot indicating that there are some medians of

ISE
X

>ISE\XGCV\ .

r

6.5 Marginal likelihood methods comparison

I

I.

We also need to compare our MML method of estimating the smoothing parameter

A given by expression (6.11) with the marginal likelihood estimator used by Kohn et

al. (1991, hereafter referred to as the KAT method), presented by expressions (6.10)

in Section 6.2.2.

\

To get a valid comparison between their finding and our method, we partly replicated

their simulation study and estimated A by GCV and MML. We considered their set of

ten nonlinear test functions (6.13), which is different to our set (4.11) that was used

for all simulation studies in this thesis so far. We assumed only splines of order

m = 2 , sample size n = 40, and five values of a (a = 0.01,0.05,0.1,0.2,0.5). One

hundred replications were performed for each combination of test function and value

of a. The residuals were normally distributed. We collected medians and third
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quartiles of JlSE and the results are presented in Table 6.4. The new set of test

functions (hereafter referred as KAT functions) is

(t) = 4.26e

4 (<) =

-325' 4.0e-65 '

(6.13)

where B (t) = 1 (1 - <)'"' is the beta function.

We get the smoothing parameter A estimate and the square root of integrated squared

error given by (6.12) for both the GCV and MML estimation approaches. We refer to

Appendix 6B for S-Plus codes for both GCV and MML estimation procedures.

\>;\>\.
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t Function j
Sigma

KJ*

Method

GCV

MML

median
Q3

median
Q3

0.0389
0.0452
0.0612
0.0670

0.1596
0.1936
0.2753
0.3144

0.2957
0.3640
0.3029
0.3680

0.5104
0.6152
0.4969
0.5727

1.0540
1.3560
1.1376
1.3480

w«̂ .GCV

MML

median
Q3

median
Q3

0.0455
0.0503
0.0623
0.0672

0.1823
0.2153
0.2481
0.3094

0.3333
0.3886
0.3591
0.4079

0.6118
0.7318
0.6143
0.6863

1.4794
1.7906
1.4558
1.6556

UK>3 J

GCV

MML

median
Q3

median
Q3

0.0535
0.0588
0.0551
0.0608

0.2159
0.2421
0.2936
0.3237

0.3964
0.4471
0.5549
0.6392

0.6796
0.7881
0.6868
0.7776

1.6158
1.7777
1.5545
1.6817

|^ fO4

GCV

MML

median
Q3

median
Q3

0.0373
0.0440
0.0412
0.0490

0.1376
0.1657
0.1287
0.1555

0.2466
0.3118
0.2529
0.4838

0.4609
0.5706
0.8205
0.8498

0.9899
1.2515
1.0037
1.1647

I

h
S

r

I
N

I.

!
I

\ IF 3̂
17 V * ]

"M05 r

" " 1 0 6 ^ •»
H i * - ,*• ^

^ JW7-t J
u % 'V i

108 '
»" \ ? si

' ' 4' 4
?« !

fO9
f

r

HO

GCV

MML

GCV

MML

GCV

MML

GCV

MML

GCV

MML

GCV

MML

median
Q3

median
Q3

median
Q3

median
Q3

median
Q3

median
Q3

median
Q3

median
Q3

median
Q3

median
Q3

median
G2

median
Q3

0.0341
0.0397
0.0345
0.0421
0.0339
0.0404
0.0362
0.0416
0.0269
0.0328
0.0614
0.0670
0.0260
0.0316
0.0311
0.0359
0.0141
0.0218
0.0313
0.0355
0.0258
0.0306
0.0623
0.0672

0.1470
0.1697
0.1798
0.3000
0.1305
0.1657
0.1257
0.1512
0.1161
0.1475
0.2983
0.3254
0.1147
0.1404
0.1435
0.1621
0.0705
0.1092
0.1509
0.1736
0.1063
0.1328
0.1748
0.2926

