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Errata

1. pii Line 11

2. pvii

"Estimaion" should read "Estimation". .

Insert the following line after line 3,

"Table 5.7 Exact Medians of p0LS for Design Matrices XI, X4, X5, X7 and X8\
T = 20,40".

3. pxv Line 10

4. pi Line 10

5. p3 Line 2

6. p3 Line 3

7. p3 Line 5B

8. p4 Line 3

9. p5 Line 5

10. p5 Line 6B

11. p7 Line 9

12. p23 Line 5

13. p28Line4B

14. p33 Line 7

15. p38 Line 5B

16. p61 Lines 3 & 13

17. p65 Line 4

18. p66 Line 8B

19. p76 Line 12

20. p83 Line 19

21.p92Linell

"there is usually no analytical solutions" should read "there are
usually no analytical solutions".

"quoting Stock (2001, p29), which" should read, "which,
quoting Stock (2001, p29)".

"The large models" should read "Large Models".

"the time series model" should read "time series model".

"Dielbold ..." should read "Diebold ...".

"from the IT technology" should read "of IT technology".

"First..." should read " The first...".

Change "instead of to "compared to".

Change "and are ..." to "and which are ...".

Change "In another words" to "In other words".

Change "invariant for affme" to "invariant to affine".

Change "produce" to "producing".

"the non-normal errors" should read "non-normal errors".

Change "Pfanzagal" to "Pfanzagl".

Change "so as it is ..." to "as is ...".

Change "Same arguments" to "The same arguments".

"Phillips and Andrews (1987)" should read "Andrews and
Phillips (1987)".

"level a is set at 50%" should read, "level a/2 is set at 50%".

Insert the following paragraph after Line 11,



"Previous studies related to the proposed grid inversion method include
Nankervis and Savin (1996) and Beran (1997). Nankervis and Savin proposed
computing MU estimates based on a grid of null values using bootstrap. Their
methodology involves bootstrap p-values; this thesis considers simulated
quantiles. It can be shown that the two methods are equivalent, fjpr the case
where a test statistic is not asymptotically pivotal under the null, a possible
way of computing MU estimates is to consider the p-values based on the
double bootstrap test proposed by Beran (1997)."

22. plO7 Line SB

23. pi 12 line 8

24.pU4Line4

25.pll6Line7

26.pl51Line6

27. pl52 Line 3

Change "to count for" to "to allow for".

Change "subject to the constant" to "apart from the constant".

Change "interception" to "intersection".

Change "impact from" to "impact of.

Change "estimator (5.3)" to "estimator (5.1)".

Insert the following sentence before "In particular ...",

"The exact medians of the OLS estimator for different design matrices and for
a sample size of 20 and 40 are also reported in Table 5.7."

28.pl52Iine9

29. pl65 Line 8

30. pl75 Line 4

Change "Waston" to "Watson".

Change "gird" to "grid".

Insert the following paragraph after Line 4,

"Theoretically speaking, for design matrix XI, pA, p%"0) and p^"0S) should

all be exactly MU, while p™n and p™M are exactly MU for X2, JO, X4

and X5. But due to the limited number of replications and random errors, the
simulated results would not be expected to be exact. The approximation
largely depends on the accuracy of the computed median functions".

31.pl83 Insert the following note beneath Table 5.2,

"Note: pA should be exactly MU for this model. The inaccurate results
reported were due to a grid size of 0.05 used for computing the median
function of the OLS estimator. The accuracy was improved in Table 5.3a
when a grid size of 0.001 was used."

32. p200 Line 3B Change "Similar ..." to "A similar ...".
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Abstract

This thesis combines computer-intensive techniques with theoretical propositions to

develop some general methods for constructing (approximately) median-unbiased

(MU) estimators in small samples.

The first method proposed involves adjusting an estimating equation towards

median-unbiasedness. It is shown that a median unbiased estimating equation is more

likely to produce a median-unbiased estimator compared with a mean-unbiased

estimating equation. If we subtract the original estimating equation by its median

function, and if the resulting new estimating function satisfies certain conditions, the

solution to the adjusted estimating equation will be median-unbiased. As there is

usually no analytical solutions to the adjusted equation, iterative algorithms are

needed. The proposed method is shown to be analogous to two of the existing mean-

bias reduction methods. The median-unbiased estimator so constructed will generally

have the same asymptotic properties as the solution to the original estimating

equation.

This method is shown to be effective when applied to estimation of the linear

regression with AR(1) disturbances. If the marginal likelihood score is adjusted

towards median-unbiasedness, the solution to this adjusted estimating equation is

almost exactly median-unbiased. Its root mean square error (RMSE) is significantly

smaller than that of the least squares (LS) and maximum likelihood (ML) estimators.

The method can be revised slightly to account for nuisance parameter problems in

estimating a first-order dynamic regression model. An iterative algorithm delivers an

approximately median-unbiased estimator, which successfully corrects the small

sample bias of the LS estimator. The bias correction in this case is less accurate lhan

in the previous example.

The second recommended method for constructing median-unbiased estimators is to

invert a test statistic at the 50% significance level. We point out that there is a direct

link between the power of a test and the small sample performance of the estimator

based on inverting its median function. When the median function of a test is not

xv

monotonic, this method may break down. We propose a 'grid inversion' algorithm to

overcome the non-monotonicity problem associated with the median function of a

single test statistic. The method is based on the 'median-envelope' of a series of tests

and is shown to be able to better explore the good power properties over the whole

parameter space.

We give a counter example of Andrews' (1993) MU estimator in a linear regression

with AR(1) or random walk disturbances. His estimator breaks down for some design

matrices, because the test statistic his estimator is based on lacks in power in small

samples. We propose to use the point optimal invariant (POI) test instead. When the

limiting power of a single test when the autoregressive parameter goes to -1 is not

zero, the median function of the POI test is monotonic. Otherwise the median

envelope method should be used. We outline a simple way of calculating this

limiting power. The MU estimator based on POI test statistics is shown to be

median-unbiased for all design matrices examined, including the cases where other

methods fail. The RMSEs of the new estimators are significantly smaller than their

biased counterparts. The proposed MU estimator based on the median envelope is

also found to be quite robust to non-normal errors and other forms of error

misspecifications.

Finally, we show that the median-unbiased estimators have the capability of

improving the small sample performance of hypothesis testing and forecasting

procedures. In particular, Wald tests based on the MU estimators successfully correct

the local biasedness and non-monotonic power plaguing the Wald tests based on the

biased estimators in the linear regression with AR(1) disturbances and the dynamic

linear regression model. The power curves of the modified tests are properly centred

and monotonic. As for prediction, the forecasting errors of the predictors based on

the proposed median-unbiased estimators are shown to be significantly smaller than

those based on the conventional estimators for these autoregressive models.

xvi



Chapter 1

Introduction

1.1 Some Emerging Trends in Econometrics

It is commonly agreed (see e.g., Darnell, 1984, 1994 and Bjerkholt, 1995) that R.

Frisch first coined the term 'econometrics', which was envisaged by him as a new

discipline intermediate between mathematics, statistics and economics, and more

importantly, a powerful unification of the three. The mission of econometrics, as

described by Frisch (1933), was 'to turn pure economics, as far as is possible, into a

science in the strict sense of the word' (Chipman et al., 1971, p386). The foundation

of the Econometric Society in 1930 formally marked econometrics emerging as a

distinct subject independent of either statistics or economic theory. The next

important milestone in the short history of econometrics ought to be the inauguration

of the Cowles Commission shortly after World War II, quoting Stock (2001, p29),

which

'... over the course of a few years, developed a research agenda that

structured macroeconometrics for the second half of the 20th century.

The central vision of this research program was simple: the development

of a mathematical model of the macroeconomy with grounding in

economic theory, with parameters estimated using sound statistical

methods, tested against and thus consistent with empirical evidence.'

Since then, economists have relied more and more on econometric models for

testing economic theories, for macroeconomic forecasting, and for advising

policymakers. Recently, several prominent econometricians contributed to an open

forum organised by the Journal of Econometrics to mark the publication of its 100

volume, in which they assessed the current status of econometrics and identified

some important trends that may influence the future development of the subject. The
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motivation of this thesis is largely rooted in some of these emerging themes of

econometrics.

One such trend is the rapid development in the analysis of non-stationary

time series. Since the early 1980s, a good deal of time-series econometrics has dealt

with nonstationarity. As Phillips (2001, p21) remarked,

'the preoccupation has steadily become a central concern and it seems

destined to continue, if only for the good empirical reason that most

macroeconomic aggregates and financial time series are dominated by

trend-like and random wandering behaviour. Behaviour, it should be

said, that is very imperfectly understood.'

So, the study of trends brings together empirical-quantitative and theory-quantitative

aspects of modelling and has, in turn, been empowered by that synergy. The

literature is already vast and continues to grow swiftly, involving a full spread of

participants and engaging a wide sweep of academic journals.

However, the focus on modelling non-stationary time series also draws

criticism from various econometricians, see Heckman (2001), Granger (2001) and

Maasoumi (2001) among others. In particular, Maasoumi (2001) observed that the

currently popular dynamic models in which the own past history dominates, seem

rather barren transformations of more economically interesting distributed lag

processes. They are useful and economical curve-fitting media, but they do not

reveal much about the behaviour or working of economies. The fact that the multi-

trillion dollar quantities like the US GDP appear to move like a random walk is a

numerical artefact, not a causal model which can play a role in policy analysis.

Hence, we need to specify structural models that take account of the time series

properties of the variables involved.

Therefore a combination of the dynamic specification and structural model

building is necessary. Originally, the large models were not very dynamic, in contrast

with the 'time series analysis' which concentrated on dynamics, paid little or no

attention to economic theory and built models involving only a few variables. As
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Granger (2001) remarked, over the years these two approaches have interacted with

each other, one side learning from and being influenced by the other. The large

models became more dynamic and involved unit roots and cointegration, the time

series models considered size, that is, the number of variables used more seriously

and payed more attention to the use of economic theory. The same view was also

held by Hsiao (1997), Krishnakumar (2001) and Phillips (2001).

A second new development in econometric theory during the past two

decades is the shift of focus from asymptotic theory to finite sample results.

Traditionally, there was little econometricians could do about the exact finite sample

distributions of estimators and test statistics. Therefore most inference procedures

rely on first-order asymptotics. In science it is widely accepted that the first term of

Taylor's series approximations, already merely locally valid, can be very poor. First-

order asymptotic expansions, already less solid as an approximating concept, delivers

even less. The Monte Carlo evidence provides frequent embarrassing evidence

against first oavwr Asymptotic results. Many studies show that, in many settings, first-

order asymptotic theory provides poor approximations to the finite sample

distribution, and thus provides a poor basis for inference in applications.

This shift towards more accurate and more reliable small sample inference is

largely facilitated by the rapid increase in the computing capacity. As King (1987b,

pi 70) remarked,

'advances at all levels have reduced the costs of computing to such an

extent that highly computational procedures are becoming more and

more feasible. ... It appears that we now reaching the state where we

should be asking: what kind of inference procedure would we wish to use

if computation were not a constraint?'

Dielbold (2001) agrees that the pervasive effects of advances in processing speed

have produced an irreversible and ongoing shift away from closed-form analytic

methods and toward algorithmic numerical and simulation methods. This move is

obvious in all aspects of econometric modelling. In particular, resampling

techniques, such as bootstrap, are wonderfully simple tools for mimicking the
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sampling inference methods. They have been widely used to explore higher-order

approximations to unknown distributions of econometric statistics. Also commenting

on the impact from the IT technology on the development of econometrics,

Maasoumi (2001, p85) went even further and predicted that

'perhaps there will be a development towards more realistic models and

inference techniques, accommodating more sophisticated adaptive

behaviour and learning,.... Perhaps even model specification will be

recast into a learning and adaptive procedure, ... which will truly

acknowledge that all models are approximations/misspecifications.'
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1.2 Motivation and Direction

The research reported in this thesis was motivated by the on-going pursuit of exact

small sample estimation procedures by econometricians. Since Fisher (1925)

advocated the use of maximum likelihood (ML) based inference procedures, ML

estimation has generally become very popular. This popularity is mainly based on

asymptotic optimality properties and on computational convenience, as commented

by Kiviet and Dufour (1997). Given present-day computer speed and facilities,

however, practitioners can and should bring more aspects into their statistical utility

function than just ease of computation and behaviour in infinitely large samples.

Nowadays, a more challenging and appropriate objective is to employ procedures

which optimise the actual efficiency and accuracy from the finite set of sample data

at hand. As far as estimation procedures are concerned, it is no longer the only

requirement today for the estimator to be asymptotically unbiased and relatively

efficient. Instead, these days, the profession can be much better served if provided

with estimators that have adequately characterised approximation levels and

performance guarantees in small samples.

The focus on small sample properties of inference procedures is particularly

important due to the non-experimental nature of economic data. As explained by

Haavelmo (1944), by non-experimentai, one means data cannot be generated by

providing appropriate stimuli to elicit changes in the response variable, as in the ideal

•v
h
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type of experiment, but rather, a researcher can only play the role of a passive

observer and gather data the way they are churned out by nature. This is a prominent

feature distinguishing econometrics from its parent discipline, statistics. King (1996)

pointed out two potential problems in inference procedures due to the non-

experimental nature of the discipline. First is that a model cannot be specified with

the level of certainty of that in disciplines where data are the direct product of

experiments. This highlights the necessity to specify a model as a stochastic process

to reflect the uncertainty involved. The other problem is that the effects of different

factors in a model cannot be isolated in 'controlled' experiments as in the disciplines

of natural science. In this less than ideal situation, econometric models often contain

large numbers of parameters. As such, econometricians are often encountered with

the difficult situation in which a large stochastic model has to be identified given

only a limited amount of data. Therefore the precision of the estimators and the

power of tests in small samples become crucial in the model building process.

To develop exact finite sample procedures usually involves sacrificing

generality in exchange for a gain in small sample efficiency, see discussions in King

(1987b). Estimators that are applicable generally for a class of models sometimes fail

to explore fully the information contained in the data structure at hand. One way to

improve on this is to design procedures that depend on the design structure. A

prominent problem is the correction of the small sample bias of an estimator. Bias-

reduction becomes important as many estimators are only unbiased asymptotically.

Traditional bias-correction methods usually involve approximating the first-order

bias function by asymptotic expansions and subtracting it from the original estimator.

The finite sample bias-reduction approach, however, instead of using the uniform

asymptotic adjustment factor, allows the correction factor to depend on the data. This

will draw extra computational cost as the factor has to be computed differently each

time, but it will also provide results that are more consistent with the data instead of

asymptotic distributions.

The search for procedures efficient in small samples has been greatly

enhanced by Monte Carlo methodology in the past two decades. Monte Carlo

experiments are often employed to simulate random processes mimicking real life

happenings with the use of random numbers, usually with the aim of investigating or
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estimating properties of statistics that are analytically intractable. Such studies help

to decide on the best approach to use, or provide input directly needed, for

modelling, estimation, testing and prediction. The simulation experiments, however,

are never an end product in econometrics, their results await to be applied to non-

experimental situations.

This thesis is mainly concerned with developing some 'operational exact

techniques' (Kiviet and Dufour, 1997) for point estimation in small samples. Our

attention is given to the impartiality of the estimator. In pursuit of unbiasedness in

finite samples, we need bias-reduction techniques that are different from those based

on asymptotic theories. Computer-intensive methods are used to explore the exact

distributions of estimators and test statistics. To correct bias by computer

simulations is not a new idea. For example, in an interview (Phillips, 1988), James

Durbin revealed that in the early 1950s, he attempted to study bias-correction based

on computer-intensive methods but eventually gave up the idea because the

computers available at that time could not provide the speed and capacity required by

the research.

The focus of this thesis is on the concept of median-unbiasedness. Unbiased

estimators play an important role in point estimation theory. Because a uniformly

optimal estimator is almost impossible to find, unbiasedness is usually the first

prerequisite for a 'good' estimator. Unbiasedness makes sure that no one or more

values of a parameter are too strongly favoured at the cost of neglecting other

possible values (Lehmann, 1983, p5). Among different definitions of unbiasedness,

median-unbiasedness has not drawn as much attention as mean-unbiasedness.

Different researchers (e.g., Brown, 1947, Birnbaum, 1961 and van Haart, 1962),

however have criticised the inappropriateness of mean-unbiasedness in some

situations. They showed that median-unbiasedness possesses some attractive features

and may be preferred as an impartiality measure under some circumstances. This

thesis adds to the literature that advocates the use of median-unbiased (MU)

estimators.

The main contribution of our research is to supply some generally applicable

methods for constructing (approximately) MU estimators. We found that there is a

Chapter 1. Introduction

lack of such systematic discussions on how to construct MU estimators in the

literature. Our proposed methods will serve as alternative bias-reduction techniques

to the existing ones that were all designed to correct mean-bias.

However, as pointed out by Firth (1993), it is not an assumption of this thesis

that unbiased estimation is always desirable and therefore bias-reduction is always

necessary. The merits of bias-reduction in any particular problem will depend on a

number of factors, including the skewness of the distribution of the estimator and any

sacrifice in precision that might result. Sometimes, the variance of the bias-corrected

estimator might be inflated significantly, thus offsetting any benefit of correcting the

bias. Although in the examples examined in this thesis, the proposed estimators do

not suffer from this problem, it is always a critical issue that researchers have to look

out for before adopting any bias-reduction techniques in their studies.

The models we apply our proposed method to are the linear autoregressive

models with exogenous variables. The bias in the estimation of these models without

explanatory variables are well documented, therefore it is natural for us to compare

the proposed techniques with the existing ones. When extra regressors are added into

the model, the factors that affect the bias become more complicated and the

analytical methods become even more intractable. Although practically popular,

models containing exogenous regressors have not been studied systematically in

terms of small sample bias-correction. We apply the proposed methods to these

models and derive some estimators which are almost median-unbiased, with smaller

overall risks in small samples and are applicable for most regressor structures.

1.3 Scope and Plan

The thesis is organised into seven chapters. Following this introductory chapter,

Chapter 2 reviews the literature related to unbiased estimation and bias-reduction

techniques. In a general point estimation setting, we start the survey by comparing

several different definitions of unbiasedness. The link between unbiasedness and the

risk function is highlighted. The two most frequently used unbiasedness criteria,
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mean-unbiasedness and median-unbiasedness are deliberated upon. In the section

that follows, we aim to reveal the circumstances under which median-unbiasedness

might be a more appropriate measure of the impartiality of a point estimator. This is

followed by a thorough discussion of the properties of the MU estimators both

asymptotically and in small samples. The focus is given to the optimality results

derived by various researchers. Several optimality measures that are different from

the ones usually used for mean-unbiased estimators are explored. The applications of

MU estimation in different econometric models are then surveyed. Attention is given

to the rationale of using such estimators and the methods used to derive them. It is

found that the most important applications are in estimating autoregressive models.

In the second half of the chapter, we examine a different yet closely related topic —

small sample bias-reduction methods. These methods are classified into two

categories: bias-correction and bias prevention. The two major bias-correction

methods: the analytical approach and the bootstrap approach are compared, followed

by a detailed discussion of previous studies that aimed to adjust estimating equations

to prevent the bias in small samples. Finally, the research questions emerging from

the literature review are summarised, as they will be dealt with in the proceeding

chapters.

Chapter 3 gives the theoretical outline of the methods developed in this thesis

which can be used to construct MU estimators. Lehmann's (1959) work implicitly

indicated that MU estimators could be constructed by inverting the median functions

of the sufficient statistics. We first review this approach and point out why it has not

been widely adopted. Based on this fundamental result, we propose two different

methods for constructing MU estimators. The first one is analogous to the bias-

prevention technique in the mean-unbiased estimation context. The estimating

equations are adjusted towards median-unbiasedness in order to correct the median

bias in the estimator. The second method is based on the duality between a test

statistic and a confidence interval. But a slightly different method of inverting the

median function is proposed to suit point estimation. The link between the proposed

methods and the existing bias-reduction techniques are explored. Both methods are

extended to the multivariate case in which nuisance parameters have to be

eliminated.

Chapter I. Introduction

In particular, Chapter 3 outlines the main theoretical contributions this thesis

makes. Constructing MU estimators by adjusting the estimating equations, as far as

we know, has not been discussed in any previous study. We argue that there is a

stronger link between a MU estimating equation and a MU estimator compared with

their mean-unbiased counterparts. Therefore it is more likely to correct the (median-)

bias by adjusting the estimating equation towards unbiasedness. The second

approach, i.e., inverting the median function of a test statistic, is not new. However,

we propose a different algorithm - grid inverting, together with the use of the point

optimal tests, which greatly enhance the efficiency of such an approach. We expect

these two methods could be applied to a range of econometric models and deliver

(median-) unbiased estimators in small samples. They will serve as useful alternative

bias-reduction techniques in situations where mean-unbiasedness is hard to achieve

or robustness becomes crucial.

Chapter 4 provides empirical illustrations of the first method developed in

Chapter 3. We choose to adjust the marginal likelihood scores towards median-

unbiasedness in the linear regression with AR(1) disturbances and the first-order

dynamic linear regression model. These two models are probably the most studied

time series models in econometrics. We attempt to show that the proposed method

can correct the small sample bias as well as or even better than the existing

techniques. In the first example, the method is used directly as the median function is

invariant to nuisance parameters. In the second example, however, this invariance

does not hold. So the method is revised to account for the nuisance parameters. As a

result, an iterative algorithm is developed to produce an approximately MU

estimator. The new estimators are compared with their more conventional

counterparts via Monte Carlo studies. The small sample bias and root mean squared

errors (RMSEs) are examined.

Chapter 5 explores the relationship between the power of a test and the

performance of the MU estimator based on inverting its median function. This issue

is largely ignored by previous studies. As an example, we show that Andrews'

(1993) MU estimator breaks down when extended to models with certain exogenous

regressors. The reason lies in the lack of power of the test he chose to invert. In the

linear regression with AR(1) and random walk disturbances, we examined the
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median functions of several frequently used tests and particularly the point optimal

invariant (POI) tests proposed by King (1985a, 1987b) and Dufour and King (1991).

We attempt to show that the POI tests are good candidates for constructing MU

estimators due to their excellent small sample power properties. Monte Carlo studies

are conducted to compare the performance of the estimators based on inverting

different tests. In particular we compare the estimator based on the POI tests and

Andrews' estimator. Finally, the robustness of the proposed estimators to non-normal

errors is examined.

Chapter 6 studies hypothesis testing and forecasting procedures based on the

MU estimators proposed in the previous chapters. We attempt to correct the small

sample deficiencies of the Wald test by using an unbiased estimator in the test. The

tests examined include a test of autocorrelated disturbances, a test for random walk

disturbances and a test for the lagged dependent variable coefficient. We expect that,

by correcting the bias in the point estimator, we should also be able to correct the

small sample bias in the Wald test. The simulated power curves of the Wald tests

based on different estimators are compared. The second half of the chapter is

concerned with forecasting. It is revealed that the risk of a predictor is closely linked

to the bias in the point estimator. Therefore Monte Carlo studies are conducted to

compare the prediction risks based on different estimators.

The final chapter of the thesis summarises the major findings from the

previous chapters in terms of satisfying the goals we set up in this introduction.

Possible research questions which require further research are also identified.

1.4 Computations

All calculations reported in this thesis were performed using GAUSS System

Version 3.2.11 (Aptech Systems, Inc.) on IBM-compatible personal computers.

Random numbers were generated by the built-in random number generators

(function RNDS) of the software for Monte Carlo simulation experiments. In the

case of optimisation problems, the Constrained Optimisation module of the GAUSS

System was utilised.
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Chapter 2

Median Unbiased Estimation in Econometrics: Literature
Review

2.1 Introduction

Point estimation is one of the most common forms of statistical inference. It involves

procedures to specify a plausible value for an unknown parameter based on some

observed data. The quality of an estimator is then measured by criteria such as

impartiality, efficiency and robustness. Due to the non-experimental nature of

economic data, it is even more crucial for econometricians to rely on estimators that

have sound performance not only asymptotically but also in small samples. However,

as there is typically no unique, convincing definition of optimality, the optimal

estimation procedure depends heavily on the assumed utility (or risk) function. In

most cases, unbiasedness is always one of the most frequently used quality measures

for a point estimator. Median-unbiasedness is one of several unbiasedness

definitions. Compared with mean unbiasedness, which is its much more popular

alternative, median-unbiasedness possesses some unique features that can be

attractive under different circumstances. Many early researchers, including Brown

(1947), Lehmann (1951, 1959) and Birnbaum (1961, 1964), emphasised the

importance and plausibility of the concept of median-unbiasedness. But since then,

mean unbiasedness has always dominated point estimation theory until recently

when MU estimators were successfully used in several time series models, which to

some degree reminds researchers of the importance of the class of MU estimators.

This chapter provides a review of MU estimation in econometrics. The scope

covers not only MU estimators and their applications, but also some of the related

robust methods and bias-correction techniques. Our review inevitably focuses on the

facets of the literature that offer insights into and direct exposition of the research

problems of concern in this thesis, and therefore is by no means exhaustive. The

main objective of this chapter is to synthesise the messages contained in previous
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studies in order to clarify and highlight areas in the literature where research

questions remain open or further work is required. The succeeding chapters will

address these research questions identified from this survey.

This review is organised as- follows. General principles of unbiased

estimation as well as different definitions of unbiasedness are deliberated upon in

Section 2.2. Focus is given to the link between unbiasedness and the risk function.

Section 2.3 compares median-unbiasedness with mean unbiasedness and reviews

several circumstances in which median-unbiasedness is more plausible. Small

sample and asymptotic properties of MU estimators are also discussed. Section 2.4

reviews applications of MU estimation in econometrics from early contributions to

recent developments. Some robust methods, including least absolute deviation

(LAD) estimation, which are closely related to MU estimation, are reviewed in

Section 2.5. Section 2.6 looks at different small sample bias-correction techniques

developed by econometricians. Although all of these techniques are aimed at

reducing the mean-bias of an estimator, they provide some guidelines for us to apply

similar methods in the context of MU estimation. Section 2.8 concludes the review

by identifying some research gaps left unfilled in the literature.

2.2 Theory of Unbiased Estimation

2.2.1 Risk Function and Unbiasedness

We consider the general setting of statistical estimation. The observed data are

postulated to be a random variable X (typically vector-valued) taking on values in

the sample space s , according to a distribution P, which is known to belong to a

family n . The distributions are indexed by an unknown parameter 0, taking values

in a set Q.. A real valued function g is defined over the parameter space Q., whose

value at 6 is to be estimated; we shall call g(6) (in many cases, g(0) = 6) the

estimand. The estimation problem is then the determination of a suitable estimator,

that is, a function 8 defined over the sample space, of which it is hoped that 8(X)
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will tend to be close to the unknown g{6). The value 8(x) taken on by the estimator

for the observed value x of X is then called the estimate of g(0).

We then, following Lehmann (1959, pp5-6), define a loss function L(O,d),

to measure the consequences of estimating g(6) by a value d . The loss function is

usually required to satisfy the following conditions,

(2.1)

and

= Oforall 9.

The accuracy of an estimator 8 is then measured by the risk function

(2.2)

(2.3)

the long term average loss resulting from the use of 8. One would like to find a 8

which minimises the risk for all values of 6. However, except for a constant

parameter, there exists no uniformly best estimator (Lehmann, 1959), which

minimises (2.3) simultaneously for all values of 0.

One way of avoiding this difficulty is to restrict the class of estimators by

ruling out estimators that too strongly favour one or more values of 6 at the cost of

neglecting other possible values. This can be achieved by requiring the estimators to

satisfy a condition which enforces a certain degree of impartiality, i.e. unbiasedness.

Lehmann (1951, 1959) recommended a general concept of risk-unbiasedness,

which is a theoretical definition of unbiasedness depending on the loss function L.

An estimator 8 of g(0) is said to be risk-unbiased if it satisfies

EM9,8(X)}< EeL[0\d(X)] (2.4)

13
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for all 6' =£ 9. If one interprets L(0,<2) as measuring how far the estimated value d

is from the estimand g{6), then risk-unbiasedness states that S(X) is on average at

least as close to the true value g{9) as it is to any false value g(Q').

The importance of this general definition is shown by its connection with the

principle of invariance. An estimator S(X) is said to be invariant to a 1:1

transformation family H, if for any h&H,

(2.5)

Lehmann's (1951) results state that whenever among all risk-unbiased estimation

procedures there exists a unique one that uniformly minimises the risk, then it is

almost invariant. And under certain restrictions on the transformation group, the

converse statement is also true, i.e., if among all invariant procedures there exists one

that uniformly minimises the risk, then it is unbiased in the sense of (2.4).

2.2.2 Median as a Location Estimator

We begin by stating the definition of the median and some of its properties as a

location parameter estimate before we define median-unbiasedness. A real number

m is a median for the random variable Y, if

?r{Y>m}>/2 and Pr{r<m}>K- (2.6)

This definition of a median allows for non-uniqueness, and as a matter of fact,

Lehmann (1983) showed that the medians of the same random variable always form

a closed set. If a median m of Y is not a probability mass point, then condition (2.6)

reduces to

(2.7)
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For a population with underlying distribution density f(y) that has its

at jU, the sample median m is shown, among others, by Chu (1956) to be

asymptotically normal with

(2.7)

The efficiency of the median compared to the mean is 0.637 when the

underlying distribution is normal, which is somewhat low. But its efficiency

increases and exceeds unity as the tails of the parent distribution become heavy (Rao,

). The median is well known for its robustness properties. Huber (1987) showed

the median minimises the maximum asymptotic bias that can be caused by

asymmetric data contamination. It is also the simplest so-called 'high-breakdown'

estimate. Therefore it is usually used as a good initial value in iterative estimation by

a tobust method. Another important property is that it is invariant to monotonic

transformations. The median of a function of a random variable is the function of the

ian of the random variable, provided the function is one-on-one.

Different Definitions of Unbiasedness

Pepending on the choice of the loss function, different concepts of unbiasedness can

bs defined. The most frequently used are the following two:

1. Mean-unbiasedness. If the loss function is squared error, (2.4) becomes

Ee[S(X)- g{6')f > Ee[S(X)- g{6)f (2.3)

for all 0 ' * 0 . The left side of (2.8) is minimised by g(d') = EeS(X) and the

condition of risk-unbiasedness therefore reduces to the mean-unbiasedness condition

(2.9)
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The condition of mean-unbiasedness ensures that in the long run, the amounts by

which the estimator over- and under-estimates g(9) will balance, so that the

estimated value will be correct 'on the average'.

2. Median-unbiasedness. If the loss function is absolute error, (2.4) becomes

Ee\8(X)-g{9')\>Ee\5(X)-g{9)\ (2.10)

for all 9' * 9. The left side of (2.10) is minimised by any median of S(X). It follows

that the risk-unbiasedness condition reduces to

medB8(X)=g{9). (2.11)

An estimator satisfying (2.11) is said to be median-unbiased (MU). Different from

mean-unbiasedness, median-unbiasedness ensures that the frequency but not the

amount of over- and under-estimation of an estimator should balance, i.e., the

probability of over-estimating is equal to probability of under-estimating in the long

run.

There are other attempts to define unbiasedness in a more general sense.

Brown (1947) suggested the use of likelihood-unbiasedness instead of mean-

unbiasedness. An estimator is likelihood-unbiased if estimates in the neighbourhood

of a given parameter value 9 would occur more frequently when the true value is 9

itself than wh,: ? it differs from 9. Hence if we assume the estimator 9 of 9 has

probability density h{&]9), then 9 is likelihood-unbiased if

h{9\9')<h{9\9). (2.12)

This definition has the advantage of being invariant under simultaneous one-to-one

transformations of the parameter and the estimate, which is an important property not

possessed by mean-unbiasedness.
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Van der Haart (1962) attempted to generalise the definition of median-

unbiasedness. For an estimator 8{X) of a parameter </, he introduced a comparing

value y and a comparing estimator c(X). The estimator 8(X) is called /-unbiased

(or more generally distribution-unbiased) if

(2.13)

It is apparent that median-unbiasedness becomes a special case of this definition

because if we choose y = 9 and c(X) = 5{X), the above condition becomes the

definition of median-unbiasedness.

2.3 Properties of MU Estimators

2.3.1 Comparison of Mean-unbiasedness and Median-unbiasedness

According to Van der Haart (1962), Laplace (1774) was most likely the first who

worked with the idea of MU estimators. He virtually rejected the use of arithmetic

means of observations as location estimates, and therefore the concept of mean-

unbiasedness. However, in the history of statistics and econometrics, much

interesting work has been devoted to mean-unbiased estimators. Yet it is hard to find

the requirement of mean-unbiasedness justified in print. According to Lehmann

(1983, p4), it might be Gauss who first advocated the square of error as the measure

of loss or inaccuracy. But even Gauss himself admitted that, should someone object

to this specification as arbitrary, he was in complete agreement. He defends his

choice by an appeal to mathematical simplicity and convenience. Among the infinite

variety of possible loss functions for measuring the departure of the estimate from

the true parameter, the square loss function is the simplest and is therefore preferable.

This view was corroborated by Fraser (1956, P839), who observed that median-

unbiasedness does not lend itself to the mathematical analysis needed to find

minimum risk estimates, and hence has found little application. Still on the

popularity of mean-unbiasedness, Birnbaum (1961) commented that mean-

unbiasedness is merely a technically useful property of the classical estimators in the
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linear estimation problem, which, at least in the case of normal errors, could equally

well or preferably be justified on the basis of median-unbiasedness.

The critics of mean-unbiasedness mainly focus on three aspects: 1. it is not

robust towards extreme values and heavy tail distributions; 2. it is not invariant under

one-to-one transformations; and 3. it is ill-defined when the parameter space is a

closed set. In contrast, MU estimators are largely immune to these problems.

Therefore under many circumstances, median-unbiasedness is a better measure of

impartiality than mean-unbiasedness. We review these 3 aspects together with some

of the examples that have emerged in the literature and illustrate those circumstances

in which median-unbiasedness can be more relevant.

2.3.1.1 Robustness

While the mean is not robust when used as an estimator of a location parameter,

estimators produced by squared error loss often are as uncomfortably sensitive to

outlying observations and to the tail behaviour of the assumed distribution of the

observed random variable, as pointed out by Lehmann (1983). Kendall and Stuart

(1967, Section 17.9) reported that Girshick et al. (1946), Halmos (1946) and Savage

(1954, p20) all provided examples that the available mean-unbiased estimators in

certain situations can be even inferior to any single observation. On the other hand,

MU estimators are much more robust in this sense. For example, Cox and Hinkley

(1974) and Andrews and Phillips (1987) both reported that the MU estimator of the

error variance in a linear regression is much more robust to non-normal errors than

the mean-unbiased estimator. Andrews (1993) examined the robustness of his MU

estimator of the first-order autoregressive model under different error structures and

concluded that the MU estimator is very robust to skewed or heavy-tailed error

distributions.

As an extreme case, the moments of the estimator may not exist in some

situations. If this happens, mean-unbiasedness will not be an appropriate measure

while median-unbiasedness is still applicable. Jensen (1979) observed that when the

disturbances in a simple linear regression model are Cauchy instead of Gaussian, the
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usual least squares estimator 8 is still median-unbiased (and optimal among all MU

estimators for all bounded loss functions), but mean-unbiasedness is not applicable

as the estimator does not have finite moments. Both Zaman (1981) and Fiebig (1985)

also reported cases of estimators without finite sample moments. The parameter of

interest was the reciprocal of a normal mean in a simultaneous equation model. In

both cases, as observed by Zaman (1981), the use of quadratic loss as a criterion can

conflict with the objective of obtaining an estimator that has high probabilities of

being close to the true value.

2.3.1.2 Invariance to 1:1 Transformations

An important feature of the maximum likelihood estimator is its invariance to one-to-

one transformations, i.e., if 6 is the ML estimator of 6 and g(«) is a 1:1

transformation, then g(0) is also the ML estimator of g(0). But this property does

not hold for mean-unbiased estimators. This is one of the most important arguments

used by early critics of mean-unbiasedness. One simple example, as pointed out by

Andrews and Phillips (1987), is that although the sample variance sz is a mean-

unbiased estimator of the population variance o1, the sample standard deviation s is

a biased estimator of the population standard deviation a. In contrast, median-

unbiasedness is invariant to any one-to-one transformations (see e.g., Brown, 1947

and Van der Haart, 1962). So given a MU estimator of the population variance (an

example of this is given in the next section), its square root is also a MU estimator of

the population standard deviation.

This invariance property of median-unbiasedness was explored by Andrews

and Chen (1994) in the estimation of the impulse response function (IRF) in the

AR(p) model. A scalar measure, the cumulative impulse response (CIR) was used to

measure the persistence of the series instead of the whole IRF. The CIR, which is the

sum of the IRF over all time horizons, equals 1/(1 -a), where a is the sum of the

AR coefficients. Thus a MU estimator of a will lead to a MU estimator of the CIR.

A similar approach towards estimating impulse response functions was also taken by
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Kilian (1998) and Wright (2000a) but the focus there was mainly on interval

estimation.

2.3.1.3 In a Restricted Parameter Space

When the parameter space is subject to restrictions, median-unbiasedness becomes a

preferable measure of impartiality. Both Fuller (1996) and Andrews (1993) pointed

out that when the parameter space is bounded and closed, it is impossible to have a

global mean-unbiased estimator because all estimators are biased at extreme

boundary points, while the MU estimator is immune to this problem. In time series

regression models, when unit roots are taken into consideration, the parameter space

for the autoregressive coefficient p is a bounded set [-1,1]. Therefore a uniformly

unbiased estimator of p has to be median-unbiased instead of mean-unbiased.

Another important situation of the parameter space being restricted occurs when the

parameters are restricted by nonlinear constraints. This is frequently encountered in

practice. Andrews and Phillips (1987) examined the linear regression model in which

the coefficients are subject to nonlinear constraints. They concluded that the mean-

unbiasedness condition becomes more restrictive than median-unbiasedness because

estimators that take advantage of the restrictions on the parameters generally are

mean-biased. MU estimators, however, can be adjusted to take account of restrictions

without losing their property of median-unbiasedness.

2.3.2 Optimality Measures of MU Estimators

The most important optimality result associated with MU estimators is due to

Lehmann (1959, pp8O-83). It states that, for the family of densities that have

monotone likelihood ratios (explained in the next paragraph), there exists a unique

optimal MU estimator, which among all MU estimators, minimises EL(9,8) for any

loss function which for fixed 6 has a minimum of 0 at 9 = 9 and is nondecreasing as

9 moves away from 6 in either direction. If we take the. loss function as the finite
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sample concentration measure used in Pfazangl (1970), i.e., L(0,6) = 0 if 0 - 0| < A

and L(9,9) = 1 otherwise, it is seen that among all MU estimates, 6 minimises the

probability of differing from 0 by more than any given amount; more generally it

maximises the probability

Pr{-A,<0-0<A 2 } for any A,,A2>0. (2.14)

The real-parameter family of densities pg{x) is said to have a monotone

likelihood ratio if there exists a real-valued function T(x) such that for any 9<6'

the distributions Pg and P# are distinct, and the ratio pff{x)/pg{x) is a

nondecreasing function of T(x). An important class of families of distributions that

have monotone likelihood ratios are the one-parameter exponential families.

Pfanzagl (1979) extended Lehmann's (1959) results to exponential families

with nuisance parameters and defined the conditions for an unique optimal MU

estimator to exist. Brown, Cohen and Strawderman (1976) showed that within the

class of MU estimators, the one based on the minimal sufficient statistic has the

smallest risk for a wide class of losses, including but not. limited to a convex loss

function, which is a direct corollary from Lehmann's (1959, p80) results.

An important application of Lehmann's (1959) and Pfanzagl's (1979) results

is the analogue to the Gauss-Markov theorem in the linear regression model derived

by Andrews and Phillips (1987). In the linear regression model with 'consistent

elliptically symmetrical' errors, the generalised least squares estimator (GLS) is

shown to be the unique best MU estimator in the sense of uniformly minimum risk

for any monotone loss function. More importantly, if the parameters are restricted in

a known (possibly infinite) interval that does not depend on the true parameter value,

the restricted GLS estimator is the unique best MU estimator. In contrast, in this

case, similar optimality results do not hold for mean-unbiasedness.

The optimality of the MU estimators is also closely linked to another criterion

used quite frequently to assess the quality of a point estimator, namely, the Pitman
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closeness (PC) criterion (Pitman, 1937): For estimating a parameter 9, consider two

rival estimators 8y and 82; then 8y is said to be Pitman-closer than 82 if

(2.15)

for all 0 e Q.. According to the PC criterion, rival estimators are usually compared

two at a time. But it is also important to obtain the Pitman-closest estimators within

reasonable classes of estimators. Keating and Gupta (1984) and Keating and Mason

(1985) considered the case of the general-scale family of distributions (with pdf of

the form <7~lf(xj<7), <J>0). They compared the maximum likelihood, uniformly

minimum variance, MU, and mean absolute deviation estimates of o according to

the PC criterion. They concluded that the MU estimator is the Pitman-closest among

the four.

Ghosh and Sen (1989) extended this result and showed that the MU estimator

in this case is also Pitman-closest within the scale-equivariant estimators under a

wide class of loss functions. Ghosh and Sen also presented a general result in the

location-scale families of distributions to link the median-unbiasedness to the PC

criterion. Let Tx and T2 (nonnegative) be MU estimators of the location and scale

parameter, respectively, and Z, and Z2 be two ancillary statistics independent of 7]

and T2, respectively, then 7J is Pitman-closest among all estimators with the form

U = 7] + Z,, while T2 is Pitman-closest among all estimators with the form

V = T2(\+Z2).

2.3.3 Asymptotic Concentration of MU Estimators

Pfanzagl (1970) suggested using the asymptotic and finite sample 'concentration' to

measure the efficiency of a MU estimator. For a sequence {9,} of estimators of 9,

the asymptotic concentration is defined as

(2.16)
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for positive constants <5>, and 82. The limit (2.16) exists for asymptotically normal

sequences of estimators, but also for a broader class of estimators. Pfanzagl (1970)

gives an example of a sequence of MU estimators {9t} for which the distributions of

•yft(9, - 9) do not converge.

It immediately follows that a sequence {9,} of estimators is asymptotically

optimal in a class C if

0,
(2.17)

for any other sequence {0,} of estimators in C, for ail £,, 82 > 0 and all 0 in Q.. In

another words, in a class of estimators, if 9 has greater asymptotic concentration

than any other estimators in the class for all Sv 82 > 0, 9 is asymptotically optimal.

Pfanzagl (1971) proved that any sequence {9,} of estimators which is

asymptotically normal is also asymptotically MU in the sense that

, < 9) = Pr(0, > 0) = 1/2. (2.18)

He also showed that under certain regularity conditions, an asymptotically efficient

sequence of estimators can be adjusted to give a sequence of asymptotically optimal

MU estimators having the same asymptotic behaviour, and in which the adjustment

amount tends to 0 as l —> °°.

More importantly, Pfanzagl (1970) gives an upper bound (roughly speaking)

to the asymptotic concentration for a sequence of MU estimators. Under certain

regularity conditions,
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limsupPr{0-J,/VF<0, <0+S2/4t}

(2.19)

for all Si, S2>0 and all 6 e Q., where <£(•) is the standard normal density function

and

a2lnL(jc,0),

(2.20)

is the Fisher information matrix component. This result holds true without any

assumptions concerning the convergence rate of the sequence, in particular,

asymptotic normality is not required. Under suitable regularity conditions, this

maximal asymptotic concentration is achieved by the sequence of maximum

likelihood estimates. As maximum likelihood estimates are not MU in general,

Pfanzagl (1971) defines conditions under which MU estimates with maximal

asymptotic concentration exist. The results imply that the MU estimates with

maximal asymptotic concentration exist for all exponential families fulfilling certain

regularity conditions. Also see Strasser (t978). This is consistent with the fact that

families with monotone likelihood ratios admit MU estimates with strong optimum

properties, as suggested by Lehmann (1959, p83).

Pfanzagl (1971) went on to derive a similar efficiency bound in finite

samples. Under certain regularity conditions, for every 0 e Q and tx, t2 >0 , there

exists a number c(tvt2) such that for every sample size T and any MU estimator 9T,

we have

Vr{9-tJ4f<eT<e+tJs[f}
(2.21)

Michel (1973) provided a similar efficiency bound but gave a slightly different proof

from that of Pfanzagl (1971). As an example, Pfanzagl (1979) applied his results to

the use of a sample quantile qaJ as an estimate of the corresponding population
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quantile qa. The sequence {qaJ} is asymptotically median-unbiased. And if the

shape of the population distribution is.not known or if qa is not the median of a

symmetric distribution, the sequence is shown to attain the maximal concentration.

2.3.4 Efficiency Bounds for MU Estimators

Another approach for assessing the relative efficiency and optimality of a MU

estimator, is by considering its 'diffusivity' as suggested by Sung (1988, 1990).

Based on this measure, a generalised Cramer-Rao analogue for MU estimators

having continuous density functions was derived for both a scalar parameter and

vector-valued parameters.

Following Sung (1988), to assess the variation of a MU estimator, instead of

using variance, we define the diffusivity of a MU estimator 9 by the reciprocal of

twice of its density at its median point, i.e.,

.(0O)] (2-22)

where g- (•) is the density function of 9 and 90 is the true value of 9. Then under

certain regularity conditions (see Sung, 1990), the diffusivity of a MU estimator in an

exponential family is bounded by:

d>l/Eg\U(x,9)\ (2.23)

where

(2.24)

is the score function and l(x;9) is the log-likelihood function. This is a direct

analogue of the Cramer-Rao inequality for mean-unbiased estimators, only with the

25



Chapter 2. MU Estimation in Econometrics: Literature Review

Fisher information replaced by the absolute moment of the sample score and the

variance of the estimator replaced by diffusivity.

Sung (!990) extended the efficiency bound to the multidimensional

parameter case. Let 0=(dl,...,0k) = (5l(x),...,Sk(x)) be a MU estimator of a

vector-valued parameter 0=(01,...,9k), i.e., each component J,.(JC) is MU for 6t,

and assume 6 has a continuous joint density function g(0v...,0k). Then the joint

diffusity of 9 is defined as

(2.25)

Similarly, under certain regularity conditions, the joint diffusity of 0 is bounded by

the absolute moment of the score, i.e.

2kg(0},...,0k)\e
— *-6

dkl(x;0)

d0v..d0k

(2.26)

As a simple example, Sung (1990) showed that in a multivariate normal

distribution, the sample mean is a MU estimator for the population mean and its

diffusity also attains the lower bound. In contrast, the MU estimator of the population

variance does not attain the lower bound.

2.3.5 Multi-dimensional Median and Median-unbiasedness

It is a difficult problem to extend the definition of median-unbiasedness to the

multi-parameter case. The reason is caused by the well-known difficulty in defining a

multi-dimensional median. Small (1990) has surveyed previous efforts to extend the

definition of median to the multivariate case. Rao (1988) also reviewed some of the

multidimensional medians in the context of LI-norm inference. Both these reviews

concluded that, unlike for the expectation operator, how to define a multivariate

median is still an open question. Therefore the discussions of median-unbiasedness
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so far are mainly restricted to the estimation of a scalar parameter. Here we examine

some of the prominent definitions of a multivariate median before we give our

definition of median-unbiasedness for a vector-valued parameter.

2.3.5.1 Marginal Median

The concept of marginal median is a genuine extension from the univariate median.

