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1. pii Line 11

2. pvii

Errata

"Estimaion” shonld read "Estmation"”.

Insert the following line after line 3,

-

"Table 5.7 Exact Medians of p,,; for Design Matrices X1, X4, X5, X7 and X8;

T=2040".

3.pxv Line 10
4.pl Line 10

5.p3 Line2
6.p3 Line3
7.p3 Line 5B
8.p4 Line3
9.p5 Line5

10. p5 Line 6B
11.p7 Line?9
12. p23 Line 5

13. p28 Line 4B .
14. p33 Line 7

15. p38 Line 5B
16. p61 Lines 3 & 13
17. p65 Line 4

18. p66 Line 8B

19. p76 Line 12

20. p83 Line 19

21.p92 Line 11

"there is usually no analytical solutions" should read "there are
usually no analytical solutions".

"quoting Stock (2001, p29), which" should read. "which,
quoting Stock (2001, p29)".

"The large models” should read "Large Models”.

"the time series model” should read "time series model”.
"Dieibold ..." should read "Diebold ...".

"from the IT technology” should read "of IT technology”.
"First ..." should read " The first ...".

Change "instead of” to "compared to".

Change "and are ..." to "and which are ...".

Change "In another vufords" to-"In other words".

Change "invariant for affine” to "invariant to affine”.
Change "produce” to "producing”.

“the non-normal errors” should read "non-normal errors”.
Change "Pfanzagal” to "Pfanzagl". |
Change "so asitis ..." to "asis ...".

Change "Same arguments” to "The same arguments”.

"Phillips and Andrews (1987)" should read "Andrews and
Phillips (1987)".

“level « is set at 50%" should read, "level /2 is set at 50%".

Insert the following paragraph after Line 11,



"Previous studies related to the proposed grid inversion method include
Nankervis and Savin (1996) and Beran (1997). Nankervis and Savin proposed
computing MU estimates based on a grid of null values using bootstrap. Their
methodology mvolves bootstrap p-values; this thesis considers simulated
quantiles. It can be shown that the two methods are equivalent. Eor the case
where a test statistic is not asymptotically pivotal under the null, a possible
way of computing MU estimates is to consider the p-values based on the
double bootstrap test proposed by Beran (1997)."

22.p107 Line £B Change "to count for” to "to allow for".

23.pl112Line 8 Change "subject to the constant” to "apart from the constant”.
24.p114 Line 4 Change "interception” to “intersection”.

25.p116 Line 7 Change "impact from" to "impact of".

26.pl51 Line 6 Change "estimator (5.3)" to "estimator (5.1)".

27.p152 Line 3 Insert the following sentence before "In particular ...",

"The exact medians of the OLS estimator for different design matrices and for
a sample size of 20 and 40 are also reported in Table 5.7."

28.p152 Line 9 Change "Waston" to "Watson".
29.p165 Line 8 Change "gird" to "grid".
30.p175 Line 4 Insert the folldwing paragraph after Line 4,
"Theoret:cally speaking, for design matrix X1, p,, P, and Dl should

all be exactly MU, while A}y, and Bk, are exactly MU for X2, X3, X4

and X5. But due to the limited number of replications and random errors, the
simulated results would not be expected to be exact. The approximation
largely depends on the accuracy of the computed median functions”.

31.pl83 Insert the following note beneath Table 5.2,

"Note: p, should be exactly MU for this model. The inaccurate results

reported were due to a grid size of 0.05 used for computing the median
function of the OLS estimator. The accuracy was improved in Table 5.3a
when a grid size of 0.001 was used.”

32.p200 Line 3B Change "Similar ..."” to “A similar ...".

33.p255 Line 10 "Dielbold ..." should read "Diebold ...".
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Abstract

This thesis combines computer-intensive techniques with theoretical propositions to
develop some general methods for constructing (approximately) median-unbiased

(MU) estimators in small samples.

The first method proposed involves adjusting an estimating equation towards
median-unbiasedness. It is shown that a median unbiased estimating equation is more
likely to produce a median-unbiased estimator compared with a mean-unbiased
estimating equation. If we subtract the original estimating equation by its median
function, and if the resulting new estimating function satisfies certain conditions, the
solution to the adjusted estimating equation will be median-unbiased. As there is
usually no analytical solutions to the adjusted equation, iterative algorithms are
needed. The proposed method is shown to be analogous to two of the existing mean-
bias reduction methods. The median-unbiased estimator so constructed will generally

have the same asymptotic properties as the solution to the original estimating

equation.

This method is shown to be effective when applied to estimation of the linear
regression with AR(1) disturbances. If the marginal likelihood score is adjusted
towards median-unbiasedness, the solution to this adjusted estimating equation is
almost exactly median-unbiased. Its ront mean square error (RMSE) is significantly
smaller than that of the least squares (LS) and maximum likelihood (ML) estimators.
The method can be revised slightly to account for nuisance parameter problems in
estimating a first-order dynamic regression model. An iterative algorithm delivers an
approximately median-unbiased estimator, which successfully corrects the small
sample bias of the LS estimator. The bias correction in this case is less accurate than

in the previous example.

The second recommended method for constructing median-unbiased estimators is to
invert a test statistic at the 50% significance level. We point out that there is a direct
link between the power of a test and the small sample performance of the estimator

based on inverting its median function. When the median function of a test is not

Xv

Sasis ,:ﬂ: s m%*i*”“‘ ot 'iﬁ&m,‘ L e s

monotonic, this method may break down. We propose a “grid inversion’ algorithm to
overcome the non-monatonicity problem associated. with the median function of a
single test statistic. The method is based on the ‘median-envelope’ of a series of tests
and is shown to be able to better explore the good power properties over the whole

pararmneter space.

We give a counter example of Andrews’ (1993) MU estimator in a linear regression
with AR(1) or random walk disturbances. His estimator breaks down for some design
matrices, because the test statistic his estimator is based on lacks in power in small
samples. We propose to use the point optimal invariant (POI) test instead. When the
limiting power of a single test when the autoregressive parameter goes to -1 is not
zero, the median.function of the POI test is monotonic. Otherwise the median
envelope method should be used. We outline a simple way of calculating this
limiting power. The MU estimator based on POI test statistics is shown to be
median-unbiased for all design matrices examined, including the cases where other
methods fail. The RMSEs of the new estimators are sigrificantly smaller than their
biased counterparts. The proposed MU estimator based on the median envelope is
also found to be quite robust to non-normal errors and other forms of error

misspecifications,

Finally, we show that the median-unbiased estimators have the capability of
imﬁroving the small sample performance of hypothesis testing and forecasting
procedures. In particular, Wald tests based on the MU estimators successfully correct
the local biasedness and non-monotonic power plaguing the Wald tests based on the
biased estimators in the linear regression with AR(1) disturbances and the dynamic
linear regression model. The power curves of the modified tests are properly centred
and monotonic. As for prcdiction, the forecasting errors of the predictors based on
the proposed median-unbiased estimators are shown to be significantly smailer than

those based on the conventional estimators for these autoregressive models.
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Chapter 1

Introduction

1.1 Some Emerging Trends in Econometrics

It is commonly agreed (see e.g., Darnell, 1984, 1994 and Bjerkholt, 1995) that R.
Frisch first coined the term ‘econometrics’, which was envisaged by him as a new
discipline intermediate between mathematics, statistics and economics, and more
importantly, a powerful unification of the three. The mission of econometrics, as
described by Frisch (1933), was ‘to turn pure econormics, as far as is possible, into a
science in the strict sense of the word’ (Chipman et al., 1971, p386). The foundation
of the Econometric Society in 1930 formally marked econometrics emerging as a
distinct subject independent of either statistics or economic theory. The next
important milestone in the short history of econometrics ought to be the inauguration
of the Cowles Commission shortly after World War IV, quoting Stock (2001, p29),
which

‘... over the course of a few years, developed a research agenda that
structured racroeconometrics for the second half of the 20th century.
The central vision of this research program was simple: the development
of a mathematical model of the macroeconomy with grounding in
economic theory, with paraineters estimated using sound statistical

methods, tested against and thus consistent with empirical evidence.’

Since then, economists have relied more and more on econometric models for
testing economic theories, for macroeconomic forecasting, and for advising
policymakers. Recently, several prominent econometricians contributed to an open
forum organised by the Journal af Econometrics to mark the publication of its 100"
volume, in which they assessed the current status of econometrics and identified

some important trends that may influence the future development of the subject. The
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motivation of this thesis is largely rooted in some of these emerging themes of

econometrics.

One such trend is the rapid development in the analysis of non-stationary
time series. Since the early 1980s, a good deal of time-series econometrics has dealt

with nonstationarity. As Phillips (2001, p21) remarked,

‘the preoccupation has steadily become a central concern and it seems
destined to continue, if only for the good empirical reason that most
macroeconomic aggregates and financial time series are dominated by
trend-like and random wandering behaviour. Behaviour, it should be

said, that is very imperfectly understood.’

So, the study of trends brings together empirical-quantitative and theory-quantitative
aspects of modelling and has, in turn, been empowered by that synergy. The
literature is already vast and continues to grow swiftly, involving a full spread of

participants and engaging a wide sweep of academic journals.

However, the focus on modelling non-stationary time series also draws
criticism from various econometricians, see Heckman (2001), Granger (2001) and
Maasoumi (2001) among others. In particular, Maasoumi (2001) observed that the
currently popular dynamic models in which the own past history dominates, seem
rather barren transformations of more economically interesting distributed lag
processes. They are useful and economical curve-fitting media, but they do not
reveal much about the behaviour or working of economies. The fact that the multi-
trillion dollar quantities like the US GDP appear to move like a random walk is a
numerical artefact, not a causal madel which can play a role in policy analysis.
Hence, we need to specify structural inodels that take account of the time series

properties of the variables involved.

Therefore a combination of the dynamic specification and structural model
building is necessary. Originally, the large models were not very dynamic, in contrast
with the ‘time series analysis' which concentrated on dynamics, paid little or no

aitention to economic theory and built models involving only a few variables. As
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Granger (2001) remarked, over the years these two approaches have interacted with
each other, one side learning from and being influenced by the other. The large
models became more dynamic and involved unit roots and cointegration, the time
series models considered size, that is, the number of variables used more seriously
and payed more attention to the use of economic theory. The same view was also
held by Hsiao (1997), Krishnalkumar (2001) and Phillips (2001).

A second new development in econometric theory during the past two
decades is the shift of focus from asymptotic theory to finite sample results.
Traditionally, there was little econometricians could do about the exact finite sample
distributions of estimators and test statistics. Therefore most inference procedures
rely on first-order asymptotics. In science it is widely accepted that the first texm of
Taylor’s series approximations, already merely locally valid, can be very poor. First-
order asymptotic expansions, already less solid as an approximating concept, delivers
even less. The Monte Carlo evidence provides frequent embarrassing evidence
against first vzaer asymptotic results. Many studies show that, in many settings, first-
order asymptotic theory provides poor approximations to the finite sample

distribution, and thus provides a poor basis for inference in applications.

This shift towards more accurate and more reliable small sample inference is
largely facilitated by the rapid increase in the computing capacity. As King (1987b,
p170) remarked,

‘advances at all levels have reduced the costs of computing to such an
extent that highly computational procedures are becoming more and
more feasible. ... Jt appears that we now reaching the state where we
should be asking: what kind of inference procedure would we wish to use

if computation were not a constraint?’

Dielbold (2001) agrees that the pervasive effects of advances in processing speed
have produced an irreversible and ongoing shift away from closed-form analytic
methods and toward algorithmic numerical and simulation methods. This move is
obvious in all aspects of econometric modelling. In particular, resampling

techniques, such as bootstrap, are wonderfully simple tools for mimicking the

3
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sampling inference methods. They have been widely used to explore higher-order
approximations to unknown distributions of econometric statistics. Also commenting
on the impact from the IT technology on the development of econometrics,
Maasoumi (2001, p85) went even further and predicted that

‘perhaps there will be a development towards more realistic models and
inference techniques, accommodating more sophisticated adaptive
behaviour and learning,.... Perhaps even model specification will be
recast into a leaming and adaptive procedure, ... which will truly

acknowledge that all models are approximations/misspecifications.’

1.2 Motivation and Direction

The research reported in this thesis was motivated by the on-going pursuit of exact
small sample estimation procedures by econometricians. Since Fisher (1925)
advocated the use of maximum likelihood (ML) based inference procedures, ML
estimation has generally become very popular. This popularity is mainly based on
asymptotic optimality properties and on computational convenience, as comraented
by Kiviet and Dufour (1997). Given present-day computer speed and facilities,
however, practitioners can and should bring more aspects into their statistical utility
function than just ease of computation and behaviour in infinitely large samples.
Nowadays, a more challenging and appropriate objective is to employ procedures
which optimise the actual efficiency and accuracy from the finite set of sample data
at hand. As far as estimation procedures are concerned, it is no longer the only
requirement today for the estimator to be asymptotically unbiased and relatively
efficient. Instead, these Jays, the profession can be much better served if provided
with estimators that have adequately characterised approximation levels and

performance guarantees in small samples.

The focus on small sample properties of inference procedures is particularly
important due to the non-experimental nature of economic data. As explained by
Haavelmo (1944), by non-experimental, one means data cannot be generated by

providing appropriate stimuli to elicit changes in the response variable, as in the ideal
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type of experiment, but rather, a researcher can only play the role of a passive
observer and gather data the way they are churned out by nature. This is a prominent
feature distinguishing econometrics from its parent discipline, statistics. King (1996)
pointed out two potential problems in inference procedures due to the non- .
experimental nature of the discipline. First is that a model cannot be specified with
the level of certainty of that in disciplines where data are the direct product of
experiments. This highlights the necessitv fo specify a model as a stochastic process
to reflect the uncertainty involved. The other problem is that the effects of different
factors in 2 model cannot be isolated in ‘controlied’ experiments as in the disciplines
of natural science. In this less than ideal situation, econometric models often contain
large numbers of parameters. As such, econometricians are often encountered with
the difficult situation in which a large stochastic model has to be identified given
only a limited amount of data. Therefore the precision of the estimators and the

power of tests in small samples become crucial in the model building process.

To develop exact finite sample procedures usually involves sacrificing
generality in exchange for a gain in small sample efficiency, see discussions in King
(1987b). Estimators that are applicable generally for a class of models sometimes fail
to explore fully the information contained in the data structure at hand. Opc way to
improve on this is to design procedures that depend on the design structure. A
prominent problem is the correction of the small sample bias of an estimator. Bias-
reduction becomes important as many estimators are only unbiased asymptotically.
Traditional bias-correction methods usually involve approximating the first-order
bias function by asymptotic expansions and subtracting it from the original estimator.
The finite sample bias-reduction approach, however, instead of using the uniform
asyraptotic adjustment factor, allows the correction factor to depend on the data. This
will draw extra computational cost as the factor has to be computed differently each

time, but it will also provide results that are more consistent with the data instead of

asymptotic distributions.

The search for procedures efficient in small samples has been greatly
enhanced by Monte Carlo methodology in the past two decades. Monte Carlo
experiments are often employed to simulate random processes mimicking real life

happenings with the use of random numbers, usually with the aim of investigating or
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estimating properties of statistics that are analytically intractable. Such studies help
to decide on the best approach to use, or provide input directly needed, for
modelling, estimation, testing and prediction. The simulation experiments, however,
are never an end product in econometrics, their resulis await to be applied to non-

experimental situations.

This thesis is mainly concerned with developing some ‘operational exact
techniques’ (Kiviet and Dufour, 1997)' for point estimation in small samples. Our
attention is given to the impartiality of the estimator. In pursuit of unbiasedness in
finite samples, we need bias-reduction techniques that are different from those based
on asymptotic theories. Computer-intensive methods are used to explore the exact
distributions of estimators and test statistics. To comect bias by computer
simulations is not a new idea. For example, in an interview (Phillips, 1988), James
Durbin revealed that in the early 1950s, he attempted to study bias-correction based
on computer-intensive methods but eventually gave up the idea becamse the
computers available at that time could not provide the speed and capacity required by

the research.

The focus of this thesis is on the concept of median-unbiasedness. Unbiased
estimators play an important role in point estimation theory. Because a uniformly
optimal estimator is almost impossib]é to find, unbiasedness is usually the first
prerequisite for a ‘good’ estimator. Unbiasedness makes sure that no one or more
values of a parameter are too strongly favoured at the cost of neglecting other
possible values (Lehmann, 1983, p5). Among different definitions of unbiasedness,
median-unbiasedness has not drawn as much attention as mean-unbiasedness.
Different researchers (e.g., Brown, 1947, Birnbaum, 1961 and vani Haart, 1962),
however have criticised the inappropriateness of mean-unbiasedness in some
situations. They showed that median-unbiasedness possesses some atiractive features
and may be preferred as an impartiality measure under some circumstances. This
thesis adds to the literature that advocates the use of median-unbiased (MU)

estimators.

The main contribution of our research is to supply some generally applicable

methods for constructing (approximatciy) MU estimators. We found that there is a
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lack of such systematic discussions on how to construct MU estimators in the
literature. Our proposed methods will serve as altemative bias-reduction techniques

to the existing ones that were all designed to correct mean-bias.

However, as pointed out by Firth (1993), it is not an assumption of this thesis
that unbiased estimation is always desirable and therefore bias-reduction is always
necessary. The merits of bias-reduction in any particular problem will depend on a
number of factors, including the skewness of the distribution of the estimator and any
sacrifice in precision that might result. Sometimes, the variance of the bias-corrected
estimator might be inflated significantly, thus offsetting any benefit of correcting the
bias. Although in the examples examined in this thesis, the proposed estimators do
not suffer from this problem, it is always a critical issue that researchers have to look

out for before adopting any bias-reduction techniques in their studies.

The models we apply our proposed method to are the linear autoregressive
models with exogenous variables. The bias in the estimation of these models without
explanatory variables are well documented, therefore it is natural for us to compare
the proposed techniques with the existing ones. When extra regressors are added into
the model, the factors that affect the bias become more complicated and the
analytical methods become even more intractable. Although practically popular,
models containing exogenous regressors have not been studied systematically in
terms of small sample bias-correction. We apply the proposed methods to these
models and derive some estimators which are almost median-unbiased, with smaller

overall risks in small samples and are applicable for most regressor structures.

1.3 Scope and Plan

The thesis is organised into seven chapters. Following this introductory chapter,
Chapter 2 reviews the literature related to unbiased estimation and bias-reduction
techniques. In a general point estimation setting, we start the survey by comparing
several different definitions of unbiasedness. The link between unbiasedness and the

risk function is highlighted. The two most frequently used unbiasedness criteria,
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mean-unbiasedness and median-unbiasedness are deliberated upon. In the section
that follows, we aim to reveal the circumstances under which median-unbiasecness
might be a more appropriate measure of the impartiality of a point estimator. This is
followed by a thorough discussion of the properties of the MU estimators both
asymptotically and in small samples. The focus is given to the optimality results
derived by various researchers. Several optimality measures that are different from
the ones usually used for mean-unbiased estimators are explored. The applications of
MU estimation in different econometric models are then surveyed. Attention is given
to the rationale of using such estimators and the methods used to derive them. It is
found that the most important applications are in estimating autoregressive models.
In the second half of the chapter, we examine a different yet closely related topic —
small sample bias-reduction methods. These methods are classified into two
categories: bias-correction and bias prevention. The two major bias-correciion
methods: the analytical approach and the bootstrap approach are compared, followed
by a detailed discussion of previous studies that aimed to adjust estimating equations
to prevent the bias in small samples. Finally, the research questions emerging from
the literature review are summarised, as they will be dealt with in the proceeding

chapters.

Chapter 3 gives the theoretical outline of the methods developed in this thesis
which can be used to construct MU estimators. Lehmann’s (1959) work implicitly
indicated that MU estimators could be constructed by inverting the median functions
of the sufficient statistics. We first review this approach and point out why it has not
been widely adopted. Based on this fundamental result, we propose two different
methods for constructing MU estimators. The first one is analogous to the bias-
prevention technique in the mean-unbiased estimation context. The estimating
equations are adjusted towards median-unbiasedness in order to correct the median
bias in the estimator. The second method is based on the duality between a test
statistic and a confidence interval. But a slightly different method of inverting the
median function is proposed to suit point estimation. The link between the proposed
methods and the existing bias-reduction techniques are explored. Both methods are
extended to the multivariate case in which nuisance parvameters have to be

eliminated.
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In particular, Chapter 3 outlines the main theoretical contributions this thesis
makes. Constructing MU estimators by adjusting the estimating equations, as far as
we know, has not been discussed in any previous study. We argue that there is a
stronger link between a MU estimating equation and a MU estimator compared with
their mean-unbiased counterparts. Therefore it is more likely to correct the (median-)
bias by adjusting the estimating equation towards unbiasedness. The second
approach, i.e., inverting the median function of a test statistic, is not new. However,
we propose a different algorithm — grid inverting, together with the use of the point
optimal tests, which greatly enhance the efficiency of such an approach. We expect
these two methods could be applied to a range of econometric models and deliver
(median-) unbiased estimators in small samples. They will serve as useful alternative
bias-reduction techniques in situations where mean-unbiasedness is hard to achieve

or robustness becomes crucial.

Chapter 4 provides empirical illustrations of the first method developed in
Chapter 3. We choose to adjust the marginal likelihood scores towards median-
unbiasedness in the linear regression with AR(1) disturbances and the first-order
dynamic linear regression model. These two models are probably the most studied
time series models in econometrics. We attempt to show that the proposed method
can correct the small sample bias as well as or even better than the existing
techniques. In the first example, the method is used directly as the median function is
invariant to nuisance parameters. In the second example, however, this invariance
does not hold. So the method is revised to account for the nuisance parameters. Asa
result, an iterative algorithm is developed to produce an approximately MU
estimator. The new estimators are compared with their more conventional
counterparts via Monte Carlo studies. The small sample bias and root mean squared

errors (RMSEs) are examined.

Chapter 5 explores the relationship between the power of a test and the
performance of the MU estimator based on inverting its median function. This issue
is largely ignored by previous studies. As an example, we show that Andrews’
(1993) MU estimator breaks down when extended to models with certain exogenous
regressors. The reason lies in the lack of power of the test he chose to invert. In the

linear regression with AR(1) and random walk disturbances, we examined the
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median functions of several frequently used tests and particularly the point optimal
invariant (POJ) tests proposed by King (1985a, 1987b) and Dufour and King (1991).
We atiempt to show that the POI tests are good candidates for constructing MU
estimators due to their excelient small sample power properties. Monte Carlo studies
are conducted to compare the performance of the estimators based on inverting
different tests. In particular we compare the estimator based on the POI tests and

Andrews’ estimator. Finally, the robustness of the proposed estimators to non-normal
errors is examined.

Chapter 6 studies hypothesis testing and forecasting procedures based on the
MU estimators proposed in the previous chapters. We attempt to correct the small
sample deficiencies of the Wald test by using an unbiased estimator in the test. The
tests examined include a test of autocorrelated disturbances, a test for random walk
disturbances and a test for the Jagged dépendent variable coefficient. We expect that,

by correcting the bias in the point estimator, we should also be able to correct the

small sample bias in the Wald test. The simulated power curves of the Wald tests |

based on different estimators are compared. The second half of the chapter is
concerned with forecasting. It is revealed that the risk of a predictor is closely linked
to the bias in the point estimator. Therefore Monte Carlo studies are conducted to

compare the prediction risks based on different estimators.

The final chapter of the thesis summarises the major find’ngs from the
previous chapters in terms of satisfying the goals we set up in this introduction.

Possible research questions which require further research are also identified.

1.4 Computations

All calculations reported in this thesis were performed using GAUSS System
Version 3.2.11 (Aptech Systems, Inc.) on IBM-compatible personal computers.
Random numbers were generated by the built-in random number generators
(function RNDS) of the software for Monte Carlo simulation experiments. In the
case of optimisation problems, the Consirained Optimisation module of the GAUSS

System was utilised.
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Chapter 2

Median Unbiased Estimation in Econometrics: Literature
' - Review

2.1 Introduction

Point estimation is one of the most common forms of statistical inference. It involves
procedures to specify a plausible value for an unknown parameter based on some
observed data. The quality of an estimator is then measured by criteria such as
impartiality, efficiency and robustness. Due to the non-experimental nature of
economic data, it is even more crucial for econometricians to rely on estimators that
have sound performance not only asymptotically but also in small samples. However,
as there is typically no unique, convincing definition of <ptimality, the optimal
estimation procedure depends heavily on the assumed utility (or risk) function. In
most cases, unbiasedness is always one of the most frequently used quality measures
for a point estimator. Median-unbiasedness is one of several unbiasedness
definitions. Compared with mean urbiasedness, which is its much more popular
alternative, median-unbiasedness possesses some unique features that can be
attractive under different circumstances. Many early researchers, including Brown
(1947), Lehmann (1951, 1959) and Birnbaum (1961, 1964), emphasised the
importance and plausibility of the concept of median-unbiasedness. But since then,
mean unbiasedness has always dominated point estimation theory until recently
when MU estimators were successfuily nsed in several time series models, which to

some degree reminds researchers of the importance of the class of MU estiinators.

This chapter provides a review of MU estimation in econometrics. The scope
covers not only MU estimators and their applications, but also some of the related
robust methods and bias-correction techniques. Our review inevitably focuses on the
facets of the literature that offer insights into and direct exposition of the research
problems of concern in this thesis, and therefore is by no means exhaustive, The

main objective of this chapter is to synthesise the messages contained in previous
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studies in order to clarify and highlight areas in the literature where research
questions remain -open or further work is required. The succeeding chapters will
adidress these research questions identified from this survey.

This review is organised as- follows. General principles of unbiased
esiimation as well as different definitions of unbiasedness are deliberated upon in
Section 2.2. Focus is given to the link between unbiasedness and the risk function.
Section 2.3 compares median-unbiaseCness with mean unbiasedness and reviews
several circumstances in which median-unbiasedness is more plausible. Small
sample and asymptotic properties of MU estimators are also discussed. Section 2.4
reviews applications of MU estimation in econometrics from early contributions to
recent developments. Some robust methods, including least absolute deviation
(LAD) estimation, which are closely related to MU estimation, are reviewed in
Section 2.5. Section 2.6 looks at different small sample bias-correction techniques
developed by econometricians. Although all of these techniques are aimed at
reducing the mean-bias of an estimator, they i:vrovide some guidelines for us to apply
similar methods in the context of MU estimation. Section 2.8 concludes the review

by identifying some research gaps left unfilled in the literature.

22 Theory of Unbiased Estimation

2.2.1 Risk Function and Unbiasedness

~ We consider the general setting of statistical estimation. The observed data are
postulated to be a random variable X (typically vector-valued) taking on values in
the sample space =, according to a distribution P, which is known to belong to a
family I1. The distributions are indexed by an unknown parameter &, taking values
in a set Q. A real valued function g is defined over the parameter space €2, whose
value at & is to be estimated; we shall call g(8) (in many cases, g(@)=48) the

estimand. The estimation problem is then the determination of a suitable estimator,

that is, a function § defined over the sample space, of which it is hoped that &(X)
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will tend to be close to the unknown g(8). The value &(x) taken on by the estimator

for the observed value x of X is then called the estimate of g(6).

‘We then, following Lehmann (1959, pp5-6), define a loss function L(@.d),
to measure the consequences of estimating g(6) by a value d . The loss function is

usually required to satisfy the following conditions,

L(8,d)=0 forall 8, d, .10

and

L(6,g())=0 forall £. 2.2)
The accuracy of an estimator & is then measured by the risk function

R(,0)= E,{L16,0(X}}}, 2.3)

the long term average loss resulting from the use of &. One would like to find a &
which minimises the risk for all values of &. However, except for a constant
parameter, there exists no uniformly best estimator (Lehmann, 1959), which

minimises (2.3) simultaneously for all values of 8.

One way of avoiding this difficulty is to restrict the class of estimators by
ruling out estimators that too strongly favour one or more values of & at the cost of
neglecting other possible values. This can be achieved by requiring the estimators to

satisfy a condition which enforces a certain degree of impartiality, i.e. unbiasedness.
Lehmann (1951, 1959) recommended a general concept of risk-unbiasedness,

which is a theoretical definition of unbiasedness depending on the loss function L.

An estimator & of g(8) is said to be risk-unbiased if it satisfies

E,LT0,5(X)]< E,LI8',6(X)] (2.4)

13
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for all 8+ 8. If one interprets L(8,d) ‘as measuring how far the estimated value 4
is from the estimand g(&), then risk-unbiasedness states that 6(X) is on average at

least as close to the true value g(@) as it is to any false value g(8").

The importance of this general definition is shown by its connection with the
principle of invariance. An estimator &(X) is said to be invariant to a 1:1

transformation family H, if forany 2 e H,
S(h(X)) = H(S(X)). (2.5

Lehmann’s (1951) results state that whenever among all risk-unbiased estimation
procedures there exists a unique one that uniformly minimises the risk, then it is
almost invariant. And under certain restrictions on the transformation group, the
converse statement is also true, i.e., if among all invariant procedures there exists one

that uniformly minimises the risk, then it is unbiased in the sense of (2.4).

2.2.2 Median as a Location Estimator

We begin by stating the definition of the median and some of its properties as a
location parameter estimate before we define median-unbiasedness. A real number

m is a median for the random variable Y , if
Pr{Y2m)z )Y and PriY<m} = };. (2.6)

This definition of a median allows for non-uniqueness, and as a matter of fact,
Lehmann (1983) showed that the medians of the same random variable always form
a closed set. If a median m of ¥ is not a probability mass point, then condition (2.6)

reduces to

Pr{Y >m}=Pr{Y <m}= 4. 2.7)

ool
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For a population with underlying distribution density f(y) that bas its
median at u, the sample medijan m is shown, among others, by Chu (1956) to be

asymptotically normal with

JT(m- 1) — NO,[AF2 1) @2.7)

The efficiency of the median compared to the mean is 0.637 when the

waderdying distribution is normal, which is somewhat low. But its efficiency

inCreases and exceeds unity as the tails of the parent distribution become heavy (Rao,

1988). The median is well known for its robustness properties. Huber (1987) showed
ipat the median minimises the maximum asymptotic bias that can be caused by
sSymmetric data contamination. It is also the simplest so-called ‘high-breakdown’
¢stimate. Therefore it is usnally used as a good initial value in iterative estimation by
2 Tobust method. Another important property is that it is invariant to monotonic
ransformations. The median of a function of a random variable is the function of the

median of the random variable, provided the function is one-on-one.

2.2.3 Different Definitions of Unbiasedness

Depending on the choice of the joss function, different concepts of unbiasedness can

be defined. The most frequently used are the following two:

1. Mean-unbiasedness. If the loss function is squared error, (2.4} becomes
E,[6(X)- (@ 2 E(6(X)- g(O)T 2.8)

for all 8 0. The left side of (2.8) is minimised by g(6)=E,4(X) and the

condition of risk-unbiasedness therefore reduces to the mean-unbiasedness condition

E,5(X)=g(0). | 2.9)

15




Chapter 2. MU FEstimation in Econometrics: Literaiure Review

The condition of mean-unbiasedness ensures that in the long run, the amounts by
which the estimator over- and under-estimates g(#) will balance, so that the

estimated value will be correct ‘on the average’.
2. Median-unbiasedness. If the loss function is absolute error, (2.4) becomes

E|0(X) ~ g(8)]2 EJ5(X) - 2(8)] (2.10)

for all @ = 4. The left side of (2.10) is minimised by any median of 5(X). It follows

that the risk-unbiasedness condition reduces to
med,6(X) = g(6). 2.11)

An estimator satisfying (2.11) is said to be median-unbiased (MU). Different from
mean-unbiasedness, median-unbiasedness ensures that the frequency but not the
amount of over- and under-estimation of an estimator should balance, ie., the
probability of over-estimating is equal to probability of under-estimating in the long

mn.

There are other attempts to define unbiasedness in a more general sense.
Brown (1947) suggested the use of likelihood-unbiasedness instead of mean-
unbiasedness. An estimator is likelihood-unbiased if estimates in the neighbourhood

of a given parameter value ¢ would occur more frequently when the true value is &
itself than wh-» it differs from &. Hence if we assume the estimator 6 of 6 has

probability density h(8}6) , then & is likelihood-unbiased if

héle") s h(o)6). (2.12)

This definition has the advantage of being invariant under simultaneous one-to-one
transformations of the parameter and the estimate, which is an important property not

possessed by mean-unbiasedness.
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Van der Haart (1962) attempted to generalise the definition of median-
unbiasedness. For an estimator §(X) of a parameter &, he introduced a comparing
value ¥ and a comparing estimator ¢(X). The estimator §(X) is called ¥ -unbiased

(or more generally distribution-unbiased) if
Pr{6(X) £y} =Pr{c(X)2y]). | (2.13)

It is apparent that median-unbiasedness becomes a special case of this definition
because if we choose ¥y =8 and ¢(X)=dJ(X), the above condition becomes the

definition of median-unbiasedness.

2.3  Properties of MU Estimators

231 Comparison of Mean-unbiasedness and Median-unbiasedness

According to Van der Haart (1962), Laplace (1774) was most likely the first who
worked with the idea of MU estimators. He virtually rejected the use of arithmetic
means of observations as location estirates, and therefore the concept of mear-
unbiasedness. However, in the history of statistics and econometrics, much
interesting work has been devoted to mean-unbiased estimators. Yet it is hard to find
the requirement of mean-unbiasedness justified in print. According to Lehmann
(1983, p4), it might be Gauss who first advocated the square of error as the measure
of loss or inaccuracy. But even Gauss himself admitéed that, should someone object
to this specification as arbitrary, he was in compiete agreement. He defends his
choice by an appeal to mathematical simplicity and convenience. Among the infinite
variety of possible Joss functions for measuring the departure of the estimate from
the true parzmeter, the square loss function is the simplest and is therefore preferable.
This view was corroborated by Fraser (1956, p839), who observed that median-
unbiasedness does not lend itself to the mathematical analysis needed to find
minimum risk estimates, and hence has found little application. Stil on the
popularity of mean-unbiasedness, Birnbaum (1961) commented that mean-

unbiasedness is merely a technically useful property of the classical estimators in the
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linear estimation problem, which, at least in the case of normal errors, could equally

well or preferably be justified on the basis of median-unbiasedness.

The critics of mean-unbiasedness mainly focus on three aspects: 1. it is not
robust towards extreme values and heavy tail distributions; 2. it is not invariant under
one-to-one transformations; and 3. it is ill-defined when the parameter space is a
closed set. In contrast, MU estimators are largely immune to these problems.
Therefore under many circumstances, median-unbiasedness is a better measure of
impartiality than mean-unbiasedness. We review these 3 aspects together with some
of the examples that have emerged in the literature and illustrate those circumstances

in which median-unbiasedness can be more relevant.

2.3.1.1 Robustness

While the mean is not robust when used as an estimator of a location parameter,
estimators produced by squared error loss often are as uncomfortably sensitive to
outlying observations and to the tail behaviour of the assumed distribution of the
observed random variable, as pointed out by Lehmann (1983). Kendall and Stwart
(1967, Section 17.9) reported that Girshick et al. {1946), Halmos (1946) and Savage
(1954, p20) all provided examples that the available mean-unbiased estimators in
certain situations can be even inferior to any single observation. On the other hand,
MU estimators are much more robust in this sense. For example, Cox and Hinkley
(1974) and Andrews and Phillips (1987) both reported that the MU estimator of the
error variance in a linear regression is much more robust to non-normal errors than
the mean-unbiased estimator. Andrews (1993) examined the robustness of his MU
estimator of the first-order autoregressive model under different error structures and
concluded that the MU estimator is very robust to skewed or heavy-tailed error

distributions.

As an extreme case, the moments of the estimator may not exist in some
situations. If this kappens, mean-unbiasedness will not be an appropriate measure
while median-unbiasedness is still applicable. Jensen (1979) observed that when the

disturbances in a simple linear regression model are Cauchy instead of Gaussian, the
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usual least squares cstimator;@ is still median-unbiased (and optimal among all MU
estimators for all bounded loss functions), bui mean-unbiasedness is not applicable
as the estimator does not have finité moments. Both Zaman (1981) and Fiebig (1985)
also reported cases of estimators without finite sample moments. The parameter of
interest was the reciprocal of a normal mean in a simultancous equation model. In
both cases, as observed by Zaman (1981}, the use of quadratic loss as a criterion can
conflict with the objective of obtaining an estimator that has high probabilities of

being close to the true value,

2.3.1.2 Invariance to 1:1 Transformations

An important feature of the maximum likelihood estimator is its invariance to one-to-

one transformations, i.e., if & is the ML estimator of @ and g(s) is a I:1

transformation, then g(@) is also the ML estimator of g(8). But this property does
not hold for mean-unbiased estimators. This is one of the most iinportant arguments
used by early critics of mean-unbiasedness. One simple exainple, as pointed out by
Andrews and Phillips (1987), is that although the sample variance s° is a mean-
unbiased estimator of the population variance ¢, the sainple standard deviation s is
a biased estimator of 'thc population standard deviation o. In contrast, median-
unbiasedness is invariant to any one-to-one transformations (see e.g., Brown, 1947
and Van der Haart, 1962). So given a MU estimator of the population variance (an
example of this is given in the next section}, its square root is also a MU estimator of

the population standard deviation.

This invariance property of median-unbiasedness was explored by Andrews
and Chen (1994) in the estimation of the impuise response function (IRF) in the
AR(p) model. A scalar measure, the cumulative impulse response (CIR) was used to
measure the persistence of the series instead of the whole IRE. The CIR, which is the
sum of the IRF over all time horizons, equals i/(1-a), where « is the sum of the
AR coefficients. Thus a MU estimator of a will lead to a MU estimator of the CIR.

A similar approach towards estimating impulse response functions was also taken by
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Kilian (1998) and Wright (2000a) but the focus there was mainly on interval
estimation.

2.3.1.3 In a Restricted Parameter Space

When the parameter space is subject to restrictions, median-unbiasedness becomes a
preferable measure of impartiality, Both Fuller (1996) and Andrews (1993) pointed

out that when the parameter space is bounded and closed, if is impossible to have a

global mean-unbiased estimator because all estimators are biased at extreme

boundary points, while the MU estimator is immune to this problem. In time series
regression models, when unit roots are taken into consideration, the parameter space

for the autoregressive coefficient p is a bounded set [—1,1]. Therefore a uniformly
unbiased estimator of £ has to be median-unbiased instead of mean-unbiased.

Another important situation of the parameter space being restricted occurs when the
parameters are restricted by nonlinear constraints. This is frequently encountered in
practice. Andrews and Phillips (1987) examined the linear regression model in which
the coefficients are subject to nonlinear constraints. They concluded that the mean-
unbiasedness condition becomes more restrictive than median-unbiasedness because
estimators that take advantage of the restrictions on the parameters generally are
mean-biased, MU estimators, however, can be adjusted to take account of restrictions

without losing their property of median-unbiasedness.

2.3.2 Optimality Measures of MU Estimators

The most important optimality result associated with MU estimators is due to
Lehmann (1959, pp80-83). It states that, for the family of densities that have

monotone likelihood ratios (explained in the next paragraph), there exists a unique

optimal MU estimator, which among all MU estimators, minimises EL(8,8) for any

loss function which for fixed @ has a minimum of 0 at =@ and is nondecreasing as

@ moves away from @ in either direction. If we take the loss function as the finite
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sample concentration measure used in Pfazangl (1970), i.e., L(8,6)=0 if Ié—— 9| <A

and L(@, 6)=1 otherwise, it is seen that among all MU estimates, & minimises the

probability of differing from & by more than any given amount; more generaily it

maximises the probability

L

Pr{-A, <6—6<A,) forany A,,A, 20. (2.14)

The real-parameter family of densities p,(x) is said to have a monotone
likelihood ratio if there exists a real-valued function T(x) such that for any <&’
the distributions P, and P, are distinct, and the ratio p,(x)/p,(x) is a
nondecreasing function of 7(x). An important class of families of distributions that

have monotone likelihood ratios are the one-parameter exponential families.

Pfanzagl (1979) extended Lehmann’s (1959) resulis to exponential families
with nuisance parameters and defined the conditions for an unique optimal MU
estimator to exist. Brown, Cohen and Strawderman (1976) showed that within the
class of MU estimators, the one based on the minimal sufficient statistic has the
smallest risk for a wide class of losses, including but not limited to a convex loss

function, which is a direct corollary from Lehmann’s (1959, p80) resuits.

An important application of Lehmann’s (1959) and Pfanzagl’s (1979) results
is the analogue to the Gauss-Markov theorem in the linear regression model derived
by Andrews and Phillips (1987). In the linear regression model with ‘consistent
elliptically symmetrical’ errors, the generalised least squares estimator (GLS) is
shown to be the unique best MU estimator in the sense of uniformly minimum risk
for any monotone loss function. More importantly, if the parameters are restricted in
a known (possibly infinite) interval that does not depend on the true parameter value,
the restricted GLS estimator is the unique best MU estimator. In contrast, in this

case, similar optimality results do not hold for mean-unbiasedness.

The optimality of the MU estimators is also closely linked to another criterion

used quite frequently to assess the quality of a point estimator, namely, the Pitran
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closeness (PC) criterion (Pitman, 1937). For estimating a parameter 8, consider two

rival estimators &, and &, ; then &, is said to be Pitman-closer than J, if
Pry (|6, ~6<[0, - eh 24 2.15)

for all 8. According to the PC criterion, rival estimators are usually compared
two at a time. But it is also important to obtain the Pitman-closest estimators within
reasonable classes of estimators. Keating and Gupta (1984) and Keating and Mason
(1985) considered the case of the general-scale family of distributions (with pdf of
the form o™ f(x/c), o>0). They compared the maximum likelihood, uniformly
minimum variance, MU, and mean absolute deviation estimates of o according to

the PC criterion. They concluded that the MU estimator is the Pitman-closest among

the four.

Ghosh and Sen (1989) extended this result and showed that the MU estimator
in this case is also Pitman-closest within the scale-equivariant estimators under a
wide class of loss functions. Ghosh and Sen also presented a general result in the
location-scale families of distributions to link the median-unbiasedness to the PC

criterion. Let 7, and T, (nonnegative) be MU estimators of the location and scale
parameter, respectively, ‘and Z, and Z, be two ancillary statistics independent of 7}
and 7T,, respectively, then T is Pitman-closest among all estimatbrs with the form
U=T +Z, while T, is Pitman-closest among all estimators with the form

V=T,(1+Z,).

233 Asymptotic Concentration of MU Estimators

Pfanzag) (1970) suggested using the asymptotic and finite sample ‘concentration’ to
measure the efficiency of a MU estimator. For a sequence [@,} of estimators of &,

the asymptotic concentration is defined as

Lim,_,_ Pr,{6-6,/1 <8, <6+5,/l6) (2.16)
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for positive constants &, and &,. The limit (2.16) exists for asymgptotically normal
sequences of estimators, but also for a broader class of estimators. Pfanzagl (1970)
gives an example of a sequence of MU estimators {9, } for which the distributions of

Jt (9, - &) do not converge.

It immediately follows that a sequence {é,] of estiinators is asymptotically

optimal in a class C if

Lim, . Pr,{0 -8,/ <8, <0+ 85,/ 1]6)

> Lim__Pr,{0-8,/\t <8, <6+8, /qu}
@17

for any other sequence [@,] of estimators in C, for ail §,, §,>0 and all & in Q. In
another words, in a class of estimators, if @ has greater asymptotic concentration

than any other estimators in the class for all §,, §, >0, 6 is asymptotically optimal.

Pfanzagl (1971) proved that any sequence {@,] of estimators which is

asymptotically normal is also asymptotically MU in the sense that-
Lim,_, P8, <6) = Lim,_,_ Pr(8, 2 6)=1/2. (2.18)

He also showed that under certain regularity conditions, an asymptoticaily efficient
sequence of estimators can be adjusted to give a sequence of asymptotically optimal
MU estimators having the same asymptotic behaviour, and in which the adjustment

amount tends to Q0 as { —> o=,

More importantly, Pfanzagl (1970) gives an upper bound (roughly speaking)

to the asymptotic concentration for a sequence of MU estimators. Under certain

regularity conditions,
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limsup Pr{f8—-8,/r <8, <6+6, /1)

< D(8,1(6)%) - D(5,1(6)*) (2.19)

forall 6,, 8, >0 and all < Q, where ®(e) is the standard normal density function

and

d*In L(x,B))

1(6) = Eq( Y 2.20)
is the Fisher information matrix component. This result holds true without any
assumptions concerning the convergence rate of the sequence, in particular,
asymptotic normality is not required. Under suitable regularity conditions, this
maximal asymptotic concentration is achieved by the sequence of maximum
likelihood estimates. As maximum likelihood estimates are not .MU in general,
Pfanzagl (1971) defines conditions under which MU estimates with maximal
asymptotic gonccntration exist. The results imply that the MU estimates with
maximal asymptotic concentration exist for all exponential families fulfilling certain
regularity conditions. Also see Strasser (1978). This is consistent with the fact that
families with monotone likelihood ratios admit MU estimates with strong optimum

properties, as suggested by Lehmann (1959, p83).

Pfanzagl (1971) went on to derive a similar efficiency bound in finite
samples. Under certain regularity conditions, for every #€Q and t,, 7, >0, there
exists a number ¢(z,,%,) such that for every sample size T and any MU estimator @T,

we have

Pr{f—1, [T <8, <0+1,/4T) 221
< B IO - DUIO)) +c(t, 1)TH '
Michel (1973) provided a similar efficiency bound but gave a slightly different proof
from that of Pfanzag] (1971). As an example, Pfanzag! (1979) applied his results to

the use of a sample quantile §,, as an estimate of the corresponding population
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quantile g,. The sequence {4,,} is asymptotically median-unbiased. And if the
shape of the population distribution is not known or if g, is not the median of a

symmetric distribution, the sequence is shown to attain the maximal concentration.

2.3.4 Efficiency Bounds for MU Estimators

Another approach for assessing the relative efficiency and optimality of a MU
estimator, is by considering its ‘diffusivity’ as suggested by Sung (1988, 1990).
Based on this measure, a generalised Cramer-Rao analogue for MU estimators
having continuous density functions was derived for both a scalar parameter and

vector-valued parameters.

Following Sung (1988), to assess the variation of a MU estimator, instead of

using variance, we define the diffusivity of a MU estimator 9 by the reciprocal of

twice of its density at its median point, i.e.,
d= 1/[233(90)] (2.22)

where g,(¢) is the density function of & and 8, is the true value of €. Then under

certain regularity conditions (see Sung, 1990), the diffusivity of a MU estimator in an

exponential family is bounded by:

d 2 Y E U (x.0) (2.23)

where
U(x,8) = dl(x;6)/00 (2.24)
is the score function and I(x;6) is the log-likelihood function. This is a direct

analogue of the Cramer-Rao inequality for mean-unbiased estimators, only with the
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Fisher information replaced by the absolute moment of the sample score and the

variance of the estimator replaced by diffusivity.

Sung (1990) extended the efficiency bound to the multidimensional
parameter case. Let §=(9,,...,@,‘):(5,(x),...,6k(x)) be a MU estimator of a
vector-valued parameter 8=(6,,....8,), i.e., each component J,(x) is MU for 6,,
and assume & has a continuous joint density function g(@,,...,6,). Then the joint

diffusity of @ is defined as
-1
d= [2:: 2(6,,....6, )I%] . (2.25)

Similarly, under certain regularity conditions, the joint diffusity of 8 is bounded by

the absolute moment of the score, i.e.

i | 81, 9) |
2 E .
2°(6,.....6,),  '|06,.-.98,]

(2.26)

As a simple example, Sung (1990) showed that in a multivariate normal
distribution, the sample mean is a MU estimator for the population mean and its
diffusity also attains the lower bound. In contrast, the MU estimator of the population

variance does not attain the lower bound.