0.2727
0.3249
0.2929
0.3409
0.2438
0.2974
0.2694
0.8338
0.2258
0.2956
0.2852
0.3470
0.2082
0.2538
0.2747
0.3192
0.1410
0.2186
0.2675
0.3254
0.1952
0.2519
0.2624
0.3236

0.5029
0.6159
0.4756
0.5569
0.4455
0.5532
0.8367
0.8608
0.4467
0.5525
0.4623
0.5420
0.3355
0.4745
0.4480
0.5355
0.2821
0.4372
0.4635
0.5827
0.3838
0.4935
0.4481
0.5791

0.1886
1.4690
1.0471
1.2163
0.9930
1.2459
0.9798
1.1156
0.8254
1.2031
0.9443
1.1765
0.7511
0.1284
0.9016
1.1219
0.7052
1.0929
0.9427
1.2023

0.8294
1.1856
C.9062
1.1483

Table 6.4 : Medians and third quariiles of JlSE by GCV and MMLfor KA T test functions
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Figure 6.7 displays the results for the above-mentioned sampling experiment. The

first plot on the left is a boxplot of the ratio of medians

_ medain^ISE(\GCV)
GCV,MML

The second plot on the right is the boxplot of the ratio of the third quartiles

Q3
GCV,MML

1.
0 p

CD
O ~

to
O

o ~

0.
2

s
—

M.GCV.MML Q3.GCV.MML

Medians and 75th percentiles

Figure 6.7: Boxplots comparing the medians and third quartiles of

KAT test functions
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Now we compare a relevant part of Kohn, Ansley and Tharm (1991) Figure 2 (a) on

page 1046, with our results presented graphically by Figure 6.7. The median value on

both of our boxplots is around one, which indicate that ISE\ XMML ] is about the

r Y2

same compared to ISE\ XGCV . The upper and the lower portion of both boxplots

are about the same. There are few outliers in the lower portion indicating that some
\
K

ISE\XMML\ >ISE\\GCV\ .
X

To compare the average performance of the GCV, MML and ML (KAT) methods, the

last one is showing the better results as the average is slightly above unity (Kohn,

Ansley and Tharm (1991) Figure 2(a) on page 1046). This indicates that the KAT

marginal likelihood estimate of the smoothing parameter A slightly outperformed

GCV. Our MML method did not outperform the GCV method for the set of KAT test

functions. However our MML method is more reliable than the ML (KAT) method,

because there are fewer outliers and the variance is smaller in our MML, refer to

Figure 6.7 and the KAT boxplots. Our method is also computational more friendly

and easier to implement using conventional statistical software. The KAT marginal

likelihood method requires the use of a modified Kalman filter technique, which is

computationally more intensive than our method. (Note that a small discrepancy in a

comparison of our approach with those by Kohn, et al. (1991) might be expected due

to sampling error.)

I

I
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6.6 Results summary

This chapter reports on an intensive simulation study investigating the statistical

properties of spline smoothing estimators when the smoothing parameter A is

estimated by generalised cross-validation, marginal likelihood and true squared error

estimation using splines of order 2. The performance criterion for the function

estimate was the square root of integrated squared error. Our conclusions apply to

equally spaced data and can be summarised as follows:

- Our marginal likelihood method is a competitive alternative to GCV for

estimating the smoothing parameter A.

- Our MML method is computationally more friendly to those being used by Kohn,

Ansley and Tharn (1991).

- Our MML method is generally performing well in estimating A and consequently

returns reasonable estimates of the unknown non-linear function s(t).

- Both the MML and GCV estimators performed well relative to the TSE

benchmark method.

A

The variance of \MUL is smaller compared to those by GCV, which makes XMML

less variable.
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Our MML is slightly less accurate compared to the KAT method.

i
h

A

The variance of XMML is also smaller compared to the KAT marginal likelihood

method, which makes our estimates less variable.

We recommend using our MML method for estimating the smoothing parameter A

and consequently the unknown function s{t) as an additional method to GCV and

others. Perhaps the average of \{MLAGCV>\lL would be a useful combination

estimator in non-parametric smoothing applications.