First consider the discrete case. Let jc,,...,jcr be a sample of size T from a p-variate

population, then the sample marginal median is defined as m = (mi,...,mpY that

satisfies:

Pr[x(. > mi] = Pr[x(- <mf] = (2.27)

Therefore each component of the median is the median of the corresponding

component of the variable. Rao (1988) showed that this median is the solution to the

minimisation problem,

(2.28)

where the distance |»| is the L,-norm distance given by,

(2.29)

The sample marginal median m=(m1,...,m;))
/ is then treated as an estimate of the

population vector of marginal medians \i - (/*,,... ,/*,,)' •

Let /, be the marginal density of each component x, at its population

marginal median //,., and define an association matrix by
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r=

Yu 7n
fifl fJP

IfL
fPf> si

(2.30)

where yij = ?T{xi<jui,xj<lij}-/4. Let m=(mx,...,mp)' be the sample marginal

median vector based on an i.i.d. sample from the population, then Babu and Rao

(1988) and Rao (1988) showed that the sample marginal median vector is

asymptotically normal with the limiting distribution given by,

(2.31)

Therefore testing the hypothesis H0:fi = ju0 can be based on the test statistic

(2.32)

which is asymptotically %* with p degrees of freedom provided T is positive

definite. The difficulty lies in finding a consistent estimator f, see discussions in

McKean and Schrader (1984) and Rao and Babu (1988).

The advantage of using the marginal median vector is its computational

simplicity. It is also invariant to shifts in the individual components of the sample

vectors but not invariant for affine transformations of the sample vectors. (Following

Small (1990), affine invariance is defined as follows. If 8 is an affine invariant

estimate based on JC,, ..., xT, then ASAf should be the estimate based on Axx,..., AxT

for any affine transformation matrix A).

28

Chapter 2. MU Estimation in Econometrics: Literature Review

2.3.5.2 Spatial Median

The spatial median was first considered by Haldane (1948). The median mf(x) of a

p-variate probability distribution /(JC) is the solution to the minimisation problem:

E\\f(x)-mf(x)\\= (2.33)

where |«|| is the usual Euclidean norm. This median is sometimes called the Li-

median or ;ne geometric median while the vector of marginal medians is sometimes

referred to as the arithmetic median. In the special case where p = 1, the LI-median

reduces to the standard univariate median. Lopuhaa and Rousseeuw (1987) reported

that this median is very robust to data contamination (with a breakdown point of

50%). Brown (1983) studied the asymptotic properties of the LI median and found it

is asymptotically normal. If the population is multivariate normal, the asymptotic

relative efficiency of the LI median increases to one as p -> <*>. Another advantage is

that it is unique when T > 2 provided the points are not all on the same plane. Some

asymptotic dispersion measures of the LI median were studied by Bose (1995).

It is subject to the same criticism that it is not invariant to affine

transformations. Observing this, Rao (1988) proposed a generalised spatial median

which minimises

(2.34)

where 5 is the sample covariance matrix. It was shown that the solution is invariant

to affine transformations. But little is known about its other properties.

2.3.5.3 Other Multivariate Medians

Oja (1983) proposed a different affine invariant median. In the discrete sample case,

his median 6 is found by solving the minimisation problem:
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= E[A(xi,x2,...,xk,9)], (2.35)

where

A(xl,x21...,xk,6)--~

1 1 1 1

n

l2

2\

2k

kl

k2
(2.36)

is the volume of the simplex (xl,x2,...,xk,0).

The advantage of Oja's median is its invariance to affme transformations. Its

disadvantages are: 1. it is usually not unique; 2. its robustness to outliers is doubtful;

and 3. it is very hard to calculate when the sample size gets large and when X

becomes a continuous random variable.

Apart from the definitions mentioned above, there are a few others, such as

the halfspace median suggested by Tukey (1975) and Donoho (1982), the simplicial

depth median of Liu (1988, 1990), and the median definition based on convex hull

stripping and related methods suggested by Seheult et al. (1976) and Green (1981).

But none of these definitions has gone very far in the practice of statistical inference

for different reasons.

As each definition has its benefits and drawbacks, in this thesis, we adopt the

marginal median as the definition of a multidimensional median mainly for its

simplicity. Another justification is that when assessing the impartiality of an

estimator, it is usually more important to ensure the unbiasedness of each coordinate

of the estimator (as each component alone is usually an estimate of a separate scalar

parameter) rather than pursuing some hard-to-define global unbiasedness. Therefore

a multi-variate estimator 0= S(x) = {Sl(x),82(x),...J5l,(x)Y is called median-

unbiased if each component is median-unbiased, i.e.
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(2.37)

where m(») is the usual univariate median function. The definition of marginal

median-unbiasedness was also adopted by Sung (1990), Rudebusch (1992), Andrews

and Chen (1994) and Fair (1996).

2.4 Applications of MU Estimators

In this section, we survey the applications of MU estimators in different econometric

models that have appeared in the literature. Attention is given to the circumstances in

which MU estimators were requested and the methods used by previous researchers

to construct these MU estimators.

2.4.1 Error Variance

Let xx,...,xT be a sample from a normal distribution N(fJ.,<J2). Then it is well

known that the sample variance

(2.38)

is the best mean-unbiased estimator in the sense of uniformly minimum risk for any

convex loss function (see Lehmann 1983, pl85). However, S2 is not. median-

unbiased, and neither is S as an estimator of a. Eisenhart and Martin (1948)

showed that S2 is negatively median-biased. Eisenhart (1949) pointed out that the

median-bias of S2, and hence of S , is of interest in quality control. Cox and Hinkley

(1974) suggested a MU estimator given by

T

1=1

(2.39)
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where the denominator stands for the median of a standard chi-squared random

variable with T-\ degrees of freedom, which can be obtained from published tables

or via numerical integration. Ghosh and Sen (1989) extended this estimator to the

general location-scale family of distributions with pdf cr~lf((x-6)/(j) and showed

that Sm is not only median-unbiased, but also the Pitman-closest estimator of G

within a certain class of equivariant estimators. Andrews and Phillips (1987) applied

a similar estimator to the estimation of error variance in a linear regression, i.e.

u, E(u) = 0, cov(u) = (2.40)

where y is the dependent variable, X is a Tx.k matrix of fixed regressors and u is

the vector of random errors; The estimator proposed for o2 was

- Xp)/med(Zr-k). (2.41)

where /? = (Xi r 'X) ' 1 x l " ' y is the feasible GLS estimator. The same estimator was

also defined in Pfanzagl (1979). Andrews and Phillips (1987) concluded that S2
MU is

the best MU estimator of o2 for any monotone loss function. In contrast to the

optimality results for the mean-unbiased estimator S2, this result holds even when

the regression parameter j3 is subject to restrictions, provided that the parameter

space of (5 has a non-empty inteiior. As expected, S2
MU is always slightly larger than

S2, and the difference in the denominators of the two is approximately 0.66 when

T- k is between 8 and 50.

2.4.2 Autoregressive Models

Measuring the persistence of shocks to macroeconomic time series variables might

be the single most prominent problem in econometrics during the past two decades.

Since the seminal papers of Dickey and Fuller (1979, 1981) and the empirical studies

by Nelson and Plosser (1982), much of the literature has focused on testing for

whether the largest autoregressive root of a series is one. However, the emphasis on
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unit root tests has been criticised by many researchers, see for example Campbell and

Mankiw (1987), Cochrane (1988), Stock (1991, 1994)), Andrews (1993) and Hansen

(1999). They argued that reporting only unit root tests is unsatisfying as a description

of the data as this fails to convey information about the most likely model that is

consistent with the observed data. In particular, mounting evidence, both theoretical

and empirical, suggests that the unit root tests usually have low power for the

alternatives where power is needed most, therefore frequently produce unconvincing

results. All these point to the importance of having a reliable and impartial point

estimator in small samples. We review the effort made by various researchers to

construct MU estimators for the first-order autoregressive model, as this seems to be

the most prominent application of MU estimation in econometrics.

Three models of first-order autoregression are considered. These models can

be defined as follows,

Model 1: y, = py,_x + £,,

Model 2: y, = M + py,^ + e,,

Model 3: y, = ju + fit + py,_, + e,,

where £, ~ 7N(O,CT2) and pe [ - l , l ] . The initial conditions used by different

researchers do vary, e.g., see Pantula et al. (1994). In the following discussion, we

adopt the simple conditions that require y0 to be stationary if |p| < 1 and to equal

zero if \p\ = 1 (a fixed start-up).

2.4.2.1 Asymptotically MU Estimators

This approach involves using local-to-unity asymptotic theory to construct

confidence intervals or compute asymptotically MU estimators based on the limiting

distribution of a test statistic. Developed by Bobkoski (1983), Cavanagh (1985),

Phillips (1987) and Chan and Wei (1987), the local-to-unity reparametrization

models the true value of p as being in a decreasing neighbourhood of one,

specifically /? = 1 + c/T, where c is a fixed constant (the Pitman drift) and T is the
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sample size. Cavanagh (1985) first applied this theory to construct confidence

intervals based on the t statistic for Model 1.

Stock (1991) constructed two sets of confidence intervals based on the

augmented Dickey-Fuller (1979) t statistic (ADF) and a modification of Sargan and

Bhargava's (1983) locally most powerful (LMP) test statistic. As a special case, how

to compute MU estimates was also described. Among the two test statistics

examined, the ADF statistic was shown to deliver more reliable intervals and

estimates. Therefore we review the results based on the ADF test for Model 3. The

model is rearranged to yield the usual Dickey-Fuller regression and the ADF test

statistic is given by,

t{p) = ip0LS - l)/sipOLS) (2.42)

As T -> °°, the limiting distribution of the ADF test is non-standard. Both Stock

(1991) and Hansen (1999) derived it for Model 3. The limiting distribution is given

by,

(2.43)

where Wc is a detrended division process and W is the standard Wiener process, for

details see Chan (1988) and Stock (1991). Therefore the limiting distribution

depends only on the local-to-unity parameter c and is continuous in c. The median

function of this limiting distribution is then computed, i.e.,

m{c) =

and a MU estimator of c is given by,

c], (2.44)

(2.45)
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The estimator for p is then retrieved from c. The method of computing confidence

intervals proposed by Hansen (1999) was slightly different from that of Stock's. It

allows the null value in the test to vary and simulate the quantile functions of the

limiting distributions of the series of test statistics. Confidence intervals are then

computed by solving the equations for ca,

(2.46)

in which a is the pre-selected confidence level and qa is the corresponding quantile

function of the limiting distribution.

Recently, Elliot (1999) invexted the quantile functions of the limiting

distribution of the efficient unit root tests proposed by Elliot et al. (1996) to construct

confidence intervals in the same model. His tests were shov/n to be closer to the

asymptotic power envelope of the testing problem and therefore more powerful than

the ADF test in some circumstances. His method of constructing confidence intervals

is very similar to the ones discussed above. But point estimation was not discussed in

his studies.

From the above examples, we can criticise the asymptotic approach on two

grounds. First, its median function is computed for the limiting distribution, therefore

the quality of the final estimator really depends on whether this asymptotic

distribution is a good approximation of the true distribution of the test statistic in

finite samples. When the sample size is small, there has to be increasing

discrepancies between the asymptotic and exact distributions. As a result, the

estimator is only median-unbiased asymptotically. Second, both Stock (1991) and

Hansen (1999) reported that the quantile functions of the limiting distribution are not

monotonic for a certain range of c values. If the focus is on confidence intervals, this

is not a serious problem as it will only cause disjoint or empty confidence intervals at

times. But if a point estimate is to be calculated, this non-monotonicity will lead to

multiple solutions, which is a serious problem plaguing the use of this method.
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Different from all the above efforts, Fuller (1996, p579) proposed another

asymptotically MU estimator based on the median function of the limiting

distribution of the weighted symmetrical estimator. In model 1, the weighted

symmetric (WS) estimator is given by,

T-\

(2-47)
1=2 1=1 1=2

The t statistic based on pws testing for a unit root is then given by

r-i

t=2
-1). (2.48)

Fuller's estimator is then based on the median function of the limiting distribution of

tws, i.e.,

(2.49)

where W(t) is the standard Wiener process. As the median of the limiting

distribution (2.49) at p = 1 is approximately -1.20, Fuller's estimator is defined as

= pws+c(Tws)[V(pws)f\ (2.50)

where V(pws) is the estimated variance of pws given in the denominator of Tws in

(2.48) and the smooth function C(TWS) is chosen as

lW5

0.035672(rHS +7.0)2 if -7.00< TWS <-1.2.

0 if Tws< -7.00

(2.51)

The nature of this estimator is similar to the one studied by Stock (1991).

Both are based on inverting the median function of the limiting distribution of the t

statistic except that Fuller's estimator is based on the WS estimator while Stock's
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estimator was based on the usual ADF test statistic. Another difference is that

estimator (2.51) coincides with pws if p is small (when Tws <-7.00) because for

small p, no bias-correction is needed. This cut off point is roughly at

For Models 2 and 3, the same procedure can be applied with y, demeaned or

detrended first. Fuller (1996) showed that this estimator is approximately median-

unbiased when the sample size is as small as 50. However, it suffers from an

increased variance compared with pws for p values differing from one by more than

8/r. As a result, the mean squared error of pws is smaller than that of p for all p

values that are different from one by more than four standard errors of the estimator.

However, Fuller's (1996, p580) simulation results showed that the percentage

difference in the mean squared error between the two estimators is modest. Fuller's

estimator was used by Enders and Falk (1998) to examine the validity of purchasing

power parity. Five exchange rates series were examined. While the DF unit root test

fails to reject the unit-root null for all but one series, the OLS point estimates implied

stationarity in all five cases. They showed that Fuller's estimator was more

conservative than the unit-root test approach in assigning unit-roots but was less

conservative than the OLS estimator.

2.4.2.2 Exactly MU Estimators

The first exactly MU estimator of the AR(1) coefficient was proposed by Hurwicz

(1950). He observed that in Model 1, if the errors are normally distributed, then

every ratio y,Jy,.,, t =2, 3, ..., T, is a MU estimator of p . In this case, each ratio

has a Cauchy distribution, and is not an efficient estimator. Hurwicz (1950)

conjectured that the median of the ratios, i.e.

p = med (—,— ,..., )
y, y2 yr-x

(2.52)
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would be a more efficient estimator and perhaps also a median-unbiased one. This

claim was partly verified by Zilelinski (1999). He showed that in Model 1, if the

errors have median zero and Pr{y, = 0}=0 for all t, then the estimator (2.52) is

exactly median-unbiased for p. Boldin (1994) also examined the same estimator and

established its asymptotic normality. But there is no efficiency comparison available

in his paper between this estimator and the single ratio originally proposed by

Hurwicz (1950). In fact, apart from median-unbiasedness, little is known about other

properties of this estimator. Another serious drawback of these estimators is that they

cannot be extended to models that contain an intercept and/or a time trend (Model 2

and 3). It is commonly agreed that Model 1 itself is not very useful in economic

modelling (see discussions in Andrews (1993)).

Andrews (1993) proposed an exactly MU estimator for Models 1 - 3 . His

results were obtained by inverting the median function of the OLS estimator of p

within the parameter space, i.e.,

PA=\ ) i f m ( - D < POLS ^ «*(D. (2.53)

where m(p) is the unique median of p0LS when p is the true parameter value. As

the distribution of p0LS is invariant to the nuisance parameters and the initial

conditions in these models, this estimator was shown to be exactly median-unbiased

for all sample sizes and all p values. It effectively corrected the serious downward

biases of p0LS especially for Model 2 and 3 and for small sample sizes. This

estimator can be used to construct a MU estimator of the impulse response function,

which is a monotonic function of p , and a MU model-selection procedure. Andrews

(1993) also demonstrated the robustness of his MU estimator to the non-normal

errors and other error misspecifications.

Compared with the asymptotic approach, Andrews' approach is an exact

small-sample one. His estimator avoids using the asymptotic limits as an

approximation of the small sample distributions. The median functions were shown
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to be monotonic for all three models. However, Andrews' method requires the

computation (or simulation) of the median function for every different sample size,

which increases the computational cost of the procedure. Another drawback is that,

as admitted in Andrews (1993) and Andrews and Chen (1994), it is not known if

their MU estimators are optimal in any sense.

Recently, So and Shin (1999) proposed a Cauchy estimator to estimate Model

1 - 3 in small samples. For Model 1, the estimator is

(2.54)
1=2 1=2

where sign(yt_x) -1 if y,_, >0 and =-1 otherwise. This estimator has a history as

long as the OLS estimation of Gauss. According to So and Chin, in 1836, Cauchy

first considered such an estimator in the simple linear regression model. The

attractive property of this estimator is its asymptotic normality, which is not

possessed by the OLS estimator for p-\. The estimator was also shown to be

approximately median-unbiased for all values of p. Compared with Andrews'

(1993) estimator, it does not require evaluation of the median function, hence is

easier to compute. However, extending the use of this estimator to Model 2 and 3 is

not a trivial exercise. It requires a specially designed algorithm of recursive mean

adjustment and/or recursive detrending. This estimator also needs theoretical

justification for its (approximate) median-unbiasedness. So and Shin (1999, 2000)

applied the estimator in constructing tests for a unit root and seasonal nnit roots.

2.4.2.3 Extensions to the AR(p) Model

Andrews' (1993) method of constructing MU estimators was extended to estimate an

AR(p) model by Andrews and Chen (1994). A similar approach was adopted by

Rudebusch (1992) in re-examining the Nelson-Plosser (1982) series. In both studies,

iterative algorithms were developed to invert the median functions of the parameters

one at a time, and with other parameters replaced by their estimates from the
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previous round when evaluating the median function. The process is repeated until

convergence. As the median function of the estimator of each coefficient is not

invariant to other coefficients, the final estimator will only be approximately median-

unbiased. Andrews and Chen (1994) showed, however, that the approximation is

good for moderate sample sizes. Fair (1996) theoretically outlined an algorithm

essentially the same as the one suggested by Andrews and Chen but extended its use

to the simultaneous equations model which contains endogenous variables and their

lags. Based on the approximately MU estimates, both Rudebusch (1992) and

Andrews and Chen (1994) reported that the persistence in the Nelson-Plosser series

were seriously underestimated by the OLS estimators and overstated by the usual

unit root tests. However, Fair (1.996) concluded that the use of MU estimates did not

improve the forecasting accuracy in the macroeconomic models he examined.

2.4-3 Other Applications

2.4.3.1 Time Varying Parameter Models

Stock and Watson (1998) developed some asymptotically MU estimators for the

time-varying parameter model. A special case of the general model considered in

their paper is the so-called 'local level' unobserved components model, which was

also studied by Harvey (1985), Shepherd and Harvey (1990) and Shepherd (1993)

among others. The model can be specified as,

(2.55)

where y, is the dependent variable (observed at time t), x, is a k x 1 vector of fixed

regressors, /?, are the time-varying coefficients. For simplicity, we assume

u, ~ IN(0,(j2) v, ~/Af(0,T2)and u, and v, are independent. The parameter of

interest is the scale parameter T. The ML estimators implemented by Kalman filter

suffer from the undesirable property that if % is small, it has the so-called pile-up
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problem, i.e. the ML estimator has a probability mass at 0. This problem was also

reported in Shepherd and Harvey (1990).

The asymptotic approach was taken by Stock and Watson (1998) by

considering the nesting r = A./T, which is very similar to the local-to-unity

reparametrisation in the unit root models. Three test statistics testing the hypothesis

X = 0 were considered: Nybolm's (1986, 1989) locally most powerful invariant

(LMPI) testL,, the sequential GLS Chow statistic Ft(s), and the point optimal

invariant (POI) test suggested by Shively (1988) among others. As the F, statistic is

an empirical process, three scalar functional were used: the Quandt (1960)

maximum F, (QLR), the mean Wald test (MW) and the exponential Wald test (EW)

of Andrews and Ploberger (1994). The asymptotic distributions of these test statistics

were derived. The median function of the limiting distribution of a test statistic is

denoted by mD(»), where D is the matrix of nuisance parameters. For example,

based on one of the functional of Ft, X can be estimated by

(2.56)

In practice, the unknown nuisance parameters in D have to be replaced by some

consistent estimates, which do not alter the asymptotic distributions and therefore

still ensure the asymptotic median-unbiasedness of X.

This estimator is subject to the same criticism as Stock's (1991) method, that

the limiting distribution may not be a good approximation in small samples, and as a

result, the estimator may not be MU when the sample size is small. The estimation

procedure is also computationally cumbersome as it requires computing the inverse

median function m"1 for every set of estimates D. Stock and Watson (1998)

conducted Monte Carlo studies to compare the pile-up probabilities and the

asymptotic relative efficiencies of these MU estimators together with the ML

estimator. It was found that the pile-up problem plaguing the ML estimator was

properly controlled by all MU estimators for small % and the MU estimators also

have good asymptotic relative efficiencies for small to moderate amounts of
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parameter variability. Particularly, the MU estimators based on the QLR and the

POI(17) test statistics (the POI test that maximises the power at A = 17, see

Saikkonen and Luukonen, 1993) were the best among the six estimators considered.

2.43.2 Binary Choice Models

Hirji, Tsiatis and Mehta (1989) developed a MU estimator for a logistic regression

model with two binary covariates. The model relating the response of a patient to

treatment and age, was used for assessment of the treatment effect while adjusting

for the effect of age. It can be written as

(2.57)

where. J3 = (/?0,A>PiY ™d xi = O.*i,-.*2.-)' • T h e parameter of interest is >9P which

is the relative log odds of response for treatment 1 versus treatment 2, and can be

considered a measure of the magnitude of the treatment effect while controlling for

the effect of age. The MU estimator is constructed based on the conditional

distribution of the sufficient statistics for fi. The vector of sufficient statistics for p

is given by T = X'y and if we write T = (T0,Ti,T2)', the conditional distribution of

Tx can be worked out. The MU estimator of p is then computed by solving

(2.58)

This involves first evaluating the conditional distribution for each different

set of P and numerically solving the above equation. An efficient binary-search

procedure is needed to find the final estimates. Their Monte Carlo studies revealed

that the MU estimator is uniformly more accurate than the ML estimator for small to

moderately large sample sizes and a broad range of parameter values. As a result,

Hirji, Tsiatis and Mehta recommended the use of the MU estimator as an alternative

to the ML estimator especially when the sample size is not large or when the data

structure is sparse.

2.5 Least Absolute Deviation Method

A class of estimators that are related to the MU estimators are the least absolute

deviation (LAD) estimators. In this section, we briefly review the major results

presented in the Ll-norm literature, with focus given to the link between the LAD

criteria and median-unbiasedness.

In a general regression model

(2.62)

where v, and xt, t = \,...,T are the observed data of the dependent and exogenous

variables, respectively, / ( • ) is a known continuous function and e is the error vector

specified by some known distribution function or moment conditions. The LAD

estimator of the regression coefficient /? is then the solution to the minimisation

problem,

(2.63)

According to Rao (1988), the LAD method dates back to Laplace and Gauss.

Unfortunately, its applications were restricted by computational difficulties and lack

of asymptotic studies, until in the last two decades, when the breakthrough in the

computing technology and the development of asymptotic theory prompted a great

deal of interest in LAD estimators. See Amemiya (1985) or Rao (1988) for a review

and Narula and Wellington (1982) for a survey in the context of regression models.

The LAD estimator is a special case of a general class of robust methods based on

minimising an expression of the type

(2.64)
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where /?(•) is a properly chosen convex loss function; see Ronchetti (1982) and

Huber (1987) for reviews of these robust methods.

From the definition of median-unbiasedness given in (2.10) and (2.11), it is

clear that the univariate median is a LAD estimator of the location parameter of a

univariate population. But a LAD estimator is in general not a MU (or a mean-

unbiased) estimator. As an example, we examine the link between these two criteria

in model (2.62) when / ( • ) is linear.

As pointed out by Andrews (1986) and Rao (1988), the LAD estimator P

may not be unique. Fisher (1985) and Rao (1988) suggested a method of picking a

unique value of p. Under regularity conditions (e.g., Bai et al., 1988), the LAD

estimator is shown by Bassett and Koenker (1978) and Bai et al. (1988) among

others, to be asymptotically normal, with the limiting distribution given by,

(2.65)

where /(0) is the density function of the errors e, evaluated at zero, while the

matrix ST is given by,

-j: (2.66)

Therefore the LAD estimator P is asymptotically median-unbiased under

fairly general conditions. Angelis et al. (1993) discussed some analytical and

bootstrap approximations to the distribution of the LAD estimator in finite samples.

Hypothesis testing procedures analogous to those based on the least squares

estimator are developed by Koenker and Bassett (1982), namely the LR, Wald and

LM type tests. They found that the tests based on the LAD estimator have the usual

chi-squared limiting distribution but are generally less efficient than their classic

counterparts when the errors are normally distributed.

Provided that the LAD estimator p is unique (e.g, pick a unique estimate

using the method suggested by Fisher (1985) and Rao (1988)), and if the errors e{ are

symmetrically distributed, it can be shown that the distribution of P is symmetrical,

using the general results developed by Andrews (1986). His results are based on the

observation that if a random variable is an odd function of some symmetrically

distributed errors, it also has a symmetric distribution. Therefore for any estimator p

that maximises an objective function r(y-f(X,p)), where X = (x,,*2, ..., xT)' as

in model (2.62), and if r(») is an even function of y-f(X,P), ~P will possess the

property that /?-/?0 is an odd function of the error vector £, therefore has a

symmetric distribution function. The LAD estimator satisfies these criteria if it is

uniquely defined. Therefore in the usual Gauss-Markov set up, LAD estimators are

both mean-unbiased and median-unbiased.

Apart from the linear regression model, LAD estimation has also been used in

many other estimation situations. For example, Amemiya (1982) proposed a class of

two stage LAD estimators for the estimation of the parameters of a structural

equation in the simultaneous equations model. The performance of LAD estimators

was compared with least squares estimators in the simultaneous equations model by

Glahe and Hunt (1970). Powell (1984) suggested using the LAD method in the

censored regression ('Tobit') model as an alternative to the MLE estimator. The

estimator was found to be robust to heteroscedastic errors. A 'trimmed' LAD

estimator for the Tobit model was proposed by Honore (1992). LAD estimation was

also used in nonlinear dynamic models with neither independent nor identically

distributed errors by Weiss (1991). Recently, Bai (1995) applied the LAD approach

to the estimation of a shift in linear regressions.

An important example of linking LAD estimation to MU estimation is

provided by Campbell and Honore (1993). They considered a panel data censored

regression model (so-called a dynamic Tobit model) with individual specific fixed

effects, which can be written as

= \, 2 and t = l,..., (2.59)
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Honore (1992) proposed a split sample LAD estimator by minimising

T

1=1

(2.60)

where

0 <-y2, y,=0

\fS<-y2,yi>G
(2.61)

g(-y2)-(S-y,)g+(-y2) if £>?,, y2>0

0 ifS>yl,y1=O

and g(») is an even (symmetric) convex loss function with right derivative g+ , left

derivative g~ and g(0) = 0. Particularly, if we let g(d) = |<i|, the above estimator

becomes the so-called 'trimmed' LAD estimator. Campbell and Honore (1993)

showed that if only one parameter is estimated, the proposed estimator is median-

unbiased. This result can be obtained even though the estimator is not symmetrically

distributed.

Although the asymptotic properties of LAD estimators have been established

for most of the above reviewed applications, little is known about their finite sample

properties. In particular, not much effort has been made to examine the unbiasedness

of these LAD estimators, as in most cases, the attention is usually given to their

robustness to outliers and data contamination, and their relative efficiencies to least

squares counterparts.

2.6 Bias-reduction Techniques in Econometrics

Bias is frequently encountered by econometricians in many estimation situations. As

median-unbiasedness is one of several definitions of unbiasedness, the pursuing of

MU estimation belongs to the broad area of unbiased estimation, in which bias-

reduction plays a central role. In this section, we review some of these techniques.
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The econometric literature on bias-correction is vast. Therefore it is impossible for us

to provide an exhaustive review. Our main interest is to outline the generally

applicable approaches towards bias correction mainly in small samples, as these

methods may lend us some guidelines and techniques that can be used in our search

for MU estimators. Most of these studies arc concerned with bias-correction towards

mean-unbiasedness (as far as we know, MacKinnon and Smith (1998) is the only

study that directly refers to median-bias correction). However, we would expect that

the same principles should apply to bias-correction in the context of median-

unbiasedness.

2.6.1 Analytical and Bootstrap Bias-correction

We start our discussions with maximum likelihood estimators (MLEs). It is well

known that MLEs are often biased in finite samples. This bias may come from two

sources,

1). The non-linearity or curvature of the score function. Box (1971) attempts

to quantitatively assess these biases. A measure closely related to Beale's (1960)

measures of nonlinearity was developed to link the curvature of the estimation

problem and the bias to the MLE estimator. Efron (1975) further elaborated on the

concept of curvature of a statistical problem. Cook, Tsai and Wei (1986) also

explored the relationship between bias and curvature in the context of nonlinear

regression.

2). The effect of the nuisance parameters. MLE procedures usually involve

eliminating nuisance parameters by replacing them with estimates. Although,

asymptotically, it does not alter the properties of the estimator, it may bring bias into

the score and lead to small sample bias in the estimator.

Many studies are committed to reducing bias in a MLE. These efforts can be

classified into two categories: bias-correction and bias-prevention. The first approach

involves removing the bias after the initial estimate is calculated, while the latter

attempts to prevent the bias beforehand. In the first category, Cox and Hinkley
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(1974) pointed out the two frequently used bias-correction methods: 1. analytical

correction, i.e., subtracting the (estimated or approximated) bias function from the

original estimator, and 2. correction via resampling schemes such as the jackknife or

bootstrap.

For the analytical approach towards bias-correction, knowledge about the

bias function is essential. The bias function of an estimator 6 is defined as

(2.67)

and following Ferrari and Criberi-Neto (1998), under mild regularity conditions, the

bias function can be written as,

(2.68)

where .6,(0), B2(9), in a maximum likelihood estimation set up, are functions of

cumulants of log-likelihood derivatives with respect to 9 for a single observation.

For example, Cox and Hinkley (1974) gave a general formula for 5,

(2.69)

where

ku(9)=

Mardia, Southworth and Taylor (1999) gave a simplified expression,

2i{6)
(2.70)
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Formulas for bias of higher orders were also developed via asymptotic

expansions in many specific models: e.g., just to name a few, in the dynamic linear

regression (Kiviet and Philipps, 1993, 1994, 1996), in generalised linear models

(Cordeiro and McCullagh, 1991), in ARMA models (Cordeiro and Klein, 1994) and

in the one-parameter exponential family (Ferrari et al., 1998).

All these efforts lead to a natural way of correcting the bias in the MLE,

namely, subtracting the approximated bias from the original estimator. Ferrari et al.

(1996, 1998) showed that in order to get an estimator bias-free to order T~l, we can

use the corrected estimator given by

(2.71)

where 5,(0) can be replaced by the dominant term in (2.69) or (2.70). If the bias is to

be removed to order n"2, the following correction is needed,

T2 '
(2.72)

where

in

(2.73)

which V,(0) is the first term of the expansions of the variance of the MLE (similar

to the expansion in (2.68)), while B2 {ft is the second term in (2.68), of which B,' (9)

and B"(9) are its first and second derivative, respectively. These terms are usually

functions of cumulants of log-likelihood derivatives with respect to 9 for a single

observation.

Ferrari et al. (1998) commented that the analytical bias-correction based on

studying the form of the bias function entails a great deal of algebra but has the nice
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feature that the final expressions are usually simple enough that they can be easily

used by practitioners. Therefore it donrnated the bias-correction literature for

decades until the bootstrap methods became prominent

The bootstrap was originally proposed by Efron (1979), and research in the

theoretical development and empirical applications of the method has flourished

since then. A number of review articles and books have appeared in the past decade,

see, e.g. Efron and Tibshirani (1993), Hall (1992,1994), Gonzalez et al. (1994), Shao

and Tu (1995) and Davidson and Hinkley (1996). Bias-correction is also an

important theme in the bootstrap literature. Much effort has been focused on

correcting bias in the bootstrap confidence intervals, see, e.g. Efron (1987) and Efron

and Tibshirani (1986). Bias correction for point estimators was addressed quite

extensively in Hall (1992). It was recently discussed more systematically by

MacKinnon and Smith (1998) and was compared with the analytical approach by

Ferrari et al. (1998). The essence of the bootstrap bias-correction involves, instead

of explicitly working out the bias function, using resampling schemes to achieve the

same correction implicitly.

Following the notation in Hall (1992), the parameter of interest is written as

the functional 0=6(FO), where Fo stands for the true population distribution. The

MLE of 0 is then denoted by 0 = 0(Fl) as it is based on a sample Yv...,Yn drawn

from Fo with 0 as its true parameter. The MLE of 6 from a sample (called a

bootstrap sample) generated from Fo with 6=6 is denoted by 8*=0(F2) and

similarly the MLE of 6 from a sample (called a double bootstrap sample) with 6 = 6*

is denoted by 0** = #(F3). The bias-corrected estimator after the first round of

bootstrapping is given by,

(2.74)
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0,=20-E{0 F,},

while the bias-corrected estimator after a double bootstrap is given by,

Hall (1988, 1994) and Ferrari et al. (1998) all showed that the bootstrap corrected

estimators (2.74) and (2.75) achieved the same order (T~l and T~2 respectively) of

accuracy as the analytically corrected estimators in (2.72) and (2.73). They argued

that the bootstrap approach avoids the need for messy algebraic derivations.

MacKinnon and Smith (1998) discussed the above method in a more practical

setting by examining the accuracy of the correction for different forms of bias

function. It is noteworthy that they concluded that reducing bias may increase the

variance, or even the mean squared error of an estimator. Whether it does so depends

on the shape of the bias function. The bias correction was extended to

multiparameter estimation problems in both Ferrari et al. (1998) and MacKinnon and

Smith (1998).

(2.75)

2.6.2 Bias-prevention Methods

Instead of correcting the bias after the estimator has been calculated, different

methods have been proposed to prevent the bias beforehand. In the MLE context, this

is usually done by adjusting the likelihood or the score function. If the original

profile log-likelihood function is lp(0), these adjustments replace it with a new

objective function,

(2.76)

for a suitably chosen additive adjustment function r(6). Various researchers,

including Bartlett (1955), Barndorff-Nielsen (1983, 1994), Barndorff-Nielsen and

Cox (1984), Cox and Reid (1987, 1993), McCullagh and Tibishirani (1990),

DiCiccio and Stern (1993) and Stern (1997), have suggested specific adjustment

functions to the profile log-likelihood which have the effect of reducing the score

bias. The properties of these adjustments were discussed further by Liang (1987),

Levin and Kong (1990), Cox and Reid (1993), Ghosh and Mukerjee (1994) and Stern

(1997). We review the two prominent examples of such adjustments, the conditional

50 51



Chapter 2. MU Estimation in Econometrics: Literature Review Chapter 2. MU Estimation in Econometrics: Literature Review

profile likelihood of Cox and Reid (1987) and the modified profile likelihood of

Barndorff-Nielsen (1986).

Assume 6 is vector-valued and it can be partitioned into 6' = (y/',X'), where

the subvectors y/ and X are the parameters of interest and nuisance parameter

respectively. Let 9' = (y/',X/) be the overall ML estimate and let \j/x be the ML

estimate of y/ with X fixed and similarly X¥. If the parameter of interest y/ is a

scalar, the conditional profile likelihood (Cox and Reid, 1987) is defined by,

(2.77)

where JM.(ys,X ) *s m e observed information per observation for the X components.

This definition requires y/ and X to be orthogonal in the sense defined by Cox and

Reid, i.e., E(-d2l/dyBX;) = 0 for all \.t. As observed by McCullagh and Tibshirani

(1990), the interpretation of the correction term is that it penalises values of y/ for

which the information about X is relatively large. Application of this adjustment will

typically require an initial reparameterisation of the nuisance parameters or

orthogonality. But unfortunately, as criticised by Stern (1997), such a

reparametrization can only be guaranteed to exist when y/ is a scalar.

The modified profile likelihood (Barndorff-Nielsen, 1986) is defined by

(2.78)

This definition does not require the orthogonality of y/ and X; the last term on the

right-hand side can be thought of as a correction for non-orthogonality. In this term,

X is regarded as a function of X and the ancillary statistic. Thus, application of the

modified profile likelihood requires explicit knowledge of an ancillary statistic,

which may be difficult to obtain in practice. When y/ is a scalar, Barndorff-Nielsen

(1994) developed an approximation to the above adjustment which does not require

explicit knowledge of an ancillary statistic.

Apart from the conditional and the modified profile likelihood, there are

several other modifications to the likelihood function, such as the use of marginal

likelihood and expected likelihood. For a comprehensive review of these

modifications, see Laskar and King (1997, 1998). All these efforts are aimed to

nullify the effects of unknown nuisance parameters. Most of the applications of

these modified likelihoods ai."- aimed at improving the small sample performance of

test procedures (particularly the LR and LM tests), see for example, Bellhouse

(1978), Cruddas et al. (1989), Tunnicliffe-Wilson (1989) and Laskar and King

(1998). Less attention has been given to comparing the small sample performance of

the point estimators that maximise various modified likelihood functions.

As an important alternative to the above two modifications, McCullagh and

Tibshirani (1990) attempted to adjust the profile likelihood score function instead of

the likelihood itself. If the original score is U(y/'), the aim of their adjustment was to

force the following two conditions onto the adjusted score given by

(2.79)

such that

(2.80)

and

(2.81)

The solutions to the above two conditions are

(2.82)

and
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. (2.83)

Therefore the nature of the adjustment is to subtract its expectation from the original

score and to impose a second derivative term to make sure the information

unbiasedness of the adjusted score is held. This adjustment helps to alleviate the bias

problems inherent in the use of the profile likelihood.

The justification of concentrating on the score rather than the likelihood is

found in the theory of optimal estimating equations. The score functions are

examples of estimating functions defined by Godambe (1960, 1997). As remarked in

McCullagh and Tibshirani (1990, p341), under fairly mild regularity conditions,

unbiasedness of the estimating equation essentially guarantees consistency, while the

condition of information unbiasedness ensures asymptotic optimality within a class

of estimating functions, see also Godambe and Thompson (1974) and Godambe

(1997). And there is a strong link between the optimality of an estimating equation

and the optimality of the corresponding estimator.

McCullaugh and Tibshirani (1990) argued that centring the score function

should improve estimation accuracy. This claim was illustrated empirically by

Mahmood (2000). He simply subtracted the expectation from the original score

without imposing the second order term penalty. It was shown that this adjusted

score is able to deliver estimates that are less biased than those based on the original

profile likelihood score in a dynamic linear regression model. As the score of a

profile log-likelihood is usually biased (i.e., its expectation at the true parameter

value is not zero), both McCullaugh and Tibishirani (1990) and Mahmood (2000)

advocated adjusting the score function towards unbiasedness. Mahmood (2000)

showed that an unbiased score equation can reduce the bias in an estimator from

solving a biased score equation. But the extent of the bias-prevention differs from

model to model. In the dynamic linear regression, for example, the bias correction is

not completely satisfactory, the solution of the adjusted score equation can still be

biased in small samples.
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Another adjustment to the score function that more directly addresses bias-

reduction in the ML estimator was suggested by Firth (1993). This adjustment is

based on a 'proper' score function, which satisfies the unbiasedness and information

unbiasedness conditions. This differs from the scores of the profile log-likelihood

considered in the previous studies that are usually biased. Firth's argument is that

although the score is unbiased, the resulting estimator is not necessarily unbiased.

Therefore in order to remove the o(n"') bias from the estimator, an appropriate bias

term is subtracted from the score function. If the original score is U{9) for a scalar

parameter 0, the adjusted score is given by

(2.84)

where i(0) = -U'(9) is the local gradient of the score and b(0) is the bias function of

the MLE estimator 0, which is usually approximated by its n~x term. Firth (1993)

applied this method in several generalised linear model estimation problems.

However, this method is subject to the same criticism that it requires the knowledge

about the bias function b{&), which in many cases are not readily available. Another

criticism is that this method is not easy to be extended to a multi-parameter case.

Finally, we notice that Lele (1991) considered resampling the estimating

equations instead of the estimates by jackknife to improve the quality of the

estimator. Let

(2.85)

be the original estimating equation and 6n be the estimate from it. Lele's method

consists of deleting one estimating equation at a time the thus obtaining the pseudo-

values. To see this, let

(2.86)
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and 8T_j be the estimate therefrom. The jackknife estimate of 9 is then given by

(2.87)

Under certain regularity conditions, Lele (1991) showed that this estimator is

weakly consistent and asymptotically normal. This method is attractive when the

data are correlated observations. In these situations, the usual jackknife has to

remove data segments from a serially correlated sequence of data causing

difficulties. Jacknifing estimating equations, however can avoid this problem as the

information in xk is used conditionally but not unconditionally. But the small sample

properties (including unbiasedness) of this estimator remain unclear as no empirical

studies have been conducted to examine its small sample performance.

2.7 Concluding Remarks

This chapter reviews the literature related to MU estimation and bias-reduction

methods. The attractive features of MU estimators compared with those of mean-

unbiased estimators were highlighted. The applications of MU estimators in different

econometric models were surveyed. In a broad context, some important bias-

correction and bias-prevention techniques were also discussed. The review exposed

some research questions and voids, treatment of which will form the main theme of

this thesis. In what follows, we provide our observations on a few key aspects which

may require further attention.

1. There seems to be a lack of a systematic approach towards constructing MU

estimators. The examples of these estimators in the literature usually failed to

provide generally applicable guidelines on how to find MU estimators for a given

model. The clue to solving this may lie in two aspects. First, can we borrow the

existing bias-reduction techniques that are designed to achieve mean-

unbiasedness, and modify them to construct MU estimators? Second, much effort

has been put into constructing confidence intervals by inverting the critical value
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functions of a test statistic. Can we apply the same method to constructing a MU

estimator? What are the problems that may arise when point estimation is the

purpose of inverting a test?

2. Most of the applications of MU estimation are concerned with estimating the first

order autoregressive model. Can we extend the model to include exogenous

regressors? As in practice, most models will contain explanatory variables and

this usually causes the properties of the inference procedures to depend on the

structure of the design matrix. It would be useful if MU estimation could be

applied to these more general models, such as the linear regression with

autoregressive disturbances, and the dynamic linear regression model, which are

two of the most frequently used time series models in econometrics.

3. So far the applications of MU estimation are mainly for a scalar parameter. Can

we construct MU estimators when nuisance parameters are present? It would be

useful to apply the existing techniques to account for nuisance parameters, such

as marginal likelihood methods and invariant tests, to the MU estimation of the

parameters of interest.

4. Not many researchers have applied MU estimators in other inference procedures

such as hypothesis testing and forecasting. Most studies stopped at examining the

properties of these estimators. Are these estimators able to improve the small

sample performance of hypothesis testing and forecasting? More importantly can

they correct the deficiencies plaguing some of these procedures that are possibly

caused by small sample bias in the estimators?

These are some of the open research questions that emerge from our literature

review. The remaining chapters of this thesis consider each of these themes

according to the layout detailed in Chapter 1.
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Chapter 3

Some General Methods for Constructing Median-unbiased
Estimators: Theory ]

3.1 Introduction

i Median-unbiasedness is an important alternative to mean-unbiasedness when

assessing the impartiality of an estimator. More importantly, it can enjoy some

indispensable advantages in some situations when mean-unbiasedness is not

achievable or robustness is highly desirable. However, as seen from Chapter 2,

median-unbiased (MU) estimators have not been widely used in econometrics apart

from a few well-known examples. Part of the reason for this is that they are not as

easily found as mean-unbiased estimators. There seems to be a lack of systematic

methods for constructing MU estimators in the literature. Unlike mean-unbiasedness,

with separate books devoted to how to construct mean-unbiased estimators in

different mudels (e.g., Voinov and Nikulin, 1993a, 1993b), there are only a few

applications of MU estimators scattered in the literature, while there is not much

guidance of any generally applicable approach towards MU estimation.

In this chapter, we attempt to establish a theoretical framework for

constructing a MU estimator. Two general methods are developed and formalised,

which are applicable in different parametric models. Although a few applications of

the second method can be found, the theoretical discussion and formalisation

(especially the application of estimating equations and the optimal invariant tests) is

our contribution to the literature. In particular, we attempt to address some of the

problems existing with the current examples in the literature, which may explain why

MU estimators have not been used more widely.

1 Some of the material contained in this chapter was published in a conference proceedings, see Chen
and King (1998). It was also presented at the Annual Meeting of the Econometric Society, Sydney,
June 1998.
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Many results in this chapter can be traced back to a lemma developed by

Lehmann (1959) and Pfanzagl's work (1970, 1971, 1979), which explored the link

between the existence of an optimal MU estimator in the exponential family and the

distribution function of the sufficient statistics. However, the use of sufficient

statistics is not the recommended approach in this thesis, as the original form of this

approach is usually quite hard to implement. Instead, our main interest in this chapter

is to develop and formalise two of its more practical derivatives:

1. Adjusting estimating equations to correct median bias, or

2. Inverting the median function of a test statistic at the 50% significance

level for a MU estimator.

The first method parallels the bias-reduction and bias-prevention techniques

for mean-unbiased estimation. But it does not require the knowledge of the derivative

of the estimating function (such as the second derivatives of the likelihood function)

nor does it require the exact or approximate form of the bias function. The latter is

usually needed in most analytical mean-bias correction methods. We also discuss the

link between the proposed method and an analytical and a bootstrap bias-reduction

technique. An iterative algorithm to solve the adjusted estimating equations is

developed when the exact solution is not available. The method is also extended to

the multi-parameter case, in which we need to adjust the equations recursively while

replacing the unknown parameters in the equations by their estimates from the

previous replication.

The second method is a special case of the familiar duality of a confidence

interval and a significance test. But it is not as trivial as expected when test inversion

is applied to point estimation. A new problem that is not associated with interval

estimation arises in point estimation, namely, non-unique estimates due to a non-

monotonic median function of the test. This problem is not properly addressed in

most of the existing applications of MU estimation. We define some conditions for

this method to work and also discuss the importance of selecting a 'good' test to

invert in order to get a good point estimate. In particular, the use of two classes of

optimal invariant tests is considered. If inverting the median function of a single test
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statistic is not applicable, we propose a 'gird inversion' method as the remedy, which

is more likely to produce reliable estimates.

The chapter is organised as follows: Section 3.2 sets out the fundamental

results of Lehmann and Pfanzagl, and some reay why this original method is

rarely used directly in practice. Section 3.3 shows that a MU estimating equation is

more likely to produce a MU estimator compared with mean-unbiased counterparts.

A generally applicable adjustment to the original estimating equation is defined. The

link between this adjustment and the existing bias-reduction methods is disclosed.

Section 3.4 discusses the general approach of inverting the median function of a test

statistic to compute MU estimators. In particular, it addresses the issue of which test

we should invert and how to invert. It is shown that grid inversion rather than fixed-

point inversion is more likely to produce accurate estimates. The chapter ends with

some concluding remarks in Section 3.5.

3.2 MU Estimators Based on Sufficient Statistics

The importance of sufficient statistics in test construction is well known. If a

UMP test exists, it is usually a function of the sufficient statistics. As a special case,

MU estimators can also be constructed based on the conditional distribution function

of sufficient statistics in the family of distributions with monotone likelihood ratios.

We first review the results due to Lehmann (1959, Corollary 3, p80 and p83):

Lemma 3.2.1 Let the family of densities pe{x), GeQ. have monotone likelihood

ratio in 7'(;c) and suppose that the cumulative distribution function Fg(t) of the

sufficient statistic T = T(x) is a continuous function of t for each fixed 0, then

(i) if x denotes the observed values of X and t = T(x), and if the equation

F (f) = & has a solution d = 6 in Q., this solution must be unique and it is a

MU estimator of 8;
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(ii) among all MU estimates, 6 is optimal in the sense that it minimises EL(0,9)

for any nondecreasing loss function L.

