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Abstract

The importance of testing for and modelling structural change of possible

unknown timing in econometric relationships is well recognized. There is a well-

developed literature on testing and modelling when a structural change may be

present and a lesser literature on forecasting. Unfortunately, almost no work has

been reported on model selection procedures for detecting the presence of a

structural change with changepoint of unknown timing. In this thesis we investigate

the use of model selection and develop a new model selection procedure which

involves of maximizing the average mean probability of correct selection (AMPCS).

New results are also presented for testing and forecasting with possible structural

change in mind.

The first contribution of this thesis concerns the use of the likelihood ratio

(LR) test statistic to test for the presence of structural change when there is a possible

unknown changepoint in the data. Since this test does not have a known distribution

for finite sample sizes, we calculate exact critical values for the test by simulation for

different sample sizes, numbers of regressors and types of regressors. We find that

the critical value clearly depends on sample size, number of regressors and to a lesser

extend on the type of explanatory variables. We develop formulae for critical values

using a response surface approach and check the accuracy of these formulae by

Monte Carlo simulations. Overall the actual sizes of the test using our formulae to

calculate appropriate critical values are quite satisfactory.

As a second contribution, this thesis demonstrates that model selection

procedures can be used to detect a possible changepoint in the data. It cautions

against the use of one particular information criteria (IC) procedure in order to detect

xvi
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the presence of a structural change because none of the IC procedures stand out as a

clear best method. In order to assess different selection strategies, we use our

criterion AMPCS that summarizes the quality of different IC procedures. The results

of the Monte Carlo experiment show that in terms of our AMPCS criterion,

Hocking's Sp criterion (HSPC) is the best IC procedures for small samples and

Schwarz's Bayesian information criterion (BIC) for large samples. Findings also

show that BIC outperformed all existing IC procedures considered when there is no

structural change, and Theil's R-squared criterion (TRSC) performed best overall

when a changepoint is present.

The third contribution is to outline methods for finding optimal penalties for

different changepoint models in such a way that no one model is favoured

unwillingly. We propose four new methods which are the complete grid search

algorithm (CGSA), a block grid search algorithm (BGSA), polynomials of degree

four algorithm (PDFA) based on a grid search and a relatively new global

optimization algorithm called the simulated annealing algorithm (SAA). Our

simulation results show that the CGSA is the best, BGSA second, SAA third and

PDFA fourth best as measured by maximum AMPCS. We have found that all of our

four suggested procedures dominate the existing IC procedures considered in terms

of having higher AMPCS.

Finally, we investigate random changes in the coefficients of linear

regression models and their effect on prediction models. We derive the distributional

pattern especially the mean, variance and covariance structure of different linear

regression models for stochastic changes in either slope or intercept parameters in

turn by a fixed amount with a very low probability. We find that this results in a

linear regression with a nonscalar variance-covariance matrix, which allows standard

approaches to estimation and prediction to be used.
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CHAPTER 1

Introduction

1.1 Background

Econometricians, economists, statisticians and researchers of a number of

other disciplines use the term model to mean a simplifying approximation of the real

data, which captures the relevant features of a particular phenomenon. Grassa (1989,

pi) defined an econometric model as "an analytical characterisation of the joint

probability distribution of some random variables of interest which yields some

information on how the actual economy works". On the other hand, a mathematical

economic model describes the behaviour of an economy within the framework of a

set of assumptions. In other words, an economic model typically involves some

degree of abstraction from reality whereas an econometric model reflects this

abstraction in practice (see for example, Zarembka (1974)).

Bergstrom (1993) indicated that economic models are usually less precise

than other models used for statistical fitting and testing. Econometric models are

usually more precise in the sense that parameters of such models can be estimated

and tested through statistical techniques using available data. In other words, we are

able to see how well the model fits the data. Much of the literature in econometrics



Chapter 1 Introduction

is mainly concerned with the problems of estimation and inference from a sample of

data. The properties of estimation techniques, and the quality of inferences, are

heavily dependent on the correct specification of the model under consideration.

There is the problem, that for one modelling situation, there might be many different

specifications that constitute different alternative models. Thus an obvious question

arises as to which model provides the best characterisation from the viewpoint of the

data. The term model selection emerges from this simple idea.

Econometricians usually expect that economic theory will help them to find

causal links and formulate appropriate models. But unfortunately, existing economic

theory often fails to suggest an adequate functional form of such relationships.

Because of this weakness in economic theory, econometricians often use their own

methods for deciding on the functional forms of models. In doing so, they typically

propose a range of alternative models to reflect the relationship between dependent

and independent variables. The question arises; how should one model be selected

from a number of alternative possible models using the available data? This is

typically known as the model selection problem in the econometrics literature.

During the 1950's and 1960's, regression analysis became the principal tool

for economic data analysis. It was not long until there was a concern about the

assumption that parameters in the regression are constant over the entire sample

period. It is quite common to observe occasional changes in economic systems,

which alter the underlying relationships between variables of interest. As a result,

these changes must be considered while forming the model. This realization has led

to a large literature on the possibility, detection and modelling of structural change in

econometric models.

Modern econometric practice advocates that while modelling any

econometric problem; researchers should test their models for misspecification,
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especially for structural change. The problem of testing for structural change

basically involves testing for the consistency of regression coefficients in two or

more separate subsampies. In the case of time series data, the subsamples may be

different economic situations, such as particular government policy periods or

particular foreign exchange regimes. In the case of cross sectional data, the

subsamples may correspond to different groups of observations such as large and

small firms, developed and underdeveloped countries or men and women. Many

researchers have shown thf.l proper consideration of possible structural change is

needed while analysing data, otherwise poor estimates, inferences and forecasts can

result.

Over the last few decades, there has been considerable interest in the

problem of testing for structural change. Some of the literature covers the case when

the timing of the changepoint is assumed known. This is not always a realistic

assumption because for example in economics, some economic changes can take

place when the timing of the changepoint is unknown. The difficulty with the

problem of testing for a structural change with an unknown changepoint is that it

does not fit into the traditional testing framework. The reason is that the timing of

the changepoint appears only under the alternative hypothesis but not under the null

hypothesis. As a result, standard tests such as the Wald (W), Likelihood ratio (LR)

and Lagrange multiplier (LM) tests do not possess their usual large sample

distributions under the null hypothesis. One of the main aims of this thesis is to

provide a small sample based LR test procedure for structural change in the linear

regression model when the changepoint is unknown.

In the literature there have been a number of model selection procedures

suggested by researchers. These procedures can mainly be classified into four

categories: (1) procedures based on hypothesis testing, (2) procedures based on



Chapter 1 Introduction

minimum sum of squared residuals, (3) procedures based on Bayesian criteria and (4)

procedures based on information criteria (IC). However, if we look at the

development of the model selection literature, we see there is a wide range of

research related to IC based procedures. These particular procedures are probably

the most workable, popular and widely used methods for model selection in

econometrics.

Clayton et al. (1986) showed that IC based procedures can be regarded as a

more substantial approach to model selection than any other procedures. In addition,

Granger et al. (1995) noted that IC based procedures involve fewer limitations than

hypothesis test based procedures, and hence have become more popular with

practitioners. Thus, the focus in this thesis will be on IC based procedures which can

be defined as choosing the model with the largest maximized log-likelihood function

minus a penalty term, where the penalty is a function of the number of parameters

included in the model and possibly also sample size.

One can easily design a new IC procedure by slightly changing the value of

the penalty function. As such, interest in introducing various IC based procedures

for different types of models continues to grow and that make the users confused as

to which IC procedure to use for a particular problem in hand. Therefore, an IC

based procedure that would work well for any kind of model selection problem is a

current disparity in the IC literature.

King, Forbes and Morgan (1995) and Forbes, King and Morgan (1995)

proposed a new approach for estimating penalties through simulation. This method

is known as the controlled probability approach. Hossain and King (1998) applied

this approach to Box-Cox transformation models and found that it produces high

selection rates in picking the true (data generating) model. Kvvek and King (1997a,

1997b, 1998), and King and Bose (2000) considered model selection problems in

• • • $ .
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conditional heteroscedastic models, and linear regression models, respectively, in the

context of maximizing the average mean probability of correct selection (AMPCS).

The AMPCS is calculated by averaging the mean probabilities of correct selection

for all models in the plausible group. All of these applications produced, on average,

a high probability of selecting the true model. For the sample size and plausible

models under consideration, this new model selection approach maximizes the

AMPCS through the estimation of penalty values numerically.

This has motivated us to develop a model selection approach for the

detection of the possible presence of structural change in the linear regression model.

In this thesis we discuss in detail the idea of model selection for this problem both

using existing IC procedures and the new approach of maximizing the AMPCS.

Finding penalty values that maximize the AMPCS is a difficult numerical

problem. The AMPCS is a step function, and hence, it may not be easy to maximize

using standard methods. The grid search algorithm (GSA) could be one way of

estimating penalty values so that the AMPCS is maximized. Because we are dealing

with so many models based on the position of the changepoint, to ease the

computational burden, we investigate the use of a block grid search algorithm

(BGSA) and a polynomial of degree four algorithm (PDFA) based on grid search.

We also use a relatively new global optimization algorithm called the simulated

annealing algorithm (SAA) to maximize this AMPCS. The SAA works well as an

optimization algorithm, even when optimizing very complicated functions such as

functions with a large number of local maxima (see Corana et al. (1987), Kirkpatrick

et al. (1983) and Goffe et al. (1994)). A contribution of this thesis is to investigate

the use of the BGSA, PDFA and SAA to find optimal penalties for a small or large

number of models when the data contain a possible structural change.
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In making policy decisions, forecasting is becoming an increasingly

important issue both in the regulation of developed economies as well as for the

planning of the economic development of the underdeveloped countries. Goldfeld

(1976) and Zellner (1979) showed that forecasting without taking possible structural

change into account may provide misleading or poor forecasts. Also, a test

procedure that does not account for the possible presence of structural change may

reject some well-established econometric theories (e.g., the Lucas hypothesis), see

Ilmakunnas and Tsurumi (1985). In this thesis, we also discuss in detail the idea of

forecasting in presence of possible stochastic change of unknown timing in the

parameters with a low probability.

In summary, the main aims of this thesis are to study the problems of testing

for a structural change in the linear regression model with an unknown changepoint,

model selection in the presence of possible structural change where there is a large

number of models each based on the position of the changepoint in the data, finding

optimal penalties for such model selection problems and forecasting in the presence

of structural change.

The specific objectives of this thesis are to:

(i) Develop the ability to calculate critical values for the LR test for

structural change of unknown timing by developing formulae using

the response surface method. We also check the usefulness of the

proposed formulae by conducting a small Monte Carlo experiment,

(ii) Investigate the use of IC model selection procedures to detect a

structural change when there is large number of models each with a

different timing for the changepoint. We also examine which

criterion among existing IC has the best ability to detect a
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changepoint in the context of a linear regression model when the

timing of the changepoint is unknown,

(iii) Consider the use of AMPCS as a method of obtaining optimal

penalties. We also examine how such optimal penalties might be

calculated in practice, particularly when there are a large number of

alternative models involved,

(iv) Investigate how to incorporate possible future structural change as a

stochastic element in linear models with possible stochastic changes

in their parameters and to compare predictions from different

strategies for such models.

1.2 Outline of the Thesis

In Chapter 2, we briefly review the testing for structural change literature

from an econometric and statistical viewpoint covering likelihood ratio tests,

Bayesian procedures, nonparametric approaches, CUSUM and CUSUM of squares

tests, the Chow test, the sup F test for time series and linear regression models.

We briefly survey the model selection literature in econometrics beginning

with a short discussion on some obvious demerits involved with model selection

through hypothesis testing. The survey reveals that tliere is a large body of literature

on model selection ranging from stepwise hypothesis testing to IC based model

selection procedures. However, the discussion on IC based procedures mainly

focuses on the penalty term that is one of the main ingredients of such procedures.

We also briefly survey the literature on the simulated annealing algorithm and the

varying coefficient model.

Chapter 3 develops a small-sample test procedure that allows the use of the

LR test statistic based on maximization of the likelihood function of the linear
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regression model in the presence of structural change. Under the null hypothesis, the

regression parameters are constant across all periods. Under the alternative, a

particular regression parameter changes at an unknown changepoint. In our case, the

critical values of the LR test statistic depend on the number of regressors, types of

regressors and the sample size. Unfortunately, the LR test statistic does not have a

known finite sample distribution, although the critical values for the test can be

calculated by Monte Carlo estimation. We develop formulae for critical values of

the LR test for different sample sizes, different significance levels, number of

regressors in the model and types of regressors using a response surface approach

applied to estimated critical values obtained via simulation.

In Chapter 4, we argue that the problem of detecting a changepoint of

unknown timing can be viewed as a model selection problem. In particular, we

examine which criterion has the best ability to detect a changepoint in the context of

a linear regression model when the timing of the changepoint is unknown. We use

the average mean probability of correct selection (AMPCS) criterion as a measure of

accuracy in detecting a changepoint.

In Chapter 5 we develop algorithms that compute optimal penalties in such

a way that the AMPCS is maximized for different models involving structural

change. We use grid search, polynomial of degree four combined with grid search,

and simulated annealing optimization algorithms that estimate optimal penalties for

different models. We give a working version of each of the algorithms and evaluate

them by discussing their advantages and disadvantages. We perform a small Monte

Carlo experiment to calculate the penalties for different models using these

algorithms. We look for the algorithm that gives the optimal penalties in a sense that

these penalties will provide maximum AMPCS with minimum computational cost

and effort.
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In Chapter 6, we investigate how to incorporate possible future structural

change as a stochastic element in different linear models with stochastic changes in

parameters. We consider the case in which there are two possibilities of a changing

parameter. One is a change in the slope parameter by a fixed amount with a very low

probability, keeping the intercept constant and another is a change in the intercept

parameter by a fixed amount with a very low probability, keeping the slope

unchanged. We use linear regression models with single or multiple time changing

coefficients but with low probabilities of a change at any point in time. We find that

this results in a linear regression with a nonscalar variance-covariance matrix, which

allows standard approaches to estimation and prediction to be used. We perform a

Monte Carlo experiment to investigate whether our forecast procedures are likely to

be useful.

We conclude this thesis with Chapter 7. It summarises the results,

conclusions and contributions of this thesis, and gives some suggestions for future

research.

V



CHAPTER 2

Literature Review

2.1 Introduction

Tliere are four main themes in this thesis. These are testing for structural

change when the timing of the changepoint is unknown, model selection as a method

of detecting a possible changepoinL the use of the special optimization procedures to

find optimal penalties for model selection and prediction in the linear regression

model in presence of possible random change of unknown timing in the parameters.

The purpose of this chapter is to review the literature relevant to these four topics

with particular emphasis on the problem of structural change when the changepoint

is unknown.

The structural change problem can be considered to be one of the central

problems of statistical inference, linking together the theory of estimation and testing

using classical and Bayesian approaches, and fixed sample and sequential

procedures. We survey the literature on testing for a structural change when the

changepoint is unknown arid discuss the developments of related topics in the

structural change literature.
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In applied work, model selection is a frequently occurring problem of great

importance, as inferences, forecasts, interpretations, and policy decisions etc. can

depend critically on the particular model selected from the range of models

examined. Most often, model selection is done by mechanical application of one or

several of the criteria that have been developed for this purpose. Among these, we

review some of the commonly used IC procedures.

'Hie maximised likelihood and the penalty function are the two main

ingredients of IC based model selection procedures which involve choosing the

model with the largest maxhmsed log-likelihood function minus a penalty term, that

is, the largest penalized maximum likelihood. The penalty term is a function of the

number of parameters included in the model under consideration and typicaily also

the sample size. Unfortunately, there is little agreement about the best form of this

penalty function. To find the penalties for different mode'.̂  that maximize the

average mean probability of correct selection, a globa! optimization method needs to

be used. One relatively new optimization method that we will find useful in later

chapters, is a method called the simulated annc> ~g algorithm (SAA). We also

briefly review this topic in this chapter.

We begin the survey in Section 2.2 with a brief discussion of the structural

change literature in econometrics and statistics with an emphasis on hypothesis

testing. In Subsection 2.2.2 we survey the likelihood ratio approach and diagnostic

tests for structural change are outlined in Subsection 2.2.3. Subsection 2.2.4

summarizes the Chow test and Subsection 2.2.5 the Sup F test. Subsection 2.2.6

discusses some other approaches.

In Section 2.3 we survey the literature on information criterion based model

selection. In Subsection 2.3.2 we discuss the consequences of model selection

through testing. In Subsect; on 2.3.3 we survey the historical development of some
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existing IC based model selection procedures namely, Akaike's information criterion

(AIC), Schwarz's Bayesian information criterion (BIC), generalized cross validation

criterion (GCVC), Hannan and Quinn's criterion (HQC), Theil's adjusted R-square

criterion (TRSC), Mallow's Cp criterion (MCPC), Hocking's Sp criterion (HSPC),

and Amemiya's prediction criterion (APC). We end this section discussing the work

of King and others. In Section 2.4 we review simulated annealing algorithms.

Finally, some concluding remarks are made in the Section 2.5.

2.2 Brief Review of Testing for Structural Change

2.2.1 Introduction

i

':•'•'}

The problem of possible structural change in economic relationships has a

long history in econometrics. Parameter constancy is especially important when one

wants to use a model for forecasting and policy implementation. Generally, it is

essential in policy analysis that the parameters of the model be invariant with respect

to the possible policy intervention if the effect of such a policy change is to be

predictable.

The aim of this section is to provide a literature survey of various test

statistics for structural change. Since the literature in this area is vast and growing

rapidly we will in particular focus on those tests which are widely used in practice.

2.2.2 Likelihood Ratio Approach

The likelihood ratio test has practical and theoretical importance, because it

provides a unified approach to the problem of testing for structural change. In this

survey we review some tests which can be applied to hypotheses about regression
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coefficients containing possible structural change of a known or unknown

changepoint.

Consider the standard linear regression model

y,=x',pt+un t = l--,n, (2.1)

where y, is the dependent variable at time t, x, is a k x 1 vector of observations of

the independent variables at time / and /3. is a k x 1 vector of unknown parameters

of the model that may change over time. The error term w, is assumed to be

independently normally distributed with constant variance, i.e., u, ~ IN(0,a2).

The null hypothesis of interest is

^:A=A=-=A,,=A,+,=-=A, (2.2)

where «, is the time of the changepoint.

222.1 Testing when the Alternative is Specified

One particularly important alternative hypothesis is the one time discrete

change, which can be expressed as

•••=/?,, (2.3)

where «, is the time of the changepoint.

Quandt (1958) derived a method of estimating the changepoint of a linear

regression model where there are two regimes and when it is known that time period

under consideration contains one changepoint. He considered the problem under the

assumptions that the data are free of error, error terms are independent of each other

and the errors are independent of explanatory variables. He suggested a LR test of

Ho against a more general alternative, where the variance is also allowed to change.

When the sample size is finite, /?, is discrete and takes values from «, = [k +1) / n to
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« ,= (« -k ) In . For such nx values, suppose the observations in the time segment

(l, ••-,«,,«,+1, • • •, n) come from two different regressions, then the likelihood ratio is

. _ _ , max likelihood under H, _,
LR = 2 log L = 21og-

max likelihood under Hn
a"

(2.4)

where CT, and cr2 are the standard errors of estimate of the regressions before and

after the changepoint respectively, and cr is the standard error of estimate of the

overall regression based on all n observation. For this reason, expression (2.4) is

often called a Quandt ratio, and the resulting test is referred to as the Quandt test.

This test requires re-estimating the model for each subsample. Therefore, a natural

answer to such a testing problem is to calculate the LR test statistic at every possible

changepoint, then examine the largest test statistic. This may be quite time

consuming or difficult in the case of non-linear regression models.

The estimated nx corresponds to the value of nx at which LR attains its

maximum. Unfortunately, the likelihood function here is not differentiable with

respect to the parameter «, and the distribution of maximum LR is unknown. In

other words, the problem of testing for a one-time structural change with unknown

changepoint does not fit into the standard testing framework, see Davies (1977,

1987). The reason is that the parameter nx only appears under the alternative

hypothesis and not under the null hypothesis.

Quandt (1960) tested the conjecture that the distribution of maximum LR is

asymptotically chi-squared. Based on Monte Carlo simulation results, he rejected it

and concluded that the proposed approximation to the null distribution of the LR test

is very poor, thus the LR procedure suffers from a lack of knowledge of the

appropriate distributional theory. Such a problem is only partly overcome by either
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i

using an approximation method or constraining to some special data generating

process.

Farley and Hinch (1970) and Farley, Hinch and McGuire (1975), partitioned

the unknown parameter vector of (2.1) /?,' =(P\,fi'Q), where /?, is a (kx x 1) vector

with kx<k, and fi0 is a ((k-kx) x 1) vector, they approximated the discrete change

in the coefficient at an unknown point by a linear continuous change

fix=P*+8t (2.5)

where 5 is a scalar. Then under the alternative hypothesis, we have an augmented

model, which is still linear in the parameters

Y=Xfi + ZS+u ' (2.6)

where Z is an n x kx matrix. Their procedure rejects Ho of no structural change

whenever

(SSEQ-SSE)fk
K — — (2.7)

SSE0/(n-2k)

is significantly different from zero. Under the null hypothesis, the statistic

[(n-2k)/k)R has a conventional F distribution with (&,, n-2kx) degrees of

freedom. Here SSEO is the sum of squared residuals in (2.6) and SSE is the surr< of

squared residuals in (2.6) subject to the constraint 5 = 0. They also proved that their

test is asymptotically more powerful than the mid-point Chow test if the structural

change occurs in the intervals 0 < — < 0.42 or 0.58 < — < 1.
n n

Hinkley (1969) derived the asymptotic distribution of the maximum likelihood

estimate of the changepoint «,. He discussed computational aspects of the

asymptotic distribution of the likelihood ratio statistic and compared the asymptotic

results with some empirical finite sample results. He concluded that the asymptotic

distributions are poor approximations in small samples.
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Hinkley and Hinkley (1970) considered models of the form (2.1) and

showed that the maximum likelihood estimate of the changepoint converges in

distribution based on an infinite sample. They considered a sequence of random

variables at which the probability distribution changes and derived the asymptotic

distribution of the likelihood ratio statistic based on random walk techniques for

testing hypotheses about the changepoint and compared it with finite sample

empirical distributions. They used the maximum likelihood method to estimate nx

and derived exact and asymptotic distributions of /5,. They used the LR test to make

inferences about the changepoint and concluded that the asymptotic distribution of

the test statistic is not consistent.

Hawkins (1977) studied the likelihood ratio test for the alternative of a

location change, found its distribution under the null hypothesis, and gave tables of

standard percentiies along with asymptotic results. Worsley (1979) used likelihood

ratio test statistics for location of the changepoint of normal population. Brown et al.

(1975) suggested a way to test whether regression coefficients changed without

specifying a changepoint.

Worsley (1983) gave an iterative procedure to determine the exact null and

alternative distributions of the likelihood ratio statistics in the context of a change in

a binomial probability. He provided approximate upper bounds for the p-value of the

LR test and his numerical results indicate that such bounds are reasonably good in

small samples.

Srivastava and Worsley (1986) used the LR statistic to test the null hypothesis

HQ of no change against the alternative there is a change. The unknown changepoint

«, is estimated by the maximum likelihood method. They showed that the LR test

statistic is a maximum Hotelling T2 statistic, and the estimate of the change point is

the point at which this is a maximum. Their main result is a conservative
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approximation for Hotelling T2 statistic's null distribution. They used the binary

segmentation procedure by Vostrikova (1981) for detecting more than one

changepoint. The disadvantage of this procedure is that it relies on the assumption of

equal variance throughout the whole data period and also depends on the order in

which data were split.

James, James and Siegmund (1987) considered likelihood ratio tests to

detect a changepoint. Instead of directly addressing the problem under general linear

regression model, they considered the simple linear regression

\a0 + PQX, + w, for t <nx

a, + B,x. + n. for / > «,
(2.8)

to test H0:/30=f3l, and a0 - ax, against one of the alternatives, Hl:j30=/3l=/3, and

there exists an «, (1 </?,<«) such that ao^a] or there exists an unknown

changepoint «, (1 <nx<n) such that H2:ft0# j8x, or ao*ar They investigated

some tests, including the LR test, for a sequence of independent normal random

variables with constant, known or unknown variance for no change versus the

alternative of a single changepoint.

Andrews and Fair (1988) extended Chow's (1960) classical test for

structural change in linear regression models to a variety of nonlinear models,

estimated by a variety of different procedures. They introduced Wald, Lagrange

multiplier-like, and likelihood ratio-like test statistics, and provided a compact

presentation of general unifying results for estimation and testing in nonlinear

parametric econometric models.

Kim and Siegmund (1989) derived analytical likelihood ratio tests of

constancy of a regression model over time and obtained an approximate p-value

under reasonably general assumptions about the empirical distribution of the

independent variable. A difficulty associated with this problem is that under the null
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hypothesis, the distribution (even the asymptotic distribution) of the test statistic

depends on the values of the independent variable. They estimated approximations

to the p-values of the likelihood ratio tests of H0:f3Q = /?, against //,:/?<, = /?, = (3 or

Nyblom (1989) proposed tests for detecting possible changes in parameters

when the observations are obtained sequentially in time. He mentioned when the

starting point is unknown, an efficient estimate is substituted for it. In addition, he

established the corresponding limiting distribution. The proposed tests turn out to be

based on cumulative sums of the score function (the derivative of the log-likelihood).

Henderson (1990) considered testing the null hypothesis of no change,

against the alternative of change at an unknown changepoint. Under the null

hypothesis Ho, the variables are identically distributed, but under the alternative

hypothesis //, there is a change in distribution at some unknown point nx in the

sequence ( !<« ,<«) . That is, the first «, observations are drawn from one

distribution and the remaining (w-w,) are drawn from a different distribution. Thus

//,, contains a family of alternatives indexed by a parameter «, that disappears

under the null hypothesis. He considered a likelihood ratio test and mentioned that

additional information in the maximum likelihood estimate of the changepoint can

seriously affect the interpretation of test results. He considered some modifications,

derived exact percentage points and performed Monte Carlo power and mean

squared error comparisons. He concluded that his results were encouraging.

Loader (1992) considered a changepoint model of the form (2.1) and used

likelihood ratio tests for testing for the presence of a changepoint, for which standard

asymptotic theory is not valid. He developed the log-likelihood ratio statistic for

testing Ho and showed that under the null hypothesis, the log-likelihood ratio



Chapter 2 Literature Review 19

statistic is distributed approximately %] 12. He mentioned that for small 5 this

approximation is not very good without giving a proof. Applying large deviation

methods, he approximated the p-values, and gave power approximations. He also

derived confidence regions for the changepoint and illustrated the methodology using

a British coal mining accident data set.

Muller (1992) proposed estimators for location and size of a changepoint in

smooth regression model. The assumptions he made are much weaker than those

made in parametric models. His estimators apply to the detection of changepoints of

slope and of higher order curvature based on a comparison of left and right one-sided

kernel smoothers. He illustrated the methods by means of the well-known data on

the annual flow volume of the Nile River between 1871 and 1970.

Andrews (1993) considered tests for parameter instability and structural

change with an unknown changepoint for a wide class of parametric models

estimated by generalized method of moments (GMM). He considered test statistics

of the form

supWald(«,), supLM(«,) and supLR(«,) (2.9)
w.eTI

where Wald(«,), LM(;z,)and LR(«,) are the Wald, Lagrange multiplier, and

likelihood ratio test statistics for testing Ho versus Hx and n is a subset of the

integers {l, •••,«}. The LR test statistic for the case of a specified parameter nx

within the parameter space fl . Andrews justified the test statistics of the form (2.9)

as the test statistics supWald(/7,), supLM(w,) and supLR(rc,) correspond to the
Mi eTI /I, e n n, eTl

tests derived from Roy's type I principle, see Roy (1953) and Roy, Gnanadesikan and

Srivastava (1971, pp 36-46).

Andrews under some regularity conditions, proved that under Ho
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sup K{nx) => sup B{nx)' 2?(«,) / (nx (« - nx
d l /;, eTIi dl

(2.10)

is same as Wald, LM or LR, where K is any of these test statistic, => means

convergence in distribution, B(nx) = W(nx)-nxW{\) is a vector tied-down Brownian

motion on (0,1). In other words, the supWald(«,), supLM(«,) and supLR(«,) tests

have the same asymptotic distribution which is free of nuisance parameters. In

particular, in the case of a full structural change,

supF = supF{nx) => supB(n,)'B{nx)l(nx(n-nx))
Hi eTI «| eFI

(2.11)

where F(nx) is the conventional F test statistic which we discuss further in Section

2.2.5.

He noted that the asymptotic distributions of the test statistics are

nonstandard because the changepoint parameter only appears under the alternative

hypothesis and not under the null. He showed that the asymptotic null distributions

of his test statistics are the supremum of the square of a standardized tied-down

Bessel-process. This allowed him to provide tables of critical values based on this

asymptotic null distribution. He found the tests performed quite well in a Monte

Carlo experiment.

Kim and Cai (1993) examined the distributional robustness of the likelihood

ratio test for a changepoint in a simple linear regression of type (2.8). They checked

whether the level and power of the test remain unchanged when the underlying error

distribution is nonnormal. They summarized the normal theory of the likelihood

ratio tests for no change in the regression coefficients versus the alternatives with a

change in the intercept alone and with a change in the intercept and slope, then

discussed the robustness of these tests. Using the convergence theory of stochastic
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processes, they showed that the test statistics converge to the same limiting

distributions regardless of the underlying error distribution. They performed

simulations to assess the distributional insensitivity of the test statistics to a Weibull,

a lognormal, and a contaminated normal distribution in two different cases: fixed and

random independent variables. Their numerical examples showed that the test has

correct size and retains its power when the distribution is nonnormal. They

performed simulation experiments and observed that the LR tests achieved almost

the same level, and power regardless of the distributional assumption. They also

found that the approximations for the p-values of the test achieved almost the same

accuracy for each of the selected nonnormal errors.

Other related work includes Miller and Siegmund (1982) who considered a

.special case of maximally selected chi-square statistics. Vostrikova (1983)

established the weak convergence of the likelihood ratio statistics in a very general

case. Bhattacharya (1987) studied the problem of estimation of a changepoint in a

general multiparameter case. Haccou, Meelis and van de Geer (1988) obtained the

limit distribution of the maximally selected likelihood ratio in the exponential case

and they showed that the test is optimal. Gombay and Horvath (1990) studied the

changepomt problem when the observations are from a one-parameter exponential

family. Yao (1993a,b) obtained approximations for a modified likelihood ratio test

in the :iormal case. The result in Horvath and Serbinowska (1995) covers the case

when the maximum is taken with respect to all possible changepoints. Rukhin

(1994) and Hu and R.ukhin (1995) computed the asymptotic mim'maxity of the LR

test in the context of changepoint problem. Baron and Rukhin (1997) constructed

confidence regions for the estimated changepoint.

There have also been extensive studies on the analysis of structural change

in a variety of models such as dynamic, nonlinear, simultaneous and time-series

f >ii
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models. For example, see Bacon and Watts (1971), Feder (1975), Deshaves and

Picard (1982), Lo and Newey (1985), Sen (1985), Huskova (1988a,b), Kramer,

Ploberger and Alt (1988), Lutkepohl (1988, 1989), Miao (1988), Antoch and

Huskova (1989), Ploberger, Kramer and Kontrus (1989), Huskova (1990a,b, 1991),

Mills (1992), Antoch and Huskova (1993), Huskova (1994a,b), Chu, Hornik and

Kuan (1995), Watson (1995), Huskova (1996) and Horvath, Huskova and

Serbinowska (1997) for details.

2.2.2.2 Testing when Alternative is Random
Coefficient

One of the important specifications of /?, in context of one discrete

changepoint of (2.1) under the alternative is to treat its variation as random. In this

situation a test for parameter constancy reduces to a zero restriction on the variance

of the innovations moving the random parameters. The reason behind this

specification is that if the regression coefficients are to be regarded as the true partial

derivatives of the dependent variable with respect to the independent variables, then

it is unlikely that these partial derivatives will be identical for two different

observations (Rosenberg (1973)). A number of varying parameter models have been

proposed in the context of time series models. Among them, three major types of

varying parameter models are of particular interest. They are, respectively, the

random coefficient models of Hildreth-Houck (1968), the random walk models and

the return to normalcy models of Rosenberg (1973). A detailed survey of testing

varying coefficient regression models can be found in Brooks and King (1994).

The linear regression model (2.1) can be written under a specification of one

random coefficient as



Chapter 2 Literature Review 23

(2.12)

in which y, is the dependent variable, x, is the non-stochastic regressor with the

single varying coefficient ft,, z, is a k x 1 vector of non-stochastic explanatory

variables with fixed coefficient vector a, s, ~//V(0,cr2) and / = 1, 2, ..., n. The

null hypothesis is (2.2).

The Hildreth and Houck (1968) random coefficient model states that the

single varying coefficient ft, from (2.12) follows the process,

ft,=ft+u,, (2.13)

in which ft is a constant parameter, u, ~ IN(0,Z0(T
2) and is independent of s,.

Testing for regression coefficient stability is equiva'ent to testing

HQ:AQ = 0 against //,:A0 > 0.

If ft, follows this process then by substitution* model (2.12) becomes,

v = x~B+z'a + v (2 \4)

in which v, = et + x,u,. The properties of v, are that it is normally distributed with,

£(v,) = 0, Var(y,) = cr2(l + Aoxf) and Cov(v,, vv) = 0, t*s.

Therefore, the effect of introducing random coefficient variation is to give

the dependent variable a different variance at each observation, the testing problem

can thus be considered as testing for heteroscedasticity in the standard linear

regression model. A large variety of test statistics have been developed in the

literature. Among them, the LM test of Breusch and Pagan (1979) and the point

optimal test of Evans and King (1985,1988) appear to be most appropriate.

Rosenberg's (1973) return to normalcy random coefficient mode! assumes

the coefficient following a first-order stationary AR process,

(2.15)
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in which a, ~ IN{0,A.^cr2) and is independent of s,. For (2.15) to be a stationary

process, it is required that \<f>\ < 1. It incorporates some of the best features of the

random walk and random coefficient models and is therefore of great importance.

Watson and Engle (1985) pointed out that the standard tests, (e.g. LR, Wald

or LM tests) cannot be used in the regular approach since the transition parameter <p

is only identified under the alternative hypothesis but not under the null hypothesis.

This is because under the null hypothesis the information matrix will be singular. To

overcome this difficulty they applied the testing approach as suggested by Davies

(1977).

Nyblom (1989) introduced the martingale formulation for the general

problem of testing for structural change. Under the martingale specification, a test

for constant coefficients reduces to a zero restriction on the variance of the

innovations disturbing the random parameters. Such an approach possesses

substantial flexibility. It allows, for example, J5! to be a random walk or to have e

specified or unknown number of discrete jumps during the observation period.

Based on the martingale specification, it is therefore possible to develop a test, which

is sensitive to different types of nonconstancy of parameters (see Nyblom (1989) for

details). Using a Taylor's series expansion, Nyblom first formed the approximation

of the joint density function of the observations under the alternative. Then, by

evaluating the ratio of the joint density functions respectively under null and

alternative hypotheses, he achieved a locally most powerful test statistic.
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2.2.3 Diagnostic Tests for Structural Change

In the previous section we discuss the test procedures which are intended to

test against a specified form of structural change, there is also a need for an

explanatory procedure aimed at being sensitive to a wide variety of non-stability

patterns without specifying any particular alternative. It is possible to detect possible

structural change by defining test statistics on the basis of various types of residuals

and inspecting their probability distributions. Belsley, Kuh and Welsch (1980) called

this approach an analysis of residuals and Box and Jenkins (1970) called it diagnostic

checking.

Brown, Durbin and Evans (1975) introduced CUSUM and CUSUM of squares

tests based on recursive residuals to test the stability of regression coefficients over

time, they have become the standard diagnostic procedures when the timing and type

of structural change are unknown. They considered the simple linear regression

model of type (2.1). The null hypothesis of interest is //0 :/?,=••• = /?„=/?. Tests are

constructed on the basis of recursive residuals. The recursive residuals, are defined

as

v-I (2.16)

where /?Wi_, is the OLS estimate of j3 from the first «, -1 observations and the

CUSUM test statistic is defined as

CUSUM = 4 max
w..

"l

ln~k
/ 1 + 2

nx-k
n-k

(2.17)

where cr2 = *s a c o n s i s t e n t estimate for cr2. The CUSUM of

squares test statistic is of the form
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CUSUMSQ= max
«, —k

T (2.18)

where =•=**<

I-
The advantage of this test is that under the null hypothesis the recursive

residuals are independent under the normality assumption. The major disadvantages

of the CUSUM test is the requirement that all the regressors be independent of the

disturbances which excludes the lagged dependent variable from being included in

the model. The CUSUMSQ test is recommended if there is instability of a random

fashion rather than of a systematic nature and the sample size is small.

Hsu (1977) investigated two tests for variance change in a sequence of

independent normal random variables, when the initial level of the variance is

unknown. He investigated two methods, namely the locally most powerful test and

the test based upon CUSUM of squares values. He approximated the distribution

functions of the two test statistics through the use of Edgeworth expansions and/or

the beta distribution by matching the first few moments. He gave critical points of

both test statistics for various sample sizes and also compared the powers of the two

tests using a Monte Carlo experiment. His results showed that both tests behave

almost the same. The power of the tests is relatively high when the changepoint

located in the middle position of the data rather than at the end or beginning of the

data.

Hackl (1980) constructed a test called the MOSUM test which is based on

the moving sums rather than cumulated sums of recursive residuals. The MOSUM

11
test statistic is based on: Mlh = — J ] Wj for any fixed constant G. Obviously, the

0"
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null hypothesis of no structural change is H0:E(Mtli) - 0. Similar to the CUSUM of

squares test, Hackl also constructed the MOSUM-SQ test, which is based on

j=k+\

McCabe and Harrison (1980) developed a test using the cumulative sum of

squares of OLS residuals. Their test has the advantage of being computationally

simple and comparable in power with Brown et al.'s (1975) CUSUM of squares test

when the degree of instability is high and/or the sample size is large. A major

drawback of their procedure is that the critical value of their test depends on the

particular set of observations. They thus derive bounds for tlieir test following the

approach of Durbin and Watson (1951). Because of the existence of an inconclusive

region, their test has not been widely accepted in empirical work.

Pettitt (1980) considered a simple CUSUM type statistic for the changepoint

in the case of zero-one observations. He introduced a conditional test of the null

hypothesis of no change against the alternative there is change and compared his test

with the likelihood ratio test. He also considered the estimation of the changepoint

using a simple statistic and showed that the method is asymptotically equivalent to

the maximum likelihood estimator in certain circumstances and almost equivalent in

others. To investigate its small sample behaviour, he carried out simulation

experiments and showed that the new estimator is generally superior to the maximum

likelihood estimator.

Dufour (1982) pointed out that a major drawback of the CUSUM test is the

requirement that all regressors be independent of the disturbances. In particular, this

excludes the lagged dependent variable from being included in the equation. In this
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case, he suggested replacing the coefficients of lagged dependent variables by their

consistent estimates from the full sample, and hoping that the resulting recursive

residuals and any tests based on them will have approximately the same properties as

those based on the true coefficients of lagged dependent variables.

Westlund (1985) conducted a Monte Carlo experiment and showed that the

MOSUM test has some advantages over the CUSUM test, the CUSUM of square test

and the MOSUM-SQ test. However, the choice of G is somewhat arbitrary, the null

distribution of the MOSUM test is very complicated and depends on the number of

observations. Such a shortcoming prevents the MOSUM test from widespread use.

Kramer et al. (1988) investigated the CUSUM test in the context of

structural change when there are lagged dependent variables among the regressors in

a linear model. They showed that both a modified CUSUM test, suggested by

Dufour (1982), and the straightforward CUSUM test retain their asymptotic

significance levels in dynamic models. They showed that, asymptotically, one can

disregard the dynamic character of the regression and proceed with the CUSUM test

as in the static model.

McCabe (1988) attempted to justify the use of CUSUM type procedures

based on OLS residuals rather than recursive residuals using the analysis of multiple

decision theory. Pioberger, Kramer and Kontrous (1989) considered the fluctuation

test that is based on successive OLS parameter estimates. They derived the limiting

null distribution of the test statistic, and showed that it compared favourably to both

the CUSUM and CUSUM of squares tests. Pioberger and Kramer (1992) extended

the CUSUM procedure to the case of OLS residuals. They found the power of the

CUSUM test to be similar to that of their test, except for changes late in the sample

when their test has more power.
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Ploberger, Kramer and Alt (1989) showed that under some regularity

conditions, Dufour's (1982) approach is asymptotically valid if the coefficients of

lagged dependent variables are estimated under the null hypothesis of no structural

change. Any choice between Dufour's approach and that of Kramer et al.'s is a

matter of power and of the accuracy of the nominal size of the test. Their Monte

Carlo results also showed that the dynamic CUSUM test performs much better than

Dufour's approach.

Some related works are Johnson and Bagshaw (1974) who obtained the

limit processes for partial sums of observations from ARMA processes and explored

the effect of ARMA noise on CUSUM statistics. Bagshaw and Johnson (1975)

examined the effect of ARMA noise on the run length distribution for CUSUM

statistics. Tang and MacNeill (1993) give theoretical results and report simulations

on the effect of correlation. Bai (1994b), Antoch, Huskova and Pragkova (1997),

Horvath (1997) and Lombard and Hart (1994) used the least squares method to

construct consistent, asymptotically normal and efficient estimators of the error

spectral density function and covariances. Boldin (1982) and Bai (1994a) obtained

the weak convergence of empirical processes of residuals, in stationary ARMA

processes, while Koul and Levental (1989) studied the explosive case of

autoregression.

2.2.4 The Chow test

A very widely used test in the literature for detecting structural change when

the changepoint is known, is the Chow test named after Chow (1960). The statistic

can be explained using the regression model (2.1). Under the alternative hypothesis
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the regression coefficient vector/?, changes to /?2 after the «, th observation. Under

this model, the statistic for the Chow test can be given as

JSSE-jSSE^+SSE^/k
{k'-2k) (SSE,li+SSEn_tli)/(n-2k)

(2.19)

where

SSEni =

= (y-XP)'{y-XP) = (X'Xyl
= (X'XylX'y? /?, =

SSEn_ni = (y

X»-«1)"
I^,U;V,,1> y,,, and ^ are the parts of j , and I up to the

change point /?, respectively and, yn^ and Xn_,h are the parts of y, and X after the

change point /?, respectively.

This statistic has an F distribution with k and n-2k degrees of freedom

under Ho. According to the Chow test, if the calculated value of the test statistic

(2.19) is greater than critical value we reject the null hypothesis and we conclude that

structural change has occurred.

Chow (1960) developed this test to test the equality of two sets of

coefficients in the linear regression model. Despite its simplicity and hence its

widespread popularity, the test suffers a serious limitation. It is, in general, valid

only under the rather strong assumption that the disturbance variances in the two

regressions are equal. There has been a lot of research conducted on investigating

the non-robustness of the Chow test, or on proposing new competitive tests that do

not require the assumption of equal variances.

Another limitation of the Chow test is that the timing of the break is

assumed known. This is not always a realistic assumption because, for example in

economics, it could take some unknown period of time before the influence of

international events, be they political or environmental, are felt. This is especially
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true for countries such as Australia, which is geographically isolated from the rest of

the world. Unanticipated decisions may also happen when agents have rational

expectations or when policy announcements are partially predicted. Also, in the

study of impacts of treatments (say, of a drug treatment or an advertising campaign),

the point when the treatment might take effect is usually unknown. The difficulty

with the problem of testing for a structural break with an unknown break point is that

it does not fit into the "regular" testing framework. The reason is that the break point

only appears under the alternative hypothesis, and not under the null.

The Chow test suffers from serious distortion in size even with moderate

heteroscedasticity, for example see Toyoda (1974), Schmidt and Sickles (1977) and

Ohtani and Toyoda (1985) for details. Attempts have been made to approximate the

null distribution of the Chow test by Toyoda (1974), Ali and Silver (1985) and

Conerly and Mansfield (1989), among others.

2.2.5 The Sup F Test

The model for this test is the same as the one given in (2.1) where /?, is an

unknown. The test statistic can be written as follows

SupF = Sup F (2.20)
k £ S k

(SSE-(SSEH +SSE,, ,,
where F = - n-i ^ — .

'" (SSEni+SSE,,_ni)/{n-2k)

An alternative test, which is equivalent to the Sup F test depends on the idea

of maximizing the likelihood, function with respect to «,. For fixed «,, and given

the model for the unknown changepoint, the likelihood function can be written as

follows
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n n 1
exp - - -

icr:

v,,, -*„-„,&) (;v», -x,,_llxp2)
(2.21)

For fixed n, the maximum likelihood estimator for the variance is

2a. =
n

The maximized loglikelihood function can be written as

n n
(2.22)

The maximum likelihood estimate of the changepoint can be found by maximizing

the above loglikelihood over /?,. Then, for that /?, the F statistic can be found.

The problem with the Sup F test and als) the other tests considering the

changepoint endogenously is that the changepoint appears only under the alternative

hypothesis but not under the null hypothesis as a parameter. Asymptotic analysis of

such problems can be found in Davies (1977, 1987), Andrews and Ploberger (1991),

Hansen (1991) and King and Shively (1993). They show that the asymptotic

distributions differ from the standard ones.

Andrews (1990) determined the asymptotic distributions of the W, LM and

LR test statistics under the null hypothesis of parameter stability and under the

alternative hypothesis of parameter instability including one time structural change.

Since the W, LM and LR test statistics are extensions of the Sup F test statistic, the

same asymptotic distribution applies for the Sup F test Moreover, he compared this

test with tests such as the CUSUM and the CUSUM of squares of Brown, Durbin

and Evans (1975) and the fluctuation test of Sen (1980) and Ploberger, Kramer and

Kontrus (1989) in terms of power and concluded that Sup F test is a more powerful

test.
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Andrews and Ploberger (1992) derived a class of test statistics which has an

optimality property based on weighted local asymptotic power. They considered

non-linear models with non-trending observations, and showed that the asymptotic

null distribution is an exponential average of the square of a standardized tied-down

Bessel process of appropriate order.

Andrews and Ploberger (1994) derived asymptotically optimal tests for

testing problems in which a nuisance parameter exists under the alternative

hypothesis but not under the null. They mentioned that the testing problem is

nonstandard and the classical asymptotic optimality results for the Lagrange

multiplier, Wald, and likelihood ratio tests do not apply and used a weighted average

power criterion to generate optimal tests. This criterion is similar to that used by

Wald (1943) to obtain the classical asymptotic optimality properties of Wald tests in

"regular" testing problems. In fact, the optimal tests they introduced reduce to the

standard LM, Wald, and LR tests when standard regularity conditions hold. They

gave a new optimal test in the nonstandard cases and found that LR test is not an

optimal test

Andrews, Lee and Ploberger (1996) derived a class of finite sample optimal

tests for one or more changepoints at unknown times in a multiple linear regression

model. Their tests can be used to test the null hypothesis of parameter consistency

against the alternative of multiple parameter change at unknown times. They

considered a weighted average power criterion function and obtained a class of test

statistics indexed by a scalar measure c of the magnitude of the parameter changes.

They checked the sensitivity of their optimal tests to the scalar measure c and the

relati/e power of the tests to other tests such as likelihood ratio test, the midpoint F

test, the CUSUM test of Brown et al. (1975) and a test introduced by Nyblom (1989)

for martingale parameter changes. They concluded that their test statistics are not
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very sensitive to the choice of c and their asymptotic F statistic is preferable to the

likelihood ratio statistic.

2.2.6 Other Approaches

In this section we discuss Bayesian and nonparametric approaches to

structural change in the literature. There were many Bayesian contributions to the

changepoint literature during the mid 1970's and early 1980's, particularly for

univariate and multivariate linear models.

Sen and Srivastava (1975) considered a procedure for testing whether the

means of each variable in a sequence of independent random variables are the same,

against alternatives that a change might have occurred after some point. They

provided Bayesian test statistics as well as some statistics depending on estimates of

the changepoint. They derived the exact and asymptotic distribution functions for

some of the Bayesian statistics. They compared the relative powers of the Bayesian

procedure ard the classical LR test using Monte Carlo simulations and showed that

the latter has superior power when the change is close to 1 or to n, and the former

has more power when the change is near the middle of the sample period.

Broemeling and Choy (1980) studied the linear regression of type (2.1) with

1 < 77, < n - 1 as the unknown changepoint. They used Bayesian analysis based on

the marginal posterior distribution of the changepoint, n.t. In the discussion of their

simulation study, they mentioned that the posterior probability is sensitive to the

corresponding prior probability.

Feder (1975) discussed the asymptotic distribution theory of least squares

estimators in regression models having different analytical forms in different regions

of the domain of the independent variable. He showed that the unrestricted least
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squares estimator is consistent under suitable assumptions. He assigned a uniform

prior distribution to the unknown regression parameters and assigned three different

prior distributions to «,. He used the Monte Carlo method to compare the mean

squared error (MSE) and the mean biases of the Bayesian estimates of the

changepoint corresponding to the three different prior distributions, with that of the

maximum likelihood estimate. He found the MSE of each of the three Bayesian

estimates are smaller than those of the maximum likelihood estimates.

Smith (1975) considered a Bayesian approach to the problem of making

inferences about the unknown changepoint «,. He derived the posterior probabilities

of the occurrence of changepoint being at various possible points 1 < w, < n, used

these probabilities to calculate Bayesian estimates, and derived hypothesis tests using

posterior odds. His inferences are based on the posterior probabilities of the possible

changepoints and he gave a detailed analysis for the cases in which the distributions

are binomial and normal with some numerical illustrations.

Nonparametric methods play an active role in the estimation and testing of

changepoints. With respect to change in location, following Page (1954, 1955),

Blum (1987), and Bhattacharya and Johnson (1968), Pettitt (1979) obtained the first

theoretical results on changepoint detection using nonparametetric methods. He

described how to use the Mann-Whitney statistic to detect a changepoint and derived

approximate significance probabilities for testing no change against change. He gave

exact and approximate results for testing the null hypothesis of no change. The

methods he gave were illustrated by the analysis of three sets of data for zero-one

observations, binomial observations and continuous observations. He made some

comparisons with other methods based on differences of means. He concluded that

his techniques for continuous data are highly efficient when normal or near normal

data is used.
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Some related changepoint problems solved using the non-parametric

approach can found in Darkhovsky (1976), Csorgo and Horvath (1987), Lombard

(1983), Csorgo and Horvath (1988), Praagman (1988), Yao (1990), Gombay (1994),

Gombay and Horvath (1995), Gombay and Huskova (1996), and Horvath and Shao

(1996).