2.3.5 Multi-dimensional Median and Median-unbiasedness

It is a difficult problem to extend the definition of median-unbiasedness to the
multi-parameter case. The reason is caused by the well-known difficulty in defining a
multi-dimensional median. Small (1990) has surveyed previous efforts to extend the
dcfiﬁition of median to the multivariate case. Rao (1988) also reviewed some of the
multidimensional medians in the context of Li-norm inference. Both these reviews
concluded that, unlike for the expectation operator, how to define a multivariate

median is still an open question. Therefore the discussions of median-unbiasedness
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so far are mainly restricted to the estimation of a scalar parameter. Here we examine
some of the prominent definitions of a multivariate median before we give our

definition of median-unbiasedness for a vector-valued parameter.

2.3.5.1  Marginal Median
The concept of marginal median is a genuine extension from the univariate median.

First consider the discrete case. Let x,,...,x; be a sample of size T from a p—variate

population, then the sample marginal median is defined as m=(m,,...,mp)’ that

satisfies:
Peix, 2m }=Pilx, <m]1=1/2. 227

Therefore each component of the median is the median of the corresponding
component of the variable. Rao (1988) showed that this median is the solution to the

minimisation problem,

T
i i~ 2.28
min 3 ;- 4 | (2.28)
where the distance [o] is the L,-norm distance given by,
I~ ], = |x, - i+ ..+|xp - ypl. (2.29)

The sample marginal median m= (my,...,m,) is then treated as an estimate of the

population vector of marginal medians y= (Hyseoslt,)'

Let f, be the marginal density of each component x, at its population

marginal median g;, and define an association matrix by
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(T Ye . T
b 32 5,
=] ° oL (2.30)
In Y . Ye|
_fp-fl fpf?. fpz i

where y, =Pr{x, Sy, x; <p;}-);. Let m=(m,...,m,)" be the sample marginal
median vector based on an i.i.d. sample from the population, then Babu and Rao

(1988) and Rao (1988) showed that the sample marginal median vector is
asymptotically normal with the limiting distribution given by,

NT(m-p) - N,(0,). 2.31)
Therefore testing the hypothesis Hy: i = u, can be based on the test statistic

st =T(m— ) T (m—pty), (2.32)

2

which is asymptotically 3° with p degrees of freedom provided I' is positive

definite. The difficulty lies in finding a consistent estimator [, see discussions in
McKean and Schrader (1984) and Rao and Babu (1988).

The advantage of using the marginal median vector is its computational
simplicity. It is also invariant to shifts in the individual components of the sample
veciors but not invariant for affine transformations of the sample vectors. (Following
Small (1990), affine invariance is defined as follows. If ¢ is an affine invariant
estimate based on x,, ..., Xy, then AdA’ should be the estimate based on Ax,,..., Axy

for any affine transformation matrix A).
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2.3.5.2  Spatial Median

The spatial median was first considered by Haldane (1248). The median »1, (x) of 2

p-variate probability distribution f(x) is the solution to the minimisation problem:

Blf =m0 = inf Elf (- (233)

where IHI is the usual Euclidean norm. This median is sometimes cailed the Li-
median or {ne geomstric median while the vector of marginal medians is sometimes
referred to as the arithimetic median. In the special case where p=1, the Li-median
reduces to the standard univariate median. Lopuhaa and Rousseeuw (1987) reported
that this median is very robust to data contamination (with a breakdown point of
50%). Brown (1983) studied the asymptotic properties of the L1 median and found it
is asymptotically normal. If the population is multivariate normal, the asymptotic
relative efficiency of the L1 median increases to one as p — c. Another advantage is
that it is unique when T =2 provided the points are not all on the same plane. Some

asymiptotic dispersion measures of the L1 median were studied by Bose (1995).
It is subject to the same criticism thal it is not ‘invariant to affine

transformations. Observing this, Rao (1988) proposed a generalised spatial median.

which minimises
Zis|+ i[(x.- —my’ S (x, ~ )}, (2.34)
1

where § is the sample covariance matrix. It was shown that the solution is invariant

to affine transformations. But little is known about its other properties.

92353  Other Multivariate Medians

Oja (1983) proposed a different affine invariant median. In the discrete sample case,

his median &, is found by solving the minimisation problem:
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min () = E[A(x,, x,,....x,, )], (2.35)
where
1 1 ... 1 1
1 TS X 6
Alxy, %y 5000, %,80) = -}-:-; Xp Xgy e Xy, O, (2.36)
X Xy - Xy B

is the volume of the simpiex (x,,x,,....x,.8).

The advantage of Oja’s median is its invariance to affine transformations. Its
disadvantages are: 1. it is usually not unique; 2. its robustness to outliers is doubtful;
and 3. it is very hard to calculate when the sample size gets large and when X

becomes a continuous random variable,

Apart from the definitions mentioned above, there are a few others, such as
the halfspace median suggested by Tukey (1975) and Denoho (1982), the simplicial
depth median of Liu (1988, 1990), and the median definition based on convex huli
stripping and related methods suggested by Seheult et al. (1976} and Green (1981).
But none of these definitions has gone very far in the practice of statistical inference

for different reasons.

As each definition has its benefits and drawbacks, in this thesis, we adopt the
marginal median as the definition of “a multidimensional median mainly for its
simplicity. Another justification is that when assessing the impartiality of an
estimator, it is usually more important to ensure the unbiasedness of each coordinate
of the estimator (as each component alone is usually an estimate of a separate scalar
parameter) rather than pursuing some hard-to-define global unbiasedness. Tl’nerefore
a multi-variate estimator 8=8(x)= {8,(x),8,(x),....8, (x)} is called median-

unbiased if each component is median-unbiased, i.e.
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med{B]= ({8, (x)},....m(8, ()]} =6, 237)

where m(e) is the usual univariate median function. The definition of marginal

median-unbiasedness was also adopted by Sung (1990), Rudebusch (1992), Andrews
and Chen (1994) and Fair (1996).

2.4 Applications of MU Estimators

In this section, we survey the applications of MU estimators in different economictric
models that have appeared in the literature. Attention is given to the circumstances in
which MU estimators were requested and the methods used by previous researchers

to construct these MU estimators.

2.4.1 E;ror Variance

Let x,,...,X; be a sample from a normal distribution N(u,0%). Then it is well

known that the sample variance
T
SP=(T-1)" Y (% -5 (2.38)
’ =1

is the best mean-unbiased estimator in the sense of uniformly minimum risk for any

convex loss function (see Lehmann 1983, p185). However, S? is not median-

unbiased, and neither is § as an estimator of ¢ . Eisenhart and Martin (1948)
showed that §? is negatively median-biased. Eisenhart (1949) pointed out that the
median-bias of S?, and hence of S, is of interest in quality control. Cox and Hinkley

(1974) suggested a MU estimator given by

i |
S2y = 2 (0= %) [med(x7.0), (2.39)
=1
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where the denominator stands for the median of a standard chi-squared random
variable with 7—1 degrees of freedom, which can be obtained from published tables

or via numerical integration. Ghosh and Sen (1989) extended this estimator to the
general location-scale family of distributions with pdf ¢ f ((x - 6)/o) and showed
that S,,, is not only median-unbiased, but also the Pitman-closest estimator of &

within a certain ciass of equivariant estimators. Andrews and Phillips (1987) applied

a similar estimator to the estimation of error variance in a linear regression, i.e.
y=Xf+u, E) =0, cov(x) =0’Z, (2.40)

where y is the dependent variable, X is a Tx k matrix of fixed regressors and u is

the vector of random errors; The estimator proposed for &~ was
St = (y= XBY(y— XB)/med(23.,). 241)

where f>’= (X X X ’E"y is the feasible GLS estimator. The same estimator was
also defined in Pfanzag) (1979). Andrews and Phillips (1987) concluded that Sf,,_, is
the best MU estimator of ¢ for any monotone loss function. In contrast to the
optimality results for the meap-unbiased estimator S?, this result holds even when
the regression parameter B is subject to restrictions, provided that the parameter
space of /8 has a non-empty intezior. As expected, §2,, is always slightly larger than

S?. and the difference in the denominators of the two is approximately 0.66 when
T -k is between 8 and 50.

2.4.2 Autoregressive Models

Measuring the persistence of shocks to macroeconomic time series variables might
be the single most prominent problem in econometrics during the past two decades.
Since the seminal papers of Dickey and Fuller (1979, 1981) and the empirical studies
by Nelson and Plosser (1982), much of the literature has focused on testing for

whether the largest autoregressive root of a series is one. However, the emphasis on
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unit root tests has been criticised by many researchers, see for example Campbell and
Mankiw (1987), Cochrane (1988), Stock {1991, 1994)), Andrews (1993) and Hansen
(1999). They argued that reporting only unit root tests is unsatisfying as a description
of the data as this fails to convey information about the most likely model that is
consistent with the observed data. In particular, mounting evidence, both theoretical
and empirical, suggests that the unit roct tests usually have low power for the
alternatives where power is needed most, therefore frequently produce unconvincing
results. All these point to the importance of having a reliable and impartial point
estimator in small samples. We review the effort made by various researchers to
construct MU estimators for the first-order autoregressive model, as this seems to be

the most prominent application of MU estimation in economeltrics.

Three models of first-order autoregression are considered. These models can
be defined as follows,

Model 1: y, = py,_, +¢&,,
Model 2: y, = pt+ py,_, +€,,
Model 3: y, = u+ Bt +py,_; +&€,,

where &, ~IN(0,6°) and pe[-11}. The initial conditions used by different
researchers do vary, €.g., see Pantula et al. (1994). In the following discussion, we
adopt the simple conditions that require y, to be stationary if lo] <1 and to equal

zero if | = 1 (a fixed start-up).

2.4.2.1 Asymptotically MU Estimators

This approach involves using local-to-unity asymptotic theory to construct
confidence intervals or compute asymptotically MU estimators based on the limiting
distribution of a test statistic. Developed by Bobkoski (1983), Cavanagh (1985),
Phillips (1987) and Chan and Wei (1987), the local-to-unity reparametrization

models the true value of p as being in a decreasing neighbourhood of one,

specifically p=1+¢/T, where ¢ is a fixed constant (the Pitman drift) and T is the
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sample size. Cavanagh (1985) first applied this theory to construct confidence
intervals based on the 7 statistic for Model 1.

Stock (1991) constructed two sets of confidence intervals based on the
augmented Dickey-Fuller (1979) # statistic {ADF) and a modification of Sargan and
Bhargava’s (1983) locally most powerful (LMP) test statistic. As a special case, how
to compute MU estimates was also described. Among the two test statistics
examined, the ADF statistic was shown to deliver more reliable intervals and
estimates. Therefore we review the results based on the ADF test for Model 3. The

model is rearranged to yield the usual Dickey-Fuller regression and the ADF test
statistic is given by,

1(P) = (Pops — D/s(Doss) | (2.42)

As T — oo, the limiting distribution of the ADF test is non-standard. Both Stock
(1991) and Hansen (1999) derived it for Model 3. The limiting distribution is giver
by,

wp)— (fwaw [ wrk, 243)

where W, is a detrended difivsion process and W is the standard Wiener process, for

details see Chan (1988) and Stock (1991). Therefore the limiting distribution
depends only on the local-to-unity parameter ¢ and is continuous in ¢. The median

function of this limiting distribution is then computed, i.e.,

mic) = med[([W.aw) /([ W2Y¥ie1, (2:44)

and a MU estimator of ¢ is given by,

E=m[t(p)]. (2.45)
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The estimator for p is then retrieved from . The method of computing confidence

intervals proposed by Hansen (1999) was slightly different from that of Stock’s. It
allows the null value in the test to vary and simulate the quantile functions of the
limiting distributions of the series of test statistics. Confidence intervals are then

computed by solving the equations for ¢,

Hpo(ex)) =g, (polc, ), (2.46)

in which o is the pre-selected confidence level and g, is the corresponding quantile

function of the limiting distribution.

Recently, Elliot (1999) inveited the quantile functions of the limiting
distribution of the efficient unit soot tesis proposed by Elliot et al. (1996) to construct
confidence intervals in the same model. His tests were shown to be closer to the
asymptotic power envelope of the testing problem and therefore more powerful than
the ADF test in some circumstances. His method of constructing confidence intervals
is very similar to the ones discussed above. But point estimation was not discussed in

his studies.

From the above examples, we can criticise the asymptotic approach on two
grounds. First, its median function is computed for the limiting distribution, thesefore
the quality of the final estimator really depends on whether this asymptotic
distribution is a good approximation of the true distribution of the test statistic in
finite samples. When the sample size is small, there has to be increasing
discrepancies between the asymptotic and exact distributions. As a resuit, the
estimator is only median-unbiased asymptotically. Second, both Stock (1991) and
Hansen (1999) reported that the quantile functions of the limiting distribution are not
monotonic for a certain range of ¢ vaiues. If the focus is on confidence intervals, this
is not a serious problem as it will only cause disjoint or empty confidence intervals at
times. But if a point estimate is to be calculated, this non-monotonicity will lead to

multiple solutions, which is a serious problem plaguing the use of this method.
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Different from all the above efforts, Fuller (1996, p579) proposed another
asymptotically MU estimator based on the median fonction of the limiting
distribution of the weighted symmetrical estimator. In model 1, the weighted
symmetric (WS) estimator is given by,

=1 T T
Pus= QY +07 3y vy (2.47)

=2 =1 =2

The ¢ statistic based on p,, testing for a unit root is then given by

-1 T

Zys =05 O Y2+ Yy T (Dys - 1). (2.48)

=2 =1

Fuller’s estimator is then based on the median function of the limiting distribution of

Twss 162,
~ l ‘ ]
Bus = 2 W () KO -~ (| W @dn%, (2.49)

where W(¢) is the standard Wiener process. As the median of the limiting

distribution (2.49) at p =1 is approximately -1.20, Fuller’s estimator is defined as

P = Pys +c(Fus)IV (Dys)V%, (2.50)

where V(Pys) is the estimated variance of Pys given in the denominator of 7y in

(2.48) and the smooth function c(7,) is chosen as

—.%“VS if %]vs 2 = 1-2
(B ys) = 10.035672(Fys +7.0)° if -7.00< Fyg S —12. (2.51)
0 if 7,45 <-7.00

The nature of this estimator is similar to the one studied by Stock (1991).
Both are based on inverting the median function of the limiting distribution of the ¢

statistic except that Fuller’s estimator is based on the WS estimator while Stock’s
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estimator was based on the usual ADF test statistic. Another difference is that
estimator (2.51) coincides with py, if p is small (when 7,, <~7.00) because for
small p, no bias-correction is needed. This cut off point is roughly at

Dus = (T+49Y™ (T~ 49).

For Models 2 and 3, the same procedure can be applied with y, demeaned or
detrended first. Fuller (1996) showed that this estimator is approximately median-
unbiased when the sample size is as small as 50. However, it suffers from an
increased variance compared with p, for p vatues differing, from one by more than
8/T. As a result, the mean squared error of Py, is smaller than that of p for all p
values that are different from one by more than four standard errors of the estimator.
However, Fuller’s (1996, p580) simulation results showed that the percentage
difference in the mean squared error between the two estimators is modest. Fuller’s
estimator was used by Enders and Falk (1998) to examine the validity of purchasing
power parity. Five exchange rates series were examined. While the DF unit root test
fails to reject the unit-root null for all but one series, the OLS point estimates implied
stationarity in all five cases. They showed that Fuller’s estimator was more
conservative than the unit-root test approach in assigning unit-roots but was less

conservative than the OLS estimator.

2.4.2.2 Exactly MU Estimators

The first exactly MU estimator of the AR(1) coefficient was proposed by Hurwicz
(1950). He observed that in Model 1, if the errors are normally distributed, then
every ratio y,/¥,.» ¢ =2, 3, ..., T, is a MU estimator of p. In this case, each ratio
has a Cauchy distribution, and is not an efficient estimator. Hurwicz (1950)

conjectured that the median of the ratios, ie.

p=med(22, 2, . -2 2.52)
» N Y7
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would be a more efficient estimator and perhaps also a median-unbiased one. This
claim was partly verified by Zilelinski (1999). He showed that in Model 1, if the
errors have median zero and Pr{y, =0} =0 for all ¢, then the estimator (2.52) is
exactly median-unbiased for p. Boldin (1994) also examined the same estimator and
established its asymptotic normality. But there is no efficiency comparison available
in his paper between this estimator and the single ratio originally proposed by
Hurwicz (1950). In fact, apart from median-unbiasedness, little is known about other
properties of this estimator. Another serjous drawback of these estimators is that they
cannot be extended to models that contain an intercept and/or a time trend (Model 2
and 3). It is commonly agreed that Model 1 itself is not very useful in economic

modelling (see discussions in Andrews (1993)).

Andrews (1993) proposed an exactly MU estimator for Models 1 ~ 3. His

results were obtained by inverting the median function of the OLS estimator of p

within the parameter space, i.c.,

1 if Poys >m(l)
Pa=im (Do) HEm=1) < Pos £mil), (2.53)
-1 if Poys Sm(=1)

where m(p) is the unique median of P, when p is the true parameter value. As
the distribution of P, is invariant to the nuisance parameters and the initial
conditions in these models, this estimator was shown to be exactly median-unbiased
for all sample sizes and all p values. It effectively corrected the serions downward
biases of P, especially for Model 2 and 3 and for small sample sizes. This
estimator can be used to construct 2 MU estimator of the impulse response function,
which is a monotonic function of p, and a MU model-selection procedure. Andrews
(1993) also demonstrated the robustness of his MU estimator to the non-normal

errors and other error misspecifications.

Compared with the asymptotic approach, Andrews’ approach is an exact
small-sample one. His estimator avoids using the asymptotic limiis as an

approximation of the small sample distributions. The median functions were shown
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to be monotonic for all three models. However, Andrews’ method requires the
computation (or simulation) of the median function for every different sample size,
which increases the computational cost of the procedure. Another drawback is that,
as adinitted in Andrews (1993) and Andrews and Chen (1994), it is not known if

their MU estimators are optimal in any sense.

Recently, So and Shin (1999) proposed a Cauchy estimator to estimate Model
1 — 3 in small samples. For Model 1, the estimator is

T T
P =2 sign(y,.)y, [ 2l (2.54)

=2 =2

where sign(y,.;)=1 if y,_, 20 and =~1 otherwise. This estimator has a history as
long as the OLS estimation of Gauss. According to So and Chin, in 1836, Cauchy
first considered such an estimator in the simple linear regression model. The
attractive property of this estimator is its asymptotic normality, which is not
possessed by the OLS estimator for p=1. The estimator was also shown to be
approximately median-unbiased for all values of p. Compared with Andrews’
(1993) estimator, it does not require evaluation of the median function, hence is
easier to compute. However, extending the use of this estimator to Model 2 and 3 is
not a trivial exercise. It requires a specially designed algorithm of recursive mean
adjustment and/or recursive detrending. This estimator also needs theoretical
justification for its (approximate) median-unbiasedness. So and Shin (1999, 2000)

applied the estimator in constructing tests for a unit root and seasonal unit roots,

2.4.2.3 Extensions to the AR(p) Model

Andrews’ (1993) method of constructing MU estimators was extended to estimaie an
AR(p) model by Andrews and Chen (1994). A similar approach was adopted by
Rudebusch (1992) in re-examining the Nelson-Plosser (1982) series. In both studies,
iterative algorithms were developed to invert the median functions of the parameters

one at a time, and with other parameters replaced by their estimates from the
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previcus round when evaluating the median function. The process js repeated until
convergence. As the median function of the estimator of each coefficient is not
invariant to other coefficients, the final estimator will only be approximately median-
unbiased. Andrews and Chen (1994) showed, however, that the approximation is
good for moderate sample sizes. Fair (1996) theoretically outlined an algorithm
essentially the same as the one suggesied by Andrews and Chen but extended its use
to the simultaneous equations model which contains endogenous variables and their
lags. Based on the approximately MU estimates, both Rudebusch (1992) and
Andrews and Chen (1994) reported that the persistence in the Nelson-Plosser series
were seriously underestimated by the OLS estimators and overstated by the usual
unit root tests. However, Fair (1996) concluded that the use of MU estimates did not

improve the forecasting accuracy in the macroeconomic models he examined.

24.3 Other Applications
2.4.3.1 Time Varying Parameter Models

Stock and Watson (1998) developed some asymptotically MU estimators for the
time-varying parameter model. A special case of the general model considered in
their paper is the so-called ‘local level’ unobserved components model, which was
also studied by Harvey (1985), Shepherd and Harvey (1990) and Shepherd (1993)

among others. The model can be specified as,

yf =081 xl' +u!' 4
ﬁt =Fia + Vf H (2.55)

where y, is the dependent variable (observed at time 7), x, is a k X1 vector of fixed
regressors, B, are the time-varying coefficients. For simplicity, we assume

u, ~IN©,0%) v, ~IN (0,7*)and u, and v, are independent. The parameter of

interest is the scale parameter 7. The ML estimators impiemented by Kalman filter

suffer from the undesirable property that if 7 is small, it has the so-called pile-up
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problem, i.e. the ML estimator has a probability mass at 0. This problem was also
reported in Shepherd and Harvey (1990).

The asymptotic approach was taken by Stock and Waiton (1998) by
considering the nesting 7=A/T, which is very similar to the local-to-unity
reparametrisation in the unit root models. Three test statistics testing the hypothesis
A=0 were considered: Nybolm’s (1986, 1989) locally most powerful invariant
(LMPT) test L, , the sequential GLS Chow statistic F,(s}, and the point optimal
invariant (POI) test suggested by Shively (1988) among others. As the F, statistic is
an empirical process, three scalar functionals were used: the Quandt (1960)
maximum F, (QLR), the mean Wald test (MW) and the exponential Wald test (EW)
of Andrews and Ploberger (1994). The asymptotic distributions of these test statistics
were derived. The median function of the limiting distribution of a test statistic is
denoted by myp(e), where D is the matrix of nuisance parameterss. For example,

based on one of the functionals of F,, A can be estimated by
G =mp(e(F)). (2.56)

In- practice, the unknown nujsance parameters in D have to be replaced by some

consistent estimates, which do not alter the asymptotic distributions and therefore

still ensure the asymptotic median-unbiasedness of 4.

This estimator is subject to the same criticism as Stock’s (1991) method, that
the limiting distribution may not be a good approximation in small samples, and as a
result, the estimator may not be MU when the sample size is small. The estimation
procedure is also computationally cumbersome as it requires computing the inverse
median function nr, for every set of estimates D. Stock and Watson (1998)
conducted Monte Carlo studies to compare the pile-up probabilities and the
asymptotic relative efficiencies of these MU estimators together with the ML
estimator. It was found that the pile-up problem plaguing the ML estimator was
properly controlled by all MU estimators for small 7 and the MU estimators also

have good asymptotic relative efficiencies for small to moderate amounts of
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parameter variability. Particularly, the MU estimators based on the QLR and the
POI(17) test statistics (the POI test that maximises the power at A=17, see

Saikkonen and Luukonen, 1993) were the best among the six estimators considered.

2.4.3.2 Binary Choice Models

Hirji, Tsiatis and Mehta (1989) developed a MU estimator for a logistic regression
model with two binary covariates. The model relating the response of a patient to
treatment and age, was used for assessment of the ireatment effect while adjusting

for the effect of age. It can be written as
Pr(Y, =1lx,} = {1+exp(-fx)1", 2.57)

where 8= (B, 5,,5,) and x; =(l,x;,x,) . The parameter of interest is f,, which
is the relative log odds of response for treatment 1 versus treatment 2, and can be
considered a measure of the magnitude of the treatment effect while controlling for
the effect of age. The MU estimator is constructed based on the conditional

distribution of the sufficient statistics for 8. The vector of sufficient statistics for 3
is given by T= X% and if we write T=(T;,7,,T,)", the conditional distribution of

T, can be worked out. The MU estimator of B is then computed by solving

PriT; <tlto. 1. B} = 4. (2.58)

This involves first evaluating the conditional distribution for each different
set of § and numerically solving the above equation. An efficient binary-search
procedure is needed to find the final estimates. Their Monte Carlo studies revealed
that the MU estimator is uniformly more accurate than the ML estimator for small to
moderately large sample sizes and a broad range of parameter values. As a result,
Hirji, Tsiatis and Mehta recommended the use of the MU estimator as an alternative
to the ML estimator especially when the sample size is not large or when the data

structure is sparse.
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2.5 Least Absolute Deviation Method

A class of estimators that are related to the MU estimators are the least absolute
deviation (LAD) estimators. In this section, we briefly review the major results

presented in the L1-norm literature, with focus given to the link between the LAD

criteria and medjan-unbiasedness.

In a general regression model
y, = fx,.p)+e, ’ (2.62)

where y, and x,, t=1,...,T are the observed data of the dependent and exogenous
variables, respectively, f (o) is a known continuous function and & is the error vector
specified by some known distribution function or moment conditions. The LAD
estimator of the regression coefficient 3 is then the solution to the minimisation

problem,

min >y, = F (5. Pl - (2.63)

1=l

According to Rao (1988), the LAD method dates back to Laplace and Gauss.
Unfortunately, its applications were restricted by computational difficulties and lack
of asymptotic studies, until in the last two decades, when the breakthrough in the
computing technclogy and the development of asymptotic theory prompted a great
deal of interest in LAD estimators. See Amemiya (1985) or Rao (1988) for a review
and Narula and Wellington (1982) for a susvey in the context of regression meodels.
The LAD estimator is a special case of a general class of robust methods based on

minimising an expression of the type

. ,
> o, f (5505 (2.64)
I
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where p(e) is a properly chosen convex loss function; see Ronchetti (1982) and

Huber (1987) for reviews of these robust methods.

From the definition of median-unbiasedness given in (2.10) and (2.11), it is
clear that the univariate median is a LAD estimator of the location parameter of a
univariate population. But a LAD estimator is in general not a MU (or a mean-
unbiased) estimator. As an example, we examine the link between these two criteria

in model (2.62) when f () is linear.

As pointed out by Andrews (1986) and Rao (1988), the LAD estimator Zi’
may not be unique. Fisher (1985) and Rao (1988) suggested a method of picking a

unique value of 2} Under regularity conditions (e.g., Bai et al., 1988), the LAD
estimator is shown by Bassett and Koenker (1978) and Bai et al. (1988) among
others, to be asymptotically normal, with the limiting distribution given by,

2T F(O)SEB- P — N©,L), (2.65)

where f(0) is the density function of the errors £, evaluated at zero, while the

matrix S, is given by,
Sp =t (xx o bxpx). (2.66)

Therefore the LAD estimator Zi’ is asymptotically median-unbiased under
fairly general conditions. Angelis et al. (1993) discussed some analytical and
bootstrap approximations to the distribution of the LAD estimator in finite samples.
Hypothesis testing procedures analogous to those based on the least squares
estimator are developed by Koenker and Bassett (1982), namely the LR, Wald and
LM type tests. They found that the tests based on the LAD estimator have the usual
chi-squared limiting distribution but are generally less efficient than their classic

counterparts when the errors are normally distributed.
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Provided that the LAD estimator z? is unique {e.g, pick a unique estimate
using the method suggested by Fisher (1985) and Rao (1988)), and if the etrors g; are

symmetrically distributed, it can be shown that the distribution of fi is symmetrical,
using the general results developed by Andrews (1986). His resuits are based on the
observation that if a random variable is an odd function of some symmetrically
distributed errors, it also has a symmetric distribution, Therefore for any estimator B
that maximises an objective function r(y— f(X, ), where X =(x,,x,, ..., x;) as
in model (2.62), and if r(s) is an even function of y— f(X, B}, B will possess the

property that Fi’— B, is an odd function of the error vector &, therefore has a
symmetric distribution functior, The LAD estimator satisfies these criteria if it is
uniquely defined. Therefore in the usual Gauss-Markov set up, LAD estimators are

both mean-unbiased and median-unbiased.

Apart from the linear regression model, LAD estimation has also been used in
many other estimation situations. For example, Amemiya (1982) proposed a class of
two stage LAD estimators for the estimation of the parameters of a structural
equation in the simultaneous equations model. The performance of LAD estimators
was compared with least squares estimators in the simultanecus equations model by
Glahe and Hunt (1970). Powell (1984) suggested using the LAD method in the
censored regression (‘Tobit’) model as an alternative to the MLE estimator. The
estimator was found to be robust to heteroscedastic errors. A ‘trimmed’ LAD
estimator for the Tobit model was proposed by Honore (1992). LAD estimation was
also used in nonlinear dynamic models with neither independent nor identically
distributed efrors by Weiss (1991). Recently, Bai (1995) applied the LAD approach

to the estimation of a shift in linear regressions.
An important example of linking LAD estimation to MU estimation is

provided by Campbell and Honore (1993). They considered a panel data censored
regression model (so-called a dynamic Tobit model) with individual specific fixed

effects, which can be written as

v, =max{0,a, +x,f+&,}, k=1, 2and 1= L. T. (2.59)
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Honore (1992) proposed a split sample LAD estimator by minimising

T
O, (B) =, 4> Yizo (X — 5,,)D), (2.60)
1=l
where
(0 if §<~-y,, =0
3()’1)*()’;+5)§_()’|) if6<~y,, » >0
q(¥:¥,0)=q g(y,—-¥-9) if —y, <8<y (2.61)
g=y,)-(0-»)g () if62y,y,>0
| 0 ifézy,y =0

and g(e) is an even (symmetric) convex loss function with right derivative g*, left
derivative g~ and g(0)=0. Particularly, if we let g(d)=]d|, the above estimator

becomes the so-called ‘trimmed’ LAD estimator. Campbell and Honore (1993}
showed that if only one parameter is estimated, the proposed estimator is median-
unbiased. This result can be obtained even though the estimator is not symmetrically
distributed.

Although the asymptotic properties of LAD estimators have been established
for most of the above reviewed applications, little is known about their finite sample
properties. In particular, not much effort has been made to examine the unbiasedness
of these LAD estimators, as in most cases, the attention is usually given to their
robustness to cutliers and data contamination, and their relative efficiencies to least

squares counterparts.

2.6 Bias-reduction Technigues in Econometrics

Bias is frequently encountered by econometricians in many estimation situations. As
median-unbiasedness is one of several definitions of unbiasedness, the pursuing of
MU estimation belongs to the broad area of unbiased estimation, in which bias-

reduction plays a central role. In this section, we review some of these techniques.
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The econometric literature on bias-correction is vast. Therefore it is impossible for us
to provide an exhaustive review. Our main interest is to outline the generally
applicable approaches towards bias correction mainly in small samples, as these
methods may lend us some guidelines and techniques that can be used in our search
for MU estimators. Most of these studies ar¢c concerned with bias-correction towards
mean-unbiasedness (as far as we know, MacKinnon and Smith (1998) is the only
study that directly refers to median-bias correction). However, we would expect that

the same principles should apply to bias-correction in the context of median-

unbiasedness.

2.6.1 Analytical and Bootstrap Bias-correction

We start our discussions with maximum likelihood estimators (MLEs). It is well
known that MLEs are often biased in finite samples. This bias may come from two

sources,

1). The non-linearity or curvature of the score function. Box (1971) attempts
to quantitatively assess these biases. A measure closely related to Beale’s (1960)
measures of nonlinearity was developed to link the curvature of the estimation
problem and the bias to the MLE estimator. Efron (1975) further elaborated on the
concept of curvature of a statistical problem. Cook, Tsai and Wei (1986) also
explored the relationship between bias and curvature in the context of nonlinear

regression.

2). The effect of the nuisance parameters. MLE procedures usually involve
eliminating nuisance parameters by replacing them with estimates. Although,
asymptotically, it does not alter the properties of the estimator, it may brirg bias into

the score and lead to small sample bias in the estimator.

Many studies are committed to reducing bias in a MLE. These efforts can be
classified into two categories: bias-correction and bias-prevention. The first approach
involves removing the bias after the initial estimate is calculated, while the latter

attempts to prevent the bias beforehand. In the first category, Cox and Hinkley
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(1974) pointed out the two frequently used bias-correction methods: 1. analytical
correctios, i.e., subtracting the (estimated or approximated) bias function from the

original estimator, and 2. correction via resampling schemes such as the jackknife or
bootstrap.

For the analytical approach towards bias-correction, knowledge about the

bias function is essential. The bias function of an estimator & is defined as
B(6)=E(8)-6, | | 2.67)

and following Ferrari and Criberi-Neto (1998), under mila regularity conditions, the

bias function can be written as,

B(O)=

B{6) B
1;‘ 2+ 2(23)+“’ (2.68)

T

where B,(8), B,(8), in a maximum likelihood estimation set up, are functions of
cumulants of log-likelihood derivatives with respect to @ for a single observation,

For example, Cox and Hinkley (1974) gave a general formula for B,(8),

ki (6) + kyo(6)

B(&)= ——=
@ 23i(0)

. _ (2.69)

where

k(@Y= E[UGNU' (@) +i(6)}],
ko (9) = EHU(O)Y'),
U(8)=dlog f (x|9) /28,
i(8y=-E[U'(6)).

Mardia, Southworth and Taylor (1999) gave a simplified expression,

]' L "
26y REWOU (@)} +EU O (2.70)

BI (&)=
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Formulas for bias of higher orders were also developed via asymptotic
expansions in many specific models: e.g., just to name a few, in the dynamic linear
regression (Kiviet and Philipps, 1993, 1994, 1996), in generalised linear models
(Cordcirq and McCullagh, 1991), in ARMA models (Cordeiro and Klein, 1994) and

in the one-parameter exponential family (Ferrari et al., 1998).

All these efforts lead to a natural way of correcting the bias in the MLE,
namely, subtracting the approximated bias from the original estimator. Ferrari et al.
(1996, 1998) showed that in order to get an estimator bias-free to order T™', we can

use the corrected estimator given by
8, =6~ B(6)/T, o @.71)

where B,(6) can be replaced by the dominant term in (2.69) or (2.70). If the bias is to

be removed to order n2, the following correction is needed,

~ » B(O B®
G, =6~ IT - sz

) (2.72)

where
B.(6) = B,(6)- B(6)B, (6)-1V,(8)B," (6). (2.73)

in which V,(8) is the first term of the expansions of the variance of the MLE (similar
to the expansion in (2.68}), while B, (Y is the second term in (2.68), of which BI'(G')

and B,”(G) are its first and second derivative, respectively. These terms are usually
functions of cumulants of log-likelihood derivatives with respect to @ for a single

observation.

Ferrari et al. (1998) commented that the analytical bias-correction based on

studying the form of the bias function entails a great deal of algebra but has the nice
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feature that the final expressions are usually simple enough that they can be easily
used by practitioners. Therefore it dominated the bias-correction literature for

decades until the bootstrap methods became prominent.

The bootstrap was originally proposed by Efron (1979), and research in the
theoretical development and empirical applications of the method has flourished
since then. A number of review articles and books have appeared in the past decade,
see, e.g. Efron and Tibshirani (1993), Hall (1992, 1994), Gonzalez et al. (1994), Shao
and Tu (1995) and Davidson and Hinkley (1996). Bias-correction is also an
important theme in the bootstrap literature. Much effort has been focused on
correcting bias in the bootstrap confidence intervals, see, e.g. Efron (1987} and Efron
and Tibshirani (1986). Bias correction for point estimators was addressed quite
extensively in Hall (1992). It was recently discussed more systematically by
MacKinnon and Smith (1998) and was compared with the analytical approach by
Ferrari et al. (1998). The essence of the bootstrap bias-correction involves, instead
of explicitly working out the bias function, using resampling schemes to achieve the

same correction implicitly.

Following the notation in Hall (1992), the parameter of interest is written as

the functional 8= 6(F,), where F, stands for the true population distribution. The
MLE of @ is then denoted by 8= 6(F,) as it is based on a sample Y,,...,¥, drawn
from F, with 8 as its true parameter. The MLE of 8 from a sample (called a
bootstrap sample) generated from F, with 8= g is denoted by 8' =8(F,) and
similarly the MLE of & from a sample (called a double bootstrap sample) with 6= 6"
is denoted by 6" =8(F,). The bias-corrected estimator after the first round of

bootstrapping is given by,
6,=28-E(8'|F}. (2.74)
while the bias-corrected estimator after a double bootstrap is given by,

8, =30-3E(6'|F)+ E{6"(|F). (2.75)

50

I-
o
it
e
=

Chapter 2. MU Estimation in Econometrics: Literature Review

Hall (1988, 1994) and Ferrari et al. {1998) all showed that the bootstrap corrected
estimators (2.74) and (2.75) achieved the same order (T~ and T respectively) of
accuracy as the analytically corrected estimators in (2.72) and (2.73). They argued

that the bootstrap approach avoids the need for messy algebraic derivations.

MacKinnon and Smith (1998) discussed the above method in a more practical
setting by examining the accuracy of the correction for different forms of bias
function. It is noteworthy that they concluded that reducing bias may increase the
variance, or even the mean squared error of an estimator. Whether it does so depends
on the shape of the bias function. The bias correction was extended to
multiparameter estimation problems in both Ferrari et al. (1998) and MacKinnon and
Smith (1998).

2.6.2 Bias-prevention Methods

Instead of correcting the bias after the estimator has been calculated, different
methods have been proposed to prevent the bias beforehand. In the MLE context, this
is usuaily done by adjusting the likelihood or the score function. If the original

profile log-likelihood function is i,(6), these adjustments replace it with a new

objective function,
1,0)=1,(0)+r(6), (2.76)

for a suitably chosen additive adjustment function r(@). Various researchers,
including Bartlett (1955), Barndorff-Nielsen (1983, 1994), Barndorff-Nielsen and
Cox (1984), Cox and Reid (1987, 1993), McCullagh and Tibishirani (1990),
DiCiccio and Stern (1993) and Stern (1997), have suggested specific adjustment
functions to the profile log-likelihood which have the effect of reducing the score
bias. The properties of these adjustments were discussed further by Liang (1987),
Levin and Kong (1990), Cox and Reid (1993), Ghosh and Mukerjee (1994) and Stern

(1997). We review the two prominent examples of such adjustments, the conditional
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profile likelihood of Cox and Reid (1987) and the modified profile likelihood of
Barndorff-Nielsen (1986).

Assume & is vector-valued and it can be partitioned into &’ =(y’,A"), where

the sabvectors ¥ and A are the parameters of interest and nuisance parameter
respectively. Let g= W ,:'{.’) be the overail ML estimate and let ¥, be the ML

estimate of y with A fixed and similarly :?'w' If the parameter of interest ¥ is a

scalar, the conditional profile likelihood (Cox and Reid, 1987) is defined by,
L) =1l(w,4,)~$log{detnj,, (w.4,))} Q.77

where ju(y/,;?;w) is the observed information per observation for the 4 components.
This definition requires ¥ and A to be orthogonal in the sense defined by Cox and
Reid, ie., E(— azz/ dydA,) =0 for all }{;. As observed by McCuallagh and Tibshirani
(1990), the interpretation of the correction term is that it penalises values of y for
which the information about A is relatively large. Application of this adjustment will
typically require an initial reparameterisation of the nuisance parameters or
orthogonality. But unfortunately, as criticised by Stern (1997), such a

reparametrization can only be guaranteed to exist when y is a scalar.

The modified profile likelihcod (Barndorff-Niclsen, 1986) is defined by
L, () = Iy, 1,) - log{detnj,, (v, 4,) +log(det(dA, [ddy.  (@78)

This definition does not require the orthogonality of y and A; the last term on the

right-hand side can be thought of as a correction for non-orthogonality. In this term,

”~

A, is regarded as a function of A and the ancillary statistic. Thus, application of the
modified profile likelihood requires explicit knowledge of an ancillary statistic,
which may be difficult to obtain in practice. When w is a scalar, Barndorff-Nielsen

(1994) developed an approximatioﬁ to the above adjustment which does not require

explicit knowledge of an ancillary statistic.
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Apart from the conditional and the medified profile likelihood, there are
several other modifications to the likelihood function, such as the use of marginal
likelihood and expected likelihood. For a comprehensive review of these
modifications, see Laskar and King (1997, 1998). All these efforts are aimed to
nullify the effects of unknown nuisance parameters. Most of the applications of
these modified likelihoods a1~ aimed at improving the small sample performance of
test procedures (particularly the LR and LM tests), see for example, Belihouse
(1978), Cruddas et al. (1989), Tunnicliffe-Wilson (1989) and Laskar and King
(1998). Less attention has been given to comparing the small sample performance of

the point estimators that maximise various modified likelihood functions.

A4 an important alternative to the above two madifications, McCullagh and
Tibshirani (1990) attempted to adjust the profile likelihood score function instead of
the likelihood itself. If the original score is U (), the aim of their adjus_tmcnt was to

force the following two conditions onto the adjusted score given by

U™ () = {U(y) —m(y) }w(y), (2.19)
such that

Ew.i, w'uml=0 (2.80)
and

Val'w.;t'[U'(W)]=—Ew.i'[aU‘(W)/an]- (2.81)

The solutions to the above two conditions are
- 2.82
m(y)=E, ; W) 2:82)
and
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wiy)={var,_; [DW(-E, ; [0, [3p*1+3my)ay). (283)

Therefore the nature of the adjustment is to subtract its expectation from the original
score and to impose a second derivative term to make sure the information
unbiasedness of the adjusted score is held. This adjustment helps to alleviate the bias

problems inherent in the use of the profile likelihood.

The justification of concentrating on the score rather than the likelihood is
found in the theory of optimal estimating equations. The score functions are
examples of estimating functions defined by Godambe (1960, 1997). As remarked in
McCullagh and Tibshirani (1990, p341), under fairly mild regularity conditions,
unbiasedness of the estimating equation essentially guarantees consistency, while the
condition of information unbiasedness ensures asymptotic optimality within a class
of estimating functions, see also Godambe and Thompson (1974) and Godambe
{1997). And there is a strong link between the optimality of an estimating equation

and the optimality of the corresponding estimator.

McCullaugh and Tibshirani (1990) argued that centring the score function
should improve estimation accuracy. This claim was illustrated empirically by
Mahmood (2000). He simply subtracted the expectation from the original score
without imposing the second order term penalty. It was shown that this adjusted
scoge is able to deliver estimates that are less biased than those based on the original
profile likelihood score in a dynamic linear regression model. As the score of a
profile log-likelihood is usually biased (i.e., its expectation at the true parameter
value is not zero), both McCullaugh and Tibishirani (1990) and Mahmood (2000)
advocated adjusting the score function towards unbiasedness. Mahmood (2000)
showed that an unbiased score equation can reduce the bias in an estimator from
solving a biased score equation. But the extent of the bias-prevention differs from
model to model. In the dynamic linear regression, for example, the bias correction is
not completely satisfactory, the solution of the adjusted scors equation can still be

biased in small samples.
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Another adjustment to the score function that more directly addresses bias-
reduction in the ML estimator was suggested by Firth (1993). This adjustinent is
based on a ‘proper’ score function, which satisfies the unbiasedness and information
unbiasedness conditions. This differs from the scores of the profile log-likelihood
considered in the previous studies that are usually biased. Firth's argument is that
although the score is unbiased, the resulting estimator is not necessarily unbiased.
Therefore in order to remove the o(n™) bias from the estimator, an appropriate bias
term is subtracted from the score function. If the original score is U(8) for a scalar

parameter 8, the adjusted score is given by
U™ (0)=U(8)~i(6)b(6), (2.84)

where i(8) = -U‘(0) is the local gradient cf the score and b(8) is the bias function of
the MLE estimator &, which is usually approximated by its »™' term. Firth (1993)
applied this method in several generalised linear model estimation problems.
However, this method is subject to the same criticism that it requires the knowledge
about the bias function b(8), which in many cases are not readily available. Another

criticism is that this method is not easy to be extended to a multi-parameter case.

Finally, we notice that Lele (1991) considered resampling' the estimating
equations instead of the estimates by jackknife to improve the quality of the

estimator. Let
T
G(X.0)=),8(X.0)=0 (2.85)
r=I

be the original estimating equation and 9,, be the estimate from it. Lele’s method
consists of deleting one estimating equation at a time the thus obtaining the pseudo-

values. To see this, let

Gi(X,0)=).8(X.6)=0 (2.86)

A
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and @r'_ ; be the estimate therefrom. The jackknife estimate of & is then given by
8 =0, ——;—Z 6;..; 07 (2.87)

Under certain regularity conditions, Lele (1991) showed that this estimator is
weakly consistent and asymptotically normal. This method is attractive when the
data are correlated observations. In these situations, the usual jackknife has to
remove data segments from a serially correlated sequence of data causing
difficulties. Jacknifing estimating equations, however can avoid this problem as the
information in x, is used conditionally but not unconditionally. But the small sampie
properties (including unbiasedness) of this estimator remain unclear as no empirical

studies have been conducted to examine its small sample performance.

2.7 Concluding Remarks

This chapter reviews the literature related to MU estimation and bias-reduction
methods. The attractive features of MU estimators compared with those of mean-
unbiased estimators were highlighted. The applications of MU estimators in different
econometric models were surveyed. In a broad context, some important bias-
correction and bias-prevention techniques were also discussed. The review exposed
some research questions and voids, treatment of which will form the main theme of
this thesis. In what follows, we provide our observations on a few key aspects which

may require further attention.

1. There seems to be a lack of a systematic approach towards constructing MU
estimators. The examples of these estimators in the literature usuvally failed to
provide generally applicable guidelines on how to find MU estimators for a given
model. The clue to solving this may lie in two aspects. First, can we borrow the
existing bias-reduction techniques that are designed to achieve mean-
unbiasedness, and modify them to construct MU estimators? Second, much effort

has been put into constructing confidence intervals by inverting the critical value
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functions of a test statistic. Can we apply the same method to constructing a MU
estimator? What are the problems that may arise when point estimation is the

purpose of inverting a test?

2. Most of the applications of MU estimation are concerned with estimating the first

order autoregressive model, Can we extend the model to include exogenous
regressors? As in practice, most models will contain explanatory variables and
this usually causes the properties of the inference procedures to depend on the
structure of the design matrix. It would be useful if MU estimation could be
applied to these more general models, such as the linear regression with
autoregressive disturbances, and the dynamic linear regression model, which are

two of the most frequently used time series models in econometrics.

3. So far the applications of MU estimation are mainly for a scalar parameter. Can

we construct MU estimators when nuisance parameters are present? It would be
useful to apply the existing techniques to account for nuisance parameters, such
as marginal likelihood methods and invariant tests, to the MU estimation of the

parameters of interest.

4. Not many researchers have applied MU estimators in other inference procedures

such as hypothesis testing and forecasting. Most studies stopped at examining the
properties of these estimators. Are these estimators able to jmprove the small
sample performance of hypothesis testing and forecasting? More importantly can
they correct the deficiencies plaguing some of these procedures that are possibly

caused by small sample bias in the estimators?
These are some of the open research questions that emerge from our literature

review. The remaining chapters of this thesis consider each of these themes

according to the Jayout detailed in Chapter 1.
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Chapter 3

Some General Methods for Constructing Median-unbiased
Estimators: Theory '

3.1 Introduction

Median-unbiasedness is an important alternative to mean-unbiasedness when
assessing the impartiality of an estirnator. More importantly, it can enjoy some
indispensable advantages in some situations when mean-unbiasedness is not
achievable or robustness is highly desirable. However, as seen from Chapter 2,
median-unbiased (MU) estimators have not been widely used in econometrics apart
from a few well-known examples. Part of the reason for this is that they are not as
easily found as mean-unbiased estimators. There seems to be a lack of systematic
methods for constructing MU estimators in the literature. Unlike mean-unbiasedness,
with separate books devoted to how to construct mean-unbiased estimators in
different mudels (e.g., Yoinov and Nikulin, 1993a, 1993b), there are only a few
applications of MU estimators scattered in the literature, while there is not much

guidance of any generally applicable approach towards MU estimation.