Based on Lehmann's results, Pfanzagal (1970, 1971 and 1979) further

specified the conditions of the existence of such an optimal MU estimator in the

exponential family and also defined its asymptotic properties. His results are

summarised in Lemma 3.2.2:

Lemma 3.2.2 For exponential families with density function of the form

with (6,Tj)c:QxH, QaR, a(») increasing and continuous, there exists a MU

estimator 9, and

(i) it is of minimal risk for any monotone loss function in the class of all MU

estimators;

(ii) under regularity conditions (Pfanzagal, 1979), 0 is asymptotically normally

distributed.

These two lemmas not only define the existence of a MU estimator when the

distribution function of the sufficient statistics satisfies certain conditions, but also

provide some quite strong optimality results. Andrews and Phillips (1987) applied

this optimality property to prove that the generalised least squares estimators are

optimal MU estimators of the linear regression coefficients for all bounded loss

functions.

The proof of these lemmas provided by Lehmann (1959) and Pfangzal (1979)

also implicitly pointed out a natural way of constructing MU estimators based on the

distribution function of the sufficient statistics. This was illustrated more clearly in

Bimbaum (1961, 1964) and Read (1985). We state it here as a corollary to the above

lemmas:
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Corollary 3.2.1 If a sufficient statistic T(X) (scalar) exists such that the values of 6

vary monotonically with T(X), then for any observed value of T = t, 6 that satisfies

Pr{T < t\6 = 0}> 1/2 and Pr{T > t\9 = 9}< 1/2

is a MU estimator of 6.

Although seemingly straightforward, this method is rarely used in its original

form in practice. The only examples we could find in the literature are: estimating the

binomial and Poisson distributions (Bimbaum, 1964) and estimating the logit

regression model (Hirji et al., 1989). There are a few reasons why this method has

not been popular in practice:

1. For a complicated model, in which nuisance parameters exist, the classic

sufficient statistic for a single parameter may be difficult to define. We may need

to rely on other definitions of sufficiency, such as L-sufficiency or G-sufficiency

(see Ara, 1995 for a review). Just as UMP tests are rarely available, a sufficient

statistic that is monotonic is hard to find except for a few simple models.

Therefore, this direct approach is rarely available, and we have to look for less

optimal statistics to construct MU estimators.

2. Even if the sufficient statistic is well defined as in the example of Hirji et al.

(1989), its conditional distribution function is usually non-standard, not

computable or even hard to simulate. We not only need its conditional

distribution, but also its conditional median function. So when searching for the

estimates that satisfy the two inequalities in Corollary 3.2.1, the computational

burden is heavy.

3. The requirement of co-monotonicity of 6 and sufficient statistics T(X) is usually

not easy to satisfy and hard to verify. Because of this, it is difficult to control the

practical problem of multiple solutions or empty solution when this monotonicity

condition is violated.
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In line with the idea of exploring information contained in the sufficient

statistics, we develop two methods that are more practical to use and deliver more

reliable estimates. Instead of inverting the conditional median function of a sufficient

statistic itself, we study those of estimating functions and significance tests.

Intuitively, good significance tests and estimating functions should explore the

information contained in the sufficient statistics. Ideally, they should be functions of

the minimal sufficient statistics where available. Their distribution properties are

usually easier to analyse than the sufficient statistics themselves. This could greatly

simplify the proposed estimation procedures.

3.3 Adjusting Estimating Equations for MU Estimators

3.3.1 Estimating Equations

Most procedures for point estimation of an unknown real scalar parameter 0

can be viewed as solving an equation of the form

Q(0;y) = (3.1)

Q being a real function (which is sometimes called an estimating function) with

arguments 0 and the observed value of the corresponding random variable y. The

equation (3.1) is then called an estimating equation.

The formal definition of an estimating equation is due to Godambe (1960).

Commonly used estimating equations include the normal equations in least squares

(LS) estimation, the score equations in maximum likelihood (ML) estimation, and

the conditional moment conditions in generalised method of moments (GMM)

estimation. The concept is also used heavily in the indirect inference literature, such

as simulated methods of moments and empirical likelihood methods. The properties

of estimating equations and their impact on the quality of the resulting estimators

have been studied by Godambe (1976, 1980, 1984, 1985), Godambe and Thompson
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(1974, 1984), Ferreira (1982) and Crowder (1987) among others. Liang (1987) and

Godambe (1997) provided surveys on the estimating equation methodology.

Interestingly, Vinod (1997) pointed out that the 'main lesson' from the estimating

equation theory is to deemphasize the estimates (roots) and focus on the underlying

equations.

An estimating equation is said to be unbiased (mean-unbiased) if it satisfies

the condition:

(3.2)

where 0O is the true value of the parameter. Here E0o indicates that the expectation is

taken with 0O treated as the true parameter underlying the data generating process.

Most commonly used estimating equations (such as the score functions and the

conditional moment conditions) are usually unbiased. But the unbiasedness of the

estimating equations does not generally lead to the solution to the equation being

necessarily an unbiased estimator. Therefore although asymptotically unbiased under

fairly general conditions (see Godambe and Thompson (1974)), the LS, ML or GMM

estimators are not uncommonly biased in small samples.

As a very special case, Durbin (1960) and Lieberman (1998) both considered

estimating equations linear in 0, i.e.,

(33)

where Tx and T2 are two random functions of the data. Lieberman (1998) showed that

if this estimating equation is unbiased, we need an extra condition which states that

T2/Tx and Tx are uncorrelated, in order to get a mean-unbiased estimator by solving

(3.3).

A good counter example is the first order autoregressive model given by

y = py, , + £„ e,~ IN(0,o-2). Now the normal equation for the LS estimation of p is

given by,
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= ] • > , : > > , _ , -
t=2 (3-4)

which is linear in p and also unbiased, i.e.

»=2

T

t=2
(3.5)

But because X;y,;y,_j/]£;y,2_, ^ X^2-> a r e o b v i°u s ty correlated, so as it is well

known, the resulting estimator p is not mean-unbiased in small samples. From this

example, it can be seen that except for a few very simple cases, even linear mean-

unbiased estimating equations do not directly produce mean-unbiased estimators.

More importantly, Q(9',y) in most cases are nonlinear functions of 6 and this

almost certainly leads to bias in the estimator 0, at least in small samples. This is

paitly due to the simple fact that the expectation of a nonlinear function is not equal

to the function of the expectation. As Firth (1993) observed, generally speaking, a

convex estimating function, combined with its mean-unbiasedness, will cause a

downward mean-bias in the estimator, while a concave function leads to an upward

bias.

Our purpose is to avoid this bias problem associated with the expectation

operator and non-linear estimating equations by considering the median. This is

based on the fact that the median of a monotone function is the function of the

median. Intuitively, if we work with the median, a properly constructed estimating

equation is more likely to deliver a MU estimator.

3.3.2 Adjusting Estimating Equations Towards Median-unbiasedness

If an estimating equation satisfies median-unbiasedness, the consequent

estimator (the solution to the equation) will be median-unbiased under conditions
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more general than those for mean-unbiasedness. These conditions are stated in the

following theorem.

Theorem 3.3.1 If an estimating equation Q(6) = 0 satisfies: v

1. med[Q(9)\0o] = 0, where 60 is the true parameter value; and

2. Q(0) is a continuous function monotonic in 9,

then the solution to the estimating equation, 6, is a MU estimator, i.e., med(d) = 0O.

Proof. As 0 is the solution of the estimating equation, we have

(3.6)

From the median-unbiasedness condition in 1,

Pr{Q(0)>O|0o} =

Therefore if we combine (3.6) and (3.7), we have

(3.7)

(3.8)

And from the monotonicity of Q(*), Pr{0>0o} = l/2 must hold. Same arguments

can be used to show Pr{0 < 0Q} = 1/2. Therefore, 0 is MU.

Corollary 3.3.1 If a linear estimating equation Q{9) = Tx - 0T2 = 0 is median-

unbiased, the resulting estimator must be median-unbiased.

Compared with mean-unbiasedness, among the MU estimating equations, we

have included all the linear estimating equations and all the monotonic nonlinear

estimating functions, which form a possibly broader class of estimating equations for

us to compute MU estimators. In particular, for a linear MU estimating equation, no
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other constraints (such as the independence between 7j / T2 and T2 in mean-unbiased

case) is required for it to produce a MU estimator. Therefore this corollary can be

seen as an extension of the result by Lieberman (1998).

The monotonicity requirement is more general than the linearity condition in

the mean-unbiasedness case, but it is still sometimes too restrictive. From the

empirical results, we know that global monotonicity is probably not required. The

condition can be further relaxed to a wider class of functions, which is given in the

following lemma:

Lemma 3.3.1 Given a random variable X with its median at mx, and a continuous

function / : S—»0 defined on R\ which satisfies:

UMU (0) = U(y;9)-med[U(y;9)\y ~ (3.10)

1. V * E H , if , then x*mx, and

2. VJC, <m x and x2>mx, sgn( / (* , ) - / (m x ) ) • sgn(/(x2)-f(mx)) = - 1 ,

theii we Lcve

(3.9)

The major difficulty that the proposed method usually faces lies in the fact

that in most cases, unlike mean-unbiasedness, the estimating functions are not MU,

therefore we need to adjust them towards median-unbiasedness in order to solve for a

MU estimator. Now we introduce the proposed adjusted estimating equations. In

order to compare with mean-unbiased estimating equations, we consider the score

function as our example in the following discussions. Without loss of generality, the

same arguments can be applied to other forms of estimating equations.

We assume the score function used to estimate parameter ^ is

to force it to be MU, we use the following adjustment:

. In order
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where / ( • ) is the assumed distribution function that y follows while the median is

computed as if 9 were the true parameter. It is quite clear that this new score,

U MU {6) is a direct analogue of the adjusted profile likelihood score in McCullagh

and Tibshirani (1990) with expectation replaced by median and without the second-

order term penalty. The functional form of the density / ( • ) is usually required if the

median function is to be computed via numerical integration.

Asymptotically, the solution to this adjusted estimating equation is equivalent

to the solution to the original estimating equation. This can be seen from the

asymptotic normality of U(9), which is satisfied by most estimating equations in

practice. If the initial estimator is the ML estimator, for example, under the usual

regularity conditions, the score is asymptotically normal. Therefore asymptotically,

the median of the score vanishes and the proposed adjusted score is equivalent to the

original score. The variance of the left-hund side of the adjusted equation should

converge to the corresponding information matrix component as the median term

tends to zero. Hence the adjusted equation (3.10) should produce an estimator with

the same asymptotic properties held by the solution to the original estimating

equation U(9) = 0.

The adjusted estimating equation will be MU by construction. Based on

Theorem 3.1.1, if the left-hand side of the equation is monotonic in 9, or satisfies

conditions 1 and 2 in Lemma 3.1.3, the solution of equation (3.10) should be a MU

estimator of 9. However, in practice, the adjusted equation, just like the original

estimating equation, can rarely be solved analytically. Therefore the output of the

proposed method is usually an approximately MU estimator. In the next section, we

are concerned with how to find a solution to the adjusted estimating equation.
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3.33 An Iterative Algorithm to Solve MU Estimating Equations

In practice, it is usually hard to analytically solve the adjusted estimation

equations as the median function of the original score rarely has an explicit form.

First we construct a sequence {0(r)} by the iterative definition:

(3.11)

where 0(O) can be an arbitrarily picked initial value. Therefore, for a given 0(r), 0(r+I)

is obtained by solving (3.11). The conditional median med{»|0(r+I)} in (3.11) denotes

the median of the random function U(y,e(r)), in which y is generated by its

distribution function with 0(r+1) as the true parameter. We introduce a function to

represent the RHS of (3.11):

(3.12)
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Step 4 Use 0(]) in the place of 6m and go back to step 2; Continue

the procedure until converging (i.e., the difference between the

two consecutive estimates is smaller than a pre-determined

margin);

Our procedure is the replication of a two step process, which is similar to the

well-known EM algorithm developed by Dempster et al. (1977). The difference is

that we replace its expectation step by the conditional median computation in Step 2.

Mak (1993) provided an efficient iterative procedure to solve non-linear mean-

unbiased estimating equations of a similar nature. The proposed algorithm in this

chapter is analogous to Mak's approach. However, unlike Mak's algorithm, an

analytic proof for the convergence of the proposed algorithm is not available due to

the difficulty in defining the conditions for taking derivatives inside the median

operator. We will illustrate this algorithm in two practical examples in Chapter 4, and

in both examples the algorithm is shown to converge at least as fast as the usual non-

linear optimisation routines used in most ML estimation procedures.

Now (3.11) becomes

(3.13)

We rely on the following recursive algorithm to update {0(r)} and solve equation

(3.10):

Step 1

Step 2

Step 3

A

Pick a starting value 0(O);

Simulate (or in some cases, compute) the conditional median

of the score, i.e., g(0(O),0) in (3.13), which is equivalent to

computing med[U(y;6)\y ~ /(£«»)] f o r a Sr id o f 6 v a l u e s ;

Solve (3.13) for 0, i.e., U{y;d) = g(dm,d) via algorithms

such as the Secant method, and denote the solution by 0(1);

3.3.4 Link to Other Bias-reduction Methods

In this section, we demonstrate that the proposed adjusted estimating equation

is closely linked to two existing mean bias-reduction methods: the bootstrap bias-

correction suggested by MacKinnon and Smith (1998) and the ML bias-reduction

method of Firth (1993).

MacKinnon and Smith (1998) treated the initial estimator as a sum of the true

parameter value, a bias function and a random deviation from the mean. By using a

bootstrap procedure, the bias term to the order of nx can be removed. Here we use

their ideas in the context of median-bias correction. Similar to their definition of the

mean-bias function, we define the median-bias function b(0o,T) of an estimator 0 as

(3.15)

If
is
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where 90 is the true value of the parameter, T is the sample size and med{*] is the

usual median function. We then can express the initial estimator 6 in the following

way:

(3.16)

where d(9Q,n) is the random deviation of 6 from its median. MacKinnon and Smith

(1998) showed that if we want to correct the bias of 9, we simply solve the equation

0+b(9,T) = (3.17)

for 9. Although explicitly, the analytical form of the bias function is required in this

method, bootstrap can be used to approximate the left-hand side of (3.17) as a single

function to avoid the derivation of the bias function, see MacKinnon and Smith

(1998) for details.

As reviewed in Chapter 2, Firth (1993) proposed another intuitively very

attractive way of reducing the mean-bias of a ML estimator. If the original score

U(9) leads to the MLE 9, we can use the adjusted score:

= U(8)-i(9)b(9), (3.18)

and equate it to zero to get a bias-corrected estimator. i{8) and b(9) are the Fisher

information and the mean bias function of 9, respectively. In practice, the exact form

of the bias function b{9) is usually unknown, so either the term to a certain order

(usually the 7"1 term) in the expansion of b(0) is used instead, or the empirical bias

function b{9) is estimated by bootstrap.

The proposed approach in this section is in line with the idea of preventing

bias by adjusting the estimating equations. But we try to achieve median-

unbiasedness instead of mean-unbiasedness. We now show that the proposed

adjustment defined by (3.10) can be seen as equivalent to an analogy of Firth's
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method and will also lead to the bias-corrected estimator from solving equation

(3.17).

First we prove that by simply replacing the bias function in Firth's method

with the median-bias function defined by (3.15), and by using the estimated

information component in (3.18), the (approximate) median-bias correction can be

achieved, i.e., the bias-corrected estimator which solves equation (3.17) should also

solve the adjusted estimating equation (3.18) at least approximately.

At

The initial estimator 9 satisfies the original estimating equation, so we have

U{9) = 0. We denote the bias-corrected estimator based on MacKinnon and Smith's

method by 0MU. From (3.17), 8m should satisfy

(3.19)

On the other hand, we assume the bias-corrected estimator 6MU is also the solution of

a different (unknown) estimating equation:

(3-20)

We combine (3.19) and (3.20) and use a Taylor's expansion:

where 1(6) is the observed information (i.e., the corresponding diagonal component

in the Hessian matrix of the likelihood function). Therefore we have

. . ^ 0 . (3-2D
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Hence if we use

(3.22)

as the adjusted estimation equation, it should lead to the approximately MU estimator

0MU. Therefore the corrections given by (3.17) and (3.18) are equivalent only subject

to the difference caused by the estimated information component evaluated at

different points. The unbiasedness of both methods is only approximate because the

bias function is usually approximated to a certain order. Firth (1993) showed that the

expected information i{6) is preferred to the observed information 1(6) to be used in

the adjusted score. In our proof, the derivative of the estimating equation at the

original estimate is used to estimate the information matrix component.

Next we show that the proposed MU adjustment to the estimating equations

given by (3.10) is an analogy of Firth's adjustment, i.e., the two adjusted estimating

equations (3.10) and (3.18) are equivalent to each other to the order of n~\ provided

U(y,0) satisfies the conditions defined in Lemma 3.3.1. To see this, we apply a

Taylor's expansion to the adjusted estimating function (3.10),

= U(0MU)+[U(y,d)-U(y,med(dMU))]

= U(0MU)-I(0)b(0MU).

Notice that U(y;9) = 0 and [/(•) is assumed to satisfy the conditions for it to be

invariant to the median operator. The proposed adjustment to the estimating equation

is equivalent to Firth's correction apart from the difference in estimating the

information component.

From the above analysis, we prove from a different point of view that by

solving the proposed MU estimating equation (3.10) for 0MU, with some constraints
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on U(0), we achieve the same median bias correction as the existing methods. The

advantage of the proposed method compared with Firth's method is that knowledge

about the second derivative of the likelihood is not required. Compared with

MacKinnon and Smith (1998), we do not need to derive or approximate the bias

function. The possible disadvantage of the proposed approach is clearly the

monotonic requirement of the estimating function. Nevertheless, in Chapter 4, we

will show that this method works well for the marginal likelihood score in the linear

regression with first order autoregressive disturbances and the first order dynamic

linear regression model. But let us first illustrate this method with several simple

theoretical examples. •

3.3.5 Some Examples

3.3.5.1 The GLS Estimator in the Gaussian Linear Regression

Consider the classic linear regression model, y=X0+u, where y is the

dependent variable, X is the matrix of regressors and u is a vector of random errors.

Assume £(u) = 0 and Var(u) = o2I. for some positive definite Z. The normal

equation for the GLS estimator (without the normality error assumption, this is not

necessarily the score function) is given by:

(3.23)

If we denote the left-hand side of this equation by U(fi), then it is apparent that

is an odd function of the symmetrically distributed errors. By Andrews (1986), U(P)

must have a symmetric distribution around 0 provided that u follows a symmetric

distribution. Hence medp[U(p)] = 0- In other words, 17(0 = 0 is a MU estimating

equation and it is also monotonic in /?. Therefore the usual GLS estimator
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'A')- i
(3.24)

is the solution to both the original and the adjusted estimation equation (3.10). Based

on Theorem 3.2.1, J3CL5 is MU. As a matter of fact, Phillips and Andrews (1987)

proved that ^GLS is the best linear MU estimator for a large family of error

distributions and loss functions.

3.3.5.2 Error Variance in the Simple Linear Regression

We consider the simple linear regression model y=X/3+u with u

~N(0,<72/), and the parameter of interest is the error variance a2. The log-

likelihood, concentrated score and ML estimator are:

2
+ const.,

2a1 2c74
(3.25)

and

(J MLE =
{y-xfa\y-Xp) (3.26)

First we use the analog of Firth's adjustment given by (3.21). It is easy to show that

a2
b((J2) = med{a i^-s. (3.27)

where med(xl_t) is the median of a chi-squared distribution with T-k degrees of

freedom. Therefore, the adjusted score (3.21) is given by:
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= U(a2)-I(o2Xmed(crMU
2)-cT2).

Here we use the expected Fisher information in place of I(cr2),

(3.28)

(3.29)

So equation (3.28) can be written as,

T , ( y -W(y-*D rnedixUX?2 , T
— — A ( - - T -

2(7" 2G1

Solve U'{a2) = 0 for a2 and we get the MU estimator

jy-Xp)\y-Xp)
O MU = ——5—r

(3.30)

which was discussed in Cox and Hinkley (1974) and also in Phillips and Andrews

(1987).

Now we use the proposed adjusted score function (3.10). Because

(3.31)

we have
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um

1 2o2 2cr4 J L 2 a 2

{y-Xp)Xy-xfa med{x\-k)
2<J4 2c2 '

Therefore, if we solve the adjusted score equation UMU(*T2) = 0, the same C^MV in

(3.30) is derived. This example illustrates the equivalence between the proposed

adjustment in (3.10) and the analogy to Firth's adjustment in (3.21).

3.3.5.3 First-order Autoregression

We consider a simple first-order autoregressive model without an intercept, which

was studied by many other researchers. We will attempt to show that the MU

estimator proposed by Andrews (1993) can be derived by solving the proposed

adjusted score equation (3.10). The model of interest is:

y, =

u, ~ IN(0,(J2),

where y0 = . * «Q, for \p\ < 1, and v0 = 0, if p = 1. The OLS estimator, which
II-

coincides with the ML estimator, is given by:

(3.32)
1=2 1=2

Andrews (1993) showed that

PMU -

is exactly MU, where

(3.33)
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m OLS \p], (3.34)

is the median function of pOLS. Now we prove that the adjusted score function (3.10)

will lead to the same pMU. The ML score function is given by

(3.35)
1=2 1=2

We adjust (3.35) according to (3.10) towards median-unbiasedness, i.e.

(3.36)

where

= med[U(p)\p] (3.37)

stands for the median function of the score. Now if we denote the solution to the

adjusted score equation U m (p) - 0 by p, then we have

T

1=2

T

1=2

T

1=2

r

/=2

(3.38)

From (3.32) and (3.35), the above equation is equivalent to

= \/2.
1=2 '=2

(3.39)

If we denote the median function of pols-p by m'0LS(p), which is given by

(3.40)

then from (3.39) and based on the definition of the median function, we have
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(3.41)

Notice that the two median functions mOLS{p) given by (3.34) and mols(p) given by

(3.40) are linked by

(3.42)

Therefore we have

(3.43)

or equivalently, the solution to the adjusted estimation equation (3.38), p, coincides

with the exactly MU estimator (3.30) proposed by Andrews (1993).

We also notice that in the simple AR(1) model, the least squares estimator is

identical to the minimal sufficient statistic of p (e.g. see Hurwitz, 1950). Therefore,

this is a good example of the proposed method in some cases being a special case of

the general approach set out in Section 3.2.

3.3.6 Extension to the Multi-parameter Case

Consider the problem of estimating a multi-variate parameter

Q-(6X,92,...,6kY• Usually we have k estimating equations to solve for 6. Denote

these equations by

(3.44)

In Chapter 2, we reviewed several definitions of median-unbiasedness for a

multi-variate estimator and adopted the idea of marginal median, i.e., we are trying to

achieve median-unbiasedness for each coordinate of the estimator 0, such that

(3.45)

79

Chapters. Some General Methods for Constructing MU Estimators: Theory

We argue that in many cases, each single parameter 0-t is of its own importance and

the impartiality of each 0t is sometimes more relevant than the hard-to-define overall

unbiasedness of the vector 6. Now we propose the following algorithm to adjust the

estimating equations (3.44) iteratively for an approximately MU estimator:

1. Pick a starting point 0(I) =(^1 ) , . .

2.

3.

In the first equation £/, (0) = 0, treat #, as the only unknown parameter and

replace all the other parameters by their corresponding values in 0W. Adjust

this equation by using the method proposed in the previous section, i.e. solve

for 0, from

(3.46)

Denote the solution by

Replace 0j° in 0W by 0?\ and treat 02 as the unknown parameter. Adjust

U2{0) and solve for 02
2); Repeat the process for every U,{0) and denote the

solutions from this replication by 6>(2) = (^2 ) , . . . ,^2 )) ' .

Treat 0(2) as the new starting point and repeat Step 2 and Step 3. If the

desired accuracy is achieved, stop; otherwise continue the replications until

converging (i.e., the difference between the two consecutive estimates

becomes less than a pre-determined error of margin).

When we adjust the estimating equation each time in Step 2, we replace the

other parameters by their previous estimates. The median function is computed based

on the distribution of U,(6) with estimated 0. This introduces error into the median

function. Therefore the adjustment in Step 2 will only be approximate. As a result,

the final estimates 0(r) will only be approximately MU.
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It should be noted that the median function has to be evaluated for each set of

estimates in the replications. This makes the computational burden heavy. We also

point out that the proposed method is similar to the one discussed in Fair (1996) and

the one used in Andrews and Chen (1994), although they did not discuss the method

in the context of estimating equations. An analytical proof for the convergence of

this algorithm in a general setting is not available. Empirical evidence provided in

Chapter 4 suggests that the algorithm converges fast at least for the linear dynamic

linear regression model. We notice that the convergence of the similar algorithms

developed by Rudebusch (1992), Andrews and Chen (1994) and Fair (1996) were

also only illustrated empirically.

3.4 Inverting Significance Tests for MU Estimators

The method discussed in Section 3.3 was based on estimating equations. It

may face difficulties v/hen these, equations are complicated and contain nuisance

parameters. For example, most of the score functions in MLE and Quasi-maximum

likelihood procedures are nonlinear functions that usually cannot be solved

analytically. Most of the scores also involve multiple parameters in the same

equation. This can make it hard to find the adjustment defined in (3.10) because of

the difficulty of computing the conditional median function of the score needed in

the adjustment. More importantly it is also subject to the same criticism encountered

by the sufficient statistics, i.e., the monotonicity of the difference between the

estimating 'function and its conditional median function can be hard to satisfy.

To avoid these difficulties, we take a similar yet different approach in this

section. Instead of looking at estimating equations, we consider hypothesis test

statistics. Compared with estimating equations, test statistics associated with a single

parameter are easier to find, and their distribution functions are in most cases easy to

work out, so it is more likely that we are able to verify the monotonicity of their

median functions.
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We do not claim that inverting a test statistic at the 50% significance level for

a MU estimator is a new method. As a matter of fact, since being regarded as a

special case of the application of the duality between confidence bounds and

significance tests discussed in Lehmann (1959), it has been used to construct MU

estimators in autoregressive time series models. Examples include Stock (1991),

Andrews (1993) and Watson and Stock (1998). Interestingly, all these examples are

concerned with estimating near non-stationary time series.

However, in this thesis we address some of the problems existing with current

applications, which may prevent it, in its current form, being extended to other

estimation problems as it may fail to deliver reliable estimates. In particular, we

discuss the importance of choosing a 'good' test statistic to invert, which has largely

been ignored by other researchers. Because of the difference between interval

estimation and point estimation, we also develop a more reliable test inversion

method - grid inversion, which is different from the one used in most current

examples - fixed-point inversion. We show that the proposed grid inversion method

is more likely to be immune to the problems that the fixed-point inversion method

may suffer from. We start our discussion by reviewing the well-known relationship

between a significance test and a confidence interval.

3.4.1 Duality of Significance Tests and Confidence Intervals

It is generally accepted that a confidence interval and a significance test can

be treated as the two sides of the same coin, see e.g., discussions in Lehmann (1959).

Several recent papers appearing in the unit root literature explored this duality in

constructing confidence intervals, and are related to our research: Dufour (1990)

inverted the Durbin-Watson statistic to compute exact confidence sets in the linear

regression model with AR(1) disturbances. Kiviet and Phillips (1992) and Kiviet and

Dufour (1997) inverted a modified t statistic in the dynamic linear regression model

for confidence intervals. Ahtola and Tiao (1984) inverted the square root of the score

test statistic to compute confidence intervals in non-stationary autoregressive models.

Stock (1991) also presented an empirical comparison of the different confidence

intervals based on inverting two different test statistics. Carpenter (1999) and Hansen
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(1999) combined test inversion with bootstrap and provided a theoretical justification

for the accuracy of the intervals so constructed. Recently Wright (2000b) considered

confidence intervals based on test inversion in the cointegration model.

The close link between the power of a test and the accuracy of the

corresponding confidence set is also well known, Following Lehmann (1959, Ch. 5),

for each 9QeQ, if A(90) is the acceptance region of a level-a test for testing

H(0O): 9 = 00, then

(3.47)

is a family of confidence sets for 0 at the 1 - a level. If for all 9a, A(60) is UMP for

testing Ho at level a against the alternatives K(0O), these intervals are most accurate

in the sense that for each 0QeQ, S(x) minimizes Pr0{0O e S(x)}, V0 e K(9Q).

If we set the confidence level at 50%, instead of a confidence interval, we get

a MU point estimate when inverting the te^t statistic. This was highlighted in

Lehmann (1959) snd more recently discussed by Stock (1994).

A very simple example of this is the MU estimator of the error variance in a

simple linear regression model. The two-sided confidence interval at level- a is given

by,

(3.48)

and if the significance level a is set at. 50%, the confidence interval shrinks to a

single point, which is a MU estimator of a2 and given by,

(3.49)
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where s2 is the sum of squares of the OLS residuals and 7ned(x\_k) is the median of

a chi-square random variable with T-k degrees of freedom. This coincides with the,

error variance estimator reviewed in Chapter 2.

3.4.2 Inverting a Test Statistic for a MU Estimator

We first define the conditions for a test statistic to be inverted to produce a

MU estimator. Let x be the observed data and t(x) be a test statistic testing a null

hypothesis involving a scalar parameter 6 against some one-sided alternative

hypothesis. We define the median function of t{x) related to the true value of 0 by:

= rned[t(x)\y~f(0)], (3.50)

where / ( • ) is the assumed distribution under which the observed data were

generated. Some test statistics (such as the t test) are based on a consistent estimator

9, but this is not always the case. Hence it is important to emphasize that m(») is

defined to be a function of 8, not $. We define an estimator by

(3.51)

within the parameter space of 9. The following theorem defines the conditions for

m~' (•) to exist.

Theorem 3.4.1 If t{x) is continuous in 6 and m(») is non-decreasing or non-

increasing monotone in 8, then 0m in (3.51) is exactly MU.

Proof.

>0O} = \9o) = V2 .
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where 90 is the true value of the parameter. The three equalities are based on the

monotonicity of m(»), the definition of 9MU and the definition of m(»), respectively.

V < 60] = 1/2 can be derived similarly. Therefore 9MU is a MU estimator.

It is important to point out that the condition requires the monotonicity of the

median function, not the test statistic itself. This is sometimes misunderstood in the

literature, see for example Hirji et al. (1989). Our experience shows that the

monotonicity of a test statistic doesn't lead to the monotonicity of its quantile

functions. This was also confirmed by both Andrews (1993) and Hansen (1999).

They showed that although the OLS estimator and f-statistics are usually monotonic

in 0, their quantile functions can be non-monotonic in the neighbourhood of a unit

root. We will revisit this point in Chapter 5.

When the median function depends on nuisance parameters and/or only the

limit of the test statistic under the null is tractable, we may choose to invert the

median function of the limiting distribution of the test statistic. As a result, the

estimator will only be MU asymptotically. The asymptotic approach avoids

computing the median function for each sample size and each set of the nuisance

parameter estimates, but the performance of the asymptotic MU estimators in small

samples is not guaranteed. We state this asymptotic approach generally as a corollary

of Theorem 3.4.1.

Corollary 3.4.1 Suppose that a sequence of functions (e.g., test statistics regarded as

functions of some consistent estimators) / , and a sequence of estimators 9, satisfies

0 , -»0 in probability and / , (# , ) ->/ (#) in distribution, respectively, as t->>*,.

Define

(3.52)

and if m(0) = medg[f0)] is continuous and monotonic in 6, then 9, is

asymptotically MU, i.e., Pr{0, < 0o} -» /2 and Pr{0, > 60} -» X as n -» °°.
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Proof.

The continuous mapping theorem underlies the second step of the proof.

Prfl{0, < 90] —> Yi c a n be derived similarly. Therefore then 8, is asymptotically MU.

The best example of this approach is estimating the unit root model based on

a local-to-unity parameterisation, in which the limiting null distribution depends on

the drift parameter. Many researchers have adopted this approach to construct

confidence intervals for the autoregressive parameter. In particular, Stock (1991)

compared his confidence intervals based on the asymptotic distribution with those

based on numerical approximation of the finite sample distribution and found the

asymptotic intervals have good coverage probabilities but are usually wider. In this

thesis, we avoid the asymptotic approach and attempt to achieve median-

unbiasedness in finite samples.

3.4.3 Test Performance and Efficiency of MU Estimator

Although the method is straightforward to understand, two important

questions remain unanswered. First, which test statistics can deliver reliable MU

estimates? In other words, which tests have well-behaved median functions that can

be inverted? Second, which test statistics produce the most efficient MU estimator

among tests that can be used? In this section we try to answer these two questions.

Apart from that of a UMP test, the non-monotonicity of the quantile function

of a test statistic is quite usual. Non-monotonic quantile functions have been reported

by several authors. For example, for the first-order autoregressive model with a drift

and a time trend, Andrews (1993) found that the 95% quantile function of the OLS
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estimator is not monotonic; Stock (1991) observed that the quantile functions

(include the median function) of both the DW test statistic and the Sargan-Bhargava

test statistics (Sargan and Bhargava, 1983) are not monotonic; Hansen (1999)

reported that the quantile functions of the t statistics (Dickey-Fuller test in the case of

testing the unit root hypothesis) are also not monotonic. If only confidence intervals

are required, the nonmonotonicity of the quantile functions will only lead to disjoint

confidence intervals or empty intervals from time to time. Dufour (1990, 1997))

reported such intervals and argued that they are meaningful and should not be

discarded. But if we are interested in point estimation, this non-monotonicity will

lead to multiple solutions (estimates) for a single parameter value, and hence fail to

produce reliable estimates. Therefore we need to find test statistics which have a

monotonic median function.

If a test is locally biased, i.e., its power drops below its size for some local

alternatives, or if it has a non-monotonic power curve, its median function is likely to

be non-monotonic. Tests suffering from these problems in small samples are quite

common and have been reported by many researchers. For example, for the linear

regression with AR(1) or random walk disturbances, this was reported by Tillman

(1975), King (1985a), Kramer (1985), Kramer and Zeisel (1990) and Bartels (1992),

while Goh and King (1999) studied small sample deficiencies of the tests in the

dynamic linear regression model. It should be cautioned that the monotonicity of the

quantile functions at different significance levels may be different. Andrews (1993)

observed that the median function of the OLS estimator in a first order autoregressive

model with an intercept and a time trend is always monotonic for all the sample sizes

examined, while the 95%-quanitle function is not monotonic in the neighbourhood of

1 and for some sample sizes. Therefore it is pertinent that the median function should

be examined for that particular sample size and design matrix before it is inverted.

We also point out that the monotonicity of the power curve of a test is not a sufficient

or necessary condition for the monotonicity of its quantile functions, due to the fact

that the distributions of the test statistic under the alternative hypotheses are usually

affected by factors other than the magnitude of the parameter of interest.

Now we examine the relationship between the power of a test and the

efficiency of the MU estimator based on it if it has a monotonic median function.
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First of all, if a UMP unbiased test exists, the optimality of the MU estimator can be

derived based on Lemann's (1959, p220) results:

Lemma 3.4.1 Within the family of distributions with monotone likelihood ratios, if

T(x) is the test statistic for a UMP unbiased test of HQ against a two-sided

alternative if,, then:

(i) m(9) = mede[T(x)] is strictly increasing;

(ii) d = m~l[T(x)] is the optimal MU estimator for 9, in the sense that it

minimises EL{9,9) for any monotonic loss function L.

But in most examples of practical interest, only tests less optimal than UMP

unbiased are available. It is well known that more powerful tests will lead to more

accurate confidence intervals. Is there a similar link between the choice of a test and

the performance of the estimator based on inverting the test? Stuart and Ord (1991,

pp956-958) established the equivalence of the asymptotic relative efficiency of a

consistent estimator and the test based on it. We extend Kendall's result to link the

asymptotic power properties of the tests to the asymptotic efficiency of the

estimators based on inverting their median functions.

Theorem 3.4.2 Assume 7; and T2 are two test statistics testing the same set of

hypotheses about a scalar parameter 9 (with null value at 0O), and their limits are

given by T, and T2 as 7/-><*>. Let 0, and 02 be asymptotically MU estimators

defined according to (3.52) and based on 7; and T2> respectively. Then in a

neighbourhood of the true (null) value 60, we have:

2) = ARE{TjT2),

where, according to Kendall and Stuart (1967), the asymptotic relative efficiency

(ARE) of two estimators 0, and 02 is defined by
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AREtfJej^W
T-**>\

(3.58)

while the ARE of two test statistics Tx and T2 is defined by,

AR (3.59)

where <5 is the order of magnitude in n of the variances of the estimators or the test

statistics. For example, corresponding to an estimation variance of order T~ , S=-j.

Proof. The consistency of 0; (i = l, 2) implies 0,-> 0O
 i n probability as r -»°o .

From Corollary 3.4.1,

(3.60)

where /n,.(*) is the median function of xl% i.e., the limit (in distribution) of % as

T^-^oo. Based on the continuous mapping theorem, we have 90 = m~ (r,.).

Expanding (3.60) about r, by Taylor's theorem, we have,

3m-1

where 7]* is intermediate in value between 7] and T,. It is obvious that as

3m'1 (7:) 3ft

Therefore,
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' 9«

+ 0,(20 - (3.61)

If 26 is the older of magnitude in n of the variances of 0., based on (3.58) and

(3.61), the ARE of 0, and 62 is given by

x) = lim

and by definition (3.59), the theorem follows.

The above theorem only links locally the ARE of two tests to the ARE of the

resulting estimators. Although for a test, the ARE is a function of the slope of the

power curve in the neighbourhood of the null value, the asymptotic efficiency

sometimes is not a good measure of the finite sample performance of an estimator.

Therefore it is still not clear if there is any direct relationship between the finite

sample power of a test and the finite sample bias and/or efficiency of the estimator

based on it. In Chapter 5, we provide some empirical evidence for this possible link

between the power of a test and the small sample performance of the corresponding

MU estimator in the linear regression model with AR(1) or random walk

disturbances.

We conclude this section by reiterating the main results: 1. Inverting a

significance test statistic at its 50% level will produce a (sometimes asymptotically,

if inverting the median function of the asymptotic distribution of the test statistic)

MU estimator provided its (asymptotic) median function is monotonic. 2. The

asymptotic efficiency of the consequent MU estimator directly depends on the power

performance of the test being inverted. In the next section, we examine the situation

when the median function of a test statistic is not monotonic.
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3.4.4 Fixed-point Inversion and Grid Inversion

If the test statistic is pivotal, i.e., its quantile function is independent of the

null value of the parameter and if the median function is monotonic, we can simply

invert it at the fixed point of the calculated test statistic given the sample data. We

call this method fixed-point inversion. But as discussed in the previous section, what

happens more commonly in time series models is that the critical value function of a

test statistic varies with the null value and/or its median function may not be

monotonic. When these problems occur, the fixed-point inversion method breaks

down due to non-unique estimates. This leads to the need for a different way of

inverting the test statistic. In this section, we define a grid inversion method based on

the median envelope of a series of test statistics. We contrast the new method with

the fixed-point inversion.

Method 1 (Fixed-point invertion)

Test statistic:

Hypotheses:

Median function:

Estimation procedure:

T(90; y), where 60 is the fixed null point.

Hi:9<90.

0MU = m~i[T(90;y)], where y is the observed sample

data.

Method 2 (Grid invertion)

Test statistic:

Hypotheses:

Median envelope:

Estimation procedure:

T(0,;y), where 9t is the null point which can vary

within the parameter space of 9.

H0:9 = 9.

solve = T(9*;y) for 9MU
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The grid inversion method allows the null value of the test statistic to vary in

the parameter space. Instead of the median function of a single test statistic with a

fixed null value, the median function used in the grid inversion method corresponds

to the medians of a series of test statistics each evaluated at the corresponding null

value. This approach avoids the possible non-monotonicity of the median function of

a single test by considering a different median function

= med[T(9,y)\9), (3.62)

which we call a 'median envelope'. The term borrows from the idea of a power

envelope which measures the maximum attainable power for a testing problem at

each alternative parameter value. The difference is that the median envelope is a

quantile function while the power envelope is a probability function.

We use the simple case of a t test (a one-sided Wald test) to illustrate these

two ways of constructing a MU estimator. Assume test statistic t - (9-90)/SE(9) is

used to test H0:9 = 90 against a one-sided alternative H{:9<90. The fixed-point

inversion method then involves computing (or simulating) the median function for a

f-test statistic at a fixed null point 90, i.e. m(9) = med[(9-0o)/SE(0)9] and then

the MU estimate is given by 0MU=nT][(9~9o)/SE(9)l In contrast, the grid

inversion method requires computing (or simulating) the 'median envelope', i.e.

mE(9) = med[(9-9)/SE(9) 9] and then the MU estimate is obtained by solving the

equation (9-9)/SE(,6)=mE(0) for 9. In some simple cases, the two methods

coincide with each other. For example, if the test statistic 0 - 0 o is used, the fixed-

point inversion and the grid inversion will lead to the same estimate. But in most

other cases, the two methods are different.

If we compare the two methods of inverting a test statistic, the fixed-point

inversion method implicitly makes the assumption that the median function is of the

shape and parallel to each other for different null values, which is true in many

imple test procedures. Therefore it will lead to the same estimate if a test statistic for

different null hypothesis is inverted. In time series models, when the t test statistic

same

sim

a
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is not distributed as Student's / and asymptotic normality does not approximate the

null distribution well (e.g. see Nankervis and Savin, 1985, 1987, 1988b), the median

function may not be of the same shape for different parameter values. In these

situations, the grid inversion method is based on the more realistic assumption that

the median function depends on the null value and therefore is more likely to deliver

accurate estimates.

More importantly it is quite usual to find a test with non-monotonic median

functions in small samples, and as a result, the fixed-point inversion will fail to

produce unique estimates. The grid inversion may provide a remedy in this situation.

In Chapter 5, we will show that the fixed-point inversion fails in many of the

examples we examine while grid inversion may still work well.

After this chapter was first drafted, we became aware of the grid bootstrap

suggested by Hansen (1999), which is similar to the proposed Method 2. We coined

the term grid inversion similar to the terminology used in his paper. He applied his

grid bootstrap method to confidence interval calculation in the first-order

autoregressive model with a local-to-unity parameterisation and showed that the

interval based on the usual bootstrap method fails to cover the true value at the

nominal level (even asymptotically) while the interval based on grid bootstrap is

correct to the order of n~l. However, the quantile functions of the limiting

distribution of the t test were found to be non-monotonic. In Chapter 5, we show that

his method may not be able to deliver unique point estimates for the autoregressive

parameter.

However, the fixed-point inversion method does enjoy the advantage of

computational simplicity. It does not require solving equations. A simple tabulation

or graph can be used to find the point estimates, as shown in Stock (1991). This is

also why this method dominates the test inversion confidence intervals in the

literature.
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3.4.5 The Use of Optimal Invariant Tests

It is now clear that when choosing a test statistic to construct MU estimators,

it is important to choose one that has good power properties in small samples. In this

section, we consider two classes of tests that were shown to have such properties

when a UMP test does not exist, namely, the point optimal invariant (POI) tests

developed by King (1985a, 1987b) and the locally best invariant (LBI) tests

advocated by King and Hillier (1985). Both these classes of tests possess some

optimality properties that make them attractive in some circumstances especially in

small samples. One would expect that the good small sample power properties of

these tests will make them good candidates when we choose a test statistic to

construct a MU estimator.

Generally speaking, the POI test is designed to maximise the power within

the class of invariant tests in a neighbourhood of a preselected alternative point while

the LBI test is aimed at maximising the power in the neighbourhood of the null

hypothesis. As well as being most powerful at some points in the alternative

hypothesis parameter space, these tests may also have optimum power at a number of

other points and indeed be uniformly most powerful when such a test exists (see

examples provided in King (1987b) and Hillier and King (1985)). MU estimators can

be constructed based on both the LBI tests and POI tests based on the methods

discussed in the previous section.

Consider the linear regression model

y=X/3+u, (3.63)

where y is the dependent variable, X is a nXfc matrix of observed values of the

exogenous regressors, 0 is a k x 1 vector of fixed coefficients, and u is a n x 1 vector

of random disturbances. We are interested in the hypothesis testing problem that

involves testing

H0:u ~ N(Q,a2In) against H{.u ~ N(0,G2Z(9)), (3.64)
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where 2 is a positive definite matrix known subject to the parameter vector of

interest 9, which is to be estimated. As pointed out by King and Hillier (1985), this

problem is interesting because -. ^arge number of hypothesis testing problems in

linear regression analysis can be parameterized in this manner. In addition to AR(1)

disturbances problems, these include simple pth order autoregressive disturbances,

first-order moving average disturbances, various parametric forms of

heteroscedasticity in the disturbances, random regression coefficients under different

assumptions and various error component models. The estimation procedures

outlined below can potentially be applied to all these models.

King (1980) showed that this testing problem is invariant to transformations

of the form

(3.65)

where 7]0 is a positive scalar and 77 is a k x l vector. Under this group of

transformations, the maximal invariant vector is given by

V=PZ/(Z'P: (3.66)

where z is the OLS residual vector and P is an mxn matrix such that PP' = lm and

P'P=M, with M = / m -X(X2r 'X' and m = n-k.

For the problem of testing Ho: 9 = 0 against the specific alternative

H: Q-0^ > 0 , the Neyman-Pearson lemma applied to the density of the maximal

invariant (3.66) yields critical regions of the form

\rlv<cl, (3.67)

where c, is a constant. King (1980, Lemma 2) shows that this test can also be written

as
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(3.68)

where u is the GLS residual vector assuming covariance matrix 2(0,).

In most cases, the uniformly most powerful invariant test for Ho: 0 = 0

against H{. 0> 0 does not exist as the critical region (3.67) usually depends on 0,.

There are two ways to proceed in order to construct tests with well-defined

optimalsty properties: to construct LBI tests or POI tests. The former class of tests

were shown by King and Hillier (1985) to exist as long as 2(0) has a first-order

derivative at 0O. They are LBI in the sense that the power function has the maximum

slope at the origin among all invariant tests. The second approach is designed to

maximise the power at a pre-selected alternative point. The existence of such tests

depends on the form of 2(0).

For different models, in order to compute test statistics such as (3.68), it is

often appropriate to consider the transformed model

(3.69)

where y{9) = Z(9yy* y, X(0) = E(0)"xX and u(0) = 2(0)-Kw~ N(0, <J2I). It was

shown in King and Hillier (1985), Shively et al. (1990) and Dufour (1990) that the

LBI tests can be expressed as

c (ft "J = l7(9 Y (3.70)

where A(9) = • , while the POI tests can be expressed as

(3.71)

where C and D are fixed matrices (possibly functions of 90 or 0,) depending on the

testing problem, and u(0,) = (/ - X(9i)(X(9iYX(0i)r
iX(9iY)y(9i), for i = 0, 1.
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While LBI tests have optimal power in the neighbourhood of the null

hypothesis, they may have poor power away from the null. In terms of most

statistical loss functions (except the 0-1 loss), accepting the null when the parameter

is far from the null is most damaging. This drop in power phenomenon was reported

in Kramer (1985), Kramer and Ziesel (1990) and Bartels (1992) among others for the

linear regression model with AR(1) disturbances. The argument was also supported

by Dufour and King (1991), who, based on Monte Carlo evidence, concluded that

when testing for correlated disturbances or random walk disturbances in the linear

regression model, the POI tests are generally more powerful in small samples than

the LBI tests over the whole parameter space under the alternative hypothesis.