,!; • .,

m
mm
f l l
I P

i
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Appendix 6A.1 S-Plus code

#Smoothing parameter estimation by GCV and square root of 1SE#

:\

n<-50
tt<-O:n)/n

ft)<-tt
fi <- exp(-3*exp(-3*tt))
f2 <- ttA2
f3<-exp(-5*(l-tt))
f4 <- 0.71*(sin((4*tt)A2)+3*ttA8)/3+.25
f5 <- (0.909*(l/sin(3*tt))/l5)-0.04
f6 <- 1.4*(exp(sin(3*tt)A2)/2.5)-0.55
f7 <-0.5*sin(4*pi*tt)+0.5
f8<-((5*tt+5*exp(-((tt-0.5)A2)/0.04))/7)*0.9O9
f9 <- 2.5*((exp(sin(3*tt)A3) I exp(cos(3*tt)A2) I ttA4)/4.5)-l .7
n 0 <-((exp(sin((3*tt)A3))+4*ttA4)/6)-0.1

sigma<-0.1 # 0.1,0.2,0.5 ,1.0#
set.seed (1)
nsim<-600
Iambda<-numeric(nsim)
rise<-numeric(nsim)
for(i in 1 :nsim)
{

fmean<-flO
y<-fmean + rnorm (n,0,sigma)
fit<-smooth.spline(tt,y) #returns lambda hat as "fit$spar"#
fit2<-predict(fit,tt) ^returns s(t) hat as "fit2$y"#
rise[i]<-sqrt(sum ((finean-fit2$y)A2)) #root of integrated squared error#
lambda[i]<-fit$spar

I !

I I

#exploratory data analysis - four plots#
eda.shape<-function(x)

{
parCmfrow=c(2,2))
hist(x)
boxplot(x)
iqd<-summary(x)[5] - summary(x)[2]
plot(density(x,width=2*iqd), xlab="x", ylab="", type= '1')
qqnorm(x)
qqline(x)

}
summary(lambda)
summary(rise)
eda.shape(lambda)
eda.shape(rise)
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Appendix 6A.2 S-Plus code

#Smoothing parameter estimation by TSE and square root oflSE#

n<-50
tt<-(1:n)/n

fO<-tt
fl <- exp(-3*exp(-3*tt))
f2 <- ttA2
f3 <- exp(-5*(l-tt))
f4 <- 0.71*(sin((4*tt)A2)+3*ttA8)/3+.25
f5 <- (0.909*(l/sin(3*tt))/15)-0.04
f6 <- 1.4*(exp(sin(3*tt)A2)/2.5)-0.55
f7 <-0.5*sin(4*pi*tt)+0.5
f8<-((5*tt+5*exp(-((tt-0.5)A2)/0.04))/7)*0.909
f9 <- 2.5*((exp(sin(3*tt)A3)+exp(cos(3*tt)A2)+ttA4)/4.5)-1.7
HO <-((exp(sin((3*tt)A3))+4*ttA4)/6)-0.1

sigma<-1.0#0.1,0.2,0.5,1.0 #
set.seed(l)

ise<-function(ll)
{

lambda<-exp(ll)
fitl<-smooth.spline(tt,y)spar=lambda)
fitll<-predict(fitl,tt)
res<-frnean-fitll$y
return(sum(resA2))

minfl<- functionO

cat(".")
y<- fmean+morm(n,0,sigma)
assign("y",y,frame= 1)
fred<-nImin(ise,O)
valise<-ise(fred$x)
retum(c(exp(fred$x),va! ise))

/^Simulation
finean<-f 10
nn<-600
!mat<- matrix(0,nrow=nn,ncol=2)
for (k in 1:10) lmat[k,] <- minfiQ

for (k in 591:600)lmat[k,] <- minfl()
lambda<-lmat[,l]
rise<-sqrt(lmat[,2])