In this chapter, we attempt to establish a theoretical framework for
constructing a MU estimator. Two general methods are developed and formalised,
which are applicable in different parametric models. Although a few applications of
the second method can be found, the theoretical discussion and formalisation
(especially the application of estimating equations and the optimal invariant tests) is
our contribution to the literature. In particular, we attempt to address some of the
problems existing with the current examples in the literature, which may explain why

MU estimators have not been used more widely.

) Some of the material contained in this chapter was published in a conference proceedings, see Chen
and King (1998). It was also presented at the Annuai Meeting of the Economeiric Society, Sydney,

Jupe 1998,
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Many results in this chapter can be traced back to a lemma developed by
Lehmann (1959) and Pfanzagl’s work (1970, 1971, 1979), which explored the link
between the existence of an optimal MU estimator in the exponential family and the
distribution function of the sufﬁcicnf statistics. However, the use of sufficient
statistics is not the recommended approach in this thesis, as the original form of this
approach is usually quite hard to implement. Instead, our main interest in this chapter

is to develop and formalise two of its more practical derivatives:
1. Adjusting estimating equations to correct median bias, or

2. Inverting the median function of a test statistic at the 50% significance
level for a MU estimator.

The first method parallels the bias-reduction and bias-prevention techniques
for mean-unbiased estimation. But it does not require the knowledge of the derivative
of the estimating function (such as the second derivatives of the likelihood function)
nor does it require the exact or approxfmatc form of the bias function. The latter is
usually needed in most analytical mean-bias correction methods. We also discuss the
link between the proposed method and an analytical and a bootstrap bias-reduction
technique. An iterative algorithm to solve the adjusted estimating equations is
developed when the exact solution is not available. The method is also extended to
the multi-parameter case, in which we need to adjust the equations recursively while
replacing the unknown parameters in the equations by their estimates from the

previous replication.

The second method is a special case of the familiar duality of a confidence
interval and a significance test. But it is not as trivial as expected when test inversion
is applied to point estimation. A new problem that is not associated with interval
estimation arises in point estimation, namely, non-unique estimates due to a non-
monotonic median function of the test. This prbb]em is not properly addressed in
most of the existing applications of MU estimation. We define some conditions for
this method to work and also discuss the importance of selecting a ‘good” test to
invert in order to get a good point estimate. In particular, the use of two classes of

optimal invariant tests is considered. If inverting the median function of a single test
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statistic is not applicable, we propose a “gird inversion’ method as the remedy, which

is more likely to produce reliable estimates.

The chapter is organised as follows: Section 3.2 sets out the fundamental
resuits of Lehmann and Pfanzagl, and some rear why this original method is
rarely used directly in practice. Section 3.3 shows that a MU estimating equation is
more likely to produce a MU estimator compared with mean-unbiased counterparts.

A generally applicable adjustment to the original estimating equation is defined. The

link between this adjustinent and the existing bias-reduction methods is disclosed.

Section 3.4 discusses the general approach of inverting the median function of a test
statistic to compute MU estimators. In particular, it addresses the issue of which test
we should invert and how to invert. It is shown that grid inversion rather than fixed-
point inversion is more likely to produce accurate estimates. The chapter ends with

some concluding remarks in Section 3.5.

3.2 MU Estimators Based on Sufficient Statistics

The importance of sufficient statistics in test construction is well known. If 2
UMP test exists, it is usually a function of the sufficient statistics. As a special case,
MU estimators can also be constructed based on the conditional distribution function
of sufficient statistics in the family of distributions with monotone likelihood ratios.

We first review the results due to Lehmann (1959, Corollary 3, p80 and p83):

Lemma 3.2.1 Let the family of densities py(x), §€£} have monotone likelihood
ratio in 7(x) and suppose that the cumulative distribution function F,(t) of the

sufficient statistic T = T(x) is a continuous function of t for each fixed &, then

(1) if x denotes the observed values of X and 7= T(x), and if the equation
F,(zy=} has a solution &= 8 in Q, this solution must be unique and it is a

MU estimaior of @;
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(ii)  among all MU estimates, B is optimal in the sense that it minimises EL(5, 9)

for any nondecreasing loss function L.

Based on Lehmann’s results, Pfanzagal (1970, 1971 and 1979) further
specified the conditions of the existence of such an optimal MU estimator in the

exponential family and also defined its asymptotic properties. His results are
summarised in Lemma 3.2.2:

Lemma 3.2.2 For exponential families with density function of the form
£ (x)=CE.Mh(x)expla(OT () + Y 3,6, NS0,

with (8,7)c®xH, @cR, a(*) increasing and continuous, there exists a MU

estimator 9, and

(i) it is of minimal risk for any monotone loss function in the class of all MU

estimators;

(i)  under regularity conditions (Pfanzagal, 1979), 8 is asymptotically normaily
distributed.

These two lemmas not only define the existence of a MU estimator when the
distribution function of the sufficient statistics satisfies certain conditions, but also
provide some quite strong optimality results. Andrews and Phillips (1987) applied
this optimality property to prove that the generalised least squares estimators are
optimal MU estimators of the linear regression coefficients for all bounded loss

functions.

The proof of these lemmas provided by Lehmann (1959) and Pfangzal (1979)
also implicitly pointec out a natural way of constructing MU estimators based on the
distribution function of the sufficient statistics. This was illustrated more clearly in
Birnbaum (1961, 1964) and Read (1985). We state it here as a corollary to the above

lenimas:
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Corollary 3.2.1 If a sufficient statistic T(X) (scalar) exists such that the values of 2

vary monotonically with T(X ), then for any observed value of T=¢, 6 that satisfies
Pr{T<0=6)}>1/2 and Pr{T 21|90 =8} < 1/2
is a MU estimator of 8.

Although seemingly straightforward, this method is rarely used in its original
form in practice. The only examples we could find in the literature are: estimating the
binomial and Poisson distributions (Birnbaum, 1964) and estimating the logit
regression model (Hirji et al., 1989). There are a few reasons why this method has

not been popular in practice:

1. For a complicated model, in which nuisance parameters exist, the classic
sufficient statistic for a single parameter may be difficult to define. We may need
to rely on other definitions of sufficiency, such as L-sufficiency or G-sufficiency
(see Ara, 1995 for a review). Just as UMP tests are rarely available, a sufficient
statistic that is monotonic is hard to find except for a few simple models.
Therefore, this direct approach is rarely available, and we have to look for less

optimal statistics to construct MU estimators.

2. Even if the sufficient statistic is well defined as in the example of Hirji et al.
(1989), its conditional distribution function is usually non-standard, not
computable or even hard to simulate. We not only need its conditional
distribution, but also its conditional median function. So when searching for the
estimates that satisfy the two inequalities in Corollary 3.2.1, the computational

burden is heavy.

3. The requirement of co-monotonicity, of & and sufficient statistics T(X) is usually
not easy to satisfy and hard to verify. Because of this, it is difficult to control the
practical problem of muitiple solutions or empty solution when this monotonicity

condition is violated.
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In line with the idea of exploring information contained in the sufficient
statistics, we develop two methods that are more practical to use and deliver more
reliable estimates. Instead of inverting the conditional median function of a sufficient
statistic itself, we study those of estimating functions and significance tests.
Intuitively, good significance tests and estimating functions should zxplore the
information contained in the sufficient statistics. Ideally, they should be functions of
the minimal sufficient statistics where available. Their distribution properties are
usually easier to analyse than the sufficient statistics themselves. This could greatly

simplify the proposed estimation procedures.

3.3 Adjusting Estimating Equations for MU Estimators
3.3.1 Estimating Equations

Most procedures for point estimation of an unknown real scalar parameter d

can be viewed as solving an equation of the form
0(6,y)=0, (3.1)

O being a real function (which is sometimes called an estimating function) with
arguments & and the observed value of the corresponding random variable y. The

equation (3.1) is then called an estimating equation.

The formal definition of an estimating equation is due to Godambe (1960).
Commonly used estimating equations include the normal equations in least squares
(LS) estimation, the score equations in maximum likelihood (ML) estimation, and
the conditional moment conditions in generalised method of moments (GMM)
estimation. The concept is also used heavily in the indirect inference literature, such
as simulated methods of moments and empirical likelihood methods. The properties
of estimating equations and their impact on the quality of the resulting estimators
have been studied by Godambe (1976, 1980, 1984, 1985), Godambe and Thompson
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(1974, 1984), Ferreira (1982) and Crowder (1987) among others. Liang (1987) and
Godambe (1997) provided surveys on the estimating equation methodology.
Interestingly, Vinod (1997) pointed out that the ‘main lesson’ from the estimating

equation theory is to deernphasize the estimates (roots) and focus on the underlying
equations.

An estimating equation is said to be unbiased (mean-unbiased) if it satisfies
the condition:

E, (Q(@;y)N=0, (3.2)

where 8, is the true value of the parameter. Here E, indicates that the expectation is

taken with 8, treated as the true parameter underlying the data generating process.
Most commonly used estimating equations (such as the score functions and the
conditional moment conditions) are usually unbiased. But the unbiasedness of the
estimating equations does not generally lead to the solution to the equation being
necessarily an unbiased estimator. Therefore although asymptotically unbiased under
fairly general conditions (see Godambe and Thompson (1974)), the LS, ML or GMM

estimators are not uncommonly biased in smali samples.

As a very special case, Durbin (1960) and Lieberman (1998) both considered

estimating equations linear in 8, i.c.,
26,9 =161, (3.3)

where 7) and 7, are two random functions of the data. Lieberman (1998) showed that
if this estimating equation is unbiased, we need an extra condition which states that

T,/T; and T, are uncorrelated, in order to get a mean-unbiased estimator by solving

(3.3).

A good counter example is the first order autoregressive model given by

Y, = Py + & €,~ IN(0,6°). Now the normal equation for the LS estimation of p is

given by,
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T T
Y — _ 2
Q(p:y)= g;. Y ¥ P; Ve (3.4)

which is linear in p and also unbiased, i.e.

T T
E, >3y -pYy]=0. G.5

1=2 =2

But becanse 2 Y. Y / z yZ, and ny_, are obviously correlated, so as it is well
known, the resulting estimator p is not mean-unbiased in small samples. From this

example, it can be seen that except for a few very simple cases, even linear mean-

unbiased estimating equations do not directly produce mean-unbiased estimators.

More importantly, J(®;y) in most cases are nonlinear functions of @ and this

almost certainly leads to bias in the estimator 8, at least in small samples. This is
partly due to the simple fact that the expectation of a nonlinear function is not equal
to the function of the expectation. As Firth (1993) observed, géncrally speaking, a
convex estimating function, combined with its mean-unbiasedness, will cause a
downward mean-bias in the estimator, while a concavc function leads to an uwpward

bias,

Our purpose is to avoid this bias problem associated with the expectation
operator and non-linear estimating equations by considering the median. This is
based on the fact that the median of a monotone function is the function of the

median. Intuitively, if we work with the median, a properly constructed estimating

equation is more likely to deliver a MU estimator,

3.3.2 Adjusting Estimating Equations Towards Median-unbiasedness “

If an estimating equation satisfies median-unbiasedness, the consequent

estimator (the solution to the equation} will be median-unbiased under conditions
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more general than those for mean-unbiasedness. These conditions are stated in the

following theorem.

Theorem 3.3.1 If an estimating equation O(8) =0 satisfies:

1. med[Q(0)|8,1= 0, where 6, is the true parameter value; and

2. Q(6) is a continuous function monotonic in &,
then the solution to the estimating equation, 8, is a MU estimator, i.e., med (3') =8,.

Proof. As @ is the solution of the estimating equation, we have

o =0. (3.6)
From the median-unbiasedness condition in 1,

Pr{Q(6) = 010,) = 1/2. (3.7
Therefore if we combine (3.6) and (3.7), we have

Pr(0(6) 2 Q(B)jfo} = /2. 3.8)

And from the monotonicity of Q(»). l5r[3.>_90] =1/2 must hold. Same arguments

can be used to show Pr[@ < ,)=1/2. Therefore, 8 is MU.

Corollary 3.3.1 If a linear estimating equation Q@) =T1,-6T, =0 is median-

unbiased, the resulting estimator must be median-unbiased.

Compared with mean-unbiasedness, among the MU estimating equations, we
have included all the linear estimating equations and all the monotonic nonlinear
estimating functions, which form a possibly broader class of estimating equations for

us to compute MU estimators. In particular, for a linear MU estimating equation, no
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other constraints (such as the independence between 7, /T, and 7, in mean-unbiased

case) is required for it to produce a MU estimator. Therefore this corollary can be

seen as an extension of the result by Lieberman (1993).

The monotonicity requirement is more general than the linearity coundition in
the mean-unbiasedness case, but it is still sometimes too restrictive. From the
empirical results, we know that global monotonicity is probably not required. The
condition can be further relaxed to a wider class of functions, which is given in the

following lemma:

Lemma 3.3.1 Given a random variable X with its median at m,, and a continuous

function f: = — © defined on R', which satisfies:
1.VxeZ, if f(x)# f(m,),then x#m,, and

2. Vx, <my and x, >my, sga(f(x) - f(my))esgn(f (x,) - f(my)) =1,

ther we hive

med (f (X)) = [ (my). (3.9)

The major difficulty that the proposed method usually faces lies in the fact
that in most cases, unlike mean-unbiasedness, the estimating functions are not MU,
therefore we need to adjust them towards median-unbiasedness in order to soive for a
MU estimator. Now we introduce the proposed adjusted estimating equations. In
order to compare with mean-unbiased estimating equations, we consider the score
function as our examplie in the following discussions. Without loss of generality, the

same arguments can be applied to other forms of estimating equations.

We assurne the score function used to estimate parameter & is U(6). In order

to force it to be MU, we use the following adjustment:
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UM (6)=U(y;6)—med{U(y;0)y ~ f (8)]=0, (3.10)

where f(e) is the assumed distribution function that y follows while the median js
computed as if & were the true parameter. It is guite clear that this new scers,

UM (6) , is a direct analogue of the adjusted profile likelihood score in McCullagh

and Tibshirani (1990) with expectation replaced by median and without the second-
order term penalty. The functional form of the density () is usually required if the

median function is to be computed via numerical integration.

Asymptotically, the solution to this adjusted estimating equation is equivalent
to the solution to the original estimating equation. This can be seen from the
asymptotic normality of U(8), which is satisfied by most estimating equations in
practice. If the initial estimator is the ML estimator, for example, under the usual
regularity conditions, the score is asymptotically normal. Therefore asymptotically,
the median of the score vanishes and the proposed adjusted score is equivalent to the
original score. The variance of the left-hund side of the adjusted equation should
converge to the corresponding information matrix component as the median term
tends to zero. Hence the adjusted equation (3.10) should produce an estimator with
the same asymptotic properties held by the solution to the ‘original estimating
equation U(8) =0. ‘

The adjasted estimating .equation will be MU by construction. Based on
Theorem 3.1.1, if the left-hand side of the equation is monotonic in &, or satisfies
conditions 1 and 2 in Lemma 3.1.3, the solution of equation (3.10) should be a MU
estimator of @. However, in practice, the adiusted equation, just like the original
estimating equation, can rarely be solved analytically. Therefore the output of the
proposed method is usually an approximately MU estimator. In the next section, we

are concerned with how to find a solution to the adjusted estimating equation.
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3.3.3 An Iterative Algorithm to Solve MU Estimating Equations

In practice, it is usually bard to analytically solve the adjusted estimation
equations as the median function of the original score rarely has an explicit form.

First we construct a sequence {@m] by the iterative definition:
U(3.8,y) = med{U (9.0,,)0us) (3.11)

where ém) can be an arbitrarilv picked initial value. Therefore, for a given @’(,, ) 9(”,)
is obtained by solving (3.11). The conditional median med{#}0,,.,,} in (3.11) denotes
the median of the random function U(y.,,), in which y is generated by its

distribution function with @(M) as the true parameter. We introduce a function to

represent the RHS of (3.11):

2(8,6)=m{U(y.0)}. (3.12)
Now (3.11) becomes

U(3,8,))= 80qu00r)- (3.13)

We rely on the following recursive algorithm to update [9(,)} and solve equation

(3.10):

Step 1 Pick a starting value 9(0,;

Step 2 Simulate {or in some cases, compuie) the conditional median
of the score, i.e., g(f,.8) in (3.13), which is equivalent to
computing med[U(y; 6)| y~Ff (@(0))] for a grid of & values;

Step 3 Solve (3.13) for 8, ie., U(y:&h= g(@w),ﬁ) via :ilgorithms

such as the Secant method, and denote the solution by 9(,,;
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Step 4 Use @m in the place of éw) and go back to step 2; Continue

the procedure until converging (i.e., the difference between the

two consecutive estimates is smaller than a pre-determined

margin);

Qur procedure is the replication of a two step process, which is similar to the
well-known EM algorithm developed by Dempster et al. (1977). The difference is
that we replace its expectation step by the conditional median computation in Step 2.
Mak (1993) provided an efficient iterative procedure to solve non-linear mean-
unbiased estimating equations of a similar nature. The proposed algorithm in this
chapter is analogous to Mak’s approach. However, unlike Mak’s algorithm, an
analytic proof for the convergence of the proposed algorithm is not available due to
the difficulty in defining the conditions for taking derivatives inside the median
operator. We will illustrate this algorithm in two practical examples in Chapter 4, and
in both examples the algorithm is shown to converge at least as fast as the usual non-

linear optimisation routines used in most ML estimation procedures.

3.3.4 Link te Other Bias-reduction Methods

In this section, we demonstrate that the proposed adjusted estimating equation
is closely linked to two existing mean bias-reduction methods: the bootstrap bias-
correction suggested by MacKinnon and Smith (1998) and the ML bias-reduction
method of Firth {1993).

MacKinnon and Smith (1998) treated the initial estimator as a sum of the true
parameter value, a bias function and a random deviation from the mean. By using a
bootstrap procedure, the bias term to the order of n”' can be removed. Here we use

their ideas in the context of median-bias correction. Similar to their definition of the

mean-bias function, we define the median-bias function 5(6,,T) of an estimator 8 as

b(8,,T) = med {B) - 6, (3.15)
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where 8, is the true value of the parameter, T is the sample size and med {s} is the

usual median function. We then can express the initial estimator 6 in the following

way:
8= 0,+b(8,,T)+d(8,,T), (3.16)

where d(8,,n) is the random deviation of @ from its median, MacKinnon and Smith

(1998) showed that if we want to corect the bias of 8, we simply solve the equation
G+5(8,T)=0 (3.17)

for 8. Although explicitly, the analytical form of the bias function is required in this
method, bootstrap can be used to approximate the left-hand side of (3.17) as a single
function to avoid the derivation of the bias function, see MacKinnon and Smith
(1998) for details,

As reviewed in Chapter 2, Firth (1993) proposed another intuitively very

attractive way of reducing the mean-bias of a ML estimator. If the original score

U (8) leads to the MLE 3’, we can use the adjusted score:
U (8)=U(6)-i(6)b(H), (3.18)

and equate it to zero to get a bias-corrected estimator. i(8) and b(0) are the Fisher
information and the mean bias function of 8, respectively. In practice, the exact form
of the bias function b(8) is usually unknown, so either the term to a certain order
(usually the 7' term) in the expansion of b(8)is used instead, or the empirical bias

function b(8) is estimated by bootstrap.

The proposed approach in this section is in line with the idea of preventing
bias by adjusting the estimating equations. But we try to achieve median-
unbiasedness instead of mean-unbiasedness. We now show that the proposed

adjustment defined by (3.10) can be seen as equivalent to an analogy of Firth’s
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method and will also lead to the bias-corrected estimator from solving equation
317

First we prove that by simply replacing the bias function in Firth’s method
with the median-bias function defined by (3.15), and by using the estimated
information component in (3.18), the (approximate) median-bias correction can be
achieved, i.e., the bias-corrected estimator which solves equation (3.17) should also

solve the adjusted estimating equation (3.18) at least approximately.

The initial estimator & satisfies the original estimating equation, so we have
U(6) =0. We denote the bias-corrected estimator based on MacKinnon and Smith’s

method by 6 - From (3.17), é uy Should satisfy
By = O-b(B,)- (3.19)

On the other hand, we assume the bias-corrected estimator 8, is also the solution of

a different (unknown) estimating equation:
U (8y) =0. : (3.20)
We combine (3.19) and (3.20) and use a Taylor’s expansion:

U(éw ) = U(a"b(éuu ))

n olJ -
= 0(9) "%‘“b(ew)
e

=U @)+ ()b )
= {(®b(0,)

where 1(8) is the observed information (i.e., the corresponding diagonal component

in the Hessian matrix of the likelihood function). Therefore we have

U(8,,)—1(B)b(8 ) =0. 321
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Hence if we use

U™(6)=U(6)-1(&)b(6) (322)
as the adjusted estimation equation, it should lead to the approximately MU estimator
8 uu - Therefore the corrections given by (3.17) znd (3.18) are equivalent only subject
to the difference caused by the estimated information component evaluated at
different points. The unbiasedness of both methods is only approximate because the
bias function is usually approximated to a certain order. Firth (1993) showed that the
expected information i(0) is preferred to the observed information I(8) to be used in
the adjusted score. In our proof, the derivative of the estimating equation at the

original estimate is used to estimate the information matrix component.

Next we show that the proposed MU adjustment to the estimating equations
given by (3.10) is an analogy of Firth’s adjustment, i.e., the two adjusted estimating
equations (3.10) and (3.18) are equivalent to each other {0 the order of n™, provided

U(y;9) satisfies the conditions defined in Lemma 3.3.1. To see this, we apply a

Taylor’s expansion to the adjusted estimating function (3.10),

U @,,)=U@ ) ~med{U (96,100}
=U(B,,) +[U(3:0)~U(y:med(8 )
- U(éw)ﬁu%—v‘ (med (@ yy) —0)

AP

=U(B,y) ~ (OB yy)-
Notice that U (y;@) =0 and U(e) is assumed to satisfy the conditions for it to be
invariant to the median operator. The proposed adjustment to the estimating equation

is equivalent to Firth’s correction apart from the difference in estimating the

information component.

From the above analysis, we prove from a different point of view that by

solving the proposed MU estimating equation (3.10) for 6 wy» With some constraints

73

Chapter 3. Some General Meth or Constructing MU Estimators: Theo

on U(8), we achieve the same median bias correction as the existing methods. The
advantage of the proposed method compared with Firth’s method is that knowledge
about the second derivative of the likelihood is not required. Compared with
MacKinnon and Smith (1998), we do not need to derive or approximate the bias
function. The possible disadvantage of the proposed approach is clearly the
mono_tonic requirement of the estimating function. Nevertheless, in Chapter 4, we
will show that this method works well for the marginal likelihood score in the linear
regression with first order autoregressive disturbances and the first order dynamic
linear regression model. But let us first illustrate this method with several simple

theoretical examples.
3.3.5 Some Examples

3.3.5.1 The GLS Estimator in the Gaussian Linear Regression

Consider the classic linear regression model, y= Xf+u, where y is the
dependent variable, X is the matrix of regressors and « is a vector of random errors.
Assume E(u)=0 and Var(u) =o*3 for some positive definite Z. The normal
equation for the GLS estimator (without the normality error assumption, this is not

necessarily the score function) is given by:
—~(XE'X)f+ XL 'y=0. | (3.23)
If we denote the lefi-hand side of this equation by U(f), then it is apparent that
U =XZT"u
is an odd function of the symmetrically distributed errors. By Andrews (1986), U(f)

must have a symmetric distribution around 0 provided that x follows a symmetric

distribution. Hence med [U (A)=0. In other words, U (fy=0 is a MU estimating

equation and it is also menotonic in B. Therefore the usual GLS estimator
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Bos =(XZ X)X Ty (.24
is the solution to both the original and the adjusted estimation equation (3.10). Based

on Theorem 3.2.1, B is MU. As a matter of fact, Phillips and Andrews (1987)

proved that ;éau is the best linear MU estimator for 2 large family of emror

distributions and loss functions.

3.3.5.2 Error Variance in the Simple Linear Regression

We consider the simple linear regression model y=Xf-+u with u
~N(0,0°I), and the parameter of interest is the error variance o’. The log-

likelihood, concentrated score and ML estimator are:

l= —Zin o’ -~ (= XPY(y = XB) +const.,
2 20°
oy T G-XB'G-XB
U(og*)= Y P , (3.25)

and

B=(X%X)" X%,

5 s =27 Xﬁ);y ~Xp) . (3.26)

First we use the analog of Firth’s adjustment given by (3.21). It is easy to show that

¥l
b(0?) = med(6* mz )~ ° =med (1., )-‘;_—— o?, (3.27)

where med(y’,) is the median of a chi-squared distribution with T—k degrees of

freedom. Therefore, the adjusted score (3.21) is given by:

15
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U™ (c*)=U(c*)-I(chb(c?)

=U(07)~1(6%Ymed (5,0 ) - 07). (3.28)

Here we use the expected Fisher information in place of 7(c*),

T
IE =
(67) 2ot (3.29)

So equation (3.28) can be written as,

2
U*(o-z)__,_U(o.Z)__zf;‘ (med(ﬂz‘f’—l)oj _0.2)

T (y-XB'(-XB_med(x; )0" T
-t rl 2 t=-
20 20 20 20

Solve U~ (6) =0 for ¢* and we get the MU estimator

2 _O-XBY=Xp) 330
O'ZMU = med(;(%._k) » ( - )

which was discussed in Cox and Hinkley (1974) and also in Phillips and Andrews

(1987).

Now we use the proposed adjusted score function (3.10). Because

_ T  med(yr,)
med(U(¥;0™ ) =~ = 20_; ks, (3.31)

we have
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UM (02)=U(5;0%)—-med(U(5;07)
=[ ! —l—(y—-XB)'(y—XB)]_[Md(I;‘—&)— T ]
20" 2¢* 207 252

_=XB'y—-XB) _med(x}.,)
20* 250

Therefore, if we solve the adjusted score equation U ¥V (:7%) =0, the same & uu in
(3.30) is derived. This example illustrates the equivalence between the proposed
adjustment in (3.10) and the analogy to Firth’s adjustment in (3.21).

3.3.5.3 First-order Autoregression

We consider a simple first-order autoregressive model without an intercept, which
was studied by many other researchers. We will attempt to show that the MU
estimator proposed by Andrews (1993) can be derived by solving the proposed
adjusted score equation (3.10). The medel of interest is:

Y =PV T
u, ~ IN@©0,0%),

u, for |g|<1, and y,=0, if p=1. The OLS estimator, which

1
where y, =
0 ! l_- p2

coincides with the ML estimator, is given by:

T T
Pos = VY | 2oV - (3.32)
1=2

t=2

Andrews (1993) showed that
Py = Mors(Pows) (3.33)

is exactly MU, where
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Moy (P) = med[Poys|pl. (3.34)

is the median function of p,;. Now we prove that the adjusted score function (3.10)

will lead to the same p,,,,. The ML score function is given by

T T
Up)=pY v =2, ¥ (3.35)
=2

=2
We adjust (3.35) according to (3.10}) towards median-unbiasedness, i.e.

U (p)=U(p)—my(p), (336)
where

my (p) = med(U (p)]p] | (3.37)

stands for the median function of the score. Now if we denote the solution to the

adjusted score equation U MU (p) =0 by p, then we have

T T T T
med(pY. ¥iu— 2,V y,_.‘ﬁl = ﬁ% Vi = 3 VYo (3.38)
1=2

=2 =2 1=

From (3.32) and (3.35), the above equation is equivalent to

T T
Pr{(Pows _P)Z Y 2 (Pois ".5)2 )’ixlﬁ] =1/2. (3.39)
1=2

=2
If we denote the median function of ;30;5 - p by m},s(p), which is given by
() = med[(Pows = PP, (3.40)

then from (3.39) and based on the definition of the median function, we have
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Moy5(P) = Pors — P- (3.41)

Notice that the two median functions m,,(p) given by (3.34) and my, ;(p) given by
(3.40) are linked by

My (P =mo s (P)— P, (3.42)

Therefore we have
oy s (D) = P oLs* (3.43)

or equivalently, the solution to the adjusted estimation equation (3.38), P, coincides

with the exactly MU estimator (3.30) proposed by Andrews (1993).

We also notice that in the simpie AR(1) model, the least squares estimator is
identical to the minimal sufficient statistic of p (e.g. see Hurwitz, 1950). Therefore,

this is 2 good example of the proposed method in some cases being a special case of

the general approach set out in Section 3.2.

3.3.6 Extension to the Multi-parameter Case

Consider the problem of estimating a multi-variate parameter
0=(6,,0,,...,8,) . Usually we have k estimating equations to solve for 8. Denote

these equations by
U(6) =1U,(8).....U ()Y =0. (3.44)

In Chapter 2, we reviewed several definitions of median-unbiasedness for a

multi-variate estimator and adopted the idea of marginal median, i.e., we are trying to

achieve median-unbiasedness for each coordinate of the estimator @, such that

med(B,]=6, fori=1,....k. (3.45)
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We argue that in many cases, each single parameter &, is of its own importance and
the impartiality of each 8, is sometimes more relevant than the hard-to-define overall

unbiasedness of the vector 8. Now we propose the following algorithm to adjust the

estimating equations (3.44) iteratively for an approximately MU estimator:
1. Pick a starting point 8 =(8",...,80)".

2. In the first equation U,(6) =0, treat &, as the only unknown parameter and

replace all the other parameters by their corresponding values in 8. Adjust
this equation by using the method proposed in the previous section, i.e. solve
for 6, from

U (6,,00,....00) —medlU, @)y ~ £ (8,,6.....6°)1=0. (3.46)

Denote the solution by 8.

3. Replace 8 in 6 by 8, and treat @, as the unknown parameter. Adjust

U,(6) and solve for 82 ; Repeat the process for every U,(6) and denote the

solutions from this replication by 8@ = (9%,...,8PY".

4. Treat 82 as the new starting point and repeat Step 2 and Step 3. If the

desired accuracy is achieved, stop; otherwise continue the replications until
converging (i.e., the difference between the two consecutive estimates

vecomes less than a pre-determined error of margin).

When we adjust the estimating equation each time in Step 2, we replace the
other parameters by their previous estimates. The median function is computed based
on the distribution of U,(8) with estimated 6. This introduces error into the median

function. Therefore the adjustment in Step 2 will only be approximate. As a result,

the final estimates 6 will only be approximately MU.
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It shonld be noted that the median function has to be evalnated for each set of
estirates in the replications. This makes the computational burden heavy. We also
point out that the proposed method is similar to the one discussed in Fair (1996) and
the one used in Andrews and Chen (1994), although they did not discuss the method
in the context of estimating equations. An analytical proof for the convergence of
this algorithm in a general seﬁing is not available. Empirical evidence provided in
Chapter 4 suggests that the algorithm converges fast at least for the linear dynamic
linear regression model. We notice that the convergence of the similar algorithms
developed by Rudebusch (1992), Andrews and Chen (1994) and Fair (1996) were
also only illustrated empirically.

3.4 TIuverting Significance Tests for MU Estimators

The method discussed in Section 3.3 was based on estimating equations. It
may face difficulties when thes: equations are complicated and contain nuisance
parameters. For example, most of the score functions in MLE and Quasi-maximum
likelihood procedures are nonlinear functions that usually cannot be solved
analytically. Most of the scores also involve multiple parameters in the same
equation. This can make it hard to find the adjustment defined in (3.10) because of
the difficulty of computing the conditional median function of the score needed in
the adjustment. More importantly it is also subject to the same criticism encountered
by the sufficient statistics, ie., the monotonicity of the difference between the

estimating function and its conditional median function can be hard to satisfy.

To avoid these difficulties, we take a similar yet different approach in this
seciion. Instead of looking at estimating equations, we consider hypothesis test
statistics. Compared with estimating equations, test statistics associated with a single
parameter are easier to find, ard their distribution functions are in most cases easy to
work out, so it is more likely that we are able to verify the monotonicity of their

median functions.
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We do not claim that inverting a test statistic at the S0% significance level for
a MU estimator is a new method. As a matter of fact, since being regarded as a
special case of the application of the duality between confidence bounds and
significance tests discussed in Lehmann (1959), it has been used to construct MU
estimators In autoregressive time series models. Examples inciude Stock (1991),
Andrews (1993) and Watson and Stock (1998). Interestingly, all these examples are

concerned with estimating near non-stationary tiine series.

However, in this thesis we address some of the problems existing with current
applications, which may prevent it, in its current form, being extended to other
estimation problems as it may fail to deliver reliable estimates. In particular, we
discuss the importance of choosing a ‘good’ test statistic to invert, which has largely
been ignored by other researchers. Because of the difference between iaterval
estimation and point estimation, we also develop a meore reliable test inversion
method — grid inversion, which is different from the one used in most current
examples — fixed-point inversion. We show that the proposed grid inversion method
is more likely to be immune to the problems that the fixed-point inversion method
may suffer from. We start our discussion by reviewing the well~knov§n relationship

between a significance test and a confidence interval.

3.4.1 Duality of Significance Tests and Confidence Intervals

It is generally accepted that a confidence interval and a significance test can
be treated as the two sides of the same coin, see e.g., discussions in Lehmann (1959).
Several recent papers appearing in the unit root literature explored this duality in
constructing confidence intervals, and are related to our research: Dufour (1990)
inverted the Durbin-Watson statistic to compute exact confidence sets in the linear
regression model with AR(1) disturbances. Kiviet and Phillips (1992) and Kiviet and
Dufour (1997) inverted a modified ¢ statistic in the dynamic linear regression model
for confidence intervals. Ahtola and Tiuo (1984) inverted the square root of the score
test statistic to compute confidence intervals in non-stationary autoregressive models.
Stock (1991) also presented an empirical comparison of the different confidence

intervals based on inverting two different test statistics. Carpenter (1999) and Hansen
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(1999) combined test inversion with bootstrap and provided a theoretical justification
for the accuracy of the intervals so constructed. Recently Wright (2000b) considered
confidence intervals based on test inversion in the cointegration model.

The close link between the power of a test and the accuracy of the
corresponding confidence set is also well known. Following Lehmann (1959, Ch. 5),
for each 6, €Q, if A(6,) is the acceptance region of a level-a test for testing
H(G,): 8=8,, then

S(x)=[6:xe A(6),0 2} (3.47)
is a family of confidence sets for 8 at the 1~ level. If for all 8, A(8,) is UMP for

testing H, at level & against the alternatives X(8,), these intervals are most accurate

in the sense that for each 8, € 2, §(x) minimizes Pr, {8, € S(x)}, V&€ K(6,).

If we set the confidence level at 50%, instead of a confidencc inteival, we get
a MU point estimate when inverting the test statistic. This was highlighted in
Lehmann (1959) 2nd more recently discussed by Stock (1994).

A very simple example of this is the MU estimator of the error variance in a

simple linear regression model. The two-sided confidence interval at level-a is given

s 52
Pri—s <ot s—=l=l~a, (3.48)
% -%

and if the significance level ¢ is set at 50%, the confidence interval shrinks to a

single point, which is a MU estimator of o* and given by,

(3.49)
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where 5° is the sum of squares of the OLS residuals and med (X7-.) is the median of

a chi-square random variable with T—k degrees of freedom. This coincides with the.

efTor variance estimator reviewed in Chapter 2.

3.4.2 Inverting a Test Statistic fer a MU Fstimator
We first define the conditions for a test statistic to be inverted to produce a

MU estimator. Let x be the observed data and #(x) be a test statistic testing a nul!

hypothesis involving a scalar parameter 6 against some one-sided alternative
hypothesis. We define the median function of t(x) related to the true value of 8 by:

m(6) = med[1(x)]y ~ (O], (3.59)

where f(e) is the assumed- distribution under which the observed data were
gencrated. Some test statistics (such as the 7 test) are based on a consistent estimator
8, but this is not always the case. Hence it is important to emphasize that m(s) is

defined to be a function of 8, not 8. We define an estimator by
éMU = IH—, [f(.‘C)] (3.5 1)

within the parameter space of 8. The following theorem defines the conditions for

m™' (#) to exist.

Theorem 3.4.1 If t(x) is continuous in @ and m(*) is non-decreasing or non-

increasing monotone in 8, then é ay i1 (3.51) is exactly MU

Proof.

Pr{B,, 2 6,) = Priim(8,y,) = m(8,)} = Prit(x) 2 m(6,)|8,) = /2,
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where @, is the true value of the parameter. The three equalities are based on the
monotonicity cf m(e)}, the definition of 9 wu and the definition of m(e), respectively.

Pr{8,,, <8,)=1/2 can be derived similarly. Therefore 8,,, is 2 MU estimator.

It is important to point out that the condition requires the monotonicity of the
median function, not the test statistic itself. This is sometimes misunderstood in the
literature, see for example Hirji et al. (1989). Our experience shows that the
monotonicity of a test statistic doesn’t lead to the monotonicity of its quantile
functions. This was also confirmed by both Andrews (1993) and Hansen (1999).
They showed that although the OLS estimator and #-statistics are usually monotonic
in 6, their quantile functions can be non-monotonic in the neighbourhood of a unit

root. We will revisit this point in Chapter 5.

When the median function depends on nuisance parameters and/or only the
limit of the test statistic under the null is tractable, we may choose to invert the
median function of the limiting distribution of the test statistic. As a result, the
estimator  will only be MU asymptotically. The asymptotic approach avoids
computing the median function for each sample size and each set of the nuisance
parameter estimates, but the performance of the asymptotic MU estimators in small
samples is not guaranteed. We state this asymptotic approach generally as a corollary

- of Theorem 3.4.1.

Corollary 3.4.1 Suppose that a sequence of functions (e.g., test statistics regarded as

functions of some consistent estimators) f, and a sequence of estimators 9, satisfies
@, — 8 in probability and f,(f?,)—) f(6) in distribution, respectively, as t —»o.

Define
8, =m™'1f,(8,)). | (3.52)

and if m(@)=med,l f(@)] is continuous and monotonic in &, then 5, is

asymptoticaily MU, i.e., Pr{8, <8} = % and Pr{f, 265} = 5 as n — o
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Proof.

Pr{B, 2 6,} = Pr{m™'[£,(8,)]2 6,
- Pr{m (£ (§)]28,)
=Pr{(8) 2m(8,)(6,) = %.

The continuous mapping theorem underlies the second step of the proof.

Pr,{B, <6,} — % can be derived similarly. Therefore then 8, is asymptotically MU.

The best example of this approach is estimating the unit root model based on
a local-to-unity parameterisation, in which the limiting null distribution depends on
the drift parameter. Many researchers have adopted this approach to construct
confidence intervals for the autoregressive parameter. In particuiar, Stock (1991}
compared his confidence intervals based on the asymptotic distribution with those
based on numerical approximation of the finite sample distribution and found the
asymptotic intervals have good coverage probabilities but are usually wider. In this
thesis, we avoid the asymptotic approach and attempt to achieve median-

unbiasedness in finite samples.

3.4.3 'Test Performance and Efficiency of MU Estimator

Although the method is straightforward to understand, two important
questions remain unanswered. First, which test statistics can deliver reliable MU
estimates? In other words, which tests have well-behaved median functions that can
be inverted? Second, which test statistics produce the most efficient MU estimator

among tests that can be used? In this section we try to answer these two guestions.

Apart from that of a UMP test, the non-monotonicity of the quantile function
of a test statistic is quite usual. Non-monotonic quantile functions have been reported
by several authors. For example, for the first-order autoregressive model with a drift

and a time trend, Andrews (1993) found that the 95% quantile function of the OLS
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estimator is not monotonic; Stock (1991) observed that the quantile functions
(include the median function) of both the DW test statistic and the Sargan-Bhargava
test statistics (Sargan and Bhargava, 1983) are not monotonic; Hansen (1999)
reported that the quantile functions of the 7 statistics (Dickey-Fuller test in the case of
testing the unit root hypothesis) are also not monotonic. If only confidence intervals
are required, the nonmonotonicity of the quantile functions will only lead to disjoint
confidence intervals or empty intervals from time to time. Dufour (1990, 1997))
reported such intervals and argued that they are meaningful and should not be
discarded. But if we are interested in point estimation, this non-monotonicity will
lead to multiple solutions (estimates) for a single parameter value, and hence fail to
produce reliable estimates. Therefore we need to find test statistics which have a

monotonic median function.

If a test is locally biased, i.e., its power drops below its size for some local
alternatives, or if it has 2 non-monotonic power curve, its median function is likely to
be non-monotonic. Tests suffering from these problems in small samples are quite
common and have been reported by many researchers. For example, for the linear
regression with AR(1) or random walk disturbances, this was reported by Tillman
(1975), King (1985a), Kramer (1985), Kramer and Zeisel (1990) and Bartels (1992),
while Goh and King (1999) studied small sample deficiencies of the tests in the
dynamic linear regression model. It should be cautioned that the monotonicity of the
quantile functions at different significance levels may be different. Andrews (1993)
observed that the median function of the OLS estimator in a first order auntoregressive
mode! with an intercept and a titne trend is always monotonic for all the sample sizes
examined, while the 95%-quanitle function is not monotonic in the neighbourhood of
1 and for some sample sizes. Therefore it is pertinent that the median function should
be examined for that particular sample size and design matrix before it is inverted.
We also point out that the monotonicity of the power curve of a test is not a sufficient
or necessary condition for the monotonicity of its quantile functions, due to the fact
that the distributions of the test statistic under the alternative hypotheses are usually

affected by factors other than the magnitude of the parameter of interest.

Now we examine the relationship between the power of a test and the

efficiency of the MU estimator based on it if it has a monotonic median function.
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First of all, if a UMP unbiased test exists, the optimality of the MU estimator can be
derived based on Lemann’s (1959, p220) results:

Lemma 3.4.1 Within the family of distributions with monoione likelihood ratios, if
T(x) is the test statistic for a UMP unbiased test of H against a two-sided

alternative H,, then:

(i) m(6) = med [T (x)] is strictly increasing;
(ii) G=m"'[T(x)] is the optimal MU estimator for &, in the sense that it

minimises EL{&,6) for any monotonic loss function L.

But in most examples of practical interest, only tests less optimal than UMP
anbiased are available. It is well known that more powerful tests will lead to more
accurate confidence intervals. Is there a similar link between the choice of a test and
the performance of the estimator based on inverting the test? Stuart and Ord (1991,
pp956-958) established the equivalence of the asymptotic relative efficiency of 2
consistent estimator and the test based on it, We extend Kendall’s result to link the
asymptotic power properties of the tests to the asymptotic efficiency of the

estimators based on inverting their median functions.

Theorem 3.4.2 Assume T, and T, are two test statistics testing the same set of

hypotheses about a scalar parameter & (with null value at 8,), and their limits are
given by 7, and 7, as T—> 0. Let 6, and &, be asymptotically MU estimators

defined according to (3.52) and based on 7, and T respectively. Then in a

nei ghbourhood of the true (nuil) value 8,, we havc:
ARE(8,/8,) = ARE(T,/T,),

where, according to Kendall and Stuart (1967), the asymptotic relative efficiency

(ARE) of two estimators &, and 8, is defined by
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var, [8,] s
ARE(’éJ@,):lin_{-——‘—"—‘} , (3.58)

T==| var,, [6,]

while the ARE of two test statistics 7, and T, is defined by,

%
(O, (1) /06}’/ Vafa,,[m} , (3.59)

= liwr
ARE(TZ/T;) T}_‘,Z{ (O, (g;)/ag]z/varg,[?ﬂ

where & is the order of magnitude in n of the variances of the estimators or the test

statistics. For example, corresponding to an estimation variance of order T, 8=1%.

Proof. The consistency of 9,. (i=1, 2) implies 8, — 6, in probability as T —> eo.
From Corollary 34.1,

8, =m (T, (3.60)

where m,(¢) is the median function of 7;, ie., the limit (in distribution) of 7; as

T — oo, Based on the continious mapping theorem, we have 6,=m, (7).

Expanding (3.60) about 7; by Taylor’s theorem, we have,

o om™ (T.)]
B. = 0, +(T, —-1',.)[—-——'— :
¢ oT; neTt

where T is intermediate in value between 7, and 7;. It is obvious that as T — o,

T —7, and E, (T) > 7,. So

am ™ (1) a0,
—— — ! T .
[ oT, ]” aEen(i*:)LM”()

Therefore,
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2
- oE, (T
var90[9f]=vare“[l’;/ { a"fé( o ]+o,,(r). (3.61)
i

By

If 26 is the ovder of magnitude in n of the variances of 55, based on (3.58) and
(3.61), the ARE of 8, and 8, is given by

= \Ws %
AREQ@, [8) —tis| L2elOL| " _ i | 1OBa,(13)/ 001" vary [T)
Ay varon[Bz] T {aL'.;..(Ti)/aﬁ’}Z/vargn[T,]

and by definition (3.59), the theorem follows.

The above theorem only links locally the ARE of two tests to the ARE of the
resulting estimators. Although for a test, the ARE is a function of the slope of the
power curve in the meighbourhood of the null value, the asymptotic efficiency
sometimes is not a good measure of the finite sample performance of an estimator.
Therefore it is still not clear if there is any direct relationship between the finite
sample power of a test and the finite sample bias and/or efficiency of the estimator
based on it. In Chapter 5, we provide some empirical evidence for this possible link
between the power of a test and the small sample performance of the corresponding
MU estimator in the linear regression model with AR(1) or random walk

disturbances.

We conclude this section by reiterating the main results: 1. Inverting a
significance test statistic at its 50% level will produce a (sometimes asymptoticaily,
if inverting the median function of the asymptotic distribution of the test statistic)
MU estimator provided its (asymptotic) median function is monotonic. 2. The
asymptotic efficiency of the consequent MU estimator directly depends on the power
performance of the test being inverted. In the next section, we examine the situation

when the mecian function of a test statistic is not monotonic.
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3.4.4 Fixed-point Inversion and Grid Inversion

If the test statistic is pivotal, i.e., its quantile function is independent of the
null value of the parameter and if the median function is monotonic, we can simply
invert it at the fixed point of the calculated test statistic given the sample data. We
call this method fixed-point inversion. But as discussed in the previous section, what
happens more commonly in time series models is that the critical value function of a
test statistic varies with the null value and/or its median function may not be
monotonic. When these problems occur, the fixed-point inversion method breaks
down due to non-unigue estimates. Tiiis leads to the need for a different way of
inverting the test statistic. In this section, we define a grid inversion method based on

the median envelope of a series of test statistics. We contrast the new method with

the fixed-point inversion.

Method I (Fixed-point invertion}

Test statistic: T(8,;y), where 6, is the fixed null point.
Hypotheses: H,:6=0,
H,:0<86,.
Median function: m(6) = med{T(8y; )|6).
Estimation procedure: MY = m™(T(6,; )], where ¥ is the observed sample

data.

Method 2 {Grid invertion)

Test statistic: T(6.;y), where 8. is the null point which can vary
within the parameter space of &.

Hypotheses: H,: 8=8.

H:8<8..

m(8.) =med[T(B.; y)l@.].

solve m(6.) =T(8.;¥) for oMy,

Median envelope:

Estimation procedure:
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The grid inversion method allows the null value of the test statistic to vary in
the parameter space. Instead of the median function of a single test statistic with a
fixed null value, the median function used in the grid inversion method corresponds
to the medians of a series of test statistics each evaluated at the corresponding null
value. This approach avoids the possible non-monotonicity of the median function of

a single test by considering a different median function
m,(8) = med{T(8,y)|6]. (3.62)

which we call a ‘median envelope’. The term borrows from the idea of a power
envelope which measures the maximum attainable power for a testing problem at
each alternative parameter value. The difference is that the median envelope is a

quantile function while the power envelope is a probability function.

We use the simple case of a ¢ test (a one-sided Wald test) to illustrate these
two ways of constructing a MU estimator. Assume test statistic ¢ = (@—- é,) / SE (9) is
used to test H,:@=6, against a one-sided alternative H;:0<8,. The fixed-point
inversion method then involves computing (or simulating) the median function for a

1-test statistic at a fixed null point 8,, i.e. m(9)=med[(é-eo)/SE(é)|9] and then

the MU estimate is given by 8,, =m"[(6-86,)/SE(@®]. In contrast, the grid
inversion method reguires computing (or simulating) the ‘median envelope’, i.e.

g (6) = med[(9— 6)/ SE(@)|6} and.then the MU estimate is obtained by solving the

equation (é— 9)/ SE(@)=mE(6) for 6. In some simple cases, the two methods
coincide with each other. For example, if the test statistic 9—90 is used, the fixed-
point inversion and the grid inversion will lead to the same estimate. But in most

other cases, the two methods are different.