Therefore, in the sections that follow, we focus our attention on the POI tests. But the

outlined method of inverting the median function or the median envelope also

applies to the LBI tests.

The POI tests have been used effectively in testing for autocorrelation in the

linear regression model (King, 1985a), testing for random walk disturbances (Dufour

and King, 1991), testing for heteroscedastic disturbances (Evans and King, 1985,

1988), testing for fourth-order autoregressive disturbances (King, 1984), testing for

deterministic trend and seasonal components (Franzini and Harvey, 1983 and

Nyblom, 1989), testing for Hildreth-Houck random coefficients in the linear

regression model (Milan, 1984, King, 1987c), testing for random walk coefficient

(Brooks, 1993, Brooks and King, 1994, Shively, 1988) and testing for MA(1) errors

against AR(1) errors in the linear regression model (King, 1983, 1985b, King and

McAleer, 1987, Silvappulle and King, 1991). Therefore the method of constructing

MU estimators outlined here can be .potentially applied to estimating the error

covariance structure in all these models. For example, Stock and Watson (1998)

considered the POI tests and inverted their asymptotic quantile functions to construct

MU estimators in the time-varying coefficient model in which the coefficient follows

a random walk.

Another interesting feature of the class of POI test is that they can be used to

trace out the finite sample maximum attainable power envelope for a certain class of

hypothesis testing problems, thus providing a benchmark against which test
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procedures can be evaluated. This is sometimes more accurate and meaningful than

the asymptotic power envelope. See for example, Podivinsky and King (2000) and

also Elliot et al. (1996). This helps us explain why the gird inversion based on the

median envelope is able to better explore the small sample power advantage of the

POI test when constructing a MU estimator.

When we apply the two methods of inverting a test statistic to the POI test, it

is usually more convenient to consider the alternative value rather than the null value

when we decide whether to use the fixed-point inversion or the grid inversion.

A-ssume that the covariance matrix Z is indexed by a scalar parameter 6, then a MU

estimator of 8 can be constructed in the following two ways. If the median function

of the POI test is monotonic, we apply the fixed-point inversion for a pre-selected

alternative point 9V i.e.,

(3.72)

The median function m(») is given by,

m(0) = med[sPOl(00,0,)\u ~ N(0,C72 (3.73)

Based on the good small-sample power properties of the POI tests, we would expect

they are more likely to have monotonic median functions according to Theorem

3.4.1. However, if the median function of a single POI test is not monotonic, we can

apply the grid inversion method to the series of POI tests which allow the alternative

value 0, to vary within the alternative parameter space. Hence we solve for 9MU in

the equation,

(3.74)u{6)

-med[spol(00,9)\u ~

The median function in (3.74) is also a median envelope of the POI statistics

for testing for hypotheses (3.64). We will further examine the properties of the

median envelope in Chapter 5 for the estimation of the linear regression model with
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AR(1) or random walk disturbances. We show that the grid inversion of POI tests is

a more reliable way to construct MU estimators than inverting a single POI test

statistic for some design matrices.

Although not an idea pursued here, confidence intervals can also be

constructed based on the procedures we developed. Two approaches are available: 1.

Replacing the median function in the procedures by the a/2- and (l-ct)/2-quantile

functions of the test statistics and solving for the two confidence limits. Confidence

intervals based on test inversion have been used frequently in econometrics (e.g., see

Stock (1991), Andrews (1993), Kabaila (1993a) and Carpenter (1999)). 2. Bootstrap

confidence intervals based on the proposed estimators, which involves

approximating the distribution function of the estimator and constructing intervals

based on the approximated quantiles (e.g., see discussions in Beran (1987), Hall

(1988, 1994) and Efron and Tibshirani (1993)). We choose the percentile-f method

and apply it to the dynamic linear regression model in Chapter 4, as it avoids the

difficulty of computing the quantile functions needed in the first method.

3.4.6 Nuisance Parameters and Computation Issues

Nuisance parameters exist in most hypothesis testing problems. Popular

methods to eliminate these parameters .when constructing tests are those of similar

tests and invariant tests. If such tests are available for the parameter of interest, the

distribution of the test statistic, and therefore the median function of the test statistic

will be invariant to nuisance parameters. We then only need to apply the methods

described above to compute MU estimators. But in many cases, it is difficult to find

either similar tests or invariant tests. In this situation, we need to use algorithms

similar to the one outlined in Section 3.3.6, to iteratively invert non-similar test

statistics while replacing the nuisance parameters in the process by their estimates.

Assume the parameter space can be partitioned into 6 ~ (/3, y)', and a test

s{6) is designed to test hypotheses about (3 only, i.e., y is the nuisance parameter.
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Without loss of generality, we assume that given an estimate of p, there is an explicit

way to compute a corresponding estimate of y, i.e.

(3.75)

Start with a starting point 0, = Cpi,y(P1)Y, invert the test statistic as if yCpx) were

the true value of y, i.e.

(3.76)

where

(3.77)

7/e then replace the starting value by Q2~Cp2,yCp2) and repeat the steps. The

process is continued till convergence (i.e., the difference between two consecutive

estimates becomes less than a pre-determined margin of error). As a result of this, the

final estimator will only be approximately MU.

In the proposed procedure, the median function has to be calculated and

inverted separately for each required sample size. If nuisance parameters are to be

replaced by their consistent estimators, the median function has to be calculated for

each different set of estimates used. This can be quite computationally cumbersome.

Although not recommended, if the limiting distribution of s(6) still depends on the

parameter of interest, then based on Corollary 3.4.1, the procedure could be

simplified by just inverting the median function of the limiting distribution, so the

median function needs to be calculated just once. In the models we examine in this

thesis, the median functions of many test statistics can be calculated exactly by using

Imhof s (1961) algorithm to any desired level of accuracy.
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3.5 Concluding Remarks

In this chapter, we outlined two general methods of constructing MU

estimators in econometric models. One is based on adjusting the estimating equations

and the second is based on inverting the median function of a significance test. Both

methods can be regarded as different ways of exploring the relationship between the

sufficient statistics (or less optimal statistics when sufficient statistics are intractable)

and MU estimators, which was established by Lehmann (1959).

When an estimating equation generates a biased estimator, one can

effectively adjust this equation to reduce the estimation bias. The conditions for a

MU estimating equation to deliver a MU estimator are more general than those for a

mean-unbiased estimating equation to produce a mean-unbiased estimator. So for a

given estimating equation, we suggest subtracting its median function from the

original estimating function and if the difference is a monotonic function, we will get

a MU estimator. No analytical or simulated bias function is required, although

sometimes it is hard to verify the monotonicity of the new estimating function. The

relationship between this proposed bias prevention method and two other bias

reduction techniques was disclosed. In Chapter 4, we give two examples of applying

this method to the marginal likelihood score function in the linear regression model

with AR(1) disturbances and the dynamic linear regression model.

In case it is too complicated to adjust the estimating equations or the

monotonicity of the adjusted estimating function does not hold, a MU estimator can

be constructed by inverting a significance test at the 50% significance level.

Depending on whether the median function of the test statistic is monotonic, two

different methods are considered: fixed-point inversion and grid inversion. The latter

is theoretically more reliable but does involve extra computational costs. We also

recommend inverting the POI test statistics mainly because of the sound small

sample power properties. In Chapter 5, we will apply this approach to the linear

regression model with AR(1) or random walk disturbances. The relationship between

the power performance of a test and the efficiency of the MU estimator based on

inverting its median function will be examined more thoroughly.

Chapter 4

Adjusting Marginal Likelihood Scores for Median-unbiased

Estimators x

4.1 Introduction

In Chapter 3, we outlined the method for constructing MU estimators based

on adjusting estimating equations. In this chapter, this method is applied to two

commonly used time series models: the linear regression model with first-order

autoregressive disturbances and the dynamic linear regression model. For the first

model, it is shown that the proposed estimator of the autoregressive parameter is

almost free of small sample median bias. In the second model, we extend the use of

the proposed method to cover the case in which nuisance parameters cannot be

eliminated from estimating equations through invariance arguments. The method is

slightly revised to overcome this difficulty and an approximately MU estimator is

derived.

Bias has always been a serious problem in the estimation of autoregressive

time series models. Many bias-correction techniques have been proposed (e.g., see

Quenouille, 1949, Orcutt and Winokur, 1969, Shaman and Stine, 1988, Fuller, 1996,

MacKinnon and Smith, 1998 and Patterson, 2000, among others). The proposed MU

estimator will serve as an alternative bias-prevention device for these models. It is

also expected that through these examples, we will show that constructing a MU

estimator by adjusting estimating equations can be a simple, yet effective way of

bias-correction in the estimation of time series models.

MU estimation has already been applied to a first-order autoregressive model

with only a constant and/or a linear time trend as the regressors. We extend the

application by including other exogenous regressors. It is well known that the
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properties (e.g., small sample bias) of the estimators will then depend on the

structure of the design matrix as well as the magnitude of the autoregressive

coefficient. A bias correction that works for different design matrix structures would

be highly desirable.

The focus on point estimation in our study may need some justification. In

the model of concern, especially when the persistence in the time series is very

strong, i.e., when the autoregressive parameter or the lagged dependent variable

coefficient is a large positive value close to 1, hypothesis testing may suffer from

size distortion and/or low power problem (e.g., see Dickey and Fuller, 1981, Evans

and Savin, 1981, 1984, Nankervis and Savin, 1985, 1987, 1988b, Schwert, 1989 and

Magee, 1989), while confidence intervals may have bad coverage probabilities (e.g.,

see Stock, 1991 and Hansen, 1999) at the same time. In this situation, the impartiality

of a point estimator becomes a crucial issue (see also discussions in Andrews, 1993,

Stock, 1994 and Maddala and Kim, 1998). In some cases, it can provide an important

insight into the validity of the model • specification, and therefore straightforward

evidence for researchers to choose the most likely model based on the data, when

other inference tools are not reliable. Therefore median-unbiasedness is not only

relevant, but can be indispensable in these circumstances.

In both models, we choose to adjust the marginal likelihood score equations,

as they enjoy some distinctive advantages over the traditional profile likelihood

approach both theoretically and empirically in small samples (see for example,

Tunnicliffe-Wilson, 1989, Ara, 1995, Grose, 1998 and Mahmood, 2000). But due to

the likelihood function being discontinuous in the neighbourhood of unity of the

autoregressive parameter, we only consider the stationary case in this chapter. The

unit root case will be treated in Chapter 5.

We aim to show that the proposed MU estimators enjoy two important

advantages over the existing bias-reduction techniques. 1. Unlike other MU

estimation methods (e.g., Andrews, 1993, Stock, 1994 and Fuller, 1996), the

proposed method can be applied to models including a wide range of exogenous

regressors. 2. The reduction in bias will not be offset by an increase in the variance.

Hence the proposed MU estimators have root mean squared errors (RMSE) lower
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than or similar io those of the conventional ML estimators in most cases. This is in

contrast to some mean-bias-corrected estimators that may suffer from a trade-off

between a reduced bias and an increased RMSE (e.g., see discussions in Orcutt and

Winokur, 1969, MacKinnon and Smith, 1998 and Patterson, 2000).

Throughout the chapter, we focus on the small sample behaviour of the

estimators. We attempt to achieve median-unbiasedness or approximate median-

unbiasedness in small samples. Due to the difficulty in solving non-linear estimating

equations and also the lack of analytical forms for the median functions, Monte Carlo

simulations are used to investigate and compare the properties of different

estimators. This has become a more and more popular tool used by econometricians

especially when the finite sample feature is the major concern in research.

Fortunately, existing algorithms often facilitate exact numerical calculations of the

median functions in the models considered, which helps tG alleviate the variability

that may be associated with the results solely based on simulations.

The chapter is organised as follows. In Section 4.2, we specify the linear

regression model with stationary AR(1) disturbances and briefly review the existing

MU estimators in the literature. We then seek to adjust the marginal likelihood score

towards median-unbiasedness. A Monte Carlo study is conducted to compare the

new estimator with the conventional alternatives. In Section 4.3, we consider the

dynamic linear regression model. An iterative bias-correction algorithm is developed

to estimate the lagged dependent variable coefficient. The small sample properties of

the new estimator are compared with those of the OLS estimator via Monte Carlo

simulations. The chapter ends with some concluding remarks in Section 4.4.

4.2 MU Estimation of the Linear Regression Model with AR(1)
Disturbances

4.2.1 Model Specification and Existing MU Estimators

There are two reasons why we choose the linear regression model with AR(1)

disturbances: First it seems to have been the most popular time series model used in
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economic applications. A good understanding of this model is fundamental to

studying more complicated time series models. Secondly, small-sample estimation

bias has been so well documented for this model and so many remedies have been

proposed, that it is natural and convenient to compare the proposed techniques with

others such that we can assess the proposed approach in the broad context of bias-

reduction.

This model can be stated as follows:

u, = iid JV(0,cr2),

(4.1)

(4.2)

where y, is the dependent variable (observed at time t), x, is a k x l vector of fixed

regressors, (3 is a k X1 vector of fixed coefficients, and u, is a random disturbance.

The coefficients p, /> and a2 are unknown. We assume the disturbances follow a

stationary AR(1) process with the initial condition:

uQ~N[0,a2/(l-p2)l (4.3)

For a model without exogenous regressors other than an intercept, the small

sample bias of the least squares (LS) estimator p0LS has been well documented.

Quenouille (1949), Hurwicz (1950a), Marriott and Pope (1954), and Kendall (1954)

all established the mean-bias of the LS estimator in a model with or without an

intercept. They showed that the first-order mean-bias of pOLS is -2p/T for the

model without the intercept, and - ( l + 3p)/T for the model with an intercept. Le

Breton and Pham (1989) calculated the exact and asymptotic biases of the same

estimator in a stationary, unit root or an explosive AR(1) model without an intercept.

Shaman and Stine (1988) established the first-order mean-bias of the LS estimator in

a stationary ARQ?) model. More generally, exact moments of the LS estimator were

considered by Sawa (1978), Maekawa (1983) and Nankervis and Savin (1988a)

among others.
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If there are explanatory variables included in the model, no analytical

approach is available to derive a general formula for the bias in the estimator as the

bias also depends on the structure of the regressor matrix. Instead, many researchers

conducted Monte Carlo studies to examine the small sample bias of different

estimators proposed for this model. This was pioneered by the seminal paper by

Oroutt and Winokur (1969). Simulation studies comparing different estimators in the

model were also reported in Rao and Griliches (1969), Spitzer (1979), Park and

Mitchell (1980), Kobayashi (1985), Nankervis and Savin (1988a) among others. The

popular estimators of p compared in these studies include the Cochrane and Orcutt

(1949) estimator, Durbin's (1960) estimator, Prais and Winsten's (1954) estimator

and the full maximum likelihood estimator suggested by Beach and MacKinnon

(1978). It was found that all these estimators, although unbiased asymptotically, are

biased in small samples.

Attempts have been made to correct the small sample bias in the estimation of

this model. Quenouille (1949, 1956) introduced a jackknife estimator in the model

without an intercept. Orcutt and Winokur (1969) suggested using

p = (.TpOLS+\)/(T-3) as a bias-corrected estimator in a model with only an

intercept. Bias reduction in autoregressive models without exogenous regressors was

also considered by Shaman and Stine (1988), Rudebusch (1993) and recently by

Patterson (2000). Most of these studies involve correcting the bias by subtracting the

approximated bias function from the original estimate. But as observed in Rao and

Griliches (1969), Orcutt and Winokur (1969), and MacKinnon and Smith (1998),

sometimes it is not very effective to improve the performance by adjusting an

estimator upwards for its known downward bias, because the reduction of bias may

lead to an increase in variance with little or no improvement in RMSE.

A different, yet effective way of improving the estimation quality of this

model is the use of the marginal likelihood (MGL) approach. This will be discussed

in more detail in the next section. Ara (1995) and Laskar and King (1998), among

others, provided Monte Carlo evidence and showed that the MGL estimator of the

autoregressive parameter is generally less biased in small samples compared with the

estimator based on the profile likelihood. Test procedures based on the MGL
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approach were also developed. Among the existing estimators, the MGL estimator

seems to be the winner in terms of small sample bias.

So far MU estimators for this model in the literature have been mainly

designed to estimate the simple first-order autoregressive model. It has been

extended, with properly chosen de-meaning or de-trending procedures, to models

with a drift and/or a linear time trend. As reviewed in Chapter 2, the existing MU

estimators for a simple autoregressive model include: 1. Andrews's (1993) estimator

which is based on inverting the median function of the OLS estimator, 2. Stock's

(1991) estimator based on the limiting distribution of the Dickey-Fuller test and the

Sargan-Bhargava test statistics, and 3. Fuller's (1996) estimator based on the limiting

distribution of the weighted symmetric least-squares estimator.

All these existing MU estimators do not address the exogenous regressor

issue. When we attempt to extend their use to the linear regression model with AR(1)

disturbances, it is not known what impact different design matrices might have on

their small-sample properties. In the most commonly used two-step estimation

procedures, people usually treat the model as an OLS regression first, and then Ucat

the OLS residuals as if they were the true disturbances for estimating the

autoregressive coefficient. But for some design matrices, e.g., Watson's X matrix,

the OLS residuals can be bad approximations to the true disturbances, which will

surely result in bad estimates of the. autoregressive coefficients, see e.g., King

(1985a). Therefore a different approach is needed to count for the impact from the

exogenous regressors on the bias function of the estimator. Our aim is to find a MU

estimator that is robust to different design matrices.

4.2.2 Adjusting Marginal Likelihood Score Equations

In this section, we construct a MU estimator in model (4.1) and (4.2) by

adjusting an estimating equation. A natural choice of estimating equation would be

the score equation based on the profile likelihood function discussed in Beach and

MacKinnon (1978) among others. But in our study, we found that this score and its
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median function are both very flat and close to the horizontal axis. Figure 1 shows

one realisation of the scores based on the profile likelihood and the marginal

likelihood at p = 0 for a model with an intercept and a time trend. Compared with the

profile likelihood score, the MGL score is much steeper. Because of the flatness,

when we implement the proposed adjustment to the profile likelihood score, the

convergence will be very slow when solving the adjusted equation (3.10).

Figure 4.1 One Realisation of the Marginal and Profile Likelihood Scores in the
Linear Regression with AR(1) Disturbances for Design Matrix XI; T - 20,

score

5-

-0.4 -0.3 -0.1 0
- 5 -

-10-1

0.1 0.2

prnl score • mgl score

On the other hand, since Kalbfleisch and Sprott (1970, 1973) argued for the

use of the marginal likelihood in time series models, evidence has been found (see

for example, Tunnicliffe-Wilson (1989), Ara (1995) and Laskar and King (1998))

that the marginal likelihood approach can effectively eliminate nuisance parameters

without losing information when estimating the error structure in a linear regression

model. The MGL estimator was also shown to be able to reduce the small sample

bias of the maximum profile likelihood estimator. Ara (1995) also showed that there

is a logical relationship between marginal likelihood and sufficient statistics.

Therefore using the marginal likelihood is consistent with the approach based on

sufficient statistics discussed in Section 3.2. So in this section, we choose to calibrate

the marginal likelihood score equation.
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We start with examining the rationale behind the marginal likelihood

approach in the general linear regression model

(4.4)

where y is the dependent variable, X is a Txk matrix of observed values of the

exogenous regressors, ft is a k x 1 vector of fixed coefficients, and u is a Tx 1 vector

of random disturbances distributed as N(0,CT2Q.(9)). If 0=(ei,e2,...,6p)' are the

only parameters of interest, we can construct a maximal invariant statistic d under a

certain group of affme transformations (for details, see King, 1980, Ara, 1995, and

Rahman and King, 1997), given by

where T]o is a positive scalar and rj is a k x 1 vector. Following Ara (1995), the often-

used maximal invariant d is

(4.5)

where z = My is the vector of OLS residuals, P is a mxn matrix such that PP' = Im

and PfP = M, with M = /n i-X(XX)" 'X and m=T-k. The density function of

the maximal invariant vector is given by

(4.6)

It is apparent that the distribution of d is invariant to both nuisance parameters, p

and a2. But more importantly, as pointed out by Ara (1995), d is so-called G-

sufficient for 0, in the sense that for any inference about 6, it is sufficient to study

the distribution of d without information loss.
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Therefore for our model (4.1) - (43), based on the density function (4.6), the

marginal log likelihood function for p can be written as:

where

(4.7)

1

1-P2

1

P

,r-i

,r-2
(4.8)

and

1

~P

0

-P 0

0

1+p2 -p

-p x .

(4.9)

is the covariance matrix of ut and its inverse, respectively, and

(4.10)

where

(4.11)

Following Rahman and King (1997), the marginal likelihood score function is given

by
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2 dp \
T-k u

(4.12)

where

A(p) = •lXTlXXlipT\ (4.13)

and

u = y - X{X'Q.{p - i (4.14)

It was shown in Ara (1995) that the marginal likelihood score satisfies the

mean-unbiasedness condition, i.e.,

E[U(y;p)\po] = O,

where p0 is the true parameter value. But as revealed in Chapter 3, the unbiasedness

of the score does not guarantee the unbiasedness of the estimator. As a matter of fact,

as reported in Ara (1995) and Laskar and King (1998), the maximum marginal

likelihood estimator is still biased in small samples. One possible reason for this bias

is the curvature of the non-linear score function (4.12). Ara (1995) showed that the

marginal likelihood score U(y;p) is asymptotically normally distributed with the

same limiting distribution as that of the profile likelihood score. This property makes

it possible for us to apply the adjustment proposed in Chapter 3.

In order to adjust the score (4.12) according to (3.10), we need to compute its

median function. Notice that the marginal likelihood score in (4.12) can be expressed

as the form:

(4.15)

where
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dp

B(p) =
dp

(4.16)

(4.17)

in which

(4.18)

and

0
1

,r-2

(4.19)

Therefore, subject to the constant A(p), the score is a ratio of two quadratic forms in

the normal error vector e. So the median of the score function can be calculated

exactly by solving

(4.20)

for m using Imhof s (1961) algorithm, where the A,.'s are the eigenvalues (including

zeros and multiple roots) of B(p)-(m-A(p))C(p), and £ 2 are independent

standard £2- variables with one degree of freedom.

Figure 4.2 shows the shape of several sample realisations of the score and its

median function for design matrix X2 (see Section 4.2.3), with 20 observations and
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the true p at 0.2, 0.4 and 0.8. The maximum marginal likelihood (MMGL) estimates

are the interceptions between the scores and the horizontal axis, while the new

estimates which solve the adjusted estimating equation (4.22), are given by the

interception between the scores and the median function. It is quite apparent that the

new estimator should at least correct the downward bias of the MMGL estimator in

the right direction.

Figure 4.2 Three Realisations of the New Estimator: an Illustration of the
Proposed Bias-prevention Method for the Linear Regression Model

with AR(1) Disturbances for Design Matrix X2, T = 20, p = 0.2, 0.4, 0.8

Figure 4.3 An Illustration of Firth's Bias-prevention Method for the Linear
Regression Model with AR(1) Disturbances for Design Matrix XI, T = 20,

p = 0.6

Firth's adjustment

-adjusted
-original
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It is interesting to compare the proposed bias-correction method with Firth's

(1993) method graphically. In Figure 4.3, Firth's adjusted score is plotted together

with the original score. The bias reduced estimate based on his method is then the

interception between the adjusted score and the horizontal axis. Intuitively, Firth's

method attempts to prevent the bias by shifting the original score curve upward;

white the proposed method shifts the horizontal axis downward to the position of the

median function, in order to increase the value of the estimates. In Chapter 3, we

proved that these two adjustments are equivalent to the order of n"1. The benefit of

the proposed approach, however, is that it does not require an approximation of the

bias function or computation of the information matrix component.

Hence if we denote the median function of the score as

m(p)=med (4.21)

the proposed estimator will be the solution to the adjusted estimating equation

(4.22)

The graph shows that the left-hand side of the above equation is not a

monotonic function as required in Theorem 3.2.1. Both the score and median come

across the axis at p = 1. This is partly because that we did not ignore the constant

term A(p) in the score (4.15) when solving equation (4.22). If A(p) is discarded

(which will not alter the solution to (4.22)), the median function will be monotonic

and of a similar shape to the ones plotted in Figure 4.4 for the dynamic linear

regression model. However, as shown in Figure 4.2, locally (in the neighbourhood of

the interception), monotonicity of the LHS of (4.22) is guaranteed for the current

approach. Therefore in practice, we need to select an initial value so that it falls into

the region in which the adjusted estimating function is monotonic. If this is not

achievable, it means there is no solution within the stationary region, and we take

p -1 as the estimate.
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As there is no closed form for m(p), the equation (4.22) cannot be solved

analytically. Therefore the iterative algorithm proposed in Section 33.3 has to be

used. In our study we found that the speed of convergence of the proposed algorithm

depends on the curvature of the score and the median function. In some cases, the

two curves are almost parallel to each other and very close to the horizontal axis, so

that the convergence can be very slow. But generally speaking, it should not be

slower than the normal searching algorithm used for ML estimation. We will revisit

this point when we discuss the estimation results in Section 4.2.4.

4.2.3 Experimental Design

An important aspect of our model specification is the structure of the

exogenous regressors. We conducted our simulations based on the following two

design matrices:

XI: An intercept and a linear time trend. This is a most commonly used

design matrix in the unit root literature. We include it in order to compare the

proposed MU estimator with the maximum marginal likelihood estimator, which is

another bias-reduced estimator.

X2: The first five sets of eigenvectors corresponding to the eigenvalues

(sorted in ascending order) of the matrix:

(4.24)

where

1
1

0

0

0

1

0
1

0

0

0
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These 5 eigenvectors are: qn = —j= and q~ = J—
2T

t i g l f 2 T

and 7 = 2,...,5. This design matrix was first considered by Durbin and Watson

(1950). In this case the DW test is the approximately uniformly most powerful test.

King (1985a) and Dufour and King (1991) among others, used it as an extreme case

in which the OLS residuals from the regression approximate the true disturbances

almost as well as the GLS residuals. We included this design mainly to isolate the

impact from the number of regressors in the model from the structure of the design

matrix. In Chapter 5, we will include a range of other design matrices when we study

the MU estimator based on inverting a significance test.

The numbers of observations used were 20 and 60. The true values of p were

0.95, 0.8, 0.6, 0.4, 0.2, 0, -0.2, -0.4, -0.6, -0.8 and -0.95. As the distribution of p is

invariant to the values of fi and o2, they were set to be one in the simulations. 2000

replications were conducted.
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4.2.4 Results

The bias and risk of the OLS estimator p0LS, the profile likelihood estimator

pmL, the maximum marginal likelihood estimator pMGl and the proposed estimator

pNEW are reported in Table 4.1a and Table 4.1b.

Our results first verify the well-known bias problem associated with

estimation of the autoregressive coefficient. The downward bias of the OLS

estimator is more serious when there are more regressors in the model and/or for

large positive p values. For example, for p = 0.9 and a sample size of 20, the

median biases of p0LS are -0.36 and -0.63 for XI and X2, respectively. The bias

decreases as the sample size increases but is still quite serious for a sample size of

60. It is also revealed that the estimator proposed by Beach and MacKinnon (1978)

CpFML) i s generally less biased than p0LS but the difference is minimal particularly

for a sample size of 20, while the marginal likelihood estimator pMGL is able to
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reduce the bias of pOLS quite significantly especially for XI and a sample size of 60.

But the bias is not completely eliminated. For a sample size of 20 and large positive

p, there is still some room for improvement.

When the sample size is 60, for both design matrices, the proposed estimator,

PNEW* successfully corrected the bias in p0LS. The new estimator is almost exactly

median-unbiased for all p values. For example, when p = 0.9, the median biases of

p0LS are reduced from -0.1 and -0.14 down to zero when using pNEW instead of p0LS

for XI and X2, respectively, while the biases in the marginal likelihood estimator

p are -0.02 and -0.03. For moderate positive and negative p values, the new

estimator does not over-correct the bias of the OLS estimator. The median biases for

all negative p values are essentially 0.

When the sample size is 20, the new estimator also successfully removed the

bias in pOIS for XI, while pFML and pMCL remain quite biased. The bias correction

of the proposed method is quite substantial for large p values. For example, the

median biases of pNEW for p = 0.95, 0.9, and 0.8 are -0.02, -0.02 and 0, respectively;

In contrast, the biases of pOLS in this case are -0.38, -0.36 and -0.28, respectively. We

notice that in this case the biases of pMCL are -0.1, -0.09 and -0.05 while pmL is

essentially as biased as p0Ls. For X2, however, when p falls into the neighbourhood

of 1 (i.e., p> 0.85), although the biases in p0ls and pmL are significantly reduced, a

small bias still remains. For moderate p values, however, pNEW is able to correct the

bias successfully. For example, the median biases of pNEW for p = 0.95, 0.9, and 0.8

are -0.12, -0.07 and -0.01, respectively. In contrast, the biases in p0LS are -0.68, -0.63

and -0.53. The other two estimators, pmL and pMGL, did not correct bias in p0LS

effectively in this case and remain seriously biased.

The remaining bias in the new estimator for X2 when T = 2Q may be caused

by the following problem: we notice that for this design matrix, when p is close to 1,

both the score and its median function become very close to 0 (i.e., almost flat and

very close to the horizontal axis). When we try to solve equation (4.22) for the new
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estimator, the iterative algorithm becomes less reliable. An improved algorithm may

be needed for this case. This problem goes away when the sample size goes up to 60.

Another important feature of the proposed new MU estimator is its much

smaller RMSEs compared with those of other estimators. This advantage is for all

positive p values and for both design matrices. For example, when p is 0.95 and 0.9,

the RMSEs of pNEW are essentially 50% of those of p0LS and pFUL for XI, and less

than 50% for X2, for a sample size of 60. The MU estimator has slightly bigger

RMSEs than other estimators for negative p values, results for which are arguably of

less interest to econometricians than those for positive serial correlation

4.3 Approximately MU Estimation of the Dynamic Linear
Regression Model

4.3.1 Dynamic Linear Regression Model

It has been argued by Dufour and Kiviet (1998), among others, that the linear

regression with AR(1) disturbances is a model usually too simple to capture the real

dynamic nature of the economic time series. Instead, the first-order dynamic linear

regression model (ARX(l)) is a more powerful modelling device which is more

consistent with the data when the relationship is genuinely dynamic (e.g., see also

discussion in Hendry and Mizon, 1978).

Therefore in this section, we develop a MU estimation procedure for the

coefficients of the model:

(4.25)

where y, is the dependent variable (observed at time t), x, is a k x 1 vector of fixed

regressors at time /, fi is a fcxl vector of coefficients, and the disturbances

e = (g, , . . . ,^) ' - N(0,(T2IT). The coefficients y, p and a2 are unknown.
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The first-order dynamic linear regression model is frequently used in

econometric practice. Examples of stun applications, to name a few, include the

studies of real wages and employment by Altonji and Ashenfelter (1980) and Geary

and Kennan (1982), of consumption and income by Hall (1978) and Flavin (1981),

and of aggregate price and output by Froyen and Waud (1984). As pointed out by

Nankervis and Savin (1987) and Kiviet and Dufour (1997), empirical researchers still

largely rely on the usual inference procedures (mainly based on the LS principles), as

they are still asymptotically valid under certain regularity conditions, although the

magnitude of the approximation errors is unknown. Dufour (1996) showed that the

approximation error can be arbitrarily bad on certain subsets of the parameter space.

The only comfort researchers may find is in the thought that the committed error will

get smaller as the sample size gets larger. The relevant question how large a sample

is needed in order to feel confident is usually left unanswered. Monte Carlo evidence

reported in Kiviet (1985) and Nankervis and Savin (1985, 1987 and 1988b) among

others confirmed that the error caused by using the usual inference procedures in

small samples can in fact be quite substantial.

In particular, the existing popular estimators of y, such as the OLS estimator,

the three-pass least square estimator (Taylor and Wilson, 1964), the approximate

MLE and the estimator suggested by Hatanaka (1974) are all biased in small

samples. Attempts have been made to approximate the bias function of the OLS

estimator and to correct the bias by subtracting the estimated bias from the original

estimate, see e.g., Sawa (1978) and Grubb and Symonds (1987). As the bias function

can only be approximated to a certain order (usually T"1 or T'2), these bias

corrections are not exact in small samples.

Kiviet and Phillips (1990, 1992) proposed an exact inference procedure

obtained by applying least squares to an augmented regression model with artificial

regressors introduced. Kiviet and Dufour (1997) and Dufour and Kiviet (1998)

further developed this approach and extended its use to more general models. Exact

similar tests and conservative confidence intervals were developed for y.

Simultaneous inference about y and other regression coefficients were also

considered. But the performance of the point estimator constructed via this approach
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has not been supported by many simulation studies or empirical applications, hence

its small sample bias and efficiency remain unclear. Andrews (1993) conjectured that

a MU estimator can be constructed based on the exact similar test statistic developed

by Kiviet and Phillips (1992), but the idea has not been pursued any further.

The application of the marginal likelihood approach in this model provides a

different way to reduce bias and improve estimation efficiency. The application of

the MGL approach in this model first appeared in Levenbach (1972) and Bellhouse

(1978). The marginal likelihood function was derived based on the maximal

invariant principle similar to the one outlined in Section 4.2.2. Recently, Grose

(1998) and Mahmood (2000) examined marginal likelihood estimation in the

dynamic linear regression model via simulation. They concluded that although the

MGL score is not well-behaved in small samples, the MMGL estimator is less biased

than its counterpart based on the profile likelihood. But the bias is not completely

eliminated. The effectiveness of bias reduction depends on the design matrix and

parameter values.

An important difference when applying the adjustment given by (3.10) to this

model is that, the information about the lagged dependent variable coefficient cannot

be completely isolated from those about the nuisance parameters as in the linear

regression model with AR(1) disturbances. As a result, the distribution of the MMGL

estimator depends on nuisance parameters. As the nuisance parameters cannot be

eliminated by invariance arguments, the adjustment given by (3.10) has to be revised.

4.3.2 Marginal Likelihood Score

In order to derive the marginal likelihood function of y, it is necessary to

make further assumptions about y, so that the distribution of y can be determined.

Following Nankervis and Savin (1985), Inder (1985, 1987) and King (1996), the

stationarity conditions can be stated as:

1. The stability of E(yt) at t- 1 and 2 such that E(y2) = E{yt), and
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2. Var(y.) is the same for all t = l,...,r.

Inder (1985) showed that the above conditions are observationally equivalent to

assuming that yl is generated by

(4.26)

It should be noticed that there are other approaches to defining a distribution for yl

which differ from using the mean-stationarity assumptions given above. For

example, Grose (1998) discussed two other approaches to generating y,, while

Dufour and Kiviet (1998) adopted a more general set of initial conditions which

allows y, to be either fixed or follow an arbitrary distribution.

Thus assuming \y\ < 1, model (4.25) and (4.26) can be written as

)y = Xp+D(y)e (4.27)

where T(y) is the Tx T matrix

T(y) =

0-7)
- 7
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0
1

- 7

0 •
0

1

• •

•. 1

- 7

0
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1

and D = diag(J^y[+r, 1, 1, ..., 1). Equation (4.27) implies that

(4.28)

where

I

i
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(4.28) can then be written as the general linear model

y=X(y)fi+u, u ~ N(0,a2Q(y)). (4.29)

Bellhouse (1978) showed that the marginal likelihood function for y is proportional

to

\XXy)X(yt{y'y-y'X{y){X\y)X{y)rlX\y)y)

f

where

s2 = /{a-i(y)-Q-i(y)X(y)(X(yya-l(y)XW)-iX(y)/a-\y)}y

in which u is the GLS residual vector from the regression of (4.29) assuming

covariance matrix

121 122



Chapter 4. Adjusting Marginal Likelihood Score Equation for MU Estimators

Grose (1998) derived the score function for y based on the log of (430),

which is given by

2{u'Xr{y)p) . (4.3i)

u u

in which

37 dy

dy '

and p=By and fi=By are the OLS and GLS estimators of p respectively, while

u = y- X(y)/3 and u = y-X(y)(i are their corresponding residual vectors.

Grose (1998) showed that the expectation of the marginal likelihood score

for y is not 0 in small samples, i.e., the estimating function (4.31) is not mean-

unbiased. This score is also not information biased in the sense that its variance is not

equal to the information matrix. The small sample deficiencies of the score may lead

to a less-than-ideal MMGL estimator for some design matrices, as reported in Grose

(1998). One possible improvement is to calibrate the score towards mean-

unbiasedness by using corrections such as the one proposed by McCullagh and

Tibshirani (1991) (see also Mahmood (2000)). But this approach is subject to the

criticism that there is a lack of link between mean-unbiasedness of an estimating

equation and mean-unbiasedness of the resulting estimator, as discussed in Chapter

3. We argue that correcting the median bias of the score may be more effective.
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4.3.3 Accounting for Nuisance Parameters

In order to adjust the score equation according to (3.10), we need to find the

median function of Q(y), given by

(4-32)

In Section 4.2, we showed that in the linear regression model with AR(1)

disturbances, the marginal likelihood score in equation (4.12) can be expressed as a

ratio of two quadratic forms in normal random variables, therefore Imhof s (1961)

algorithm can be used to compute the median function exactly. We notice that Q(y)

in (4.31) is the sum of two such ratios plus a constant. Hence it is impossible to use

Imhof s algorithm directly to compute its median function. It might be possible to

derive the characteristic function of the sum of the ratios and numerically invert it to

calculate the median. But it would be computationally costly. The other method is to

approximate the median function via simulation. Our simulation results showed that

the median function (4.32) is seriously non-monotonic in y and it violates the

conditions needed for (3.10) to deliver a unique estimate.

To overcome this difficulty, we slightly revise the proposed method. Instead

of solving equation (3.10) for varying y, i.e.,

Q(y-Y)-med[Q(y\y)\y ~ = 0,

we consider it at a fixed point 7 = TV

Q(y,yQ)-med[Q(y,y0)\y~N(r-l(y)Xp,<J2Q(7))] = 0, (4.33)

which is equivalent to inverting the median function

(4.34)

at the point Q(y,Yo)-
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This revised method admits another interpretation. As Q(y;y0) can be treated

as proportional to the (marginal likelihood based-) LM test for the hypothesis

HQ:y = yQ against Hl:y<yQ (see e.g., Grose (1998)), function (4.34) represents the

median function (50% critical value function) of this test statistic under the null and

the alternative hypotheses depending on y. Therefore the estimator can be regarded

as the result of inverting the median function of the one-sided score test statistic at a

fixed-point y0. This was consistent with the second method of constructing MU

estimators discussed in Chapter 3, which will be our focus in Chapter 5.

If we choose yQ = 0 in (4.31), the score can be simplified as

= const.+
m(e%e) + (m- l)eTy(0)X/7

e e

= const.+: n- l)MTr(Q)X(X/Xr Xf)y
(4.35)

y'My

where e = u(0), M = I-X{XrX)~lX\ L, is the TxT matrix with the left lower-

diagonal elements being 1 and all other elements being 0, and Tr(0) is identical to L,

only except with the top left element being 1 instead of 0.

Different from (4.31), (4.35) is a ratio of two quadratic forms in normal

random variables y plus a constant. Therefore the median function m(y) can be

found by solving

(4.36)

for m{y) using Imhofs (1961) algorithm, where V s a r e t h e eigenvalues of

A - m(y) M, in which

i X'= mMLlM + (m-\)MTr(0)X(<XfXyi X
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and £,-2 are independent chi-square variables with some non-central parameters St
2

depending on f3 and given by

in which P is the orthogonal matrix of eigenvectors of A-m(y)B.

Figure 4.4 presents some median functions m(y) with p set to be vector of

constants for some design matrices with 20 observations. The median functions are

strictly monotonic (and almost linear) for all these designs, indicating that estimating

equation (4.33) will deliver a unique solution.

In the linear regression model with AR(1) disturbances, the marginal

likelihood score (4.12) can be written as a ratio of two quadratic forms in terms of

the disturbances, i.e., M~ N(fi,a2Q.(p)). Hence its median function (4.32) or (4.34)

is invariant to the nuisance parameters p. But the median function of (4.35) will not

be invariant to p, because the second term in the nominator in (4.35) cannot be

transformed into a quadratic form in terms of u (i.e., free of the non-central

parameter that depends on p). Therefore strictly speaking, m(y) should be written as

If p is known, the solution to equation (4.33) is an exactly MU estimator of

y. But in practice, when P is not known, we have to replace P by its consistent

estimator and apply the method iteratively. Therefore as a result, the new estimator

of y will only be approximately MU. This iterative bias-correction towards an

approximately MU estimator is similar to the approach adopted by Andrews and

Chen (1994) and Fair (1996). The practical difficulty when applying the proposed

method is that the median function has to be computed for every different set of

estimated P values. We have designed the following iterative algorithm to save on

computational costs:
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Step L Calculate y0LS and pOLS from (4.25).

Step 2. Use y0LS as the initial value to search for y2, such that

Q0(y) = m- (y2), where m- (•) indicates that the median function

(4.34) is computed with P0LS treated as the true parameter.

Step 3. fi2 is obtained by regressing y-y2y-i on X, where

3L, =()>„ - . 3V-i)'-

Step 4. Go back to Step 2, use 72 as the initial value to search for y3 with f52

used in the median function computation.

Our experience suggests that there is no need to continue the iterations after

Step 4, as the replications after that bring little change to the estimate. So y3 can be

used as the final estimate. In our simulation studies, we also found that the two-

iteration version of the proposed method is at least as fast as the searching algorithm

(such as Secant) used in the ML or MMGL estimation procedures.

4.3.4 Interval Estimation

Unlike in the linear regression model with AR(1) disturbances, in which the

autoregressive parameter is usually the nuisance parameter, the lagged dependent

variable coefficient is more likely to be the parameter of interest in the dynamic

linear regression model. Therefore a confidence interval is often required apart from

point estimation in practice. As the distributions of the estimators are not

approximated very well by asymptotic normal or t distribution in small samples (e.g.,

see Nankervis and Savin, 1985, 1987, 1988b), we construct confidence intervals

based on bootstrap principles. Efron (1985, 1987) outlined several ways of

constructing bootstrap confidence intervals. The most popular ones are the percentile

method and the percentile-f method, see also discussions in Beran (1987), Hall
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(1988, 1994), Efron and Tibshirani (1993), Davidson and Hinkley (1996). Here we

apply the percentile-f method to the OLS estimator and the proposed MU estimator.

Nankervis and Savin (1996) developed a bootstrap version of the t test in a

model with an intercept and a time trend. The method of computing the confidence

intervals in our study is very similar to theirs. First we approximate the distribution

function of the estimator y by generating B bootstrap samples and compute

y[i]5 i = l, ..., B, for each sample via the method described above. These estimates

are then normalised using the estimated mean and standard error SE(y), i.e.,

(4.37)

where the standard error is estimated by the usual bootstrap estimate,

(4.38)

The percentile-f confidence interval is then given by

Pr{y-taSE(y) <y<y+h_aSE{y)}<a, (4.39)

where a is a given confidence level, and lA, l.a/i are the a/2 and (l-«)/2quantiles

of the bootstrap distribution of t.

We would expect that since the small sample bias of y0LS is effectively

corrected by yMU, the bootstrap confidence interval based on the new estimator

should also have better coverage probability than the one based on the OLS

estimator.
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43.5 Experimental Design

We conducted two sets of Monte Carlo studies to examine the small sample

performance of the proposed estimator and compare it with the OLS esitmator. The

first set includes the following design matrices:

X1: An intercept and a linear time trend.

X 3: An intercept, a time trend and an AR(1) regressor with p = 0.8.

XI and X3 have been studied extensively in time series literature and

different methods have been suggested to correct the estimation bias. In particular,

Grubb and Symons (1987) examined X3 and found that the bias of the OLS

estimator depends on the autocorrelation factor in the regressors.

The second set includes two economic time series:

X4: A constant, quarterly Australian Consumer Price Index (CPI) commencing

1959(1) and the same series lagged one quarter.

X5: The first T observations of Durbin and Watson's (1951) example involving

the annual consumption of spirits in the U.K. from 1870 to 1938 which

consists of a constant, annual, data on the price of spirits and household

income.

These two design matrices represent economic data from two different

countries. While X5 is based on annual data, X4 is comprised of quarterly data. The

CPI series in X4 are highly correlated but smoothly evolving. In fact both design

matrices were used in King (1996) and Grose (1998) among other studies.

The sample sizes were set at 20 and 40. The following y values were used:

y = 0.9, 0.8, 0.7, 0.6, 05, 0.4, 0.2, 0, -0.2, - 0 5 ; All results were based on 1000

estimates. For the confidence intervals, the confidence level was set at 90%. In each

replication of the experiment, 200 bootstrap samples were drawn from the DGP

given the estimate of y m to estimate the empirical percentiles of the t statistic. The

coverage probabilities were based on 1000 confidence intervals.
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4.3.6 Results

We first, in Tables 4.2a and 4.2b, report a set of results assuming fi known

and without using the iterative correction proposed in Section 4.3.3. This experiment

was designed to examine the impact of the nuisance parameter p on the effectiveness

of the proposed procedure. The median functions were computed at /?=0. Table

4.2a presents the estimation results for XI, X3 and X4 also assuming /? = 0. The

OLS estimators were found to be seriously downward-biased for these designs,

especially for moderate to large positive y values. In contrast, the new estimator y m

successfully removed the (median-) bias in the OLS estimator completely for all y

values. The risk (i.e., RMSE) of the new estimator is also considerably smaller than

that of the OLS estimator for large y. However, this advantage is superficial as the

new estimator was calculated as if P were known, which gives it an unfair advantage

over the OLS estimator and makes the comparison not meaningful. It nevertheless

showed that with p known, the proposed estimator (the solution to equation (4.33))

is exactly MU. We would expect when the iterative algorithm is used, in which the

true p is replaced by its consistent estimator, the proposed method would at least

produce an approximately MU estimator.

Table 4.2b shows that if the median function computed at one p value is used

in the estimation of a model with different fi values, the results differ. For X5, we

found that the results are somewhat invariant to p. Although the median function

was calculated for /? = 0, the estimates computed for the models generated under

other p values are also almost MU. But this is not the case for some other design

matrices such as XI. If the P value is misspecified, the performance of the estimator

without using the proposed bias-prevention algorithm deteriorates.

Estimation results based on the iterative algorithm assuming /? unknown are

reported in Tables 4.3a - 4.3e. The bias of the OLS estimator varies with the design

matrix as well as the magnitude of y. For many design matrices, it seems the bias is

most serious for moderate positive y (£0.6), a pattern also reported in Grose (1998)
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and Mahmood (2000). For example, for XI and T = 20, y0LS has downward biases

of 0.17 and 0.15 for 7 = 0.4 and 0.2, respectively. For X3 and X5, however, the

biases of yOLS are quite large for all positive and moderate negative /values. For

example, y0LS has downward biases of 0.35 and 0.33 at y = 0.9 and 0.8 for X5 and

T = 20.

The new estimator based on the iterative algorithm effectively corrects the

bias in y0LS for all these design matrices and sample sizes considered. Although the

new estimator is not exactly MU as the one assuming fi known, the remaining biases

are minimal compared with those of yOLS. However, the biases are not completely

removed for large y values for X5 and T = 20. For example, at y = 0.9 and 0.8, y MU

still has a bias of 0.17 and 0.16, respectively. While for X4, the new estimator seems

to over-correct the bias in y0LS for moderate positive y. For example, y MU has an

upward bias of 0.05 and 0.03 at y = 0.6 and 0.4 for this design matrix with 20

observations. But the magnitude of all these remaining biases of y m are by far

smaller than those of y0ls. When the sample size increases to 40, the new estimator

becomes almost exactly MU for all y values for XI (e.g., see Table 4.3b). This

indicates that if the unknown p is replaced by its estimate, the iterative algorithm

produces an approximately MU estimator, and the approximation seems to be fairly

accurate especially for T = 40.