#exploratory data analysis - four plotstf
eda.shape<-function(x)
{

par(m frow=c(2,2))
hist(x)
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boxplot(x)
iqd<-summary(x)[5] - summary(x)[2]
plot(density(x,width=2*iqd), xlab="x", ylab="", type= '1')
qqnorm(x)
qqline(x)

summary(lambda)
summary(rise)
eda.shape(lambda)
eda.shape(rise)

J
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Appendix 6B.1 S-Plus code

//Smoothing paramefer estimate by GCV and square root of ISE for 10 test functions //
#by K.A.T.(1991) #

n<-40
tt<-(l:n)/n

### Set up test deterministic functions
beta<-ftinction(t,p,q)
{

gamma(p+q)/gamma(p)/gamma(q)*t/Xp-1 )*( 1 -O'Xq-1)
}
fDK-((beta(tt,10,5)+beta(tt,5,10)+beta(tt,7,7))/3)/1.7921549479
f02<-(0.6*(beta(tt,30,17))+0.4*(beta(tt,3,U)))/3.406258
fO3<-((beta(tt,20,5)+beta(tt, 12,12)+beta(tt,7,30))/3)/2.101791
fD4<-((4.2*exp(-3.25*tt)+4.0*exp(-6.5*tt)+3*exp(-9.75*tt))-0.1690403)/9.747529
fl)5<- (((2-0.5*tt+exp(-(tt-.5)A2/0.04))/3.77)-0.39839)/0.3310662
fO6<-(5*exp(-5*tt)-0.03368973)/4.490497
fD7<-((l+exp(-7*(tt-0.5)))A(-l)-0.03356922)/0.9371185
fD8<-exp(-3*exp(-3*tt))
fO9<-tt
fl)10<-ttA2

sigma<-0.01 # 0.01,0.02,0.1,0.2,0.5 #
set.seed(l)

nsim<-100
lambda<-numeric(nsim)
rise<-numeric(nsim)
for(i in l:nsim)

I f

fmean<-fl)l
y<-fmean + morm (n,0,sigma)

fit<-smooth.spline(tt,y) #returns lambda hat as "fit$spar"#
fit2<-predict(fit,tt) #returns s(t) hat as "fit2$y"#
rise[i]<-sqrt(sum ((ftnean-fit2$y)A2)) //root of integrated squared error//
lambda[i]<-fit$spar

mcdian(rise)
quanti le(rise,c(.75))
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Appendix 6B.2 S-PIus code

//Smoothing paranieler eslimalion by MML and square rool oflSE for 10 lesl functions II
//by K.A.T.(1991) #

////// Generate x data
n<-40
set.seed(i)
tt<-(l:n)/n

## Set up equation for y data
sigma <- 0.01 //stdev 0.01,0.05,0.1,0.2,0.5//
ones<-seq(l,l,l=n)
S <- cbind(ones,tt)
halfN <- 0.5*n

### Set up Sigma matrix
h3 <-l/(nA3)
Sigma <- matrix(0,nrow=n,ncol=n)
for (i in 1 :n)

Sigma[i,i:n] <- Sigma[i:n,i] <- (i*i*(i+1.5*(0:(n-i))))/3*h3

### Set up test deterministic functions
beta<-function(t,p,q)

gamma(p+q)/gamma(p)/gamma(q)*tA(p-1 )*( 1 -tyXq-1)

fO 1 <-((beta(tt, 10,5)+beta(tt,5,10)+beta(tt,7,7))/3)/1.79215494 79
iD2<-(0.6*(beta(tt,30,17))+0.4*(beta(tt,3,n))y3.406258
fl)3<-((beta(tt,20,5)+beta(tt, 12,12)+beta(tt,7,30))/3)/2:101791
fO4<-((4.2*exp(-3.25*tt) 14.0*exp(-6.5*tt) 13*exp(-9.75*tt))-0.1690403)/9.747529
fl)5<- (((2-0.5*tt+exp(-(tt-.5)A2/0.04))/3.77)-0.39839)/0.3310662 ; (g
il)6<-(5*exp(-5*tt)-0.03368973)/4.490497 \
fD7<-(( 11 exp(-7*(tt-0.ii)))/y(-1 )-0.03356922)/0.9371185 ;
fO8<-exp(-3*exp(-3*tt)) ;
fO9<-tl
1010<-ttA2 ' ,