Lombard (1988) adapted the Fourier expansion of Brownian bridges to

handle problems of changepoint analysis. Ferger (1994a,b) constructed changepoint

estimators when small disorders occur and studied the power of some nonparametric

changepoint tests. Boukai (1993), Ferger (1994c), and Antoch, Huskova and

Veraverbeke (1995) discussed the applications of bootstrap to the estimation of the

time of change. Stute (1996) and Horvath (1998) investigated the properties of U-

statistics.

2.3 Brief Review of Information Criteria (IC) Based
Model Selection

2.3.1 Introduction

Model selection plays an important role in econometric and statistical

modelling. In the literature, many met'iods of model selection have been suggested

over the last few decades. Indeed, the area of model selection is now quite vast in its

scope. A full treatment is really beyond the scope of this section. Thus we will

confine our attention n ^nly to a particular type of model selection technique which

is called IC based model selection.

The organisation of this section is as follows. Subsection 2.3.2 discusses the

consequences of model selection through testing. Subsection 2.3.3 presents the
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historical development of some IC based model selection procedures. Some

concluding remarks are made in the final subsection.

2.3.2 Consequences of Model Selection through
Testing

Over the last few decades, various testing mechanisms have been proposed

for model selection in the literature. A partial list includes Gaver and Geisel (1974),

Atkinson and Fedorov (1975), Learner (1978), White (1982a, 1982b, 1983, 1990),

MacKinnon (1983), Davidson and MacKinnon (1984), Bunke and Droge (1985),

Linhart and Zuchini (1986), McAleer (1987), Grassa (1989), Brownstone (1990),

Potscher (1991), Maddala (1992), Hurvich and Tsai (1993) and Wess and Indurkhya

(1996). Despite the fact that hypothesis tests have been widely used in the model

building process, there are many opportunities to make mistakes when selecting the

best possible model by using such testing mechanisms. We discuss this problem in

the remainder of this subsection.

In the early days of econometric model building, models were formulated

taking into account highly parsimonious relationships in accordance with the

contemporary sophisticated economic theories, then using statistical procedures,

these models were estimated and tested for model adequacy. If the models were still

found to be inadequate, further terms were added and the process was repeated until

an adequate model was found. This model building procedure is often known as

specific-to-general methodology. In contrast to this idea, general-to-specific

methodology, also known as the Hendry methodology (Hendry, 1989) has became

popular. This procedure involves the formulation of a general model and then

sequentially testing the model for various parameters under some specified criteria

until a desirable model is found. The disadvantage of this procedure is that there are

I 1
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a number of problems in such a long sequence of testing procedures. Pretesting is

one such problem.

If a type I error occurs as a consequence of the test, the estimated

parameters of the model will be less efficient. On the other hand, if a type II error

occurs, then the parameter estimates suffer from an omitted variable bias. The

second problem involves the assumption of the error distribution of the model. For

diagnostic testing, it is frequently assumed that the error term of the model is

normally distributed. But in many situations, this assumption is violated. As a

result, the test may have incorrect size and may also lack power. One more problem

with such a sequential testing mechanism is that the size of the overall procedure is

often difficult to control.

Granger et al. (1995) noted that model selection through hypothesis testing

has a number of limitations. For example, two investigators working on the same set

of data could easily end up with different models just because they performed their

tests in different orders or used different levels of significance. In their view, model

selection decisions should be based on a well-thought-out model selection procedure

rather than a series of classical pairwise hypothesis tests. They noted a number of

advantages of this approach. These are that no one model is favoured due to the

choice of null hypothesis, it does not matter in what order the calculations have been

done, using an information criterion is equivalent to testing each model against all

other models by the likelihood ratio (LR) test and selecting the model which is

accepted against all other models, no pretesting problem arises if the model selection

criterion is consistent as the sample size n tends to infinity, the judgement of

significance level is no longer needed although there is a big issue of what penalty

function is appropriate.
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2.3.3 Historical Development of Some Existing IC
Based Model Selection Procedures

During the last few decades, many researchers have worked on IC based

model selection procedures in the literature. A partial list includes Akaike (1973,

1974, 1981), Tong (1975), Hocking (1976), Bhansali and Downham (1977),

Thompson (1978), Schwarz (1978), Learner (1979), Hannan and Quinn (1979),

Amemiya (1980), Rissanen (1986, 1987, 1988), Quinn (1988), Nishii (1988), Franses

(1989), Sin and White (1992, 1996), Mills and Prasad (1992), Hurvich and Tsai

(1993), Grose and King (1994), Fox (1995), King et al. (1995) and Granger et al.

(1995). These articles cover both Bayesian and non-Bayesian approaches for IC

based model selection procedures. Very recently, Hughes (1997), Hossain (1998),

Kwek (1999) and Billah (2001) provided reviews of IC based model selection

procedures in their Ph.D. dissertations.

In this section, we firstly discuss the usual definitions and limitations of

some of the important IC based model selection procedures. Then we review the IC

based model selection work so far reported in the literature during the last few

decades. In fact, the range of work on the development of model selection

procedures in econometrics is very wide today. It ranges from stepwise hypothesis

testing to IC based model selection procedures. Our purpose is to highlight some of

the important points.

The maximised likelihood function and the penalty function are the two

main ingredients of IC based model selection procedures which involve choosing the

model with the largest maximised log of the likelihood function minus a penalty

term. The penalty term is a function of the number of parameters included in the
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model under consideration and typically the sample size. But unfortunately, there is

little agreement about the best form of this penalty function.

We review in the following section, commonly used important IC

procedures, namely, Akaike's information criterion (AIC), Schwarz's Bayesian

information criterion (BIC), generalized cross validation criterion (GCVC), Hannan

and Quinn's criterion (HQC), Theil's R-squared criterion (TRSC), Mallow's Cp

criterion (MCPC), Hocking's Sp criterion (HSPC), and Amemiya's prediction

criterion (APC).

2.3.3.1 Akaike's Information Criterion (AIC)

Akaike (1973) proposed a simple and very useful criterion called Akaike's

information criterion for selecting the best-fitting model among alternative models.

AIC was developed incorporating Kullback-Leibler (KL) information with the use of

maximum likelihood principles and negative entropy. The form of AIC varies form

author to author. In this study we use the penalized maximized log-likelihood form

given by Fox (1995) as

AlC=L(0)~k, (2.23)

where L(6) is the maximized log-likelihood of the model, 6 is the estimated

parameter vector and k is the penalty term which is the number of free parameters

included in the model under consideration. Another maximized log-likelihood form

of AIC in the case of a linear regression model (2.1) under Ho is

n\og(a2) (2.24)

where a2 is the maximum likelihood estimate of the residual variance for k

parameters. We select the model with maximum AIC among alternative models.
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Akaike's (1969) paper was the basis of the development of AIC; for

selecting the best order of an AR process using the minimum final prediction error

(FPE) criterion. Papers on applications of AIC to particular model selection

problems include Akaike (1977) on factor analysis and polynomial fitting and

Akaike (1978) on choosing AR processes.

Ozaki (1975) proposed an effective algorithm for the fitting of nonstationary

autoregressive models. Ozaki (1977) applied the AIC procedure to ARMA model

selection from series A-F of Box and Jenkins (1970), and found that when only the

models with orders of AR greater than 0 and MA greater than 2 are considered, the

procedure nearly always selects the models identified by the graphical method

recommended by Box and Jenkins (1970).

Tong (1975) developed a procedure for determining the order of an AR

signal process from noisy data by employing AIC. The procedure was illustrated

through some numerical examples using both artificially generated and real data. His

proposed procedure gives the asymptotic properties of the maximum LR statistics

and KL information for discriminating between two distributions.

Shibata (1976) analysed the statistical properties of Akaike's (1973, 1974)

proposed method. In particular, the author examined the property of consistency of

AIC and pointed out that AIC does not provide consistent model order selections for

an autoregressive model of finite order.

Soderstrom (1977) investigated two criteria, AIC and FPE, by using the F-

test to choose between two models where the smaller model is nested within the

larger one and concluded that these two procedures are asymptotically equivalent.

Hurvich and Tsai (1989) found that as the dimension of the candidate model

increases with the size of sample, AIC tends to provide a negatively biased estimate
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of the KL information. They argued that this under estimation is due to the fact that

AIC tends to overfit in very small samples.

Kozin and Nakajima (1980) showed that the AIC procedure is applicable to

a class of time-varying non-stationary AR processes. A similar issue has also been

considered by several other authors, see for example, Tong (1978), Stone (1979),

Shibata (1980, 1981), Sakai (1981), Woodroofe (1982), Breiman and Freedman

(1983), Ronchetti (1985), Shibaia (1986), Kabaila (1995) and Potscher and Novak

(1996).

2.3.3.2 Schwarz's Bayesian Information Criterion
(BIC)

The Schwarz's (1978) Bayesian information criterion (BIC) provides a

simple reference method for choosing between competing models. The problem

with AIC is inconsistency in the sense that it does not always select the model having

maximum information with probability tending to one as the sample size tends to

infinity. This problem seems to be overcome by BIC, which is usually recommended

for large sample cases. BIC is a widely used criterion in econometrics today and is

given by penalized maximized log-likelihood form

k login)
BlC=L{0)-- (2.25)

where L(6) is the maximized log-likelihood of the model and 9 is the estimated

parameter vector. When the number of observations is large, BIC penalizes

additional parameters much more than AIC, leading to more parsimonious models

being chosen.

Akaike (1981) indicated that in many practical situations, the use of the BIC

procedure is problematic if there is no clearly defined proper prior distribution of the
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parameters. However, this difficulty has been solved by Rissanen (1986, 1987,

1988) who derived a criterion based on stochastic complexity and the associated

minimum description length (MDL) principle which is similar to BIC but with more

general applicability.

Stone (1979) remarked that Schwarz's (1978) work was a special case of

earlier criteria for model discrimination by Jeffreys (1967). Kohn (1983) showed

that BIC consistently chooses a minimal dimension in a large class of models.

2.3.3.3 Hannan and Quinn's Criterion (HQC)

The criterion due to Hannan and Quinn (1979), which is less commonly

used, can be written in penalized maximized log likelihood form as

HQC = L{6) - k log(log(»)). (2.26)

This procedure is particularly employed to choose the overall lag length in a

vector autoregressive model. Hannan (1981) extended the results of Hannan (1980)

to multivariate ARMA processes.

Fox (1995) noted that HQC shares a common property with AIC and BIC,

i.e., the marginal penalties for these three criteria are constant as the number of

Pcj-ameters increases for a fixed n. For the general form of a regression model, HQC

is equivalent to:

2£log(log«)
log(cr{)

n
(2.27)

where b\ is the maximum likelihood estimate of the error variance of the model

with k parameters.
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2.3.3.4 Theii's R-Squared Criterion (TRSC)

In the history of econometrics, perhaps the first model selection procedure

in the case of the linear regression model was the coefficient of multiple

determination called 7?-squared which is given as

±(y-y,)
TSS

(2.28)

where RSS is the residual sum of squares, TSS is the total sum of squares of the

model of interest and y is the mean of the yt s. This procedure involves choosing

the model with th^ largest R2. But the problem is that the addition of an extra

regressor in a model usually increases (and never decreases) the value of R2.

Theil (1961) proposed the adjusted R2 denoted, as R2 that takes into

account the number of estimated parameters for model comparison yielding a

criterion, which is sensitive to the number of remaining degrees of freedom. The R2

criterion is given by

= l-R2 n
n-k

(2.29)

where n is the sample size and k is the total number of parameters included in the

model.

Theil (1971) showed that a decision rule which favours the model with the

largest R2 will result 'on average' in the correct choice of model. It takes into

account the goodness of fit of the model, as well as its parsimony. But a difficulty

arises when the model that fitted the data well does not seem to have a good

predictive performance. Schmidt (1973, 1975) has shown that the R2 criterion does
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not help us in selecting the true model when the regression contains both the

variables of the true model plus some extra irrelevant independent variables.

Moreover, it has been suggested that R2 does not penalize the loss of degrees of

freedom heavily enough in practice (see for example, Amemiya, (1985)).

Fox (1995) showed an equivalent procedure to maximizing R2 is to

maximize

(2.30)

where L{6) is the maximized log-likelihood.

2.2.3.5 Mallows9 Cp Criterion (MCPC)

Mallows (1964) suggested a variable selection criterion that has been used

in economics, econometrics and many other social sciences. Common references to

this criterion include Gorman and Toman (1966) and Mallows (1973).

Fox (1995) expressed Mallows' statistic in the penalized maximized log-

likelihood form as,

MCPC = 1 +
2k

(2.31)

where k* is the number of free parameters in the smallest model which nests all

models under consideration. The model with highest MCPC in chosen.

AIC can also be viewed as an extension of MCPC in the linear context

(Atkinson, 1980). However, a closer link is through FPE (Akaike, 1969) as it is

based on the mean square error. Although the MCPC and the PRESS (prediction

sum of squares) criterion of Allen (1974) have been around much longer, they have
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not been as popular as AIC. Also see Akaike (1974) for a discussion on MCPC and

Young (1982) for further discussion on the generalized MCPC.

2.3.3.6 Amemiya's Prediction Criterion (APC)

Amemiya's (1972, 1980) PC was derived as an alternative method to

estimate the variance in Mallows' criterion within a hypothesis-testing framework.

Expressing APC as the average prediction variance based on regression models, we

choose the model that minimizes:

G2{(n + k)/(n-k)). (2.32)

It is interesting to note that both FPE and APC evaluate the mean squared

prediction error of the predictor derived from each model. Then using Fox's

generalization, we can express APC as the penalized maximized log-likelihood of the

form:

(2.33)

This criterion was also suggested by Rothman (1968) and Akaike (1969)

(Rothman called it Jp and Akaike called it FPE). It is interesting to note that

Mallows' criterion is the same as APC as both have an identical penalty term.

Chan et al. (1974) proposed a criterion that resembles the FPE statistic for

order estimation of ARMAX systems. Its interpretation as an FPE type criterion

may, however, be questioned because the calculations in the paper contain some

flaws (see, e.g., Soderstrom (1977)).

Nevertheless, the proposed criterion appears to be a compromise between

small residual variance and accurate parameter estimates (like, for example, the

criteria of Rissanen (1976), Maklad and Nichols, (1980), etc.) and it was reported to
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behave well in a number of Monte Carlo simulations. Comparisons with the F-test

and Akaike's FPE criterion are included. Chan et al. (1975) gave a discussion of

some order selection procedures of ARMAX systems with emphasis on the F-test

and Akaike's FPE criterion.

2.3.3.7 Hocking's SP Criterion (HSPC)

Hocking (1976) suggested a criterion that was reviewed by Thompson

(1978) and can be expressed in penalized maximized log likelihood form as

HSPC = - -log(w-#-l). (2.34)

Thompson (1978) examined methods for variable selection according to whether the

regressors included in the models are fixed or random. One major limitation of

HSPC is it is not applicable for nonstochastic regressors.

2.3.3.8 Generalized Cross-Validation Criterion
(GCVC)

Schmidt (1971) suggested cross-validation (CV) which involves splitting

the sample into roughly two equal parts. The first part is used for fitting a model and

the second part is reserved for assessing the predictive ability of the model (often-

called model validation).

In fact, the CV procedure is used to determine the loss of efficiency in

parameter estimation of the model by providing a measure of future prediction error.

Nevertheless, one of the main problems is that, like AIC and MCPC, this criterion is

inconsistent. Another problem is that the calculation of CV is really cumbersome.

Moreover, this criterion is rather different in nature from the other criteria mentioned
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above. However, a good approximation to CV, called the generalized cross-

validation criterion (GCVC) has been derived by Golub et al. (1979). When applied

to regression models it has the form,

1 - -
n n

(2.35)

The model with the minimum GCVC is chosen. Fox (1995) derived the penalized

maximized log-likelihood form that is given as

GCVC=L(0) + n\og\ 1— .
V nj

(2.36)

Other studies related to CV are Schmidt (1974, 1975) and Allen (1971a,

1974). Stone (1974) re-introduced and systematized CV procedures, and Geisser

(1975) discussed predictive sample re-use methods. Schmidt called the CV score,

the sum of squared predictive errors (SSPE) and Allen called it the PRESS. Stone

(1977a) showed the asymptotic equivalence between AIC and a cross-validation

criterion Stone (1977b) analyzed the asymptotic properties (consistency and

efficiency) of the one-item-out cross-validatory assessment scheme of Stone (1974)

mainly in the context of some particular applications. Other forms of CV are found

in Craven and Wahba (1979).

2.3.3.9 The Works of King and Others

King et al. (1995) developed general model selection procedures in which

one can calculate the penalties by controlling the probabilities of correct selection so

that no one model is unnecessarily favoured. In doing so they proposed two

methods; one called the common model approach and the other the representative

fixed points approach. They also provided an algorithm for calculating the penalties
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based on fixing probabilities of correct selection according to both of these

approaches.

Forbes et al. (1995), presented three IC based model selection procedures of

which the first two (one is called FIC (IC based on the F distribution) and the other is

called QFIC (IC based on the quasi F distribution)) are explicitly designed for

regressor selection and the third one is for general model selection. For the FIC

procedure, they derived a new penalty function on the basis of sums of critical values

from particular F distributions whilst for QFIC, they calculated penalties from

particular chi-squared distributions. Both penalties come from a desire to control the

probability of incorrectly choosing additional regressors.

The consistency property of one-sided AIC (OSAIC) and a bias corrected

OSAIC (OSAICc) for small sample regression problems involving knowledge of

signs of parameter values is discussed by Hughes (1997) (also see Hughes and King

(1994)). He conducted a Monte Carlo study to investigate OSAIC and showed that

there is no reason for practitioners to uniformly favour a consistent criterion, such as

BIC. Examples of bias-corrected versions of IC are AICc by Hurvich and Tsai

(1989) and AIC, by Hurvich, Shumway and Tsai (1990).

Rahman and King (1997) and Rahman, Bose and King (199S) developed

other forms of penalty functions where the functions consist of composite variables

of n and k. Hossain (1998) proposed simulation based information criterion called

controlled information criterion (CIC) for selecting between Box-Cox transformation

models and compared the performance of AIC, BIC and CIC and found that CIC

performs better than the existing IC procedures considered in his study.

Kwek and King (1997a) explored a set of IC-based model selection

procedures and compared their small sample performance by their relative

performance as measured by the AMPCS in the context of choosing between
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autoregressive conditional heteroscdastic (ARCH) and generalized autoregressive

conditional heteroscdastic (GARCH) models. In terms of AMPCS, they found that

TRSC has the best penalty function for small sample performance but not always for

very large samples. AIC did not perform as poorly as BIC for small samples. In

large samples, AIC performed relatively better than TRSC in terms of AMPCS.

Kwek and King (1997b) introduced the conditional heteroscedastic IC

(CHIC) as the criterion with an optimal penalty function for ARCH and GARCH

models and concluded that this criterion has a better performance than IC procedures

for finite sample model selection problems.

Kwek (1998) considered model selection in the context of ARCH and

GARCH models and derived optimal penalties based on maximizing the AMPCS.

She claimed that her results provides a good way to evaluate different procedures and

is more efficient compared to other approaches which give higher average mean

probabilities of correct selection.

Kwek (1999) compared the performances of penalized log-likelihood based

IC procedures (AIC, BIC, HQC, MCPC, GCVC, TRSC, HSPC and APC) and found

that in terms of AMPCS, TRSC is the best criterion and BIC is the worst. On the

other hand, when the sample size is large TRSC losses its efficiency to AIC and the

latter become comparatively a better criterion. The performance of the optimal

AMPCS procedure was found to be clearly better than all the other existing IC

procedures.

King and Bose (2000) considered model selection problems in linear

regression models using optimal penalties in the sense of choosing the model with

largest penalised maximized log-likelihood function. They use simulation methods

to estimate probabilities of correct selection and suggested choosing penalties that

optimize the average of these probabilities. Results from their Monte Carlo
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experiment showed that AMPCS gives better average probabilities than other IC

procedures considered.

Billah and King (1998) considered optimal AMPCS penalties for choosing

between different tirr>e-series processes for linear regression disturbances. Their

Monte Carlo results show that optimal AMPCS penalties provide the best criterion

for both model selections for shorter and longer forecasting horizons.

Billah and King (2000) studied the application of AMPCS to time series

model selection. They claim from their Monte Carlo results that the optimal AMPCS

penalties consistently dominate all existing IC procedures.

Billah (2001) investigated several important issues concerning IC based

small sample model selection for exponential smoothing models as well as regression

models with ARMA error processes. He introduced conditional likelihood (CL)

based IC procedures for selecting between exponential smoothing models and

improved conditional likelihood (ICL) based IC procedures. He found that optimal

AMPCS penalties provide the best procedure compared to existing IC procedures in

the sense that it gives higher average probabilities of correct selection.

In this thesis, we aim to develop a simulation based model selection

procedure in the presence of structural change when the possible changepoint is

unknown and compare our method with existing IC procedures discussed above.

Clearly AMPCS penalties are worth investigating. Unfortunately the studies to date

have only been for circumstances where there are only 3 or 4 competing models. We

are interested in seeing how it works when there is a very large number of competing

models.
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2.4 Brief Review of the Simulated Annealing
Algorithm (SAA)

In this section, we introduce a global optimization algorithm called SAA,

which works well to maximize complex functions. More specifically, we wish to

investigate whether this algorithm can be used to estimate penalty values when

dealing with many models.

To locate the real global minimum with certainty, a global optimization

method has to be used. In this section, we will introduce a global optimization called

the simulated annealing algorithm (SAA) which is capable of even maximizing very

complex functions. More specifically, we wish to investigate whether this algorithm

can be used to estimate penalty values of the model selection procedures.

The algorithm is based upon that of Metropolis et al. (1953), which was

originally proposed as a means of finding the equilibrium configuration of a

collection of atoms at a given temperature. The minimization of the objective

function corresponds to the energy state of the solid. Therefore, the name of the

algorithm is drawn from an analogy between solving an optimization problem and

simulating the annealing of a solid. In econometric literature methods used to

estimate parameters of a model, for example, the generalized method of moments the

maximum likelihood method and nonlinear least squares, depend upon optimization

algorithm, such as Newton-Raphson, to estimate parameters in the model. However,

almost all-conventional algorithms occasionally fail to estimate the optimum value of

parameters. Popular statistical and econometric packages use these algorithms to

solve optimization problems. Reviews on these packages can be found in Judge et

al. (1985) and Press et al. (1986).
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Generally traditional optimization algorithms assume approximately

quadratic nature of the function to be optimized. Unfortunately, some functions

frequently do not follow this assumption. A common problem to the classical

algorithms is that although these algorithms converge; yet they may converge to

local maxima instead of the global maxima. In this situation, researchers generally

try to solve these problems by using different approaches, for example, trying

'^ different starting values (see Cramer (1986) and Finch et al. (1989)). Fortunately,

the SAA, assumes very litiie about the function, can tackle the optimization problem
i

L very efficiently (see Corana et al. (1987) and Goffe et al. (1994)). The advantage of

this algorithm is that it is explicitly designed for functions with multiple maxima and

K. also works well for complex functions. The SAA discovers the function's complete
surface and while moving both up hill and downhill tries to optimize the function.

t
Therefore, the SAA is much more user friendly than traditional algorithms found in

P econometric literature.

The connection between this algorithm and mathematical optimization was

first noted by Pincus (1970) and Kirkpatrick et al. (1983) who proposed that the SAA

form the basis of an optimization technique for combinatorial (and other) problems.

y Extensions of simulated annealing to the case of functions defined on continuous sets

have also been introduced in the literature (e.g., Geman and Hwang (1986), Gidas,

I | (1985), Holley, Kusuoka and Stroock (1989), Jeng and Woods, (1990), Kushner

(1985), Cerny (1984), Fox (1988a,b), Hajek (1988) and Often (1989)).

i Geman et al. (1984) first gave a necessary and sufficient condition for the

convergence of the annealing method to the global minimum. Their method is

usually called either Boltzmann annealing (BA) or classical simulated annealing.

Szu et al. (1987) proposed the fast annealing method, which is a semi local search

and consists of occasional long jumps. They made some improvements to the
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Boltzmann form. Ingber et al. (1989) presented the very fast-simulated re-annealing

method. They argued that their algorithm permits a fast exponential cooling

schedule, while fast annealing has only an inverse cooling schedule, and Boltzmann

annealing has only an inverse logarithmic cooling schedule.

In a comprehensive study of the SAA, Johnson et al. (1990, 1991, 1992)

discussed the performance of the SAA on four problems: the travelling salesman
i

™ problem, graph partitioning problem, graph colouring problem and number

partitioning problem. In general, the performance of the SAA was mixed: in some

* problems, it outperformed the best known heuristics for these problems, and, in other

cases, specialized heuristics perfonned better.

/x Many researchers have considered the SAA as a tool in the development of

optimal experimental designs. Some examples include Van Laarhoven (1987) and

Meyer and Nachtsheim (1988). Variants of SAA based on Bayesian ideas have been

* proposed by Laud, Berliner and Goel (1989), Van Laarhoven et al (1989) and Aarts

e ta l . (1989).

In the initial stage SAA was known as the combinatorial SAA because it

was introduced in combinatorial optimization problems. This SAA has been

I successfully used in image processing (Carnevali et al. (1985), reconstruction of

pollycrystalline structures (Telly et al. (1987)), pollution control (Derwent (1988)),

^ neural networks (Wasserman and Schwartz, (1988)), and computer and circuit design

(Wong et al. (1988))). Other SAAs proposed in the optimization literature are as

follows: adaptive random search (Pronzato et al. (1984)), fast SAA (Szu and Hartly

(1987)), down hill simplex with annealing (Vetterling et al. (1994)) and direct search

SAA (Ali et al. (1997)). Corana et al. (1987) derived a new SAA for optimization of

functions of continuous variables from the SAA introduced in combinatorial

optimization. This new SAA has been found to be more reliable, being nearly
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always able to find the optimum, or at least a point very close to it. However, this

algorithm appears to be the best with respect to the combination of ease of use and

robustness.

For estimation of econometric models Goffe et al. (1994) compared four

algorithms introduced by Corana et al. (1987) with that of the SAA. Compared to

the three traditional algorithms, the SAA was found to have several advantages. The

most important advantage is that it can maximize functions with which traditional

algorithms have extreme difficulty or simply cannot maximize at all. This algorithm

can also be used as a diagnostic tool to understand how conventional algorithms fail.

The SAA has a number of other advantages over existing traditional

optimization procedures. For any function, if there are more than one maxima then

the SAA can escape from a local maxima by moving both up hill and down hill to

find the global maxima. In classical optimization, one of the conditions is that the

function to be optimized should be approximately quadratic and it needs to be

differentiable, but in case of SAA these conditions are not necessary (see Corana et

al. (1987)). Second, the SAA can handle a very complex function. Another

advantage of this algorithm is that it provides valuable information about the

function through the step length vector. The most important advantage of the SAA is

that it can properly optimize functions that are very complex and nearly impossible

to optimize (see Goffe et al. (1994)). The only drawback of the SAA is that the

required very high pov/ered computer. On the other hand, because of the availability

of high-powered computers now a day, this problem seems not to be a major

problem. As a consequence, the SAA is an attractive optimization algorithm for

difficult functions. In this thesis, we implement the SAA to estimate penalty

functions, (by optimizing what is a step function) for a small and large numbers of

alternative models. Overall, the SAA is a generally applicable and easy-to-
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implement probabilistic approximation algorithm that is able to produce good

solutions for an optimization problem, even if we do not understand the structure of

the problem well.

2.5 Conclusions

This chapter is devoted to three areas of the literature; testing for structural

change, IC model selection procedures and the simulated annealing optimization

algorithm.

In Section 2.2, some developments of related areas in the literature on

testing for structural change were briefly discussed in context of econometrics and

statistics. The survey revealed that there is a large body of literature on changepoint

testing problems. From our review, we see that LR tests are widely used in practice

when data may possess a possible changepoint of unknown timing. Unfortunately,

the finite sample distribution of the LR test statistic Is unknown, although the critical

values for the test CPJI be calculated by simulation. We can develop formulae for

critical values of the LR test for different sample sizes, different significance levels,

number of regressors in the model and types of regressors. We can apply a response

surface approach to estimate formulae for critical values. When there is a possible

structural change with an unknown changepoint in the data, we consider the use of

the LR test statistic in Chapter 3.

In Section 2.3, we reviewed of some existing IC procedures for model

selection. Due to the enormous literature on model selection contributed to by

mathematicians, statisticians and econometricians, we are not able to review all the

statistical properties that come with each criterion. We therefore highlighted only the

salient points for some leading criteria. In this section we also discussed some of

1
JsL.
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\
their asymptotic and finite sample properties. Most of these statistical properties

were derived out of model selection problems in linear regression and time series
I

models. This section begins with a brief discussion on some obvious demerits

involved with model selection through hypothesis testing. The survey reveals that

\ there is a large body of literature on model selection ranging from hypothesis testing

to IC based model selection procedures.

* The evidence so far supports the contention that model selection decisions

should be based on some well-thought-out model selection criteria rather than

. classical hypothesis testing. However, the discussion on IC based procedures mainly
i

focuses on the penally term that is one of the main ingredients of such procedures.

w We also reviewed model selection based on optimal penalties. This penalty has the

ability to select a model from a group of alternative models by estimating mean

probabilities of correct selection of a model and choosing the penalty that maximizes

the average mean probability of correct selection (AMPCS). Unfortunately, it

appears that almost no work has been reported on the use of IC based model
v

selection procedures for detecting the presence of structural change. Chapter 4 of

this thesis aims to concentrate on this particular issue.

| If the differences between the penalty values of an IC procedure are large,

keeping other things the same, then smaller models are favoured. On the other hand,

I for a small difference in penalty values, the larger models are favoured. Thus, it is

difficult for a given problem to assess which IC is best. Regardless of these

.., limitations, improvements in existing IC procedure may be possible by estimating

penalty values numerically. We briefly reviewed the simulated annealing

optimization algorithm in Section 2.4 and will use it to calculate optimal penalties for

model selection in Chapter 5.



CHAPTER 3

Testing for Structural Change when
the Changepoint is Unknown

3.1 Introduction

In this chapter we consider the problem of testing for structural change in

the presence ot an unknown changepoint. The presence of a structural change in

data that is not detected is a hazard for applied economists, econometricians and

statisticians, with serious consequences for model performance and forecasting. If

the model selected is misspecified, that is, if the data possess a structural change at

some point then the model chosen may not perform well in the sense that it will not

provide good forecasts. For this reason, it is important to test from the beginning

whether the data possesses a significant structural change or not. If the changepoint

is known (such as World War II, 1973 oil shock etc.), one can use Chow's (1960) F

statistic to test for possible structural change in the linear regression model.

Since economic conditions are constantly changing, it is not always

possible to know with certainty, which of the changes, and with what timing, affect

the performance of a linear regression model applied to economic time series data.

0
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It is helpful to have a test for structural change that does not require the knowledge

of the changepoint in advance. In other words, we need to be able to test for

structural change when the changepoint is unknown. In response to this need, many

tests for structural change have been developed. A number of these tests were

discussed in Chapter 2. Among these, the CUSUM and the CUSUM of squares test

of Brown, Durbin and Evans (1975), and the fluctuation test of Sen (1980) and

Ploberger, Kramer and Kontrus (1989) are well known. In the former two tests,

recursive residuals are used and in the latter, recursive estimates of parameters are

used.

As mentioned in Chapter 2, Andrews (1990) compared the likelihood ratio

(LR) test with tests such as the CUSUM and CUSUM of squares tests and the

fluctuation test of Sen (1980) and Ploberger, Kramer and Kontrus (1989) in terms of

power. He concluded that the LR test is more powerful than these other tests.

Andrews (1993) determined the asymptotic distributions of the LR test statistics

under the null hypothesis of parameter stability and for the alternative hypothesis of

parameter instability including one time structural change. He mentioned that the

Wald and Lagrange multiplier test statistics are generally asymptotically equivalent

to LR test statistic under the null and local alternatives.

Seber and Wild (1989) showed that under the null hypothesis of parameter

stability, the finite sample null distribution of the LR statistic does not depend on

the parameters and error variance of the model although it does depend on the

explanatory variables in finite samples (but not asymptotically). Therefore, it is

possible to simulate the null distribution of the LR test for any particular data set

and arbitrary values of the parameters including the error variance of the model. A

critical value for any significance level can be found from this simulation. The null

hypothesis is rejected if the value of the test statistic is greater than this value.
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King and Shively (1993) worked on hypothesis testing problems in which

the nuisance parameter is present only under the alternative hypothesis. They

reparameterized the testing problem in such a way that the reparameterized testing

problem involves testing a greater number of parameters. They started by

considering testing HO:9 = 0O, where 0O is a known pxl vector, against

Hy 9*90. They reparameterized 9 = 9 - 90 so that the testing problem becomes

one of the testing HO:0 = O against H]: 6 * 0. Then they reparameterized ~Q into

polar coordinates 6X = rcos / , , 6}, =/• M^sin/^ cos/, , j = 2,•••,/?- 1,

F==
0p = r^Qsin/jt with r = 40'6 in such a way that the null hypothesis Ho: 9 = 0 is

now equivalent to Ho: r = 0 and Hy 9 *Q is equivalent to //,: r ^ 0. Under the

null hypothesis 7i .• •s/ /,-i are not defined, so we now have a test of r = 0 in which

Y\'' "•>/P-\ are nuisance parameters and present only under the alternative.

King and Shively's main contribution was to observe that for testing

problems in which nuisance parameters are present only under the alternative

hypothesis, we may be able to reparameterize to a higher dimensional testing

problem by the reverse of the above transformations. For the LR test, this will have

consequences with respect to which critical value should be used.

Tan and King (1994) considered King and Shively's approach for testing

structural change when the changepoint is unknown. They conjectured that for the

case of a change only in one parameter under standard regularity conditions, the LR

test statistic follows an asymptotic distribution under the null hypothesis of no

structural change that is a probability mixture of x] and zl and suggested

expressions for the respective probability weights. Through simulation
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experiments, their critical values were found to be misleading for both one-sided

and two-sided tests when the range of possible changepoints is wide compared to

the total period. They also found that the small-sample distribution of the LR test

statistic might be quite sensitive to the regressors making a useful asymptotic

solution difficult to find.

Andrews (1993) gave asymptotic critical values based on the asymptotic

null distribution that covers 1%, 5% and 10% levels of significance, different

numbers of regressors and changepoint or point of structural change for any value of

the changepoint expressed as a proportion of the sample between 0.05 and 0.50.

From the above discussion and related literature survey in Chapter 2 we

can conclude that the finite sample distribution of the LR test statistics is unknown,

and sensitive to the number and kind of regressors used in the model. The evidence

appears to be that it is more powerful than other tests for testing for structural

change of unknown timing. Our aim is to develop a small-sample test procedure

that allows the LR test to be applied with confidence in finite samples. Under the

null hypothesis, the regression parameters are constant across all the periods. Under

the alternative, a particular regression parameter changes at an unknown

changepoint. In our case, critical values of the LR test statistic depend on the

number of regressors, types of regressors and the sample size.

Because the LR test statistic does not have a known finite sample

distribution, the critical values for the test must be found by Monte Carlo

estimation. An applied econometrician using the available data can estimate the

critical value specific to that setting. A few decades ago it was relatively expensive

in terms of computer time and effort to do this, but today, due to the availability of

high-powered computers, it is easier to find critical values via simulation. We

develop formulae for critical values of the LR test for different sample sizes,
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different significance levels, different numbers of regressors in the model and types

of regressors. We will check whether estimated critical values of the LR statistic

depends on these factors in the context of our framework of analysis. We will apply

a response surface approach to estimate formulae for critical values. To check the

accuracy of these response surface formulae, we will conduct a small Monte Carlo

experiment.

The remainder of this chapter is organised as follows. In Section 3.2, we

discuss the model and construct our test statistics based on maximization of the

likelihood function for different changepoints of the linear regression model. In

Section 3.3, we calculate critical values of the test statistics for different sample

sizes, significance levels, numbers of regressors and types of regressors. Estimation

of the response surfaces formulae for critical values of the test statistic from

simulated critical values is outlined in Section 3.4. The accuracy of the response

surface formulae is checked through a Monte Carlo study which is outlined in

Section 3.5. Section 3.6 contains a brief discussion of results of the Monte Carlo

study. Section 3.7 presents some concluding remarks.

3.2 The Model and the Test Statistic

3.2.1 The Model

We consider the linear regression model for t = \,-~,n, with a possible

change of unknown timing in one coefficient,

xtft + wj+u, for / < « , ;

'lj3o + w,(r + S) + ul for />« , , ( 3 J )

where y, is the dependent variable at time /, JC, is a k x 1 vector of regressors at

time /, w, is a scalar variable that is of interest, ft0 is a k x 1 vector of regression
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coefficients, and 7 and 8 are unknown scalar parameters. The error term is

assumed independent, identically distributed N(0,a2). We have chosen to work

with this simple form with a possible change in one coefficient in the hope of

making progress which can be applied to other more complicated models at a later

time. Model (3.1) can be written jointly as

>', = x\ fio + WJ +z,5+u,, for / = 1, ..., n, ^ 2)

where zt is a dummy variable defined as

Denoting

0, t<nv
t>n,.

y =

y»

1 x,

1 Xn\

X-, —
1 X, X , , VI', 2,

1 Y • • • Y

o = [ « o fix /? * - , ] ' ,

r
model (3.2) can be rewritten in matrix form as

(3.3)
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under //„,

under //,,

where u~

3.2.2 The Test Statistics

(3.4)

The null hypothesis of interest is

and the alternative hypothesis is

The likelihood ratio test of a structural change of unknown timing can be described

as follows. The loglikelihood function of the sample under the alternative

hypothesis that there is a changepoint in the data after period /?, is

1
2a

- x2 - x2 e2 (3.5)

The loglikelihood function under the null hypothesis of no changepoint in

the data is

2cr. (3.6)

Differentiating (3.5) with respect to the parameters /?0, 7 , S and <J\, and

equating the resultant equations to zero, we obtain the conditional maximum

likelihood (ML) estimates of J3O, y, §, and at, under the alternative hypothesis

that there is a changepoint in the data after period «, as

a2a2
2=(y-X202y(y-X262)/n.

(3.7)
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Differentiating (3.6) with respect to the parameters J30, y and <x,, and

equating the resultant equations to zero, we obtain the ML estimates of /?0, Y and

<J\ under the null hypothesis that there is no changepoint in the data as

(3.8)

Substituting the estimates of (3.7) into (3.5), we obtain the concentrated

log-likelihood function under the alternative hypothesis of the sample given a

changepoint in the data after period nx as

n ~ -, n

2 2 *> '

Substituting the estimated values from (3.8) into (3.6), we obtain the maximized

log-likelihood function under the null hypothesis of no changepoint

l o g ^ r c r , ) - - . ( 3

When the changepoint nx is unknown, a naturally, intuitive approach would

be to estimate nx and then apply the LR test at that estimate of nx. Given nx, (3.9)

is maximized by substituting in the estimated value of a] from (3.7). Maximizing

(3.9) with respect to nx is equivalent to finding the w, for which <J\ is minimum.

The LR test statistic can be obtained by substituting minimum values of a\ in (3.9)

which we will denote by /, and then taking twice the difference between it and the

log-likelihood of (3.10) that is, LR = 2{lx -l0).
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3.3 Calculation of Critical Values via Simulation

Analytically it is difficult, if not impossible, to find the distributional form

of the test statistic; therefore, in this section we calculate critical values for the LR

test statistic via simulation. It is possible to simulate the nail distribution of the test

statistic LR for any particular regressor set. Because critical values are invariant to

a change of parameters and error variance of the model, any arbitrary values of the

parameters and error variance of the model can be used in the simulation. We

conducted a iii.aber of simulation experiments to find the critical vaiues of the LR

test statistic in a range of circumstances. These critical values will allow us to get a

formula that can be applied to the LR test for structural change of unknown

changepoint with some degree of confidence.

3.3.1 Design of Simulation Experiments

Our main purpose is to calculate the critical values by simulation. Under

the null hypothesis, vaiues of the dependent variable ;;, were generated from the

following equation

}', = xj /?0 + w,y + M, , for / = 1, ... ,n,

where «, ~ N(0,l), w, is a scalar variable, /?0 is a k x 1 vector of regression

coefficients, and y is a constant coefficient. The k x 1 independent variables are

generated following Engle et al.'s (1985) Monte Carlo experimental design; that is

explanatory variables (excluding the constant term) were generated from the first

order autoregressive process x;/=<zk;,_,+<?,,, with eu ~ IN(0,1) for t = \,...,n,

where (j> takes vilues 0, 0.7, 1.0 ?nd 1.02 which covers white noise, autoregressive,
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random walk and explosive processes, respectively. The number of regressors k

was allowed to range from 1 to 15 in turn with ^ being the same for each regressor

and u', was generated from the uniform distribution with range from 0 to 1.

We set initial values of the parameters as one throughout because under

null hypothesis, the distribution of the LR statistic does not depend on fi0 and / .

Four different sample sizes of 25, 50, 75 and 100 were used. We generated 10000

LR test statistics for the linear regression model for each set of ^ ' s , k and n . We

then ordered the calculated LR from the lowest to the highest values, and obtained

the 90th, 95th, 97.5th, and 99th percentiles, which are the required critical values for

the 10%, 5%, 2.5% and 1% level of significance respectively. Throughout, we use

the GAUSS 3.2.12 software (GAUSS is a mathematical and statistical programming

language, produced by Aptech Systems, Inc., Kent, Washington) to estimate the

parameters of the model by the method of ML estimation. In the model, error terms

were simulated using pseudo random numbers from the GAUSS function RNDNS

that generates standard normal variates for regression errors. The seed for the

random number generator for each experiment was 1786.

3.3.2 Results of the Simulation

Tables 3.1 to 3.4 report the critical value calculation results of the Monte

Carlo simulations. We will now discuss the results. We discuss the overall trends in

the critical values in four stages. The first stage involves the patterns or trends with

respect to sample size variation, the second involves patterns as the number of

regressors in the model changes, the third considers changes in the type of

autoregressive regressors and the fourth discusses some general patterns with regard

to the significance level.

$
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A noticeable feature is that the simulated critical values of the LR test

increase as the sample size increases from 25 to 75 for small k = 1 and 2, and it

decreases as the sample size increases from 75 to 100 at the 1% level of significance

for different values of (f> considered. At the 2.5%, 5% and 10% levels of

significance, critical values of the LR test increase as the sample size increases from

25 to 50 and they decrease as the sample size increases from 50 to 75. They

decrease as n increases from 75 to 100 for the different values of <f> considered.

The critical values of the LR test increase as the sample size increases for k = 3 or

more at different levels of significance for different values of <f>.

The largest calculated critical value of the test occurs at the 1% level of

significance when ^ = 1.02 and n - 25 and takes the value 17.453 whereas when

n = 100 it takes the value 6.633. The largest critical values of the test at the 2.5%,

5% and 10% levels of significance occur when <j> = 1.02 and n = 25 and are 13.903,

11.386 and 8.995, respectively, whereas when « = 100, the critical values are

respectively, 5.615, 4.662 and 3.838. The minimum critical values of the test

statistic at the 1%, 2.5%, 5% and 10% levels of significance occur when (j) = 0 and

n - 25 and are respectively, 4.779, 3.814, 3.136 and 2.446, whereas when n = 100

these critical values are respectively, 4.906, 4.059, 3.497 and 2.818.

The critical values of the test almost always increase with an increase in the

number of regressors k. The largest increases occur for small n and for small (/>.

The smallest increases occur for n = 100 and for large levels of significance. For a

large number of regressors in the model when <j> = 0 and A: = 15 at the 1%, 2.5%.

5% and 10% levels of significance, the maximum value of the critical values are

16.196, 12.477, 10.209 and 7.698, respectively.
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The simulated critical values of the LR type test statistic appear to be

practically unchanged as the type of autoregressive regressors change with

everything else held constant. The critical values are typically the same for (j) = 0

and for tp = 0.70 at different levels of significance and are also roughly the same for

^ = 1.0 and (f> = 1.02. The latter are almost always slightly bigger than the former.

Obviously the critical values decrease as the level of significance increases.

This decrease is largest for large k. This variation in critical values with n, k, (f),

and a suggests the need for formulae for critical values of the test statistic, which

will be developed in the next section.

3.4 Estimation of Critical Values via Response
Surface Approach

The simulated critical values calculated in the previous section show that

they vary reasonably systematically with the number of explanator,' variables k, the

autoregressive parameter <p of the regressors and the sample size n. For large

samples, it can be very time consuming to calculate the critical values via

simulation even on fast computers. For example, it took a Pentium-Ill personal

computer several days to perform relevant computations for « = 400 and 10,000

replications for the one-regressor case. To reduce the computational load, we use

the critical values of Tables 3.1 to 3.4 as data to estimate formulae for critical values

at different levels of significance by using a response surface approach.

The advantages of response surfaces are (i) they reduce computational

costs and effort using specific factors to calculate critical values in a simple

regression; (ii) they allow easy calculation of critical values for sample sizes not

included in the experimental design; and (iii) response surfaces for commonly used
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significance levels are easily programmed so as to provide estimated finite sample

critical values directly.

In our case, the response surface approach involves developing formulae to

estimate critical values using various functions of k, <j> and n. Normally,

researchers have tabulated critical values at different levels of significance for

different sample sizes. Such tabulations recognize the dependence of the critical

values on the sample size, significance level and other factors. That dependence can

be approximated by regressing the Monte Carlo estimates of the critical values on

functions for different factors such as k, <j> and n.

The response surface approach determines the combination of levels of

different factors, which will produce the best-fitting model. The regressors are an

intercept, four inverse powers of the sample size n, four-power functions of the

number of regressors k and types of autoregressive regressor (f>. We also

considered other plausible interactive terms between n, k and <f>. We considered a

total of 80 regressors including intercept for the response surfaces given below:

" I ) <̂ 2 ' 3 ' 4 ' '^1 ' ^2 » ' ^ 3 ' ^ 4 ' r > * 1 ^ 2 ' ^1 .!> " > r 4 ' ^ 2 3 ' ^2 4 ' .<^4 '

n A , n 3 n A , fc,w,, k x n 2 , k^, k x n A , k 2 n l t k 2 n 2 , k 2 n 3 t

4, fc4w,, k 4 n 2 , k 4 n 3 , k A n 4 , kx(j>, k2<f>, k3f, k4<p, nx(f>,

2kA, k2k3kA, n x t i 2 n 3 , n x n 2 n 4 , n 2 n 3 n 4 , kxk2(f), kxky/>,

>, nxn2<f>, nxn3</>, nxnA(f>, n2n3#, n2nA<f>, n3nA(p, kxnx<f>,

kxn2(f>, kxn3<f>, kxtiA(f), k2nx<f>, k2n2<j>, k2n3<f), k2nA<f>, k3nx</>, k3n2(f>, k3n3ip, k 3 n A $ t

M . 0 , kAnJ, kAn3(j>, fc4i74^, w h e r e * , = * s k2=k\ k3 = k\ kA = k\ n x = n ,

«,w 2 , / y ? 3 , w , « 4 , n 2 n 3 ,

k 2 n A , k 3 n x , k 3 n 2 , k 3 n 3 ,

n2<f), w 3 ^ , nA<j>t kxk2k3,

kxkA(f>, k2k3</>, k2kA<p, k3
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The estimation process involved estimating many equations of penalty

responses using the above factors. The coefficients that are ciearly insignificantly

different from zero were eliminated using smallest absolute t-statistic (well below 1

in absolute value) or highest p-values of the coefficients. After obvious

insignificant regressors were dealt with, we then used criteria such as AIC, BIC, the

Durbin-Watson (DW) test and R2 to help make the decision of choosing a final

formulae for critical values at a certain level of significance. In the following

subsection we will discuss the estimated response surface formula for critical value

at different levels of significance.

3.4.1 Formulae for Critical Values

We fitted models using all regressors and by applying the criteria

mentioned in the above section. Our finally selected estimated models for 1%,

2.5%, 5% and 10% significance levels respectively are as follows:

CVl% = 0.2699^ + 0.4508/:, -0.029£2 + 62.630/?, --5.930/?,^ -47.859/7,*,

(0.034) (0.099) (0.007) (19.790) (1.919) (10.962)

+ \.256n,k.<f> +2.376/7.^, +Q.007n.k, -1405.684/J 7 + 1730.065/?, Jfc,

(0.161) (0.508) (0.002) (353.493) (361.239) ^ ;

-0.708w2*4-18060.632i73fc,-136.468n3Jfc3 + 20.841/73*4 + 4.360

(0.127) (4688.339) (21.206) (2.833) (0.208)

R2 =0.997, s2 =0.125, £57? = 3.519, DW = 1.830, AIC = -1.251, BIC = -1.019.
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CV25% = 0.7090+ 0.153*,-O.O44*,0 +0.061*2 + O.OO2*20-0.007*,

(0.123) (0.048) (0.016) (0.024) (0.001) (0.003)

+ 0.00021*4+ 62.332/7,-37.173/2,0 + 2.429/7,*,0-l 1.712M,*,

(0.00043) (14.294) (10.139) (0.302) (2.851)

+ 1.159/7,*., -0.029/7,*4 + 465.345/?20 + 527.363/72*2 -43.750/72*3

(0.297) (0.009) (189.372) (124.038) (10.245)

+ 0.723/72*4-6367.748/73*2-1346.942/72 + 431.051«3*3 + 3.383

(0.178) (1725.869) (274.105) (131.999) (0.159)

R2 = 0.996, s2 = 0.115, SSR = 2.892, DW = 2.025, AIC = -1.406, BIC = -1.101.

CV5% = 0.446^ + 0.346*, -0.017*2 + 0.0004*3 + 44.285/?,

(0.074) (0.073) (0.008) (0.00082) (14.436)

- 26.59/J,^ - 41.23/7,*, + 1.64/7,*,̂  + 1.02/7,*2 -1130.29/72

(0.728) (6.667) (0.108) (0.395) (255.864)

+ 431.363«20 + 1885.226/72*,-0.157/72*4 - 25012.300/73*,

(139.141) (200.446) (0.045) (2635.103)

- 52.549/73*3 + 7.003n3*4 + 3.044

(16.174) (1.497) (0.158)

R2 = 0.996, s2 = 0.084, SSR = 1.590, DW = 1.752, AIC = -2.037, BIC = -1.791.