Because of the substitution of f5 by its estimator in the algorithm, we would

expect the new estimator to have a larger standard error, and therefore a larger

RMSE compared with the one assuming /? known. Hence a smaller bias in yMU than

in fous might, to some degree, be offset by this increase in standard error. However,

the RMSE results in Tables 4.3a - 4.3e indicate that the total risk of ym is smaller

than or similar to that of the OLS estimator. For the design matrices and y values

where bias correction is significant, the reduction in RMSE by the new estimator is

also substantial. For example, for X5 and T = 20, the RMSE of y0LS is reduced by

more than 25% at y = 0.9,0.8 and 0.6.

I

I
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As a by-product, we found that the ft estimation results based on the new

algorithm are also superior to those based on the OLS method. The biggest

difference lies in the estimation of the intercept The (median-) bias of the new

estimator is much smaller than that of the OLS estimator almost for all design

matrices. For example, for X3 and T = 20, the new estimator of p is almost

unbiased for y<0.6, while the OLS estimator (especially of the intercept) is

seriously upward biased (see Table 4.3c).

The confidence interval results are reported in Table 4.4. The coverage

probabilities of the percentile-f intervals based on the two estimators were compared.

It is quite apparent that the intervals based on the new estimator have approximately

the correct coverage rate (90%) for all design matrices and y values, while the

intervals based on the OLS estimator have coverage rates typically lower than the

nominal level, especially for positive y values. This provides a good example of

improving the coverage properties of the confidence interval by correcting the bias in

the point estimator. We would expect that the bias correction to the confidence

interval suggested by Efron (1987, 1988) should lead to improved accuracy similar to

those achieved by the proposed method.

4.4 Concluding Remarks

This chapter provides two examples of applying the method of constructing

MU estimators by adjusting the estimating equations. The adjustment to the marginal

likelihood score in the linear regression model with AR(1) disturbances can be

computed exactly using Imhof's (1961) algorithm, and the new estimator is shown to

be almost free of bias in most cases. In the dynamic linear regression model, the

median function of the marginal likelihood score is not invariant to nuisance

parameters, so we have to substitute these nuisance parameters by their consistent

estimators and adjust the estimating equations iteratively. As a result, the new

estimator is approximately MU. It was found that the remaining bias in the new

estimator is minimal in most cases compared with that of the OLS estimator. The

RMSE of the new estimator is generally smaller than that of the OLS estimator
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especially for positive parameter values. The confidence intervals based on the new

estimator were shown to have better coverage probabilities than the ones based on

the OLS estimator.

These two examples lead us to believe that correcting the median bias in an

estimator by adjusting the estimating equations towards median-unbiasedness can be

effective. The proposed method does not require knowledge of the form of the bias

function. Our results show that the bias correction can be quite accurate and the

overall risk of the new estimator tends to be smaller than that of the biased

estimators. The drawback of the proposed method lies in the difficulty of computing

the median function, and therefore the difficulty in examining criteria given in

Lemma 3.3.3, which are essential for the adjusted estimating equations to deliver

unique estimates. In Chapter 6, the estimators derived in this chapter will be used as

inputs into hypothesis testing and forecasting procedures.

Although the MU estimator based on adjusting the marginal likelihood score

equation was shown to work well in the examples we examined, we are going to

change our focus in Chapter 5 to the second approach we developed in Chapter 3 for

constructing MU estimators. This is for two reasons: The first is that the likelihood

function and the scores are non-standard when the errors follow a random walk

process. The limiting distribution of the marginal likelihood score in this case is not

clear. Therefore it is not easy to extend the first method to cover the interesting case

of a unit root. The second reason is that the computation burden of this approach is

quite heavy and the convergence of the iterative procedure developed in Section 3.3

can be slow for some design matrices. Therefore in the next chapter, we examine the

second approach to constructing MU estimators proposed in Chapter 3 - inverting

the median function of a significance test statistic.

Table 4.1a
Medians and RMSEs of pOLS, pFML, pMML and p^ in the Linear Regression with

AR(1) Disturbances for Design Matrix XI

r=20 r=6o
POLS PFML PMML POLS PFML PMML

0.950 0.576 0.602 0.858 0.931
(0.421) (0.396) (0.213) (0.187)

0.900 0.539 0.579 0.813 0.878
(0.393) (0.361) (0.213) (0.193)

0.800 0.517 0.531 0.748 0.802
(0.321) (0.301) (0.211) (0.205)

0.600 0.352 0.370 0.546 0.598
(0.277) (0.271) (0.222) (0.232)

0.400 0.209 0.214 0.368 0.393
(0.239) (0.241) (0.225) (0.241)

0.200 0.055 0.056
(0.208) (0.211)

0.000 -0.108 -0.112
(0.194) (0.198)

-0.200 -0.270 -0.276
(0.171) (0.175)

-0.400 -0.446 -0.450
(0.156) (0.159)

-0.600 -0.611
(0.141)

-0.800 -0.778
(0.145)

-0.900 -0.871
(0.097)

-0.950 -0.916
(0.082)

-0.617
(0.140)

-0.792
(0.112)

-0.885
(0.086)

-0.932
(0.068)

0.187 0.201
(0.206) (0.221)

-0.001 0.001
(0.200) (0.212)

-0.191 -0.198
(0.183) (0.193)

-0.385 -0.400
(0.172) (0.180)

-0.574 -0.597
(0.158) (0.162)

-0.769 -0.797
(0.129) (0.127)

-0.874 -0.899
(0.098) (0.094)

-0.924 -0.945
(0.078) (0.087)

0.831 0.844 0.S24 0.953
(0.134) (0.124) (0.078) (0.073)

0.802 0.811 0.882 0.903
(0.116) (0.110) (0.082) (0.083)

0.757 0.717 0.781 0.800
(0.110) (0.107) (0.087) (0.090)

0.529 0.531 0.587 0.598
(0.106) (0.107) (0.096) (0.097)

0.348 0.351 0.398 0.400
(0.107) (0.107) (0.102) (0.104)

0.146 0.145 0.186 0.199
(0.106) (0.106) (0.102) (0.104)

-0.035 -0.035 -0.001 -0.000
(0.102) (0.102) (0.101) (0.103)

-0.223 -0.225 -0.198 -0.200
(0.100) (0.101) (0.102) (0.104)

-0.413 -0.414 -0.394 -0.400
(0.092) (0.092) (0.094) (0.096)

-0.596 -0.597 -0.583 -0.599
(0.082) (0.080) (0.084) (0.084)

-0.792 -0.792 -0.785 -0.796
(0.063) (0.061) (0.064) (0.063)

-0.887 -0.891 -0.887 -0.899
(0.052) (0.050) (0.052) (0.051)

-0.940 -0.942 -0.940 -0.952
(0.039) (0.035) (0.037) (0.035)

Notes: RMSEs are reported in the brackets beneath the medians.
All experiments are based on 2000 replications.
The MMGL estimates were computed via th"; Constrained Optimization
module in GAUSS.
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Table 4.1b
Medians and RMSEs of p0LS, f)mL, pMML and pnew in the Linear Regression with

AR(1) Disturbances for Design Matrix X2

-—— T = 60

POLS 'FML PMML POLS PFML 'MML

0.950

0.900

0.800

0.600

0.400

0.200

0.000

-0.200

-0.400

-0.600

-0.800

-0.900

-0.950

0.274
(0.701)

0.268
(0.649)

0.256
(0.568)

0.159
(0.457)

0.055
(0.364)

-0.078
(0.305)

-0.202
(0.248)

-0.335
(0.201)

-0.485
(0.177)

-0.647
(0.158)

-0.798
(0.118)

-0.880
(0.106)

-0.928
(0.091)

0.304 0.757 0.826
(0.667) (0.310) (0.281)

0.303
(0.621)

0.281
(0.544)

0.170
(0.448)

0.060
(0.366)

-0.083
(0.314)

-0.223
(0.262)

-0.366
(0.218)

-0.508
(0.179)

-0.665
(0.148)

-0.822
(0.107)

-0.902
(0.079)

-0.944
(0.064)

0.740
(0.297)

0.717
(0.299)

0.529
(0.307)

0.365
(0.289)

0.173
(0.271)

-0.013
(0.250)

-0.185
(0.223)

-0.372
(0.201)

-0.574
(0.181)

-0.768
(0.136)

-0.869
(0.105)

-0.924
(0.087)

0.829
(0.270)

0.792
(0.283)

0.588
(0.309)

0.405
(0.306)

0.197
(0.292)

-0.006
(0.268)

-0.199
(0.241)

-0.389
(0.213)

-0.598
(0.188)

-0.799
(0.135)

-0.899
(0.097)

-0.948
(0.076)

0.773 0.805 0.918 0.956
(0.190) (0.165) (0.089) (0.080)

0.746 0.765 0.874 0.903
(0.170) (0.150) (0.095) (0.094)

0.671 0.683 0.783 0.805
(0.148) (0.139) (0.102) (0.106)

0.488 0.497 0.586 0.600
(0.136) (0.131) (0.102) (0.104)

0.317 0.320 0.401 0.410
(0.123) (0.122) (0.108) (0.110)

0.123 0.123 0.193 0.198
(0.125) (0.125) (0.114) (0.116)

-0.060 -0.060 -0.002 -0.001
(0.115) (0.116) (0.110) (0.112)

-0.253 -0.253 -0.206 -0.209
(0.111) (0.112) (0.110) (0.112)

-0.429 -0.431 -0.394 -0.400
(0.094) (0.094) (0.097) (0.099)

-0.611 -0.613 -0.588 -0.597
(0.081) (0.081) (0.086) (0.087)

-0.797 -0801 -0787 -0.799
(0.060) (0.060) (0.064) (0.064)

-0.893 -0.897 -0.889 -0.902
(0.050) (0.046) (0.050) (0.049)

-0.940 -0.945 -0.941 -0.951
(0.039) (0.035) (0.038) (0.037)

Notes: RMSEs are reported in the brackets beneath the medians.
All experiments are based on 2000 replications.
The MMGL estimates were computed via the Constrained Optimization
module in GAUSS.
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Figure 4.4
Median Functions of the MGL Scores Evaluated at 0 (&(/)) for the Dynamic

Linear Regression Model Assuming p Known

, r=20, £= X3, T = 20,£= (25,05,05)'
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7

0.90

0.80

0.60

0.40

0.20

0.00

XI

7 OLS

0.55

(0.43)

0.50

(0.39)

0.37

(0.34)

0.22

(0.30)

0.05

(0.27)

-0.11

(0.24)

7 MU

0.90

(0.28)

0.79

(0.28)

0.59

(0.30)

0.41

(0.30)

0.19

(0.28)

0.00

(0.26)

7 OLS

0.52

(0.47)

0.45

(0.44)

0.31

(0.39)

0.16

(0.34)

0 00

(0.30)

-0.16

(0.27)

X3

7 MU

0.90

(0.27)

0.80

(0.28)

0.61

(0.30)

0.40

(0.30)

0.20

(0.29)

-0.01

(0.28)

X4

7 OLS

0.56

(0.43)

0.50

(0.39)

0.36

(0.35)

0.21

(0.31)

0.05

(0.28)

-0.11

(0.26)

7 MU

0.89

(0.28)

0.79

(0.28)

0.60

(0.31)

0.40

(0.31)

0.19

(0.30)

0.00

(0.29)

Notes: All experiments are based on 2000 replications.
RMSE's are reported in the brackets beneath the medians.

Table 4.2b
Medians and RMSEs of y0LS and y MU in the Dynamic Linear Regression

Assuming j3 Known, for Design Matrix X5; T = 20

=(0,0,0)'

7 OLS MU 7 OLS 7 MU

£ = (25,0.1,0.01)'

7OLS 7 MU

0.90 0.57 0.89

(0.45) (0.28)

0.80 0.50 0.80

(0.46) (0.29)

0.60 0.33 0.60

(0.38) (0.31)

0.40 0.17 0.39

(0.34) (0.30)

0.20 0.02 0.20

(0.30) (0.29)

0.00 -0.14 0.00

(0.27) (0.28)

0.56 0.90

(0.45) (0.29)

. 0.50 0.79

(0.42) (0.29)

0.34 0.59

(0.38) (0.31)

0.18 0.40

(0.34) (0.31)

0.00 0.19

(0.30) (0.29)

-0.15 -0.01

(0.26) (0.28)

0.56 0.89

(0.45) (0.30)

0.50 0.79

(0.42) (0.29)

0.34 0.59

(0.38) (0.31)

0.18 0.39

(0.34) (0.31)

0.00 0.19

(0.30) (0.29)

-0.15 -0.01

(0.26) (0.28)

Notes: All experiments are based on 2000 replications.
RMSE's are reported in the brackets beneath the medians.
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Table 4.3a
Medians, Means and RMSEs of y 0LS and y m in the Dynamic Linear

Regression Assuming p Unknown, for Design Matrix XI; T = 20, /?= (1,1)'

/Estimation Results

7

0.90
0.80
0.60
0.40
0.20
0.10
0.00
-0.10
-0.20
-0.40
-0.60
-0.80

7

0.90
0.80
0.60
0.40
0.20
0.10
0.00
-0.10
-0.20
-0.40
-0.60
-0.80

Median

y OLS y MV

0.58 0.84
0.55 0.75
0.42 0.56
0.23 0.38
0.05 0.19
-0.01 0.12
-0.12 -0.02
-0.19 -0.11
-0.25 -0.18
-0.45 -0.40
-0.61 -0.60
-0.79 -0.80

P

fit

2.009
1.948
2.037
2.181
2.164
2.098
2.101
2.086
2.058
2.000
1.965
1.974

Mean

y OLS

0.56
0.54
0.41
0.22
0.05
-0.01
-0.11
-0.19
-0.25
-0.43
-0.59
-0.76

y MV

0.82
0.75
0.55
0.37
0.18
0.11
-0.01
-0.10
-0.18
-0.38
-0.57
-0.76

P Estimation Results (Median)

OLS

A

1.080
1.215
1.453
1.288
1.182
1.117
1.110
1.081
1.044
1.024
0.998
0.978

A

0.987
0.731
0.878
1.003
1.008
0.994
0.991
0.998
1.004
0.967
0.961
0.9P2

RMSE

7'OLS

0.43
0.39
0.27
0.28
0.27
0.25
0.25
0.23
0.22
0.20
0.18
0.15

PNEW

y MV

0.30
0.28
0.15
0.22
0.25
0.26
0.26
0.25
0.25
0.23
0.22
0.18

A

1.015
1.219
1.113
1.045
1.028
0.989
1.008
1.000
0.981
0.990
0.984
0.979

Notes: All experiments are based on 1000 replications.
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Table 4.3b
Medians, Means and RMSEs of yOLS and y MU in the Dynamic Linear

Regression Assuming p Unknown, for Design Matrix X1; T = 40, p = (1,1)'

y Estimation Results

y

0.90
0.80

0.60

0.40

0.20

0.10
0.00

-0.10
-0.20
-0.40
-0.60

-0.80

y

0.9
0.8
0.6
0.4
0.2

0.1
0.0
-0.1
-0.2
-0.4
-0.6
-0.8

Median

y OLS y MV

0.69 0.89
0.65 0.79

0.51 0.59
0.31 0.40

0.12 0.19
0.03 0.09
-0.06 0.00

-0.15 -0.10
-0.23 -0.19
-0.42 -0.40

-0.60 -0.60

-0.79 -0.80

Mean

y OLS

0.69
0.67

0.50
0.30
0.12
0.04
-0.06

-0.15

-0.23
-0.41

-0.59
-0.77

y MV

0.89
0.79
0.58

0.39

0.19
0.10
0.00
-0.10

-0.19
-0.39
-0.58

-0.78

P Estimation Results (Median)

POLS

A

1.911
1.860
1.956
2.071
2.081
2.074
2.049
2.024
2.035
2.019
2.007
1.991

A

1.028
1.106
1.253
1.159
1.100
1.070
1.056
1.042
1.023
1.007
0.994
0.984

h

0.706
0.915
0.941
0.991
1.001
1.010
0.993
0.978
1.006
1.007
1.011
1.007

RMSE

7 OLS

0.28
0.26
0.17
0.18

0.18
0.17
0.17

0.16
0.15

0.14
0.13

0.11

PNEW

7 MV

0.2?
0.16
0.11
0.15

0.17
0.17
0.17
0.16
0.17

0.16

0.14
0.12

A

1.080
1.036
1.047
1.020
1.013
1.001
1.001
0.999
0.990
0.991
0.989
0.988

Notes: All experiments are based on 1000 replications



Table 43c
Medians, Means and RMSEs of yOLS and y MU in the Dynamic Linear

Regression Assuming j3 Unknown, for Design Matrix X3; T=20,
P= (25,0.5,0.5)'

y Estimation Results

y

0.90
0.80
0.60
0.40
0.20
0.10
0.00
-0.10
-0.20
-0.40
-0.60
-0.80

y

0.9
0.8
0.6
0.4
0.2
0.1
0.0
-0.1
-0.2
-0.4
-0.6
-0.8

Median

7OLS

0.786
0.646
0.310
0.156
0.021
-0.054
-0.128
-0.199
-0.282
-0.443
-0.616
-0.789

92.334
63.186
45.235
36.647
31.599
30.468
28.730
27.976
26.253
27.632
32.200
28.640

7 MU

0.897
0.797
0.561
0.381
0.188
0.082
0.015
-0.098
-0.200
-0.394
-0.596
-0.802

Mean

7 ois

0.757
0.603
0.292
0.144
0.020
-0.061
-0.113
-0.189
-0.270
-0.429
-0.595
-0.761

P Estimation Results

POLS

K
0.836
1.013
0.797
0.657
0.564
0.542
0.515
0.496
0.448
0.624
0.511
0.509

0.057
0.154
0.258
0.255
0.212
0.200
0.205
0.169
0.181
0.183
0.196
0.266

y MU

0.890
0.791
0.573
0.382
0.198
0.079
0.009

-0.089
-0.191
-0.376
-0.576
-0.767

(Median)

65.431
39.854
26.664
25.722
25.058
25.599
24.747
24.738
27.567
25.868
26.768
25.273

RMSE

y'ou

0.284
0.351
0.385
0.377
0.319
0.302
0.284
0.269
0.221
0.194
0.173
0.155

PNEW

0.598
0.613
0.528
0.515
0.501
0.509
0.498
0.496
0.500
0.503
0.502
0.502

y MU

0.206
0.194
0.220
0.270
0.259
0.242
0.256
0.251
0.246
0.228
0.213
0.193

K
0.226
0.413
0.494
0.517
0.505
0.495
0.514
0.504
0.504
0.501
0.501
0.501

Notes: All experiments are based on 1000 replications.
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Table 43d
Medians, Means and RMSEs of y0LS and yMU in the Dynamic Linear

Regression Assuming p Unknown, for Design Matrix X4; T = 20,p= (1,1,1)'

y Estimation Results

y

0.90
0.80
0.60
0.40
0.20
0.10
0.00
-0.10
-0.20
-0.40
-0.60
-0.80

y

0.90
0.80
0.60
0.40
0.20
0.10
0.00
-0.10
-0.20
-0.40
-0.60
-0.80

Median

7 OLS

0.725
0.615
0.480
0.220

0.000

-0.050

-0.150

-0.230

-0.310

-0.490

-0.630

-0.800

A
8.574
9.012
10.798
9.392
7.663
8.593
8.519
7.980
7.566
8.222
8.193
7.425

7 MU

0.865
0.820
0.630
0.430

0.210

0.110

0.000

-0.090

-0.200

-0.400

-0.570

-0.790

Mean

7 OLS

0.710
0.592
0.464
0.200

-0.010

-0.050

-0.140

-0.220

-0.300

-0.470

-0.610

-0.770

7 MU

0.826
0.760
0.570
0.420

0.190

0.110

0.000

-0.080

-0.180

-0.380

-0.550

-0.760

P Estimation Results (Median)

POLS

A

2.453
2.433
2.320
2.489
2.643
2.583
2.617
2.613
2.622
2.537
2.446
2.477

0>

-0.522
-0.435
0.035
0.083
-0.193
-0.326
-0.413
-0.463
-0.531
-0.524
-0.513
-0.579

Pi

-0.114
0.513
0.003
0.750
0.393
1.322
1.268
0.842
0.556
1.395
1.466
0.415

RMSE

7 OLS

0.240
0.260
0.230
0.300

0.320

0.280

0.280

0.270

0.250

0.220

0.190

0.150

PNEW

K
1.018
1.015
1.116
1.031
0.996
0.991
1.017
1.014
1.028
0.986
G.96
1.021

y MU

0.210
0.180
0.170
0.180

0.230

0.240

0.240

0.250

0.250

0.230

0.230

0.190

h
0.967
1.006
0.726
0.895
1.036
0.984
0.977
0.956
0.948
0.981
0.974
0.937

Notes: All experiments are based on 1000 replications.
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Table 4.3e
Medians, Means and RMSEs of y0LS and y m in the Dynamic Linear

Regression Assuming fi Unknown, for Design Matrix X5; T = 20, p = (1,1,1)'

/Estimation Results

7

0.9
0.8
0.6
0.4
0.2
0.1

0
-0.1
-0.2
-0.4
-0.6
-0.8

7

0.9
0.8
0.6
0.4
0.2
0.1
0.0
-0.1
-0.2
-0.4
-0.6
-0.8

Median

7OLS

0.553
0.470
0.317
0.175
0.010
-0.050
-0.163
-0.229
-0.308
-0.475
-0.637
-0.800

13.924
4.953
1.704
1.496
0.650
1.768
0.805
0.258
1.164
0.610
0.761
7.425

7 MU

0.731
0.636
0.486
0.359
0.193
0.108
-0.024
-0.105
-0.208
-0.406
-0.595
-0.790

Mean

7 OLS

0.524
0.445
0.310
0.171
0.012
-0.046
-0.154
-0.218
-0.297
-0.457
-0.603
-0.770

7 MU

0.687
0.625
0.492
0.345
0.175
0.104
-0.017
-0.093
-0.192
-0.382
-0.561
-0.760

P Estimation Results (Median)

POLS

A

3.283
2.084
2.354
1.260
1.550
0.840
2.185
1.377
1.632
1.223
2.112
2.477

1.316
2.269
1.151
1.440
1.246
1.169
0.372
1.301
0.525
1.099
0.085
-0.579

Px

8.443
2.984
1.218
1.240
0.662
1.735
0.849
0.513
1.248
0.787
1.001
0.415

RMSE

7 OLS

0.454
0.444
0.38
0.339
0.299
0.278
0.272
0.245
0.233
0.202
0.179
0.150

PNEW

ft*

2.041
1.333
1.174
0.660
0.982
0.643
1.632
1.047
0.951
0.536
1.157
1.021

y MU

0.333
0.318
0.287
0.281
0.266
0.266
0.262
0.255
0.255
0.235
0.226
0.190

h
1.349
1.798
1.390
1.417
1.265
0.952
0.524
1.191
0.899
1.515
0.787
0.937

Notes: All experiments are based on 1000 replications.

Table 4.4
Coverage Probabilities of the Bootstrap Confidence Intervals at the 90%

Confidence Level Based on y0LS and y m in the Dynamic Linear Regression
Model for Design Matrices XI, X4, X5

O8 06 04 O2 Ol 0

OLS 0.880 0.823 0.718 0.779 0.820 0.854 0.875 0.862 0.902 0.899 0.895 0.856

MU 0.894 0.890 0.878 0.896 0.888 0.903 0.896 0.901 0.895 0.905 0.884 0.856

Xl,T = 40

OLS 0.882 0.852 0.777 0.830 0.850 0.855 0.871 0.888 0.899 0.912 0.894 0.846

MU 0.880 0.898 0.882 0.900 0.898 0.899 0.902 0.896 0.903 0.898 0.886 0.865

X4,T = 20

OLS 0.904 0.888 0.786 0.741 0.789 0.831 0.818 0.849 0.877 0.900 0.907 0.857

MU 0.903 0.895 0.908 0.900 0.894 0.899 0.900 0.898 0.894 0.896 0.877 0.833

X5, 7 = 20

OLS 0.504 0.572 0.662 0.727 0.805 0.840 0.839 0.844 0.872 0.897 0.890 0.876

MU 0.769 0.870 0.894 0.898 0.890 0.901 0.903 0.900 0.891 0.887 0.869 0.872
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Chapter 5

Inverting Point Optimal Invariant Tests for Median-
unbiased Estimators

5.1 Introduction

In Chapter 4, we constructed a median-unbiased (MU) estimator for the linear

regression model with stationary AR(1) disturbances by adjusting the marginal

likelihood score equation. In this chapter, we extend the model to include the

important case of random walk disturbances. We apply the second method discussed

in Chapter 3, i.e., constructing a MU estimator by inverting the median function of a

significance test statistic to this model. Some new MU estimators of the

autoregressive parameter are developed and their small sample biases and risks are

compared with those of the conventional estimators via Monte Carlo simulations.

Because random walk disturbances are included in the model specification,

the autoregressive coefficient is now restricted to a closed set [-1,1]. In this case,

global mean-unbiasedness is not achievable as the mean of any estimator would bias

towards the boundary for large positive or negative parameter values (Andrews,

1993). Therefore median-unbiasedness becomes a very important measure of

impartiality of the estimators, see discussions in Andrews (1993), Stocks (1994),

Fuller (1996), and Maddala et al. (1998). On the other hand, due to the discontinuous

likelihood function when p moves from the stationary region to its boundary, many

other bias-correction methods may not work over the whole parameter space. We

show that the proposed method is not affected by this problem and it produces a MU

estimator for all values in the parameter space.

When applying this method, there are many different test statistics that we

can choose to invert. They can either be tests for serial correlation or tests for random

walk disturbances. It is well known that when constructing a confidence interval by

inverting a test statistic, the risk of the interval depends on the power of the test. We
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attempt to use this model to Illustrate a similar relationship between the small sample

power properties of a test and the small sample performance of the resulting MU

estimator.

In particular, we point out that Andrews' (1993) estimator breaks down for

some design matrices due to the non-monotonic median function of the OLS

estimator. We propose to invert the point optimal invariant (POI) test instead, as a

remedy to this problem. After the exact median functions of different test statistics

are examined via Imhof s (1961) algorithm, it was found that the POI test statistic

has a monotonic median function for positive parameter values and for all design

matrices considered, while other tests do not. Therefore the POI test statistic is

recommended for constructing a MU estimator in this model.

The POI test can have non-monotonic power for certain design matrices as

p-$-\ when testing ihe random walk disturbance hypothesis. We derive the

conditions for the test to have non-monotonic power, and hence a non-monotonic

median function. In this situation, we suggest using a median-envelope that is based

on the grid inversion method developed in Chapter 3, in place of the median function

of a single POI test. It is shown that the median-envelope approach can overcome the

difficulty and produce reliable estimates. We also identify an easy-to-use criterion of

when to use which method given a design matrix.

The chapter is organised as follows. In Section 5.2, we specify the initial

conditions of the model and set out the design matrices in our study. In Section 5.3,

we point out the problem that Andrews' estimator may suffer from. By examining

the median functions of several tests, we show that these tests can also encounter the

same problem. In Section 5.4, we study the small-sample power properties of POI

tests and derive the conditions for them to have non-monotonic power curves. We

also introduce the concept of the median-envelope. In Section 5.5, we compare the

performance of different estimators based on different test statistics and disclose the

relationship between the power of a test and the property of the resulting estimator.

In Section 5.6, we examine the robustness of the proposed estimator to non-normal

errors. Tne chapter ends with some concluding remarks in Section 5.7.
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5.2 Model Specification

The model of concern in this chapter is essentially the same as the one in

Section 4.1, except that we now need to specify a different initial condition for the

random walk case. We restate the model here,

yt=x'tP+ut, (t = l,...,T)

u, = put_x +ef,et iid N(0,<72),

where y, is the dependent variable (observed at time t), x. is a k X1 vector of fixed

regressors, p is a k x 1 vector of fixed coefficients, and ut is a random disturbance.

The coefficients ft, p and o2 are unknown.

The initial condition plays an important role in studying inference procedures

in random walk disturbances models. Methods that avoid the problem by discarding

the first observation or condition on the first observation may cause a loss of

efficiency in the estimation as discussed in Beach and MacKinnon (1978). On the

other hand, a fixed starting point, if chosen too far away from the deterministic trend

line, might have an adverse effect on the finite sample results of the estimation and

testing in the unit root regression, see for example Pantula et al. (1994) for a

discussion. Therefore we do not restrict the initial error to be a constant.

When specifying the initial conditions, one would expect the distribution of

the estimators of concern to have a smooth transition when p moves from the

stationary region to its boundary. The most popular choices of initial conditions are

the following two sets:

Assumption 1: uQ~N[0,<j2/(\-p2)] if |p| < 1, and

Assumption 2.7: w0 is an arbitrary constant or with an arbitrary distribution

which is independent of £,,..., £T if \p\ - 1, or
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Assumption 2.2: if jp| = l, UQ~N(0,d2) and independent of £,,...,eT , where

d is an unknown constant.

Andrews (1993), Hansen (1999) and many others used assumption 1 and 2.1,

while Berenblut and Webb (1973), Dufour (1990) and Dufour and King (1991),

among others used assumption 1 and assumption 2.2. In this chapter, we try to be

consistent with Dufour and King (1991) and choose assumption 1 and 2.2, in order to

use some of their results about POI tests in our study. This set of assumptions is more

restrictive than 2.1, bu; ihe calculation of the exact distributions in our study requires

the specification of the distribution of the start-up value. However, in Section 5.6, we

will show that the estimation procedures developed in this chapter are robust to error

misspecifications and therefore the actual distribution of the initial error is not

crucial.

It is also well known that the small sample performance of the estimators and

tests depend on the number of regressors and choice of regressors. We attempt to

include a range of design matrices that cover most of the important cases considered

in the previous studies in terms of estimation bias and power of tests. In our study,

we choose 8 different design matrices, as representatives of typical economic time

series. Throughout this chapter and Chapter (5, we will refer to them frequently,

therefore we specify them here. These design matrices can be classified into two sets.

The aim of the first set is to examine the possible extremes of differences in

power between the DW test and the POI test, in order to detect the impact of this

difference on the performance of the resulting MU estimator. We would expect that

in those design matrices that favour the POI test in terms of power should also favour

the MU estimator based on the POI test statistics in terms of unbiasedness and

efficiency. This set includes the following 5 Txk design matrices with

T = 20, 40, 60 and k = 2, 3, 4, 5:

XI: An intercept and a linear time trend. For stationary serial correlation

testing, the POI test does not have a clear power advantage over the DW test for this

design. We include it in order to compare the proposed MU estimator with Andrews'
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estimator and other bias-reduced estimators. It also allows us to apply the proposed

new estimator in testing for a unit root in Chapter 6.

X2: An intercept, a linear trend and a stationary A/?(l) regressor. The

autoregression coefficient in the third regressor is set at 0.8.

X3: An intercept, a linear trend and a random walk regressor. This design

mauix and X2 are frequently encountered by economic researchers. They have

also been used in studying the estimation and testing of p, for example, by Spitzer

(1979), Park and Mitchel (1981), Nankervis and Savin (1987) and Atukorala (2000).

XI& X8: Watson's X matrix with 3 and 5 regressors respectively. The

regressors are a,, (a,+ar)/-s/2, ... , (ak+aT_k+2)/\j2, where ax,...,aT are the

eigenvectors corresponding to the eigenvalues of Al (given by (4.24)) arranged in

ascending order. This design matrix is a well known extreme case in which the OLS

residuals are poor estimates of the real disturbances and the DW test has poor small

sample powers compared with those of the POI tests (e.g., see King, 1985a). These

regressors were utilised in the Monte Carlo studies by King (1985a), Kramer and

Ziesel (1990), Dufour and King (1991) and Bartels (1992) among others to

investigate the small-sample properties of the autocorrelation tests in the linear

regression model, and by King (1996) and Goh and King (1999) to investigate tests

on the lagged dependent variable in the linear dynamic regression model.

The second set of design matrices are comprised of some typical economic

data. All series are quarterly data that are associated with various seasonality

features. These features may have a big impact on the performance of estimators and

hypothesis tests.

X4: A constant dummy, the quarterly Australian Consumer Price Index

(ACPI) commencing 1959(1) and the same index lagged one quarter up to k-2

quarters as regressors.
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X5: A constant dummy, quarterly Australian private capital movements and

quarterly Australian Government capital movements commencing 1968(1) and the

government capital movement lagged one quarter.

X6: X5 with quarterly Australian retail trade as an additional regressor.

Among these 3 designs, the quarterly ACPI is a weakly seasonal series while

the two capital movement series are strongly seasonal with two seasonal peaks per

year. The capital movement series also exhibit some large fluctuations, while the

quaiterly Australian retail trade series is much more well behaved, showing moderate

seasonally. The seasonal patterns of the regressors of X 6 are not too distant from

those of the 'seasonal' components of Waston's X matrix.

5.3 Which Test Statistic to Invert

5.3.1 Andrews' Estimator and Its Problem

Andrews (1993) proposed a MU estimator for the first-order

autoregressive/unit root model with a drift and/or a time trend by inverting the

median function of the OLS estimator, i.e.

PA=m~ (POLS), (5.1)

where

T IT

1=2 I r=2
(5.2)

(5-3)

and

m(p) = median[pOLS\u ~ N(0,<J (5.4)
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Andrews' method was originally designed for the simple autoregessive model

without any exogenous regressors, But if extra regressors are included in the model,

similar procedure can be used with the observed series in the calculation replaced by

the least squares residuals. The estimator in this case is the one-step Cochrane-Orcutt

estimator, but we still refer to it as p0LS as it involves the OLS regression of the

residuals. As pointed out by MacKinnon and Smith (1998), estimator (5.3) can be

seen as inverting the median function of the non-pivotized t test, i.e., p0LS —p0.

The median function m(p) can be computed exactly using algorithms such as

Imhof (1961), as we can write the OLS estimator as a ratio of two quadratic forms in

terms of the normal errors:

2 / 2

• u'M'AMu/u'M'BMu

•• e'R'M'AMReje'R'M'BMRe (5.5)

where

0

K

0
•

...

"••
0

X

0

0

B =

0
0

;
0

0
1

...

...

• • •

0

0

:
0
1

(5.8)

0

1
(5-9)

Andrews (1993) conjectured that his method could be applied to the models

with exogenous regressors. Now we show that his method can break down for some

design matrices. As a counter example, consider Watson's X matrix: XI and X8.
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Figure 5.1 shows that the median functions of the OLS estimators are seriously non-

monotonic for both positive and negative p values. In particular, if we apply

Andrews' method here for Watson's X matrix with 3 regressors and a sample size of

20, and if the original OLS estimate is pOLS= 0.2, say, then Andrews' MU estimator

pA = m~\p0ls) can either be 0.5 or 0.9, as shown in Figure 5.1. Based on the sample

information, it would be impossible to choose one from these two estimates. This

shows that Andrews' estimator is inapplicable in this circumstance. The median

functions of the OLS estimator for different sample sizes and different numbers of

regressors of Waston'3 X matrix are also presented in Figure 5.1. For a sample size

of 60, the median function is still not monotonic.

Figure 5.1 Computed Median Functions of p0LS for Watson's X Matrix
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estimator is just the 50% critical value function of the test statistic p—p, it is natu» J

to link the non-monotonicity of the median function to the non-monotonic power

curve of this test (the unpivotized version of the t test). For Watson's X matrix and

X6, the power curve of this test drops in the neighbourhood of both p = \ and

p = -1 - On the other hand, for design matrices such as XA and X5, the test lacks in

power for large positive p. That is why the median function for these design

matrices, though still monotonic, goes flat when p goes to 1. We revisit this convex

curvature of the median function in Section 5.5 and relate it to the performance of

Andrews' estimator for different design matrices.

Figure 5.2 Computed Median Functions of pGls for X5 and X6, T = 20, 40
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The median functions of the OLS estimator for some other design matrices

are presented in Figure 5.2. While the median function is monotonic for design

matrices XI, X2, X3, X4 and X5, it is also non-monotonic on both the positive and

negative side for design matrix X 6 and for T = 20, 40. Another important feature is

that unlike XI, with just an intercept and a time trend as regressors, for which the

median function is almost linear, for design matrices X4, X5 and X6, the median

function bends downwards when p is close to 1. As the median function of the OLS
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The non-monotonic median function associated with the OLS estimator leads

us to examine other available tests and look for one that has a monotonic median

function (or equivalently, power curve) for small samples and for all design matrices.
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5.3.2 Median Functions of Different Tests

When we construct a MU estimator of p by inverting a test statistic at its

50% significance level, the test can either be a test for serial correlation (testing

H0:p = 0 against autocorrelation alternatives) or a test for random walk disturbances

(testing H0:p=l against stationary alternatives). There is a large literature on these

tests. For a thorough review on testing for serial correlation, see King (1987c), and

for a complete literature survey on unit root testing, see Phillips and Xiao (1999).

Eased on Theorem 3.3.1, only test statistics with a monotonic median function can

be inverted at a fixed point. Apart from this criterion, ease of computation of the

median function can also be an attractive feature. Many of these tests can be

expressed as quadratic forms of the normal errors or ratios of two quadratic forms.

We can apply the popular Imhof (1961) algorithm to evaluate the median function

with any desired level of accuracy. Otherwise we have to approximate the median

functions by simulation.

We briefly review three popular tests designed to test for serial correlation or

for random walk errors. For each test, where applicable, we consider the fixed-point

inversion method and the grid inversion method developed in Section 3.5. The

median functions for these test statistics are computed or simulated for different

design matrices.

5.3.2.1 Durbin-Watson Test.

The DW test is the most popular test statistic for testing for autocorrelation in

the disturbances against the null of independent errors. Many researchers have

examined the small-sample power properties of the DW test. Non-monotonic power

problem in small samples has been reported in several studies. Tillman (1975),

Kramer (1985), King (1985), Zeisel (1989), Kramer and Zeisel (1990) and Bartels

(1992) all examined the power functions of the DW test for different design matrices.

In particular, Kramer and Zeisel (1990) and Bartels (1992) investigated its limiting

distribution as p —> 1 or - 1 . They reported that the limiting power could drop to 0
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for some design matrices (e.g., XI andX8). This non-monotonic power seems to

occur more often on die positive side of the origin. Criteria based on the limiting

power of the test were developed by Kramer and Zeisel (1990) and Bartels (1992) to

determine the appropriateness of using theDW test for a given de,f T;; i matrix. Dufour

(1991) considered inverting the quantile functions of the DW r ii'stic to construct

exact confidence intervals. We are more interested in the median {unction of the DW

statistic.

Similar to the OLS estimator, the DW test statistic can also be expressed as a

ratio of two quadratic forms in terms of e, i.e.,

r=l

= e'R'M'A^MReje'R'MRe,

where z is the OLS residual vector and

ADW —

1
-1

0
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2

• • *
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2

—1

0
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As the DW test is usually used to test the hypothesis at p0 = 0, we only apply

the proposed Method 1 (fixed-point inversion). Therefore the MU estimator based on

the DW statistic will be:

T

2

(5.12)

The median functions of the DW test for different design matrices are

presented in Figure 5.3. They depict a similar pattern to those of the OLS estimator.

The median functions are not monotonic for design matrices X6, XI and X8.

Therefore the estimator (5.12) is not reliable for these design matrices. It reminds us

that although inverting the DW test will produce accurate confidence intervals (see
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e.g., Dufour, 1990), it may not produce reliable point estimates for some design

matrices.

Figure 5.3 Computed Median Functions of the DWStatistic for X5, XI and
, r = 20, 60
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Based on discussions in Sections 3.3 and 3.4, our results on the median

functions reported in this section verify the findings reported in Kramer and Zeisel

(1990) and Bartels (1992), that the DW test may have a non-monotonic power curve

in small samples for some design matrices.

5.3.2.2 t Statistic

Theoretically, the t statistic:

(5.13)

can also be used to test hypotheses about p. It is well documented that the null

distribution of this t statistic will not be Student t when p0 = 1, and that asymptotic
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normality can be a poor approximation for large positive p values even when the

sample size is fairly large (e.g., see Dickey and Fuller, 1979 and Nankervis and

Savin, 1985, 1987, 1988b). For models with just a drift and/or a linear time trend,

Dickey and Fuller (1979) derived its limiting distributions and tabulated its quantiles.

Nankervis and Savin (1987, 1988b) analysed the discrepancies between the finite

sample distribution of the t statistic and the Student t distribution approximation.

Stock (1991) inverted the median function of the limiting distribution of this test to

construct confidence intervals and an asymptotically MU estimator for p. Hansen

(1999) took a similar approach to constructing confidence intervals that have

asymptotically correct coverage probabilities.

We cannot express the t statistic as a ratio of two quadratic forms of normal

errors. Therefore simulation is needed to approximate its median function. On the

other hand, it is possible to use both fixed-point inversion and grid inversion based

on the t statistic. Ihe two MU estimators so constructed are given by:

%MV _ , „ - > (5.14)

where the null value p0 is fixed, and pf(
v
p), which solves the following equation for

P-

sY*. (5-15)

Here ml(p }(p) and map)(p) stand for the median function of the t statistic for a fixed

null value (Method 1) and a median envelope for changing null values (Method 2),

respectively. However, based on the results reported in Nankervis and Savin (1985)

and Hansen (1999), the distribution of the t statistic depends on the null value

especially in the neighbourhood of unity. Therefore the fixed-point inversion will not

deliver reliable estimates for the current model, as the median functions of the

statistics under different null hypotheses will not be of the same shape and parallel to

each other. Therefore we only report the grid-simulated median functions for

different design matrices in Figure 5.4.
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Our results showed that the median functions of the t test statistic are not

monotonic for most of the design matrices we examined. This non-monotonicity was

verified in Stock (1991) and Hansen (1999) for XI. In their studies, only confidence

intervals were considered, so this non-monotonicity only caused disjoint or empty

intervals in some cases. But if we want to avoid non-unique point estimates, we

should not use the t test statistic for constructing a MU estimator for these design

matrices. We will revisit the non-monotonic power of the t test in Chapter 6 and

propose a remedy for the problem.

Figure 5.4 Simulated Median Functions of the t Statistic for XI, X2, X7 and

median
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5.3.2.3 LMTest.

LM tests can have good power properties when used for diagnostic testing,

see e.g. Godfrey (1988) for a survey. LM tests for the unit root hypothesis or the

random walk error hypothesis were considered by Sargan and Bhargava (1983) and

Schmidt and Phillips (1992) among others. The one-sided LM test is also closely

linked to the LBI test developed by King and Hillier (1985). Here we examine the

median functions of the one-sided version of the score test. We discard the
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information component term, as it is a constant and can be ignored in the proposed

algorithm. So the test statistic is simply the score s(p)\ , where p0 is the pre-

determined null value.

Following Beach and MacKinnon (1978), the score function of the profile

likelihood is:

Sc(p) = p + ap +bp+c, (5.16)

where

1=2

T

t=1

/=2

T

/=2

T

1=2 »=2

We can also express the test statistic as a ratio of two quadratic forms of normal

errors:

Sc{p) = e'R'P'AScPRele'R'P'BScPRe

in which the two middle matrices are given by

r -p o

0

0

(5.17)

0

o
0 (T-l)-p(T-2) -p
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0

0

0

0 ••-

r-i -.

• * *
r-i

0

0
:

0

0

(5.18)

Figure 5.5 presents the median functions computed by the grid inversion

method, for the one-sided LM test statistics for different design matrices. Similar to

the picture of the t test, these median functions are mostly non-monotonic. Therefore

the LM test is not recommended for constructing a MU estimator in the current

model.

Figure 5.5 Computed Median Functions of the LM Test Statistic for X1, X4
andX5, T = 20
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We conclude this section by reiterating our main findings, that the median

functions of the OLS estimator, DW test, t test and LM test statistics can all be non-

monotonic for some design matrices, which means that none of these tests is a good

candidate for constructing a MU estimator that can deliver unique estimates for all

design matrices. We are motivated by these findings to consider more powerful

tests.
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5.4 Inverting Point Optimal Invariant Test

5.4.1 Testing for Random Walk Disturbances by POI Tests

As noted by Honda (1989), there are two approaches to 'optimal tests' in

hypothesis testing when nuisance parameters exist. The first is the use of conditional

distributions, which usually leads to similar tests, and the second appeals to the

argument of invariance. Point optimal tests are most often used in line with the

second approach. In the linear regression model with autocorrelated disturbances,

many researchers have reported that the POi test can have a distinctive power

advantage over other tests in small samples at least for some design matrices. These

include testing for serial correlation (King, 1985a, Honda, 1989, Kramer and Zeisel,

1990) and testing for random walk disturbances (Dufour and King, 1991, Phillips

and Xiao, 1998). King (1985a) and Dufour and King (1991) showed that in the

current model, when the design matrix is made up of the eigenvectors of the error

covariance matrix, the POI test is uniformly most powerful invariant. Otherwise, it is

the locally most powerful test in the neighbourhood of the pre-selected alternative

point. We would expect the superior small-sample performance of this test can carry

over to the MU estimator based on it.

In order to test hypotheses:

0:p = p0 against H,: p < p0

the POI test involves rejecting Ho for small values of

(5.19)

(5.20)

in which px is a pre-selected alternative point at which the power is to be maximised,

and a, and u0 are the GLS regression residual vectors for error covariance matrices

£(/?,) and E(p0), respectively.
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This is a special case of the POI tests defined in Dufour and King (1991)

which account for more general initial conditions. Their test is based on the

assumption that u1=dl£x, where dx is an unknown parameter. As dx is not

consistently estimable, a preselected dx has to be used when constructing the POI

test. If we want to have a POI test which is free of this extra parameter, the

transformation group under which a maximal invariant can be derived for the

construction of the POI test has to be enlarged. This not only makes the POI test

more complicated but also affects its small sample power performance. Therefore, in

this thesis, we fix the variance of the initial disturbance to be dx=\. This is less

general but not uncommon in the unit root literature and studies of the linear

regression model with random walk disturbances, see Pantula et al. (1994) for a

discussion.

Another issue is the choice of the alternative point p,. The general approach

for picking the pre-selected alternative point where the power is to be maximised was

outlined by King (1987b). People usually pick the point such that the maximised

power is approximately 0.5 or 0.8. King (1985a) and Shively (1988) both reported

that the POI test that optimizes power at 0.5 is favoured because of the overall

closeness of its power curve to the power envelope. When testing for autocorrelation,

it was shown by King (1985a) that p , = 0 i and 0.75 are both good choices

depending on whether power is required most for weak autocorrelation or for strong

autocorrelation. For the random walk hypothesis, no clear indication was given in

Dufour and King (1991) on what p, should be. But applying the same principle as in

the autocorrelation test case, if we want to maximise the power for alternatives close

to HQ (i.e., for large positive p), px = 05 should be a good candidate. On the other

hand, if we fix the alternative point at p, = 0, we would expect the power advantage

is spread more evenly over the parameter space under the alternative hypothesis.

We also need to evaluate the median functions of the POI test statistics. It

was shown in King (1985a) and King (1987b) that the POI test statistics in our model

can be expressed as a ratio of two quadratic forms in normal errors:
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(5.21)
= £'A(px ,p)£/£fB(p0,p)£,

where Px and Po are given by (5.18) with p replaced by p0 and p,, respectively, and

Ro and Rx are the transformation matrix given by (5.9) under the null and the

alternative hypothesis, respectively.