•• i

### Functions to compute likelihood •

logdet <- function(x) |
sum(log(eigen(x)$values)) \

fK-ftinction(ll)

C <- chol(SS + exp(ll)*Sigma) ,
Cinv <- t(solve(C»
Ystar <- Cinv %•% Y ;
return(logdet(C) + halfN*log(sum(Ystar*Ystar)))

minfl <- functionO 1
{ *

caK1'.") |
y <- fmcan + rnorm(n,0,sigma) R
Y <- matrix(y,ncol= 1) fy
assign("Y",Y,frame=l) %

1
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HO <- fl(-1e20) // Value at zero
fredall <- nlmin(fl,l) # Minimize starting near zero
fl.fred <- fl(rredall$x) H Best fl
if(no < n.fred)

lstar<» 0.000000001
else

lstar<-exp(fredal!$x)

fit 1 <-smooth.sp!ine(tt,y,spar=lstarA(-1))
fit2<-predict(fui,tt)
rise<-sqrt(sum((frnean-fit2$y)A2))

return(c(lstar,rise))

MMHIIUUMMUti
## Simulation. ##

mmmmmmtu
fmean <- fDl
cc <- 1000
SS <- cc*(S %*% t(S)) + diag(n)

nn<-100

lmat <- matrix(0,nrow=nn,iicol=2)

for (k in 1:10) lmat[k,] <- minfl()
for (k in 11:20) lmat[k,] <- minfl()
for (k in 21:30) lmpt[k,] <- minfl()
for (k in 31:40) Imatfk,] <- minfl()
for (k in 41:50) lmat[k,J <- minflO
for (k in 51:60) lmat[k,j <- minflO
for (k in 61:70) lmat[k,] <- minflO
for (k in 71:80) lmatfkj <- minfl()
for (k in 81:90) lmatfk,] <- minfl()
for (k in 91:100) lmat[k,] <- minflQ

Istar<-lmat[,l]
rise<-lmat[,2]
lambdas lmat[, 1]^-1)

median(rise)
quantile(rise,c(.75))



CHAPTER 7

Conclusions

The non-parametric methodology ^ssented in this thesis, namely the cubic smoothing

spline approach to nonlinear inference, estimates a semiparametric regression model.

Semiparametric regression has attracted researchers' attention for its flexibility in

modelling some of the explanatory variables non-parametrically and the rest of the

variables by parametric regression. This is very useful in economic applications because

the variable of interest is evolving over time and often depends on other explanatory

variables. Semiparametric regression is extremely helpful when the time component of

the model is nonlinear and difficult to model by the parametric approach. A wide variety

of nonlinear trend functions were considered in our simulation studies.
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The regression model is central to econometrics and there is a need to be able to test

regression coefficients and regression disturbances in an efficient and accurate manner.

When working with the semiparametric model, testing for the inclusion of a possibly

nonlinear component is an interesting issue. A related issue is the ability to test for

linearity of a possibly nonlinear component, because it is an important to know whether

and in what form to include the time component in the semiparametric regression. The

review of the literature suggests the use of the regression specification error F test which

is a mean based test or variance based tests, for example the locally most powerful

invariant test, the point optimal invariant test etc. One problem with variance based tests

is the cumbersome computation of the critical values.

Many econometric tests are based either on the likelihood ratio, Wald or Lagrange

multiplier test principles. The literature review on linking the semiparametric regression

with any of these testing principles revealed a need to develop new tests. We have

focussed on deriving new likelihood ratio tests based on the marginal likelihood function

of the semiparametric model. Both new tests proposed in this thesis are one-sided tests

and each of these test statistics follows a weighted mixture of chi-squared distributions

asymptotically under the null hypothesis. To be able to obtain these tests, the exact

variance-covariance structure of the disturbance vector of the semiparametric model has

to be known. One contribution of this thesis was to derive the variance-covariance matrix

of the error term and to implement it in further nonlinear inference for time series. Apart

from the application of our finding in hypothesis testing, we derived the best linear

unbiased predictor and the variance-covariance matrix of this predictor applying the
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stochastic model with a non-parametric component. We used our derivation to construct

prediction intervals.