CVmi = 0.201*, + 0.041*,0 + 27.95/7,0 - 30.45/?,*,-1198.418«20

(0.018) (0.009) (6.655) (3.042) (343.590)

+ 2152.19/?2*, - 130.46/72*2+13.69/22*3-0.468/22*4 -6941.37n3

(211.473) (41.808) (4.151) (0.135) (1284.9)

- 37411i3/73«, +3795.375/73*2 -407.256«3*3 +15.177«3*4

(4422.9) (1088.38) (107.74) (3.493)

+ 372674.5Ol/740 + 9.7O6/73*30-9.O41/74*40-O.OOl*20 +2.752

(121597.8) (2.481) (4.113) (0.001) (0.030)

•••A

If
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R2 = 0.995, r = 0.071, SSR = 1.129, DW = 1.402, AIC = -2.363, B1C = -2.087.

Figures in parenthesis indicate standard errors, SSR is the regression sum of

squares and s2 is the estimated error variance of the model.

The response surface formula for the 1% level of significance is (3.13)

which consists of 16 factors including an intercept of which there are five individual

factors, 9 two-factor interactions where most of the interactions are functions of n

and k and one three-factor interaction. The response surface formula for the 2.5%

level of significance is (3.14) which consists of 21 factors including the intercept of

which there are 7 individual factors, 12 two-factor interactions and one three-factor

interaction.

The response surface formula for the 5% level of significance is given by

(3.15) which consists of 17 factors including the intercept of which there are six

individual factors, 9 two-factor interactions where most of the interactions are

functions of n and k and one three-factor interaction. The response surface

formula for the 10% level of significance is (3.16) which consists of 19 factors

including an intercept of which there are two individual factors, 14 two-factor

interactions and two three-factor interactions. Overall, out of the three main factors

n, k and 0, the first two factors are found to feature much more than the last

factor.

3.5 How to Use the Estimated Response Surface
Formulae

The response surface formulae (3.13) to (3.16) given above quantify the

straightforward dependencies of the critical values of the test on k, <j> and n and

they therefore offer a simple way to estimate critical values when Tables 3.1-3.4 are

m
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not available or do not apply. For any particular values of k, (f> and n and using

formulae (3.13) to (3.16), desired critical values can be found. The choice of A',

and n are straightforward but the decision of what to use for (f> may be a little more

problematic. We suggest using the average of the estimated first order

autocorrelation coefficients of each of the nonconstant regressors. For example, if

xit i = \,---,k are k regressors and xu is the intercept, then fit AR(1) models to

each nonconstant regressors excluding the intercept. Suppose ^2,---,^A. are the

estimates of the coefficients in the AR(1) models. Then replace (f> with the mean

</> = (02 +• • -+ifik) / (k -1). As we will see, the formulae are not particularly sensitive

to the value of <f>.

3.5.1 Monte Carlo Experiment

In order to check whether there are problems caused by our choice of

variables and to evaluate the practical usefulness of our proposed response surface

formulae for critical values, we conducted a Monte Carlo experiment. We

considered testing the null hypothesis

against the alternative hypothesis

Ho:

Ho:

Under the null hypothesis, the n observations of the dependent variable y, were

generated from the following equation

y, =x',Po + w
ly

+z,d + u
l>

 f o r t = \, . . . , /?,with S=0,

I



Chapter 3. Testing for structural change 75

where y, is the dependent variable at time /, x, is a kx\ vector of regressors at

time /, w, is a scalar variable that is of interest, z, is a dummy variable defined as

in (3.3), J30 is a k x 1 vector of regression coefficients, and 7 and 5 are unknown

scalar parameters. The error term is assumed independent, identically distributed

Under the null hypothesis of parameter stability, the distribution of the LR

statistic does not depend on the parameters J3O and / . Therefore it is possible to

simulate the distribution of LR for any particular data set and arbitrary J3O and y

values. We set all elements of the /?0 vector and y as unity throughout. The error

term u, is assumed independent, identically distributed N(0,cr2) and we set

cr2 = 1. The following design matrices were used in this experiment:

Xl A constant, monthly US seasonally adjusted total volume of real

retail sales on domestic trade (in billion 1992 USD) and lagged

one month commencing 1960(1).

X2 A constant, monthly US interest rate, the same interest rate lagged

one month, real personal income (in billion 1995 USD), and the

same variable lagged one month commencing 1960(1).

These design matrices were chosen to reflect a variety of economic and

statistical phenomena. In this case, Xx and X2 show some long term fluctuations.

We used as w, monthly US seasonally adjusted total volume of real retail sales on

domestic trade (in billion 1992 USD) in the case of X] and the monthly US interest

rate in the case of X2. After the disturbances were generated, and given the

appropriate design matrix, the y's were generated. The LR test statistics were

calculated for each of the sample sizes 30, 60, 120 and 240 with 2000 replications.
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Note that sample sizes 120 and 240 are outside the range of our sample sizes used to

fit our critical value formulae. One of them, n= 120, is close to the sample range

while n = 240 is quite distant. It will therefore be interesting to see how well the

formulae work for these two values. When the null hypothesis is true, the

proportion of replications in which the test statistic LR rejects the null gives an

estimate of the size of the test.

We calculated critical values at the 2.5%, 5% and 10% levels of

significance using the response surface formulae given in the previous section.

Three parameters n, k and <p are central to the test statistic's distributional

properties. The first two are known from the data and the problem is how to choose

the value of the last one namely (j). We calculated (f> as <j> discussed in Section 3.5.

We also checked the sensitivity of (/> on critical values at different levels of

significance using response surface formulae (3.13) to (3.16). We used </>= 0, .02,

.05, .1, .2, .3, . . ., 1.02 keeping the sample size n as 60 and the number of

regressors £ as 6 and found that the critical values generally are not sensitive to

changes in <$>. All computer programs were written in GAUSS (see Aptech, 1997,

version 3.2.17) and computations were carried out on a Pentium III with a 933 Mhz

CPU.
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3.6 Discussion of Results

In this section we report the Monte Carlo results for sample sizes of 30, 60,

120 and 240 for design matrices Xl and X2 using response surface equations given

by equations (3.14) to (3.16) respectively. We calculated the estimated critical

values using the formulae at the 2.5%, 5% and 10% significance levels and present

the results in Table 3.5.

We observe that large sample sizes give smaller critical values and as the

number of regressor increases, the critical values also increase. Obviously critical

values decrease as levels of significance increase.

Using the critical values from Table 3.5, we estimated the sizes of the test.

The results are given in Table 3.6. The estimated sizes for the design matrix Xx are

closer to the nominal significance level than those for the design matrix X1. One

possible explanation for this behavior is that the design matrix we used here only

has one variable and its lag as regressors. Thus, the results seem to indicate that

when regressors involved lagged independent variables, increasing the sample size

increases the reliability of the test.

Tables 3.7 and 3.8 give lower and upper bounds of the 95% confidence

interval of the estimated sizes of Table 3.6 for design matrices X{ and X2 using

different sample sizes. We find that all estimated sizes of Table 3.6 are within the

bounds indicating the estimated sizes are not significantly different from the

nominal sizes. There is a clear sign of improvement as the sample size increases

from 30 to 240. Thus, from this Monte Carlo study, we found that the critical

values calculated from our response surface formulae have very acceptable sizes, at

least for the design matrices we used in the study. Overall, we have seen that
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k

increasing the number of observations improves the reliability of the critical value

formulae. We note that in both design matrices the regressors include lagged

independent variables which may be helpful with respect to reliability.

3.7 Conclusion

k While there are so many ways to develop a test statistic to test for the

presence of structural change when there is a possible unknown changepoint in the

data, we recommend the use of the LR test. Since this test does not have a known

distribution for finite sample sizes, we calculated exact critical values for the test by

simulation using 10000 replications for different sample sizes, numbers of

regressors and types of regressors. We found that the critical values clearly depend

on sample size, the number of regressors and to a less extend on the type of

explanatory variables. A portion of this finding supports King and Tan's (1994)

finding that the LR test statistic is sensitive to the number of regressors used in the

model.

We found that the calculation of critical values via simulation is very time

consuming and the computational cost is very high, particularly for very large

samples. To overcome this difficulty, we developed formulae for critical values

using a response surface ' pproach, which helps to estimate critical values of the test

statistic directly avoiding the use of a table at a desired level of significance when

the sample size and the number of regressors are known. Response surfaces provide

complementary summaries of the vast array of results from the Monte Carlo study

undertaken. The response surfaces highlight some simple dependencies of the

critical values on the number of regressors, the degree of autocorrelation in the

regressors and the sample size.
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The problem of how to choose <j> is the main concern in using our formula.

We suggest the use of the average of estimated coefficients from fitted AR(1)

models to each of the nonconstant regressors. The reported response surfaces

provide a computationally convenient way of finding finite sample critical values at

the 1%, 2.5%, 5%, and 10% levels.

We checked the accuracy of the critical value formulae by performing a

small Monte Carlo experiment. We calculated the estimated sizes of the test using

response surface formulae for critical values at the different nominal levels. We

found that the estimated sizes are not significantly different from the nominal size

regardless of the sample sizes. Overall the actual sizes of the test are quite

satisfactoiy. We recommend using the LR test staiistic for testing structural change

of unknown timing with our critical value formulae.

One question we have not answered here is how to make inference about

the changepoint «, when parameters of the models have to be estimated. This

problem is the subject of the next two chapters.
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Table 3.1 Empirical Critical Values of the LR Test for Different Numbers of

Regressors and (f) when n = 25

a 1% 2.5%

^=0 ^=o.7 0=1.0 0=1.02 0=0 0=0.7 0=1.0 0=1.02

"4/779 4J66 4?759 4^837 1814 1841) 1829 4X)22~

5.113 5.162 5.403 5.500 4.137 4.111 4.266 4.252

5.402 5.395 5.724 5.765 4.356 4.353 4.531 4.534

4

5

6

7

8

9

10

11

12

13

14

15

5.761 5.754 6.093 6.172 4.679 4.673 4.803 4.845

6.082 6.058 6.441 6.732 4.778 4.811 5.217 5.416

7.002 6.899 6.952 6.810 5.429 5.432 5.588 5.650

7.069 7.126 7.402 7.261 5.462 5.436 5.860 5.856

7.509 7.323 7.454 7.469 6.005 6.033 6.098 6.203

8.291 8.254 8.686 8.702 6.573 6.622 7.144 7.279

8.710 8.652 9.454 9.129 7.006 7.004 7.651 7.590

9.766 9.993 10.354 10.278 8.123 8.036 8.412 8.423

10.633 10.749 11.513 11.302 8.783 8.830 9.309 9.549

11.808 11.912 12.569 12.570 9.136 9.107 10.578 10.725

13.871 14.053 14.695 14.852 11.128 11.153 11.955 12.163

16.196 16.169 17.106 17.453 12.477 12.567 14.090 13.903
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Table 3.1 (cont'd) Empirical Critical Values of the LR Test for Different

Numbers of Regressors and (f) when n = 2S

a 5% 10%

0=0 0=0.7 0=1.0 0=1.02 0=0 0=0.7 0=1.0 0=1.02

3.136 3.139 3.179 3.356 2.446

3.338 3.373 3.524 3.494 2.480

4

5

6

7

8

9

10

11

12

13

14

15

3.445 3.462 3.741 3.863 2.590

3.720 3.737 3.946 3.968 2.823

3.938

8.801

3.962 4.298 4.435 3.031

4.338 4.347 4.622 4.784 3.220

4.358 4.388 4.843 4.822 3.230

4.763 4.756 5.066 5.170 3.432

5.182 5.111 5.754 5.993 3.717

5.478 5.485 6.285 6.299 4.026

6.298 6.346 6.973 7.114 4.705

6.952 6.986 7.744 7.838 5.165

7.363 7.478 8.502 8.577 5.609

8.822 9.651 9.998 6.479

10.209 10.182 11.249 11.386 7.698

2.455

2.480

2.587

2.806

3.016

3.198

3.204

3.448

3.727

4.020

4.737

5.204

5.654

6.585

7.735

2.463

2.590

2.884

3.039

3.331

3.632

3.785

3.985

4.456

4.715

5.339

5.961

6.577

7.509

9.033

2.636

2.685

2.832

3.080

3.514

3.698

3.825

4.067

4.691

4.877

5.588

6.109

6.914

7.712

8.995

\i
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Table 3.2 Empirical Critical Values of the LR Test for Different Numbers of
Regressors and (f) when n = 50

a 1% 2.5%

0=0.7 0=1.0 0=1.02 0=0 ~7=OJ 0=1.02

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

5.044

5.117

5.420

5.636

5.350

5.731

5.923

6.222

6.351

6.438

6.708

6.773

7.158

6.955

7.232

5.046

5.133

5.352

5.430

5.689

5.755

5.944

6.255

6.398

6.489

6.638

6.924

6.957

7.135

7.263

5.153 5.259 4.237 4.243 T 3 2 8 4~3oT

5.364 5.526 4.247 4.272 4.391 4.566

5.605 5.641 4.555 4.547 4.596 4.760

5.758 5.795 4.786 4.583 4.862 4.852

5.775 5.881 4.603 4677 4.932 4.993

5.822 5.953 4.643 4.770 4.945 5.108

6.060 6.192 4.898 4.930 5.223 5.191

6.440 6.362 4.995 5.054 5.534 5.390

6.737 6.563 5.428 5.448 5.587 5.507

6.785 6.674 5.440 5.512 5.701 5.673

7.150 7.161 5.515 5.588 6.066 6.113

7.227 7.271 5.583 5.613 6.139 6.123

7.267 7.320 5.957 5.804 6.236 6.166

7,640 7.532 5.799 5.978 6.483 6.370

7.643 7.787 6.166 6.140 6.602 6.568
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Table 3.2 (cont'd) Empirical Critical Values of the LR Test for Different

Numbers of Regressors and (j) when n=50

a

k

i

0=0

3.570

0=0

3.51

.7

1

5%

0=1.0

3.665

0=1.02

3.791

0=0

2.820

0=0.7

2.829

10%

0=1.0

2.980

0=1.02

3.129

2 3.497 3.567 3.678 3.796 2.900 2.917 3.107 3.177

3 3.805 3.792 3.914 4.036 3.065 3.082 3.264 3.305

4 3.985 3.839 4.172 4.225 3.167 3.130 3.363 3.511

5 3.824 3.995 4.212 4.267 3.112 3.152 3.367 3.516

6 3.970 4.025 4.242 4.321 3.199 3.214 3.438 3.531

7 4.103 4.140 4.495 4.465 3.255 3.241 3.696 3.659

8 4.286 4.320 4.634 4.608 3.435 3.437 3.808 3.782

9 4.468 4.510 4.790 4.668 3.585 3.608 3:951 3.894

10 4.697 4.682 4.875 4.813 3.724 3.741 4.048 4.034

11 4.667 4.694 5.215 5.146 3.763 3.768 4.231 4.198

12 4.664 4.709 5.239 5.212 3.743 3.797 4.291 4.248

13 5.076 4.945 5.399 . 5.340 4.074 4.044 4.494 4.495

14 4.967 5.084 5.557 5.566 4.051 4.087 4.649 4.620

15 5.280 5.296 5.621 5.587 4.300 4.355 4.678 4.689
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Table 3.3 Empirical Critical Values of the LR Test for Different Numbers of

Regressors and (f) when n- 75

a 1% 2.5%

0=0 0=0.7 0=1.0 0=1.02 0=0 0=0.7 0=1.0 0=1.02

5.153 5.140 5.228 5.293 4.168

5.229 5.233 5.304 5.330 4.261

4

5

6

7

8

9

10

11

12

13

14

15

5.283 5.274 5.535 5.448 4.307

5.342 5.297 5.624 5.554 4.310

5.353 5.344 5.660 5.700 4.458

5.424 5.401 5.690 5.835 4.524

5.482 5.472 5.757 6.111 4.570

5.590 5.565 6.125 6.131 4.600

5.660 5.731 6.142 6.147 4.648

5.764 5.803 6.158 6.266 4.757

5.846 5.812 6.159 6.331 4.981

6.177 6.127 6.222 6.402 5.051

6.178 6.230 6.504 6.586 5.062

6.405 6.453 6.550 6.742 5.072

6.457 6.468 6.569 6.911 5.212

4.161

4.263

4.300

4.323

4.439

4.516

4.551

4.610

4.625

4.734

4.988

5.032

5.056

5.106

5.180

4.313

4.503

4.601

4.665

4.686

4.778

4.833

4.993

5.127

5.134

5.228

5.275

5.512

5.539

5.597

4.464

4.574

4.629

4.684

4.760

4.888

4.966

5.085

5.173

5.250

5.369

5.464

5.558

5.565

5.741
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Table 3.3 (cont'd) Empirical Critical Values of the LR Test for Different

Numbers of Regressors and (f) when n=15

a

k

1

0=0

3.486

0=0.7

3.484

5%

0=1.0

3.609

0=1.02

3.780

0=0

2.783

0=0.7

2.787

10%

0=1.0

2.962

0=1.02

3.062

4

5

6

7

8

9

10

11

12

13

14

15

3.527 3.514 3.826 3.913 2.836 2.842 3.146 3.210

3.569 3.571 3.859 3.958 2.859 2.862 3.148

5.683

3.809

3.982

4.051

4.076

3.674 3.933 4.077 2.968

3.701 3.702

2.968

4.081

3.840 3.863 4.299 4.369 3.076 3.080 3.452

3.963 4.348 4.378 3.174 3.184 3.515

4.304 4.284 4.697 4.872 3.450 3.468 3.863

3.258

3.653 3.671 3.866 4.014 2.956 2.953 3.165 3.281

3.186 3.310

4.164 2.969 2.982 3.342 3.418

3.818 4.145 4.238 3.019 3.027 3.426 3.527

3.564

3.613

4.043 4.389 4.465 3.210 3.189 3.582 3.665

4.089 4.476 4.562 3.230 3.239 3.599 3.711

4.151 4.150 4.553 4.579 3.348 3.332 3.687 3.808

4.243 4.243 4.619 4.751 3.397 3.405 3.791 3.898

4.249 4.258 4.645 4.769 3.422 3.417 3.800 3.946

3.957
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Table 3.4 Empirical Critical Values of the LR Test for Different Numbers of

Regressors and (f) when n= 100

a

k

l

0=0

4.906 4.917

1%

0=1.0

4.829

0=1.02

5.302

0=0

4.059

2

0=0.7

4.060

.5%

0 = 1.0

4.105

0=1.02

4.451

2

3

4

5

6

7

8

9

10

11

12

13

14

15

5.055 5.098 5.310 5.372 4.199 4.218

5.227 5.219 5.313 5.492 4.362 4.379

5.257 5.272 5.600 5.492 4.385

5.983 6.064 6.192 6.375 4.945

4.392

5.284 5.281 5.658 5.659 4.444 4.424

5.366 5.358 5.717 5.749 4.492 4.509

5.376 5.407 5.744 5.800 4.578 4.564

5.567 5.593 5.830 5.964 4.583 4.564

5.665 5.633 5.894 6.068 4.656 4.646

5.678 5.744 5.981 6.071 4.696 4.715

5.691 5.760 6.068 6.134 4.764 4.792

5.753 5.781 6.168 6.151 4.803 4.801

5.761 5.786 6.184 6.311 4.895 4.927

4.965

6.017 6.072 6.610 6.633 4.989 5.029

4.335

4.497

4.581

4.656

4.782

4.833

4.945

4.961

5.068

5.075

5.125

5.251

5.300

5.543

4.543

4.615

4.784

4.824

4.864

4.972

5.107

5.154

5.171

5.227

5.259

5.297

5.358

5.615



Chapter 3. Testing for structural change 87

Table 3.4 (cont'd) Empirical Critical Values of the LR Test for Different

Numbers of Regressors and (j) when «= 100

a

k

1

2

4

5

6

7

8

9

10

11

12

13

14

15

0=0

3.497

3.594

3.643

3.753

3.757

3.842

3.868

3.876

3.924

3.994

4.008

4.096

4.115

4.211

4.219

5%

0=0.7

3.511

3.607

3.630

3.762

3.777

3.850

3.856

3.872

3.927

4.004

4.018

4.120

4.125

4.193

4.232

0=1.0

3.508

3.675

3.824

3.921

3.972

4.081

4.139

4.176

4.245

4.304

4.412

4.443

4.502

4.616

4.644

0=1.02

3.800

3.897

3.934

4.009

4.046

4.123

4.190

4.319

4.335

4.403

4.435

4.504

4.622

4.626

4.662

0=0

2.818

2.924

2.943

3.012

3.016

3.041

3.108

3.161

3.173

3.237

3.250

3.328

3.351

3.367

3.448

10%

0=0.7

2.826

2.936

2.939

3.009

3.016

3.066

3.111

3.162

3.172

3.249

3.258

3.339

3.363

3.369

3.450

i

0=1.0

2.863

2.938

3.176

3.257

3.310

3.333

3.337

3.435

3.500

3.516

3.603

3.697

3.761

3.790

3.820

0=1.02

3.129

3.202

3.225

3.337

3.340

3.377

3.432

3.523

3.624

3.639

3.643

3.690

3.800

3.834

3.838
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Table 3.5 Estimated Critical Values from Response Surface Formulae at
X X

Different Levels of Significance for Design Matrices ' and 2 for
Different Sample Sizes

n

30

60

120

240

2.5%

4.588

4.456

4.416

4.296

5%

3.846

3.735

3.617

3.575

10%

2.927

3.102

3.013

3.187

2.5%

5.227

4.897

4.609

4.488

5%

4.221

4.037

4.009

3.962

10%

3.542

3.423

3.372

3.338

Table 3.6 Estimated Sizes of the LR Test Based on Critical Values from Response
Surface Formulae at Different Levels of Significance for Design
Matrices Xx and X5 for Different Sample Sizes

X, A',

n 2.5% 5% 10% 2.5% 5% 10%

30 0.0313 0.0527 0.1190 0.0340 0.0614 0.1201

60 0.0270 0.0518 0.1110 0.0327 0.0582 0.1098

120 0.0259 0.0511 0.0986 0.0279 0.0542 0.1020

240 0.0235 0.0508 0.0949 0.0270 0.0510 0.0998
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Table 3.7 The 95% Lower and Upper Bounds of the Estimated Sizes of the LR
Tesi Based on Exact Critical Values at Different Level of
Significance Using Design Matrix Ar, for Different Sample Sizes

Nominal
Size

Sample
size

2.

Lower
Bound

5%

Upper
Bound

5(

Lower
Bound

Upper
Bound

10%

Lower Upper
Bound Bound

30 0.0196 0.0430 0.0377 0.0677 0.0919 0.1461

60 0.0161 0.0378 0.0369 0.0667 0.0899 0.1320

120 0.0153 0.0366 0.0363 0.0659 0.0786 0.1186

240 0.0133 0.0337 0.0361 0.0655 0.0753 0.1146

Table 3.8 The 95% Lower and Upper Bounds of the Estimated Sizes of the LR
Test Based on Exact Critical Values at Different Level of
Significance Using Design Matrix X2 for Different Sample Sizes

Nominal
Size

Sample
size

2.

Lower
Bound

5%

Upper
Bound

5%

Lower Upper
Bound Bound

10%

Lower
Bound

Upper
Bound

30 0.0219 0.0462 0.0453 0.0775 0.0983 0.1419

60 0.0208 0.0447 0.0425 0.0739 0.0888 0.1308

120 0.0168 0.0389 0.0390 0.0693 0.0817 0.1223

240 0.0161 0.0378 0.0362 0.0658 0.0797 0.1199



CHAPTER 4

The Use of Model Selection for
Detecting Unknown Changepoints1

4.1 Introduction

The conventional approach to linear regression analysis involves the

formulation of a model with constant coefficients across the entire time domain. As

we have seen in Chapter 2, the appropriateness of this framework is highly

questionable in many economic applications. Because of changes that often occur in

the structure of the economy and important institutions iii the economy,

econometricians need to be mindful of the possibility of a structural change although

there can be considerable uncertainty as to the timing of the changepoint. It is

therefore desirable to be able to detect a changepoint when the timing of the change

is unknown. The use of hypothesis testing to do this has gained a great deal of

attention from econometricians in recent years. A difficulty with this approach, as

we have seen in Chapter 2, is that the timing of the change is a nuisance parameter,

which is present only under the alternative hypothesis.

1 The preliminary findings of this chapter were presented at the Third Annual Doctoral Research
Conference, Faculty of Business and Economics, Monash University. See Azam and King (1997).
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In this chapter we argue that the problem of detecting a changepoint of

unknown timing can be viewed as a model selection problem. There is a history of

the use of hypothesis testing to make decisions about model specification in the

econometric literature (for more details, see Section 2.3.2). In this regard, Granger et

al. (1995) argued model selection decisions should be based on some well-thought-

out model selection procedure rather than a series of classical pairwise hypothesis

tests.

The purpose of this chapter is to investigate the use of IC model selection

procedures to detect a structural change when the changepoint is unknown. To the

best of our knowledge, this has not yet been investigated in the literature. A

disadvantage of this approach is that we have many different models that have to be

estimated, one for each different timing of the possible changepoint, and we are not

sure about the quality of inferences from model selection procedures in cases where a

high number of models are involved. In particular, our aim is to find which criteria

,<nong existing IC has the best ability to detect a changepoint in the context of a

linear regression model when the timing of the changepoint is unknown. The fust

and foremost aim of this chapter is to see if model selection can be successfully used

in this case.

A comprehensive investigation of the application of all possible IC

procedures to the problem of detecting structural change with unknown timing is not

feasible because of the size of the task. Therefore, we have had to narrow the

number of criterion functions. Under these constraints, we use a unified strategy to

find a best choice of IC model selection; that is, we choose a number of prominent IC

(among AIC, BIC, HQC, RSC, MCPC, HSPC and GCVC) and apply them to

simulated DGPs. We use as our measure of the ability of a criterion to deter->; a
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changepoint the average mean probability of correct selection (AMPCS) when the

model is being selected from a group of alternative models.

The plan of this chapter is as follows. Section 4.2 looks at the use of model

selection procedures to detect structural change and discusses our measure of

AMPCS as a method of assessing different procedures. In Section 4.3 the design of

our Monte Carlo experiment is provided. Section 4.4 discusses the results of this

experiment. Concluding remarks are given in Section 4.5.

4.2 Model Selection Procedures to Detect
Structural Change

Consider the following multiple linear regression model

' .+*, (4-1)

where y, is an observation on the dependent variable at time /, x, is a k x 1 vector

of regressors at time t» zi is a scalar variable, P is a k x 1 vector of regressor

coefficients, and yx is an unknown scalar parameter. The residuals s, of the n

observations are assumed to be independent and identically normally distributed with

mean zero and a constant variance a2. Our interest is in detecting whether yx has

changed in value at some point in time. This means we arc interested in selecting

between the following n different models:

Model - 1 yt- x',/3 + ztyx+et

Model-2

for / = 1, 2, ...,/?,

l for f = l,2, . . . ,« ,

(4-2)

Model -n for r = 1,2,...,«,
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where zDil, / = 1, . . . , « , denotes zeros up to the ;th observation and z,

afterwards.

In obvious matrix notation, model- / can be rewritten as

(4.3)

where Xx represents the nx(k + \) matrix of observations on the regressors in

model-1 in the case of no changepoint; X-, i = 2, . . . , n, represents the nx(k + 2)

matrix of observations on the regressors in model-/ when there is a changepoint in

the observations. In this case, Xt consists of k columns made up of the rows of x\,

t = 1, . . . , « , a column of z, values and an additional column consisting of zeros up

to the / th element and z, afterward;;. Also f is a (k + 2) x 1 [ (k +1) x 1 in the case

of model-1] vector of coefficients.

The log-likelihood function of the model is

1(7
(4.4)

v-land is maximised for r = (X'iXi) Xjy, the ordinary least squares (OLS) estimator

of r, and a) ={y-Xir)\y-X-T)ln, i = l, . . . , n. Therefore, under the null

hypothesis of no changepoint in the model (i.e., model-1), the maximised log-

likelihood is

Lx(d) = —log(2;r)— logcr2— (4.5)

where cr] =(y- Xxr)'(y- XXF)I n is the estimated error variance of the model

without a changepoint. On the other hand, also under the alternative hypothesis of a

changepoint in the model (i.e., model-/), the maximized log-likelihood is

= ~-log(2;r)-- logcT ;
2-- (4.6)



Chapter 4 Model Selection for Detecting Changepoint 94

where a) = (y - xfy'iy - A'/") / n ; / = 2, . . . , « , is the estimated error variance

calculated after modelling the changepoint.

In the simulation study reported below, we included only m = (n-4)

changepoint models because it is extremely hard to detect models when there is a

changepoint right at the beginning or right at the end of the data period. Therefore,

we dropped off models 2 and 3 that have changepoints at the beginning and also

models n -1 and n which have their changepoints at the end of the data period.

Let Lx{6), ••-,Lm{6) correspond to the maximised log-likelihoods of the

models A/,, •••, Mm, respectively, with 6 being the maximum likelihood estimate of

the parameter vector 0. Here Mx corresponds to the model without structural

change, M2 corresponds to the model with a changepoint at the third time period

and so on, with Mm corresponding to the model with a changepoint at the (n - 2) th

period.

In Chapter 2 we discussed various IC based model selection procedures.

The usual form of almost all IC based model selection procedures is to select the

model with the largest penalised maximised log-likelihood function, namely

ICi = Li{9)-Pi (4.7)

where /?, is the penalty function for the /thmodel, M,, for i = l,---,m, dependent

on the number of parameters, among other things. For example, /?,. in case of AIC

takes the value k,-, BIC takes the value £,. log(w) / 2, HQC takes the value

-k, log(log(«))/«, RSC takes the value ~n log((«-£,.)) 12, GCVC takes the value

-n log((« -k,)/n), HSPC takes the value -n log((« - k,)(«- k, -1)) /2 and MCPC

takes the value n log(l + 2k) l(n-k*))l 2 where k" is the number of free parameters

in the smallest model that includes all models under consideration as special cases.
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For each model under consideration and for a given choice of penalty

function, we estimate the probability of correctly selecting this model when it is

indeed the true model. Under repeated sampling we count how many times these

models come up as the true model and then divide the total count by the number of

repetitions which gives us an estimate of the mean probability of correct selection

(MPCS). For the same penalty set, we then average these probabilities across the

different models to find the average mean probability of correct selection (AMPCS).

In order to understand more closely what is involved, let

Pr(CSMj\Mj,&j, /?,, . . . ,/?„,) denote the probability of correctly selecting

Model-/ when it is true with parameter vector 6, and using penalties p]t . . .,/?„,.

This probability can be given by

?r(CSMJ\Mj,0j,pl,...,pm)

= Pr(LJ(0j)-pJ>Ll(ei)-plJ*j,i = \,':,,
(4.8)

The problem with this probability is that it is not fixed but varies as 6j. An

alternative way to overcome this difficulty is to work with the MPCS for the

j th model which is given by

MPCSj(P], . . . ,Plll) = jVr(CSMj\MJ, 0j;Pl, . . . ,Pm)f(0J)d0J (4.9)

where / ( # , ) is a weighting density function rather like a prior density function used

in Bayesian methods. Its purpose is to weight different parameter vector values

when calculating MPCS. Further, we can take the average of MPCS to obtain the

overall AMPCS over m models and for a given set of penalty values p{,---,pm,

namely,

AMPCS = -
m

, . . .,Pm)f(0j)d0J. (4.10)
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Unfortunately, it is very difficult to calculate (4.9) and (4.10) analytically.

To make our approach operational, we need a method of estimating (4.9). Given that

f{6j) is a joint density function, the Monte Carlo estimate of (4.9) can be found by

taking a large sample of drawings £*om the distribution represented by

denoted by 0(i), i = 1,. . . , R, where R is the number of drawings and then

calculating

6(i),pv . . . ,/?„,). (4.11)

This then requires estimating ¥x(CSMj\Mj,6(j)tpx, . . . ,pm) for given

Mj, 6{i) and / ? , , . . . , pm by a Monte Carlo simulation. Some recent research, for

example, King and Bose (2000), in this context has confirmed that for a fixed total

number of replications, good results are achieved by using only one replication but

the maximum number of drawings of 0(i) from / ( # , ) . In the following section we

discuss a procedure for estimation of MPCS and consequently the AMPCS.

4.3 Procedure for Estimation of AMPCS

The selection of a best information criterion among existing IC can be based

on the relative performance of the criteria or the power to pick the correct model.

Obviously, the best choice of IC may differ from model to model, with the

dimensions of the models or the values of the parameters, sample sizes and the

timing of changepoints in the data. The evaluation of these IC procedures is based

on the AMPCS discussed in the previous section. Therefore, we propose to take the

average of the mean probability of correctly choosing models for a given set of

penalty values px, . . . ,pm as our measure of accuracy of the resultant IC procedure.
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Our Monte Carlo study involves simulating models in the presence of

structural change. For data simulated from a particular DGP, maximizing the log-

likelihood function fits the different models. Estimation is by maximum likelihood

(ML), under the assumption that s,;~ /JV(0, O2 ) so that the likelihood is easily

specified. Table 4.1 gives all the possible outcomes of the fitted maximized log-

likelihood values, given the true models. The maximized log-likelihood function is

denoted by L^O), where i denotes "fitted" for model / = 1, . . . , m and j denotes

Mj is the true model for j = 1, . . ., m. For example, a typical element in the first

row and second column of the matrix of all possible outcomes, Ln {&), denotes that

M2 has been fitted when the actual true model is M,. The diagonal elements of the

matrix would give the outcomes of the correctly fitted models. The upper and lower

triangles of the off-diagonals are outcomes of wrongly fitted models.

Table 4.1 Experimental Design: Values of the Maximized Log-likelihood

True

Model

M2

K,

M,

4,,OT

Fitted Model

4,2(§)

... M,,(

-4.(0)

We then penalize each of these estimated maximized log-likelihoods with a

penalty term from a particular IC and compute the number of times the true model is

selected. Evaluating (4.9) requires random drawings of 6} from f{9j), for model

Mj in order to compute this MPCS. For each of the m models, R random
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(4.12)

drawings of 9} are obtained from /(#,-) and then for each drawing the model (4.3)

is used to generate a dependent variable y. Then the log-likelihood fiinctions for

each of the models is maximized and the maximized values are stored. This is

repeated for each model so that a file of Rm2 maximized likelihoods is generated.

This can then be used to estimate (4.11) for different values of /?,, . . . ,pm. The

selection process can be represented by an indicator function:

Ij(P\> • • • >Pm>&(*)) ^l (when model j is chosen)

= 0 (when model j is not chosen).

Given this first set of parameter values for true model MJt j = 1, . . . ,m,

we can keep a count of the number of times each of the true models is selected. As

we are only interested in correct selection, we aggregate the lt s for correct selection

of the true models by summing all the ones. Because there are a total of m

competing models, and a total number of R replications, we thus can obtain the

MPCS over m models and R replications for a given set of penalty values

/ ? , , . . . ,pm. That is, using indicator functions, (4.12) can be estimated by

2 ; / , ( / > „ . . . , A, ; 0(0)
MPCS(M,\plt . . . ,pm) = ^ . (4.13)

R

and (4.10) can be estimated as

fjMPCS(Mj\pl,...,Pm)

m
(4.14)
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4.4 The Monte Carlo Experiment

In order to find the best model selection procedure for detecting linear

regression models with a structural change of unknown timing, we conducted a

Monte Carlo experiment. The experiment aimed to evaluate the relative performance

of some existing IC model selection procedures (namely, AIC, BIC, HQC, RSC,

MCPC, HSPC and GCVC) in terms of AMPCS.

4.4.1 Experimental Design

Our aim is to estimate the probabilities of correct selection for each of the

models as the true DGP and for a range of different procedures. We are able to

compare the results for different IC procedures and select the best procedure that

gives the largest average mean probability of correct selection. We performed the

following simulation:

The y 's are generated from the following equation

y, = , +ylzl+y2zlJI+£l (4.14)

where s, ~ //V(0,cr2) . The regressors chosen here are influenced by Engle et al.'s

(1986) Monte Carlo study; that is, x, is generated from the AR(1) process

x, = <j)x,_\ + u,, where u, ~ IN(0,a2).

We set (f> = 0,0.7,1.0 and 12 which covers white noise, autoregressive,

random walk and explosive processes, respectively. In each case, x, is generated

artificially and held fixed from replication to replication, z, is generated from the

uniform distribution ranging from 0 to 1. zDl takes the value zero up to and

including the changepoint and z, afterwards. Five different samples sizes of
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15, 25, 50,75 and 100 were used for comparison purposes. For the estimation of

AMPCS, we considered 11 models when n = 15, 21 models when n = 25, 46 models

when n = 50, 71 models for n = 75 and 96 models for n = 100.

For each model A/., note that all MPCS are invariant to the values taken by

/?,, (32, Y\ and depend only on y21
a • Consequently we set /?, = 1, /?2 = 1, cr = 1,

/ , = 1. The /(0y) prior distribution was only required for 6 = y21 a. As we have

seen, the MPCS is very sensitive to the choice of values for 9. Therefore, we would

like to draw parameter values from a distribution, which allows each parameter to

take a range of realistic values. Based on this argument, we decided to use a uniform

distribution so that values are drawn from a uniform spread of small, medium and

large values. The uniform distribution seems to be a natural choice but there is the

question of how to choose the limits of the distribution. We have seen that if the

bound of the distribution is very large, the AMPCS tends to one, and if the bound is

very small the AMPCS tends to zero. Therefore, we choose parameter values that

give some randomness in the selection, but provide a good coverage of admissible

parameter values. This approach resulted in 6 being generating uniformly from the

interval -10 to 10.

Throughout, when ML estimation was needed it was conducted using the

GAUSS 3.2.12 software. All simulations were carried out using R = 2,000

replications for five different samples sizes mentioned earlier. All the models were

simulated using pseudo random numbers from the GAUSS function RNDNS that

generates standard normal variates for regression errors. The seed for generating

random numbers for each experiment was 1786. To evaluate our model selection

criterion, we averaged our estimated MPCS to three decimals.
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4.5 Results of the Monte Carlo Data Analysis

Tables 4.2 - 4.26 contain the Monte Carlo results for the selection

probabilities of AIC, BIC, HQC, RSC, MCPC, HSPC and GCVC for different

sample sizes (i.e., n = 15,25, 50, 75and 100), and different values of the

autoregressive coefficient for the exogenous regressor {tj> = 0,0.7,1.0 and 1.2). We

summarize the probabilities of correct model selection by each of the IC methods

along with their average mean probability of correct selection when there is no

changepoint and when there is a changepoint. In terms of overall probabilities, we

calculate the average of MPCS for no changepoint models and changepoint models

for different sample sizes and different values of <p.

The performance of the IC procedures in the context of changepoint and no

changepoint models will be discussed in this section. Tables 4.2 to 4.26 contain

calculated MPCS and AMPCS for changepoint and no changepoint models for

different values of <j) for the autoregressive exogenous variable. In order to discuss

this massive set of results, we have presented the results for individual MPCS for

each model for different values of ^, and different sample sizes for each changepoint

model. We then computed AMPCS along with their standard deviation for different

models for different IC procedures. These AMPCS, standard deviations and ranking

of different IC procedures were also tabulated for different sample sizes and different

#Ts. From these general results we will proceed to take a closer look at the

performance of the IC procedures and will highlight any peculiar cases. But first,

some general results.
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4.5.1 Results for Models with Changepoints

4.5.1.1 For n = 15

For models with changepoints and for all values of (/>, the MPCS of the

seven IC procedures considered here show a general downward trend as the

changepoint moves forward in time. Also as <f> increases from 0 to 1.02, there is a

slight tendency for the AMPCS to decrease, ceteris paribus.

A closer examination of the results shows that the AMPCS of all the seven

IC procedures are very similar with the difference of AMPCS between any pair of IC

procedures being no more than 0.0500, 0.0429, 0.0728 and 0.0630, respectively, for

$ values of 0, 0.7, 1.0 and 1.02. Overall, the difference of AMPCS between the best

and worst IC procedure is 0.0527 irrespective of the effect of different <j) values.

Overall, RSC is statistically the best choice among the IC procedure for all

(j) values considered, because it gives the largest AMPCS. The ranking of the other

procedures are AIC ranked second, MCPC ranked third, HQC ranked fourth, GCVC

ranked fifth, HSPC ranked sixth and BIC ranked last. We can group these IC

procedures into three major groups based on similar performances, these are RSC

and AIC as the best group, MCPC, HQC and GCVC as the second best group, and,

HSPC and BIC as the worst group.

4.5.1.2 For n = 25

In the presence of structural change, the MPCS of the various IC procedures

indicate a general downward tendency as the changepoint moves forward in time,

with a few exceptions. A closer look at the pattern reveals very low MPCS when the

changepoint is at the beginning or the end of the time period. The MPCS is highest

when the changepoint is situated in the middle of the data period.
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When the </> value is 0, 0.7, 1.0 and 1.02, then the AMPCS of all the seven

IC procedures are very similar with the difference of AMPCS between any two IC

procedures being with no more than 0.0700, 0.0526, 0.0620 and 0.0834, respectively.

The difference of the overall mean of the AMPCS between the best and worst IC

procedure is 0.0670 irrespective of the effect of different <p values.

The overall ranking of the IC procedures are RSC ranked first, AIC second,

MCPC third, HQC fourth, GCVC fifth, HSPC sixth and BIC seventh. The three

major groupings in terms of performance are the same as for n = 15, namely RSC

and AIC as the best group, MCPC, HQC and GCVC as the second best group, and,

HSPC and BIC as the worst group.

4.5.1.3 For ft = 50

For models with changepoints and for all values of (f>, the MPCS of the

seven IC procedures considered ' , e show almost a bi-modal pattern as the

changepoint moves forward in time. When the ^ value is 0, the difference of

AMPCS between any two IC procedures is no more than 0.0595. Also when the <f>

value is 0.7, 1.0 and 1.02 then the AMPCS of all the seven IC procedures are similar

with the difference in AMPCS between any two IC procedures being no more than

0.1003, 0.1079 and 0.1196, respectively. The difference of the overall mean of the

AMPCS between the best and worst IC procedure is U.C958 irrespective of the effect

of different $ values.

The ranking of IC procedures is the same as for sample size 25. We are able

to group these IC procedures into four major groups based on their performances,

these being RSC as the best group, AIC, MCPC and HQC as the second best group,

GCVC and HSPC as the third best group and BIC as the worst group.



Chapter 4 Model Selection for Detecting Changepoint 104

4.5.1.4 For n = 75

In the presence of a structural change, the MPCS of the various IC

procedures indicate a general upward tendency as the changepoint moves forward in

time, with a few exceptions. When the 0 value is 0, 0.7, 1.0 and 1.02, then the

difference in AMPCS between any two IC procedures is no more than 0.0501,

0.0696, 0.1161 and 0.1073, respectively. The difference of the overall mean of the

AMPCS between the best and worst IC procedure is 0.0858 irrespective of the effect

of different <f> values.

The ranking of IC procedures is the same as for sample size 50. We again

can group these IC procedures into four major groups based on their performances,

these being RSC and AIC as the best group, MCPC and HQC as the second best

group, GCVC and HSPC as the third best group and BIC as the worst group.

4.5.1.5 For n = 100

In the presence of structural change, for different (f> values, the MPCS of the

seven IC procedures considered here indicate a general downward trend with greater

MPCS values observed at the beginning of the data period with a gradual decrease as

the changepoint moves forward in time. A closer examination of the results indicates

that when the ^ value is 0, 0.7, 1.0 and 1.02, then the difference in AMPCS between

any two IC procedures is no more than 0.0930, 0.0819, 0.1215 and 0.1219,

respectively. The difference of the overall mean of the AMPCS between the best and

worst IC procedure is 0.1046 irrespective of the effect of different <f> values.

The ranking of IC procedures is the same as for sample size 50. We can

group these IC procedures into three major groups based on their performances, these
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being RSC, AIC and MCPC as the best group, HQC, GCVC and HSPC as the second

best group and BIC making up the worst group.

4.5.1.6 For 0=

In the presence of a structural change for an autoregressive exogenous

regressor with a coefficient of ^ = 0, the performance of different IC procedures in

terms of AMPCS is consistently increasing as the sample size increases from 15 to

25, 50, 75 and 100. That is, the AMPCS generally increases with an increase in

sample size. When the n value is 15, 25, 50, 75 and 100, then the difference in

AMPCS between any two IC procedures is no more than 0.0500, 0.0700, 0.0595,

0.0501 and 0.0930, respectively. The difference of the overall mean of the AMPCS

between the best and worst IC procedure is 0.0645 irrespective of the effect of

different n values.

Overall, RSC is statistically the best choice among the IC procedures for all

n values considered, because it gives the largest AMPCS. The rankings of the other

procedures are AIC ranked second, MCPC third, HQC fourth, GCVC fifth, HSPC

sixth and BIC seventh. We can group these IC procedures into three major groups

based on their performances, these being RSC, AIC and MCPC as the best group,

HQC, GCVC and HSPC as the second best group, and BIC as the worst group.

4.5,1.7 For 0=0.70

In the presence of a structural change for an autoregressive exogenous

regressor with coefficient (f> = 0.7, the performance of different IC procedures in

terms of AMPCS is consistently increasing as the sample size increases from 15 to

100. When the n value is 15, 25, 50, 75 and 100 then the difference in AMPCS

between any two IC procedures is no more than 0.0429, 0.0526, 0.1003, 0.0696 and
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0.0819, respectively. The difference of the overall mean of the AMPCS between the

best and worst IC procedure is 0.0695 irrespective of the effect of different n values.

The ranking of IC procedures is the same as for <p = 0. We can group these

IC procedures into four major groups based on their performances, these being RSC

as the best group, AIC, MCPC and HQC, as the second best group, GCVC and

HSPC as the third best group and BIC as the worst group.

4.5.1.8 For <6=1.0

In the presence of a structural change for an autoregressive exogenous

regressor with coefficient <f> = 1.0, the performance of different IC procedures in

terms of AMPCS is consistently increasing as the sample sizes increase from 15 to

100. When the n value is 15, 25, 50, 75 and 100 theu the difference in AMPCS

between any two IC procedures is no more than 0.0728, 0.0620, 0.1079, 0.1161 and

0.1215, respectively. The difference of the overall mean of the AMPCS between the

best and worst IC procedure is 0.0961 irrespective of the effect of different n values.

The ranking of IC procedures is the same as for <p = 0.7. We can group

these IC procedures into four major groups based on their performances, these being

RSC as the best group, AIC, MCPC and HQC, as the second best group, GCVC and

HSPC as the third best group and BIC as the worst group.

4.5.1.9 For ^=1.02

In the presence of a structural change for an autoregressive exogenous

regressor with coefficient <f> - 1.02, the performance of the different IC procedures in

terms of AMPCS is consistently increasing as the sample size increases from 15 to

100. When the n value is 15, 25, 50, 75 and 100 then the difference in AMPCS
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between any two IC procedures is no more than 0.0630, 0.0834, 0.1196, 0.1073 and

0.1219 respectively. The difference of the overall mean of the AMPCS between the

best and worst IC procedure is 0.0990 irrespective of the effect of different n values.

The ranking of IC procedures is the same as for (j> = 1.0. We can group

these IC procedures into four major groups based on their performances, these being

RSC as the best group, AIC, MCPC and HQC, as the second best group, GCVC and

HSPC as the third best group and BIC as the worst group.

4.5.2 Results for Models without Changepoints

4.5.2.1 For n = 15

For models without changepoints and for all values of (f>, the MPCS of the

seven IC procedures considered here show an increasing trend as the <j) value

increases from 0 to 1.02, except for BIC, which has a decreasing trend, ceteris

paribus. A closer examination of the results shows that the difference of MPCS

between any pair of IC procedures is no more than 0.1230, 0.0831, 0.0755 and

0.0825 respectively, for <j) values of 0, 0.7, 1.0 and 1.02. The difference of the

overall mean of MPCS between the best and worst IC procedure is 0.0910

irrespective of the effect of different tf> values.

Overall, BIC is statistically the best choice among the IC procedures for all

(f> values considered, because it gives the largest MPCS when there is no

changepoint. The ranking of the other procedures are HSPC second, GCVC third,

HQC fourth, MCPC fifth, AIC sixth and RSC seventh. We can group these IC

procedures into three major groups based on their performances, these being BIC,

HSPC and GCVC as the best group, HQC and MCPC as the second best group, and

AIC and RSC as the worst group.
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4.5.2.2 For /? = 25

When no changepoints are present and for all values of <f>, the MPCS of the

seven IC procedures considered here show an increasing trend as the <j) value

increases from 0 to 1.02, except for BIC, which exhibits a decreasing trend, ceteris

paribus. A closer examination of the results shows that the difference in MPCS

between any pair of IC procedures is no more than 0.1385, 0.0770, 0.0846 and

0.0795 for <p values of 0, 0.7, 1.0 and 1.02, respectively. The difference of the

overall mean of MPCS between the best and worst IC procedure is 0.0949

irrespective of the effect of different (p values. The ranking of IC procedures is the

same as for n - 15. We can group these IC procedures into three major groups based

on their performances, these being BIC and HSPC as the best group, GCVC, HQC

and MCPC as the second best group, and AIC and RSC as the worst group.

4.5.2.3 For n = 50

For models without changepoints and for all values of (f), the MPCS of the

seven IC procedures considered here show the same pattern as for n - 25. A closer

examination of the results shows that the difference in MPCS between any pair of IC

procedures is no more than 0.1277, 0.0821, 0.0811 and 0.0813 for (f> values of 0, 0.7,

1.0 and 1.02, respectively. The di Terence in the overall mean of MPCS between the

best and worst IC procedure is 0.0931 irrespective of the effect of different <p values.

The ranking of IC procedures is the same as for n = 15. We can group these

IC procedures into four major groups based on their performances; these groups are

BIC as the best group, HSPC, GCVC and HQC as the second best group, MCPC and

AIC as the third best group, and RSC as the worst group.
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4.5.2.4 For n = 75

In the presence of no structural change and for all values of <p, the MPCS of

the seven IC procedures considered here show the same pattern as for /7 = 50. A

closer examination of the results shows that the difference in MPCS between any

pair of IC procedures is no more than 0.1328, 0.0870, 0.0861 and 0.0778 for <j>

values of 0, 0.7, 1.0 and 1.02, respectively. The difference of the overall mean of

MPCS between the best and worst IC procedure is 0.0959 irrespective of the effect of

different (p values.

The ranking of IC procedures is the same as for n = 15. We can group these

IC procedures into three major groups based on their performances, these being BIC

and HSPC as the best group, GCVC, HQC and MCPC as the second best group, and

AIC and RSC as the worst group.