Hence the median function of the test statistic can be calculated exactly by

solving

(5.22)

for m{p), where Xx,...,Xr are the eigenvalues (including zeroes and multiple roots)

of

A(pi,p)~m(p)B(pQ,p), (5.23)

and £f ,...,££ are independent chi-squared variates with one degree of freedom. This

probability can be evaluated using Imhof s (1961) algorithm.

5.4.2 Fixed-point Inversion and Grid Inversion

As discussed in Chapter 3, there are two ways of inverting a significance test

statistic to construct MU estimators, the fixed-point inversion and the grid inversion.

We apply each of these two methods to the POI tests for our model and compare

their effectiveness via simulations. The two estimation procedures are given by:

Method 1: We fix the null value p0 at 1, and the alternative value p, at 0.5 or

0. To get an estimate, we simply calculate $(1,0.5) or s(l,0) and use the p for which

the median function m(p) is equal to the sample statistics, i.e.,
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(5.24)

or

(5.25)

where the median function mv(1 iPl)(p) is defined as

p^u ~ N(O,0zZ(p))l (5.26)

Method 2: We fix the null point at 1, but allow the alternative value to change

from 1 to - 1 , and calculate the median functions of the series of POI tests s(l,p)

each at the corresponding alternative point p. We denote the new median function by

me(p), which is given by,

me(p) = median[s(\,p)\u ~ (5.27)

It is slightly different from the general method discussed in Chapter 3, in which we

allowed the null value to vary. (5.27) is a more straightforward analogue of the

construction of the exact power envelope by using the POI tests, as discussed in King

(1987b), Elliot (1999) and Podivinsky and King (2000) among others. When the POI

tests are used to construct the power envelope, the power envelope is computed by

w ~
—I

(p))}. (5.28)

where c is the critical value corresponding to the POI test statistic s(l,p) that

satisfies

?r{s(l,p)<CpH0} = a, (5.29)
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where a is the preselected significance level. If we let a be 50%, the median

function in (5.27) corresponds to the 50% quantile function of the POI test statistic

under the series of alternative hypotheses. For convenience, we call the new median

function me(p) a median envelope for the testing problem. In Section 5.4, we will

discuss the nature of the median envelope in more detail. It is apparent that the

median envelope can be evaluated exactly via the same algorithm used to compute

the median function of a single POI test.

Hence the MU estimator p^XpY, which is constructed by the gird inversion

method proposed in Chapter 3, will be the solution to the equation

(5.30)

5.4.3 Median Functions and Median Envelope of the POI Tests

In order to choose a better method from the two for a given design matrix, we

first compute and plot the median functions of the POI test statistics for a fixed

alternative value and for a grid of alternative values for all design matrices. The

median functions for the POI test with an alternative value at 0 are plotted in Figures

5.5 and 5.6. The median functions of the 5(1,0.5) test depict a very similar pattern,

and therefore are not presented.

The fixed-point median functions are monotonic for most design matrices.

Different from the median functions of other test statistics previously examined, the

median functions of the POI test statistic are concave for large positive p.

Heuristically speaking, this indicates a steeper power curve (which can be seen as the

mirror image of the median function) when p moves away from the null hypothesis.

It verifies the proposition that the POI test enjoys better small sample power

properties than other tests for these design matrices. We would expect for XI - X6,

this power advantage of the POI test should lead to a better MU estimator compared

with the ones based on less powerful tests, when the fixed-point inversion method is
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applied- This conjecture ^vill be examined in the Monte Carlo studies reported in

Section 5.6.

Figure 5.6 Computed Median Functions of the s(\,0) Test Statistic for XI, X4,
X5 and X6
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For XI and X8, however, the median functions of the 5(1,0) test statistic are

not monotonic. It seems for these designs, a strong positive autocorrelation is not

differentiated from a strong negative autocorrelation. There is a similarity in,the two

ends of the parameter space in the median function. For example, this is shown in

Figure 5.7 for X% and T = 20 and 40. We believe this is caused by the non-

monotonic power curve of the s(l,0) test on the negative side of H0 for these design

matrices.

Figure 5.8 Computed Power Curves of Two POI Tests for X8, T = 20.
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In Figure 5.8, we plot the exact power curves of two POI tests for X8 and

T = 20. The power of these tests drop to 0 as p—»-l. This phenomenon makes it

necessary to apply the grid inversion method to these design matrices. In Section

5.4.4, we define some simple criteria to decide, given a design matrix, whether the

fixed-point inversion method can be applied or the median envelope approach is

needed.

Figure 5.9 presents the median envelopes for different design matrices. The

median envelope tells a different story from that of the median function of a single

POI test. In contrast with all the other tests considered in this chapter, the median

envelope is strictly monotonic for all design matrices. In particular, for design

matrices XI and X8, the median envelope is the only method known to us that

produces a monotonic median function. This will at least guarantee that by inverting

the median envelope of the POI test via the grid inversion approach, we can get

reliable point estimates.
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Figure 5.9 Computed Median Envelopes of the POI Tests for Different Design
Matrices, T = 20

X2 x X7 —*— X8

Figure 5.9 also shows that the median envelopes of the POI tests are almost

linear in p. This is another advantage of the POI test over other tests. Because in

practice, we can only calculate or simulate the median functions over a grid of p

values, for other values not included, interpolation is needed. So if the median

function is approximately linear, it will make this interpolation more reliable. But for

statistics with non-linear median functions, the interpolation is less accurate if the

grid is not fine enough. Sometimes curve fitting is needed to get a reliable median

function. For example, Hansen (1999) applied Kernel estimation to the quantile

functions of the f-test. This will certainly increase the computational cost.

The sharp difference in the shape of the median envelope and a single median

function can be explained by the nature of the median envelope. As each single POI

test s(\,p) reaches the maximal attainable power at p, intuitively, we would expect

the median-envelope to be tangent from below to the median function of a POI test

with a fixed alternative point. This is equivalent to:

for any p =£ /?,. The relationship between the median functions of single POI tests

and the median envelopes for XI and XZ are illustrated in Figure 5.10. The graph

gives us some visual justification for the use of the term 'median envelope'.

Figure 5.10 Median Functions and Median Envelopes of the POI Tests; T = 20
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5.4.4 When to Use Which Method

It is important for us to define the criteria to determine which method is

applicable given a particular design matrix. The question we need to answer is, given

a design matrix, does the POI test s(\,p{) have a monotonic median function? If the

answer is yes, we would use the fixed-point inversion method to compute the MU

estimator; otherwise we have to rely on the median envelope approach. We believe

the question is equivalent to the following problem: given a design matrix, does the

limiting power of s(l,p}) as p—» -1 drop below its highest level? This is similar to

the limiting power problem of the autocorrelation tests such as the DW test when

p-> 1 (or -1), which was considered by Kramer (1985), Zeisel (1987), Kramer and

Zeisel (1990) and Bartels (1992) among others. These studies were concerned with

testing the null hypothesis of p = 0. We adopt a similar approach in our thesis to

examine the limiting power of the s(l,0) test as p -» - 1 .

We consider the one-sided test against Ha:p<\, which rejects for small

values of 5(1,0). The rejection probability can then be expressed as

?r{u'(A-ccB)u<0}

= Pr{e7?'( A - caB)Re < 0} (5.33)

where

in which R was given by (5.9) and £~'(1) was given by (5.20). y. are the

eigenvalues (including zero roots and multiple roots) of

170

Chapters. Inverting the POI Tests for MU Estimators

T=R\A-caB)R, (534)

where ca is the critical value at a pre-selected significance level, which satisfies

(5.35)

As noticed by Kramer and Zeisel (1990), if we let

1 P

P 1

,r-i

,7-2

y. are then also the eigenvalues of

(5.36)

(5.37)

and as p -» - 1 , the limit of V is given by

V~ —

\T-\

1

(-I)1"-1 1

(5.38)

Following Kramer and Zeisel (1990), if V (A-caB) # 0, it must have a rank of one,

and therefore only one nonzero eigenvalue. If this eigenvalue is positive, the limiting

power will be zero, otherwise the limiting power will be one. For the more common

case in which V~(A-caB) = 0, in order to derive the limiting rejection probability,

we replace the eigenvalues y. in (5.33) by

~ v (5.39)

171



Chapter 5. Inverting the POI Tests for Ml) Estimators

since this does not affect the rejection probability (5.33). The y. are the eigenvalues

of

\+p

As/?-»-!,

(A-caB), (5.40)

(5.41)

where W~ is given by,

w~ =
0

1
-2

1
0
1

-2
1
0

-.(r-ix-if-1

•••(r-2)(-i)r"2

-(r-3)(-i) r-3

CT-D(-l)T-\
o

(5.42)

Therefore the nonzero eigenvalues of the matrix

W~{A-caB) (5.43)

completely determine the limiting power of the test s( 1,0) as p —> — 1.

Hence given a design matrix, in order to decide whether to invert the median

function of a fixed POI test (^(1,0), say), or to invert the median envelope, we only

need to examine the limiting power of the test as p -» - 1 . If the limit is 1, it indicates

that the median function of the single POI test is monotonic for this design matrix

and we can use the fixed-point inversion method. If the probability is a small number

(or sometimes 0), then it is safer to use the grid inversion of the median envelope. In
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practice, we only need to examine the smallest eigenvalue of (5.43). As a rule of

thumb, if this eigenvalue is small in absolute value (compared with the largest

positive one), the limiting power will be small, and the median function is likely to

be non-monotonic. If the smallest eigenvalue is negative but large in absolute value,

the median function is likely to be monotonic.

Table 5.1
The Smallest and Largest Eigenvalue of Matrix (5.43) and the Limiting Power

of the s(I,0) Test as p -> -1

XI X7 X7 X8 X8
r=20 r = i 5 r = 20 r = i 5 r=20

Smallest Eigenvalue

Largest Eigenvalue

Power

-45606

1.277

0.995

-39

8716

0.05

-287

2960

0.085

-3.9

24492

0.02

-10.88

24578

0.027

Notes: The limiting powers are based on 20,000 simulations.

Although it is more accurate to work out the exact limiting probability (5.33),

we found for the design matrices considered in this study, this practical criterion

works quite well. For example, the smallest and the largest eigenvalues of the

limiting matrix (5.43) together with the limiting power of the POI tests for some

design matrices are reported in Table 5.1. For XI, the smallest and largest

eigenvalues are -45606, 1.277, respectively. This leads to a limiting power of 0.995,

which indicates a monotonic power curve and a monotonic median function of the

.s(l,0) test. The smallest and largest eigenvalues for X8 and T = 20 are -10.88,

24578, respectively, and the ^(1,0) test has a limiting power of 0.027. In this case, the

median function of a single POI test is not monotonic, as shown in Figure 5.7.
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5.5 Comparing the Estimators Based on Different Tests

5.5.x Experimental Design

In the sections that follow, Monte Carlo studies designed to examine the

small sample performance of the MU estimators based on different test statistics are

outlined. We also compare these MU estimators with the more conventional

counterparts in terms of bias and total risk. We conducted three sets of experiments:

1. In the first experiment, we focused on the fixed-point inversion method

and examined the relationship between the power of a test and the performance of

the estimator by inverting its median function. For XI, all tests have monotonic

median functions and estimators can be constructed by inverting any of them. We

used the following tests: DW test, score tests (Sc(0) and Sc(05)) and the POI tests

(.s(0,0.5) and J(1,05)) together with Andrews' estimator. As these tests have

different power properties in small samples, it is interesting to compare the

performance of the MU estimators based on them. We compared their small-sample

bias, variance and RMSE for different p values.

2. In the second experiment, we applied both fixed-point inversion and

median envelope inversion, and compared the two methods, in order to further

disclose the relationship between the power of a test and the properties of the

resulting estimator. For XI - X6, MU estimators can be computed by either

inverting a single POI test statistic or inverting the median envelope. We compared

these two methods. Andrews' estimator was also calculated as the median function of

the OLS estimator is monotonic for these designs. These MU estimators were also

compared with the more conventional counterparts: p0LS and pMLE.

3. In the third experiment, we focused on the median envelope method when

other methods cannot be used. For X7 and X8, Andrews' method breaks down.

Inverting the POI envelope becomes the only option for constructing MU estimators.

We compared the new estimator with p0LS and pMLE.
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The sample sizes used were 20,40 and 60.2000 estimates were calculated for

all the estimators. Their small sample bias and efficiency were compared for

p = L 0.95, 0.9, 0.8, 0.6, 0.4, 0.2, 0, -0.4, and- 0.8. As the estimation of p is

invariant to /? and cr2, they were set to be vector of ones and one, respectively.

5.5.2 Estimation Results

The MU estimators based on inverting different test statistics for XI and

T = 20 are presented in Table 5.2. King (1985a) among others, reported that for this

design matrix, the power advantage of the POI tests over the DW test is minimal

compared with some other design matrices. This similarity of the powers of the tests

is accurately reflected in the performance of the estimators based on them. Each of

these estimators successfully corrects the bias in p0LS for p = 0.95, 0.8, 0.6. The 6

MU estimators behave rather similarly in terms of mean, variance and RMSE,

although the one based on the DW test appears to have slightly smaller RMSEs

compared with the other five estimators. This is consistent with the findings in King

(1985a) and Honda (1989), that for this design matrix, the DW test has good small

sample power. The RMSEs of pOLS have been reduced significantly by all MU

estimators. For example, it is reduced from 0.48 to 0.28 by the MU estimator based

on the DW test statistic for p = 0.95, and from 0.40 down to 0.28 for p = 0.8. This

set of results show that if the tests have similar power properties, the MU estimators

based on inverting their median functions will also have similar small sample bias

and RMSE. For the more interesting case of different tests behaving differently, we

turn to other design matrices.

The results of the second experiment - comparison of pOL5, pMLE, Andrews'

estimator (pA), the MU estimator based on inverting the median envelope of the POI

tests (PEU) and the two MU estimators by inverting two single POI test statistics

(p^Q) and p^o.5)) for XI - X6 and T = 20, 40 are reported in Tables 5.3a - 5.3f.

The estimation results for T = 60 are presented in Table 5.4.
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The conventional estimators, pOLS and pMLE, as shown by many previous

studies, are biased for all designs and sample sizes, especially for large positive p

values. The magnitude of the downward bias not only depends on p, but also on the

design matrix structure. For X6 and T = 20, for example, the biases of pOLS at

p = 1 and 0.8 reached -0.66 and -0.49, respectively. pMLE has biases similar to those

of p0LS for XI, X2 and X3, while for X4, X5 and X6, it is less biased than pOLS.

The biases of these two estimators become smaller for T = 60.

The two estimators based on inverting a single POI test statistic, p^Q) and

P%"o5)> behave rather similarly for positive p. Both estimators are essentially MU for

all these design matrices and sample sizes on the positive side of 0. The bias

correction is very effective. For example, for X6 and T = 20, the biases in p""0) at

p = 1 and 0.8 are both 0, while the biases in p0LS are -0.66 and -0.49, respectively.

For sample sizes of 20,40 and 60, the two new estimators show almost no bias for all

design matrices. For large negative p values (p = -0.8 and-0.95) however, p""0)

outperforms p""05) for T = 20 and for X3 and X5 in terms of bias-correction. Tliis

could be explained by the construction of the POI tests. While .s(l,0) is designed to

maximise the power at p = 0, s(l,05) is designed to maximise its power at p = 05,

therefore for negative p values, we would expect the power of £( 1,0.5) drops more

than that of ^(1,0). The remaining bias in p%"0S) is probably due to its lack in power

for large negative p value compared with s(l,0). When sample size increases, the

difference between the two estimators becomes minimal.

This bias-correction by using MU estimators also results in a significant

reduction in RMSE. Compared with the biased estimators, especially p0LS, the

RMSEs of the two MU estimators are much smaller for large positive p values. For

example, the RMSEs of pois at p = 1, 0.9, 0.8 for X5 and T = 20 are 0.62, 0.54 and

0.48, while the corresponding RMSEs of p^0) are 0.23, 0.24 and 0.26, respectively.

When the sample size goes up to 40 and 60, the RMSEs of the new MU estimators

are also smaller than those of pOLS and pMLE, but by a smaller margin. For negative

p values, however, the MU estimators appear to have RMSEs similar to or slightly
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higher than those of pULE. For example the RMSEs of p""0) at p = -0.6 and -0.8 for

X4 and T = 20 are 0.25 and 0.21, compared with those of pMLE in this case, of 0.17

and 0.14, respectively. The RMSEs of p%"05) for large negative p values and T = 20

are larger than those of p""Q}, as expected. Based on this comparison, we

recommend p^"0) if a fixed-point inversion method can be used for a given design

matrix, especially when there is no information about the possible magnitude and

direction of the autocorrelation in the disturbances.

When we compare the proposed MU estimators with Andrews' estimator, we

find the results favour p"f0) for most cases. For XI, pA performs in a very similar

way to p"iG) in terms of unbiasedness. But for all other design matrices and for

T = 20 and 40, pA does not eliminate the bias in p0LS as effectively as p^0) for

moderate positive p values. In the worst case of X4, X5 and X6 and T = 20, pA is

still quite biased for p = 0.6, 05, 0.4, with biases of -0.16, -0.18, -0.17, respectively.

The RMSEs of pA are generally larger than those of p^,u0) for positive p values,

while similar for negative p values. The difference is most apparent for p > 0.2 and

for X4 and X5. We attribute the inferior performance of pA to the lack of power of

the test p0LS -pQ as a test for random walk disturbances or a test for autocorrelation

for these design matrices. Although the median functions are still monotonic,

indicating the power curves are monotonic, these median functions are non-linear

and convex on the positive side of 0, as shown in Section 5.3. In contrast to this test,

the POI test ,s(l,0) has a concave median funcdon in this case, which produces a less

biased estimator. The results from this experiment lead us to believe that there is a

direct link between the power of a test and the efficiency of the point estimator based

on inverting the test statistic's median function. Therefore, when we choose a test

statistic to construct MU estimators, it is crucial to choose the test statistic with the

best power properties in small samples.

Compared with p^Q), the estimator p"u, which was computed by inverting

the median envelope of the POI tests also performs well for T = 40 and 60, as it is

essentially MU for all design matrices and all p values. For negative p values, p^v
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appears to correct the bias more accurately than p""0) for X5 and X6. The RMSEs

of p"u are also generally slightly smaller than those of p""Q), indicating p"v is a

very reliable estimatcr Xo *i»e for these sample sizes. But for T = 20, p"v is not

exactly MU for large positive p . The remaining bias is much smaller than those of

p0LS and pMLE, but still quite apparent especially for XI, X2 and X3. For example,

the biases of p"u for XI and T = 20 at p = 1, 0.9 and 0.8 are -0.14, -0.08 and -0.06

respectively. However, p"u outperforms p^,w0) for negative p values, with less bias

and smaller RMSEs for all design matrices. The remaining bias in p"u for large

positive p might be linked to the phenomenon described in Section 5.4, namely, the

odd behaviour of the median envelope for XI and T = 20. The median envelope is

not tangent from below to the median functions of the POI tests in the

neighbourhood of 1, although it was expected to be. The bias in p%u is much less for

X6, for example, and the median envelope for X6 is 'well-behaved' compared with

that for XI. Therefore, if there is strong evidence for highly persistent disturbances,

then p"?0) is the preferable MU estimator for small sample sizes; otherwise p"u can

also be used as a reliable estimator with little bias and low risk regardless of design

matrices.

The results from experiment 3 are reported in Tables 5.9 and 5.10, in which

we compare the estimator based on inverting the median envelope of the POI tests,

p f with po uand pMLE for XI and X8, and for T = 20, 40, and 60. This design is

usually used as an extreme case in favour of the POI tests, as the OLS residuals

become very poor estimates of the true disturbances and therefore tests based on

them perform badly. This is precisely reflected in our estimation results. The bias in

p0LS is appalling. For T = 60 and p = 1, it still has a bias of -0.64 for XI and -0.83

for X8. Ironically, in this case when bias-correction is most needed, most bias-

correction methods do not work. As mentioned earlier, pA fails to deliver unique

estimates due to the non-monotonic median function of p0LS. The fixed-point

inversion of a single POI test is not applicable as the criteria we set out in Section 5.5

are not met. The limiting power of these POI tests as p—>—1 drop below one.

Therefore the proposed estimator p^u becomes our only choice. Fortunately, the

results endorse its performance. For T = 60, p"u is almost exactly MU for both XI
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and X8 and for all p values, while for smaller sample sizes, p"u also effectively

reduces the bias in other estimators significantly, but the bias is not completely

removed for p>0.85, especially for T = 20. For example, for XI and T = 20, pf

has biases of -0.07, -0.05 and -0.05 at p = 1, 0.95 and 0.9, respectively. We argue

that compared with the bias in other estimators, the remaining bias in p"u is

ignorable. In the same example, the biases of pOLS are -0.85, -0.79 and -0.69. p"v

also has RMSEs that are less than one-third of those of pOLS for large positive p

values and for T = 20. The reduction in RMSE is also significant for moderate

positive p values and for larger sample sizes. The only exception is when p = 0 or

0.2 and T = 20, the RMSEs of p"u are slightly higher than those of p0LS. We

conclude that for Watson's matrix, where the bias problem in estimating the

autocorrelation coefficient is at its extreme, p"u is a gGod remedy for this

deficiency.

To summarise our major findings from the Monte Carlo studies, we notice

that the estimators based on inverting the POI test statistics effectively correct the

serious bias associated with f>OLS and pMLE for all design matrices. When

constructing an estimator by inverting a test statistic, the bias and risk of the

estimator directly depends on small-sample power properties of the chosen test. The

more powerful POI test, for example, does produce a better MU estimator than other

test statistics for most design matrices. The combination of the fixed-point inversion

and the grid inversion can overcome the difficulty encountered by Andrews'

estimator, and produce a reliable estimator regardless of design matrix structure. In

practice, we recommend that given a design matrix, one examines the limiting power

of the POI tests as described in Section 5.5. If the criterion is satisfied, p""0) is the

preferable MU estimator, and if the criterion is not met, pf is to be used.

5.6 Robustness to Non-normal Errors

In this section, we study the robustness of the proposed estimator to the

disturbances that are non-normal. The robustness of estimators in autoregressive
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models have been studied by many researchers. Fiebig et al. (1991) examined the

robustness of LS estimators for a more general covariance structure in the linear

regression model. In the unit root literature, it is well known that the OLS estimator

and the related Dickey-Fuller-type tests are not robust to misspecification of the error

structure. In particular, Phillips and Peron (1987) and De Jong et al. (1992b) pointed

out that if there is a MA component or if the order of autoregrcssion is misspecified,

the power of these unit root tests can be very low. On the other hand, a very

important feature of the median as a location estimator is its robustness to non-

normal errors. We would expect this property to carry over to the proposed MU

estimators. For XI, Andrews (1993) examined his MU estimator and found it to be

quite robust to non-normal errors.

To examine the robustness of pMU, we do not need to actually compute the

estimates under different error distributions. Instead, we only need to study the

median functions in these circumstances. We focus on the estimator based on the

median envelope in our discussion. The same result applies to the estimators based

on the fixed-point inversion method. Because pE
MV is the solution to

-med[s(l,p)\u ~ = 0, (5.44)

where / ( • ) is the distribution function of the errors et, and the form of X(») reflects

the specification of the error structure. If the median function under different / ( • )

and £(•) are similar to the one under Gaussian AR(1) disturbances, then the solution

to the above equation under different error structures will be similar to the estimates

computed assuming normal AR(1) errors. In other words, the estimator is a robust

one.

Tables 5.6a and 5.6b and Figures 5.11a and 5.11b presents the median

functions of p0LS and the POI median envelopes defined in Section 5.4 for different

design matrices with 20 observations, under different error structures. The error

structures considered include: 1. Skewed distributions: ^-distribution and the log-

normal distribution; 2. Heavy tail distributions: Student t -distribution with 3 degrees

of freedom and Cauchy distribution; 3. Different error structures: AR(2) errors,
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MA(1) errors and the first-order ARCH errors with the autoregressive parameter set

to 0.85, which is consequently denoted by ARC#(0.85).

The results show that, apart from the AR(2) and MA errors, the median

envelopes of the POI tests are very robust to all these error misspecifications for both

design matrices with a sample size of 20. Without knowing the error structure, it is

impossible to tell if the median envelope is computed assuming the normal

distribution. The envelopes are consistently monotonic and almost linear on the

positive side of 0. This leads us to believe that the new MU estimator proposed in

this chapter is very robust to different types of error misspecifications. However,

with MA errors present or if the order of autoregression is misspecified in the

disturbances, the median function is significantly different from the one under

Gaussian AR(1) disturbances. Therefore it is important to test for such

misspecifications in the error structure before applying the proposed estimation

procedure. This precaution was echoed in many previous studies in the unit root

literature, such as Schwert (1987), Nankervis and Savin (1988b), Phillips and Perron

(1988), DeJong et al. (1992b) and Kiviet and Dufour (1997).

Andrews' estimator, however is not as robust as pMU for these

misspecifications. For large positive p, the median functions of p0ls under Cauchy

distributions and ARCH errors both depart quite a distance from the ones under

normal errors for most design matrices. For X2 and X5, the median function under

%\ are also not close to the ones under normal errors. In these circumstances,

Andrews' estimator is more sensitive to the error structures than the proposed one.

5.7 Concluding Remarks

We applied the second approach proposed in Chapter 3 - inverting the

median function of a significance test to the linear regression model with AR(1) or

random walk disturbances in this chapter. Andrews' (1993) estimator breaks down

for some design matrices due to the problem of non-unique estimates, which is

caused by the non-monotonic median function of the OLS estimator. The same
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problem also plagues the DW test, t test and the LM test for various design matrices.

It was shown that the POI test has a monotonic and convex median function for most

design matrices on the positive side of p . This reflects its good small sample power

properties. An easy-to-use criterion based on the limiting power of the test is given to

determine if the median function of a single POI test statistic is non-monotonic given

a particular design matrix.

If the median function of a single POI test is monotonic for a design matrix,

the MU estimator based on the fixed-point inversion method is almost exactly MU

for all p values and has smaller RMSEs compared with other estimators. It generally

performs better than Andrews' estimator except in the model with only an intercept

and a time trend as the regressors.

For the design matrices that a single POI test fails to deliver a monotonic

median function, inverting the median envelope of a series of POI tests is the

recommended method of constructing a MU estimator. It was shown that the

proposed estimator almost eliminates the bias present in the OLS and MLE

estimators. The bias correction is substantial for these designs, as they usually

represent the extreme cases in which the small sample biases of the conventional

estimators are most serious.

Finally, we examined the robustness of the proposed estimator to non-normal

errors and error structure misspecifications. It was found that the new estimator is

more robust than the one based on the. OLS estimator. It also performs well under

different error structures, except for errors with an MA component or generated by a

higher order autoregressive process.
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Table 5.2
Medians, Means, Variances and RMSEs of the MU Estimators Based on

Different Test Statistics in the Linear Regression with AR(1) Disturbances for
Design Matrix XI; T = 20

median

mean

variance

RMSE

POLS

0.555

0.518

0.044

0.480

PA

0.893

0.786

0.066

0.304

PDW

P

0.98

0.811

0.061

0.284

Av(0.0.5)

= 0.95

0.935

0.801

0.063

0.292

Art 1.0.5)

0.969

0.809

0.062

0.286

Psc(<0)

0.962

0.809

0.063

0.288

Psc(O-S)

0.965

0.810

0.062

0.285

median

mean

variance

RMSE

0.484

0.457

0.045

0.403

0.761

0.719

0.075

0.286

0.794

0.740

0.073

0.277

0.774

0.730

0.074

0.281

0.792

0.738

0.074

0.279

0.793

0.737

0.075

0.282

0.791

0.739

0.074

0.279

median

mean

variance

RMSE

0.364

0.347

0.045

0.331

0.585

0.579

0.082

0.287

0.601

0.592

0.080

0.284

0.588

0.584

0.080

0.284

0.603

0.589

0.081

0.285

0.601

0.589

0.081

0.285

0.602

0.592

0.080

0.283

= 0.4

median

mean

variance

RMSE

0.274

0.249

0.045

0.302

0.315

0.299

0.082

0.284

0.403

0.394

0.082

0.288

0.386

0.384

0.083

0.288

0.403

0.391

0.083

0.286

0.401

0.388

0.082

0.288

0.401

0.393

0.083

0.282

Notes: All experiments are based on 2000 replications.
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Table 5.3a

Medians and RMSEs of MU Estimators Based on the POI Test Statistics in the
Linear Regression with AR(1) Disturbances for Design Matrix XI

T = 20 T = 40

' POLS PULE PA PE P^m P,n.™ POLS PULE PA PE P,^m

1.00 median 0.58 0.61 0.97 0.86 1.00 0.99 0.78 0.80 0.97 0.92 0.99 0.98
RMSE 0.50 0.48 0.31 0.31 0.29 0.30 0.28 0.26 0.17 0.17 0.16 0.16

0.90 median 0.55 0.58 0.90 0.82 0.93 0.89 0.73 0.75 0.90 0.87 0.91 0.90
RMSE 0.43 0.42 0.28 0.27 0.26 0.27 0.23 0.22 0.16 0.15 0.15 0.15

0.80 median 0.49 0.52 0.78 0.74 0.81 0.78 0.67 0.67 0.80 0.79 0.81 0.80
RMSE 0.40 0.38 0.28 0.27 0.27 0.28 0.20 0.20 0.16 0.15 0.15 0.16

0.70 median 0.43 0.45 0.68 0.67 0.71 0.69 0.58 0.58 0.69 0.69 0.71 0.70
RMSE 0.36 0.35 0.29 0.27 0.28 0.29 0.20 0.20 0.18 0.17 0.17 0.17

0.60 median 0.36 0.37 0.58 0.57 0.60 0.58 0.49 0.50 0.60 0.60 0.61 0.60
RMSE 0.34 0.34 0.30 0.28 0.29 0.29 0.19 0.19 0.17 0.16 0.16 0.17

0.50 median 0.29 0.30 0.49 0.48 0.51 0.48 0.40 0.40 0.50 0.50 0.51 0.49
RMSE 0.31 0.31 0.29 0.29 0.29 0.29 0.18 0.18 0.17 0.16 0.16 0.17

0.40 median 0.22 0.22 0.39 0.39 0.41 0.38 0.31 0.31 0.40 0.40 0.41 0.39
RMSE 0.30 0.30 0.29 0.29 0.29 0.29 0.18 0.18 0.17 0.18 0.17 0.17

0.20 median 0.06 0.06 0.20 0.21 0.22 0.20 0.13 0.13 0.20 0.20 0.21 0.19
RMSE 0.26 0.27 0.27 0.29 0.27 0.28 0.17 0.17 0.17 0.20 0.17 0.18

0.00 median -0.11 -0.11 0.00 0.01 0.01 0.00 -0.05 -0.06 0.00 -0.01 0.01 0.00
RMSE 0.24 0.24 0.26 0.29 0.27 0.28 0.16 0.16 0.17 0.22 0.17 0.18

-0.40 median -0.44 -0.44 -0.39 -0.39 -0.38 -0.39 -0.43 -0.43 -0.41 -0.40 -0.39 -0.40
RMSE 0.19 0.20 0.23 0.24 0.25 0.29 0.14 0.14 0.15 0.15 0.16 0.18

-0.80 median -0.78 -0.79 -0.80 -0.80 -0.78 -0.78 -0.79 -0.79 -0.80 -0.79 -0.78 -0.78
RMSE 0.15 0.15 0.18 0.18 0.20 0.27 0.11 0.11 0.11 0.12 0.13 0.17

Notes: All experiments are based on 2000 replications.
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Table 53b
Medians and RMSEs of MU Estimators Based on the POI Test Statistics in the

Linear Regression with AR(1) Disturbances for Design Matrix X2

r=20

POLS PULE PA PE P«i.i.m

r=40
7\ n 7\ %M

POLS PMLE PA PE •{1.03)

1.00 median 0.42 0.55 0.64 0.88 0.99 0.94
RMSE 0.65 0.57 0.55 0.34 0.35 0.36

0.90 median 0.40 0.51 0.60 0.80 0.89 0.86
RMSE 0.56 0.50 0.49 0.29 0.31 0.32

0.80 median 0.35 0.44 0.48 0.72 0.81 0.75
RMSE 0.52 0.48 0.48 0.30 0.32 0.34

0.70 median 0.31 0.37 0.37 0.66 0.71 0.66
RMSE 0.47 0.44 0.45 0.29 0.31 0.34

0.60 median 0.25 0.29 0.32 0.56 0.56 0.59
RMSE 0.43 0.41 0.43 0.30 0.32 0.36

0.50 median 0.20 0.22 0.26 0.48 0.47 0.48
RMSE 0.39 0.38 0.40 0.31 0.32 0.36

0.40 median 0.13 0.14 0.16 0.39 0.39 0.35
RMSE 0.36 0.36 0.38 0.32 0.31 0.37

0.20 median -0.01 -0.01 0.00 0.21 0.19 0.15
RMSE 0.30 0.31 0.32 0.32 0.31 0.38

0.75 0.80 1.00 0.92 1.00 1.00
0.30 0.26 0.26 0.17 0.14 0.15

0.71 0.75 0.96 0.87 0.98 0.92
0.25 0.22 0.26 0.15 0.14 0.15

0.63 0.67 0.77 0.78 0.84 0.81
0.23 0.21 0.28 0.15 0.17 0.17

0.55 0.58 0.66 0.69 0.74 0.70
0.22 0.20 0.27 0.16 0.18 0.17

0.47 0.49 0.57 0.60 0.63 0.61
0.21 0.20 0.25 0.17 0.18 0.18

0.38 0.40 0.45 0.50 0.53 0.49
0.20 0.20 0.23 0.17 0.18 0.18

0.29 0.31 0.36 0.41 0.43 0.40
0.20 0.19 0.22 0.19 0.18 0.19

0.10 0.11 0.16 0.20 0.21 0.18
0.19 0.19 0.22 0.22 0.18 0.20

0.00 median -0.16 -0.17 -0.12 0.01 0.01 -0.07
RMSE 0.26 0.27 0.28 0.33 0.30 0.39

-0.06 -0.07 -0.04 -0.01 0.01 -0.01
0.17 0.17 0.19 0.24 0.18 0.20

-0.40 median -0.46 -0.48 -0.44 -0.38 -0.40 -0.47
RMSE 0.19 0.20 0.20 0.28 0.27 0.40

-0.80 median -0.77 -0.81 -0.77 -0.79 -0.74 -0.68
RMSE 0.15 0.14 0.16 0.20 0.23 0.42

-0.43 -0.44 -0.41 -0.40 -0.40 -0.43
0.14 0.14 0.15 0.16 0.17 0.21

-0.79 -0.80 -0.77 -0.80 -0.82 -0.85
0.10 0.10 0.11 0.11 0.14 0.18

Notes: All experiments are based on 2000 replications.
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Table 5.3c

Medians and RMSEs of MU Estimators Based on the POI Test Statistics in the
Linear Regression with AR(1) Disturbances for Design Matrix X3

7 = 20

POLS PMLE PA PE P*d.d.<»

r=4o
n n n nM

POLS PMLE PA PE

1.00 median 0.47 0.58 0.92 C^8 0.99 1.00
RMSE 0.61 0.54 0.51 0.32 0.34 0.32

0.90 median 0.45 0.54 0.77 0.83 0.91 0.94
RMSE 0.53 0.48 0.48 0.29 0.31 0.29

0.80 median 0.39 0.47 0.57 0.74 0.79 0.81
RMSE 0.49 0.45 0.47 0.29 0.31 0.30

0.70 median 0.34 0.40 0.41 0.67 0.69 0.71
RMSE 0.45 0.42 0.45 0.29 0.31 0.32

0.60 median 0.27 0.31 0.31 0.58 0.59 0.59
RMSE 0.42 0.40 0.44 0.29 0.31 0.33

0.50 median 0.21 0.23 0.24 0.50 0.51 0.50
RMSE 0.38 0.38 0.42 0.30 0.31 0.34

0.40 median 0.13 0.15 0.16 0.40 0.40 0.39
RMSE 0.36 0.36 0.39 0.31 0.30 0.34

0.20 median 0.00 0.00 0.00 0.22 0.19 0.19
RMSE 0.30 0.31 0.33 0.32 0.29 0.35

0.00 median -0.15 -0.16 -0.13 0.02 -0.01 -0.01
RMSE 0.26 0.27 0.28 0.32 0.29 0.35

-0.40 median -0.46 -0,48 -0.47 -0.38 -0.40 -0.38
RMSE 0.19 0.20 0.21 0.27 0.26 0.35

-0.80 median -0.77 -0.81 -0.77 -0.78 -0.74 -0.61
RMSE 0.15 0.14 0.16 0.20 0.22 0.41

0.69 0.77 0.96 0.91 0.93 0.93
0.36 0.30 0.33 0.18 0.19 0.18

0.67 0.73 0.89 0.87 0.88 0.88
0.29 0.25 0.31 0.16 0.16 0.16

0.60 0.63 0.76 0.78 0.78 0.78
0.26 0.24 0.31 0.16 0.17 0.17

0.52 0.55 0.62 0.68 0.68 0.68
0.24 0.23 0.30 0.17 0.17 0.18

0.45 0.47 0.53 0.60 0.59 0.59
0.22 0.22 0.27 0.18 0.18 0.18

0.36 0.37 0.44 0.50 0.49 0.49
0.21 0.21 0.24 0.19 0.17 0.18

0.28 0.28 0.36 0.40 0.40 0.40
0.20 0.20 0.24 0.21 0.18 0.19

0.09 0.10 0.15 0.19 0.19 0.19
0.19 0.19 0.23 0.23 0.18 0.20

-0.07 -0.07 -0.04 0.01 0.01 0.00
0.17 0.17 0.20 0.25 0.18 0.22

.0.44 -0.44 -0.44 -0.40 -0.40 -0.41
0.14 0.14 0.15 0.16 0.17 0.25

-0.79 -0.80 -0.80 -0.80 -0.81 -0.87
0.10 0.10 0.11 0.11 0.13 0.22

Notes: All experiments are based on 2000 replications.
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Table 5.3d

Medians and RMSEs of MU Estimators Based on the POI Trcf Statistics in the
Linear Regression with AR(1) Disturbances for Design Matrix XA

= 20
r, n n nM

POLS PMLE PA PE

= 40

h n hPots PMLE PA PE P,um

1.00 median 0.54 0.64 1.00 0.90 1.00 1.00
RMSE 0.55 0.49 0.48 0.30 0.28 0.29

0.90 median 0.48 0.58 0.77 0.84 0.92 0.90
RMSE 0.51 0.46 0.47 0.28 0.27 0.28

0.80 median 0.41 0.48 0.52 0.75 0.81 0.78
RMSE 0.48 0.44 0.46 0.29 029 0.30

0.73 0.81
0.32 0.25

1.00 0.95
0.32 0.16

1.00 0.99
0.15 0.15

0.68 0.76 0.88 0.88 0.91 0.90
0.28 0.22 0.33 0.15 0.15 0.15

0.62 0.68 0.72 0.80 0.81 0.80
0.24 0.20 0.32 0.16 0.15 0.16

0.70

0.60

median
RMSE

median
RMSE

0.35
0.44

0.27
0.41

0.41
0.41

0.31
0.40

0.41
0.44

0.32
0.43

0.67
0.29

0.57
0.30

0.71
0.29

0.60
0.30

0.69
0.30

0.58
0.31

0.53
0.24

0.45
0.22

0.59
0.21

0.49
0.20

0.63
0.30

0.52
0.26

0.70
0.18

0.60
0.19

0.71
0.17

0.61
0.17

0.70
0.17

0.60
0.17

0.50 median 0.22 0.24 0.25 0.49 0.51 0.48
RMSE 0.37 0.37 0.40 0.30 0.30 0.31

0.40 median 0.13 0.15 0.16 0.39 0.40 0.38
RMSE 0.36 0.36 0.38 0.32 0.31 0.32

0.20 median 0.01 0.01 0.02 0.21 0.22 0.20
RMSE 0.30 0.31 0.33 0.33 0.30 0.32

0.00 median -0.15 -0.16 -0.12 0.01 0.01 0.00
RMSE 0.26 0.27 0.29 0.32 0.29 0.32

-0.40 median -0.46 -0.48 -0.44 -0.39 -0.38 -0.39
RMSE 0.19 0.20 0.21 0.27 0.27 0.33

-0.80 median -0.78 -0.81 -0.79 -0.80 -0.79 -0.78
RMSE 0.15 0.14 0.16 0.18 0.21 0.28

0.36 0.39 0.44 0.50 0.50 0.49
0.21 0.19 0.23 0.19 0.17 0.17

0.28 0.30 0.37 0.40 0.41 0.39
0.20 0.20 0.22 0.20 0.18 0.18

0.11 0.11 0.20 0.20 0.21 0.19
0.18 0.19 0.22 0.24 0.18 0.19

-0.07 -0.07 -0.04 -0.01 0.01 0.00
0.17 0.17 0.20 0.24 0.18 0.19

-0.43 -0.44 -0.40 -0.40 -0.39 -0.41
0.14 0.14 0.15 0.16 0.17 0.21

-0.78 -0.80 -0.76 -0.80 -0.79 -0.79
0.11 0.10 0.12 0.12 0.15 0.22

Notes: All experiments are based on 2000 replications.
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Table 5.3e

Medians and RMSEs of MU Estimators Based on the POI Test Statistics in the
Linear Regression with AR(1) Disturbances for Design Matrix X5

r=20

POLS PMLE PA PE i.ns> POLS PMLE PA PE P,(W» P«,.{(I.OJ)

1.00 median 0.41 0.83 0.99 0.93 1.00 1.00
RMSE 0.62 0.34 0.44 0.24 0.23 0.22

0.79 0.91 1.00 0.96 1.00 1.00
0.26 0.15 0.31 0.12 0.11 0.10

0.90 median 0.40 0.75 0.88 0.86 0.92 1.00
RMSE 0.54 0.34 0.42 0.24 0.24 0.26

0.73 0.83 0.84 0.88 0.91 0.94
0.22 0.15 0.33 0.12 0.12 0.12

0.80 median 0.37 0.65 0.73 0.76 0.81 0.86
RMSE 0.48 0.35 0.41 0.25 0.26 0.30

0.66 0.74 0.69 0.79 0.81 0.83
0.21 0.15 0.32 0.13 0.14 0.15

0.70 median 0.34 0.56 0.60 0.68 0.71 0.75
RMSE 0.42 0.35 0.41 0.27 0.27 0.34

0.58 0.65 0.56 0.70 0.71 0.72
0.20 0.16 0.29 0.15 0.15 0.17

0.60 median 0.29 0.45 0.44 0.57 0.60 0.61
RMSE 0.38 0.35 0.41 0.29 0.29 0.38

0.49 0.55 0.55 0.60 0.61 0.60
0.19 0.17 0.25 0.15 0.16 0.18

0.50 median 0.25 0.36 0.32 0.49 0.51 0.50
RMSE 0.34 0.34 0.40 0.29 0.29 0.41

0.40 0.44 0.44 0.49 0.51 0.48
0.19 0.18 0.21 0.17 0.16 0.20

0.40 median 0.18 0.26 0.23 0.40 0.41 0.37
RMSE 0.31 0.34 0.39 0.32 0.31 0.46

0.20 median 0.05 0.07 0.10 0.21 0.22 0.12
RMSE 0.26 0.32 0.33 0.33 0.31 0.50

0.30 0.34 0.37 0.40 0.40 0.37
0.19 0.19 0.22 0.18 0.17 0.22

0.13 0.14 0.19 0.20 0.21 0.13
0.18 0.19 0.22 0.22 0.18 0.26

0.00 median -0.10 -0.13 -0.10 0.01 0.01 -0.19
RMSE 0.24 0.30 0.29 0.34 0.32 0.52

-0.40 median -0.39 -0.48 -0.39 -0.39 -0.39 -0.78
RMSE 0.20 0.23 0.22 0.31 0.33 0.44

-0.80 median -0.67 -0.82 -0.67 -0.80 -0.83 -0.87
RMSE 0.21 0.14 0.22 0.23 0.28 0.28

-0.05 -0.05 -0.03 -0.01 0.01 -0.13
0.16 0.17 0.19 0.23 0.18 0.30

-0.41 -0.44 -0.40 -0.40 -0.39 -0.66
0.14 0.15 0.15 0.16 0.17 0.35

-0.76 -0.80 -0.76 -0.79 -0.79 -0.88
0.12 0.10 0.14 0.12 0.16 0.17

Notes: All experiments are based on 2000 replications.
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Table 53f

Medians and RMSEs of MU Estimators Based on the POI Test Statistics in the
Linear Regression with AR(1) Disturbances for Design Matrix X6

r=20

POLS PMLE PA (!.<)) Z 3 * 1,0.51 POLS PMLE PA PE 1(1.0.5)

1.00 median 0.34 0.67 0.76 0.92 1.00 0.99
RMSE 0.72 0.55 0.56 0.29 0.29 0.29

0.61 0.90 0.88 0.96 1.00 0.99
0.44 0.19 0.39 0.13 0.13 0.12

0.90 median 0.35 0.62 1.00 0.84 0.92 0.89
RMSE 0.60 0.47 0.48 0.30 0.28 0.30

0.61 0.82 1.00 0.87 0.91 0.90
0.34 0.19 0.33 0.13 0.14 0.13

0.80 median 0.33 0.53 0.73 0.75 0.80 0.77
RMSE 0.53 0.43 0.45 0.32 0.29 0.33

0.57 0.72 0.77 0.79 0.82 0.80
0.28 0.19 0.33 0.14 0.15 0.15

0.70 median 0.31 0.46 0.64 0.68 0.71 0.69
RMSE 0.46 0.40 0.44 0.35 0.30 0.35

0.50 0.61 0.61 0.69 0.71 0.70
0.26 0.21 0.33 0.17 0.17 0.17

0.60 median 0.26 0.37 0.45 0.58 0.60 0.58
RMSE 0.42 0.39 0.44 0.39 0.32 0.38

0.43 0.51 0.52 0.59 0.61 0.59
0.24 0.20 0.30 0.18 0.17 0.18

0.50 median 0.21 0.30 0.32 0.49 0.51 0.48
RMSE 0.37 0.37 0.43 0.44 0.32 0.40

0.35 0.40 0.41 0.49 0.51 0.49
0.22 0.20 0.25 0.20 0.17 0.20

0.40 median 0.15 0.20 0.19 0.40 0.40 0.38
RMSE 0.34 0.36 0.42 0.51 0.34 0.44

0.27 0.31 0.33 0.40 0.40 0.39
0.21 0.21 0.23 0.22 0.18 0.21

0.20 median 0.03 0.03 0.04 0.21 0.22 0.18
RMSE 0.28 0.33 0.36 0.62 0.34 0.47

0.10 0.11 0.15 0.20 0.20 0.19
0.19 0.20 0.22 0.37 0.19 0.25

0.00 median -0.12 -0.15 -0.09 0.02 0.01 -0.03
RMSE 0.24 0.30 0.30 0.73 0.35 0.52

-0.07 -0.08 -0.05 -0.01 0.01 -0.02
0.17 0.18 0.19 0.59 0.19 0.28

-0.40 median -0.40 -0.49 -0.40 -1.00 -0.39 -0.44
RMSE 0.19 0.22 0.22 0.73 0.37 0.56

-0.43 -0.45 -0.42 -1.00 -0.40 -0.42
0.14 0.14 0.15 0.60 0.20 0.38

-0.80 median -0.68 -0.82 -0.69 -1.00 -0.81 -0.89
RMSE 0.20 0.14 0.21 0.53 0.31 0.54