If we compare the two methods of inverting a test statistic, the fixed-point
inversion method implicitly makes the assumption that the median function is of the
same shape and parallel to each other for different null values, which is true in many
simple test procedures. Therefore it will lead to the same estimate if a test statistic for

a different null hypothesis is inverted. In time series models, when the # test statistic
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is not distributed as Student’s 7 and asymptotic normality does not approximate thz
null distribution wel! (e.g. see Nankervis and Savin, 1985, 1987, 1988b), the median
function may not be of the same shape for different parameter values. In these
situations, the grid inversion method is based on the more realistic assumption that
the median function depends on the null value and therefore is more likely to deliver

accurate estimates.

More importantly it is quite usual to find a test with non-monotonic median
functions in small samples, and as a result, the fixed-point inversion will fail to
produce unique estimates. The grid inversion may provide a remedy in this situation.
In Chapter 5, we will show that the fixed-point inversion fails in many of the

examples we examine while grid inversion may still work well.

After this chapter was first drafted, we became aware of the grid bootstrap
suggested by Hansen (1999), which is similar to the proposed Method 2. We coined
the term grid inversion similar to the terminology used in his paper. He applied his
grid bootstrap method to confidence interval calcuiation in the first-order
autoregressive model with a local-to-unity parameterisation and showed that the
interval based on the usual bootstrap method fails to cover the true value at the
nominal level (even asymptotically) while the interval based on grid bootstrap is
correct to the order of n~'. However, the quantile functions of the limiting
distribution of the ¢ test were found to be non-monotonic. In Chapter 5, we show that

his method may not be able to deliver unique point estimates for the autoregressive

parameter.

However, the fixed-point inversion method does enjoy the advantage of
computational simplicity. It does not require solving equations. A simple tabulation
or graph can be used to find the point estimates, as shown in Stock (1991). This is

also why this method dominates the test inversion confidence intervals in the

literature.
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3.4.5 The Use of Optimal Invariant Tests

It is now clear that when choosing a test statistic to construct MU estimators,

it is important to choose one that has good power properties in small samples. In this

- section, we consider two classes of tests that were shown to have such properties

when a UMP test does not exist, namely, the point optimal invariant (POI) tests
developed by King (1985a, 1987b) and the locally best invariant (LBI) tests
advocated by King and Hillier (1985). Both these classes of tests possess some
optimality properties that make them attractive in some circumstances especially in
small samples. One would expect that the good small sample power properties of
these tests will make them good candidates when we choose a test statistic to

construct a MU estimator.

Generally speaking, the POI test is designed to maximise the power within
the class of invariant tests in a neighbourhood of a preselected alternative point while
the LBI test is aimed at maximising the power in the neighbourhood of the null
hypothesis. As well as being most powerful at some points in the alternative
hypothesis parameter space, these tests may also have optimum power at a number of
other points and indeed be uniformly most powerful when such a test exists (see
examples provided in King (1987b) and Hillier and King (1985)). MU estimators can
be constructed based on both the LBI tests and POI tests based on the methods

discussed in the previous section.
Consider the linear regression model
y=Xp+u, (3.63)

where y is the dependent variable, X is a nXk matrix of observed values of the
exogenous regressors, B is a k X1 vector of fixed coefficients, and « is 2 n X1 vector
of random disturbances. We are interested in the hypothesis testing problem that

involves testing

Hyu~ N(0,0°1,) against Hy:u ~ N(O, e XCH] (3.64)
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where X is a positive definite matrix known subject to the parameter vector of
interest 8, which is to be estimated. As pointed out by King and Hillier (1985), this
probiem is interesting because - ;argé number of hypothesis testing problems in
Jinear regression analysis can be parameterized in this manner. In addition to AR(1)
disturbances problems, these include simple pth order autoregressive distarbances,
first-order moving average disturbances, various parametric forms of
heteroscedasticity in the disturbances, randorn regression coefficients under different
assumptions and various error component models. The estimation procedures

outlined below can potentially be applied to all these models.

King (1980) showed that this testing problem is invariant to transformations

of the form
y— ey + X7, (3.65)

where 7, is a positive scalar and n is a kx1 vector. Under this group of

transformations, the maximal invariant vector is given by
v= Py (PP (3.66)

where z is the OLS residual vector and P is an mXn matrix such that PP’=_ and

pP=M,with M=1_~X(XX)"'X' and m=n—k.

For the problem of testing H,: 9=0 against the specific alternative

H;: 8=0,>0, the Neyman-Pearson lemma applied to the density of the maximal

invariant (3.66) yields critical regions of the form

VI(PZO)P) v <, : (3.67)

where ¢, is a constant. King (1980, Lemma 2) shows that this test can also be wriiten

as
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s=uX6)" i [z, (3.68)
where # is the GLS 1esidual vector assuming covariance matrix %(8,).

In most cases, the uniformly most powerful invariant test for H,: 8=0
against H,: 6> 0 does not exist as the critical region (3.67) usually depends on 8,.
There are two ways to proceed in order to construct tests with well-defined
optimality properties: to construct LBI tests or POI tests. The former class of tests
were shown by King and Hillier (1985) to exist as Iongl as X(8) has a first-order
derivative at 8,. They are LBI in the sense that the power function has the maximum
slope at the origin among all invariant tests. The second approach is designed to
maximise the power at a pre-selected alternative point. The existence of such tests
depends on the form of Z(8).

For different models, in order to compute test statistics such as (3.68), it is

often appropriate to consider the transformed model

¥(0) = X(8)+u(®) (3.69)
where (@) =Z() %y, X(0)=2(0)* X and u(6)=Z(8)*u~ N(0, 6°I). &t was
shown in King and Hillier (1985), Shively et al. (1990) and Dufour (1990) that the

LBI tests can be expressed as

5. (80) = WO, Y =5 (8,) AZ#(8,)i(8,) [ii(6,)’ (6,), (3.70)

) :
where A(f)=-— 38 | while the POI tests can be expressed as

8,
550y (89 0,) = #(8,Y Cil(6,)/ (85 D ¥(8,) 3.71)

where C and D are fixed matrices (possibly functions of &, or 8,) depending on the

testing problem, and &(8,) = (I - X (6,)(X(6,Y X (8)))" X(8,)}¥(6,), for i =0, 1.
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While LBI tests have optimal power in the neighbourhood of the null
hypothesis, they may have poor power away from the nuil. In terms of most
statistical loss functions (except the 0-1 loss), accepting the null when the parameter
is far from the null is most damaging. This drop in power phenomenon was reported
in Kramer (1985), Kramer and Ziesel (1990) and Bartels (1992) among others for the
linear regression model with AR(1) disturbances. The argument was also supported
by Dufour and King (1991), who, based on Monte Carlo evidence, concluded that
when testing for correlated disturbances or random walk disturbances in the linear
regression model, the POI tests are generally more powerful in small samples than
the LBI tests over the whole parameter space under the alternative hypothesis.
Therefore, in the sections that follow, we focus our attention on the POI tests. But the
outlined method of inverting the median function or the median envelope also

applies to the LBI tests.

The POI tests have been used effectively in testing for autocorrelation in the
linear regression mode! (King, 1985a), testing for random walk disturbances (Dufour
and King, 1991), testing for heteroscedastic disturbances (Evans and King, 1985,
1988), testing for fourth-order autoregressive disturbances (King, 1984), testing for
deterministic trend and seasonal components (Franzini and Harvey, 1983 and
Nyblom, 1989), testing for Hildreth-Houck random coefficients in the linear
regression model (Milan, 1984, King, 1987¢), testing for random walk coefficient
(Brooks, 1993, Brooks and King, 1994, Shively, 1988) and testing for MA(1) errors
against AR(1) errors in the linear regression model (King, 1983, 1985b, King and
McAleer, 1987, Silvappulle and King, 1991). Therefore the method of constructing
MU estimators outlined here can be -potentially applied to estimating the error
covariance structure in all these models. For example, Stock and Watson (1998)
considered the POI tests and inverted their asymptotic quantile functions to construct
MU estimators in the time-varying coefficient model in which the coefficient follows

a random walk.

Another interesting feature of the class of POI test is that they can be used to
trace out the finite sample maximum attainable power envelope for a certain class of

hypothesis testing problems, thus providing a benchmark against which test
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——n

procedures can be evaluated. This is sometimes more accurate and meaningful than
the asymptotic power envelope. See for example, Podivinsky and King (2000) and
also Elliot et al. (1996). This helps us explain why the gird inversion based on the

median envelope is able to better explore the small sample power advantage of the
POI test when constructing a MU estimator.

When we apply the two methods of inverting a test statistic to the POI test, it
is usuaily more convenient to consider the alternative value rather than the nuil value
when we decide whether to use the fixed-point inversion or the grid inversion.
Assume that the covariance matrix X is indexed by a scalar parameter &, then a MU
estimator of & can be constructed in the following two ways. If the median function
of the POI test is monotonic, we apply the fixed-point inversion for a pre-selected

alternative point 8,, i.e.,

Oy =m ((8,) A(8,)i(6,)[i(8,) B(6,)8,))- (3.72)
The median function m(e) is given by,
m(8) = med{spo; (8,0, )| ~ N(0,5°=(6)). (3.73)

Based on the good small-sample power properties of the POI tests, we would expect
they are more likely to have monotonic median functions according to Theorem
3.4.1. However, if the median function of a single POI test is not monotonic, we can
apply the grid inversion method to the series of POI tests which allow the alternative
value 8, to vary within the alternative parameter space. Hence we solve for 8 |

the equation,

i(6)’ AB)IB)] A(By) B(B,)(6,) 570
—med[spo; (8O ~ N(0,6°2(6)}=0.
The median function in (3.74) is also a median envelope of the POI statistics
for testing for hypotheses (3.64). We will further examine the properties of the

median envelope in Chapter S for the estimation of the linear regression model with
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AR(1) or random walk disturbances. We show that the grid inversion of POI tests is
a more reliable way to construct MU estimators than inverting a single POI test

statistic for some design matrices.

Although not an idea pursued here, confidence intervals can also be
constructed based on the procedures we developed. Two approaches are available: 1.
Replacing the median function in the procedures by the ¢/2- and (1-&)/2-quantile
functions of the test statistics and solving for the two confidence limits. Confidence
intervals based on test inversion have been used frequently in econometrics (e.g., see
Stock (1991), Andrews (1993), Kabaila (1993a) and Carpenter (1999)). 2. Bootstrap
confidence intervals based on the proposed estimators, which involves
approximating the distribution function of the estimator and constructing intervals
based on the approximated quantiles (e.g., see discussions in Beran (1987), Hall
(1988, 1994) and Efron and Tibshirani (1993)). We choose the percentile-f method
and apply it to the dynamic linear regression model in Chapter 4, as it avoids the

difficulty of computing the quantile functions needed in the first method.

3.4.6 Nuisance Parameters and Computation Issues

Nuisance parameters exist in most hypothesis testing problems. Popular
methods to eliminate these parameters when constructing tests are those of siimilar
tests and invariant tests. If such tests are available for the parameter of interest, the
distribution of the test statistic, and therefore the median function of the test statistic
will be invariant to nuisance parameters. We then only need to apply the methods
described above to compute MU estimators. But in many cases, it is difficult to find
either similar tests or invariant tests. In this sitvation, we need to use algorithms
similar to the one outlined in Section 3.3.6, to iteratively invert non-similar test

statistics while replacing the nuisance parameters in the process by their estimates.

Assume the parameter space can be partitioned into 8=(f,%), and a test

$(0) is designed to test hypotheses about B only, ie., 7 is the nuisance parameter.
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Without Joss of generality, we assume that given an estimate of B, there is an explicit

way to compute a corresponding estimate of ¥, i.e.
r=¥p. (.75

Start with a starting point 8, = (ﬁ,,ff(f?, )Y, invert the test statistic as if ff(f)’,) were
the true value of ¥, i.e.

By =m (00 (3.76)

where
m,(B) = med[s(B)y ~ £ (B,7(B)). (3.717)

We then replace the starting value by 8, =(f,,7(f,) and repeat the steps. The
process is continued till convergence (i.e., the difference between two consecutive
estimates becomes less than a pre-determined margin of error). As a result of this, the

final estimator will only be approximately MU.

In the proposed procedure, the median function has to be calculated and

inverted separately for each required sample size. If nuisance parameters are to be
replaced by their consistent estimators, the median function has to be calculated for
each different set of estimates used. This can be quite computationally cumbersome.
Although not recommended, if the limiting distribution of s(€) still depends on the
paramctcli of interest, then based on Corollary 3.4.1, the procedure could be

simplified by just inverting the median function of the limiting distribution, so the

median function rieeds to be calculated just once. In the models we examine in this
thesis, the median functions of many test statistics can be calculated exactly by using

Imhof’s (1961) algorithm to any desired level of accuracy.
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3.5 Concluding Remarks

In this chapter, we outlined two general methods of comstructing MU
estimators in econometric models. One is based on adjusting the estimating equations
and the second is based on inverting the median function of a significance test. Both
methods can be regarded as different wéys of exploring the relationship between the
sufficient statistics (or less optimal statistics when sufficient statistics are intractable)
and MU estimators, which was established by Lehmann (1959).

When an estimating equation generates a biased estimator, one can
effectively adjust this equation to reduce the estimation bias. The conditions for a
MU estimating equation to deliver a MU estimator are more general than those for a
mean-unbiased estimating equation (0 produce a mean-unbiased estimator. So for a
given estimating equation, we suggest subtracting its median function from the
original estimating function and if the difference is a monotonic function, we will get
a MU estimator. No analytical or simulated bias function is required, although
sometimes it is hard to verify the monotonicity of the new estimating function, The
relationship between this proposed bias prevention method and two other bias
reduction techniques was disclosed. In Chaptcr 4, we give two examples of applying
this method to the marginal likelihood score function in the linear regression model

with AR(1) disturbances and the dynamic linear regression model.

In case it is too complicated to adjust the estimating equations or the
monotonicity of the adjusted estimating function does not hold, a MU estimator can
be constructed by inverting a significance test at the 50% significance level.
Depending on whether the median function of the test statistic is monotonic, two
different methods are considered: fixed-point inversion and grid inversion. The latter
is theoretically more reliable but does involve extra computational costs. We also
recommend inverting the POI test statistics mainly because of the sound small
sample power properties. In Chapter 5, we will apply this approach to the linear
regression model with AR(1) or random walk disturbances. The relationship between
the power performance of a test and the efficiency of the MU estimator based on

inverting its median function will be examined more thoroughly.
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Chapter 4
Adjusting Marginal Likelihood Scores for Median-unbiased

Estimators !

4.1 Introduction

In Chapter 3, we outlined the method for constructing MU estimators based
on adjusting estimating equations. In this chapter, this method is applied to two
commonly used time series models: the linear regression model with first-order
autoregressive disturbances and the dynamic linear regression model. For the first
model, it is shown that the proposed estimator of the autoregressive parameter is
almost free of small sample median bias. In the second model, we extend the use of
the proposed method to cover the case in which nuisance parameters cannot be
eliminated from estimating equations through invariance arguments. The method is
slightly revised to overcome this difficulty and an approximately MU estimator is
derived.

Bias has always been a serious problem in the estimation of autoregressive
time series models. Many bias-correction techniques have been proposed (e.g., see
Quenouille, 1949, Orcutt and Wiriokur, 1969, Shaman and Stine, 1988, Fuller, 1996,
MacKinnon and Smith, 1998 and Patterson, 2000, among others). The proposed MU
estimator will serve as an alternative bias-prevention device for these models. It is
also expected that through these examples, we will show that constructing a MU
estimator by adjusting estimating equations can be a simple, yet effective way of

bias-correction in the estimation of time series models.

MU estimation has already been applied to a first-order autoregressive model
with only a constant and/or a linear time trend as the regressors. We extend the

application by including other exogenous regressors. It is well known that the

! Some of the findings contained in this chapter were published in two conference proceedings, see
Chen and King (1998, 2000}
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properties (e.g., small sample bias) of the estimators will then depend on the
structure of the design matrix as well as the magnitude of the a2utoregressive
coefficient. A bias correction that works for different design matrix structures would
be highly desirable.

The focus on point estimation in our study may need some justification. In
the model of concem, especially when the persistence in the time series is very
strong, i.e., when the autoregressive parameter or the lagged dependent vasiable
coefficient is a large positive value close to 1, hypothesis testing may suffer from
size distortion and/or Jow power problem (e.g., see Dickey and Fuller, 1981, Evans
and Savin, 1981, 1984, Nankervis and Savin, 1985, 1987, 1988b, Schwert, 1989 and
Magee, 1989), while confidence intervals may have bad coverage probabilities (e.g.,
see Stock, 1991 and Hansen, 1999) at the same time. In this situation, the impartiality
of a point estimator becomes a crucial issue (see also discussions in Andrews, 1993,
Stock, 1994 and Maddala and Kim, 1998). In some cases, it can provide an important
insight into the validity of the model. specification, and therefore straightforward
evidence for researchers to choose the most likely model based on the data, when
other inference tools are not reliable. Therefore median-unbiasedness is not only

relevant, but can be indispensable in these circumstances,

In both models, we choose to adjust the marginal likelihood score equations,
as they enjoy some distinctive advantages over the traditional profile likelihood
approach both theoretically and empirically in small samples (see for example,
Tunnicliffe-Wilson, 1989, Ara, 1995, Grose, 1998 and Mahmood, 2000). But due to
the likelihood function being discontinuous in the neighbourhood of unity of the
autoregressive parameter, we only consider the stationary case in this chapter. The

unit root case will be treated in Chapter 5.

We aim to show that the proposed MU estimators enjoy two important
advantages over the existing bias-réduction techniques. 1. Unlike other MU
estimation methods (e.g., Andrews, 1993, Stock, 1994 and Fuller, 1996), the
proposed method can be applied to models including a wide range of exogenous
regressors. 2. The reduction in bias will not be offset by an increase in the variance.

Hence the proposed MU estimators have root mean squared errors (RMSE) lower
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than or similar io those of the conventional ML estimators in most cases. This is in
contrast to some mean-bias-corrected estimators that may suffer from a trade-off
between a reduced bias and an increased RMSE (e.g., see discussions in Orcutt and
Winokur, 1969, MacKinnon and Smith, 1998 and Patterson, 2000).

Throughout the chapter, we focus on the small sample behavipur of the
estimators. We attempt to achieve median-unbiasedness or approximate median-
unbiasedness in small samples. Due to the difficulty in solving non-linear estimating
equations and also the lack of analytical forms for the median functions, Monte Carlo
simulations are used to investigate and compare the properties of different
estimators. This has become a more and more popular tool used by econometricians
especially when the finite sample feature is the major concern in research.
Fortunately, existing algorithms often facilitate exact numerical calculations of the
median functions in the models considered, which helps to alleviate the variability

that may be associated with the results solely based on simulations.

The chapter is organised as follows. In Section 4.2, we specify the linear
regression model with stationary AR(1) disturbances and briefly review the existing
MU estimators in the literature. We then seek to adjust the marginal likelihood score
towards median-unbiasedness. A Monte Carlo study is conducted to compare the
new estimator with the conventional alternatives. In Section 4.3, we consider the
dynamic linear regression model. An iterative bias-correction algorithm is developed
to estimate the lagged dependent variable coefficient. The small sample properties of
the new estimator are compared with those of the OLS estimator via Monte Carlo

simulations. The chapter ends with some concluding remarks in Section 4.4,

4.2 MU Estimation of the Linear Regression Mode! with AR(1)
Disturbances

4.2.1 Model Specification and Existing MU Estimators

There are two reasons why we choose the linear regression model with AR(1)

disturbances: First it seems to have been the most popular time series model used in
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economic applications. A good understanding of this model is fundamental to
studying more complicated time series models. Secondly, small-sample estimation
bias has been so well documented for this model and so many remedies have been
proposed, that it is natural and convenient to compare the proposed techniques with
others such that we can assess the proposed approach in the broad context of bias-

reduction.
This model can be stated as follows:

y, =xB+u, (¢=1,....T) 4.1)
u, = pu,_, +€,, £ iid N(0,6%), 4.2)

where y, is the dependent variable (observed at time #), x, is a k %1 vector of fixed
regressors, f3 is a k x1 vector of fixed coefficients, and u, is a random disturbance.
The coefficients 8, /7 and o? are unknown. We assume the disturbances follow a

stationary AR(1) process with the initial condition:
u,~N[0,6°[(1~ p™)]. (4.3)

For a model without exogenous regressors other than an intercept, the small
sample bias of the least squares (LS) estimator Pois has been well documented.
Quenouille (1949), Hurwicz (1950a), Marriott and Pope (1954), and Kendall (1954)
all established the mean-bias of the LS estimator in a model with or without an
intercept. They showed that the first-order mean-bias of Dois is =2p/T for the
model without the intercept, and ~(1+3p)/T for the model with an intercept. Le
Breton and Pham (1989) calculated the exact and asymptotic biases of the same
estimator in a stationary, unit root or an explosive AR(1) mode! without an intercept.
Shaman and Stine (1988) established the first-order mean-bias of the LS estimator in
a stationary AR(p) model. More generally, exact moments of the LS estimator were

considered by Sawa (1978), Mackawa (1983} and Nankervis and Savin (1988a)

among others.
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If there are explanatory variables included in the model, no analytical
approach is available to derive a general formula for the bias in the estimator as the
bias also depends on the structure of the regressor matrix. Instead, many researchers
conducted Monte Carlo studies to examine the smali sample bias of different
estimators proposed for this model. Tilis was pioneered by the seminal paper by
Orcutt and Winokur (1969). Simulation studies comparing different estimators in the
model were also reported in Rao and Griliches (1969), Spitzer (1979), Park and
Miichel (1980), Kobayashi (1985), Nankervis and Savin (1988a) among others. The
popular estimators of p compared in these studies include the Cochrane and Orcutt
(1949) estimator, Durbin’s (1960) estimator, Prais and Winsten’s (1954) estimator
and the full maximum likelihood estimator suggested by Beach and MacKinnon
{1978). It was found that all these estimators, although unbiased asymptotically, are

biased in small samples.

Attempts have been made to correct the small sample bias in the estimation of
this model. Quenouille (1949, 1956) introduced a jackknife estimator in the model
without an intercept. Orcutt and Winokur (1969) suggested using
p=(TPoy +1/(T-3) as a bias-corrected estimator in a model with only an
intercept. Bias reduction in autoregressive models without exogenous regressors was
also considered by Shaman and Stine (1988), Rudebusch (1993) and recently by
Patterson (2000). Most of these studies involve correcting the bias by subtracting the
approximated bias function from the original estimate. But as observed in Rao and
Griliches (1969), Orcutt and Winokur (1969), and MacKinnon and Smith (1998),
sometimes it is not very effective to improve the performance by adjusting an
estimator upwards for its known downward bias, because the reduction of bias may

lead to an increase in variance with little or no improvement in RMSE.

A different, yet effective way of improving the estimation quality of this
model is the use of the marginal likelihood (MGL)} approach. This will be discussed
in more detail in the next section. Ara (1993} and Laskar and King (1998), among
others, provided Monte Carlo evidence and showed that the MGL estimator of the
autoregressive parameter is generally less biased in small samples compared with the

estimator based on the profile likelihood. Test procedures based on the MGL
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approach were also developed. Among the existing estimators, the MGL estimator

seems to be the winner in terms of sinall sample bias.

So far MU estimators for this model in the literature have been mainly
designed to estimate the simple first-order autoregressive model. It has been
extended, with properly chosen de-meaning or de-trending procedures, to models
with a drift and/or a linear time trend. As reviewed in Chapter 2, the existing MU
estimators for a simple autoregressive model include: 1. Andrews’s (1993) estimator
which is based on inverting the median function of the OLS estimator, 2. Stock’s
(1991) estimator based on the limiting distribution of the Dickey-Fuller test and the
Sargan-Bhargava test statistics, and 3. Fuller’s (1996) estimator based on the limiting

distribution of the weighted symmetric least-squares estimator.

All these existing MU estimators do not address the exogenous regressor
issue. When we attempt to extend their use to the linear regression model with AR(1)
disturbances, it is not known what impact different design matrices might have on
their smail-sample properties. In the most commonly used two-step estimation
procedures, people usually treat the model as an OLS regression first, and then t.cat
the OLS residuals as if they were the true disturbances for estimating the
autoregressive coefficient. But for some design matrices, ¢.g., Watson’s X matrix,
the OLS resicuals can be bad approximations to the true disturbances, which will
surely result in bad estimates of the, autoregressive coefficients, see e.g., King
(1985a). Therefore a different approach is needed to count for the impact from the
exogenous regressors on the bias function of the estimator. Our aim is to find a MU

estimator that is robust to different design matrices.

422 Adjusting Marginal Likelihood Score Equations

In this section, we construct a MU estimator in model (4.1) and (4.2) by
adjusting an estimating equation. A natural choice of estimating equation wouid be
the score equation based on the profile likelihood function discussed in Beach and

MacKinnon (1978) among others. But in our study, we found that this score and its
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median function are both very flat and'close to the horizontal axis. Figure 1 shows
one realisation of the scores based on the profile likelihood and the marginal
likelihood at p =0 for a model with an intercept and a time trend. Compared with the
profile likelihood score, the MGL score is much steeper. Because of the flatness,
when we implement the proposed adjustment to the profile likelihood score, the

convergence will be very slow when solving the adjusted equation (3.10).

Figt!re 4.1 One Realisation of the Marginal and Profile Likelihood Scores in the
Linear Regression with AR(1) Disturbances for Design Matrix X1; T =20,
p=0

score
\“‘s 1 0 ]

oLy

T \ ¥ 1
04 03 g2 01 0 0.1 0.2

w— prl SCOTE mgl score

On the other hand, since Kalbfleisch and Sproit (1970, 1973) argued for the
use of the marginal likelihood in time series models, evidence has been found (see
for example, Tunnicliffe-Wilson (1989), Ara (1995) and Laskar and King . (1998))
that the marginal likelihood approach can effectively eliminate nuisance parameters
without losing information when estiméting the error structure in a linear regression
imodel. The MGL estimator was also shown to be able to reduce the small sample
bias of the maximum profile likelihood estimator. Ara (1995) also showed that there
is a logical relationship between marginal likelihood and sufficient statistics.
Therefore using the marginal likelihood is consistent with the approach based on
sufficient statistics discussed in Section 3.2. So in this section, we choose to calibrate

the marginal likelihood score equation.
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We start with examining the rationale behind the marginal likelihood

approach in the general linear regression mode)
y=XG+u ' 4.9

where y is the dependent variable, X is a Txk matrix of observed values of the
exogenous regressors, f is a k X1 vector of fixed coefficients, and « is a T'X 1 vector
of random disturbances distributed as N(0,0°Q(8)). If 8=(9,.6,....,8,)" are the

only parameters of interest, we can construct a maximal invariant statistic d under a
certain group of affine iransformations (for details, see King, 1980, Ara, 1995, and
Rahman and King, 1997), given by

y - ey + X717,

where 7}, is a positive scalar and 77 is a k x 1 vector. Following Ara (1995), the often-

used maximal invariant d is

g=P - 4.5
d }{Z’P,PZ)% ] ( )

where z = My is the vector of OLS residuals, P is a mxn matrix such that PP’ =1,
and P'P=M, with M=I -X(XX)"X and m=T-k. The density function of

the maximal invariant vector is given by
ey~ " F
@6 %r[gf}r"*lf’nw) P [y_ﬂ_g@z] - @46
z

It is apparent that the distribution of d is invariant to both nuisance parameters, B

and o?. But more importantly, as pointed out by Ara (1995), d is so-called G-
sufficient for @, in the sense that for any inference about 6, it is sufficient to study

the distribution of d without information loss.
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Therefore for our model (4.1) — (4.3), based on the density function (4.6), the
marginal log likelihood function for o can be written as:

i i
L(y:p)= c~510g19(p)| -—E-long’Q.(p)'l X|-mlog(s®), 4.7
where
1 p pT—I
1 1 .. p7?
Q(p) = = f' L AP: (4.8)
pT-] pT—Z 1
and
1 —p 0
-p 1+p° 0
Qp)' = T e 4.9)
: 1+p* -p
i 0 -0 1]

is the covariance matrix of «, and its inverse, respectively, and

&t =(y-XB,yQ(p)y" (v~ XB,), (4.10)
where
B, =(xpy* Xy X Qp)"y.- @11

Following Rahman und King (1997), the marginal likelihood score function is given
by
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fz'ag(f’ "z
U()':P)-'-“-;"ﬂ{ ( )ag(p )] > a'g(ag-'a : @4.12)
where
 A(p)=Q(p) - Q) X(X QP X)X Q) (4.13)
and
~XXQE)' X)) XQPp) 'y, 4.14)

It was shown in Ara (1995) that the marginal likelihood score satisfies the

mean-unbiasedness condition, i.e.,
E[U(y:p)]ps]=0,

where p, is the true parameter value. But as revealed in Chapter 3, the unbiasedness
of the score does not guarantee the unbiasedness of the estimator. As a matter of fact,
as reported in Ara (1995) and Laskar and King (1998), the maximum marginal
likelihood estimator is still biased in small samples, One possible reason for this bias
is the curvature of the non-linear score function (4.12). Ara (1995) showed that the
marginal likelihood score U(y;p) is asymptotically normally distributed with the
same limiting distribution as that of the profile likelihood score. This property makes

it possible for us to apply the adjustment proposed in Chapter 3.

In order to adjust the score (4.12) according to (3.10), we need to compute its
median function. Notice that the marginal likelihood score in (4.12) can be expressed

as the form:

£B(p)e (4.15)
£'C(p)e’

U(y;0)=A(p)+

where

111

Chapter 4. Adjusting Marginal Likelihood Score Equation for MU Estimators

Ap)= -2l A(p) ) aﬂ(")l
op
B(pY=R ) (p)_]
P)=R(p) P(p) —=—— I P(p)R(p), (4.16)
C(p) = R(p)' P(p)'Qp)" P(PR(P), (4.17)
in which
P(o)=1-X(XQp)"' X)"'XQp™". (4.18)
and
i 0 O]
A i .. 0
R(p)= /., ST (4.19)

Therefore, subject to the constant A(p), the score is a ratio of two quadratic forms in
the normal error vector £. So the median of the score function can be calculated

exactly by solving

T
Py, 4,47 <0]1=05 (4.20)

i=}

for m uéing Imhof’s (1961) algorithm, where the A;’s are the eigenvalues (including

zeros and multiple roots) of B(p)—(m— A(PNC(P), and &7 are independent

standard - variables with one degree of freedom.

Figure 4.2 shows the shape of several sample realisations of the score and its

median function for design matrix X2 (see Section 4.2.3), with 20 observations and
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the true o at 0.2, 0.4 and 0.8. The maximum marginal likelihood (MMGL) estimates
are the interceptions between the scores and the horizontal axis, while the new
estimates which solve the adjusted estimating equation (4.22), are given by the
interception between the scores and the median function. It is quite apparent that the

new estimator should at least correct the downward bias of the MMGL estimator in

the right direction.

Figure 4.2 Three Realisations of the New Estimator: an lustration of the
Proposed Bias-prevention Method for the Linear Regression Model
with AR(1) Disturbances for Design Matrix X2, 7=20, p=0.2, 04, 0.8

score

Figure 4.3 An Ilinstration of Firth’s Bias-prevention Method for the Linear
Regression Model with AR(1) Disturbances for Design Matrix X1, T =20,
. p=06

Eirth's adjustment
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It is interesting to compare the proposed bias-correction method with Firth's
(1993) method graphically. In Figure 4.3, Firth’s adjusted score is plotted togedier
with the original score. The bias reduced estimate based on his method is then the
interception between the adjusted score and the horizontal axis. Intuitively, Firth’s
method attempts to prevent the bias by shifting the original score curve upward;
while the proposed method shifts the horizontal axis downward to the position of the
median function, in order to increase the value of the estimates. In Chapter 3, we
proved that these two adjustments are equivalent to the order of n™'. The benefit of
the proposed approach, however, is that it does not require an approximation of the

bias fanction or computation of the information matrix component.

Hence if we denote the median function of the score as

m(p)=med JU (y; p)], | 4.21)
the proposed estimator will be the solution to the adjusted estimating eguation

UM (p) =U(y; py-m(p)=0. (4.22)

The graph shows that the left-hand side of the above equation is not a |
monotonic function as required in Theorem 3.2.1. Both the score and median come
across the axis at g =1. This is partly because that we did not ignore the constant
term A(p) in the score (4.15) when solving equation (4.22). If A(p) is discarded
(which will not alter the solution to (4.22)), the median function will be monotonic
and of a similar shape to the ones plotted in Figure 4.4 for the dynamic linear
regression model. However, as shown in Figure 4.2, locally (in the neighbourhood of
the interception), monotonicity of the LHS of (4.22) is guaranteed for the current
approach. Therefore in practice, we need to select an initial value so that it falls into
the region in which the adjusted estitnating function is monotonic. If this is not
achievable, it means there is no solution within the stationary region, and we take

p =1 as the estimate.
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As there is no closed form for m(p), the equation (4.22) cannot be solved
analytically. Therefore the iterative algorithm proposed in Section 3.3.3 has io be
used. In our study we found that the speed of convergence of the proposed algorithm
depends on the curvature of the score and the median function. In some cases, the
two curves are almost parallel to each other and very close to the horizontal axis, so
that the convergence can be very slow. But generally speaking, it should rot be
slower than the normal searching algorithm used for ML estimation. We will revisit

this point when we discuss the estimation results in Section 4.2.4.

4.2.3 Experimental Design

An important aspect of our model specification is the structure of the
exogenous regressors. We conducted our simulations based on the following two

design matrices:

X1: An intercept and a linear time trend. This is a most coramonty used
design matrix in the unit root literature. We include it in order to compare the
proposed MU estimator with the maximum marginal likelihood estimator, which is

another bias-reduced estimator.

X2: The first five sets of eigenvectors corresponding to the eigenvalues

(sorted in ascending order) of the matrix:

W=((1+p*)~2p0)", (4.24)
where
1 1 0 .- 0 O]
1 0 1 0 0
o010 - 00
0=, . . S
o 00 .- 01
000 1 1]

115

Chapter 4. Adjusting Marginal Likelihood Score Equation for MU Estitators

. 1 2 (2i-DU- '
These 5 eigenvectors are: g, =—F and g =J—; cos( i ;(1{ l)x, i=1,2,..,T

and j=2,...,5. This design matrix was first considered by Durbin and Watson
(1950). In this case the DW test is the approximately uniformly most powerful test.
King (1985a) and Dufour and King (1991) among others, used it as an extreme case
in which the OLS residuals from the regression approximate the true disturbances
almost as well as the GLS residuals. We included this design mainly to isolate the
impact from the number of regressors in the model from the structure of the design
matrix. In Chapter 5, we will include a range of other design matrices when we study
the MU estimator based on inverting a significance test.

. The numbers of observations used were 20 and 60. The true values of p were
0.95, 0.8, 0.6, 0.4, 0.2, 0, -0.2, -0.4, -0.6, -0.8 and -0.95. As the distribution of p is
invariant to the values of § and ¢, they were set to be one in the simulations. 2000

replications were conducted.

4.2.4 Results

The bias and risk of the OLS estimator D, the profile likelihood estimator
P s the maximum marginal likelihood estimator P uc. and the proposed estimator

P wew are reported in Table 4.1a and Table 4.1b.

Our results first verify the well-known bias problem associated with
estimation of the autoregressive coefficient. The downward bias of the OLS
estimator is more serious when there are more regressors in the model and/or for
large positive p values. For example, for p=09 and a sample size of 20, the
median biases of P, are -0.36 and -0.63 for X1 and X2, respectively. The bias
decreases as the sample size increases but is still quite serious for a sample size of
60. It is also revealed that the estimator proposed by Beach and MacKinnon (1978)
(P ) is generally less biased than Pows but the difference is minimal particularly

for a sample size of 20, while the marginal likelihood estimator P, is able to
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reduce the bias of p,, quite significantly especially for X1 and a sample size of 60.
But the bias is not completely eliminated. For a sample size of 20 and large positive

p, there is still some room for improvement.

When the sample size is 60, for both design matrices, the proposed estimator,
Pew» successfully comected the bias in p,,. The new estimator is almost exactly
median-unbiased for all p values. For example, when p =09, the median biases of
Doys are reduced from -0.1 and -0.14 down to zero when using P gy instead of Doy
for X1 and X2, respectively, while the biases in the marginal likelihood estimator
Doy are 0.02 and -0.03. For moderate positive and negative p values, the new
estimator does not over-correct the bias of the OLS estimator. The median biases for

all negative p values are essentiatly 0.

When the sample size is 20, the new estimator also successfully removed the
bias in Py, for X1, while Py, and P, remain quite biased. The bias correction
of the proposed method is quite substantial for large p values, For example, the
median biases of P gy for p =095, 09, and 08 are -0.02, -0.02 and 0, respectively;
In contrast, the biases of P in this case are -0.38, -0.36 and -0.28, respectively. We
notice that in this case the biases of D, are -0.1, -0.09 and -0.05 while pp, is
essentially as biased as P ;. For X2, however, when p falls into the neighbourhood
of 1 (i.e., p>085), although the biases in Po,5 and P are significantly reduced, a
small bias still remains. For moderate p values, however, 9,z is able to correct the
bias successfully. For example, the median biases of Pyew for p=095, 09, and 03
are -0.12, -0.07 and -0.01, respectively. In contrast, the biases in J ;5 are -0.68, -0.63
and -0.53. The other (w0 esmators, Py, and Py did not correct bias in Pors

effectively in this case and remain seriously biased.

The remaining bias in the new estimator for X2 when T =20 may be caused
by the following problem: we notice that for this design matrix, when p is close to 1,
both the score and its median function become very close to 0 (ie., almost flat and

very close to the horizontal axis). When we try to solve equation (4.22) for the new
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estimator, the iterative algorithm becomes less reliable. An improved algorithm may
be needed for this case. This problem goes away when the sample size goes up to 60.

Another important feature of the proposed new MU estimator is its much
smaller RMSEs compared with those of other estimators. This advantage is for all
positive p values and for both design matrices. For example, when g is 0.95 and 0.9,
the RMSEs of P, are essentially 50% of those of p,,s and pp,, for X1, and less
than 50% for X2, for a sample size of 60. The MU estimator has slightly bigger
RMSEs than other estimators for négativc p values, results for which are arguably of

less interest to econometricians than those for positive serial correlation

4.3 Approximately MU Estimation of the Dynamic Linear
Regression Model

4.3.1 Dynamic Linear Regression Model

It has been argued by Dufour and Kiviet (1998), among others, that the linear
regression with AR(1) disturbances is a model usually too simple to capture the real
dynamic nature of the economic time series. Instead, the first-order dynamic linear
regression model (ARX(1)) is a more powerful modelling device which is more
consistent with the data when the relationship is genuinely dynamic (e.g., see also

discussion in Hendry and Mizon, 1978).

Therefore in this section, we develop a MU estimation procedure for the

coefficients of the model:
)’r=7ﬂ’:-|+x:ﬁ"‘ent=1= srre T’ (425)

where y, is the dependent variable (observed at time ¢), x, is a k X1 vector of fixed
regressors at time ¢, B is a kxl vector of coefficients, and the disturbances

e=(e....ey) ~ N(0,0°1;). The coefficients 7, f and ¢ are unknown.
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The first-order dynamic linear regression model is frequently used in
econometric practice. Examples of such applications, to name a few, include the
studies of real wages and employment by Altonji and Ashenfelter (1980) and Geary
and Kennan (1982), of consumption and income by Hall (1978) and Flavin (1981),
and of aggregate price and output by Froyen and Waud (1984). As pointed out by
Nankervis and Savin (1987) and Kiviet and Dufour (1997), empirical researchers still
Jargely rely on the usual inference procedures (mainly based on the LS principles), as
they are still asymptotically valid under certain regularity conditions, although the
magnitude of the approximation errors is unknown. Dufour (1996) showed that the
approximation error can be arbitrarily bad on certain subséts of the parameter space.
The only comfort researchers may find is in the thought that the committed error will
get smaller as the sample size gets larger. The relevant question how large 2 sample
is needed in order to feel confident is usually left unanswered. Moate Carlo evidence
reported in Kiviet (1985) and Nankervis and Savin (1985, 1987 and 1988b) among
others confirmed that the error caused by using the usual inference procedures in

small samples can in fact be quite substantial.

In particular, the existing popular estimators of ¥, such as the OLS estimator,
the three-pass least square estimator (Taylor and Wilson, 1964), the approximate
MLE and the estimator suggested by Hatanaka (1974) are all biased in small
samples. Attempts have been made to approximate the bias function of the OLS
estimator and to correct the bias by subtracting the estimated bias from the original
estimate, see e.g., Sawa (1978) and Grubb and Symonds (1987). As the bias function
can only be approximated to a certain order (usually T~ or T7%), these bias

corrections are not exact in smal! samples.

Kiviet and Phillips (1990, -1992) proposed an exact inference procedure
obtained by applying least squares to an angmented regression model with artificial
regressors introduced. Kiviet and Dufour (1997) and Dufour and Kiviet (1998)
further developed this approach and extended its use to more general models. Exact
similar tests and comservative confidence intervals were developed for 7.

Simultaneous inference about ¥ and other regression coefficients were also

considered. But the performance of the point estimator constructed via this approach
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has not been supported by many simulation studies or empirical applications, hence
its small sample bias and efficiency remain unclear. Andrews (1993} conjectured that
a MU estimator can be constructed based on the exact similar test statistic developed
by Kiviet and Phillips (1992), but the idea has not been pursued any further.

The application of the marginal likelihood approach in this model provides a
different way to reduce bias and improve estimation efficiency. The application of
the MGL approach in this model first appeared in Levenbach (1972) and Bellhouse
(1978). The marginal likelihood function was derived based on the maximal
invariant principle similar to the one outlined in Section 4.2.2. Recently, Grose
(1998) and Mahmood (2000) examined marginal likelihood estimation in the
dynamic linear regression model via simulation. They concluded that although the
MGL score is not well-behaved in small samples, the MMGL estimator is less biased
than its counterpart based on the profile likelihood. But the bias is not completely
eliminated. The effectiveness of bias reduction depends on the design matrix and

parameter values.

An important difference when applying the adjustment given by (3.10) to this
model is that, the information about the lagged dependent variable coefficient cannot
be completely isolated from those about the nuisance parameters as in the linear
regression model with AR(1) disturbances. As a result, the distribution of the MMGL
estimator depends on nuisance parameters. As the nuisance parameters cannot be

eliminated by invariance arguments, the adjustment given by (3.10) has to be revised.

4,3.2 Marginal Likelihood Score

In order to derive the marginal likelihood function of 7, it is necessary to
make further assumptions about y, so that the distribution of y can be determined.
Following Nankervis and Savin (1985), Inder (1985, 1987) and King (1996}, the

stationarity conditions can be stated as:

1. The stability of E(y,) at t=1and 2 such that E(y,)=E(y,),and
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2.Var(y,) isthe same forall r=1,....7.

Inder (1985) showed that the above conditions are observationally equivalent to
assuming that y, is generated by

n=xBfA=p)+e/1-7. 4.26)

It should be noticed that there are other approaches to defining a distribution for y,
which differ from using the mean-stationarity assumptions given above. For
example, Grose (1998) discussed two other approaches to generating y,, while
Dufour and Kiviet (1998) adopted a more general set of initial conditions which

allows y, to be either fixed or follow an arbitrary distribution.

Thus assuming |'y| <1, model (4.25) and (4.26) can be written as
I'(y)y=XB+D(y)e, 4.27)

where I'(y) is the T XT matrix

((1-7) 0 0 - 0
-y 1 0
rp=| © 71
.1 O
1 o —y I_
and D=diag(‘}1"%+y, i, 1, ..., 1). Equation (4.27) implies that
y=T"(NXB+T()D(P)e, (4.28)
where
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_%1—-70 0 0-
%_y) 1 0 :

r''y= }’2
%) /1.-?0 7 1
: S DU |

y
i A—n r oyl

Ifwelet X() =T (X and

1y p eyt
. - ’ i Y i 4 ...7,1'—2
QN =T"NDN'T "N =—| ¥ - " - |
1~y . ’
|-‘J‘,','f"—l 7 1
(4.28) can then be written as the general linear model
y=X@)B+u, u ~ NO,6"Qy). (4.29)

Bellhouse (1978) showed that the marginal likelihood function for y is proportional

to

X' DX =y XX DX X y) (4.30)

L,(r:y) e T o
et mxof s

where

st = )"[Q"(7’)—Q"(?’)X(}’)(X(Y)'Q"(?’)X(Y))"’X(J’)'Q"(T)}y
=g'Q (Y,

in which # is the GLS residual vector from the regression of (4.29) assuming

covariance matrix Q(y).
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Grose (1998) derived the score function for ¥ based on the log of (4.30),
which is given by

0 =rr{(B-BYX, (1))~ 5 PO

TL2m<ﬁ'n-'(y)X,,(r)Zi)-m(zz'n,"cy)ﬁ)+2(a’X,(y)2?) . @3D
fZQ"(y)ii . w'i

in which

B=X' X' XY,
B=(Xp)yQ'MXmy' Xy ),
P=Q' (-0 MXMX@YQL' DX XYQ' (),

D gy 9T
X, (9= 3y X=-T(y) 3y X,

4_ Q7'M
er =—_§5’_' )

and Z')’ =By and B= By are the OLS and GLS estimators of J respectively, while

i=y-X(7) f? and H#=y-X (y)f)’ are ihcir corresponding residual vectors.

Grose (1998) showed that the expectation of the marginal likelihood score
for y is not 0 in small samples, ie., the estimating function (4.31) is not mean-
unbiased. This score is also not information biased in the sense that its variance is not
equal to the information matrix. The small sample deficiencies of the score may lead
to a less-than-ideal MMGL estimator for some design matrices, as reported in Grose
(1998). One possible improvement is to calibrate the score towards mean-
unbiasedness by using corrections such as the one proposed by McCullagh and
Tibshirani (1991) (see also Mahmood (2000)). But this approach is subject to the
criticism that there is a lack of link between mean-unbiasedness of an estimating
equation and mean-unbiasedness of the resulting estimator, as discussed in Chapter

3. We argue that correcting the median bias of the score may be more effective.
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4.3.3 Accounting for Nuisance Parameters

In order to adjust the score equation according to (3.10), we need to find the
median function of G(y), given by

m(y) = med((Q(y:V)y ~ NT(NXB. Q)] 4.32)

In Section 4.2, we showed that in the linear regression model with AR(1)
disturbances, the marginal likelihood score in equation (4.12) can be expressed as a
ratio of two quadratic forms in normal random variables, therefere Imhof’s (1961)
algorithm can be used to compute the median function exactly. We notice that (%)
in (4.31) is the sum of two such ratios plus a constam. Hence it is impossible to use
Imhof’s algorithm directly to ccinpute its median function. It might be possible to
derive the characteristic fanction of the sumn of the ratios and numerically invert it to
calcuiaie the median. But it would be computationally costly. The other method is to
approximate the median function via simulation. Our simulation: results showed that
the median function (4.32) is seriously non-monotonic in ¥ and it violates the

conditions needed for {3.10) to deliver a unique estimate.