4.5.2.5 For n = 100

For models without char.gepoints and for all values of $, the MPCS of the

seven IC procedures considered here show the same pattern as for n = 75. A closer

examination of the results shows that the difference in MPCS between any pair of IC

procedures is no more than 0.1083, 0.0804, 0.0749 and 0.0832 for <f> values of 0, 0.7,

1.0 and 1.02, respectively. The difference of the overall mean of MPCS between the

best and worst IC procedure is 0.0867 irrespective of the effect of different <f> values.

The ranking of IC procedures is the same as for n = 75. We can group these

IC procedures into four major groups based on their performances, these being BIC

as the best group, HSPC, GCVC and HQC as the second best group, MCPC and AIC

as the third best group, and RSC as the worst group.
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4.5.2.6 For 0 = 0

When there is no structural change for an autoregressive exogenous

regressor with coefficient <f> = 0, the performance of different IC procedures in terms

of MPCS are consistently increasing as the sample sizes increase from 15 to 25, 50,

75 and 100. That is, the MPCS generally increases with an increase in sample size.

When the n value is 15, 25, 50, 75 and 100 then the difference in MPCS between

any two IC procedures is no more than 0.1230, 0.1385, 0.1277, 0.1328 and 0.1083

respectively. The difference in the overall mean of the MPCS between the best and

worst IC procedure is 0.1261 irrespective of the effect of different n values.

Overall, BIC is statistically the best choice among the IC procedures for all

n values considered, since it gives the largest MPCS when there is no structural

change. The ranking of the other procedures are HSPC second, GCVC third, HQC

fourth, MCPC fifth, AIC sixth and RSC seventh. We can group these IC procedures

into four major groups based on their performances, these being BIC as the best

group, HSPC GCVC and HQC as the second best group, MCPC and AIC as the third

best group and RSC as the worst group.

4.5.2.7 For ^=0.70

In the presence of no structural change for an autoregressive exogenous

regressor with coefficient <j) = 0.7, the performance of different IC procedures in

terms of MPCS is the same as for ^ = 0 when the sample size increases from 15 to

25, 50, 75 and 100. When the n value is 15, 25, 50, 75 and 100 then the difference

in MPCS between any two IC procedures is no more than 0.0831, 0.0770, 0.0821,

0.0870 and 0.0804, respectively. The difference of the overall mean of MPCS
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between the best and worst IC procedure is 0.0819 irrespective of the effect of

different n values.

The ranking of IC procedures is the same as for <p = 0. We can group these

IC procedures into three major groups based on their performances; these groups are

BIC, HSPC and GCVC as the best group, HQC, MCPC and AIC as the second best

group and RSC as the worst group.

4.5.2.8 For <A=1.0

In the presence of no structural change for an autoregressive exogenous

regressor with coefficient (f> = 1.0, the performance of different IC procedures in

terms of MPCS is the same as for <f> = 0.7 when the sample size increases from 15 to

25, 50, 75 and 100. When the n value is 15, 25, 50, 75 and 100, then the difference

in MPCS between any two IC procedures is no more than 0.0755, 0.0846, 0.0811,

0.0861 and 0.0749, respectively. The difference of the overall mean of MPCS

between the best and worst IC procedure is 0.0804 irrespective of the effect of

different n values.

The ranking of IC procedures is the same as for 8 = 0.1. We can group

these IC procedures into three major groups based on their performances; these

groups are BIC, HSPC and GCVC as the best group, HQC, MCPC and AIC as the

second best group and RSC a? the worst group.

4.5,2.9 For ^=1.02

In the presence of no structural change for an autoregressive exogenous

regressor with coefficient <f> = 1.02, the performance of different IC procedures in

terms of MPCS is the same as for <j> = 1.0 when the sample size increases from 15 to
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25, 50, 75 and 100. When the n value is 15, 25, 50, 15 and 100 then the MPCS

between any two IC procedures is no more than 0.0825, 0.0795, 0.0813, 0.0778 and

0.0832, respectively. The difference of the overall mean of MPCS between the best

and worst IC procedure is 0.0809 irrespective of the effect of different n values.

The ranking of IC procedures is the same as for <p = 1.0 . We can group

these IC procedures into three major groups based on their performances, these being

BIC, HSPC and GCVC as the best group, HQC. MCPC and AIC as the second best

group and RSC as the worst group.

4.5.2.10 Results Based on AMPCS

When we do not have any knowledge of the presence or absence of a

structural change in the data, for small samples (15 and 25) the overall performance

of different IC procedures in terms of AMPCS, HSPC is statistically the best choice

among the IC procedures. The ranking of the other procedures are GCVC second,

BIC third, MCPC fourth, AIC fifth, HQC sixth and RSC seventh. On the other hand,

when the sample size is large (more than 50), the overall performance of different IC

procedures in terms of AMPCS is that BIC is statistically the best choice among the

IC procedures. The ranking of the other procedures are HQC second, AIC third,

HSPC fourth, MCPC fifth, GCVC sixth and RSC seventh.
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4.6 Concluding Remarks

This study investigated the relative performance of IC model selection

procedures when detecting the possible presence of a structural change. It was

limited in scope, which suggests that one has to take care in making too many

generalized conclusions from the results. In particular, because it was based on a

Monte Carlo study, the results are specific to the choice of models and, within that

set of models, the choice of the autoregressive exogenous regressor coefficient <f>,

sample size n etc. used. However, subject to these limitations, there are a number of

conclusions that may be reached. Overall, the important conclusions are:

i. BIC outperformed all existing IC procedures considered when there is

no structural change but its performance is the worst of all procedures

in the presence of structural change.

ii. RSC's performance is the worst of all existing IC procedures in the

presence of no structural change however it outperformed all other IC

procedures considered when there is structural change,

iii. Based on AMPCS, HSPC is the best IC procedures for small samples

and BIC for large samples.

iv. In the presence of no structural chance, the ranking of the relative

performance of the other IC procedures is HSPC > GCVC > HQC >

MCPC > AIC.

v. In the presence of structural change, the ranking of the relative

performance of the other IC procedures is AIC > MCPC > HQC >

GCVC > HSPC.

vi. The AMPCS of all IC procedures decreases as the $ value increases,

ceteris paribus.
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vii. The AMPCS of all IC procedures increases as the sample size

increases, ceteris paribus.

viii. The performance of two groups of IC procedures, that is, BIC, HSPC

and GCVC, and HQC, MCPC and AIC are more or less the same,

ix. None of the IC procedures considered stands out as a clear best

method for modelling involving structural change.

x. As we use more sample observations, we deal with a greater number

of models. As we deal with more models, the average probability of

choosing the true model tends to increase,

xi. Models with changepoints at the beginning or at the end of data points

give comparatively high MPCS.

This chapter demonstrates that model selection procedures can be applied to

detect a possible changepoint in the data. As a policy lesson, this chapter cautions

against the use of one particular IC procedure in order to detect the presence of a

structural change because none of the IC procedures stand out as a clear best method.

Findings showed that BIC outperformed all existing IC procedures considered when

there was no structural change, and RSC performed best overall when a changepoint

was present. When there is no structural change, the performance of AIC is

generally the worst of all procedures. The AMPCS criterion summarizes the quality

of different IC procedures and suggests HSPC is the best IC procedures for small

samples and BIC for large samples. Clearly we ccuJ J use AMPCS to determine an

optimal penalty function that will maximize the probability of correctly selecting the

true model on average. We will discuss this topic in detail in the next chapter.



Chapter 4 Model Selection for Detecting Changepoint 115

Table 4.2 Mean Probabilities of Correct Selection for AIC, BIC, HQC, RSC,
MCPC, HSPC and GCVC for Selecting from 11 Models, <fi = 0, for n =
15L

Model"

1
2

^

4

5

6

7

8

9

10

11

AIC

0.1130

0.7155

0.5750

0.5435

0.6430

0.6195

0.6320

0.6580

0.3825

0.4270

0.4475

BIC

0.2430

0.7090

0.5690

0.5400

0.6390

0.6155

0.6225

0.6505

0.3700

0.4170

0.4260

HQC

0.1115

0.7155

0.5755

0.5435

0.6430

0.6195

0.6320

0.6580

0.3825

0.4270

0.4475

RSC

0.1040

0.7190

0.5755

0.5445

0.6450

0.6260

0.6370

0.6640

0.3890

0.4335

0.4575

MCPC

0.1505

0.7130

0.5745

0.5430

0.6430

O.618O

0.6300

0.6570

0.3805

0.4255

0.4455

HSPC

0.2900

0.7015

0.5665

0.5365

0.6355

0.6110

0.6200

0.6460

0.3640

0.4125

0.4200

GCVC

0.2675

0.7055

0.5655

0.5390

0.6375

0.6140

0.6210

0.6485

0.3675

0.4145

0.4220

Table 4.3 Mean Probabilities of Correct Selection for AIC, BIC, HQC, RSC,
MCPC, HSPC and GCVC for Selecting From 11 Models, <f> = 0.70, for

Model

1
2

3

4

5

6

7

8

9

10

11

AIC

0.1630

0.7170

0.5665

0.5590

0.6445

0.6330

0.6575

0.6830

0.4235

0.4610

0.5220

BIC

0.3020

0.7105

0.5630

0.5560

0.6395

0.6300

0.6510

0.6745

0.4140

0.4530

0.5035

HQC

0.1620

0.7175

0.5665

0.5590

0.6445

0.6330

0.6575

0.6830

0.4235

0.4610

0.5220

RSC

0.1725

0.7220

0.5670

0.5600

0.6480

0.6360

0.6600

0.6885

0.4295

0.4655

0.5320

MCPC

0.1985

0.7160

0.5655

0.5580

0.6435

0.6330

0.6560

0.6815

0.4225

0.4610

0.5195

HSPC

0.3555

0.7080

0.5600

0.5530

0.6370

0.6290

0.6460

0.6725

0.4110

0.4485

0.4965

GCVC

0.3275

0.7095

0.5620

0.5545

0.6395

0.6295

0.6490

0.6745

0.4130

0.4515

0.5010

changepoint at (n - 2) * observation and so on.

Model 1 is the only model without changepoint
2 Model 2 is for changepoint at 3rd observation, Model 3 changepoint at 4th observation, last model
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Table 4.4 Mean Probabilities of Correct Selection for AIC, BIC, HQC, RSC,
MCPC, HSPC and GCVC for Selecting from 11 Models, $ = 1.00, for n
15.

Model

1
2

3

4

5

6

7

8

9

10

11

AIC

0.1695

0.7025

0.5805

0.5625

0.6530

0.5905

0.6370

0.6800

0.4500

0.4740

0.5215

BIC

0.3080

0.6960

0.5755

0.5550

0.6495

0.5855

0.6340

0.6745

0.4440

0.4695

0.5065

HQC

0.1670

0.7025

0.5805

0.5625

0.6530

0.5905

0.6370

0.6800

0.4505

0.4740

0.5225

RSC

0.1076

0.7035

0.5815

0.5635

0.6535

0.5945

0.6395

0.6845

0.4555

0.4780

0.5320

MCPC

0.2080

0.7005

0.5800

0.5605

0.6520

0.5890

0.6365

0.6790

0.4490

0.4720

0.5185

HSPC

0.3565

0.6875

0.5740

0.5545

0.6475

0.5835

0.6305

0.6715

0.4405

0.4655

0.4995

GCVC

0.3310

0.6915

0.5750

0.5550

0.6490

0.5845

0.6315

0.673 C

0.4415

0.4690

0.5020

Table 4.5 Mean Probabilities of Correct Selection for AIC, BIC, HQC, RSC,
MCPC, HSPC and GCVC for Selecting From 11 Models, <j> = 1.20, for
/? = 15.

Model

1

2

3

4

5

6

7

8

9

10

11

AIC

0.2050

0.7310

0.5780

0.5705

0.6585

0.6095

0.6415

0.6865

0.4210

0.4735

0.5265

BIC

0.3440

0.7235

0.5750

0.5650

0.6540

0.6065

0.6345

0.6810

0.4140

0.4680

0.5110

HQC

0.2025

0.7315

0.5780

0.5705

0.6585

0.6095

0.6415

0.6865

0.4215

0.4735

0.5265

RSC

0.1005

0.7330

0.5800

0.5715

0.6600

0.6110

0.6440

0.6890

0.4275

0.4780

0.5385

MCPC

0.2405

0.7295

0.5770

0.5690

0.6580

0.6095

0.6385

0.6850

0.4195

0.4725

0.5225

HSPC

0.3950

0.7185

0.5730

0.5640

0.6530

0.6045

0.6320

0.6760

0.4080

0.4630

0.5030

GCVC

0.3685

0.7205

0.5740

0.5640

0.6540

0.6045

0.6330

0.6785

0.4105

0.4670

0.5080
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Table 4.6 Average Mean Probabilities of Correct Selection for AIC, BIC, HQC,
RSC, MCPC, HSPC and GCVC for Different <f> when n = 15.

0

0.70

1.0

1.02

Average

Rank

Stdev

Average

Rank

Stdev

Average

Rank

Average

Rank

Stdev

Average

Rank

Stdev

Average

Rank

Average

Rank

Stdev

Average

Rank

Stdev

Average

Rank

Average

Rank
Stdev

Average

Rank

Stdev

Average
Rank

AIC

0.5547

5
0.1477

0.5897

3
0.0964

0.2050

6

0.5475

6
0.1491

0.5853

3
0.0850

0.1630

6

0.5475

6
0.1491

0.5853

3
0.0850

0.1695

6

0.5233

6
0.1723

0.5644

3
0.1113

0.1130

6

BIC

With

0.5615

0.1170

0.5833

5
0.0972

0.3440

With

0.5544
*>

0.1156

0.5790

6
0.0862

0.3020

3
With

0.5544

3
0.1156

0.5790

6
0.0862

0.3080

3
With

0.5274

3
0.1440

0.5559

6
0.1147

0.2430

3

HQC

and without
0.5545

6
0.1483

RSC MCPC

structural change
0.5485 0.5565

7 4

0.1735 0.1392

With structural change

0.5898
2

0.0964

0.5933 0.5881

1 4

0.0945 0.0965

Without structural change

0.2025

6
and without

0.5473

6
0.1497

0.1005 0.2405

7 4

structural change

0.5420 0.5495

7 4

0.1738 0.1393

With structural change

0.5853
2

0.0850

0.5886 0.5837

1 4

0.0837 0.0854

Without structural change

0.1620

6
and without

0.5473

6
0.1497

0.0725 0.1985

7 4

structural change

0.5420 0.5495

7 4

0.1738 0.1393

With structural change

0.5853

2
0.0850

0.5886 0.5837

1 4

0.0837 0.0854

Without structural change

0.1670

6
and without

0.5232

6
0.1726

0.0760 0.2080

7 4

structural change

0.5205 0.5255

7 4

0.1905 0.1632

With structural change

0.5644

2
0.1113

0.5686 0.5630

1 4

0.1097 0.1115

Without structural change

0.1115

6
0.0395 0.1505

7 4

HSPC

0.5627

1
0.1084

0.5795

7
0.0981

0.3950

1

0.5555

1
0.1050

0.5755

7
0.0860

0.3555

1

0.5555

1
0.1050

0.5755

7
0.0860

0.3565

1

0.5277

1
0.1346

0.5515

7
0.1150

0.2900

1

GCVC

0.5620

2
0.1125

0.5814

6
0.0973

0.3685

2

0.5548

2
0.1104

0.5772

6
0.0861

0.3275
2

0.5548

2
0.1104

0.5772

6
0.0861

0.3310
2

0.5277

1
0.1392

0.5537

6
0.1151

0.2675

2
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Table 4.7 Mean Probabilities <
MCPC, HSPC
25.

Model AIC
1
2

3
4

5
6
7
8
9
10
11

12
13
14

15
16
17
18

19
20
21

0.1270
0.3465
0.3735
0.6255
0.7030
0.6315
0.5265
0.5560

0.3325
0.3565
0.6460
0.4835
0.4885
0.7420
0.5330
0.5185
0.7100

0.5170
0.2695
0.2845
0.4410

3f Correct Selection for AIC, BIC, HQC, RSC,
and GCVC for Selecting From 21 Models, (/> = 0,

BIC
0.3655
0.3195
0.3535
0.6095
0.6950
0.6265
0.5245
0.5535
0.3310
0.3550
0.6440

0.4825
0.4870
0.7395
0.5295
0.5150
0.7010
0.5105
0.2630
0.2810
0.4135

HQC
0.1915
0.3410
0.3695
0.6225
0.7015
0.6300
0.5265
0.5555
0.3325
0.3555
0.6460
0.4830
0.4880
0.7420
0.5325
0.5180
0.7085
0.5155
0.2685
0.2835
0.4350

RSC
0.2028
0.3520

0.3815
0.6305
0.7060
0.6330
0.5270
0.5580

0.3325
0.3570
0.6475
0.4835
0.4890
0.7440
0.5330
0.5200
0.7115
0.5205
0.2730
0.2855
0.4500

MCPC
0.1435
0.3450
0.3720
0.6255
0.7020
0.6315
0.5265
0.5560
0.3325
0.3560
0.6460
0.4830
0.4885
0.7420
0.5330
0.5185
0.7100
0.5170

0.2695
0.2845
0.4395

HSPC
0.2205
0.3375
0.3665
0.6195
0.7000
0.6290
0.5260
0.5555
0.3320
0.3550
0.6460
0.4830
0.4880
0.7420
0.5320
0.5170
0.7080
0.5155

0.2675
0.2830
0.4335

f o r A7-

GCVC
0.2090
0.3390

0.3675
0.6210
0.7000
0.6290
0.5265
0.5555
0.3320
0.3550
0.6460
0.4830
0.4880
0.7420
0.5320
0.5170
0.7080
0.5155

0.2675
0.2830
0.4340

Table 4.8 Mean Probabilities of Correct Selection for AIC, BIC, HQC, RSC,
MCPC, HSPC and GCVC for Selecting From 21 Models, <p = 0.70, for

1 Model

1 1
I 2
t 3
I 4
1 5
I 6
; 7

8

! 9
> 10

! n
1 12
I 13

1 14
I 15

16
17

i 18
19

; 20

I 21

AIC
0.1255
0.3490
0.3555
0.6050
0.6990
0.6220
0.5470
0.5665

0.3345
0.3525
0.6505
0.4750
0.4885
0.7350
0.5160
0.4925
0.6890
0.5125
0.2680
0.2835
0.4445

BIC
0.3655
0.3260
0.3330
0.5915
0.6940
0.6175
0.5450

0.5655
0.3325
0.3515
0.6485
0.4740
0.4860
0.7315
0.5120
0.4905
0.6795
0.5050
0.2615
0.2775
0.4170

HQC
0.1930
0.3420
0.3535
0.6015
0.6985
0.6215
0.5465
0.5655
0.3340
0.3520
0.6500
0.4750
0.4885
0.7340
0.5160
0.4920
0.6875
0.5110
0.2670
0.2825
0.4400

RSC
0.1255
0.3550
0.3615
0.6140

0.7035
0.6245
0.5475
0.5685
0.3350
0.3535
0.6520
0.4750
0.4890
0.7360
0.5170
0.4930
0.6910
0.5150
0.2690
0.2840
0.4525

MCPC

0.1365
0.3480
0.3555
0.6045
0.6990
0.6220
0.5470
0.5660

0.3345
0.3525
0.6505
0.4750

0.4885
0.7340
0.5160
0.4925
0.6885
0.5120

0.2675
0.2835
0.4440

HSPC

0.2260
0.3385
0.3505

0.6005
0.6980
0.6210
0.5460

0.5655
0.3340

0.3515
0.6500
0.4750
0.4880
0.7340
0.5155
0.4915
0.6860
0.5011

0.2655
0.2810
0.4355

GCVC
0.2130
0.3400
0.3515
0.6010
0.6985
0.6210

0.5465
0.5655
0.3340
0.3520
0.6500

0.4750
0.4885
0.7340
0.5155
0.4920
0.6865
0.5105
0.2660
0.2815
0.4380
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Table 4.9 Mean Probabilities of Correct Selection for AIC, BIC, HQC, RSC,
MCPC, HSPC and GCVC for Selecting From 21 Models, 0= 1.0 for n
25.

Model

1
2
*>

4

5
6
7
8
9
10

11
12
13
14

15
16
17
18
19
20
21

AIC
0.1299
0.3500
0.3775

0.6195
0.7105
0.6290
0.5555
0.5640
0.3310
0.3520
0.6465
0.4835
0.5005
0.7465
0.5220
0.5175
0.6995
0.4980
0.2670
0.2745
0.4235

BIC
0.3065
0.3345
0.3560
0.6055
0.7040
0.6255
0.5530
0.5635
0.3310
0.3515
0.6440

0.4825
0.5000
0.7420
0.5190
0.5135
0.6940
0.4920
0.2590
0.2680
0.3980

HQC

0.1420
0.3575
0.3735
0.6170
0.7095
0.6285
0.5550
0.5635
0.3310
0.3520
0.6455
0.4835
0.5000
0.7465
0.5220
0.5170
0.6985
0.4970
0.2650
0.2735
0.4175

RSC

0.1019
0.3530
0.3810

0.6240
0.7135
0.6305
0.5560
0.5645
0.3325
0.3530
0.6470
0.4840
0.5015
0.7480
0.5230
0.5175
0.7005
0.5020

0.2695
0.2760
0.4335

MCPC

0.1060
0.3495
0.3775
0.6190
0.7100
0.6290

0.5555
0.5640
0.3310
0.3520
0.6460
0.4835
0.5005
0.7465
0.5220
0.5170
0.6990
0.4980

0.2665
0.2745
0.4225

HSPC

0.1725
0.3455
0.3710

0.6155
0.7090
0.6275
0.5545
0.5635
0.3310
0.3515
0.6455
0.4835
0.5000
0.7465
0.5220
0.5170
0.6980

0.4965
0.2630

0.2725
0.4155

GCVC

0.1615
0.3465
0.3715

0.6155
0.7090
0.6280

0.5545
0.5635
0.3310
0.3515
0.6455
0.4835
0.5000
0.7465
0.5220

0.5170
0.6980
0.4970

0.2645
0.2735
0.4160

Table 4.10 Mean Probabilities of Correct Selection for AIC, BIC, HQC, RSC,
MCPC, HSPC and GCVC for Selecting From 21 Models, <f> = 1.02 for n
25.

1 Model
i i

2

X 3
\ 4
| 5
1 6
: 7
1 8
i 9

l ii
i 12

13

1 14
I l5
1 161 I7
1 18
1 19
1 20

1 21

AIC
0.2765
0.3550
0.3695
0.6160
0.7100
0.6295
0.5465
0.5640
0.3300

0.3555
0.6520
0.4800

0.4995
0.7440
0.5360
0.5275
0.7070

0.5015
0.2610
0.2615
0.3770

BIC
0.3289
0.3420
0.3560
0.5980
0.7050
0.6260
0.5450
0.5605
0.3290
0.3530
0.6485
0.4780
0.4965
0.7340
0.5325
0.5230
0.7000
0.4875
0.2520
0.2570
0.3510

HQC
0.3131
0.3520
0.3670
0.6135
0.7095
0.6280
0.5465
0.5640
0.3295
0.3555
0.6520
0.4800
0.4990

0.7435
0.5360
0.5270
0.7060
0.4990
0.2580
0.2605
0.3700

RSC

0.3016
0.3585
0.3735
0.6180
0.7110
0.6295
0.5470
0.5640

0.3305
0.3565
0.6525
0.4800

0.4995
0.7455
0.5385
0.5285
0.7085
0.5045
0.2625
0.2620
0.3850

MCPC

0.3186
0.3540
0.3690
0.6160
0.7100
0.6295
0.5450
0.5640
0.3300
0.3555
0.6520
0.4800
0.4990
0.7440
0.5360
0.5270
0.7070
0.5015
0.2610
0.2610
0.3770

HSPC

0.3155
0.3505
0.3640
0.6115
0.7080
0.6270
0.5460
0.5640
0.3295
0.3550
0.6510
0.4795
0.4980
0.7430
0.5355
0.5265
0.7040
0.4965
0.2575
0.2595
0.3675

GCVC

0.3147
0.3510
0.3660
0.6125
0.7090
0.6275
0.5460
0.5640
0.3295
0.3555
0.6515
0.4800

0.4990
0.7430
0.5355
0.5265
0.7055
0.4970
0.2575
0.2600
0.3680
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Table 4.11 Average Mean Probabilities of Correct Selection for AIC, BIC,
HQC, RSC, MCPC, HSPC and GCVC for Different <f> when n = 25.

<fi
0

0.70

1.0

1.02

Average

Rank
Stdev

Average
Rank
Stdev

Average
Rank

Average

Rank
Stdev

Average
Rank
Stdev

Average
Rank

Average
Rank
Stdev

Average
Rank
Stdev

Average

Rank

Average
Rank
Stdev

Average
Rank
Stdev

Average
Rank

AIC

0.4863
6

0.1629

0.5043
2

0.1442

0.1270
6

0.4815
6

0.1607

0.4993
2

0.1421

0.1255
6

0.4799
7

0.1784

0.5034
2

0.1459

0.0099

7

0.4809
6

0.1728

0.5012
2

0.1496

0.0765
6

BIC

With
0.4905

1
0.1451

0.4967

7
0.1459

0.3655
1

With
0.4860

1
0.1433

0.4920
7

0.1443

0.3655
1

With
0.4878

I

0.1498

0.4968
7

0.1476

0.3065
1
With

0.4840
1

0.1534

0.4937
7

0.1506

0.2885
1

HQC

and Without
0.4879

4
0.1565

RSC

structural
0.4840

7
0.1748

MCPC

change
0.4868

5
0.1612

With structural change

0.5028
4

0.1446

0.5068
I

0.1438

0.5039

3
0.1444

Without structural change
0.1915

4
0.0280

7
and without structural

0.4834
4

0.1540

0.4791
7

0.1733

0.1435
5

change
0.4818

5
0.1594

With structural change
0.4979

4
0.1424

0.5018
1

0.1423

0.4991

3
0.1420

Without structural change

0.1930
4

i and without

0.4855
4

0.1624

0.0255
7

structural
0.4824

6
0.1772

0.1365
5

change
0.4843

5
0.1665

With structural change

0.5027
4

0.1457

0.5055
1

0.1455

0.5032

3
0.1458

Without structural change
0.1420

4
i and without

0.4823
4

0.1671

0.0190
6

structural
0.4796

7
0.1801

0.1060

5
change

0.4812

5
0.1717

With structural change
0.4998

4
0.1503

0.5028
1

0.1492

0.5009
3

0.1497
Without structural change

0.1310
4

0.0160
7

0.0860
5

HSPC

0.4884
2

0.1540

0.5018
6

0.1449

0.2205
2

0.4836

3
0.1513

0.4964

6
0.1429

0.2260
2

0.4858
2

0.1599

0.5015
6

0.1467

0.1725
2

0.4823
3

0.1645

0.4987
6

0.1503

0.1550
2

GCVC

0.4881

3
0.1549

0.5021
5

0.1448

0.2090
3

0.4838
2

0.1524

0.4974

5
0.1428

0.2130

3

0.4855
3

0.1608

0.5017
5

0.1464

0.1615
3

0.4825
2

0.16C5

0.4992
5

0.1503

0.1470
3
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Table 4.12 Mean Probabilities of Correct Selection for AIC, BIC, HQC, RSC,
MCPC, HSPC and GCVC for Selecting From 46 Models, <j> = 0 for n =
50.

Model
I
2

3
4
5
6

7
8
9
10
11
12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30
31

32

33
34
35
36
37
38
39
40
41
42
43
44
45
46

AIC
0.1550
0.8055
0.5415
0.5535
0.6475
0.4625
0.2640
0.2745
0.4675
0.4155
0.5105
0.7315
0.6980
0.6940
0.7500
0.7430
0.7990
0.7400
0.7380
0.7185
0.6960
0.6840
0.7320
0.8470
0.8510
0.5385
0.5140
0.8190
0.6405
0.6130
0.7025
0.7855
0.7385
0.7730
0.8295
0.8290
0.7330
0.5130
0.5080
0.6450
0.5230
0.5175
0.8180
0.8330

0.8355
0.8340

BIC
0.5270
0.7850
0.5395
0.5485
0.6470

0.4605
0.2630
0.2735
0.4670
0.4155
0.5095
0.7290
0.6955
0.6925
0.7470
0.7410
0.7960
0.7385
0.7360
0.7170

0.6955
0.6830
0.7310
0.8440
0.8480
0.5370
0.5110
0.8170
0.6385
0.6125
0.7015

0.7850
0.7385
0.7720

0.8265
0.8250
0.7315
0.5125
0.5070
0.6445
0.5210
0.5165
0.8140
0.8285
0.8305
0.8265

HQC

0.3080
0.8015
0.5405
0.5530
0.6475
0.4615

0.2635
0.2745
0.4675
0.4155
0.5105
0.7310

0.6955
0.6935
0.7485
0.7430
0.7990
0.7400
0.7375
0.7185
0.6960
0.6835
0.7315
0.8460
0.8505
0.5385
0.5135
0.8190
0.6400
0.6130

0.7015
0.7855

0.7385
0.7725
0.8280
0.8280

0.7325
0.5130
0.5080

0.6445
0.5225
0.5175
0.8190
0.8380

0.8345
0.8345

RSC

0.2215
0.8100
0.5425
0.5540
0.6485
0.4630

0.2640
0.2745
0.4680
0.4155
0.5105
0.7330
0.6980
0.6940
0.7505
0.7430
0.7995
0.7405
0.7380
0.7185
0.6960
0.6840
0.7330
0.8475
0.8510
0.5390

0.5145
0.8195
0.6405
0.6130

0.7025

0.7855
0.7385
0.7730
0.8300
0.8305
0.7330
0.5130
0.5080
0.6450
0.5240
0.5180

0.8190
0.8350
0.8370
0.8355

MCPC

0.1585
0.8055
0.5415
0.5535
0.6475
0.4625
0.2640

0.2745

0.4675
0.4155
0.5105
0.7315
0.6975
0.6940
0.7495
0.7430
0.7990
0.7400
0.7380
0.7185
0.6960
0.6840
0.7320
0.8470
0.8510
0.5385
0.5140
0.8190
0.6405

0.6130
0.7025

0.7855
0.7385
0.7730
0.8295
0.8290
0.7330
0.5130
0.5080
0.6450
0.5230
0.5175
0.8180
0.8330
0.8345
0.8245

HSPC

0.2040
0.8025
0.5415
0.5535
0.6475
0.4620
0.2640

0.2745
0.4675
0.4155
0.5105
0.7315
0.6970
0.6940
0.7495
0.7430
0.7990
0.7400
0.7380

0.7185
0.6960
0.6835
0.7320
0.8470
0.8510
0.5385
0.5135
0.8190
0.6405
0.6130
0.7025

0.7855
0.7385
0.7730
0.8290
0.8290
0.7325
0.5130
0.5080
0.6450
0.5230
0.5175
0.8140

0.8225
0.8350
0.8340

GCVC

0.1980
0.8035
0.5415
0.5535
0.6475
0.4625
0.2640

0.2745
0.4675
0.4155
0.5105
0.7315
0.6970
0.6940
0.7495
0.7430
0.7990
0.7400
0.7380

0.7185
0.6960
0.6835
0.7320
0.8470
0.8510
0.5385
0.5135
0.8190
0.6405
0.6130
0.7025
0.7855

0.7385
0.7730
0.8290
0.8290
0.7325
0.5130
0.5080
0.6450
0.5230

0.5175
0.8170

0.8215
0.8350
0.8340
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Table 4.13 Mean Probabilities of Correct Selection for AIC, BIC, HOC, RSC,
MCPC, HSPC and GCVC for Selecting From 46 Models, <j> - 0.7 for n-
50.

Model
1
2

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

AIC
0.1550
0.9055
0.5415
0.5535
0.6475
0.4625
0.2640
0.2745
0.4675
0.4155
0.5105
0.7315
0.6980
0.6940
0.7500
0.7430
0.7990
0.7400
0.7380
0.7185
0.6960
0.6840
0.7320
0.8470

0.8510
0.5385
0.5140
0.8190

0.6405
0.6130
0.7025
0.7855
0.7385
0.7730

0.8295
0.8290
0.7330
0.5130
0.5080
0.6450
0.5230
0.5175
0.8180
0.8130
0.8155
0.8145

BIC
0.5270
0.7850
0.5395
0.5485
0.6470

0.4605
0.2630

0.2735
0.4670
0.4150

0.5095
0.7290
0.6955
0.6925
0.7470
0.7410
0.7960
0.7385
0.7360
0.7170
0.6955
0.6830
0.7310
0.8440
0.8480
0.5370
0.5110
0.8170
0.6385
0.6125
0.7015
0.7850

0.7385
0.7720
0.8265
0.8250

0.7315
0.5125
0.5070
0.6445
0.5210
0.5165
0.8140
0.8285
0.8305
0.8265

HQC

0.3080
0.8015
0.5405
0.5530
0.6475
0.4615

0.2635
0.2745

0.4675
0.4155

0.5105
0.7310

0.6965
0.6935
0.7485
0.7430
0.7990
0.7400
0.7375
0.7185
0.6960
0.6835
0.7315
0.8460
0.8505
0.5385
0.5135
0.8190
0.6400
0.6130
0.7015
0.7855
0.7385
0.7725
0.8280
0.8280
0.7325
0.5130
0.5080
0.6445
0.5225
0.5175
0.8180
0.8310
0.8345
0.8325

RSC
0.1215
0.8100
0.5425
0.5540
0.6485

0.4630
0.2640
0.2745
0.4680

0.4155
0.5105
0.7330
0.6980
0.6940
0.7505
0.7430
0.7995
0.7405
0.7380

0.7185
0.6960
0.6840
0.7330

0.8475
0.8510
0.5390
0.5140
0.8195
0.6405
0.6130
0.7085
0.7895
0.7385
0.7730
0.8300
0.8305
0.7330
0.5180
0.5080
0.6450
0.5240
0.5180
0.8190
0.8390
0.8395
0.8355

MCPC

0.1585
0.8055
0.5415
0.5535

0.6475
0.4625
0.2640

0.2745
0.4675
0.4155
0.5105
0.7315
0.6975
0.6940
0.7495
0.7430
0.7990
0.7400
0.7380
0.7185
0.6960
0.6840
0.7320
0.8470
0.8510
0.5385
0.5140
0.8190
0.6405
0.6130
0.7025
0.7855
0.7385
0.7730
0.8295
0.8290
0.7330
0.5130
0.5080
0.6450
0.5230
0.5175
0.8180
0.8330
0.8355
0.8345

HSPC

0.2040
0.8250
0.5415
0.5535

0.6475
0.4620
0.2640
0.2745
0.4675
0.4155

0.5105
0.7315
0.6970
0.6940
0.7495
0.7430
0.7990
0.7400
0.7380
0.7185
0.6960
0.6835
0.7320

0.8470
0.8510

0.5385
0.5135
0.8190
0.6405
0.6130
0.7025
0.7855

0.7385
0.7730
0.8290

0.8290
0.7325
0.5130
0.5080
0.6450
0.5230
0.5175
0.8180

0.8325
0.8350
0.8340

GCVC

0.1980
0.8035
0.5415
0 5535
0.6475
0.4625
0.2640

0.2745
0.4675
0.4155
0.5105
0.7315
0.6970

0.6940

0.7495
0.7430
0.7990
0.7400
0.7380
0.7185
0.6960
0.6835
0.7320
0.8470
0.8510
0.5385
0.5135
0.8190

0.6405
0.6130
0.7025
0.7855
0.7385
0.7730

0.8290
0.8290

0.7325
0.5130
0.5080
0.6450
0.5230
0.5175
0.8180
0.8325
0.8350
0.8340
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Table 4.14 Mean Probabilities of Correct Selection for AIC, BIC, HQC, RSC,
MCPC, HSPC and GCVC for Selecting From 46 Models, (f> = 1.0 for n =
50.

Model

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
2U
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

AIC
0.1815
0.8065
0.5420
0.5480
0.6415
0.4665
0.2630
0.2730
0.4665
0.4160
0.4910
0.7195
0.6940
0.6905
0.7440
0.7430
0.7890

0.7345
0.7330
0.7080
0.6940
0.6745
0.7150
0.8400
0.8515
0.5235
0.5070
0.8135
0.6295
0.5990
0.6835
0.7775
0.7345
0.7790
0.8255
0.8220
0.7395
0.5165
0.5105
0.6510
0.5300

0.5100
0.8125
0.8255
0.8325
0.8355

BIC
0.5580
0.7870
0.5385
0.5455
0.6415
0.4645
0.2625
0.2720
0.4665
0.4155
0.4895
0.7190
0.6930
0.6905
0.7425
0.7380
0.7885
0.7315
0.7315
0.7070

0.6935
0.6735
0.7145
0.8395
0.8505
0.5225
0.5055
0.8125
0.6285
0.5980
0.6835
0.7770
0.7345
0.7780
0.8240
0.8205
0.7375
0.5160
0.5100
0.6505

0.5280
0.5095
0.8075
0.8225
0.8255
0.8280

HQC

0.3430
0.8025
0.5410
0.5470
0.6415
0.4655
0.2630
0.2730
0.4660
0.4160
0.4905
0.7195
0.6935
0.6905
0.7435
0.7400
0.7880
0.7330
0.7325
0.7080
0.6940
0.6745
0.7150
0.8395
0.8515
0.5235
0.5065
0.8130
0.6295
0.5990

0.6835
0.7775
0.7345
0.7785
0.8255
0.8215
0.7385
0.5160
0.5105
0.6510
0.5295
0.5100
0.8120
0.8240
0.8310
0.8335

RSC
0.1445
0.8095
0.5435
0.5490
0.6420
0.4670
0.2635
0.2730

0.4670
0.4165
0.4910
0.7200
0.6940
0.6910
0.7445
0.7400

0.7895
0.7350
0.7330
0.7080
0.6940
0.6750
0.7150
0.8400
0.8515
0.5235
O.5070
0.8135
0.6295
0.5990
0.6840
0.7775
0.7345
0.779o(

0.8260
0.8225
0.7400
0.5160
0.5115
0.6515
0.5300

0.5105
0.8125
0.8265
0.8335
0.8375

MCPC

0.1835
0.8065
0.5420
0.5480

0.6415
0.4665
0.2630
0.2730
0.4665
0.4160
0.4910
0.7195
0.6940
0.6905
0.7440
0.7400
0.7890
0.7345
0.7330
0.7080
0.6940

0.6745
0.7150
0.8400
0.8515
0.5235
0.5070
0.8135
0.6295
0.5990
0.6835
0.7775
0.7345
0.7790

0.8255
0.8220

0.7395
0.5160
0.5105
0.6510
0.5300
0.5100
0.8125
0.8255
0.8325
0.8355

HSPC

0.2340
0.8045
0.5415
0.5480

0.6415
0.4665
0.2630
0.2730
0.4665
0.4160
0.4910
0.7195
0.6940
0.6905
0.7440
0.7400
0.7885
0.7340
0.7325
0.7080
0.6940
0.6745
0.7150
0.8400
0.8515
0.5235
0.5070
0.8135
0.6295
0.5990
0.6835
0.7775
0.7345
0.7785
0.8255
0.8220
0.7395
0.5160

0.5105
0.6510
0.5300

0.5100
0.8125
0.8255
0.8310
0.8345

GCVC

0.2275
0.8045
0.5415
0.5480
0.6415
0.4665
0.2630
0.2730

0.4665
0.4160

0.4910
0.7195
0.6940
0.6905
0.7440
0.7400
0.7885
0.7340
0.7330
0.7080
0.6940
0.6745
0.7150

0.8400
0.8515
0.5235
0.5070
0.8135
0.6295
0.5990

0.6835
0.7775
0.7345
0.7785
0.8255
0.822C
0.7395
0.5160
0.5105
0.6510
0.5300

0.5100
0.8125
0.8255
0.8310

0.8345
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Table 4.15 Mean Probabilities of Correct Selection for AIC, BIC, HQC, RSC,
MCPC, HSPC and GCVC for Selecting From 46 Models, <j> = 1.02 for n
50.

Model

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

AIC
0.3086

0.8015

0.5390

0.5500

0.6480

0.4625

0.2640

0.2745

0.4780

0.4190

0.5120

0.7270

0.6955

0.6970

0.7480

0.7395

0.7935

0.7385

0.7405

0.7340

0.6940

0.6905

0.7350

0.8455

0.8490

0.5385

0.5100

0.8180

0.6320

0.6015

0.6990

0.7855

0.7365

0.7760

0.8230

0.8220

0.7250

0.5055

0.4960

0.6420

0.5315

0.5065

0.8085

0.8130

0.8125

0.7955

BIC
0.436O
0.7870

0.5380

0.5485

0.6475

0.4615

0.2640

0.2740

0.4770

0.4180

0.5120

0.7260

0.6945

0.6960

0.7475

0.7385

0.7920

0.7395

0.7400

0.7320

0.6940

0.6895

0.7350

0.8435

0.8455

0.5385

0.5080

0.8145

0.6310

0.6005

0.6960

0.7830

0.7345

0.7740

0.8195

0.8160

0.7190

0.5015

0.4945

0.6385

0.5280

0.5030

0.8015

0.8000

0.8000

0.7860

HQC

0.3208
0.7980

0.5380

0.5380

0.6480

0.4620

0.2640

0.2740

0.4780

0.4190

0.5120

0.7270

0.6955

0.6970

0.7475

0.7395

0.7935

0.7400

0.7405

0.7340

0.6940

0.6900

0.7350

0.8455

0.8485

0.5385

0.5095

0.8170

0.6315

0.6015

0.6985

0.7845

0.7355

0.7745

0.8230

0.8200

0.7225

0.5040

0.4960

0.6405

0.5300

0.5050

0.8065

0.8100

0.8090

0.7935

RSC
0.3072
O.803O

0.5390

0.5390

0.6480

0.4625

0.2640

0.2745

0.4780

0.4195

0.5120

0.7275

0.6955

0.6970

0.7480

0.7395

0.7935

0.7400

0.7405

0.7345
0.6940

0.6910

0.7355

0.8465

0.8490

0.5385

0.5100

0.8195

0.6325

0.6015

0.6990

0.7855

0.7370

0.7765

0.8245

0.8225

0.7265

0.5060

0.4960

0.6420

0.5330

0.5075

0.8105

0.8145

0.8150
0.7970

MCPC

0.3088
0.8015

0.5390

0.5390

0.6480

0.4625

0.2640

0.2745
0.4780

0.4190

0.5120

0.7270

0.6955

0.6970

0.7480

0.7395

0.7935

0.7400

0.7405

0.7340

0.6940

0.6905

0.7350

0.8455

0.8490

0.5385

0.5095

0.8180

0.6320

0.6015

0.6990

0.7855

0.7365

0.7760

0.8230

0.8220

0.7250

0.5055

0.4960

0.6420

0.5315

0.5065

0.8085

0.8130

0.8125

0.7955

HSPC

0.3175
0.8010

0.5390

0.5390

0.6480

0.4625

0.2640

0.2740

0.4780

0.4190

0.5120

0.7270

0.6955

0.6970

0.7475

0.7395

0.7935

0.7395

0.7405

0.7340

0.6940

0.6905
0.7350

0.8455

0.8485

0.5385

0.5095

0.8175

0.6320

0.6015

0,6990

0.7855

0.7365

0.7760

0.8230

0.8210

0.7250

0.5050

0.4960

0.6420

0.5310

0.5055

0.8085

0.8120

0.8115

0.7950

GCVC

0.3113
0.8010

0.5390

0.5390

0.6480

0.4625

0.2640

0.2745

0.4780

0.4190

0.5120

0.7270

0.6955

0.6970

0.7475

0.7395

0.7935

0.7395

0.7405

0.7340

0.6940

0.6905

0.7350

0.8455

0.8485

0.5385

0.5095

0.8175

0.6320

0.6015

0.6990

0.7855

0.7365

0.7760

0.8230

0.8210

0.7250

0.5050

0.4960

0.6420

0.5310

0.5055

0.8085

0.8120

0.8120

0.7950
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Table 4.16 Average Mean Probabilities of Correct Selection for AIC, BIC,
HQC, RSu, MCPC, HSPC and GCVC for Different (f> when n = 50.

AIC BIC HQC RSC MCPC HSPC GCVC

0

0.70

1.0

1.02

With and without structural change
Average 0.6535

Rank 6
Stdev 0.1675

Average 0.6646
Rank 2
Stdev 0.1514

Average 0.1550
Rank 6

Average 0.6557
Rank 3
Stdev 0.1702

Average 0.6668

Rank 2
Stdev 0.1543

Average 0.1550
Rank 6

Average 0.6497

Rank 5
Stdev 0.1649

Average 0.6601
Rank 2
Stdev 0.1507

Average 0.1815
Rank 6

Average 0.6487
Rank 5
Stdev 0.1701

Average 0.6612
Rank 2
Stdev 0.1491

Average 0.0860
Rank 6

0.6593
1

0.1500

0.6622
7

0.1504

0.5270
1
With

0.6593
1

0.1500

0.6622

7
0.1504

0.5270
1
Wit!

0.6559
1

0.1489

0.6581
7

0.1498

0.5580
1
Wit!

0.6536
1

0.1496

0.6584
7

0.1476

0.4360
1

0.6562
2

0.1583

0.6511
4

0.1775

With structural change

0.6639
6

0.1511

0.6651
1

0.1517
Without structural change

0.3080
2

i and without

0.6563
2

0.1584

0.0215
7

0.6536
5

0.1673

0.6646
3

0.1514

0.1585
5

structural change
0.6511

7
0.1775

With structural change
0.6641

6
0.1512

0.6651
1

0.1517
Without structural change

0.3080
2

l and without

0.6526
2

0.1559

0.0215
7

0.6536
5

0.1673

0.6646

3
0.1514

0.1585
5

structural change
0.6466

7
0.1761

With structural change

0.6595
6

0.1505

0.6604
1

0.1508
Without structural change

0.3430

2
l and without

0.6504

2
0.1617

0.0245
7

0.6496

5
0.1647

0.6600

3
0.1507

0.1835

5
structural change

0.6473
7

0.1766
With structural change

0.6602
6

0.1490

0.6615
1

0.1496
Without structural change

0.2080
2

0.0070
7

0.6485
5

0.1701

0.6610
3

0.1493

0.0875
5

0.6544
3

0.1643

0.6644

5
0.1513

0.2040

3

0.6549

4
0.164S

0.6649

5
0.1518

0.2040

0.6506

3
0.1616

0.6598

5
0.1506

0.234O
3

0.6490
3

0.1679

0.6608
5

0.1492

0.1175
3

0.6543
4

0.1647

0.6645
5

0.1513

0.1980
4

0.6543
5

0.1647

0.6645
5

0.1513

0.1980
4

0.6504
4

0.1619

0.6598
5

0.1506

0.2275
4

0.6489
4

0.1682

0.6608
5

0.1492

0.1130
4
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Table 4.17 Mean Probabilities of Correct Section for AIC, BIC, HQC, RSC,
MCPC, HSPC and GCVC for Selecting From 71 Models, <f> - 0 for n =
75.

Model

1
2

3

4

5
6

7

8

9

10

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42
43

44

45

AIC
0.1190

0.8365

0.6510

0.6650

0.8955

0.4945

0.4875

0.8850

0.8970

0.7160

0 -»o70

0.4995

0.8825

0.8330

0.8295

0.8755

0.8780

0.8865

0.6195

0.6290

0.8850

0.6750

0.6125

0.7160

0.8810

0.8680

0.8560

0.5990

0.5735

0.7875

0.8830

0.8935

0.8175

0.8045

0.8745

0.8113

0.6635

0.5235

0.5915

0.&665

0.8: 75

0.90̂ .0

0.8130

0 7735

0.8270

BIC
0.5735
0.8395

0.6475

0.6635

0.8940

0.4945

0.4860

0.8825

0.8960

0.7160

0.4665

0.4995

0.8820

0.8330

0.8285

0.8750

0.8770

0.8860

0.6185

0.6280

0.8845

0.6750

0.6125

0.7160

0.8810

0.8675

0.8560

0.5990

0.5735

0.7870

0.8830

0.8915

0.8175

0.8045

".8745

0.8110

0.6635

0.5235

0.5915

0.8660

0.8570

0.9045

0.8: 0

0.7735

0.8270

HQC
0.3080
0.8345

0.6500

0.6645

0.8955

0.4945

0.4875

0.8850

0.8970

0.7160

0.4670

0.4995

0.8825

0.8330

0.8295

0.8755

0.8780

0.8865

0.6190

0.6290

0.8850

0.6750

0.6125

0.7160

C.8810

0.8680

0.8560

0.5990

0.5735

o.-^o
0.8830

0.8925

0.8175

0.8045

0.8745

0.8115

0.6635

0.5235

0.5915

0.8665

0.8575

O.9050

0.8130

0.7735

0.8270

RSC
0.2065
O.S365

0.6515

0.6655

0.8960

0.4945

0.4875

0.8850

0.8970

0.7160

0.4670

0.4995

0.8825

0.8330

0.8295

0.8755

0.8780

0.8865

0.6195

0.6290

0.8850

0.6750

0.6125

0.7160

0.8810

0.8680

0.8560

0.5990

0.5734

0.7875

0.8830

0.8935

0.8175

0.8045

0.8745

0.8115

0.6635

0.5235

0.5915

0.8665

0.8575

0.9050

0.8130

0.7735

0.8270

MCPC
0.1200
0.8365

0.65 JO

0.6650

0.8955

0.4945

0.4875

0.8850

0.8970

0.7160

0.4670

0.4995

0.8825

0.8330

0.8295

0.8755

0.8780

0.8865

0.6195

0.6290

0.8850

0.6750

0.6125

0.7160

0.8810

0.8680

0.8560

0.5990

0.5735

0.7875

0.8830

0.8935

0.8175

0.8045

0.8745

0.8115

0.6635

0.5235

0.59! 5

0.8665

0.8575

0.9050

0.8130

0.7735

0.8270

HSPC

0.1460
0.8365

0.6510

0.6650

0.8955

0.4945

0.4875

0.8850

0.8970

0.7160

0.4670

0.4995

0.8825

0.8330

0.8295

0.8755

0.8780

0.8865

0.6195

0.6290

0.8850

0.6750

0.6125

0.7160

O.SS10

0.8GM)

0.8560

0.5990

0.5735

0.7875

0.8830

0.8935

0.8175

0.8045

0.8745

0.8115

0.6635

0.5235

0.5915

0.8665

0.8575

0.9050

0.8130

0.7735

0.8270

GCVC
0.1420
0.8365

0.6510

0.6650

0 8955

0.4945

0.4875

0.8850

0.8970

0.7160

0.4670

(14995

0.8825

0.8330

0.8295

0.8755

0.8780

0.8865

0.6195

0.6290

0.8850

0.6750

0.6125

0.7160

0.8810

0.8680

0.8560

0.5990

0.5735

0.7875

0.8830

0.8935

0.8175

0.8045

0.8745

0.S115

O.6C^5

0.5235

0.5915

0.8665

0.8575

0.9050

0.8130

0.7735

0.8270
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Table 4.17 (cont'd)

Mode!
46
47
48
49
50

5!
52

53
54

55
56

57
58
59

60
61

62
63
64
65
66
67

68

69
70
71

AIC

0.8685
0.8755
0.8760
0.8110
0.7850

0.8340
0.8555
0.7270
0.7310
0.8715
0.8570
0.8465

0.8715
0.8630
0.8045

0.8225

0.8920
0.8270
0.4505
0.4095
0.8430

0.8245

0.8605
0.8025
0.7995
0.8670

BIC

0.8685
0.8755
0.S760
0.8110
0.7850
0.8340
0.8555
0.7270
0.7310
0.8705

0.8565
0.8465

0.8715
0.8630
0.8030

0.8215

0.8910
0.8270
0.4500

0.4095
0.841/0
0.8235

0.8585

0.7995
0.7975
0.8610

HQC

0.8685
0.8755
0.8760
0.8110
0.7850
0.8340

0.8555
0.7270
0.7310
0.8715
0.8570

0.8465

0.8715
0.8630
0.8040
0.8220

0.8920

0.8270
0.4500

0.4095
0.8410

0.8245
0.8600

0.8025

0.7985

0.8655

RSC

0.8685
0.8755
0.8760

0.8110
0.7850
0.8340

0.8555
0.7270
0.7310

0.8715
0.8570
0.8465

0.8715
0.8630
0.8050

0.8225

0.8920

0.8270
0.4505
0.4095
0.8430

0.8250
0.8610

0.8025
0.7995

0.8685

MCPC

0.8685
0.8755
0.8760
0.8110
0.7850
0.8340

0.8555
0.7270
0.7310

0.8715
0.8570
0.8465

0.8715
0.8630

0.8045

0.8225
0.8920
0.8270
0.4505
0.4095
0.8430

0.8245
0.8605

0.8025

0.7995
0.8670

HSPC

0.8685
0.8755
0.8760
0.8110
0.7850
0.8340
0.8555
0.7270
0.7310

0.8715
0.8570
0.8460

0.8715
0.8630

0.8045

0.8225

0.8920
0.8270
0.4505
0.4095
0.8425
0.8245

0.8605

0.8025

0.7995
O.8670

GCVC

0.8685
0.8755
0.8760

0.8110
0.7850
0.8340

0.8555
0.7270
0.7310

0.8715
0.8570

0.8465
0.8715
0.8630

0.8045
0.8225

0.8920
0.8270
0.4505
0.4095

0.8425
0.8245

0.8605

0.8025
0.7995
0.8670
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Table 4.18 Mean Probabilities of Correct Selection for AIC, BIC, HQC, RSC,
MCPC, HSPC and GCVC for Selecting From 71 Models, <jt = 0.7 for n
75.