-0.78 -0.80 -0.79 -1.00 -0.79 -0.88
0.11 0.10 0.13 0.22 0.19 0.38

Notes: All experiments are based on 2000 replications.
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Table 5.4a
Medians and RMSEs of MU Estimators Based on the Median Envelopes of the
POI Tests in the Linear Regression with AR(1) Disturbances for Design Matrix

XI

= 20 T = 40 T = 60

P POLS PMLE PMU POLS PMLE PMU POLS PMLE PMU

1 Median 0.15 0.78 0.93 0.30 0.91 0.96 0.36 0.94 0.98

RMSE 0.84 0.74 0.22 0.70 0.23 0.11 0.65 0.10 0.08

0.95 Median 0.16 0.75 0.90 0.38 0.87 0.92 0.48 0.90 0.94

RMSE 0.78 0.67 0.23 0.59 0.17 0.12 0.51 0.10 0.08

0.9 Median 0.21 0.73 0.85 0.43 0.83 0.87 0.55 0.85 0.88

RMSE 0.70 0.54 0.23 0.50 0.16 0.12 0.40 0.10 0.09

0.85 Median 0.22 0.69 0.80 0.47 0.79 0.83 0.58 0.81 0.84

RMSE 0.64 0.50 0.24 0.43 0.15 0.12 0.32 0.10 0.09

0.8 Median 0.23 0.66 0.78 0.48 0.74 0.79 0.58 0.75 0.79

RMSE 0.58 0.45 0.23 0.37 0.15 0.13 0.27 0.11 0.10

0.6 Median 0.22 0.49 0.58 0.41 0.56 0.60 0.47 0.56 0.60

RMSE 0.42 0.40 0.27 0.24 0.16 0.15 0.18 0.12 0.12

0.4 Median 0.16 0.33 0.41 0.29 0.37 0.40 0.32 0.37 0.40

RMSE 0.30 0.35 0.28 0.19 0.18 0.17 0.15 0.13 0.13

0.2 Median 0.06 0.11 0.20 0.13 0.17 0.20 0.15 0.18 0.20

RMSE 0.24 0.34 0.33 0.16 0.19 0.19 0.13 0.14 0.14

0 Median -0.06 -0.10 -0.01 -002 -0.02 0.01 -0.01 -0.02 0.00

RMSE 0.20 0.32 0.34 0.15 0.19 0.20 0.13 0.14 0.15

Notes: All experiments are based on 2000 replications.
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Table 5.4b
Medians and RMSEs of MU Estimators Based on the Median Envelopes of the
POI Tests in the Linear Regression with AR(1) Disturbances for Design Matrix

X8

p

1

0.95

0.9

0.85

0.8

0.6

0.4

0.2

0

Median
RMSE

Median
RMSE

Median
RMSE

Median
RMSE

Median
RMSE

Median
RMSE

Median
RMSE

Median
RMSE

Median
RMSE

POLS

0.01
0.98

0.02
0.91

0.03
0.86

0.04
0.80

0.04
0.75

0.06
0.54

0.04
0.38

0.01
0.23

-0.05
0.15

r=20

PULE

0.07
1.25

0.59
1.09

0.60
1.00

0.61
0.89

0.55
0.85

0.45
0.65

0.22
0.56

0.03
0.46

-0.17
0.42

PMU

0.93
0.26

0.90
0.24

0.85
0.27

0.80
0.26

0.76
0.30

0.59
0.34

0.40
0.40

0.20
0.46

0.02
0.47

POLS

0.12
0.86

0.17
0.77

0.21
0.68

0.26
0.60

0.27
0.54

0.28
0.34

0.21
0.24

0.09
0.17

-0.03
0.14

r=4o

PULE

0.91
0.44

0.87
0.28

0.84
0.19

0.79
0.19

0.74
0.17

0.57
0.20

0.38
0.22

0.16
0.24

-0.05
0.23

PMU

0.96
0.11

0.92
0.12

0.88
0.12

0.83
0.13

0.78
0.13

0.60
0.16

0.40
0.19

0.20
0.20

-0.00
0.24

POLS

0.17
0.80

0.25
0.69

0.34
0.57

0.39
0.48

0.40
0.41

0.39
0.25

0.23

0.17

0.13
0.14

-0.02
0 J 2

T = 60

PMLE

0.94
0.19

0.90
0.09

0.86
0.09

0.82
0.09

0.76
0.J0

0.58
0.13

0.38
0.15

0.18
0.16

-0.02
0.16

PMU

0.98
0.07

0.94
0.07

0.89
0.08

0.84
0.08

0.79
0.10

0.60
0.13

0.40
0.13

0.20
0.16

-0.00
0.17

Notes: All experiments are based on 2000 replications.
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Table 5.5 Medians and RMSEs of MU Estimators Based on the Median Envelopes of the POI Tests; T = 60

p

1

0.95

0.90

0.80

0.60

0.40

0.20

Median

RMSE

Median

RMSE

Median

RMSE

Median

RMSE

Median

RMSE

Median

RMSE

Median

RMSE

POLS

0.85

0.19

0.83

0.16

0.80

0.15

0.71

0.14

0.53

0.14

0.34

0.14

0.15

0.14

XI

PMLE

0.86

0.18

0.84

0.15

0.80

0.15

0.72

0.14

0.53

0.14

0.34

0.14

0.15

0.14

PMU

0.95

0.11

0.92

0.10

0.88

0.10

0.79

0.11

0.60

0.12

0.40

0.13

0.20

0.14

POLS

0.82

0.22

0.80

0.19

0.76

0.19

0.67

0.18

0.50

0.17

0.31

0.15

0.14

0.14

X2

PMLE

0.86

0.18

0.84

0.16

0.80

0.15

0.71

0.16

0.51

0.16

0.32

0.15

0.14

0.14

PMU

0.95

0.11

0.93

0.10

0.88

0.10

0.79

0.11

0.59

0.13

0.40

0.13

0.21

0.14

POLS

0.81

0.22

0.80

0.19

0.77

0.18

0.69

0.16

0.51

0.16

0.31

0.50

0.14

0.14

X4

PMLE

0.88

0.16

0.85

0.15

0.81

0.14

0.72

0.14

0.53

0.14

0.32

0.15

0.14

0.14

PMU

0.96

0.10

0.93

0.10

0.88

0.10

0.80

0.11

0.59

0.14

0.39

0.14

0.20

0.15

POLS

0.83

0.21

0.80

0.19

0,75

0.19

0.68

0.17

0.51

0.15

0.33

0.14

0.15

0.14

X5

PMLE

0.94

0.11

0.90

0.11

0.85

0.12

0.75

0.11

0.55

0.13

0.35

0.14

0.16

0.14

PMU

0.98

0.08

0.94

0.08

0.89

0.09

0.79

0.09

0.60

0.12

0.40

0.14

0.20

0.15
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Table 5.6a
Median Functions of p0ls and Median Envelope of the POI Tests Under

Different Error Processes for Design Matrix XI; T = 20

p
0.9
0.8
0.7
0.6
0.4

0.2
0.0

P
0.9
0.8

0.7
0.6

0.4

0.2

0.0

AT(0.1)

0.943
0.895
0.857
0.809
0.721
0.621
0.536

0.391
0.381
0.341
0.280
0.199
0.029
-0.101

Atf(0.8)

0.972
0.964
0.942
0.937
0.909
0.842
0.752

0.500
0.514
0.488
0.489
0.393
0.304
0.182

MA(0.2) ARCH x\ '3

Median Envelope of the POI Tests

0.961
0.936
0.93
0.902
0.861
0.830
0.743

Median

0.496
0.462
0.490
0.462
0.376
0.298
0.183

0.939
0.887
0.847
0.797
0.724
0.619
0.535

Function

0.400'
0.367
0.362
0.274
0.208
0.029
-0.088

0.940
0.897
0.857
0.811
0.736
0.621
0.532

of POLS

0.409
0.390
0.341
0.293
0.172
0.050
-0.093

0.941
0.896
0.848
0.821
0.715
0.633
0.545

0.387
0.371
0.351
0.307
0.173
0.061
-0.084

log-normal

0.943
0.895
0.848
0.803
0.713
0.619
0.522

0.399
0.385
0.330
0.292
0.185
0.043
-0.116

Cauchy

0.942
0.894
0.847
0.813
0.708
0.628
0.518

0.397
0.383
0.339
0.303
0.184
0.059
-0.104

Notes: All medians are computed based on 20,000 simulations.
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Table 5.6b
Median Functions of p0LS and Median Envelope of the POI Tests Under

Different Error Processes for Design Matrix XI; T = 20

p
0.9
0.8
0.7
0.6
0.4
0.2
0.0

P
0.9
0.8
0.7
0.6
0.4
0.2
0.0

JV(Q,1)

0.944
0.894
0.848
0.810
0.716
0.648
0.564

0.205
0.264
0.261
0.235
0.147
0.074
-0.050

A/?(0.8)

0.974
0.952
0.963
0.932
0.893
0.857
0.797

0.270
0.326
0.342
0.368
0.330
0.270
0.169

MA(0.2) ARCH x\ h

Median envelope of the POI tests

0.958
0.930
0.901
0.877
0.861
0.805
0.740

Median

0.274
0.325
0.353
0.358
0.318
0.250
0.152

0.936.
0.885
0.834
0.793
0.717
0.648
0.540

function c

0.225
0.247
0.237
0.219
0.177
0.077
-0.064

0.940
0.888
0.842
0.813
0.714
0.641
0.573

0.225
0.266
0.249
0.254
0.155
0.067
-0.049

0.940
0.899
0.852
0.810
0.726
0.654
0.568

0.226
0.262
0.261
0.258
0.173
0.059
-0.040

log-normal

0.943
0.892
0.845
0.806
0.726
0.636
0.560

0.249
0.254
0.260
0.247
0.161
0.042
-0.051

Cauchy

0.937
0.888
0.844
0.803
0.722
0.644
0.567

0.256
0.279
0.273
0.261
0.182
0.077
-0.031

Notes: All medians are computed based on 20,000 simulations.
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Figure 5.11a
Median Functions of p0LS and Median Envelopes of the POI tests Under

Different Error Structures Using Design Matrix XI; T = 20
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Chapter 6

Hypothesis Testing and Forecasting Based on Median-
unbiased Estimators'

6.1 Introduction

Point estimation, though important in its own right, often serves as the first stage of a

statistical inference process. People rely more on procedures such as hypothesis

testing and forecasting for decision making and policy recommendations in practice.

Therefore, for any point estimation procedure developed, it is important to examine

the usefulness of other inference procedures based on it. In Chapters 4 and 5, we

developed some new (approximately) median-unbiased (MU) estimators for two time

series models. We apply these estimators in hypothesis testing and forecasting

procedures in this chapter. We show that the improved small sample performance of

these estimators can also improve the small sample efficiency of the corresponding

inference procedures.

We first examine the small sample power properties of the Wald test. It is

well known that the Wald test, although efficient asymptotically, can suffer from size

distortion, local biasedness and non-monotonic power in small samples. Much effort

has been made to provide remedies for these problems. We show that by using the

estimators proposed in Chapter 4 and 5, we can correct the small sample bias of the

Wald test when testing for autocorrelated disturbances in the linear regression model,

and the non-monotonic power problem when testing for random walk disturbances.

In contrast, the likelihood ratio test seems to be less affected by the choice of

estimators.

In the dynamic linear regression model, Nankervis and Savin (1985)

suggested adjusting the moments of the t statistic so that it is better approximated by

1 A paper based on the results of this chapter was presented to a departmental seminar at the
Department of Econometrics and Business Statistics, Monash University, in April 2001.
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the Student t distribution. We conjecture that this can be achieved by a simple

correction in the bias of the estimator while controlling the variance. Goh and King

(1999) proposed a bootstrap correction to the Wald test in order to correct its local

biasedness. We show that the (approximately) MU estimator developed in Chapter 4

is equivalent to the implicit bias-corrected estimator in their test. The power curve is

properly centred and tightened when the MU estimator is used in place of the OLS

estimator. Compared with other methods, the computational cost of the proposed

approach is lower.

The rest of the chapter is concerned with forecasting. We review the formulae

for computing the root mean square prediction errors for the linear regression model

with AR(1) disturbances and the dynamic linear regression model and discuss the

relationship between the prediction risk and the estimation risk. Via Monte Carlo

simulations, we compare the estimated one-step-ahead prediction risks based on

different estimators. We find that the small sample bias in the conventional

estimators of the autoregressive/lagged dependent variable coefficient usually lead to

bigger prediction errors compared with those for the proposed MU estimators.

The chapter is organised as follows: Section 6.2.1 defines the Wald test and

summarises the small sample deficiencies it may suffer from. The corrected Wald

test based on MU estimators is discussed in Section 6.2.3 with a comparison made

with other corrections in the literature. Their asymptotic validity is also addressed.

Section 6.2.6 provides three sets of evidence on the effectiveness of the proposed

correction. The small sample powers of the Wald test based on different estimators

are compared in three different test situations for the linear regression model: 1.

testing for autocorrelation; 2. testing for random walk disturbances; and 3. testing the

lagged dependent variable coefficient. We move on to prediction in Section 6.3. The

relationship between the bias in an estimator and the prediction error is discussed.

The prediction error based on different estimators are compared in two models. The

chapter ends with some concluding remarks in Section 6.4.

Chapter 6. Hypothesis Testing and Forecasting Based on Median-Unbiased Estimators

6.2 Wald-type Tests Based on MU Estimators

In this section, we construct Wald-type tests based on the MU estimators we

proposed in Chapter 4 and 5. The modified Wald-tests are shown to be able to

correct the small sample deficiencies that the conventional Wald tests suffer from in

these models. We start this section by reviewing these deficiencies.

6.2.1 Small Sample Deficiencies of the Wald Test

The Wald test plays an important role in the theory of likelihood-based hypothesis

testing. Let 6 be a k x 1 unknown parameter vector and y,, t = 1, 2, ..., T, be T

observations generated independently from the implicit probability density function

f(y,\x,,6) in which x, is the explanatory variable vector. The log-likelihood

function is given by

(6.1)

Suppose the parameter 6 is partitioned into two sub-vectors 6-{fi\y')' where only

P ( rx l ) is the parameter vector of interest while y ( fc-rxl) is treated as a

nuisance parameter vector. We are interested in testing the hypotheses

H0:p = P0 against (6.2)

where Po is a vector of known constants. The Wald test is then based on the

unconstrained maximum likelihood (ML) estimator defined in the parameter space 0

and given by,

= argmax/(#) (6.3)
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where O=Cp\Y)- Let &(0) = -E\ J ]] be the Fisher information matrix
yo(x& J

evaluated at 6. The Wald test rejects Ho for large values of

(6.4)

where R = (/r:0) is an rxk matrix and /,. is an r-dimensional identity matrix. In

practice, people more often use a different version of the Wald test which rejects Ho

for large values of

(6.5)

where A(0) = RV(6)R' and V{6) is an estimator which converges stochastically to

*?(#)"' in an open neighbourhood of the true value of 9 (e.g., see discussions in

Stroud, 1971).

Under the standard regularity conditions (see for example Amemiya, 1985,

Chapter 4), the asymptotic distribution of the Wald test statistic under the null

hypothesis is %2
r, a central chi-square distribution with r degrees of freedom. While

under the alternative hypothesis, the Wald test asymptotically follows a non-central

chi-square distribution %2
r(ju

2), with a non-centrality parameter ju. For details, see

Godfrey (1988, Chapter 1) and Hendry (1995, Chapter 13).

Tests constructed using the Wald principle (i.e., tests that take the form of

(6.5)), but not in the context of classical ML estimation, are often referred to as

Wald-type tests. In such tests, the ML estimators are replaced by a broader class of

asymptotically normal estimators, such as the generalised method of moment

(GMM) estimators. For a review on Wald-type tests, see Burguete et al. (1982).

These tests were shown to be also asymptotically optimal, similar to the cl?^sical

Wald test.
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The Wald test is a consistent test asymptotically. Within the class of

asymptotically unbiased tests, the procedure is also asymptotically most powerful

against local alternatives (see, e.g., Cox and Hinkley, 1974, Chapter 9). However

these properties may not hold in small samples. Three small sample problems,

namely, local biasedness, power non-monotonicity and non-invariance of the Wald

test to the reparameterisation of the null hypothesis, have been identified and studied

by many researchers. This chapter is mainly concerned with the first two problems,

which are briefly reviewed below.

6.2.1.1 Local Biasedness

Peers (1971) studied the power function of the Wald test with a simple null

hypothesis against a two-sided alternative using asymptotic expansions. He found

that the Wald test can be locally biased for finite sample sizes, as the power can drop

below its size in the neighbourhood of Ho when the first-order derivative of the

power function evaluated at the null value becomes negative. It was also found that

the power function can be asymmetrical in the neighbourhood of HQ. This bias

disappears a s n - ) ~ . Hayakawa (1975) and Hayakawa and Puri (1985) extended the

analysis for tests of composite null hypotheses. Examples of this local biasedness

have been reported by Magdalinos (1990), Oya (1997) and Goh and King (1999)

among others for various models.

1

6.2.1.2 Non-monotonic Power

The power function of a test is said to be non-monotonic if the power first increases

but eventually decreases (sometimes to zero) as the distance between the true

parameter value and the null value increases. Hauck and Donner (1977) first reported

the non-monotonic power behaviour of the Wald test for testing a single parameter in

a binomial logit model. Similar phenomenon has been reported for different models

by Mantel (1987), Nelson and Savin (1988, 1990) and Laskar and King (1997)

among others. One possible reason for this anomaly is that, for alternatives
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sufficiently far away from the null hypothesis, A(0) has a tendency to increase

faster than (P—p0)
2 zs m e departure from the null gets larger; e.g, see discussions

in Goh and King (2000).

6.2.1.3 Existing Remedies

Many researchers have attempted to improve the small-sample performance

of the Wald test. These remedies can be classified into 3 categories:

1. Correcting the asymptotic critical value so as to control the size of the test.

This can be done by either employing higher-order (usually second or third order)

asymptotic expansions or by bootstrap. The two methods were shown to be

equivalent by Hall (1992). Examples of the analytical approach include Rothenberg

(1988), Magdalinos (1990) and Phillips and Park (1988), while the bootstrap critical

values were discussed by Nankervis and Savin (1996) and Horowitz and Savin

(1998) among many others. Nankervis and Savin (1985) and Cribari-Neto and

Cordeiro (1996), on the other hand, attempted to correct the test statistic to make it

more consistent with the asymptotic critical values.

2. Correcting the small sample bias in ihe estimator used in the test. Goh and

King (1999) provided a good example of this approach. The proposed method in this

chapter also falls into this category. Ferrari and Cribari-Neto (1993) adopted a

similar approach in correcting the Wald test of nonlinear restrictions.

3. Using alternative estimators for the covariance matrix. For example,

Mantel (1988), Laskar and King (1996) and Goh and King (2000) advocated the so-

called null-Wald test to correct the non-monotonic power problem. Instead of using

the variance estimator evaluated at the estimate, the null-Wald test replaces it by the

variance estimated at the null value. For example, Laskar and King (1997) reported

that the null-Wald test is able to remove the power non-monotonicity when testing

for MA(1) errors in a linear regression model.
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6.2.2 Bias-corrected Wald Tests

In the original Wald test, all parameters are estimated by unconstrained ML

estimators. Goh and King (1999) conjectured that biasedness of the Wald test is a

direct result of poor centring of its power curve, and one possible cause of this is the

small sample biasedness of the ML estimates in the presence of nuisance parameters.

They suggested an implicit correction factor for this possible bias in the estimation of

p. Instead of using p, they suggest using p^ = p-cw when constructing the Wald

test. The corrected Wald test is given by

cw= - A>) (6.6)

where = (P / ~
cw

)')'. The correction factor cw and the critical value d^v

are found by numerically solving the following two equations:

(6.7)

where n^p) = ^x[CW>dcw\p] is the power of the test at p. The first equation

controls the size of the test while the second equation enforces the local

unbiasedness. Because there is no analytical expression for the derivative of the

power function, the second equation is approximated by

(6.8)

where tf0
+ and tfo~ are local alternatives on the two sides of HQ. Goh and King

(1999) designed a parametric bootstrap procedure to find cw and <iCH,.

We propose a different method of correcting local biasedness of the Wald test

in this chapter. Instead of implicitly correcting p by bootstrap, we explicitly correct
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the small sample bias in p by replacing it with one of the MU estimators we

developed in Chapters 4 and 5. Our version of the corrected Wald test is given by

(6.9)

where 6m is the approximately MU estimator constructed by iteratively correcting

the bias of each parameter using the methods proposed in Chapter 3. By doing so, if

the MU estimator can eliminate the small sample bias in fi, the corrected Wald test

should correct the local biasedness of the original test.

The rationale underlying the suggested correction lies in the observation that,

as it seems in many cases, the poor centring of the power curve of the Wald test

appears to be linked to the wrong location (mean) of the test statistic (e.g. see

Nankervis and Savin, 1985, 1988b, Gob and King, 1999). A shift in location towards

the origin for the entire power curve should be able to alleviate the local biasedness

and better centre the power curve. We argue that this can be done by shifting the

estimator used in the test in the right direction (towards the true value), while

keeping the magnitude of the variance of the estimator under control. From the

simulation results reported in Chapters 4 and 5, we believe that the proposed MU

estimators effectively corrected the downward bias of the LS estimators, while at the

same time not substantially increasing its variance. Therefore we would expect by

applying these MU estimators, we should be able to correct the local biasedness of

the Wald tests.

6.2.3 Construction of Wald Tests Based on MU Estimators

6.2.3.1 Testing for Autocorrelated Errors

We examine the same model studied in Chapter 4, i.e. the linear regression model

with stationary AR(1) disturbances. The testing problem considered in this section is

that of testing the existence of autocorrelation in the disturbances. This is probably

the most extensively studied hypothesis testing problem by econometricians. For a

Chapter 6. Hypothesis Testing and Forecasting Based on Median-Unbiased Estimators

comprehensive review, see King (1987a). The purpose of our study is to use this

model to illustrate the effectiveness of correcting the local biasedness of a two-sided

Wald test by applying MU estimators, rather than to propose a new test Therefore it

is not our interest to have exhaustive power comparisons of all available tests.

Instead, we simply concentrate on the Wald tests based on three different estimators:

1. the two-step OLS estimator (pOLS); 2. the full maximum likelihood estimator

(pML)\ and 3. the MU estimator (pMU) proposed in Chapter 4, which is constructed

by adjusting and then solving the marginal likelihood score equations.

The first two estimators, pOLS and pUL, are asymptotically equivalent, with

the same asymptotic variance:

(6.10)

where p can be either pOLS or pML. But in order to improve its efficiency in small

samples, we use the finite sample estimate of the estimator variance in the Wald test.

This variance estimator is given by,

t=2

I T

1=2

(6.11)

where u, are the GLS residuals for covariance matrix £(p). Therefore the Wald test

for testing

HQ.p = 0 against Ha:p*0 (6.12)

is given by

(6.13)

The corrected Wald-test based on pm, however, needs some justification.

Recall that pMU is the solution to the following estimating equation:
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U(y,p)-med[U(y;p)\y ~ = 0, (6.14)

where

T-k
dp J (6.15)

is the marginal likelihood score function, in which

A(p)= ^X'QT^p).

Ara (1995) showed that this score is mean-unbiased, i.e.

Eo[U(y;p)] = 0. (6.16)

Therefore we can derive the asymptotic distribution of the score function in the same

way as in the classical MLE context, by expanding the score function at the true

parameter value. If we denote the diagonal component in the information matrix

corresponding to parameter p by

-= E{-d2 In L(y;p)/dp2} = Var[U(y,p)], (6.17)

Ara (1995) showed that the marginal likelihood score U(y,p) is asymptotically

normally distributed, i.e.,

(6.18)

Therefore asymptotically pMU is equivalent to the maximum marginal likelihood

estimator because the median of the score vanishes as T-> °° in equation (6.15), and

the variance of the adjusted score tends to the expected information matrix

component. Hence the adjusted Wald test based on pMU could use the same
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information matrix component as the Wald-test based on the maximum marginal

likelihood estimator. Under appropriate regularity conditions (e.g., see Ara, 1995),

the corrected Wald-test will have the usual asymptotic chi-square distribution as the

classical Wald-test, i.e.,

(6.19)

where the diagonal component corresponding to p in the MGL-based information

matrix, /(p), is given by

•I
2(m+2) [

mx.tr A(p)
dp dp J dp J (6.20)

Hence for testing hypotheses (6.12), the corrected Wald-test based on the MU

estimator is given by

(6.21)

6.2.3.2 Testing for Random Walk Disturbances

In this section, we consider the one-sided test problem

H0:p=\ against Ha\p<\ (6.22)

in the linear regression model with stationary AR(1) or random walk disturbances.

The model specifications are given in Section 5.1. This testing problem has also been

studied extensively by econometricians. If there are no exogenous regressors other

than a time trend, this is the familiar testing for a unit root problem. The literature on

such tests is vast, see Phillips and Xiao (1998) for a recent survey. The difficulty of

this problem is that the distributions of the tests are non-standard even
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asymptotically. For the models with exogenous regressors, Berenblut and Webb

(1973), Sargan and Bhargava (1983), King (1987b) and Dufour and King (1991)

among others considered testing for random walk disturbances. It was found that

among the tests available, the test statistic developed by Berenblut and Webb (1973),

which is a special case of the POI tests proposed by Dufour and King (1991),

generally has good small sample power properties (e.g, see Phillips and Xiao (1998))

against stationary alternatives. The test also has the advantage of being an exact test.

In Chapter 5, we reported that many tests, including the DW test, t test and

the POI tests may suffer from non-monotonic power problem for some design

matrices on the negative side of the alternative p values. A similar problem was

reported in Kramer and Zeisel (1990) and Bartels (1992) for testing the null

hypothesis of zero correlation. For the random walk null hypothesis, we propose the

Wald-test based on the MU estimators developed ia Chapter 5 as a remedy to this

problem. We show that this test is able to correct the non-monotonic power problem

when p - * - l . It can also correct the local biasedness suffered by other tests for

some deign matrices.

The one-sided Wald test is given by

(6.23)

where p. can be pGLS, pML, pA and pMU from Chapter 5, and the estimated

variance is given by

7"

2

(6.24)

where

(6.25)

(6.26)
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6.2.3.3 Testing the Lagged Dependent Variable Coefficient

Consider the dynamic linear regression model (4.25) examined in Section 4.3. We

are interested in testing the significance of the lagged dependent variable coefficient,

i.e.

Ho:y = 0 against Ha:y*0. (6.27)

The t statistic is routinely used to test these hypotheses. The exact

distribution of the t statistic is complicated. In a model with no other exogenous

regressors other than an intercept and/or a time trend, Nankervis and Savin (1985,

1987,1988b) studied the exact distribution of the t statistic under the null hypothesis

and clearly established that the Student t distribution is not a satisfactory

approximation for sample sizes typical in economic applications. Monte Carlo

evidence reported in their papers and also in Tanaka (1983) and Rayner (1990)

confirmed the inadequacy of using the t statistic in this model. This may cause size

distortions when the asymptotic critical values are used, and low power when the

level-corrected critical values are used. An alternative approach is to use the

bootstrap method to obtain asymptotically valid critical values for the test. Beran

(1988) showed that the test with bootstrap-based critical values can provide better

control over the rejection probability than the test that uses the asymptotic critical

value. Nankervis and Savin (1996) examined the level and power of the bootstrap t

test in the model with an intercept and a time trend as regressors and concluded that

the bootstrap test has essentially the same power as the empirically level-corrected

asymptotic-theory test reported in Nankervis and Savin (1988b).

An important finding reported in Nankervis and Savin (1988b) is that for

small sample sizes, the reason for the bad approximation of the t statistic under the

null hypothesis by the Student's / distribution is not the shape of the distribution but

its location, i.e., the mean of the distribution of the t statistic is located substantially

to the left of zero when the autoregressive parameter is near unity. Nankervis and

Savin (1988b) suggested adjusting vhe t statistic to have the correct mean and

variance. Let T be a random variable which is distributed as Student's t with T-k

degrees of freedom. The adjusted t statistic is
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= (t-E(t))/co, (6.28)

where co2 =[var(T)/var(f)]. It was shown in Nankervis and Savin (1988b) that

Student's t distribution accurately approximates the null distribution of the adjusted

t statistic. The problem of this approach is that for models with exogenous

regressors, the moments of the t statistic depend on nuisance parameters — the

regression coefficients, and thus make it hard to compute the adjusted statistic (6.28).

We consider the Wald-test based on the approximately MU estimator

developed in Chapter 4. Instead of correcting the moments of the t statistic, we

correct the location (bias) of the estimator. Roughly speaking, the bias-correction of

the estimator should result in adjusting the location of the t statistic, provided that

the variance of the bias-corrected estimator is similar to that of the original estimator.

Note that our correction factor also depends on the regression coefficients, and

therefore is consistent with the approach discussed in Nankervis and Savin (1988b,

pl42).

Grose (1998) and Mahmood (2000) observed that, unlike for the linear

regression model with AR(1) disturbances, the marginal likelihood score for the

lagged dependent variable is not mean-unbiased, i.e., its expectation at the true

parameter value is not zero for all sample sizes. The score is also not information

unbiased, i.e., its variance is not identical to the corresponding information matrix

component. Therefore it is not as straightforward to derive the asymptotic

distribution of the Wald-type test for this model as in the previous section.

However, for large sample sizes, under certain conditions on the order of

magnitude of X and Q, Grose (1998) showed that the marginal likelihood score

U(y;y) is asymptotically unbiased and information unbiased, i.e., as T—> °°,

(6.29)

(6.30)
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where •dn is the diagonal component corresponding to y in the marginal likelihood-

based information matrix. For details, see Grose (1998). Therefore asymptotically the

marginal score is still normal and the same arguments used in Section 6.2.2 can be

used here to show that the Wald-test is asymptotically valid, with the usual chi-

square distribution as the approximately MU estimator should also be asymptotically

equivalent to the maximum marginal likelihood estimator (which is also

asymptotically equivalent to the global maximum likelihood estimator).

But according to Grose (1998), the information matrix component #„,

contains second moment terms that cannot be resolved analytically. If we apply the

Wald-test based on ti^, it has to be evaluated either via a Laplace approximation (as

in Grose, 1998 and Mahmood, 2000) or by numerical integration, which are both

computationally costly. To overcome this difficulty, we use the corresponding

component in the Hessian, namely hn, which is a consistent estimator of -dn. Grose

also derived the asymptotic equivalence of the MGL-based likelihood and the profile

likelihood. Therefore the Hessian of the profile likelihood can be used to further

simplify the construction of the Wald-type test.

Following Goh and King (1999), let 9 = (7,/?',cr2)'. If we have an estimator

of y, yn which can either be the OLS estimator f0LS or the approximately MU

estimator yMU, then the corresponding estimators of the other two parameters are

given by

(6.31)
T

t=2

and
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1
T-k-l

T

\ 2

(6.32)

1=2

In this case, the Wald statistic is

(6.33)

where R = [l O^,] and 0,. = (yt,P{y.,)', a1 (y,))', while the variance matrix is given

by

an a22 0 t_2

fl,3 a
33

- i

(6.34)

where

T-2
l-f

(6.35)

a,-, = •
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' andm, = (6.36)

6.2.4 Monte Carlo Tests

Throughout our simulation studies that follow, we adopt the technique of the Monte

Carlo test originally suggested by Dwass (1957) and Barnard (1963). The main

reason is that the test statistics obtained in this chapter have fairly complex null

distributions which are difficult to compute analytically. Applying a Monte Carlo test

involves simulating the critical value under the null hypothesis and using this critical

value to assess the test's power properties. As pointed out by Kiviet and Dufour

(1997) and Dufour and Kiviet (1998), although the Monte Carlo tests are related to

tests based on a parametric bootstrap, Monte Carlo tests have the important

advantage of being valid in finite samples even when the number of replications used

is small; see also discussions in Jockel (1986), Horowitz (1994) and Horowitz and

Savin (2000). In the dynamic linear regression model, Nankervis and Savin (1996)

reported the equivalence between the Monte Carlo tests and the bootstrap-based tests

in terms of small sample power. Monte Carlo tests are usually computationally more

efficient than the bootstrap tests.

However, Horowitz and Savin (2000) criticised the Monte Carlo test

methodology on the grounds that the level-corrected critical values used in these tests

are irrelevant to the empirical testing problems, as they are artificial and only valid

for the particular set of simulation experiments. We join Kiviet and Dufour (1997)

and Dufour and Kiviet (1998) and argue that, nevertheless, the Monte Carlo test is a

powerful tool for examining the small sample properties of tests which have null

distributions not possibly tractable analytically. As pointed out by Goh (1998),

Monte Carlo techniques provide an important device for econometricians to evaluate

and choose sound inference procedures awaiting to be used in practice. Therefore

Monte Carlo tests should be deemed as an important device for us to assess the

candidates of tests before they are applied to non-experimental settings.
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6.2.5 Experimental Design

For the linear regression model with AR(1) disturbances, we used the same eight

design matrices in Chapter 5, as they cover a range of both artificial and empirical

time series. The sample sizes were 20,40 and 60. The tests compared were the Wald

tests based on the two-step OLS estimator (p0LS), the ML estimator (pMLE)

Andrews' estimator (pA) and the proposed MU estimator (pMV)- For the first two

test statistics, the variance of the estimator was estimated by the profile likelihood

variance estimate given by (6.11).

When testing for autocorrelation, these tests were also compared with the

DW test and the 5(1,05) test (King, 1985b), which were used as the power

benchmark. The POI test, 5(1,05) (Dufour and King, 1991), was used as the

benchmark when testing for random walk disturbances.

For the first-order dynamic linear regression model, we also used the same

design matrices as in Section 4.4. The Wald-test based on the proposed estimator was

compared with the one based on the OLS estimator. The variance of the estimator in

both tests is estimated by the estimator given by (6.36).

2000 replications were conducted for the linear regression model with AR(1)

disturbances and 1000 replications were used for the dynamic linear regression

model. The quantiles of the simulated test statistics under the null hypothesis were

used as the critical values. The rejection probabilities were reported for the parameter

values under the alternative hypothesis. A significance level of 10% was used for

testing autocorrelated disturbances and the LDV coefficient, while 5% was used for

testing for random walk disturbances.
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6.2.6 Results

6.2.6.1 Testing for Autocorrelated Errors

The empirical power (rejection probabilities) of the Wald tests based on different

estimators are reported in Tables 6.1a— 6.1c for X\ - X6, and Tables 6.2a— 6.2b for

XI and XS. The corresponding power curves are presented in Figure 6.1.

Using simulated critical values, local biasedness is exhibited in the Wald-tests based

on the OLS estimator and the MLE estimator on the right side of Ho. This is

particularly serious for a sample size of 20. The powers of the W0LS and WMLE tests

drop below 0.05 at p = 0.1 and 0.2 for all design matrices except XI and XS. For

example, the powers of the W0LS and WMLE tests at p = 0.2 for X2 and T = 20 are

0.02 and 0.03, respectively. As a result, the power curves of these two tests are

poorly centred. Although still apparent, the local biasedness becomes less serious for

T = 40. When p moves further away from Ho to non-local alternatives, the W0LS test

also suffers from non-monotonic power. Its power drops in both tails for design

matrices X6, XI and XS with 20 and 40 observations. For example, for XS and

T = 20, the powers of the W0LS test at p-\ and /? = -0.95 are 0.06 and 0.1,

respectively. Both problems plaguing these tests disappear for a sample size of 60.

As a benchmark for power comparisons, we notice that the point optimal test 5(0,0.5)

enjoys significant power superiority on the right side of Ho over the W0LS and WMLE

tests. It does not suffer from either local biasedness or non-monotonic power.

However, its power on the left side of Ho tends to be lower than those of the Wald

tests, as 5(0,05) was designed to maximise the power in the neighbourhood of

p = 05.

We first examine the performance of the Wald-test based on the proposed

MU estimator pm for design matrices XI - X6, where local biasedness is the main

concern. As exhibited in Figure 6.1, the new test WMU successfully corrected the

local bias in the W0LS and WMLE tests for all these design matrices with a sample size

of 20 and 40. The power curves of the WMU test are properly centred at the null point

and also tightened on the positive side of the parameter space. The power gain on the
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right side of Ho is quite significant. For example, for X4 and T = 2Q, the power of

WMU at p = 0.2, 0.6, 0.8 are 0.09, 0.42 and 0.65, respectively, while the WOLS test has

powers of 0.03, 0.18 and 0.38 in this case. The power gain is consistent over all

design matrices and all positive p values. On the negative side of Ho, however, the

powers of the WMU test are slightly lower than those of the WOLS and WMLE tests. This

is probably because that the high powers of the W0LS and WMLE tests for negative p

values are pushed up by the ill-centred power curves.

Compared with the WMU test, the Wald-test based on Andrews' estimator, WA,

is generally more powerful than the W0LS and WMLE tests for positive p values, but

less powerful than the W^ytest. Although it is also able to correct the local

biasedness, its power for non-local alternatives are significantly lower than those of

WMU except for XI. Its power on the left side of Ho, however, is consistently slightly

higher than that of WMU. It is often argued that when testing for autocorrelation, good

power is mostly needed for positive side of Ho. The WMU test satisfies this criteria

best among the tests considered.

Another interesting finding is that for all design matrices except XI and X8,

the WMU test has powers very similar to those of the j(0,05)test, especially on the

right side of HQ. As the s(0,0.5) test is tangent and close to the power envelope of

this testing problem, this similarity verifies the effectiveness of correcting the Wald

test by using the proposed MU estimator.

For design matrix XI and X8, the WMU test has a monotonic power curve on

both sides of Ho. The WOLS test performs poorly as expected. The power gain by the

WMU test is most significant for T = 20. For example, the powers of the WMU test at

p = 0.8 and 1 for X8 and T = 20 are 0.5 and 0.78, respectively, compared with those

of W0LS, of 0.11 and 0.6. Interestingly, unlike for other design matrices, the WMLE test

has much better power properties than the W0LStest for this design. It has slighiiy

lower powers than the WMU test on the right side of HQ and better powers on the left

side of Ho. The same pattern is depicted for T = 40.

215

Chapter 6. Hypothesis Testing and Forecasting Based on Median-Unbiased Estimators

The power results for T = 60 are presented in Table 6.3. The problems of

local biasedness and non-monotonic power plaguing the tests for smaller sample

sizes disappear. However, the power gain from using the WMU test is still quite

apparent for all design matrices. The WMU test is significantly more powerful than the

other two tests for local alternatives,, and slightly more powerful for non-local

alternatives. For example, the powers of the W0LS, WMLE and WMU tests at p = 0.2 for

X2 ate 0.25,0.25 and 0.43, respectively.

From the above analysis, it is clear that the introduction of pm as a

correction to the Wald-test effectively eliminates the local biasedness and non-

monotonic power problem at the same time. The new test has powers greater than

their empirical sizes at local alternatives on both sides of HQ and the power does not

drop when p departs further from HQ. The power curves are better centred than those

of the Wotsand WMLE tests. The only drawback of the new procedure is its slightly

lower power on the negative side of HQ, which is usually regarded as less critical

than positive autocorrelation.

6.2.6.2 Testing for Random Walk Disturbances

The power comparison of the W0LS, WMLE, Wm and J(1,05) tests for testing random

walk disturbances against one-sided alternatives are presented in Tables 6.4a - 6.4d

and the power curves are plotted in Figures 6.2a - 6.2d for different design matrices

and T = 20, 40. The WOLS and WMLE tests still suffer from local biasedness for all

design matrices except XI with 20 observations. The W0LS test is also not immune to

this problem for T = 40 for several design matrices such as X6 and X8. The point

optimal test s(l,0.5) is shown to be more powerful than the W0LS and WMLE tests.

The corrected Wald test WMU effectively eliminates the local biasedness for

all design matrices. Its power is above its empirical size for local alternatives. For a

sample size of 20, the Wm test is significantly more powerful than the other two

tests for all positive p values. In particular, for X6 and X8, the WMU test is more

than twice as powerful as the other two tests for all positive p values. For a sample
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size of 40, the performance of the WMLE test improves substantially while the WOLS

test is still not performing well. The WMU test is now slightly more powerful than the

WMLE test, while still superior to the W0LS test by a big margin, especially for X2, X6

and X8. There is also a similarity between the power curves of the Wm test and the

.y( 1,0.5) test, which verifies the effectiveness of improving the small sample power

properties of the Wald test by using MU estimator.

6.2.6.3 Testing the LDV Coefficient

The estimated powers of the Wald-tests based on y0LS and y MU in the dynamic linear

regression model for different design matrices and T = 20, 40 are reported in Table

6.5, and the power curves are presented in Figure 6.3. As expected, the Wald test

based on the OLS estimator performs poorly in this model. It suffers from local

biasedness on the positive side of Ho for all design matrices and both sample sizes.

The powers drop to almost 0 at y = 0.1 for X4 and X5 and T = 20. The power curve

is poorly centred and seriously asymmetrical. The Wald test based on the proposed

MU estimator, however, seems to be immune to this bias problem. Its power curve is

centred around Ho and the powers are above the size on both sides of Ho. This is

achieved by a significant increase in power for positive y values and slightly lower

power for negative y values. The power gain on the positive side of Ho is particularly

large for T = 20. For example, for X5, the powers of the W0LS test at y = 0.1 and 0.2

are 0.04 and 0.05, respectively (both below the size of 10%), while the WMU test has

a power of 0.11 and 0.16 in this case. The results show that the modified Wald test

has approximately equal powers on the two sides of Ho provided the departure from

HQ is not too far. For example, the powers of the W0LS test at y = 0.1 are lower than

those at y = -Q.\ by more than 0.12 for all design matrices and 7 = 20, while the

WMU test has a power difference less than 0.01 for all design matrices at these two

points. These results lead us to believe that the bootstrap correction of the local

biasedness proposed by Goh and King (1999) is indeed achieved as effectively by the

proposed method.
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6.3 Prediction Based on MU Estimators

It is commonly agreed that the precision of the forecasts directly depends upon the

precision of the parameter estimates. As Phillips (1979) remarked, in autoregressive

time series, the serious small sample bias of the parameter estimates will carry over

to the conditional distribution of forecasts given the observed values of the

endogenous variables used to initiate forecasts. In the linear regression context,

Goldberger's (1962) seminal paper on forecasting suggested the importance of

efficiently estimating the parameters in the unknown covariance matrix in order to

increase forecasting accuracy. Assuming all the parameters are known, Goldberger

derived the best linear predictor for a general linear regression model. But in

practice, one has to replace the parameters in this optimal predictor by their

estimates. The risk of an approximate predictor is therefore affected by the choice of

estimator. The exact behaviour of the. predictors based on different estimators is

usually hard to trace especially in small samples.

The study of prediction accuracy in autoregressive models stems from the

early work of Hurwicz (1950b) and Shenton and Johnson (1966) among others.

Yamamoto (1976) compared the asymptotic efficiencies of the predictors in a linear

regression model with AR(1) disturbances and concluded that the predictor based on

the GLS estimator is not necessarily asymptotically more efficient than the one based

on the OLS estimator. The asymptotic approach was also taken by Baillie (1979),

Fuller and Hasza (1981), Stine (1987) and Kemp (1999) in examining the properties

of predictors for autoregressive time series, mainly for the near non-stationary and

unit root case in large samples. Spitzer and Baillie (1983), via Monte Carlo

simulations, studied the validity of asymptotic approximations to the distributions of

the prediction errors in the same model. They concluded that the asymptotic error

formula, when used in small samples, do not fully reflect the finite sample risk

caused by estimating the parameters.

Phillips (1979), Maekawa (1987), Hoque et al. (1988) and Magnus and

Pesaran (1989, 1991) all attempted to, via Edgeworth-type expansions, approximate

the finite sample distribution of the forecasting errors in a simple autoregressive
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model, in order io study the small sample bias and efficiency of the predictors.

Monte Carlo studies of forecasting errors in the same model were conducted by Stine

(1985), Dielmann (1985), Sampson (1991) and Kemp (1999) among others. It

appears that the small sample bias in the LS estimators of the autoregressive

parameter usually leads to larger mean squared error of prediction (MSEP) especially

when the parameter is near unity.

To improve on the predictors based on the OLS estimators, King and Giles

(1984) proposed a pre-test procedure. More recently, Gospodinov (1999) attempted

to construct a MU predictor for an AR(p) model by inverting the median function of

the probability distribution of the least square predictor. Before we introduce the

proposed predictors based on the MU estimators, we start by examining the small

sample prediction risk of the linear autoregressive model. Many researchers have

suggested improving the prediction accuracy by bootstrap. Attention was mainly

given to prediction intervals. These studies include Stine (1985), Masarotto (1990),

Thombs and Schucany (1990), Basawa et al. (1991), Kabaila (1993b), Beran (1993),

Grigoletto (1998) and Kim (2001).

6.3.1 Prediction Risk and Estimation Bias

For the linear regression model with AR(1) disturbances (the model specified by

(4.1) and (4.2)), consider the one period ahead forecast yT+l, which is given by

'+1 (6.37)

where

(6.38)

(6.39)

Chapter 6. Hypothesis Testing and Forecasting Based on Median-Unbiased Estimators

and yT and xT+x are the last available observations of y and x, respectively, p can

be replaced by different estimators such as p0ls and pMLE. If the autoregressive

parameter is known, Goldberger (1962) showed that this is the best linear unbiased

predictor. But when p and fi are leplaced by their estimates, the efficiency of the

predictor (6.37) will depend on the quality of the estimators chosen. Similarly, the h-

period ahead forecast yT+h is given by,

(6.40)

Many researchers have studied the asymptotic efficiency of this predictor in a

model with just a constant as the regressor. They concluded that asymptotically, the

prediction error is most serious when p is in the neighbourhood of 1. Researchers

also found that the estimator J3 is essentially unbiased for most design matrices and

positive autocorrelation, and different estimators of p do not have a big impact on

the efficiency of /?, see for example Rao and Griliches (1969), Magee et al. (1987)

and Latif and King (1993). Therefore heuristically speaking, the finite sample MSEP

of (6.37) is dominated by the mean squared error of p, namely the terms involving

E(p-p)2. This justifies the effort to improve the prediction accuracy by using a less

biased p with small RMSE. Hence we would expect that the proposed predictor

(6.41)

where pMU is the MU estimator we proposed in Chapter 5, should be more efficient

in small samples compared with the ones based on p0LS and pMLE.

For the dynamic linear regression model, the frequently used h -period-ahead

predictor is given by

75W/. =

For fc = 1, its finite sample MSEP can be expressed as

(6.42)
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r+i (6-43)

It is also apparent that by reducing the bias and RMSE of the estimator y, we should

be able to reduce the MSEP of the predictor. Therefore we replace yOLS in (6.42) by

the approximately MU estimator ym we developed in Chapter 4 and suggest using

the one-period-ahead predictor

(6.44)

6.3.2 Experimental Design

In the linear regression model with AR(1) disturbances, we compute the one-

period-ahead forecasts based on pOLS,pMLE, PA and pMU, which are denoted by

y°fx, y%f, r̂+i md y"+\ > respectively, for eight different design matrices specified

in Chapter 5, and for p = 1, 0.9, ..., 0.1, 0 and for T = 20 and 40. The RMSEPs were

calculated based on 2000 forecasts.

In the dynamic linear regression model, we compare the predictors based on

yOLS and y MU. The latter was based on the iterative algorithm proposed in Chapter 4.

1000 forecasts were computed for 7 = 0.9, 0.8, ..., -0.6, -0.8, 7 = 20, 40 and for

four design matrices specified in Section 4.3.