To overcome this difficulty, we slightly revise the proposed method. Instead

of solving equation (3.10) for varying ¥, i.e.,
0(y;7)-med Q¥ 7]y ~ N(r'fm XB,o*QrNI=0,
we consider it at a fixed point ¥ = 7,:
0(y;70) —med[Q(y: 7o)y ~ NI (N XP, " AU =0, (4:33)
which is equivalent to inverting the median function
m, (y)=med{Q(y;¥o)ly ~ N(TT(NXB, Q)] (4.34)

at the point O(¥; %)
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This revised method admits another interpretation. As Q(y;7,) can be treated
as proportional to the {(marginal likelihood based-) LM test for the hypothesis
Hyy=1y, against H;:y <7, (see e.g., Grose (1998)), function (4.34) represents the
median function (50% critical value function) of this test statistic under the null and
the alternative hypotheses depending on . Therefore the estimator can be regarded
as the result of inverting the median function of the one-sided score test statistic at a
fixed-point y,. This was consistent with the second method of constructing MU

estimators discussed in Chapter 3, which will be our focus in Chapter 5.

If we choose 7, =0 in (4.31), the score can be simplified as

Q) =0(7: )],

m(&'L&)+(m— 1T, () XB

g

ee
Y (mMLM +(m—1)MT, ()X (XX)"' X )y
y'My ’

= const +

(4.35)

= const.+

where é=i(0), M=1-X(XX)'X’, L, is the TxT matrix with the left lower-
diagonal elements being 1 and all other elements being 0, and I, (0) is identical to L,

only except with the top left element being 1 instead of 0.
Different from (4.31), (4.35) is a ratio of two quadratic forms in normal

random variables y plus a constant. Therefore the median function m(y) can be

found by solving
T
Pr[Y 2,67 <0]=05 (4.36)
i=1

for m(y) using Imhof’s (1961) algorithm, where A.’s are the eigenvalues of

A—m(y)M, in which

A=mMLM +(m-1)MT,(O)X(XX)"'X’,
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2 - . . .
and &’ are independent chi-square variables with some non-central parameters 8,

depending on £ and given by
S =[P QEOXBE, i=1, ..., T,
in which P is the orthogonal matrix of eigenvectors of A—m(y)B.

Figure 4.4 presents some median functions m(y) with S set to be vector of
constants for some design matrices with 20 observations. The median functions are
strictly monotonic (and almost linear) for all these designs, indicating that estimating

ecuation (4.33) will deliver a unique solution.

In the linear regression model with AR(1) disturbances, the marginal
likelihood score (4.12) can be written as a ratio of two quadratic forms in terms of
the disturbances, i.e., u ~ N(0,0°Q(p)). Hence its median function (4.32) or (4.34)
is invariant to the nuisance parameters . But the median function of (4.35) will not
be invariant to 3, because the second term in the nominator in (4.35) cannot be
transformed into a quadratic form in terms of « (i.e., free of .the non-central

parameter that depends on f3). Therefore strictly speaking, m(y) should be written as

mp(?’)-

If 8 is known, te solution to equation (4.33) is an exactly MU estimator of
. But in practice, when B is not known, we have to replace B by its consistent
estimator and apply the method iteratively. Therefore as a result, the new estimator
of ¥ will only be approximately MU. This iterative bias-correction towards an
approximately MU estimator is similar to the approach adopted by Andrews and
Chen (1994) and Fair (1996). The practical difficulty when applying the proposed
method is that the median function has to be computed for every different set of

estimated 8 values. We have designed the following iterative algorithm to save on

computational costs:
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Step 1. Calculate 3, and f3,,; from (4.25).

Step2.Use %, as the initial value to search for ¥,, such that

Q¥ = My e (7,), where my (*») indicates that the median function

(4.34) is computed with fi’ou treated as the true parameter.

Step3. 8, is cobtained by regressing y-¥,5,, on X, where
Y. =()’|; seey y?‘-l)"

Step 4. Go back to Step 2, use 7, as the initial value to search for ¥, with f?z

used in the median function computation.

Our experience suggests that there is no need to continue the iterations after
Step 4, as the replications after that bring little change to the estimate. So ¥, can be
used as the final estimate. In our simulation studies, we also found that the two-
iteration version of the proposed method is at least as fast as the searching algorithm
(such as Secant) used in the ML or MMGL estimation procedures.

43.4 Interval Estimation

Unlike in the linear regression model with AR(1) disturbances, in which the
autoregressive parameter is usually the nuisance parameter, the lagged dependent
variable coefficient is more likely to be the parameter of interest in the dynamic
linear regression model. Therefore a confidence interval is often required apart from
point estimation in practice. As the distributions of the estimators are not
approximated very well by asymptotic normal or ¢ distribution in small samples (e.g.,
see Nankervis and Savin, 1985, 1987, 1988b), we construct confidence intervals
based on bootstrap principles. Efron (1985, 1987) outlined several ways of
constructing bootstrap confidence intervals. The most popular ones are the percentile

method and the percentile-r method, see also discussions in Beran (1987), Hall

127

Chapter 4. Adjusting Marginal Likelihood Score Equation for MU Estimators

(1988, 1994), Efron and Tibshirani (1993), Davidson and Hinkley (1996). Here we
apply the percentile-# method to the OLS estimator and the proposed MU estimator.

Nankervis and Savin (1996) de\}eloped a bootstrap version of the ¢ testin a
model with an intercept and a time trend. The method of computing the confidence
intervals in our study is very similar to theirs. First we approximate the distribution
function of the estimator ¥ by generating B bootstrap samples and compute

¥lil, i=1, ..., B, for each sample via the method described above. These estimates

are then normalised using the estimated mean and standard error SE(7), i.e.,

Ay e, } . E N

1= (71— 2L FUD) [SED), (4.37)

B
where the standard error is estimated by the usuat bootstrap estimate,
o~ 1 . 1 A
SE®) = (—— X (il 2D (4.38)
.B - B B B

The percentile- confidence interval is then given by

Pri{y - SE@) Sy +iSEP)) L a, (4.39)

where ¢ is a given confidence level, and f%, f..% are the /2 and (1-a){2quantiles

of the bootstrap distribution of 7.

We would expect that since the small sample bias of ¥ is effectively
corrected by 7 ,y» the bootstrap confidence interval based on the new estimator
should also have better coverage probability than the one based on the OLS

estimator.
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4.3.5 Experimental Design

We conducted two sets of Monte Carlo studies to examine the smail sample
performance of the proposed estimator and compare it with the OLS esitmator. The

first set includes the following design matrices:

X1: Anintercept and a linear time trend.

X3: An intercept, a time trend and an AR(1) regressor with o =08.

X1t and X3 have been studied extensively in time series literature and
different methods have been suggested to correct the estimation bias. In particular,
Grubb and Symons (1987) examined X3 and found that the bias of the OLS

estimator depends on the autocorrelation factor in the regressors.
The second set includes two economic time series:

X4: A constant, quarterly Australian Consumer Price Index (CPI) commencing
1959(1) and the same series lagged one quarter.

X5:  The first T observations of Durbin and Watson’s (1951) example involving
the annual consumption of spirits in the UK. from 1870 to 1938 which
consists of a constant, annual data on the price of spirits and household

income.

These two design matrices represent economic data from two different
countries. While X5 is based on annual data, X4 is comprised of quarterly data. The
CPI series in X4 are highly correlated but smoothly evolving. In fact both design
matrices were used in King (1996) and Grose (1998) among other studies.

The sample sizes were set at 20 and 40. The foliowing y values were used:
y =09, 08, 07, 06, 035, 04, 02, 0, —02, —05; All results were based on 1000
estimates. For the confidence intervals, the confidence level was set at 90%. In each
replication of the experiment, 200 bootstrap samples were drawn from the DGP
given the estimate of ¥, to estimate the empirical percentiles of the ¢ statistic. The

coverage probabilities were based on 1000 confidence intervals.
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4.3.6 Results

We first, in Tables 4.2a and 4.2b, report a set of results assuming f# known
and without using the iterative correction proposed in Section 4.3.3. This experiment
was designed to examine the impact of the nuisance parameter 3 on the effectiveness
of the proposed procedure. The median functions were computed at §=0. Table
4.2a presents the estimation results for X1, X3 and X4 also assuming §=0. The
OLS estimators were found to be seriously downward-biased for these designs,
especially for moderate to large positive y values. In contrast, the new estimator ¥
successfully removed the (median-} bias in the OLS estimator completely for all ¥
values. The risk (i.e., RMSE) of the neﬁv estimator is also considerably smaller than
that of the OLS estimator for large ¥. However, this advantage is superficial as the
new estimator was calculated as if  were known, which gives it an unfair advantage
over the OLS estimator and makes the comparison not meaningful. It nevertheless
showed that with 8 known, the proposed estimator (the solution to equation (4.33))
is exactly MU. We would expect when the iterative algorithm is used, in which the
true J is replaced by its consistent estimator, the proposed method would at least

produce an approximately MU estimator.

Table 4.2b shows that if the median function computed at one § value is used
in the estimation of a mode} with different # values, the results differ. For X5, we
found that the resulis are somewhat invariant to 8. Although the median function
was calculated for 8=0, the estimates computed for the models generated under
other B values are also almost MU. But this is not the case for some other design
matrices such as X 1. If the A value is misspecified, the performance of the estimator

without using the proposed bias-prevention algorithm deteriorates.

Estimation results based on the iterative algorithm assuming £ uwnknown are
reported in Tables 4.3a — 4.3¢. The bias of the OLS estimator varies with the design
matrix as well as the magnitude of 7. For many design matrices, it seems the bias is

most serious for moderate positive ¥ (<0.6), a pattern also reported in Grose (1998)
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and Mahmood (2000). For example, for X1 and T =20, ¥, has downward biases
of 0.17 and 0.15 for ¥ =04 and 0.2, respectively. For X3 and X5, however, the
biases of J,, are quite large for ali positive and moderate negative y values. For
example, 7o, has downward biases of 0.35 and 0.33 at =09 and 0.8 for X5 and
T=20.

The new estimator based on the iterative algorithm effectiveiy corrects the
bias in ;s for all these design matrices and sample sizes considered. Although the
new estimator is not exactly MU as the one assuming § known, the remaining biases
are minimal compared with those of ¥,,;. However, the biases are not completely
removed for large ¥ values for X5 and T = 20. For example, at ¥ =09 and 0.8, ¥
still has a bias of 0.17 and 0.16, respectively. While for X4, the new estimator seems
to over-correct the bias in 7, for moderate positive . For example, ¥ ,,, has an
upward bias of 0.05 and 0.03 at y =06 and 0.4 for this design matrix with 20
observations. But the magnitude of all these remaining biases of ¥,y are by far
smaller than those of #,,5. When the sample size increases to 40, the new estimator
becomes almost exactly MU for all 7 values for X1 (e.g., see Table 4.3b). This
indicates that if the unknown f is replaced by its estimate, the iterative algorithm
produces an approximately MU estimator, and the approximation seems to be fairly

accurate especially for T =40.

Because of the substitution of 4 by its estimator in the algorithm, we would
expect the new estimator to have a larger standard error, and therefore a larger
RMSE compared with the one assuming f§ known. Hence a smaller bias in 7 v than
in 7, might, to some degree, be offset by this increase in standard error. However,
the RMSE results in Tables 4.3a — 4.3¢ indicate that the total risk of 7, is smaller
than or similar to that of the OLS estimator. For the design matrices and 7 values
where bias correction is significant, the reduction in RMSE by the new estimator is
also substantial. For example, for X5 and T =20, the RMSE of 4,5 is reduced by
more than 25% at ¥ =09,0.8 and 0.6.
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As a by-product, we found that the S estimation results based on the new
algorithm are also superior to those based on the OLS method. The biggest
difference lies in the estimation of the intercept. The (median-) bias of the new
estimator is much smaller than that of the OLS estimator almost for all design
matrices. For example, for X3 and 7=20, the new estimator of S is almost
unbiased for <06, while the OLS estimator (especially of the intercept) is

seriously upward biased (see Table 4.3c).

The confidence interval results are reported in Table 4.4. The coverage
probabilities of the percentile-f intervals based on the two estimators were compared.
It is quite apparent that the intervals based on the new estimator have approximately
the correct coverage rate (90%) for all design matrices and ¥ values, while the
intervals based on the OLS estimator have coverage rates typically lower than the
nominal level, especially for positive ¥ values. This provides a good example of
improving the coverage properties of the confidence interval by correcting the bias in
the point estimator. We would expect that the bias correction to the confidence
interval suggested by Efron (1987, 1988) should lead to improved accuracy similar to
those achieved by the proposed method.

44 Concluding Remarks

This chapter provides two examples of applying the method of constructing
MU estimators by adiusting the estimating equations. The adjustment to the marginal
likelihood score in the linear regression model with AR(1) disturbances can be
computed exactly using Imhof’s (1961) algorithm, and the new estimator is shown to
be almost free of bias in most cases. In the dynamic linear regression model, the
median function of the marginal likelihood score is not invariant to nuisance
parameters, so we have to substitute these nuisance parameters by their consistent
estimators and adjust the estimating equations iteratively. As a result, the new
estimator is approximately MU. It was found that the remaining bias in the new
estimator is minimal in most cases compared with that of the OLS estimator. The

RMSE of the new estimator is generally smaller than that of the OLS estimator
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especially for positive parameter values. The confidence intervals based on the new

estimator were shown to have better coverage probabilities than the ones based on

the OLS estimator.

These two examples lead us to believe that correcting the median bias in an
estimator by adjusting the estimating equations towards median-unbiasedness can be
effective. The proposed method does not require knowledge of the form of the bias
function. Our results show that the bias correction can be quite accurate and the
overall risk of the new estimator tends to be smaller than that of the biased
estirators. The drawback of the proposed method lies in the difficulty of computing
the median function, and therefore the difficulty in examining criteria given in
Lemma 3.3.3, which are essential for the adjusted estimating equations to deliver
unique estimates. In Chapter 6, the estimators derived in this chapter will be used as

inputs into hypothesis testing and forecasting procedures.

Although the MU estimator based on adjusting the marginal likelihood score
equation was shown o work well in the examples we examined, we are going to
change our focus in Chapter 5 to the second approach we developed in Chapter 3 for
constructing MU estimators. This is for tw-: reasons: The first is that the likelihood
function and the scores are non-standard when the errors follow a random walk
process. The limiting distribution of the marginal likelihood score in this case is not
clear. Therefore it is not easy to extend the first method to cover the interesting case
of 2 unit root. The second reason is that the computation burden of this approach is
quite heavy and the convergence of the iterative procedure developed in Section 3.3
can be slow for some design matrices. Therefore in the next chapter, we examine the

second approach to constructing MU estimators proposed in Chapter 3 — inverting

the median vunction of a significance test statistic.
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Table 4.1a

Medians and RMSEs of 5,5, Prues £ 4se @04 P, in the Linear Regression with
AR(1) Disturbances for Design Matrix X1

%
o
Y
g
b
0
e
F £
H h
i
T
&
iy
i

T=20 T=60

P “Pas Pom  Pun P Pos P Prow Pre
0.950 0576 0.602 0.858 0931 0831 0.844 0524 0953
(0.421) (0.396) (0.213) (0.187) (0.134) (0.124) (0.078) (0.073)

0900 0539 0579 0.813 0.878 0.802 0.811 0.882 0.903
(0.393) (0.361) (0.213) (0.193) (0.116) (0.110) (0.082) (0.083)

0.800 0517 0.531 0.748  0.802 0.757 0717 0.781 0.800
(0.321) (0.301) (0.211) (0.205) (0.110) (0.107) (0.087) (0.090)

0.600 0352 0370 0.546 0.598 0.529 0.531 0.587 0.598
(0.277) (0.271) (0.222) (0.232) (0.106) (0.107) (0.096) (0.097)

0.400 0209 0214 0368 0.393 0348 0351 0398 0400
(0.239) (0.241) (0.225) (0.241) (0.107) (0.107) (0.102) (0.104)

0200 0.055 0056 0.187 0.20] 0.146 0.145 0.186 0.199
(0.208) {0.211) (0.206) (0.221) 0.106) (0.106) (0.102) (0.104)

0.000 -0.108 -0.112 -0.001 0.001 -0.035 -0.035 -0.001 -0.000
(0.194) (0.198) (0.200) {0.212) (0.102) (0.102) (0.101) (0.103)

0200 -0.270 -0.276 -0.191 -C.198 0.223 -0225 -0.198 -0.200
(0.171) (0.175) (0.183) (0.193) (0.100) (0.101) (0.102) (0.104)

0400 -0.446 -0450 -0.385 -0.400 -0.413 -0414 -0394 -0.400
(0.156) (0.159) (0.172) (0.180) (0.092) (0.092) (0.094) (0.096)

-0.600 -0.611 -0.617 -0574 -0.597 -0.596 -0.597 -0.583 -0.599
(0.141) (0.140) (0.158) (0.162) (0.082) (0.080) (0.084) (0.084)

0800 -0.778 -0.792 -0.76% -0.797 0.792 -0.792 -0.785 -0.796
(0.145) (0.112) (0.129) (0.127) (0.063) (0.061) (0.064) (0.063)

0900 -0.871 -0.885 -0.874 -0.899 -0.887 -0.891 -0.887 -0.899
(0.097) (0.086) (0.098) (0.094) (0.052) (0.050) (0.052) (0.051)

0950 -0.916 -0.932 -0924 -0.945 -0.940 -0.942 -0.940 -0.952
(0.082) (0.068) (0.078) (0.087) - (0.039) (0.035) (0.037) (0.035)

The MMGL estimates were computed via the Constrained Optimization
module in GAUSS.

All experiments are based on 2000 replications.
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Table 4.1b

Medians and RMSEs of o, Prs P 20d P, in the Linear Regression with
AR(1) Distarbances for Design Matrix X2

T=20 T=60

p ;50!.5 ﬁFML E)MML ﬁnﬂv ;)OLS ;)FML ﬁM’ML ﬁm
0950 0.274 0304 0757 0.826 0773 0805 0918 0.956
(0.701) (0.667) (0.310) (0.281) (0.190) (0.165) (0.089) (0.080)

0900 0268 0303 0740 0.829 0746 0765 0874 0903
(0.649) (0.621) (0.297) (0.270) (0.170) (0.150) (0.095) (0.094)

0.800 0256 0281 0717 0992 0.671 0.683 0.783  0.805
(0.568) (0.544) (0.299) (0.283) (0.148) (0.139) (0.102) (0.106)

0600 0.159 0.170 0529 0.588 0488 0497 0586  0.600
(0.457) (0.448) (0.307) (0.309) (0.136) (0.131) (0.102) (0.104)

0400 0055 0060 0365 0405 0317 0320 0401 0.410
(0.364) (0.366) (0.289) (0.306) (0.123) (0.122) (0.i108) (0.110)

0200 -0078 -0.083 0.173 0.197 0.123  0.123 0.193 0.198
(0.305) (0.314) (0.271) (0.292) (0.125) (0.125) (0.114) (0.116)

0000 -0202 -0223 -0.013 -0.006 0060 -0.060 -0.002 -0.001
(0.248) (0.262) (0.250) (0.268) 0.115) (0.116) (0.110) (0.112)

-0.200 -0335 -0366 -0.185 -0.199 -0.253 -0.253 -0206 -0.209
{0.201) (0.218) (0.223) (0.241) - 0.111) (0.112) (0.110) (0.112)

-0.400 -0485 -0.508 -0.372 -0.389 0429 0431 -0394 -0.400
(0.177) (0.179) (0.201) (0.213) (0.094) (0.094) (0.097) (0.099)

-0.600 -0.647 -0.665 -0.574 -0.598 -0.611 -0.613 -0588  -0.597
(0.158) (0.148) (0.181) (0.188) (0.081) (0.081) (0.086) (0.087)

-0.800 -0.798 -0.822 -0.768 -0.799 -0.797  -0801 0787 -0.799
(0.118) (0.107) (0.i36) (0.135) (0.060) (0.060) (0.064) (0.064)

-0.900 -0.880 -0.902 -0.869 -0.899 -0.893 -0.867 -0.889 -0.902
(0.106) (0.079) (0.105) (0.097) (0.050) (0.046) (0.050) (0.049)

-0.950 -0928 -0944 -0924 -0.948 -0.940 -0.945 -0941 -0.951
(0.091) (0.064) (0.087) (0.076) (0.039) (0.035) (0.038) (0.037)

Notes: RMSEs are reported in the brackets beneath the medians.
All experiments are based on 2000 replications.
The MMGL estimates were computed via the Constrained Optimization

module in GAUSS.
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Table 4.2a
Medians and RMSEs of ¥, and 7,,, in the Dynamic Linear Regression
Assuming 8 Known, for Design Matrices X1, X3 and X4; T =20, 8= (0,0,0)’

X1 X3 X4

4 Yous Yuw Yous ? v 7ous Y wu
0.90 0.55 0.90 0.52 0.90 0.56 0.89
(0.43) (0.28) (047) (027 (043) (0.28)

0.80 0.50 0.79 045 0.80 0.50 0.79
039 (0.28) 044) (0.28) (0.39) (0.28)

0.60 0.37 0.59 0.31 0.61 0.36 0.60
034) (0.30) 039 (0.30) 035 ©31)

0.40 0.22 041 0.16 040 0.21 0.40
(030) (0.30) 0.34) (0.30) 031 (©31)

0.20 0.05 0.19 3.N0 0.20 0.05 0.19
027y (0.28) 030y (0.29) (0.28)  (0.30)

000 -0.11 0.00 -0.16 -0.01 -0.11 0.00
0.24) (0.26) 0.27) (0.28) 0.26) (0.29)

Notes: All experiments are based on 2000 replications.

RMSE’s are reported in the brackets beneath the medians.

137

T T D e TN

-

# ]

A T e o B A Al A s 3 T S5, e M A o T S L B T 7 B W o A A ok it v or R

SN et

Table 4.2b

Medians and RMSEs of 7, and 7, in the Dynamic Linear Regression
Assuming § Known, for Design Matrix X5; T =20

B =000 B=(,1D B=1(2501,001)
Y Y ots ¥ wu 7 ous 7 v ¥ ois ? wv
0.90 057 089 056 090 0.56 0.89
0.45) (0.28) (0.45) (0.29) (045) (0.39)
080 450 080 050 079 050 0.79
(046) (0.29) 042) (0.29) 042) (0.29)
0.60 0.33 0.50 034  0.59 0.34 0.59
(0.38) (0.31) (0.38) (0.31) (0.38) (0.31)
0.40 0.17 039 0.18 0.40 0.18 0.39
0.34) (0.30) 0.34) (0.31) (0.34)  (0.31)
0.20 002 020 000  0.19 0.00 0.19
(0.30)  (0.29) 0.30) (929) (0.30) (0.29)
000 -0.14 000 015  -0.01 015  -001
0.27) (0.28) (0.26) (0.28) (0.26) (0.28)

Notes: All experiments are based on 2000 replications.

RMSE’s are reported in the brackets beneath the medians.
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Table 4.3a
Medians, Means and RMSEs of 7,,; and 7,,, in the Dynramic Linear
Regression Assuming S Unknown, for Design Mairix X1; T=20, 8= (L1}’

Table 4.3b
Medians, Means and RMSEs of 7, and 7,,, in the Dynamic Lirear
Regression Assuming § Unknown, for Design Matrix X1; T=40, 8= (1,1)’

'.1_(.tfr,'ﬁ).p_-_l";-_ﬁ;.:‘_:}._ﬁ.;.ﬁz_ﬁ.w_I T L L] '

y Estimation Results i ¥ Estimation Results
Median Mean RMSE § Meodion Mo RNSE
7 Y ots ¥ mu YoLs ¥ mu Yos Y s g ¥ % ors ¥ w0 P ors T Soms P
090 058 034 056 082 043 030 § 020 060 089 069  0.29 028  02?
080 055 075 0.54 075 039 028 : 080 065 079 0.67 079 026 0.6
060 042 056 041 055 027 015 i |
¢ 060 051 059 050  0.58 0.17 0.1
040 023 038 022 037 028 022 g
020 005 0.9 005  0.18 027 025 ; 040 031 040 030  0.39 0.18  0.15
010 001 012 001 ol 025 0.6 i 020 012 0.19 012 0.9 0.18  0.17
000 012 002 011 001 095 026 ; 010 003 0.9 004  0.10 0.17 017
010 -019 -011 019 -0.10 023 025 ! 0.00 -006  ©.00 -0.06  0.00 017  0.17
020 -025 -0.18 025 -0.18 022 025 i -0.10  -0.15 -0.10 €6.15  -0.10 016 0.16
040 -045 -040 043 -038 020 023 i 020 -023 -0.19 023 019 015 017
060 -0.61 -0.60 059 -0.57 0.18 022 040 042  -0.40 041 -039 0.14 0.16
080 079 -0.80 076 076 0.15 0.18 060 -060 -0.60 059 -0.58 0.13  0.14
- g 080 -079 -080 077 078 011 012
3 Estimation Results (Median) E ‘
3013 BNEW /3 Estimation Results (Median) _
Y B, 2, 3, 5, P _ P
% ¥ ﬁ 1 ﬁz . ﬁ 1 ﬁ 2
0.90 2.009 1.080 0.987 1015 s
0.80 1.948 1215 0.731 1.219 i 09 1.911 1.028 0.706 1.080
0.60 2,037 1.453 0.878 1.113 g 08 1.860 1.106 0915 1,036
0.40 2.181 1.288 1.003 1.045 0.6 1.956 1253 0.941 1.047
0.20 2.164 1.182 1.008 1.028 : 04 2,071 1.159 0.991 1.020
0.10 2.092 1.117 0.994 0.989 i 0.2 2.081 1.100 1.001 1.013
0.00 2.101 1.110 0.991 1.008 I 0.1 2.074 1.070 1.010 1001
-0.10 2.086 1.081 0.998 1.000 2 0.0 2.049 1.056 0.993 1.001
-0.20 2.058 1.044 1.004 0.981 -0.1 2.024 1.042 0.978 0.999
040 2.000 1024 . 0.967 0.990 0.2 2.035 1.023 1.006 0.990
-0.60 1.965 0.998 0.961 0.984 -04 2.019 1.007 1.007 0.991
' 0.6 2.007 0.994 1.011 0.989
-0.80 1.974 0.978 0.992 0.979 038 991 0.084 {007 0,988

Notes: All experiments are based on 1000 replications. Notes: All experiments are based on 1000 replications.
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Table 4.3c

Medians, Means and RMSEs of ¥, and ¥ ,,, in the Dynamic Linear
Regression Assuming 8 Unknown, for Design Matrix X3; T=20,
: B =(25,05,05)

Regression Assuming S Unknown, for Design Matrix X4; T =20, f=(1,L1)

Table 4.3d
Medians, Means and RMSEs of ¥, ; and ¥,,,, in the Dynamic Linear

7 Estimation Results
Median Mean RMSE

Y Y ois 7o Yous ¥ 7 ous ¥ o
090 0.786 0.897 0.757 0.890 0.284 0.206
080 0.646 0.797 0.603 0.791 0.351 0.194
0.60 0310 0.561 0.292 0.573 0.385 0.220
040 0.156 0.381 0.144 0.382 0.377 0270
020 0021 0.188 0.020 0.198 0319  0.259
0.10 -0.054 0.032 -0.061 0.079 0302 0.242
000 -0.128 0.015 0113 0.009 0.284 0.256
-0.10 -0.199 -0.098 -0.189  -0.089 0.269 0.251
020 -0.282 -0.200 -0.276  -0.191 0.221 0.246
-040 -0443 -0.394 0429 0376 0.194 0.228
-0.60 -0.616 -0.596 -0.595 -0.576 0.173 0.213
-0.80 -0.789 -0.802 -0.761 -0.767 0.155 0.193

[ Estimatien Results (Median)
ﬁ oLs ﬁ NEW

¥ 5 B, Ji By B, B

0.9 92334  0.836 0.057 65431 0598 0.22¢

0.8 63.186 1.013 0.154 39.854 0.613 0.413

0.6 45.235 0.797 0.258 26.664  0.528 0.494

0.4 36.647  0.657 0.255- 25722 0515 0.517

0.2 31.599 0.564 0.212 25058 0.501 0.505

0.1 30468 0.542 0.200 25599  0.509 0.495

0.0 28,730 0515 0.205 24147 0498 0.514
-0.1 27976  0.496 0.169 24738 0496 0.504
-0.2 26.253  0.448 0.181 27567  0.500 0.504
-04 27.632 0.624 0.183 25.868 0.503 0.501
-0.6 32200  0.511 0.196 267768 0502 0.501
-0.8 28.640  0.509 0.266 25273 0.502 0.501

7 Estimation Results
Median Mean RMSE

14 7 oLs ¥ mo ¥ ous ¥ o ¥ ous 7 wu
0.90 0.725 0.865 0710 0.826 0.240 0.210
080 0.615 0.820 0592 0.760 0260 0.180
060 0480 0.630 0464 0570 0.230 0.170
0.40 0.220 0430 0200 0420 0300 0.180
0.20 0.000 0.210 -0.010 0.190 0320 -0.230
0.10 0050 C.110 -0.050 0.110 0280  0.240
0.00 -0.150  0.000 -0.140  0.000 0.280 0.240
-0.10 0230 -0.090 -0.220 -0.080 0.270 0.250
020 -0310 -0.200 -0.300 -0.180 0.250 0.250
040 -0490 -0400 0470 -0.380 0.220 0.230
060 0630 0570 0.610 -0.550 0.190 0.230
080 -0.800 -0.790 -0.770 -0.760 0.15¢  0.190

/3 Estimation Results (Median)
ﬂ OLs ﬁ NEW
7 B, B, By B B, Bs

0.90 8.574 2.453 -0.522 0.114 1.018 0.967

0.80 9.012 2.433 -0.435 0.513 1.015 1.006

0.60 10,798 2.320 0.035 0.003 1.116 0.726

0.40 9.392 2.489 0.083 0.750 1.031 0.895

0.20 7.663 2.643 -0.193 0.393 0.996 1.036

0.10 8.593 2.583 -0.326 1.322 0.991 0.984

0.00 8.519 2.617 -0413 1.268 1.017 0.977

-0.10 7.980 2.613 -0.463 0.842 1.014 0.956

-0.20 7.566 2.622 0.531 0.556 1.028 0.948

-0.40 8.222 2.537 -0.524 1.395 0.986 0.981

-0.60 8.193 2.446 -0313 1.466 G.96 0974

-0.80 7.425 2.477 -0.579 0415 1.021 0.937

Notes: All experiments are based on 1000 replications.
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Regression Assuming § Unknown, for Design Matrix X5; T =20, f=(1,1)

Table 4.3e
Medians, Means and RMSEs of ¥, and ¥,,, in the Dynamic Linear

‘Table 4.4
Coverage Probabilities of the Bootstrap Confidence Intervals at the 90%
Confidence Level Based on 7, and 7,,, in the Dynamic Linear Regression
Model for Design Matrices X1, X4, X5

Yy 09 08 06 04 02 01 ¢ 01 -02 -04 06 -08

X1, T=20

OLS 0.880 0.823 0.718 0.779 0.820 0.854 0.875 0.862 0.902 0.899 0.895 0.856
MU 0.894 0.890 0.878 0.896 0.888 0.903 0.896 0.901 0.895 0.905 0.884 0.856

X1, T=40

OLS 0.882 0.852 0.777 0.830 0.850-0.855 0.871 0.888 0.899 0.912 0.894 0.846
MU 0.880 0.898 0.882 0.900 0.898 0.899 0.902 0.896 0.903 0.898 0.886 0.865

X4, T=20

OLS 0.904 0.888 0.786 0.741 0.789 0.831 0.818 0.849 0.877 0.900 0.907 0.857
MU 0.903 0.895 0.908 0.900 0.894 0.899 0.900 0.898 0.894 0.896 0.877 0.833

7 Estimation Resulis
Median Mean RMSE
4 ¥ ous ¥ mu Y ous 7 mu Y ors 7wy
09 0.553 0.731 0.524 0.687 0454 0.333
0.8 0470 0.636 0445 0625 0444 0318
06 0317 0486 0310 0492 038 0287
0.4 0.175 0.359 0.171 0345 0.339 0.281
0.2 0.010 0.193 0.012 0.175 0.299 0.266
0.1 -0.050 0.108 -0.046 0.104 0.278 0.266
0 -0.163 -0.024 -0.154 -0.017 0272 0.262
0.1 -0.229 -0.105 -0.218 -0.093 0.245 0.255
02 -0.308 -0.208 -0.297 -0.192 0.233 0.255
04 0475 -0406 -0.457 -0.382 0.202 0.235
06 -0.637 -0.595 -0.603 -0.561 0.179 0.226
0.8 -0.800 -0.790 -0.770 -0.760 0.150 0.190
3 Estimation Results (Median)
Bos Bew
4 By B, B, 5, B, B,
0.9 13.924  3.283 1.316° 8.443 2.041 1.349
0.8 4,953 2.084 2.269 2.984 1.333 1.798
0.6 1.704 2.354 1.151 1.218 1.174 1.390
04 1.496 1.260 1.440 1.240 0.660 1.417
02 0.650 1.550 1.246 0.662 0.982 1.265
0.1 1.768 0.840 1.169 1.735
0.0 0.805 2.185 0.372 0.849
-0.1 0.258 1.377 1.301 0.513
-0.2 1.164 1.632 0.525 1.248
-0.4 0.610 1.223 1.099 0.787
-0.6 0.761 2.112 (0.085 1.001
-0.8 7.425 2.477 -0.579 0415

X5, T=20

QLS 0.504 0.572 0.662 0.727 0.805 0.840 0.839 0.844 0.872 0.897 0.890 0.876
MU 0.769 0.870 0.894 0.898 0.890 0.901 0.903 0.900 0.891 0.887 0.869 0.872

Notes: All experiments are based on 1000 replications.
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Chapter 5

Inverting Point Optimal Invariant Tests for Median-
unbiased Estimators

5.1 Introduction

In Chapter 4, we constructed a median-unbiased (MU) estimator for the linear
regression model with stationary AR(1) disturbances by adjusting the marginal
likelihood score equation. In this chapter, we extend the model to inciude the
important case of random walk disturbances. We apply the second method discussed
in Chapter 3, i.e., constructing a MU estimator by inverting the median function of a
significance test statistic to this model. Some new MU estimators of the
autoregressive parameter are developed and their small sample biases and risks are

compared with those of the conventional estimators via Monte Carlo simulations.

Because random walk disturbances are included in the model specification,
the autoregressive coefficient is now restricted to a closed set {-1,1). In this case,
global mean-unbiasedness is not achievable as the mean of any estimator would bias
towards the boundary for large positive or negative parameter values (Andrews,
1993). Therefore median-unbiasedness becomes a very important measure of
impartiality of the estimators, see discussions in Andrews (1993), Stocks (1994),
Fuller (1996), and Maddala et al. (1998). On the other hand, due to the discontinuous
likelinvod function when g moves from the stationary region to its boundary, many
other bias-correction methods may not work over the whole parameter space. We
show that the proposed method is not affected by this problem and it produces a MU

estimator for all values in the parameter space.

When applying this method, there are many different test statistics that we
can choose to invert. They can either be tests for serial correlation or tests for random
walk disturbances. It is well known that when constructing a confidence interval by

inverting a test statistic, the risk of the interval depends on the power of the test. We




Chapter 5. Inverting the POJ Tests for MU Estimators

attemnpt to use this mode) to illustrate a similar relationship between the small sample
power properties of a test and the small sample performance of the resulting MU

estimator.

In particular, we point out that Andrews’ (1993) estimator breaks down for
some design matrices due to the non-monotonic median function of the OLS
estimator. We propose to invert the point optimal invariant (POI) test instead, as a
remedy to this problem. After the exact median functions of different test statistics
are examined via Imhof’s (1961) algorithm, it was found that the POI test statistic
has a monotonic median function for positive parameter values and for all design
matrices considered, while other tests do not. Therefore the POI test statistic is

recommended for constructing a MU estimator in this model.

The POI test can have non-monotonic power for certain design matrices as
p—>—1 when testing the random walk disterbance hypothesis. We derive the
conditions for the test to have non-monotonic power, and hence a non-monotonic
median function. In this situation, we suggest using a median-envelope that is based
on the grid inversion method developed in Chapter 3, in place of the median function
of a single POI test. It is shown that the median-envelope approach can overcome the
difficulty and produce reliable estimates. We also identify an easy-to-use criterion of

when to use which method given a design matrix.

The chapter is organised as follows. In Section 5.2, we specify the initial
conditions of the model and set out the design matrices in our study. In Section 5.3,
we point out the problem that Andrews’ estimator may suffer from. By examining
the median functions of several tests, we show that these tests can also encounter the
same problem. In Section 5.4, we study the small-sample power properties of POI
tests and derive the conditions for them ic have non-monotonic power curves. We
also introduce the concept of the median-envelope. In Section 5.5, we compare the
performance of different estimators based on different test statistics and disclose the
relationship between the power of a test and the property of the resulting estimator.
In Section 5.6, we examine the robustness of the proposed estimator to non-normal

errors. The chapter ends with some concluding remarks in Section 5.7.
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5.2 Model Specification

The model of concern in this chapter is essentially the same as the one in
Section 4.1, except that we now need to specify a different initial condition for the

random walk case, We restate the model here,

y, =xB+u, ¢=1....T)
u =pu,_, +&, & iid N(0,0%),

where y, is the dependent variable (observed at time ¢), x, is a k£ X1 vector of fixed
regressors, [ is a k x1 vector of fixed coefficients, and 4, is a random disturbance.

The coefficients B, p and ¢ are unknown.

The initial condition plays an impcertant role in studying inference procedures
in random walk disturbances models. Me¢:hods that avoid the problem by discarding
the first observation or condition on the first observation may cause a loss of
efficiency in the estimation as discussed in Beach and MacKinnon (1978). On the
other hand, a fixed starting point, if chosen too far away from the deterministic trend
line, might have an adverse effect on the finite sample results of the estimation and
testing in the unit root regression, see for example Pantula et al. (1994) for a

discussion. Therefore we do not restrict the initial error to be a constant.

When specifying the initial conditions, one would expect the distribution of
the estimators of concern to have a smooth transition when o moves from the

stationary region to its boundary. The most popular choices of initial conditions are

the following two sets:

Assumption I: uy~N[0,0%[(1- p")) if |p} < 1, and
Assumption 2.1: u, is an arbitrary constant or with an arbitrary distribution

which is independent of ¢,,...,&; ifjp|=1,or
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Assumption 2.2: if |p| =1, un-N(O,dz) and independent of &,,...,&; ., where

d is an unknown constant,

Andrews (1993), Hansen (1999) and many others used assumption 1 and 2.1,

while Berenblut and Webb (1973), Dufour (1990) and Dufour and King (1991),
among others used assumption 1 and assumption 2.2. In this chapter, we try to be
consistent with Dufour and King (1991) and choose assumption 1 and 2.2, in order to
use some of their results about POI tests in our study. This set of assumptions is more
restrictive than 2.1, bu: the calculation of the exact distributions in our study requires
the specification of the distribution of the start-up value. However, in Section 5.6, we
will show that the estimation procedures developed in this chapter are robust to error

- misspecifications and therefore the actual distributton of the initial error is not

crucial.

It is also well known that the small sample performance of the estimators and
tests depend on the number of regressors and choice of regressors. We attempt to
include a range of design matrices that cover most of the important cases considered
in the previous studies in terms of estimation bias and power of tests. In our study,
we choose 8 different design matrices, as representatives of typical economic time
series. Throughout this chapter and Chapter 6, we will refer to them frequently,

therefore we specify them here. These design matrices can be classified into two sets.

The aim of the first set is to examine the possible extremes of differences in
power between the DW test and the POI test, in order to detect the impact of this
difference on the performance of the resulting MU estimator. We would expect that
in those design matrices that favour the POI test in terms of power should also favour
the MU estimator based on the POI test statistics in terms of unbiasedness and
efficiency. This set includes the following 5 I'X% design matrices with
T=20,40, 60and k=2, 3, 4, 5:

X1: An intercept and a linear time trend. For stationary serial correlation
testing, the POI test does not have a clear power advantage over the DW test for this

desigr . We include it in order to compare the proposed MU estimator with Andrews’
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estimator and other bias-reduced estimators. It also allows us to apply the proposed

new estimator in testing for a unit root in Chapter 6.

X2: An intercept, a linear trend and a stationary AR(1) regressor. The

autoregression coefficient in the third regressor is set at 0.8.

X 3: An intereept, a linear trend and a random walk regressor. This design

~ maiix and X2 are frequently encountered by economic researchers. They have

also been used in studying the estimation and testing of p, for example, by Spitzer

(1979), Park and Mitchel (1981), Nankervis and Savin (1987) and Atukorala (2000).

X7& XB8: Watson’s X matrix' with 3 and 5 rogressors respectively. The
regressors are a,, (q +a,.)/\5, s (@ +ar_k+2)f\5, where aq,,...,a, are the
eigenvectors corresponding to the eigenvalues of A, (given by (4.24)) arranged in
ascending order. This design matrix is a well known extreme case in which the OLS
residuals are poor estimates of the real disturbances and the DW test has poor small
sample powers compared with those of the POI tests (e.g., see King, 1985a). These
regressors were utilised in the Monte Carlo studies by King (1985a), Kramer and
Ziesel (1990), Dufour and King (1991) and Bartels (1992) among others to
investigate the small-sample properties of the autocorrelation tests in the linear
regression model, and by King (1996) and Goh and King (1999) to investigate tests

on the lagged dependent variable in the linear dynamic regression model.

The second set of design matrices are comprised of some typical economic
data. All series are quarterly data that are associated with various seasonality
features. These features may have a big impact on the performance of estimators and

hypothesis tests.

X4: A constant dummy, the quarterly Australian Consumer Price Index

(ACPI) commencing 1959(1) and the same index lagged one quarter up to k-2

quarters as regressors.
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X5: A constant dummy, quarterly Australian private capital movements and
guarterly Australian Government capital movements commencing 1968(1) and the

government capital movement lagged one guarter.

X6: X5 with quarterly Australian retai} trade as an additional regressor.

Among these 3 designs, the quarterly ACPI is a weakly seasonal series while
the two capital movement series are strongly seasonal with two seasonal peaks per
year. The capital movement series also exhibit some large fluctuations, while the
quarterly Australian retail trade series is much more well behaved, showing moderate
seasonality. The seasonal patterns of the regressors of X6 are not too distant from

those of the ‘seasonal’ components of Waston’s X matrix.

5.3 Which Test Statistic to Invert

5.3.1 Andrews’ Estimator and Its Problem

Andrews (1993) proposed a MU estimator for the first-order
autoregressive/unit root model with a drift and/or a time trend by inverting the

median function of the OLS estimator, i.e.

Pa =m_l(bom), (5.1
where

- r oA L ~Z

Powis = Z“:”:-l Zu,_, s (5.2)

=2 =2

i=I-X(XX)"'X)y, : (5.3)
and

m(p) = median] P, slu ~ N(0,6°Z(p)). (5.4)
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Andrews’ method was originally designed for the simple autoregessive model
without any exogenous regressors, But if extra regressors are included in the model,
similar procedure can be used with the observed series in the calculation replaced by
the least squares residuals. The estimator in this case is the one-step Cochrane-Orcutt
estimator, but we still refer to it as p,,; as it involves the OLS regression of the
residuals. As pointed out by MacKinnon and Smith (1998), estimator (5.3) can be

seen as inverting the median function of the non-pivotized ttest, i.e., Dy —~ 2o-

The median function m(p) can be computed exactly using algorithms such as
Imhof (1961), as we can write the OLS estimator as a ratio of two quadratic forms in

terms of the normal errors:

T T o,
Pows = E“:u:—l Z“:—:
2 2

= ' M’AMufu’M ‘BMu
=&R'"M’AMRe[/e'R'M'BMRe (5.3)
where
0 % - O 00 -« 0
Yy : 0 1
A='- . . ] B=
: . 0 4 R ’
0 - % 0 0 0 1
M=I-X(XX)'X’ G-8)

it 0 0
Rpy=| PI=7 o (5.9)

-p’.“-—l/ -7 P e g

Andrews (1993) conjectured that his method could be appiied to the models
with exogenous regressors. Now we show that his method can break down for some

design matrices. As a counter example, consider Watson’s X matrix: X7 and X8,
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Figure 5.1 shows that the median functions of the OLS estimators are seriously non-
monotonic for both positive and negative p values. In particnlar, if we apply
Andrews’ method here for Watson’s X matrix with 3 regressors and a sample size of
20, and if the original OLS estimate is p,, ;= 0.2, say, then Andrews’ MU estimator
P =m" (Do) can either be 0.5 or 0.9, as shown in Figure 5.1. Based on the sample
information, it would be impossible to choose one from these two estimates. Tais
shows that Andrews’ estimator is inapplicable in this circumstance. The median
functions of the OLS estimator for different sample sizes and different numbers of
regressors of Waston’s X matrix are also presented in Figure 3.1. For a sample size

of 60, the median function is still not monotonic.

Figure 5.1 Computed Median Functions of p,,; for Watson’s X Matrix
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The median functions of the OLS estimator for some other design matrices
are presented in Figure 5.2. While the median function is monotonic for design
matrices X1, X2, X3, X4 and X35, it is also non-monotonic on both the positive and
negative side for design matrix X6 and for T =20, 40. Another important feature is
that unlike X1, with just an intercept and a time trend as regressors, for which the
median function is almost linear, for design matrices X4, X5 and X6, the median

function bends downwards when g is close to 1. As the median function of the OLS
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estimator is just the 50% critical value function of the test statistic p— p, it is natur
to link the non-monotonicity of the median function to the non-monotonic power
curve of this test (the unpivotized version of the ¢ test). For Watson’s X matrix and
X6, the power curve of this test drops in the nejghbourhood of both p=1 and
£ =-1. On the other hand, for design matrices simch as X4 and X5, the test lacks in
power for large positive p. That is why the median function for these design
matrices, though still monotonic, goes flat when p goes to 1. We revisit this convex
curvature of the median function in Section 5.5 and relate it to the performance of

Andrews’ estimator for different design matrices.

Figure 5.2 Computed Median Functions of p,,,; for X5 and X6, T=20, 40
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The non-menotonic median function associated with the OLS estimator leads
us to examine other available tests and look fur one that has a monotonic median

function (or equivalently, power curve) for small samples and for all design matrices.
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5.3.2 Median Functions of Different Tests

When we construct a MU estimator of 0 by inverting a test statistic at its
50% significance level, the test can either be a test for serial correlation (testing
H,: p=0 against autocorrelation alternatives) or a test for random walk disturbances
(testing H,:p=1 against stationary alternatives). There is a large literature on these
tests. For a thorough review on testing for serial correlation, see King (1987c¢), and
for a complete literature survey on unit root testing, see Phillips and Xiao (1999).
Based on Theorem 3.3.1, only test statistics with a monotonic median function can
be inverted at a fixed point. Apart from this criterion, ease of computation of the
median function can also be an attractive feature. Many of these tests can be
expressed as quadratic forms of the normal errors or ratios of two quadratic forms.
We can apply the popular Imhof (1961) algorithm to evaluate the median function
with any desired level of accuracy. Otherwise we have to approximate the median

functions by simulation.

We briefly review three popular tests designed to test for serial correlation or
for random walk errors. For each test, where applicable, we consider the fixed-point
inversion method and the grid inversion method developed in Section 3.5. The
median functions for these test statistics are computed or simulated for different

design matrices.

5.3.2.1 Durbin-Watson Test.

The DW test is the most popular test statistic for testing for autocorrelation in
the disturbances against the null of independent errors. Many researchers have
examined the small-sample power properties of the DW test. Non-monotonic power
problem in small samples has been reported in several studies. Tillman (1975),
Kramer (1985), King (1985), Zeisel (1989), Kramer and Zeisel (1990) and Bartels
(1992) all examined the power functions of the DW test for diffcrent design matrices.
In particular, Kramer and Zeisel (1990) and Bartels (1992) investigated its limiting

distribution as p — | or —1. They reported that the limiting power could drop to 0
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for some design matrices (e.g., X7 and X 8). This non-monotonic power seems to
occur more often on ihe positive side of the origin. Criteria based on the limiting
power of the test were developed by Kramer and Zeisel (1990) and Bartels (1992} to
determine the appropriateness of using the DW test for a given der:: matrix. Dufour
(1991) considered inverting the quantile functions of the DW ¢ j#istic to construct
exact confidence intervals. We are more interested in the mediar <anction of the DW

statistic.