Another aim of this thesis was to look at the problem of estimating the smoothing

constant in smoothing splines. This is a vital problem in all smoothing approaches in

order to get the smoothing procedure robust to smoothing bias. The literature search in

this area revealed that there exists two main approaches, namely methods based on

penalised regression and methods based on maximum likelihood. The smoothing constant

is a by-product of our maximising problem in the new proposed likelihood ratio based

tests.

In Chapter 2, we reviewed the literature to understand the issues and problems concerned

with spline functions. We focussed on univariate smoothing splines.

The purpose of Chapter 3 was to introduce a cubic smoothing spline and to link it with

stochastic processes. The cubic smoothing spline was presented in a state-space form and

extra covariates were introduced into the model. This semiparametric model was also

presented in a state-space form. The variance-covariance matrix of the disturbance vector

was derived by Yule-Walker equations. The best unbiased predictor along with the

variance-covariance structure of the error term were derived and prediction intervals were

obtained.

Mi-,
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We applied our finding to two likelihood ratio based tests in Chapter-? 4 and 5. Both tests

aim tc detect nonlinearity in the semiparametric model and are based on maximizing the

marginal likelihood function. The MLR test is a test for the inclusion of the possibly [

nonlinear component into regression model. The MLR* test is a test for linearity of the

possible nonlinear component in the regression model. The MLR* test is a logical further

step in the sense that inclusion of the possibly nonlinear component can be suggested by

the MLR test, hence the MLR* test tests whether the additional component is or is not

<inear. From our simulation study we conclude that both the MLR and the MLR* tests '

perform well. Though they were not superior to the competitive tests, they are reliable,

easy to perform and computationally non-intensive

, The main purpose of Chapter 6 was to investigate some smoothing constant estimation

methods. When working with smoothing spline techniques, the smoothing parameter is

usually estimated by the Cross-validation method or as a by-product of optimizing the

if likelihood function. Its value is crucial to the overall smoothness and the accuracy of the

estimated nonlinear function. The study on the bandwidth selection method in Chapter 6

showed that our method was competitive with the most popular alternatives and

•~ computationally easy to implement.

In conclusion, we can summarise the original contributions of this thesis as follows:
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• to the stochastic process formulation of smoothing splines in state-space form

by deriving the variance-covariance structure of the error term for the cubic

smoothing spline,

• to non-parametric prediction by deriving the best unbiased predictor and the

covariance matrix of its prediction error, based on cubic smoothing splines,

and subsequently by formulating the associated prediction intervals,

• in the field of hypothesis testing by deriving two new likelihood ratio based

tests for detecting nonlinearity in the semiparametric regression models. Also

the empirical comparison of the range of available alternative tests makes a

useful contribution to the literature,

• to the bandwidth selection methodology for cubic spline smoothers, by finding

that our MML method is competitive to the widely used GCV method, being

fast and easy to program.

Finally we wish to close by mentioning some related areas for further research.

The concept of additional generalisation of variance-covariance matrix

derivation for higher order smoothing splines and unequally spaced time can

be done by the help of a computer algebra package such as Matlab or

Mathematica, (refer to Sections 3.6.2 and 3.6.3).
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• Also the derived variance-covariance matrix of the disturbance vector of the

semiparametric regression model can be used in the derivation of Wald or

Lagrange-multiplier based tests for testing for presence and linearity of a

possible nonlinear component.

• The mean based F spline and F* spline tests, which were used as a

modification to F and F* tests, need more investigation regarding their size

and power.

• Perhaps to take the average of estimated smoothing parameter A by various

methods might improve the smoothing results.
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