6.3.3 Results

6.3.3.1 Linear Regression with AR(1) Disturbances

The one-period-ahead prediction errors of the 4 predictors are reported in Table 6.6a

- 6.6c. For most design matrices, the prediction errors based on different estimators

all increase with p. For design matrices such as X2 and X5, the prediction error of
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j)£ff at p -1 is more than twice as much as the error at p = 0. For T = 40, the

prediction errors of y°£ and y%jf become more evenly distributed across the

parameter space. y£f generally has RMSEPs similar to or slightly higher than those

of y°fx except for X5 and X8 with 20 observations. The RMSEPs of y"^ are

consistently smaller than those of y^and y£f for large positive p values (>05)

and for T - 2 0 . Especially when p is close to 1, the advantage is significant. For

example, the RMSEPs of y*Jf at p = 0,9 for X2, X5, X6 and X8 for T = 20 are,

1.23, 2.07, 2.02 and 2.69, respectively, which are much smaller than those of y°fx:

1.83, 2.85, 4.04 and 2.92, respectively. This advantage is still present for T = 40 but

with a smaller margin. For example, the RMSEPs of y""x for X5 at

p = 1, 0.9, and 0.8 are, 1.06, 1.06 and 1.07, respectively, while y™ has RMSEPs of

2.58, 1.67 and 1.3, respectively. The predictor based on Andrews' estimator, y*+l,

performs very similarly to y™ for XI. But for all other design matrices, it always

has slightly larger RMSEPs than those of y£J. These results verify the expected link

between the quality of an estimator and the performance of the predictor based on it.

The smaller bias and risk of the MU estimators proposed in the previous chapters

were translated into smaller RMSEPs in forecasting.

6.3.3.2 Dynamic Linear Regression Model

The estimated one-step-ahead forecast errors for the two predictors based on y0LS

and y MV for the dynamic linear regression model are reported in Table 6.7. The

predictor based on the proposed MU estimator generally has smaller RMSEPs than

those of the predictor based on the OLS estimator for all positive y values and for all

design matrices considered. The OLS predictor has similar RMSEPs for different y

values, while the MU predictor tends to have larger RMSEPs for y values close to 1

than those for other y values. The difference between the two predictors is more

significant for -05<y<05, where the bias in y0LS seems to be most serious, as

reported in Chapter 4. For example, the difference in RMSEP between the two

predictors at y =0.4 and -0.4 for XI and T = 20 are 0.32 and 0.38, respectively, both

of which favoured y""- Interestingly, for XI, the OLS predictor sees little

222



Chapter 6. Hypothesis Testing and Forecasting Based on Median-Unbiased Estimator?.

improvement when the sample size increases from 20 to 40, while the MU predictor

shows a more apparent drop in the RMSEP when the sample size increases. The

advantage of usr ; the new predictor is minimal for design matrix X4 and T = 20.

This reminds us that the RMSEP of a predictor is not solely determined by the bias

of the estimator the predictor is based on. A similar phenomenon was reported by

Fair (1996), who found that the MU estimators do not necessarily lead to better

forecasting performance for a dynamic simultaneous equations model.

6.4 Concluding Remarks

This chapter provided some evidence of the effectiveness of improving small sample

performance of the Wald test and forecasting accuracy by using MU estimators.

The removal of bias in the estimator leads to the correction of the local

biasedness of the Wald test in both the linear regression model with AR(1)

disturbances and the dynamic linear regression model. The power curves of the Wald

test based on the MU estimator are properly centred at the null point and also

tightened on the positive side of Ho. For the non-local alternatives, the modified

Wald test is not affected by the problem of non-monotonic power, which usually

plagues the tests based on US estimators. Although the modified Wald-test is

asymptotically equivalent to the ones based on the MLE estimators, it provides an

effective remedy for the small sample deficiencies of the Wald test that are

frequently encountered by researchers.

A similar conclusion can also be drawn for forecasting accuracy. The

predictor based on the MU estimator usually has a smaller error compared with those

based on biased estimators. The removal of bias in the estimator leads to improved

prediction efficiency.
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Table 6.1a
„-.. _ „. w and 5(0,05) Tests at 5%

Significance Level in the Linear Regression with AR(1) Disturbances; Testing
HQ:p = 0 vs. H{.p * 0, for Design Matrix XI and X2

Rejection Probabilities of the WOLS, WMLE, WA,

p

w
YVOLS

wA
wMir

j(0,0.5)

P

w
r'OLSw

s(0,0.5)

p

wOLS
wMLE

wA
wMU

s<0,0.5)

P

w
OLS

wA

J(0,0.5)

1.00

0.70
0.71
0.82
0.83
0.32

1.00

1.00
1.00
1.00
1.00
1.00

1.00

0.41
0.54
0.56
0.73
0.67

1.00

0.99
0.99
0.95
1.00
1.00

0.80

0.57
0.58
0.71
0.73
0.73

0.80

0.99
0.99
0.99
0.99
0.99

0.80

0.30
0.39
0.46
0.61
0.53

0.80

0.96
0.97
0.86
0.98
0.98

0.60

0.33
0.34
0.50
0.51
0.51

0.60

0.88
0.88
0.90
0.91
0.92

0.60

0.14
0.19
0.30
0.39
0.31

0.60

0.80
0.82
0.73
0.86
0.86

0.40

0.12
0.13
0.24
0.26
0.26

0.40

0.49
0.49
0.57
0.59
0.60

0.40

0.04
0.06
0.15
0.20
0.13

0.40

0.41
0.42
0.47
0.50
0.50

XI,

0.20

0.03
0.04
0.10
0.10
0.10

XI,

0.20

0.12
0.12
0.16
0.18
0.19

X2,

0.20

0.02
0.03
0.06
0.09
0.06

X2,

0.20

0.08
0.09
0.16
0.13
0.13

7 = 20

0.00

0.05
0.05
0.05
0.05
0.05

r=40

0.00

0.05
0.05
0.05
0.05
0.05

7/= 20

0.00

0.05
0.05
0.05
0.05
0.05

T = 40

0.00

0.05
0.05
0.05
0.05
0.05

-0.20

0.18
0.18
0.10
0.10
0.13

-0.20

0.31
0.31
0.18
0.18
0.23

-0.20

0.19
0.17
0.16
0.08
0.13

-0.20

0.28
0.28
0.20
0.13
0.20

-0.40

0.45
0.45
0.25
0.29
0.32

-0.40

0.78
0.78
0.63
0.62
0.64

-0.40

0.45
0.42
0.40
0.21
0.27

-0.40

0.75
0.75
0.66
0.53
0.59

-0.60

0.78
0.78
0.61
0.65
0.61

-0.60

0.98
0.97
0.91
0.94
0.91

-0.60

0.77
0.76
0.74
0.54
0.46

-0.60

0.97
0.97
0.95
0.91
0.87

-0.80

0.96
0.96
0.90
0.90
0.83

-0.80

1.00
1.00
0.99
1.00
0.99

-0.80

0.95
0.95
0.94
0.85
0.58

-0.80

1.00
1.00
1.00
0.99
0.98

-0.95

0.99
0.99
0.99
0.98
0.93

-0.95

1.00
1.00
1.00
1.00
1.00

-0.95

0.99
0.99
0.99
0.97
0.61

-0.95

1.00
1.00
1.00
1.00
0.99

Note: 2000 Replications with Simulated Critical Values.
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WMU and s(0,05) Tests at 5%
Table 6.1b

Rejection Probabilities of the W0LS, WULE, WA,
Significance Level in the Linear Regression with AR(1) Disturbances; Testing

HQ:p = 0 vs. Ht:p * 0, for Design Matrix X3 and X4

p

w
"OLSw
WA

s(0,05)

p

Wn,s
w
rrMLE

wuu
s(Q,05)

p

WOrs

wA
wMll

,s(0,0.5)

P

w
''MLE

wm
J(0,0.5)

1.00

0.50
0.59
0.63
0.77
0.75

1.00

0.98
0.98
0.87
0.99
0.99

1.00

0.58
0.67
0.65
0.81
0.81

1.00

0.99
1.00
0.90
1.00
1.00

0.80

0.35
0.43
0.50
0.67
0.63

0.80

0.94
0.95
0.79
0.96
0.97

0.80

0.38
0.47
0.48
0.65
0.65

0.80

0.97
0.98
0.77
0.98
0.99

0.60

0.16
0.21
0.32
0.45
0.4

0.60

0.76
0.78
0.67
0.81
0.82

0.60

0.18
0.23
0.29
0.42
0.42

0.60

0.81
0.83
0.67
0.87
0.88

0.40

0.05
0.07
0.15
0.23
0.19

0.40

0.36
0.38
0.46
0.44
0.46

0.40

0.06
0.08
0.15
0.20
0.19

0.40

0.41
0.42
0.50
0.49
0.53

X3,

0.20

0.02
0.03
0.07
0.10
0.08

X3,

0.20

0.06
0.07
0.15
0.12
0.12

X4,

0.20

0.03
0.03
0.07
0.09
0.08

X4,

0.20

0.09
0.09
0.17
0.15
0.18

T=20

0.00

0.05
0.05
0.05
0.05
0.05

r=40

0.00

0.05
0.05
0.05
0.05
0.05

7 = 20

0.00

0.05
0.05
0.05
0.05
0.05

r=40

0.00

0.05
0.05
0.05
0.05
0.05

-0.20

0.18
0.17
0.15
0.09
0.12

-0.20

0.27
0.28
0.21
0.11
0.18

-0.20

0.18
0.18
0.15
0.09
0.11

-0.20

0.31
0.30
0.20
0.14
0.21

-0.40

0.43
0.42
0.38
0.24
0.25

-0.40

0.76
0.76
0.66
0.48
0.52

-0.40

0.44
0.44
0.38
0.24
0.29

-0.40

0.77
0.77
0.63
0.54
0.59

-0.60

0.76
0.76
0.72
0.58
0.45

-0.60

0.97
0.97
0.95
0.89
0.81

-0.60

0.77
0.77
0.73
0.58
0.55

-0.60

0.97
0.97
0.93
0.90
0.85

-0.80

0.95
0.95
0.93
0.87
0.57

-0.80

1.00
1.00
1.00
0.99
0.95

-0.80

0.95
0.95
0.93
0.87
0.79

-0.80

1.00
1.00
1.00
0.99
0.95

-0.95

0.99
0.99
0.99
0.97
0.65

-0.95

1.00
1.00
1.00
1.00
0.99

-0.95

0.99
0.99
0.99
0.97
0.93

-0.95

1.00
1.00
1.00
1.00
0.99

Note: 2000 Replications with Simulated Critical Values.
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Table 6.1e
Rejection Probabilities of the W0LS, WMLE, WA, WMU and s(Q,Q5) Tests at 5%

Significance Level in the Linear Regression with AR(1) Disturbances; Testing
H0:p = 0 vs. H{.p * 0, for Design Matrix X5 and X6

p

w
"OLSw

s(0,05)

P

W
"MLE

w,
wMU

5(0,0.5)

p

''OLS

W
''MLE

w,
wMU

s(0,05)

P

w
OLSwMLE

WA

4(0,0.5)

1.00

0.51
0.83
0.72
0.88
0.84

i.OO

1.00
1.00
0.95
1.00
1.00

1.00

0.33
0.60
0.60
0.40
0.73

1.00

0.95
0.99
0.81
0.96
0.99

0.80

0.38
0.61
0.60
0.69
0.62

0.80

0.98
0.99
0.82
0.99
0.95

0.80

0.28
0.45
0.57
0.14
0.49

0.80

0.94
0.96
0.77
0.76
0.95

0.60

0.22
0.33
0.43
0.40
0.32

0.60

0.86
0.88
0.65
0.89
0.70

0.60

0.15
0.23
0.42
0.06
0.25

0.60

0.75
0.81
0.63
0.27
0.69

0.40

0.09
0.14
0.25
0.20
0.15

0.40

0.46
0.49
0.50
0.52
0.23

0.40

0.05
0.09
0.25
0.05
0.12

0.40

0.36
0.39
0.44
0.05
0.27

X5,

0.20

0.04
0.05
0.10
0.09
0.06

X5,

0.20

0.12
0.13
0.21
0.16
0.04

X6,

0.20

0.03
0.04
0.10
0.05
0.07

X6,

0.20

0.08
0.09
0.16
0.01
0.07

7/ = 20

0.00

0.05
0.05
0.05
0.05
0.05

T = 40

0.00

0.05
0.05
0.05
0.05
0.05

r=20

0.00

0.05
0.05
0.05
0.05
0.05

r=40

0.00

0.05
0.05
0.05
0.05
0.05

-0.20

0.17
0.14
0.10
0.08
0.12

-0.20

0.28
0.27
0.19
0.15
0.27

-0.20

0.16
0.14
0.09
0.06
0.09

-0.20

0.31
0.29
0.24
0.28
0.18

-0.40

0.38
0.33
0.26
0.20
0.29

-0.40

0.74
0.74
0.63
0.54
0.64

-0.40

0.38
0.34
0.24
0.06
0.20

-0.40

0.77
0.76
0.68
0.73
0.43

-0.60

0.70
0.67
0.58
0.50
0.55

-0.60

0.96
0.96
0.93
0.89
0.85

-0.60

0.70
0.68
0.57
0.07
0.38

-0.60

0.97
0.97
0.95
0.96
0.61

-0.80

0.91
0.92
0.8b
0.81
0.77

-0.80

1.00
1.00
1.00
0.99
0.95

-0.80

0.92
0.92
0.86
0.27
0.59

-0.80

1.00
1.00
1.00
1.00
0.75

-0.95

0.98
0.99
0.97
0.96
0.84

-0.95

1.00
1.00
1.00
1.00
0.97

-0.95

0.99
0.99
0.97
0.73
0.68

-0.95

1.00
1.00
1.00
1.00
0.81

Note: 2000 Replications with Simulated Critical Values.
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Table 6.2a
Rejection Probabilities of the W0LS, WMLE and WMU Tests at 5% Significance

Level in the Linear Regression with AR(1) Disturbances; Testing Ho:p = O vs.
Hj:p * 0, for Design Matrix XI

p

"MLE

ŴMU

P

0.80

0.35
0.74
0.78

0.80

0.60

0.30
0.48
0.51

0.60

0.40

0.20
0.24
0.26

0.40

r-
0.20

0.10
0.10
0.12

T =

0.20

20
0.00

0.10
0.10
0.10

40
0.00

-0.20

0.21
0.17
0.18

-0.20

-0.40

0.40
0.40
0.37

-0.40

-0.60

0.55
0.70
0.57

-0.60

-0.80

0.53
0.92
0.67

-0.80

w(OLS

'MLE

w,MU

0.93 0.84 0.53 0.16 0.05
0.99 0.88 0.51 0.13 0.05
0.98 0.84 0.44 0.11 0.05

0.23
0.22
0.13

0.61
0.62
0.44

0.89
0.94
0.79

0.91
0.99
0.87

Table 6.2b
Rejection Probabilities of the W0LS, WMLE,WMU and 5(0,0.5) Tests at 5%

Significance Level in the Linear Regression with AR(1) Disturbances; Testing
H0:p = 0 vs. Hx:p * 0, for Design Matrix X8

p

W0LS

w
YYMLEW
"MU

5(0,0.5)

P

w
YYOLSW

YYMLEWMU

5(0,0.5)

1.00

0.06
0.77
0.78
0.69

1.00

0.37
0.99
1.00
0.98

0.80

0.11
0.54
0.50
0.46

0.80

0.68
0.97
0.96
0.94

0.60

0.12
0.26
0.21
0.26

0.60

0.66
0.79
0.75
0.80

0.40

0.09
0.10
0.07
0.15

0.40

0.41
0.37
0.33
0.49

r-
0.20

0.05
0.05
0.04
0.09

0.20

0.13
0.09
0.08
0.16

20
0.00

0.05
0.05
0.05
0.05

0.00

0.05
0.05
0.05
0.05

-0.20

0.08
0.07
0.08
0.04

-0.20

0.17
0.16
0.13
0.14

-0.40

0.15
0.17
0.17
0.06

-0.40

0.47
0.47
0.39
0.44

-0.60

0.21
0.39
0.31
0.15

-0.60

0.71
0.85
0.65
0.75

-0.80

0.19
0.72
0.47
0.33

-0.80

0.69
0.99
0.73
0.88

-0.95

0.10
0.91
0.64
0.51

-0.95

0.34
0.99
0.82
0.80

Note: 2000 Replications with Simulated Critical Values.
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Figure 6.1
Empirical Power Curves of the W0LS, WMLE and WMU Tests at the 5%

Significance Level in the Linear Regression with AR(1) Disturbances; Testing
H0:p = 0 against Hx:p*0
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Figure 6.1 Continued
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Figure 6.1 Continued
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Figure 6.1 Continued
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Table 6.3
Rejection Probabilities of the W0LS, WMLE and WMU Tests at the 10% Significance
Level for Positive p Values in the Linear Regression with AR(1) Disturbances;

Testing H0:p = 0 against Hx:p * 0; T = 60

X2

p

0.800
0.600
0.400
0.200
0.000

P

0.800
0.600
0.400
0.200
0.000

P

0.800
0.600
0.400
0.200
0.000

0.999
0.987
0.830
0.304
0.100

w0LS

0.998
0.985
0.744
0.222
0.100

W
VVOLS

0.993
0.978
0.820
0.350
0.100

0.999
0.987
0.826
0.299
0.100

X3

W

0.998
0.984
0.750
0.222
0.100

XI

w

1.000
0.992
0.849
0.354
0.100

1.000
0.992
0.880
0.389
0.100

WMU

1.000
0.995
0.854
0.392
0.100

wMU

1.000
0.995
0.870
0.378
0.100

P

0.800
0.600
0.400
0.200
0.000

P

0.800
0.600
0.400
0.200
0.000

P

0.800
0.600
0.400
0.200
0.000

w

0.999
0.973
0.764
0.247
0.100

W

0.999
0.986
0.822
0.312
0.100

W
YYOLS

0.952
0.929
0.751
0.309
0.100

0.999
0.976
0.768
0.246
0.100

X5

wMLE

0.999
0.989
0.830
0.317
0.100

XS

W
VVMLE

0.999
0.980
0.787
0.287
0.100

W

1.000
0.989
0.881
0.427
0.100

w

1.000
0.994
0.851
0.377
0.100

WMU

1.000
0.984
0.803
0.322
0.100

Note: 2000 Replications with Simulated Critical Values.
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Table 6.4a
Rejection Probabilities of the WOLS, WMLE, WMU and 5(1,0) Tests at the 5%

Significance Level in the Linear Regression with AR(1) or Random Walk
Disturbances; Testing H0:p=l against H}:p < 1, for Design Matrix XI

7 = 20

p

w
rrOLSw
yrMLEWYVMU

5(1,0)

p

W
rrOLSW

YYMLEWYYMU

5(1,0)

1.00

0.05
0.05
0.05
0.05

LOO

0.05
0.05
0.05
0.05

0.90

0.06
0.06
0.06
0.07

0.90

0.07
0.08
0.07
0.07

0.80

0.08
0.08
0.09
0.10

0.80

0.13
0.15
0.15
0.15

0.70

0.12
0.12
0.14
0.14

7 = .

0.70

0.28
0.34
0.34
0.34

0.60

0.18
0.19
0.21
0.21

40

0.60

0.48
0.56
0.57
0.56

0.50

0.25
0.27
0.31
0.30

0.50

0.71
0.80
0.79
0.79

Note: 2000 Replications with Simulated Critical Values.

Simulated
Figure 6.2a

Power Curves of the W0LS, WMLE

Significance
and WMU

Level for Design Matrix .

0.40

0.37
0.39
0.43
0.43

0.40

0.88
0.92
0.91
0.92

Tests
XI

0.20

0.61
0.65
0.68
0.69

0.20

0.99
0.99
0.99
1.00

at the 5%

0.00

0.85
0.87
0.88
0.89

0.00

1.00
1.00
1.00
1.00

7 = 20 7 = 40

power
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i
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Table 6.4b
and 5(1,0) Tests at the 5%

Significance Level in the Linear Regression with AR(1) or Random Walk
Disturbances; Testing HQ:p= 1 against H{.p < 1, for Design Matrix X2

Rejection Probabilities of the W0LS, WMLE, Wuu

p

w
YYOLS
"MLE

5(1,0)

P

w0LS
WMLE

5(1,0)

1.00

0.05
0.05
0.05
0.05

1.00

0.05
0.05
0.05
0.05

0.90

0.04
0.04
0.05
0.05

0.90

0.07
0.10
0.10
0-09

0.80

0.06
0.06
0.08
0.08

0.80

0.14
0.21
0.20
0.20

7 = 20

0.70

0.08
0.09
0.12
0.11

7 =

0.70

0.26
0.40
0.39
0.38

0.60

0.11
0.12
0.17
0.16

= 40

0.60

0.44
0.63
0.61
0.60

0.50

0.16
0.17
0.25
0.23

0.50

0.65
0.84
0.82
0.82

0.40

0.24
0.24
0.35
0.33

0.40

0.83
0.94
0.93
0.94

0.20

0.42
0.43
0.57
0.56

0.20

0.98
1.00
0.99
1.00

0.00

0.68
0.69
0.78
0.79

0.00

1.00
1.00
1.00
1.00

Note-: 2000 Replications with Simulated Critical Values.

Figure 6.2b
Simulated Power Curves of the WOLS, WMLE and WMU Tests at the 5%

Significance Level for Design Matrix X 2

7 = 20 7 = 40
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Table 6.4c
Rejection Probabilities of the WOLS, WULE, WMU and 5(1,0) Tests at the 5%
Significance Level in the Linear Regression with AR(1) or Random Walk
Disturbances; Testing H0:p=l against ?7,:p < 1, for Design Matrix X6

p

w
YYOLSWMLE
W
5(1,0)

P

WMLE

w
5(1,0)

1.00

0.05
0.05
0.05
0.05

1.00

0.05
0.05
0.05
0.05

0.90

0.03
0.03
0.07
0.07

0.90

0.02
0.11
0.13
0.11

0.80

0.04
0.04
0.12
0.10

0.80

0.03
0.23
0.30
0.23

r=
0.70

0.05
0.05
0.17.
0.15

0.70

0.07
0.47
0.56
0.47

20

0.60

0.07
0.07
0.26
0.22

0.60

0.13
0.71
0.76
0.70

0.50

0.09
0.10
0.34
0.30

0.50

0.25
0.88
0.88
0.87

0.40

0.14
0.14
0.45
0.43

0.40

0.44
0.96
0.94
0.97

0.20

0.27
0.27
0.63
0.63

0.20

0.80
1.00
0.98
1.00

0.00

0.51
0.50
0.76
0.83

0.00

0.98
1.00
0.98
1.00

Note: 2000 Replications with Simulated Critical Values.

Figure 6.2c
the W0LS,WM

Significance Level for Design Matrix X6
Simulated Power Curves of the W0LS, WMLE and WMU Tests at the 5%
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Table 6.4d
and 5(1,0) Tests at the 5%

Significance Level in the Linear Regression with AR(1) or Random Walk
Disturbances; Testing HQ:p = 1 against Hx:p < 1, for Design Matrix Z8

Rejection Probabilities of the W0LS, WMLE, WMU

p

w
YYOLSw
WYYMU

5(1,0)

P

w
5(1,0)

1.00

0.05
0.05
0.05
0.05

1.00

0.05
0.05
0.05
0.05

0.90

0.05
0.05
0.09
0.09

0.90

0.02
0.12
0.13
0.14

0.80

0.05
0.07
0.15
0.14

0.80

0.01
0.33
0.35
0.35

T =

0.70

0.06
0.10
0.24
0.23

T =

0.70

0.01.
0.61
0.61
0.63

20

0.60

0.07
0.12
0.36
0.34

40

0.60

0.02
0.83
0.82
0.84

0.50

0.10
0.20
0.48
0.46

0.50

0.03
0.95
0.94
0.96

0.40

0.12
0.28
0.59
0.58

0.40

0.07
0.98
0.97
0.99

0.20

0.22
0.42
0.77
0.77

0.20

0.25
1.00
1.00
1.00

0.00

0.37
0.51
0.85
0.87

0.00

0.56
1.00
1.00
1.00

Note: 2000 Replications with Simulated Critical Values.

Figure 6.2d
the.W0LS,WM

Significance Level for Design Matrix Z8
Simulated Power Curves of the. W0LS, WMLE and WMU Tests at the 5%

T = 20 r=40
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Table 6.5
Rejection Probabilities of the Wald Tests Based on yOLS and yMV at the 10%

Significance Level in the Dynamic Linear Regression Model for Design Matrices
XI, X4, and X5;

7 0.90 0.80 0.60 0.40 0.20 0.10 0.00 -0.10 -0.20 -0.40 -0.60 -0.80

W0ls 1.00 1.00 0.64 0.22 0.07 0.06 0.10 0.19 0.28 0.66 0.91 0.98

Wm 1.00 1.00 0.97 0.56 0.20 0.13 0.10 0.14 0.20 0.534 0.86 0.98

Xl,T = 40

rOLS

W,MV

1.00 1.00 0.96 0.62 0.17 0.08 0.10 0.22 0.42 0.86 0.99 1.00

1.00 1.00 0.99 0.82 0.32 0.16 0.10 0.16 0.31 0.80 0.99 1.00

X4, T =

W0LS 1.00 1.00 0.95 0.14 0.05 0.06 0.10 0.18 0.27 0.66 0.90 0.99

WMU 1.00 1.00 1.00 0.77 0.21 0.10 0.10 0.11 0.17 0.50 0.78 0.97

X5, T = 20

W0LS 0.56 0.40 0.24 0.09 0.04 0.03 0.10 0.17 0.29 0.68 0.90 0.98

WMU 0.82 0.75 0.55 0.34 0.16 0.11 0.10 0.11 0.20 0.51 0.80 0.98

Notes: All experiments are based on 1000 replications.
Simulated critical values are used.
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Figure 6.3
Simulated Power Curves of the Wald Tests Based on y0LS and yMU at the 10%

Significance Level in the Dynamic Linear Regression Model
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Table 6,6a
RMSEPs of 5v°", 9%f, 9L and y™ for Positive p Values in the Linear

Regression with AR(1) Disturbances: RMSEP of 2000 Forecasts for Design
Matrix XI, XI and X3

p

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.20
0.00

P

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.20
0.00

P

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.20
0.00

XI

9%

1.13
1.18
1.17
1.15
1.17
1.14
1.14
1.15
1.12

X2

9™

1.71
1.68
1.60
1.51
1.44
1.37
1.32
1.23
1.16

X3

1.19
1.24
1.22
1.19
1.20
1.17
1.17
1.17
1.13

, 7 = 20

9™

1.12
1.17
1.16
1.15
1.17
1.14
1.14
1.15
1.12

, 7 = 20

9£f

1.69
1.66
1.58
1.50
1.43
1.37
1.32
1.24
1.16

, 1 — ZSJ

1.14
1.20
1.19
1.18
1.20
1.17
1.17
1.17
1.14

9L

1.05
1.11
1.12
1.13
1.16
1.14
1.14
1.15
1.12

9L

1.67
1.65
1.59
1.52
1.45
1.39
1.32
1.24
1.17

# + .

1.13
1.21
1.21
1.19
1.21
1.19
1.18
1.18
1.14

1.04
1.10
1.11
1.12
1.15
1.13
1.14
1.16
1.14

9%

1.64
1.62
1.56
1.49
1.43
1.37
1.33
1.26
1.19

vMU

1.04
1.11
1.12
1.13
1.16
1.14
1.16
1.18
1.16

9?S

1.09
1.09
1.07
1.06
1.05
1.06
1.07
1.08
1.05

y°ru

1.62
1.52
1.40
1.30
1.21
1.16
1.11
1.06
1.03

y?^

1.09
1.09
1.10
1.10
1.11
1.08
1.11
1.10
1.12

XI, 7

1.09
1.08
1.07
1.05
1.05
1.06
1.07
1.08
1.05

X2,T

xMLE

1.60
1.51
1.40
1.30
1.21
1.16
1.11
1.06
1.03

X3, 7

"MLE

1.06
1.07
1.09
1.10
1.10
1.08
1.11
1.10
1.12

= 40

~A

1.05
1.06
1.06
1.06
1.05
1.06
1.06
1.08
1.05

= 40

~A

1.56
1.52
1.42
1.33
1.22
1.17
1.11
1.06
1.03

= 40

9L

1.07
1.11
1.12
1.14
1.12
1.10
1.13
1.10
1.13

vM f /

1.05
1.05
1.06
1.05
1.05
1.06
1.06
1.08
1.06

9T+I

1.55
1.51
1.41
1.32
1.22
1.17
1.11
1.06
1.04

9T+\

1.02
1.04
1.07
1.09
1.10
1.08
1.11
1.11
1.14
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Table 6.6b
RMSEPs of 9%?x, 9%f, #?+1 and y™ for Positive p Values in the Linear

Regression with AR(1) Disturbances: RMSEP of 2000 Forecasts for Design

P

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.20
0.00

P

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.20
0.00

P

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.20
0.00

X4

"OlS
yT+\ :

1.29
1.30
1.29
1.24
1.24
1.19
1.17
1.14
1.10

X5

v0LS

2.01
1.81
1.66
1.56
1.50
1.46
1.43
1.40
1.41

X6

~OLS
yT+i

2.85
2.56
2.31
2.21
2.15
2.16
2.16
2.21
2.25

, 7 = 20

"•MLE
Vr+i

1.23
1.25
1.26
1.22
1.23
1.19
1.17
1.14
1.11

, 7 = 20

1.49
1.50
1.50
1.50
1.48
1.47
1.45
1.42
1.43

»,7 = 20

~MLE

2.47
2.31
2.16
2.14
2.11
2.17
2.18
2.25
2.31

Matrix X4,

"•A
Jr+i

1.22
1.28
1.28
1.25
1.26
1.21
1.18
1.15
1.11

9™

1.71
1.64
1.58
1.55
1.51
1.49
1.46
1.42
1.42

yT+i

2.54
2.34
2.24
2.23
2.20
2.24
2.22
2.24
2.27

1.11
1.16
1.18
1.18
1.20
1.18
1.17
1.16
1.13

1.42
1.44
1.45
1.47
1.47
1.47
1.47
1.46
1.46

~MU
y™

2.07
2.07
2.06
2.15
2.18
2.28
2.35
2.52
2.70

X5 and X6

~OLS

1.14
1.12
1.10
1.09
1.08
1.09
1.09
1.09
1.07

1.34
1.26
1.25
1.29
1.28
1.27
1.35
1.39
1.38

"OLS
y™

1.27
1.26
1.25
1.30
1.30
1.29
1.37
1.40
1.37

X4,

vM L E

1.10
1.10
1.09
1.08
1.07
1.08
1.09
1.10
1.07

X5,
~MLE

1.23
1.24
1.24
1.28
1.28
1.27
1.35
1.39
1.39

X6,
*MLE

y™

1.19
1.21
1.22
1.27
1.28
1.29
1.37
1.40
1.38

7 = 40

~A
3V+i

1.14
1.16
1.14
1.14
1.10
1.09
1.10
1.10
1.08

7 = 40

9L

1.28
1.29
1.28
1.31
1.30
1.28
1.35
1.40
1.39

7 = 40

yT+l

1.27
1.28
1.28
1.33
1.32
1.31
1.38
1.40
1.38

"•MU
3V+i

1.07
1.07
1.08
1.07
1.07
1.08
1.09
1.11
1.08

9%

1.22
1.24
1.24
1.28
1.28
1.27
1.35
1.40
1.40

~MU

1.18
1.20
1.22
1.26
1.28
1.28
1.36
1.43
1.50
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Table 6.6c
RMSEPs of I™, y£f, and y™ for Positive p Values in the Linear Regression

with AR(1) Disturbances: RMSEP of 2000 Forecasts for Design Matrix XS

= 20 = 40

1.00
0.90
O.SO
0.70
0.60
0.50
0.40
0.20
0.00

5«f

1.83
1.60
1.46
1.39
1.32
1.29
1.26
1.20
1.15

~MLE

1.37
1.33
1.32
1.30
1.29
1.28
1.27
1.24
1.29

9%

1.23
1.26
1.26
1.27
1.26
1.27
1.27
1.25
L23

•>V+i

2.58
1.67
1.30
1.17
1.12
1.05
1.03
1.06
1.02

y%?

1.09
1.08
1.07
1.07
1.06
1.04
1.04
1.07
1.03

1.06
1.06
1.07
1.07
1.06
1.05
1.05
1.07
1.03

RMSEPs of ygf and
Table 6.7

of 1000 Forecasts in the Dynamic Linear Regress:
Model

>ion

7 0.90 0.80 0.60 0.40 0.20 0.10 0.00 -0.10 -0.20 -0.40 -0.60 -0.80

xi,r=20

1.51 1.43 1.49 1.50 1.51
1.38 1.46 1.22 1.18 1.14

1.55 1.57 1.51
1.20 1.22 1.11

1.50
1.14

1.54
1.16

1.59
1.20

1.51
1.16

jljjf 1.49
1.63

1.41
1.24

1.44
1.07

1.40
1.07

1.49
1.09

1.49
1.13

1.48
1.08

1.43
1.04

1.47
1.05

1.51
1.08

1.48
1.07

1.53
1.11

1.13 1.10 1.08 1.13 1.15 1.12 1.16 1.18 1.11
1.12 1.09 1.08 1.10 1.09 1.07 1.10 1.15 1.07

1.13 1.11
1.11 1.11

1.10
1.11

9?S
9%

l
l
.31
.16

1.33
1.21

1
1
.35
.23

1
1
.27
.29

1
1

* 5

.38

.28

,T =

1.30
1.21

20

1
1
.36
.25

1
1
.38
.29

1
1
.34
.27

1
1
.37
.27

1
1
.35
.27

1.35
1.29
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Chapter 7

Conclusion

7,1 Introduction

Econometric modelling plays a central role hi empirical, economic studies. The

availability of rapidly expanding economic data bases has created a demand for more

complex models capable of capturing the state of dynamic economic systems. Within

the large enterprise of econometric modelling, point estimation remains a

fundamental device for analysing and disclosing the relationship between economic

variables. It also serves as a building block and provides inputs for other inference

procedures such as hypothesis testing and forecasting. A prominent request from

empirical economic research is that inference procedures should be relevant and

efficient for the very situation under study, not just for the ideal but unrealistic case

of indefinitely large samples, on which most of the classic estimation and hypothesis

testing procedures are based. The estimators or tests are deemed efficient only if they

are able to explore fully the information contained in the data at hand. Such demand

has driven econometricians to search for modelling methodology that is based on

exact sample results, instead of relying on the ones only supported by asymptotic

theory. The ever-increasing computing capability has facilitated this shift of focus. In

terms of estimation, researchers are not satisfied to just have an estimator which is

asymptotically normal but with unknown small sample performance. Research work

in pursuit of exact finite sample inference procedures has flourished in recent years.

The main thrust of this thesis is consistent with this trend. Its main aim is to search

for some small sample bias-correction techniques that are capable of constructing

estimators that are (approximately) median-unbiased. In the course of pursuing this

aim, two general applicable methods were developed, with illustrations given in

estimation of the linear autoregressive models.

In the section that follows, we discuss the core ideas of the methods of

constructing MU estimators, and summarise the major findings. Some

recommendations are drawn for how these methods should be used in practice.
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Aspects related to, but not covered in, this thesis will be deliberated on in the fins-

section of the chapter as potential topics for future research.

7.2 Summary of Findings

Median-unbiasedness enjoys some attractive advantages over mean-unbiasedness as

a measure of impartiality of a point estimator in some circumstances. Efforts were

directed to survey these circumstances in the literature review chapter. A comparison

of the definition of the two unbiasedness criteria revealed a host of problems with

mean-unbiasedness, such as lack of robustness, not being invariant to one-to-one

transformations and being ill-defined when the parameter space has a closed

boundary. The use of MU estimators provides a remedy to these problems associated

with the mean-unbiased estimators. Apart from the early examples, MU estimators

are shown to be used most frequently in estimating linear autoregressive models with

high persistence. They provide an alternative inference device that is complimentary

to the unit root tests which may suffer from poor power. However, these examples

only considered models without exogenous variables. The extension to models with

explanatory variables is important for practical research.

Despite its importance, there is a lack of a systematic approach towards

constructing MU estimators in the literature. There is however, a vast literature on

bias reduction techniques in the context of mean-unbiased estimation. Bias can either

be corrected after the initial estimator has been computed or be prevented

beforehand. This can be achieved by either evaluating the bias function analytically

or via resampling schemes such as jackknife or bootstrap. Ii is natural for us to

modify some of these techniques and apply them to correcting the median bias of an

estimator. Therefore the origin of this research lies in the idea of borrowing

techniques from the mean bias correction literature in order to develop methods for

constructing MU estimators.

Chapter 3 developed two general applicable methods of constructing MU

estimators. One is based on adjusting the estimating equations and the second is
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based on inverting the median function of a significance test statistic. Boih methods

can be regarded as extensions of Lehmann's (1959) result, which links the existence

of an optimal MU estimator to the conditional distribution of the sufficient statistics.

When an estimating equation generates a biased estimator, one can effectively adjust

these equations to reduce the estimation bias. The condition for a MU estimating

equation to deliver a MU estimator was shown to be more general than those for a

mean-unbiased estimating equation to produce a mean-unbiased estimator. So for a

given estimating equation, we suggest subtracting its median function from the

original estimating function and if the difference is monotonic, we will get a MU

estimator by solving the adjusted estimating equations. The advantage of this

approach is that no analytical or simulated bias function is required, while the

disadvantage is the difficulty of verifying the monotonicity of the new estimating

function. The proposed adjusted estimating equation was shown to be equivalent to

the modified versions of two existing bias reduction techniques. An iterative

algorithm w^s developed to solve the adjusted estimating equation.

Chapter 4 provides two examples of applying the method of constructing MU

estimators by adjusting the estimating equations. In both examples, we chose to

adjust the marginal likelihood score equations +ue to their better small sample

performance compared with the profile likelihood counterpart. The adjustment to the

marginal likelihood score in the linear regression model with AR(1) disturbances can

be computed exactly using Imhof s (1961) algorithm, and the new estimator was

shown to be almost free of bias in most cases. While in the dynamic linear regression

model, the median function of the marginal likelihood score is not invariant to

nuisance parameters, and we have to substitute these nuisance parameters by their

consistent estimators and adjust the estimating equation recursively. As a result, the

new estimator is approximately MU. It was found that the remaining bias in the new

estimator is minimal compared with that of the OLS estimator. In both models, the

RMSE of the new estimator is generally smaller than that of the OLS estimator

especially for positive parameter values. For the lagged dependent variable

coefficient, the confidence intervals based on the new estimator were shown to have

better coverage probabilities than those based on the OLS estimator. These two

examples lead us to believe that correcting the median bias in an estimator by

adjusting the estimating equations towards median-unbiasedness can be effective.
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The proposed method does not require knowledge of the form of the bias function.

Our results show that the bias correction can be quite accurate and the overall risk of

the new estimator tends to be smaller than that of the biased estimators. The

drawback of this approach is that the likelihood function and the scores are non-

standard when the autoregressive coefficient goes to unity. The limiting distribution

of the marginal likelihood score in this case is not clear. Therefore it is not easy to

extend this method to cover the interesting case of unit roots and random walk

disturbances.

In case the proposed adjustment to the estimating equations is hard to

compute or the monotonicity of the adjusted estimating function does not hold, a MU

estimator can be constructed by inverting some 'well-chosen' test statistics at the

50% significance level. This was the second method of computing MU estimators

developed in Chapter 3. Depending on whether the median function of the test

statistic is monotonic, two different methods were proposed: fixed point inversion of

the median function of a single test statistic and grid inversion of a median envelope.

The latter is theoretically more reliable despite the extra computational costs. We

addressed the issue of choosing a good test to invert, which was largely ignored by

most of previous studies. Effort was directed to disclose the relationship between the

power properties of a test and the effectiveness of inverting its median function for a

MU estimator. In many cases when a UMP test does not exist, we recommend two

classes of optimal tests, point optimal tests and locally best tests to be considered as

good candidates when choosing a test statistic to invert, mainly because of their

sound small sample power properties. This approach is suitable for estimating a large

class of linear models with autoregressive errors, with heteroscedastic errors and

with time-varying coefficients.

We illustrated the method of inverting the median function of a significance

test to construct MU estimators in a practical example in Chapter 5. Most popular

tests, such as the DW test, the LM test and the t test were shown to have non-

monotonic median functions for some design matrices. In particular, we pointed out

Andrews' (1993) estimator based on the OLS estimator could not be extended to

models with exogenous regressors due to the same problem. The method based on

the POI test statistics provides a remedy. It was shown that the POI test has a strictly
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monotonic median envelope for all design matrices considered. Monte Carlo

evidence showed that when the median function of a single POI test is monotonic for

a design matrix, the MU estimator based on fixed point inversion method is almost

exactly median unbiased for all parameter values and has a smaller RMSE compared

with other estimators. In particular, it generally performs better than Andrews'

(1993) MU estimator except in the model with only an intercept and a time trend as

tne regressors. For the design matrices where a single POI test fails to deliver a

monotonic median function, inverting the median envelope of a series of POI tests

can be used to construct a MU estimator. It was shown that the proposed estimator

almost eliminates the bias present in the OLS and MLE estimators. The bias

correction is strikingly substantial for these designs, as they represent the extreme

cases where the small sample bias of the conventional estimators is most serious.

Finally, we examined the robustness of the proposed estimator to non-normal errors

and error structure misspecifications. It was found that the estimator based on

inverting median envelope is more robust to non-normal errors than Andrews'

estimator. It performs well under all error structures examined, except for errors with

an MA component or with the autoregressive order misspecified.

Chapter 6 is concerned with hypothesis testing and forecasting based on the

MU estimators developed in the previous chapters. We provided some convincing

evidence of the effectiveness of improving the small sample performance of the

Wald test by using MU estimators. The removal of the bias in the estimator leads to

the correction of the local biasedness of the Wald test in both the linear regression

model with AR(1) disturbances and the dynamic linear regression model. The power

curve of the Wald test based on the MU estimator is properly centred at the null

hypothesis and also tightened on the positive side of Ho. For non-local alternatives,

the modified Wald test is not affected by the problem of non-monotonic power,

which usually plagues Wald tests based on the OLS estimators. Although the

modified Wald-test is asymptotically equivalent to those based on the ML estimator,

it provides an effective remedy for the small sample deficiencies of the Waid test that

are frequently encountered by researchers. A similar conclusion can also be drawn

for forecasting accuracy. The predictor based on the MU estimator usually has

smaller average prediction errors compared with those based on biased estimators.
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Therefore it is useful to correct the small sample bias of the estimator in order to

increase prediction accuracy.

To summarise the major findings, this thesis has established two small

sample estimation procedures based on exploring the estimating equations and the

exact distributions of the significance test statistics as alternatives to the existing

bias-correction techniques for situations where mean-unbiasedness is too restrictive

or robustness is highly desirable. It was shown that in many cases, estimation

procedures based on asymptotic theory are usually more general and easier to use,

but may suffer from small sample deficiencies. The procedures that are able to

explore the information contained in given data sets may therefore be preferable.

However, the proposed procedures, just like any other single estimation procedure,

cannot be consistently superior to the other procedures. Hence, the choice of which

procedure to use clearly depends on the model of interest, data set given and

inference procedures under examination, which dictate not only the utility function

used to assess the quality of an inference procedure, but also the cost-effectiveness of

using each procedure. Bearing this in mind, the improvement in the small sample

performance achieved by applying the proposed estimation procedures should be

enough for researchers to use them in empirical econometric modelling.

7.3 Limitations and Future Research

The research reported in this thesis is by no means totally comprehensive in nature,

and possibilities for extension and further development exist. The quest to find exact

sample solutions for any econometric model has always been a hard task. The

research reported in this thesis is no exception. Our effort to resolve some given

problems may itself bring about more new open questions. Below we outline some

limitations to our approach and suggest scope for future research.

1. The thesis is mainly concerned with estimating a single scalar parameter of

interest. Some attempts were included to study estimating multiple

parameters simultaneously in the dynamic linear regression model in Chapter

4. Methods were also proposed to extend our algorithms to multi-variate
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parameter cases in Chapter 3. But like most other applications existing in the

literature, MU estimation has not been used efficiently for multi-dimensional

parameter estimation problems. More work has to be done to better define an

impartiality measure for a multi-variate estimator. Some recent developments

on constructing simultaneous confidence sets (bands) for multi-parameter

models, which include Hall (1987), Beran and Miller (1986), Beran (1993),

Grigoletto (1998), Chan et al. (1999) and Wright (2000b), may provide new

revelations for calibrating the point estimators of multi-dimensional

parameters. In the interest of maintaining a good focus for this thesis, we did

not pursue this issue further. These problems, and methods to deal with them,

in particular, warrant further research.

2. Constructing MU estimators by inverting the median envelope of POI test

statistics was proposed in the context of a general class of linear models with

various specifications of the error covariance matrix. Although the method

was only illustrated in estimating first order autoregressive disturbances, it is

readily extended to other models. It would be interesting to apply the

proposed method to models with time-varying coefficients, MA(1) errors or

heteroscedasticity errors, where POI test procedures have also been

developed. For example, a promising application is to apply the proposed

method to the POI tests developed by Shively (1988) and Brooks (1992) in

the random walk coefficient model to improve the small sample efficiency of

estimation and other inference procedures in this context.

3. The error terms in this study were assumed to be well-behaved and normally

distributed. This is mainly to facilitate the exact evaluation of the median

functions of test statistics via algorithms such as Imhof (1961). However,

without the normality assumption, the methods proposed can still be applied

with the median functions approximated by simulation. As it is impossible to

simulate a continuous median function for indefinite number of points, non-

parametric curve fitting techniques may be required to extrapolate the median

functions outside the grid of simulated points. This approach was discussed in

Hansen (1999). The efficiency of the proposed procedure based on simulated

median functions, however, remains to be seen.
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4. Although in Chapter 5, we examined the robustness of the proposed MU

estimators under non-normal errors, it remains to be seen if these estimators

are aiso robust to outliers or contaminated data, which ought to be a property

possessed by the concept of median-unbiasedness. How to treat outliers and

contaminated data in time series models has always been a difficult problem.

Median-unbiased estimators may provide more robustness than conventional

estimators. Therefore it would be useful to examine, for example, the

breakdown properties of the proposed MU estimators.

5. The comparisons of estimators in this study were usually restricted to the

proposed MU estimators and the conventional LS or ML estimators. In

Chapter 5, we compared the proposed MU estimator with Andrews' MU

estimator and also examined several other MU estimators based on inverting

different test statistics. A possible research direction is to develop optimality

results for various MU estimators in autoregressive models. Andrews (1993)

admitted that it was not clear if his MU estimator was optimal in any sense.

The same can be said about the MU estimators proposed in this thesis. More

work needs to be done to assess the proposed MU estimators in terms of

optimality measures such as the concentration measure or the closeness to the

Cramer-Rao efficiency lower bound (see review in Chapter 2).

6. A possible topic for exploration is to extend the proposed estimation

procedure to more complicated time series models, in which estimating

autoregressive type of models is a component of the inference procedures.

Examples of such models include panel data AR(l)/unit root model,

autoregressive conditional heteroscedasticity models, vector autoregressive

models and cointegratcd systems. Linear autoregressive models with

exogenous variables are essential for understanding these models. The small

sample MU estimation procedures developed in this thesis may serve as a

building block in developing exact finite sample inference procedures for

these more complicated time series models.
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