Model

1
2
3
4

5
6
7
8
9
10
11
12

13
14
15
16
17

18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34

35
36
37
38
39
40
41

42
43
44
45

AIC
0.1095

0.8350

0.6470

0.6595

0.8965

0.4915

0.4920

0.8845

0.8980

0.7020

0.4640

0.4920

0.8795

0.8340

0.8280

0.8725

0.8775

0.8865

0.6240

0.6255

0.8850

0.6775

0.6120

0.7175

0.8840

0.8670

0.8555

0.6010

0.5710

0.7830

0.8830

0.8945

0.8150

0.8050

0.8740

0.8110

0.6615

0.5305

0.5955

0.8615

0.8550

0.9040

0.8115

0.7750

0.8215

BIC
0.5780

0.8295

0.6435

0.6585

0.8930

0.4915

0.4910

0.8825

0.8980

0.7020

0.4635

0.4905

0.8790

0.8340

0.8275

0.8720

0.8765

0.8865

0.6235

0.6245

0.8850

0.6770

0.6120

0.7175

0.8840

0.8665

0.8555

0.6005

0.5705

0.7830

0.8830

0.8945

0.8150

0.8050

0.8740

0.8105

0.6615

0.5305

0.5955

0.8615

0.8550

0.9035

0.8110

0.7745

0.8215

HQC

0.3040

0.8335

0.6460

0.6895

0.8955

0.4915

0.4920

0.8840

0.8980

0.7020

0.4640

0.4915

0.8795

0.8340

0.8280

0.8720

0.8770

0.8865

0.6240

0.6250

0.8850

0.6770

0.6120

0.7175

0.8840

0.8670

0.8555

0.6005

0.5710

0.7830

0.8830

0.8945

0.8150

0.8050

0.8740

0.8105

0.6615

0.5305

0.5955

0.8615

0.8550

0.9040

0.8110

0.7750

0.8215

RSC

0.1085
0.8350

0.6475

0.6600

0.8965

0.4915

0.4920

0.8845

0.8980

0.7020

0.4640

0.4920

0.8795

0.8340

0.8285

0.8725

0.8775

0.8865

0.6245

0.6255

0.8850

0.6775

0.6120

0.7175

0.8840

0.8670

0.8555

0.6010

0.5710

0.7830

0.8830

0.8945

0.8150

0.8050

0.8740

0.8110

0.6615

0.5305

0.5955

0.8615

0.8550

0.9040

0.8115

0.7750

0.8220

MCPC

0.1115
0.8350

0.6470

0.6595

0.8965

0.4915

0.4920

0.8845

0.8980

0.7020

0.4640

0.4920

0.8795

0.8340

0.8280

0.8725

0.8775

0.8865

0.6240

0.6255

0.8850

0.6775

0.6120

0.7175

0.8840

0.8670

0.8555

0.6010

0.5710

0.7830

0.8830

0.8945

0.8150

0.8050

0.8740

0.8110

0.6615

0.5305

0.5955

0.8615

0.8550

0.9040

0.8115

0.7750

0.8215

HSPC

0.1315
0.8350

0.6465

0.6595

0.8960

0.4915

0.4920

0.8845

0.8980

0.7020

0.4640

0.4920

0.8795

0.8340

0.8280

0.8725

0.8775

0.8865

0.6240

0.6255

0.8850

0.6770

0.6120

0.7175

0.8840

0.8670

0.8555

0.6010

0.5710

0.7830

0.8830

0.8945

0.8150

0.8050

0.8740

0.8110

0.6615

0.5305

0.5955

0.8615

0.8550

0.9040

0.8115

0.7750

0.8215

GCVC

0.1315
0.8350

0.6465

0.6595

0.8965

0.4915

0.4920

0.8845

0.8980

0.7020

0.4640

0.4920

0.8795

0.8340

0.S280

0.8725

0.8775

0.8865

0.6240

0.6255

0.8850

0.6770

0.6120

0.7175

0.8840

0.8670

0.8555

0.6010

0.5710

0.7830

0.8830

0.8945

0.8150

0.8050

0.8740

0.8110

0.5615

0.5305

0.5955

0.8615

0.8550

0.9040

0.8110

0.7750

0.8215
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Table 4.18 (cont'd)

Model

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

AIC
0.8600
0.8720

0.8720

0.8120
0.7870

0.8355
0.8555

0.7290
0.7325

0.8685
0.8570
0.8465

0.8725
0.8610

0.8075
0.8265
0.8955
0.8270
0.4465

0.4165
0.8450

0.8235
0.8600

0.8030

0.7995
0.8660

BIC
0.8600
0.8715
0.8720

0.8120

0.7865
0.8355

0.8555

0.7285
0.7325
0.8675
0.8570

0.8465
0.8725

0.8605
0.8065

0.8265
0.8940
0.8260

0.4455

0.4165
0.8425
0.8230
0.8570

0.8030

0.7980
0.8600

HQC

0.8600
0.8720

0.8720
0.8120

0.7870

0.8355

0.8555
0.7290

0.7325
0.8685
0.8570

0.8465
0.8725
0.8610

0.8075

0.8265
0.8950
0.8270

0.4460

0.4165
0.8430
0.8230

0.8590

0.8030
0.7995

0.8640

RSC
0.8600
0.8720
0.8720

0.8120
0.7870

0.8355

0.8555
0.7290

0.7325

0.8685

0.8570
0.8465
0.8725

0.8610
0.8075

0.8265
0.8955
0.8270

0.4465

0.4165
0.8455
0.8240
0.8600

0.8030

0.7995

0.8675

MCPC

0.8600
0.8720
0.8720

0.8120
0.7870

0.8355

0.8555
0.7290

0.7325

0.8685

0.8570

0.8465
0.8725
0.8610

0.8075
0.8265
0.8955
0.8270
0.4465

0.4165
0.8450

0.8235
0.8600

0.8030
0.7995

0.8660

HSPC

0.8600
0.8720

0.8720
0.8120

0.7870
0.8355

0.8555

0.7290

0.7325

0.8685
0.8570

0.8465

0.8725
0.8610
0.8075

0.8265
0.8955
0.8270

0.4460

0.4165
0.8445
0.8235
0.8600

0.8030

0.7995

0.8655

GCVC

0.8600
0.8720

O.8720

0.8120
0.7870
0.8355

0.8555
0.7290

0.7325
3.8685

0.8570
0.8465

0.8725
0.8610
0.8075

0.8265
0.8955
0.8270
0.4465

0.4165
0.8445

0.8235
0.8600

0.8030

0.7995

0.8655
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Table 4.19 Mean Probabilities of Correct Selection for AIC, BIC, HQC, RSC,
MCPC, HSPC and GCVC for Selecting From 71 Models, <f> = 1.0 for rr
75.

Model

1
2

3
4

5
6
7
8
9
10
11

12
13
14
15
16

17
18
19
20
21
22
23
24
25
26
27
28
29
30

31
32
33
34

35
36
37
38
39
40
41
42
43
44
45

AIC
0.2155

0.8340

0.6460

0.6590

0.8905

0.4900

0.4840

0.8870

0.8955

0.7070

0.4755

0.4835

0.8805

0.8320

0.8280

0.8740

0.8760

0.8795

0.6125

0.6215

0.8810

0.6710

0.6140

0.7155

0.8800

0.8640

0.8520

0.6000

0.5720

0.7865

0.8865

0.8915

0.8155

0.8120

0.8745

0.S070

0.6615

0.5290

0.5920

0.8575

0.8520

0.8970

0.8075

0.7730

0.8255

BIC

0.4815

0.8290

0.6440

0.6590

0.8865

0.4895

0.4820

0.8835

0.8945

0.7065

0.4750

0.4825

0.879.5

0.8305

0.8280

0.8730

0.8755

0.8795

0.6115

0.6205

0.8805

0.6695

0.6140

0.7155

0.8795

0.8630

0.8520

0.5995

0.5715

0.7855

0.8865

0.8910

0.8145

0.8115

0.8740

0.8070

06615

0.5280

0.5915

0.8560

0.8505

0.8945

0.8060

0.7725

0.8245

HQC

0.2010

0.8330

0.6455

0.6590

0.8900

0.4900

0.4835

0.8860

0.8955

0.7065

0.4750

0.4830

0.8800

0.8320

0.8280

0.8740

0.8760

0.8795

0.6125

0.6215

0.8810

0.6705

0.6140

0.7155

0.8800

0.8640

0.8520

0.5995

0.5715

0.7865

0.8865

0.8910

0.8150

0.8115

0.8740

0.8070

0.6615

0.5290

0.5915

0.8575

0.8520

0.8970

0.8075

0.7730

0.8255

RSC

0.2025

0.8340

0.6460

0.6595

0.8905

0.4900

0.4840

0.8875

0.8955

0.7065

0.4755

0.4835

0.8805

0.8320

0.8280

0.8740

0.8760

0.8795

0.6125

0.6215

0.8810

0.6710

0.6140

0.7155

0.8800

0.8640

0.8520

0.6000

0.5720

0.7865

0.8865

0.8915

0.8155

0.8120

0.8745

0.8070

0.6615

0.5290

0.5920

0.8575

0.8520

0.8970

0.8075

0.7730

0.8255

MCPC

0.2555
0.8340

0.6460

0.6590

0.8905

0.4900

0.4840

0.8870

0.8955

0.7070

0.4755

0.4835

0.8805

0.8320

0.8280

0.8740

0.8760

0.8795

0.6125

0.6215

0.8810

0.6710

0.6140

0.7155

0.8800

0.8640

0.8520

0.6000

0.5720

0.7865

0.8865

0.8915

0.8155

0.8120

0.8745

0.8070

0.6615

0.5290

0.5920

0.8575

0.8520

0.8970

0.8075

0.7730

0.8255

HSPC

0.2755
0.8340

0.0646

0.6590

0.8905

0.4900

0.4840

0.8870

0.8955

0.7070

0.4755

0.4835

0.8805

0.8320

0.8280

0.8740

0.8760

0.8795

0.6125

0.6215

0.8810

0.6710

0.6140

0.7155

0.8800

0.8640

0.8520

0.6000

0.5720

0.7865

0.8865

0.8910

0.8155

0.8120

0.8745

0.8070

0.6615

0.5290

0.5920

0.8575

0.8520

0.8970

0.8075

0.7730

0.8255

GCVC

0.2745
0.8340

0.6460

0.6590

0.8905

0.4900

0.4840

0.8870

0.8955

0.7070

0.4755

0.4835

0.8805

0.8320

0.8280

0.8740

0.8760

0.8795

0.6125

0.6215

0.8810

0.6710

0.6140

0.7155

0.8800

0.8640

0.8520

0.6000

0.5720

0.7865

0.8865

0.8910

0.8155

0.8120

0.8745

0.8070

0.6615

0.5290

0.5920

0.8575

0.8520

0.8970

0.8075

0.7730

0.8255
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Table 4.19 (cont'd)

Model

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

AIC
0.8620
0.8715
0.8705
0.8075
0.7805
0.8350
0.8515
0.7290

0.7335
0.8670

0.8570
0.8485

0.8705
0.8600
0.8140
0.8260
0.8920
0.8225
0.4410
0.4155
0.8415
0.8220
0.8590

0.7975
0.7970

0.8625

BIC
0.8605
0.8705
0.8700
0.8075
0.7805
0.8350
0.8515
0.7285
0.7335
0.8665

0.8565
0.8480

0.8705
0.8590
0.8140
0.8260
0.8895
0.8210
0.4400
0.4155
0.8385
0.8215
0.9580
0.7950
0.7955
0.7590

HQC
0.8620
0.8715
0.8705
0.8075
0.7805
0.8350
0.8515
0.7290

0.73./5
0.8670
0.8570

0.8485
0.8705
0.9600

0.8140
0.8260
0.8920
0.8220
0.4410
0.4155
0.8410
0.8220
0.8590
0.7970

0.7965
0.8620

RSC
0.8620
0.8715
0.8705
0.8075
0.7805
0.8350
0.8515
0.7290

0.7335
0.8670

0.8570
0.8485

0.8705
0.8600
0.8140
0.8260
0.8920
0.8225
0.4410
0.4155
0.8415
0.8220
0.8590
0.7975
0.7970
0.8635

MCPC

0.8620
0.8715
0.8705
0.8075
0.7805
0.8350
0.8515
0.7290

0.7335
0.8670
0.8570

0.8485
0.8705
0.8600
0.8140

0.8260
0.8920
0.8225
0.4410
0.4155
0.8415
0.8220
0.8590
0.7975
0.7970
0.8625

HSPC

0.8620
0.8715
0.8705
0.8075
0.7805
0.8350
0.8515
0.7290
0.7335
0.8670
0.8570
0.8485
0.8705
0.8600
0.8140
0.8260
0.8920
0.8225
0.4410
0.4155
0.8415
0.8220
0.8590
0.7975
0.7970
0.8625

GCVC

0.8620
0.8715
0.8705
0.8075
0.7805
0.8350
0.8515
0.7290
0.7335
0.8670
0.8570
0.8485
0.8705
0.8600

0.8140
0.8260
0.8920
0.8225
0.4410
0.4155
0.8415
0.8220
0.8590
0.7975
0.7970
0.8625
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Table 4.20 Mean Probabilities of Correct Selection for AIC, BIC, HQC, RSC,
MCPC, HSPC and GCVC for Selecting From 71 Models, ^ = 1.02 for n
75.

Model

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

AIC
0.3065

0.8405

0.6510

0.6665

0.895;

0.4950

0.4810

0.8845

0.8960

0.7150

0.4700

0.4940

0.8825

0.8350

0.8290

0.8740

0.8775

0.8825

0.6195

0.6250

0.8840

0.6780

0.6090

0.7205

0.8835

0.8665

0.8575

0.6020

0.5725

0.7860

0.8860

0.8935

0.8170

0.8140

0.8765

0.8095

0.6635

0.5325

0.5960

0.8630

0.8575

0.9040

0.8205

0.7755

0.8270

0.8700

BIC
0.4980

0.8330

0.6475

0.6645

0.8945

0.4950

0.4810

0.8830

0.8945

0.7150

0.4695

0.4940

0.8825

0.8350

0.8290

0.8740

0.8770

0.8810

0.6190

0.6235

0.8835

0.6780

0.6085

0.7205

0.8835

0.8660

0.8575

0.6015

0.5720

0.7855

0.8855

0.8935

0.8170

0.8140

0.8765

0.8085

0.6630

0.5325

0.5960

0.8625

0.8575

0.9035

0.8200

0.7755

0.8270

0.8695

HQC

0.3215

0.8385

0.6495

0.6660

0.8955

0.4950

0.4810

0.8835

0.8960

0.7150

0.4700

0.4940

0.8825

0.8350

0.8290

0.8740

0.8775

0.8815

0.6195

0.6240

0.8835

0.6780

0.6090

0.7205

0.8835

0.8665

0.8575

0.6020

0.5720

0.7860

0.8855

0.8935

0.8170

0.8140

0.8765

0.8095

0.6635

0.5325

0.5960

0.8630

0.8575

0.9035

0.8205

0.7755

0.8270

0.8700

RSC
0.3055

0.8405

0.6510

0.6665

0.8955

0.4950

0.4810

0.8845

0.8960

0.7150

0.4700

0.4940

0.8825

0.8350

0.8290

0.8740

0.8775

0.8815

0.6195

0.6250

0.8840

0.6780

0.6090

0.7205

0.8835

0.8665

0.8575

0.6020

0.5725

0.7860

0.S860

0.8935

0.8170

0.8140

0.8765

0.8095

0.6635

0.5325

0.5960

0.8630

0.8575

0.9040

0.8205

0.7755

0.8270

0.8700

MCPC

0.3166

0.8405

0.6510

0.6665

0.8955

0.4950

0.4810

0.8845

0.8960

0.7150

0.4700

0.4940

0.8825

0.8350

0.8290

0.8740

0.8775

0.8825

0.6195

0.6250

0.8840

0.6780

0.6090

0.7205

0.8835

0.8665

0.8575

0.6020

0.5725

0.7860

0.8860

0.8935

0.8170

0.8140

0.8765

0.8095

0.6635

0.5325

0.5960

0.8630

0.8575

0.9040

0.8205

0.7755

0.8270

0.8700

HSPC

0.3785
0.8405

0.6500

0.6660

0.8955

0.4950

0.4810

0.8845

0.8960

0.7150

0.4700

0.4940

0.8825

0.8350

0.8290

0.8740

0.8775

0.8825

0.6195

0.6250

0.8840

0.6780

0.6090

0.7205

0.8835

0.8665

0.8575

0.6020

0.5725

0.7860

0.8860

0.8935

0.8170

0.8140

0.8765

0.8095

0.6635

0.5325

0.5960

0.8630

0.8575

0.9040

0.8205

0.7755

0.8270

0.8700

GCVC

0.3760
0.8405

0.6500

0.6660

0.8955

0.4950

0.4810

0.8845

0.8960

0.7150

0.4700

0.4940

0.8825

0.8350

0.8290

0.8740

0.8775

0.8825

0.6195

0.6250

0.8840

0.6780

0.6090

0.7205

0.8835

0.8665

0.8575

0.6020

0.5725

0.7860

0.8d60

0.8935

0.8170

0.8140

0.8765

0.8095

0.6635

0.5325

0.5960

0.8630

0.8575

0.9040

0.8205

0.7755

0.8270

0.8700
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Table 4.20 (cont'd)

Model

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

AIC
0.8715
0.8715
0.8095
0.7860
0.8320
0.8520
0.7260
0.7290
0.8665
0.8585
0.8470
0.8675
0.8600
0.8085

0.8275
0.8900

0.8185
0.4400

0.4120
0.8330
0.8220

0.8545
0.7635
0.7870

0.7545

BIC
0.8710
0.8705
0.8095
0.7855
0.8320
0.8515
0.7255
0.7290
0.8660
0.8580
0.8465
0.8675
0.8585
0.8070
0.8245
0.8845
0.8155
0.4360
0.4115
0.8300
0.8190
0.8500
0.7565
0.7820
0.7465

HQC
0.8710
0.8705

0.8095
0.7855
0.8320
0.8520
0.7260
0.7290
0.8660

0.8585
0.8470
0.8675
0.8600
0.8080
0.8275
0.8885
0.8175
0.4390
0.4120
0.8325
0.8205
0.8530
0.7610
0.7870
0.7530

RSC
0.8715
0.8715
0.8095
0.7860

0.8320
0.8520
0.7260
0.7290
0.8665
0.8585
0.8470
0.8675
0.8600
0.8090
0.8295
0.8900
0.8185
0.4400
0.4120
0.8335
0.8220
0.8555
0.7640
0.7875
0.7560

MCPC

0.8715
0.8715
0.8095
0.7860
0.8320
0.8520
0.7260
0.7290

0.8665
0.8585
0.8470
0.8675
0.8600
0.8085
0.8275
0.8900
0.8185
0.4400
0.4120
0.8330
0.8220
0.8545
0.7635
0.7870
0.7545

HSPC

0.8715
0.8710

0.8095
0.7860
0.8320
0.8520
0.7260
0.7290

0.8665
0.8585
0.8470
0.8675
0.8600
0.8085
0.8275
0.8900
0.8185
0.4400
0.4120
0.8330
0.8220
0.8540
0.7635
0.7870
0.7545

GCVC

0.8715
0.8710

0.8095
0.7860
0.8320
0.8520
0.7260
0.7290
0.8665

0.8585
0.8470
0.8675
0.8600
0.8085
0.8275
0.8900
0.8185
0.4400
0.4120
0.8330
0.8220
0.8540
0.7635
0.7870
0.7545
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Table 4.21 Average Mean Probabilities of Correct Selection for AIC, BIC,
HQC, RSC, MCPC, HSPC and GCVC for Different <p when w=75.

0

0.70

1.0

1.02

Average
Rank

Stdev

Average

Rank
Stdev

Average

Rank

Average

Rank
Stdev

Average

Rank
Stdev

Average

Rank

Average

Rank

Stdev

Average

Rank

Stdev

Average

Rank

Average

Rank
Stdev

Average

Rank
Stdev

Average

Rank

AIC

0.7645

6
0.1525

0.7738
2

0.1322

0.1190

6

0.7638

6
0.1529

0.7731
2

0.1320

0.1095

6

0.7615
5

0.1563

0.7600
2

0.1569

0.0550

6

0.7610
6

0.1551

0.7710

2
0.1315

0.0650

6

BIC

With
0.7703

1
0.1332

0.7732

7
0.1321

i

0.5735
1
With

0.7697
1

0.1330

0.7725
7

0.1319

0.5780
1
With

0.7665

1
0.1364

C.7666

7
0.1374

0.4815
1
With

0.7660
I

0.1344

0.7698

7
0.1314

0.4980
1

HQC

and without
0.7670

2
0.1424

RSC

structural
0.7630

7
0.1598

MCPC

change
0.7645

5
0.1525

With structural change

0.7736

6
0.132.2

0.7738

1
0.1322

0.7738
2

0.1322

Without structural change

0.3080
2

and without

0.7667
2

0.1420

0.0065

7
structural

0.7624

7
0.1594

0.1200

5
change

0.7638

5
0.1527

With structural change
0.7734

6
0.1316

0.7732
1

0.1320

0.7731

2
0.1320

Without structural change
0.3040

2
and without

0.7648

2
0.1490

0.0085

7
structural

0.7607

6
0.1598

0.1115

5
change

0.7615

4
0.1562

With structural change
0.7634

6
0.1496

0.7593
1

0.1604

0.7600

2
0.1569

Without structural change
0.2010

2
, and without

0.7629

2
0.1459

0.0025

7
structural

0.7603

7
0.1591

0.0555

5
change

0.7610
5

0.1551

With structural change
0.7706

6
0.1315

0.7710

1
0.1315

0.7710

2
0.1315

Without structural change

0.2215

2
0.0055

7
0.0660

5

HSPC

0.7649

3
0.1509

0.7737

5
0.1322

0.1460

3

0.7640
4

0.1516

0.7731

5
0.1320

0.1315

3

0.7536

7
0J752

0.7520

5
0.1760

0.0755

3

0.7612
3

0.1543

0.7709

5
0.1315

0.0785

3

GCVC

0.7649

4
0.1511

0.7738

5
0.1322

0.1420

4

0.7641

3
0.1515

0.7731

5
0.1320

0.1315
4

0.7617

3
0.1550

0.7603
5

0.1557

0.0745

4

0.7611
4

0.1544

0.7709

5
0.1315

0.0760

4
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Table 4.22 Mean Probabilities of Correct Selection for AIC, BIC, HQC, RSC,
MCPC, HSPC and GCVC for Selecting From 96 Models, (f> = 0 for n =
100.

Mode!

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

AIC
0.3575
0.9015

O.9065
O.9030

0.8945

O.90O5

0.8770

0.8655

O.5790

0.5590

0.8975

0.9165

0.8760

0.8790

0.9105

0.8575

0.7705

0.7795

0.7210

0.7115

0.9145

0.9245

0.9305

0.9215

0.8915

0.8390

0.8415

0.8880

0.8985

0.9110

0.8915

0.5325

0.5370

0.8810

0.8405

0.7775

0.7700

0.8685

0.9120

0.8880

0.9030

0.9225

0.8970

0.9113

0.9255

0.9295

0.9210

BIC
0.5450
0.8960

0.9065

O.90O5

0.8930

0.9005

0.8765

0.8645

0.5785

0.5585

0.8970

0.9160

0.8760

0.8785

0.9105

0.8575

0.7700

0.7795

0.7295

0.7110

0.9145

0.9240

0.9295

0.9215

0.8915

0.8390

0.8415

0.8880

0.8980

0.9110

0.8915

0.5325

0.5370

0.8810

0.8405

0.7775

0.7700

0.8685

0.9115
0.8870

0.9025

0.9220

0.8960

0.9105

0.9250

0.9285

0.9200

HQC

0.3415
0.9005

O.9065

0.9020

O.894:>

0.9005

0.8770

0.8655

0.5790

0.5590

0.8975

0.9165

0.8760

0.8790

0.9105

0.8575

0.7705

0.7795

0.7200

0.7115

0.9145

0.9245

0.9300

0.9215

0.8915

0.8390

0.8415

0.8880

0.8980

0.9110

0.8915

0.5325

0.5370

0.8810

0.8405

0.7775

0.7700

0.8685

0.9120

0.8875

0.9025

0.9225
0.8965

0.9115

0.9255

0.9290

0.9205

RSC
0.3015
0.9020

0.9065

O.9O30

0.S945

0.9005

0.8770

0.8655

0.5790

0.5590

0.8975

0.9165

0.8760

0.8790

0.9105

0.8575

0.7705

0.7795

0.7210

0.7115

0.9145

0.9245

0.9305

0.9215

0.8915

0.8390

0.8415

0.8880

0.8985

0.9110

0.8920

0.5325

0.5370

0.8810

0.8405

0.7775

0.7700

0.8685

0.9120

0.8880

0.9030
0.9225

0.8970

0.9115

0.9255

0.9295

0.9210

MCPC

0.1258
0.9015

0.9065

0.9030

0.8945

0.9005

0.8770

0.8655

0.5790

0.5590

0.8975

0.9165

0.8760

0.8790

0.9105

0.8575

0.7705

0.7795

0.7210

0.7115

0.9145

0.9245

0.9305

0.9215

0.8915

0.8390

0.8415

0.8880

0.8985

0.9110

0.8915

0.5325

0.5370

0.8810

0.8405

0.7775

0.7700

0.8685

0.9120

0.8880

0.9030

0.9225

0.8970

0.9115

0.9255

0.9295

0.9210

HSPC

0.1740
0.9015

0.9065

0.9030

0.8945

0.9005

0.8770

0.8655

0.5790

0.5590

0.8975

0.9165

0.8760

0.8790

0.9105

0.8575

0.7705

0.7795

0.7210

0.7115

0.9145

0.9245

0.9305

0.9215

0.8915

0.8390

0.8415

0.8880

0.8985

0.9110

0.8915

0.5325

0.5370

0.8810

0.8405

0.7775

0.7700

0.8685

0.9120

0.8880

0.9030

0.9225

0.8970

0.9115

0.9255

0.9295

0.9210

GCVC

0.2715
0.9015

0.9065

0.9030

0.8945

0.9005

0.8770

0.8655

0.5790

0.5590

0.8975

0.9165

0.8760

0.8790

0.9105

0.8575

0.7705

0.7795

0.7210

0.7115

0.9145

0.9245

0.9305

0.9215

0.8915

0.8390

0.8415

0.8880

0.8985

0.9110

0.8915

0.5325

0.5370

0.8810

0.8405

0.7775

0.7700

0.8685

0.9120

0.8880

0.9030

0.9225

0.8970

0.9115

0.9255

0.9295

0.9210
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Table 4.22 (cont'd)

Model

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

63
64

65
66
67
68
69
70

71
72

73
74

75
76
77
78
79
80
81

82
83
84

85
86
87
88

89
90
91
92
93
94
95
96

AIC
0.9255
0.8445
0.8440
0.8715
0.6330
0.6125
0.9265
0.5225
0.4985
0.9300
0.9175
0.8540
0.8520
0.9135
0.6455

0.6385
0.8930
0.7720
0.7285
0.8000

0.9155
0.8765
0.8830
0.9360
0.7720

0.5730
0.2940
0.2990
0.9155
0.5560
0.5680
0.7570
0.7750
0.9100
0.8950
0.8895
0.9080
0.8950
0.8975
0.9105
0.9035
0.5-90
0.5185
0.6615
0.6770
0.8235
0.8090
0.4800
0.4270

BIC
0.9250
0.8435
0.8440
0.8715
0.6325
0.6125
0.9265
0.5225
0.4985
0.9295
0.9165
0.8530

0.8520
0.9135
0.6750
0.6380
0.8920
0.7720

0.7285
0.7995
0.9155
0.8765
0.8830

0.9345
0.7715
0.5725
0.2935
0.2985
0.9155
0.5560
0.5670
0.7565
0.7740
0.9090
0.8935
0.8895
0.9060
0.8920
0.8940
0.9080

0.8985
0.5165
0.5160
0.6655
0.6730
0.8170
0.8050
0.4755
0.4225

HQC
0.9255
0.8440
0.8440
0.8715
0.6330
0.6125
0.9265
0.5225
0.4985
0.9300
0.9170
0.8540

0.8.520
0.9135
0.6450
0.8380
0.8930
0.7720
0.7285
0.8000
0.9155
0.8765
0.8830
0.9355
0.7715
0.5730
0.2940
0.2990
0.9155
0.5560
0.5675
0.7570
0.7740
O.9095
0.8950
0.8895

0.9075
0.8940
0.8965
0.9100
0.9030
0.5190
0.5180
0.6605
0.6760
0.8230
0.8085
0.4795
0.4265

RSC

0.9255
0.8445
0.8440
0.8715
0.6330
0.6125
0.9265
0.5225
0.4985
0.9300
0.9175
0.8540
0.8520
0.9135
0.6455
0.6385

0.8930
0.7720
0.7285
0.8000
0.9155
0.8765
0.8830
0.9360
0.7720
0.5730

0.2940
0.2990
0.9155
0.5560
0.5680
0.7570
0.7750
0.9100
0.8950

0.8895
0.9080
0.8950
0.8980
0.9115
0.9035
0.5190
0.5180
0.6620
0.6770
0.8235
0.8095
0.4805
0.4275

MCPC

0.9255
0.8445
0.8440
0.8715
0.6330
0.6125
0.9265
0.5225
0.4985
0.9300
0.9175
0.8540
0.8520
0.9135
0.6455
0.6385
0.8930
0.7720
0.7285
0.8000
0.9155
0.8765
0.8830
0.9360
0.7720
0.5730
0.2940
0.2990
0.9155
0.5560
0.5680
0.7^70
0.7750
0.9100
0.8950

0.8895
0.9080
0.8950

0.8975
0.9105
0.9035
0.5190
0.5190
0.6615
0.6770
0.8235
0.8090
0.4800
0.4270

HSPC

0.9255
0.8440
0.8440
0.8715
0.6330
0.6125
0.9265
0.5225
0.4085
0.9300
0.9175
0.8540
0.8520
0.9135
0.6455
0.6385
0.8930
0.7720
0.7285
0.8000
0.9155
0.8765
0.8830
0.9360
0.7720
0.5730
0.2940
0.2990
0.9155
0.5560
0.5680
0.7570
0.7750
0.9100

0.8950
0.8895
0.9080
0.8950

0.8975
0.9105
0.9035
0.5190
0.5185
0.6615
0.6765
0.8235
0.8090
0.4800
0.4270

GCVC

0.9255
0.8440
0.8440
0.8715
0.6330
0.6125
0.9265
0.5225
0.4985
0.9300
0.9175
0.8540
0.8520
0.9135
0.6455
0.6385
0.8930
0.7720
0.7285
0.8000
0.9155
0.8765
0.8830
0.9360
0.7720
0.5730
0.2940
0.2990
0.9155
0.5560
0.5680
0.7570
0.7750
0.9100
0.8950

0.8895
0.9080
0.8950
0.8975
0.9105
0.9035
0.5190
0.518,5

0.6615
0.6765
0.8235
0.8090
0.4800
0.4270
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Table 4.23 Mean Probabilities of Correct Selection for AIC, BIC, HQC, RSC,
MCPC, HSPC and GCVC for Selecting From 96 Models, § = 0.7 for n
100.

Mode!

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22
23
24
25
26
27

28

29

30
31
32

33

34
35
36
37
38
39

40

41

42

43
4-4

45

46
4?

AIC

0.1965
0.8995

0.9060

0.9015

0.8925

0.8990

0.8795

0.8670

0.5645

0.5565

0.8955

0.9150

0.8740

0.8790

0.9095

0.8565

0.7690

0.7755

0.7205

0.7125

0.9150

0.9250

0.9285

0.9205

0.8915

0.8395

0.8450

0.3850

0.8975

0.9105

0.8875

0.5355

0.5280

0.8750

0.8385

0.7770

0.7650

0.8705

0.9070

0.8900

0.9015

0.9235

0.8980

0.9100

0.9265
0.9340

0.9225

BIC

0.5790
0.8970

0.9010

0.9010

0.8910

0.8985

0.8790

0.8655

0.5640

0.5565

0.8955

0.9145

0.8740

0.8790

0.9090

0.8565

0.7685

0.7755

0.7200

0.7120

0.9145

0.9240

0.9285

0.9205

0.8915

0.8395

0.8450

0.8850

0.8975

0.9100

0.8875

0.5355

0.5280

0.8745

0.8385

0.7770

0.7650

0.8705

0.9070

0.8890

0.9015

0.9235

0.8970

0.9095

0.9260
0.93?5

0.9215

HQC

0.3000
0.8995

O.9055

0.9015

0.8925

0.8990

0.8790

0.8665

0.5645

0.5565

0.8955

0.9145

0.8740

0.8790

0.9090

0.8565

0.7690

0.7755

0.7205

0.7125

0.9150

0.9250

0.9285

0.9205

0.8915

0.8395

0.8450

0.8850

0.8975

0.9105

0.8875

0.5355
0.5280

0.8750

0.8385

0.7770

0.7650
0.8705

0.9070

0.8890

0.9015

0.9235

0.3970

0.9100

0.9265

0.9335

0.9220

RSC

O.i004
0.8995

0.9070

0.9015

0.8925

0.8990

0.8795

0.8675

0.5645

0.5565

0.8955

0.9150

0.8740

0.8790

0.9095

0.8565

0.7690

0.7755

0.7210

0.7125

0.9150

0.9250

0.9285

0.9205

0.8915

0.8395

0.8450

0.8850

0.8975

0.9105

0.8875

0.5360

0.5280

0.8750

0.8385

0.7770

0.7650

0.8705

0.9070

0.3900

0.9015

0.9235

0.8970

0.9100

0.9265
0.9340

0.9225

MCPC

0.1980
0.8995

0.9060

0.9015

0.8925

0.8990

0.8795
0.8670

0.5645

0.5565

0.8955
0.9150

0.8740

0.8790

0.9095

0.8565

0.7690

0.7755

0.7205

0.7125

0.9150

0.9250

0.9285

0.9205

0.8915

0.S395

0.8450

0.8850

O.£975

0.9105

0.8880

0.5355
0.5280

0.8750

0.8385

0.7770

0.7650

0.8705

0.9070

0.8900

0.9015

0.9235

0.8980

0.9100

0.9265

0.9.J40
i\9"<25

HSPC

0.1115
0.8995

0.9060

0.9015

0.8925

0.8990

0.8795
0.8670

0.5645

0.5565

0.8955
0.9150

0.8740

0.8790

0.9O95

0.8565

0.76S0

0.7755

0.7205

0.7125

0.9150

0.9250

0.9285

0.9205

0.8915

0.8395

0.8450

0.8850

0.8975

0.9105

0.8875

0.5355
0.5280

0.8750

0.8385

0.7770

0.7650

0.8705

0.9070

0.8900

0.9015

0.9235

O.8980

0.9100

0.9265

0.9340

0.9225

GCVC

0.1100
0.899;.

O.°O6O

0.9015

0.8925

0.8990

0.8795
0.8670

0.5645

0.5565

0.8955
0.9150

0.8740

0.8790

0.9O95

0.8565

0.7690

0.7755

0.7205

0.7125

0.9150

0.9250

0.9285

0.9205

0.8915

0.8395

0.8450

0.8850

0.8975

0.9105

0.8875

0.5355

0.5280

0.8750

0.8385

0.7770

O.7650

0.8705

O.9070

0.8900

0.9015

0.9235

0.8980

0.9100

0.9265

0.9340

0.9225
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Table 4.23 (cont'd)

Model
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

AIC
0.9260
0.8455
0.8455
0.8705
0.6305
0.6130
0.9270
0.5215
0.4990
0.9305
0.9170
0.8525
0.8515
0.9135
0.6450
0.6325
0.8925
0.7660
0.7285
0.7950
0.9140
0.8810
0.8835
0.9360
0.7675
0.5680
0.2885
0.2920
0.9145
0.5495
0.5665
0.7570
0.7770
0.9125
0.8965
0.8910
0.9090
0.8935
0.8965
0.9100
0.9050
0.5235
0.5290
0.6680
0.6900
0.8350
0.8185
0.4975
0.4380

BIC
0.9255
0.8450
0.8455
0.8705
0.6300
0.6130
0.9270
0.5210
0.4990
0.9305
0.9155
0.8515
0.8515
0.9135
0.6445
0.6320
0.8915
0.7660
0.7285
0.7945
0.9140
0.8810
0.8825
0.9355
0.7665
0.5680
0.2885
0.2920
0.9145
0.5495
0.5665
0.7570
0.7765
0.9125
0.8960
0.8900
0.9090
0.8920
0.8955
0.9085
0.9025
0.5225
0.5280
0.6665
0.6870
0.8315
0.8140
0.4945
0.4360

HQC
0.9260
0.8450
0.8455
0.8705
0.9305
0.6130
0.9270
0.5210
0.4990
0.9305
0.9165
0.8520
0.8515
0.9135
0.6450
0.6325
0.8920
0.7660
0.7285
0.7945
0.9140
0.8810
0.8830
0.9360
0.7665
0.5680
0.2885
0.2920
0.9145
0.5495
0.5665
0.7570
0.7765
0.9125
0.8965
0.8905
0.9090
0.8935
0.8960
0.9095
0.9045
0.5230
0.5285
0.6675
0.6890
0.8345
0.8180
0.4965
0.4380

RSC
0.9260
0.8455
0.8455
0.8705
0.6305
0.6130
0.9270
0.5215
0.4990
0.9305
0.9170
0.8525
0.8515
0.9135
0.6450
0.6325
0.8925
0.7660
0.7285
0.7950
0.9140
0.8810
0.8835
0.9360
0.7675
0.5680
0.2885
0.2920
0.9145
0.5495
0.5665
0.7570
0.7770
0.9125
0.8970
0.8910
0.9090
0.8935
0.8970
0.9095
0.9050
0.5240
0.5285
0.6685
0.6890
0.8360
0.8195
0.4980
0.4380

MCPC
0.9260
0.8455
0.8455
0.8705
0.6305
0.6130
0.9270
0.5215
0.4990
0.9305
0.9170
0.8525
0.8515
0.9135
0.6450
0.6325
0.8925
0.7660
0.7285
0.7950
0.9140
0.8810
0.8835
0.9360
0.7675
0.5680
0.2885
0.2920
0.9145
0.5495
0.5665
0.7570
0.7770
0.9125
0.8965
0.8910
0.9090
0.8935
0.8965
0.9095
0.9050
0.5235
0.5290
0.6685
0.6900
0.8350
0.8185
0.4975
0.4380

HSPC
0.9260
0.8455
0.8455
0.8705
0.6305
0.6130
0.9270
0.5215
0.4990
0.9305
0.9170
0.8525
0.8515
0.9135
0.6450
0.6325
0.8925
0.7660
0.7285
0.7950
0.9140
0.8810
0.8835
0.9360
0.7675
0.5680
0.2885
0.2920
0.9145
0.5495
0.5665
0.7570
0.7770
0.9125
0.8965
0.8910
0.9090
0.8935
0.8965
0.9100
0.9050
0.5235
0.5290
0.6680
0.6900
0.8350
0.8185
0.4975
0.4380

GCVC
0.9260
0.8455
0.8455
0.8705
0.6305
0.6130
0.9270
0.5215
0.4990
0.9305
0.9170
0.8525
0.8515
0.9135
0.6450
0.6325
0.8925
0.7660
0.7285
0.7950
0.9140
0.8810
0.8835
0.9360
0.7675
0.5680
0.2885
0.2920
0.9145
0.5495
0.5665
0.7570
0.7770
0.9125
0.8965
0.8910
0.9090
0.8935
0.8965
0.9100
0.9050
0.5235
0.5290
0.6680
0.6900
0.8350
0.8185
0.4975
0.4380
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Table 4.24 Mean Probabilities of Correct Selection for AIC, BIC, HQC, RSC,
MCPC, HSPC and GCVC for Selecting From 96 Models, <p = 1.0 for n =
100.

Model
1
2

3
4

5
6
7
8
9
10
11

12

13
14
15
16
17

18
19
20
21

22
23
24
25
26
27
28
2?
30
31
32
33
34

35
36
37
38
39
40

41
42
43
44
45
46
47

AIC
0.3047
0.9000

0.9055
0.9020

0.8900

0.8990

0.8775

0.8655
0.5770
0.5565

0.8945
0.9150

0.8775
0.8820
0.9040
0.8525
0.7610

0.7730
0.7230

0.7025
0.9105
0.9225
0.9280

0.9195
0.8890

0.8420
0.8460
0.8830

0.8975

0.9085
0.8875
0.5280
0.5310
0.8790

0.8395
0.7720
0.7690
0.8655
0.9080
0.8865
0.9010
0.9215
0.8945
0.9070
0.9265
0.9280
0.9220

BIC
0.5135
0.8970

0.9035
0.9005

0.8885
0.8990

0.8765
0.8640

0.5765
0.5560

0.8945
0.9150

0.8765
0.8815
0.9040

0.8525
0.7610

0.7730

0.7225
0.7015
0.9100
0.9210

0.9270
0.*i 85
0.8890

0.8410
0.8450

0.8825
0.8960

0.9085

0.8875
0.5275
0.5305
0.8790
0.8390
0.7720
0.7685
0.8655
0.9075
0.8865
0.9005
0.9210

0.8945
0.9070

0.9265
0.9275
0.9215

HQC
0.1965
0.9000
0.9055
0.9020

0.8895
0.8990

0.8770
0.8650

0.5770

0.5565
0.8945
0.9150

0.8775
0.8820
0.9040
0.8525
0.7610
0.7730
0.7230

0.7025
0.9105
0.9225
0.9280
0.9195
0.8890

0.8420
0.8460
0.8830

0.8975

0.9085
0.8875
0.5280

0.5305
0.8790

0.8390
0.7720
0.7690
0.8655
0.9080
0.8865
0.9010

0.9215
0.8945
0.9070
0.9265
0.9280

0.9220

RSC
0.2205
0.9000
0.9060
0.9020

0.8900

0.8990

0.8775
0.8655

0.5770
0.5565
0.8945
0.9 1J0

0.8775
0.8820
0.9040
0.8525
0.7610
0.7730
0.7230

0.7025
0.9105
0.9225
0.9280

0.9195
0.8890
0.8420
0.8460
0.8830

0.8975

0.9085

0.8875
0.5280
0.5310
0.8790

0.8395
0.7720
0.7690
0.8655
0.9080
0.8865
0.9010

0.9215
0.8945
0.9070
0.9265
0.9280
0.9220

MCPC
0.2475
0.9000
0.9055
0.9020
0.8900

0.8990

0.8775

0.8655
0.5770

0.5565

0.8945
0.9150
0.8775
0.8820
0.9040

0.8525
0.7610

0.7730
0.7230

0.7025
0.9105
0.9225
0.9280

0.9195
0.8890

0.8420
0.8460
0.8830

0.8975

0.9085

0.8875
0.5280
0.5310
0.8790

0.8395
0.7720
0.7690
0.8655
0.9080
0.8865
0.9010

0.9215
0.8945
0.9070
0.9265
0.9280
0.9220

HSPC
0.1575
0.9000

0.9055
0.9020

0.8900
0.8990

0.8775

0.8655
0.5770

0.5565
0.8945
0.9150

0.8775
0.8820
0.9040
0.8525
0.7610

0.7730
0.7230

0.7025
0.9105

0.9225
0.9280

0.9195
0.8890
0.8420
0.8460
0.8830

0.8975

0.9085

0.8875
0.5280
0.5310
0.8790

0.8395
0.7720
0.7690
0.8655
0.9080
0.8865
0.9010
0.9215
0.8945
0.9070

0.9265
0.9280
0.9220

GCVC
0.1550
0.9000

0.9055
0.9020

0.8900
0.8990

0.8775

0.8655
0.5770

0.5565

0.8945
0.9150
0.8775

0.8820
0.9040
0.8525
0.7610

0.7730

0.7230

0.7025
0.9105
0.9225

0.9^80

0.9195
0.8890
0.8420
0.8460

0.8830
0.8975

0.9085

0S875
0.5280
0.5310

0.8790

0.8395
0.7720
0.7690
0.8655
0.9080

0.8865
0.9010

0.9215
0.8945
0.9070

0.9265
0.9280
0.9220
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Table 4.24 (cont'd)

I Model

I 48
I 49
; 50

! 51
52

\ 53
[• 54

\ 55
w 56

1 57

I 58

I 59

1 61
1 62

i 64
1 65
B 6̂
1 67
I 68
I 69

I 70
1: 71

I 72
I 73
I 74
I 75
i 76

1 771 78
I 79
1 80
I 81

I 82
1 83
1 84

I 85

1 87

I 88

1 89
I 90
1 91

l 93
H 94

1 95

1 %

AIC
0.9270
0.8455
0.8430
0.8740
0.6355
0.6130
0.9280
0.5155
0.4985

0.9275
0.9160
0.8520
0.8535
0.9125
0.6380
0.6360
0.8920
0.7670
0.7310
0.7980
0.9145
0.8830
0.8830
0.9335
0.7725
0.5715
0.2925
0.3015
0.9130
0.5555
0.5680
0.7615
0.7770
0.9140
0.8960

0.8895
0.9075

0.9005
0.8980
0.9125
0.9045
0.5245
0.5250
0.6740
0.6845
0.8340
0.8205
0.4935
0.4355

BIC
0.9265
0.8450
0.8425
0.8740
0.6355
0.6130
0.9280
0.5155
0.4985
0.9270

0.9155
0.8515
0.8535
0.9120
0.6375
0.6355
0.8915
0.7670
0.7310
0.7975
0.9145
0.8825
0.8830
0.9330
0.7715
0.5715
0.2925
0.3015
0.9130
0.5555
0.5675
0.7615
0.7770
0.9140
0.8955
0.8890
0.9075
0.8975
0.8965
0.9100
0.9030

0.5235
0.5230
0.6715
0.6815
0.8295
0.8180
0.4895
0.4340

HQC
0.9270
0.8455
0.8425
0.8740
0.6355
0.6130
0.9280
0.5155
0.4985
0.9275
0.9160
0.8520
0.8535
0.9120
0.6380
0.6360
0.8920
0.7670
0.7310
0.7980
0.9145
0.8825
0.8830
0.9335
0.7720
0.5715
0.2925
0.3015
0.9130
0.5555
0.5680

0.7615
0.7770
0.9140
0.8960
0.8890

0.9075
0.8995
0.8980
0.9115
0.9045
0.5245
0.5245
0.6730
0.6845
0.8330
0.8600
0.4930
0.4355

RSC
0.9270
0.8455
0.8430
0.8740
0.6355
0.6130
0.9280

0.5155
0.4985
0.9275
0.9160
0.8520
0.8535
0.9125
0.6380
0.6360
0.8920
0.7670
0.7310
0.7980
0.9145
0.8830
0.8830
0.9335
0.7725
0.5715
0.2925
0.3015
0.9130
0.5555
0.5680

0.7615
0.7770
0.9140
0.8960
0.8895
0.9075
0.9005
0.8980
0.9130
0.9045
0.5250
0.5250
0.6740
0.6850
0.8340
0.8220
0.4940
0.4355

MCPC
0.9270
0.8455
0.8430
0.8740
0.6355
0.6130
0.9280
0.5155
0.4985
0.9275
0.9160
0.8520
0.8535
0.9125
0.6380
0.6360
0.8920
0.7670

0.7310
0.7980
0.9145
0.8830
0.8830
0.9335
0.7725
0.5715
0.2925
0.3015
0.9130
0.5555
0.5680

0.7615
0.7770
0.9140
0.8960
0.8895
0.9075
0.9005
0.8980
0.9125
0.9045
0.5245
0.5250
0.6740
0.6845
0.8340
0.8205
0.4935
0.4355

HSPC
0.9270
0.8455
0.8430
0.8740
0.6355
0.6130
0.9280
0.5155
0.4985
0.9275
0.9160
0.8520
0.8535
0.9125
0.6380
0.6360
0.8920
0.7670

0.7310
0.7980
0.9145
0.8830
0.8830
0.9335
0.7725
0.5715
0.2925
0.3015
0.9130
0.5555
0.5680

0.7615
0.7770
0.9140
0.8960
0.8895
0.9075

0.9005
0.8980
0.9125
0.9045
0.5245
0.5250
0.6740
0.6845
0.8340
0.8205
0.4935
0.4355

GCVC
O.9270
0.8455
0.8430
0.8740
0.6355
0.6130
0.9280
0.5155
0.4985
0.9275
0.9160
0.8520
0.8535
0.9125
0.6380
0.6360
0.8920
0.7670
0.7310
0.7980
0.9145
0.8830
0.8830
0.9335
0.7725
0.5715
0.2925
0.3015
0.9130
0.5555
0.5680

0.7615
0.7770
0.9140
0.8960
0.8895
0.9075
0.9005
0.8980
0.9125
0.9045
0.4525
0.5250
0.6740
0.6845
0.8340
0.8205
0.4935
0.4355
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Table 4.25 Mean Probabilities of Correct... lection for AIC, BIC, HQC, RSC,
MCPC, HSPC and GCVC for Selecting From 96 Models, ^ = 1.02 for n
100.