Similar to the OLS estimator, the DW test statistic can also be expressed as a

ratio of two quadratic forms in terms of &, i.e.,

T T
DW=) (z,~z _,)Z/ZZ,2
=2 1=

= eR'MA,, MRe[/e'R'MRe,

where z is the QLS residunal vector and

As the DW test is usually used to test the hypothesis at p, =0, we only apply
the proposed Method I (fixed-point inversion). Therefore the MU estimator based on
the DW statistic will be:

T T
Py =mp[ Y (z,~2,,) / Y 2. (5.12)
2 2

The median functions of the DW test for different design matrices are
presented in Figure 5.3. They depict a similar pattern to those of the OLS estimator.
The median functions are not monotonic for design matrices X6, X7 and X83.
Therefore the estimator (5.12) is not reliable for these design matrices, It reminds us

that although inverting the DW test will produce accurate confidence intervals (see
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e.g., Dufour, 1990), it may not produce reliable point estimates for some design

matrices.

Figure 5.3 Computed Median Functions of the DW Statistic for X5, X7 and
X8, T=20, 60

median

Based on discussions in Sections 3.3 and 3.4, our results on the median
functions reported in this section verify the findings reported in Kramer and Zeisel
(1990) and Bartels (1992), that the DW test may have a non-monotonic power curve

in small samples for some design matrices.

5.3.2.2 ¢ Statistic
Theoretically, the ¢ statistic:
t =V (Do) (Pors ~ Po) (5.13)

can also be used to test hypotheses about p. It is well documented that the null

distribution of this ¢ statistic will not be Student ¢ when p, =1, and that asymptotic
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normality can be a poor approximnation for large positive o values even when the
sample size is fairly large (e.g., see Dickey and Fuller, 1979 and Nankervis and
Savin, 1983, 1987, 1988b). For models with just a drift and/or a linear time trend,
Dickey and Fuller (1979) derived its limiting distributions and tabulated its quantites.
Nankervis and Savin (1987, 1988b) analysed the discrepancies between the finite
sample distribution of the ¢ statistic and the Student ¢ distribution approximation.
Stock (1991) inverted the median function of the limiting distribution of this test to
construct confidence intervals and an asymptotically MU estimator for p. Hansen
(1999) took a similar approach to constructing confidence intervals that have

asymptotically correct coverage probabilities.

We cannot express the ¢ statistic as a ratio of two quadratic forms of normal
errors. Therefore simulation is needed to approximate its median function. On the
other hand, it is possible to use both fixed-point inversion and grid inversion based

on the ¢ statistic. i lie twa MU estimators so constructed are given by:
Prto = Mol Poss = PoIV (Pors) ) (5.14)

where the pull value p, is fixed, and P, which solves the following equation for

fed
My (2) = Poss = PV (Pous ). (5.15)

Here m,(, ,(p) and m,,,(p) stand for the median function of the # statistic for a fixed

null value (Method 1) and a2 median envelope for changing nuli values (Methed 2),
respectively. However, based on the resuits reported in Nankervis and Savin (1985)
and Hansen (1999), the distribution of the ¢ statistic depends on the null value
especially in the neighbourhood of unity. Therefore the fixed-point inversion will not
deliver reliable estimates for the current model, as the median functions of the
statistics under different null hypotheses will not be of the same shape and parallel to
each other. Therefore we only report the grid-simulated median functions for

different design matrices in Figure 5.4,
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Our results showed that the median functions of the ¢ test statistic are not
monotonic for most of the design matrices we examined. This non-monotonicity was
verified in Stock (1991) and Hansen (1999) for X1. In their studies, only confidence
intervals were considered, so this non-monotonicity only caused disjoint or empty
intervals in some cases. But if we want to avoid non-unique point estimates, we
should not use the ¢ test statistic for constructing a MU estimator for these design
matrices. We will revisit the non-monotonic power of the ¢ test in Chapter 6 and

propose a remedy for the problem.

Figure 5.4 Simulated Median Functions of the  Statistic for X1, X2, X7 and

X8, T =20
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5.3.2.3 LM Test.

LM tests can have good power properties when used for diagnostic testing,

see e.g. Godfrey (1988) for a survey. LM tests for the unit root hypothesis or the
random walk error hypothesis were considered by Sargan and Bhargava (1983) and
Schmidt and Phillips (1992) among others. The one-sided LM test is also closely
linked to the LBI test developed by King and Hillier (1985). Here we examine the

median functions of the one-sided version of the score test. We discard the
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information component term, as it is a constant and can be ignored in the proposed

algorithi. So the test statistic is simply the score s(p)]p", where p, is the pre-

determined nuli value.

Following Beach and MacKinnon (1978), the score funciion of the profile

likelihood is:
Sc(p) = p’ +ap® +hp+c, (5.16)

where

T T
a=~(T-2) Y d,, [{T-D 4, ~ &),

=2 =2

b=[(T-Di; - Tiﬁil -—iﬁf] ¢ —D(i iy =),

=2 =1 1=

T
e=T3 i, [IT-DCE i -

=2 1=

We can also express the test statistic as a ratio of two quadratic forms of normal

CITOIS!
Sc(p) = €'R'P'A;, PRe/e'R'P'B;_PRe 5.17

in which the two middle matrices are given by

-p 0 0
(T-)-p(T~-2) (T-Dp*-(T+Dp . :
}] '.. .

Ag =

. =

(T-Dp°=(T+hp 0
0 (T-D-p(T-2) -p|
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0o 0 .- 0

0 T-1 "-. :

BSc= : . . X

T-1 0

0 ]
P=I-X(XZ'p)X)"' X T (p). (5.18)

Figure 5.5 presents the median functions computed by the grid inversion
method, for the one-sided LM test statistics for different design matrices. Stmilar to
the picture of the ¢ test, these median functions are mostly non-monotonic. Therefore
the LM test is not recommended for constructing a MU estimator in the current

model.

Figure 5.5 Computed Median Functions of the LM Test Statistic for X1, X4

and X5, T=20
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We conclude this section by reiterating our main findings, that the median
functions of the OLS estimator, DW test, ¢ test and LM test statistics can all be non-
monotonic for some design matrices, which means that none of these tests is a good
candidate for constructing a MU estimator that can deliver unique estimates for all
design matrices. We are motivated by these findings to consider more powerful

{ests.

160

Chapter 5. Inverting the POI Tests for MU Esiimators

5.4 Inverting Point Optimal Invariant Test

5.4.1 Testing for Random Walk Disturbances by POI Tests

As noted by Honda (1989), there are two approaches to ‘optimal tests’ in
hyputhesis testing when nuisance parameters exist. The first is the use of conditional
distributions, which usually leads to similar tests, and the second appeals to the
argement of invariance. Point optimal tests are most often used in line with the
second approach. In the linear regression model with autocorrelated disturbances,
many researchers have reported that the POI test can have a distinctive power
advantage over other tests in small samples at least for some design matrices. These
include testing for serial correlation (Xing, 1985a, Honda, 1989, Kramer and Zeisel,
1990) and testing for random walk disturbances (Dufour and King, 1991, Phillips
and Xiao, 1998). King (1985a) and Dufour and King (1991) showed that in the
current model, when the design matrix is made up of the eigenvectors of the error
covariance mairix, the POI test is uniformly most powerful invariant. Otherwise, it is
the Jocally most powerful test in the neighbourhood of the pre-selected alternative
point. We would expect the superior small-sample performance of this test can carry

over to the MU estimator based on it.

In order to test hypotheses:

Hy:p=p, against Hi:ip<p, (5.19)
the POI test involves rejecting H, for small values of

P(Po,P) = AE™ (P [5gE™ (1) (5.20)

in which p, is a pre-selected alternative point at which the power is to be maximised,
and &, and &, are the GLS regression residual vectors for error covariance matrices

2(p,) and Z(p,), respectively.
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This is a special case of the POI tests defined in Dufour and King (1991)
which account for more general initial conditions. Their test is based on the
assumption that «, =d,&,, where d, is an unknown parameter. As d, is not
consistently estimable, a preselected d, has to be used when constructing the PO
tost. If we want to have a POI test which is free of this extra parameter, the
transformation group under which a maximal invariant can be derived for the
construction of the POI test has to be enlarged. This not only makes the POI test
more complicated but also affects its small sample power performance. Therefore, in
this thesis, we fix the variance of the initial disturbance to be d, =1. This is less
general but not uncommon in the unit root literature and studies of the linear
regression model with random walk disturbances, see Pantula et al. (1594) for a

discussion.

Another issue is the choice of the alternative point p,. The general approach
for picking the pre-selected alternative point where the power is to be maximised was
outlined by King (1987b). People usuaily pick the point such that the maximised
power is approximately 0.5 or 0.8. King (1985a) and Shively (1988) both reperted
that the POI test that optimizes power at 0.5 is favoured because of the overall
closeness of its power curve to the power envelope. When testing for autocorrelation,
it was shown by King (1985a) that p, =05 and 0.75 are both good choices
depending on whether power is required most for weak autocorrelation or for strong
autocorrelation. For the random walk hypothesis, no clear indication was given in
Dufour and King (1991) on what p, should be. But applying the same principle as in
the autocorrelation test case, if we want to maximise the power for alternatives close
to H, (i.e., for large positive p), p, =05 should be a good candidate. On the other
hand, if we fix the alternative point at p, =0, we would expect the power advantage

is spread more evenly over the parameter space under the alternative hypothesis.
We aiso need to evaluate the median functions of the POI test statistics. It

was shown in King (1985a) and King (1987b) that the POI test statistics in our model

can be expressed as a ratio of two quadratic forms in normal errors:
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(00, p)=WF Z(0) P B 27 (py) P
=R 2 (p,)PRe[ eRE = (p,) B.Re (5.21)
=£A(p,.0)e[€'B(py. p)E,

where P, and P, are given by (5.18) with p replaced by p, and p,, respectively, and
R, and R; are the transformation matrix given by (5.9) under the null and the

alternative hypothesis, respectively.

Hence the median function of the test statistic can be calculated exactly by

solving

T
Pr{d AL <0} =05, : (5.22)

i=l

for m(p), where A4,....,4, are the eigenvalues (including zeroes and muitiple roots)

of
A(Plap)“m(P)B(Po:P)s (5.23)

and &,...,& are independent chi-squared variates with one degree of freedom. This

probability can be evaluated using Imhof’s (1961) algorithm.

54.2 Fixed-point Inversion and Grid Inversion

As discussed in Chapter 3, there are two ways of inverting a significance test
statistic to construct MU estimators, the fixed-point inversion and the grid inversion.
We apply each of these two methods to the POI tests for our model and compare

their effectiveness via simulations. The two estimation procedures are given by:

Method 1: We fix the null value p, at 1, and the alternative value p, at 0.5 or
0. To get an estimate, we simply calculate s(1,0.5) or s(1,0) and use the p for which

the median function m(p) is equal to the sample statistics, i.e.,
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f’:{fu) = .:(|1.05)[5(1s05)] , (5.24)
or
P :('I[.Jo) = :(l:,o}[s( 1,07], (5.25)

where the median function m,, ,,(p) is defined as

100 (P) = median{s(1, p)fu ~ N(0,0° (o). (5.26)

Method 2: We fix the null point at 1, but allow the alternative value to change
from 1 to -1, and calculate the median functions of the series of POI tests s(1, p)
each at the corresponding alternative point p. We denote the new median function by

m,(p), waich is given by,

m,(p) = medianfs(1, p)lu ~ N(0,6°Z(p))]. (527
1t is slightly different from the general method discussed in Chapter 3, in which we
allowed the null value to vary. (5.27) is a more straightforward analogue of the
construction of the exact power envelope by using the POI tests, as discussed in King

(1987b), Elliot (1999) and Podivinsky and King (2000) among others. When the POI

tests are used to construct the power envelope, the power envelope is computed by
(p)=Pr{s(L,p) Sc,lu ~ N©O,6°Z™ ()}, (5.28)

where ¢, is the critical value corresponding to the POI test statistic s(1,0) that

satisfies

Pr{s(L,p) S c,|Hy) =, (5.29)
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where a is the preselected significance level. If we let o be 50%, the median
function in (5.27) corresponds to the 50% quantile function of the POI test statistic
under the series of alternative hypotheses. For convenience, we call the new median
function m_(p) a median envelope for the testing problem. In Section 5.4, we will
discuss the nature of the median envelope in more detail. It is apparent that the
median envelope can be evaluated exactly via the same algorithm used to compute

the median function of a single POI test.

Hence the MU estimator py ,,., which is constructed by the gird inversion

method proposed in Chapter 3, will be the solution to the equation

s(I,p)—m,(p)=0. (5.30)

5.4.3 Median Functions and Median Envelope of the POI Tests

In order to choose a better method from the two for a given design matrix, we
first compute and plot the median functions of the POI test statistics for a fixed
alternative value and for a grid of alterpative values for all design matrices. The
median functions for the POI test with an alternative value at 0 are plotted in Figures
5.5 and 5.6. The median functions of the s(1,0.5) test depict a very similar pattern,

and therefore are not presented.

The fixed-point median functions are monotonic for most design matrices.
Different from the median functions of other test statistics previously examined, the
median functions of the POI test statistic are concave for large positive p.
Heuristically speaking, this indicates a steeper power curve {(which can be seen as the
mirror image of the median function) when p moves away from the null hypothesis.
It verifies the proposition that the FOI test enjoys better small sample power
properties than other tests for these design mairices. We would expect for X1 - X6,
this power advantage of the POI test should lead to a better MU estimator compared

with the ones based on less powerful tests, when the fixed-point inversion method is
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applied. This conjecture -vill be examined in the Monte Carlo studies reported in
Section 5.6.

Figure 5.6 Computed Median Functions of the 5(1,0) Test Statistic for X1, X4,
X5and X6
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Figure 5.7 Computed Median Functions of the 5(1,0) and 5(1,0.5) Test Statistics
for X8,7=20
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For X7 and X8, however, the median functions of the s(1,0) test statistic are
not monotonic, It scems for these designs, a strong positive autocorrelation is not

diffcrentiated from a strong negative autocorrelation. There is a similarity in the two
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ends of the parameier space in the median function. For example, this is shown in
Figure 5.7 for X8 and T =20 and 40. We believe this is caused by the non-
monotonic power curve of the 5(1,0) test on the negative side of H, for these design

matrices.

Figure 5.8 Computed Power Curves of Two POI Tests for X8, T=20.
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In Figure 5.8, we plot the exact power curves of two POI tests for X8 and
T =20. The power of these tests drop to 0 as p — -1. This phenomenon makes it
necessary to apply the grid inversion method to these design matrices. In Section
5.4.4, we define some simple criteria to decide, given a design matrix, whether the
fixed-point inversion method can be applied or the median envelope approach is
needed.

Figure 5.9 presents the median envelopes for different design matrices. The
median envelope tells a different story from that of the median function of a single
POI test. In contrast with all the other tests consiclerecl in this chapter, the median
envelope is strictly monotonic for all design matrices. In particular, for design
matrices X7 and X8, the median envelope is the only method known to us that
produces a monotonic median function. This will at least guarantee that by inverting
the median envelope of the POI test via the grid inversion approach, we can get

reliable point estimates,
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Figure 5.9 Computed Median Envelopes of the POI Tesis for Different Design
Matrices, T =20

Figure 5.9 also shows that the median envelopes of the POI tests are almost
linear in p. This is another advantage of the POI test over other tests. Because in
practice, we can only calculats or simulate the median functions over a grid of p
values, for other values not included, interpolation is needed. So if the median
function is approximately linear, it will make this interpolation more reliable. But for
statistics with non-linear med:an functions, the interpolation is less accurate if the
grid is not fine enough. Sometimes curve fitting is needed to get a reliable median
function. For example, Hansen (1999) applied Kernel estimation to the quantile

functions of the r-test. This will certainly increase the computational cost.

The sharp difference in the shape of the median envelope and a single median
function can be explained by the nature of the median envelope. As each single POI
test s(1, p) reaches the maximal attainable power at p, intuitively, we would expect
the median-envelope to be tangent from below to the median function of a POI test

with a fixed alternative point. This is equivalent to:

med[s(1,p,)|u ~ N(0,6°Z(p, )] < med[s(1, p)lu ~ N©O,6"E(p )] (5.31)
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for any p# p,. The relationship between the median functions of single POI tests
and the median envelopes for X1 and X8 are illustrated in Figure 5.10. The graph

gives us some visual justification fcr the use of the term ‘median envelope’.

Figure 5.10 Median Functions and Median Envelopes of the POI Tests; 7 = 20
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5.4.4 When to Use Whkich Method

It is important for us to define the criteria to determine which method is
applicable given a particular design matrix. The question we need to answer is, given
a design matrix, does the POI test s(1, p;) have a monotonic median fuaction? If the
answer is yes, we would use the fixed-point inversion methed to compute the MU
estimator; otherwise we have to rely on the median envelope approach. We believe
the question is equivalent to the following problem: given a design matrix, does the
Jimiting power of s(1,p,) as g — =1 drop below its highest level? This is similar to
the limiting power problem of the autocorrelation tests such as the DW test when
p =1 (or ~1), which was considered by Kramer (1985), Zeisel (1987), Kramer and
Zeisel (1999) ana Bartels (1992) among others. These studies were concerned with
testing the null hypothesis of p=0. We adopt a similar approach in our thesis to

examine the limiting power of the s(1,0) test as p — —1.

We consider the one-sided test against H,:p <1, which rejects for small

values of s(1,0). The rejection probability can then be expressed as

Pr{u'(A-c,B)u<0}
=Pr{e’R"(A~c,B)Re <0} (5.33)

=Pr[gr.-¢? <0},

where

B=F'3"(DE,
A=1-X(XX)Y'X’,
P=I-X(XE'MHX)y' Xz,

in which R was given by (5.9) and Z7'(I) was given by (5.20). 7, are the

eigenvalues (including zero roots and multiple roots) of
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I'=R'(A~c¢,B)R, (5.34)
where ¢, is the critical value at 1 pre-selected significance level, which satisfies
Pr{s(10) <} =1}=0. (5.35)

As noticed by Kramer and Zeisel (1990), if we let

1 p . pT—l
L. T2
y=| # 1 CA (5.36)
i p:;-l P ' 1 '

¥, are then also the eigenvalues of

VATV % =V(A-c,B), (5.37)

and as p — ~1, the limit of V is given by

[ 1 11 e (=D"]
-1 1 -1 (=T
o= 1T -l 1 ey (5.38)
T-1 )
_("l) 1 |

Foilowing Kramer and Zeisel (1990), if V™ (A - ¢, B) # 0, it must have a rank of one,
and therefore only one nonzero eigenvalue. If this eigenvalue is positive, the limiting
power will be zero, otherwise the limiting power will be one. For the more cominon
case in which V™ (A~c,B) =0, in order to derive the limiting rejection probability,

we replace the eigenvalues ¥, in (5.33) by
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since this does not affect the rejection probability (5.33). The ¥, are the eigenvalues
of '

Y _(a-c.B), (5.40)
1+p

As p— -1,

m (1+p)'V(A-¢,B)=1lim(1+p)" (V-V*¥A-c,B)

(5.41)
=W (A-c,B),
where W~ is given by,
W™ =lim(1+p) ' (V-V")
porl .
[0 1 2 o (T-I-17 ]
1 0 1 - (T-2¢-1"7%{ (5.42)
— =2 1 0O - (T___ 3)(_1)7'—3
T-D=p™ - 0
Therefore the nonzero eigenvalues of the matrix
W (A-c,B) (5.43)

completely determine the limiting power of the test s(1,0) as p — -1.

Hence given a design matrix, in order to decide whether to invert the median
function of a fixed POI test (5(1,0), say), or to invert the median envelope, we only
need to exarnine the limiting power of the test as p ~» ~1. If the limit is 1, it indicates
that the median function of the single POI test is monotonic for this design matrix
and we can use the fixed-point inversion method. If the probability is a small number

(or sometimes 0), then it is safer to use the grid inversion of the median envelope. In
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practice, we only need to examine the smallest eigenvalue of (5.43). As a rule of
thumb, if this eigenvalue is small in absolute value (compared with the largest
positive one), the limiting power will be small, and the median functicn is likely to
be non-monotonic. If the smallest eigenvalue is negative but large in absolute value,

the median function is likely to be monotonic.

Table 5.1
The Smallest and Largest Eigenvalue of Matrix (5.43) and the Limiting Power
of the s(1,0) Test as p — -1

X1 X7 X7 X8 X8
7=20 T=15 T =20 IT=13 T=20

Smallest Eigenvalue -45606 -39 -287 -3.9 -10.88
Largest Eigenvalue  1.277 8716 2960 24492 24578
Power 0.995 0.05 0.085 0.02 0.027

Notes: The limiting powers are based on 20,000 simulations.

Although it is more accurate to work out the exact limiting probability (5.33),
we found for the design matrices considered in this study, this practical criterion
works quite well. For example, the smallest and the largest eigenvalues of the
limiting matrix (5.43) together with the limiting power of the POI tests for some
design matrices are reported in Table 5.1. For X1, the smallest and Jargest
eigenvalues are —45606, 1.277, respectively. This leads to a limiting power of 0.995,
which indicates a monotonic power curve and a monotonic median function of the
5(1,0) test. The smallest and largest eigenvalues for X8 and T=20 are -10.88,
24578, respectively, and the s(1,0) test has a limiting power of 0.027. In this case, the

median function of a single POI test is not monotonic, as shown in Figure 5.7.
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5.5 Comparing the Estimators Based on Different Tests
5.5.1 Experimental Design

In the sections that follow, Monte Carlo studies designed to examine the
small sample performance of the MU estimaiors based on different test statistics are
outlined. We also compare these MU estimators with the more conventional

counterparts in terms of bias and total risk. We conducted three sets of experiments:

i. In the first experiment, we focused on the fixed-point inversion method
and examined the relationship between the power of a test and the performance of
the estimator by inverting its median function. For X1, ali tests have monotonic
median functions and estimators can be constructed by inverting any of them. We
used the following tests; DW test, score tests (Sc(0) and Sc(05)) and the POI tests
(5(0,05) and s5(1,05)) together with Andrews’ estimator. As these tests have
different power properties in small samples, it is interesting to compare the
performance of the MU estimators based on them. We compared their small-sample

bias, variance and RMSE for different o values.

2. In the second experiment, we applied both fixed-point inversion and
median envelope inversion, and compared the two methods, in order to further
disclose the relationship between the power of a test and the properties of the
resulting estimator. For X1 - X6, MU estimators can be computed by either
inverting a single POI test statistic or inverting the median envelope. We compared
these two methods. Andrews’ estimator-was also calculated as the median function of
the OLS estimator is monotonic for these designs. These MU estimators were also

compared with the more conventional counterparts: P, and 0.

3. In the third experiment, we focused on the median envelope method when
other methods cannot be used. For X7 and X8, Andrews’ method breaks down.
Inverting the POI envelope becomes the only option for constructing MU estimators.

We compared the new estimator with g, and p,,, ..

174

Chagpter 5. Inverting the POI T r TSTIMAters

The sample sizes used were 20, 40 and 60. 2000 estimates were calculated for
all the estimators. Their small sample bias and efficiency were compared for

p=1, 095, 09, 08, 06, 04, 02, 0, —04, and--08. As the estimation of p is

invariant to # and o, they were set to be vector of ores and one, respectively.

§.5.2 Estimation Results

The MU estimators based on inverting different test statistics for X1 and
T =20 are presented in Table 5.2. King (19852) among others, reported that for this
design matrix, the power advantage of the POI tests over the DW test is minimal
compared with some other design matrices. This similarity of the powers of the tests
is accurately reflected in the performance of the estimators based on them. Each of
these estimators successfully corrects the bias in g, for p=095, 08, 06. The 6
MU estimators behave rather similarly in terms of mean, variance and RMSE,
although the one based on the DW test appears to have slightly smaller RMSEs
compared with the other five estimators. This is consistent with the findings in King
(1985a) and Honda (1989), that for this design matrix, the DW test has good small
sample power. The RMSEs of p,; have been reduced significantly by all MU
estimators. For example, it is reduced from 0.48 to 0.28 by the MU estimator based
on the DW test statistic for p =095, and from 0.40 down to 0.28 for p=038. This
set of results show that if the tests have similar power properties, the MU estimators
based on inverting their median functions will also have similar small sample bias
and RMSE. For the more interesting case of different tests behaving differently, we

turn to other design matrices.

The results of the second experiment — comparison of Do, Pyye» Andrews’
estimator (2 ,), the MU estimator based on inverting the median envelope of the POIL
tests (05" ) and the two MU estimators by inverting two single POI test statistics
(pMU and MY, ) for X1 - X6 and T =20, 40 are reported in Tables 5.3a - 5.3f.

The estimation results for T =60 are presented in Table 5.4.
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The conventional estimators, p, ¢ and p,,, as shown by many previous
studies, are biased for all designs and sample sizes, especially for large positive p
values. The magnitude of the downward bias not only depends on p, but also on the
design matrix structure. For X6 and T =20, for example, the biases of p, ¢ at
p =1 and 08 reached ~0.66 and —0.49, respectively. p,, . has biases similar to those
of Py for X1, X2 and X3, while for X4, X5 and X6, it is less biased than f,-

The biases of these two estimators become smaller for T = 60.

The two estimators based on inverting a single POI test statistic, pli, and

Piios» behave rather similarly for positive p. Both estimators are essentially MU for
all these design matrices and sample sizes on the positive side of 0. The bias
correction is very effective. For example, for X6 and T =20, the biases in g, at
p=1and 08 are both 0, while the biases in P, are —0.66 and —0.49, respectively.
For sample sizes of 20, 40 and 60, the two new estimators show almost no bias for ali
design matrices. For large negative p values (p=-08 and -095) however, Pris
outperforms PX{ for T=20 and for X3 and X5 in terms of bias-cosrection. Tous
could be explained by the construction of the POI tests. While 5(1,0) is designed to
maximise the power at o= 0, 5(1,05) is designed to maximise its power at p =03,
therefore for regative p values, we would expect the power of 5(1,05) drops more
MU

than that of 5(1,0). The remaining bias in J. 5, is probably due to its lack in power

for large negative p value compared with 5(1,0). When sample size increases, the

difference between the two estimators becomes minimal.

This bias-correction by using MU estimators also results in a significant
reduction in RMSE. Compared with the biased estimators, especially Pows» the
RMSEs of the two MU estimators are much smaller for large positive p values. For
example, the RMSEs of p,,; at p=1, 09, 08 for X5 and T =20 are 0.62, 0.54 and
0.48, while the corresponding RMSEs of E)‘f{,‘fo, are 0.23, 0.24 and 0.26, respectively.
When the sample size goes up to 40 and 60; the RMSES of the new MU estimators
are also smaller than those of p,,s and p,, ., but by a smaller margin. For negative

p values, however, the MU estimators appear to have RMSEs similar to or slightly
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higher than those of @, ;. For example the RMSEs of Plte at p=-06 and -0.8 for
X4 and T =20 are 0.25 and 0.21, compared with those of P, in this case, of 0.17
and 0,14, respectively. The RMSEs of pJ; s, for large negative p values and T =20

are larger than those of Py, as expected. Based on this comparison, we
recommend bﬁfm if a fixed-point inversion method can be used for a given design

matrix, especially when there is no information about the possible magnitude and

direction of the autocorrelation in the disturbances.

When we compare the proposed MU estimators with Andrews’ estimator, we
find the results favour f)f{fm for most cases. For X1, p, performs in a very similar
way to ﬁ:{fo) in terms of unbiasedness. But for all other design matrices and for
T =20 and 40, p, does not eliminate the bias in P, as effectively as pi|, for
moderate positive p values. In the worst case of X4, X5 and X6 and T=20, p, is
still quite biased for p= 06, 0.5, 04, with biases of -0.16, -0.18, -0.17, respectively.
The RMSEs of p, are generally larger than those of ;3:{,‘:'0} for positive £ values,

while similar for negative p values. The difference is most apparent for 0 20.2 and
for X4 and X§. We attribute the inferior performance of p, to the lack of power of
the test P, — 2, as a test for random walk disturbances or a test for autocorrelation
for these design matrices. Although the median functions are still monotonic,
indicating the power curves are monotonic, these median functions are non-linear
and convex on the positive side of 0, as showa in Section 5.3. In contrast to this test,
the POI test 5(1,0) has a concave median funciion in this case, which produces a less
biased estimator. The results from this experiment lead us to believe that there is a
direct link between the power of a test and the efficiency of the point estimator based
on inverting the test statistic’s median function. Therefore, when we choose a test
statistic to construct MU estimators, it is crucial to choose the test statistic with the

best power properties in small samples.

Compared with pXr,,, the estimator py°, which was computed by inverting

the median envelope of the POI tests also performs well for T =40 and 60, as it is

essentially MU for all design matrices and all p values. For negative o values, ﬁ?u
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appears to correct the bias more accurately than f)::l‘fm for X5 and X6. The RMSEs

of p¥¥ are also generally slightly smaller than those of Pl y,, indicating A}’ is a

very reliable estimater to wse jor these sample sizes. But for T=20, £V is not
exactly MU for large positive p. The remaining bias is much smaller than those of
Pous and D, ., but still quite apparcnf especially for X1, X2 and X3. For example,
the biases of ﬁ;j.'” for X1 and T=20 at p=1, 09 and 0.8 are -0.14, -0.08 and -0.06

respectively. However, 2" outperforms DYy, for negative p values, with less bias

and smaller RMSEs for all design matrices. The remaining bias in p¥Y

for large
positive p might be linked to the phenomenon described in Section 5.4, namely, the
odd behaviour of the niedian envelope for X1 and T =20. The median envelope is
not tangent from below to the median functions of the POI tests in the
neighbourhood of 1, although it was expected to be. The bias in A1 is much less for
X 6, for examptle, and the median envelope for X6 is ‘well-behaved’ compared with
that for X1. Therefore, if there is strong evidence for highly persistent disturbances,

then pMV is the preferable MU estimator for small sample sizes; otherwise p5" can

also be used as a reliable estimator with little bias and low risk regardless of design

matrices.

The results from experiment 3 are reported in Tables 5.9 and 5.10, in which
we compare the estimator based on inverting the median envelope of the POI tests,
MY with pyeand P e for X7 and X8, and for T =20, 40, and 60. This design is
usnally used as an extreme case in favour of the POI tests, as the OLS residuals
become very poor estimates of the true disturbances and therefore tests based on
them perform badly. This is precisely reflected in our estimation results. The bias in
Fous 18 appalling. For T=60 and p =1, it still has a bias of -0.64 for X7 and -0.83
for X8. Fronically, in this case when bias-correction i1s most needed, most bias-
correction methods do not work. As mentioned earlier, p, fails to deliver unique
esiimates due to the non-monotonic median function of p,,. The fixed-point
inversion of a single POl test is not applicable as the criteria we set out in Secticn 5.5
are not met. The limiting power of these POI tests as p -1 drop below one.
Therefore the proposed estimator p5’ becomes our only choice. Fortunately, the

results endorse its performance. For T =60, 3" is almost exactly MU for both X7
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and X8 and for all p values, while for smaller sample sizes, Py~ also effectively
reduces the bias in other estimators significantly, but the bias is not completely
removed for p =085, especially for T =20. For example, for X7 and 7=20, pz"
has biases of -0.07, -0.05 and -0.05 at p=1, 0.95 and 0.9, respectively. We argue
that compared with the bjas in other estimators, the remaining bias in D}~ is
ignorable. In the same example, the biases of Dy, are -0.85, -0.79 and -0.69. py”
also has RMSEs that are less than one-third of those of p,,; for large positive p
values and for T=20. The reduction in RMSE is also significant for moderate
positive o values and for larger sample sizes. The only exception is when p=0 or
0.2 and T=20, the RMSEs of p§’ arc slightly higher than those of pg. We
conclude that for Watson’s matrix, where the bias problem in estimating the
autocorrelation coefficient is at its extreme, Z)g” is a good remedy for this

deficiency.

To summarise our major findings from the Monte Carlo studies, we notice
that the estimators based on inverting the POI test statistics effectively correct the
serious bias associated with Py, and D,y for all design matrices. When
constructing an estimator by inverting a test statistic, the bias and risk of the
estimator directly depends on small-sample power properties of the chosen test. The
more powerful POI test, for example, does produce a better MU estimator than other
test statistics for most design matrices, The combination of the fixed-point inversion
and the grid inversion can overcome the difficulty encountered by Andrews’
estimator, and produce a reliable estimator regardless of design matrix structure. In
practice, we recommend that given a design matrix, one examines the limiting power

of the POI tests as described in Section 5.5. If the criterion is satisfied, ﬁf{,‘fo) is the

preferable MU estimator, and if the criterion is not met, p” is to be used.

5.6 Robusiness to Non-normal Errors

In this section, we study the robustness of the proposed estimator to the

disturbances that are non-pormal. The robustness of estimators in autoregressive
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models have been smdied by many researchers. Fiebig et al. (1991) examisied the
robustness of LS estimators for a more general covariance strecture in the linear
regression model. In the unit mot literature, it is weli known that the OLS estimator
and the related Dickey-Fulier-type tests are not robust to misspecification of the error
structure, In particular, Phillips and Peron (1987) and De Jong et al. (1992b) pointed
out that if there is a MA component or if the order of autoregrcssion is misspecified,
the power of these unit root tests can be very low. Or: the other hand, a very
important feature of the median as a location estimator is its robustness to non-
normal errors. We would expect this property to carry over to the proposed MU
estimators. For X1, Andrews (1993) examined his MU estimator and found it to be

quite robust to non-normal errors.

To examine the robustness of p,,,, we do not need to actually compute the
estimates under different error distributions. Instead, we only need to study the
median functions in these circumstances. We focus on the estimator based on the
median envelope in our discussion. The same result applies to the estimators based

an the fixed-point inversion method. Because pF,, is the solution to
s(1, p) —med{s(1, p)lu ~ £ (0,5°%(p))}=0, (5.44)

where f(») is the distribution function of the errors ¢,, and the form of Z(e) reflects
the specification of the error structure. If the median function under different f(e)
and 2(e) are similar to the one under Gaussian AR(1) disturbances, then the solution

to the above equation under different error structures will be similar to the estimates
computed assuming normal AR(1) errors. In other words, the estimator is a robust

one.

Tables 5.6a and 5.6b and Figures 5.11a and 5.11b presents the median
functions of P, and the POX median envelopes defined in Section 5.4 for different
design matrices with 20 observations, under different error structures. The error
structures considered include: 1. Skewed distributions: y3-distribution and the log-
normal distribution; 2. Heavy tail distributions: Student ¢ -distribution with 3 degrees

of freedom and Cauchy distribution; 3. Different error structures: AR(2) errors,
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MA(1) errors and the first-order ARCH errors with the autoregressive parameter set
1o 0.85, which is consequently denoted by ARCH(0.85).

The results show that, apart from the AR(2) and MA errors, the median
envelopes of the POI tests are very robust to all these error misspecifications for both
design matrices with a sample size of 20. Without knowing the eitor structure, it is
impossible to tell if the median en.vclope is computed assuming the normal
distribution. The envelopes are consistently monotonic and almost linear on the
positive side of 0. This leads us to believe that the new MU estimator proposed in
this chapter is very robust to different types of error misspecifications. However,
with MA errors present or if the order of autoregression is misspecified in the
disturbances, the median function is significantly different from the one under
Gaussian AR(1) disturbances. Therefore it is important to test for such
misspecifications in the error structure before applying the proposed estimation
procedure. This precaution was echoed in many previous studies in the unit root
literature, such as Schwert (1987), Nankervis and Savin (1988b), Phillips and Perron
(1988), DeJong et al. (1992b) and Kiviet and Dufour (1997).

Andrews’ estimator, however is not as robust as p,, for these
misspecifications. For large positive p,. the median functions of p,,¢ under Cauchy
distributions and ARCH errors both depart quite a distance from the ones under
normal errors for most design matrices. For X2 and X5, the median function under
2% are also not ciose to the ones under normal errors. In these circumstances,

Andrews’ estimator is more sensitive to the error structures than the proposed one.

5.7 Concluding Remarks

We applied the second approach proposed in Chapter 3 ~ inverting the
median function of a significance test to the linear regression model with AR(i) or
random walk disturbances in this chapter. Andrews’ (1993) estimator breaks down
for some design matrices due to the problem of non-unique estimates, which is

caused by the non-monotonic median function of the OLS estimator. The same
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problem also plagues the DW test, 7 test and the LM test for various design matrices.
It was shown that the POI test has a monotonic and convex median function for most
design matrices on the positive side of p. This reflects its good small sample power
properties. An easy-to-use criterion based on the limiting power of the test is given to
determine if the median function of a single POI test statistic is non-monotonic given

a particular design matrix.

If the median function of a single POI test is monotonic for a design matrix,
the MU estimator based on the fixed-point inversion method is almost exactly MU
for all p values and has smaller RMSEs compared with other estimators. It generally
performs better than Andrews’ estimator except in the model with only an intercept

and a time trend as the regressors.

For the design matrices that a single POI test fails to deliver a monotonic
median function, inverting the median envelope of a series of POI tests is the
recommended method of constructing a MU estimator. It was shown that the
proposed estimator almost eliminates the bias present in the OLS and MLE
estimators, The bias correction is substantial for these designs, as they usually
represent the extreme cases in which the small sample biases of the conventional

estimators are most serious.

Finally, we examined the robustness of the proposed estimator 10 non-normal
errors and error structure misspecifications. It was found that the new estimator is
more robust than the one based on the. OLS estimator. It also performs well under
different error structures, except for errors with an MA component or generated by a

higher order autoregressive process.
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Table 5.2
Medians, Means, Variances and RMSEs of the MU Estimators Based on
Different Test Statistics in the Linear Regression with AR(1) Disturbances for
Design Matrix X1; T'=20

”~ ~

Pows Pa Pow  Psoon  Paosn  Psw Psos

p=095

median 0.555 0.893 0.98 0.935 0.969 0.962 0.965
mean 0.518 0.786 0.811 0.801 0.809 0.809 0.810
variance  0.044 0.066 0.061 0.063 0.062 0.063 0.062
RMSE 0.480 0.304 0.234 0.292 0.286 0.288 0.285

p=08

median 0484 0761 0794 0774 0992 0.793 0.791
mean 0.457 0.719 0740 0730 0738 0.737 0.739
variance  0.045 0.075 0.073 0.074  0.074 0.075 0.074
RMSE 0.403 0.286 0.277 0.281 0.279 0.282 0.279

R+
|
=)
(=9

median 0364  0.585 0.601 0.588 0.603 0.601 0.602
mean 0.347 0.579 0592 0584  0.589 0.589 0.592
variance  0.045  0.082 0.080 0080  0.08] 0.081 0.080
RMSE 0.331 0.287 0.284 0.284 0.285 0.285 0.283

p=04

median 0.274 0.315 0.403 0.386 0.403 0.401 0.401
mean 0.249 0.299 0.394 0.384 0.391 0.388 0.393
variance  0.043 0.082 0.082 0.083 0.083 0.082 0.083
RMSE 0.302 0.284 0.288 0.288 0.286 0.288 0.282

Notes: All experiments are based on 2000 replications.
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Table 5.3a

Medians and RMSEs of MU Estimators Based on the POI Test Statistics in the
Linear Regression with AR(1) Disturbances for Design Matrix X1

T=20 T=40
p JaOIS ﬁMLE ﬁ}l ;‘J:U ;j:::fu) b:::il‘ljl bOLS' bHU:? ﬁd ﬁgv ﬁ:::fm ;’:tu|
1.00 median 0.58 0.61 097 0.86¢ 100 099 078 0.80 0.97 092 0.99 098
RMSE 0.50 048 031 031 029 030 028 026 0.17 0.17 0.16 0.16
0.90 median 0.55 0.58 090 0.82 093 0.89 073 0.75 090 0.87 091 090
RMSE 0.43 042 028 027 026 0.27 023 022 0.16 0.15 0.15 0.15
0.80 median 049 0.52 078 0.74 081 0.78 0.67 067 0.230 0.79 0.81 0.80
RMSE 0.40 0.38 028 027 027 028 020 020 0.16 0.15 0.15 0.16
0.70 median 0.43 045 068 067 0.71 0.69 0.58 058 0.69 0.69 0.71 0.70
RMSE 0.36 035 029 027 028 0.29 020 G20 0.18 0.17 0.17 0.17
0.60 median 0.36 037 0.58 057 0.60 0.58 049 050 060 0.60 0.61 0.60
RMSE 034 034 030 028 029 029 0.19 019 0.17 0.16 0.16 0.17
0.50 median 0.29 030 049 048 051 048 040 040 0.50 0.50 0.51 049
RMSE 0.31 031 029 029 029 029 0.18 0.18 0.17 0.16 0.16 0.17
0.40 median 0.22 022 039 039 041 0.38 0.31 031 040 040 041 039
RMSE 030 030 029 029 029 0.29 0.18 0.18 0.17 0.18 0.17 017
0.20 median 0.06 0.06 020 021 022 0.20 0.13 0.13 0.20 020 021 0.19
RMSE 0.26 027 027 029 027 (.28 0.17 0.17 0.17 020 0.17 0.18
0.00 median -0.11 -0.11 000 001 006l 0.00 -0.05 -0.06 0.00 -0.01 001 0.00
RMSE 024 024 026 029 027 0.28 0.16 0.16 0.17 022 0.17 0.18
-0.40 median -0.44 -0.44 -0.39 0.39 -0.38 -0.39 0.43 043 -0.41 -040 -0.39 -040
RMSE 0.19 020 023 024 025 0.29 0.14 0.14 0.15 0.15 0.16 0.18
-0.80 median -0.78 -0.79 -0.80 -0.80 -0.78 -0.78 -0.79 -0.79 -0.80 -0.79 -0.78 -0.78
RMSE 0.15 0.15 018 018 020 0.27 0.11 011 Q.11 0.12 0.13 0.17

Notes: All experiments are based on 2000 replications.
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Table 5.3b

Medians and RMSEs of MU Estimators Based on the POI Test Statistics in the
Linear Regression with AR(1) Disturbances for Design Matrix X2

=20 T =40

p ﬁOLS ﬁHLE bﬁ ﬁgv ﬁ::gl:) ﬁ::u: ﬁOLS ﬁMl'-E ’6‘ ﬁg” f):::fu} b:ﬁu:
1.00 median 042 055 0.64 0288 099 094 075 0.80 100 092 1.00 1.00
RMSE 0.65 057 055 034 035 0.36 0.30 026 026 0.17 0.14 0.15
0.90 median 0.40 051 060 0.80 0.89 0386 071 0.75 096 0387 098 092
RMSE 056 050 049 029 031 032 0.25 022 026 0.15 014 0.15
0.80 median 0.35 044 048 072 081 0.75 0.63 0.67 0.77 0.78 0.34 0381
RMSE (.52 048 048 030 032 0.34 0.23 021 6.28 0.15 0.17 0.17
0.70 median 0.31 0.37 0.37 0.66 071 0.66 0.55 0.58 0.66 0.69 074 0.70
RMSE 047 044 045 029 031 034 0.22 020 0.27 0.16 018 0.17
0.60 median 0.25 029 032 0.56 056 0.59 047 049 0.57 060 063 0.61
RMSE 043 041 043 030 0.32 0.36 021 020 0.25 0.17 0.18 0.18
050 median 020 022 0.26 048 047 048 0.38 040 045 050 053 049
RMSE 039 038 040 031 032 0.36 020 020 0.23 0.17 018 0.18
0.40 median (.13 0.14 0.16 039 039 0.35 0.29 031 0.36 041 043 040
RMSE 036 036 038 0.32 0.31 0.37 0.20 0.19 0.22 019 018 0.19
0.20 median -0.01 -0.01 0.00 0.21 0.1§ 0.15 0.10 0.I1 0.16 020 021 0.18
RMSE 030 031 0.32 0.32 031 0.38 0.19 0.19 0.22 022 0.18 0.20
0.00 median -0.16 -0.17 ~0.12 0.01 0.0if -0.07 . -0.06 -0.07 -0.04 -0.01 0.01 -0.01
RMSE 026 027 028 033 030 0.39 0.17 0.17 0.19 024 0.18 0.20
-0.40 median -0.46 -048 -044 -0.38 -0.40 -0.47 043 044 -041 -040 040 -043
RMSE 0.19 020 020 028 0.27 040 0.14 0.14 0.15 0.16 0.17 021
-0.80 median -0.77 -0.81 -0.77 -0.79 -0.74 -0.68 -0.79 -0.80 -0.77 -0.80 -0.82 -0.85
RMSE 0.15 0.14 0.i6¢ 020 0.23 042 0.10 0.10 0.11 0.11 0.14 0.8

Notes: All experiments are based on 2000 replications.
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Table 5.3¢

Medians and RMSEs of MU Estimators Based on the POI Test Statistics in the
Linear Regression with AR(1) Disturbances for Design Matrix X3

=20 T=40

P JE’ou /E’Muz 13.4 ’agu ﬁ:::fm ﬁ::nm ﬁou ﬁMLE ﬁ’d ﬁgv f’:::fm ﬁ::m
1.00 median 047 058 092 C“8 099 1.00 0.69 0.77 096 0.9] 093 093
RMSE 0.61 0.54 051 032 034 032 036 030 033 0.18 0,19 0.18
090 median 045 054 077 083 091 094 0.67 0.73 0.8% 0.87 0.88 0.88
RMSE 053 048 048 029 031 029 0290 025 031 016 0.16 0.16
0.80 median 039 047 057 074 0.79 031 060 063 076 078 0.78 0.78
RMSE 049 045 047 029 031 030 0.26 0.24 031 0.16 0.17 0.17
070 median 0.34 040 041 067 069 071 0.52 055 0.62 068 0.68 0.68
RMSE 045 042 045 029 031 032 024 023 030 017 0.17 0.18
0.60 median 0.27 031 031 058 0.59 0.59 045 047 0.53 060 0.59 0.59
RMSE 042 040 044 029 031 0.33 022 022 027 0.18 0.18 0.18
0.50 median  0.21 0.23 024 050 0.51 0.50 0.36 0.37 044 050 D49 049
RMSE 038 038 042 030 031 034 021 021 024 019 0.i7 0.18
.40 median Q.13 0.15 0.16 0.40 040 0.39 0.28 0.28 0.36 0.40 040 040
RMSE 0.36 036 039 031 030 034 0.20 020 0.24 021 0.18 0.19
0.20 median 0.00 0.00 0.00 0.22 0.19 0.19 0.09 0.10 0.15 0.19 0.19 0.19
RMSE 0.30 0.31 033 032 0.29 035 0.19 0.19 0.23 0.23 0.18 0.20
0.00 median -0.15 -0.16 -0.13 0.02 -0,01 -0.01 -0.07 -0.07 -0.04 00! 001 0.00
RMSE 026 027 028 032 029 035 0.17 0.17 020 025 0.18 0.22
0.40 median -0.46 -0.48 -0.47 -0.38 -0.40 -0.38 -0.44 -0.44 -0.44 -0.40 -0.40 -0.41
RMSE 0.19 020 0.21 027 026 035 0.14 0.14 0.15 0.16 0.17 025
-0.80 median -0.77 -0.81 -0.77 -0.78 -0.74 -0.61 -0.79 -0.80 -0.80 -0.80 -0.81 -0.87
RMSE 0.15 0.14 0.16 0.20 0.22 041 0.10 0.10 0.11 0.11 0.13 022

Notes: All experiments are based on 2000 replications.
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Table 5.3d