Model
1
2

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

AIC
0.1965
0.9025
0.9075
0.9035
0.8930
0.8995
0.8795
0.8670
0.5685
0.5585
0.8960
0.9160
0.8765
0.8785
0.9100
0.8585
0.7695
0.7740
0.7180
0.7105
0.9145
0.9240
0.9300
0.9230
0.8915
0.8415
0.8445
0.8860
0.8975
0.9105
0.8905
0.5385
0.5355
0.8790
0.8375
0.7705
0.7685
0.8670
0.9075
0.8890
0.9025
0.9230
0.8995
0.9115
0.9265
0.9290
0.9215

BIC
0.5750
0.8985
0.9030
0.9025
0.8915
0.8990
0.8795
0.8650
0.5680
0.5580
0.8955
0.9135
0.8765
0.8775
0.9095
0.8585
0.7685
0.7740
0.7175
0.7100
0.9135
0.9235
0.9295
0.9230
0.8915
0.8415
0.8445
0.8860
0.8975
0.9100
0.8900
0.5375
0.5350
0.8785
0.8370
0.7705
0.7685
0.7670
0.9075
0.8880
0.9020
0.9230
0.8985
0.9110
0.9260
0.9285
0.9205

HQC

0.2970
0.9020
0.9065
0.9035
0.8920
0.8995
0.8795
0.8665
0.5685
0.5585
0.8960
0.9155
0.8765
0.8785
0.9100
0.8585
0.7695
0.7740
0.7175
0.7105
0.9145
0.9240
0.9300
0.9230
0.8915
0.8415
0.8445
0.8860
0.8975
0.9105
0.8900
0.5380
0.5355
0.8790
0.8375
0.7705
0.7685
0.7670
0.9075
0.8880
0.9020
0.9230
0.8985
0.9115
0.9265
0.9285
0.9205

RSC

0.2765
0.9025
0.9085
0.9040
0.8930
0.8995
0.8795
0.8670
0.5685
0.5585
0.8960
0.9160
0.8765
0.8785
0.9100
0.8585
0.7695
0.7740
0.7180
0.7105
0.9145
0.9245
0.9300
0.9230
0.8915
0.8415
0.8445
0.8860
0.8975
0.9105
0.8905
0.5385
0.5355
0.8790
0.8375
0.7705
0.7685
0.7670
0.9075
0.8890
0.9025
0.9230
0.8995
0.9115
0.9265
0.9290
0.9205

MCPC

0.1972
0.9025
0.9075
0.9035
0.8930
0.8995
0.8795
0.8670
0.5685
0.5585
0.8960
0.9160
0.8765
0.8785
0.9100
0.8585
0.7695
0.7740
0.7180
0.7105
0.9145
0.92'10
O.93CO
0.9230
0.8915
0.8415
0.8445
0.8860
0.8975
0.9105
0.8905
0.5385
0.5355
0.8790
0.8375
0.7705
0.7685
0.7670
0.9075
0.8890
0.9025
0.9230
0.8995
0.9115
0.9265
0.9290
0.9215

HSPC

0.1090
0.9025
0.9075
0.9035
0.8925
0.8995
0.8795
0.8670
0.5685
0.5585
0.8960
0.9160
0.8765
0.8785
0.9100
0.8585
0.7695
0.7740
0.7180
0.7105
0.9145
0.9240
0.9300
0.9230
0.8915
0.8415
0.8445
0.8860
0.8975
0.9105
0.8900
0.5380
0.5355
0.8790
0.8375
0.7705
0.7685
0.7670
0.9075
0.889O
0.9025
0.9230
0.8995
0.9115
0.9265
0.9290
0.9210

GCVC

0.1085
0.9025
0.9075
0.9035
0.8925
0.8995
0.8795
0.8670
0.5685
0.5585
0.8960
0.9160
0.8765
0.8785
0.9100
0.8585
0.7695
0.7740
0.7180
0.7105
0.9145
0.9240
0.9300
0.9230
0.8915
0.8415
0.8445
0.8860
0.8975
0.9105
0.8900
0.5380
0.5355
0.8790
0.8375
0.7705
0.7685
0.7670
0.9075
0.8890
0.9025
0.9230
0.8995
0.9115
0.9265
0.9290
0.9210



Chapter 4 Model Selection for Detecting Changepoint 142

Table 4.25 (cont'd)

Model
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

65
66
67
68
69
70
71
72
73
74

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

AIC
0.9255
0.8465
0.8435
0.8720
0.6325
0.6174
0.9275
0.5230
0.5020
0.9280
0.9165
0.8525
0.8510
0.9085
0.6415
0.6380
0.8930
0.7700
0.7290

0.7985
0.9175
0.8820
0.8840
0.9365
0.7720
0.5675
0.2920
0.2910
0.9130
0.5545
0.5675
0.7570
0.7780
0.9130
0.8955
0.8900
0.9095
0.8945
0.8990
0.9115
0.9020
0.5320
0.5245
0.6715
0.6875
0.8335
0.8165
0.4950
0.4305

BIC
0.9250
0.8465
0.8435
0.8720
0.6325
0.6140
0.9275
0.5225
0.5020
0.9275
0.9150
0.8525
0.8510
0.9075
0.6415
0.6375
0.8920
0.7700
0.7290

0.7985
0.9175
0.8820
0.8835
0.9355
0.7710
0.5670
0.2920
0.2910
0.9130
0.5545
0.5675
0.7565
0.7775
0.9120
0.8950
0.8890
0.9090
0.8930
0.8970
0.9095
0.8990
0.5305
0.5230
0.6695
0.6850
0.8305
0.8140
0.4900
0.4290

HQC
0.9255
0.8465
0.8435
0.8720
0.6325
0.6140
0.9275
0.5230
0.5020
0.9280
0.9165
0.8525
0.8510
0.9085
0.6415
0.6380
0.8925
0.7700
0.7290
0.7985
0.9175
0.8820
0.8840
0.9365
0.7720
0.5675
0.2920
0.2910
0.9130
0.5545
0.5675
0.7570
0.7775
0.9125
0.8955
0.8895
0.9095
0.8945
0.8975
0.9100
0.9015
0.5310
0.5240
0.6715
0.6860
0.8330
0.8155
0.4930
0.4305

RSC
0.9255
0.8465
0.8435
0.8720
0.6325
0.6140

0.9275
0.5230
0.5020
0.9280
0.9165
0.8525
0.8510
0.9085
0.6415
0.6380
0.8930
0.7700
0.7290
0.7985
0.9175
0.8820
0.8840
0.9365
0.7720
0.5675
0.2920
0.2910
0.9130
0.5545
0.5675
0.7570
0.7780
0.9135
0.8955
0.8900
0.9085
0.8945
0.8990
0.9125
0.9020
0.5320
0.5250
0.6720
0.6875
0.8340
0.8170
0.4950
0.4305

MCPC
0.9255
0.8465
0.8435
0.8720
0.6325
0.6140
0.9275
0.5230
0.5020
0.9280
0.9165
0.8525
0.8510
0.9085
0.6415
0.6380
0.8930

0.7700
0.7290

0.7985
0.9175
0.8820
0.8840
0.9365
0.7720
0.5675
0.2920
0.2910
0.9130
0.5545
0.5675
0.7570
0.7780
0.9130
0.8955
0.8900
0.9095
0.8945
0.8990
0.9115
0.9020
0.5320
0.5245
0.6715
0.6875
0.8335
0.8165
0.4950
0.4305

HSPC
0.9255
0.8465
0.8435
0.8720

0.6325
0.6140

0.9275
0.5230
0.5020
0.9280
0.9165
0.8525
0.8510
0.9085
0.6415
0.6380
0.8930
0.7700
0.7290
0.7985
0.9175
0.8820
0.8840
0.9365
0.7720
0.5675
0.2920
0.2910
0.9130
0.5545
0.5675
0.7570
0.7780
0.9130
0.8955
0.8900
0.9095
0.8945
0.8985
0.9115
0.9015
0.5320
0.5245
0.6715
0.6875
0.8335
0.8165
0.4950
0.4305

GCVC
0.9255
0.8465
0.8435
0.8720
0.6325
0.6140
0.9275
0.5230
0.5020
0.9080
0.9165
0.8525
0.8510
0.9085
0.6415
0.6380
0.8930
0.7700
0.7290
0.7985
0.9175
0.8820
0.8840
0.9365
0.7720
0.5675
0.2920
0.2910
0.9130
0.5545
0.5675
0.7570
0.7780
0.9130
0.8955
0.8900
0.9095
0.8945
0.8985
0.9115
0.9015
0.5320
0.5245
0.6715
0.6875
0.8335
0.8165
0.4950
0.4305



Chapter • Model Selection for Detecting Changepoint 143

Table 4.26 Average Mean Probabilities of Correct Selection for AIC, BIC,
HQC, RSC, MCPC, HSPC and GCVC for Different <j> when n = 100.

0

0.70

1.0

1.02

Average
Rank
Stdev

Average
Rank
Stdev

Average
Rank

Average
Rank
Stdev

Average
Rank
Stdev

Average
Rank

Average
Rank
Stdev

Average
Rank
Stdev

Average
Rank

Average
Rank
Stdev

Average
Rank
Stdev

Average
Rank

AIC

0.7914
3

0.1694

0.7988
1

0.1543

0.0965
6

0.7909
6

0.1697

0.7982
1

0.1547

0.0965
6

0.7902
5

0.1713

0.7981
1

0.1540

0.0470
6

0.7906
6

0.1715

0.7983
1

0.1547

0.0575
6

BIC
With

0.7946
1

0.1550

0.7969
7

0.1542

0.5750
1
With

0.7953
2

0.1555

0.7976
7

0.1547

0.5790
1
With

0.7944
1

0.1559

0.7974
7

0.1540

HQC
and without

0.7922
2

0.1617

RSC MCPC
structural change

0.7895
7

0.1733
With structural change

0.7974
5

0.1542

0.7977
2

0.1542
Without structural change

0.2970
2

and without
0.7960

1
0.1618

0.0065
7

0.7904
5

0.1692

0.7977

3
0.1542

0.0970
5

structural change
0.7900

7
0.1739

With structural change
0.8012

5
0.1543

0.7983
2

0.1547
Without structural change

0.3000
2

and without

0.7921
2

0.1652

0.0040
7

0.7909
5

0.1697

0.7982
3

0.1547

0.0980
5

structural change
0.7898

6
0.1735

With structural change
0.7984

5
0.1541

0.7981
2

0.1540
Without structural change

0.5135 0.1965
1
With

0.7953
1

0.1558

0.7979
7

0.1544

0.5450
1

2
and without

0.7944
2

0.1633

0.0005
7

0.7902
4

0.1713

0.7981

0.1540

0.047
5

structural change
0.7901

7
0.1741

With structural change
0.8002

5
0.1539

0.7984
2

0.1547
Without structural change

0.2415
2

0.0000
7

0.7906
5

0.1714

0.7984
3

0.1547

0.0580
5

HSPC

0.7905
4

0.1687

0.7976
5

0.1542

0.1090
3

0.7911
3

0.1691

0.7982
5

0.1547

0.1115
3

0.7903
3

0.1708

0.7981
5

0.1540

0.0575
3

0.7908
3

0.1707

0.7983
5

0.1547

0.0740
3

GCVC

0.7903
6

0.1686

0.7974

6
0.1540

0.1085
4

0.7911
4

0.1692

0.7982
6

0.1547

0.1100
4

0.7896
7

0.1723

0.7973
6

0.1555

0.0550
4

0.7908
4

0.1709

0.7983
6

0.1547

0.0710
4



CHAPTER 5

An Optimal Method for Finding
Penalties for the Problem of

Detecting Structural Change1

5.1 Introduction

In Chapter 4, we investigated the use of several IC model selection

procedures for detecting simple structural change in the linear regression model. Our

simulation results showed that BIC outperformed all existing IC procedures

considered when there was no structural change but was the worst perfomier in the

presence of structural change, and RSC performed best overall when a changepoint

was present. When there is no structural change, the performance of AIC is

generally the worst of all procedures. The results also revealed that none of the IC

procedures considered stand out as a clear best method for this model selection

problem.

As is well known, the penalty function suggested for different IC procedures

depends very much on the number of parameters ( k) of the model and generally also

1 Some of the preliminary findings of this chapter were presented at the Australasian Meeting of the
Econometric Society, Australian National University, Canberra. See Azam and King (1998).
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on the sample size («) of the data. An obvious question then is can we use

simulation methods to find the optimal penalties for model selection of possible

structural change in a linear regression model? In Chapter 4, we used the AMPCS

criteria to assess the quality of different IC procedures. Clearly, we could use this to

determine an optimal penalty function. By an optimal penalty function, we mean one

that maximizes the average mean probability of correctly selecting the true model. It

can then offer an appropriate solution to a wide class of selection problems for

structural change models. In particular, this penalty function would balance

penalizing additional parameters while being sensitive to give a small enough penalty

to select bigger models when they are true. The optimal penalties have a special

property in that they are constructed in such a way that no one model is favoured

unknowingly. Kwek (1999), King and Bose (2000), and Billah and King (2000a)

have employed this approach with some success in the cases of selecting between

ARCH, linear regression and time series models respectively. Unfortunately, none

of these studies involved choosing between a larger number of different models, such

as 96 models in the previous chapter when n = 100.

Existing IC procedures penalise changepoint models equally although the

changepoint models vary from one to another by the position of the changepoint in

time. This is a weakness of these procedures. It may be that different changepoint

models should be penalised differently because changes in some cases are easier to

detect. With this view in mind, our aim is to develop an algorithm that would

compute optimal penalties for different models involving structural change. We

investigate the use of grid search, polynomial of degree four combined with grid

search, and simulated annealing optimization algorithms that will estimate optimal

penalties for different models in such a way that the AMPCS is maximized. The

latter is a difficult maximization problem that can be very time consuming to solve.



Chapter 5 Optimal Method for Penalty 146

We performed a small Monte Carlo experiment to calculate the penalties for different

models using these algorithms. We look for the algorithm that gives the optimal

penalties in a sense that these penalties will provide maximum AMPCS with

minimum computational cost and effort.

An outline of this chapter is as follows. In Section 5.2, we discuss the

issues in finding optimal penalties. Section 5.3 describes the algorithm for Ending

optimal penalties for different models that includes the grid search method,

polynomial of degree four based on grid search and simulated annealing. Section 5.4

gives a working version of each of the algorithms and evaluates them by discussing

their advantages and disadvantages. Section 5.5 gives the details of the simulation

experiments. The results of these experiments are reported in Section 5.6 and the

final section contains some concluding remarks.

5.2 Derivation of the Procedure for Finding Optimal
Penalties

In the literature on IC based model selection procedures, there is

disagreement about the proper form of the penalty function. This is because, from

the definition of IC, obviously, one can easily suggest a new criterion by slightly

changing the value of the penalty function. For this reason, researchers introduced

various IC based procedures for different types of models. As a result, there has

been a huge growth in the literature that may make the users confused as to which IC

procedure to use for a particular problem in hand. Further, the small sample

performance of these new IC procedures may not be satisfactory. Therefore, an IC

based procedure that would perform well for any kind of model selection problem is

of interest.
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As explained in Chapter 4, the AMPCS is calculated by averaging the mean

of the probabilities of correct selection (MPCS) for all models in the plausible group.

All of these applications produced, on average, a high probability of selecting the

true model and can be used to find penalties in such a way that the probabilities of

correctly choosing the right model at each of these points are the same. In other

words, optimal penalties are constructed in such a way that no one model is being

favoured unknowingly. In our proposed procedure, we use this philosophy with a

modification that will result in the optimal penalties that maximize the AMPCS for

the set of models under consideration. This allows us to find a data driven penalty

that depends on the nature of the data and the sample size. This approach can also be

used for other model selection problems with a large number of alternative models.

For the sample size and plausible models under consideration, this model selection

approach will maximize the AMPCS through the estimation of penalty values

numerically. The AMPCS is a step function, and hence, it may not be easy to

maximize it using standard methods.

Our interest is in finding a suitable algorithm for estimating appropriate

optimal penalties that will save computing time and at the same time, giving

penalties, which outperform all existing IC model selection procedures when looking

for changepoints of unknown timing. Our approach involves an optimization

principle with a simple probabilistic algorithm, i.e., finding penalties that maximize

the AMPCS discussed in Chapter 4.
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5.3 Optimization Methods for Optimal Penalties

Analytically we are not able to outline how to find optimal penalties

/ ? , , . . . , pm for changepoint models. In this section, we outline how to use the

computer to maximize AMPCS so that optimal penalties are obtained. Note that

because the IC procedure involves looking at differences in penalties, one of these

penalties can be fixed. We set px = 0 without loss of generality. The derivative

methods of the optimization, such as the Newton-Raphson type procedure, are not

entirely satisfactory for finding global maxima because they might sometimes end up

with local maxima, so other methods need to be used. We use the derivative-free

grid search, polynomial equation based on grid search and simulated annealing

methods for finding optimal penalties, and these are discussed in the following

subsections.

5.3.1 Complete Grid Search Algorithm (CGSA)

This section discusses the development of the CGSA for finding optimal

penalties. We can maximize AMPCS with respect to the penalties by a trial and

error method. The disadvantage is that it takes a long time to find the global

optimum and might end up giving a local optimum instead of the global maximum.

A CGSA can be used to find the global optimization point. It evaluates the function

at grid points that cover the entire range of possible penalty values. The CGSA

inspects the results and repeats the process with a finer grid over a selected zone,

which is centred at the penalty values for the largest calculated value of AMPCS. In

this section, we outline and discuss the grid search algorithm.
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We set p] = 0 as mentioned earlier so that the AMPCS is maximized with

respect to the remaining penalties, i.e., p2, . . .,/?,„. Thus, the optimal penalties are

found Vvhen the AMPCS is at its global maximum. In order to understand more

closely what is involved in the grid search algorithm, we consider a set of penalty

values (i.e., Pj, j = 2,•••,m). Let l} and u} be preselected lower and upper limits

(lj and uj could be the same or different for different values of j) for the penalties.

Beginning from the lower value l}, a sequence of penalties is generated such that the

difference between any two successive elements of the sequence is equal to £, where

s is a small number.

We evaluate the AMPCS at grid points that covers the entire area or a likely

area, inspect the result, and repeat the process over a selected zone with a finer grid.

For each set of penalties, the AMPCS is calculated and then recorded. We then

check for which penalty set the AMPCS is a maximum. Let p* be the selected

penalty set. We then generate a new sequence /?* - s to p'j + s* and for each j

where e is a new value other than e and such that s <s. Using the same

procedure discussed earlier, we select the maximum AMPCS. We change s to e*

such that s" < s* and repeat the above process. We continue the grid search

procedure until changing the s values does not change the maximum AMPCS with

in a prescribed level of tolerance. Ultimately the search converges to the global

maximum giving optimal penalties. The algorithm we applied in the experiments

described below is as follows:

Step 1. Set /?, - 0. Set upper and lower limits of the grid points for the penalty of

each model. The spacing and number of grid points depend on the choice of

the researcher. For computational convenience, we recommend equal

m



ChapterS Optimal Method for Penalty 150

spacing. The larger the number of grid points for each penalty, the more

computational time needed. If the number of grid points for each penalty is

nv then for **i models, we need n"'~x penalty combinations and therefore

wj"1 evaluations of AMPCS.

Step 2. Calculate maximised log-likelihoods for different models assuming each of

the models is true in turn. These maximized log-likelihoods are stored.

Subtract each set of penalties considered in step 1 from these maximised

log-likelihoods for different models. The one that is the maximum is our

chosen model. Perform this process for R replications, calculating Rm sets

of penalised maximised log-likelihoods for each model as the true model in

turn and count how many times the true model gives the largest value.

Calculate MPCS by dividing these counts by R. This is done with each

model being the true model in turn.

Step 3. For each set of penalties, calculate AMPCS using (4.10) and check for

which penalty set the AMPCS is a maximum. The penalty values

corresponding to the highest calculated value of AMPCS is recorded, then a

new, but much finer, grid of penalty values is calculated and the process is

repeated. The whole process is repeated several times. The CGSA ends by

comparing the last maximum AMPCS with the most recent maximum

AMPCS. Check the difference; if the difference is relatively small, stop the

algorithm.

Step 4. From step 3, check for which penalty set the AMPCS is a maximum. This is

the required optimal penalty set.
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5.3.1.1 Block Grid Search Algorithm (BGSA)

The CGSA takes a huge amount of computational time even with a high-

speed computer. If the number of grid points per penalty is small then the total

number of penalty sets will be small and the cost of computation will be less.

Literally, 2 grid points per penalty set is the minimum required points to start with a

grid search, but in practice more grid points per penalty set will help to locate the

global maximum. The disadvantage of taking more grid points per penalty is a

relatively high computational cost. A naturally arising question is how to choose the

minimum number of grid points per penalty that will provide minimum

computational cost with little sacrifice of AMPCS.

If we have m-\ penalties with ng grid points for each penalty set and if m

and ng are large, therefore we have n"'1 penalty combinations that will give a huge

number of computations and take an enormous amount of computational time.

However, we might not need all wj~' penalty combinations. In this section, we

discuss a modification to the CGSA and develop BGSA that gives almost the same

solution as CGSA but has a significant improvement in speed of computational time

over CGSA. In this algorithm, we use five grid points and five model groups giving

55 penalty combinations. The algorithm involves the following steps:

Step 1. Without any loss of generality, we set /?, = 0.

Step 2. Divide the rest of the models into 5 groups such that each group consists of

(« -4 ) /5 models. Figures 5.1 to 5.8 shows plot of estimated optimal

penalties for n = 15 and 25 for different values of <f> by CGSA. These plots

give us an indication that penalties for different models follow more or less
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a symmetric pattern at the beginning and end period of the data duration,

therefore we set penalties for different models as illustrated below:

For n - 15, or m = 12 :

For n - 25, or m = 22:

PA = Ps ~ Pi9 = P20'' Pi = PT = Pn = Pis'*

P& = P9 ~ Pis ~ Pit* P\o = Pu = Pn = Pn = PIA

For n = 50, or m = 47:

P2=P3=PA=P5=PO= PA) = PAA = A5 = />46 =

PI-P%=P<)= Pio - P \ \ - Pis = Pw = PAO = PAI = Pa>

Pn - Pn = PIA ~ P\s = P\b = Pa = PM ~ Px = Pu = Pr. '•>

Pn ~ P\% ~ P\9 = Pia ~ Pi\ = ^28 ~ P29 = P30 = Pi\ - Pn '•>

P27 = Pn ~ P24 = P25 = P26 = P21 •

For n = 75, or m = 72:

P2 = Pi - PA=PS=P6-PT=PS= Pt6 = Pu ~ As = Pv>

= Pio =Pn =Pi2>

P9 =Pio=Pu= Pn = Pn = PIA = Pis = Ps9 = Peo = Pel = Pa

= Pa = PM =Pe>s>

Pu = Pn = Pis = PK = P20 = P21 = P22 = Pn = Pn = PSA = Pss

~ PS6 -

= P2A = P25 = P26 = Pn = P21 = P29 = PAS = PA6 = PAI = PAS

Pn ~ Pi\ ~ Pn = P33 = PiA = Px - Px ~ Pn - P3& = P39 = PAO



Chapter 5 Optimal Method for Penalty 153

For « = 100, or w = 97:

Pi = A = Pi = Pi = P6 ~ Pi = P& = Pi = PlO ~ P\ 1 = A s = P%9

= />92 = P93 = P9A = P95 = P96 =

Pn = Pn = Pu = Pis ~ P\6 = P\i = Pis = P\9 = P20 = Pi\ = Pn = P19

= P&0 ~ P$\ = P&l ~ Psi = PSA ~ P&5 = Pzb ~ P&l'

Pll = P23 - P24 = PlS = Pl6 = P21 = P2% = P29 =Pi0=P3l= P6S = Pb9

= Pn = Pi\ = Pn = Pn = Pn = Pis = Pit, = Pn \

Pn ~ ^33 =

~ Pe

Pi2 = PM = PAA = PAS = Ae = A? = As = A9 =Pso=Ps\= Psi = Psy

= PSA = Pss = Psb =PST

= Pis = Pie = Pn = A s = P39 = PAO ~ PAX = Psz = Ps9

~ Peo ~ Ph\ ~ Pb2 ~ A 3 = PbA ~ PbS ~ Pbb ~ Pbi '•>

Step 3. Calculate maximised log-likelihoods for different models assuming each of

the models is true in turn. These maximized log-likelihoods are stored.

Subtract each set of penalties considered in step 2 from these maximised

log-likelihoods for different models. These penalized maximized log-

likelihoods are compared. The one that is the maximum indicates our

chosen model. Perform this process for R replications, calculate Rm sets

of penalised maximised log-likelihoods for each model as the true model in

turn and count how many times the true model gives the largest value.

Calculate MFCS by dividing these counts by R. This is done with each

model being the true model in turn.

Step 4. For each set of penalties, calculate the AMPCS and check for which penalty

set the AMPCS is a maximum. The penalty values corresponding to the

highest calculated value of AMPCS is recorded, then a new, but much finer,

grid of penalty values is calculated and the process is repeated. The whole

process is repeated several times. The BGSA ends by comparing the last
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maximum AMPCS with the most recent maximum AMPCS. Check the

difference; if the difference is relatively small, stop the algorithm.

5.3.1.2 Polynomial of Degree Four Algorithm (PDFA)

We have many different models, because for each timing of the possible

changepoint we have one model. The optimal penalty for neighbouring models

might be more or less the same. As the timing of the changepoint moves through the

sample, we might except the optimal penalty to change in a smooth manner, which

might be well approximated by a polynomial of some degree, which is not known.

Based on this idea, consider a polynomial of degree four to estimate optimal

penalties, known as PDFA.

PDFA is similar to that of BGSA, but assumes penalties for different models

follow a polynomial function because we are assuming optimal penalties change

slowly as the timing of changepoints change. A polynomial allows gradual but also

substantial change if required. We ask the data to speak in the sense of finding the

best penalties constrained by a polynomial of degree four. The algorithm used for

this purpose in now given.

Step 1. Without any loss of generality, we set p] = 0.

Step 2. We consider the following penalty function

pi+] =ao+a](i) + a2(i)
2+a,(if+a,(iy (5.1)

where / = 1,2, ...,/w-l, denotes the timing of the changepoint we

considered for different changepoint models. Our aim is to find a0, a,, a2,

a3, a4 so that pM from (5.1) maximize AMPCS.

Step 3. Choose initial values of /?,• 's from AIC penalties (or from any other IC

penalties). Solve the polynomial (5.1) for the a, 's with the initial values of
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pt; 's. Because the number of equations is more than the number of

unknown coefficients, we only consider five equations and solve for the five

unknown coefficients, a,. We used penalties for the equations

. n m m 3m . . _ . , . . , . , c

i = 0, —,—,— as the timing of the changepomts and then solved for a,.,
4 2 4

Step 4. Perform a grid search on the estimated at 's found in step 3. Consider a set

of different values for af, namely a, = aiVan,---,ahl = au for each model so

that a range of at values from lower limit a, to upper limit is au are

considered. Changes of the grid and the grid search are done using same

procedure discussed in Section 5.3.1. If we consider 5 grid points for 5 sets

of a, 's, then we have 55 sets of a, values. Substitute each set of ai values

in equation (5.1) and calculate different sets of penalties for different

models.

Step 5. Calculate maximised log-likelihoods for the different models assuming each

of the models is true. Subtract each set of penalties from these maximised

log-likelihoods for different models and choose that model which gives the

largest penalised maximised log-likelihood. Perform this process using R

replications, and count how many times the true model gives the largest

value. Calculate MPCS by dividing these counts by R. This is done for

each model as the true model in turn and for each set of a,- values (which

determine the pt values) in the grid. Average the m MPCS values to obtain

the AMPCS for all models. Check for that set of a,, which gives the

maximum AMPCS. The at set estimated here are the required polynomial

coefficients for use in (5.1) to calculate the required penalties.
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5.3.2 Simulated Annealing Algorithm

In previous sections, we introduced CGSA, BGSA, and PDFA to estimate

optimal penalties for different models that give maximum AMPCS. We have noted

that the CGSA requires a huge amount of computational time. The other two

algorithms save computational time by imposing some restrictions on the penalties.

We now focus our attention on reducing the computational time for finding optimal

penalties using stochastic optimization techniques. Simulated annealing algorithms

(SAAs) have recently gained a great deal of the attention in the optimization

literature. A discussion of the SAA was given in Chapter 2 and we investigate the

use of this class of algorithms to estimate optimal penalties in this chapter.

SAA's major advantage over other methods is its ability to avoid becoming

trapped at local optima. The algorithm employs a random search, which not only

accepts changes that increase the objective function, but also some changes that

decrease it. As its name implies, simulated annealing exploits an analogy between

the way that a metal cools and freezes into a minimum energy crystalline structure

(the annealing process) and the search for an optimum of a general function.

5.3.2.1 Estimation of Penalties by Simulated
Annealing

We are looking for the penalties that maximize AMPCS. The algorithm can

then be formulated as follows. Let p be the vector of penalties, with

p = (p2,'",pm)' and let/(/?) represent penalties which need to be optimized. Let

the initial penalty set be px. The algorithm moves both up and downhill as the

optimization process is carried out and looks for the area where the optimum is. It

randomly selects a penalty from the neighbourhood of the current penalty and then
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calculates the corresponding change in / ( /? ) . Let /, <pi<uj,i = 2,...,m, where

the values of /, and w, are lower and upper bounds of the penalty values chosen by

the researcher.

At the beginning, using the initial ps, the algorithm randomly chooses a

new point p' within the step length determined by Vm_x, a step length vector of order

m-\ selected by the researcher, in the neighbourhood of ps. The function is

evaluated at this new point and its value is compared to that of the initial point ps. If

the change in f(p) is positive, the transition is unconditionally accepted; if the

f(p) decreases, the transition is accepted with a probability based upon the

distribution

Pr = exp - 4f(£)
kT

(5.2)

where k is a constant selected by the user, the temperature J is a control parameter

and 4f(p) is the change in f{p).

Each element of the step length vector Vm_l is adjusted periodically so that

about half of all points are accepted. The standard implementation of the algoritlim

requires the specification of a cooling schedule. The initial temperature should be

high enough to ensure that there is little chance of the algoritlim moving very quickly

towards a local maximum in the early stages. A fall in temperature is imposed upon

the system with a temperature reduction factor rT ranging from 0 to 1. Finally, a

stopping criterion is imposed to terminate the algorithm.
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5.3.3 Different Factors of the SAA

The basic principle of estimation of penalties using simulated annealing was

discussed in subsection 5.3.2.1. The algorithm randomly chooses a new penalty and

calculates AMPCS, which is compared with the previous estimated value. Out of

these two penalty sets, we check which gives the maximum AMPCS. The choice of

penalties depends on a few factors; a detailed description of how to implement the

algorithm for optimum penalty estimation is given below:

5.3.3.1 Initial Temperature

Initial temperature is an important factor for running the SAA. Kirkpatrick

et al. (1983) suggested that a suitable initial temperature should be chosen so that

about 80% of all positive transitions (i.e., transitions that increase the AMPCS) are

accepted.

5.3.3.2 Temperature Reduction Factor (rT)

The temperature is decreased by multiplication by a constant factor. There

is actually a trade-off between temperature reduction between stages and the number

of iterations per stage. The most common temperature reduction rule is rT + \=arT,

where or is a constant close to, but smaller than, 1. Kirkpatrick et al. (1982) used it

with or = 0.95. The suggested value for temperature reduction by Corana et al.

(1987) is 0.85.
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5.3.3.3 Boundaries for Penalties

Let the lower bound for the allowable penalties be /, and the upper bound

for the penalties be ut. Unless the user wishes to concentrate the search to a

particular region, /,. and w, should be set to cover a very large range.

5.3.3.4 Number of Cycles (ns)

;;v is the number of cycles used before adjusting the step length vector.

When the SAA starts its operation, it evaluates ns cycles of m -1 functions and then

each element of the step length vector (vm) is adjusted in such a way that

approximately half of all functions evaluated are accepted.

5.3.3.5 Number of Iterations before Temperature
Reduction (nT)

Frequently used criteria for nT are a constant number of iterations, or

iterating until a constant number of transitions is accepted. Experiments show that

better results are achieved by considering the physical background of simulated

annealing and the concept of thermal quasi-equilibrium. This means keeping the

temperature constant until the AMPCS has reached a constant value. After

nT x ns x {m-1) function evaluations, temperature (T) is changed by the factor rT.

The value nT suggested by Corana et al. (1987) is max(100, Sri).
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5.3.3.6 Termination Criterion (n£)

Since the emphasis of our research is on the quality of the estimated

penalties, we have developed a workable stopping criterion. It is clear that when the

optimal values of the AMPCS for successive stages are constant themselves, the

iterative process can be stopped. Let fT be the most recent function. For every Thl

if

frr^^ (5>3)

stop the searc h where £ is very small.

5.4 Working Version of Different Algorithms

In the previous sections, we discussed theoretical aspects of different

algorithms and the steps involved in using them. The algorithms we discussed are

different in nature although some are developed on the basis of almost the same

principles with a slight modification and/or alternation. For example, the CGSA,

BGSA and PDFA are based on grid search but the SAA is completely different. In

the following subsection we discuss and evaluate the working performance of these

algorithms. We use the same experimental design as reported in Chapter 4 for this

purpose.

5.4.1 CGSA

We performed a pilot experiment to evaluate the performance of the CGSA

in the sense of investigating how long it takes to find optimal penalties. The number

of models and number of grid points for each penalty set are two main ingredients of

the CGSA. If the number of these ingredients increases, the computational cost of

the CGSA increases.
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Table 5.1 shows the CPU time required per penalty for different models,

total number of penalty sets searched, total time required for different models with

different grid points for each group. Note that the experimental design is the same as

the experimental design used in Chapter 4 in the case of random walk regressors

((f> = 1.0). All computer programs were written in GAUSS (see Aptech, 1997,

version 3.2.17) and computations were carried out on a Pentium III with a 933 Mhz

CPU. It is clear from the table that if the number of grid points for each group and

the number of models increases, then the computational time increases in such a way

that it will be impossible to complete the task. Therefore, in practice, it is almost

impossible to apply the CGS A even using a very high-powered computer.

In addition, the disadvantage of the CGSA is that it works well for a small

number of models and a small number of grid points but is more difficult to apply as

the number of models and grid points grows. In our case, we have a large number of

penalties to be estimated. We need a method that will work well for a large number

of models and grid points.

5.4.2 BGSA

We estimated the total time required for calculating optimal penalties for

different models using five grid points for each penalty. Table 5.2 shows the

estimated total time (in hours) required for different models by the BGSA with 5 grid

points for each group comprised of 55 = 3125 penalty sets. We found that for 12

models, the computation time required by the BGSA is only 0.5843 hours whereas

the CGSA takes more than a year to complete the task. We also checked the loss of

AMPCS when the BGSA is used over the CGSA. Table 5.3 gives the comparison

between the computational time for the CGSA and the BGSA, loss of AMPCS and

time saved for using the BGSA over the CGSA. From the table, it is clear that the
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BGSA saves a lot of computational time for a small sacrifice of AMPCS. The

disadvantage of this algorithm is that it considers all penally points as five groups

instead of considering each point separately.

5.4.3 PDFA

We first estimated coefficients of the polynomial using (5.1) and then used

the CGSA on these coefficients. After performing a fine search for the coefficients

of the polynomial, the estimated formulae for penalties for different values of <f> and

n are given below:

#+1.0.15= -0.0042(04 + 0.117(/)3 - 1.1403(02 + 4.4185(0 - 3.21

#+1,0.25 =-0.0001(04 + 0.0052(03 - 0.1089(02 + 0.9666(0 -1.0324

/7,+1O5O = -O.OOOOO3(O4 + 0.0004(03 -0.0148(02 + 0.2308(0+ 0.1198

A+i.o.75 = -0.0000000006(04 + O.OOOOO8(O3 - O.0008(O2 + 0.0263(0 + 0.9395

/W.ioo =-0.0000002(04 +0.000O3(O3 -0.0015(02 +0.0113(0 + 3.1645

/W.7.I5 = -0.0007(04 +0.0297(03-0.4363(02+2.3942(0-1.7925

#..,0.7,25 =-0.0001(04 +0.0062(03-0.1267(02 +1.0389(0 -1.1535

/?
(>i,o.7.50=-0-000002(O4+0.0002(O3-0.0072(O2 + 0.1344(0+ 0.4278

0.0508(0+ 2.8948

+i.o.7.100 = -0.0000004(/)4 + 0.00007(/)3 - 0.0038(/)2 + 0.0524(/) + 2.0675

+i,i.o.is = -0.0028(/)4 +0.0773(03-0 .7771(/)2 +3.3041(0-2.4422

+i.i.0.25 = ~0.000008(04 +0.0004(03 -0.0102(02 +0.136(0 + 0.0102

#+u.o.5o = -0.000002(04 +0.0002(0 -0.0101(0' +0.2289(0 + 0.3095
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#+uo.75 = -0.0000004(0* +0.00007(/)3 - 0.003 8(z)2 +0.0846(0 + 0.6394

/Ui.0.100 = -0.0000003(/)4 + 0.00005(/)3 - 0.0026(/)2 + 0.0433(/) +1.0529

/7/+110215 = -0.0026(/)4 +0.0743(/)3-0.7473(/)2 +3.0459(/) -2.228

A+u.02.25 =-0.00009(/)4 +0.0052(/)3 -0.1080(/)2 +0.9359(/) -0.9503

#+1.1.02.50 = -0.000003(0' + 0.0003(/)3 - 0.0131(/)2 + 0.2598(/) + 0.3158

#+i,...02.7s = -0.0000008(/)4 + 0.0001(/)3 -0.0063(/)2 +0.1956(0 + 1.2134

#+1.1.02.100 = -0.0000002(/)4 + 0.000025(/)3 - 0.0025(/)2 - 0.0348(0 +1.9843.

Here the first suffix indicates / = 1,•••,m-1, the second suffix indicates the

values of 0 and the third suffix indicates the sample size n. These polynomials can

be used to find penalties for different changepoint models for different sample sizes

and types of autoregressive regressors.

5.4.4 SAA

We peiiormed a pilot experiment to find the effect of the choice of starting

points of penalties on estimating optimal penalties. We used different IC penalties

such as AIC, BIC, HQC, RSC, MCPC, HSPC and GCVC as initial penalty values for

the SAA to optimize AMPCS for different sample sizes. We found that the choice of

different starting penalties does not affect the maximum AMPCS. In our case, we

used AIC penalties as starting values of the penalties. Considering estimated

AMPCS and total computational time, we used values of different factors as follows:

Initial temperature Tx =5.

Temperature reduction factor rT = 0.65.

Lower boundary for penalties /, = 0 and the upper boundary w,. = 3.

Number of cycles «v=15.
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Number of iterations before temperature reduction nT= 10.

Termination criterion nc=4.

5.5 Computer Simulation

The performance of the various IC methods and the capabilities of the

CGSA, BGSA, PODFA and SAA, were examined via extensive computer

simulations to evaluate the performance of our methods discussed in the previous

section. Our aim was to estimate the optimal penalties for each of the models as the

true DGP. For our proposed procedure, we empirically estimated penalties for

different models and compared the results of our methods with those of existing

methods. In order to do this, we used the same simulation design as in Chapter 4.

5.6 Results of Simulation

We compared the gain of our procedures over existing IC procedures

considered in Chapter 4. In other words, we evaluated the performance according to

the criterion 'what percent of times one approach outperforms other approaches' by

considering the magnitude of gain or losses of the use of different algorithms. The

comparisons are based on AMPCS for different <f> or n values in the presence of

structural change or no structural change.

5.6.1 Comparison between IC and CGSA

It was mentioned earlier that the CGSA is very time consuming and difficult

to apply for a large sample, that is, for a big number of models. Because of this, we

applied this approach only for sample size 15 when ^ = 0. The estimated AMPCS

and the percentage gain of the CGSA over existing IC procedures namely, AIC, BIC,
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HQC, RSC, MCPC, HSPC, and GCVC in the presence of structural change and no

structural change are given in Tables 5.4 and 5.5.

The form of the IC output is similar to that of Chapter 4 with the exception

that the CGSA outperforms all existing IC procedures. In the presence of structural

change, the percentage gain of the CGSA over existing IC procedures is highest for

BIC (23.55 percent) and lowest for RSC (11.03 percent). When there is no structural

change, the percentage gain of the CGSA over all IC is highest for RSC (124.13

percent) and lowest for BIC (11.15 percent). Overall, the CGSA is preferable to the

existing IC procedures considered in this study.

5.6.2 Comparison between IC and BGSA

The estimated AMPCS and the percentage gain of the BGSA compared to

existing procedures namely, AIC, BIC, HQC, RSC, MCPC, HSPC, and GCVC in the

presence of structural change and no structural change are given in Tables 5.6 and

5.7. We would like to observe how the results change with changes in n and <f>.

The results show that when there is no structural change, the percentage gain of the

BGSA is highest for RSC (123.38 percent) for </> = 0 and n = 25, and the percentage

gain is lowest for BIC (4.22 percent) for 0 = 0 and n = 15. The results reveal that as

the sample size n or <f> increases, the gain over RSC decreases, on the other hand

with respect to BIC, it increases. In the presence of structural change, the percentage

gain of the BGSA is highest for BIC (59.37 percent) for </> = 0 and n - 75 and lowest

for RSC (2.37 percent) for $5 = 1.02 and « = 15. Overall, the BGSA is clearly

preferable to existing IC procedures in terms of always having a better AMPCS.
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5.6.3 Comparison between IC and PDFA

The estimated AMPCS and the percentage gain of the PDFA compared to

existing IC procedures in the presence of structural change and no structural change

are given in Tables 5.8 and 5.9. The results show that when there is no structural

change, the percentage gain of the PDFA is highest for RSC (113.31 percent) when

0 = 0 and « = 25. The percentage gain is lowest for BIC (1.98 percent) for 0 = 0

and /7 = 50. The results reveal that as the sample size n or <f> increases, the gain

over RSC decreases while, on the other hand, with respect to BIC it does not follow

any particular pattern. In the presence of structural change, the percentage gain of

the PDFA is highest for BIC (28.02 percent) for 0 = 1.02 and n = 50 and lowest for

RSC (0.83 percent) for 0 = 1.02 and /7 = 100. Overall, the PDFA is clearly

preferable to existing IC procedures in terms of always having a better AMPCS.

5.6.4 Comparison between IC and SAA

The estimated AMPCS and the percentage gain of the SAA compared to

existing IC procedures in the presence of structural change and no structural change

are given in Tables 5.10 and 5.11. The results show that when there is no structural

change, the percentage gain of the SAA is highest for RSC (114.80 percent) for

0 = 0 and w = 25. The percentage gain is lowest for BIC (2.58 percent) for 0 = 0

and n-100. The results reveal that as the sample size n or 0 increases, the gain

over RSC decreases while, on the other hand, with respect to BIC it does not follow

any particular pattern. In the presence of structural change, the percentage gain of

the SAA is highest for BIC (28.53 percent) for 0 = 1.02 and n = 50 and lowest for

RSC (LI6 percent) for 0 = 1.02 and « = 100. Overall, the SAA is undoubtedly
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preferable to all existing IC procedures in terms of always having a better AMPCS

and preferable to the CGSA because of its small computational time.

5.6.5 Comparison between BGSA and PDFA

The percentage gains of the BGSA over the PDFA in the presence of

structural change and no structural change are given in Table 5.12. The results

reveal that as the sample size n or (f> increases, the gain for the BGSA increases.

When there is no structural change, the percentage gain of the BGSA over the PDFA

is largest (about 20.06 percent) for sample size « = 100 and ^ = 0.7, and smallest

(about 2.04 percent) for sample size n = 15 and <f> = 0. In the presence of structural

change, the percentage gain is a maximum (about 10.14 percent) for sample size

w = 100 and ^ = 1.0, and minimum (about 1.26 percent) when the sample size is

/? = 15 and ^ = 1.02. Overall, the PDFA has a smaller computational time

(approximately 14 minutes) compared to the BGSA but the BGSA has a slightly

larger AMPCS than the PDFA.

5.6.6 Comparison between BGSA and SAA

The percentage gains of the BGSA over the SAA in the presence of

structural change and no structural change are given in Table 5.12. The results show

that as the sample size n or (j) increases, the gain for the BGSA increases. When

there is no structural change, the percentage gain is a maximum (about 19.67

percent) for sample size n = 100 and </> = 0J, and a minimum (about 1.23 percent)

for sample size n = 15 and <f> = 0. In the presence of structural change, the gain is

largest (about 9.87 percent) for sample size n = 100 and <f> = 1.0, and smallest (about

0.84 percent) when the sample size is n = 15 and ^ = 1.02. Overall, the SAA has a
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smaller computational time compared to the BGSA but the BGSA has slightly larger

AMPCS than the SAA.

5.6.7 Comparison between PDFA and SAA

The percentage gains of the SAA over the PDFA in the presence of

structural change and no structural change are given in Table 5.12. The results

reveal that as the sample size n or (f> increases, the gain of the SAA over the PDFA

decreases. When there is no structural change, the gain is a maximum (about 0.98

percent) for sample size ;? = 15 and ^ = 1.0, and a minimum (about 0.46 percent)

when n = 100 and <f> = 0.7. In the presence of structural change, the gain is largest

(about 0.46 percent) for sample size n = 50 and (f> = 0.7, and smallest (about 0.27

percent) when the sample size is n = 50 and <fi = 1.0. Overall, the PDFA has a

smaller computational time compared to the SAA but the PDFA has a slightly larger

AMPCS than the SAA.

5.7. Concluding Remarks

In this chapter, we examined a new method for finding penalties for the

problem of detecting possible structural change through model selection procedures.

Our method includes a family of procedures, based on grid search algorithms such as

the CGSA, BGLA and PDFA, and the SAA. These procedures do not require

conditions such as regularity or existence of derivatives. We are interested in

optimizing AMPCS. One of the basic aims of this chapter was to develop an

algorithm for finding penalties that optimize AMPCS, that is completely stable and

does not use too much computational time. It means that we can always find the

penalties that give maximum AMPCS in a reasonable time.
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Grid search is one of the appealing ways to maximize a function, which is

difficult to maximize using other algorithms. The disadvantage of using this

procedure is that it is very time consuming when there is a reasonably large number

of grid points for the penalty vector. The computational time of grid search

algorithms will increase dramatically with an increase in the number of grid points

and so can be exceptionally excessive. To overcome the computational limits

imposed by grid search algorithms, we estimate the optimum penalties that give

maximum AMPCS using the SAA whose performance is similar to that of grid

search algorithms while its computational time is much lower.

The simulation results show that our procedure outperforms existing IC

procedures, including AIC, BIC, HQC, RSC, MCPC, HSPC and GCVC in small

samples as well as in moderately sized samples. Out of these procedures, the CGSA

involves heavy computation giving the highest percentage gain over all IC

procedures while for the rest of our procedures the highest gain is about 59.37%.

We performed Fime simulation experiments using the CGSA for n = 15 and

25 when <f> takes the value 1.0. The computational time for optimizing AMPCS by

this algorithm is enormous. On the other hand, from the plot of penalties versus

different changepoint models, we found that for a particular changepoint model and

nearby changepoint model, the estimated penalties are almost the same and these

penalties follow an approximately symmetric pattern.

We also calculated maximum AMPCS for experiments with penalties

corresponding to each model and the same penalties for a model and its neighbouring

models. The former is called a complete list of penalties and the latter is a partial list

of penalties. We found that a partial list of the penalties is enough to get reasonably

optimal penalties without a major sacrifice of AMPCS. These important

considerations motivated us to investigate two alternative appro.' r :s to the CGSA.
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The two alternatives namely, the BGSA and the PDF A, are straight forward

and save computational time. The former gives higher AMPCS than the latter.

However, the computational cost is lower for the latter. The major advantage is that

it does not require detailed analytic knowledge of the function to be optimized.

It was revealed from a comparison of the performance of our procedures

that the CGSA is the best, the BGSA second, the SAA third and the PDFA fourth

best as measured by maximum AMPCS. In the context of computational time for

maximizing AMPCS, the ranking performance of our procedures are the SAA first,

the PDFA second, the BGSA third and the CGSA last.

We have found that all of our four suggested procedures dominate the

existing IC procedures considered in terms of maximizing AMPCS. We therefore

suggest using any one of the procedures when we need to choose optimal penalties

depending on the needs and wishes of the user. In particular, we suggest for very

small samples, the use of the CGSA, for moderately sized samples, the use of the

BGSA or the PDFA, and for large samples, the use of the SAA.
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Figure 5.1 Plot of Penalties for Different Models when n = 15 and <f> - 0
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Figure 5.2 Plot of Penalties for Different Models when n = 15 and (f> = 0.7
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Figure 5.3 Plot of Penalties for Different Models when n = 15 and tj) = 1.0
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Figure 5.4 Plot of Penalties for Different Models when n = 15 and <j> -1.02
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Figure 5.5 Plot of Penalties for Different Models when /; = 25 and $ = 0
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Figure 5.6 Plot of Penalties for Different Models when n = 25 and <p = 0.7



Chapter 5 Optimal Method for Penalty 174

Figure 5.7 Plot of Penalties for Diiferent Models when n =25 and <fi = 1.0
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Figure 5.8 Plot of Penalties for Different Models when n = 25 and <j> = 1.02
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Table 5.1 Estimated Timing and Number of Penalty Sets for CGSA and BGSA
with 55 Penalty Sets.