Medians and RMSEs of MU Estimators Based on the POI Tert Siatistics in the
Linear Regression with AR(1) Disturbances for Design Matrix X4

T'=20 T=40
P JaOLS buu-: f"A ;,gv Jb:::fn) f’::n_s: ;’013 ﬁ“’ﬁ f),‘ ﬁgu ﬁ:::fm ﬁ::fu_,,
100 median 0.54 064 100 090 1.00 1.00 0.73 081 100 095 100 099
RMSE 0.55 049 048 030 028 029 0.32 025 032 0.16 0.15 0.15
090 median 048 058 077 0834 092 090 068 0.76 088 0.88 091 090
RMSE 0.51 046 047 028 027 028 028 022 033 0.15 015 015
08¢ median 041 048 (.52 075 081 0.78 062 068 072 080 0.81 080
RMSE (048 044 046 029 029 030 024 020 032 0.16 0.15 0.16
070 median 0.35 041 0.41 067 071 0.69 053 059 063 070 071 070
RMSE 044 041 044 029 029 030 024 021 030 0.18 0.17 617
0.60 wmedian 0.27 031 0.32 057 060 058 045 049 052 060 0.61 060
RMSE 041 040 043 030 030 031 022 020 026 0.19 017 017
0.50 median 022 0.24 0.25 049 051 048 0.36 03% 044 050 050 049
RMSE 037 037 040 030 030 031 021 0.19 023 0.19 017 0.17
040 median 0.13 0.15 0.16 039 040 038 628 030 037 040 041 0.39
RMSE 036 036 0.38 032 031 032 020 020 022 020 0.18 0.18
0.20 median 001 001 002 021 022 0.20 0.11 011 020 020 021 ©0.19
RMSE 030 031 033 033 030 032 0.18 0.19 022 024 0.18 Q.19
0.00 median -0.15 0.16 -0.12 001 001 0.00 -0.07 -0.07 -0.04 0.01 001 0.00
RMSE 026 027 029 032 029 032 0.17 0.17 020 024 0.18 0.19
-0.40 median -0.46 -048 -G44 -0.39 —0:38 -0.39 -0.43 -0.44 -0.40 -0.40 -0.39 -041
RMSE .19 020 021 027 027 033 0.14 014 06.15 0.16 0.17 0.21
080 median -0.78 -0.81 -0.79 -0.80 -0.79 -0.78 -0.78 -0.80 -0.76 -0.80 -0.79 -0.79
RMSE .15 0.14 0.16 0.18 021 028 011 0.10 0.12 0.12 0.15 0.22

Notes: All experiments are based on 2000 replications.
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" Linear Regression with AR(1) Disturbances for Design Matrix X5

Table 5.3e
Medians and RMSEs of MU Estimators Based on the POI Test Statistics in the

=20 T=40
p ﬁOIS Jb MLE !?) A 15::’ v I’:::fm .E’ :::n:o: f’ oLy ﬁ MLE ﬁ A ﬁ g«u ﬁ :::jl} ;’ :io:)
1.00 median 041 0.83 099 093 1.00 1.00 0,79 021 1.00 09 1.00 1.00
RMSE 0.62 034 (044 024 023 022 026 015 031 0.12 0.11 0.10
0.90 median 0.40 0.75 0.88 0.86 092 1.00 073 0.83 084 088 091 0.94
REMSE 0.54 034 042 024 024 0.26 022 015 033 0.12 0.12 0.12
0.80 median 0.37 0.65 0.73 0.76 0.81 0.86 066 074 0.69 0.79 0.81 0.83
RMSE 048 0.35 041 0.25 0.26 0.30 021 0.15 032 013 0.14 0.15
0.70 median 0.34 0.56 0.60 0.68 0.71 0.75 058 0.65 056 070 071 0.72
RMSE 0.42 0.35 041 027 027 0.34 020 0.16 029 0.15 0.15 0.17
0.60 median 0.29 0.45 044 0.57 0.60 0.61 049 055 055 060 0.61 0.60
RMSE 0.38 0.35 041 0.29 029 038 0.19 0.17 025 0.15 0.16 018
0.50 median 0.25 0.36 032 049 051 050 040 044 044 049 0.51 048
RMSE 034 0.34 040 029 029 041 0.19 018 021 0.17 0.16 020
0.40 median 0.18 0.26 023 040 041 037 0.30 034 0.37 040 040 037
RMSE 0.31 0.34 039 032 031 046 0.19 019 022 018 0.17 022
0.20 median 0.05 0.07 0.10 021 022 0.12 0.13 0.14 0.19 020 G.21 0.3
RMSE 0.26 0.32 033 033 031 0.50 0.18 0.19 0.22 022 0.18 026
0.00 median -0.10 -0.13 -0.10 001 001 -0.19 -0.05 -0.05 -0.03 -0.01 0.01 -0.13
RMSE 0.24 030 029 0.34 032 0.52 0.16 0.17 0.19 0.23 0.18 030
0.40 median -0.39 -048 -0,39 -0.39 -0.39 -0.78 0.41 -0.44 -0.40 -0.40 -0.39 -0.66
RMSE 020 023 022 031 033 044 0.14 ¢.15 0.15 0.16 0.17 0.35
-0.80 median -0.67 -0.82 -0.67 -0.80 -0.83 -0.87 0.76 -0.80 0.76 0.79 -0.79 -0.88
RMSE 021 0.14 022 023 028 028 0.12 0.10 0.14 0.12 0.16 0.17

Notes: All experiments are based on 2000 replications.
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Linear Regression with AR(1) Disturbances for Design Matrix X6

Table 5.3f
Medians and RMSEs of MU Estimators Based on the POI Test Statistics in the

=20 T=40
P )aOLS‘ bMLE ﬁA ﬁgu Ja:::fu) ﬁ::fusa ‘3013 ﬁﬂw bﬂ ﬁgu Ja:::}.ﬂl Ja:iu,
1.00 median 0.34 0.67 076 092 l.l:10 0.99 0.61 090 088 096 100 099
RMSE (.72 055 0.56 0.29 029 029 044 0.19 0.39 0.13 013 0.12
0.90 roedian 0.35 062 100 084 092 0.89 0.61 082 1.00 0.87 0.91 090
RMSE 0.60 047 048 030 0.28 0.30 034 0.19 0.33 0.13 0.14 0.13
0.80 median 0.33 0.53 073 075 0.80 0.77 0.57 0.72 0.77 0.7 0382 080
RMSE 0.53 043 045 032 029 033 028 0.19 033 014 0.15 0.15
0.70 median 0.31 046 0.64 068 0.71 0.69 0.50 061 0.61 069 071 070
RMSE 046 040 0.44 035 030 0.35 026 021 033 0.17 017 G117
0.60 median 0.26 0.37 045 058 0.60 0.58 043 051 052 058 061 059
RMSE 042 0.39 044 039 032 0.38 024 0.20 030 0.18 017 0.18
0.50 median 0.21 0.30 0.32 019 051 048 035 040 041 049 051 049
RMSE 037 037 043 044 032 0.40 022 020 025 020 0.17 020
0.40 median Q.15 0.20 (.19 040 040 0.38 0.27 031 033 040 040 039
RMSE 034 036 042 051 034 044 021 021 023 022 0.18 021
0.20 median 0.03 0.03 0.04 0.21 0.22 0.18 0.10 0.11 0.15 020 0.20 0.19
EMSE 028 033 036 062 034 047 .19 020 022 037 019 025
0.00 median -0.12 -0.15 0,09 0.02 0.01 -0.03 -0.07 -0.08 -0.05 -0.01 0.01 -0.02
RMSE 024 030 0.30 0.73 035 052 0.17 0.18 0.19 059 0.19 028
-0.40 median -0.40 049 -0.40 -1.00 -039 044 -0.43 -045 -0.42 -1.00 -0.40 -042
RMSE 0.19 0.22 0.22 0.73 0.37 0.56 0.14 014 0.15 0.60 020 0.38
-0.80 median -0.68 -0.82 -0.69 -1.00 -0.81 -0.89 -0.78 -0.80 -0.79 -1.00 -0.79 -0.88
RMSE 0.20 0.14 0.21 053 031 054 0.11 0.10 0.13 022 0.19 038

Notes: All experiments are based on 2000 replications.
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Table 5.4a
Medians and RMSEs of MU Estimators Based on the Median Envelopes of the
POI Tests in the Linear Regression with AR(1) Disturbances for Design Matrix

X7
T=20 T=40 T=69
P f’o.r.s Pur P 13013 .bm.s P ﬁou: bm.s z’uu
1 Median 0.15 078 093 030 091 096 036 0954 098
RMSE 084 074 022 G670 023 0O.11 065 010 008
095 Median 0.16 075 090 038 087 092 048 0950 094
RMSE 078 067 023 059 017 0.12 051 010 008
0.9 Median 021 073 0385 043 083 0.87 055 085 0838
RMSE 070 054 023 050 016 0.12 040 016 009
0.85 Median 022 069 0.80 047 079 083 058 081 084
RMSE 064 050 024 043 015 0.12 032 010 009
08 Median 023 066 078 048 074 0.79 058 075 079
RMSE 058 045 023 037 015 0.13 027 0.1 0.0
06 Median 022 049 058 041 056 0.60 047 056 060
RMSE 042 040 027 024 0.16 0.15 0.18 012 0.2
0.4 Median 016 033 041 029 037 040 032 037 040
RMSE 030 035 028 0.19 018 0.17 0.15 0.3 013
02 Median 006 0.1 0.20 0.13  0.17 0.20 0.15 0.18 020
RMSE 024 034 033 016 ©.19 0.19 0.13 014 014
0 Median -0.06 -0.10 -0.01 002 -0.02 001 001 -0.02 000
RMSE 020 032 034 0.15 0.19 020 0.13 014 0.15

Notes: All experiments are based on 2000 replications.
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Table 5.4b
Medians and RMSEs of MU Estimators Based on the Median Envelopes of the
POI Tests in the Linear Regression with AR(1) Disturbances for Design Matrix

X8
T=20 T=40 T=60
P 50{3 Puz Puv ;701.5' }3 MLE }3 MU JE’ oLs 27 MLE f} MU
1 Median 001 007 093 0.12 091 096 0.17 094 0.98
RMSE 098 125 0.26 08 044 0O.11 080 0.9 0.07
095 Median 002 059 0.90 0.17 087 092 025 030 094
RMSE 091 1.0 024 077 ©28 0.12 0.69 0,09 0407
09 Median 003 060 0.85 021 084 0388 034 086 0.89
RMSE 086 1.00 0.27 068 019 012 0.57 009 0.08
0.85 Median 0.04 061 0.80 026 079 083 039 082 084
RMSE 080 0489 0.26 060 019 013 048 009 0.08
0.8 Median 004 055 0.76 027 074 0.78 040 076 0.79
RMSE 075 085 030 054 017 013 041 040 0.10
0.6 Median 006 045 0.59 028 057 060 039 0358 0.60
RMSE 054 065 0.34 034 020 016 025 013 0.13
04 Median 004 022 040 021 038 0490 023 038 040
RMSE 038 0.56 040 024 022 019 017 0145 013
02 Median 001 003 020 009 016 020 0.13 018 0.20
RMSE 023 046 046 017 024 020 0.14 0.6 0.16
0 Median -0.05 -0.17 0.02 -0.03 -0.05 -0.00 -0.02 -002 -000
RMSE Q.15 042 047 0.14 023 024 0.2 016 017

Notes: All experiments are based on 2000 replications.
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Table 5.5 Medians and RMSEs of MU Estimators Based on the Median Envelopes of the POI Tests; T =60

0.95

0.90

0.80

0.60

0.40

0.20

Median
RMSE

Median
RMSE

Median
RMSE

Median
RMSE

Median
RMSE

Median
RMSE

Median
RMSE

X1 X2 X4 X3
Pos Pue P Pos Pus Pw Pos Pz Pu Pos Pwr  Pw
085 086 095 082 086 095 081 038 09 083 094 098
019 018 0.1 022 018 011 022 016 0.10 021 041 008
083 084 092 080 084 093 080 085 093 080 090 094
616 015 0.10 019 0Gl1l6 0.10 019 015 010 0.19 0.1 0.08
080 080 038 076 080 0.88 077 081 0388 075 085 089
015 015 010 019 0615 0.10 018 014 ¢C10 019 012 0.09
071 072 0.99 067 071 079 069 072 0.80 068 075 079
014 014 0.1 018 016 0.1 016 0.14 0.1 017 011 0.09
053 053 060 050 0351 059 051 053 059 051 055 060
0.14 014 0.12 0.17 016 0.3 016 014 014 015 013 012
034 034 040 031 032 040 031 032 039 033 035 040
014 014 013 015 015 013 050 015 014 ¢.14 014 0.4
015 015 020 014 014 021 0.14 014 020 015 016 020
014 014 .14 0.14 014 0.14 014 014 015 014 0.14 0.5
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Table 5.6a

Median Functions of p,,; and Median Envelope of the POI Tests Under
Different Exror Processes for Design Matrix X1; T=20

0.9
0.3
0.7
0.6
04
0.2
0.0

P
09
0.8
0.7
0.6
04
02
0.0

2

N(0,) AR(08) MAM2Z) ARCH X Z log-normal  Cauchy
Median Envelope of the POI Tests
0.943 0.572 0.961 0.939 0.940 0.941 0.943 0.942
0.895 0.964 0.936 0.887 0.897 0.896 0.895 0.894
0.857 0.942 0.93 0.847 0.857 0.848 0.848 0.847
0.809 0.937 0.902 0.797 0.811 0.821 0.803 0.813
0.721 0.909 0.861 0.724 0.736 0.715 0.713 0.708
0.621 0.842 0.830 0.619 0.621 0.633 0.619 0.628
0.536 0.752 0.743 0.535 0.532 0.545 0.522 0.518
Median Function of p, s
0.391 0.500 0.496 0400 0409 0.387 0.399 0.397
0.381 0.514 0.462 0.367 0.390 0.371 0.385 0.383
0.341 0.488 0.490 0.362 0.341 0.351 0.330 0.339
0.280 0489 0.462 0.274 0.293 0.307 0.292 0.303
0.199 0.393 0.376 0.208 0.172 0.173 0.185 0.184
0.029 0.304 0.298 0.029 0.050 0.061 0.043 0.05%
-0.101 0.182 0.183 -0088  -0.093 -0034 -0.116 -0.104

Notes: All medians are computed based on 20,000 simulations.
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Table 5.6b
Median Functions of p,; and Median Envelope of the POI Tests Under
Different Error Processes for Design Matrix X7; T=20

N(0,) AR(08) MAO2) ARCH 1 t log-normal Cauchy

Median envelope of the POl tests

09 0944 0974 0.958 0.936, 03540 0.940 0.943 0.937
08 0.89% 0.952 0.930 0.885 0.888 0.899 0.892 0.888
0.7 0.848 0.963 0.901 0.834 0.842 0.852 0.845 0.844
06 0310 0.932 0.877 0.793 0.813 0.810 0.806 0.303
04 0.716 0.8393 0.861 0.717 0.714 0.726 0.726 0.722
02 0648 0.857 0.805 0.648 0.641 0.654 0.636 0.644
00 0564 0.797 0.740 0.540 0.573 0.568 0.560 0.567

Median function of

p
09 0205 0270 0274 0225 0225 0226 0249 0256

038 0264 0.326 0.325 0.247 0.266 0.262 0.254 0.279
0.7 0261 0.342 0.353 0.237 0.249 0.261 0.260 0.273
0.6 0235 0.368 0.358 0.219 0.254 0.258 0.247 0.261
04 0.147 0.330 0.318 0.177 0.155 0.173 0.161 0.182
0.2 0074 0.270 0.250 0.077 0.067 0.059 0.042 0.077
00 -0.050 0.169 0.152 0064 -0.049 -0040  -0.051 -0.031

Notes: AH medians are computed based on 20,000 simulations.
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Figure 5.11a
Median Functions of g, . and Median Envelopes of the POI tests Under
Different Error Structures Using Design Matrix X1; T=20
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Figure 5.11b
Median Functions of p,,; and Median Envelopes of the POI tests Under
Different Error Structures Using Design Matrix X7; T =20
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Chapter 6

Hypothesis Testing and Forecasting Based on Median-
unbiased Estimators

6.1 Introduction

Point estimation, though important in its own right, often serves as the first stage of a
statistical inference process. People rely more on procedures such as hypothesis
testing and forecasting for decision making and policy recommendations in practice.
Therefore, for any point estimation procedure developed, it is important to examine
the usefulness of other inference procedures based on it. In Chapters 4 and 5, we
developed some new (approximately) median-unbiased (MU) estimators for two time
serics models. We apply these estimators in hypothesis testing and forecasting
procedures in this chapter. We show that the improved small sample performance of
these estimators can also improve the small sample efficiency of the corresponding

inference procedures.

We first examine the small sample power properties of the Wald test. It is
well known that the Wald test, although efficient asymptotically, can suffer from size
distortion, local biasedness and non-monotonic power in small samples. Much effort
has been made to provide remedies for these problems. We show that by using the
estimators proposed in Chapter 4 and 5, we can correct the small sample bias of the
Wald test when testing for autocorrelated disturbances in the linear regression model,
and the non-monotonic power problem when testing for random walk disturbances.
In contrast, the likelihood ratio test seems to be less affected by the choice of

estimators.

In the dynamic linear regression model, Nankervis and Savin (1985)

suggested adjusting the moments of the ¢ statistic so that it is better approximated by

1 A paper based on the results of this chapter was presented to a departinental seminar at the
Department of Econometrics and Business Statistics, Monash University, in April 2001.



Chapter 6. Hypothesis Testing and Forecasting Based on Median-Unbiased Estimators

the Student ¢ distribution. We conjecture that this can be achieved by a simple
correction in the bias of the estimator whiic controlling the variance. Goh and King
{1999) proposed a bootstrap correction to the Wald test in order to correct its local
biasedness. We show that the (approximately) MU estimator developed in Chapter 4
is equivalent to the implicit bias-corrected estimator in their test. The power curve is
properly centred and tightened when the MU estimator is used in place of the OLS
estimator. Compared with other methods, the computational cost of the proposed

approach is lower.

The rest of the chapter is concerned with forecasting. We review the formulae
for computing the root mean square prediction errors for the linear regression model
with AR(1) disturbances and the dynamic linear regression model and discuss the
relationship between the prediction risk and the estimation risk. Via Monte Carlo
simulations, we compare the estimated one-step-ahead prediction risks based on
different estimators. We find that the small sample bias in the conventional
estimators of the autoregressive/lagged dependent variable coefficient usually lead to

bigger prediction errors compared with those for the proposed MU estimators.

The chapter is organised as follows: Section 6.2.1 defines the Wald test and
summarises the small sample deficiencies it may swffer from. The corrected Wald
test based on MU estimators is discussed in Section 6.2.3 with a comparison made
with other corrections in the literature. Their asymptotic validity is also addressed.
Section 6.2.6 provides three sets of evidence on the effectiveness of the proposed
correction. The small sample powers of the Wald test based on different estimators
are compared in three different test situations for the linear regression model: 1.
testing for autocorrelation; 2. testing for random walk disturbances; and 3. testing the
lagged dependent variable coefficient. We move on to prediction in Section 6.3. The
relationship between the bias in an estimator and the prediction error is discussed.
The prediction error based on different estimators are compared in two models. The

chapter ends with some concluding remarks in Section 6.4.
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6.2 Wald-type Tests Based on MU Estimators

In this section, we construct Wald-type tests based on the MU estimators we
proposed in Chapter 4 and 5. The modified Wald-tests are shown to be able to
correct the small sainple deficiencies that the conventional Wald tests suffer from in

these models. We start this section by reviewing these deficiencies.

6.2.1 Small Sample Deficiencies of the Wald Test

The Wald test plays an important role in the theory of likelihood-based hypothesis
testing. Let @ be a k X1 unknown parameter vector and y,, r=1,2, ..., T,be T

observations generated independently from the implicit probability density function

F(,Jx.8) in which x, is the explanatory variable vector. The log-likelihood

function is given by

1O)=YWfGx.0. . (6.1)

Suppose the parameter € is partitioned into two sub-vectors 8=(f,7")" where only
[ (rx1) is the parameter vector of interest while ¥ (k—=rx1) is treated as a

nuisance parameter vector. We are interested in testing the hypotheses
H,: =, against H;: 8% f3, (6.2)

where f, is a vector of known constants. The Wald test is then based on the

unconstrained maximum likelihood (ML) estimator defined in the parameter space ©

and given by,

6 =argmax 1(6) (6.3)
52
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’l(®)
0808
evaluated at 8. The Wald test rejects H,, for large values of

where 8= (23", 7). Let 29(9)=—E( ) be the Fisher information matrix

W= (23 - ﬂo)'[R 1’(@)-] R '](B - ﬂo) s (6-4)

where R=(J:0) is an rxk matrix and J, is an r-dimensional identity matrix. In
practice, people more often use a different version of the Wald test which rejects H,

for large values of

W= (8- B,) A@)" (B-B,). (6.5)

where A(8)=RV(@)R’ and V() is an estimator which converges stochastically to

HO)™ in an open neighbourhood of the true value of & (e.g., see discussions in

Stroud, 1971).

Undex the standard regularity conditions (see for example Amemiya, 1985,
Chapter 4), the asymptotic distribution of the Wald test statistic under the nuil

hypothesis is ¥2, a central chi-square distribution with r degrees of freedom. While
under the alternative hypothesis, the Wald test asymptotically follows a non-central
chi-square distribution 2?(4®), with a non-centrality parameter u. For details, see

Godfrej (1988, Chapier 1) and Hendry (1995, Chapter 13).

Tests constructed using the Wald principle (i.e., tests that take the form of
(6.5)), but not in the context of classical ML estirnation, are often referred to as
Wald-type tests. In such tests, the ML estimators are replaced by a broader class of
asymptotically normal estimators, such as the generalised method of moment
(GMM) estimators. For a review on Wald-type tests, see Burguete et al. (1982).
These tests were shown to be also asymptotically optimal, similar to the classical
Wald test.
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The Wald test is a consistent test asymptotically. Within the class of
asymptotically unbiased tests, the procedure is also asymptotically most powerful
against local alternatives (see, e.g., Cox and Hinkley, 1974, Chapier 9). However
these propertiecs may not hold in small samples. Three small samrle problems,
namely, local biasedness, power nop-monotonicity and non-invariance of the Wald
test to the reparameterisation of the null hypothesis, have been identified and studied
by many researchers. This chapter is mainly concemned with the first two problems,

which are briefly reviewed below.

6.2.1.1 Local Biasedness

Peers (1971) studied the power function of the Wald test with a simple null
hypothesis against a two-sided alternative using asymptotic expansions. He found
that the Wald test can be locally biased for finite sample sizes, as the power can drop

below its size in the neighbourhood of H, when the first-order derivative of the

power function evaluated at the null value becomes negative. It was also found that

the power function can be asymmetrical in the neighbourhood of H,. This bias

disappears as n — «. Hayakawa (1975) and Hayakawa and Puri (1985) extended the
analysis for tests of composite null hypotheses. Examples of this local biasedness
have been reported by Magdalinos (1990), Oya (1997) and Goh and King (1999)

among others for various models.

€.2.1.2 Non-monotonic Power

The power function of a test is said to be non-monotonic if the power first increases
but eventually decreases (sometimes to zero) as the distance between the true
parameter value and the null value increases. Hauck and Donner (1977) first reported
the non-monotonic power behaviour of the Wald test for testing a single parameter in
a binomial logit model. Similar phenomenon has been reported for different models
by Mantel (1987), Nelson and Savin (1938, 1990) and Laskar and King (1997)

among others. One possible reason for this anomaly is that, for alternatives
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sufficiently far away from the null hypothesis, A(®) has a tendency to increase

faster than (;9 — B,)? as the departure from the null gets larger; e.g, see discussions
in Goh and King (2000).

6.2.1.3 Existing Remedies

Many researchers have attempted to improve the small-sample performance

of the Wald test. These remedies can be classified into 3 categories:

1. Correcting the asymptotic critical value so as to control the size of the test.
This can be done by either cmploying‘higher-order (usnally second or third order)
asymptotic expansions or by bootstrap. The two methods were shown to be
equivalent by Hall (1992). Examples of the analytical approach include Rothenberg
(1988), Magdalinos (1990) and Phillips and Park (1988), while the bootstrap critical
values were discussed by Nankervis and Savin (1996) and Hordwitz and Savin
(1998) among many others. Nankervis and Savin (1985) and Cribari-Neto and
Cordeiro (1996), on the other hand, attempted to correct the test statistic to make it

more consistent with the asympitotic critical values.

2. Correcting the small sample bias in itic estimator used in the test. Goh and
King (1999) provided a good example of this approach. The proposed method in this
chapter also falls into this category. Ferrari and Cribari-Neto (1993) adopted a

similar approach in correcting the Wald test of nonlinear restrictions.

3. Using alternative estimators for the covariance matrix. For example,
Mantel {1988), Laskar and King (1996) and Goh and King (2000) advocated the so-
called null-Wald test to correct the non-monotonic power problem. Instead of using
the variance estimator evaluated at the estimate, the nuil-Wald test replaces it by the
variance estimated at the null value. For example, Laskar and King (1997) reported
that the null-Wald test is able to remove the power non-monotonicity when testing

for MA(1) errors in a linear regression model.
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6.2.2 Bias-corrected Wald Tests

In the original Wald test, all parameters are estimated by uncomstrained ML
estimators. Goh and King (1999) conjectured that biasedness of the Wald test is a
direct result of poor centring of its power curve, and one possible cause of this is the
small sample biasedness of the ML estimates in the presence of nuisance parameters.

They suggested an implicit correction facter for this possible bias in the estimation of

/3. Instead of using ,73 , they suggest using ficw = fi-cw when constructing the Wald
test. The corrected Wald test is given by

CW =(Bay — BoY ABa) " (Bew = Bo) (6.6)

where G = (Ew',?(ﬁm)’)’. The correction factor ¢, and the critical value dg,

are found by numerically solving the following two equations:

(6.7)

”cw(ﬁ)hf‘, =0
(07w (ﬁ)/aﬁ)lﬁ, =0

where 7 g (8) = PAICW >dgy|B1 is the power of the test at §. The first equation

controls the size of the test while the second equation enforces the local
unbiasedness. Because there is no analytical expression for the derivative of the

power function, the second equation is approximated by
Ecw(ﬂ)ln,; “”W(ﬂ)ln‘; =0 6.3)

where H; and H, are Jocal alternatives on the two sides of H,. Goh and King

{1999) designed a parametric bootstrap procedure to find ¢, and d, .

We propose a different method of correcting local biasedness of the Wald test

in this chapter. Instead of implicitly correcting ;{} by bootstrap, we explicitly correct
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the small sample bias in ff by replacing it with one of the MU estimators we
developrdd in Chapters 4 and 5. Our version of the corrected Wald test is given by

Wy = (BMU - 30)'44(9%: ) (B.\w - ﬁo) s (6.9)

where 8, is the approximately MU estimator constructed by iteratively correcting
the bias of zach parameter using the methods proposed in Chapter 3. By deing so, if
the MU estimator can eliminate the small sample bias in B , the corrected Wald test

should correct the Jocal biasedness of the original test.

The rationale underlying the suggested correction lies in the observation that,
as it seems in many cases, the poor centring of the power curve of the Wald test
appears to be linked to the wrong location (mean) of the test statistic (e.g. see
Nankervis and Savin, 1985, 1988b, Goh 2and King, 1999). A shift in location towards
the origin for the entire power curve should be able to alleviate the local biasedness
and better centre the power curve. We argue that this can be done by shifting the
estimator used in the test in the right direction (iowards the true value), while
keeping the magnitude of the variance of the estimator under control. From the
simulation results reported in Chapters 4 and 5, we believe that the proposed MU
estimators effectively corrected the downward bias of the LS estimators, while at the
same time not substantially increasing its variance. Therefore we would expect by
applying these MU estimators, we should be able to correct the local biasedness of
the Wald tests.

6.2.3 Construction of Wald Tests Based on MU Estimators
6.2.3.1 Testing for Autocorrelated Errors

We examine the same model studied in Chapter 4, i.e. the linear regression model
with stationary AR(1) disturbances. The testing problem considered in this section is
that of testing the existence of autocorrelation in the disturbances. This is probably

the most extensively studied hypothesis testing problem by econometricians. For a
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comprehensive review, see King (1987a). The purpose of our study is to use this
model to illustraie the effectiveness of correcting the local biasedness of a two-sided
Wald test by applying MU estimators, rather than to propose a new test. Therefore it
is not our interest to have exhaustive power comparisons of all available tests.
Instead, we simply concentrate on the Wald tests based on three different estimators:

1. the two-step OLS estimator (pg,); 2. the full maximum likelihood estimator
(P); and 3. the MU estimator ( p,,, ) proposed in Chapter 4, which is constructed

by adjusting and then solving the marginal likelihood score equations.

The first two estimators, g, and p,, ., are asymptotically equivalent, with

the same asymptotic variance:
AV(®)=(1-pH[T | (6.10)

where p can be either Py, or Py, . But in order to improve its efficiency in small
samples, we use the finite sample estimate of the estimator variance in the Wald test.

This variance estimator is given by,

V@) = (@3 Q- pHa + G~ pi )’ [ 28, 6.11)

T
=2 =2

where #, are the GLS residuals for covariance matrix X(p). Therefore the Wald test

for testing

Hy:p=0 against H:p=0 (6.12)
is given by

w=p" V(D). (6.13)

The corrected Wald-test based on p,,,, however, needs some justification.

Recall that P, is the solution to the following estimating equation:
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U(y; p) —med{U(y; |y ~ N(XB,0°Q(p»)=0, (6.14)

where
-1
29R)

N | XUp) | _T-k|__ 3p

is the marginal likelihood score function, in which
AP)=Q' (M- (PX(XQ (P X)) XQ7(p).
Ara (1995) showed that this score is mean-unbiased, i.e.
E[U(y;p]=0. | (6.16)

Therefore we can derive the asymptotic-distribution of the score function in the same
way as in the classical MLE context, by expanding the score function at the true
parameter value. If we denote the diagonal component in the information matrix

corresponding to parameter p by
1(p) = E{-0"In L(y; p)/3p" } = Var[U (y: p)1. 6.17)

Ara (1995) showed that the marginal likelihood score U(y;p) is asymptotically

normally distributed, i.e.,
(P PU(p)—>N(©,1). (6.18)

Therefore asymptotically p,, is equivalent to the maximum marginal likelihood
estimator because the median of the score vanishes as 7 — oo in equation (6.15), and
the variance of the adjusted score tends to the expected information matrix

component. Hence the adjusted Wald test based on p,, could use the same
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information matrix compenent as the Wald-test based on the maximum marginal
\ikelihood estimator. Under appropriate regularity conditions (e.8., see Ara, 1995),
the corrected Wald-test will have the usual asymptotic chi-square distribution as the
classical Wald-test, i.e.,

1Py X Py -p)—io 1k (6.19)

where the diagonal component corresponding to o in the MGL-based information

matrix, I{p), is given by

1(p)

1 Y , 3P| ) |
_2(m+2){m><tr[A(p) 5 A(p) > ] [tr(A(p)—-———ap ”.(6-20)

Hence for testing hypotheses (6.12), the corrected Wald-test based on the MU

estimator is given by

Wy = f(ﬁnw )™ ﬁiw (6.21) |

6.2.3.2 Testing for Random Walk Disturbances
In this section, we consider the one-sided test problem
Hy.p=1 against H,:p<1 (6.22)

in the linear regression model with stationary AR(1) or random walk disturbances.
The model specifications are given in Section 5.1. This testing problem has also been
studied extensively by econometricians. If there are no exagenous regressors other
than a time trend, this is the familiar testing for a unit root problem. The literature on
such tests is vast, see Phillips and Xiao (1998) for a recent survey. The difficulty of

this problem is that the distributions of the tests are non-standard even
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asymptotically. For the models with exogenous regressors, Berenblut and Webb
(1973), Sargan and Bhargava (1983), King {1987b) and Dufour and King (1991)
among others considered testing for random walk disturbances. It was found that
among the tests available, the test statistic developed by Berenblut and Webb (1973),
which is a special case of the POI tests proposed by Dufour and King (1991),
generally has good small sample power properties {e.g, see Phillips and Xiao (1998))
against stationary aliematives. The test also has the advantage of being an exact test.

In Chapter 5, we reported that many tests, including the DW test, ¢ test and
the POI tests may suffer from non-monotonic power problem for some design
matrices on the negative side of the alternative p values. A similar problem was
reported in Kramer and Zeisel (1990) and Bartels (1992) for testing the null
hypothesis of zero correlation. For the random watk null hypothesis, we propose the
Wald-test based on the MU estimators developed a Chapter 5 as a remedy to this
problem. We show that this test is able to correct the non-monotonic power problem

when p—5-1. It can also correct the local biasedness suffered by other tests for

some deign matrices.

The one-sided Wald test is given by
= (3, ~D/V(p)* (6.23)

where D, can be Pg, Puy. Pa and P, from Chapter S, and the estimated

variance is given by

Vp,)= &z/éaf_, | (6.24)
where
& =(1-ph[aQp) e f(T-k)}, (6.25)
=1 - X(XQp) ™" XY XQp,)"y. (6.26)
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6.2.3.3 Testing the Lagged Dependent Variable Coefficient

Consider the dynamic linear regression model (4.25) examined in Section 4.3, We
are interested in testing the significance of the lagged dependent variable coefficient,

ie.
Hyy=0 against H,:y #0. 6.27)

The r statistic is routinely used to test these hypotheses. The exact
distribution of the ¢ statistic is complicated. In a model with no other exogenous
regressors other than an intercept and/or a time trend, Nankervis and Savin (1985,
1987, 1988b) studied the exact distribution of the ¢ statistic under the null hypothesis
and clearly established that the Student ¢ distribution is not a satisfactory
approximation for sample sizes typical in economic applications. Monte Carlo
evidence reported in their papers and also in Tanaka (1983) and Rayner (1990)
confirmed the inadequacy of using the ¢ statistic in this model. This may cause size
distortions when the asymptotic critical values are used, and low power when the
level-corrected critical values are used. An alternative approach is to use the
bootstrap method to obtain asymptotically valid critical values for thc test. Beran
(1988) showed that the test with bootstrap-based critical values can provnde better
control over the rejection probability than the test that uses the asymptotic critical
value. Nankervis and Savin (1996) examined the level and power of the bootstrap ¢
test in the model with an intercept and a time trend as regressors and concluded that
the bootstrap test has essentially the same power as the empirically level-corrected

asymptotic-theory test reported in Nankervis and Savin (1988b).

An important finding reported in Nankervis and Savin (1988b) is that for
small sample sizes, the reason for the bad approximation of the ¢ statistic under the
null hypothesis by the Student’s ¢ distribution is not the shape of the distribution but
its location, i.e., the mean of the distribution of the ¢ statistic is located substantially
to the left of zero when the autoregressive parameter is near unity. Nankervis and
Savin (1988b) suggested adjusting (he ¢ statistic to have the comrect mean and
variance. Let 7 be a random variable which is distributed as Student’s ¢ with T—k

degrees of freedom. The adjusted ¢ statistic is
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1,=(1—E®)/o, (6.28)

where @’ =[var(7)/var(t)]. It was shown in Nankervis and Savin (1988b) that
Student’s 7 distribution accurately approximates the null distribution of the adjusted
¢t statistic. The problem of this approach is that for models with exogenous
regressors, the moments of the ¢ statistic depend on nuisance parameters — the

regression coefficients, and thus make it hard to compute the adjusted statistic (6.23).

We consider the Wald-test based on the approximately MU estimator
developed in Chapter 4. Instead of correcting the moments of the ¢ statistic, we
correct the location (bias) of the estimator. Roughly speaking, the bias-correction of
the estimator should result in adjusting the location of the ¢ statistic, provided that
the variance of the bias-corrected estimator is similar to that of the original estimator.
Note that our correction factor also depends on the regression coefficients, and
therefore is consistent with the approach discussed in Nankervis and Savin (1988b,
pl42).

Grose (1998) and Mahmood (2000} observed that, unlike for the linear
regression model with AR(1) disturbances, the marginal likelihood score for the
lagged dependent variable is not mean-unbiased, i.e., its expectation at the true
parameter value is not zero for all sample sizes. The score is also not information
unbiased, t.e., its variancé is not identical to the corresponding information matrix
component. Therefore it is not as -straightforward to derive the asymptotic

distribution of the Wald-type test for this model as in the previous section.

However, for large sample sizes, under certain conditions on the order of
magnitude of X and €, Grose (1998) showed that the marginal likelihood score

U(y,y) is asymptotically unbiased and information unbiased, i.€., as T — oo,

ImT U (y;7) =0 , (6.29)

limT™'VarlU(y;7))=bmT'8, (6.30)

209

Chapter 6, Hypothesis Testing and Forecasting Based on Median-Unbiased Estimators

where 9, is the diagonal component corresponding to ¥ in the marginal likelihood-
based information matrix. For details, see Grose (1998). Therefore asymptotically the
marginal score is still normal and the same arguments used in Section 6.2.2 can be
used here to show that the Wald-test is asymptotically valid, with the usual chi-
square distribution as the approximately MU estimator should also be asymptotically
equivalent to the maximum marginal likelihood estimator (which is also

asymptotically equivalent to the global maximum likelihood estimator).

But according to Grose (1998), the information matrix component 19”

contzins second moment terms that cannot be resolved analytically. If we apply the

Wald-test based on ¥, it has to be evaluated either via a Laplace approximation (as

in Grose, 1998 and Mahmood, 2000) or by numerical integration, which are both
computationally costly. To overcome this difficuity, we use the corresponding

component in the Hessian, namely A, , which is a consistent estimator of 9, . Grose

also derived the asymptotic equivalence of the MGL-based likelihood and the profile
likelihood. Therefore the Hessian of the profile likelihood can be used to further
simplify the construction of the Wald-type test.

Following Goh and King (1999), let 6= (. 8’,0") . If we have an estimator
of ¥, ¥,, which can either be the OLS estimator ¥ ors OF the approximately MU

estimator ¥, . then the corresponding estimators of the other two parameters are

given by

1+ T B
ﬁ(j‘/i) = {(I_j.:i)x,x, + Zx,x, }
Vi r=2 (6.31)
- T -
x {(1 + yi)xlyl + zx:(yr - yiyt-l )}'
t=2
and
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(T = T— k 1

T -
+Z[y; Hj}.—'y;—t _xr ﬁ(?i)]zl'

=2

In this case, the Wald statistic is

where R =[l

by

where

=72 [RV(8,) R,

b }
a, 4 dap

V(@) =|a;, an 02| »

rd
ay Yy Ay

1 |0+ L i T-2
aﬁ;{( (B 2"‘:-:}""_’“"

(1 y)a i=2 1- 72 ’

A, = 'OIT{ (d+y) ﬁx[xi +Z m_ X, }
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i (I'i"}’) ' - )
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(6.32)

(6.33)

0_,] and 8, =%, f)’(y,)’ 62(3,))", while the variance matrix is given

(6.34)

(6.35)
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m, =-IJ:?; and m, =7m,_,+x,’ﬁ, t=2,....m. (6.36)

6.2.4 Monte Carlo Tests

Throughout our simulation studies that follow, we adopt the technique of the Monte
Carlo test originally suggested by Dwass (1957) and Bamard (1963). The main
reason is that the test statistics obtained in this chapter have fairly complex null
distributions which are difficult to compute analytically. Applying a Monte Carlo test
involves simulating the critical value under the null hypothesis and using this critical
value to assess the test’s power properiies. As pointed out by Kiviet and Dufour
(1997) and Dufour and Kiviet (1998), although the Monte Carlo tests are related to
tests based on a parametric bootstrap, Monte Carlo tests have the important
advantage of being valid in finite samples even when the number of replications used
is small; see also discussions in Jockel (1986), Horowitz (1994) and Horowitz and
Savin (2000). In the dynamic linear regression model, Nankervis and Savin (1996)
reported the equivalence between the Monte Carlo tests and the boctstrap-based tests
in terms of small sample power. Monte Carlo tests are usuaily computationally more

efficient than the bootstrap tests.

However, Horowitz and Savin (2000) criticised the Monte Carlo test
methodology on the grounds that the level-corrected critical values used in these tests
are irrelevant to the empirical testing problems, as they are artificial and only valid
for the particular set of simulation experiments. We join Kiviet and Dufour (1997)
and Dufour and Kiviet (1998) and argue that, nevertheless, the Monte Carlo test is a
powerful tool for examining the small sample properties of tests which have null
distributions not possibly tractable analytically. As pointed out by Goh (1998),
Monte Carlo techniques provide an important device for econometricians io evaluate
and choose sound inference procedures aw‘aiting to be used in practice. Therefore
Monte Carlo tests should be deemed as an important device for us to assess the

candidates of tests before they are applied to non-experimental settings.
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6.2.5 Experimental Design

For the linear regression model with AR(1) disturbances, we used the same eight
design matrices in Chapter 5, as they cover a range of both artificial and empirical
time series. The sample sizes were 20, 40 and 60. The tests compared were the Wald
tests based on the two-step OLS estimater (D,), the ML ectimator (2,,;)
Andrews’ estimator (2,) and the proposed MU estimator (,,,). For the first two
test statistics, the variance of the estimator was estimated by the profile likelihood

variance estimate given by (6.11).

‘When testing for autocorrelation, these tests were also compared with the
DW test and the s(1,05) test (King, 1985b), which were used as the power
benchmark. The POI test, £(1,05) (Dufour and King, 1991), was used as the

benchmark when testing for random walk disturbances.

For the first-order dynamic linear regression model, we also used the same
design matrices as in Section 4.4. The Wald-test based on the proposed estimator was
compared with the one based on the OLS estimator. The variance of the estimator in

both tests is estimated by the estimator given by (6.36).

2000 replications were conducted for the linear regression model with AR(D
disturbances and 1000 replications were used for the dynamic linear regression
model. The quantiles of the simulated test statistics under the null hypothesis were
used as the critical values. The rejection probabilities were reported for the parameter
values under the alternative hypothesis. A significance level of 10% was used for
testing autocorrelated disturbances and the LDV coefficient, while 5% was used for

testing for random walk disturbances.
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6.2.6 Results
6.2.6.1 Testing for Autocorrelated Errors

The empirical power (rejection probabilities) of the Wald tests based on different
estimators are reported in Tables 6.1a - 6.1c for X1 - X6, and Tables 6.2a — 6.2b for
X7 and X 8. The corresponding power curves are presented in Figure 6.1.

Using simulated critical values, local biasedness is exhibited in the Wald-tests based
on the OLS estimator and the MLE estimator on the right side of H,. This is
particularly serious for a sample size of 20. The powers of the W, and W, tests
drop below 0.05 at p=0.1 and 02 for all design matrices except X7 and X8. For
example, the powers of the W,,,; and W, tests at p=02 for X2 and T =20 are
0.02 and 0.03, respectively. As a result, the power curves of these two tests are
poorly centred. Although still apparent, the local biasedness becomes less serious for
T =40. When p moves further away from H, to non-local alternatives, the W, ; test
also suffers from non-monotonic power. Iis power drops in both tails for design
matrices X6, X7 and X8 with 20 and 40 observations. For example, for X8 and
T =20, the powers of the W, test at p=1 and p=-095 are 0.06 and 0.1,
respectively. Both problems plaguing these tests disappear for a sample size of 60.
As a benchmark for power comparisons, we notice that the point optimal test 5(0,0.3)
enjoys significant power superiority on.the right side of H, over the W,,; and W,,,,
tests. It does not suffer from either local biasedness or non-monotonic power.
However, its power on the left side of H, tends to be lower than those of the Wald
tests, as s(0,05) was designed to maximise the power in the neighbourhood of
p=05,

We first examine the performance of the Wald-test based on the proposed
MU estimator D,,, for design matrices X1 - X6, where local biasedness is the main
concern. As exhibited in Figure 6.1, the new test W,,, successfully comected the
local bias in the W, and W, tests for all these design matrices with a sample size
of 20 and 40. The power curves of the W, test are properly centred at the null point

and also tightened on the positive side of the parameier space. The power gain on the
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right side of H, is quite significant. For example, for X4 and T =20, the power of
Wiy at p=02, 06, 08 are 0.09, 0.42 and 0.65, respectively, while the W,,,; test has
powers of 0.03, 0.18 and 0.38 in this case. The power gain is consistent over all
design matrices and all positive p values. On the negative side of H,, however, the
powers of the W, test are slightly lower than those of the W,,,; and W, tests. This

is probably because that the high powers of the W,,; and W, tests for negative po

values are pushed up by the ill-centred power curves.

Compared with the Wy, test, the Wald-test based on Andrews’ estimator, W,,
is generally more powerful than the W,,; and W,,, . tests for positive p values, but
less powerful than the W, test. Although it is also able to correct the local
biasedness, its power for non-local alternatives are significantly lower than those of
W, except for X1. Its power on the left side of H,, however, is consistently slightly
higher than that of W,,, . It is often argued that when testing for autocorrelation, good
power is mostly needed for positive side of H,. The W,,,, test satisfies this criteria

best among the tests considered.

Another interesting finding is that for all design matrices except X7 and X8,
the W,,,, test has powers very simifar to those of the $(0,05)test, especially on the
right side of H,,. As‘the £(0,0.5) test is tangent and close to the power envelope of
this testing problem, this similarity verifies the effectiveness of correcting the Wald

test by using the proposed MU estimator.

For design matrix X7 and X8, the W,,,, test has a monotonic power curve on
both sides of H,. The W, test performs poorly as expected. The power gain by the
W,y test is most significant for T = 20. For example, the powers of the W, test at
p=08and 1 for X8 and T =20 are 0.5 and 0.78, respectively, compared with those
of W, of 0.11 and 0.6. Interestingly, unlike for other design matrices, the W, test
has much better power properties than the W, test for this design. It has slighify
lower powers than the W,,,, test on the right side of H, and better powers on the left

side of H,. The same pattern is depicted for T =40.
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The power results for T =60 are presented in Table 6.3. The problems of
local biasedness and non-monotonic power plaguing the tests for smaller sample
sizes disappear. However, the power gain from using the W, test is still quite
apparent for all design matrices. The W,,,, test is significantly more powerful than the
other two tests for local altermatives, and slightly more powerful for non-local
alternatives. For example, the powers of the W, ;, W, and W, tests at p=02 for
X2 arn .25, 0.25 and 0.43, respectively.

From the above analysis, it is clear that the introduction of p,, as a
comection to the Wald-test effectively eliminates the local biasedness and non-
monotonic power problem at the same time. The new test has powers greater than
their empirical sizes at local alternatives on both sides of H, and the power does not
drop when p departs further from H,. The power curves are better centred than those
of the W, cand W,,, tests. The only drawback of the new procedure is its slightly
lower power on the negative side of H,, which is usually regarded as less critical

than positive autocorrelation.

6.2.6.2 Testing for Random Walk Disturbances

The power comparison of the Wy, W,z Wy, and s(1,05) tests for testing random
walk disturbances against one-sided alternatives are presented in Tables 6.4a — 6.4d
and the power curves are plotted in Figures 6.2a — 6.2d for different design matrices
and T =20, 40. The W, and W, tests still suffer from local biasedness for all
design matrices except X1 with 20 observations. The Wy, ¢ test is also not immune to
this problem for T =40 for several design matrices such as X6 and X8. The point

optimal test 5(1,0.5) is shown to be more powerful than the W, and W, tests.

The corrected Wald test W, effectively eliminates the local biasedness for
all design matrices. Its power is above its empirical size for local alternatives. For a
sample size of 20, the W,,, test is sigﬁiﬁcantly more powerful than the other two
tests for all positive p values. In particular, for X6 and X8, the Wy, test is more

than twice as powerful as the other two tests for all positive p values. For a sample
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size of 40, the performance of the W, test improves substantially while the W,
test is still not performing well. The W,,,, test is now slightly more powerful than the
W, test, while still superior to the W, ¢ test by 2 big margin, especially for X2, X6
and X8. There is also a stmilarity between the power curves of the W,,,, test and the
s(1,05) test, which verifies the effectiveness of improving the small sample power

properties of the Wald test by using MU estimator.

6.2.6.3 Testing the LDV Coefficient

The estimated powers of the Wald-tests based o ¥, and ¥, in the dynamic linear
regression model for different design matrices and T = 20, 40 are reported in Table
6.5, and the power curves are presented in Figure 6.3. As expected, the Wald test
based on the OLS estimator performs poorly in this model. It suffers from local
biasedness on the positive side of H, for all design matrices and both sample sizes.
The powers drop to almost 0 at ¥ =03 for X4 and X5 and T =20. The power curve
is poorly centred and seriously asymmetrical. The Wald test based on the proposed
MU estimator, however, seems to be immune to this bias problem. Its power curve is
centred around H, and the powers are above the size on both sides of H,. This is
achieved by a significant increase in power for positive ¥ values and slightly lower
power for negative ¥ values. The power gain on the positive side of H,, is particularly
large for T = 20. For example, for X5, the powers of the W, test at y =0.1 and 0.2
are 0.04 and 0.05, respectively (both below the size of 10%), while the W,,,, test has
a power of 0.11 and 0.16 in this case. The results show that the modified Wald test
has approximately equal powers on the two sides of H, provided the departure from
H, is not too far. For example, the powers of the W, test at ¥ = 0.1 are lower than
those at ¥ =-0. by more than 0.12 for ali design matrices and T =20, while the
W, test has a power difference less than 0.01 for all design matrices at these two
points. These results lead us to believe that the bootstrap correction of the local

biasedness proposed by Goh and King (1999) is indeed achieved as effectively by the
proposed method.
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6.3 Prediction Based on MU Estimators

1t is commonly agreed that the precision of the forecasts directly depends upon the
precision of the parameter estimates. As Phillips (1979) remarked, in autoregressive
time series, the serious small sample bias of the parameter estimates will carry over
to the conditional distribution of forecasts given the observed values of the
endogenous variables used to initiate forecasts. In the linear regression coniext,
Goldberger’s  (1962) seminal paper on forecasting suggested the importance of
efficiently estimating the parameters in the unknown covariance matrix in order to
increase forecasting accuracy. Assuming all the parameters are known, Goldberger
derived the best linear predictor for a general linear regression model. But in
practice, one has to replace the parameters in this optimal predictor by their
estimates. The risk of an approximate predictor is therefore affected by the choice of
estimator. The exact behaviour of the predictors based on different estimators is

usually hard to trace especially in small samples.

The study of prediction accuracy in autorsgressive models stems from the
early work of Hurwicz (1950b) and Shenton and Johnson (1966) among others.
Yamamoto (1976) compared the asymptotic efficiencies of the predictors in a linear
regression model with AR(1} disturbances and concluded that the predictor based on
the GLS estimator is not necessarily asymptotically more efficient than the one based
on the OLS estimator. The asymptotic approach was also taken by Baillie (1979),
Fuller and Hasza (1981), Stine (1987) and Kemp (1999) in examining the propetrties
of predictors for autoregressive time series, mainly for the near non-stationary and
unit root case in large samples. Spitzer and Baillie (1983), via Monte Carlo
simulations, studied the validity of asymptotic approximations to the distributions of
the prediction errors in the same model. They concluded that the asymptotic error
formula, when used in small samples; do not fully reflect the finite sample risk

caused by estimating the parameters.

Phillips (1979), Maekawa (1987), Hoque et al. (1988) and Magnus and
Pesaran (1989, 1991) all attempted to, via Edgeworth-type expansions, approximate

the finite sample distribution of the forecasting errors in a simple autoregressive
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model, in order iv study the small sample bias and efficiency of the predictors.
Monte Carlo studies of forecasting errors in the same model were conducted by Stine
(1985), Dielmann (1985), Sampson (1991) and Kemp (1999) among others. It
appears that the small sample bias in the LS estimators of the auntoregressive
parameter usually leads to larger mean squared error of prediction (MSEP) especially

when the parameter is near unity.

To improve on the predictors based on the OLS estimators, King and Giles
(1984) proposed a pre-test procedure. More recently, \ospodinov (1999) attempted
to construct a MU predictor for an AR(p) model by inverting the median function of
the probability distribution of the least square predictor. Before we introduce the
proposed predictors based on the MU estimators, we start by examining the small
sample prediction risk of the linear autoregressive model. Many researchers have
suggested improving the prediction accuracy by bootstrap. Atiention was mainly
given to prediction intervals. These studies include Stine (1985), Masarotto (1990),
Thombs and Schucany (1990), Basawa et al. (1991), Kabaila (1993b), Beran (1993),
Grigoletto (1998) and Kim (2001).

6.3.1 Prediction Risk and Estimation Bias

For the linear regression model with AR(1) disturbances (the model specified by
(4.1) and (4.2)), consider the one period ahead forecast ¥,,, which is given by

Yrat = *ra B+ig,

- (6.37)
=X, B+ pﬁ?

where
B=(XQPX) XQ @)y, (6.38)
Al =) x;ﬁ’ (6.39)
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and y, and x,,, are the last available observations of y and x, respectively. p can
be replaced by different estimators such as pg,e and p,,;. If the antoregressive
parameter is known, Goldberger (1962) showed that this is the best linear unbiased
predictor. But when p and £ are ieplaced by their estimates, the efficiency of the
predictor (6.37) will depend on the quality of the estimators chosen. Similarly, the &-
period ahead forecast $,,, is given by,

Vroh = XrpB+ phay. (6.40)

Many researchers have studied the asymptotic efficiency of this predictor in a
mode! with just a constant as the regressor. They concluded that asymptotically, the
prediction error is most serious when p is in the neighbourhood of 1. Researchers
also found that the estimator Zi is essentially unbiased for most design matrices and
positive autocorrelation, and different estimators of 0-do not have a big impact on
the efficiency of f?, see for example Rao and Griliches (1969), Magee et al. (1987)
and Latif and King (1993). Therefore heuristically speaking, the finite sample MSEP

of (6.37) is dominated by the mean squared error of P, namely the terms involving
E(p— p)°. This justifies the effort to improve the prediction accuracy by using a less

biased p with small RMSE. Hence we would expect that the proposed predictor

o MU

Fren = XruBt Ploaus g ' 6.41)

where P, is the MU estimator we proposed in Chapter 5, should be more efficient

in small samples compared with the ones based on Pg,s and J 4z

For the dynamic linear regression tnodel, the frequently used h-period-ahead

predictor is given by

5’r+1. = 5’5{.5)’ rt %;;x;"ﬂﬁ'h . °+7ﬂ’oux;+a-|ﬁ + x;'mﬁ . (6.42)

For h =1, its finite sample MSEP can be expressed as
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E[(Fres = Yrar)

¥r1=E(F =) y2+ E(xr B 7, B

- . ) (643)
F2EY = ¥)xpyy B=%74 B)yr)

It is also apparent that by reducing the bias and RMSE of the estimator ¥, we should
be able to reduce the MSEP of the predictor. Therefore we replace ¥, in (6.42) by

the approximately MU estimator ¥ ,,, we developed in Chapter 4 and suggest using
the one-period-ahead predictor

5’;3 = ?MU)'T +x B (6.44)

6.3.2 Experimental Design

In the linear regression model with AR(1) disturbances, we compute the one-
period-ahead forecasts based on Py, Pyuzs P4 and Dy, which are denoted by
§OS, yMLE A and ypy , respectively, for eight different design matrices specified
in Chapter 5, and for p=1, 09, ..., 0.1, 0 and for 7' =20 and 40. The RMSEPs were

calculated based on 2000 forecasts,

In the dynamic linear regression model, we compare the predictors based on
¥ os @nd ¥ ,,, . The latter was based on the iterative algorithm proposed in Chapter 4.
1000 forecasts were computed for y =09, 08, ..., —06, —08, T =29, 40 and for

four design matrices specified in Section 4.3,

6.3.3 Results

6.3.3.1 Linear Regression with AR(1) Disturbances

The one-period-ahead prediction errors of the 4 predictors are reported in T2ble 6.6a
-~ 6.6¢. For most design matrices, the prediction errors based on different estimators

all increase with p. For design matrices such as X2 and X5, the prediction error of
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yoo at p=1 is more than twice as much as the error at p=0. For T=40, the

prediction errors of 27 and $7.; become more evenly distributed across the
parameter space. Yoo generally has RMSEPs sirmilar to or slightly higher than those

of $%5 except for X5 and X8 with 20 observations. The RMSEPs of 517 are

T+1

consistently smaller than those of $25and $12f for large positive p values (2 05)

and for T =:20. Especially when p is close to 1, the advantage is significant. For
example, the RMSEPs of $1 at p=09 for X2, X5, X6 and X8 for T =20 are,
1.23, 2.07, 2.02 and 2.69, respectively, which are much smaller than those of $7,;:
1.83, 2.85, 4.04 and 2.92, respectively. This advantage is still present for T'=40 but
with a smaller margin. For example, the RMSEPs of J§;, for X5 at
p=1, 09, and 08 are, 1.06, 1.06 and 1.07, respectively, while 37,; has RMSEPs of
2.58, 1.67 and 1.3, respectively. The predictor based on Andrews’ estimator, Jr,;,
performs very similarly to 74, for X1. But for all other design matrices, it always
has slightly larger RMSEPs than those of 7] . These results verify the expected link
between the quality of an estimator and the performance of the predictor based on it.
The smaller bias and risk of the MU estimators proposed in the previous chapters

were translated into smaller RMSEPs in forecasting.

6.3.3.2 Dynamic Linear Regression Model

The estimated one-step-ahead forecast errors for the two predictors based on ¥ s
and 7., for the dynamic linear regression model are reported in Table 6.7. The
predictor based on the proposed MU estimator generally has smaller RMSEPs than
those of the predictor based on the OLS estimator for all positive ¥ values and for all
design matrices considered. The OLS predictor has similar RMSEPs for different ¥
values, while the MU predictor tends to have larger RMSEPs for ¥ values close o 1
than those for other  values. The difference between the two predictors is more
significant for 055y <05, where the bias in ¥, seems to be most serious, as
reported in Chapter 4. For example, the difference in RMSEP between the two
predictors at ¥ =0.4 and -0.4 for X1 and T =20 are 0.32 and 0.38, respeciively, both

of which favoured $MV. Interestingly, for X1, the OLS predictor sees little

+1

222



Chapter 6. Hypothesis Testing and Forecasting Based on Median-Unbiased Estimators

improvement when the sample size increases from 20 to 40, while the MU predictor 3 Table 6.1a

shows a more apparent drop in the RMSEP when the sample size increases. The Rejection Probabilities of the W,,.;, Wy, W,, W,,, and 5(0,05) Tests at 5%
. . ... ) . Significance Level in the Linear Regression with AR(1) Disturbances; Testing
advantage of usi- - the new predictor is minimal for design matrix X4 and T =20. H,:p=0vs. H,:p =0, for Design Matrix X1 and X2 3

This reminds us that the RMSEP of a predictor is not solely determined by the bias

of the estimator the predictor is based on. A similar phenomenon was reported by

Fair (1996), who found that the MU estimators do not necessarily lead to better X1,T=20

P 1.00 080 060 040 020 000 020 -040 -0.60 -D.80 -0.95

forecasting performance for a dynamic simultaneous equations model.

W, 070 057 033 012 003 005 018 045 078 096 0.99
Wye 071 058 034 013 004 005 0.8 045 078 096 0.99

. _; W, 082 071 050 024 010 005 030 025 061 090 099

64 Concluding Remarks ; Wy, 083 073 051 026 010 005 010 029 065 090 098
5005 033 073 051 026 010 005 013 032 061 083 093

X1, T=40
100 0380 060 040 020 000 -020 040 -0.60 -0.80 -0.95

This chapter provided some evidence of the effectiveness of improving small sample

performance of the Wald test and forecasting accuracy by using MU estimators. P

: - Wy, 100 099 088 049 012 005 031 073 098 100 1.00
The removal of bias in the estimator leads to the comection of the local Wy 100 099 088 049 012 005 031 078 097 100 1.00

biasedness of the Wald test in both the linear regression model with AR(1) ‘:,”A i'% ggg o ggg ol 0% g'}g ggg ggi ?’33 o
" 100 099 O. 18 005 018 062 094 100 L.

disturbances and the dynamic linear regression model. The power curves of the Wald 0,05 1.00 099 092 060 019 005 023 064 091 099 1.00
test based on the MU estimator are properly centred at the null point and also X2. T =20

,T=
tightened on the positive side of H,. For the non-local alternatives, the modified -__ 0 100 080 060 040 020 000 020 -040 -0.60 -0.80 -095

Wald test is not affected by the problem of non-monotonic power, which usually 4
i Wos 041 030 014 004 002 005 019 045 077 095 099

1 Wy 054 039 019 006 003 065 017 042 076 09 099
asymptotically equivalent to the ones based on the MLE estimators, it provides an : W. 056 046 030 0.15 006 005 016 040 0.74 094 0.99

effective remedy for the small sample deficiencies of the Wald test that are Wy 073 061 039 020 009 005 008 021 054 0385 097
] 5{0,05 067 053 031 013 0.06 005 013 027 046 058 061

plagues the tests based on LS estimators. Although the modified Wald-test is

frequently encountered by researchers.
X2, T=40

£ 100 080 060 040 020 000 -020 -040 -060 -0.80 -0.95

A similar conclusion can also be drawn for forecasiing accuracy. The

e T gt [0

predictor based on the MU estimator usually has a smaller error compared with those W, 095 096 080 041 008 005 028 075 097 100 100

W, 09 097 082 042 009 005 028 075 097 100 1.00
. . W, 095 086 073 047 016 005 020 066 095 100 1.00
prediction efficiency. ] W, 100 098 086 050 013 005 013 053 091 099 100
5005 100 098 086 050 013 005 020 059 087 098 0.9

based on biased estimators. The removal of bias in the estimator leads to improved

Note: 2000 Replications with Simulated Critical Values.
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Table 6.1b
Rejection Probabilities of the W, ., W,,, ., W,, W,,, and 5(0,0.5) Tests at 5%
Significance Level in the Linear Regression with AR(1) Disturbances; Testing
Hy.p=0 vs. H;.p#0, Tor Design Matrix X3 and X4

Table 6.1e
Rejection Probabilities of the W, ;, W,,,., W,, W,,, and 5(0,05) Tests at 5%
Significance Level in the Linear Regression with AR(1) Disturbances; Testing
Hg. p=0vs. H:p+0, for Design Matrix X5 and X6

X3,T=20
p 100 080 060 040 020 000 -020 -040 -0.60 -0.80 -0.95

X5, T=20
P 100 080 060 040 020 000 -020 -0.40 -0.60 -0.80 -0.95

W,s 050 035 016 005 002 005 018 043 076 095 0.99
Wy 059 043 021 007 003 005 0.17 042 076 095 099
W, 063 050 032 015 007 005 015 038 072 093 0.99
Wy 077 067 045 023 010 005 009 024 058 087 0.97
5005 075 063 04 019 008 005 012 025 045 057 0.65

W,. 051 038 022 009 004 005 017 038 070 091 098
W, 083 061 033 014 005 005 014 033 067 092 099
W, 072 060 043 025 010 005 0.0 026 058 086 097
W,, 088 069 040 020 009 005 008 020 050 081 096
5005 084 062 032 015 006 005 012 029 055 077 084

X3,T=40
p 100 080 060 040 020 000 020 -040 -060 -0.80 -0.95

X5,T=40
P 100 080 060 040 020 0.00 -020 -040 -060 -0.80 -0.95

Wy 098 094 076 036 006 005 027 076 097 100 1.00
Wye 098 095 078 038 007 005 028 07 097 100 1.00

W, 087 079 067 046 015 005 02t 066 095 100 1.00
Wyy 099 09 081 044 012 005 011 048 089 099 1.00
5005 099 097 082 046 012 005 0.18 052 081 095 099

W, 100 098 086 046 012 005 028 074 096 100 1.00
Wy, 100 099 088 049 0.13 005 027 074 096 1.00 100

W, 095 082 065 050 021 005 019 063 093 100 LOO
Wy 100 099 089 052 016 005 015 0654 039 099 1.00
5005 100 095 070 023 004 005 027 064 085 095 097

X4,T=20
p 100 08 060 040 020 000 020 -040 -0.60 -0.80 -0.95

X6,T=20
p 100 080 060 040 020 000 -020 040 -060 -0.80 -0.95

W, 058 038 018 006 003 005 0.18 044 077 095 099
Wy 067 047 023 008 003 005 0.18 044 077 095 0.99
W, 065 048 029 015 007 005 015 038 073 093 099
W,, 081 065 042 020 009 005 009 024 058 087 097
s(005) 081 065 042 0619 008 005 011 029 055 079 093

W, 033 028 015 005 003 005 016 038 070 092 099
W,,. 060 045 023 009 004 005 014 034 068 092 099
W, 060 057 042 025 0.10 005 009 024 057 086 097
W, 040 014 006 005 005 005 006 006 007 027 073
5005 073 049 025 012 007 005 009 020 038 059 068

X4,T=40
P 1.00 0.80 060 040 020 000 -020 -040 -060 -080 -095

X6, T=40
P 100 080 060 040 020 000 -020 -040 -060 -0.80 -0.95

Wye 099 097 081 041 009 005 031 077 097 100 1.00
Wy 100 098 083 042 009 005 030 077 097 100 1.00

W, 050 077 067 050 017 005 020 €63 093 100 1.00
Wy, 100 098 087 049 015 005 014 054 090 099 1.00
005y 100 099 088 053 0.18 005 021 059 0.85 095 099

W, 095 094 075 036 008 005 031 077 097 100 1.00
W, 099 096 081 €39 009 005 029 076 097 1.00 1.00
W, 081 077 063 044 016 005 024 068 095 100 1.00
W, 09 076 027 005 001 005 028 073 09 100 1.00
s(005) 099 095 069 027 007 005 018 043 061 075 081

Note: 2000 Replications with Simulated Critical Values. Note: 2000 Replications with Simulated Critical Values.
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Table 6.2a
Rejecticn Probabilities of the W, o, W,,,, and W,,, Tests at 5% Significance
Level in the Linear Regression with AR(1) Disturbances; Testing H;:p=0 vs.
H;:p+0, for Design Matrix X7

Figure 6.1
Empirical Power Curves of the W, W,,,. and W,,, Tests at the 5%
Significance Level in the Linear Regression with AR(1) Disturbances; Testing
H,:p=0 against. H:p=0

T=20
P 038 060 040 020 000 -020 040 060 -0.80

X1, T=20 X1, T=40

power
1

W, 035 030 020 0.10 0.1 0.21 040  0.55 0.53
Wy 074 048 024 010 016 017 040 070 092
Wyo 0.78 0.51 026 012 010 018 037 0.57 0.67

T=40
P 080 060 040 020 000 -020 -040 -060 -0.80

W, 093 084 053 016 005 023 061 089 091
Wye 099 08 051 013 005 022 062 094 099
W,, 098 084 044 011 065 013 04 079 087

0
o

A ' -1 0.5 0 0.5 1

N 05 0 0.5 t
Table 6.2b —4—WOLS -m-WME —e—WMW ——W OLS —m—W ME —»—W_M!
Rejection Probabilities of the W, W,,,., W,,, and 5(0,05) Tests at 5%
Significance Level in the Linear Regression with AR(1) Disturbances; Testing
H;.p=0 vs. H:p# 0, for Design Matrix X3 X2, T=20 X2, T=40
T=20 power

P 100 080 060 040 020 000 -020 -040 -0.60 -0.80 -0.95

Wis 006 011 012 009 005 005 008 015 021 0.19 010
Wye 077 054 026 010 005 005 007 017 039 072 091
Wy, 078 050 021 007 004 005 008 017 031 047 064
5005y 069 046 02 015 009 005 004 006 015 033 051

T=40
£ 100 080 060 040 020 000 -020 -040 -060 -0.80 -0.95

Wys 037 068 066 041 013 005 017 047 071 069 034
W 099 097 079 037 009 005 016 047 085 099 099
Wy 100 096 075 033 008 005 013 039 065 073 082
005 098 094 0380 049 016 005 014 044 075 083 030

-1 -0.5 0 0.5 1

——W LS —a—W ME W M

Note: 2000 Replications with Simulated Critical Values.
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X3, T=20

Figure 6.1 Continued

power

-4—WOLS ~—8-WME ——WM

Figure 6.1 Continued
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Figure 6.1 Continued

X7, T=20
Table 6.3

Rejection Probabilities of the W, , W,,,. and W,,, Tests at the 10% Significance
Level for Positive p Values in the Linear Regression with AR(1) Disturbances;

-1

-0.5 4]

0.5

—]

1

—&—-WDGES -——-WDPL —-WDW

—e—W_GLS ~—a—W_ME ——W_M

Testing H,: p=0 against H:p#0; T =60

X8,T=20

X8, T=40

power
-

power

-1

0.5 0
——W G S —m—WME

0.5

—k—W_M

Tou

1

-h—W_GLS

23i

X1 X2
o Wors Wire Wi P Wors Wtz W
0.800 0999 0999 1.000 0.800 0999 0999 1.0600
0.600 0987 0987 0992 0600 0973 0976 0.989
0400 0830 0.826 0.830 0400 0764 0768 0.88!
0200 0.304 0299 (.389 0200 0247 0246 0.427
0.000 0.100 ¢.100 0.100 0000 0100 0100 0.100
X3 X5
P Wors Wie Wy P Wors Wiee L
0.800 0.998 0.998 1.000 0800 0599 0999 1.000
0.600 0985 0984 0995 0600 098 0989 0994
0400 0744 0750 0.854 0400 0822 0830 0.851
0200 0222 0222 (0392 0200 0312 0317 0.377.
0.000 0.100 ©.100 0.100 0.000 0.160 0.100 0.100
X1 X8
o Wors Wie Wiy P Wors Wine Wy
0.800 0.993 1.000 1.000 0800 0952 0999 1.000
0.600 0978 0992 (.995 0.600 0929 098 0984
0400 0820 0.849 0.870 0400 0751 0787 0.803
0.200 0350 0.354 0.378 0200 0309 0287 0322
0.000 0.100 0.100 0.100 0.000 0100 0100 0.100

Note: 2000 Replications with Simulated Critical Values.
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Table 6.4a
Rejection Probabilities of the W, ;, W,,, ., W,,, and 5(1,0) Tests at the 5%

Significance Level in the Linear Regression with AR(1) or Random Walk
Disturbances; Testing H,: p =1 against H,: p <1, for Design Matrix X1

Wors
Witee
Wiy
3(1,0)

Table 6.4h

Rejection Probabilities of the W, W,,, ., W,,,, and 5(1,0) Tests at the 5%

Significance Level in the Linear Regression with AR(1) or Random Walk
Disturbances; Testing H,: p =1 against H,: p <1, for Design Matrix X2

T=20
1.00 090 080 070 060 050 040 020 000
005 006 008 0.2 018 025 037 061 085
005 006 008 012 019 027 039 065 087
005 006 009 014 021 031 043 068 0.38
005 007 010 014 021 030 043 069 089
T =40
100 090 080 070 060 050 040 020 0.00
005 007 013 028 048 071 088 099 1.00
005 008 0.5 034 056 08 092 099 1.00
005 007 0.5 034 057 079 091 099 1.00
005 007 015 034 056 079 092 100 1.00

Note: 2000 Replications with Simulated Critical Values.

Simulated Power Curves of the W, ;, W,,,. and W,;,, Tests at the 5%

Figure 6.2a

Significance Level for Design Matrix X1

T=20

=40

ower
P

0.9+
0.8 -
0.7 4
0.6 1
0.5
0.4 -
0.3
0.2 5
0.1 -

0.5

—4—W_GLS —m—W_ME

—W_MUJ

T=20

p 100 090 080 070 060 050 040 020 0.00
Wos 005 004 006 008 011 016 024 042 068
Wyz 005 004 006 009 012 017 024 043 0.69
W,, 005 005 008 012 017 025 035 057 078
S0 005 005 008 011 016 023 033 056 0.79

T =40
p 100 090 080 070 060 050 040 020 0.0
W, 005 007 014 026 044 065 083 098 100
W, 005 010 021 240 063 084 094 100 1.00
W, 005 010 020 039 061 082 093 099 1.00
$a0 005 009 020 038 060 082 094 100 100
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Note: 2000 Replications with Simulated Critical Values.

Figure 6.2b

Simulated Power Curves of the W, W, and W,,, Tests at the 5%
Significance Level for Design Matrix X2

T=20

02
——-WOS —-B-WME ~R-WM

04

08

—e-WGAS —a—-WME

—a—WM

234




Table 6.4¢

Rejection Probabilities of the W, W, ., W,,, and 5(1,0) Tests at the 5%
Significance Level in the Linear Regression with AR(1) or Random Walk
Disturbances; Testing H: p=1 againct H,:p <1, for Design Matrix X6

T=20
p 100 090 080 070 060 050 040 020 000
Wys 905 003 004 005 007 009 014 027 051
Wy 005 003 004 005 007 010 014 027 050
Wy, 005 007 012 017 026 034 045 063 076
510y 005 007 010 0.5 022 030 043 063 083
T=40
p 100 090 080 070 060 050 040 020 000
W,s 005 002 003 007 013 025 044 080 098
Wye 005 011 023 047 07F 088 09 100 100
Wy, 005 013 030 056 076 088 09 098 098
SLo) 005 031 023 047 070 087 097 100 100

Note: 2000 Replications with Simulated Critical Values.

Figure ¢.2¢

Simulated Power Curves of the W, ;, W,,,. and W,,, Tests at the 5%
Significance Level for Design Matrix X6

T=20

T=40

Table 6.4d

Rejection Probabilities of the W, ;, W,,,., W,,,, and 5(1,0) Tests at the 5%

Significance Level in the Linear Regression with AR(1) or Random Walk
Disturbances; Testing H: p =1 against H,:p < I, for Design Matrix X8

T=20
p 100 090 080 070 080 050 040 020 000
W,s 005 005 005 006 007 010 012 022 037
W, 005 005 007 010 012 020 028 042 051
W, 005 009 015 024 036 048 059 077 085
sa0 005 009 014 023 034 046 058 077 087
T=40
p 100 096 080 070 060 050 040 020 0.00
W,s 005 002 001 001 002 003 007 025 056
W,. 005 012 033 061 083 095 098 100 1.00
W,, <05 0.3 035 061 082 094 097 100 100
S0) 005 0.14 035 063 084 096 099 100 1.00
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20

Figure 6.2d
Simulated Power Curves of the W5, W,,,. and W, Tests at the 5%

Significance Level for Design Matrix X8
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Rejection Probabilities of the Wald Tests Based on 7, and 7 ,,, at the 10%
Significance Level in the Dynamic Linear Regression Model for Design Matrices

Table 6.5 Figure 6.3

Simulated Power Curves of ihe Wald Tests Based on ¥, and ¥, at the 16%

Significance Level in the Dynamic Linear Regression Model
X1, X4, and X5;

X1, T=20 X1, T=40

4

090 0.80 0.60 0.40 020 0.0 0.00 -0.10 -0.20 -0.40 -0.60 -0.80

e

ower
f 1

0.8 -
X1, T=20

0.6 -
1.00 1.00 0.64 022 0.07 006 0.10 0.19 0.28 066 091 098
1.00 1.00 097 056 020 0.13 0.10 0G.14 0.20 0.534 0.86 0.98

Eamma

X1,T=40

©

-1 -0.5 0 0.5 3 -1 -0.5 0 0.5 ]
—e—W _OLS ——-W_MJ ——W_OLS ——W_NJ

1.00 100 096 0.62 0.17 0.08 0.10 022 042 086 0.99 1.00
1.00 1.00 0.99 0.82 032 0.16 0.10 0.16 0.31 0.80 099 1.00
X4, T=20 X5,T=20

X4,T=20

ower

1.00 1.00 095 0.14 005 006 0.10 0.18 027 0.66 090 0.99
1.00 1.00 1.00 0.77 021 0.1¢ Q.10 0.11 0.17 050 0.78 0.97

X5, T=20

056 040 024 0.09 004 003 0.10 0.17 029 0.68 090 0.98

-1 -0.5 0 0.5 1 -1
—e—W_OLS —~i—W_MU ——W_OLS -—a—W_.MJ

082 075 055 034 016 0.11 010 O0.11 020 0.51 080 0.98

All experiments are based on 1000 replications.
Simulated critical values are used.
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Table 6.6a
RMSEPs of 57575 Frs s $1 and 547 for Positive o Values in the Linear
Regression with AR(i) Disturbances: RMSEP of 2000 Forecasts for Design
Matrix X1, X2 and X3

Table 6.61
RMSEPs of $2, $71E, 3., and 3}, for Positive p Values in the Linear
Regression with AR(1) Disturbances: RMSEP of 2006 Forecasts for Design
Matrix X4, X5 and X6

X1,T=20 X1,T=40 X4,T=20 X4, T=40
p o Fa Fra St M b Fra Fha p OS5 JME g4 gwu IS JME T GA sM
100 113 Li2 105 104 109 109 105 105 100 129 123 122 L1l L14 110 114 1.07
090 118 111 111 110 109 108 106 1.0 090 130 125 128 116 12 110 L16 107
080 117 116 112 LII 107 107 106 106 080 129 126 128 LI8 110 109 114 108
070 115 115 113 LI2 106 105 106 105 070 124 122 125 118 109 108 L14 107
060 L17  Li7 LI6 115 105105 1.05 105 060 124 123 126 120 108 107 L0 107
050 114 114 114 113 106 106 106 106 0s0 119 115 121 118 109 108 109 108
040 114 114 114 114 107 107 106 106 oa0 117 117 118 117 109 109 110 1.09
020 115 115 LIS 116 .08 108 108 108 020 114 114 115 116 109 Lie 110 L1
000 112 112 LI2 114 105 105 105  1.06 000 110 111 Lil 113 107 107 108  1.08

X2,T=20 X2, T=40 X5,T=20 XS, T=40 |
p ST SEE 3 gM jos  GEE AT gm o g IEE A g jos GEE A0 m
100 171 169 167 164 162 160 156 155 100 201 149 171 142 134 123 128 122
090 168 166 165 162 152 151 152 LSl . 090 181 150 164 144 126 124 129 124
080 160 158 159 156 140 140 142 14l 080 166 150 158 145 125 124 128 124
070 151 150 152 149 130 130 133 132 ‘ 070 156 150 155 147 129 128 131 128
060 144 143 145 143 121 121 122 122 060 150 148 151 147 128 128 130 128
050 137 137 139 137 116 116 117 117 '- 050 146 147 149 147 127 127 128 127
040 132 132 132 133 LT L1 LII LI 040 143 145 146 147 135 135 135 135
020 123 124 124 126 106 106 106 1.06 020 140 142 142 146 130 139 140 140
000 116 116 1.17 119 103 103 103 104 000 141 143 142 146 138 139 139 140

X3,T=20 X3, T=40 X6,T=20 X6, T =40
P EE A, g 55 SEESA, s | b s TTEE A g gus  FEE A= g
100 L19 L4 113 104 109 106 107 1.02 L00 285 247 254 207 127 119 127 118
090 124 120 121 LIl 109 107 111 1.04 090 256 231 234 207 126 121 128 120
0.80 122 LI9 121 112 110 109 112 1.07 080 231 216 224 206 125 122 128 122
070 LI9 1LI8 1LI19 113 110 110 114 1.09 ; 070 221 214 223 215 130 127 133 126
060 120 120 121 116 LIl LI0 L2 LIO ;_ 060 o215 211 220 218 130 128 132 128
050 117 LI7 L1 LI4 108 108 110 108 050 216 217 224 228 129 129 131 128
040 117 117 LIS 116 L1 LI L3 LI ' 040 216 218 222 235 137 137 138 136
020 L17 L17 LIS 118 lLio Lo L0 LI 020 221 225 224 252 140 140 140 143
000 113 114 114 116 Il2 112 113 1.1 000 225 231 227 270 137 138 138 150
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o Table 6.6¢
RMSEPs of 37,7, Fria s and 374 for Positive p Values in the Linear Regression
with AR(1) Disturbances: RMSEP of 2000 Forecasts for Design Matrix X3

7=20 T=40
p e EE Sl =
1.00 1.83 1.37 1.23 2.58 1.69 1.06
.90 1.60 1.33 1.26 1.67 1.08 1.06
.80 1.46 1.32 1.26 1.30 1.07 1.07
G.70 1.39 1.30 1.27 1.17 1.07 1.07
0.60 1.32 1.29 1.26 1.12 1.06 1.06
0.50 1.29 1.28 1.27 1.05 1.04 1.05
0.40 1.26 1.27 1.27 1.03 1.04 1.05
0.20 1.20 1.24 1.25 - 1.06 1.07 1.07
0.00 1.15 1.29 1.23 1.02 1.03 1.03
Table 6.7
RMSEPs of ;7 and 52 of 1000 Forecasts in the Dynamic Linear Regression
Mode]

Yy 09 080 060 040 0.20 0.10 000 -0.10 -0.20 -0.40 -0.60 -0.80

X1, T=20

jon LSI 143 149 150 1.51 1.55 1.57 151 150 154 159 1.51
MU 138 146 122 118 1.14 120 122 1.1l 114 1.16 1.20 1.16

X1, T=40

PO 149 141 144 140 149 149 148 143 147 151 148 1.53
FM 163 124 107 107 1.09 113 108 104 105 1.08 1.07 1.1i

X4.T=20

o5 113 110 108 1.13 115 112 116 1.18 1.11 1.13 111 1.10
Fpg 112 1.09 1.08 110 1.09 1.07 110 115 1.07 L1l L11 LI1

X5 T=20

Jea 131 133 135 1.27 138 130 1.36 138 134 137 1.35 1.35
g0 116 121 123 129 128 1.21 125 1290 127 1.27 127 1.29
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Conclusion

7.1 Imiroduction

Econometiic modelling plays a central role itz empirical economic studies. The
availability of rapidly expanding economic data bases has created a demand for more
complex models capable of capturing the state of dynamic econzinic systems. Within
the large enterprise of econometric modelling, point estimation remains a
fundamental device for analysing and disclosing the relationship between economic
variables. It also serves as a building block and provides inputs for other inference
procedures such as hypothesis testing and forecasting. A prominent request from
empirical economic research is that inference procedures should be relevant and
efficient for the very situation under study, not just for the ideal but unrealistic case
of indefinitely large samples, on which most of the classic estimation and hypothesis
testing procedures are based. The estimators or tests are deemed efficient only if they
are able to explore fully the information contained in the data at hand. Such demand
has driven econometricians to search for modeliing methodology that is based on
exact sample resuits, instead of relying on the ones only supnorted by asymptotic
theory. The ever-increasing computing capability has facilitated this shift of focus. In
terms of estimation, researchers are not satisfied to just have an estimator which is
asymptotically nermal but with unknown smali sample performance. Research work
in pursuit of exact finite sample inference procedures has flourished in recent years.
The main thrust of this thesis is consistent with this trend. Its main aim is (o search
for some small sample bias-correction techniques that are capable of constructing
estimators that are (approximately) median-unbiased. In the course of pursuing this
aim, two general applicable methods were developed, with illustrations given in

estimation of the linear autoregressive models.

In the section that follows, we discuss the core ideas of the methods of
constructing MU estimators, and summarise the major findings. Some

recommendations are drawn for how these methods should be used in practice.
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Aspects related to, but not covered in, this thesis will be deliberated on in the fina-
section of the chapier as potential topics for future research.

7.2 Summary of Findings

Median-unbiasedness enjoys some attractive advantages over mean-unbiasedness as
a measure of impartiality of a point estimator in some circumstances. Efforts were
directed to survey these circurnstances in the literanzre review chapter. A comparison
of the definition of the two unbiasedness criteria revealed a host of problems with
mean-unbiasedness, such as lack of robustness, not being invariant t0 one-to-one
transformations and being ill-defined when the parameter space has a closed
boundary. The use of MU estimators provides a remedy to these problems associated
with the mean-unbiased estimators. Apart from the early examples, MU estimators
are shown to be used most frequently in estimating linear autoregressive models with
high persistence. They provide an alternative inference device that is complimentary
to the unit root tests which may suffer from poor power. However, these exaimples
only considered models without exegenous variables. The extension to models with

explanatory variahles is important for practical research.

Despite its importance, there is a lack of a systematic approach towards
constructing MU estimators in the literature. There is however, a vast literature on
bias reduction techniques in the context of mean-unbiased estimation. Bias can either
be cormrected after the initial estimator has been computed or be prevented
beforehand. This can be achieved by either evaluating the bias function analytically
or via resampling schemes such as jackknife or bootstrap. It is natural for us to
modify some of these techniques and apply them to correcting the median bias of an
estimator, Therefore the origin of this research lies in the idea of borrowing
techniques from the mean bias correction literature in order to develop methods for

constructing MU estimators.

Chapter 3 developed two general applicable methods of constructing MU

estimators. One is based on adjusting the estimating equations and the second is
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based on inverting the median functica of a significance test stafistic. Both methods
can be regarded as extensions of Lehmann’s (1959) result, which links the existence
of an optimal MU estimator to the conditional distribution of the sufficient statistics.
“Vhen an estimating equation generates a biased estimator, one can effecti vely adjust
thesc equations to reduce the estimation. bias. The condition for a MU estimating
equation to deliver a MU estimator was shown to be more general than those for a
mean-unbiased estirzating equation to produce a mean-unbiased estimator. So for a
given estimating equation, we suggest subtracting iis median function from the
original estimating function and if the difference is monotonic, we will get a MU
estimator by solving the adjusted estimating equations. The advantage of this
approach is that no analytical or simulated bias functior is required, while the
diéadvamage is the difficulty of verifying the monotonicity of the new estimating
function. The proposed adjusted estimating equation was shown to be equivalent to
the modified versions of two existing bias reduction techniques. An iterative

algorithm wos developed to solve the adjusted estimating equation.

Chapter 4 provides two examples of applying the method of constructing MU
estimators by adjusting the estimating equations. In both examples, we chose to
adjust the marginal likelihood score equations Fue to their better small sample
performance compared with the profile likelihood counterpart. The adjustment to the
marginal likelihood score in the linear regression model with AR(1) disturbances can
be computed exactly using Imhof’s (1961) algorithm, and the new estimator was
shown to be almost free of bias in most cases. While in the dynamic linear regression
model, the median function of the marginal likelihood score is not invariant to
nuisance parameters, and we have to substitute these nuisance parameters by their
consistent estimators and adjust the estimating equation recursively. As a result, the
new estimator is approximately MU. It was found that the remaining bias in the new
estimator is minimal compared with that of the OLS estimator. In both models, the
RMSE of the new estimator is gencrally smaller than that of the OLS estimator
especially for positive parameter values. For the Iagged dependent variable
coefficient, the confidence intervals based on the new estimator were shown to have
better coverage probabilities than those based on the OLS estimator. These two
examples lcad us to believe that correcting the median bias in an estimator by

adjusting the estimating equations towards median-unbiasedness can be effective.
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The proposed method does not require knowledge of the forin of the bias function.
Our results show that the bias correction can be quite accurate and the overall risk of
the new estimator tends to be smaller than that of the biased estimators. The
drawback of this approach is that the likelihood function and the scores are non-
standard when the autoregressive coefficient goes to unity. The limiting distribution
of the marginal likelihood score in this case is not clear. Therefore it is not easy to
extend this method to cover the interesting case of unit roots and random walk

disturbances.

In case the proposed adjustment to the estimating equations is hard to
compute or the monotonicity of the adjusted estimating function does not hold, a MU
estimator can be constructed by inverting some ‘well-chosen’ test statistics at the
50% significance level. This was the second method of computing MU estimators
developed in Chapier 3. Depending on whether the median function of the test
statistic is monotonic, two different methods were proposed: fixed point inversion of
the median function of a single test staiistic and grid inversion of a median envelope.
The latter is theoretically more reliable despite the extra computational costs. We
addressed the issue of choosing a good test to invert, which was largely ignored by
most of provious studies. Effort was directed to disclose the relationship between the
power properties of a test and the effectiveness of inverting its median function for a
MU estimator. In many cases when a UMP test does not exist, we recommend two
classes of optimal tests, point optimal tests and locally best tests to be considered as
good candidates when choosing a test statistic to invert, mainly because of their
sound small sample power properties. This approach is suitable for estimating a large
class of linear models with autoregressive errors, with heteroscedastic errors and

with time-varying coefficients.

We illustrated the methed of inverting the median function of a significance
test to construct MU estimators in a practical example in Chapter 5. Most popular
tests, such as the DW test, the LM test and the ¢ test were shown to have non-
monotonic median functions for some design matrices. In particular, we pointed out
Andrews’ (1993) estimator based on the OLS estimator could not be extended to
models with exogenous regressors due to the same problem. The method based on

the POI test statistics provides a remedy. It was shown that the POI test has a strictly
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monotonic median envelope for all design matrices considered. Monte Carlo
evidence showed that when the median function of a single POI test is monotonic for
a design matrix, the MU estimator based on fixed point inversion method is almost
exactly median unbiased for all parameter values and has a smaller RMSE compared
with other estimators. In particular, it generally performs better than Andrews’
(1993) MU estimator except in the model with only an intercept and a time trend as
tne regressors. For the design matrices where a single POI test fails to deliver a
monotonic median function, inverting the median envelope of a series of POI tests
can be used to construct a MU estimator. It was shown that the proposed estimator
almost eliminates the bias present in the OLS and MLE estimators. The bias
correction is strikingly substantial for these designs, as they represent the extreme
cases where the small sample bias of the conventional estimators is most serious.
Finally, we examined the robustness of the proposed estimator to non-normal errors
and error structure misspecifications. It was found that the estimator based on
inverting median envelope is more robust to non-normal esrors than Andrews’
estimator. It performs well under all error structures examined, except for errors with

an MA component or with the autoregressive order misspecified.

Chapter 6 is concerned with hypothesis testing and forecasting based on the
MU estimators developed in the previous chapters. We providcd some convincing
evidence of the effectiveness of improving the small sample performance of the
Wald test by using MU estimators. The removal of the bias in the estimator leads to
the correction of the local biasedness of the Wald test in both the linear regression
model with AR(1) disturbances and the'dynamic linear regression model. The power
curve of the Wald test based on the MU estimator is properly centred at the null
hypothesis and also tightened on the positive side of H,. For non-local alternatives,
the modified Wald test is not affected by the problem of non-monotonic power,
which usuaily plagues Wald tests based on the OLS estimators. Although the
modified Wald-test is asymptotically equivalent to those based on the ML estimator,
it provides an effective remedy for the small sample deficiencies of the Waid test that
are frequently encountered by researchers. A similar conclusion can also be drawn
for forecasting accuracy. The predictor based on the MU estimator usually has

smaller average prediction errors compared with those based on biased estimators.
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Therefore it is useful to correct the small sample bias of the estimator in order to

increase prediction accuracy.

- To summarise the major findings, this thesis has established two small
sample estimation procedures based on exploring the estimating equations and the
exact distributions of the significance test statistics as alternatives to the existing
bias-correction techniques for situations where mean-unbiasedness is too restrictive
or robustness is highly desirable. It was shown that in many cases, estimation
procedures based on asymptotic theory are usually more general and easier to use,
but may suffer from smal! sample deficiencies. The procedures that are able to
explore the information contained in given data sets may therefore be preferable.
However, the proposed procedures, just like any other single estimation procedure,
cannot be consistently superior to the other procedures. Hence, the choice of which
procedure to use clearly depends on the model of interest, data set given and
inference procedures under examination, which dictate not only the utility function
used to assess the quality of an inference procedure, but also the cost-effectiveness of
- using each procedure. Bearing this in mind, the improvement in the small sample
performance achieved by applying the proposed estimation procedures should be

enough for researchers to use them in empirical econometric modelling.

7.3 Limitations and Future Research

The research reported in this thesis is by no means totally comprehensive in nature,
and possibilities for extension and further development exist. The quest to find exact
sample solutions for any econometric model has always been a hard task. The
research reported in this thesis is no exception. Our effort to resolve some given
problems may itself bring about more new open questions. Below we outline some

limitations to our approach and suggest scope for future research.

1. The thesis is mainly concerned with estimating a single scalar parameter of
interest. Some attempts were included to study estimating multiple
parameters simultaneously in the dynamic linear regression model in Chapter

4. Methods were aiso proposed to extend our algorithms to muliti-variate
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parameier cases in Chapter 3. But like most other applications existing in the
literature, MU estimation has not been used efficiently for multi-dimensional
parameter estimation problems. More work has to be done to better define an
impartiality measure for a multi-variate estimator. Some recent developments
on constructing simuitaneous confidence sets (bands) for multi-parameter
models, which include Hall (1987), Beran ard Miller (1986), Beran (1993),
Grigoletto (1998), Chan et al. (1999) and Wright (2000b}, may provide new
revelations for calibrating the point estimators of multi-dimensional
parameters. In the interest of maintaining a good focus for this thesis, we did
not pursue this issue further. These problems, and methods to deal with them,

in particular, warrant further research.

Constructing MU estimators by inverting the median envelope of POI test
statistics was proposed in the context of a general class of linear models with
various specifications of the error covariance matrix. Although the method
was only illustrated in estimating first order autoregressive disturbances, it is
readily extended to other models. k would be interesting to apply the
proposed method to models with time-varying coefficients, MA(1) errors or
heteroscedasticity errors, where POI test procedures have also been
developed. For example, a promising application is to apply the proposed
method to the POI tests developed by Shively (1988) and Brooks (1992) in
the random walk coefficient model to improve the small sample efficiency of

estimation and other inference procedures in this context.

The error terms in this study were assumed to be well-behaved and normally
distributed. This is mainly to facilitate the exact evaluation of the median
functions of test statistics via algorithms such as Imhof (1961). However,
without the normality assumption, the methods proposed can still be applied
with the median functions approximated by simulation. As it is impossible to
simulate a continuous median function for indefinite number of points, non-
parametric curve fitting techniques may be required to extrapolate the median
functions outside the grid of simulated points. This approach was discussed in
Hansen (1999). The efficiency of the proposed procedure based on simulated

median functions, however, remains to be seen.
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Chapter clusion

Although in Chapter 5, we examined the robustness of the proposed MU
estimators under non-normal errors, it remains to be seen if these estimators
are aiso robust to outliers or contaminated data, which ought to be a property
possessed by the concept of median-unbiasedness. How to treat outliers and
contaminated data in time series models has always been a difficult problem.
Median-unbiased estimators may provide more robustness than conventional
estimators. Therefore it would be useful to examine, for example, the

breakdown properties of the proposed MU estimators.

The comparisons of estimators in this study were usuaily restricted to the
proposed MU estimators and the conventional LS or ML estimators. In
Chapter 5, we compared the proposed MU estimator with Andrews® MU
estimator and also examined several other MU estimators based on inverting
different test statistics. A possible research direction is to develop optimality
results for various MU estimators in autoregressive models. Andrews (1993)
admitted that it was not clear if his MU estimator was optimal in any sense.
The same can be said about the MU estimators proposed in this thesis. More
work needs to be done to assess the proposed MU estimators in terms of
optimality measures such as the concentration measure or the closeness to the

Cramer-Rao efficiency lower bound (see review in Chapter 2).

A possible topic for exploration is to extend the proposed estimation
procedure to more complicated time series models, in which estimating
autoregressive type of models is a component of the inference procedures.
Examples of such models include panel data AR({1)/unit root model,
autoregressive conditional heteroscedasticity models, vector autoregressive
models and ceintegratzd systems. Linear autoregressive models with
exogenous variables are essential for understanding these models. The small
sample MU estimation procedures developed in this thesis may serve as a
building block in developing exact finite sample inference procedures for

these more complicated time series models.
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