Number of
Models

11 21 46 71 98

Time per

penalty

(Seconds)

CGSA

0.6714 1.4502

ng = 5

3.3061 3.7581 5.0803

Penalty sets

Time (years)

4.88xlO7 4.77xlO14 1.42x 1032

1.0385 2.19xlO6 1.49xlO25

4.24 xlO49 1.26xlO67

5.04 xlO42 2.05 xlO60

n.. = 3

Penalty sets

Time (years)

177147

0.0038

1.05x10*

480.959

8.86xlO21

9.20xl014

7.50 xlO33 6.36 x 1045

8.95 xlO26 1.02 x 1039

n =2

-5Time (years) 4.36 x 10° 0.096

13Penalty sets 2048 2.10 x 106 7.04x10

7.38 xlO6

2.36xlO21 7.92xlO28

2.81 xlO14 1.28 xlO22

BGSA

Time (hours) 0.5843 1.1474 2.8702 4.3383 6.0853
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Table 5.2 Comparison of CGSA and BGSA on Computational Time and Loss of
AMPCS and Time Saved for Sample Size 15.

Method AMPCS Time taken Loss of AMPCS Total time saved

when BGSA used, when BGSA used

CGSA 8.3498

BGSA 8.0653

1.0385(yrs)

0.5843(hours) 3.53% 9096.68(hours)

Table 5.3 Estimated AMPCS and Percentage Gain of CGSA over IC when there
is no Structural Change for n - 15 and <j> = 0

AIC BIC HQC RSC MCPC HSPC GCVC CGSA
AMPCS 0.1325 0.2440 0.1805 O1210 0.1505 O2T95 02069 0.2712

%gain 104.68 11.15 50.25 124.13 80.20 23.55 31.11

Table 5.4 Estimated AMPCS and Percentage Gain of CGSA over IC in Presence
of Structural Change for n = 25 and <f> = 0

AIC BIC HQC RSC MCPC HSPC GCVC CGSA
AMPCS 0.4904 04433 04765 04933 04881 04695 0.4740 0.5476

%gain 11.67 23.55 14.93 11.03 12.20 16.64 15.53
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Table 5.5 Percentage Gain of BGSA over IC in Presence of no Structural
Change for Different Sample Sizes and Types of Autoregressive
Regressors

:;

| 77 = 1 5

I 77 = 2 5

[ 77 = 50

I' 77 = 7 5

[ 77=100

|: 77=15

1 77 = 25

1 77 = 50
B.

j 77 = 75

I 77 = 100

1 77=15
1
1 77 = 25

I 77 = 50

I 77 = 75

1 " = 100

J 77 = 15

)• 77 = 2 5

[ 77 = 50

| 77 = 75

I 77=100
i

AIC

91.92

97.70

91.99

96.23

77.89

44.62

43.64

59.67

61.60

64.23

54.22

51.93

49.38

54.36

51.02

40.58

55.61

52.20

45.20

52.38

BIC

4.22

6.86

7.64

14.85

15.11

6.60

8.87

20.60

25.06

28.09

13.01

12.86

15.93

18.29

20.10

b.42

14.31

15.56

15.47

19.68

HQC

40.89

48.15

44.35

51.74

52.72

23.40

26.31

35.14

40.54

46.95

26.48

30.92

29.82

34.69

31.68

21.55

31.69

31.05

26.37

32.41

RSC

110.17

123.39

96.32

109.08

78.52

^ = 0.7

68.77

61.72

81.68

88.70

82.75

67.13

71.83

69.85

74.26

65.85

(f> = 1.02

61.12

65.01

66.86

61.99

69.19

MCPC

68.97

77.00

67.66

63.92

62.03

30.07

32.40

41.30

47.14

53.16

33.74

32.54

37.11

40.67

38.27

27.39

35.95

38.32

34.25

37.58

HSPC

15.85

28.66

32.07

36.16

40.26

9.42

12.16

23.06

32.59

37.09

17.95

20.17

19.72

22.12

22.75

11.03

20.53

21.35

16.82

25.30

GCVC

22.94

35.74

38.44

50.98

51.81

15.85

20.37

28.93

37.48

42.80

25.35

24.09

26.93

32.11

27.06

16.75

27.92

26.20

24.41

27.94

BGSA

0.25

0.28

0.30

0.34

0.35

0.24

0.26

0.29

0.32

0.34

0.26

0.28

0.30

0.32

0.33

0.26

0.29

0.31

0.31

0.34



Chapter 5 Optimal Method for Penalty 178

Table 5.6 Percentage Gain of BGSA over IC in Presence of Structural Change
for Different Sample Sizes and Types of Autoregressive Regressors

77 = 15

77 = 25

77 = 50

77 = 75

77 = 100

77=15

77 = 25

77 = 50

77 = 75

77 = 100

77 = 15

77 = 25

77 = 50

77 = 75

77=100

77 = 15

77 = 25

77 = 50

77 = 75

77=100

AIC

8.59

11.99

11.73

46.47

14.13

4.74

4.77

9.51

10.54

15.37

5.43

12.34

20.97

13.33

13.90

5.10

5.65

9.60

11.14

9.20

BIC

20.14

26.09

23.00

59.37

29.65

13.52

16.61

30.80

22.61

24.18

20.52

26.02

38.26

40.28

40.43

18.27

24.71

31.69

28.29

29.03

HQC

11.75

16.87

14.72

50.78

22.66

8.77

9.30

16.36

14.57

19.59

9.28

13.48

26.81

22.73

20.29

9.91

11.28

13.84

14.63

15.35

RSC

0=0
7.96

9.33

9.57

45.55

10.74

0 = 0.7

3.60

4.38

7.64

7.83

8.05

2.56

10.56

11.90

12.34

12.37

0 = 1.02

2.37

4.02

3.88

7.96

7.48

MCPC

9.10

14.28

13.86

49.87

16.21

6.91

9.01

11.59

11.61

17.68

6.99

15.67

26.63

18.16

18.20

7.48

7.83

11.68

14.05

10.74

HSPC

J3.42

22.48

17.04

56.37

27.91

12.81

13.96

20.77

15.43

21.90

15.00

23.30

29.64

37.75

25.47

15.45

18.90

26.18

20.29

21.05

GCVC

12.34

19.46

16.10

54.56

24.46

11.07

12.07

18.03

15.08

19.76

11.92

21.37

32.29

34.72

24.11

12.73

16.24

19.75

19.65

17.43

BGSA

0.53

0.58 j

0.60 I
I

0.64 j

0.71 1
i

0.51 ]

0.52

0.61

0.62

0.68

0.50

0.56

0.63 i

0.65

0.68

0.48

0.52

0.59

0.73

0.78
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I Table 5.7

I " = 15

1 ,7 = 25

1 n = 50

1 n = 75

I w = 100

1 " = 15

1
f n = 50

I " = 75

I n = 15

1 « = 50

1 '7 = 75

1 " = 15
1 « = 25

I " = 50

I « = 100

Optimal Method for Penalty

Percentage Gain of PDFA over IC in Presence of
Change for Different Sample Sizes and Types of
Regressors

AIC

88.00

88.78

81.89

74.32

57.66

38.79

35.01

35.45

34.99

31.31

39.40

37.52

31.74

33.38

28.64

35.20

39.15

34.67

28.49

30.01

BIC

2.09

2.03

1.98

2.02

2.02

2.31

2.34

2.30

4.46

2.42

2.15

2.15

2.24

2.22

2.30

2.35

2.22

2.25

2.18

2.11

HQC

38.01

41.46

36.76

34.79

35.35

18.42

18.72

14.63

17.39

17.50

14.33

18.49

14.49

16.39

12.16

16.90

17.76

15.95

11.83

12.97

RSC

105.87

113.31

86.00

85.73

58.22

61.96

52.00

54.12

57.62

46.13

51.08

55.53

49.79

50.58

41.27

<t> = 1 . 0 2

54.95

47.56

47.63

43.35

44.34

MCPC

65.52

69.02

58.84

45.62

43.60

24.82

24.45

19.86

22.90

22.46

20.89

19.96

20.91

21.55

17.78

22.51

21.57

22.39

18.81

17.37

HSPC

13.49

22.86

25.13

20.96

24.31

5.00

5.42

4.39

10.75

9.62

6.62

8.77

5.58

5.53

4.56

6.78

7.78

7.37

3.38

6.90

-

179

no Structural
Autoregressive

GCVC

20.43

29.62

31.16

34.12

34.54

11.18

13.14

9.37

14.84

14.19

13.31

12.31

11.94

14.16

8.23

12.28

14.39

11.66

10.10

9.15

PDFA

0.25

0.27

0.29

0.30

0.31

0.23

0.24

0.25

0.26

0.28

0.24

0.25

0.26

0.27

0.28

0.25

0.26

0.27

0.28

0.29
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Table 5.8 Percentage Gain of PDFA over IC in Presence of Structural Change
for Different Sample Sizes and Types of Autoregressive Regressors

72 = 15

77 = 25

77 = 50

77 = 75

77=100

77 = 15

77 = 25

77 = 50

72 = 75

77 = 100

77 = 15

77 = 25

77 = 50

77 = 75

77 = 100

77 = 15

77 = 25

77 = 50

77 = 75

77 = 100

AIC

1.65

3.49

2.99

1.61

4.02

2.14

1.41

2.67

3.46

7.79

3.93

2.73

9.19

1.90

2.37

3.76

2.66

6.54

3.81

2.44

BIC

12.46

16.53

13.38

10.56

18.16

10.70

12.87

22.62

14.75

16.03

18.81

15.24

24.79

26.14

26.21

16.77

21.18

28.02

19.83

21.05

HQC

4.62

8.01

5.75

4.60

11.79

6.07

5.79

9.09

7.22

11.74

7.74

3.78

14.45

10.36

8.10

8.51

8.13

10.67

7.07

8.22

RSC

</> = 0

1.06

1.03

1.00

0.97

0.92

^ = 0.7

1.03

1.03

0.92

0.91

0.95

<p = 1.0

1.11

1.10

1.00

1.01

0.99

^ = 1.02

1.07

1.08

0.98

0.84

0.83

MCPC

2.13

5.61

4.96

3.97

5.91

4.26

5.52

4.62

4.46

9.95

5.47

5.78

14.29

6.25

6.23

6.12

4.78

8.56

6.53

3.89

HSPC

6.18

13.19

7.89

8.48

16.57

10.01

10.30

13.22

8.03

13.89

13.37

12.75

17.01

23.86

12.76

13.98

15.53

22.66

12.36

13.57

GCVC

5.16

10.40

7.02

7.22

13.42

8.31

8.48

10.66

7.70

11.89

10.34

10.99

19.40

21.14

11.54

11.29

12.95

16.41

11.76

10.17

PDFA

0.50

0.53

0.55

0.58

0.64

0.50

0.51

0.57

0.58

0.64

0.49

0.51

0.57

0.59

0.61

0.47

0.51

0.57

0.68

0.74
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Table 5.9 Percentage Gain of SAA over IC in Presence of no Structural Change
for Different Sample Sizes and Types of Autoregressive Regressors

77=15

77 = 25

77 = 50

77 = 75

77 = 100

77 = 15

77 = 25

77 = 50

77 = 75

77 = 100

77 = 15

77 = 25

77 = 50

77 = 75

77 = 100

77 = 15

77=25

77=50

77 = 75

77 = 100

AIC

89.58

90.10

82.97

75.42

58.52

39.93

35.97

36.42

33.03

31.89

40.81

38.72

32.69

34.26

29.33

36.02

40.15

35.56

29.42

30.90

BIC

2.95

2.75

2.58

2.67

2.58

3.15

3.06

3.04

2.95

2.87

3.18

3.04

2.98

2.89

2.86

2.96

2.96

2.93

2.92

2.81

HQC

39.17

42.45

37.57

35.65

36.09

19.39

19.56

15.46

15.69

18.01

15.48

19.53

15.32

17.16

12.77

17.60

18.60

16.72

12.64

13.75

RSC

107.60

114.80

87.10

86.91

59.08

0 = 0.7

63.30

53.07

55.23

55.34

46.76

52.60

56.89

50.87

51.57

42.04

0 = 1.02

55.89

48.62

48.62

44.38

45.34

MCPC

66.91

70.20

59.78

46.54

44.39

25.85

25.33

20.72

21.12

23.00

22.11

21.01

21.79

22.35

18.41

23.25

22.44

23.20

19.67

18.18

HSPC

14.44

23.72

25.87

21.72

24.99

5.87

6.17

5.14

9.15

10.09

7.70

9.72

6.34

6.22

5.12

7.43

8.55

8.08

4.13

7.64

GCVC

21.44

30.53

31.94

34.97

35.27

12.09

13.94

10.15

13.18

14.68

14.46

13.29

12.75

14.91

8.81

12.96

15.21

12.40

10.89

9.90

PDFA

0.25

0.27

0.29

0.30

0.31

0.23

0.24

0.25

0.27

0.28

0.24

0.25

0.26

0.28

0.28

0.25

0.27

0.27

0.28

0.29
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Table 5.10 Percentage Gain of SAA over IC in Presence of Structural Change
for Different Sample Sizes and Types of Autoregressive Regressors

I n = 25

1 n = 50
I n = 75

;? = 100

\ 77=15

1 n = 50

I n = 75
1 /? = 100

1
I 77=15

I " = 25

I n = 50

1 « = 75
1 77 = 1 0 0

1
77 = 15

77 = 2 5

77 = 5 0

: « = 75

J 77=100

AIC

2.06

3.86

3.35

2.01

4.37

2.57

1.83

3.13

3.92

8.17

4.29

3.06

9.47

2.20

2.67

4.22

3.09

6.97

4.21

2.78

BIC

12.92

16.94

13.77

11.00

18.56

11.17

13.34

23.18

15.26

16.43

19.22

15.60

25.12

26.50

26.58

17.29

21.68

28.53

20.29

21.45

HQC

5.04

8.39

6.12

5.01

12.17

6.52

6.23

9.59

7.70

12.12

8.11

4.10

14.75

10.67

8.42

9.00

8.58

11.11

7.48

8.57

RSC

0 = 0

1.47

1.40

1.35

1.37

1.27

0 = 0.7

1.46

1.45

1.37

1.36

1.30

0 = 1.0

1.45

1.42

1.26

1.30

1.29

0 = 1.02

1.52

1.50

1.39

1.23

1.16

MCPC

2.54

5.99

5.32

4.38

6.28

4.70

5.95

5.09

4.93

10.33

5.84

6.11

14.59

6.55

6.54

6.59

5.21

9.00

6.93

4.23

HSPC

6.60

13.59

8.26

8.91

16.97

10.48

10.76

13.74

8.51

14.29

13.76

13.10

17.31

24.22

13.09

14.48

16.01

23.16

12.78

13.94

GCVC

5.59

10.79

7.39

7.64

13.81

8.77

8.93

11.16

8.18

12.28

10.72

11.34

19.72

21.49

11.86

11.79

13.42

16.88

12.19

10.53

PDFA

0.50

0.53

0.55

0.59

0.65

0.50

0.51

0.57

0.59

0.64

0.50

0.51

0.57

0.59

0.62

0.48

0.51

0.57

0.69

0.74
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Table 5.11 Percentage Gain of BGSA over SAA (GOGOS), BGSA over PDFA
(GOGOP) and SSA over PDFA (GOSOP) for Different Sample Sizes
and Types of Autoregressive Regressors

1

[ 77 = 15

I 77 = 2 5

77 = 50

77 = 75

,7 = 100

77=15

1 77 = 2 5

1 77 = 5 0

1 n = 75
1

77 = 100

77 = 15

\ « = 25

1 w = 50
77 = 75

77 = 100

1 " = 15

I >7 = 25

I 77 = 75

I 77 = 100

Without

GOGOS

1.23

3.85

4.72

10.60

10.89

3.26

5.34

14.57

17.67

19.69

8.71
8.69

11.18

13.02

14.36

3.26

6.78
10.94

10.86

14.10

Structural

GOGOP

2.04

4.50

5.25

11.18

11.37

4.03

5.97

15.19

18.14

20.06

9.61

9.49

11.82

13.60

14.83

3.83

7.44

11.54

11.49

14.69

Change

GOSOP

0 = 0

0.81

0.68

0.56

0.64

0.55

0 = 0.7

0.79

0.67

0.72

0.57

0.46

0.99

0.87

0.72

0.66

0.55

0 = 1.02
0.59
0.70

0.68

0.71

0.69

With

GOGOS

6.02

7.24

7.50

8.60

8.56

2.05

2.81

5.82

6.00

6.25

1.09

8.26

9.49

9.82

9.87

0.84

2.43

2.40

6.25

5.88

Structural

GOGOP

6.39

7.58

7.82

8.95

J.87

2.47

3.22

6.25

6.41

6.58

1.41
8.54

9.74

10.07

10.14

1.26

2.83
2.78

6.59

6.19

Change

GOSOP

0.39 \

0.37

0.35

0.38 ;

0.35

0.42

0.43

0.46

0.44

0.35 i

0.33 i

0.31 '

0.27 i

0.28

0.30

0.42 ;

0.42

0.39

0.37

0.33



CHAPTER 6

Prediction with the Linear
Regression Model in the Presence of

Random Structural Change

6.1 Introduction

People have always wanted to predict the future to reduce their fear and

anxiety about the unknown and an uncertain tomorrow. This desire has been since

the dawn of civilization. Today, the need to predict the future is fulfilled in a wide

range of ways, from horoscopes to econometric services. Predictions are simply

extrapolations (or interpolations) of established past patterns and/or existing

relationships. Prediction techniques play an important role in the fields of

economics, business admirxistration, engineering and meteorological sciences, among

others. The main purpose is to predict at time / , the future value of a variable. Like

others, economists are interested to know the possible future values of economic time

series variables.
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In formulating policy decisions, it is essential to be able to forecast the

values of important economic variables. Such forecasts will enable the policy-maker

to judge whether it is necessary to take any measures in order to influence the

relevant economic variables. For example, suppose that the government wants to

pursue its employment policy. It is necessary to know what the current level of

employment is, as well as what the level of employment will be, say in five years'

time, if the government takes no new measures. With econometric techniques, we

are able to obtain such an estimate of the level of employment. Forecasting is

becoming increasingly important both for the regulation of developed economies as

well as for the planning of the economic development of underdeveloped countries.

Wallis (1989) pointed out three main motivations for forecasting. The first

is that in order to make policy decisions when the current situation is uncertain, some

kind of forward-looking prediction is essential, particularly when the decisions

cannot be reversed. The second is to anticipate events for private gains and the third

is to put hypotheses about the behaviour of the world to test. Zellner (1988)

emphasized the importance of prediction in evaluating hypotheses and models in

econometrics. In his opinion, econometricians are overly concerned with estimating

parameters and fail to appreciate the important role of forecasting. We share this

view.

One of the objectives of applied econometric research is to obtain good

numerical estimates of the coefficients of economic relationships and to use them for

the prediction of the values of economic variables. Before using an estimated model

for forecasting the value of the dependent variable, there must be an assessment in

some way of the predictive power of the model. It is conceivably possible that the
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model is economically meaningful, and statistically and econometrically correct for

the sample period for which the model has been estimated, yet it may very veil not

be suitable for forecasting due to a change in the parameters of the relationship in the

real world.

In Chapter 4, we discussed the use of model selection to detect an unknown

changepoint whe î there is a possible structural change in the data. We also

suggested a procedure that outperformed existing procedures in identifying the

model that best fits the data in the sense thpt the probability of the modei being

selected is unit" It is natural to ask the question "Does the best fitted model also

produce the best forecasts?" In certain situations, the answer may be "yes" but we

should bear in mind that fitting and forecasting are two different issues. In practice a

particular model might produce a very good fit, but because of the mathematical

properties of the model involved, may produce ridiculous forecasts (see Bryant

(I960)). In addition, Makridakis (1986) and Mills and Prasad (1992) observe that a

model having the best fit for a given series does not necessarily mean it is the best

forecasting model.

Forecasting with a regression model assmnes there is no change in any of

the parameters over the forecast period. Unfortunately, it is quite possible that one or

more of the parameters might change at some unknown point in the future. The aim

of this chapter is to investigate how we might incorporate possible future structural

change as a stochastic element of our model. With this view in mind, we consider

different models for stochastic changes in parameters, to compare prediction'; from

different strategies. We shall begin with the case in which there are twc possibilities

of a changing parameter. The first is a change in the slope parameter by • fixed
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amount with a very low probability, keeping the intercept constant. The second is a

change in the intercept parameter by a fixed amount with a very low probability,

keeping the slope unchanged. As usual, these estimators depend on nuisance

parameters whose values are unknown. To obtain an operational procedure we

replace these unknown parameters by sample estimates.

We adopt linear regression models with single or multiple time changing

coefficients but with low probabilities of a change at any point in time. The time

changing coefficient approach considered here will provide a simple procedure for

handling possible changepoints in the data. The traditional fixed coefficient linear

regression models can be treated as a special case of the time changing coefficient

linear regression model.

We look at the distributional pattern of the model, derive the distribution of

the changing parameter model, develop the theoretical variance-covariance matrices

for three special situations, and construct 'out of sample' forecast procedures. In

order to investigate whether our forecast procedures are likely to be useful, we

perform a Monte Carlo study of forecast performance. We use OLS, maximum

likelihood (ML) and maximum marginal likelihood (MML) methods for the

estimation of parameters.

Once the forecasts are made, they can be evaluated by computing the

prediction error (PE) and these errors can tell us a lot about the quality of the

forecasting model. We use three forecast evaluation statistics: (i) mean error (ME),

(ii) mean absolute error (MAE) and (iii) root mean squared error (RMSE), prominent

in the forecasting literature.
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The rest of the chapter is organised as follows. Section 6.2 contains a

theoretical discussion that includes the distribution of time series data for changing

the intercept and slope parameters keeping one fixed while the other may change in a

simple linear regression model. In addition, the variance-covariance matrix for our

model in these two cases is derived for three special situations. In Section 6.3, we

discuss the estimation of parameters and prediction errors in the case of changepoints

and of no changepoints in the model. Section 6.4 presents three different schemes

for estimating the parameters of the model to predict consecutive periods with new

data becoming available. Section 6.5 contains a discussion of the Monte Carlo

experiment and includes a description of the experimental design and the models

used. Section 6.6 discusses the prediction accuracy and some statistical measures for

it. Discussion of the results of the Monte Carlo experiments is presented in Section

6.7. We furnish the concluding remarks of our study in the final section.

6.2 Theoretical Discussion

Consider the simple linear regression model

y,=a,+p,x,+e, t / = 1, . . . , » , (6.1)

where yt is the dependent variable at time / , xt is the value of the independent

variable at time / ? a, and /?, are parameters of the model that may change over

time. We will consider two possibilities of changes. The first is where the intercept

a, is a constant and f}t may change at each point t by a fixed amount 8 but with a

very low probability p. The second is where the slope /?, is a constant and at may
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change at each point / by a fixed amount 8 but with a very low probability p. In

other words in the first case, a, = a0 for all / and

where p is a small and unknown probability and 8 is a fixed but unknown value

while in the second case, /?, = J3O for all t and

We are interested in finding the distribution of y, for a changing slope and

for a changing intercept. The simple linear regression model (6.1) in these two cases

can be written respectively as

y,=a»+{Po+8T,)x,+u,, t = \,2,---,n, (6.2)

y , =ao+8r, +/3Qx,+ul, t = 1,2, •••,/2, (6.3)

where r, ~ Binomial {t,p). r, can be approximated by a normal random variable

for large / with mean tp and variance tp(\-p). The error term ut is assumed to

be independently normally distributed with constant variance, i.e., u, ~ IN(0,cr2)

and we assume w, is independent of r , . We introduce a sequence of independent

random variables zt, i = 1,2, •••,n, which are allowed to have only two different

values, 0 and 1, with corresponding probability (\-p) and p so that r, =

Then models (6.2) and (6.3) become
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;;, =a0+{Po+02^zi)xl+ul, / = 1,2, •••,/;, (6.4)

x,+u,, / = l ,2,-,/i , (6.5)

respectively. Models (6.4) and (6.5) are characterized as changing slope and

intercept models, respectively.

6.2.1 Distributional Pattern of yt for Changing Slope
Parameters

Consider the slope changing model (6.4) and assume S is fixed. We are

interested in finding the distribution of y,. We note the following:

Period Distribution of y, Probability Values of z.

y2- N{a0+PQx2,o-2)

y2~N(a0+(j30+S)x2,a
2)

N(a0

\-p

P

z , = 0

y4~N(ao+/]ox4,cr2)

O'P)2

2p(\-p)

P2

0-/03

3/7(1 -p)2

3p2(\-p)

P>

(l-p)4

all Zj's are 0

one Zj is 1

all Zj's are 1

all Zj's are 0

one Zj is 1

two Zj's are 1

all Zj's are 1

all z, 's are 0

r
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Period Distribution of yt Probability Values of z.

5 y5~N(a0+j30x5,cr2)

ys~N(a0+(j30+S)x5,cr2)

ys~N(a0+(j30+2S)x5,a
2)

y5~N(a0+(/]0+4S)x5,a
2)

4/7(1 - py

6p2(\-p)2

Vd-p)

p4

(I-/?)5

5p(l-pY

lopw-py

\0p\l-p)2

5p\\-p)

v5

one z;. is 1

two zj 's are 1

3 Zj's are 1

all z(. 's are 1.

all Zj's are 0

one z, is 1

two z,. 's are 1

3 Zj's are 1

4 z. 's are 1

all Z-. 's are 1

and so on.

6.2.1.1 Derivation of Covariance Matrix (£2IS) when
Slope is Changing in One Direction

Under the same assumptions as stated in the previous section regarding the

probability distribution of z,., the expectation, variance and covariance of zt are

var(z,.) =

Under these assumptions the y, given by (6.4) have expected value
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x, +*

The variance of y, under the assumptions that

and that the x, are fixed is

,) = var(«0 +(j3o+

= tp(\-p)S2x;+cj2.

Also the covariances of the yt 's are

var( u,

,,yj) = mm{ij)p(\-p) S^^j, for

From the above results, model (6.4) can be rewritten as

y, =a0 +(/?0+

where co, = u, + v,; v, = (r, - pt)x,5;

v, ~N(0,tp(l-p)52x?) and

The variance-covariance matrix of y is

, 2/7(1 - p)S2x]

p{\-p)82x]xn

2p{\-p)S2x2xll
.(6.6)
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6.2.1.2 Derivation of Covariance Matrix (/22S) when
Slope is Changing in Two Directions

Consider a sequence of independent random variables z,, / = 1,2,•••,/?,

which can take three values - 1 , 0 and 1 with corresponding probabilities q,\- p-q

and p respectively. In other words zi are defined by

f-1 with probability q,

0 with probability \-p-q,

1 with probability p,

where p and q are small and unknown probabilities. The expectation, variance and

covariance of z;- are now

var(z,.) = ((/? + q)-(p-q)2) and

Cov(zjzj) = 0, for i*j.

Under these assumptions, the y, given by (6.4) have expected value

,) = aQ +/J0 x, +x,SEiJ^z,.) = ao+(/3o+t (p-q)S)xr

The variance of y, under the assumptions that

= 0, E(uiUj) = 0, for

and that the x, are fixed is

> = va r(«0
 + ( ^ o + ^ 2 ( > , ) + var( u,

q)-(p-q))S2xf+a2.
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Also the covariances of the y, 's are

Cov(y{,yt.) = min(/,y)((/7 + q)~(p-q)2 )S2xixj, for

From the above results, model (6.4) can be rewritten as

y, = a0 + (/?0 + / ( / ? - q)S)x,

where o>; = w, + v,; v, = (r, -{p-q)t)x,S;

The vaiiance-covariance matrix of y is

c2xx
2+cr2

C2sX2X]

C2xXnX]

cr

C2sX\Xn

2C2sX2Xn

2 \ c-2

(6.7)

where c2s = ((/? + ̂ ) - (p -q)')S

6.2.1.3 Derivation of Covariance Matrix (i?3V) when
Slope is Changing in Two Directions by
Different Amounts

Consider a sequence of independent random variables zt, /=1,2,•••,«

which can take three values - £ , , 0 and S2 with corresponding probabilities

q,\-p-q and p respectively. In other words, the z, are defined by

-S, with probability q,

0 with probability \~p-q,

S j with probability p,
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where p and q are small and unknown probabilities. The expectation, variance and

covariance of 2, are now

var(r,) = S\q + 5\p - (Sxq + S2p)2 and

Cov(zizj) = 0, for / * j .

Under these assumptions, the y, given by (6.4) have expected value

E(y,) = a0 + /?0 x, + x,

The variance of y, under the assumptions that

t(82p - Sxq))x,.

E{u,) = 0, E(u,Uj) = 0, for /> j , £(W/
2) = c2

and that the x, are fixed is

,) = var(a0 + (J3O + £ z, )x,) + var(«,

Also the covariances of the yt 's are

^ ) = min(/,y) / y

= min(/,y)(^29 + 8\p - (Sxq + S2pf )xixj, for / * j .

From the above results, model (6.4) can be rewritten as

y,=ao+ (J3O + / (S2p -

where co, = u, + v,; v, = (r, -{S2p-8xq)t)x,8\

co,
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The variance-covariance matrix of y is

(6.8)

where c,v = £fc + ̂  - (Stq + S2pf.

6.2.2 Distributional Pattern of yt for Changing
Intercept

Consider the slope changing model (6.5) and assume 8 is fixed. We

interested to find the distribution of y,. We note the following:

Period Distribution of y, Probability Values of z,

+ J3ox],cr2) 1-/7 2 , = 0

are

2

2/7(1- P)

V ) 3/7(1 -P?

3><r) 3/?2(l-p)

all z; 's are 0

one 2(. is 1

all zi 's are 1.

all z;. 's are 0

one z, is 1

two z(. 's are 1

all zj 's are 1.

all z,. 's axe 0
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Probability

> 4 ~ ,,cr2) 4p\\-p)

. V ) P4

O-P)5

<r) 5p(l-pY

lOp"(\-pY

5p4(l-p)

V2)

and so on.

Values of zi

one z, is 1

two z, 's are 1

3 zx. 's are 1

all z, 'sare 1.

all z,. *s are 0

one z; is 1

two z( 's are 1

3 z(. 's are 1

4 Zg 's are 1

all z, 's are 1

6.2.2.1 Derivation of Covanance Matrix (/21C) when
Intercept is Changing in One Direction

Consider a sequence of independent random variables z;., / = 1,2,•••,«,

which can take two values 0 and 1 with corresponding probabilities 1 - p and p

respectively. In other words z(, are defined by

[0 with probability \-p
Z- = i
"' [1 with probability p

1
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where p is a small and unknown probability. The expectation, variance and

covariance of zi are now

,) = /?(l-/?) and

(z,z/) = 0,for7Vy.

Under these assumptions, the y, given by (6.5) have expected value

i) + j3oxl=(ao+tpS) + j3oxr

and the variance of y, is

var(.y,) = var(a0

Also the covariances of the y, 's are

var(w,) = /p{ \ -p )5 2 + or2

Cov(yityj) = min(i,j)p(l-p)S2 for / * j .

From the above results, model (6.5) can be rewritten as

y,=a0+tpS+/3ox,+a)n

where to, = u, + v,; v, = (r, - pt)5;

vl-N(0,tp(\-p)52),Q),~N(Q,tp{\-p)52+a1).

The variance-covariance matrix of y is

'p{\-p)82 +cr2 p(l-p)S2

p(\-p)82 2p(l-p)S2+cr2

2p(\-p)82

p{\-p)S2

2p{\-p)82

np(\-p)S2
+a2 , _ 2

(6.9)
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6.2.2.2 Derivation of Covariance Matrix (/22f) when
Intercept is Changing in Two Directions

Consider now a sequence of independent random variables

zt, i = 1,2,•••,«, which can take three values - 1 , 0 and 1 with corresponding

probabilities q,\-p-q and p respectively. In other words, z, are defined by

-1 with probability q,

0 with probability l-p-q,

1 with probability p,

where p and q are small and unknown probabilities. The expectation, variance and

covariance of z, are now

q)-(p-q)2) and

Cov{zjzj) = 0, for / * j .

Under these assumptions, the y, given by (6.4) have expected value

The variance of y, is

Also the covariances of the y, 's are

var(.y,) = var(or0 + S £ z,) + var(W/)

, for
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From the above results, model (6.5) can be rewritten

where a>, = u, + v,; v, = (r, - (p - q)t)5;

as

Qx, +co,

The variance-covariance

v, ~ 7V(

co, ~ tf (0,

matrix of y

=

c2c+cr2

^2c 2

c2c 2<

M(Q

<r2
+/

is

C2c

c2c+c

? + q)-{p-q)2))82
) ,

((P + g)-(p-q)2)82)

c2c

r> - . 2c2c

nc2c+a2

(6.10)

6.2.2.3 Derivation of Covariance Mati'ix {f2ic) when
Intercept is Changing in Two Directions by
Different Amounts

Consider a sequence of independent random variables z,, i-\,2,•••,/?

which can take three values - ^ , 0 and S2 with corresponding probabilities

respectively. In other words, the zt are defined by

f-£, with probability q,

0 with probability l-p-q,

82 with probability p,

where p and q are small and unknown probabilities. The expectation, variance and

covariance of z, are now
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Under these assumptions, the y, given by (6.5) have expected value

The variance of yt is

/=!

Also the co variances of the y, 's are

From the above results, model (6.5) can be rewritten
as

where co, = u, + v,; v, = (r, - (S2p - Sxq)t)5;

The variance-covariance matrix of y is

'3c

'3c

r»
'3c2c3c+cr2 ..

'3c

. 2c3c

2pf), for

(6.11)
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The Qu / = 1,2,3 and j = s,c matrices help in data generation as well as

in calculating ML and MML estimates with a minimum of computational effort and

time. They are alro needed for prediction.

6.3 Estimation and Prediction Procedures

After making a decision about the form of the model in the presence of

possible changepoints in the intercept or slope, the parameters of the model have to

be determined in the best possible manner from the available data. In other words,

the parameters of the changing parameters of the model are unknown and we need to

estimate them from the data available at hand. In the following section, we discuss

some estimation and prediction procedures.

In the previous section, we outlined changepoint models with unknown

parameters a, fi, <5",, S2, p, q, and a to be estimated. We discussed three special

situations and developed three variance-covariance matrices QiS\ i = 1,2,3 for

changing slope and three variance-co variance matrices QiC; / = 1,2,3 for changing

intercept. For simplicity, we denote y = [a,ft]', iy = [Sx,S2,p, q, cr]' and Q for the

variance-co variance matrix and use these variance-co variance matrices to estimate

parameters. We now discuss some prediction procedures below.

We consider the linear regression model

(6.12)

where y is n x 1, X is an n x k nonstochatic matrix of rank k <n, y is a kx\

vector of unknown parameters, u is an n x 1 disturbance vector assumed to be
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normally distributed with expected vaiue 0 and covanance matrix a-Q^) which is

an nxn known positive-definite matrix. If the disturbances are independent and

homoscedastic then n(W) = I and so u~N(0,a2I). The main problem in this

context is the estimation of the parameter y . Therefore our initial emphasis is on

estimating „ and in that case y and a2 are regarded as unknown nuisance

parameters. Once W is estimated, y and <r2 can be easily estimated as a

consequence.

The OLS predictor of y, j>, is defined as

y = X?<»s> (6.13)

where yOLS ^XX^X'y is the OLS estimator of y. When OLS is applied, we

assume that the errors are independent of each other and do not suffer from

heteroscedasticity.

We are interested in estimating the parameter y, and this can be done by

maximizing the log-likelihood. The process can be described as follows. The log-

likelihood function is

= const.-^l ( 6

which is a ftmction of y , y, and ex2. Its first derivatives with respect to y and a2

when set to zero, provide the estimated values of y and a2 as y and a2

respectively

( 6 1 5 )
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n
(6.16)

assuming y/ fixed. Substituting the estimated values of y and cT in the above log-

likelihood function, the maximum log-likelihood (ML) value can be found from

ML = const. - 1 log a2 - i log|/2(y/)| - 1 , (6.17)

which is a function of y/. We need to estimate y/ by maximizing this function.

This can be done by using a suitable computing algorithm namely Newton-Raphson,

Fisher's scoring method, simulated annealing (Krikpatrick et. al (1983)) or the

method of Brendt, Hall, Hall and Hausman (1974) that maximizes the likelihood for

different values of if/ by an iterative procedure.

There is a literature which suggests that maximizing the marginal likelihood

gives better results than the maximum likelihood method. Fraser (1967), and

Kalbfleisch and Sprott (1970) introduced maximum marginal likelihood (MML).

Ara and King (1993, 1995), and Rahman and King (1997) used the marginal

likelihood to construct different tests and observed a significant improvement in

small sample properties over those of traditional tests. The main principle is to

transform the dependent variable to another random vector, and a subvector of which

has a likelihood (marginal likelihood) that only contains the parameters of interest

and the remainder of which contains no information about those parameters. From

Tunnicliffe Wilson (1989), our marginal likelihood is

if 2 (6.18)
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where s-(y~Xy)'Q~\\{f)(y - A"^)and y as given in (6.15). The MML estimate

of the parameter can be obtained by maximizing the marginal likelihood function

with respect to ys . To obtain a final estimate of / , we need to estimate the value of

\y by maximizing either equation (6.17) or (6.18) and then replace y/ by the

estimated value in equation (6.15). Suppose we wish to find the one-step-ahead

forecasts of y in model (6.12), which can be written as

^ + i = ^ + 1 r + w«+1 (6-19)

where _y,;+l is the next value of y, xn+] is the kxl vector of observations on the

regressors at time n+\ and «,,+1 is its associated disturbance term. The predicted

value of yll+] can be written as

= x'HJJ (6.20)

where y/1 =\SJ
X,SJ

2,p
J,qJ,cr'\ , / = 1,2, in which y' = l indicates the estimated

value of Y comes from the ML method by maximising (6.17) and ; = 2 indicates

the estimated value comes from the MML method by maximising (6.18) and

following Goldberger (1962) and Toyooka (1982), v(y/) = E(uin]u) is the top nx 1

vector from the final column of variance-covariance matrices QiS; i = 1,2,3, for

changing slope and £2IC\ / = 1,2,3, for changing intercept, in the case of a sample

size of n +1. For example, in the case of a changing slope in one direction

p(\~p)S?x]xn+]

2p(l-p)S2x2xn+

np(\-p)62xnxll+{_
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in the case of a changing slope in two directions

in the case of a changing slope in two directions by different
amounts

v«+ i

t1C3xXnXn+l.

in the case of a changing intercept in one direction

2p(l~p)S2

in the case of a changing intercept in two directions

"2c

and in the case of a changing intercept in two directions by different
amounts

2c3c

3c



Chapter 6
Prediction in the Presence of Structural Change

6.4. Prediction Schemes

For prediction, which relies on the estimates of unknown parameters, in this

section we discuss three different schemes for estimating the parameters using the

available data. We consider these schemes explicitly and discuss them below.

6.4.1 Scheme-1: Fixed

The first scheme, which we call fixed, and which was used by, for example

Pagan and Schwert (1990), is as follows. Let yl,---iy,l be generated data from a

model of interest. We divide the total generated data into two parts, i.e., n = nl+n2.

The first nx data points are used to estimate the parameters and then predict for n2

observations using information from the fitted model. This scheme estimates /?, just

once, using data from 1 to «,, and uses the one estimate in forming all n2

predictions. In this case, /? is the same for all n, and depends only on «,.

6.4.2 Scheme-2: Recursive

The second scheme, which we call recursive, was used by, for example. Fair

and Shiller (1990). This scheme uses all available data, estimating /? first with data

from 1 to nx, nex:v with data from 1 to w, +1, so on, and finally with data from 1 to

n. In the model y, =x'lft+ul. for example, /? is estimated using data from 1 to

in the recursive scheme,
«i+r

.v=l . v = l
= 0,-,n2.
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6.4.3 Scheme-3: Rolling

The third scheme, which we call rolling, was used by, for example, Akgiray

(1989). This scheme fixes the sample size, say at nx, and drops distant observations

as recent ones are added. Thus, J3 is estimated first with data from 1 to ni, next with

data from 2 to nx +1, so on, and finally with data from n-nx +1 to n. In the least

squares model yt = xlfi + u,, for example, J3 is estimated using data from 1 to «,, 2

to «, +1, and «-77, +1 to n in the rolling scheme, j3= ( ^ *X)~' ^K)'*- ^n t n e

.V=H—N| +1 .V=/l-fJj +1

case of a rolling scheme, different regression estimates are used for each sample size.

6.5 The Monte Carlo Experiment

In order to compare average prediction errors for different situations in

linear regression models with structural changes of random timing, we conducted a

Monte Carlo experiment. The experiment aimed to evaluate the predictive

performance of different models, different schemes and different forecasting

methods.
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6.5.1 Experimental Design

The following design matrices were used in the experiment:

Xl A constant dummy plus two independent stationary AR(1)

regressors generated as, xn = 0.5x,.,_, +77,., where

i = l ,2.

X2 A constant dummy plus two independent trending regressors

generated as xif =025t + wn where win / = ! , . . . , / ? , i = 2, 3,

is an AR(1) time series generated as for A', above.

X3 A constant, monthly US seasonally adjusted total volume of real

retail sales on domestic trade (in billion 1992 USD) and lagged one

month commencing 1960(1).

X4 A constant, monthly US seasonally adjusted personal income (in

billion 1995 LSD) and lagged one month commencing 1960(1).

X5 A constant, monthly US interest rate, the same interest rate lagged

one month, real personal income (in billion 1995 USD), and the

same variable lagged one month commencing 1960(1).

These design matrices were chosen to reflect a variety of economic and

statistical phenomena. Xx is comprised of stationary regressors, X7 and X4 have

trending regressors while X3 and X5 show some long term fluctuations. After the

disturbances were generated, and given the appropriate design matrix, the y's are

generated from the following equations:
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t =

where u, ~ IN(0,a2).

y =
for

where u, ~IN(0,<j2)

(Model 1)

(Model 2)

= \,2,---,n (Model 3)

where the z,. are independently distributed

1 with probability

[0 with probability

and w, ~ IN(0,a2).

= l,2,---,n (Model 4)

where the z, are independently distributed

-1 with probability q,

0 with probability \-p-q,

1 with probability p,

and W/~/yV(0,cr2).

= l,2,-..,>7 (Model 5)

where the zy are independently distributed

z, =

-8X with probability q,

0 with probability \-p-q,

S2 with probability p,
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and u,~IN(0,o-2).

We performed a pilot experiment where different combinations of a0 and

/70 values were used and it was found that the prediction error values did not change

for the changes in aQ and J30 values. In other words, prediction errors are largely

invariant to changes in a0 and /?0. We set a0, J3O and a to unity. In addition, for

each model Mi,, we set p = 0.005 and # = 0.005. The values of S} and S2 were

chosen in such a way that — ' ' « 1 . In the end we set S] and S2 to 0.15 and
var(w,)

0.35 respectively.

After the y's were generated according to each of the above true models,

the parameters of the model were estimated by using ML, MML and OLS methods

then one-step-ahead predictions were produced by the recursive, rolling and fixed

schemes in turn. Throughout, when ML, MML estimation was needed, it was

conducted using the GAUSS 3.2.12 software.

The overall aim is to assess the performance of each of the above methods

and prediction schemes. The experiment we present involved 2000 replications. In

the case of the fixed prediction method, for each replication, we generated 480 data

points. We throw away some initial observations and then split the remaining into

regression («,) and prediction (n2) samples. The prediction ( ^ ) samples were taken

to be 200 in size and the regression (w,) samples of size 25, 50, 100 and 200 were

taken discarding 255, 230, 180 and 80 observations respectively from the generated

data. In the case of Model 2, we use tx in such a way that for each regression period
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/7,, the prediction period n-,, contains the changepoint. Based on this principle we

choo.-. /, at the 220th position of the data period.

6.6 Prediction Accuracy

In Section 6.3 we discussed different methods of prediction. Once the

predictions are obtained we need to evaluate their accuracy. The prediction error that

is the difference between the predicted value and the actual value, can be used as the

tool for prediction accuracy evaluation. If j ' , , | + 1 is the observed value of y, for the

time period nx +1, and j)M)+1 is the predicted value of y given by (6.20), for the same

period, then the prediction error is defined as e/Jj+1 =[7,,l+i - j^+ij- These prediction

errors were then compared in terms of the following statistical measures to evaluate

the prediction performance.

6.6.1 Root Mean Square Error (RMSE)

The root mean square error is the square root of the sum of the squared

prediction errors for each observation divided by the number of observations and

defined as

RMSE =
n2 /=!

RMSE is popular among econometricians and statisticians. It is the most

widely used prediction evaluation criterion in applied and theoretical research.

RMSE is mathematically more amenable than other methods and it has a relationship
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to the least squares criterion. The strategy that has minimum RMSE is often thought

to be the best strategy in terms of prediction performance.

6.6.2 Mean Error (ME)

The ME is the mean or average of the forecasting errors and is defined as

In general, MEs have a tendency towards zero in most forecasting situations.

Positive ME indicates that on average the bias in prediction is downwards and

negative ME indicates upward bias.

6.6.3 Mean Absolute Error (MAE)

The MAE involves calculating the average of the absolute value of the

prediction errors, namely

ni 7

It is an acceptable measure when the loss of making a prediction

to the absolute size of the prediction
error is proportional

error.
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6.7 Discussion of Results

In this section we analyse the overall picture of our results separately. We

took averages over the 2000 iterations of prediction errors (root mean square error,

mean absolute error and mean error) using different sample sizes n (25, 50, 100 and

200), schemes (recursive, rolling and fixed), methods (ML, MML and OLS) and

models.

In Tables 6.1 to 6.4 we report the average of ME, MAE and RMSE over

2000 iterations of model-1 considering different design matrices, schemes and

sample sizes. The results show that as the sample size n increases, the average

RJVISEs for all predictors decreases. The comparative performances of different

forecasting methods show that the OLS method outperforms the other methods in the

sense that it has the minimum average RMSE. The performance of the ML based

method was the second best and MML performed the worst. The ME and the MAE

also support the overall good performance of the OLS method. Over the different

design matrices, OLS has the lowest average RMSE for X5 and the highest for Xl.

From Tables 6.5 to 6.8, we observe that the forecasting performance of the

OLS method is the best compared to other methods for model-2 considering the

average of ME, MAE and RMSE for different design matrices, schemes, and sample

size. A trait of model-2 is that the MML method has the second best performance

and the worst performance comes from ML. The difference between the best and

worst performances is 0.0218, 0.0235, 0.0001 and 0.0559 in terms of RMSE

respectively when sample sizes are 25, 50, 100 and 200. The above analysis means

that when the sample size increases, the distance between best and worst becomes
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narrow and then wide. The recursive scheme has the bes, performance and the

ro.lmg scheme has the second best while the feed scheme has the worst

performance. The difference between the best and worst performances of recursive

scheme is 0.0787 in terms of RMSE when the sample size is 50. We have found the

difference is not statistically significant.

The estimated average of ME, MAE and RMSE for different methods

without considering different models, design matrices and sample sizes shows that

OLS performs best, MML is the second best and ML is the worst performed method

The difference between the bes, and worst performances is 0.0554 in the context of

RMSE. The recursive scheme gives ,he smallest prediction errors on average and

therefore is the bes, performed scheme, the rolling scheme performed second bes,

and the fixed scheme works relatively poorly. The difference between ,he bes, and

wors, performance is 0.01,9 in ,he con,ex, of RMSE when the sample size is 25 and

for design matrix Xs.

In Tables 6.9 to 6.12 we report the average of ME, MAE and RMSE for

™odel-3 considering differen, design matrices, schemes and sample sizes The

resuhs show that as ,he sample size n increases, the average RMSE for all predictors

decrease. The comparative performances of differen, forecasting methods show fta,

the MML estimator outperforms the other methods in the sense that i, has the

mmimum average RMSE. T h e p e r f o r a l a n c e o f ^ M L ^ . ^ ^ ^ ^

best and the OLS estimator performed worst The ME and MAE results also support

the overall good performance of the MML method. The performance of the

recursive scheme is the best, the rolling scheme is the second best and me fixed

scheme is the worst.
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The estimated averages of MAE and RMSE for model-4 for different design

matrices and sample sizes are reported in Tables 6.13 to 6.16. A characteristic of

model-4 is that the MML method performs best in the sense that it gives minimum

average RMSEs in the case of all schemes and sample sizes. The ML method has the

second best performance. The worst performance is from OLS. A clear feature of

the results is that when the sample size increases, the gap between best and worst

becomes wider. The results also show that as the sample size n increases, the

average RMSEs for all predictors decrease. In other words, the performance of

predictors changes with an increase in the sample size. The performance of the

recursive scheme is the best, the rolling scheme is the second best and the fixed

scheme is the worst.

From Tables 6.17 to 6.20, we observe that the forecasting performance of

the MML method is the best compared to other methods for model-5 based the

average of MAE and RMSE for different design matrices, schemes, and sample

sizes. A trait of model-5 is that the ML method has the second best performance.

The OLS method gives the worst performance. The difference between the best and

worst performances is 0.0157, 0.0166, 0.0186 and 0.0459 in terms of RMSE

respectively when sample sizes are 25, 50, 100 and 200. We have found that these

differences are not statistically significant. The above analysis means that when the

sample size increases, the distance between best and worst becomes broader. The

recursive scheme has the best performance and the rolling scheme has the second

best performance while the fixed scheme has the worst performance. The estimated

average prediction errors for different methods without considering different models,

design matrices and sample sizes shows that the MML performs best and ML is the
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second best performed method. The worst performance is from OLS (in terms of

MAE and RMSE). The difference between the best and worst performances is

0.01460 in context of RMSE. The recursive scheme gives minimum RMSE, and so

is the best performed scheme, the rolling scheme performed second best and the

fixed scheme works very poorly. The difference between .he best and worst

performance is 0.0139 in the context of RMSE, which is not statistically significant.

The estimated predicted errors generally decrease as the sample size increases.

The estimated average prediction errors for different methods without

considering different models, schemes, design matrices and sample sizes shows tha,

the MML method performs best, ML is the second best and OLS has the worst

performance.

Overall, in the case of models 1 and 2 OLS, gives minimum average

RMSEs, on the other hand, in case of models 3 to 5, MML methods gives minimum

average RMSEs. The estimated predicted average RMSE and MAE generally

decreases as the sample size increases. Overall, one would have to recommend the

use of MML method for models 3 to 5 and the OLS method for models 1 and 2

because their use can result an improvement in prediction in ,he sense of the

minimum RMSE and MAE.
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6.8 Conclusions

In this chapter, we investigated the forecasting performance of the linear

regression model with a random change in coefficients. We derived the

distributional patterns and especially the mean, variance and covariance structure of

different linear regression models for stochastic changes in either the slope or

intercept parameters in turn by a fixed amount with a very low probability. We

found that this resulted in a linear regression with a nonscalar variance-covariance

matrix, which allows standard approaches to estimation and prediction to be used.

We compared the predictive performances for three methods of estimation

of parameters, three different schemes, four different sample sizes and five different

models in turn and evaluated the forecasting performance of the estimators using

RMSE, MAE and ME. The simulation results convey that the MML estimator is

clearly better than the other estimator in terms of small sample properties for models

3 to 5, on the other hand the OLS estimator is better than others in the case of models

1 and 2. In addition, the MML estimator is quite promising in terms of average ME,

MAE and RMSE. Estimation of covariance matrix parameters in the models

demonstrate that if estimation is based on maximizing the marginal likelihood rather

than the classical likelihood, then the average of ME, MAE and RMSE can be

reduced for model-3 to model-5. In contrast for model-1 and model-2 predictions

from OLS are quite different from those of MML and ML methods.

The results based on different prediction schemes show that recursive

forecasts perform better than other forecasts. From the discussion of the results, we

found that overall, the adaptation of the recursive scheme is always the optimal
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choice. We, therefore, recommend the use of the OLS method and recursive scheme

for models 1 and 2, and the MML method and recursive scheme when we deal with a

situation in which there are possible random changes in either the intercept or slope

of the model.

This study has some limitations that suggest that one has to take extreme

care in making too many generalized conclusions from the results based on the

Monte Carlo experiments. The results achieved by Monte Carlo experiments are

often specific to the design of the experiment.

There is thus perhaps scope for further studies regarding the factors

responsible for coefficient changes, testing the significance and constructing the

confidence intervals of the changing parameters, as well as construction of prediction

intervals. It would also be interesting to see how our predictors behave for different

forecast lead times.
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Table 6.1 The Average of ME, MAE and RMSE Using Different Schemes,
Different Methods for Model-1 when n = 25

Method

ME
Recursive

MAE RMSE

Scheme
Roiling

ME MAE RMSE ME
Fixed
MAE RMSE

XI

ML 0.0560 1.0908 1.3517 0.0675 1.1750 1.4712 0.0869 1.1921 1.5084

MML 0.0558 1.0912 1.3514 0.0669 1.1744 1.4711 0.0864 1.1920 1.5094

OLS 0.0553 1.0901 1.3505 0.0668 1.1737 1.4701 0.0857 1.1918 1.5081

X2

ML 0.0464 1.0573 1.3321 0.0493 1.0621 1.3328 0.0490 1.0746 1.3345

MML 0.0468 1.0567 1.3321 0.0492 1.0614 1.3329 0.0485 1.0750 1.3346

OLS 0.0459 1.0562 1.3319 0.0482 1.0613 1.3323 0.0481 1.0737 1.3339

X3

ML 0.0463 1.0587 1.3373 0.0491 1.0654 1.3373 0.0490 1.0764 1.3412

MML 0.0473 1.0590 1.3372 0.0497 1.0644 1.3370 0.0490 1.0770 1.3411

OLS 0.0461 1.0585 1.3371 0.0485 1.0642 1.3368 0.0480 1.0757 1.3408

X4

ML 0.0479 1.0603 1.3344 0.0501 1.0619 1.3348 0.0518 1.0629 1.3354

MML 0.0483 1.0596 1.3341 0.0502 1.0621 1.3351 0.0515 1.0632 1.3350

OLS 0.0472 1.0591 1.3343 0.0493 1.0616 1.3347 0.0509 1.0622 1.3342

X5

ML 0.0481 1.0612 1.3361 0.0491 1.0615 1.3354 0.0526 1.0601 1.3147

MML 0.0479 1.0605 1.3362 0.0490 1.0616 1.3345 0.0529 1.0606 1.3156

OLS 0.0476 1.0602 1.3355 0.0487 1.0604 1.3342 0.0522 1.0593 1.3145
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Table 6.2 The Average of ME, MAE and RMSE Using Different Schemes,
Different Methods for Model-l when n — DO

Method

ME
Recursive

MAE RMSE

Scheme
Rolling

ME MAE RMSE ME
Fixed
MAE RMSE

XI

ML 0.0736 0.9812 1.2254 0.0738 0.9991 1.2575 0.0749 1.0105 1.2667

MML 0.0735 0.9823 1.2261 0.0733 0.9987 1.2580 0.0756 1.0112 1.2661

OLS 0.0726 0.9810 1.2249 0.0731 0.9985 1.2568 0.0744 1.0101 1.2660

X2

ML 0.0687 0.9769 1.2026 0.0744 0.9791 1.2030 0.0705 0.9803 1.2063

MML 0.0685 0.9765 1.2026 0.0744 0.9784 1.2037 0.0703 0.9799 1.2057

OLS 0.0676 0.9761 1.2021 0.0739 0.9781 1.2028 0.0693 0.9794 1.2056

X3

ML 0.0715 0.9757 1.1981 0.0695 0.9777 1.2002 0.0736 0.9792 1.1964

MML 0.0717 0.9757 1.1983 0.0695 0.9785 1.1990 0.0730 0.9792 1.1960

OLS 0.0706 0.9748 1.1972 0.0692 0.9773 1.1989 0.0725 0.9786 1.1954

X4

ML 0.0732 0.9762 1.1979 0.0729 0.9768 1.1991 0.0743 0.9780 1.1973

MML 0.0724 0.9754 1.1985 0.0734 0.9770 1.2000 0.0744 0.9779 1.1967

OLS 0.0720 0.9751 1.1973 0.0727 0.9765 1.1988 0.0735 0.9772 1.1964

X5

ML 0.0728 0.9751 1.1991 0.0746 0.9788 1.1989 0.0748 0.9792 1.1996

MML 0.0720 0.9752 1.1985 0.0757 0.9793 1.1985 0.0742 0.9793 1.1995

OLS 0.0717 0.9744 1.1981 0.0744 0.9784 1.1979 0.0737 0.9787 1.1988
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Table 6.3 The Average of ME, MAE and RMSE Using Different Schemes,
Different Methods for Model-1 when n = 100

Method

ME
Recursive

MAE RMSE

Scheme
Rolling

ME MAE RMSE ME
Fixed
MAE RMSE

XI

ML 0.06.0 0.9243 ,.086! 0.0468 0.9292 ,.,543 0.0387 0 9,94 , ,777

MML 0.0603 0.9249 ,.0866 0.0473 0.9293 , ,538 0.0383 0.9,85 , n 6

OLS 0.0599 0.924, ,.0858 0.0466 0.9284 , ,536 0.038, 0.9,84 , , 7 7 2

X2

0.0629 0.9,5, , ,008 0.063, 0.927, , ,072 0.070, 0.9326 , ,303

MML 0.0630 0.9,52 ,,009 0.0637 0.9269 , , 0 7 , 0.0706 0.9329 , ,305

OLS 0.06,8 0.9,49 , , 0 0 , 0.0630 0.9267 ,,064 0.0697 0.93,7 , ,298

X3

ML 0.07,5 0.9,27 ,.093, 0.0702 0.9,62 ,.0974 0.0693 0 9202 , , 0 5 ,

X4

ML 0.0646 0.9089 ,.089, 0.0634 0.9,04 ,.09,6 0.0723 0.9,33 , ,440

MML 0.0654 0.9093 ,.0900 0.0632 0.9,00 ,.0923 0.07,9 0.9,39 , ,442

OLS 0.0644 0.9086 ,.0887 0.063, 0.9099 ,.09,, 0.07,3 0.9,32 ,.,429

X5

MI. 0.0654 0.9029 ,.0853 0.062, 0.9067 ,.090, 0.0707 0.9085 , 0800

OLS 0.0649 0.9026 ,.0844 0.06,3 0.9056 ,.0895 0.0695 0.9077 , 0799



Chapter 6 Prediction in the Presence of Structural Change 223

Table 6.4 The Average of ME, MAE and RMSE Using Different Schemes,
Different Methods for Model-l when 77 = 200

Method

ME
Recursive

MAE RMSE

Scheme
Rolling

ME MAE RMSE ME
Fixed
MAE RMSE

XI

ML 0.0483 0.8708 1.0869 0.0505 0.8726 1.0863 0.0489 0.8720 1.0859

MML 0.0489 0.8713 1.0873 0.0497 0.8728 1.0870 0.0487 0.8718 1.0862

OLS 0.0480 0.8706 1.0860 0.0492 0.8719 1.0859 0.0482 0.8708 1.0855

X2

ML 0.0495 0.8907 1.1242 0.0479 0.9581 1.1951 0.0458 0.9665 1.2053

MML 0.0495 0.8912 1.1246 0.0477 0.9578 1.1939 0.0461 0.9661 1.2057

OLS 0.0487 0.8902 1.1237 0.0468 0.9574 1.1938 0.0456 0.9656 1.2047

X3

ML 0.0450 0.9012 1.1262 0.0406 0.9012 1.1262 0.0451 0.8999 1.1222

MML 0.0450 0.9016 1.1251 0.0411 0.9012 1.1268 0.0443 0.9006 1.1216

OLS 0.0444 0.9005 1.1249 0.0403 0.9004 1.1258 0.0439 0.8995 1.1212

X4

ML 0.0704 1.0935 1.6074 0.0734 1.0938 1.6073 0.0739 1.0937 1.6091

MML 0.0713 1.0924 1.6074 0.0737 1.0932 1.6083 0.0732 1.0939 1.6089

OLS 0.0700 1.0922 1.6062 0.0726 1.0929 1.6070 0.0727 1.0929 1.6085

X5

ML 0.0484 0.9097 1.1440 0.0515 0.9126 1.1424 0.0531 0.9152 1.1311

MML 0.0485 0.9101 1.1443 0.0518 0.9134 1.1421 0.0523 0.9155 1.1313

OLS 0.0483 0.9092 1.1431 0.0511 0.9124 1.1414 0.0521 0.9144 1.1304
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Method

ME
Recursive

MAE RMSE

Scheme
Rolling

ME MAE RMSE ME
Fixed
MAE RMSE

XI

MML 0.0479 ,.0396 ,.2962 0.0565 , , 2 6 7 , 4 1 0 I 0 . 0 7 5 ? ,

OLS 0.0474 ,.0389 ,.2957 0.0555 ,.,260 ,.4090 0.0745 , ,364 ,.4440

X2

ML 0.0359 ,.0,20 ,.272, 0.0374 ,.0,28 ,.27,8 0.0364 ,.0234 ,2754

MML 0.0367 ,.0,24 ,.272, 0.038, ,.0,30 ,.2723 0.0370 ,0233 ,2751

OLS 0.0354 1.0118 ,.27,2 0.037, , .0 , 2 , , . 2 7 I 2 0.0362 ,.0225 ,.2743

X3

ML 0.0372 , . on 9 ,.276, 0.0380 ,.0,45 ,.2766 0.0397 ,.0259 ,2804

OLS 0.0363 ,.o,,O ,.2760 0.0373 ,.0,39 ,.2755 0.0393 ,.0248 ,.2792

X4

ML 0.0366 ,.0093 ,.273, 0.0373 ,.0,40 ,.2740 0.0394 ,.0,58 ,2754

X5

ML 0.0363 ,.0,06 ,.2746 0.0374 ,.0,03 ,.2744 0.04,4 ,.0,35 , 2548

MML 0.0362 ,.0,06 ,.2749 0.0373 ,.0,,3 ,.2752 0.04,2 ,.0,33 ,2553

OLS 0.0356 ,.0096 ,.2739 0.0370 ,.0,00 ,.2742 0.040, ,.0,29 ,2544
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Table 6.6 The Average of ME, MAE and RMSE Using Different Schemes,
Different Methods for Model-2 when n = 50

Scheme
Method Recursive Rolling Fixed

ME MAE RMSE ME MAE RMSE ME MAE RMSE

xi

ML 0.0612 0.9346 1.1674 0.0639 0.9540 1.2052 0.0638 0.9655 1.2096

MML 0.0610 0.9350 1.1671 0.0633 0.9534 1.2051 0.0633 0.9654 1.2106

OLS 0.0605 0.9339 1.1662 0.0632 0.9527 1.2041 0.0626 0.9652 1.2093

X2

ML 0.0612 0.9329 1.1475 0.0630 0.9343 1.1482 0.0604 0.9347 1.1524

MML 0.0616 0.9323 1.1475 0.0629 0.9336 1.1483 0.0599 0.9351 1.1525

OLS 0.0607 0.9318 1.1473 0.0619 0.9335 1.1477 0.0595 0.9338 1.1518

X3

ML 0.0599 0.9295 1.1434 0.0589 0.9326 1.1446 0.0631 0.9325 1.1441

MML 0.0609 0.9298 1.1426 0.0595 0.9316 1.1443 0.0631 0.9331 1.1440

OLS 0.0597 0.9293 1.1424 0.0583 0.9314 1.1441 0.0621 0.9318 1.1437

X4

ML 0.0592 0.9303 1.1430 0.0599 0.9294 1.1429 0.0609 0.9324 1.1428

MML 0.0596 0.9296 1.1427 0.0600 0.9296 1.1432 0.0606 0.9327 1.1424

OLS 0.0585 0.9291 1.1419 0.0591 0.9291 1.1428 0.0600 0.9317 1.1416

X5

ML 0.0608 0.9321 1.1433 0.0623 0.9332 1.1459 0.0617 0.9321 1.1454

MML 0.0606 0.9314 1.1434 0.0622 0.9333 1.1450 0.0620 0.9326 1.1463

OLS 0.0603 0.9311 1.1427 0.0619 0.9321 1.1447 0.0613 0.9313 1.1452
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Table 6.7 The Average of ME, MAE and RMSE Using Different Schemes,
Different Methods for ModeI-2 when n = 100

Scheme
Method Recursive Rolling Fixed

ME MAE RMSE ME MAE RMSE ME MAE RMSE

XI

ML 0.0507 0.8800 1.0364 0.0361 0.8841 1.1062 0.0289 0.8759 1.1234

MML 0.0505 0.8800 1.0358 0.0371 0.8846 1.1054 0.0280 0.8758 1.1243

OLS 0.0498 0.8787 1.0352 0.0359 0.8839 1.1050 0.0277 0.8748 1.1233

X2

ML 0.0507 0.8714 1.0482 0.0526 0.8873 1.0574 0.0606 0.8877 1.0811

MML 0.0500 0.8719 1.0483 0.0527 0.8877 1.0578 0.0607 0.8875 1.0821

OLS 0.0498 0.8710 1.0477 0.0521 0.8870 1.0565 0.0596 0.8872 1.0810

X3

ML 0.0601 0.8699 1.0430 0.0584 0.8739 1.0490 0.0570 0.8794 1.0534

MML 0.0594 0.8694 1.0428 0.0594 0.8731 1.0495 0.0577 0.8798 1.0531

OLS 0.0590 0.8690 1.0419 0.0581 0.8727 1.0489 0.0565 0.8788 1.0528

X4

ML 0.0535 0.8648 1.0385 0.0558 0.8672 1.0420 0.0600 0.8722 1.0917

MML 0.0540 0.8652 1.0376 0.0556 0.8677 1.0418 0.0603 0.8722 1.0926

OLS 0.0531 0.8645 1.0373 0.0551 0.8667 1.0408 0.0591 0.8715 1.0914

X5

ML 0.0539 0.8603 1.0357 0.0549 0.8660 1.0384 0.0597 0.8684 1.0333

MML 0.0544 0.8599 1.0355 0.0544 0.8653 1.0388 0.0594 0.8687 1.0337

OLS 0.0536 0.8595 1.0353 0.0536 0.8651 1.0378 0.0592 0.8678 1.0326
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Table 6.8 The Average of ME, MAE and RMSE Using Different Schemes,
Different Methods for Model-2 when n =200

Method

ME
Recursive

MAE RMSE

Scheme
Rolling

ME MAE RMSE ME
Fixed
MAE RMSE

XI

ML 0.0384 0.8294 1.0354 0.0386 0.8305 1.0355 0.0375 0.8277 1.0350

MML 0.0386 0.8290 1.0356 0.0382 0.8308 1.0363 0.0378 0.8288 1.0349

OLS 0.0380 0.8286 1.0346 0.0379 0.8296 1.0353 0.0373 0.8276 1.0346

X2

ML 0.0386 0.8507 1.0711 0.0358 0.9163 1.1394 0.0351 0.9204 1.1497

MML 0.0380 0.8512 1.0706 0.0360 0.9173 1.1397 0.0344 0.9197 1.1499

OLS 0.0374 0.8504 1.0703 0.0351 0.9161 1.1387 0.0342 0.9192 1.1490

X3

ML 0.0334 0.8568 1.0740 0.0330 0.8565 1.0739 0.0341 0.8562 1.0754

MML 0.0334 0.8565 1.0743 0.0330 0.8577 1.0734 0.0341 0.8558 1.0754

OLS 0.0328 0.8561 1.0730 0.0324 0.8564 1.0728 0.0331 0.8555 1.0745

X4

ML 0.0612 1.0416 1.5384 0.0614 1.0426 1.5381 0.0624 1.0420 1.5396

MML 0.0612 3.0421 1.5380 0.0620 1.0430 1.5372 0.0630 1.0426 1.5388

OLS 0.0602 1.0409 1.5371 0.0613 1.0425 1.5369 0.0618 1.0413 1.5383

X5

ML 0.0389 0.8684 1.0908 0.0418 0.8593 1.0915 0.0420 0.8721 1.0789

MML 0.0388 0.8681 1.0914 0.0418 0.8704 1.0917 0.0416 0.8716 1.0779

OLS 0.0381 0.8672 i.0905 0.0406 0.8691 1.0905 0.0408 0.8710 1.0778
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Table 6.9 The Average of ME, MAE and RMSE Using Different Schemes,
Different Methods for ModeI-3 when n = 25

Scheme
Method Recursive Rolling Fixed

ME MAE RMSE ME MAE RMSE ME MAE RMSE

ML 0.0335 1.0063 1.2669 0.0474 1.0990 1.3791 0.0636 1.1128 1.4138

MML 0.0327 0.9970 1.2566 0.0450 1.0981 1.3648 0.0632 1.1071 1.4105

OLS 0.0418 1.0218 1.2779 0.0499 1.1083 1.3868 0.0687 1.1203 1.4222

X2

ML 0.0308 0.9937 1.2508 0.0316 0.9947 1.2517 0.0323 1.0045 1.2533

MML 0.0295 0.9924 1.2495 0.0314 0.9946 1.2515 0.0321 1.0043 1.2532

OLS 0.0317 0.9946 1.2517 0.0323 0.9954 1.2524 0.0331 1.0053 1.2541

X3

ML 0.0315 0.9946 1.2546 0.0322 0.9957 1.2558 0.0338 1.0069 1.2583

MML 0.0308 0.9939 1.2538 0.0319 0.9954 1.2555 0.0337 1.0069 1.2583

OLS 0.0319 0.9950 1.2550 0.0326 0.9961 1.2562 0.0343 1.0074 1.2588

X4

ML 0.0312 0.9921 1.2523 0.0321 0.9951 1.2531 0.0333 0.9964 1.2539

MML 0.0304 0.9914 1.2516 0.0318 0.9948 1.2528 0.0333 0.9964 1.2531

OLS 0.0316 0.9925 1.2527 0.0325 0.9955 1.2535 0.0338 0.9969 1.2545

X5

ML 0.0312 0.9923 1.2524 0.0320 0.9932 1.2532 0.0339 0.9946 1.2336

MML 0.0305 0.9922 1.2517 0.0317 0.9929 1.2529 0.0338 0.9946 1.2332

OLS 0.0316 0.9926 1.2528 0.0325 0.9936 1.2536 0.0344 0.9952 1.2339
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Table 6.10 The Average of ME, MAE and RMSE Using Different Schemes,
Different Methods for ModeI-3 when n = 50

Method

ME
Recursive

MAE RMSE

Scheme
Rolling

ME MAE RMSE ME
Fixed
MAE RMSE

XI

ML 0.0541 0.9169 1.1433 0.0576 0.9352 1.1812 0.0586 0.9474 1.1887

MML 0.0540 0.9165 1.1398 0.0565 0.9350 1.1804 0.0582 0.9465 1.1876

OLS 0.0544 0.9183 1.1472 0.0590 0.9369 1.1892 0.0592 0.9488 1.1906

X2

ML 0.0538 0.9143 1.1242 0.0534 0.9152 1.1269 0.0534 0.9163 1.1306

MML 0.0531 0.9136 1.1216 0.0528 0.9141 1.1233 0.0529 0.9151 1.1301

OLS 0.0552 0.9157 1.1292 0.0557 0.9173 1.1292 0.0544 0.9190 1.1350

X3

ML 0.0536 0.9131 1.1229 0.0543 0.9141 1.1243 0.0546 0.9139 1.1251

MML 0.0529 0.9113 1.1222 0.0542 0.9138 1.1230 0.0545 0.9131 1.1241

OLS 0.0542 0.9137 1.1235 0.0558 0.9154 1.1256 0.0564 0.9160 1.1271

X4

ML 0.0536 0.9135 1.1234 0.0547 0.9143 1.1247 0.0558 0.9153 1.1214

MML 0.0540 0.9139 1.1238 0.0554 0.9150 1,1254 0.0568 0.9164 1.1207

OLS 0.0529 0.9127 1.1227 0.0533 0.9129 1.1233 0.0537 0.9132 1.1228

X5

ML 0.0538 0.9134 1.1239 0.0553 0.9141 1.1239 0.0547 0.9147 1.1246

MML 0.0532 0.9132 1.1234 0.0547 0.9134 1.1235 0.0546 0.9143 1.1242

OLS 0.0545 0.9145 1.1244 0.0561 0.9154 1.1252 0.0567 0.9168 1.1267
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Table 6.11 The Average of ME, MAE and RMSE Using Different Schemes,
Different Methods for ModeI-3 when 77 = 100

Method

ME
Recursive

MAE RMSE

Scheme
Rolling

ME MAE RMSE ME
Fixed
MAE RMSE

XI

ML 0.0439 0.8624 1.0171 0.0320 0.8676 1.0863 0.0222 0.8594 1.1041

MML 0.0431 0.8618 1.0168 0.0317 0.8673 1.0859 0.0219 0.8591 1.1038

OLS 0.0446 0.8629 1.0174 0.0323 0.8679 1.0866 0.0225 0.8596 1.1043

X2

ML 0.0436 0.8546 1.0291 0.0452 0.8675 1.0362 0.0526 0.8686 1.0526

MML 0.0429 0.8541 1.0282 0.0442 0.8631 1.0329 0.0482 0.8638 1.0413

OLS 0.0442 0.8550 1.0299 0.0462 0.8719 1.0394 0.0569 0.8735 1.0639

X3

ML 0.0490 0.8504 1.0216 0.0492 0.8555 1.0275 0.0472 0.8603 1.0303

MML 0.0451 0.8470 1.0181 0.0450 0.8511 1.0235 0.0429 0.8553 1.0251

OLS 0.0529 0.8538 1.0251 0.0534 0.8599 1.0315 0.0514 0.8652 1.0346

X4

ML 0.0453 0.8475 1.0185 0.0478 0.8501 1.0213 0.0508 0.8533 1.0697

MML 0.0434 0.8456 1.0166 0.0448 0.8471 1.0183 0.0465 0.8490 1.0655

OLS 0.0472 0.8493 1.0203 0.0508 0.8531 1.0243 0.0550 0.8576 1.0740

X5

ML 0.0462 0.8441 1.0170 0.0466 0.8469 1.0197 0.0493 0.8499 1.0125

MML 0.0436 0.8428 1.0157 0.0441 0.8443 1.0171 0.0455 0.8461 1.0087

OLS 0.0488 0.8455 1.0184 0.0492 0.8494 1.0223 0.0531 0.8536 1.0162
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Table 6.12 The Average of ME, MAE and RMSE Using Different Schemes,
Different Methods for ModeI-3 when n = 200

t

Method

ME
Recursive

MAE RMSE

Scheme

Rolling
ME MAE RMSE ME

Fixed
MAE RMSE

XI

ML 0.0327 0.8138 1.0169 0.0322 0.8143 1.0173 0.0321 0.8139 1.0171

MML 0.0321 0.8135 1.0166 0.0319 0.8138 1.0168 0.0319 0.8136 1.0168

OLS 0.0332 0.8142 1.0172 0.0324 0.8149 1.0177 0.0324 0.8141 1.0173

X2

ML 0.0322 0.8346 1.0526 0.0293 0.8990 1.1215 0.0285 0.9023 1.1293

MML 0.0321 0.8343 1.0523 0.0287 0.8985 1.1208 0.0282 0.9021 1.1290

OLS 0.0323 0.8349 1.0529 0.0298 0.8995 1.1223 0.0288 0.9026 1.1295

X3

ML 0.0276 0.8400 1.0549 0.0281 0.8403 1.0553 0.0282 0.8412 1.0557

MML 0.0273 0.8395 1.0545 0.0278 0.8400 1.0551 0.0279 0.8406 1.0555

OLS 0.0279 0.8404 1.0554 0.0285 0.8407 1.0556 0.0286 0.8418 1.0560

X4

ML 0.0544 1.0236 1.5132 0.0548 1.0241 1.5138 0.0556 1.0245 1.5141

MML 0.0543 1.0235 1.5132 0.0546 1.0238 1.5136 0.0550 1.0241 1.5138

OLS 0.0544 1.0237 1.5132 0.0551 1.0243 1.5141 0.0562 1.0250 1.5143

X5

ML 0.0336 0.8524 1.0715 0.0345 0.8536 1.0727 0.0347 0.8546 1.0612

MML 0.0333 0.8522 1.0713 0.0343 0.8532 1.0723 0.0343 0.8541 1.0608

OLS 0.0338 0.8526 1.0717 0.0355 0.8540 1.0731 0.0352 0.8555 1.0618
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Table 6.13 The Average of ME, MAE and RMSE Using Different Schemes,
Different Methods for ModeI-4 when n = 25

Method

ME
Recursive

MAE RMSE

Scheme
Rolling

ME MAE RMSE ME
Fixed
MAE RMSE

XI

ML 0.0390 1.0109 1.2717 0.0548 1.1067 1.3859 0.0723 1.1195 1.4201

MML 0.0363 0.9985 1.2664 0.0515 1.1049 1.3848 0.0696 1.1174 1.4142

OLS 0.0518 1.0304 1.2816 0.0598 1.1160 1.3965 0.0785 1.1245 1.4303

X2

ML 0.0358 1.0039 1.2534 0.0342 0.9999 1.2565 0.0351 1.0134 1.2594

MML 0.0349 1.0012 1.2531 0.0333 0.9994 1.2562 0.0345 1.0083 1.2574

OLS 0.0383 1.0041 1.2595 0.0410 1.0039 1.2588 0.0384 1.0146 1.2632

X3

ML 0.0391 0.9983 1.2586 0.0380 1.0035 1.2605 0.0414 1.0165 1.2627

MML 0.0387 0.9965 1.2585 0.0353 1.0012 1.2594 0.0411 1.0144 1.2611

OLS 0.0399 1.0022 1.2656 0.0411 1.0067 1.2634 0.0434 1.0170 1.2681

X4

ML 0.0349 0.9995 1.2575 0.0341 1.0023 1.2582 0.0394 1.0045 1.2577

MML 0.0331 0.9968 1.2568 0.0336 1.0001 1.2552 0.0368 1.0022 1.2570

OLS 0.0390 1.0009 1.2608 0.0410 1.0055 1.2628 0.0435 1.0074 1.2632

X5

ML 0.0372 0.9976 1.2591 0.0354 0.9969 1.2621 0.0410 1.0003 1.2384

MML 0.0369 0.9936 1.2562 0.0348 0.9954 1.2615 0.0389 0.9999 1.2376

OLS 0.0387 1.0018 1.2637 0.0406 1.0016 1.2634 0.0448 1.0056 1.2441
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Table 6.14 The Average of ME, MAE and RMSE Using Different Schemes,
Different Methods for Model-4 when n =50

Method

ME
Recursive

MAE RMSE

Scheme
Rolling

ME MAE RMSE ME
Fixed
MAE RMSE

XI

ML 0.0605 0.9231 1.1447 0.0652 0.9426 1.1836 0.0633 0.9544 1.1964

MML 0.0565 0.9228 1.1443 0.0636 0.9394 1.1829 0.0617 0.9523 1.1911

OLS 0.0651 0.9266 1.1565 0.0658 0.9451 1.1893 0.0644 0.9579 1.1983

X2

ML 0.0624 0.9205 1.1355 0.0602 0.9230 1.1351 0.0616 0.9234 1.1342

MML 0.0588 0.9202 1.1332 0.0593 0.9207 1.1328 0.0606 0.9221 1.1338

OLS 0.0648 0.9249 1.1372 0.0665 0.9268 1.1380 0.0632 0.9257 1.1403

X3

ML 0.0592 0.9163 1.1311 0.0592 0.9198 1.1336 0.0620 0.9231 1.1284

MML 0.0556 0.9162 1.1303 0.0578 0.9160 1.1280 0.0604 0.9199 1.1281

OLS 0.0637 0.9221 1.1332 0.0594 0.9244 1.1344 0.0663 0.9247 1.1321

X4

ML 0.0607 0.9186 1.1308 0.0607 0.9201 1.1311 0.0623 0.9221 1.1311

MML 0.0575 0.9184 1.1301 0.0596 0.9169 1.1273 0.0610 0.9212 1.1311

OLS 0.0626 0.9226 1.1330 0.0634 0.9225 1.1341 0.0648 0.9273 1.1323

X5

ML 0.0616 0.9236 1.1305 0.0621 0.9186 1.1313 0.0578 0.9213 1.1318

MML 0.0611 0.9219 1.1294 0.0577 0.9181 1.1297 0.0573 0.9207 1.1299

OLS 0.0646 0.9247 1.1329 0.0662 0.9259 1.1360 0.0643 0.9229 1.1355
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Table 6.15 The Average of ME, MAE and RMSE Using Different Schemes,
Different Methods for ModeI-4 when n - 1 0 0

Method

ME
Recursive

MAE RMSE

Scheme
Rolling

ME MAE RMSE ME
Fixed
MAE RMSE

XI

ML 0.0518 0.8693 1.0266 0.0383 0.8747 1.0931 0.0290 0.8647 1.1130

MML 0.0490 0.8673 1.0236 0.0373 0.8736 1.0911 0.0251 0.8628 1.1087

OLS 0.0538 0.8728 1.0275 0.0387 0.8781 1.0963 0.0323 0.8684 1.1147

X2

ML 0.0512 0.8639 1.0363 0.0521 0.8726 1.0426 0.0587 0.8739 1.0621

MML 0.0460 0.8630 1.0345 0.0482 0.8693 1.0399 0.0564 0.8733 1.0511

OLS 0.0541 0.8656 1.0397 0.0567 0.8802 1.0476 0.0609 0.8790 1.0715

X3

ML 0.0530 0.8574 1.0292 0.0510 0.8630 1.0352 0.0539 0.8658 1.0354

MML 0.0518 0.8537 1.0211 0.0505 0.8525 1.0265 0.0486 0.8646 1.0315

OLS 0.0636 0.8628 1.0330 0.0613 0.8640 1.0405 0.0602 0.8707 1.0451

X4

ML 0.0511 0.8565 1.0240 0.0539 0.8571 1.0241 0.0564 0.8622 1.0757

MML 0.0500 0.8534 1.0222 0.0512 0.8551 1.0225 0.0502 0.8527 1.0686

OLS 0.0576 0.8585 1.0288 0.0581 0.8589 1.0316 0.0618 0.8639 1.0819

X5

ML 0.0522 0.8494 1.0186 0.0502 0.8543 1.0244 0.0538 0.8535 1.0171

MML 0.0512 0.8455 1.0184 0.0492 0.8541 1.0213 0.0521 0.8526 1.0150

OLS 0.0571 0.8524 1.0267 0.0567 0.8596 1.0277 0.0638 0.8606 1.0235
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Table 6.16 The Average of ME, MAE and RMSE Using Different Schemes,
Different Methods for Model-4 when 77 = 200

Scheme
Method Recursive Rolling Fixed

ME MAE RMSE ME MAE RMSE ME MAE RMSE
_ _ _

ML 0.0385 0.8192 1.0232 0.0374 0.8225 1.0257 0.0388 0.8173 1.0237

MML 0.0365 0.8160 1.0215 0.0367 0.8209 1.0235 0.0388 0.8165 1.0234

OLS 0.0418 0.8226 1.0265 0.0425 0.8239 1.0274 0.0412 0.8207 1.0264

X2

ML 0.0364 0.8428 1.0586 0.0355 0.9064 1.1244 0.0334 0.9105 1.1337

MML 0.0362 0.8422 1.0577 0.0333 0.9052 1.1243 0.0328 0.9074 1.1324

OLS 0.0416 0.8449 1.0614 0.0396 0.9102 1.1270 0.0387 0.9132 1.1403

X3

ML 0.0306 0.8455 1.0591 0.0333 0.8426 1.0580 0.0332 0.8451 1.0640

MML 0.0303 0.8443 1.0589 0.0319 0.8412 1.0579 0.0321 0.8438 1.0632

OLS 0.0368 0.8508 1.0643 0.0355 0.8511 1.0637 0.0367 0.8482 1.0665

X4

ML 0.0640 1.0265 1.5202 0.0599 1.0323 1.5198 0.0597 1.0299 1.5227

MML 0.0615 1.0262 1.5171 0.0596 1.0276 1.5192 0.0585 1.0275 1.5170

OLS 0.0645 1.0324 1.5231 0.0660 1.0351 1.5218 0.0658 1.0320 1.5244

X5

ML 0.0386 0.8567 1.0759 0.0408 0.8579 1.0794 0.0375 0.8597 1.0637

MML 0.0370 0.8556 1.0729 0.0364 0.8572 1.0765 0.0368 0.8585 1.0637

OLS 0.0415 0.8604 1.0825 0.0448 0.8629 1.0811 0.0453 0.8651 1.0673
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Table 6.17 The Average of ME, MAE and RMSE Using Different Schemes,
Different Methods for ModeI-5 when n = 25

Method

ME
Recursive

MAE RMSE

Scheme
Rolling

ME MAE RMSE ME
Fixed
MAE RMSE

XI

ML 0.0493 1.0272 1.2808 0.0616 1.1111 1.3923 0.0776 1.1235 1.4236

MML 0.0379 1.0063 1.2727 0.0594 1.1083 1.3850 0.0689 1.1173 1.4205

OLS 0.0533 1.0408 1.2844 0.0672 1.1141 1.3967 0.0844 1.1399 1.4 3 5 1

X2

ML 0.0394 0.9995 1.2613 0.0453 1.0082 1.2695 0.0518 1.0224 1.2665

MML 0.0381 0.9986 1.2570 0.0375 1.0069 1.2653 0.0462 1.0164 1.2659

OLS 0.0489 1.0027 1.2711 0.0505 1.0126 1.2726 0.0529 1.0255 1.2713

X3

ML 0.0404 1.0054 1.2632 0.0405 1.0026 1.2643 0.0435 1.0227 1.2691

MML 0.0361 1.0054 1.2588 0.0372 1.0024 1.2614 0.0404 1.0162 1.2657

OLS 0.0476 1.0090 1.2747 0.0511 1.0152 1.2765 0.0478 1.0268 1.2794

X4

ML 0.0455 1.0028 1.2623 0.0515 1.0072 1.2706 0.0444 1.0064 1.2675

MML 0.0432 1.0001 1.2605 0.0512 1.0056 1.2629 0.0428 1.0051 1.2617

OLS 0.0506 1.0114 1.2725 0.0526 1.0.15 1.2731 0.0532 1.0107 1.2718

X5

ML 0.0480 1.0098 1.2665 0.0422 1.0055 1.2693 0.0487 1.0020 1.2520

MML 0.047! 1.0011 1.2659 0.0406 1.0007 1.2608 0.0404 1.0008 1.2437

OLS 0.0517 1.0126 1.2737 0.0519 1.0132 1.2716 0.0543 1.0071 1.2534
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Table 6.18 The Average of ME, MAE and RMSE Using Different Schemes,
Different Methods for Model-5 when n = 50

Scheme
Method Recursive Rolling Fixed

ME MAE RMSE ME MAE RMSE ME MAE RMSE

XI

ML 0.0665 0.9348 1.1571 0.0711 0.9426 1.1893 0.0733 0.9568 1.2043

MML 0.0644 0.9323 1.1449 0.0669 0.9420 1.1878 0.0731 0.9534 1.1981

OLS 0.0729 0.9373 1.1708 0.0730 0.9520 1.1986 0.0770 0.9613 1.2071

X2

ML 0.0611 0.9250 1.1431 0.0666 0.9272 1.1442 0.0663 0.9339 1.1439

MML 0.0600 0.9220 1.1345 0.0641 0.9226 1.1372 0.0624 0.9302 1.1355

OLS 0.0637 0.9296 1.1467 0.0740 0.9316 1.1473 0.0685 0.9351 1.1503

X3

ML 0.0630 0.9206 1.1352 0.0671 0.9271 1.1410 0.0632 0.9299 1.1309

MML 0.0626 0.9201 1.1283 0.0608 0.9239 1.1367 0.0623 0.9245 1.1308

OLS 0.0704 0.9301 1.1414 0.0720 0.9324 i.1435 0.0714 0.9347 1.1391

X4

ML 0.0691 0.9263 1.1362 0.0677 0.9302 1.1343 0.0619 0.9273 1.1337

MML 0.0612 0.9211 1.1336 0.0663 0.9291 1.1336 0.0611 0.9266 1.1302

OLS 0.0742 0.9300 1.1419 0.0748 0.9329 1.1437 0.0748 0.9294 1.1408

X5

ML 0.0580 0.9223 1.1310 0.0614 0.9288 1.1339 0.0665 0.9261 1.1392

MML 0.0578 0.9207 1.1299 0.0612 0.9230 1.1298 0.0617 0.9240 1.1330

OLS 0.0716 0.9266 1.1435 0.0752 0.9330 1.1400 0.0758 0.9366 1.1422
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Table 6.19 The Average of ME, MAE and RMSE Using Different Schemes,
Different Methods for Model-5 when /7 = 100

Method

ME
Recursive

MAE RMSE

Scheme
Rolling

ME MAE RMSE ME
Fixed
MAE RMSE

XI

ML 0.0584 0.8827 1.0265 0.0470 0.8775 1.0906 0.0288 0.8705 1.1192

MML 0.0554 0.8738 1.0248 0.0433 0.8734 1.0899 0.0268 0.8696 1.1176

OLS 0.0601 0.8829 1.0356 0.0499 0.8859 1.0955 0.0400 0.8766 1.1219

X2

ML 0.0555 0.8690 1.0434 0.0531 0.8788 1.0486 0.0642 0.8825 1.0670

MML 0.0481 0.8664 1.0434 0.0525 0.8772 1.0427 0.0601 0.8776 1.0557

OLS 0.0633 0.8727 1.0504 0.0630 0.8806 1.0545 0.0715 0.8913 1.0752

X3

ML 0.0596 0.8601 1.0377 0.0644 0.8682 1.0399 0.0572 0.8718 1.0403

MML 0.0540 0.8569 1.0336 0.0535 0.8650 1.0335 0.0479 0.8692 1.0369

OLS 0.0708 0.8706 1.0420 0.0712 0.8752 1.0432 0.0691 0.8773 1.0525

X4

ML 0.0536 0.8660 1.0343 0.0599 0.8624 1.0363 0.0689 0.8651 1.0811

MML 0.0535 0.8638 1.0339 0.0588 0.8597 1.0300 0.0663 0.8625 1.0751

OLS 0.0647 0.8679 1.0397 0.0617 0.8699 1.0414 0.0737 0.8712 1.0897

X5

ML 0.0583 0.8596 1.0295 0.0576 0.8584 1.0372 0.0593 0.8586 1.0220

MML 0.0525 0.8520 1.0219 0.0513 0.8565 1.0339 0.0568 0.8528 1.0217

OLS 0.0663 0.8625 1.0336 0.0597 0.8610 1.0423 0.0683 0.8640 1.0283
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Table 6.20 The Average of ME, MAE and RMSE Using Different Schemes,
Different Methods for Model-5 when n =200

Method
ME

Recursive
MAE RMSE

Scheme
Rolling

ME MAE RMSE ME
Fixed
MAE RMSE

XI

ML 0.0447 0.8303 1.0307 0.0396 0.8257 1.0327 0.0470 0.8254 1.0333

MML 0.0420 0.8298 1.0266 0.0382 0.8237 1.0306 0.0469 0.8210 1.0263

OLS 0.0494 0.8315 1.0369 0.0510 0.8328 1.0358 0.0504 0.8339 1.0360

X2

ML 0.0446 0.8453 1.0595 0.0372 0.9068 1.1341 0.0448 0.9148 1.0445

MML 0.0425 0.8405 1.0579 0.0363 0.9049 1.1321 0.0419 0.9078 1.0427

OLS 0.0510 0.8464 1.0736 0.0493 0.9089 1.1413 0.0480 0.9214 1.0486

X3

ML 0.0388 0.8542 1.0667 0.0356 0.8527 1.0694 0.0389 0.8589 1.0598

MML 0.0373 0.8527 1.0655 0.0334 0.8514 1.0693 0.0370 0.8557 1.0594

OLS 0.0475 0.8602 1.0731 0.0410 0.8597 1.0753 0.0468 0.8609 1.0637

X4

ML 0.0640 1.0363 1.0209 0.0681 1.0306 1.0263 0.0709 1.0324 1.0292

MML 0.0631 1.0314 1.0196 0.0612 1.0284 1.0213 0.0664 1.0317 1.0271

OLS 0.0685 1.0428 1.0286 0.0719 1.0414 1.0315 0.0724 1.0445 1.0317

X5

ML 0.0469 0.8604 1.0854 0.0416 0.8614 1.0849 0.0516 0.8607 1.0782

MML 0.0456 0.8579 1.0790 0.0375 0.8611 1.0840 0.0421 0.8598 1.0767

OLS 0.0503 0.8671 1.0894 0.0522 0.8707 1.0875 0.0536 0.8722 1.0804



CHAPTER 7

Summary and Concluding Remarks

7.1 Introduction

This thesis has investigated four important issues. The first was to develop

a small-sample procedure for calculating critical values of the LR test statistic for

testing a changepoint of unknown timing in the linear regression model. The second

was to investigate the use of IC model selection criteria for detecting a changepoint

and to find which criteria among some existing IC has the best ability to detect a

changepoint in the context of a linear regression model when the timing of the

changepoint is unknown. We used the average mean probability of correct selection

(AMPCS) criterion as a measure of the ability to detect a changepoint. The third was

to find a suitable algorithm for estimating appropriate optimal penalties that saves

computing time and at the same time, giving penalties which outperform all existing

IC model selection procedures when looking for a changepoint of unknown timing.

This approach involves finding penalties that maximize the AMPCS.

Finally, this thesis investigated the distributional pattern of a linear model

with random changes in the parameter with low probability, derived the distribution
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of the changing parameter model, developed the variance-covariance matrices for

three special situations, and constructed 'out of sample' forecast procedures.

In the section that follows, we give a detailed discussion of the results and

contributions of this thesis. We conclude this chapter by giving aspects related to,

but not covered in this thesis, with some suggestions for potential topics for future

research.

7. 2 Summary of the Thesis

Chapter 2 reviewed three topics with particular emphasis on the problem of

a structural change. The survey began with a brief historical review of the structural

change literature particularly on hypothesis testing from a statistical and econometric

viewpoint. The survey revealed that there is a large body of literature on this

problem, with procedures ranging from non-parametric to classical and to Bayesian

methods.

The literature survey conducted in Chapter 2 highlighted the fact that

hypothesis tests are not always the most advantageous way to choose the best-

specified model. Rather, it was argued following Granger et al. (1995) that, model

selection decisions should be based on some well-thought-out model selection

criteria rather than such classical mechanisms. This provides a justification for

working with information criteria based mode) selection procedures when faced with

a choice of model to be decided using the available data.

Chapter 2 showed that there are not many comprehensive studies that have

evaluated the relatively small sample performance of various existing IC model

selection procedures. The majority of the research in this area has been related to

asymptotic properties and Monte Carlo studies have mainly been used to illustrate
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the asymptotic results. This led to the identification of the need to develop model

selection procedures for choosing between different possible models with structural

change of different timing.

In Chapter 3 we examined the use of the LR test to test for the presence of

structural change when there is a possible unknown changepoint in the data. Since

this test does not have a known distribution for finite sample sizes, we calculated

exact critical values for the test by simulation using 10000 replications for different

sample sizes, numbers of regressors and types of regressors. We found that the

critical value clearly depends on sample size, number of regressors and to a lesser

extend on the type of explanatory variables. We found that the calculation of critical

values via simulation can be very time consuming. To overcome this difficulty, we

developed formulae for critical values using a response surface approach. This

avoids the use of a table at a desired level of significance when the sample size and

the number of regressors are known. We checked the accuracy of the critical value

formulae by using the Monte Carlo method and found that the estimated sizes based

on the new formulae are not significantly different from ;;<.wninal size regardless of

the sample size. Overall the actual sizes of the test using our formulae to calculate

appropriate critical values are quite satisfactory.

In Chapter 4, we investigated the relative performance of IC model selection

procedures when detecting the possible presence of a structural change. We found

BIC outperformed all existing IC procedures considered when there is no structural

change but its performance is the worst of all procedures in the presence of structural

change. RSC's performance is the worst of all existing IC procedures in the presence

of no structural change however it outperformed all other IC procedures considered

when there is structural change. In presence of no structural chance, the ranking of

the relative performance of the other IC procedures is HSPC > GCVC > HQC >
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MCPC > AIC. On the other hand, in the presence of structural change, the ranking

of the relative performance of the other IC procedures is AIC > MCPC > HQC >

GCVC > HSPC. None of the IC procedures considered stands out as a clear best

method for modelling involving structural change. We conclude from the results that

model selection can be useful when there are a large number of models involved.

In Chapter 5, we proposed new methods for finding optimal penalties for

different models while detecting possible structural change through model selection

procedures by maximizing AMPCS. Our method includes a family f f procedures,

based on grid search algorithms such as the CGSA, BGSA and PDFA, and the SAA.

These procedures do not require conditions such as regularity or existence of

derivatives. The grid search algorithm is one of the appealing ways to maximize a

function. The disadvantage of this procedure is that it is very time consuming when

there is a reasonably large number of grid points for the penalty vector. The

computational time of grid search algorithms will increase dramatically with an

increase in the number of penalties and so can be exceptionally excessive. To

overcome the computational limits imposed by grid search algorithms, we estimated

the optimum penalties using SAA whose performance is similar to that of grid search

algorithms while its computational time is much lower. The simulation results show

that the CGSA involves heavy computation giving the highest percentage gain over

all IC procedures.

We investigated the use of two alternative approaches to CGSA, namely

BGSA and PDFA. These are straight forward and save computational time. The

former gives higher AMPCS than the latter two. However, the computational cost is

lower for the latter two. We have found that CGSA is the best, BGSA second, SAA

third and PDFA fourth best as measured by maximum AMPCS. In the context of

computational time, the rankings are SAA first, PDFA second, BGSA third and
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CGSA last. We have found that all of our four suggested procedures dominate the

existing IC procedures considered in terms of maximizing AMPCS.

In Chapter 6, we investigated random changes in the coefficients of linear

regression models and their effect on predictions. We derived the distributional

pattern especially the mean, variance and covariance structure of different linear

regression models for stochastic changes in either slope or intercept parameters in

turn by a fixed amount with a very low probability. We find that this results in a

linear regression with a nonscalar variance-covariance matrix, which allows standard

approaches to estimation and prediction to be used.

We compared the predictive performances for three methods of estimation

of parameters, three different schemes, four different sample sizes and five different

models in turn and evaluated the forecasting performance of the estimators using

RMSE, MAE and ME. The simulation results suggest that the MML estimator is

clearly better than the ML estimation in terms of small sample properties. In

addition, the MML estimator is quite promising in terms of ME, MAE and RMSE.

This study has some limitations in that one has to take care in making too

many generalized conclusions from the results based on Monte Carlo experiments.

The results achieved by Monte Carlo experiments are often specific to the design of

the experiment.
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7. 3 Future Work

Given the encouraging results of our research on LR test statistics, model

selection procedures and penalty estimation, they are indeed worthy of further

attention and work. A few suggestions for future research are outlined below.

In Chapter 3 we examined the use of the LR test to test for the presence of

structural change when there is a possible unknown changepoint in the data and gave

critical values of the LR test empirically. An obviou:> extension is to testing

changepoints in more than one coefficient and using the same approach to find

critical values. Comparison of empirical sizes and powers of the test can be done

with other tests.

In this thesis, testing for structural change is confined to the regression

coefficients. We could relax the assumption that the variances of two the subsamples

are the same and let the disturbance variances vary among the different subsamples

and then investigate robustness of a structural change test to the presence of

heteroscedasticity or to develop same new tests that account for this situation. Also

further work could be done to develop the corresponding tests for structural change

in dynamic and simultaneous equation models.

Relaxing the assumption that the structural change occurs only once, other

possible extensions to the test include the possibility of multiple unknown

changepoints, a two-sided testing problem, or testing for stability of a vector (as

opposed to a scalar) of coefficients.

Our proposed small sample model selection procedures can be applied to a

number of other model selection problems which have not been considered in this

thesis such as heteroscedasticity and error component regression error models. The

error distribution of the models in this thesis was assumed to be normal. Further
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research should be conducted on the robustness of these methods in the presence of

nonnormal errors.

A mathematical derivation of the penalty function for different models may

be of great interest in order to cut computational time for the application of the

model. There is perhaps some scope for further studies regarding the factors

responsible for coefficient changes, testing the significance and constructing the

confidence intervals of the changing parameters, as well as construction of prediction

intervals. It would also be interesting to investigate the forecast performance for

different lead times (other than oue-period-ahead) for different models. As one can

see, there are many directions (or further research.
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